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CHAPTER I 
 
 

INTRODUCTION 

 

In the last three decades, dramatic increases in CPU performance have led to the 

formation of the CPU-Memory gap, the difference in performance growth between the 

CPU and the memory. With each generation of CPU architectures, this gap widens, and 

has quickly become one of the most salient bottlenecks in contemporary computing. An 

overwhelming amount of research has been dedicated to closing the CPU-Memory gap 

[1, 30, 31, 32, 33], including work that attempts to mask its effects on performance [2, 3, 

15]. Much of this work has been widely accepted and is in use in current architectures. 

 

 

Figure 1.1- The CPU-Memory gap. Over time, CPU performance increases at a much higher rate than 
DRAM performance. This characteristic gap has motivated a great deal of research in computer 
architecture.
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One effective way to mitigate the effects of the CPU-Memory gap is to prefetch 

data into the cache before it is used. Numerous prefetching techniques have been 

presented [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], with varying degrees of effectiveness, mainly 

dependent on workload. This work does not propose a new prefetch algorithm, but rather 

attempts to explore the potential of leveraging a prefetch unit to work in a more 

intelligent way, as described in section 1.2 and chapter 3. 

 

1.1 Motivation 

All prefetching schemes operate on one premise – that regular patterns exist in data and 

instruction streams that can be exploited. While this is true, all prefetch units have 2 

major shortcomings. 

1. Even if a prefetch unit knows what to prefetch, there exists a case where the 

memory bus may be so busy that it cannot function. Prefetcher starvation is 

especially prominent when attempting to prefetch into small, busy caches. 

2. Hardware prefetch units are “dumb” – they only look at the demand fetch access 

stream, instead of taking into account the wealth of information about the 

workload available at runtime. The case addressed here is that traditional prefetch 

schemes do not take into account the effects of multi-programmed systems. 

Prefetchers are interrupted at each context switch and must be re-trained for the 

current process. 

This research introduces a system that attempts to address both of these issues. 

 With the advent of the multi-core era, data demands will increase. “Feeding the 

beast” will continue to be a problem, and as the degree of multi-programming increases 
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with multi-core machines, more intelligent prefetch paradigms will need to be in place to 

continue to be effective. Some studies have quantified the effects of multi-programming 

and operating systems on caches [14, 18] and conclude that these effects are significant 

and are growing.  

 

1.2 Out of Context Prefetching Overview 

The overall goal of this work is to provide a first step in creating a less transparent 

architecture that can interact with the operating system in more meaningful ways. 

This work focuses on creating a context aware architecture, specifically to prefetch data 

for an incoming process before that process is switched in by the operating system 

scheduler. By allowing the architecture to know and track the current running process, 

and potentially predict the next process, new areas of research are introduced, including 

context aware caching, process selective cache replacement algorithms, process 

predictive context switching, and others.  

 Out of context cache prefetching operates by first predicting the ID of an 

incoming process, and some time before the context switch occurs, it enables a prefetch 

unit which gathers data for the incoming process. The initial focus of this work is on the 

last on-chip cache assumed to be the level 2 cache, unless otherwise stated. Thus, the out 

of context prefetcher brings data into the L2 cache from main memory. The ideas 

explored in this research may be extended further down the memory hierarchy. 

 There are two classes of processes that out of context prefetching targets. Both 

classes of applications are explored in this work, and details are provided in sections 3.5 

and 3.6. 
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1. CPU-bound, memory intensive processes. These are processes that tax the main 

memory so much during their timeslice that traditional prefetch units simply do 

not have enough time to initiate transactions. This is true even if they know what 

to fetch. By beginning prefetching out of context, near the end of the timeslice for 

the current process when pressure on the memory is low, there is a potential for an 

aggressive prefetcher to get a head start on fetches and stay ahead of the demand 

fetches initiated by the process when in context. In order to ensure that less 

memory intensive processes are scheduled before more memory intensive ones, 

the operating system scheduler can be modified to identify and reschedule based 

on memory demands.  

2. I/O-bound, highly interactive processes. These are processes with relatively short 

timeslices, which display memory activity “bursts” at the beginning of each 

timeslice. These bursts represent a process rebuilding its working set, and are a 

primary symptom of cache thrashing due to aggressive multi-programming. These 

processes work on smaller sets of data and most of the cache misses occur at the 

beginning of each timeslice, so it may be possible to prefetch most of the blocks 

for the incoming processes. This has the effect of making the process more 

interactive and masks the effects of cache thrashing. Reducing the amount of 

thrashing may allow for higher degrees of multi-programming and greater total 

CPU utilization. 
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1.3 Contributions 

This thesis provides contributions to computer architecture and computer science. It 

provides an initial step towards creating less transparent architecture that the operating 

system may then use to leverage greater performance from the hardware. More 

specifically, by creating a context aware memory system, the operating system has the 

potential to schedule memory much like current systems schedule the CPU. In a broader 

context, exploring context aware architectures opens up many interesting research topics 

for improving system performance for engineers and computer scientists alike. 

 In the area of computer science, this thesis suggests several interesting research 

topics in operating system interactions and especially scheduler algorithms. By creating a 

less transparent architecture, computer scientists have greater opportunities to create 

systems that better utilize system hardware. 

 The system described in this thesis is relatively inexpensive (in terms of area and 

power) to implement in modern memory systems, and does not require tampering with 

the critical path of the CPU. It leverages greater system performance through better 

utilization of the memory system.  

 

1.4 Thesis Outline 

The remainder of this thesis is as follows. We begin by discussing related work in the 

areas of prefetching, operating system interactions with caches, and other context aware 

software and hardware systems in Chapter 2. Chapter 3 provides a detailed description of 

the out of context prefetch system, including a discussion on when to schedule 

prefetching, predicting context switches, and considerations for different classes of 
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processes and multi-core systems. Chapter 4 describes our simulation methodology 

including a description of the simulator configurations, data analysis techniques, and 

CPU/memory configurations. Chapter 4 also provides a discussion and justification of 

certain configuration parameters, primarily in regards to simulation feasibility. Chapter 5 

presents a discussion of simulation results. Data is presented for a simple context switch 

prediction unit, as well as a detailed discussion of the design space exploration. Finally, 

Chapter 6 provides conclusions and a discussion of future work in context aware 

architectures and out of context cache prefetching. 
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CHAPTER II 
 
 

RELATED WORK 

 

This chapter describes several of the most pertinent works in hardware and software data 

prefetching, operating system interactions with the memory hierarchy, and context aware 

architectures. 

 

2.1 Prefetching 

 Jouppi’s early work in prefetching [5] proposed the addition of simple stream 

buffers that identified unit length streams and prefetched several blocks ahead in a 

stream. For example, if block α  is demand fetched, the stream buffer fetches 

3,2,1 +++ ααα , etc. Palacharla and Kessler extended this work to include stride 

directed prefetching [7], where non-unit strides can be fetched, i.e. 4,2, ++ ααα , etc. 

Stream prefetching is especially effective and inexpensive to implement. 

 Another prefetch technique is Correlation based prefetching which, first 

introduced by Baer [11], associated prefetch addresses with demand fetches. When a 

demand fetch is initiated, the prefetch candidate is also fetched. Joseph and Grunwald [4], 

extend correlation-based prefetching by adding a Markov model to the reference stream.



 9

 Reinhardt et al. [12] proposed guided region prefetching, that uses compiler 

supplied prefetch hints to regulate a hardware prefetcher. Guided region prefetching aims 

to minimize the extra memory traffic introduced by hardware only scheduled region 

prefetchers. 

Zucker et al. [13] proposed profiling software with an emulated hardware stream 

prefetcher, identifying candidate prefetches. These candidates would then be used to 

recompile the software with appropriately placed software hints. This method was quite 

effective in achieving a reduction in miss rate similar to the equivalent hardware.  

This work does not call for a specific type of prefetch unit, just that it be capable 

of maintaining training data for different processes running on the system. Any of the 

techniques proposed above can be applied to the topics introduced here. 

 

2.2 Operating System Interactions with Memory 

 Process scheduling and other operating system mechanisms can have a dramatic 

effect on cache performance. Increasing the degree of multi-programming increases 

performance in general by supporting greater utilization of the CPU. However, an upper 

limit exists where raising the degree of multi-programming will result in cache thrashing 

[19]. Chen and Bershad [14] assert that operating systems interfere with cache 

performance because of lower locality of reference, conflicts between the OS and user 

applications, poor page mapping algorithms, and other various issues. Chen notes that 

context switching interference is amortized over relatively long timeslices, but as 

timeslices get shorter and multi-programming increases, context switching interference 

becomes more significant. 
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2.3 Context Aware Systems 

 Koka and Lipasti [15] suggest scheduler modifications that include scheduling 

memory hierarchy. This is accomplished by scheduling threads that share memory one 

after another, which in effect warms the cache for the next process in the runqueue. This 

concept is similar to out of context prefetching (in fact Koka in passing suggests 

prefetching before a context switch occurs for an incoming process as an alternative 

design). 

 Suh et al. [16] has presented work detailing job-speculative page fetching from 

virtual memory. The approach presented is entirely software driven, controlled by the 

operating system, and employs a design very similar to the one proposed in this thesis.  

 Chiou et at. [17] has proposed scheduler based prefetching for various levels of 

the memory hierarchy, in very much the same way as Suh et al. [16] and this work. This 

system issues prefetch instructions in the scheduler and the potential exists for significant 

additional overhead to occur during context switching  

   All three of these techniques employ entirely software driven solutions to 

mitigating the effects of context switching on memory. The method described in this 

thesis differs primarily by being implemented in hardware, without any explicit 

requirement to modify well established scheduling algorithms and time critical code 

sections. It does not however, preclude such modifications. Out of context prefetching 

may also exist in current architectures, without the need to augment the ISA or require 

new versions of operating system code.  
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CHAPTER III 
 
 

OUT OF CONTEXT PREFETCHING 

 

The out of context prefetch system consists of two major components, the context switch 

prediction unit and the prefetcher. The context switch prediction unit handles tracking 

and predicting the incoming process ID and when the context switch will occur as well as 

controlling the prefetch unit. The prefetch unit behaves as it would in a traditional 

system, but since it must track one or more running processes, it must keep one or more 

context records that hold training data for each process. When the context switch 

prediction unit enables the prefetcher, the predicted process ID’s context record will be 

used for prefetching.  

 

3.1 Design Space Exploration 

Like all prefetch schemes, out of context prefetching is sensitive to certain configuration 

parameters, such as cache size, predictor accuracy, and especially the workload. Out of 

context prefetching specifically addresses reducing sensitivity to workload, but also 

introduces new factors that need to be studied before an assessment on its efficacy can be 

made. The design space is enormous, with key parameters such as cache size, predictor 

accuracy, and context prediction accuracy, also practical implementation issues exist, 

such as the number of processes to track and system scheduler modifications. 
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Furthermore, since out of context prefetching can be viewed as an extremely aggressive 

prefetcher, the potential for pollution and interference with other prefetch schemes exists. 

This work focuses on exploring the parameters associated with out of context prefetching 

and their interactions with various cache configurations.  

 

3.2 An Example 

To better illustrate out of context prefetching, consider an example. Assume Process A is 

given the CPU, that is, a context switch occurs and Process A is now running. The 

context switch prediction unit predicts that when Process A is running, Process B will 

become the next run process 10 million cycles from the beginning of Process A’s 

timeslice. A certain amount of cycles, l , before the predicted context switch, the out of 

context prefetch unit begins to issue prefetch transactions for Process B. When the 

context switch occurs, the prefetch unit either continues prefetching in-context (a context 

hit), or begins to prefetch for the new process (a context miss). If no context switch 

occurs after l  cycles (and possibly some grace period), the out of context prefetch unit 

stops issuing prefetches, in order to prevent cache pollution.  Note that the in-context and 

out of context prefetch units do not have to be the same. Figure 3.1 illustrates this and 

other possible outcomes of out of context prefetching. 
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Prefetch B

Process A Process B

( a ) Time

Prefetch B Prefetch C

Process A Process C

( b ) Time

Prefetch B

Process A

( c ) Time

l

l

l

 

Figure 3.1 - Possible outcomes of out of context prefetching. ( a ) A context hit. Prefetching continues 
uninterrupted. ( b ) A context miss. The prefetcher must begin prefetching for the correct process, pollution 
occurs. ( c ) A time prediction miss. Pollution may or may not occur, depending on the future context 
switch. 
 
 

 

3.3 When to Begin Prefetching 

Accurately determining the time l  before a context switch occurs to begin prefetching is 

important both to ensure that enough data is prefetched to make out of context 

prefetching worthwhile and to prevent interfering with the memory footprint of the 
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current process. In order to determine l , we must know how many blocks we intend to 

prefetch (or at least a range), and what the working set of the currently running process is. 

The first of these measures is quite simple to calculate and can be determined at 

each context switch. The prefetcher’s aggressiveness determines how many blocks to 

fetch. This number, multiplied by the average latency required to prefetch one block 

gives the time required to complete out of context prefetching. For example, if the 

average (based on average available memory bandwidth) latency to prefetch one block is 

200 cycles, and we intend to prefetch 1000 blocks, we would need at least 

2000001000*200 ==l  cycles before the context switch occurs to complete the 

intended prefetching.  

 The second measure (the working set) is quite a bit more difficult to quantify on a 

real system. Out of context prefetching functions partially on the assumption that fetching 

into the cache will not interfere with the current running process. The current working set 

of a process decreases to zero as the process nears the end of its timeslice, as illustrated in 

figure 3.2. This is because a process can only work on so much data in a unit of time, and 

as the timeslice of a process runs out, the total amount of data it can work on also 

decreases. Knowing the working set of the current process is important because we do 

not want to interfere with data currently in use. In other words, prefetching too early, or 

inside the working set of the current process, can pollute the cache and degrade 

performance for the current process. It should be noted that even if we have knowledge of 

the working set of the current process, we must take care to ensure that certain cache 

lines in the current working set were protected during prefetching. This implies a 

modification to the replacement algorithm, and is not addressed in this paper. 
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Figure 3.2 – The working set as a function of time. As a process nears the end of its timeslice, its 
effective working set approaches zero. It may be possible to prefetch into the cache at the end of the current 
timeslice without interfering with the current working set. 
 

 For this study, the value l  is measured in L2 accesses. This is done because 

performance indicators such as miss rate and cache pollution are functions of cache 

accesses rather than time. In a real system, l  would likely be calculated in cycles for the 

sake of practicality. Dedicated performance counters can be used to calculate average 

cycles per L2 access in real time, making a dynamic calculation of when to begin 

prefetching possible. 

 

3.4 Predicting Context Switches 

The efficacy of out of context prefetching is bounded by its ability to accurately predict 

an incoming process and when a context switch will occur. Context switching behavior, 

and thus the ability to predict a context switch, is driven entirely by the operating system 

scheduler. CPU scheduling occurs under one of four possible events [19]: 

1. When a process switches from a running state into a waiting state, usually 

because of an I/O request. 

Working Set 

Context Switch 

T 
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2. When a process switches from a running state into a ready state, usually due 

to an interrupt. 

3. When a process switches from a waiting state into a ready state. For example, 

when an I/O request completes. 

4. When a process terminates. 

For events 1 and 4, scheduling must take place. This is known as cooperative scheduling, 

because the process itself relinquishes control of the CPU. Scheduling during events 2 

and 3 is known as preemptive scheduling.  

 In a system that only supports cooperative scheduling, predicting context is 

simple, because process runqueues are decided upon before the runqueue is executed, as 

in the case of round-robin scheduling. Preemptive scheduling poses a difficult problem 

because certain events such as interrupts and I/O completion can be difficult to predict. 

Examples of this include keyboard/mouse input, network I/O, DMA completion, and so 

on. However, as chapter 5 will show, a high degree of regular patterns and timing still 

exists and can be exploited. 

Ideally, system schedulers attempt to optimize CPU utilization, throughput, or 

response time. Although, most systems implement simple priority based algorithms that 

allow for dynamic runqueue adjustment and user priority overrides. For example, the 

Linux kernel implements a preemptive, priority based algorithm. Processes are assigned 

priorities ranging from 0 to 140, with 0 being the highest priority. Higher priority 

processes are awarded longer timeslices, and lower priority processes shorter timeslices, 

ranging from 10ms to 200ms. During execution, the highest priority task that still has  
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Figure 3.3 – Context switches over time. Each process is represented by a color. The most frequent 
timeslice represents a window manager application servicing requests to redraw the screen and handle 
mouse I/O. 
 

time remaining in its timeslice, and is not waiting on I/O, will be scheduled. When a 

process exhausts its timeslice, it cannot run again until all other processes have exhausted 

their timeslices. The Linux scheduler measures the interactivity level of a process by 

detmining how long it has been waiting for I/O. It favors interactive processes and will 

increase their priority (by lowering the priority value) over time. Conversely, CPU-bound 

processes will have their priority lowered (by raising the priority value).  

Figure 3.3 shows the context switching behavior of a Linux workstation. Several 

active processes are running, including a window manager, web browser, media player, 

and a CPU-bound process (in this case bzip2 from the SPECcpu2006 benchmark suite). 

Figure 3.3 indicates that even in a preemptive multi-tasking system, a significant amount 

of exploitable regular patterns exist for context switching behavior. 

It should be noted that it is possible to avoid having to predict the ID of an 

incoming process by either snooping into the runqueue or having the scheduler inform 

the architecture as to the next incoming process. Either of these implementations will 

account for all non-preemptive context switches. However, snooping into the runqueue is 

expensive and dangerous, since operating system data structures can change between 

software versions. Requiring the scheduler to inform the architecture about the runqueue 

Time 
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can also be expensive, at least on a small scale, where process dispatching (the actual 

context switch) latency is critical. Furthermore, neither implementation informs the 

architecture when the context switch will occur on any useable timescale (timeslices are 

typically measured in milliseconds, far too course-grained for out of context prefetching). 

Future work may lead to an investigation of the potential merits of modifying the system 

scheduler to better accommodate out of context prefetching. This work explores the 

possibility of predicting context switches without the aid of the system scheduler. 

 

3.5 The Case for CPU-Bound Processes 

CPU-bound processes, those that have relatively few I/O requests, are the process type 

that most prefetchers target. This is because CPU-bound processes have longer 

contiguous timeslices, which promotes exploitation of process specific locality. Certainly, 

as least in part, early research in data prefetching was limited to single processes because 

full system simulators were too slow, inaccurate, or were not available to a majority of 

the research community. Furthermore, the de facto simulation benchmark suite, 

SPECcpu, which consists of CPU-bound applications by design. Contemporary cache 

prefetching techniques work well for CPU-bound processes [9, 12, 13, 20, 21], and since 

they tend to consume a majority of CPU time, Amdahl’s law directs us to focus on them.  

 However, as the CPU-Memory gap widens, because of bandwidth limitations, it 

becomes increasingly difficult to prefetch, even if the prefetcher knows what data to fetch 

[22]. Figure 3.4 shows the average memory bus utilization for MCF, a SPEC2006  
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Figure 3.4 – Average memory bus utilization for the MCF SPEC2006 benchmark. For processes that 
maintain high memory bus utilization, traditional prefetch schemes may not be able to issue fetches even if 
they know what to fetch. 
 

benchmark, on a scalar, in-order CPU with a blocking memory hierarchy. At above 80%  

for nearly its entire run, finding time to prefetch without interrupting demand fetches is 

clearly difficult. On a modern out-of-order, superscalar CPU, memory requirements 

increase, and it becomes even more difficult to prefetch, even if the prefetcher is highly 

accurate.  

 Out of context prefetching attempts to minimize the bus utilization caused by 

demand fetches by issuing prefetches out of context, when memory pressure is low. This  

reduction in demand misses potentially gives a regular prefetch unit a greater chance of 

injecting prefetches. The regular prefetcher then, depending on its accuracy, may be able 

to stay ahead of the demand fetches to the cache. A far more likely scenario is that the 

demand fetches will catch up to the prefetcher, and the effect will be a “wedge” of cache 

misses removed from the front end of the timeslice of the process.  
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3.6 The Case for I/O-Bound Processes 

I/O-bound processes are those that spend more time waiting on I/O than actually 

computing data. I/O-bound processes can create significant performance loss because of 

exceedingly long latency on certain I/O events such as keyboard/mouse input, network 

I/O, etc. In part to work around this bottleneck, systems began time-sharing resources to 

mask the latency of I/O. While multitasking has allowed for significant performance 

improvements, as the number of processes running on a system and the degree of multi-

programming increase, thrashing becomes a problem. 

Thrashing is a condition where a system performs less and less meaningful work 

(progress) because resources spend more time working on non-progress related tasks. A 

classic example is page thrashing, where the working sets of all of the processes on the 

system do not fit into physical memory. Pages must be “swapped” to a higher level 

memory, usually the hard disk, and brought back in when needed. As multi-programming 

increases, the operating system spends a disproportionate amount of time “swapping” 

pages, causing an overall loss in system performance. 

Cache thrashing occurs in much the same way and has the same symptoms. As processes 

contend for space in the cache, the cache becomes increasingly less capable of masking 

main memory access latency. As the degree of multi-programming increases, 

 

Figure 3.5 – Performance vs. Multi-programming. As the degree of multi-programming increases, 
thrashing can quickly degrade system performance.  
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locality of reference becomes less apparent, and latencies increase.   

 Unfortunately, prefetch units suffer just as caches do. At every context switch, 

prefetch units have to spend time retraining. Even after the prefetch unit retrains, 

bandwidth limitations may exist because the running process is busy refilling the cache 

with its working set. Figure 3.6 shows the average bus utilization for an I/O-bound 

process. Note the exponential decay of bus utilization, which implies the process is able 

to fit its working set into the cache, but thrashing causes it to refill the cache every time it 

is switched in. Even if a prefetch unit knows what to fetch when the context switch 

occurs, it may not have any available bandwidth to work with, and by the time bandwidth 

becomes available, prefetching in the current timeslice may yield little performance gain. 

Furthermore, it is unlikely that a traditional prefetch unit would know what to fetch at the 

beginning of the timeslice, since locality of reference has been compromised, causing the 

prefetcher to waste time retraining. The type of prefetcher determines the amount of 

accesses required to retrain. 

   

Figure 3.6 – Average memory bus utilization per timeslice for the X Window System. I/O-bound 
processes tend to display a memory “burst” at the beginning of each timeslice.  
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3.7 Considerations for SMT and Multi-core Systems 

With the multi-core era well in place, memory bandwidth is becoming a scarce 

commodity [22, 23, 24]. Shared memory resources must divide their bandwidth between 

all of the cores that access them. Process scheduling becomes a significant bottleneck. 

When a core “steals” a process from another core to balance the load, the entire working 

set of that process must move with it, incurring an enormous amount of memory traffic. 

Even prefetching can create issues in multi-core systems. When a “dumb” prefetcher is 

too aggressive, it may inadvertently create false sharing and increase coherency traffic 

[34].  

  Out of context prefetching is an intelligent prefetching scheme that adapts well to 

multi-core paradigms. As these systems grow in number of cores, and parallel 

programming becomes more commonplace, the number of active threads on a system 

will also grow. Traditional cache hierarchies and prefetch schemes will have trouble 

scaling, especially as the degree of multi-programming of these systems increases. 
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CHAPTER IV 
 
 

SIMULATION METHODOLOGY 

 

This work employs both full system, execution driven simulation, and trace driven 

simulation to generate data. Since this work is preliminary in nature, and simply attempts 

to explore the efficacy of out of context prefetching in a broad sense, this work bases the 

simulations on simple models to reduce simulation time. This allows for performing a 

wide range of simulations covering several key parameters. In total, this work presents 

results from more than 350 simulations. 

 

4.1 Full System Simulation 

The Virtutech Simics Full System Simulator [25] generates various trace files that are 

used in the trace driven simulators. Simics is a full system execution driven simulator that 

can simulate Alpha, ARM, IA-64, MIPS, PowerPC, SPARC v9, x86, and x86-64 families 

of processors. The overall design of Simics is geared to be generic and flexible (it can 

simulate embedded systems, desktops, multiprocessors systems and clusters). Its 

modular, object-oriented design allows for great ease of use, despite its large size and 

complexity. We use Simics/x86 with the Tango target. Tango is a simplified single, 

scalar, in-order x86 CPU running Fedora 5 GNU/Linux. While Simics is capable of 

simulating more complex, out-of-order, super-scalar machines, the simulation time in 
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these systems grows by several orders of magnitude. The prohibitive time requirement 

for running these simulations restricts the level of detail we are able to simulate in any 

tractable amount of time. Since memory demands increase with the addition of 

technologies such as super-scalar processing, any improvement in performance for a 

simplified model will also yield improvement in a super-scalar, or even multi-core 

environment. Table 4.1 details the simulator and cache configuration.  

 This work uses two sets of trace files. The first contains an annotated trace of 

every context switch that occurs over a 10 billion instruction simulation. The trace file 

contains the PID and timestamp (in cycles) of each context switch. These files are then 

fed into a several simple prediction units to measure the efficacy of predicting context 

switches. 

 The second file type is an annotated memory reference trace. Every L2 access is 

written with the current running PID, and timestamp (in cycles). These files are fed into a 

trace driven simulator to measure the effects of various L2 cache configurations and other 

metrics, described in the next section. 

 

4.2 Trace Driven Simulation 

As described in section 4.1, two types of trace files were generated by Simics. The first 

type is a timestamp annotated trace of every context switch over a 10 billion instruction  

 

 

 

Table 4.1 - Simics configuration. The L2 and main memory configurations are used only to generate 
traces for the context switch prediction traces.  

CPU 2GHz single core, scalar, in-order x86 ISA.  

L1 I-Cache 64kb, 4-way, 64 byte block, LRU, 2-cycle read penalty. 

L1 D-Cache 64kb, 4-way, 64 byte block, Write-back, LRU, 2-cycle 

L2 Cache 2048kb, 8-way, 128 byte block LRU, 10-cycle read/write 

Main Memory 200 cycle access penalty 
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simulation. This file is then parsed by three simple context switch prediction units, 

written in Perl.  

The first predictor employs a simple predict-last algorithm, where an entry in a 

table is made for each PID on the system containing the last context switch from that 

process. So, for example, if Process A is switched out for Process B, the next time 

Process A is switched in, the unit will predict that Process B will come next.  

The second predictor builds on the predict-last algorithm, but attempts to filter out 

switches that occur due to preemption. This is known as hysteresis based prediction. In 

this algorithm, a pattern must be repeated twice before the table entry is overwritten. For 

example, if the prediction for the PID after Process A is currently Process B, another 

pattern, such as Process A to Process C, must occur twice before the prediction is 

changed. This can be implemented using a simple 2-state finite state machine, as shown 

in Figure 4.1. 

The third and final predictor evaluated is a finite context method predictor [26], 

common in the use of text compression [27]. A finite context method predictor, FCM, 

generates predictions based on a sequence of previous values. FCM’s implement counters 

for each possible next value after a sequence of order N, as shown in Figure 4.2.  

 

incorrect prediction != last PID

correct prediction or 
incorrect prediction 

same as last

 update prediction = 
last PID

correct prediction

incorrect prediction

filtersteady

 

Figure 4.1 – FSM representing hysteresis based predictor. A hysteresis predictor filters out single 
occurrences of context switch misprediction. This is effective for ignoring preemptive context switches. 
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Figure 4.2 – FCM with N=2. As the sequence is fed into the FCM algorithm, a scoreboard of next values 
for each N length pattern is kept. The highest scoring value for a given pattern will be predicted. 
 
 

When a particular sequence is encountered, the value with the highest count will 

be predicted. This type of predictor is difficult to implement in hardware, as the table size 

needed to keep track of a large number of PID’s can be prohibitively large. 

 The second trace file set contains annotated memory references over a 10 billion 

instruction run. An extensively modified version of the DineroIV cache simulator [28] is 

used to generate several performance indicators. Dinero is a trace driven cache simulator 

originally developed at the University of Wisconsin as part of the Wisconsin Architecture 

Tool Set. It is written in C, with the full source available, and is easily modified for 

various types of cache simulation.  

 The role of Dinero in this study is to explore the efficacy of out of context 

prefetching by simulating over a range of parameters likely to affect performance. In 

most studies of cache configurations and prefetching, the primary performance indicator 

is miss rate. This work uses both overall and process specific miss rate as the primary 

performance indicators. By using process specific miss rates, we may evaluate the  
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Table 4.2 – Dinero configurations. Nine simulated workloads with nine values for l  and 4 cache sizes 
creates 324 DineroIV configurations. 
 

efficacy of out of context prefetching for each class of process (CPU-bound vs. I/O-

bound). Process specific miss rate is simply the average miss rate for a process per 

timeslice. 

 The focus is on exploring the potential benefits and pitfalls of varying when to 

prefetch, rather than what kind of prefetch mechanism to use. Therefore, a “perfect” 

prefetch unit is simulated by maintaining a buffer of future block accesses for the next 

process. When the simulator triggers the out of context prefetcher, references are 

prefetched from this buffer, until either the buffer runs out (which may occur for a large 

l  and short timeslice), or a context switch occurs. Furthermore, the prefetcher operates 

as conservatively as possible, issuing prefetches only when no other demand miss will 

occur (this is only possible by looking ahead in the reference stream), thus preventing out 

of context prefetching from directly negatively altering the total stall time in the cache 

(cache pollution may still occur, indirectly causing additional stall time). This idealized 

model simplifies simulation and minimizes the impact of variability of factors not 

relevant to this study – prefetcher accuracy and bus interference.  

 As a result of implementing a “perfect” prefetch unit, “perfect” context prediction 

is also implemented. This is done simply because the output of the prefetch unit is 

undefined when context switches are incorrectly predicted. An incorrectly predicted 

L1 I-Cache 64kb, 4-way, 64 byte block, 2 cycle read 

L1 D-Cache 64kb, 4-way, 64 byte block, Write-back, 2 cycle read/write 

L2 Cache {256kb, 512kb, 1024kb, 2048kb}, 8-way, 128 byte block, 15 cycle read/write 

Main Memory 400 cycle access 

l  {0 (no OOC prefetching), 100, 500, 1000, 1500, 2000, 2500, 5000, 10000} 

Workload 9 configurations, see section 4.3 
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context switch implies that the prefetch unit brings invalid data into the cache, which is 

by design not possible. 

 More than 350 simulations are conducted for this study (roughly 600 hours of 

CPU time to complete), consisting of combinations of varying cache size and l  (how 

early to begin prefetching before a context switch occurs), compared against 9 different 

workload configurations, detailed in section 4.3. Table 4.2 presents the simulation 

configurations.  

 

4.3 Workload 

Out of context prefetching requires a unique workload that represents a “typical” 

workstation, running multiple processes of various class (CPU-bound vs I/O-bound). To 

provide CPU-bound processes, nine of the SPECcpu2006 benchmarks are used, as shown 

in Table 4.3. The SPECcpu benchmark suite is comprised of several CPU-bound 

programs designed to stress the CPU. Originally developed to compare the relative 

performance of real computing systems, it has been adopted as a de facto standard set of 

benchmarks for computer architecture simulation. It should be noted that SPEC 

benchmarks do not tax the memory subsystem [29], and a future study into out of context 

prefetch will require a more robust workload. The rest of the system is comprised of a 

standard Fedora Core 5 GNU/Linux operating system running Xorg, a windowing 

environment, XMMS, a multimedia player (playing F.D. Roosevelt’s “Infamy” speech), 

and Firefox, a web browser (loading several websites in a scripted loop). Several other 

relatively idle processes are also running, including the window manager, swap daemon, 

and so on. Nine total workloads are created by running one of nine different SPEC 
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applications with the system described above. Each of the nine configurations is run for 

10 billion instructions. 

 

Benchmark Description 

bzip2 A compression utility. 

GCC The GNU C Compiler, version 3.2. Compiles code for an Opteron target. 

MCF Combinatorial optimization for vehicle scheduling. Uses a network simplex algorithm. 

soplex Solves a linear program using a simplex algorithm. 

povray Image rendering using ray tracing. 

h264ref Video compression using the H.264 standard. 

astar Path finding using the A* algorithm. 

sphinx3 Speech recognition system from Carnegie Mellon. 

xalancbmk XML processing. Converts XML to other document types. 

Table 4.3 – SPECcpu2006 benchmark descriptions. SPECcpu2006 applications represent a diverse 
selection of scientific workloads. 
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CHAPTER V 
 
 

RESULTS 

 

This chapter presents results from simulations as described in the previous chapter. In this 

chapter we present four sets of results. The first section discusses context switch 

prediction as well as predicting context switch timing. The second and third sections 

discuss the impact out of context prefetching has on CPU-bound and I/O-bound 

processes, respectively. The fourth and final section covers results pertaining to finding 

an optimum value for l  . 

 

5.1 Context Switch Prediction 

As mentioned before, the ability to accurately predict both the ID of the next process to 

be switched in, and when that will occur, creates an upper bound on the effectiveness of 

out of context prefetching. Preemptable scheduling algorithms create entropy in an 

otherwise perfectly predictable system.  It appears however, that even with a preemptable 

scheduler, predictable regular patterns still exist, as shown in figure 3.3. Figure 5.1 shows 

the results of the three context prediction units described in section 4.2. Recall that the 

first prediction unit employs a simple “predict last” algorithm, the second unit uses a 

second order hysteresis algorithm to filter out one time preemption based context 
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Figure 5.1 – Context predictor accuracy. Even with simple and inexpensive algorithms, a high degree of 
prediction accuracy is easy to obtain. Although fcm has the highest accuracy, it is impracticle to implement 
in hardware, although the hysteresis algorithm is relatively inexpensive.  
 

switches, and the third unit employs a third order finite context method algorithm. 

Considering their simplicity, all three algorithms performed surprisingly well. The 

hysteresis algorithm, for example, has a prediction accuracy of 75.3% on average, and 

correctly predicts the time of each correctly predicted context switch to within 0.2% of 

the average timeslice length (in cycles). Table 5.1 presents additional data regarding 

context switch prediction. The ease with which context can be accurately predicted is a 

significant observation, not only for out of context prefetching but for all context aware 

architectural enhancements.  

Greater prediction accuracy can be obtained with a more in depth study of context 

switching behavior. An obvious means to increase context switch prediction is to modify 

the system scheduler to provide details about the runqueue to the architecture. As 

mentioned in section 3.4, this does not enable the architecture to predict the time of the 

context switch any more accurately, and still does not account for processes that may 

preempt the runqueue. It may be possible to predict when certain processes will preempt 

the runqueue by measuring a history of past preemptions or using  
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Benchmark predict-last time prediction 

error 

hysteresis time prediction 

error bzip2 0.32% 0.17% 

gcc 0.21% 0.31% 

mcf 0.21% 0.28% 

soplex 0.23% 0.32% 

povray 0.31% 0.19% 

h264 0.25% 0.28% 

astar 0.25% 0.29% 

sphinx3 0.23% 0.25% 

xalanbmk 0.27% 0.28% 

average 0.25% 0.26% 

Table 5.1 – Time prediction errors for the predict last and hysteresis algorithms. Time error for fcm is 
not calculated. 
 

hints from hardware that assert interrupts that drive preemptive context switches. 

Predicting preemptions may be reserved for very high priority processes, as the 

probability of incorrectly predicting may be greater, and maintaining high priority 

process specific data in the cache, even at the sake of performance loss for other 

processes, may be tolerated. 

 

5.2 CPU-Bound Processes  

The primary purpose of applying out of context prefetching to CPU-bound processes, and 

in fact the original hypothesis of this entire work, is to reduce demand-fetch driven bus 

utilization for memory intensive processes, in order to allow a traditional prefetch unit to 

drive more prefetches while in context. This is accomplished by fetching blocks into the 

cache out of context, when pressure on the memory subsystem is low. In effect, the 

memory accesses become more uniformly distributed.  
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Figure 5.2 –Average Bus utilization per timeslice for MCF with no prefetching. Bus utilization is high 
for each configuration, indicating that most of the misses are compulsory. 
 

 

Figure 5.3 –Average Bus utilization per timeslice for MCF with 10000=l . Even with an aggressive 
out of context prefetching scheme, little demand-fetch bus utilization reduction occurs.  

 

However, two factors prevent out of context prefetching from making any meaningful 

increase in performance for CPU-bound processes – low memory bus utilization for the 

applications studied, and long, contiguous timeslices. The first factor, low memory bus 

utilization, may in fact just be an artifact of the particular workloads chosen for this  
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Cache Size 256kb 512kb 1024kb 2048kb 

bzip2 0.00% 0.62% 1.40% 2.07% 

gcc 0.06% 0.61% 2.05% 2.52% 

mfc 0.00% 0.06% 0.15% 0.31% 

soplex 0.01% 0.10% 0.45% 2.19% 

povray 8.60% 31.39% 48.92% 55.42% 

h264ref 0.01% 4.67% 24.52% 54.15% 

astar 1.40% 4.22% 5.92% 8.50% 

sphinx3 3.58% 10.33% 28.65% 35.69% 

xalancbmk -0.08% 0.14% 1.36% 5.61% 

Table 5.2 – Process specific miss rate improvements for 10000=l . Xalancbmk actually has a hit rate 
loss with a 256kb cache. 
 

study. As mentioned before, Sair and Charney conclude that SPECcpu does not overexert 

the memory subsystem [29]. This does not imply that memory intensive workloads do not 

exist, or are even rare. Rather, it simply suggests that SPECcpu may not be a valid 

workload for memory intensive related studies. Figure 5.2 illustrates the bus utilization 

over time for the SPECcpu2006 benchmark MCF, with no prefetching, with varying 

cache size. MCF is the most memory intensive application in simulated in this study, and 

shows a worst case for out of context prefetching. Similar results exist for bzip2, gcc, and 

soplex. An entire catalog consisting of approximately 11,000 bus utilization plots 

generated for this study is referenced in Appendix A. 

 Even if a very memory intensive workload were simulated in this thesis, the 

second limiting factor, contiguous timeslice length, mitigates the effects of out of context 

prefetching by issuing many more, in some cases by several orders of magnitude, demand 

fetches. The number of demand fetches simply overshadows the number of blocks that 

can be practically fetched out of context. Figure 5.3 shows the memory bus utilization for 

MCF over time with 10000=l  (the maximum value simulated). Note that only a slight 

change is noticeable at the very beginning of the timeslice. Table 5.2 shows the process  
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% References 

bzip2 55.45% 

gcc 52.06% 

mfc 79.58% 

soplex 62.64% 

povray 8.62% 

h264ref 11.42% 

astar 29.01% 

sphinx3 3.18% 

xalancbmk 44.21% 

Table 5.3 – Percentage of total accesses to the L2 belonging to each SPECcpu2006 benchmark. Notice 
that the processes with the greatest ratio of references also have the least performance improvement. 
 

specific miss rate improvement for each of the nine SPECcpu benchmarks used in this 

study. All miss rate improvement calculations are defined as 
oocwithoutratemiss

oocwithratemiss
−1 .

 CPU-bound processes also dominate CPU time, and as such, have the greatest 

influence on overall miss rate in the cache. Table 5.3 shows the percentage of memory 

references originating from each of the SPECcpu2006 benchmarks in their respective  

 

 

Figure 5.4 – Maximum miss rate improvement for each SPECcpu2006 benchmark simulated in this 
study. The processes with the most overall references – bzip2, gcc, mfc, and soplex, have the least 
improvement. 
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workloads. Figure 5.4 shows maximum overall miss rate improvements in the L2 for 

each configuration, each workload is identified by the SPECcpu2006 benchmark that ran 

as part of that workload. Complete results of overall miss rate improvements for every 

configuration is given in Appendix B.  

 Notice that the CPU-bound processes that have the greatest percentage of total 

references, as shown in Table 5.3, have the lowest miss rate improvement, shown in 

Figure 5.4. This indicates that these processes have long, contiguous timeslices that do 

not benefit from out of context prefetching. Also note that miss rate improvements 

decrease for the 2048kb cache over the 1024kb cache. This is due to capacity misses 

becoming low enough to mitigate the effects of out of context prefetching. The remaining 

misses are mainly compulsory.  

 

5.3 I/O-Bound Processes 

An I/O-bound process, and any process that is not memory intensive, will display a 

decrease of cache misses over time in general, as shown in Figure 5.5. In a system with a 

sufficiently large cache and few running processes, this characteristic may only occur 

once, when misses are compulsory. In an active system this characteristic may occur at 

each timeslice for each process because of limited cache capacity. If the degree of multi-

programming on the system is increased, the amount of cache misses per timeslice may 

become prohibitive, causing a decrease in CPU utilization. A traditional prefetcher may 

not be able to prefetch these blocks because of the loss of locality of reference (causing 

the prefetch unit to re-train), lack of bus availability at the beginning of the timeslice, or 

both.  
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Figure 5.5 –Average Bus utilization per timeslice for Xorg with no prefetching. The memory burst at 
the beginning of each timeslice is apparent even with a large cache. 

 

 

Figure 5.6 –Average Bus utilization per timeslice for Xorg with 10000=l . Out of context prefetching 
causes a significant reduction in bus utilization, dramatically reducing the characteristic exponential decay 
of bus accesses. 

 

As for CPU-bound processes, out of context prefetching attempts to minimize 

cache misses by fetching blocks out of context. Unlike the case for CPU-bound processes 

however, the goal for out of context prefetching for I/O-bound processes is to reduce the 
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effects of thrashing, potentially allowing for higher degrees of multi-programming, and 

possibly making these processes more responsive.  

Figure 5.6 shows the average bus utilization per timeslice for Xorg with 

10000=l , and Table 5.5 lists the corresponding improvement in process specific miss 

rate. Notice that process specific miss rate improvements are significantly greater for I/O-

bound processes than for CPU-bound. While this is simply because the total amount of 

memory references that constitute I/O-bound processes is lower, constituting a greater 

ratio of prefetches to demand fetches, it does indicate that out of context prefetching 

works well for this class of processes.  

Although the workloads simulated for this thesis are dominated by CPU-bound 

processes, highly interactive systems may see significant overall miss rate improvements 

from out of context prefetching, particularly when no one process consumes the majority 

of CPU time. Future work for out of context prefetching begins with creating a more 

robust and representative workload. 

 

Cache Size 256kb 512kb 1024kb 2048kb 

Xorg 33.93% 58.67% 67.48% 61.20% 

xmms 24.88% 44.88% 54.18% 46.59% 

Firefox 1.14% 4.06% 9.54% 16.77% 

Table 5.5 –Process specific miss rate improvements for I/O bound processes with best l . Miss rate 
improvements are dramatically better than overall improvements in the cache. This is due to the CPU-
bound processes dominating CPU time. 
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5.4 Optimum l  

The value l  determines the number of references to the L2 cache before a context switch 

occurs to begin out of context prefetching. It may seem intuitive to try to make l  as large 

as possible in order to ensure that as many blocks as possible are brought into the cache. 

However, making l  too large may cause the prefetch unit to bring data in while the 

currently running process still has a large working set, causing pollution for the current 

process. Furthermore, a large l  in a small cache may interfere with itself, although no 

practical implementation of this system would allow for more speculative loads than 

blocks in the cache. Even still, having a large l  when only a few blocks need to be 

prefetched may still cause pollution, and if l  is large enough, the prefetched blocks may 

be evicted by the current process before a context switch occurs.  

 Figure 5.7 shows process specific miss rate improvements for Xorg and xmms, 

with a 256kb cache and varying values of l . Figure 5.8 shows the same data for a 

2048kb cache. Notice that not only is miss reduction over l non-monotonic, but the 

optimum l  varies between Xorg and xmms. This implies that to provide enough time to 

the out of context prefetcher to produce significant results and prevent pollution from 

beginning fetching too early, l  should ideally be variable for each process tracked. This 

work simulates a constant value of  l  for each simulation, and future work will include a 

study of maximizing performance through variable, run-time calculated optimum values 

for l .  Notice in Figure 5.8 any negative slope is absent over the range simulated. This 

occurs because the larger cache size creates fewer capacity misses at the end of each 

timeslice, making l  less likely to interfere with the current process.
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Figure 5.7 –Miss rate improvement for Xorg and xmms with a 256kb cache and varied l . The 

maximum point for Xorg and xmms are different, implying that an optimum l  is based on the memory 
behavior of the incoming process. 
 

 

 

Figure 5.8 –Miss rate improvement for Xorg and xmms with a 2048kb cache and varied l . The larger 
cache creates fewer capacity misses at the end of each timeslice, making performance less sensitive to large 
l . 
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CHAPTER VI 
 
 

CONCLUSIONS 

 

This chapter provides a brief summary and concluding remarks for this thesis, followed 

by a discussion of future work building on the concepts introduced here. 

 

6.1 Conclusions 

Context switching effects can degrade performance by compromising locality of 

reference, causing additional cache misses not present in systems that do not employ 

multi-programming. These effects magnify when the degree of multi-programming is 

increased. Traditional cache prefetch schemes do not take into account the effects of 

context switching on cache behavior, which limits their effectiveness. Because of the 

memory “burst” typical of a process at the beginning of each timeslice, it may not be 

possible for a traditional prefetch unit to fetch these blocks after the context switch 

occurs, either because the bus is too busy, the prefetcher must re-train, or both. 

 Out of context prefetching combines a prefetcher with a context prediction unit, 

allowing for context-aware prefetching. This enables prefetchers to fetch for future 

localities, potentially making them more effective. This thesis provides an initial design 

exploration for out of context prefetching, as well as a first step in creating a more 
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transparent architecture that can interact with the operating system in more meaningful 

ways. 

 Accurately predicting context switching behavior sets an upper bound on the 

efficacy of out of context prefetching. If a context switch can be correctly predicted, an 

aggressive prefetch unit may be able to fetch blocks into the cache before the context 

switch occurs. A brief test of three simple, common prediction algorithms is presented, 

all of which correctly predicted context switch above 65% for each workload simulated. 

Timing predictions for correctly predicted context switches had an error of less than 1% 

for each workload. It is likely that more accurate context prediction algorithms can be 

developed, possibly using hints from the system scheduler to gain high levels of 

accuracy.  

 CPU-bound processes exhibit little I/O relative to the amount of compute activity, 

and as such receive longer, contiguous timeslices on multi-programmed systems. Some 

CPU-bound processes may tax the memory subsystem so much that traditional prefetch 

schemes may not be able to function because of bandwidth restrictions. In a worst-case 

system, out of context prefetching may be able to fetch enough blocks out of context, 

when pressure on the memory subsystem is low, to give a traditional prefetcher enough 

bandwidth to operate while in context. In reality, the overwhelming length of CPU-bound 

timeslices tends to mask any benefit out of context prefetching may produce. This study 

uses SPECcpu2006 benchmarks to provide a CPU-bound workload. SPECcpu2006 

applications do not tax the memory system as much as needed to illustrate the effect of an 

over-burdened memory system, and more work needs to be done with more 

representative workloads before this aspect of out of context prefetching is discarded. 



 47

 I/O-bound processes are those which display more I/O than compute activity. As 

a result, I/O-bound processes tend to have shorter and more frequent timeslices in an 

effort to increase CPU utilization and system responsiveness. On highly interactive 

systems, the operating system may dramatically increase the degree of multi-

programming in an effort to increase CPU utilization. This can actually lead to less CPU-

utilization due to thrashing in the memory system. Because locality of reference is 

compromised in highly multi-programmed systems, traditional prefetch schemes may not 

be effective. Out of context prefetching specifically addresses these effects, preserving 

process specific locality, and prefetching out of context. Results from this study clearly 

show that out of context prefetching can have a significant positive effect on I/O-bound 

process miss rates, which indicates it may be possible to significantly reduce the effects 

of thrashing, and possibly make the system more responsive. 

 This study examines varying cache sizes and values of l , the time before a 

context switch, and naively assumes that there is one value of l  to serve each process on 

the system. It is clear that the value of l  is dependent on the specific memory and 

timeslice behavior of the target process, and a great deal of variation may exist between 

processes on a real system. As such, out of context prefetching needs to support a 

variable value of l  for each process in the system in order to maximize performance 

gains.  

 In summary, this thesis provides an initial exploration of a more intelligent 

prefetching scheme, with results that indicate out of context prefetching is a worthwhile 

avenue for additional research.  
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6.2 Future Work 

This thesis serves as an introduction to a greater body of research that deals with context 

aware microarchitectures. Several worthwhile topics relating to out of context prefetching 

exist, including exploring the effects of out of context prefetching on multi-core systems, 

examining the potential of modifying the system scheduler to favor context aware 

memory, examining out of context prefetching for other levels of the memory subsystem. 

 With all of the new challenges raised by multi-core systems, is becomes 

imperative to create more intelligent architectures that work for, not in spite, of the 

software that runs on it. Out of context prefetching may provide the means necessary for 

prefetch units to continue to be effective in systems that are increasingly sensitive to the 

effects of context switching and other operating system concepts. 

 A future study into the potential of modifying the system scheduler to both 

arrange the runqueue in a way that promotes out of context prefetching, as well as 

provide hints to the context prediction unit, is already planned and funded. Since the 

upper bound on efficacy of out of context prefetching is set by the ability to predict 

context switches, it is certainly worthwhile to invest resources into maximizing prediction 

rate. 

 Out of context prefetching may be effective for other levels of the memory 

system, especially for the main memory, where page fault latencies are measured in 

milliseconds, with little promise of decreasing permanent storage access time in the near 

future. Examining out of context prefetching for memory pages has already been 

suggested [16], but more research needs to be performed. 
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 Finally, simple, context-aware prefetching, needs to be investigated. Context-

aware prefetching does not perform prefetching out of context, and therefore is not 

sensitive to the ability to predict context switches. In context-aware prefetching, a 

traditional prefetch unit maintains training data for each active process on the system. 

When a context switch occurs, the prefetcher simply uses the training data for that 

process, potentially maintaining greater degrees of locality in a multi-programmed 

system. 
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APPENDIX A 

 

One of the goals outlined in the terms of the NSF grant funding this project is to provide 

all data, source code, scripts, configuration files, and any other generated data to 

researchers in an effort to maintain a high degree of reproducibility. A project website is 

maintained for this project to serve this need. Among the data and simulator source code 

is a catalog of nearly 11,000 plots generated for each PID in each cache configuration for 

each workload simulated in this study. The reader is encouraged to visit the project 

website to learn more about out of context prefetching.  

 

Project website: http://rome.ceat.okstate.edu/ooc/ 
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APPENDIX B 

 

This section provides tables detailing overall cache miss rate improvement for each 

process under each simulated configuration. Cache miss rate improvement is defined as 

oocwithoutratemiss

oocwithratemiss
−1 . Each workload is identified by the SPECcpu2006 benchmark 

that ran in that workload. 

bzip2 

Cache Size 

L 256kb 512kb 1024kb 2048kb 

100 1.13% 2.94% 4.37% 4.15% 

500 4.30% 8.60% 10.30% 8.30% 

1000 4.09% 7.14% 8.47% 7.14% 

1500 4.34% 7.89% 9.32% 7.72% 

2000 4.41% 8.50% 10.10% 8.13% 

2500 4.30% 8.60% 10.30% 8.30% 

5000 3.94% 8.55% 10.63% 8.71% 

10000 3.54% 8.50% 11.34% 9.79% 

     
gcc 

Cache Size 

L 256kb 512kb 1024kb 2048kb 

100 1.42% 3.51% 6.84% 5.83% 

500 5.24% 10.24% 14.64% 9.97% 

1000 4.87% 8.46% 12.53% 8.59% 

1500 5.32% 9.63% 13.76% 9.33% 

2000 5.36% 10.13% 14.37% 9.76% 

2500 5.24% 10.24% 14.64% 9.97% 

5000 4.71% 10.13% 14.99% 10.39% 

10000 4.26% 9.63% 14.99% 10.50% 
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mfc 

Cache Size 

L 256kb 512kb 1024kb 2048kb 

100 0.32% 0.74% 0.92% 0.91% 

500 1.21% 2.17% 2.23% 1.73% 

1000 1.10% 1.73% 1.85% 1.42% 

1500 1.23% 2.03% 2.04% 1.54% 

2000 1.23% 2.14% 2.16% 1.65% 

2500 1.21% 2.17% 2.23% 1.73% 

5000 1.12% 2.17% 2.32% 1.81% 

10000 0.98% 2.06% 2.32% 1.85% 

     
soplex 

Cache Size 

L 256kb 512kb 1024kb 2048kb 

100 0.52% 1.32% 2.46% 6.03% 

500 1.91% 3.91% 6.49% 12.07% 

1000 1.78% 3.17% 5.36% 10.41% 

1500 1.95% 3.67% 6.00% 11.31% 

2000 1.95% 3.88% 6.39% 11.92% 

2500 1.91% 3.91% 6.49% 12.07% 

5000 1.70% 3.86% 6.59% 12.37% 

10000 1.55% 3.59% 6.54% 12.37% 

     
povray 

Cache Size 

L 256kb 512kb 1024kb 2048kb 

100 4.17% 12.72% 23.71% 32.97% 

500 15.10% 31.41% 48.58% 46.01% 

1000 13.77% 25.45% 41.74% 41.30% 

1500 15.16% 29.32% 45.91% 43.84% 

2000 15.28% 31.11% 47.91% 45.29% 

2500 15.10% 31.41% 48.58% 46.01% 

5000 14.07% 31.41% 49.58% 48.19% 

10000 12.98% 30.02% 49.58% 48.55% 
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h264ref 

Cache Size 

L 256kb 512kb 1024kb 2048kb 

100 3.39% 10.05% 20.06% 31.61% 

500 13.12% 29.65% 44.76% 47.74% 

1000 12.53% 24.66% 38.32% 43.55% 

1500 13.39% 27.79% 41.92% 45.81% 

2000 13.44% 29.48% 44.01% 47.10% 

2500 13.12% 29.65% 44.76% 47.74% 

5000 11.67% 29.14% 45.36% 49.03% 

10000 10.48% 27.45% 44.91% 49.35% 

     
astar 

Cache Size 

L 256kb 512kb 1024kb 2048kb 

100 3.19% 8.27% 13.71% 14.29% 

500 11.72% 23.55% 29.63% 25.05% 

1000 10.80% 19.64% 25.59% 21.92% 

1500 11.72% 22.09% 27.94% 23.68% 

2000 11.91% 23.18% 29.11% 24.66% 

2500 11.72% 23.55% 29.63% 25.05% 

5000 10.93% 23.64% 30.68% 26.42% 

10000 9.82% 22.82% 30.94% 26.81% 

     
sphinx3 

Cache Size 

L 256kb 512kb 1024kb 2048kb 

100 4.13% 12.18% 23.22% 32.53% 

500 14.76% 33.55% 48.52% 46.39% 

1000 13.71% 27.82% 42.60% 42.47% 

1500 15.11% 32.18% 46.60% 44.58% 

2000 15.05% 33.27% 47.93% 45.78% 

2500 14.76% 33.55% 48.52% 46.39% 

5000 13.71% 33.45% 49.26% 47.59% 

10000 12.73% 32.27% 49.56% 48.19% 
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xalancbmk 

Cache Size 

L 256kb 512kb 1024kb 2048kb 

100 1.29% 3.35% 6.58% 12.27% 

500 4.84% 9.73% 15.10% 23.72% 

1000 4.45% 7.85% 12.32% 19.84% 

1500 4.84% 8.91% 13.79% 21.88% 

2000 4.97% 9.64% 14.87% 23.31% 

2500 4.84% 9.73% 15.10% 23.72% 

5000 4.23% 9.55% 15.57% 24.54% 

10000 3.68% 8.63% 15.10% 24.34% 
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