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CHAPTER I 
 
 

INTRODUCTION TO LOCALIZATION TECHNIQUES 
 

1.1 Motivation 

Localization, in simple words, is defined as the technique through which location 

awareness is made available for wireless subjects. It is a research topic of growing 

interest owing to the overwhelming progress achieved in the field of wireless applications 

over the past few decades. Apart from the technical advancements, the entry of cost-

effective wireless devices into consumer markets have necessitated researchers to find 

out better localization techniques to closely locate the wireless subjects in their respective 

deployment region.  

Tracking soldiers in a battlefield is one such application where the soldiers’ locations are 

found out to issue favorable commands. Livestock tracking [1, 2], which is in 

implementation stage, is another contemporary application that has indicated the 

necessity of tracking cattle to make enhancements in farm management practices. While 

the localization of stationery subjects was dealt even before many decades, the ability to 

track the motion of mobile subjects in a wireless network is more sought after in recent 

applications. 
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Some of the contemporary applications make this possible by incorporating embedded 

sensory systems in PDAs, cell phones and generally the subject possesses a wearable 

position tracking system (WePosT). WePosT is a collage of different types of sensors, 

each with a well defined purpose in localization process and a version of WePosT is 

currently being developed at the laboratory for Advanced Sensing, Computation and 

Control at Oklahoma State University. 

 Recent years have seen the growing interest in mobile sensor networks [3] where all or 

partial of the sensor nodes have motion capability endowed by robotic platforms. 

Tracking and self-localizing various types of moving objects has become an important 

research topic. With the knowledge of the new technology, one might suggest ‘Global 

Positioning System’ which acquired a place even in common man jargon. From both the 

technical view point and the application constraints, one realizes that this option is not 

feasible all the time. It could be either due to unavailability of Global Positioning System 

(GPS) signal to all subjects, or the financial overhead involved in equipping a GPS on the 

all the subjects. This primarily directs the focus onto less expensive and short ranged 

sensor systems which are gaining momentum in many applications owing to their ease of 

availability and deployment. Once the issue of sensor networks comes into picture, the 

next question will be regarding their localization procedure and this calls for a simple yet 

robust localization algorithm. This way, localization algorithms emerged to be a 

contemporary research topic. 

It is imperative to understand that the localization of mobile subjects relies on many 

issues, network topology being the most important. The attributes like network mobility, 

number of subjects in network, connectivity, shape of the network topology and others 
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play a vital role right from selection of sensor type to the localization algorithm to be 

used. Apart from the network topology, there are many other deciding issues like the 

number of anchors, outdoor/indoor deployment, radio range and the precision 

requirement.  

This concludes that the efficiency parameters of a localization algorithm cannot be 

generalized for all the problems. In other words, the efficiency is always defined based on 

the application and our goal is then to find out the best localization procedure given the 

constraints on the deployment. An overview of recent works on localization is quite 

indicative of the vast scope of inter-disciplinary methodologies being employed.  

This thesis targets at developing a localization algorithm that can be employed for a 

dynamic and sparse network wherein the mobile subjects are equipped with moderately 

accurate sensors. It also assumes that GPS may not be available to most of the subjects. 

For such an operating environment, very few efficient algorithms were developed in the 

recent years to the best of our knowledge. Some of them are briefed in the next section 

and as we shall explain they aren’t suitable for some or other specific reasons. Hence the 

goal is to develop a reasonably efficient localization algorithm and such efforts remain 

the main motivation behind the formulation of this thesis “Dynamic Localization of 

Multiple Mobile Subjects in Wireless Adhoc Networks” 

Our method will integrate short distance dead reckoning technique with 

Multidimensional Scaling (MDS) technique [4] to provide accurate location tracking. The 

short distance dead reckoning is enabled by a wearable position tracking (WePosT) 

system, which consists of a data processing unit (DPU) and a set of inertial sensor units 

(ISUs). The DPU and ISUs are compact, light weight, tag-like devices which can be worn 
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by the subject to be tracked. For example, the DPU can be attached to the human belt or 

arm. The ISU uses inertial sensors (accelerometers, gyros) to collect the acceleration rate 

and angle velocity as well as a digital compass for heading calibration. The ISUs can be 

attached to human ankles or shoes where the motion of human body can be detected. The 

ISUs will communicate with the DPU using Zigbee protocol. In the DPU, multi-sensor 

fusion scheme [5] is used to correlate the sensing data from both feet to achieve improved 

dead reckoning accuracy. The prototypes of wearable position tracking system and 

Inertial Sensor Units are shown in Figure 1.  

 

Figure 1: Prototypes of Wearable Position Tracking System (left) and Data Processing Unit (right) 

Inertial Sensor unit (Bottom Right) 
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Figure 2: Mobile Subject Localization Problem using Wearable Position Tracking System (WePosT) 

 

We assume the mobile network consists of n subjects. Among them only a small portion, 

m (m << n, for example, m = 5% of n) subjects, know their own locations. These subjects 

are called beacons. In the soldier tracking example, these beacons may be officers or 

military vehicles that are equipped with GPS or other localization techniques. With right 

sensors such as ultrasonic sensor, each subject can measure the distance to its neighbors 

through time difference of arrival (TDOA) technique [6].  

As illustrated in Figure 2, the problem of multiple mobile subject localization is as 

follows: Given a distance graph G =<Su, Sa, D > where Su = {x1, x2,… xn-m} is a set of 

subjects in an s-dimensional space (s is 2 or 3), Sa = {xn-m+1, xn-m+2,… xn} is a set of m 

beacon subjects, D = [dij ] is the distance matrix, find the n - m unknown locations Su 

such that |xi-xj|=dij. 

 
Organization of the thesis: The thesis is organized in five chapters. The first chapter 

introduces the concept of localization and throws light on the need of having robust 
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localization algorithms that would meet the requirements of sparse and dynamic wireless 

sensor networks. The contemporary localization techniques are also briefed in this 

chapter and important information pertaining to localization is enlisted.  

The second chapter deals with Multidimensional Scaling based localization which forms 

the basis of this thesis. The theory and the mathematical modeling of Classical 

Multidimensional Scaling are explained at length and the application of MDS to 

localization problem is reviewed. 

 The third chapter comprises the main contribution of the thesis which is about the 

Dynamic Localization technique. The classical Multidimensional scaling algorithm is 

modified to suit the localization problem for a sparse and dynamic mobile sensor 

network. This version of MDS is referred to as Dynamic Multidimensional scaling. Dead 

reckoning based localization and the Dynamic MDS are fused together to get the final 

estimates. The methodology and the experimental results are presented to support the 

stand point.  

The fourth chapter is a modification of the Dynamic Localization technique explained in 

the third chapter. The Dynamic MDS is analyzed to discover the variables which can 

asses the performance of the algorithm. Subsequently these variables are used in 

modifying the method in which the results of Dynamic MDS and the dead reckoning 

based localization are fused together to give the final estimate. This technique is validated 

through experimental simulations scenario. The thesis concludes with the chapter five 

where the contribution of thesis is revisited and the scope of further research is defined. 



 7

1.2 Related Work 

1.2.1 Current Work on Sensor Localization 

This section provides a brief overview of the contemporary localization techniques in 

vogue and subsequently focuses on the necessity of having MDS-based localization. In 

recent years, researchers have been developing different localization algorithms using 

triangulation, multilateration or other techniques, mainly for wireless sensor networks [7, 

8, 9]. Localization techniques typically require some form of communication between 

reference points (nodes with known coordinates) and the receiver (node that needs to 

localize). Some examples of communication technologies are RF-based and acoustic 

based communication. The localization techniques are broadly classified into two 

categories: range-based and range-free. In range based techniques, information such as 

distances (or angles) of a receiver are computed for a number of references points using 

signal strength or timing based techniques and then position is computed. The current 

thesis belongs to this genre as it fundamentally requires all the pair wise distances for all 

the nodes deployed. As we shall explain in the later sections, we also need angle 

information to assist the MDS-based results with dead reckoning results.  

The range-based techniques rely on a method of finding the physical distance between 

any two nodes in a network that are within communication range. This process is called 

ranging. There are two basic techniques used to perform ranging: received signal strength 

and signal propagation time. Received signal strength (RSS) is a way to do ranging by 

measuring the signal strength of a message at the receiver [8, 9] The receiver then uses 

knowledge of the sender's signal power (this might be contained within the message) to 

determine the power loss. Finally the receiver applies its known model for signal 
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propagation behavior to convert the power loss to a distance, thus estimating how far 

away the sender is. This is an inaccurate technique. Radio signal propagation behavior is 

highly dependent on the environment (obstacles, signal fading, metals), and hence they 

are highly variable. Savvides et al [10] describes experiments that tried to get good 

results this way, but the results are unsatisfactory in most of the cases except for an 

extremely idealized one. In most real-world ad-hoc networks, ranging by received signal 

strength is not accurate. 

The second method of ranging is possible by measuring the signal propagation time and 

converting it back to inter-distance with the knowledge of velocity of the signal 

transmitted. Time of arrival [11] is one such measure where the time taken for wireless 

signals (or packets) to travel from transmitter to receiver is multiplied by the velocity of 

signal (almost equal to light velocity) to obtain the inter-node distances. Radio signals 

travel at the speed of light (essentially instantaneous arrival), so it is not plausible to 

measure this time without using a high resolution clock to measure the time of flight. 

This is very commonly used in GPS-based ranging where the GPS receiver estimates 

distances using TOA from different satellites which needs time synchronization. Given 

the inter-distances, techniques like multilateration can be used to locate them.  To avoid 

complex time synchronizations between the transmitter and receiver, we can consider 

return time of flight wherein the receiver retransmits the signal back to transmitter. The 

transmitter then calculates the TOA as half the return time of flight. But the TOA 

parameter is affected by latency in receiver response which may be due to processing 

queue at the receiver.  
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Time difference of arrival (TDOA) [6] is a variation of time of arrival and it is a preferred 

way of measuring distance by measuring the propagation time of signals. A sending node 

will transmit a radio signal and an ultrasonic signal at the same time. Because the radio 

signal arrives essentially instantaneously and the ultrasonic signal takes much longer, the 

receiver can measure the time difference between the arrivals, and thus deduce the 

traveled distance. The Cricket [12] system uses RF/US TdoA ranging. One problem with 

ultrasound signal propagation is that it is subject to multipath effects, and to variations 

with changes in the environment. It is desirable to recalibrate TDoA measurements 

according to these variations. Savvides et al. give a way to perform this calibration, given 

enough redundancy in the distance data. Some researchers have described the Ad-Hoc 

Localization System (AHLoS)[10], an iterative way of discovering the absolute position 

of every node in a network. They assumed an ad-hoc network, in which anchors that 

know their own location at any given time form some percentage of the nodes. The focus 

is on two-dimensional localization, and the ranging method is TDoA. Signal processing 

methods have been developed for localizing a set of static sensor nodes and analyzing the 

error properties [13, 14, 15], using both TDOA and angle of arrival (AOA) measurements 

where TOA measures the distances and the AOA tells about the orientation apart from 

positioning. 

 Apart from the above mentioned techniques, range-free techniques have also been used 

widely. An RF based proximity method was developed by [8], in which the location of a 

node is given as a centroid generated by counting the beacon signals transmitted by a set 

of beacons pre-positioned in a mesh pattern. Other methods that do not rely on range 

measurements were also developed. For example, the count of hops is used as an 
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indication of the distance to the beacon nodes in some applications [7, 16]. But the 

majority of the applications rely on range based localizations. 

Coming to the localization techniques, one of the most straightforward localization 

techniques is Global Positioning System (GPS) based localization that relies on 

multilateration technique using time of arrival of signals. It has been operative since early 

1990’s. For localization in an outdoor environment, GPS works extremely well. 

Unfortunately, the signal from the GPS satellites is too weak to penetrate most buildings, 

making GPS useless for indoor localization. Likewise it has many other shortcomings. 

Multipath effects, signal jamming delayed signals, and complex clock synchronization 

requirements and others have limited the usage of GPS to less applications. Adding to 

above, the GPS units are very expensive and this makes it almost useless in case of 

commercial applications where the overheads are mainly specified in terms of financial 

constraints. This shifted the focus towards less expensive, short ranged sensor network. 

In recent years, researchers have been developing different localization algorithms to 

localize these sensor networks. 

However, most existing algorithms assume a static sensor network where the nodes do 

not move and require high node density [17]. Therefore these algorithms can not be used 

to track the subjects in the above examples, where the network is sparse and constantly 

changing.  

With the above mentioned limitation on the contemporary localization procedures, the 

goal of this research is then to develop a novel tracking method for mobile subjects in 

sparse, dynamic wireless networks under the constraint that GPS may not be available to 

most of the subjects. It can be understood that limited work has been done on mobile 
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sensor network self-localization. Tilak et al. [18] developed dynamic localization 

protocols for mobile sensor networks. However, their main interest is on how often the 

localization should be carried out in a mobile sensor network and not on the localization 

method itself. Recently, Hu and Evans [19] proposed sequential Monte Carlo (SMC) 

localization method to solve the localization problem and they found that the mobility of 

the sensors can be exploited to improve the accuracy and precision of the localization. 

Using a similar approach, simultaneous localization, calibration and tracking (SLAT) of 

mobile node within a set of static sensor nodes has been developed [20], where both the 

mobile node and the set of static sensor nodes are localized using range measurements. 

As an attempt to design an algorithm that works well in localizing an adhoc network, an 

interdisciplinary algorithm called ‘Multidimensional scaling’ has been used [21]. But the 

deployment scenario assumes only static network with considerable node density. This 

thesis extends the application of Multidimensional Scaling based localization algorithm 

(with significant changes) to dynamic and sparse adhoc sensor networks.                                             
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CHAPTER II 
 

MULTIDIMENSIONAL SCALING BASED LOCALIZATION 
 

2.1 Introduction to Multidimensional Scaling 

The roots of the Multidimensional Scaling[22, 23, 24] or MDS lie in the behavioral 

sciences like Psychometrics and Psychophysics wherein the personal traits of people are 

analyzed for important underlying distinctive characteristic features. Subsequently MDS 

proved to be an essential tool for many other researchers in diverse fields like Marketing, 

Sociology, Geography, and Psychology. Basically MDS is a data visualization algorithm 

that can describe the structure of the data. It involves multivariate statistical probing to 

describe proximity between the pairs of objects with the proximity data collected over 

time. 

The term ‘proximity’ is an index defined over a pair of objects to quantity the degree to 

which the two objects are alike or different. Correlation coefficient, joint probabilities are 

two such examples of proximity measures which can explain the extent to which two 

objects show common attributes. A proximity measure helps in differentiating the objects 

and hence it can indicate either similarities or dissimilarities. Hence the term ‘proximity’ 

has varied contextual meanings based on the application in which the data visualization 

algorithms are employed. In general usage, the term proximity indicated by δij indicates 

the dissimilarity between the objects i and j 
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 The Multidimensional Scaling algorithm takes the proximity measures as the input. And 

the chief output is a spatial representation, consisting of a geometric configuration of 

points. Each point in the configuration corresponds to one of the objects and the 

configuration as a whole reflects the hidden structure in the data making them easier to 

comprehend. This implies larger the dissimilarity between the two objects in comparison, 

the farther apart they would be placed in the spatial map.  

MDS starts with a matrix representing the distances or dissimilarities between ‘n’ objects. 

The power of this algorithm lies in its ability to depict the dissimilarities or the 

proximities between the objects through a placement of points in a low dimensional plane 

where the Euclidean distances between the points resemble the actual proximities 

between the objects as closely as possible. The best ever way to demonstrate the 

capabilities of MDS is by illustrating the classic example of cities and geographic map of 

Europe which is very widely used. 

Consider the following illustration [23]. Let us suppose that we know the inter-city 

distances accurately for 10 popular cities of Europe. Essentially this would be a 10 by 10 

symmetric distance matrix with the principal diagonal being zeros(distance of a city to 

itself is always zero). The actual distances in miles are given by the following matrix: 

 

Table 1 : Inter-city distance matrix 

 



 14

The numbers 1 through 10 correspond to each of the 10 cities shown on the figure 3. This 

distance matrix is fed to the MDS. The distances are first scaled down suitably with a 

scaling factor. Now the 10 cities are placed in a 2-D coordinate axes in such a way that 

their Euclidean distances match very close to their scaled distances and the resulting 

centroid of the entire configuration of points is at the origin. This forms the Relative 

Map. Now we may also have specific idea on some of the cities. For instance, assume 

that we already know the geographical locations of at least three cities say Stockholm, 

Madrid and Rome. We can now translate and rotate the relative map in such a way that 

the relative locations of the above mentioned three cities conform very closely to the 

absolute locations. In this process, we find that the rest of the cities also reach their 

absolute locations. The accuracy depends on the precision of inter-city distances and the 

transformation of relative map to absolute map. 

 

 

Figure 3 : Relative and absolute maps of cities of Europe 
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2.2 Types of Multidimensional Scaling 

By now, we already understood that the MDS depends heavily on the proximity measure 

input in the dissimilarity matrix. In the above example, the inter-city distance was the 

proximity measure. While ‘distances’ are numerical figures, there are many other types of 

proximity measures also. Basically, the proximity variables can be divided into four 

broad categories: 

1. Nominal Scale : Classificatory data with no comparisons possible .(Ex: Gender) 

2. Ordinal Scale :  Comparable data with no quantitative measure(Ex: Grades A–E) 

3. Interval Scale: Difference in two values are meaningful but no zero (Celsius scale) 

4. Ratio Scale: Same as Interval, but with defined zero.( Kelvin Scale) 

 

Based on these four types of proximity measures, the classical Multidimensional Scaling 

is further classified into two types: 

1. Metric Multidimensional Scaling 

2. Non-Metric Multidimensional Scaling 

 

Metric Multidimensional Scaling deals with the Interval and Ratio variables. This would 

include most of the models that deal with numerical scores, distances and other 

quantitative measures. This thesis work uses inter-subject distances and hence we will be 

using on Metric Multidimensional scaling only. The Non-metric Multidimensional 

scaling deals with the other two types of variables, nominal and ordinal. Mostly this 

model finds application in subjects involving abstract issues like behavior patters, affinity 

determination and other issues which are hard to be quantified. This type of MDS is 
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mostly used in Psychology, Marketing and other related fields. Now onwards we will be 

dealing with only Metric or Classical Multidimensional Scaling in which the Proximity 

variable refers to the distance between the subjects 

 

Classical Multidimensional Scaling 

Let the proximities between any pair of nodes (r, s) be indicated by δrs where r, s= 1, 

2…n and n is the total number of subjects. If the dissimilarities and the distances between 

the subjects are to be precisely Euclidean distances then Classical Multidimensional 

Scaling[text book] finds a configuration of points ensuring the equality  

drs = δrs                                                                                    (1) 

where drs is the distance between the two subjects in the configuration. Generally the 

above equation is not a strict equality and through the configuration of points, MDS 

always tries to minimize the loss function given by 

                       Loss Function = ((∑ (drs -δrs)2)/∑ (drs
2))1/2                                                       (2) 

2.3 Mathematical Modeling of MDS 

This section deals with the mathematical modeling of the classical Multidimensional 

Scaling algorithm.[22]As explained in the illustration dealing with the geographical map 

of European cities, we can always find the locations of the subjects. But, only relative to 

each other. Depending on the necessity, these relative locations can then be transformed 

to retrieve the absolute locations. The first step is always to recover the relative 

coordinates. 
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Let the coordinates of ‘n’ points in a ‘p’ dimensional plane be given by xr (r = 1,2,…n) 

where xr = (xr1, xr2….xrp)T . Then the Euclidean distance between rth and sth points is 

given by 

                   )()(2
sr

T
srrs xxxxd −−=                                                       (3) 

Let the inner product matrix be B where, 

                                  s
T
rrsrs xxbB ==][                                                                  (4)          

From the squared distances {drs}, this inner product matrix B is found, and then from B 

the unknown coordinates. 

 

To Find B: 

The first step is to set the centroid of the configuration of points at the origin. This will 

overcome the indeterminacy of the solution due to arbitrary translation. Hence, 
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Substituting into equation (5) gives  
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Define the matrix A as follows before proceeding. 

                             rsrs aA =][                                                                                        (8) 

Hence the inner product B is now 

HAHB =                                                                                           (9) 

where, 

TnIH 111−−=    with T)1...1,1,1(1 =  , a vector of n ones 

This derived the matrix B. The next step is to derive the coordinates from B. 

 

To Recover the Coordinates From B: 

The inner product matrix B, can be expressed as  

TXXB =                                                                                        (10) 

where T
nxxxX ]...,[ 21=   is the nXp matrix of coordinates. The rank of B, r(B) is then  

pXrXXrBr T === )()()(                                                                 (11) 

Now B is symmetric, positive semi-definite and of rank p, and hence has p non-negative 

eigen values and n-p zero eigen values. 
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Matrix B is now written in terms of its spectral decomposition, 

TVVB Λ=   where ),...,( 21 ndiag λλλ=Λ  , the diagonal matrix of eigen values }{ iλ of B  

and ],....,[ 21 nvvvV =  , the matrix of corresponding eigen vectors, normalized such that 

1=i
T
i vv . For convenience the eigen values of B are labeled such that 

0..... 121 ≥≥≥≥≥ − nn λλλλ  

Because of the n-p zero eigen values, B can now be written as  

TVVB 111Λ=                                                                                  (12) 

where  

),...,( 211 pdiag λλλ=Λ   and   ],....,[ 211 pvvvV =  

Hence as TXXB = , the coordinates matrix X is given by 

2
1

11Λ= VX  where  ],....,[ 2
1

1
2

1

2
2

1

1
2

1

1 pλλλ=Λ  and thus the coordinates of the points have 

been recovered from the distances between the points. The arbitrary sign of the 

eigenvectors }{ iv leads to invariance of the solution with respect to reflection in origin. 

 

Dissimilarities as Euclidean Distances: 

To be of practical use, a configuration of points needs to be found for a set of 

dissimilarities }{ rsδ  rather than simply for true Euclidean distances between the 

points }{ rsd . In the context of thesis, the dissimilarities would be the distances between 

the subjects measured by the ranging sensors on the WePosT system. From the previous 

explanation, if B is positive semi-definite of rank p, then   TVVB 111Λ=    where 

),...,( 211 pdiag λλλ=Λ    
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Now the distance between the rth and sth points of the configuration is given by 

)()( sr
T

sr xxxx −−  and hence, 

      )()( sr
T

sr xxxx −−   = s
T
rs

T
sr

T
r xxxxxx 2−+                                                  (13) 
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rsssrr

a

aaa
bbb
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−+=
−+=

                                                               .
 

by substituting for brs  using equation 7. 

The above specified mathematical analysis can be summarized in the form of step-by-

step procedure[22]. The practical algorithm for classical scaling will be as follows: 

1. Obtain dissimilarities {δrs} 

2. Find Matrix A, 

                               ]
2
1[ 2

rsA δ−=
 

3. Find Matrix B, 

                              ][ .... aaaaB srrs +−−=  

4. Find the eigen values 121 ,..., −nλλλ   and the associated eigen vectors 121 ,...., −nvvv  

where the eigen vectors are normalized so that ii
T
i vv λ= .  If B is not positive 

semi-definite(some of the eigen values are negative) either ignore them and 

proceed(the assumption adopted in thesis) or change the dissimilarity measure by 

adding constant and return to step 2 (not used in the Thesis) 
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5. Choose an appropriate number of dimensions p. When there is no pre-determined 

p value, use ∑∑ −1

11

n
i

p
i λλ

 
to estimate the number of dimensions needed to have 

a set value of explained variance. 

 

Number of Dimensions and Proportion of Explained Variance: 

As indicated previously, the eigen values }{ iλ  indicate how many dimensions are 

required for representing the dissimilarities. If B is positive semi definite then the number 

of non-zero eigen values gives the number of dimensions required. If B is not positive 

semi definite then the number of positive eigen values is the approximate number of 

dimensions.  

The positive eigen values indicate the maximum dimensions of the space required. 

However to be of practical use, the number of dimensions of the chosen space should be 

small (generally 2-D). Then we might be interested in knowing the effects of using lesser 

number of dimensions in the model as compared to using all of the positive eigen values. 

To answer this question, we use the following measure[22] 

Proportion of explained Variance (PEV) = ∑∑ −1

11

n
i

p
i λλ

                      (14)
 

And this is a measure of proportion of explained variance by using p dimensions. In an 

ideal case, if accurate inter-subject distances were collected from a 2D deployment, then 

we find just the first two eigen values to have significant figures and the rest of the eigens 

to be zero. In such a situation the above specified variable measuring the proportion of 

explained variance will work out to be 100%.  
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It is worthwhile to note that in the later chapters this measure (with slight modification) 

plays a very major role in appraising the performance of MDS. 

2.4 Floyd’s Shortest Path Algorithm 

This algorithm, which is also referred to as Floyd-Warshall’s algorithm [25], compares 

all possible paths through the connected graph between each pair of vertices. It does so 

by incrementally improving an estimate on the shortest path between two vertices, until 

the estimate is known to be optimal. Floyd’s shortest path algorithm uses a technique 

called Dynamic Programming to solve the all-pair shortest path problem. The following 

explains the procedure involved.  

The first step is to create an Adjacency matrix which is computed for any paid of nodes 

(i, j) as follows: 

⎩
⎨
⎧

≠
=

=
jiifd
jiif

jiA
if

0
),(                                                             (15) 

 

Note that dij = ∞ when i and j are more than 1-hop away 

The adjacency matrix entries are recursively updated by the following function that 

searches exhaustively for all possible paths and picks the shortest path. The variable k 

indicates the possible number of iterations and there could be at the most k-1 intermediate 

nodes in between i and j in any iteration. The recursive function is given by the following 

expression with k equal to (1, 2…n) 

⎩
⎨
⎧

>+
=

= −−− 0),min(
0),(

)1()1()1( kwhendddd
kwhenjiA

d k
kj

k
ik

k
ijij

ij                            (16) 
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This leads to a final updated version of Adjacency matrix with respective shortest path 

distances as the matrix elements. The computation complexity is given by n3. 

Dijkstra’s algorithm is another popular shortest path algorithm that can be used in this 

application. But Floyd’s algorithm is more robust and involves lesser computational 

overhead in large networks. Moreover practical experience also indicates that Floyd’s 

algorithm is faster than Dijkstra’s algorithm in MATLAB simulation.[21] 

2.5 Algorithm for MDS-Based Localization  

In the case of localization problem, the dissimilarity measure of N subjects is an N x N 

distance matrix. The distance matrix which is fed to the MDS algorithm must be a 

symmetric matrix with zeros on its principal diagonal. The symmetry ensures that, for a 

given pair of nodes the distance between them is always the same when measured from 

either node and the zeros on the principal diagonal indicate that the distance measured by 

a node to itself is always zero. Given the above constraints on the inputs, the MDS can 

then plot these points with origin as the centroid. To get a perceivable output, there must 

be just 2 or 3 dimensions which are good enough to contain most of the information. 

Hence singular value decomposition is carried out on the distance matrix and only those 

dimensional are preserved which convey most of the information. In mathematical terms, 

these are the dimensions which are associated with correspondingly largest eigen values.  

 In summary, the localization problem can be addressed by the following steps using 

MDS [21] 

1. The shortest path between the pairs of nodes is computed. The distance 

measurement capacity of a node is limited by its communication range. A node 

can measure distances to its neighbors only and for the rest of the nodes which 
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fall outside the communication range, an “infinite” value is assigned as the 

distance. (Typically “Infinite” takes the values of few tens of thousand so that it is 

always contextually large figure) 

2. Floyd’s Algorithm is used to compute the shortest paths between any pair of 

nodes using the connectivity information.  

3. The symmetric distance matrix obtained in the above step is input to the Classical 

MDS. As mentioned earlier, the CMDS does singular value decomposition and 

eliminates dimensions corresponding to non-significant eigen values, thereby 

constructing a relative map with 2 or 3 dimensions. An optional refinement step 

involving least-squares minimization can be included to best conform the inter-

distances of the nodes to the measured distances. 

4. The relative map obtained can be transformed into an absolute map, if provided 

with the minimum number of anchor nodes, (3 nodes for a 2-D and 4 nodes for a 

3-D networks). First, a transformation function is created by mapping the relative 

coordinates of the beacons with their known absolute coordinates. This might 

involve some translations and rotations. The obtained transformation function is 

then applied to the rest of the nodes. An optional refinement step involving least-

squares minimization can be included to conform the inter-distances of the nodes 

to the measured distances. 

2.6 Performance of MDS-Based Localization 

The performance of classical Multidimensional Scaling based localization is determined 

fundamentally by the network topology parameters. It was observed that the density of 

the network has direct relationship with the performance. Simulation results show that the 
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denser networks exhibit less mean localization error. The second distinctive performance 

parameter is the shape of the network topology. If the nodes were deployed in a uniform 

pattern, the results were better. Contrastingly, irregular deployment increases the error 

and especially c-shaped networks yield highly unsatisfactory results.  

 In the view of the parameters identified, the MDS-based localization procedure is 

realizable in most of the cases where the nodes are deployed densely and regularly in a 

static network. Once deployed, the nodes do not change their locations and hence, the 

regularity of the network can possibly be addressed by a proper initial deployment of 

nodes. But the density is fixed and moreover this approach cannot be extended to a 

dynamic network where the nodes move around randomly and might end up forming an 

irregular network in due course of time. 

The performance of the MDS is restrained by the density of network and regularity in the 

locations of the deployed nodes. Hence this situation calls for an algorithm which comes 

into picture once the nodes start dispersing. It should be able to accommodate the issues 

of density and regularity to the best, though irregular networks are always a problem. 

These two issues are addressed in the following chapters. 

2.7 Results and Analysis 

Experimental Set-Up 

For simulation purpose, 100 mobile nodes are deployed randomly in a field of 

predetermined dimensions (in this case, a 5r-by-5r square) where ‘r’ is unit length of the 

placement area. Each of the nodes has a ranging capability of 2.0r, i.e., they can sense the 

presence of another node within a vicinity radius of 2.0r. Gaussian noise (of standard 
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deviation of 5%) is introduced to the true inter-node distances to depict the inevitable 

ranging errors. 

The simulation results follow more or less the results which were presented in the MDS-

based localization algorithm put forth by Yi Shang et al.[19] The performance of the 

localization algorithm is analyzed with respect to two of the main influencing factors: 

network topology and density of the network. 

(i) Network Topology  

To examine the effects of the network topology, 100 nodes were deployment in three 

different deployment areas. In the first one, the nodes were regularly placed in a grid. The 

second placement area is in the form of-c-shaped network. The final placement area is of 

practical use and in this deployment the nodes are dispersed in a random fashion. The 

localization error is defined as the mean of the distance of estimated location to the actual 

location. In the error plot, these distances are indicated by a red-line between the actual 

locations (‘o’) to the estimated location (‘x’). 

Figure 4 describes the Regular Grid network and the error works out to be the least value 

of 0.12 % of the unit length ‘r’.  

 

Figure 4: MDS-based Localization of Grid network yields good results. 
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Figure 5 indicates the other extremity of the network where the nodes are placed in a c-

shaped pattern. We expect that this would bear huge errors due to wrong estimates of the 

inter-node distances. The error value turns out to be the highest and it is about 0.25 % of 

the unit length.  

 

Figure 5: Low performance of MDS-based localization in C-shaped networks  

The figure 6 depicts random deployment of the nodes which is more common than the 

either of the above two types of deployments. For this case, the error is an intermediate 

value ranging at about 0.2% r. 

 

Figure 6: MDS-based localization of random network: A practical situation. 
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It is observed that if the communication range is decreased, it has highest impact on the 

c-shaped deployments which yield higher localization errors. 

 

(ii) Density of the network 

Density of the network is defined as the number of nodes per unit placement area. The 

placement area being constant, the density is defined by the number of nodes. We 

consider only the random deployment due to its practical importance and we can extend 

the results to the rest of the networks. 

The Figure 7 has 100 nodes and the Figure 8 has 175 nodes. All other network 

parameters are left unchanged. 

 

Figure 7: Random network with 100 subjects 

It is evident that the increase in density leads to increase in the performance. This can 

because of the better connectivity between the nodes and this in turn makes Floyd’s 

algorithm yield better estimates. Also MDS tends to work better with dense networks. 
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Figure 8: Random network with 175 subjects: performance improved 

 

Hence we can conclude that apart from the quality of the ranging devices employed, the 

network topology shape and the node density also directly impact the performance of the 

MDS-based localization algorithm  
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CHAPTER III 
 
 

DYNAMIC LOCALIZATION  

3.1 Introduction 

The applicability of data visualization algorithm like Classical Multidimensional Scaling 

has been validated for the localization contextual issues [21]. The performance of this 

type of localization depends heavily on network topology parameters. As explained in the 

earlier sections of the thesis, network topology, network density and the degree of 

precision involved in the estimation of distances between the subjects defines the 

performance of the Classical Multidimensional Scaling.  

Obviously one cannot provide a generic solution if the applicability of the localization 

procedure is constrained by the specific network topology parameters and such solutions 

are not called-for. For instance, we cannot force that the subjects be always placed in 

regular pattern just because we know that the algorithm works best in such cases. Such a 

proposition lacks generality and also it should be understood that the network topology 

properties are defined by the application specifications, which cannot be bent for the sake 

of easy computations. 

Now we shift our focus onto emerging trends in mobile sensor networks. We have 

already explained at length the need for the mobile sensors. With growing interests that 

have been detailed in the Chapter I, we cannot deny that mobile sensor networks need 

more attention than just the stationery fixed subjects. 
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What we call ‘Dynamic Localization’ is unique solution for the mobile sensor networks 

and it also takes care of the network topology constraints of the sensor network. This is 

an extension to the classical multidimensional scaling based localization procedure and 

hence it offers all the advantages that are offered by it. All that we need are the inter-node 

distances and the connectivity information with which a relative mapping can be 

generated and converted to absolute location with the help of beacons. The only change is 

that these data are sensed from the network in regular time intervals, which shall be 

referred to “iterations’ in programming jargon and hence used interchangeably hereafter. 

In between two consecutive iterations, a fraction of subjects might have moved away 

from their locations, thereby changing the network topology all together. This dynamic 

behavior is not only supported but also utilized in increasing the performance of the 

localization procedure. At this point in time, we introduce the concept of adding “virtual 

nodes” which makes the network topology more and more suitable for Classical 

Multidimensional Scaling and this forms the crux of Dynamic Multidimensional Scaling 

(DMDS) 

Once again, it is imperative to note that we cannot set predetermined rules for the moving 

subjects. For instance, if the subjects refer to livestock then we have to include the high 

degree of randomness in their movement as the time passes. Keeping the nature of 

Dynamic Multidimensional Scaling in view, the Dynamic Localization procedure 

incorporates another technique called Dead Reckoning based localization [26] which 

produces a parallel estimate of the node locations. The final result is a weighted average 

and we shall statistically proved that this combination of the two results performs better 

than the DMDS results at times when the network parameters aren’t favorable for the 
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underlying classical Multidimensional Scaling. The following sections provide detailed 

descriptions about all of the above mentioned procedures and the conclusion presents the 

simulation test outputs that stand in accordance with the anticipated performance 

improvement at various stages. 

 

3.2 Dynamic Multidimensional Scaling 

Dynamic Multidimensional Scaling is similar to Classical Multidimensional Scaling 

except for the nature of the subjects involved. Dynamic Multidimensional scaling or 

DMDS involves the localization of “virtual” nodes apart from the original nodes.  

It can be re-iterated that the most important issue in this type of range-based localization 

is the density of the network. A node is limited in its communication range and at times it 

cannot have a single hop communication with most of the other nodes. Floyd’s algorithm 

assigns a shortest path distance based on connectivity. However, the shape of the network 

can cause the shortest path between two nodes to be much different than the actual 

Euclidean distance between them. This will yield highly erroneous results in the 

estimation of the locations as their inter-distances are now different from the actual 

distances. Dynamic MDS can deal with this situation by utilizing the node mobility to 

yield better results. 

 

3.2.1 Addition of Virtual Nodes 

The density of a static network is fixed. But in case of a dynamic network, the density 

can be increased by adding “virtual” nodes. Whenever a node moves, the old location is 
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preserved by assuming a virtual node in its place. This way, the method is still associated 

with previous connectivity information of a node. In other words, the overall density and 

connectivity of network is increased in every iteration and this leads to better estimation 

of the inter-node distances. Note that ‘connectivity’ in this context helps for better 

estimation of inter-point distances which is our goal and it doesn’t have anything to do 

with the actual communication path if the nodes are supposed communicate with each 

other. We are trying to improve the localization only. 

The following Figure 9 explains the impact of having virtual nodes amidst the real nodes 

in the deployment area. Figure a shows 4 nodes A, B, C and D initially. Assume that the 

nodes A and D fall out of range with each other and hence in the absence of any other 

nodes, the Floyd’s algorithm picks A-B-C-D to be the shortest path between A and B and 

hence the length of this path becomes their inter-distance. Now the nodes B and C move 

away from their initial locations in the indicated directions. Figure b depicts the final 

positions of all the nodes at the end of the iteration and additionally two virtual nodes 

were introduced at the old locations of the nodes B and C. The number of nodes has 

increased from 4 to 6.  

 

 

Figure 9: Virtual nodes improve connectivity and hence performance 
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Now consider Figure c. The nodes B and C have moved as shown in figure b. We also 

have two virtual nodes b’ and c’ in place of the old locations of the nodes B and C. Now 

the shortest distance estimate of A and D is via A-b’-c’-D which is obviously a better 

estimate. Also the network has become denser with increased connectivity among 8 

nodes in total. Note that the Figure conveys information with more accuracy and hence 

the MDS results are reliable. The enhanced network has become denser with increased 

connectivity and increased accuracy of inter-node distance estimate. This validates the 

underlined concept of adding virtual nodes to the network. The other way of explaining 

the entire effect is by mentioning that whenever the network topology is bad (indicated 

by c-shaped connectivity), the movement of nodes might suitable modify it over a period 

of time. If the movement of nodes tends to distort the network negatively (as in the case 

of the above example) the virtual nodes can preserve the information contained. This way 

we take advantage of the mobile nodes and their respective virtual nodes. 

 

3.2.2 Algorithm for Dynamic Multidimensional Scaling  

The basic idea of Dynamic Multidimensional Scaling still relies on the Classical 

Multidimensional Scaling at the root level. As in CMDS, the inter-node distances are 

used as an input to the Dynamic Multidimensional Scaling algorithm, which then locates 

these nodes on a relative map of perceivable dimensions(2D or 3D at the most). The 

presence of necessary number of beacons can convert this relative map into an absolute 

map. But now, the conspicuous difference is that the network is virtually “growing” in 

density and connectivity. In every iteration, a percentage of nodes are assumed to be 

mobile. Actually, any percentage of nodes may move and this number may vary in each 
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iteration. The selection of mobile nodes, the direction of movement and the distance 

traveled in an iteration are all assumed to be random in nature. Moreover, there is no hard 

and fast rule that a mobile subject is in constant motion (ex: livestock). Hence in each 

iteration the mobile nodes are selected randomly irrespective of their history of motion 

till the current iteration. This simulates the real world situation of mobile subjects with 

more meaningful assumptions. The following steps explain the step-by-step procedure 

involved: 

1. For the first iteration, the nodes are just deployed and it is assumed that they 

haven’t started moving yet. So, use the distances and the connectivity 

information as it is to get the relative mapping of the nodes. 

2. Obtain the absolute locations of the nodes by creating a mapping function using 

best three beacons. 

3. A certain percentage of nodes move per iteration. Assume virtual nodes in their 

old locations. This way, we observe that the number of nodes increase in the 

first few iterations and hence the network gets denser. 

4. Run the CMDS-based localization algorithm explained in the previous chapter. 

5. When the network becomes satisfactorily dense (which is generally identified 

by threshold value of mean connectivity), start forgetting the oldest virtual 

nodes to accommodate the virtual nodes introduced in the current iteration. This 

essentially maintains a constant number of total nodes (actual and virtual) 

thereafter and avoids the uncontrolled build up of network. 

6. Repeat from step 2.  
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As verified from the simulation results, the DMDS brings down the mean localization 

error significantly over the iterations. This is an obvious outcome as we know that the 

network is getting denser with better topology. To talk in terms of quantitative measure 

we can have a look at the eigen values returned by the Multidimensional scaling 

procedure. It will be observed that the eigen values corresponding to the first two 

dimensions increases considerably as we add more and more virtual nodes. This directly 

implies that MDS is giving more and more importance to the first two dimensions (X and 

Y), which is a positive indication. Note that the simulations were carried out on 2-D 

deployment area and hence ideally only two dimensions must be used by the MDS 

estimates. We can also observe that the mean connectivity value significantly show a 

raising pattern as the time progresses. 

Another important issue also comes into light through simulation results. It is observed 

that the decrease in the mean localization error is not consistent at times. This is denoted 

by sudden shoot-ups of the error in some of the iterations. This can be attributed to the 

randomness involved in the node movement and the nature of Multidimensional Scaling 

algorithm itself. This cannot be predicted beforehand but we must be ready with an 

alternative that can suppress or reduce these unanticipated errors. This reasoning forms 

the building block for using WePosT system which uses Dead Reckoning technique to 

provide estimates of the nodes. The final result is an ensemble result which integrates the 

location estimate from DMDS and the location estimate from the WePosT system. But it 

is essential to note that the Dead Reckoning estimates are not stand alone results and they 

are considerable dependent on the DMDS results. Once again we authenticate the above 

explained sensor fusion technique using simulation results which indicate that the 
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combined result is a much better estimate when Dynamic Multidimensional Scaling 

estimate return an inconsistent result with increased mean error. The following section 

deals with the details of the sensor fusion technique explained here. 

 

3.3 Fusion of Estimates from WePosT and Dynamic MDS 

WePosT system constitutes ranging sensors and inertial sensors which can describe the 

nature of the node’s movement with regards to the direction of the movement and the 

traversed distance. When a node moves, the heading direction is provided by the gyro and 

the compass on the WePosT system. Using Dead Reckoning, the position are then 

estimated. 

Dead Reckoning based localization technique is not a stand alone method and it depends 

on the Dynamic Multidimensional Scaling to an extent. WePosT estimates are calculated 

by using simple coordinate geometry. Whenever we have the knowledge of the initial 

location of a mobile node apart from the distance traveled and the orientation angle, we 

can estimate the final location of the node. The WePosT system can sense the orientation 

angle and the distance traversed, but the initial estimate is provided by the 

Multidimensional scaling and this makes the Dead Reckoning method dependent on the 

MDS result. But then it is only for the first iteration that the Dead Reckoning method 

entirely borrows the initial estimates form the DMDS. Thereafter it relies on the fused 

estimation for the same purpose. The following puts this in better words. 

For the first iteration we have the nodes just deployed and hence we have the position 

estimates only from the CMDS which is also treated as the final fused result. From the 

second iteration onwards, the Dead Reckoning uses fused estimates from previous 
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iteration as the initial locations and estimates the final locations using distance and angle 

information. In mathematical expression, the estimate of new location )(ˆ kpw  of the 

moving node is expressed as follows: 

TTT
www kkdkkdkykxkykxkp ))]().(cos()),().(sin([)]1(ˆ),1(ˆ[)](ˆ),(ˆ[)(ˆ θθ+−−==     (17) 

 

Figure 10 : Dynamic Localization estimations 
 

Here T
w kykxkp )]1(ˆ),1(ˆ[)1(ˆ −−=− is the fused estimate in the last step. Since the first 

iteration has only DMDS result, the initial estimates for dead reckoning in the second 

iteration are chosen to be the previous DMDS result Thereafter we have the fused 

estimates as the initial locations. d(k) and µ(k) are the distance and angle measurements 

which are corrupted by Gaussian noises for simulation purpose. From the second iteration 

onwards, the concept of sensor fusion comes into the picture. For the fraction of nodes 

that didn’t move in a particular iteration, the modified algorithm takes the average of 

current DMDS results and the past results of the DMDS over the last few iterations (2 or 

3 iterations in which these nodes didn’t move). For those of the nodes which moved in a 

particular iteration, there are now two different estimates of their final locations. One 
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estimate )(ˆ kpm  is from dynamic MDS that relies solely on the distances information. 

The other estimate )(ˆ kpw comes from the WePosT system that uses the previous location 

estimate and the dead reckoning in the current step. The new location estimate )(ˆ kp of 

the moving subject is a weighted average of the results of both estimates as shown in the 

following equation 

mw
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+
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)(ˆ)(ˆ

)(ˆ                                                (18) 

where Ww and Wy are the two weights designated for the dead reckoning based 

localization estimate and Dynamic MDS estimate respectively. 

To keep it simple, we choose equal weights for both of the estimates. Many other 

possible weights were also tried in the simulation. But one has to realize that the weights 

cannot be generalized and hence we zeroed in on equal weights. In the next chapter the 

selection of appropriate weights turns out to be the most crucial issue as it is done at run 

time. 

This procedure of having a fused estimate of the WePosT and the Dynamic MDS is 

referred to as Dynamic Localization. In summary, the Dynamic Localization algorithm is 

as follows: 

1. For the first iteration the Classical Multidimensional scaling is applied on the data 

to get the initial configuration of nodes. This is treated to be the final result ad 

also as the initial estimated for the Dead Reckoning technique in the second 

iteration. 
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2. From the second iteration onwards, whenever a node moves to a new location, the 

heading of the movement and the distances moved are measured. Also old 

locations of the nodes are preserved  by assuming virtual nodes in their places 

3. Run Dynamic MDS to get the estimate of the new positions )(ˆ kpm  

4. From the heading and the distance moved, the new location )(ˆ kpw of a mobile 

node can be estimated according to Equation for )(ˆ kpw .(equation 17) 

5. For the nodes in motion, the localization is done by taking the weighted average 

of the above two estimates. For the stationary nodes, the estimate is just the 

average of current results and the past results of the Dynamic MDS over the last 

few iterations, in which the nodes were stationery. 

6. Repeat from step 2. 

 

One of the important changes made in the algorithm is the absence of refinement step 

which was used in the original MDS-based localization algorithm [21]. It has been noted 

from the simulation that though refinement improves the performance initially, the final 

settling error is not significantly different. Moreover the refinement step demands high 

computation time and it has been proved that it is much more expensive than any other 

steps as the number of nodes increase. Hence in order to reduce computation time, the 

refinement step is excluded at the cost of performance which is slightly affected in the 

first few iterations. After reaching the threshold connectivity, the performance is more or 

less the same as the results after refinement step.  
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3.4 Beacon Selection in Absolute Mapping Transformation 

The presence of beacons amongst the nodes helps us to retrieve absolute mapping from 

the relative locations of the nodes. The absolute locations of the network are obtained 

through a transformation which maps the relative map of network (from MDS results) to 

the absolute map with least error. This transformation is generated by using beacons 

whose relative locations are subjected to translation and/or rotations to conform them to 

the actual absolute locations with least error. These translation and the rotation 

components will be directly generated if Procrustes analysis [23] is used. Procrustes 

analysis takes two configurations of points and conforms them to each other by 

essentially centering them at origin. In doing so, it may translate and/or rotate the 

configuration of points. Since we have the absolute and the relative estimates of the 

beacons, we can use Procrustes analysis to best conform each other. The resulting 

transformation function can then be applied over the rest of the relative locations of the 

nodes to estimate their absolute locations. 

For a two dimensional representation (which is the present case), at least 3 beacons are 

necessary to find the transformation. In Shang’s paper [21], all the beacons are used to 

calculate the transformation function. This may lead to significant errors because the 

relative locations of some beacons may carry large errors as a result of the localization 

algorithm. Once again we cannot limit these beacons to fixed locations and hence even if 

they are placed in suitable locations, they might move over time and place themselves in 

an unfavorable way. Since the transformation function is a very important step in the 

process, care should be taken by avoiding the beacons that are not localized properly. In 
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order to reduce the effects of these “bad” beacons, we propose a beacon selection 

algorithm to pick just three “good” beacons to be used in the transformation calculation.  

By terming the chosen three beacons “good”, we imply that they satisfy the following 

two requirements: (1) Goodness. The triangle formed by the three beacons should be as 

close to an equilateral triangle as possible. If the three beacons are almost collinear, then 

such a placement of nodes doesn’t yield satisfactory transformation function. Ideally they 

should form an equilateral triangle which ensures that the nodes are not collinear.          

(2) Similarity. The corresponding triangle formed by the estimated beacon locations 

should be as close as possible to the triangle formed by the actual beacons. In summary, 

the goodness requirement will guarantee the selected beacons are not close to co-linear, a 

formation that can lead to large errors in the transformation. The dissimilarity 

requirement will guarantee the selected beacons have less error in the relative locations. 

The Beacon Selection algorithm examines all the triangles which can be exhaustively 

formed from the existing number of beacons. Assuming the number of beacons to be n, 

the total number of triangles is 3
nC . 

 The following task is to set up a common measure on which all of these triangles can be 

compared. In this algorithm we have used the concept of variance for the sake of 

comparison. The average of lengths of the three sides of a given triangle in the relative 

map is computed. The variance of each of the 3 sides from this average length is 

measured. The obtained measure is then added (with some weights) to the actual variance 

measure in the absolute map. Ensuring least variance, one can pick a triangle which is 

nearly equilateral and which is similar in both relative and absolute map. Such a triangle 

qualifies to be a desired candidate.  
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While the above method ensures a triangle with least variance on it sides, an ideal 

selection would pick the biggest triangle from these triangles. Hence a second 

comparison measure is set up that would choose the biggest triangle from the above best 

possible triangles. Weights can be included to these two assessment measures to bias the 

triangle selection. In this paper, no dedicated weights are considered and the final 

measure for each of the triangles is an average value of the above two measures. 

Then the goodness measure and the dissimilarity measure are calculated according to the 

following  

Average of sides of the triangle in absolute map savg =   ( ) 3321 SSS ++   

Average of sides of the triangle in relative map s’
avg =   ( ) 3'

3
'
2

'
1 SSS ++   

Variance of triangle in relative map VMDS = ( ) ( ) ( )( )
'

2''
3

2''
2

2''
1 3/

Avg

AvgAvgAvg

S

SSSSSS −+−+−
  

Variance of triangle in absolute map VABS= ( ) ( ) ( )( )
Avg

AvgAvgAvg

S

SSSSSS 3/2
3

2
2

2
1 −+−+−

  

Total variance, V = ( )
( )21

21 ..
WW

VWVW ABSMDS
+

+                                      (19) 

In the present case, the above weights W1 and W2 are chosen to be 1:1 

The total variance measure takes care of choosing three beacons such that triangle formed 

by them is nearly equilateral in both relative map and absolute map. The next step is to 

check if these beacons form similar triangles in both the maps, which is indicated by the 

following dissimilarity measure: 

Average length, LAvg = ( ) 6'
3

'
2

'
1321 SSSSSS +++++  
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Dissimilarity, D = ( ) ( ) ( )( )
AvgL
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2
1

'
1 −+−+−

                                                     (20)  

Dissimilarity measure makes sure that the corresponding sides of the triangles in two 

maps agree with each other very closely. 

Finally, we have two measures on which the 3 beacons are chosen and these two 

measures are unified by weighted average using appropriate weights.  

Beacon_selection = ( )
( )43

43 ..
WW

DWVW
+

+                                        (21)      

Once again we zero-in on equal weights. 

 

 

Figure 11: Beacon Selection Illustration 

 

For instance, consider Figure 11. Figure A is the relative map of beacons as estimated by 

localization algorithm and figure B indicates their actual positions. Out of the 5 beacons, 

best 3 can be picked by looking at the 10 triangles formed by the in either maps.  Triangle 

formed by nodes A, B, D match very closely with that of nodes a, b, d but they are very 
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close to being collinear. The Nodes a, e, c are actually located favorably in absolute 

positions, but A, E, C weren’t estimated correctly by the localization algorithm. So the 

best choice would be A, D, C which form similar triangles in both the maps and they are 

ideally spaced apart. Hence suitable rotation and translation function on these beacons 

will determine a transformation function to map relative positions to absolute positions. 

By avoiding beacons B and E, we will be creating a better function. 

3.5 Results and Analysis 

Experimental Set-Up 

For simulation purposes, initially 100 mobile nodes are deployed randomly in a field of 

predetermined dimensions (in this case, a 5r-by-5r square) where ‘r’ is the unit length of 

the placement area. Each of the nodes has a ranging capability of 1.0r, i.e., they can sense 

the presence of another node within a vicinity radius of 1.0r These nodes are referred to 

as neighbors and a node can measure the distance to its neighbors. However it is essential 

to note that these distances are prone to inevitable ranging errors which are modeled in 

the experiment by adding Gaussian noise to the true distances. 

 Each of the iteration indicates a time instant in the continuous changes occurring in the 

network and the data is collected when the mobile nodes traverse an average length of 

distance say 1.75r. In practice, the inter-node distances would be computed in regular 

time intervals, which are referred to as ‘iteration’ in the simulation process. 

In an iteration, any percentage of nodes may move and this number may vary in each 

iteration. For our convenience, it is assumed that on an average, 75% of the nodes (75% 

of 100 = 75) move in each iteration. The direction and the length traveled by a node in an 

iteration are chosen randomly. Apart from this, the selection of mobile nodes is also done 
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randomly, taking care not to choose virtual nodes in the process. This way, the simulation 

mimics the randomness existing in real world situations, wherein the motion of the 

mobile subjects (livestock or soldiers) is not limited by any predetermined rules.      

 

1. Improvement in Network Topology: The following figures demonstrate the 

improvement in density (thereby better connectivity and favorable topology) 

 

 

Figure 12 : Large errors in shortest path estimation for sparse network 

 

The blue circles indicate the actual nodes and the green lines indicate the one-hop 

connectivity. The above deployment gives us an impression that the inter-node distances 

for the nodes which fall out of range will obviously be prone to errors after running 

Floyd’s algorithm. This is indicated by the free-form dashed lines on the graph. These are 

the potential areas causing concern. For instance, consider the nodes A and B indicated 
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on the plot. The shortest path distance is indicated by red dashed line which is obviously 

very different when compared to their actual Euclidean distance indicated by the solid 

blue line drawn between the two. Hence we can expect the MDS result to be erroneous. 

Now the concept of DMDS is brought into picture. For all the nodes, we have the 

neighbor information and estimates of their respective distances. Now we introduce the 

concept of adding virtual nodes to the network. Before a node sets out to a new location, 

we capture the connectivity and the one-hop neighbor distances and use them in 

subsequent iterations. This in effect is equivalent to perceiving a ‘virtual’ node in the old 

location of the node. This is because we have taken a back-up of all the pertinent 

information like connectivity and 1-hop distances, which would have been available 

when a ‘real’ node is present at that location. 

 The Figure 13 indicates the above deployment after two iterations when 75 nodes move 

to new locations in every iteration. This time, we have added 75 virtual nodes in each 

iteration. (Indicated by red boxes as in contrast with the blue circles) Clearly, the density 

of the network has improved when compared to the figure 11. But the network didn’t 

reach the threshold limit yet. Hence we add more nodes and we observe that with 225 

virtual nodes the network reaches the threshold and it is visible that the shortest path 

distances between most of the pairs of actual nodes have significantly improved. 
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Figure 13: Improved network with 150 and 225 virtual nodes 

It is to be understood that the communication radius of the nodes is one major factor that is 

related to the connectivity of the network. If this radius were high the inter-point estimates 

are much better as more number of nodes fall within each other’s communication range. In 

the above figures, the radius was 1.0 unit distance. If this radius is increased to three as in 

shown in Figure 14, we see that the initial deployment itself is pretty good and addition of 

virtual nodes makes it even better. This can help in choosing right sensors for an 

application. 

 

Figure 14: Positive Effect of Increased Communication Range 
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2. Removal of Refinement Step. 

It can be recollected form the Dynamic MDS algorithm that we have eliminated the 

refinement step which was used in Multidimensional Scaling based location algorithm for 

static networks. Though this might raise some concerns about the quality of the Dynamic 

MDS, the following observations reinforce our stand. 

It is true that the Refinement step yields better estimates than the model with its exclusion. 

But for all practical purposes, the emphasis is not just on the performance alone. In general, 

one has to also take care of the computation time overhead for the optional steps like the 

refinement step. It has been proved that the refinement step is the costliest step compared to 

the rest of the processes. But it is only through simulations that we can quantity such an 

effect. The following Figure 15 indicates the error plots for the Dynamic MDS with and 

without the refinement step: 

The first impression would immediately tell us that the refinement step yields better results. 

This is very clearly seen in the first iteration. From a closer perspective, we realize that 

overtime, the unrefined results approach the refined result very closely. And given more 

number of virtual nodes, it might get even closer. From a practical view-point this 

explanation would be sufficient to validate our decision of excluding the refinement step as 

it doesn’t produce significantly better results as compared to unrefined results after few 

iterations. 
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Figure 15: High Impact of Refinement Step on Localization error 

Though the above explanation is quite self-supporting, we need to equip our reasoning with 

better explanation. For this purpose, the two processes: with and without refinement step 

are analyzed from the computation time point of view. The following figure 16 details the 

analysis: 
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Figure 16: High Computation Overhead of Refinement Step 
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Now we have a better explanation as to why the refinement step can be excluded. The vital 

concept behind the DMDS is the addition of virtual nodes by which the network literally 

grows with the number of iterations. With the increase in the number of nodes, the 

refinement step takes bigger and bigger chunks of computation time. After a reasonable 

number of iterations, we realize that it is the biggest overhead even when compared to the 

basic concept of Classical Multidimensional scaling or the Floyd’s algorithm. Hence this is 

not a good indication and we predict that it gets worse as the actual number of nodes in the 

initial deployment increases due to application requirements. Hence from now onwards, the 

refinement step is eliminated from the succeeding procedures. 

3. Results of the Dynamic MDS and the Dynamic MDS with sensor fusion. 

The results of the Classical MDS followed by the absolute mapping gives the first estimate 

of the initial node locations, based on which the Dead Reckoning fusion is done. Thereon, 

for every iteration we have two estimates for the locations of the nodes, one from the 

DMDS and the other one form the Dead Reckoning fusion. The final result is an ensemble 

result or the combination of these two results, which seems to do a better job even when the 

Dynamic MDS gives inconsistent results.  

As explained earlier, the results of Dynamic MDS indicate a notable decrease in the mean 

localization error as the iterations increase. But this is not consistent and we see that there 

might be unexpected shoot-up of error for some iterations. This is evident from the two 

sample results which indicate an increase in mean localization error for some of the 

iterations. 
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Figure 17: Inconsistency in Dynamic MDS 

The figure 17 indicates that the final settling error is significantly lower as compared to the 

mean localization error in the first iteration. But there is an inconsistency at iteration 7 and 

9 in this example. By using the sensor fusion technique, we can demonstrate the positive 

effects. This is explained in the figure 18. 
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Figure 18: Improved performance of Dynamic Localization over Dynamic MDS 
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The figure 19 depicts another set of results and here also we can notice that the 

inconsistency in the error pattern can be minimized by using sensor fusion which can 

reduce the shoot up of error. The red curve with ‘o’ markers is the Dynamic MDS error 

plot and the blue curve with ‘*’ markers is the error for Dynamic MDS with Sensor fusion. 

 

 

Figure 19: Comparison of performance of Dynamic MDS with /without sensor fusion 

 

Looking at these results, it might be hard to accept that sensor fusion has substantial 

impact. But the following results can give better insight as to why the fused results prove 

useful. It is observed that the fused results demonstrate better efficiency when compared to 

the results of the Dynamic MDS localization algorithm. 
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Figure 20: Extreme result in Dynamic MDS 

In Figure 20, it is clearly visible that the Dynamic MDS is absolutely bad for the 12th 

iteration whereas the Dynamic MDS with Sensor fusion suppresses the error by about 50% 

which is a significant improvement. From this view point, we can rely on the sensor fusion 

results with a compromise in the initial few iterations. But in the next chapter, we come up 

with another methodology where we improve even the sensor fusion estimate to always 

come with better location estimates. 

 

4. Comparison of results for various percentages of mobile nodes. 

A meaningful conclusion can be made about the number of nodes and the mean 

Localization error if we have a common platform to compare the respective situations. This 

can be simulated by asking different percentages of mobile nodes per iteration and then 

comparing the mean errors. The following figures are three plots for three different 

percentages of mobile nodes:25%, 50% and 75%. Care was taken to have similar initial 

deployment at the beginning without which the comparisons would not be sensible. This 
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makes sure that the initial deployment properties are all same for the three situations. The 

respective Dynamic MDS results are compared in the Figure 21 and those of the Dynamic 

MDS with sensor fusion are compared in Figure 22. 

 

Figure 21 : Dynamic MDS for 25%, 50% and 75% Mobile nodes: Better performance with high % 

 
From the Figure 21 we observe that as the number of mobile nodes increases, we have a 

better Dynamic MDS result which is of direct implication as we know that the connectivity 

increases with more mobile nodes. This can be visually felt by looking at the 11th iteration, 

where the shoot-up of mean error in 25% plot is gradually diminished over 50% and 75% 

plots.  

Now that we know that the Dynamic MDS has indicated an improvement, we focus our 

attention onto the Dynamic MDS with sensor fusion.(after all we have decided on relying 

on it more than the results of Dynamic MDS). From the Figure 22, we observe that the 

fused results have exhibited a noticeable improvement over the increase in the percentage 

of the mobile nodes. This can be explained as follows. As the number of nodes increase, we 
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have better MDS results and hence better initial estimates for the Dead reckoning 

procedure and over period of time, we can expect better results. 

 

 

Figure 22: Dynamic Localization for 25%, 50% and 75% Mobile nodes: Better performance with 

higher mobility 



 57

CHAPTER IV 
 
 

DYNAMIC LOCALIZATION WITH ADJUSTED WEIGHTS 
 

4.1 Introduction 

 
The procedure of applying equal weights for Dynamic Multidimensional Scaling and 

Dead Reckoning works decently well for most of the time. As explained earlier, it 

ensures consistency in the final results as compared to the DMDS results. But, from a 

closer perspective, we realize that this way of equal weights for the two results doesn’t 

provide very satisfactory results all the time.  

There is no denying that the previous equal weights work out to provide results better 

than DMDS, but they could be made even better. For instance when the DMDS yields an 

abnormally large error and on the other hand if Dead Reckoning yields a low error, equal 

weighted results force us to get satisfied with a midway result, even though we have 

better results from Dead Reckoning based localization. On the same note, we might end 

up with other way when we have better results from DMDS and unsatisfactory results 

from Dead Reckoning. This is very much visible in the Figure 22.   
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Figure 23: Extreme result in Dynamic MDS 

The Figure 23 is still in compliance that equal weights resulted in better results but not 

the best ones. As one could observe, for the 12th iteration we could have achieved better 

results if Dead-Reckoning results were given more weight than the Dynamic MDS 

results. Similarly for the iteration 14, Dynamic MDS outperformed the Dead-Reckoning, 

but due to equal weights it was not adequately utilized in the final result. This calls for 

the need of modifying the Dynamic Localization algorithm to always come up best 

results at any time. 

The first and the foremost step is to identify the  parameters which allow us to appraise 

the performance of the DMDS and thereby providing a methodology to adjust weights 

dynamically to approach the better results out of DMDS and Dead Reckoning. This 

section of the thesis throws sufficient light on these issues. 

The first part of the problem is to identify the parameters which are proved to reflect the 

performance of DMDS. This is a vital subject as this also means that we have to identify 
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those issues which can potentially contribute to the total localization error. The following 

step would then relate these parameters with the Dynamic MDS mean error. This 

essentially means that we can now predict the patterns in the Dynamic MDS error 

approximately thereby giving us a chance to apply suitable weighting method. 

 

4.2 Measures to Estimate the Performance of DMDS 

  The results of Dynamic Multidimensional Scaling are to be analyzed in depth to 

uncover the underlying trends and patterns of dominant quantitative attributes of DMDS. 

This requires a lot of experimental results which are profiled to deduce some association 

rules, validated from statistical standpoint. To start off with, one has to identify the 

crucial issues which can contribute to the error. 

From what was explained in the earlier sections of the thesis, the first step before 

executing classical Multidimensional Scaling is to find out the shortest path distances 

between all pairs of the nodes with the help of Floyd’s Algorithm. For those of the nodes 

which fall out of the range, Floyd’s algorithm returns the distance of the shortest path 

traversed between the two nodes. As long as the network is reasonably connected, this 

estimate is fine. But it turns out to be a point of concern when the topology of the nodes 

leads to huge errors in the shortest path distance estimate. This in turn leads to erroneous 

inputs to classical Multidimensional scaling which outputs corresponding placement of 

points that closely resemble the erroneous distances. Hence the classical 

Multidimensional scaling yields unreliable results. It turns out that this error is quite 

evident from the non-zero eigen vectors corresponding to third and higher dimensions 

required to locate the nodes. 



 60

The above mentioned erroneous estimates are used for the absolute mapping procedure to 

obtain the absolute locations of all the nodes. The relative positions of the best three 

beacons are used in forming a transforming function and obviously this leads to further 

misrepresentation of the data points.  

Now that the potential causes of the error are identified, the step deals with the 

quantification of the same, through which we always deduce important conclusions on 

the performance of the DMDS. The following section deals with the three important 

measures identified in appraising the performance of the localization algorithm in the 

view of above mentioned errors. 

3.2.1 Proportion of Unexplained Variance 

When the relative locations of the N number of nodes are derived from their respective 

inter-node distances, theoretically N-1 dimensions are needed to represent the node 

locations to stand in compliance with the inter-node distances.[22] But not all these 

dimensions are actually useful. The eigen value associated with a dimension is indicative 

of the usage of that dimension in differentiating the node location. For instance, let us 

consider a simple example. Let 100 nodes be dispersed in a 2-D plane. If the true inter-

node distances of  these 100 nodes are input to MDS, then it will be observed that the 

eigen values of the first two dimensions appear significant and the rest of the eigen values 

are not dominant ( ideally zero). 

  However in practical applications the ranging errors are inevitable. Moreover, 

depending on the network topology, the Floyd’s algorithm also leads to false 

representation of the inter-node distances. For the above mentioned 100 nodes in 2-D 

plane, MDS tries to forcibly use extra dimensions to truly match the input distances. This 
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is seen by the presence of non-zero eigen values for the higher order dimensions. Clearly 

this is indicative of error. When we suppress the higher order dimensions, we tend to lose 

some information and hence the inter node distances no longer match the input NXN 

distance matrix. Since we are already aware that the nodes were dispersed in a 2-D plane, 

we can infer that the need of 3rd and higher order dimensions raises concern and if this 

contribution of non-dominant eigen values is quantified, we can get a feel of the data 

representation error by MDS. This is the first measure to gauge the performance of the 

localization algorithm. 

We have a direct measure to quantify the explained variance using p dimensions out of 

the possible n-1 dimensions. This measure is give by: 

Proportion of explained Variance = ∑∑ −1

11

n
i

p
i λλ

                             (22)
 

In an ideal situation, we need only two dimensions for the above example and hence 

using just the first two eigen values we would have been able to explain 100% variance. 

The counterpart of this measure gives the percentage of unexplained variance. Referring 

to this counterpart measure as ‘Proportion of Unexplained Variance’(PUV), the following 

mathematical expression is derived to quantify the contribution of the superfluous 

dimensions which is essentially caused due to erroneous inter-node distances. 
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where λ refers to eigen value for respective dimension. This equation gives the proportion 

of unexplained variance and it denotes the contribution of the higher order dimensions in 

the estimation made by the MDS algorithm. Ideally this figure should be close to zero 

and significantly high value cautions about the probable misrepresentation involved in 

the localizing process. 

While some of the applications just need relative positions of the subjects involved, most 

of the other common applications necessitate on absolute locations. This calls for a 

suitable transformation function to map the relative locations to absolute locations and as 

we shall see in the next section, this leads to impending errors. 

3.2.2 Position Error of Beacons  

Beacons play a major role in the latter part of the localizing technique. A percentage of 

nodes have GPS equipment through which they can independently estimate their 

coordinates. Since we also have their relative positions from MDS results, we can 

compute a transformation function (involving translation and rotation) to best conform 

the relative locations to the absolute locations. The derived transformation function is 

then applied on the rest of the relative positions to obtain the actual coordinates of all the 

nodes. 

The presence of distortion in the MDS relative estimates impacts the transformation 

functions also. Due to this there could be two possible issues. Firstly, the lateral 

translation of the beacons might not conform to the actual locations and hence there 

might be a finite difference between the beacon positions even after their absolute 

mapping. Clearly this measure indicates the possible error that will be introduced in all 
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other nodes too. Hence it is vital to measure this difference which is important in 

forecasting the error. The mathematical expression used to estimate this difference is: 

 

 

In mathematical expression, 
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where δi(i=1, 2, 3) is the distance between the actual coordinates and the estimated 

coordinates for the ith beacon.                                       

Apart from the error in the translation component of the transformation function, there 

can be error in the rotation component too. At first glance this might seem to be a direct 

outcome of the presence of error in translation. But from a closer look, we realize that for 

the same measure of translation error, there could be many ways in which the estimated 

triangle differs from the actual triangle. Hence it becomes imperative to capture this angle 

information as it can be of substantial help in future.  

 

 

In mathematical expression, 
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where θij is the difference in slope (expressed in degrees) of the line joining the locations 

of ith and jth beacons (i,j=1, 2, 3). 

 With regard to the beacon estimation, the above mentioned two measures can aptly 

describe the error that will be introduced when the absolute mapping process is used.  

All the three variables i.e., Proportion of unexplained variance, Beacon Lateral error and 

Beacon Rotational error are together called as performance parameters as they can 

measure the performance of Dynamic MDS. 

 

3.3 Correlation Analysis 

At this juncture, we have an intuition that the above mentioned three measures are 

adequate to assess the performance of DMDS. In other words, all of these variables share 

a relation with the mean localizing error of DMDS method. Though this has been 

established through numerous simulations, the procedural method of proving their 

relationship requires the back up of statistical explanation. In other words, we need to 

adopt a methodology through which we not only illustrate the existence of a linear 

relation, but also quantify it with a numerical figure. But this doesn’t imply that we 

consider complex data fitting procedures which are not generic and which are tough to 

comprehend unless we have a preconceived notion. To keep the matter simple, it is a 

better way to examine the variables for a simple linear relationship. 

Pearson Correlation Coefficient [27] is one such apt measure to determine the linear 

relationship between a pair of continuous variables.  It is a popular tool used in most of 

the situations when a researcher tries to conceptualize the outcomes of the experimental 

results.  
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The formula for the Pearson’s Coefficient for a pair of continuous variables x and y over 

N observations is given as follows: 
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ρ                                (26) 

 

This correlation coefficient (ρ) ranges between -1 to 1. As a general rule of thumb, a 

value in the range of -0.7 to -1.0 and +0.7 to +1.0 indicates a strong association, -0.3 to -

0.7 and +0.3 to +0.7 indicates a medium association and anything in the range of -0.3 to 

+0.3 is indicative of weak or no relationship.  

Many tests were conducted to confirm the validity of linear relationship of the variables 

with mean error and it has been statistically proved that the above mentioned three 

measures of DMDS performance share a strong positive association with the mean 

localizing error. (Pearson’s Correlation coefficient: +0.7 to +1.0) Hence they are good 

predictors of the mean error in localizing and this will help us in real-time computation of 

the weights for the DMDS and Dead Reckoning results. 

 

3.4 Regulation of Weight Adjustment 

This section forms the crux of the final phase of the research work. Now that the DMDS 

is evaluated in terms of the impending errors in the representation of the data, we can use 

this information to adjust the weights between the results of Dynamic Multidimensional 

Scaling and Dead Reckoning estimates. It is anticipated that this method of real-time 
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adjustment of the weights will yield better results when compared to the simple 1:1 

weight ratio that was adopted in the previous phase of the research work.  

The initial step was to substantiate the presence of linear relationship between the three 

performance parameters through the use of Pearson’s Correlation coefficient. The 

simulation results confirmed this and thereby the next issue comes into light. The weights 

are to be chosen dynamically for the Dynamic MDS and Dead Reckoning based on the 

pattern of the three measures identified: Proportion of unexplained variance, Beacon 

Lateral Error and Beacon Rotational Error. 

A simple methodology is adopted. From the patterns of the performance parameters, a 

weight is estimated by each of them through the measurement of the amount of increase 

or decrease in the variable as the iteration progresses.  The three weights are then 

averaged to get the final weight which is used for the DMDS result. The expressions that 

describe the explained procedure are as follows: 

The weight for Dynamic MDS as estimated by the variable Proportion of unexplained 

variance is given by 

 

For kth iteration, this can be expressed in mathematical terms as follows   
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=                                                                          (27) 

Whenever Dynamic MDS shoots up in mean error the Proportion of unexplained variance 

in the current iteration goes up and this would bring down the weight assigned to the 

Dynamic MDS. 
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The weight for Dynamic MDS as estimated by the Beacon Lateral error variable is given 

by 

 

For kth iteration, this can be expressed in mathematical terms as follows   
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The weight for Dynamic MDS as estimated by the Beacon Rotational error variable is 

given by 

 

For kth iteration, this can be expressed in mathematical terms as follows   
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A sudden increase in any of Beacon related error variable indicates that the Dynamic 

MDS error might shoot up. Essentially this error would be contributed by a compromised 

transformation function used to get the absolute locations. 

The overall weight estimated for the Dynamic MDS is an average of all of the above 

three weights which were calculated by the rate of changes in each of the three 

performance parameters 

                                      (30) 

The weights for Dynamic MDS and Dead Reckoning are inversely related. This is 

because, if we have analyzed that Dynamic MDS has performed well, then we don’t have 
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a reason to rely more on Dead Reckoning and vice versa. This way, the weight for Dead 

Reckoning is estimated as follows: 

                                                                        (31) 

By computing three different weights and taking their average, we assure nearly accurate 

results. It is to be understood that we can never assure that the three measures devised can 

capture the trend in mean localizing error accurately all the time. In other words, we 

cannot expect that the plots of all the three variables exactly mimic the mean error. There 

is a significant probability that at times, one of the three variables can indicate a false 

pattern which might generate corresponding misappropriate weight. In such a situation 

the weights from the other two variables can sufficiently neutralize this negative effect. 

On the same note, it should be mentioned that all the three variables go wrong only in a 

very rare event, which could be accounted to the randomness that exists in every type of 

experimental results. 
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3.5 Results and Analysis 

Experimental Set-Up 

This chapter is an extension of previous chapter and hence they should have 

commonalities so that the final results are comparable. For this purpose, we take care so 

that the initial deployment is similar to that of previous chapter. Hence we still deploy 

100 mobile nodes in the field of predetermined dimensions (in this case, a 5r-by-5r 

square) where ‘r’ is the unit length of the placement area with communication radius 

being 1.0r. In summary, all the characteristic features of the network are retained to make 

the results comparable. 

 

As in Dynamic Localization algorithm we get two estimates: one from Dynamic MDS 

and the other from Dead-reckoning technique. But then the final result was an ensemble 

result with equal weights to both these estimates. In Dynamic localization with adjusted 

weights, we demonstrate the selection of appropriate weights which are not fixed. This 

selection is done dynamically by assessing the performance of the Dynamic MDS results 

in real-time and then estimating corrective weights. 

3.5.1 Appraisal of Dynamic MDS Performance: 

Three important parameters were identified to capture the patters in the mean localization 

error of Dynamic MDS: Proportion of unexplained variance, Conformation error in 

Beacon mapping measured by Lateral Difference and Rotation Difference. Their 

relationships with the mean error of Dynamic MDS can be substantiated by employing 

correlation analysis. Since continuous variables are involved we can use Pearson’s 

Correlation coefficient as explained in earlier sections. 
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Correlation of Proportion of Unexplained Variance to the Mean Error 

It is through obvious understanding that these two variables are related to each other. We 

can get a feel of this statement by looking at the dominating patterns in the plots of mean 

localization error and the Proportion of Unexplained Variance.  

 

Figure 24: Positive Correlation of proportion of unexplained variance 

 

 

Figure 25: High Pearson correlation values for Proportion of Unexplained Variance 

 

Consider Figure 24. The Figure (a) is the error from Dynamic MDS. The Figure (b) is the 

plot of unexplained variance.. By looking at the two plots, it is quite evident that the 
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proportion of unexplained variance curve is able to capture most of the notable changes 

in the DMDS. It can be observed that the Mean localization error slightly increases for 

the 8th iteration in Figure (a). We can see a similar increase in the Figure (b) for the 8th 

iteration.  

Now we turn our attention towards explaining the relation in the light of Statistics. For 

the demonstrated graphs, the correlation coefficient works out to be about 0.93 which 

indicates a high degree of association. Figure 25 shows the variation in the correlation 

coefficient of proportion of unexplained variance with the mean localization error for 4 

simulations. It can be seen that all the four are positive and greater than 0.7. Hence we 

can conclude that the patterns in proportion of unexplained variance can be used to 

predict the pattern in the total localization error. 

  

 

Figure 26: Positive correlation of Beacon Lateral Error with localization error 
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Figure 27: High Pearson values for Beacon Lateral Error 

 
Similarly the errors which are associated with the absolute mapping can also be 

associated with the mean localization error. Figure 26 and Fig 28 compare the trends of 

the Dynamic MDS error with those of Beacon Lateral error and Beacon Rotational error 

respectively. The correlation analyses for 4 simulations also indicate that the strength of 

linear association of these errors with the mean error is relatively stable (always positive). 

This is evident form figure 27 and 29. 

 

 

Figure 28 : Positive correlation Beacon Rotational Error with localization error 
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Figure 29 : High Pearson's values for Beacon Rotational Error 

 
At this juncture we might see a potential concern from s statistical view point. The above 

three variables which exhibited strong correlation with the mean error, are correlated with 

each other as well. This situation is often referred to as multi-correlation. In simpler 

words, it indicates that using one of the three variables would be good enough.  

But we can prove that such step would adversely affect the model. This is because, each 

of the three variables show some sort of inconsistency at times. By averaging the weights 

obtained from all the three variables, we have an opportunity to dampen such 

inconsistencies. Hence we shouldn’t rely entirely on a single variable which would over 

fit the model to pattern of that variable which would then follow the inconsistencies in 

the model as well. 
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3.5.2 Performance of Dynamic localization with adjusted weights  

 
The figure 30 is the same figure which was used in the beginning of the chapter to 

explain the need of modifications to the Dynamic Localization algorithm. Now the figure 

had an additional graph of Dynamic localization with adjusted weights to compare the 

two versions of the algorithm. 

In our previous explanation, the iteration 12 was a cause for concern due to unsatisfactory 

performance of Dynamic Localization with equal weights to Dynamic MDS and Dead 

Reckoning. Now it is quite evident that the real time weights to the two estimates helped 

the model to give more weight to the Dead Reckoning method for iteration 10 which 

brought down the error considerably. 

 

Figure 30:  Reduced Localization error with Dynamic Localization with adjusted weights 

Working backwards we observe that this result was possible due to the similarities in the 

pattern of mean error with the three specified variables. Whenever any one of the three 

measures indicates any unpredicted behavior, the other two variables dampen such effects 
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to a comparable degree. This way the modified algorithm adjusts the weights from each 

of the three variables during run time. 

 

Figure 31: Reduced Localization error with Dynamic Localization with adjusted weights 
 
Figures 31 and 32 depict two other situations where the Dynamic localization with 

adjusted weights outperforms the Dynamic Localization algorithm, which reflects the 

stability of the proposed algorithm. 

 

Figure 32: Reduced Localization error with Dynamic Localization with adjusted weights 
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Time complexity: The Floyd’s shortest path algorithm records the maximum share of 

execution time at every step. It is a significant contributor of computation overhead and it 

builds up very quickly with the number of virtual nodes being added.. In general, the time 

complexity is O(n3). The following table enlists the time complexity introduced by 

running a simulation with 100 nodes with 75 mobile nodes in each iteration. We see that 

the computational time increases till the network reaches the set limit of connectivity 

level(5th iteration) after which the addition of virtual nodes is halted Thereafter the 

execution time is relatively constant. 

Table 2 : Time Complexity 
Number of nodes 
(Real+Virtual) 

Time in seconds 

100 0.859 
175 1.672 
250 2.844 
325 6.688 
400 (required connectivity met) 11.765 
400 11.969 
400 11.844 
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CHAPTER V 
 

CONCLUSIONS 
 

4.1 Contributions 

The thesis work attempts to solve the localization problem for random deployment of 

mobile sensors in wireless environment considering all of the given constraints on the 

deployment.  

With Classical Multidimensional Scaling being the crux of the entire work, adequate 

studies were conducted to understand the working of the algorithm and the fundamental 

mathematical backing involved. With the range of solutions offered by this algorithm to 

many of the inter-disciplinary issues, it was then decided that it can significantly 

contribute to the localization problem as well. 

Initially, the thesis focused on validating the applicability of Classical Multidimensional 

Scaling for localization of static sensor networks. Apart from making an extension to 

existing work on MDS-based localization, some important conclusions were made 

regarding the performance issues.  
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Network topology parameters, node density and precision in measurements are some of 

the key factors which are found to have significance influence on the performance of the 

MDS-based localization techniques. 

As explained in the first chapter, the admissibility of MDS to localization of wireless 

mobile sensor networks was the next step to be dealt. With the concept of adding ‘virtual’ 

nodes to the network, this issue was adequately addressed and the resulting technique was 

called as Dynamic MDS-based localization. However the simulation results pointed the 

inconsistency in the overall results. This raised a concern and hence additional work was 

carried out to finally come with sensor fusion technique that aids the MDS-based 

localization in bringing down the inconsistency levels. Now the new algorithm is referred 

to as ‘Dynamic Localization’ technique. 

While the above explained Dynamic Localization technique was found to perform fairly 

well, but not the best. Moreover, it was important to determine and analyze the causes 

that would dictate the performance of Dynamic Localization technique. Three parameters 

were found out to be predictive of the mean localization error. Using the patterns in the 

three parameters, real-time weights are assigned to the Dynamic MDS and the dead 

reckoning results to come up with final results. The final results of this algorithm with 

adjusted weights are found out to be much better than those of the algorithm which uses 

simple 1:1 weights. The simulation results stand in accordance to all of the specified 

conclusions over a variety of deployment scenario. 
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4.2 Future Work 

The distances, orientation angles of the mobile nodes and other pertinent information are 

all analyzed by a central processing device (like PDA) in the light of the explained 

algorithms. In essence, the localization technique implemented in the thesis had one 

important underlying supposition that the entire process involves centralized 

computations. While this works for most of the contemporary applications, we foresee 

the extended usage of the algorithm in forthcoming applications, entailing on the 

distributed computations. Hence the methodology encompassed in the thesis should 

significantly accommodate distributed computations. We propose the following to pave 

way for the future work in the similar lines of this thesis. 

We still advocate the usage of popular data visualization algorithms like classical 

Multidimensional Scaling for the localization of ad-hoc mobile sensor networks. In fact, 

the DMDS method reinforced by dynamic fusion of the Dead Reckoning estimation can 

provide a concrete foundation for Distributed Localization Technique too.  

The change that would be called for this situation would be in the Dynamic 

Multidimensional scaling procedure. Entire deployment as a single entity should no 

longer be used in one-time localization step. Instead, for selected subjects, the one-hop 

neighbor’s information alone is used to create a relative map, which keeps growing with 

the addition of the relative maps of one-hop neighbors of different nodes. In simpler 

words, the process starts by selecting a node, which can safely be a node somewhere in 

the middle of the deployment area. The relative map is generated for the 1-hop neighbors 

of that node. Then we choose another node and its respective one-hope neighbor relative 

mapping in such a way that it has a considerable number of common nodes with the 
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central node relative mapping. These two relative maps can be merged together by using 

the common nodes locations. This process continues till all the nodes in the entire 

deployment get added to the relative map. Then we have the process of transforming the 

relative locations into absolute locations with the help of beacons. This would complete 

first iteration. Thereon, we add virtual nodes to build up the number of nodes and then 

repeat the procedure of building up the relative map as explained above.   

We predict the following vital implications of this Distributed Dynamic localization 

technique. Firstly, this is a distributed version of the methodology explained in the thesis 

and hence it offers the common advantages available in any distributed process. On the 

other hand, we see that this method would be more robust to errors. This is because, in 

the centralized localizing technique, we saw that the sparse, irregular topologies suffer 

from misrepresentation of the shortest path distances to 2-hop or any n-hop (n>2) 

neighbors. Though we have minimized this effect by Dead Reckoning, we still didn’t 

eliminate it. But it seems that the Dynamic Localizing technique is less affected by this as 

it uses the only 1-hop neighbor distances.  

But, there are some concerns about the proposed Distributed Dynamic Localization 

technique at this point of time. Firstly, it is very obvious that this method is going to take 

large processing time. This is because, for every patch of 1-hop relative map we need to 

execute CMDS and then patch it up with the central relative map by mapping technique. 

And in general, most of the applications place restriction on computation time apart from 

their specifications.  Also we must have stable transforming function to patch up the 

relative maps most of time and it is imperative to note that this leaves a considerable 

scope of errors creeping in the form of bad mapping. Moreover, the concept of adding 
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virtual nodes must be carefully advocated in the distributed technique as it changes the 

topology of the network very quickly. So these issues are to be dealt carefully in 

formulating the Distributed version of the algorithm. On a concluding note, the 

Distributed Dynamic Localization technique can sustain only when we have concrete 

evidence that setbacks are significantly out-weighed by the advantages and this is 

possible with extensive simulations with different possible situations can that arise in the 

real-time deployment scenario. 
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