OUT OF CONTEXT CACHE PREFETCHING

By
DAVID JAKOB FRITZ
Bachelor of Science in Electrical and Computer
Engineering
Oklahoma State University
Stillwater, Oklahoma

2008

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE

May, 2008

OUT OF CONTEXT CACHE PREFETCHING

Thesis Approved:

Dr. Sohum Sohoni

Thesis Adviser

Dr. James Stine

Dr. John Acken

Dr. A. Gordon Emslie

Dean of the Graduate College

ACKNOWLEDGMENTS
| thank my advisor and friend, Dr. Sohum Sohoni, for the support and opportuihi&g he
given me since joining the CAESAR Lab. Dr. Sohoni has accommodated meeny
way for 2 years now, and a great deal of thanks is due. The expgeheascbeen
extraordinary and | feel honored to have worked with him on this research.

| would also like to thank Dr. James Stine and Dr. John Acken foeiagréo
serve on my committee and offering their support whenever needed.

Sincere thanks to Wira “Spencer” Mulia, who has assisted menyrevery step
of this work. Wira has made an enormous and often overwhelmingni@skamething
tractable, and has always been willing to work at a moment’sentgihelp solve any
problems we encountered.

| also thank the National Science Foundation, who has supported this work

through NSF grant #0720741.

Finally, | dedicate this work to my mentor and role model, my father.

TABLE OF CONTENTS

Chapter Page

I INTRODUGCTION ...ttt ettt e e e e e e e e e e e e e e e e e s s e aaanannbenaeees 1
0 1Y [0 111 Z= (o] PP PPPPPPTPPPPPPN 2
1.2 Out of Context Prefetching OVEIrVIEWcccooiiiiiiiiiiiiiiii e 3
1.3 CONIDULIONS. ...ttt e e e e e e e e 5
1.4 THESIS OULINE ..o e e e e e e e eeees 5

[I. RELATED WORK ..ottt ettt e e e e e e e e e b e 8
P20 o = (= X 1 T 8
2.2 Operating System Interactions with Memoryceiiiiiiiiiieiiiiieeeeiiiis 9
2.3 CoNEXE AWAIE SYSTEIMIS ...cuuiiiiiiiie et e et et e et e e e et e e ea e e et e e e eaa e eees 10

[1l. OUT OF CONTEXT PREFETCHINGcooiiiiiiiiiieeitiiiieeeeeeee e 12
3.1 Design Space EXPIOration.........cocoiiiiiiiiiiiiiiiiiie e 12
3.2 AN EXAMPIE ... —————————————— 13
3.3 When to Begin PrefetChingoieeeceeeeeeeee e 14
3.4 Predicting ConteXt SWItCHESccooiiiiiieeee e 16
3.5 The Case for CPU-BOUNA PrOCESSES.......ciiiiiiiieieiiiiieeieeeiiiiiine e 19
3.6 The Case for I/0O-Bound ProCESSESccovvviiiiiiiiiiiiiiiiie ettt 21
3.7 Considerations for SMT and Multi-core SYStemsoooeveiiiiiiiiiiiiiiiiinn. 23

IV. SIMULATION METHODOLOGY ...ttt 25
4.1 Full System SIMUIALIONcoveieiiiiiee e e e e e e e e e e e e eeeennenes 25
4.2 Trace Driven SIMUIALIONcoooiiiiiiiiiceeeeee e s 26
4.3 WOTKIOAU. ... e e e e e e e e e e e e e e e e e 30

V. RESULT S Lt e e e e e e e e e et e e e bbbttt ettt et e teaaaaeeaeaeeee e e e e e nnnnrrrrarees 33
5.1 Context SWItCh PrediCtionooo it 33

5.2 CPU-BOUNG PIrOCESSES ...ttt et anaans 35

5.3 /O-BOUNA PrOCESSES ... ettt eeaees 39
5.4 OPUIMUIMYE <.ttt a e e e e e e e e e e e e e e e e e esaaaabn s 42
VL. CONCLUSIONS .o e e, 45
0.1 CONCIUSIONS . ..o 45
0.2 FULUIE WOTK .o e e 48
REFERENGCES ... oo e e e 51
AP P EN D DX A e e 55
AP P END X B oo e 57

LIST OF TABLES

Table Page
4.1 SIMICS CONTIQUIALION ... e e e e e e e e e e e e e e eeeeees 26
4.2 DINEro CONfIQUIALIONSccoiiiiiiiiiiiiiiiieee ettt e e e e e e e e e e eeeeennnes 29
4.1 SPECcpu2006 benchmark desCriptionsuuvuuuiiiiiiiie e 31
5.1 Time prediction errors for the predict last and hysteresis algorithms................. 35
5.2 Process specific Miss rate imMpProVeMENTS..........ciiiiieeieeeeeeeeeeeeeeeiree e e e eee e 37
5.3 Percentage of total accesses to the L2 belonging to each SPEC benchmark......38
5.4 Process specific miss rate improvements for I/O bound processes 41

Vi

LIST OF FIGURES

Figure Page

1.1 THE CPU-MEMOIY QAP ... tiiaeeeeeeeeeeeeeeeieietiititaaa s s e e e e e e e e e e e e eeeeeeesassebna e e e e e e eaaeaaaaas 1
3.1 Possible outcomes of out of context prefetchingccccceevieiiiiiiiiiiiiieeeis 14
3.2 The working set as a function of tIMe...........ccoeiiiiiiiii e 16
3.3 Context SWItChES OVET TIMEooiiiiiiiii et 18
3.4 Average memory bus utilization for the MCF SPEC2006 benchmark............... 20
3.5 Performance vs. MUlti-programming........ccccoeeeeeirieeeeeeiiiiiiiissese e e eeeeeeeeeeeeesnnnnnn 21
3.6 Average memory bus utilization for the X Window System................cccevvunnnnnn. 22
4.1 FSM representing hysteresis based predictorccoveeeiiiiiiii e 27
4.2 FCM WIth NS2 . e e e e e e e e e e e e e reeeaeeaeeeaeeas 28
5.1 Context PrediCtor ACCUIACYvvvvieiuiiiiiiiiaaeeeeeeeeeeeeeeeeeeeesassssn e s e e eaeaaaaeeeeees 34
5.2 Average bus utilization for MCF with no prefetching.............cccoevvviiiiiiiicccnnnn. 36
5.3 Average bus utilization for MCF with L=10000ccovvriiiiiiiiiiiie e, 36
5.4 Maximum miss rate improvement for each SPECcpu benchmark 38
5.5 Average bus utilization for Xorg with no prefetching............cccovvvvviiicceeennn. 40
5.6 Average bus utilization for Xorg with L=10000ccoumiuirrrmiiiiinnneeeeeeeeeeeeeee. 40
5.7 Miss rate improvement for Xorg and XMMS with varied L and 256kb 43
5.8 Miss rate improvement for Xorg and XMMS with varied L and 2048kb 43

Vii

CHAPTER |

INTRODUCTION

In the last three decades, dramatic increases in CPU penitentaave led to the
formation of the CPU-Memory gap, the difference in performance thriwetween the
CPU and the memory. With each generation of CPU architectinesyap widens, and
has quickly become one of the most salient bottlenecks in contemporaputing. An
overwhelming amount of research has been dedicated to closil@Ptieviemory gap
[1, 30, 31, 32, 33], including work that attempts to mask its effects dorpence [2, 3,

15]. Much of this work has been widely accepted and is in use in current architectures.

Performance

A

100000
CPU
10000 ——

1000

100

10 l MEM

1 p——

Figure 1.1- The CPU-Memory gap.Over time, CPU performance increases at a muchehigite than
DRAM performance. This characteristic gap has natéid a great deal of research in computer
architecture.

One effective way to mitigate the effects of the CPU-Megngap is to prefetch
data into the cache before it is used. Numerous prefetching qeesnihave been
presented [4, 5, 6, 7, 8, 9, 10, 11, 12, 13], with varying degrees of effectiveraasky
dependent on workload. This work does not propose a new prefetch algorithathbut r
attempts to explore the potential of leveraging a prefetch tonivork in a more

intelligent way, as described in section 1.2 and chapter 3.

1.1 Motivation

All prefetching schemes operate on one premise — that regiiarngaexist in data and
instruction streams that can be exploited. While this is trueprafetch units have 2
major shortcomings.

1. Even if a prefetch unit knows what to prefetch, there existssa wdere the
memory bus may be so busy that it cannot function. Prefetcheatsbaris
especially prominent when attempting to prefetch into small, busy caches

2. Hardware prefetch units are “dumb” — they only look at the demaaok &eicess
stream, instead of taking into account the wealth of information atheut
workload available at runtime. The case addressed here isaitti#ibtral prefetch
schemes do not take into account the effects of multi-programmeeimnsys
Prefetchers are interrupted at each context switch and mustttaened for the
current process.

This research introduces a system that attempts to address both of these iss
With the advent of the multi-core era, data demands will ineré&geding the

beast” will continue to be a problem, and as the degree of muffrgaroning increases

with multi-core machines, more intelligent prefetch paradigniisneed to be in place to
continue to be effective. Some studies have quantified the effeotslttfprogramming
and operating systems on caches [14, 18] and conclude that these afesignificant

and are growing.

1.2 Out of Context Prefetching Overview

The overall goal of this work is to provide a first step in tngaaless transparent
architecture that can interact with the operating system inmore meaningful ways
This work focuses on creatingcantext awarearchitecture, specifically to prefetch data
for an incoming process before that process is switched in bygbemting system
scheduler. By allowing the architecture to know and track the rduro@ning process,
and potentially predict the next process, new areas of resaa@ c¢htroduced, including
context aware caching, process selective cache replacengrithans, process
predictive context switching, and others.

Out of context cache prefetching operates by first predictieg ID of an
incoming process, and some time before the context switch odcensbles a prefetch
unit which gathers data for the incoming process. The initial fottisis work is on the
last on-chip cache assumed to be the level 2 cache, unless othsiatesl. Thus, the out
of context prefetcher brings data into the L2 cache from mainamenihe ideas
explored in this research may be extended further down the memory hierarchy.

There are two classes of processes that out of context prefetargets. Both
classes of applications are explored in this work, and detaijsraveded in sections 3.5

and 3.6.

1. CPU-bound, memory intensive processes. These are processes that tax the main
memory so much during their timeslice that traditional prefetcts wimply do
not have enough time to initiate transactions. This is true evhaayifknow what
to fetch. By beginning prefetching out of context, near the end aintieslice for
the current process when pressure on the memory is low, there is a potential for an
aggressive prefetcher to get a head start on fetches anchetad & the demand
fetches initiated by the process when in context. In order to etisardess
memory intensive processes are scheduled before more merntemgive ones,
the operating system scheduler can be modified to identify sctiedule based
on memory demands.

2. 1/0-bound, highly interactive processes. These are processes with relatively short
timeslices, which display memory activity “bursts” at the hagig of each
timeslice. These bursts represent a process rebuilding itsngoskt, and are a
primary symptom of cache thrashing due to aggressive multi-progrgmnithese
processes work on smaller sets of data and most of the casbesroccur at the
beginning of each timeslice, so it may be possible to prefetch ahtise blocks
for the incoming processes. This has the effect of making tbeegs more
interactive and masks the effects of cache thrashing. Reduwngnbount of
thrashing may allow for higher degrees of multi-programming greater total

CPU utilization.

1.3 Contributions
This thesis provides contributions to computer architecture and conguiggrce. It
provides an initial step towards creating less transparent ectthi¢ that the operating
system may then use to leverage greater performance fronhaituvare. More
specifically, by creating a context aware memory systém,operating system has the
potential to schedule memory much like current systems schiédu@PU. In a broader
context, exploring context aware architectures opens up mangstitgy research topics
for improving system performance for engineers and computer scientsts ali

In the area of computer science, this thesis suggests sewerakting research
topics in operating system interactions and especially schealgtaithms. By creating a
less transparent architecture, computer scientists have gogaiertunities to create
systems that better utilize system hardware.

The system described in this thesis is relatively inexper(ga terms of area and
power) to implement in modern memory systems, and does not requperiagnwith
the critical path of the CPU. It leverages greater sygtemiormance through better

utilization of the memory system.

1.4 Thesis Outline

The remainder of this thesis is as follows. We begin by disaselated work in the
areas of prefetching, operating system interactions with saene other context aware
software and hardware systems in Chapter 2. Chapter 3 provid&sleddéescription of
the out of context prefetch system, including a discussion on when hexde

prefetching, predicting context switches, and considerations forretfiffeclasses of

processes and multi-core systems. Chapter 4 describes our mimutegthodology

including a description of the simulator configurations, data anatgsisniques, and
CPU/memory configurations. Chapter 4 also provides a discussiojustifctation of

certain configuration parameters, primarily in regards to sitonldeasibility. Chapter 5
presents a discussion of simulation results. Data is presentadsiimple context switch
prediction unit, as well as a detailed discussion of the deparesexploration. Finally,
Chapter 6 provides conclusions and a discussion of future work in comexé a

architectures and out of context cache prefetching.

CHAPTER Il

RELATED WORK

This chapter describes several of the most pertinent works in hardwd software data
prefetching, operating system interactions with the memory bleraand context aware

architectures.

2.1 Prefetching

Jouppi’s early work in prefetching [5] proposed the addition of simpéarst
buffers that identified unit length streams and prefetched sebtreks ahead in a
stream. For example, if blockr is demand fetched, the stream buffer fetches
a+la+2,a+3, etc. Palacharla and Kessler extended this work to includde stri
directed prefetching [7], where non-unit strides can be fetdleedy,a + 2, + 4, etc.
Stream prefetching is especially effective and inexpensive to impteme

Another prefetch technique is Correlation based prefetching whicst, f
introduced by Baer [11], associated prefetch addresses with ddetahds. When a
demand fetch is initiated, the prefetch candidate is also fetched. Joseph and Grijhwald [

extend correlation-based prefetching by adding a Markov model refdrence stream.

Reinhardt et al. [12] proposed guided region prefetching, that usesleompi
supplied prefetch hints to regulate a hardware prefetcher. Guided prgfetching aims
to minimize the extra memory traffic introduced by hardware aalyeduled region
prefetchers.

Zucker et al. [13] proposed profiling software with an emulatedvare stream
prefetcher, identifying candidate prefetches. These candidatesl wwen be used to
recompile the software with appropriately placed software hiitis. method was quite
effective in achieving a reduction in miss rate similar to the equivaletivhee.

This work does not call for a specific type of prefetch unit, flust it be capable
of maintaining training data for different processes running onysiera. Any of the

techniques proposed above can be applied to the topics introduced here.

2.2 Operating System Interactions with Memory

Process scheduling and other operating system mechanisms caan draveatic
effect on cache performance. Increasing the degree of muifigimmning increases
performance in general by supporting greater utilization of #d.Gowever, an upper
limit exists where raising the degree of multi-programminig result in cache thrashing
[19]. Chen and Bershad [14] assert that operating systemsenetewith cache
performance because of lower locality of reference, conflietsveen the OS and user
applications, poor page mapping algorithms, and other various issues. Chernhabte
context switching interference is amortized over relativelggl timeslices, but as
timeslices get shorter and multi-programming increases, coswétthing interference

becomes more significant.

2.3 Context Aware Systems

Koka and Lipasti [15] suggest scheduler modifications that inclabedsiling
memory hierarchy. This is accomplished by scheduling threadshiaa¢ memory one
after another, which in effect warms the cache for the pecess in the runqueue. This
concept is similar to out of context prefetching (in fact Kokapassing suggests
prefetching before a context switch occurs for an incoming psoassan alternative
design).

Suh et al. [16] has presented work detailing job-speculative padenigtirom
virtual memory. The approach presented is entirely softwavergrcontrolled by the
operating system, and employs a design very similar to the one proposed in this thes

Chiou et at. [17] has proposed scheduler based prefetching for vavals of
the memory hierarchy, in very much the same way as Suh[@&6hhnd this work. This
system issues prefetch instructions in the scheduler and the glotemdts for significant
additional overhead to occur during context switching

All three of these techniques employ entirely software drivelotisns to
mitigating the effects of context switching on memory. Thehoetdescribed in this
thesis differs primarily by being implemented in hardware,hout any explicit
requirement to modify well established scheduling algorithms ame ¢ritical code
sections. It does not however, preclude such modifications. Out of conéfatchng
may also exist in current architectures, without the needigmant the ISA or require

new versions of operating system code.

10

11

CHAPTER Il

OUT OF CONTEXT PREFETCHING

The out of context prefetch system consists of two major componeatspntext switch
prediction unit and the prefetcher. The context switch prediction undlés tracking
and predicting the incoming process ID and when the context swiitabcaur as well as
controlling the prefetch unit. The prefetch unit behaves as it would iraditional
system, but since it must track one or more running processes,tikeggsone or more
context records that hold training data for each process. Whenotitext switch
prediction unit enables the prefetcher, the predicted process IDaxtwoatord will be

used for prefetching.

3.1 Design Space Exploration

Like all prefetch schemes, out of context prefetching is seedibi certain configuration
parameters, such as cache size, predictor accuracy, and speeiavorkload. Out of
context prefetching specifically addresses reducing sengitigitworkload, but also
introduces new factors that need to be studied before an assessiteeffaacy can be
made. The design space is enormous, with key parameters suahasica, predictor
accuracy, and context prediction accuracy, also practical inepltion issues exist,

such as the number of processes to track and system schedulercatiodsi

12

Furthermore, since out of context prefetching can be viewed agteemely aggressive
prefetcher, the potential for pollution and interference with otheefmteschemes exists.
This work focuses on exploring the parameters associated with comtafxt prefetching

and their interactions with various cache configurations.

3.2 An Example

To better illustrate out of context prefetching, consider an examgkume Process A is
given the CPU, that is, a context switch occurs and Processmdw running. The
context switch prediction unit predicts that when Process A is runRiregcess B will
become the next run process 10 million cycles from the beginningrafess A’s
timeslice. A certain amount of cycles, before the predicted context switch, the out of
context prefetch unit begins to issue prefetch transactions rtme$s B. When the
context switch occurs, the prefetch unit either continues phafigtin-context (a context
hit), or begins to prefetch for the new process (a context .nifsap context switch
occurs after/ cycles (and possibly some grace period), the out of contextgirafait
stops issuing prefetches, in order to prevent cache pollution. Nothehatcontext and
out of context prefetch units do not have to be the same. Figur#u3tiates this and

other possible outcomes of out of context prefetching.

13

Process A Process B

Process A Process C

(b) Time

Process A

(c) Time

Figure 3.1 - Possible outcomes of out of context gfietching. (a) A context hit.Prefetching continues
uninterrupted(b) A context miss.The prefetcher must begin prefetching for theexirprocess, pollution
occurs.(¢) A time prediction miss.Pollution may or may not occur, depending on thieire context
switch.

3.3 When to Begin Prefetching
Accurately determining the timé before a context switch occurs to begin prefetching is
important both to ensure that enough data is prefetched to make ordntafxt

prefetching worthwhile and to prevent interfering with the memomwtpiont of the

14

current process. In order to determihgewe must know how many blocks we intend to
prefetch (or at least a range), and what the working set of the curremtiggyomocess is.

The first of these measures is quite simple to calculatecamdbe determined at
each context switch. The prefetcher’'s aggressiveness deterhumesnany blocks to
fetch. This number, multiplied by the average latency requireddfetph one block
gives the time required to complete out of context prefetchHtog. example, if the
average (based on average available memory bandwidth) latepmfétch one block is
200 cycles, and we intend to prefetch 1000 blocks, we would need at least
¢ =200*1000= 200000 cycles before the context switch occurs to complete the
intended prefetching.

The second measure (the working set) is quite a bit moreuttiffccquantify on a
real system. Out of context prefetching functions partially on the assumtipat fetching
into the cache will not interfere with the current running pracelss current working set
of a process decreases to zero as the process nears the end of itefiaseslustrated in
figure 3.2. This is because a process can only work on so much dataitrof time, and
as the timeslice of a process runs out, the total amount ofitdeéa work on also
decreases. Knowing the working set of the current process is anptcause we do
not want to interfere with data currently in use. In other wqudsfetching too early, or
inside the working set of the current process, can pollute the cawhedegrade
performance for the current process. It should be noted that even if we havedgooi
the working set of the current process, we must take care toeetist certain cache
lines in the current working set were protected during prefetchiigs implies a

modification to the replacement algorithm, and is not addressed in this paper.

15

A Context Switch

Working Set

Figure 3.2 — The working set as a function of timeAs a process nears the end of its timeslice, its
effective working set approaches zero. It may te&siide to prefetch into the cache at the end otthmeent
timeslice without interfering with the current wang set.

For this study, the valué is measured in L2 accessdsis is done because
performance indicators such as miss rate and cache pollutiofuraations of cache
accesses rather than time. In a real systempuld likely be calculated in cycles for the
sake of practicality. Dedicated performance counters can betossmculate average
cycles per L2 access in real time, making a dynamic edloal of when to begin

prefetching possible.

3.4 Predicting Context Switches
The efficacy of out of context prefetching is bounded by itatalid accurately predict
an incoming process and when a context switch will occur. Contatahing behavior,
and thus the ability to predict a context switch, is driven ewtirglthe operating system
scheduler. CPU scheduling occurs under one of four possible events [19]:

1. When a process switches from a running state into a waitatg, stsually

because of an I/O request.

16

2. When a process switches from a running state into a ready ssafally due

to an interrupt.

3. When a process switches from a waiting state into a relatly. For example,

when an I/O request completes.

4. When a process terminates.

For events 1 and 4, scheduling must take place. This is knogoopsrative scheduling
because the process itself relinquishes control of the CPU. Scigeduliing events 2
and 3 is known agreemptive scheduling

In a system that only supports cooperative scheduling, predictingxtaste
simple, because process runqueues are decided upon before the runguecdes eas
in the case of round-robin scheduling. Preemptive scheduling pos#g@tdiroblem
because certain events such as interrupts and I/O completion d#fidodt to predict.
Examples of this include keyboard/mouse input, network 1/0, DMA compledimh so
on. However, as chapter 5 will show, a high degree of regular pattedhiming still
exists and can be exploited.

Ideally, system schedulers attempt to optimize CPU uiibmathroughput, or
response time. Although, most systems implement simple prioaiggd algorithms that
allow for dynamic runqueue adjustment and user priority overridaseXxample, the
Linux kernel implements a preemptive, priority based algorithm.eRess are assigned
priorities ranging from O to 140, with O being the highest priorityghdr priority
processes are awarded longer timeslices, and lower priooitggses shorter timeslices,

ranging from 10ms to 200ms. During execution, the highest priority task thaiastill

17

Time

Figure 3.3 — Context switches over timeEach process is represented by a color. The megquédnt
timeslice represents a window manager applicatemicng requests to redraw the screen and handle
mouse 1/O.

time remaining in its timeslice, and is not waiting on 1/O, Ww# scheduled. When a
process exhausts its timeslice, it cannot run again until all ptbeesses have exhausted
their timeslices. The Linux scheduler measures the intergctesel of a process by
detmining how long it has been waiting for 1/O. It favors intBvacprocesses and will
increase their priority (by lowering the priority value) ovierd. Conversely, CPU-bound
processes will have their priority lowered (by raising the priorityeja

Figure 3.3 shows the context switching behavior of a Linux workstaBeveral
active processes are running, including a window manager, web byonedia player,
and a CPU-bound process (in this case bzip2 from the SPECcpu2006 benchtaark sui
Figure 3.3 indicates that even in a preemptive multi-taskingmsyst significant amount
of exploitableregular patterns exist for context switching behavior.

It should be noted that it is possible to avoid having to predict theflBn
incoming process by either snooping into the runqueue or having lieduser inform
the architecture as to the next incoming process. Either of imgdementations will
account for all non-preemptive context switches. However, snoopinthetanqueue is
expensive and dangerous, since operating system data structurelsange between

software versions. Requiring the scheduler to inform the archigeahout the runqueue

18

can also be expensive, at least on a small scale, where pdiggsthing (the actual
context switch) latency is critical. Furthermore, neitheplamentation informs the
architecturewvhenthe context switch will occur on any useable timescaleeflites are
typically measured in milliseconds, far too course-grained foobabntext prefetching).
Future work may lead to an investigation of the potential meritsafifying the system
scheduler to better accommodate out of context prefetching. Tdris &xplores the

possibility of predicting context switches without the aid of the systeedsdér.

3.5 The Case for CPU-Bound Processes
CPU-bound processes, those that have relatively few 1/O requestheaprocess type
that most prefetchers target. This is because CPU-bound processeslohger
contiguous timeslices, which promotes exploitation of process specific yo&dittainly,
as least in part, early research in data prefetching waedino single processes because
full system simulators were too slow, inaccurate, or were veitadle to a majority of
the research community. Furthermore, tbe facto simulation benchmark suite,
SPECcpu, which consists of CPU-bound applications by design. Conteynpacire
prefetching techniques work well for CPU-bound processes [9, 12, 13, 20, 2line@nd s
they tend to consume a majority of CPU time, Amdahl’s law directs us to focusnon the
However, as the CPU-Memory gap widens, because of bandwidth kmgatt
becomes increasingly difficult to prefetch, even if the prefetthews what data to fetch

[22]. Figure 3.4 shows the average memory bus utilization for MCF, a SPEC2006

19

|
08 1 [
|

0.6 b

Bus Utilization

0.2 B

0 I I
0 5e+07 le+08 1.5e+08 2e+08

Cycles

Figure 3.4 — Average memory bus utilization for theMCF SPEC2006 benchmark.For processes that
maintain high memory bus utilization, traditionaéfetch schemes may not be able to issue fetclasiév
they know what to fetch.

benchmark, on a scalar, in-order CPU with a blocking memory hierarchy. At above 80%
for nearly its entire run, finding time to prefetch without interingptdemand fetches is
clearly difficult. On a modern out-of-order, superscalar CPUmarg requirements
increase, and it becomes even more difficult to prefetch, evbe frefetcher is highly
accurate.

Out of context prefetching attempts to minimize the bus uiitimataused by
demand fetches by issuing prefetches out of context, when memory pressure Hgow. T
reduction in demand misses potentially gives a regular prefetcla gméater chance of
injecting prefetches. The regular prefetcher then, depending accitsacy, may be able
to stay ahead of the demand fetches to the cache. A far mdyeddemario is that the
demand fetches will catch up to the prefetcher, and the effikdtena “wedge” of cache

misses removed from the front end of the timeslice of the process.

20

3.6 The Case for 1/0-Bound Processes

I/O-bound processes are those that spend more time waiting orhaf© actually
computing data. 1/0O-bound processes can create significantrparfoe loss because of
exceedingly long latency on certain I/O events such as keyboardnmusg, network
I/O, etc. In part to work around this bottleneck, systems began hiareig resources to
mask the latency of I/O. While multitasking has allowed fgniicant performance
improvements, as the number of processes running on a system and tkeeotl@guéi-
programming increaséhrashingbecomes a problem.

Thrashing is a condition where a system performs less anthésssngful work
(progress) because resources spend more time working on nonsprogjeded tasks. A
classic example is page thrashing, where the working seti$ aff the processes on the
system do not fit into physical memory. Pages must be “swapped’ liigher level
memory, usually the hard disk, and brought back in when needed. Agpnogltamming
increases, the operating system spends a disproportionate amoune dbwapping”
pages, causing an overall loss in system performance.

Cache thrashing occurs in much the same way and has the sapterag. As processes
contend for space in the cache, the cache becomes increasssgbapable of masking

main memory access latency. As the degree of multi-programmingsese

L%
r

Performance

v

Degree of Multi-programming

Figure 3.5 — Performance vs. Multi-programming. As the degree of multi-programming increases,
thrashing can quickly degrade system performance.

21

locality of reference becomes less apparent, and latencies increase.

Unfortunately, prefetch units suffer just as caches do. At examyext switch,
prefetch units have to spend time retraining. Even after the preteit retrains,
bandwidth limitations may exist because the running process isréfibing the cache
with its working set. Figure 3.6 shows the average bus uidizdbr an 1/0O-bound
process. Note the exponential decay of bus utilization, which imjbleeprocess is able
to fit its working set into the cache, but thrashing causesréfill the cache every time it
is switched in. Even if a prefetch unit knows what to fetch when dméext switch
occurs, it may not have any available bandwidth to work with, andébgirhe bandwidth
becomes available, prefetching in the current timeslice nedg httle performance gain.
Furthermore, it is unlikely that a traditional prefetch unit wdaidw what to fetch at the
beginning of the timeslice, since locality of referencellie®n compromised, causing the
prefetcher to waste time retraining. The type of prefetceermines the amount of

accesses required to retrain.

0.9 T T T T T T T
0.8 _
07 Flly A A u
o6l \ | i
0.5 | .

0.4 - (. b

Bus Utilization

VT
03 - \ II|I |.|'"|| h]

| - | A
L ". I | \ T A 1A -"’1 |
0.2 VU W ™ A M ."". I/ VAN
"W\ Al AT VY
01 S | S

0 I I I I I I I
0 500000 1le+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06

Cycles

Figure 3.6 — Average memory bus utilization per timaslice for the X Window System./O-bound
processes tend to display a memory “burst” at #ggrining of each timeslice.

22

3.7 Considerations for SMT and Multi-core Systems

With the multi-core era well in place, memory bandwidth is beogma scarce
commodity [22, 23, 24]. Shared memory resources must divide their bandwidiehe
all of the cores that access them. Process scheduling beeosigsificant bottleneck.
When a core “steals” a process from another core to balanémathehe entire working
set of that process must move with it, incurring an enormous amountnodmnéraffic.
Even prefetching can create issues in multi-core systems. Whawmmb” prefetcher is
too aggressive, it may inadvertently create false sharingramedase coherency traffic
[34].

Out of context prefetching is an intelligent prefetching schéaeaidapts well to
multi-core paradigms. As these systems grow in number of camas, parallel
programming becomes more commonplace, the number of active threads stera sy
will also grow. Traditional cache hierarchies and prefetdreses will have trouble

scaling, especially as the degree of multi-programming ofetlsystems increases.

23

24

CHAPTER IV

SIMULATION METHODOLOGY

This work employs both full system, execution driven simulation, @acde driven
simulation to generate data. Since this work is preliminanatare, and simply attempts
to explore the efficacy of out of context prefetching in a bmatse, this work bases the
simulations on simple models to reduce simulation time. This afowperforming a
wide range of simulations covering several key parameterstdh this work presents

results from more than 350 simulations.

4.1 Full System Simulation

The Virtutech Simics Full System Simulator [25] generateowuartrace files that are
used in the trace driven simulators. Simics is a full system execution drnelatr that
can simulate Alpha, ARM, IA-64, MIPS, PowerPC, SPARC v9, x86, and x8&rbiies
of processors. The overall design of Simics is geared to beigemel flexible (it can
simulate embedded systems, desktops, multiprocessors systemsluatets). Its
modular, object-oriented design allows for great ease of usetaléspiarge size and
complexity. We use Simics/x86 with thHEango target. Tango is a simplified single,
scalar, in-order x86 CPU running Fedora 5 GNU/Linux. While Sinmgcsapable of

simulating more complex, out-of-order, super-scalar machines, thdasion time in

25

these systems grows by several orders of magnitude. The prahitiitie requirement
for running these simulations restricts the level of detaibveeable to simulate in any
tractable amount of time. Since memory demands increase thathaddition of

technologies such as super-scalar processing, any improvempatfanmance for a

simplified model will also yield improvement in a super-scatar,even multi-core

environment. Table 4.1 details the simulator and cache configuration.

This work uses two sets of trace files. The first containgrarotated trace of
every context switch that occurs over a 10 billion instruction sithoalaThe trace file
contains the PID and timestamp (in cycles) of each contextlswihese files are then
fed into a several simple prediction units to measure the effichpredicting context
switches.

The second file type is an annotated memory reference treee; E2 access is
written with the current running PID, and timestamp (in cyclElsgse files are fed into a
trace driven simulator to measure the effects of various L2 cache catfigigrand other

metrics, described in the next section.

4.2 Trace Driven Simulation
As described in section 4.1, two types of trace files were gexdeby Simics. The first

type is a timestamp annotated trace of every context switch over a 10 biltroictios

CPU 2GHz single core, scalar, in-order x86 ISA.
L1 I-Cache 64kb, 4-way, 64 byte block, LRU, 2-cycle read penalty.
L1 D-Cache 64kb, 4-way, 64 byte block, Write-back, LRU, 2-cycle
L2 Cache 2048kb, 8-way, 128 byte block LRU, 10-cycle read/write
Main Memory 200 cycle access penalty

Table 4.1 - Simics configuration.The L2 and main memory configurations are used omlgenerate
traces for the context switch prediction traces.

26

simulation. This file is then parsed by three simple contextcbwprediction units,
written in Perl.

The first predictor employs a simple predict-last algorithrhene an entry in a
table is made for each PID on the system containing the lasgxt@witch from that
process. So, for example, if Process A is switched out for Pr@&efise next time
Process A is switched in, the unit will predict that Process B will come next

The second predictor builds on the predict-last algorithm, but attemigtertout
switches that occur due to preemption. This is known as hystdrased prediction. In
this algorithm, a pattern must be repeated twice before Ibhe eatry is overwritten. For
example, if the prediction for the PID after Process A isernly Process B, another
pattern, such as Process A to Process C, must occur twice iedéoediction is
changed. This can be implemented using a simple 2-state taigersachine, as shown
in Figure 4.1.

The third and final predictor evaluated is a finite context methodigtos [26],
common in the use of text compression [27]. A finite context methodcgpoedFCM,
generates predictions based on a sequence of previous values. F@Mimemt counters

for each possible next value after a sequence of order N, as shown in Figure 4.2.

correct prediction or
incorrect prediction
same as last

update prediction =
last PID

correct prediction .@_@ incorrect prediction != last PID

incorrect prediction

Figure 4.1 — FSM representing hysteresis based prietbr. A hysteresis predictor filters out single
occurrences of context switch misprediction. Thisffective for ignoring preemptive context switshe

27

Sequence:aaabecaaabecaaa?

N=2
a b ¢
aal 3 2 0
abl O 0 2
bel 2 0 0
ca| 2 0 0

Prediction: a

Figure 4.2 — FCM with N=2.As the sequence is fed into the FCM algorithm,@etmoard of next values
for each N length pattern is kept. The highestiagoralue for a given pattern will be predicted.

When a particular sequence is encountered, the value with the reghestwill
be predicted. This type of predictor is difficult to implement irdineare, as the table size
needed to keep track of a large number of PID’s can be prohibitively large.

The second trace file set contains annotated memory refer@rerea 10 billion
instruction run. An extensively modified version of the DinerolVheasimulator [28] is
used to generate several performance indicators. Dinero iseadiigen cache simulator
originally developed at the University of Wisconsin as part oidconsin Architecture
Tool Set. It is written in C, with the full source available, asceasily modified for
various types of cache simulation.

The role of Dinero in this study is to explore the efficacyoaf of context
prefetching by simulating over a range of parameters likelgftect performance. In
most studies of cache configurations and prefetching, the prinesfigrmance indicator
is miss rate. This work uses both overall and process specifcraies as the primary

performance indicators. By using process specific miss rates, wevalagte the

28

L1 I-Cache 64kb, 4-way, 64 byte block, 2 cycle read
L1 D-Cache 64kb, 4-way, 64 byte block, Write-back, 2 cycle read/write
L2 Cache {256kb, 512kb, 1024kb, 2048kb}, 8-way, 128 byte block, 15 cycle read/write
Main Memory | 400 cycle access
¢ {0 (no OOC prefetching), 100, 500, 1000, 1500, 2000, 2500, 5000, 10000}
Workload 9 configurations, see section 4.3

Table 4.2 — Dinero configurations.Nine simulated workloads with nine values férand 4 cache sizes
creates 324 DinerolV configurations.

efficacy of out of context prefetching for each class afcpss (CPU-bound vs. 1/O-
bound). Process specific miss rate is simply the average ratessfor a process per
timeslice.

The focus is on exploring the potential benefits and pitfalls ofimMgwhento
prefetch, rather than what kind of prefetch mechanism to use. oreref “perfect”
prefetch unit is simulated by maintaining a buffer of future blackesses for the next
process. When the simulator triggers the out of context prefetobkeremces are
prefetched from this buffer, until either the buffer runs out (whick awur for a large
¢ and short timeslice), or a context switch occurs. Furthermorgréietcher operates
as conservatively as possible, issuing prefetches only when nodetfmand miss will
occur (this is only possible by looking ahead in the referetnears), thus preventing out
of context prefetching from directly negatively altering tb&l stall time in the cache
(cache pollution may still occur, indirectly causing additionall $ime). This idealized
model simplifies simulation and minimizes the impact of varigbibf factors not
relevant to this study — prefetcher accuracy and bus interference.

As a result of implementing a “perfect” prefetch unit, “peffeontext prediction
is also implemented. This is done simply because the output of é¢fietgbr unit is

undefined when context switches are incorrectly predicted. An intigrrpedicted

29

context switch implies that the prefetch unit brings invalid datathe cache, which is
by design not possible.

More than 350 simulations are conducted for this study (roughly 600 bburs
CPU time to complete), consisting of combinations of varying eathe and/ (how
early to begin prefetching before a context switch occurs)paced against 9 different
workload configurations, detailed in section 4.3. Table 4.2 presents theatsomul

configurations.

4.3 Workload

Out of context prefetching requires a unique workload that represefigpiaal’
workstation, running multiple processes of various class (CPU-bourn®asound). To
provide CPU-bound processes, nine of the SPECcpu2006 benchmarks are sisagnas
in Table 4.3. The SPECcpu benchmark suite is comprised of severalb&mPd-
programs designed to stress the CPU. Originally developed to cortipanelative
performance of real computing systems, it has been adoptedeafaetostandard set of
benchmarks for computer architecture simulation. It should be noted SIRBC
benchmarks do not tax the memory subsystem [29], and a future stidyirdf context
prefetch will require a more robust workload. The rest of theesyss comprised of a
standard Fedora Core 5 GNU/Linux operating system running Xongindowing
environment, XMMS, a multimedia player (playing F.D. Roosevelrddiny” speech),
and Firefox, a web browser (loading several websites in ptsdrioop). Several other
relatively idle processes are also running, including the windomagea, swap daemon,

and so on. Nine total workloads are created by running one of nineedtff8PEC

30

applications with the system described above. Each of the ningua@tions is run for

10 billion instructions.

Benchmark Description
bzip2 A compression utility.
GCC The GNU C Compiler, version 3.2. Compiles code for an Opteron target.
MCF Combinatorial optimization for vehicle scheduling. Uses a network simplex algorithm.
soplex Solves a linear program using a simplex algorithm.
povray Image rendering using ray tracing.
h264ref Video compression using the H.264 standard.
astar Path finding using the A* algorithm.
sphinx3 Speech recognition system from Carnegie Mellon.
xalancbmk | XML processing. Converts XML to other document types.

Table 4.3 — SPECcpu2006 benchmark descriptionsSPECcpu2006 applications represent a diverse
selection of scientific workloads.

31

32

CHAPTER V

RESULTS

This chapter presents results from simulations as described in the previoes.dhdhts
chapter we present four sets of results. The first sectiorus$iss context switch
prediction as well as predicting context switch timing. The secowdtlird sections
discuss the impact out of context prefetching has on CPU-bound and 1/O-bound
processes, respectively. The fourth and final section covarsreertaining to finding

an optimum value for .

5.1 Context Switch Prediction

As mentioned before, the ability to accurately predict bothBheflthe next process to
be switched in, and when that will occur, creates an upper boure @fféctiveness of
out of context prefetching. Preemptable scheduling algorithmgeces#ropy in an
otherwise perfectly predictable system. It appears howeverg\vbatwith a preemptable
scheduler, predictable regular patterns still exist, as shoviguiref3.3. Figure 5.1 shows
the results of the three context prediction units described ioisetR. Recall that the
first prediction unit employs a simple “predict last” algonit, the second unit uses a

second order hysteresis algorithm to filter out one time pvéem based context

33

Prediction Accuracy
o
S
S

- U . 1)
[2 Q) D
! D - 5
(=)
I LSS LS T I

Figure 5.1 — Context predictor accuracyEven with simple and inexpensive algorithms, a hliggree of
prediction accuracy is easy to obtain. Although ftas the highest accuracy, it is impracticle tolenment
in hardware, although the hysteresis algorithnelistively inexpensive.

switches, and the third unit employs a third order finite conte&thod algorithm.
Considering their simplicity, all three algorithms performedpssingly well. The
hysteresis algorithm, for example, has a prediction accurfa@$%.8% on average, and
correctly predicts the time of each correctly predicted corgexch to within 0.2% of
the average timeslice length (in cycles). Table 5.1 preseiditicmal data regarding
context switch prediction. The ease with which context can be aelyupmedicted is a
significant observation, not only for out of context prefetching but lfaccetext aware
architectural enhancements.

Greater prediction accuracy can be obtained with a more in giejoiy of context
switching behavior. An obvious means to increase context switch poedEto modify
the system scheduler to provide details about the runqueue to theecmhi As
mentioned in section 3.4, this does not enable the architecture tot phedione of the
context switch any more accurately, and still does not accoumdrdoesses that may
preempt the runqueue. It may be possible to predict when certagspescwill preempt

the runqueue by measuring a history of past preemptions or using

34

Benchmark | predict-last time prediction | hysteresis time prediction
bzip2 0.32% 0.17%
gcc 0.21% 0.31%
mcf 0.21% 0.28%
soplex 0.23% 0.32%
povray 0.31% 0.19%
h264 0.25% 0.28%
astar 0.25% 0.29%
sphinx3 0.23% 0.25%
xalanbmk 0.27% 0.28%
average 0.25% 0.26%

Table 5.1 — Time prediction errors for the predictlast and hysteresis algorithmsTime error for fcm is
not calculated.

hints from hardware that assert interrupts that drive preempiveext switches.
Predicting preemptions may be reserved for very high prioriycgsses, as the
probability of incorrectly predicting may be greater, and maimgi high priority

process specific data in the cache, even at the sake of panfmenmoss for other

processes, may be tolerated.

5.2 CPU-Bound Processes

The primary purpose of applying out of context prefetching to CPU-bowggses, and
in fact the original hypothesis of this entire work, is to reddemsand-fetch driven bus
utilization for memory intensive processes, in order to allaraditional prefetch unit to
drive more prefetches while in context. This is accomplished biifeg blocks into the
cache out of context, when pressure on the memory subsystem. isnl@ffect, the

memory accesses become more uniformly distributed.

35

Bus Utilization

04
02t 256 kB —— -
512 kB
1024 KB oo
. | . 2048 kb
0 5e+06 1e+07 1.5e+07 2e+07

Cycles

Figure 5.2 —Average Bus utilization per timeslicedr MCF with no prefetching. Bus utilization is high
for each configuration, indicating that most of thesses are compulsory.

c
Re)
T
N
3
9 04}]
m
°21 256 kB —— -
512 kB
1024 KB oo
0 . , 2048 kb
0 5e+06 1e+07 1.5e+07 26+07

Cycles

Figure 5.3 —Average Bus utilization per timeslicedr MCF with ¢ =1000(. Even with an aggressive
out of context prefetching scheme, little demartdidous utilization reduction occurs.

However, two factors prevent out of context prefetching from makimg meaningful
increase in performance for CPU-bound processes — low memory bzatiotil for the
applications studied, and long, contiguous timeslices. The first fdotonmemory bus

utilization, may in fact just be an artifact of the particular workloads chasehi$

36

Cache Size 256kb 512kb 1024kb 2048kb
bzip2 0.00% 0.62% 1.40% 2.07%
gcc 0.06% 0.61% 2.05% 2.52%
mfc 0.00% 0.06% 0.15% 0.31%
soplex 0.01% 0.10% 0.45% 2.19%
povray 8.60% 31.39% 48.92% 55.42%
h264ref 0.01% 4.67% 24.52% 54.15%
astar 1.40% 4.22% 5.92% 8.50%
sphinx3 3.58% 10.33% 28.65% 35.69%
xalancbmk -0.08% 0.14% 1.36% 5.61%

Table 5.2 — Process specific miss rate improvemerfir ¢ =10000. Xalancbmk actually has a hit rate
loss with a 256kb cache.

study. As mentioned before, Sair and Charney conclude that SPECGzpuoatmverexert

the memory subsystem [29]. This does not imply that memory intensive workloads do not
exist, or are even rare. Rather, it simply suggests thBRC§u may not be a valid
workload for memory intensive related studies. Figure 5.2 illestrite bus utilization

over time for the SPECcpu2006 benchmark MCF, with no prefetching, witlingary
cache size. MCF is the most memory intensive applicationmulated in this study, and
shows a worst case for out of context prefetching. Similateeexist for bzip2, gcc, and
soplex. An entire catalog consisting of approximately 11,000 bus atitiiz plots
generated for this study is referenced in Appendix A.

Even if a very memory intensive workload were simulated in thési$, the
second limiting factor, contiguous timeslice length, mitigéteseffects of out of context
prefetching by issuing many more, in some cases by several orders of magnimate] de
fetches. The number of demand fetches simply overshadows the nunibecksf that
can be practically fetched out of context. Figure 5.3 shows theonyebus utilization for
MCF over time with/=1000((the maximum value simulated). Note that only a slight

change is noticeable at the very beginning of the timeslice. Table 5.2 shqwedbss

37

% References
bzip2 55.45%
gcc 52.06%
mfc 79.58%
soplex 62.64%
povray 8.62%
h264ref 11.42%
astar 29.01%
sphinx3 3.18%
xalancbmk 44.21%

Table 5.3 — Percentage of total accesses to theth&longing to each SPECcpu2006 benchmarklotice
that the processes with the greatest ratio ofeaf@s also have the least performance improvement.

specific miss rate improvement for each of the nine SPECcpunhimanks used in this

: . . : missrate with ooc
study. All miss rate improvement calculations are defined-as— - .
missrate without ooc

CPU-bound processes also dominate CPU time, and as such, have tést grea
influence on overall miss rate in the cache. Table 5.3 shows thenfzgyeeof memory

references originating from each of the SPECcpu2006 benchmarks in theotnes

50%

50%

-
c

(]

E

o 0%

s

£ 30% m 256kb
% m512kb
= 20%

@ 1024kb
= 10% m 2048kb

0% -
& & &S
@] & R \"Z\(\
+‘b

Figure 5.4 — Maximum miss rate improvement for eactSPECcpu2006 benchmark simulated in this
study. The processes with the most overall referencesip2bgcc, mfc, and soplex, have the least
improvement.

38

workloads. Figure 5.4 shows maximum overall miss rate improvemerttseilL2 for
each configuration, each workload is identified by the SPECcpu2006 berkctivataran
as part of that workload. Complete results of overall miss irprovements for every
configuration is given in Appendix B.

Notice that the CPU-bound processes that have the greatesttpgecef total
references, as shown in Table 5.3, have the lowest missmptevement, shown in
Figure 5.4. This indicates that these processes have long, contigueskces that do
not benefit from out of context prefetching. Also note that miss maprovements
decrease for the 2048kb cache over the 1024kb cache. This is due toycaysses
becoming low enough to mitigate the effects of out of contexttofrefs. The remaining

misses are mainly compulsory.

5.3 1/0-Bound Processes

An I/O-bound process, and any process that is not memory intensivaljispiay a
decrease of cache misses over time in general, as showrure bi§. In a system with a
sufficiently large cache and few running processes, this ckasiict may only occur
once, when misses are compulsory. In an active system thectdréstic may occur at
each timeslice for each process because of limited cagaeity. If the degree of multi-
programming on the system is increased, the amount of caches ipessgmeslice may
become prohibitive, causing a decrease in CPU utilization. Atibadi prefetcher may
not be able to prefetch these blocks because of the loss ofylaifaleference (causing
the prefetch unit to re-train), lack of bus availability atltkeginning of the timeslice, or

both.

39

Bus Utilization

256 kB ——
512 kB
1024 KB e
2048 kb ;

0 500000

1e+06
Cycles

1.5e+06 2e+06

Figure 5.5 —Average Bus utilization per timeslicedr Xorg with no prefetching. The memory burst at
the beginning of each timeslice is apparent eveh aviarge cache.

08 r

Bus Utilization

256 kB ———
512 kB
1024 KB v
2048 kb 1

ot -
0 500000

1e+06
Cycles

Figure 5.6 —Average Bus utilization per timeslicedr Xorg with # =1000C(Out of context prefetching
causes a significant reduction in bus utilizatiorgmatically reducing the characteristic exponéntécay

of bus accesses.

As for CPU-bound processes, out of context prefetching attemptsnimige

cache misses by fetching blocks out of context. Unlike the cageFU-bound processes

however, the goal for out of context prefetching for 1/0O-bound presédssto reduce the

40

effects of thrashing, potentially allowing for higher degrees oltiprogramming, and
possibly making these processes more responsive.

Figure 5.6 shows the average bus utilization per timeslice fong Xvith
¢£=1000(, and Table 5.5 lists the corresponding improvement in process spaisfic
rate. Notice that process specific miss rate improvemeatsignificantly greater for 1/0-
bound processes than for CPU-bound. While this is simply becausetaharhount of
memory references that constitute I/O-bound processes is lowmstituting a greater
ratio of prefetches to demand fetches, it does indicate that acantéxt prefetching
works well for this class of processes.

Although the workloads simulated for this thesis are dominated by-oRbd
processes, highly interactive systems may see significardlbuéss rate improvements
from out of context prefetching, particularly when no one process casstita majority
of CPU time. Future work for out of context prefetching begins widatarg a more

robust and representative workload.

Cache Size 256kb 512kb 1024kb | 2048kb
Xorg 33.93% | 58.67% | 67.48% | 61.20%
xmms 24.88% | 44.88% | 54.18% | 46.59%
Firefox 1.14% 4.06% 9.54% 16.77%

Table 5.5 —Process specific miss rate improvemerfisr 1/0 bound processes with best/ . Miss rate
improvements are dramatically better than overafprovements in the cache. This is due to the CPU-
bound processes dominating CPU time.

41

5.4 Optimum /
The value/ determines the number of references to the L2 cache before atcwiteh
occurs to begin out of context prefetching. It may seem intuibivieytto make/ as large
as possible in order to ensure that as many blocks as possiltisoaght into the cache.
However, making/ too large may cause the prefetch unit to bring data in while the
currently running process still has a large working set, cgysatiution for the current
process. Furthermore, a largein a small cache may interfere with itself, although no
practical implementation of this system would allow for morecsfative loads than
blocks in the cache. Even still, having a largevhen only a few blocks need to be
prefetched may still cause pollution, and’ifs large enough, the prefetched blocks may
be evicted by the current process before a context switch occurs.

Figure 5.7 shows process specific miss rate improvementsofgr and xmms,
with a 256kb cache and varying values @f Figure 5.8 shows the same data for a
2048kb cache. Notice that not only is miss reduction aweon-monotonic, but the
optimum ¢ varies between Xorg and xmms. This implies that to provide enoughtdi
the out of context prefetcher to produce significant results ancemrgollution from
beginning fetching too early, should ideally be variable for each process tracked. This
work simulates a constant value éf for each simulation, and future work will include a
study of maximizing performance through variable, run-timeutaled optimum values
for /. Notice in Figure 5.8 any negative slope is absent over the sangkated. This
occurs because the larger cache size creates fewertgampégses at the end of each

timeslice, making ¢ less likely to interfere with the current process.

42

35 T T T T T T

r
Xorg
xmms

25 | 1
20 t 1
15 1

10 } 1

Miss Rate Improvement (%)

0 1 1 1 1 1 L 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L

Figure 5.7 —Miss rate improvement for Xorg and xmmswith a 256kb cache and varied/. The

maximum point for Xorg and xmms are different, igipl that an optimum? is based on the memory
behavior of the incoming process.

70 T T T T T T

T
Xorg
Xmms

50 :

40 | -

20 | :

Miss Rate Improvement (%)

0 1 Il L 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

L

Figure 5.8 —Miss rate improvement for Xorg and xmmaswith a 2048kb cache and varied/ . The larger
cache creates fewer capacity misses at the erachfteneslice, making performance less sensitivarge

‘.

43

44

CHAPTER VI

CONCLUSIONS

This chapter provides a brief summary and concluding remarks $othisis, followed

by a discussion of future work building on the concepts introduced here.

6.1 Conclusions
Context switching effects can degrade performance by compramisicality of
reference, causing additional cache misses not present in systatmdo not employ
multi-programming. These effects magnify when the degree ofi-prolgramming is
increased. Traditional cache prefetch schemes do not take irdonadbe effects of
context switching on cache behavior, which limits their effectisen®ecause of the
memory “burst” typical of a process at the beginning of eackdlice, it may not be
possible for a traditional prefetch unit to fetch these blockar dlffte context switch
occurs, either because the bus is too busy, the prefetcher must re-train, or both.
Out of context prefetching combines a prefetcher with a coptexliction unit,
allowing for context-aware prefetching. This enables preéetcho fetch for future
localities, potentially making them more effective. This th@smvides an initial design

exploration for out of context prefetching, as well as a firgp sh creating a more

45

transparent architecture that can interact with the operagstgrns in more meaningful
ways.

Accurately predicting context switching behavior sets an upper bouonthe
efficacy of out of context prefetching. If a context switch & correctly predicted, an
aggressive prefetch unit may be able to fetch blocks into the tmfbee the context
switch occurs. A brief test of three simple, common predictioariggns is presented,
all of which correctly predicted context switch above 65% foheagrkload simulated.
Timing predictions for correctly predicted context switches dacerror of less than 1%
for each workload. It is likely that more accurate context predicilgorithms can be
developed, possibly using hints from the system scheduler to gainldugls of
accuracy.

CPU-bound processes exhibit little I/O relative to the amoundropate activity,
and as such receive longer, contiguous timeslices on multi-prograsystns. Some
CPU-bound processes may tax the memory subsystem so much thetnahgrefetch
schemes may not be able to function because of bandwidth restricticasvdrst-case
system, out of context prefetching may be able to fetch enough botksf context,
when pressure on the memory subsystem is low, to give a tratipi@iatcher enough
bandwidth to operate while in context. In reality, the overwhelmingtkeof CPU-bound
timeslices tends to mask any benefit out of context prefetchaygproduce. This study
uses SPECcpu2006 benchmarks to provide a CPU-bound workload. SPECcpu2006
applications do not tax the memory system as much as needed to illustréfecthaf an
over-burdened memory system, and more work needs to be done with more

representative workloads before this aspect of out of context prefetcliisgasded.

46

I/O-bound processes are those which display more I/O than compuit.ads
a result, I/O-bound processes tend to have shorter and more freigueslices in an
effort to increase CPU utilization and system responsiveness. @hty hnteractive
systems, the operating system may dramatically increbse degree of multi-
programming in an effort to increase CPU utilization. This camadlgtlead to less CPU-
utilization due to thrashing in the memory system. Because tpadiireference is
compromised in highly multi-programmed systems, traditional ptefsthemes may not
be effective. Out of context prefetching specifically addrgdbese effects, preserving
process specific locality, and prefetching out of context. ReBolts this study clearly
show that out of context prefetching can have a significant positfeet on I/O-bound
process miss rates, which indicates it may be possible tdisigniy reduce the effects
of thrashing, and possibly make the system more responsive.

This study examines varying cache sizes and values, dhe time before a
context switch, and naively assumes that there is one valti@cm$erve each process on
the system. It is clear that the value 6fis dependent on the specific memory and
timeslice behavior of the target process, and a great deal afisarmay exist between
processes on a real system. As such, out of context prefetchédg t@ support a
variable value of¢ for each process in the system in order to maximize perfoemanc
gains.

In summary, this thesis provides an initial exploration of a moreligent
prefetching scheme, with results that indicate out of contexttphéfg is a worthwhile

avenue for additional research.

47

6.2 Future Work

This thesis serves as an introduction to a greater body ofcldbat deals with context
aware microarchitectures. Several worthwhile topics relating to out ofixtgmedetching
exist, including exploring the effects of out of context prefetglin multi-core systems,
examining the potential of modifying the system scheduler to faenmtext aware
memory, examining out of context prefetching for other levels of the memorysseirs

With all of the new challenges raised by multi-core system becomes
imperative to create more intelligent architectures that work not in spite, of the
software that runs on it. Out of context prefetching may providerteéans necessary for
prefetch units to continue to be effective in systems thatnareasingly sensitive to the
effects of context switching and other operating system concepts.

A future study into the potential of modifying the system schedweboth
arrange the runqueue in a way that promotes out of context piatgtas well as
provide hints to the context prediction unit, is already planned and dui@lece the
upper bound on efficacy of out of context prefetching is set by thiyab predict
context switches, it is certainly worthwhile to invest resources into maxighprediction
rate.

Out of context prefetching may be effective for other levelghef memory
system, especially for the main memory, where page fauldia® are measured Iin
milliseconds, with little promise of decreasing permanent stoaggess time in the near
future. Examining out of context prefetching for memory pages ha&adir been

suggested [16], but more research needs to be performed.

48

Finally, simple, context-aware prefetching, needs to be figatsd. Context-
aware prefetching does not perform prefetching out of context, amefates is not
sensitive to the ability to predict context switches. In contexdra prefetching, a
traditional prefetch unit maintains training data for each agireeess on the system.
When a context switch occurs, the prefetcher simply uses timngradata for that
process, potentially maintaining greater degrees of locality imulti-programmed

system.

49

50

REFERENCES

[1] R. Crisp, “Direct Rambus Technology: The New Main Memory StandHté&,E
Micro, vol. 17, no. 6, pp. 18-27, Dec. 1997

[2] S. Rixner, W.J. Dally, U.J. Kapasi, P. Mattson, J.D. Owens, “Memory access
scheduling,Proc. 27" Ann. Int’l Symp. Computer Architectugg. 128-138, June
2000

[3] A.J. Smith, “Cache MemoriesGomputing Surveyspl. 14, no. 3, pp. 473-530,
Sept. 1982.

[4] D. Joseph and D. Grunwald, “Prefetching using markov predictersg. 24" Ann.
Int'l Symp. Computer Architecturpp. 252-263, June 1997.

[5] N. Jouppi, “Improving direct-mapped cache performance by the addition oflla sma
fully-associative cache and prefech buffedc. 17" Ann. Int'l Symp. Computer
Architecture,pp 388-397, 1990.

[6] T. Mowry, M. Lam, and A. Gupta, “Design and evaluation of a compiler algorithm
for prefetching,”Proc. 8" Int'l Conf. Architectural Support for Programming
Languages and Q®p. 62-73, Oct. 1992.

[7] S. Palacharla and R. Kessler, “Evaluating stream buffers asm@dseg cache
replacement,Proc. 2£' Ann. Int'| Symp. Computer Architectugp. 24-33, April
1994.

[8] R. Cooksey, S. Jourdan, D. Grunwald, “A stateless, content-directed data
prefetching mechanismProc. 10" Int'l Conf. Architectural Support for
Programming Languages and Q&. 279-290, Oct. 2002.

[9] W. Lin, S. Reinhardt, and D. Burger, “Designing a modern memory hierarchy wit
hardware prefetching/EEE Transactions on Computessl. 50, no. 11, pp. 1202-
1218, Nov. 2001.

[10] G.S. Manku, M.R. Prasad, and D.A. Patterson, “A new voting based hardware data
prefetch schemepProc. Int'l Conf. High Performance ComputintQ97.

51

[11] J.L. Baier and G.R. Sager, “Dynamic improvement of locality in virahory
systems,1EEE Transactions on Software Engineeriagl. SE-2, no. 1, pp. 54-62,
Mar. 1976.

[12] Z. Wang, D. Burger, K.S. McKinley, S.K. Reinhardt, and C.C. Weems, “Guided
region prefetching: A cooperative hardware/software appro&eh¢. Int’l Symp.
Computer Architecture2003.

[13] D.F. Zucker, R.B. Lee, and M.J. Flynn, “An automated method for software
controlled cache prefetching?roc. Int'l Conf. System Sciencd998.

[14] J.B. Chen and B.N. Bershad, “The impact of operating system structurermryne
system performanceProc. 14" ACM Symp. Operating System Principles, 120-
133, Dec. 1993.

[15] P. Koka and M.H. Lipasti, “Opportunities for cache friendly process scheduling,
Workshop on Interaction between Operating Systems and Computer Architecture,
Oct. 2005.

[16] E. Suh, E. Peserico, S. Devadas, and L. Rudolph, “Job-speculative prefetching:
Eliminating page faults from context switches in time-shared systdimastinical
report, Massachusetts Institute of Technolddgmo 442, June 2001.

[17] D. Chiou, S. Devadas, J. Jacobs, P Jain, V. Lee, E. Peserico, P. Portante, and L.
Rudolph, “Scheduler-based prefetching for multilevel memorieschnical report,
Massachusetts Institute of Technologygmo 444, July 2001.

[18] J.C. Mogul and A. Borg, “The effect of context switches on cache performance,”
Proc. 4" Int'l| Conf. on Architectural Support for Programming Languages and OS,
1991.

[19] A. Silberschatz, J. Peterson, and P. Ga®jperating System Concep#sddison-
Wesley, 1991.

[20] C. Zhang, S.A. McKee, “Hardware-only stream prefetching and dynacess
ordering,”Proc. Int'l Conf. Supercomputingp. 167-175, 2000.

[21] J. Lee, S. Jeong, S. Kim, C.C. Weems, “An intelligent cache system wdikdrar
prefetching for high performancd EEE Transactions on Computekl. 52, no. 5,
pp. 607-616, May 2003.

[22] D. Burger, J.R. Goodman, A. Kagi, “Memory bandwidth limitations of future
microprocessors,Proc. Int'l Symp. Computer Architectynep. 78-89, May 1996.

[23] D. Burger, J.R. Goodman, A. Kagi, “Limited bandwidth to affect processor design,”
IEEE Micro, pp. 55-62, Nov. 1997.

52

[24] L. Spracklen and S.G. Abraham, “Chip multithreading: opportunities and
challenges,’Proc. 11" Intl Symp. Computer Architectur2005.

[25] Virtutech. http://www.simics.net/

[26] Y. Sazeides, J.E. Smith, “The predictability of data valuesyt. 36" Int'l Symp.
Microarchitecture pp. 248-258, 1997.

[27] T.C. Bell, J.G. Cleary, I.H. WitteM,ext CompressiqgrPrentice-Hall, 1990.

[28] J. Edler and M. Hill, “DinerolV trace-driven uniprocessor cache simiyla
http://www.cs.wisc.edu/markhill/dinerolV/

[29] S. Sair and M. Charney, “Memory behavior of the spec2000 benchmark suite,”
Technical report, IBM T.J. Watson Research Center, Oct. 2000.

[30] D. Psaltis, G.W. Burr, X. An, M. Levene, G. Barbastathis, A. Pu, “Holographic
memories,’Lasers and Electro Optics Ann. Meetid§97.

[31] S. Tehrani, E. Chen, M. Durlam, T. Zhu, H. Goronkin, “High density nonvolatile
magnetoresistive RAM,JEEE Electronic Devices Meetingp. 193-196, 1996.

[32] A.B. Cosoroaba, “Double data rate synchronous DRAMs in high performance
applications,Proc. WESCONpp. 387-391, 1997.

[33] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R.
Thomas, K. Yelick, “A case for intelligent RAM: IRAMJEEE Micro, April 1997.

[34] A. Fedorova, C. Small, D. Nussbaum, M. Seltzer, “Chip multithreading systems
need a new operating system schedufrgt. 11" Workshop ACM SIGOPS004.

53

54

APPENDIX A

One of the goals outlined in the terms of the NSF grant funding this project is tdgorovi

all data, source code, scripts, configuration files, and any other geneatded d

researchers in an effort to maintain a high degree of reproducibility. Acpregdbsite is
maintained for this project to serve this need. Among the data and simulator source code
is a catalog of nearly 11,000 plots generated for each PID in each cachearediofigfor

each workload simulated in this study. The reader is encouraged to visit tla¢ proje

website to learn more about out of context prefetching.

Project websitehttp://rome.ceat.okstate.edu/ooc/

55

56

APPENDIX B

This section provides tables detailing overall cache missingbeovement for each
process under each simulated configuration. Cache miss rate imprivierdefined as

1- missrate with ooc . Each workload is identified by the SPECcpu2006 benchmark

missrate without ooc

that ran in that workload.

bzip2
Cache Size
L 256kb 512kb 1024kb 2048kb
100 1.13% 2.94% 4.37% 4.15%
500 4.30% 8.60% 10.30% 8.30%
1000 4.09% 7.14% 8.47% 7.14%
1500 4.34% 7.89% 9.32% 7.72%

2000 4.41% 8.50% 10.10% 8.13%
2500 4.30% 8.60% 10.30% 8.30%
5000 3.94% 8.55% 10.63% 8.71%
10000 3.54% 8.50% 11.34% 9.79%

gcc
Cache Size
L 256kb 512kb 1024kb 2048kb
100 1.42% 3.51% 6.84% 5.83%

500 5.24% 10.24% 14.64% 9.97%
1000 4.87% 8.46% 12.53% 8.59%
1500 5.32% 9.63% 13.76% 9.33%
2000 5.36% 10.13% 14.37% 9.76%
2500 5.24% 10.24% 14.64% 9.97%
5000 4.71% 10.13% 14.99% 10.39%
10000 4.26% 9.63% 14.99% 10.50%

57

mfc

Cache Size
L 256kb 512kb 1024kb 2048kb
100 0.32% 0.74% 0.92% 0.91%
500 1.21% 2.17% 2.23% 1.73%
1000 1.10% 1.73% 1.85% 1.42%
1500 1.23% 2.03% 2.04% 1.54%
2000 1.23% 2.14% 2.16% 1.65%
2500 1.21% 2.17% 2.23% 1.73%
5000 1.12% 2.17% 2.32% 1.81%
10000 0.98% 2.06% 2.32% 1.85%
soplex
Cache Size
L 256kb 512kb 1024kb 2048kb
100 0.52% 1.32% 2.46% 6.03%
500 1.91% 3.91% 6.49% 12.07%
1000 1.78% 3.17% 5.36% 10.41%
1500 1.95% 3.67% 6.00% 11.31%
2000 1.95% 3.88% 6.39% 11.92%
2500 1.91% 3.91% 6.49% 12.07%
5000 1.70% 3.86% 6.59% 12.37%
10000 1.55% 3.59% 6.54% 12.37%
povray
Cache Size
L 256kb 512kb 1024kb 2048kb
100 4.17% 12.72% 23.71% 32.97%
500 15.10% 31.41% 48.58% 46.01%
1000 13.77% 25.45% 41.74% 41.30%
1500 15.16% 29.32% 45.91% 43.84%
2000 15.28% 31.11% 47.91% 45.29%
2500 15.10% 31.41% 48.58% 46.01%
5000 14.07% 31.41% 49.58% 48.19%
10000 12.98% 30.02% 49.58% 48.55%

58

h264ref

Cache Size
L 256kb 512kb 1024kb 2048kb
100 3.39% 10.05% 20.06% 31.61%
500 13.12% 29.65% 44.76% 47.74%
1000 12.53% 24.66% 38.32% 43.55%
1500 13.39% 27.79% 41.92% 45.81%
2000 13.44% 29.48% 44.01% 47.10%
2500 13.12% 29.65% 44.76% 47.74%
5000 11.67% 29.14% 45.36% 49.03%
10000 10.48% 27.45% 44.91% 49.35%

astar

Cache Size
L 256kb 512kb 1024kb 2048kb
100 3.19% 8.27% 13.71% 14.29%
500 11.72% 23.55% 29.63% 25.05%
1000 10.80% 19.64% 25.59% 21.92%
1500 11.72% 22.09% 27.94% 23.68%
2000 11.91% 23.18% 29.11% 24.66%
2500 11.72% 23.55% 29.63% 25.05%
5000 10.93% 23.64% 30.68% 26.42%
10000 9.82% 22.82% 30.94% 26.81%

sphinx3

Cache Size
L 256kb 512kb 1024kb 2048kb
100 4.13% 12.18% 23.22% 32.53%
500 14.76% 33.55% 48.52% 46.39%
1000 13.71% 27.82% 42.60% 42.47%
1500 15.11% 32.18% 46.60% 44.58%
2000 15.05% 33.27% 47.93% 45.78%
2500 14.76% 33.55% 48.52% 46.39%
5000 13.71% 33.45% 49.26% 47.59%
10000 12.73% 32.27% 49.56% 48.19%

59

xalancbmk

Cache Size

L 256kb 512kb 1024kb 2048kb
100 1.29% 3.35% 6.58% 12.27%
500 4.84% 9.73% 15.10% 23.72%
1000 4.45% 7.85% 12.32% 19.84%
1500 4.84% 8.91% 13.79% 21.88%
2000 4.97% 9.64% 14.87% 23.31%
2500 4.84% 9.73% 15.10% 23.72%
5000 4.23% 9.55% 15.57% 24.54%
10000 3.68% 8.63% 15.10% 24.34%

60

VITA
David Jakob Fritz
Candidate for the Degree of

Master of Science

Thesis: OUT OF CONTEXT CACHE PREFETCHING

Major Field: Electrical Engineering
Biographical:

Personal Data: Born in Tulsa, Oklahoma, on February 4, 1983, the son of
Herbert and Debbi Fritz.

Education: Received a Bachelor of Science in Electrical Eegimg from
Oklahoma State University, Stillwater, Oklahoma in Decenf2i#i6.
Completed the requirements for the Master of Science in [Elctr
Engineering at Oklahoma State University, Stillwater, Oklahoma
May, 2008.

Experience: Employed by Oklahoma State University, SchoBleaftrical and
Computer Engineering, as research assistant, undergradueseches
assistant, and teaching assistant, 2004-Present.

Professional Memberships: Eta Kappa Nu Honor Society, Institutéeofrigal
and Electronics Engineers

Name: David Jakob Fritz Date of Degree: May, 2008
Institution: Oklahoma State University Location: Stillwater, Oklahoma
Title of Study: OUT OF CONTEXT CACHE PREFETCHING

Pages in Study: 60 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

Scope and Method of Study: The purpose of this study was to examiredficacy of
modifying a hardware cache prefetcher to track and predict ¢aswaiches and
prefetch for incoming processes before they are switched in.siity was
composed of three major components — quantifying the amount of context
switches that can be correctly predicted, examining out of coptefetching on
CPU-bound processes and I/O-bound processes, and examining the effects of
varying how early before a context switch to begin prefetching.

Findings and Conclusions: Data suggests that highly accuraextentitch prediction
is viable, with our own simple prediction unit correctly predictovgr 75% of
context switches. The study shows that out of context prefetchaygnot work
well with CPU-bound processes, as the positive effects are thdskethe
relatively long timeslice lengths. Finally, performing out of context pcafeg on
I/O-bound processes exhibits significant performance improvements ove
traditional cache prefetching.

ADVISER’'S APPROVAL: Dr. Sohum Sohoni

