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CHAPTER I 
 

 

INTRODUCTION 

 

The objective of this project was to develop a platform that could be used to 

demonstrate two concepts: 1) how neural networks can be implemented on FPGAs, and 

2) how the FPGA neural network can be used as the fundamental component of a smart 

sensor system.  This chapter provides an overview of this platform and an outline of the 

rest of this thesis. 
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1.1 Project Overview 

The purpose of this project is to produce a test bed for demonstrating soft sensors, 

and how they can be implemented with neural networks on FPGAs.  The test bed of 

choice is a smart sensor car.  The smart sensor car follows a wire.  The wire forms a track 

and produces a changing magnetic field.  This magnetic field is translated into a position 

measurement using sensors, signal conditioning, analog to digital converter and a neural 

network.  The position measurement is used by a PD controller that sends signals to the 

car motor and steering mechanism, and results in motion around the track.  Figure 1-1 

shows the main block diagram. 

 

Figure 1-1: Main Block Diagram 
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Smart sensor concepts translate the magnetic field into a position measurement.  

First, four inductors produce signals in response to the strength of the magnetic field in 

their area.  These signals go through a signal conditioning circuit and are then converted 

to digital numbers by the analog to digital (A/D) converters.  The four digital numbers 

become the four inputs to the artificial neural network on the Field Programmable Gate 

Array (FPGA).  The output of the neural network is position.  The controller uses this 

position to generate motor speed and steering servo commands for the electric car.  The 

electric car responds by moving around the track.  When the car moves, the sensors enter 

a different magnetic field, which results in a new position calculation and new steering 

command.  Figure 1-2 shows the system functional overview. 

 

Figure 1-2: System Functional Overview 
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1.2 Project History and Current Status 

The main component of the smart sensor is the artificial neural network.  In the 

summer of 2008, Dr. Hagan, Dr. Latino and Dr. Moreno-Armendariz wrote code to 

implement the neural network on an FPGA.  During the fall of 2008, Jeff Henson, Daniel 

Nash, Craig Noltensmeyer and Taylor York worked together to expand the code to work 

as a smart position sensor.  This work was part of a capstone design class at Oklahoma 

State University.  Their project used the output of two light sensors as inputs to the neural 

network.  The neural network calculated the position of an object in front of the sensors 

blocking the light.  Their project incorporated use of the on-board A/D converter and 

LCD display.  During the fall of 2009, the project was given to another group in the 

capstone design class.  The team included Amanuel Assefa, Kellen Butler and Stephanie 

Pickrel.  The team was successful in building a microcontroller board to communicate 

with the FPGA and generate speed and steering commands for the electric car.  The team 

also changed the code to read in four sensor readings by incorporating an off board 

multiplexer. 

The author’s contributions began during the fall of 2009 by assisting Amanuel 

Assefa with the Xilinx software to change the FPGA code to read in four sensors and 

control the multiplexer.  In the spring of 2010, the author began work on the rest of the 

smart sensor car.  This included development, fabrication and testing of the sensor board.  

The next contribution was the design, testing and fabrication of the motor control switch.  

After the individual components were ready, the author designed and fabricated the 

power system and board mounting fixtures.  Five cars were prepared for an academy for 
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high school students during summer 2010.  During the summer academy, the author 

assisted students with modules and equipment in the lab.  The author contributed to some 

of the writing for the summer academy documents.  The author instructed students about 

how to use the smart sensor cars and assisted them as needed.  After the summer 

academy, the author documented all system components.   

The current status of the project is that the smart sensor car is able to go around a 

simple track slowly.  The car has considerable steering oscillation.  The project reached 

this point before the summer academy. 
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1.3 Thesis Outline 

Chapter two covers the sensors and signal conditioning circuit.  It describes the 

magnetic field and sensors to detect it.  It also describes the signal conditioning circuit, 

defining the circuit components, how they were tested and the fabrication of the printed 

circuit board. 

Chapter three focuses on the A/D converter.  It describes the on-board hardware 

and off-board multiplexer operation, and the control of the A/D conversion.  The chapter 

also describes how the A/D conversion process was tested. 

Chapter four focuses on the artificial neural network.  It begins by providing basic 

information about the artificial neural network implemented on the smart sensor car.  

Next, It describes the implementation of the neural network showing timing diagrams for 

the process.  The chapter also discusses how the neural network was trained.  It also 

includes discussion about the support equipment required to make the FPGA neural 

network functional. 

Chapter five describes the PD controller.  The chapter describes how the 

controller is implemented and explains how the controller works.  The chapter also 

describes the modeling process and how the model was used to determine the controller 

parameters.  It also includes discussion about the support equipment required to make the 

controller functional. 
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Chapter six describes the electric car.  It describes the components that make up 

the electric car, including the motor control switch.  The chapter also describes the board-

mounting fixture and how the individual boards connect to each other. 

Chapter seven describes the summer soft sensor academy.  It provides an 

overview of the academy and states the academy objectives.  The chapter also describes 

the student activities. 

Chapter eight, Conclusions and Future Work, is the last chapter.  It provides a 

summary of the project and reiterates the author’s contributions.  The chapter ends with a 

description of possible future work. 
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CHAPTER II 
 

 

SENSORS AND SIGNAL CONDITIONING CIRCUIT 

 

This chapter discuses how the magnetic field coming from a wire is transformed 

into signals that can be sampled by analog to digital converters (A/D) and read into the 

FPGA neural network, as shown in Figure 2-1.  The chapter begins with an introduction, 

followed by a brief discussion of sensors, magnetic fields and how they interact.  Section 

two covers the basic design of the signal conditioning circuit.  Section three describes the 

steps in proto-board testing.  Section four is on the printed circuit board.  Section five 

summarizes the chapter. 
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Figure 2-1:  Main Block Diagram 
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2.1 Magnetic Fields and Inductors 

As the car moves along the wire track, it encounters a magnetic field coming from 

current moving through the wire.  Sensors detect the magnetic field and generate voltages 

that go to the signal conditioning circuit.  Figure 2-2 shows how these functions fit into 

the rest of the system.  This section describes the magnetic field and sensors that detect it. 

 

Figure 2-2:  System Functional Overview 
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The magnetic field is generated by passing a sinusoidal wave through a wire.  The 

generated field is a series of rings perpendicular to the path of the electrons moving 

through the wire, as shown in Figure 2-3. 

 

Figure 2-3:  Magnetic Field from Wire 

The Biot-Savart law describes the magnetic field generated by an electric current:  

� � �� ���
|�|	 , where B is the magnetic field, k is a constant, q is the charge moving 

through a wire, v is charge velocity and x is the distance from the wire to the point being 

observed.  In parallel wires, a charge moving in the first wire will cause a magnetic field.  

The magnetic field will cause a charge to move in the second wire.  The moving charge 

in the second wire can be measured as a voltage difference between the two ends of the 

second wire.  
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An experiment with a wire and inductor can help visualize the magnetic field.  

(see Figure 2-4)  The first wire is connected to a function generator.  This provides the 

moving charge in the first wire, which results in the magnetic field.  The inductor is 

placed in the magnetic field.  The voltage across the inductor is due to Faraday’s law of 

induction.  The voltage induced in a coil is proportional to the time rate of change of the 

magnetic flux through the coil.  The voltage difference is measured across the two leads 

of the inductor.  The field strength is proportional to the inverse square of the distance.  

The field strength is directional.  As the angle between the two wires increases, the 

magnetic induction effects are reduced.  Figure 2-4 shows an inductor on a wire.  In 

Figure 2-4, distance between the center of the wire and center of the inductor is zero and 

the angle between wire and inductor is ninety degrees. 

 

Figure 2-4: Inductor on a Wire 
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Figure 2-5 shows the voltage measured across an inductor as distance from the 

center of the inductor to the center of the wire is increased.  This displays an inverse 

square relationship, as predicted by the Biot-Savart law. 

 

Figure 2-5: Voltage Across an Inductor versus Distance 
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Figure 2-6 shows the voltage across the inductor as the angle between the 

inductor and wire is increased.  This shows that the field effect depends on the orientation 

of the wire, with parallel wires having the strongest inductive effects, as predicted by 

Faraday’s law.  If the changing magnetic field does not pass through the coils, no voltage 

will be induced. 

 

Figure 2-6: Voltage versus Angle 
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2.1.1 PNI Magneto Inductive Sensors 

One possibility for sensing magnetic fields is the application of PNI Magneto-

inductive position sensors, from PNI Sensor Corporation.  This sensor is designed to be 

sensitive enough to detect the Earth’s magnetic field.  The maximum allowed voltage 

between sensor terminals is 2.5 volts, unlike the inductors that experienced differences of 

over 25 volts between the terminals without obvious signs of damage.  Previous OSU 

students have used inductors for sensing magnetic fields.  The PNI sensor performance 

was compared against inductors.  The response of both sensors was normalized to unity.  

Figure 2-7 shows the percent of maximum signal strength versus distance in mm, 

measured from the center of the wire to the center of the sensor, for both sensors.  

 

Figure 2-7: Normalized Circuit Output Response versus Distance from Center of Sensor 
to Center of Wire 

The magneto-inductive sensors did not outperform the inductors.  Because 

inductors have been used in the past, are cheaper, more readily available, and more 

robust, inductors are the sensor of choice for this project. 
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2.1.2 Inductors  

A previous NATCAR team of OSU Tulsa students suggested using 33 millihenry 

inductors to sense a magnetic field from a wire carrying a 100 mA sine wave with a 75-

kilohertz frequency.  Experiments showed that these inductors have a slightly greater 

response at higher frequencies, with a maximum near 100 kHz.  33 millihenry inductors 

sensing a magnetic field from a wire carrying a 100-kilohertz sine wave are used for this 

project.  
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Figure 2-7 was created at a single sensor elevation above the wire.  The sensor 

stayed at the same vertical height and moved horizontally away from the wire.  To 

determine the most useful sensor elevation, multiple sets of data were collected at 

different elevations.  The normalized results are shown in Figure 2-8.  The sensors with 

greater elevation have a lower voltage output when directly over the wire, but this can be 

compensated by amplifying the signal.  The advantage of the greater elevation is that the 

signal drop-off with distance is much slower.  This gives the sensor a wider range of 

operation, and therefore fewer sensors will be needed.  Extensive testing showed that the 

sensors could be raised to 2.75 in.  This provided enough signal strength and a wide range 

of operation.  The final design used a sensor elevation of 2.75 inches. 

 

Figure 2-8:  Sensor Elevation Testing 

The peak-to-peak inductor voltage only indicates the distance from sensor to wire, 

but not the direction.  Applying the smart sensor concept allows the neural network to use 

multiple sensors in concert to determine the position of the wire.  Placing the inductors in 

a straight line increases the horizontal distance over which the smart sensor is effective.  
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Figure 2-9 shows four sensors laid out in a straight line.  Figure 2-8 shows that with a 

2.75-inch elevation, the sensor has a range of nearly three inches.  A spacing of two 

inches between inductors ensures the wire will not fall into a flat spot between inductor 

response curves.  Figure 2.10 shows four sensor responses at a spacing of two inches.  

The smart sensor car uses four sensors resulting in an effective measurement range of 

eight inches. 

 

Figure 2-9: Multiple Sensor Layout 

 

Figure 2-10: Sensor Responses 
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2.2 Signal Conditioning Circuit 

Figure 2-11 shows how the sensors and signal conditioning circuit fit into the 

functional overview.  The signal conditioning circuit makes the sensor output usable for 

the A/D converters.  

 

Figure 2-11: System Functional Overview 
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Figure 2-12 shows the major components on the sensor and signal conditioning 

board.  The signal conditioning board has four sensors.  There are only two A/D channels 

on the FPGA board.  The output of the four signal conditioning circuits are passed 

through an analog four to two multiplexer to allow four sensors to be read by the two 

A/D channels. 

 

Figure 2-12: Sensors and Signal Conditioning Macro Components 

The signal conditioning circuit accepts signals from the inductor and provides 

signals to the analog to digital converters.  The inductor provides a sinusoid waveform 

voltage oscillating at 100 kilohertz with a magnitude that changes with proximity to the 

wire.  The inductor output is never more than 100 millivolts peak to peak.  The A/D 

converter accepts DC signals in the range of 0.4 to 2.9 volts.  The signal conditioning 

circuit converts the sinusoidal voltage from the inductor to a DC value between 0.4 and 

2.9 volts. 
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Figure 2-13 shows the six individual components of the signal conditioning 

circuit.  The inductor output first goes through a voltage follower that prevents the sensor 

from being loaded by the rest of the circuit.  The non-inverting amplifier makes the signal 

large enough to work with.  The peak detector changes the 100 kHz sine wave into a DC 

signal.  The second voltage follower prevents loading of the peak detector.  The summing 

amplifier provides the appropriate gain and offset to match the input range of the A/D 

converters.  A first order low pass filter prevents high frequency noise from going into 

the A/D converters. 

 

Figure 2-13: Signal Conditioning Circuit Components 
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The first component in the signal conditioning circuit is a voltage follower.  The 

voltage follower goes between the inductor and remaining circuit to act as a buffer to 

prevent loading of the inductor.  The equation for a voltage follower is:
��
 � 
��. Figure 

2-14 shows an op amp in a voltage follower configuration. 

 

Figure 2-14: Voltage Follower 

For the first voltage follower, the input is a 100 mV p-p sine wave at 100 kHz.  

Figure 2-15 shows a Multisim Circuit to simulate a 100 mV p-p sine wave at 100 kHz. 

 

Figure 2-15: Multisim Simulation of a Voltage Follower 
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Figure 2-16 shows the oscilloscope reading from the voltage follower simulation.  

The input is channel 1, show on top.  The output is channel 2, shown on bottom.  Both 

channels are set to 20 mV per division, and the time scale is two microseconds per 

division.  This shows that the input matches the output for the voltage follower. 

 

Figure 2-16: Voltage Follower Simulation Oscilloscope 
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Figure 2-17 is a plot of the oscilloscope reading from testing the completed 

circuit, where the output is nearly a perfect match to the input.  Figures 2-16 and 2-17 

show that the simulated and actual oscilloscope readings are similar. 

 

Figure 2-17: Voltage Follower Physical Oscilloscope Data 

The voltage follower input is shown as a continuous signal to make its plot 

distinguishable from the output.  Both the input and output were digitally sampled.  The 

noise on the voltage follower input signal came from the physical connection between the 

function generator and oscilloscope. 
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The output of the voltage follower then goes to the input of a non-inverting 

amplifier.  The non-inverting amplifier ensures the incoming signal is large enough for 

the peak detector to work with.  Specifically, the non-inverting amplifier makes the signal 

large enough to overcome the turn-on voltage of the diode.  Figure 2-18 shows an op amp 

in a non-inverting amplifier configuration. 

 

Figure 2-18: Non-Inverting Amplifier 

The equation for a non-inverting amplifier is:
��
 � 
�� � �1 � �2 �1� �.  For the 

sensor board, R2 is a 150-kOhm resistor and R1 is a 6.8 kOhm resistor, and the resulting 

gain for the circuit is 23.1.  A non-inverting op amp with an input of 100 mV p-p and a 

gain of 23.1 should produce an output of about two volts peak to peak. 
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Figure 2-19 shows the oscilloscope output for simulating the non-inverting 

amplifier.  Channel 1 is the input on top and is still 100 mV p-p.  Channel 2 is on bottom.  

The volts per division for channel 2 has changed to 500 mV per division, which means 

the output signal is almost two volts peak to peak which is close to the expected value 

from the equation. 

 

Figure 2-19: Non-Inverting Amplifier Simulation Oscilloscope 
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Figure 2-20 shows the measured input and output of the physical circuit.  Figures 

2-19 and 2-20 show that the physical implementation matches the theoretical 

expectations from the simulation. 

 

Figure 2-20: Non-Inverting Amp Physical Oscilloscope 

Note that the voltage follower which has a gain of 1 had no phase shift, but the 

non-inverting amplifier with a gain over 20 had a noticeable phase shift.  The simulation 

predicted this phase shift, and the physical response verified the model.   
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The output of the non-inverting amplifier is fed into a peak detector circuit.  The 

peak detector circuit converts the sine wave signal into a DC signal.  Figure 2-21 shows a 

negative peak detector. 

 

Figure 2-21: Negative Peak Detector 

The time constant for the RC circuit is � � � � �.  For the sensor board, R is 61.9 

kOhms and C is 0.1 µFarads, so ��� �  0.1 � 10 ! " 61.9 � 10% � 6.2 � 10% or 

6.2milleseconds.  The input wave period is 0.1 � 10 & seconds.   
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For tau values that are large with respect to the frequency of the wave they filter, 

the output of a peak detector circuit can appear as a DC signal.  Figure 2-22 shows the 

oscilliscope output for the simulation. 

 

Figure 2-22: Peak Detector Simulation Oscilloscope 
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Figure 2-23 shows the measured signals from the physical circuit.  Figures 2-22 

and 2-23 show that the simulated outcome and the measured outcome of the physical 

circuit are close. 

 

Figure 2-23: Peak Detector Physical Oscilloscope 

The output of the peak detector is passed to the input of the second voltage 

follower.  The second voltage follower is used to prevent loading of the peak detector 

circuit.  The output of the second voltage follower is connected to one input of a 

summing amplifier.  The summing amplifier is used to adjust the voltage to a range of 0.4 

to 2.9 volts.  A summing amplifier can add together many inputs and apply different 

gains to those inputs.  The equation for a summing amplifier is  


��
 � '1 � �( � )
*
�*

� 
+
�+

� , � 
�
��

- 
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The summing amplifier for the signal conditioning circuit has two inputs.  Figure 

2-24 shows the summing amplifier for the signal conditioning circuit. 

 

Figure 2-24: Summing Amplifier with Two Inputs 

The first input, V1, comes from the second voltage follower.  The second input, 

V2, comes from a voltage divider.  The voltage divider input provides an offset to the 

signal.  Figure 2-25 shows a voltage divider. 

 

Figure 2-25: Voltage Divider 
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The equation for a voltage divider is: 


+ � 
* � ) �+
�* � �+

- 

For the voltage divider, R2 is 1.8 kOhms and R1 is two kOhms.  The input to the 

voltage divider is -5 volts, the output of the voltage divider is -2.37 volts.  The gain for 

the V2 is -1*26.7k/130k or about -0.21.  This means the voltage divider will contribute -

0.21 * -2.37 volts or 0.4977 volts to the output.  The summing amplifier signal gain is 

26.7k/4.64k or 5.75.  Figure 2-26 shows the summing amplifier simulation circuit. 

 

Figure 2-26: Summing Amplifier Simulation Circuit 



33 

 

Figure 2-27 shows the simulation oscilloscope for the summing amplifier.  Figure 

2-28 shows the physical oscilloscope readings for the summing amplifier.  

 

Figure 2-27: Summing Amplifier Simulation Oscilloscope 

 

Figure 2-28: Summing Amplifier Physical Oscilloscope 
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The output of the summing amplifier is passed to the output filter.  The purpose of 

this filter is to reduce high frequency noise on the circuit output, which is mostly a DC 

analog voltage.  Figure 2-29 shows the signal conditioning circuit output filter.  The cut 

off frequency in hertz is: ./ � *
+012 , where R is a 15-kOhm resistor and C is a 3,300 pF 

capacitor, and ./ � 3.2 �45.  Figure 2-29 shows an output filter and Figure 2-30 shows 

the frequency response. 

 

Figure 2-29: Output Filter 

 

Figure 2-30: Frequency Response of Filter 
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In summary, the circuit has six main components.  The first voltage follower 

prevents loading of the inductor.  The non-inverting amp makes the signal large enough 

to work with.  The peak detector smoothes the sine wave into a DC signal.  The second 

voltage follower prevents loading of the peak detector.  The inverting amp and voltage 

divider offset and amplify the signal to fill the range of 0.5 to 2.9 volts to match the input 

range of the A/D converters.  The filter reduces noise.  
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2.3 Proto-Board Testing 

The circuit was tested in proto-board form before finalizing the printed circuit 

board design.  This was the first hardware testing to validate the circuit models, and 

helped ensure proper component selection.  
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2.3.1 General Concerns for Proto-Board Testing 

One primary goal of the proto-board testing phase was to test physical responses 

for the actual components intended for the final design.  Printed circuit board layout, 

ordering, manufacturing, shipping, populating and testing take a considerable amount of 

time.  A misplaced wire or wrong component can make this process take even longer.  

Proto-Board testing helps reduce the likelihood of these mistakes.  
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2.3.2 Fixture Development 

The test bench fixture holds the sensors and wire for taking readings.  The 

prototype-testing fixture as constructed to allow precision consistent movements for the 

sensors.  The sensors are moved laterally with respect to the wire while maintaining a set 

elevation.  The fixture was built to allow testing of different sensor elevations and 

different wire angles with respect to the sensors.  

Figures 2-31 and 2-32 show the test fixture.  The test fixture helped generate very 

consistent results.  Consistent results are important in choosing the correct parameters in 

the signal conditioning circuit.  Consistent results also help in debugging other problems 

from the rest of the smart sensor car system.   

 

Figure 2-31: CAD Drawing of Test Fixture 
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Figure 2-32: Photo of Test Fixture  
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2.3.3 Proto-Board Testing Results 

The next important experiment helped select an appropriate op amp.  The op amp 

is the basis of most components in the signal conditioning circuit.  The 741 chip is the 

traditional op amp of choice.  Slew rate is the amount the output voltage can change in set 

amount of time.  The 741 op amp has a slew rate of about half a volt per microsecond.  

For some of the experiments, the 741 op amp slew rate was not sufficient, which resulted 

in degraded performance.  Figure 2-33 shows the results of an insufficient slew rate.  A 2-

volt peak-to-peak 75 kHz sine wave is the input signal for a voltage follower circuit using 

a 741 op amp.  The output of the voltage follower was a sharp saw toothed wave form.  

The output waveform is about four volts peak-to-peak.  The saw tooth appearance is 

because the op amp is responding as fast as it can to the input, which is not fast enough to 

show the actual sine wave. 

 

Figure 2-33: Scope Reading for Amplifier Circuit, gain of 2.99 
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Going to the device with a higher slew rate resolves this issue.  The TL082 op 

amp has a slew rate of 16 volts per microsecond.  Figure 2-34 is from an input waveform 

over ten volts peak-to-peak and has the same period.  The voltage follower was 

implemented using a TL 082 op amp.  Note the difference in the shape of the waveforms. 

 

Figure 2-34: Output of TL082 Op-Amp in Voltage Follower Configurations 

In order to accommodate the input of the first voltage follower and the output of 

the summing amplifier, both positive and negative rails are required for each op amp 

chip.  This will require positive and negative voltage supplies for the sensor board. 
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2.4 Printed Circuit Board Development 

Printed circuit boards increase circuit density, reduce noise and look professional.  

National Instruments’ provides two programs to do circuit modeling and printed circuit 

board design.  First, a circuit is laid out and simulated in Multisim, and then Ultiboard is 

used for printed circuit board design. 

Printed wiring boards behave differently than simulations and protoboards.  This 

can be due to the differences between surface mount and through hole components, as 

well as electromagnetic interference between traces on the printed wiring boards.  After 

manufacture, testing must be performed to verify that design specifications are still met. 

During prototype testing, a single signal conditioning circuit would cover an 

entire bread board.  Using a printed circuit board allowed testing of four signal 

conditioning circuits and the multiplexer could be placed on a single small board.  The 

A/D converter did not load the output of the signal conditioning circuit during bread 

board testing, but it did load the output of the multiplexer during printed wiring board 

testing.  This was resolved by passing the multiplexer outputs through an off board 

voltage follower before going to the A/D converters.  The second board design 

incorporated the voltage followers. 

Initial car designs called for a separate board that would regulate the battery 

output down to the needed voltage for the sensor board.  The first board design showed 

that there was enough un-used board space to incorporate the separate power board onto 
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the sensor board.  The second board design incorporated linear voltage regulators to 

power the sensor board and FPGA board, as they both required ground and five volts 

power.  Testing of the second board showed that the FPGA current load caused excessive 

noise on the sensor board circuits.  Large decoupling capacitors and decade decoupling 

capacitors were not successful in reducing the noise to an acceptable level.  Isolating the 

FPGA power by installing a separate voltage regulator away from the sensor board did 

reduce the noise to an acceptable level.  The third sensor board design only powered the 

sensor board from the on board regulators. 

Figure 2-35 shows the sensor board layout.  This image does not include the top 

and bottom ground planes.  This shows the four identical circuits used to condition the 

output of four inductors.  The output of each circuit is fed into a multiplexer. 

 

Figure 2-35: Sensor Board Layout 
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Figure 2-36 shows a photograph of the completed sensor board.  The only 

connection to the printed circuit board is the RJ45 header in the upper left corner.  

Positive power, negative power, A/D grounds, the output signals and mux select signals 

go through the RJ45 connector. 

 

Figure 2-36: Sensor Board Photo 

One way to ensure consistent results was to adjust the current flowing in the track 

wire to give a specific voltage from one of the circuit outputs.  The right hand side of the 

sensor board has a black mark and the number 2.5, as shown in Figure 2.36.  The black 

mark shows where the wire should pass under the board, and 2.5 is the voltage that circuit 

should output.  Tuning the amplitude of the sine wave on the signal generator that drives 

the track wire so that the output of the signal conditioning circuit produces 2.5 volts 

produces consistent sensor board results. 



45 

 

Figure 2-37 shows a photograph of the completed sensor board with labels. 

 

Figure 2-37: Labeled Sensor Board Photo 
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Figure 2-38 shows the ADC4 layout.  This layout shows connections on top and 

bottom, as well as the silk screen text to help identify components.  This layout design 

focused on allowing ample area between components to make soldering easier.  This 

layout avoids traces making right angles, which could cause noise.  The signal traces 

never pass from the top copper layer to the bottom copper layer.  This helps reduce noise 

on the signal. 

 

Figure 2-38: ADC4 Layout 

Sensor 4 
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Figure 2-39 shows where the individual components of the signal conditioning 

circuit fall onto the board layout. 

 

Figure 2-39: Sensor 4 Photo 

Sensor 4 
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Figure 2-40 shows the a photograph of where the individual components of the signal 

conditioning circuit fall onto the board layout with the components labeled. 

 

Figure 2-40: Sensor 4 Photo with Labels 

Sensor 4 
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2.5 Summary of Input Signal Capture Circuit 

The sensors and signal conditioning circuit provide a path for information about 

the magnetic field to travel to the A/D converter.  The sensors and components for the 

signal conditioning board are common and readily available from local vendors and can 

be used with prototyping boards.  Inductors are a good choice for sensing a magnetic 

field because they are readily available, have been used for this application before, and 

their output can be measured as a voltage.  Proto-board testing reduced the likelihood of 

problems during printed wiring board development.  Printed wiring boards are the 

method of choice for the final implementation of the signal conditioning circuit.  Printed 

wiring boards presented unique challenges there were not seen during earlier design 

phases. 
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CHAPTER III 
 

 

ANALOG TO DIGITAL CONVERSION 

 

As the Car moves along the magnetic field track, sensors detect the magnetic 

field.  The sensors signals go through a signal conditioning circuit which prepares analog 

sensor readings for the Analog To Digital (A/D) converters on the FPGA board.  The 

A/D converters change the analog signals into digital numbers for the neural network to 

use as inputs for the position calculation.  The position calculation is fed to the PD 

controller, which generates steering angle and speed commands for the car so it can 

continue moving along the track.  This chapter focuses on the A/D converter.  Figure 3-1 

shows the main block diagram. 
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Figure 3-1: Main Block Diagram 

Figure 3-2 shows how the A/D converter fits into the system functional overview. 

 

Figure 3-2: System Functional Overview 
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3.1 Introduction, Purpose and Overview of Analog to Digital Hardware and Software 

Interface 

The A/D converter converts analog signals into digital numbers.  The sensor 

board outputs analog signals.  The neural network on the FPGA accepts digital numbers.  

The A/D conversion changes the available output of the sensor board into the acceptable 

inputs of the neural network.  The rest of this chapter describes the hardware required for 

this process and the intelligence that controls it. 
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3.2 Hardware 

Figure 3-3 shows the five major pieces of hardware required for the A/D 

conversion.  The FPGA is the one piece of hardware that will hold all the intelligence to 

control everything else.  The FPGA drives the multiplexer on the signal conditioning 

circuit with a single channel.  The FPGA communicates with the pre-amplifier and A/D 

converter chip with a data bus.  The signal conditioning circuit is the hardware that 

produces the input voltages which are key signals for the operation of the smart sensor 

car.  This section describes the major pieces of the hardware. 

 

Figure 3-3: Hardware Overview 
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3.2.1 Input Voltage  

The input voltages come from the signal conditioning circuit, pass through a 

multiplexer and go to the pre-amplifier.  The input voltages tell the rest of the system 

about the magnetic field the sensors are experiencing.  These voltages are translated into 

the car position and used to steer the car.  Figure 3-4 shows the major components that 

produce the input voltages. 

 

Figure 3-4: Input Voltage Major Components 
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Four signal conditioning circuits produced four signals.  A multiplexer with two 

outputs allows the FPGA to choose which two signals are input voltages to the two pre-

amp channels at any time.  The FPGA chooses with the MUX_SELECT channel.  Figure 3-5 

shows the relationship between the pre-amplifier channels, input voltages and 

MUX_SELECT channel with a timing diagram. 

 

Figure 3-5: Mux Timing Diagram 

Note that when MUX_SELECT goes from low to high, there is a bit of transition 

time before the input voltages have settled to sensors three and four. 
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3.2.2 Pre-Amplifier  

Figure 3-6 shows how the pre-amplifier ties to the other hardware components.  

The LTC6912-1 programmable inverting pre-amplifier by Linear Technologies comes on 

the FPGA board.  The purpose of the pre-amplifier is to ensure the input signals 

completely fill the input range of the A/D converter chip. 

 

Figure 3-6: Pre-Amplifier Major Components 

The pre-amplifier communicates with the FPGA through the data bus using five 

different channels.  The inverting pre-amplifier has eight possible gain settings, ranging 

from 0 to -100.  The A/D converter chip can only accept signals between -0.4 and -2.9 

volts.  The pre-amplifier is in place to magnify signals if needed.  Excessive signals that 

exceed this range saturate the A/D converter.  This is why increased gain is only needed 

for smaller input signals  For the smart sensor car project, the input voltages are 



57 

 

sufficiently large to fill the input range of the A/D chip, and a the gain of -1 is used.  This 

means that the pre-amplifier inverts the voltage without changing the magnitude before 

passing the signals on to the A/D chip.  By making the input voltages coming from the 

signal conditioning circuit as large as possible, effects of noise on the input signals are 

minimized. 
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3.2.3 Converter Chip  

Figure 3-7 shows how the A/D converter chip connects with the other hardware 

components.  The LTC1407A-1 dual channel A/D converter by Linear Technologies 

comes on the FPGA board.  The A/D converter converts the two Input voltages into two 

14 bit two’s complement numbers.  The A/D converter chip uses the data bus to 

communicate with the FPGA using three channels.   

 

Figure 3-7: A/D Converter Chip Major Components 

The A/D conversion takes time.  The serial data transmission also takes time.  

When the A/D converter receives the command, it takes a sample of the current input 

voltages, then serially transmits the results of the previous data conversion.  The current 

sample is converted while the previous sample is transmitted. 
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3.2.4 Data Bus  

The FPGA uses the data bus to get information to and from the other devices.  

The FPGA has intelligence to control the other devices on the board.  The FPGA has a 

limited number of pins it can use to communicate with other devices.  The FPGA selects 

one device to communicate with and de-selects the remaining devices.  Then the FPGA 

uses a shared set of communication lines to send information to all the devices, but only 

the selected device responds to the communication.  The hardware used for device 

selection and communication is the data bus.  The data bus has multiple channels.  The 

FPGA uses chip select commands to identify which device it wants to work with, while 

turning off other devices.  This allows the FPGA to use the same pins to communicate 

with a device without interference or contention from other devices.  To further reduce 

the number of channels required for communication, serial communication is used when 

possible. 

Figure 3-8 shows the data bus connections for the pre-amplifier.  The pre-

amplifier and FPGA communicate using the data bus using five different signals.  The 

first four are inputs to the pre-amplifier, the last one is an output from the pre-amplifier.  

Pre-amp enable  tells the pre-amplifier when to load new gains for two channels.  

Master out slave in  tells the pre-amplifier what the gains for each channel should be.  

Peripheral clock  provides the timing for the pre-amplifier to read in the gains.  Pre-

amp shut down  is used shut down or reset the pre-amplifier.  Pre-amp gain echo  is the 

channel the pre-amplifier uses to echo back the gain settings to the FPGA.  Pre-amp 

shut down  and pre-amp enable load  gain only have two states.  Pre-amp gain echo  
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is a serial transmission of eight bits.  Pre-amplifier specific channels connect the pre-

amplifier to the FPGA.  The pre-amplifier specific channels are pre-amp shut down , 

pre-amp enable load gain  and pre-amp gain echo .  Signals that are shared with 

other devices include the peripheral clock  and master out slave in .  The 

peripheral clock  is used by peripheral devices uses for timing their serial 

communications.  Master out slave in  is the channel the FPGA uses to serially 

communicate the data to peripheral devices. 

 

Figure 3-8: Data Bus Connections for Pre-Amplifier 

Figure 3-9 shows the data bus connections used with the A/D converter.  The A/D 

converter chip uses the data bus to communicate with the FPGA using three channels.  

The only A/D converter chip specific channel is A2D converter start , which tells the 
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A/D converter when to capture a sample and read off the previous conversion.  The two 

shared channels are the peripheral clock  and master in slave out .  Master in 

slave out  is the channel the FPGA uses to serially receive information from the 

peripheral devices.  After the A/D chip receives the A/D converter start command, it 

captures a sample and reads off the previous conversion.  The previous conversion 

consists of two 14 bit two’s complement numbers.  These numbers are transmitted one bit 

at a time from the A/D converter to the FPGA over the master in slave out channel on the 

data bus. 

 

Figure 3-9: Data Bus Connections for A/D Converter 
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3.2.5 FPGA  

Field Programmable Gate Arrays (FPGA) are re-programmable hardware.  The 

FPGA board used for this project came with the Xilinx XC3S500E Spartan-3E FPGA 

chip.  The FPGA has three main tasks.  First, it controls the A/D conversion.  Second it 

uses a neural network to calculate the car position.  Third, it transmits the position to the 

PD controller.  The FPGA was a good choice for this project for two reasons.  First, it can 

do the needed tasks at processing speeds that allow stable control of the smart sensor car.  

Second, the FPGA circuitry is designed using code and can be quickly re-programmed.  

This helped reduce development time.  Figure 3-10 shows the FPGA circuit design cycle. 

 

Figure 3-10: FPGA Circuit Design Cycle 

The time between finishing changes to the code and evaluating circuit 

performance can be as little as a few minutes.  This is much preferred to manually 

changing circuit wiring by hand or sending away for a newly fabricated chip.  This 

allowed the smart sensor car to be developed in time for use with the summer academy. 
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3.3 Finite State Machine 

Figure 3-11 is the system functional overview that shows the required process to 

steer the car around the track.  The PD controller gives the car the steering command.  

The PD controller needs the position calculation from the neural network to know how to 

steer the car.  The neural network needs the digital sensor readings from the A/D 

converter to calculate the position.  The A/D converter needs analog sensor signals from 

the signal conditioning circuit to concert to digital numbers.  The signal conditioning 

circuit needs the voltages from the sensors to produce the analog signals.  The sensors 

need the magnetic field from the track to produce a voltage.  The magnetic field strength 

will depend on the motion of the car, which was determined by the previous steering 

command from the PD controller. 

 

Figure 3-11: System Functional Overview 
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For the car to follow the wire, the process needs happen in a sequence.  The PD 

Controller initiates the sequence by sending a request for a new position to the master 

Finite State Machine (FSM), then waits for a response.  When the master FSM responds 

with a position, the PD controller calculates the steering command and requests another 

position.  Figure 3-12 shows the PD controller process. 

 

Figure 3-12: PD Controller Process 
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When the master FSM receives the request from the PD controller, it goes through 

a series of tasks.  The first task is to command the A/D FSM to start a conversion.  The 

master FSM waits for a response from the A/D FSM and then completes its other tasks.  

Figure 3-13 shows the master FSM process and gives an overview of the A/D FSM. 

 

Figure 3-13: Master FSM Process Overview 

After receiving the start command, the A/D FSM will initialize the hardware, take 

a reading from the first two sensors, switch the multiplexer, take a reading from the 

second two sensors, flag the master FSM that the conversion is complete and return to the 

state IDLE .  The remainder of this section focuses on the A/D FSM. 
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3.3.1 Master FSM Initiates A/D Conversion  

The code from the master FSM to initiate the A/D conversion is below.  The code 

is written in VHDL which is a hardware description language.  The 

rs232_receiver_stb  bit is driven by the transmission from the PD controller and lets 

the master FSM know that the request transmission is complete.  Two of the signals drive 

the A/D FSM.  The first is ce_amp that lets the A/D FSM initialize the hardware.  The 

second is START_ADC which allows the A/D FSM to read the four sensors.  ADC_DONE 

comes from the A/D FSM and lets the master FSM know when the conversion is 

complete.  The code for the master FSM is in Appendix A, and below is a copy of the 

first four states that start the A/D FSM. 

/////////////////////////////////////////////////// /////////////////// 
MASTER FINITE STATE MACHINE CODE START 
begin 
 when IDLE => 
  next_state <= WAIT_RECEIVE; 
 
 when WAIT_RECEIVE => -- wait for RS232 data 
  if (rs232_receiver_stb = '1') then -- data done 
   next_state <= START_ADC; 
  else 
   next_state <= WAIT_RECEIVE; 
  end if; 
 
 when START_ADC => 
  ce_amp <= '1'; --active high 
  start_conv <= '1'; 
  next_state <= ADC; 
 
 when ADC => 
  if ADC_DONE = '1' then  
   ce_amp <= '0'; --active low 
   start_conv <= '0'; 
   next_state <= ADC2FIXED; 
  else 
   next_state <= ADC; 
  end if; 
MASTER FINITE STATE MACHINE CODE STOP 
/////////////////////////////////////////////////// /////////////////// 
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Figure 3-14 shows the initial states of the master FSM.  The master FSM will loop 

in the state WAIT_RECEIVE until the PD controller has completed its request.  After that, 

it will pass through the state START_ADC which sends the command to the A/D FSM to 

begin the conversion.  Then the master FSM will loop in the state ADC until the A/D FSM 

completes the conversion. 

 

Figure 3-14: Master FSM Initial States 
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3.3.2 A/D FSM Initializes Hardware  

Figure 3-13 shows that after the A/D FSM receives the start command from the 

master FSM, it leaves the state IDLE .  Figure 3-6 shows the pieces of hardware the A/D 

FSM initializes.  The multiplexer is set to read the first two sensors, the pre amp and 

converter chip are turned on.  Next, the gain settings are loaded into the pre-amplifier.  

The variable MUX_SELECT is tied to the multiplexer address.  MUX_SELECT = 0 will read 

sensors 1 and 2.  AMP_CS is tied to pre-amp enable load gain  channel of the data bus.  

When AMP_CS is high, the pre-amplifier and A/D converter chips are sleeping and will not 

accept changes to the gain settings.  MOSI is connected to the master out slave in  

channel of the data bus.  SCK drives the peripheral clock .  In this code, pre-amp shut 

down and pre-amp gain echo  are not shown.  Pre-amp shut down  is set to a constant 

and pre-amplifier gain echo  back to the FPGA is not recorded.  Figure 3-15 is the 

A/D FSM state map corresponding to the code to initialize the hardware.  The A/D FSM 

code is in Appendix B.  The first nine states load the gains for the pre-amplifier. 

/////////////////////////////////////////////////// /////////////////// 
ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO INITILIZE 
HARDWARE START 
 
begin 
 when IDLE => 
  MUX_SELECT <= '0'; 
  AMP_CS <= '1'; 
  counter <=0; 
  if ce_amp ='1' then 
   next_state <= START; 
  else 
   next_state <= IDLE; 
  end if; 
 
 when START => 
  AMP_CS <= '0'; --turn amp on 
  next_state <= START2; 
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  index1 <= 7; -- 8 bit value 
 
 when START2 => 
  MOSI <= gain(index1); 
  next_state <= HI; 
  bit_count <= 0; 
 
 when HI => 
  SCK <= '1'; 
  counter <= counter +1; 
  if counter = 2 then 
   next_state <= HI_DUMMY; 
  else 
   next_state <= HI; 
  end if; 
 
 when HI_DUMMY => 
  counter <=0; 
  bit_count <= bit_count + 1; 
  index1 <= index1-1; 
  next_state <= LO; 
 
 when LO => 
  SCK <= '0'; 
  counter <= counter +1; 
  if counter = 2 then 
   next_state <= LO_DUMMY; 
  else 
   next_state <= LO; 
  end if; 
 
 when LO_DUMMY => 
  counter <=0; 
  if bit_count = 8 then 
   next_state <= FINISH; 
  else 
   MOSI <= gain(index1); 
   next_state <= HI; 
  end if; 
 
 when FINISH => 
  next_state <= IDLE_AD; 
  AMP_CS <='1'; 
  SCK <= '0'; 
  MOSI <= '0'; 
 
 when IDLE_AD => 
  if start_conv ='1' then 
   next_state <= START_AD; 
  else 
   next_state <= IDLE_AD; 
  end if; 
 
ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO INITILIZE 
HARDWARE STOP 
/////////////////////////////////////////////////// /////////////////// 
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3.3.2.1 Set Multiplexer to Read the First Two Sensors.  When the device is 

powered on, it will begin in the IDLE  state.  In the IDLE  state the multiplexer is set to read 

the first two sensors and the pre-amp and A/D converter chip are put to sleep with the 

line of code, AMP_CS <= '1' .  This means that the pre-amplifier and A/D converter chip 

are dormant and will not respond to commands.  The A/D FSM will loop in the state 

IDLE  until ce_amp is set to 1 by the master FSM.  Figure 3-14 shows that the master FSM 

sets ce_amp 1 in the state START_ADC. The dashed line on the left signifies that after all 

the other states in the A/D FSM are complete, the machine returns to IDLE . 

 

Figure 3-15: A/D FSM State Map for Initializing Hardware 

3.3.2.2 Turn on Pre-Amp and Converter Chip.  During the state START, the A/D 

FSM wakes up the pre-amplifier and A/D chip and with the command, AMP_CS <= '1' .  
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3.3.2.3 Load Gain Into Pre-Amp.  Loading the gain into the pre-amplifier is a 

serial operation.  This requires the A/D FSM to load the gain bits one at a time onto the 

master out slave in  channel of the data bus, and then cycle the peripheral clock.  The 

FPGA clock is too fast for the peripheral devices, so the A/D FSM goes through extra 

states to increase the peripheral clock period.  The pre-amplifier gain is an eight bit 

variable.  The gain transmission starts with the most significant bit.  The states, IDLE  and 

START are used in setting the multiplexer and turning on the pre-amplifier and A/D 

converter chip.  These states are also used to initialize the two variables counter , index1  

and bit_count .  These variables are integers and help control the timing for the serial 

communication between the FPGA and pre-amplifier. 

The A/D FSM waits in the state IDLE  until the master FSM sets ce_amp high.  

During IDLE , the multiplexer is set to read the first two signals, the pre-amplifier and A/D 

chip are put to sleep, and counter  is reset to 0.  After ce_amp goes high, the A/D FSM 

transitions to START where it wakes up the pre-amplifier and A/D chip and initializes 

index1  to 7.  The A/D FSM automatically goes to the next state, START2, where MOSI is 

set to the most significant bit of the gain.  The variable bit_count  is set to zero as well.  

The A/D FSM automatically goes to the next state, HI .  In this state, it will set the 

peripheral clock high and loop back into itself until the variable counter  has been 

indexed to two.  Then the A/D FSM will transition to HI_DUMMY where counter  is reset 

to 0, bit_count  is incremented, and index1  is decremented.  The A/D FSM will 

automatically go to the next state LO.  In LO, the peripheral clock is set low and the A/D 

FSM loops back into LO until counter is incremented to two.  Next, the A/D FSM goes to 
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the state LO_DUMMY, where counter  is reset to 0.  The variable bit_count  drives A/D 

FSM to either set MOSI to the next bit of gain and make another cycle through the states 

HI , HI_DUMMY, LO and LO_DUMMY, or go to FINISH .  If bit_count  is eight, the A/D FSM 

will go to FINISH , put the pre-amplifier back into a dormant state and set the peripheral 

clock low.  The A/D FSM will automatically go from FINISH  to IDLE_AD. 
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3.3.3 Read Sensors 1 and 2  

After the A/D FSM has initialized the hardware, it passes through the state 

FINISH  and waits in the state IDLE_AD for the master FSM to set the variable 

start_conv  high.  Figure 3-14 shows that this happens in the master FSM state 

START_ADC, so the A/D FSM can continue.  Figure 3-13 shows an overview of the A/D 

FSM.  The code for the remainder of the A/D process makes a large loop.  That loop 

includes steps to read the first two sensors, switch the multiplexer, read the second two 

sensors and set the flag ADC_DONE high.  The variable MUX_SELECT shows if the A/D 

conversion is recording the first or second pair of sensors.  Explanations of the code are 

in the following sub sections.  As mentioned in section 3.2.3, the A/D chip will transmit 

the previous reading while it converts the current sample.  The variable prime  is high if 

the current transmission being clocked in is old data or low if the desired reading is being 

recorded.  Figure 3-16 is an overview of the relationship of prime , MUX_Select  and 

sensor readings. 
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Figure 3-16: A/D FSM Overview for Reading Sensors 

The states next eight states in the A/D FSM complete the tasks listed in Figure 3-

16.  Figures 3-17 through 3-19 show corresponding the state transition maps. 

/////////////////////////////////////////////////// /////////////////// 
ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO READ SENSORS 
AND SIGNAL COMPLETION START 
 
when FINISH => 
 next_state <= IDLE_AD; 
 AMP_CS <='1'; 
 SCK <= '0'; 
 MOSI <= '0'; 
 
when IDLE_AD => 
 if start_conv ='1' then 
  next_state <= START_AD; 
 else 
  next_state <= IDLE_AD; 
 end if; 
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 CONV <= '0'; 
 prime <= '1'; 
 MUX_SELECT <= '0'; 
 
when START_AD => 
 SCK <= '0'; 
 CONV <= '1'; 
 counter <= -1; 
 index1 <= 13; -- 14 bit value 
 index2 <= 13; -- 14 bit value 
 next_state <= HI_AD;  
 
when HI_AD =>  
 SCK <= '1'; 
 CONV <= '0'; 
 counter <= counter +1; 
 next_state <= LO_AD; 
 
when LO_AD => 
 SCK <= '0'; 
 if prime = '0'  and mux_sel = '0' then   -- REAL A DC data 
  if(counter > 2 and counter < 17) then     
   ADC1(index1)  <= SPI_MISO; 
   index1 <= index1 -1; 
  elsif(counter > 18 and counter < 33) then 
   ADC2(index2)  <= SPI_MISO; 
   index2 <= index2 -1;    
  end if; 
 
  if counter = 34 then -- DONE 
   next_state <= FINISH_AD; 
  else 
   next_state <= HI_AD; 
  end if; 
 
 elsif prime = '1' and mux_sel = '0' then    -- pri me = 1  
  if counter = 34 then -- done priming 
   prime <= '0'; 
   next_state <= START_AD; -- start real data 
  else 
   next_state <= HI_AD; 
  end if; 
 
 elsif prime = '0' and mux_sel = '1' then   -- REAL  ADC data 
  if(counter > 2 and counter < 17) then     
   ADC3(index1)  <= SPI_MISO; 
   index1 <= index1 -1; 
  elsif(counter > 18 and counter < 33) then 
   ADC4(index2)  <= SPI_MISO; 
   index2 <= index2 -1;    
  end if; 
 
  if counter = 34 then -- DONE 
   ADC_DONE <= '1'; 
   next_state <= FINISH_AD; 
  else 
   next_state <= HI_AD; 
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  end if; 
 
 elsif prime = '1' and mux_sel = '1' then    -- pri me = 1  
  if counter = 34 then -- done priming 
   prime <= '0'; 
   next_state <= START_AD; -- start real data 
  else 
   next_state <= HI_AD; 
  end if; 
 end if; 
 
when FINISH_AD => 
 counter <= 0; 
 MUX_counter <= 0; 
 SCK <= '0'; 
 CONV <= '0'; 
 if MUX_SELECT = '0' then 
  prime <= '1'; 
  MUX_SELECT <='1'; 
  next_state <= MUX_SWITCH_1; 
 else 
  next_state <= IDLE;  
 end if; 
 
when MUX_SWITCH_1 => 
 MUX_counter <= MUX_counter + 1; 
 next_state <= MUX_SWITCH_2; 
 
when MUX_SWITCH_2 => 
 if MUX_counter = 100 then 
  next_state <= START_AD; 
 else 
  next_state <= MUX_SWITCH_1; 
 end if; 
 
when others =>  
 MUX_SELECT <= '0'; 
 mux_sel <= '0'; 
 SCK <= '0'; 
 CONV <= '0'; 
 AMP_CS <= '1'; 
 MOSI <='0'; 
 next_state <= IDLE; 
end case; 
 
end process; 
 
ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO READ SENSORS 
AND SIGNAL COMPLETION STOP 
/////////////////////////////////////////////////// /////////////////// 
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Figure 3-16 gives an overview of the A/D FSM state maps.  Figures 3-17 and 3-

18 show the state maps corresponding to the A/D FSM code for input voltage conversion.  

The key state is LO_AD.  In LO_AD, the A/D FSM will decide if the incoming data should 

be recorded and how it should be stored. 

 

Figure 3-17: A/D FSM for Reading Sensors Map 1 

3.3.3.1 Cycle Through one set of Old Conversions.  Section 3.3.2.3 concluded 

after the A/D FSM passed through the state FINISH  and into the state IDLE_AD.  The A/D 

FSM begins the process of the data conversion when it leaves that state IDLE_AD.  This 

happens when the variable conv  is high.  The master FSM sets this variable high in the 

state START_ADC. 
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In the A/D FSM state IDLE_AD, the peripheral clock is set low, the variable prime  

is set high, the multiplexer is set to read the first two sensors, and the variable CONV is set 

low.  CONV is connected to the data bus channel A2D Converter Start .  When it is low, 

the A/D chip will transmit its previous conversion, changing bits in time with the 

peripheral clock.  When CONV is set high, the A/D chip captures a new sample and will 

begin transmitting the previous sample conversion. 

After the A/D FSM leaves IDLE_AD, it goes to the state START_AD.   In START_AD, 

the peripheral clock stays low, the variable CONV goes high, causing the A/D chip to take 

a new sample.  The integer variables counter , index1  and index2  are initialized.  

Reading two samples from the A/D chip requires 34 peripheral clock cycles.  The state 

HI_AD will index the variable counter , every time the A/D FSM enters that state.  

Because the peripheral clock has not been cycled yet, counter  is set to -1 in the state 

START_AD so that it will be 0 after leaving HI_AD the first time and go to 1 only after the 

peripheral clock has been cycled once.  The A/D chip generates a pair of 14 bit two’s 

complement numbers, one for each sample.  When appropriate, these samples will be 

stored as one of four ADC variables.  The ADC variables store the 13th bit first and bit 0 

last.This is why index1  and index2  are set to 13. 

After the A/D FSM leaves START_AD it automatically goes to HI_AD.  In HI_AD, 

the peripheral clock is set high, the variable CONV is set low and the variable counter  is 

incremented. 
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The A/D FSM enters the state LO_AD automatically after being in the state HI_AD.  

In LO_AD, the peripheral clock is set low.  During the first pass through LO_AD, the 

variable prime  is high and MUX_SELECT is low, and the variable counter  will be 0.  The 

logic will then put the A/D FSM back into the state HI_AD, where the peripheral clock 

will be set high again and the variable counter  will be incremented to 1, signifying that 

the peripheral clock cycled once.  The A/D FSM will cycle between LO_AD and HI_AD 

until counter  has incremented to 34.  At that time, the variable prime  will be set low and 

the A/D FSM will go back to the state START_AD and where it begins the cycle to record a 

good set of conversions from sensors 1 and 2. 

3.3.3.2 Cycle and Record Good Set of Conversions.  After cycling through the 

first set of readings, the A/D FSM is ready to record the first two sensor readings as the 

two 14 bit variables ADC1 and ADC2.  This process starts in the state START_AD, where the 

peripheral clock is set low, the variables counter , index1  and index2  are reset and the 

variable CONV commands the A/D chip to take a sample and transmit the previous 

conversion. 

The A/D FSM will automatically go from START_AD to HI_AD.  In HI_AD, the 

peripheral clock is set high, counter  is incremented and the variable CONV is set low.  

The A/D FSM will automatically go from HI_AD to LO_AD. 

In LO_AD, the peripheral clock is set low.  The previous section explains that the 

last cycle through LO_AD sets the variable prime  to 0.  Because prime  is now 0, the state 

LO_AD will complete a different process than before, and record the two sensor readings 
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coming from the A/D chip.  The sample being transmitted now was collected the first 

time the A/D FSM was in the state START_AD, when MUX_SELECT was set to 0.  The 

timing diagram for the A/D chip is available from Linear Technologies.  For the first pass 

through LO_AD for this cycle, counter  is not yet greater than 2, so the A/D FSM will go 

back and fourth between LO_AD and HI_AD to run the peripheral clock until the variable 

counter  has been indexed to 3.  At that time, when the A/D FSM is in LO_AD, the 

variable ADC1 will store the information from the data bus channel Master In Slave Out in 

its 13th bit.  When the A/D FSM leaves LO_AD, the variable index1  is decremented and 

the FSM goes to HI_AD.  This process is completed until all 14 bits of ADC1 have been 

recorded.  At that point, index1  is 0, counter  is 16, and index2  is 13.  The peripheral 

clock is run by looping between LO_AD and HI_AD until counter  has been incremented to 

19.  At this point, the variable ADC2 will store the information from the data bus channel 

Master In Slave Out  in its 13th bit.  When the A/D FSM leaves LO_AD, the variable of 

index2  is decremented and the FSM goes to HI_AD.  This process repeats until all 14 bits 

of ADC2 have been recorded.  At this point, index1  and index2  are both 0 and counter  is 

32.  The peripheral clock is run some more by looping between HI_AD and LO_AD until 

counter  reaches 34, at which time the A/D FSM goes to the state FINISH_AD .  This 

completes the cycle to record the first two sensors as digital numbers. 
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3.3.4 Switch Multiplexer to Read Sensors 3 and 4 

After the first two sensor readings are recorded, the A/D FSM is ready to change 

the multiplexer to read and convert the second two sensors.  The A/D FSM was in the 

state FINISH_AD at the end of the last process.  Figure 3-18 shows how the A/D FSM 

changes the multiplexer and resets the variable prime . 

 

Figure 3-18: A/D FSM for Reading Sensors Map 2 

This process begins when the A/D FSM is in the state FINISH_AD  and the 

multiplexer is set to read the first two sensors.  In the state FINISH_AD , the variables 

counter  and MUX_counter  are set to 0.  The peripheral clock and the variable CONV are 
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set low.  Because MUX_SELECT is 0, the variable prime  will be set to 1 and MUX_SELECT 

will be set to 1.  This causes the multiplexer to switch the input voltages from the first 

two sensors to the second two sensors.  The variables prime  and MUX_SELECT are 

changed during the A/D FSM state transition from FINISH_AD  to MUX_SWITCH_1.  In the 

state MUX_SWITCH_1, the variable MUX_counter  is incremented.  The A/D FSM will 

automatically transition to the state MUX_SWITCH_2.  The A/D FSM will go back to 

MUX_SWITCH_1 and increment the variable MUX_counter  until it reaches 100.  This was 

done to allow enough delay between switching the multiplexer and sampling the channels 

for the input voltages to settle.  After MUX_counter  has reached 100, the A/D FSM will 

go back to the state START_AD.  This time though, the multiplexer is set to read the second 

two voltages.  This completes the process to switch the multiplexer to read the second set 

of sensors. 
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3.3.5 Read Sensors 3 and 4  

Section 3.3.3 describes how the A/D FSM records the first two sensor readings as 

ADC1 and ADC2.  Section 3.3.4 describes the process to switch the multiplexer and restart 

the A/D FSM.  This section describes how the A/D FSM records the second two sensor 

readings as ADC3 and ADC4.  Figure 3-19 shows the A/D FSM state map to record sensor 

readings.  This is the same process used to record the first two sensor readings, except 

that now the readings will be recorded as ADC3 and ADC4. 

 

Figure 3-19: A/D FSM for Reading Sensor Map 1 
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3.3.5.1 Cycle Through One Set of Old Conversions.  The A/D FSM is in the state 

START_AD after switching the multiplexer.  In START_AD, the peripheral clock stays low, 

the variable CONV goes high, causing the A/D chip to take a new sample.  The integer 

variables counter , index1  and index2  are initialized.  From START_AD, the A/D FSM 

will automatically go to the state HI_AD.  In HI_AD, the peripheral clock is set high, the 

variable CONV is set low and the variable counter  is incremented. 

The A/D FSM enters the state LO_AD automatically after being in the state HI_AD.  

In LO_AD, the peripheral clock is set low.  During this pass through LO_AD, the variable 

prime  is high and MUX_SELECT is high, and the variable counter  will be 0.  The logic 

will then put the A/D FSM back into the state HI_AD, where the peripheral clock will be 

set high again and the variable counter  will be incremented to 1, signifying that the 

clock cycled once.  The A/D FSM will cycle between LO_AD and HI_AD until counter  has 

incremented to 34.  At that time, the variable prime  will be set low and the A/D FSM will 

go back to the state START_AD and where it begins the cycle to record a good set of 

conversions from sensors 3 and 4.  This completes the phase to cycle through an old 

reading. 

3.3.5.2 Cycle and Record Good Set of Conversions.  After cycling through the old 

reading, the A/D FSM is ready to record the second two sensor readings as the two 14 bit 

variables ADC3 and ADC4.  This process starts in the state START_AD, where the peripheral 

clock is set low, the variables counter , index1  and index2  are reset and the variable 

CONV commands the A/D chip to take a sample and transmit the previous conversion. 
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The A/D FSM will automatically go from START_AD to HI_AD.  In HI_AD, the 

peripheral clock is set high, counter  is incremented and the variable CONV is set low.  

The A/D FSM will automatically go from HI_AD to LO_AD. 

In LO_AD, the peripheral clock is set low.  Because prime  is now 0, the state 

LO_AD will complete a different process than before, and record the two sensor readings 

coming from the A/D chip.  The sample being transmitted now was collected the last time 

the A/D FSM was in the state START_AD, but this time the multiplexer was set to read the 

second two channels.  For the first pass through LO_AD for this cycle, counter  is not yet 

greater than 2, so the A/D FSM will go back and forth between LO_AD and HI_AD to run 

the peripheral clock until the variable counter  has been indexed to 3.  At that time, when 

the A/D FSM is in LO_AD, the variable ADC3 will store the information from the data bus 

channel Master In Slave Out  in its 13th bit.  When the A/D FSM leaves LO_AD, the 

variable index1  is decremented and the FSM goes to HI_AD.  This process is repeated 

until all 14 bits of ADC3 have been recorded.  At that point, index1  is 0, counter  is 16, 

and index2  is 13.  The peripheral clock is run by looping between LO_AD and HI_AD 

until counter  has been incremented to 19.  At this point, the variable ADC4 will store the 

information from the data bus channel Master In Slave Out in its 13th bit.  When the A/D 

FSM leaves LO_AD, the variable of index2  is decremented and the FSM goes to HI_AD.  

This process repeats until all 14 bits of ADC4 have been recorded.  At this point, index1  

and index2  are both 0 and counter  is 32.  This completes the process to convert the four 

sensor readings to digital numbers. 
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3.3.6 Set Flag “ADC_DONE” High so Master FSM Can Continue and Use A/D 

Conversion Results  

The last process ended with the A/D FSM in the state LO_AD and the variable 

counter  at 32.  The peripheral clock is run some more by looping between HI_AD and 

LO_AD until counter  reaches 34.  At this time, the variable ADC_DONE is set high.  This 

signals the master FSM that the conversion is complete, and it can continue to its next 

task. 

After completing the four conversions and signaling the master FSM to continue, 

the A/D FSM resets itself and prepares for the next reading.  From the state LO_AD, the 

A/D FSM transitions to the state FINISH_AD .  In the state FINISH_AD , the variables 

counte r and MUX_counter  are set to 0.  The peripheral clock and the variable CONV are 

set low.  Because MUX_SELECT is 1, the A/D FSM will transition to the state IDLE , and 

will wait there until the master FSM requests the next sensor reading.  This completes the 

process to tell the master FSM the conversion is complete. 
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3.4 Testing the A/D Converter 

This section describes the validation process for the A/D conversion hardware.  

The multiplexer is examined to ensure it has ample settling time and will not be a source 

of noise on the system.  The A/D conversion consistently has noise on the readings.  

Testing helped rule out possible sources of the noise. 
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3.4.1 Testing the Multiplexer Timing  

The multiplexer is a VISHAY DG409L Precision Dual 4 Channel Low Voltage 

Analog Multiplexer.  The multiplexer is supplied with ground and 5 volts.  In this 

configuration, the maximum transition time should be 138 ns.  The FPGA clock has a 20 

ns period.  The delay allowed in the A/D FSM is 200 clock cycles.  This results in an 

allowed delay of 4000 ns to ensure that the signal has no leftover transition effects. 
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To test the multiplexer timing, the first channel was connected to a signal 

conditioning circuit outputting 0.4 volts.  The second channel was connected to a 

different signal conditioning circuit tuned to output about  3 volts.  An oscilloscope 

captured the output of the multiplexer triggering off the multiplexer control line.  

According to the data sheet for the multiplexer, a digital control logic high input voltage 

is 2.4 volts.  In Figure 3-20, the switching threshold is after the 253 ns point.  At 353 ns, 

the multiplexer appears to be past any transient unique to the switching condition. 

 

Figure 3-20: Multiplexer Response Timing Diagram 
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3.4.2 Testing for Noise in the A/D system  

Isolating the A/D system allowed testing for noise.  To isolate the system, an 

FPGA was powered from the wall socket transformer and connected directly to a power 

supply.  Table 1 was collected at 0.8 volts and Table 2 was collected at 2.4 volts. 

Table 1: Voltage Supply Readings at 0.8 Volts 

Reading ADC1 ADC2 ADC3 ADC4 

Max 1418 1414 1419 1417 

Min 1404 1393 1404 1392 

Spread 14 21 15 25 

Average 1411.3 1404.51 1411.93 1403.68 

Standard 
Deviation 

2.17 5.88 2.48 5.45 
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Table 2: Voltage Supply Feadings at 2.4 Volts 

Reading ADC1 ADC2 ADC3 ADC4 

Max -1290 -1289 -1290 -1289 

Min -1307 -1315 -1307 -1316 

Spread 17 26 17 27 

Average -1297.52 -1302.33 -1297.96 -1302.69 

Standard 
Deviation 2.30 5.62 2.72 6.13 

 

Both sets of results for tables 1 and 2 are from 190 samples.  Both channels of the 

A/D converter were connected to the same line from the voltage supply.  This is similar 

to results found when running the boards from battery supplies while taking readings 

with the sensor boards.   
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Table 3 and Table 4 gathered using battery power and a test fixture to move the 

board.  These two position readings were chosen because they show that even though the 

sensor readings may change in sign or magnitude, the noise pattern stays the same. 

Table 3: Sensor Readings from Data Collection at 12.5 Inches 

Reading ADC1 ADC2 ADC3 ADC4 

Max 2040 1975 2015 1613 

Min 2033 1958 2007 1599 

Spread 7 17 8 14 

Average 2035.74 1965.22 2010.54 1606.04 

Standard 
Deviation 1.04 5.00 1.14 5.20 

 

Table 4: Sensor Readings from Data Collection at 6.0 Inches 

Reading ADC1 ADC2 ADC3 ADC4 

Max -892 207 1026 1869 

Min -907 183 1016 1851 

Spread 15 24 10 18 

Average -899.19 194.71 1021.68 1861.52 

Standard 
Deviation 2.96 5.58 1.83 5.29 
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It appears that values ADC1 and ADC3 will have less noise than values ADC2 and 

ADC4, but the noise is not because of the sensor board, multiplexer or power supply. 

Data was collected using a slower clock speed for the FPGA, which in turn 

slowed down the A/D FSM.  Results were very similar to those above and the original 

clock speed was kept for the FPGA. 
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3.5 Credit for Previous Help on Writing the A/D FSM Code 

Taylor York and Daniel Nash, former Oklahoma State University students 

enrolled in a capstone design course, submitted most of the A/D code.  Amanuel Assefa, 

another Oklahoma State University student, contributed to changing the A/D code to 

incorporate the multiplexer and doubled the number of sensor readings. 
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3.6 Summary of the A/D Conversion Process 

The A/D conversion provides the neural network with sensor readings by 

converting the input voltages to digital numbers.  This process requires hardware and 

software.  Most of the hardware came with the FPGA board.  Intelligence and a process 

to control the hardware enables the A/D FSM to do its job which contributes to the smart 

sensor car being able to follow a wire. 
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CHAPTER IV 
 

 

ARTIFICIAL NEURAL NETWORK 

 

The neural network is a function that maps four sensor readings to the car 

position.  The A/D converter produces four digital sensor readings.  The PD controller 

accepts the car position.  The neural network changes the output of the A/D converter 

into the desired input for the PD controller.  Figure 4-1 shows the main block diagram. 
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Figure 4-1: Main Block Diagram 
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4.1 Introduction to Neural Networks 

The PD controller gives the car the steering command. The PD controller needs 

the position calculation from the neural network to know how to steer the car. The neural 

network needs the digital sensor readings from the A/D converter to calculate the 

position. The A/D converter needs analog signals from the signal conditioning circuit to 

produce the digital numbers. The signal conditioning circuit needs the voltages from the 

sensors to produce the analog signals. The sensors need the magnetic field from the track 

to produce a voltage. The magnetic field strength will depend on the position of the car, 

which was determined by the previous steering command from the PD controller.  Figure 

4-2 is the system functional overview that shows the required process to steer the car 

around the track. 

 

Figure 4-2: System Functional Overview 
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For the car to follow the wire, the process needs happen in a sequence. The PD 

Controller initiates the sequence by sending a request for a new position to the master 

Finite State Machine (FSM), and then the PD controller waits for a response. When the 

master FSM responds with a position, the PD controller calculates the steering command 

and requests another position. Figure 4-3 shows the PD controller process. 

 

Figure 4-3: PD Controller Process 
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When the master FSM receives the request from the PD controller, it goes through 

a series of tasks.  As covered in chapter 3, one of these tasks is to cycle the A/D converter 

FSM.  Figure 4-4 shows an overview of how the master FSM interacts with the A/D 

FSM. 

 

Figure 4-4: Master FSM Process Overview 

After starting the A/D FSM, the master FSM waits for the A/D FSM to signal 

completion, then the master FSM continues with its tasks.  One of those tasks is 

calculating position.  The neural network calculates the car position using the four digital 
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sensor readings as inputs.  Like the A/D FSM, the neural network is implemented in 

hardware on the FPGA. 

The neural network calculates the car position.  This calculation can be thought of 

as a function or equation that has four inputs, the four digital sensor readings.  That 

function combines the four inputs and generates a single answer, the car position.  

Training the neural network ensures that this equation is correct.  Training has three 

major components.  The first step is collection of training data.  The four sensor readings 

are training inputs.  The car position that corresponds to that set of sensor inputs will 

serve as the training target.  Together, the inputs and target form the training data.  The 

car will operate over a range of different positions.  The training data set needs to have 

samples over that range.  After the training data is collected, the neural network 

parameters are adjusted to properly map the sensor inputs to the car position.  This 

process is called training.  After the network is trained, its performance needs validation.  

This process is covered in section 4.4.  Section 4.5 covers neural network supporting 

components.  Supporting components do not fit in the main block diagram as the car goes 

around the track, but are an important part of making the smart car work.  These 

components help with debugging, compiling and keeping all the other pieces of code 

working together.  Another supporting component is custom software to help automate 

data collection.
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4.2 Multilayered Perceptron 

The neural network does a mapping from four sensor readings into a single car 

position.  A neural network is a group of individual components called neurons.  A 

neuron is also made of components.  Figure 4-5 shows the neural network in decreasing 

levels of abstraction, down to the component level in line 3.  Most of the information 

about the multilayered perceptron is from [1]. 

 

Figure 4-5: Neuron Components 
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4.2.1 Log Sigmoid Transfer Function 

One of the components in the neuron is the transfer function.  The smart car uses 

the log sigmoid transfer function in most of its neurons.  The equation for the log sigmoid 

transfer function is: 

6��7�� �  1
1 � 8 ��9�
 

This transfer function is a squashing function because over the full range of inputs, the 

output will only vary between zero and one.  Figure 4-6 shows a plot of the log sigmoid 

function. 

 

Figure 4-6: Log Sigmoid Response 
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4.2.2 Single Input Neuron 

The single input neuron is made up of several components.  The single input �7� 

is multiplied by a weight �:�.  The weight determines the neuron sensitivity to the input.  

The product of the input and weight is passed through a summation.  The summation 

adds together the product and a bias �;� and produces the net input �<�.  The bias helps 

set the threshold for the neuron response.  The equation for the net input is < � : � 7 �
;.  The net input is passed into the transfer function =.� �>.  The output of the transfer 

function is the output of the neuron ���.  The equation for the single neuron is � � .�<� 

which can be equivalently written: 

� � .�: � 7 � ;� 

The perceptron neuron uses the log sigmoid transfer function, so it has the equation: 

� � 1/�1 � 8^�'<� � 

This equation can be equivalently written: 

� � 1
1 � 8 �A�9BC� 

Figure 4-7 shows a single input neuron. 

 

Figure 4-7: Single Input Neuron 
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Figure 4-8 shows the response of a single input log sigmoid neuron. 

 

Figure 4-8: Single Input Log Sigmoid Neuron Response 
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4.2.3 Multiple Input Neuron 

Multiple input neurons are similar to single input neurons.  Each input �7*�, is 

multiplied by its corresponding weight �:*�, so that each input has a unique sensitivity.  

The product of each input and weight is added together with the products of the other 

inputs and weights and is then added to the bias.  The result of the summation is the net 

input.  The equation for the net input with R neuron inputs is < � :* � 7* � :+ � 7+ �
, � :1 � 71 � ;.  The net input goes through the transfer function to be the neuron 

output.  Figure 4-9 shows a multiple input neuron 

 

Figure 4-9: Multiple Input Neuron 
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The equation for a neuron with R inputs can be written: 

� � .�:* � 7* � :+ � 7+ � , � :1 � 71 � ;� 

or equivalently: 

� � .�<� 

For a multiple input perceptron neuron, the equation is 

� � 1
1 � 8 � 

which can also be written as: 

� � 1
1 � 8�AD�9DBAE�9EB,BAF�9FBC� 
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4.2.4 Multilayer Perceptron Network 

Several neurons can be used together at once.  When the neurons get the same 

inputs at the same time, they are said to be in the same layer.  If there is only one input to 

the layer, then each neuron in that layer will have a single weight for that input.  If there 

are multiple inputs to a layer, each neuron has a weight for every input.  Figure 4-10 

shows one layer of neurons. 

 

Figure 4-10: One Layer of Neurons 

Layers of neurons can be linked together to form Multilayer Perceptron Networks 

(MLPs).  The network inputs are the inputs to the first layer.  The outputs of the first 

layer become the inputs to the second layer.  The output of the last layer is the output of 

the network.  The number of neurons in the last layer determines the number of outputs 

for the neural network.  A superscript can show which layer a variable is associated with, 

and subscripts can be used to identify the place of the neuron in a layer and which input it 

is associated with.  For example, the weight for the second neuron in the first layer for the 
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third input is :+,%* .  The typical MLP network used in smart sensors has two layers.  The 

first layer of neurons uses the log sigmoid transfer function, and the second layer uses a 

linear transfer function.  It can be shown that a two-layer MLP network is a universal 

approximator.  This means it can approximate almost any data set with few limitations.  

The smart car uses an MLP network with five neurons in the first layer and one neuron in 

the second layer.  The one network output is car position.  The network has four inputs 

from the four sensors.  Each neuron in the first layer has a weight for each input.  The 

neuron in the second layer has a weight for each neuron in the first layer.  Figure 4-11 

shows the smart car MLP network focusing on the first neuron in the first layer. 

 

Figure 4-11: Smart Car MLP Network with Detailed Connections for First Neuron in the 
First Layer 
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Figure 4-12 shows the smart car MLP network focusing on the neuron in the 

output layer. 

 

Figure 4-12: Smart Car MLP Network Connections for the Output Layer 
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The output equations for the five neurons in the first layer are as follows: 

�** � 1
1 � 8 =AD,DD �9DBAD,ED �9EBAD,	D �9	BAD,HD �9HBCDD>�  

�+* � 1
1 � 8 �AE,DD �9DBAE,ED �9EBAE,	D �9	BAE,HD �9HBCDD��  

�%* � 1
1 � 8 �A	,DD �9DBA	,ED �9EBA	,	D �9	BA	,HD �9HBCDD��  

�I* � 1
1 � 8 �AH,DD �9DBAH,ED �9EBAH,	D �9	BAH,HD �9HBCDD��  

�&* � 1
1 � 8 �AJ,DD �9DBAJ,ED �9EBAJ,	D �9	BAJ,HD �9HBCDD��  

The function for car position is as follows:  

��K LMNO�OM< � 1
1 � 8 �AD,DE �PDDBAE,DE �PEDBA	,DE �P	DBAH,DE �PHDBAJ,DE �PJDBCDE��   
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4.3 Artificial Neural Network State Machine 

The neural network provides the PD controller with the car position.  The PD 

controller uses the car position in calculations that will help steer the car around the track.  

This process happens in a sequence driven by the PD controller.  Figure 4-13 shows the 

system functional overview. 

 

Figure 4-13: System Functional Overview 
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Every time the PD controller sends the command to the master FSM, the master 

FSM generates a new position.  This section focuses on the processes inside the master 

FSM that allows it to generate a new car position.  Figure 4-14 shows how the PD 

controller process interacts with the master FSM. 

 

Figure 4-14: PD Controller Process 
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4.3.1 Introduction and Purpose: Position Calculation and the Master FSM 

The master FSM has several pieces that work together to provide the PD 

controller with a new car position.  Chapter 3 detailed the A/D conversion.  Figure 4-15 

shows the initial states the master FSM completed in order to cycle the A/D conversion 

process. 

 

Figure 4-15: Master FSM Initial States 
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After the A/D conversion process, the master FSM has access to four digital 

numbers corresponding to the four sensor readings.  In order to produce a new position 

calculation, the master FSM will put the numbers into the correct number format and 

store them into RAM.  After storing them into RAM, the master FSM starts the neural 

network FSM.  When the neural network FSM is complete, it sets a flag high and the 

master FSM can continue.  The master FSM will convert the neural network output into 

the correct format, transmit the data to the PD controller, update the LCD display, then go 

back to the state IDLE  and wait for the next request.  Figure 4-16 shows an overview of 

the master FSM process. 

 

Figure 4-16: Master FSM Overview 

The code for the master FSM to calculate a position is appendix A.  In the code, 

many of the master FSM states interact with other FSMs and have bits or flags to drive 
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transitions only after an outside FSM has completed its required task.  The master FSM 

uses other FSMs to convert the fixed-point numbers that come from the A/D FSM into 

floating point numbers for use in the neural network FSM.  After the neural network FSM 

calculates a new position, it gives the calculation result as a floating-point number.  The 

master FSM drives another FSM to convert the floating-point output into a fixed-point 

number to transmit to the PD controller.  In the states that drive conversions, many have a 

variable with nd  in the name.  These variables refer to the inputs of other FSMs and 

signify when the available data to convert is valid, meaning there is new valid data and 

the operation can begin.  These variables are set high in the state prior to the conversion 

and set low once the conversion process begins.  The conversion FSMs also have a 

variable with rdy  in the name.  This bit is set high by the conversion FSMs when the 

conversion result is valid. 

When the master FSM is ready to store data into the RAM for later use by the 

neural network, it toggles the variable ce_RAM high.  This variable drives the port in the 

neural network FSM with the variable name WRITE_INPUT.  This variable needs to be 

high for the RAM to accept new information.  The variables RAM_DATA and RAM_ADDR tell 

the neural network FSM the sensor reading conversion and the address to store it in.  The 

neural network FSM uses the variables Enable_Network  and rdy_NN  to interface with 

the master FSM.  When the variable Enable_Network  is high, the network FSM can 

begin the calculation.  When the variable rdy_NN  goes high, the neural network FSM is 

done with its conversion and the master FSM can continue.  When the variable 

display_data  is set, the master FSM updates the LCD display.  After the master FSM 



117 

 

completes the transmission to the PD controller, it returns to the state IDLE  and awaits the 

next request from the PD controller. 

The process to cycle the A/D converter FSM begins with the state WAIT_RECEIVE 

where the master FSM waits on the PD controller to request a new signal and ends when 

the master FSM leaves the state ADC because the A/D FSM has signaled completion.  

Chapter 3 covers these states in greater detail.  Figure 4-17 shows the first finite state 

machine map and first five states of the master FSM. 

 

Figure 4-17: Master FSM Map 1: Initial States 
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When the master FSM leaves the state ADC, it automatically goes to the state 

ADC2FIXED.  In this state, the variable nd_fixed2float1  is set high, indicating that there 

is valid new data available and ready to be converted.  The master FSM will 

automatically go from ADC2FIXED to the state FIXED2FLOAT1.  In the state 

FIXED2FLOAT1, the variable nd_fixed2float1  is set low.  This signifies that the new 

data is now being converted.  When the conversion is complete, the FSM to convert the 

first sensor reading will set the bit rdy_fixed2float1  high.  This will allow the master 

FSM to transition from the state FIXED2FLOAT1 to the state FIXED2FLOAT2.  During the 

transition, the variable P1 is set to the result of the first conversion.  The variable P1 will 

be stored into the RAM and be the first input to the neural network.  Also during the 

transition, the variable nd_fixed2float2  is set high indicating that there is valid new 

data available and ready to be converted for the FSM that converts the second sensor 

reading. 

In the state FIXED2FLOAT2, the second sensor reading is converted from fixed 

point to floating point.  In this state, the variable nd_fixed2float2  is set low.  When the 

conversion is complete, the FSM to convert the second sensor reading will set the bit 

rdy_fixed2float2  high.  This will allow the master FSM to transition from the state 

FIXED2FLOAT2 to the state FIXED2FLOAT3.  During the transition, the variable P2 is set to 

the result of the second conversion.  Also during the transition, the variable 

nd_fixed2float3  is set high.  In the state FIXED2FLOAT3, the third sensor reading is 

converted from fixed point to floating point.  In this state, the variable 

nd_fixed2float3  is set low.  When the conversion is complete, the FSM to convert 
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the third sensor reading will set the bit rdy_fixed2float3  high.  This will allow the 

master FSM to transition from the state FIXED2FLOAT3 to the state FIXED2FLOAT4.  

During the transition, the variable P3 is set to the result of the third conversion.  Also 

during the transition, the variable nd_fixed2float4  is set high.  In the state 

FIXED2FLOAT4, the fourth sensor reading is converted from fixed point to floating point.  

In this state, the variable nd_fixed2float4  is set low.  When the conversion is complete, 

the FSM to convert the fourth sensor reading will set the bit rdy_fixed2float4  high.  

This will allow the master FSM to transition from the state FIXED2FLOAT4 to the state 

WRITE_ADC_DATA1.  During the transition, the variable P4 is set to the result of the fourth 

conversion.  Figure 4-18 shows the second master FSM map. 

 

Figure 4-18: Master FSM Map 2: Input Conversion 
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The process to convert the four numbers takes 28 clock cycles at 20 nSec per 

clock cycle.  Figure 4-19 shows the timing diagram for process to convert the number 

format for the four inputs.  Figure 4-19 was generated using the Xilinx Chipscope 

software. 

 

Figure 4-19: Timing Diagram for Number Conversion 

The master FSM works together with the neural network FSM to write the four 

sensor readings to the RAM.  In the state WRITE_ADC_DATA1, the first sensor reading is 

loaded into the RAM for later use with the neural network FSM.  The variable 

Enable_Network  is set low.  This variable is tied to the neural network FSM that will be 

discussed in the next section.  The variable ce_RAM is set high.  This enables the RAM to 

load new values.  The variable RAM_DATA is set to the variable P1.  The variable RAM_ADDR 

is set to the value "0000" .  This will set the first address in the RAM equal to the first 

converted sensor reading.  The master FSM will automatically transition from the state 

WRITE_ADC_DATA1 to the state WRITE_ADC_DATA2. 
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In the state WRITE_ADC_DATA2, the second sensor reading is loaded into the RAM.  

The variable RAM_DATA is set to the variable P2.  The variable RAM_ADDR is set to the value 

"0001" .  This will set the second address in the RAM equal to the second converted 

sensor reading.  The master FSM will automatically transition from the state 

WRITE_ADC_DATA2 to the state WRITE_ADC_DATA3. 

In the state WRITE_ADC_DATA3, the variable RAM_DATA is set to the variable P3.  

The variable RAM_ADDR is set to the value "0010" .  The master FSM will automatically 

transition from the state WRITE_ADC_DATA3 to the state WRITE_ADC_DATA4. 

In the state WRITE_ADC_DATA4, the variable RAM_DATA is set to the variable P4.  The 

variable RAM_ADDR is set to the value "0011" .  The master FSM will automatically 

transition from the state WRITE_ADC_DATA4 to the state WRITE_ADC_DONE. 

In the state WRITE_ADC_DONE, the variable ce_RAM is set low.  The master FSM 

will automatically transition from the state WRITE_ADC_DONE to the state START_NN.  In 

the state START_NN the variable Enable_Network  is set high and the integer variable 

counter  is set to zero.  The master FSM will automatically transition from the state 

START_NN to the state NN. 

In the state NN, the neural network FSM calculates the car position.  Section 4.3.2 

covers this calculation in greater detail.  If the neural network FSM has not completed the 

calculation, the master FSM will loop back into the state NN.  If the neural network FSM 

has completed its task, the variable NN_Data is set to N, the variable Enable_Network  is 

set low, and the variable nd_float2fixed  is set high in preparation for the next 
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conversion.  After the neural network FSM has completed the calculation, the master 

FSM will transition from the state NN to the state FLOAT2FIXED. 

In the state FLOAT2FIXED, a FSM converts the floating-point car position from the 

neural network into a fixed-point number the master FSM can transmit to the PD 

Controller.  If the converting FSM has completed its task, the variable nd_float2fixed  

is set low and the master FSM will transition from the state FLOAT2FIXED to the state 

START_RS232_HI. 

Figure 4-20 shows the third master FSM state map and includes the states to write 

the four sensor readings to the RAM for the neural network FSM. 

 

Figure 4-20: Master FSM Map 3: Writing Inputs to RAM 
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Loading the ram takes fewer than 10 clock cycles.  Figure 4-19 shows that the last 

conversion is complete at clock cycle 584.  Figure 4-21 is the timing diagram for loading 

the four inputs into the RAM and shows that by clock cycle 596 the RAM address has 

cycled through all four inputs. 

 

Figure 4-21: Loading the RAM 



124 

 

The variable Enable_Network  is high as long as the neural network FSM is calculating a position.  The neural network takes 

less than 700 clock cycles from start to finish.  Figure 4-22 shows the timing diagram encompassing the neural network calculation.   

 

 

Figure 4-22: Neural Network Calculation Timing Diagram 
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After converting the car position from floating point to fixed point, the master 

FSM will transition from the state FLOAT2FIXED to the state START_RS232_HI.  In the 

state START_RS232_HI, the variable counter  is set to zero, the RS232 sender FSM loads 

three zeros and the first five bits of the car position into the variable rs232_sender_dat .  

The master FSM will automatically transition from the state START_RS232_HI to the 

state RS232_HI .  In the state RS232_HI , the RS232 sender FSM broadcasts the variable 

rs232_sender_dat .  When the variable counter  reaches ten times the system speed 

divided by the baud rate, the transmission is complete and the master FSM goes from the 

state RS232_HI  to the state START_RS232_LO.  In the state START_RS232_LO, the variable 

counter  is set to zero, the RS232 sender FSM loads the bottom byte of the car position 

into the variable rs232_sender_dat .  The master FSM will automatically transition from 

the state START_RS232_LO to the state RS232_LO.  In the state RS232_LO, the RS232 

sender FSM broadcasts the variable rs232_sender_dat .  When the variable counter  

reaches ten times the system speed divided by the baud rate, the transmission is complete 

and the master FSM goes from the state RS232_LO to the state IDLE . 

The serial communication from the FPGA uses the 38400/8N1 parameter setting.  

This means the communication happens at 38400 pulses per second, there are eight data 

bits, no parity bit and one stop bit.  The 8N1 setting is a common configuration for PC 

serial communications.  The 38400-baud rate allows communication between the FPGA 

and PD controller to be quick enough to not interfere with steering the car.  This 

configuration information allows other serial devices, such as a computer, to 

communicate with the master FSM. 
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Figure 4-23 shows the master FSM map that includes the states to transmit the car 

position to the PD controller. 

 

Figure 4-23: Master FSM Map 4: Transmit Position 
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4.3.2 Serial Implementation Description and Neural Network FSM Overview 

The previous section described the master FSM.  The master FSM drives many 

other FSMs to complete tasks, including the neural network FSM.  The neural network 

and master FSM work together to load the sensor readings into the RAM.  Then the 

neural network FSM calculates the car position.  This calculation is a serial process, 

starting with calculating the output of the first layer, followed by calculating the output of 

the second layer.  The network used here is described in [2].  Figure 4-24 shows an 

overview of this process. 

 

Figure 4-24: Neural Network FSM Overview 1 
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The process to calculate each layer output is also serial.  Each layer output is 

found a single neuron at a time.  Figure 4-25 shows the order the neuron outputs are 

calculated.  This example is for five neurons in the first layer and one neuron in the 

second layer, but the NN FSM can be used with any MLP architecture.  The number of 

neurons in each layer and the number of inputs is loaded into a structure ROM, as shown 

in Figure 4-27. 

 

Figure 4-25: Neural Network Overview 2: First Layer Output 

Each neuron output is also found serially.  The first input is multiplied by its 

corresponding weight (which is loaded in a weight ROM, as show in Figure 4-27).  That 

product is added to the bias, and stored as a temporary variable, ( n_tmp , as shown in 

Figure 4-27).  Then the second input is multiplied by its corresponding weight and that 
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product is added to the previously stored temporary variable.  The new sum is written 

over the old sum.  Then the third input is multiplied by its corresponding weight, and that 

product is added to the previously stored temporary variable.  The new sum is written 

over the old sum.  This process continues until the stored temporary variable becomes the 

net input to the transfer function.  When that happens, the net input goes through the 

transfer function and the output of that neuron,(a_tmp ) is stored in dual-ported RAM as 

an input to the next layer (see Figure 4-27).  The rest of the neurons in the first layer 

follow the same process.  When all of the neuron outputs for the first layer are complete 

(and stored in dual-ported RAM), the neural network begins calculations for the second 

layer.  Figure 4-26 shows this process for the first neuron.  The output of the neuron in 

the last layer is stored as the car position. 

 

Figure 4-26: NN FSM Overview 3: First Neuron Output 
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The code for the neural network FSM is in appendix C.  The master FSM drives 

the neural network code.  The neural network code is a series of case statements, which 

works the same as a state machine, only with different syntax.  Figure 4-27 was provided 

by Dr. Hagan and shows the architecture of the neural network implemented on the 

FPGA.  The description of the operations illustrated in Figure 4-27 follow in the 

remainder of this section. 

In Figure 4-27 there are several ROMs and a dual-ported RAM that control the 

operation of the FPGA neural network.  The structure ROM contains data that define the 

network architecture: R, the number of inputs to the network (four for the car position 

application); S1, the number of neurons in the first layer; S2, the number of neurons in the 

second layer, etc.  The final item in the structure ROM is a delimiter, which indicates that 

the final layer has been reached.  The weight ROM contains all of the weights in the 

neural network.  The bias ROM contains all of the neural network biases.  The dual-

ported memory is used to store the inputs to the network (the four sensor values, in this 

case) and the neuron outputs.  Before the network calculations begin, the network inputs 

are loaded into the dual-ported memory.  As the neuron outputs in the first layer are 

computed, they are stored in the dual-ported RAM at locations immediately following the 

network inputs.  After the first layer neuron outputs have all been computed, these 

outputs act as inputs to the second layer, and the entire process is repeated.  This process 

will be described in more detail in the following.
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Figure 4-27:  Neural Network on FPGA Schematic
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The different case statements in the neural network code can be described with a 

series of flow charts.  The master FSM controls the variables WRITE_INPUT and 

Enable_Network .  When the variables WRITE_INPUT and Enable_Network  are low, the 

neural network code initializes a number of different variables in preparation for the 

calculation.  Figure 4-28 is the first flow chart for the neural network code.  Many of the 

variable names in Figure 4-28 are shown in Figure 4-27. 

 

Figure 4-28: Neural Network Flow Chart 1 

When the variables WRITE_INPUT and ENABLE_Network  are not both low, the 

code will go into the second flow chart.  In this state, when the variable WRITE_INPUT is 

high and the variable ENABLE_Network  is low, the neural network code is going to record 
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the sensor inputs into the dual ported memory.  The variable ram_b_input  will accept the 

sensor inputs from the master FSM and store them for the neural network.  The variable 

p_addr_tmp  tells the neural network which address to store the sensor inputs to in the 

dual-ported RAM (see Figure 4-27).  The master FSM drives the variables INPUT_DATA 

and INPUT_ADDR.  Each input will have a single value and single address.  The neural 

network is in flow chart 2 while the master FSM goes through the states 

WRITE_ADC_DATA1, WRITE_ADC_DATA2, WRITE_ADC_DATA3 and WRITE_ADC_DATA4.  

Figure 4-21 shows that loading each input happens in a single 20 nSec clock cycle, and 

the RAM loading process takes less than 10 clock cycles.  The variable write_enb  

determines if the network inputs can be written to memory or not.  The variable 

rdyNN_tmp  is a flag that is set high when the network output is ready to be read.  Figure 

4-29 shows the second neural network flow chart. 

 

Figure 4-29: Neural Network Flow Chart 2 
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When the master FSM has loaded the inputs to the dual ported memory, it will 

change the variables WRITE_INPUT and Enable_Network  to different values and put the 

neural network into a different state.  The third flow chart shows a special state where the 

network has been enabled, and the number of neurons for the layer variable, s1 (which 

was loaded from the structure ROM, as in Figure 4-27) is equal to the delimiter value.  

This is a special flag that the neural network code uses to signal the master FSM that the 

calculation is complete (the last layer has been reached).  During this state, the neural 

network code resets the neural network variables for the next calculation.  Figure 4-30 

shows the third flow chart for the neural network. 

 

Figure 4-30: Neural Network Flow Chart 3 
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If the number of neurons is not equal to the delimiter value, the code goes on to 

the fourth flow chart.  In the fourth flow chart, when conditions are correct, the code will 

set the variable write_enb  low and the variable ram_b_input  is set to zero.  This will 

keep the dual ported memory from loading new inputs.  Figure 4-31 shows the fourth 

neural network flow chart. 

 

Figure 4-31: Neural Network Flow Chart 4 
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The fifth flow chart is focused on the buffers.  The fifth flow chart shows the code 

selecting between chart 6, which deals with the timing for switching neuron input buffers, 

or chart 7, which will decide if the neuron layer structure is loaded or if a neuron output 

is calculated.  The variable rdyAD_tmp  is driven by the adder in the summation junction 

and will go high when the current addition is complete and ready to be read.  The variable 

input_num_tmp  keeps track of when to add in the bias or partial sum for each neuron.  

When input_num_tmp  is zero, the neuron will add in the bias.  When it is not zero, the 

partial sum stored from the previous calculation will be stored.  The variables b_0  and 

b_tmp  are used with the tri-state buffers, and b_0  is only updated after the output of the 

adder is ready.  (see Figure 4-27 to see the relationship between b_0  and b_tmp )  The 

variable flag_tmp  is used with the tri-state buffer to help control timing.  Figure 4-32 

shows the fifth flow chart. 

 

Figure 4-32: Neural Network Flow Chart 5 
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Depending on the condition of the variables, the code will go on to chart 6 or 

chart 7.  The variable q_tmp  is used with the variable not_q_tmp  to drive the buffers that 

help load the variable b_0 .  The first input to the neuron summation is a bias.  The second 

input to the neuron summation will be the partial net input resulting from the first 

calculation.  (see Figure 4-27)  To avoid contention, buffers are used to connect to both 

inputs, but only let one input be used at a time.  The variable rdyQ_tmp  controls the 

timing of the buffer switching.  The variable flag_tmp  controls the timing of rdyQ_tmp  .  

Figure 4-33 shows the sixth neural network flow chart, which deals with the timing for 

switching neuron input buffers. 

 

Figure 4-33: Neural Network Flow Chart 6 
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The seventh flow chart shows how the code selects between loading the variables 

r  and s1  from the structure ROM (see Figure 4-27) or calculating the neuron output.  The 

variable R_S1_flag  is 00 for loading the number of inputs for the layer (R), 01 for 

loading the number of neurons in the layer (S1), or 11 for calculating the network output.  

Figure 4-34 shows the seventh flow chart. 

 

Figure 4-34: Neural Network Flow Chart 7 

In the eighth chart, the code is loading the number of inputs to the layer.  The 

variable nd_tmp  is used with the shifter ROM (structure ROM in Figure 4-27).  It signals 

that there is valid new data available to be recorded.  The variable rdySH_tmp  identifies 

when the output of the shifter ROM is valid and ready to be read.  The variable r  is the 

number of inputs for a layer.  For the first layer, r  will be four inputs from the four 
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sensors, but for the second layer, r  will be five, indicating the number of neurons in the 

first layer.  (The NN FPGA works for arbitrary numbers of inputs, numbers of neurons 

and numbers of layers, but for this particular application we are using R = 4, S1 = 5 and 

S2 = 1.)  The variable memory_tmp is the output of the shifter ROM.  Figure 4-35 shows 

the eighth flow chart. 

 

Figure 4-35: Neural Network Flow Chart 8 

In chart 9, the code is loading the number of neurons in the layer from the shifter 

ROM (structure ROM in Figure 4-27) into the variable s1 .  The variable 

shift_addr_tmp  keeps track of the shift ROM memory that stores the neural network 
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structure.  Inside the shift ROM, for this application, the first address stores a “0011”.  

Zero corresponds to the first number in the counting sequence, so three in binary 

corresponds to having four inputs.  The second address stores “0100” which is for the 

five hidden neurons.  The third address stores “0000” which corresponds to the one 

output neuron, and the fourth address stores “1111” which is the delimiter, identifying 

that the network has only two layers.  The variable R_S1_flag  is “11” so the code will 

begin to calculate the layer output.  Figure 4-36 shows neural network flow chart 9. 

 

Figure 4-36: Neural Network Flow Chart 9 
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Flow charts ten through fourteen show how the code calculates the output of the 

neuron.  If rdyAD_tmp  is high, the result of the summation in the neuron is ready, so the 

next calculation can begin.  This will cause the variable start_tmp  to go high which will 

start the calculation of the next neuron and set the variable enable_tmp  low which 

signifies that the output of the neuron is not valid.  This gives time after setting the 

variable start_flag_tmp  high for all the addresses to settle before the neuron 

calculation begins.  The variable completion_flag_tmp  will go high when an addition 

has been completed or if the first calculation is being performed.  The variable 

enable_tmp  goes high when a neuron output calculation is complete.  The variable 

cuenta_tmp  is a counter used to add delays, and is counted in binary.  Figure 4-37 shows 

the tenth neural network flow chart. 

 

Figure 4-37: Neural Network Flow Chart 10 
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Neural network flow chart eleven hinges on the variable completion_flag_tmp .  

This variable will be high if the summation output is available and valid or if the first 

calculation for a neuron is being performed.  The variable init_flag_tmp  identifies if 

the first calculation for a neuron is being performed.  If the first calculation for a neuron 

is being performed, variables are set such that the neuron bias is loaded into the 

summation junction (b_tmp  is set to out_b , as shown in Figure 4-27).  Else, the variable 

init_flag_tmp  is low and the partial net input is fed into the summation(n_tmp  in 

Figure 4-27).  Figure 4-38 shows neural network flow chart eleven. 

 

Figure 4-38: Neural Network Flow Chart 11 

The twelfth neural network flow chart shows decisions based on two variables.  

The variable input_num_tmp  tells the code to add in the bias on the first input for a 
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neuron, and when it equals the variable r , the last input for that neuron has been loaded.  

The variable rdyTF_tmp  is a flag to identify when the transfer function output is 

available.  The transfer function is implemented with a look up table.  The input to the 

transfer function serves as the address for the look up table.  At the corresponding 

address, the output of the transfer function is stored.  The variable a_eq_b_tmp  is a flag 

that triggers the transfer function look up table.  When it is high, the look up table input is 

a valid address.  When the variable rdyTF_tmp  is high, the neuron output is ready.  The 

variable w_addr_tmp  is the weight address, which is incremented every cycle through 

flow chart twelve.  Figure 4-39 shows neural network flow chart 12. 

 

Figure 4-39: Neural Network Flow Chart 12 
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Given that conditions are correct, after the code completes setting the variables in 

chart 12, it will go on to chart 13.  In flow chart 13, if the neuron is on the last input, the 

code will write the output to the dual ported memory (a_tmp  in Figure 4-27), increment 

the addresses for the neuron input and output and set the input number counter variable to 

zero.  The variable a_addr_tmp  tells what address the neuron output will be stored in.  

The variable p_addr_tmp  tells what address the neuron input will be retrieved from (see 

Figure 4-27).  The variable write_ena  determines if the dual ported memory will accept 

new neuron outputs.  The variable input_base_tmp  keeps track of which input is to be 

added next.  If the neuron has not added all the inputs, the input number counter variable 

is incremented, and the input address is set back to its base value for that layer.  Figure 4-

40 shows neural network flow chart 13. 

 

Figure 4-40: Neural Network Flow Chart 13 
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If the neuron is on the last input in flow chart 13, then the code will move on to 

flow chart 14.  The variable neuron_num_tmp  keeps track of which neuron output is 

being calculated.  In flow chart 14, the code checks to see if it has calculated the last 

neuron in the layer.  If so, it will reset the variable R_S1_flag  so the code can load the 

architecture for the next layer, and shifts over the input address so that the outputs of the 

finished layer become the inputs to the next layer.  If the last neuron output for the layer 

has not been calculated, the input address is reset to the first input address for that layer 

and the neuron number counter is incremented to the next neuron.  Figure 4-41 shows 

neural network flow chart 14. 

 

Figure 4-41: Neural Network Flow Chart 14 
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The entire neural network code is built around hardware for a single neuron.  That 

hardware is going to multiply two numbers, a weight and input, and then add the product 

to a bias to produce a partial net input to the transfer function.  Depending on how 

variables are set inside the neural network code, different numbers are loaded into the 

inputs, weights and biases.  Figure 4-42 shows the timing diagram for the hardware.  This 

diagram shows the delay between enabling the hardware, starting the calculation and the 

calculation being ready.  In the timing diagram, the variables START and CE show when 

the calculation is started and when the multiplier and adder are enabled.  The variables B, 

W and P are the weight, bias and input.  The variable N is the output.  The input, weight, 

bias and output are all in a 16-bit floating point format.  The variable RDY_N is set high 

when the output is available. 

 

Figure 4-42: Example Timing Diagram for one Neuron 
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The neural network flow charts describe the process to calculate the position.  The 

calculation is a serial process in which a single hardware neuron calculation is repeated as 

many times as needed to complete the full network calculation.  Figure 4-43 shows a 

Chipscope waveform displaying most of the signals for this calculation.  The black 

vertical lines signify the end of the calculations for the output of one part of a neural 

network and the beginning of the next calculation.  Figure 4-44 shows the waveform for 

the calculation of the first neuron in the first layer.  In Figure 4-44, the black lines 

separate calculations of the four partial sums for the four different inputs to the first 

neuron.  Figure 4-45 shows the waveform for the first input to the first neuron of the first 

layer.
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Figure 4-43: Overview of Neural Network Calculation 
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Figure 4-44: ChipScope Waveform for Calculating Output of First Neuron in First Layer
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Figure 4-45: First Input to First Neuron in First Layer 

In summary, the neural network completes the calculation of the car position 

using four inputs.  Those inputs come from four electromagnetic sensors.  The serial 
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calculation is completed with one multiplier, one adder, two buffers and several 

memories.  One layer is calculated at a time, and inside each layer, one neuron output is 

calculated at a time.  To calculate the neuron output, one input is multiplied by its weight 

and added to the bias on the first calculation or the partial net input for the remaining 

calculations for that input.  Once a complete net input is available for a neuron, it is 

passed through a look up table, which replaces the transfer function.  The outputs of the 

first layer are stored as the inputs to the second layer.  The output of the second layer is 

the car position.  



152 

 

4.3.3 Credit for Previous Work to Write the Neural Network Code 

The original neural network code was a group effort between Professors Martin 

Hagan and Carl Latino from Oklahoma State University and Professor Marco A. 

Moreno-Armendariz from Instituto Politecnico Nacional, Mexico. 

Taylor York, a former Oklahoma State University student, provided most of the 

code for the master FSM.  Amanuel Assefa, another Oklahoma State University student, 

provided changes to the code to increase the number of sensors read to four. 
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4.4 Training the Neural Network 

The neural network maps the four sensor readings into the car position.  The 

neural network can be thought of as an equation.  The sensor readings are the input to the 

equation and the car position is the output.  The MLP network is a universal 

approximator, and given enough parameters or degrees of freedom, it can approximate 

nearly any relationship.  To approximate a single set of data, mapping a set of inputs to 

outputs, requires a specific set of parameters.  Training the neural network will find the 

correct parameters.  The training cycle has three key phases.  The first phase is data 

collection.  The second phase is adjusting the function parameters.  The third phase is 

validating the network performance.  If the validation phase reveals the network 

performance is not acceptable, training will loop back to data collection or parameter 

adjustment as needed.  This is followed by another phase of network performance 

validation.  
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4.4.1 Data Collection 

Data collection gathers sensor inputs and corresponding car positions.  One data 

point is four sensor readings and one car position measurement.  The data collection 

process requires a fixture to allow for consistent readings.  The smart car has foam 

holding a marker taped to the front of the sensor board for data collection.  The marker 

indicates the center of the car, which is used as the car position.  Tape holds the wire to 

the floor, and tape holds a ruler over the top of the wire.  The wire goes under the ruler at 

the four-inch mark.  The smart car position of four inches is directly on top of the wire.  

Figure 4-46 shows the smart car ready to collect a single data point. 

 

Figure 4-46: Smart Sensor Car for Data Collection 
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A training set for the smart sensor car spans eight inches, with measurements 

every quarter of an inch.  This data set is large enough to ensure the smart car will have 

accurate position measurements, but small enough that the students in the summer 

academy can complete the task in a reasonable amount of time.  Capturing several 

samples at each position reduces the effect of small disturbances on the sensor readings 

and makes for a more robust training set.  At each measurement, 20 samples are taken.  

Figure 4-47 shows a complete set of training data.  Sensor 4 has the most negative 

reading around 0.75 inches; sensor 2 has the bottom of its valley around 2.75 inches, 

sensor 1 at 4.75 inches and sensor 3 at 6.75 inches.  The bottom of the valley occurs 

when the sensor is directly over the wire. 

 

Figure 4-47: Sensor Responses versus Position 
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4.4.2 Training 

One measure of neural network performance is the mean square position error 

over all data points.  The goal of training the neural network is to adjust the parameters 

(weights and biases) in such a way as to reduce the mean square error.  This is a standard 

unconstrained optimization problem, and any optimization method can be used.  We used 

the Levenberg Marquardt optimization algorithm, as implemented in the Neural Network 

toolbox for MATLAB.  Figure 4-48 shows how the mean square error improves during 

training.  After 465 iterations (epochs), the neural network fits the training data as best it 

can.  This means the network is trained. 

 

Figure 4-48: Mean Squared Error versus Training Epochs 
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4.4.3 Network Validation 

A trained network produces calculated outcomes that closely match the true 

positions at the training points.  Several steps go into the validation process.  First, there 

needs to be training data over the full range of desired inputs.  If the training data appears 

to be insufficient, additional data is collected, focusing on the problem areas.  Figure 4-47 

shows that training data is available for all areas the neural network is required to 

perform(4 inches on either side of the wire).  Figure 4-49 shows neural network 

performance that appears acceptable.  The network output and the true position are equal 

over the range from 0 to 8. 

 

Figure 4-49: Neural Network Position versus True Position 
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Figure 4-50 shows the readings from sensor 2 at car positions of 2.75, 3 and 3.25 

inches.  Note the amount of noise on the sensor readings.  The noise results in a vertical 

stack of points at each horizontal position. 

 

Figure 4-50: Sensor 2 Reading at 3 Inches 

Because there is noise on the sensor readings, the neural network will have 

different inputs that should generate the same output.  Noise on the system gives the 

training algorithm several points to match where readings were taken, and no information 

about what to do between measurements.  In an effort to reach more points, a training 

algorithm can configure a neural network in an undesirable way.  One way to check 

performance between training points is to use a model to estimate data points between the 
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training points.  Because the curves for the smart sensor car are mostly smooth, one 

option for modeling the data is interpolation.  Linear interpolation is used to generate 

sensor inputs between points.  The sensor inputs are averaged at each measurement.  A 

line is fit to the averages of each point.  Then additional inputs are evenly spaced on the 

line between points.  The new interpolated sensor inputs are then passed through the 

neural network.  Because the interpolated inputs are mostly on a straight line between 

measured inputs, the neural network outputs should also be near a straight line.  Figure 4-

51 shows the neural network response with the interpolated data.  The response between 

measurements is still close to a straight line. 

 

Figure 4-51: Neural Network Position versus True Position with Interpolated Data 
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Figure 4-52 is zoomed in to a small region of Figure 4-49.  Note that the curve 

appears as a line passing through the averages of each measurement.  This means the 

network is not over-fitting the data. 

 

Figure 4-52: Neural Network Position versus True Position, Zoomed in at 3 Inches 

  



161 

 

4.5 Neural Network Supporting Components 

Support equipment is not part of the system functional diagram when the car goes 

around the track, but is necessary for making some of the pieces work.  The purpose of 

the training support equipment is to collect meaningful data using the same hardware the 

car uses to go around the track.  In order to collect data with the master FSM and existing 

hardware, a computer replaces the PD controller.  That computer runs custom data 

collection automation software.  The code for the A/D FSM and master FSM were 

written, verified, compiled, and loaded onto the hardware using the Xilinx ISE design 

suite.  
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4.5.1 Master FSM Modifications for Training 

Training the neural network requires training data.  That training data includes the 

four digital sensor readings and the position.  The position measurement comes from a 

ruler taped to the floor.  Figure 4-53 shows the smart car at a position of three inches. 

 

Figure 4-53: Car position of Three inches 
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The digital sensor readings come from the A/D FSM.  The first modification to 

the master FSM lets it know if the request for new information is for a position 

calculation from the neural network or for training data from the A/D FSM.  This 

modification happens in the state WAIT_RECEIVE.  If the master FSM reads in symbols 

representing the letter “t” then it will send out the four sensor readings.  If the letter “r” is 

read, it will transmit a position.  The next step is the same for position calculation and 

data collection.  The master FSM cycles the A/D converter to get four new digital sensor 

readings.  When the digital sensor readings are complete, train mode will start to 

broadcast the positions over the RS232 communication.  The code for this process is in 

Appendix D: Code for Master FSM to Transmit Training Data.  Figure 4-54 is the data 

collection process overview showing how the computer and master FSM interact. 

 

Figure 4-54: Data Collection Process Overview 
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The A/D FSM remains the same for both position calculation and data collection.  

Figure 4-55 shows how the master FSM drives the A/D FSM. 

 

Figure 4-55: Master FSM Process Overview 
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The master FSM starts in the state IDLE  and automatically goes to the state 

WAIT_RECEIVE.  In the state WAIT_RECEIVE , the computer will transmit the letter “t” over 

serial communication.  After the master FSM receives the command from the computer, 

it sets the variable train_mode  high and moves on to the state START_ADC.  In the state 

START_ADC, the master FSM sets variables to start the A/D FSM in motion.  After the 

state START_ADC, the master FSM automatically moves to the state ADC.  The master FSM 

will loop in this state until the A/D FSM signals completion.  At that time, the master 

FSM will transition to the state START_RS232_TRAIN1.  Figure 4-56 shows the master 

FSM state map for this initial process. 

 

Figure 4-56: Master FSM Map 1: Initial States 
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When the master FSM enters the state START_RS232_TRAIN1, it begins the 

process to transmit the converted readings to the computer.  The process to broadcast data 

is similar for a single number representing a position calculation or four numbers 

representing four sensor readings.  Figure 4-57 shows the master FSM state map for 

transmitting the first sensor reading. 

 

Figure 4-57: Master FSM Map 2: Transmit ADC1 
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Transmitting the next three sensor readings will require the same process with 

appropriate changes to the state names and variables to transmit.  After transmitting all 

four sensor readings, the master FSM will automatically transition to the state IDLE .  

Figure 4-58 shows the last sensor reading transmission. 

 

Figure 4-58: Master FSM Map 3: Transmit ADC4 
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4.5.2 Automated Data Collection Software 

A computer replaces the PD controller for data collection.  Figure 4-54 shows 

how the computer and master FSM interact.  If the “Start Logging” button is pressed, the 

computer program writes the four sensor readings to the screen and records them in a 

comma-separated file.  If “Start Logging” is not pressed or if “Stop Logging” is pressed, 

the computer program writes the four sensor readings to the screen.  Figure 4-59 shows 

the computer program configured to write data to the screen only.   

 

Figure 4-59: Computer Program Writing to Screen Only 
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Figure 4-60 shows the computer program writing both screen and comma 

separated file. 

 

Figure 4-60: Computer Program Writing to Screen and Data File 

Jeff Henson, a former Oklahoma State University Student, wrote the computer 

program for data collection.  Amanuel Assefa, another Oklahoma State University 

student, contributed to changing the computer program to double the number of sensor 

readings.  Dr. Hagan helped de-bug the code.  
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4.5.3 Other Support Software 

The code for the master FSM and A/D FSM were written using the Xilinx ISE 

design suite.  Xilinx ISE is a file management program.  It makes sure that all the 

different codes for the different components work together.  Figure 4-61 shows a screen 

capture of Xilinx ISE.  After the codes are working, Xilinx ISE is used to compile the 

code and generate programming files.  A different Xilinx program is used to configure 

the FPGA using the programming files. 

 

Figure 4-61: Xilinx ISE Screen Capture 
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Another program inside Xilinx ISE is the Xilinx Core Generator.  This program 

generates VHDL code to do common tasks such as floating-point conversion or 

generating blocks of memory.  Figure 4-62 shows a screen capture of the Xilinx CORE 

Generator software. 

 

Figure 4-62: Xilinx CORE Generator Screen Capture 
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The third major component utilized from the Xilinx ISE design suite is 

ChipScope.  This is software used to analyze designs while they run on the FPGA.  This 

tool allows debugging in the same environment where the code will be deployed.  Figure 

4-63 is a screen capture of the ChipScope software. 

 

Figure 4-63: Xilinx ChipScope Screen Capture 
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4.6 Summary 

The neural network maps four sensor readings into a car position calculation.  The 

A/D converter produces four digital sensor readings.  The PD controller accepts the car 

position.  The neural network changes the output of the A/D converter into the acceptable 

input for the PD controller.  The neural network calculates the car position serially, doing 

one arithmetic step at a time.  Training helps ensure the neural network calculates the car 

position correctly.  The master FSM has some modifications that allow it to interface 

with a computer to collect training data.  In order to ensure the neural network, master 

FSM, A/D FSM and all other components work together properly, other support 

equipment is required.  This support equipment is part of the Xilinx ISE design suite. 
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CHAPTER V 
 

 

PD CONTROLLER 

 

This chapter discuses the PD controller.  The PD controller takes information 

from the neural network and generates commands for the car steering servo and motor to 

produce motion around the track.  The neural network takes inputs from the analog to 

digital converters and calculates the car position.  That position is sent to the PD 

controller.  The PD controller uses the car position in a calculation to determine the 

command for the steering servo.  The PD controller also controls the car motor.  The car 

responds by producing motion around the track.  Figure 5-1 is the main block diagram 

that shows how the components work together.  This chapter describes the real-time 

executive program that implements the PD controller, as well as the associated hardware 

and support equipment.  The chapter also describes the controller design. 
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Figure 5-1:  Main Block Diagram 
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5.1 Overview 

The PD controller takes the distance of the car from the wire and uses it to 

determine the steering angle.  As the Car moves along the track, sensors detect the 

magnetic field coming from the track.  The sensor signals go through a signal 

conditioning circuit that prepares analog sensor readings for the Analog To Digital (A/D) 

converters on the FPGA board.  The A/D converters change the analog signals into 

digital numbers for the neural network to use as inputs for the position calculation.  The 

calculated position tells the PD controller the distance of the car from the wire.  The PD 

controller then generates steering angle and speed commands for the car so it can 

continue moving along the track.  This chapter focuses on the PD controller.  Figure 5-2 

shows how the PD controller fits into the system functional overview. 

 

Figure 5-2: System Functional Overview 
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The PD controller algorithm controls the data flow and communication that make 

the timing of the process work.  The PD controller starts the process by sending a request 

for a new distance.  As discussed in chapter 3, the master FSM will then cycle the A/D 

converter to generate four digital sensor readings.  Chapter 4 explains how the master 

FSM then cycles the neural network to calculate the distance of the car from the wire.  

After calculating the distance, the master FSM transmits the new distance to the PD 

controller.  Figure 5-4 shows an overview of the interaction between the PD controller 

and master FSM. 

 

Figure 5-3: PD Controller Interaction with Master FSM 
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The PD controller repeats a process in order to keep the car moving around the 

track.  The process begins with a request from the PD controller to the neural network for 

a new distance measurement.  The PD controller waits until the neural network responds 

with the measurement.  The PD controller then calculates how fast the car is moving 

toward or away from the wire.  The PD controller uses the lateral velocity and distance 

measurement to calculate the necessary steering angle that will steer the car directly over 

the wire while maintaining stability.  The PD controller then converts the steering angle 

into a pulse that the steering servo can accept as an input.  The PD controller also 

generates a pulse for the motor control switch to set the car speed.  The cycle will repeat 

as the car continues to circle around the track.  Figure 5-4 shows the PD controller 

process overview. 

 

Figure 5-4: PD Controller Overview 
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5.2 Implementation 

The real-time executive algorithm controls the data flow and communications that 

make the timing of the processes work.  The algorithm will first communicate with the 

master FSM to obtain a distance measurement from the neural network.  The algorithm 

will then perform the calculation of the steering and speed commands. 

The real-time executive algorithm is software.  The software is supported by 

hardware.  That hardware comes in the form of a printed circuit board with a Microchip 

PIC microcontroller.  The PIC board provides power to the PIC and an interface to the 

rest of the boards and processes.  The real-time executive algorithm is described in 

section 5.2.1.  The PIC board circuit and hardware is described in section 5.2.2. 
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5.2.1 Real-Time Executive Algorithm 

The code for the real time executive algorithm can be found in appendix E: PD 

Controller Real Time Executive Algorithm Code.  Figure 5-4 described the basic tasks of 

the real-time executive algorithm.  The algorithm has three separate loops for three 

separate tasks.  The first task is calculating the steering angle.  This is done by the 

program PID_Controller  in the top loop.  The second task is controlling the servo.  The 

middle loop takes care of timing for the twenty millisecond window with the variable 

servoPhase  and also handles the one to two millisecond pulse to control the servo with 

the variable servoWidthCounter .  The bottom loop has the task of importing new data 

from the neural network.  Figure 5-5 shows the real-time executive algorithm overview. 

 

Figure 5-5: Real-Time Executive Algorithm Overview 
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The algorithm begins in the program main .  This program includes the three 

interrupts, RDA, Timer1  and RTCC.  The program main  calls the program 

PID_Controller .  The variable set_pwm1_duty  controls the motor speed, with 255 

being the maximum allowed speed.  The variable PIDwindow  controls the algorithm 

timing related to reading in a new distance from the master FSM as well as calculating a 

new steering command.  When a new position is read in, the variable PIDwindow  is set 

high.  This allows the program main  to request a new position from the master FSM by 

broadcasting the letter “n.”  When the variable PIDwindow  is high, the program main  will 

also call the program PID_Controller .  Figure 5-6 shows the first diagram for the real-

time executive algorithm flow chart. 

 

Figure 5-6: Real-Time Executive Algorithm Flow Chart 1 
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The PD controller subroutine performs the following tasks:  

• Load the last raw position received from the neural network into the variable 

fullpos .  The raw position is a number between 0 and 800, and has units of 

hundredths of an inch. 

• Adjust for the center position and convert all measurements from hundredths of 

inches to meters.  After this operation, the variable position  represents the distance 

of the car to the right of the wire in meters. 

• Save the old position into prevPos  

• Filter the position to remove some noise using the equation: currentPos = alpha * 

position + (1 – alpha) * prevPos .  The variable alpha is the filter parameter 

that determines how many points are averaged together to find the position. 

• Compute the velocity with the equation: vel = (currentPos – prevPos)/dt .  The 

variable dt  is the time between samples in seconds.   

• Compute the steering angle in radians using a proportional-derivative control with the 

equation: st_angle = (currentPos – setpoint) * kp + kv * vel .  The 

variable kp  is the proportional gain and the variable kv  is the derivative gain.  

Modeling to find these gain values is discussed in section 5.3.  

• Convert the steering angle into a pulse width count and save it as the variable 

servoWidth  that can be sent to the servo.  The count is a number that ranges from 19 

to 39.  The value 19 corresponds approximately to a 1 ms pulse and a steering angle 
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of ' Q 6�  radians.  The value of 39 corresponds to approximately a 2 ms pulse and a 

steering angle of Q 6�  radians.  The controller will adjust the calculated count to stay 

in the range of 19 to 39 if the calculation results in a count outside that range. 

The flowchart for the PD controller routine is shown in Figures 5-7 and 5-8.  At 

the end of the routine the variable PIDwindow  is set to zero, which ensures that the PD 

controller does not run again until another position is read. 

 

Figure 5-7: Real-Time Executive Flow Chart 2 
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Figure 5-8: Real-Time Executive Flow Chart 3 

The servo pulse width calculations are specific to the servo.  For the servo used 

for the summer academy, the pulse was one to two milliseconds long in a twenty 

millisecond window.  Setting the variable servowidth  to 39 corresponded to a pulse 

width of two milliseconds and a steering angle of Q 6⁄  radians.  When the variable 

servowidth  was set to 29, the pulse was 1.5 milliseconds wide and the front tires were 

straight forward.  When the variable servowidth  was set to 19, the pulse was one 

millisecond wide and the steering angle was 'Q 6⁄  radians. 
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There are several interrupt routines in the PIC software.  The first interrupt is RDA, 

and it starts when the port connected to the RS232 communication lines has received a 

transmission from the FPGA and has new data available.  The command getc()  stores 

the eight bits read in through the port.  In the interrupt RDA, if the variable x  is one, the 

bits are stored to the variable input1 , and the variable x is incremented.  If the variable x  

is two, the bits are stored to the variable input2 .  When the interrupt is complete, it sets 

the variable PIDWindow  high, sets the variable x  to zero and combines the two eight bit 

numbers into a single 16-bit distance. Setting the variable PIDWindow  high allows the 

program main to call the PD controller subroutine to calculate another steering command 

and ask for another distance from the neural network.  Figure 5-9 shows the interrupt 

routine RDA in the fourth flow chart of the real-time executive algorithm. 

 

Figure 5-9: Real-Time Executive Flow Chart 4 
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The second interrupt routine  is Timer1 , which is executed every 13.1 

milliseconds.  This interrupt controls the timing for the 20 millisecond window for the 

steering servo command.  If the variable servoPhase  is low, the variable 

servoWidthCounter  is set to zero, the variable servoFlag  is set high, and the variable 

servoPhase  is set high.  In the event that the variable servoPhase  is high, then the 

variable servoPhase  is set low.  The variables servoFlag  and servoWidthCounter  are 

used in the interrupt RTCC.  The variable servoWidthCounter  controls the pulse width 

for the steering servo command.  The variable servoFlag  ensures that the one to two 

millisecond pulse for the servo command happens only at the start of the twenty 

millisecond window.  Figure 5-10 shows the fifth flow chart for the real-time executive 

algorithm that shows the interrupt Timer1 . 

 

Figure 5-10: Real-Time Executive Flow Chart 5 
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The interrupt Timer1  controls the timing of the interrupt routine RTCC, which is 

executed every 51.2 microseconds.  The interrupt RTCC controls the variables that drive 

the car steering servo command.  In the interrupt RTCC, if the variable servoFlag  is high, 

the interrupt will compare the variable servoWidthCounter  against the variable 

servoWidth .  If the variable servoWidthCounter  is less than the variable servoWidth , 

the pin connected to the steering servo control is set high and the variable 

servoWidthCounter  is incremented.  If the variable servoWidthCounter  is less than the 

variable servoWidth , the pin connected to the steering servo control is set low and the 

variable servoFlag  is set low.  The variable servoFlag  will be reset to high in the 

interrupt routine RTCC after the current twenty millisecond window has ended.  Figure 5-

11 shows the sixth flow chart for the real-time executive algorithm that describes the 

interrupt routine RTCC. 

 

Figure 5-11: Real-Time Executive Flow Chart 6 
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5.2.2 Hardware 

The real-time executive algorithm is implemented on a Microchip PIC 185F1220 

microcontroller.  The chip needs several connections and other components to support the 

real-time executive algorithm.  A printed circuit board supports the chip and connects it 

to the other components.  The PIC board receives power from a battery pack.  The battery 

provides between nine and eleven volts.  The PIC board connects to the battery through 

connector J3, shown in Figures 5-12 through 5-15, which is a two pin header.  The power 

then goes through traces with decoupling capacitors into a pair of voltage regulators.  

Both regulators are Texas Instrument TLV1117050CDCYR linear voltage regulators that 

output five volts with a current load up to 0.8 amps.  Component U6 provides power to 

the PIC and other on board components.  Component U7 provides power to the center pin 

of header J1.  J1 is a three pin header used to connect to the servo.  The first pin is tied to 

ground, the second pin has power at five volts, and the third pin is controlled by the real-

time executive algorithm with the variable SERVO.  To operate the algorithm quickly, the 

PIC requires an external clock signal.  That clock signal comes from component U4.  The 

real-time executive algorithm controls the motor through the connection header J2, a four 

pin header.  The first pin is connected to ground; the third pin is tied to the pulse width 

modulation port of the PIC chip.  The second and fourth pins of header J2 are not 

connected in the current configuration.  Loading the real-time executive algorithm onto 

the chip happens through the connection header U21.  This is the standard connection 

header, built to conform to the requirements of the Microchip PICKit 3 device.  RS232 

communication goes through header J4, a DSUB9 receptacle.  The PIC operates at 5 

volts, but the RS232 communication can be between three and fifteen volts.  The RS232 
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communication is passed through a Texas Instruments MAX232E dual RS-232 

driver/receiver, which is component U5.  Figure 5-12 shows the PIC board schematic 

which displays the connections between all the components. 
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Figure 5-12: PIC Board Schematic
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Figure 5-13 shows the printed circuit board layout for the PIC board. 

 

Figure 5-13: PIC Board PCB Layout 



192 

 

Figure 5-14 shows a photo of a populated printed circuit board. 

 

Figure 5-14: Photo of PIC Board 
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Figure 5-15 shows a picture of the PIC board with labels. 

 

Figure 5-15: PIC Board Photo with Labels 

Kellen Butler, an Oklahoma State University student designed the schematic and 

printed circuit board layout.  Megan Brady, an Oklahoma State University student, 

fabricated the PIC boards. 
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5.3 Modeling and Controller Design 

A system model needs developed to enable controller design.  The system model 

will be part of the controller design loop.  The first step in the controller design loop is 

building or updating a system model.  This is a set of general equations that describe how 

the different parts of the system interact.  The second design step is to define the system 

parameters.  For the smart sensor car, this includes car speed, possible steering angles and 

car length.  The third design step is to select the proportional and derivative gains.  The 

fourth step in designing the controller is simulation.  The closed loop system is simulated 

to verify proper response.  If the response is not satisfactory, the control gain can be 

adjusted.  The final control gains are loaded into the PIC software, which is then 

implemented with the entire physical system for testing.  Based on the results of the 

physical testing, the model and controller are updated.  This restarts the design process, 

and the process will continue until all the measures of performance are met.  Figure 5-16 

shows the controller design loop. 

 

Figure 5-16: Controller Design Loop 
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The smart sensor car can be modeled like the wheeled robot described in [3] and 

[4].  They describe the motion of the vehicle with equations 1-3 which correspond to 

Figure 5-17: 

�1�     ST � U � cos�Y� � cos�Z� 

�2�     [T � U � cos�Y� � sin�Z� 

�3�                     ZT � U
^ � sin�Y� 

 

Figure 5-17: Basic Plant Model 
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The system model equations were implemented as a Simulink model.  Figure 5-18 

shows the Simulink model for the basic plant.  The plant model has the car length 

modeled at one quarter of a meter and the car velocity is three meters per second.  The 

plant input is the steering angle, φ.  The input goes through trig function blocks, then 

gains, and other multiplication blocks.  The blocks are arranged in such a way to 

represent the model equations.  The integrator block outputs are the state variables. 

 

Figure 5-18: Simulink Model of Plant 

The MATLAB software is able to take the Simulink nonlinear plant model and 

make a linearized set of equations to represent it.  The software can take the linear system 

and form a transfer function to represent the original plant model.  The Simulink model 

of the plant is saved as the file, “CarModelDesign .”  Inside the MATLAB software, the 

commands to linearize the model and provide a transfer function are: 

linsys = linearize ( 'CarModelDesign' ); 
tf_model = tf(linsys); 
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The resulting state equations from this command are: 

ZT
[T � _0 0

3 0` Z
[ � _12

0 ` Y 

[ � a0 1bZ
[ � a0bY 

This model transfer function is: 

[
Y �  36

N+  

The transfer function has two repeated roots at the origin.  If only proportional 

feedback is used =Y � �9 � [>, then the root locus is shown in Figure 5-19.  It is not 

possible to produce a stable system with simple proportional control. 

 

Figure 5-19: Root Locus of Linearized Car Model 
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 To verify the model behaves as expected, a fixed steering angle of 7.5 degrees is 

input to the Simulink model, as shown in Figure 5-20. 

 

Figure 5-20: Open Loop Simulink Model with Fixed Steering Angle 

The expected outcome from this model is the car going in a large circle.  Figure 5-

21 shows the results from the Simulink model. 

 

Figure 5-21: Open Loop Car Simulation Response for 7.5 degree Steering Angle 
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Figure 5-19 shows that the car model is marginally stable with two poles on the 

imaginary axis.  A proportional controller alone will not move the roots of the system to 

the left of the imaginary axis.  A proportional plus derivative controller can add damping 

which would allow the roots of the system to move left of the imaginary axis and 

improve the system stability.  A proportional plus derivative controller can be represented 

by the following transfer function. 

c/ � �dN � �9 

The closed loop system transfer function is 

[
� � 36=�dN � �9>

N+ � 36=�dN � �9> 

Figure 5-22 shows the Simulink model for the closed loop system. 

 

Figure 5-22: Closed Loop Simulink Model 
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The characteristic equation for this system is: 

N+ � 36�dN � 36�9 

The characteristic equation matches the standard form: 

N+ � 2ef� � f�+ 

For this controller design, the settling time is set to one second and the output is 

set to be critically damped, or ζ is set to one.  Assuming that the response should settle 

within a few percent of steady state after four time constants, the settling time can be 

estimated by: 

gh � 4
ef�

 

So f� � 4, �d � 2 9�  and �9 � 4 9� . 
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To validate the controller design, the closed loop model was given an initial 

position for y of 0.1 m or ten centimeters.  The model had no other input, so the system 

should settle close to zero after one second.  Figure 5-23 shows the model response.  

Although the original model is nonlinear, the controller design based on the linearized 

model is satisfactory. 

 

Figure 5-23: Validation of Model Response 

The plant model and controller use units of meters.  The FPGA provides positions 

in hundredths of an inch.  This is why the real-time executive algorithm must convert the 

FPGA distance measurement from units of inches into units of meters. 
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There are three parameters of the car model that need to be set.  The first 

parameter is length.  The length between the front and rear axle of the car is 25 cm, or 

one quarter of a meter.  The second parameter for the car is forward velocity.  The fastest 

the smart sensor car will travel at the summer academy is three meters per second.  The 

third parameter that will affect the model is maximum allowed steering angle.  The 

steering mechanism can only turn the wheels so far before it runs out of travel.  Figure 5-

24 shows the steering mechanism turning the wheel as far as possible to the left.  The 

steering mechanism runs out of travel after turning the wheels 30 degrees or Q 6�  radians. 

 

Figure 5-24: Maximum Possible Steering Angle 
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The system model should incorporate the same limitations.  To include the 

steering limitation, a saturation block is inserted to limit the possible steering angle 

before it is fed into the rest of the plant model.  Figure 5-25 shows the plant and 

controller with the saturation block. 

 

Figure 5-25: Plant and Controller Simulink Model with Steering Saturation Block 

The gains are then adjusted to obtain the fastest response possible while not 

saturating the steering angle.  Because the simulation begins with a position of 0.1 

meters, and the maximum allowed steering angle is Q 6�  radians, the proportional gain 

should be less  than 10 � Q 6� .  The simulation was ran with the fixed proportional gain.  

The derivative gain was varied in each run to find the fastest response time.  Additional 

simulations with the final model suggest using gains of 0.749 for the derivative gain and 

5.043 for the proportional gain.  The resulting linearized closed-loop system transfer 

function is:  

[
� � 181.5

N+ � 26.95N � 181.5 
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This transfer function has the pole zero map shown in Figure 5-26.  Because there 

are two poles on the real axis, the step response should have no oscillation.  In addition, 

because the real components of the roots are more than eight, the system response should 

settle in less than half a second. 

 

Figure 5-26: Pole Zero Map for the Controller and Plant Model 



205 

 

Figure 5-27 shows the model response to a ten-centimeter initial error.  When 

time is about 0.3 seconds, position should be about (1-0.911)*-0.1 meters, or 

approximately -0.0089.  The Figure shows that model response is close to the theoretical 

expectations. 

 

Figure 5-27: Model Response with Tuned Controller 

The plots show that the model output and theoretical expected response are 

similar.  The current gains should provide the best response for the car and not send 

commands to the servo that over extend the steering mechanism.  This system model 
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provides a safe starting point to begin testing the smart sensor car performance in 

following a straight wire.   

During testing of the smart sensor car, the final gains were chosen by a heuristic 

optimization process.  The proportional and derivative gains were adjusted one at a time 

and car performance in following a wire was measured.  The gains that produced the best 

performance were used during the summer academy. 
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5.4 Support Equipment 

Support equipment is not part of the process while the car is going around the 

track, but is a necessary part of the smart sensor car project.  Separate support equipment 

is required for the software and hardware. 

The PIC MCU C Compiler by Custom Computer Services, Inc. provided a 

platform to write the code for the real-time executive algorithm.  The compiler came with 

a library of functions that simplified many of the processes, including the RS232 

communication.  The compiler converted the code into assembly language files for use 

with other software. 

The Microchip MPLAB Integrated Development Environment provided an 

interface between the personal computer running the compiler and the hardware that 

could connect to the PIC board.  The MPLAB IDE software would take the assembly 

language file and convert it into machine code for the microcontroller.  The software then 

sent the machine code from the personal computer to the programmer. 

The Microchip PICkit 3 programmer provides the hardware interface between the 

personal computer and the PIC board.  The programmer takes the machine code from the 

personal computer and writes it to the memory of the microcontroller. 
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5.5 Summary 

The PD controller takes a distance measurement from the neural network and 

calculates the steering angle to keep the car as close to the track as possible.  The 

controller executive software controls the process flow.  The control algorithm runs on a 

PIC microcontroller, which requires its own board. 
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CHAPTER VI 
 

 

ELECTRIC CAR 

 

This chapter discuses the electric car.  The electric car takes inputs from the PD 

controller and provides motion around the track.  The car provides the platform for 

motion while holding all other components together.  Figure 6-1 is the main block 

diagram that shows how the components work together.  

 

Figure 6-1: Main Block Diagram 
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6.1 Overview 

The electric car provides the platform for motion while holding all other 

components together.  The car is a standard one tenth-scale hobby car and uses the stock 

motor that came with the car kit.  The PD controller sends commands to the car motor 

control switch and steering servo.  The motor control switch provides current to the 

motor, which results in forward motion.  The steering servo adjusts the car steering angle 

and the car moves along the track.  The car motion moves the sensor board into a new 

location with a unique magnetic field.  The field generates a new response from the signal 

conditioning circuit, which is fed through the Analog to Digital (A2D) converters and 

into the neural network.  The neural network provides the PD controller with a new 

distance measurement, which the PD controller uses to calculate the next steering angle 

and speed commands.  Figure 6-2 shows the system functional overview, which describes 

how the different system components relate to each other. 

 

Figure 6-2: System Functional Overview 
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6.2 Components 

Several components make up the electric car.  The chassis is the basic piece that 

holds everything else together.  The motor converts current into torque to spin the tires.  

The batteries provide power for the motor control switch, sensor board, FPGA board and 

PIC board.  The motor control switch provides current to the motor.  The servo steers the 

front tires.  All of the boards are mounted to the car chassis with the board-mounting 

fixture.  Figure 6-3 shows the electric car and components. 

 

Figure 6-3: Electric Car 
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6.2.1 Chassis 

The car chassis is a standard one tenth-scale hobby car.  This chassis is a Tamya 

USA TT-01, on-road, shaft driven all wheel drive bathtub chassis.  Figure 6-4 shows the 

car chassis with the battery, motor control switch, motor and steering servo. 

 

Figure 6-4: Car Chassis 

The steering mechanism for the car chassis is a four bar linkage that forms a 

parallelogram.  The frame provides the first bar, which can be thought of as the right side 
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of the parallelogram.  The two trailing arms form the top and bottom of the 

parallelogram.  The two trailing arms stay parallel as the car steering angle changes.  The 

trailing arms have three connection points.  The leading edge of each arm is connected to 

the frame.  The middle is connected to the tire.  The third connection is to the steering 

linkage.  The steering linkage is the fourth bar and fourth side of the parallelogram.  The 

steering servo connects to the linkage to provide animation to the system.  Figure 6-5 

shows the steering mechanism parallelogram drawing. 

 

Figure 6-5: Steering Mechanism Parallelogram 



214 

 

Figure 6-6 shows a photograph of the car steering mechanism. 

 

Figure 6-6: Car Chassis Steering Mechanism 
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6.2.2 Motor 

The car motor is a standard size 540 brushed electric motor that came with the 

chassis.  The motor has two 14-gage wires with male bullet connector terminations to 

interface with the motor control switch board.  The large wires adequately handle the 

considerable current passing through the motor.  Other motors were used in testing.  A 

rock crawler motor is a low speed high torque motor, which allows the car move slowly.  

The rock crawler motor is designed for long periods of use at high torque and low speed 

without requiring maintenance.  This was useful during the initial stages of debugging.  

Another high-speed racing motor was considered for the summer academy.  This motor 

required rebuilding per few hours of use, and was designed with an operating point much 

faster than the desired speed for the summer academy.  The racing motor was not used.  

Figure 6-7 shows the testing motor in the electric car. 

 

Figure 6-7: Car Motor 
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6.2.3 Batteries 

The smart sensor car has three battery packs.  The first two battery packs power 

the sensor board, FPGA board and PIC board.  These are generic 9.6-volt Nickel-Metal 

Hydride 8 cell battery packs, rated to last 2000 milliamp hours.  These two batteries 

connect to the main power switch on the board-mounting fixture.  The third battery 

powers the motor control switch that provides power to the motor.  This is a generic 6-

cell 7.2-volt Nickel Cadmium battery, rated to last 2200 milliamp hours.  All three 

batteries have male two conductor RC battery connector plugs.  Figure 6-8 shows the 

three batteries for the smart sensor car. 

 

Figure 6-8: Car Batteries 
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6.2.4 Motor Control Switch 

The purpose of the motor control switch is to convert the pulse-width modulated 

motor drive signal from the PIC microcontroller into current flow from the battery to the 

motor.  The motor control switch has three connections.  The first connection is a pair of 

female bullet connectors to connect to the car motor.  These connectors are tied to the 

motor control switch board with fourteen-gage wire to adequately handle the large 

amount of current flowing through the motor.  The second connector is a female two-

conductor RC battery connector plug for use with the 7.2-volt battery pack.  The last 

connector is a four pin female header to connect to the four pin male header of the PIC 

board.  Pin one of the header provides the ground reference and pin three carries the 

control signal from the microcontroller to the motor control switch board.  The control 

signal drives the LED side of a 4N33 opti-coupler.  The opti-coupler isolates the high 

current motor circuit from the more sensitive microcontroller circuit.  The output of the 

opti-coupler feeds a Darlington pair of bipolar junction transistors.  The first transistor is 

a TIP41A.  The second transistor is a TIP31C, rated to carry a load of 25 amps 

continuously.  When conducting, the TIP31C provides a path for the current to flow from 

the positive car battery terminal through the motor to the negative car battery terminal.  

Protection diodes and current limiting resistors help protect circuit components.  Figure 

6-9 shows the motor control switch schematic.
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Figure 6-9: Motor Control Switch Schematic 
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The motor control switch board was designed for ease of fabrication while 

maintaining the capability of carrying significant currents.  Large traces are easier to mill 

and solder.  Figure 6-10 shows the motor control switch board layout. 

 

Figure 6-10: Motor Control Switch Board Layout 
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The large BJT required a heat sink to dissipate heat during long testing periods.  

Figure 6-11 shows the motor control switch board photograph with part labels. 

 

Figure 6-11: Motor Control Switch Board with Labels 

The opti-coupler takes inputs from the microcontroller and sends current to the 

Darlington pair of BJTs.  The purpose of the opti-coupler is to protect the more sensitive 

low current circuit of the microcontroller from the high current circuit of the motor.  The 

opti-coupler is rated to turn on in five µs, and turn off in 100 µs.  The TIP41C BJT is the 

first transistor in a Darlington pair and provides the current to activate the other power 

transistor.  This device has a minimum current gain of 30, a saturation voltage of 0.8 
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volts, a bandwidth up to 3 MHz, and can supply up to six amps.  The TIP35 is the main 

power transistor for the motor control switch and provides the current path from the 

battery, through the motor, to ground.  It has a minimum current gain of 10, has a 

bandwidth up to 3 MHz, and can supply up to 25 amps continuously.  The TIP35 has a 

collector-emitter saturation voltage of 1.8 volts. 

The motor control switch board converts the pulse-width modulated motor drive 

signal from the PIC microcontroller into current flow from the positive side of the battery 

through the motor to the negative side of the battery.  Figure 6-12 is a guide to where data 

was collected for the motor control switch plots. 
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Figure 6-12: Guide to Motor Control Switch Plots 
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Figure 6-13 shows the microcontroller signal and opticoupler command.  To 

adjust the current needed to trigger the opticoupler, the 10-kOhm resistor in the schematic 

was replaced with a 671-Ohm resistor, resulting in a much lower voltage coming into the 

top of the diode of the opticoupler. 

 

Figure 6-13: PIC Microcontroller Signal and Opticoupler Input 
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Because of the low speed needed for the operations of the smart sensor cars, 

neither of the BJTs were supplied enough current to saturate them.  The result of 

operating in the transition phase was that both devices generated considerable heat.  

Figure 6-14 shows the two signals going into the base terminals of the two BJTs. 

 

Figure 6-14: Microcontroller Signal and BJT Base Terminal Inputs 
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Figure 6-15 shows the voltages on the positive and negative terminals of the car 

motor.  Note that when the microcontroller signal changes it has little impact on the 

voltage across the motor.  This signifies that the control signal pulse window is short 

enough to allow the motor to run smoothly. 

 

Figure 6-15: Microcontroller Signal and Motor Terminal Connections 
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Figure 6-16 shows a photo of the motor control switch connected to the battery 

and car motor.  During operation, the motor control switch board is attached to the top of 

the servo. 

 

Figure 6-16: Motor Control Switch Connections 
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6.2.5 Servo 

The car servo is a generic Tower Hobbies TS-53 standard servo.  A one to two 

millisecond pulse with a twenty-millisecond window controls the servo.  A pulse of 1.5 

milliseconds will drive the servo to have the wheels straight forward. A 1 millisecond 

pulse will drive the servo to have the wheels turn left by 30 degrees.  A 2 millisecond 

pulse will drive the servo to turn the wheels right 30 degrees.  Figure 6-17 shows the 

connection of the servo to the steering mechanism. 

 

Figure 6-17: Car servo Connection to Steering Mechanism 
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6.3 Board Mounting 

The main block diagram in Figure 6-18 shows the major components of the smart 

sensor car.  The sensor board is attached with screws to the electric car using the board-

mounting fixture.  The signals from the sensor board go to the A/D converter using a 

RJ45 connector.  The A/D chip and neural network are on the FPGA board and connected 

by traces.  The neural network sends the position calculation to the microcontroller board 

over RS232 communication.  The microcontroller transmits the steering command to the 

servo through a three-pin header. 

 

Figure 6-18: Main Block Diagram 
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Figure 6-19 shows the assembled car. 

 

Figure 6-19: Assembled Car with Boards 
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The sensor board is discussed in detail in chapter 2.  Figure 6-20 shows the 

connections for the sensor board.  The sensor board is connected to the board-mounting 

fixture by screws.  Signals and power for the sensor board go through an RJ45 eight place 

eight connect header.  Pin 1 carries the first output of the multiplexer, which goes to the 

first channel of the A/D converter.  Pin 3 carries the second output of the multiplexer, 

which goes to the second channel of the A/D converter.  Pins 2, 4, and 5 are connected to 

the sensor board ground.  Pin 6 carries the multiplexer select pin from the FPGA board to 

the multiplexer.  Pin 7 connects to positive power and pin 8 connects to negative power.   

 

Figure 6-20: Sensor Board Connections 
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Figure 6-21 shows the FPGA board connections.  The first connection is power 

and ground.  This is a 2.1mm plug connection and comes from the board-mounting 

fixture.  The next connection is a three-pin header that carries the two outputs from the 

multiplexer as well as a connection for ground.  The third connection is a single pin 

header that the FPGA board uses to transmit the multiplexer selection signal.  The fourth 

connection is the DSUB 9 connector that carries the RS232 communication to the 

microcontroller board.  This communication is sent through a null modem adapter.  The 

FPGA board is fastened to the board mounting fixture with a hook and pile fastener 

underneath the board. 

 

Figure 6-21: FPGA Board Connections 
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Figure 6-22 shows the four microcontroller board connections.  It receives the 

RS232 position calculation through the null modem adapter.  Power and ground come 

from a two-pin header from the board-mounting fixture.  The microcontroller board 

controls the servo with a three-pin header.  Pin 1 is ground, pin 2 carries five Volts, and 

pin 3 carries the steering servo signal pulse.  The microcontroller communicates with the 

FPGA board using RS232 communication, which it transmits with the DSUB9 

connection through a null modem adapter.  The microcontroller sends the motor control 

signal to the motor control switch board using a four-pin header.  Pin 1 is connected to 

ground and pin 3 carries the motor control signal pulse.  Pins 2 and 4 are not connected.  

The microcontroller board is physically held in place by screws connecting the 

microcontroller board to the null modem adapter and screws connecting the null modem 

adapter to the FPGA board.   

 

Figure 6-22: Microcontroller Board Connections 
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6.4 Summary 

This chapter has described the hardware components of the electric car, which 

forms the platform for the neural network smart sensor demonstration system. 
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CHAPTER VII 
 

 

SUMMER SOFT SENSOR ACADEMY 

 

This chapter discuses the summer soft sensor academy.  This summer 

academy for local high school students provides an opportunity for them to learn 

about science and engineering.  Various activities demonstrate basic engineering 

concepts. 
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7.1 Overview and Academy Objectives 

The summer soft sensor academy has two main objectives.  The primary objective is to 

introduce students to the idea of smart sensors using neural networks.  The students are shown 

that neural networks can be implemented in digital logic on a FPGA.  The secondary objective is 

to show that science and mathematics are important to engineering.   
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7.2 Activities 

The summer academy is divided into five training modules, each covering 

different concepts from engineering and science.  The first module focuses on 

electromagnetic sensors and different ways to visualize a magnetic field.  The second 

module covers data fitting and using data fitting software.  The fourth module explains 

the basics of digital circuits.  The third and fifth modules introduce the basic concepts of 

neural networks and how to train them.   
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7.2.1 Electromagnetic Sensors 

During the electromagnetic sensors module, the students have a chance to work 

with different electromagnetic sensors and magnetic fields.  The three sensors the 

students use are a compass, a coil of wire and a 33 milli-Henry inductor.  The three 

magnetic field sources are a bar magnet, a steady moving current through a wire powered 

by a voltage source and the third source is a time varying magnetic field produced by a 

function generator driving a sine wave through a wire.  In the first block, they use a 

compass to map the magnetic field lines coming from a permanent bar magnet.  In the 

second block, they use a simple piece of wire rolled into a coil.  They move the bar 

magnet through the wire coil.  The time varying magnetic field induces a current in the 

coil, which they observe with an analog voltage meter and digital oscilloscope.  In the 

third block, the students use a power supply to produce current flow inside a wire to 

generate a magnetic field.  A compass next to the wire will have a change in needle 

directions as they toggled the power supply on and off.  The students complete three 

experiments that use a function generator to provide a time varying current flow resulting 

in a time-varying magnetic field.  In the fourth block, they use the coil of wire to observe 

that magnetic fields have directionality.  They observe this by changing the orientation of 

their loop with respect to the source wire.  The next experiment uses the coil orientation 

with the strongest response to observe the effects of distance between the coil and source 

wire.  These experiments are repeated using an inductor to replace the hand coiled wire.  

Next, the inductor is used in data collection.  The students put a block of wood with a 

ruler taped on top over the top of the wire.  They use the ruler to measure horizontal 

distance between the center of the inductor and center of the source wire.  They record 
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the average peak-to-peak voltage across the inductor measured by the oscilloscope.  With 

each voltage reading, they also record the inductor horizontal distance away from the 

wire. 
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7.2.2 Data Fitting 

The second module focuses on data fitting activities.  The first activity is basic 

function plotting.  The next activity is fitting a line to data.  The students then learn how 

to use software to fit a function to the data.  Next, the students make a plot of their data 

from the electromagnetic sensors module and model the data with a curve.  The first step 

of this process used distance as the independent variable and voltage as the dependent 

variable.  The students are then asked to invert the relationship between voltage and 

distance.  Finally, the students are asked to predict optimal sensor spacing based on their 

collected data and models. 
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7.2.3 Neural Networks 

The third module introduces the students to the application of neural networks to 

data fitting.  First, the students learn about the basic structure of neurons and similarities 

between the biological and artificial neurons.  The students have a chance to work with 

single layer and multilayer networks to observe how changing network parameters drives 

the network output.  Students then adjust the network parameters by hand to fit the 

network output to the data collected in the first module.  Finally, the students learn how 

to use software to train the neural network to fit the data. 
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7.2.4 Digital Circuits 

The fourth module provides an opportunity for students to learn about digital 

circuits.  The module begins with an introduction to binary numbers.  Next, the students 

learn the basics of Boolean algebra.  The students apply this knowledge to design 

combinational circuits.  The students are then given a basic circuit design and required 

hardware to assemble the circuit and test its functionality.  The module concludes with an 

introduction to sequential logic basics, such as how a flip-flop works and how to read a 

timing diagram. 
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7.2.5 Training the Brain 

During this module, the students train a neural network.  The process begins with 

data collection.  The students record car position and sensor readings at several locations.  

They use this data to train the neural network with the training software.  The network 

learns to produce the car position from the four sensor readings.  Finally, the students 

validate the network performance by comparing the trained network response to the 

collected data.  The students also use interpolated data to check for over fitting, as 

discussed in chapter four. 
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7.2.6 Race Day 

On the last day of the summer academy, the students have the opportunity to 

observe a performance evaluation of their smart sensor car systems.  Performance is 

measured with three tests.  The first test is a static measurement.  A ruler is taped over the 

wire in the same configuration as data collection.  The car is moved to several positions 

along the ruler.  At each position, the error between the physical car location and the 

position calculated by the smart sensor car is recorded (as shown on the LCD screen of 

the FPGA board).  The total squared error for each car is calculated and the car with the 

lowest total error wins the challenge.  The second test is following a line.  For this test, a 

ten-foot long piece of paper is placed over a straight run of the wire track.  The caps are 

removed from the markers on the front of the cars to allow the cars to mark their paths.  

The students run the cars down the wire.  The car that stays closest to the centerline wins 

the challenge.  The third and final test is time to complete a lap.  A simple wire track is 

laid out on the floor.  Each team records three lap attempts.  The shortest lap time of the 

three is kept for each team.  The team with the shortest single lap time wins the 

challenge.  This module focuses on performance evaluation.  It displays how different 

tests show different performance characteristics 
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7.3 Summary 

The summer soft sensor academy provides local high school students a chance to 

learn about engineering by working with soft sensors.  The academy has modules 

focusing on five separate engineering concepts.  The first module is about 

electromagnetic sensors and different ways to visualize a magnetic field.  The second 

module is about data fitting and using data fitting software.  The fourth module covers the 

basics of digital circuits.  The third and fifth modules cover the basic concepts of neural 

networks and how to train them.  The academy ended with a competition comparing 

system performance. 
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CHAPTER VIII 
 

 

SUMMARY AND FUTURE WORK 

 

This chapter is a summary of the thesis and project.  The chapter begins with 

chapter summaries, followed by a description of the author’s contributions to the project.  

The chapter ends with a discussion of some possible future work with the project 

components. 
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8.1 Summary of Thesis 

The first chapter is an introduction to the project. The chapter begins with the 

system overview and description of the main block diagram. The chapter provides a brief 

project history and describes the current state of the project. The chapter ends with an 

outline of the rest of the thesis. 

Chapter two covers the sensors and signal conditioning circuit.  It describes the 

magnetic field and sensors to detect it.  It also describes the signal conditioning circuit, 

defining the circuit components, how they were tested and the fabrication of the printed 

circuit board.  The sensors and signal conditioning circuit provide a path for information 

about the magnetic field to travel to the A/D converter. The sensors and components for 

the signal conditioning board are common and readily available from local vendors and 

can be used with prototyping boards. Inductors are a good choice for sensing a magnetic 

field because they are readily available, have been used for this application before, and 

their output can be measured as a voltage. Proto-board testing reduced the likelihood of 

problems during printed circuit board development. Printed circuit boards are the method 

of choice for the final implementation of the signal conditioning circuit. 

Chapter three focuses on the A/D converter.  It describes the on-board hardware 

and off-board multiplexer operation, control of the A/D conversion and how the A/D 

conversion process was tested. The A/D conversion provides the neural network with 

sensor readings by converting the input voltages to digital numbers. This process requires 

hardware and software. Most of the hardware came with the FPGA board. Intelligence 
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and a process to control the hardware enables the A/D FSM to do its job which 

contributes to the smart sensor car being able to follow a wire. 

Chapter four is about the artificial neural network.  It begins by providing basic 

information about the artificial neural network implemented on the smart sensor car.  

Next, It describes the FPGA implementation of the neural network, showing timing 

diagrams for the process.  The neural network maps four sensor readings into a car 

position calculation.  The neural network changes the outputs of the A/D converter into 

the acceptable input for the PD controller. The neural network calculates the car position 

serially, doing one arithmetic step at a time. Training helps ensure the neural network 

calculates the car position correctly. The master FSM has some modifications that allow 

it to interface with a computer to collect training data. In order to ensure the neural 

network, master FSM, A/D FSM and all other code components work together properly, 

software support equipment is required. 

Chapter five describes the PD controller.  The chapter describes how the 

controller is implemented and explains how the controller works.  The chapter also 

describes the modeling process used to design controller parameters.  The PD controller 

takes a distance measurement from the neural network and calculates the steering angle 

to keep the car as close to the track as possible. The controller executive software 

controls the process flow. The control algorithm runs on a PIC microcontroller, which 

requires its own board. 
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Chapter six describes the electric car.  The electric car is made with many 

standard components. These components work together to provide motion around the 

track. The components share signals through various connections. The board-mounting 

fixture holds the components together. 

Chapter seven describes the summer soft sensor academy.  The summer soft 

sensor academy provides local high school students a chance to learn about engineering 

by working with soft sensors. The academy has modules focusing on five separate 

engineering concepts. The first module is about electromagnetic sensors and different 

ways to visualize a magnetic field. The second module is about data fitting and using data 

fitting software. The fourth module covers the basics of digital circuits. The third and 

fifth modules cover the basic concepts of neural networks and how to train them. The 

academy ended with a competition comparing system performance. 
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8.2 Author’s Contributions to Project 

The author’s contributions began during the Fall of 2009 by assisting Amanuel 

Assefa with the Xilinx software to change the FPGA code to read in four sensors and 

control the multiplexer.  This included mapping the states of the Master FSM and A/D 

FSM.  The author learned Chipscope and used it to monitor code execution on the FPGA 

to verify the proper operation.  The author also assisted with regeneration of cores using 

the CoreGen software modules. 

In the Spring of 2010 the author began work on the rest of the smart sensor car.  

This began with collection of basic characteristics about how the inductor behaves with 

the magnetic field generated by the function generator.  This provided an understanding 

of how to set up the different test fixtures.  The next step was the introduction of op amp 

circuits.  This allowed the development and tuning of a circuit to condition the output of a 

single sensor using a bread board.  The experiments used different circuits using different 

components in different configurations.  The author then developed a printed circuit 

board design and had it manufactured.  The author populated the professionally 

fabricated board and tested it.  The author integrated the FPGA board and sensor board 

together and verified the timing for the multiplexer.  After the sensor board and FPGA 

were able to generate consistent results from bench power, the author developed a system 

to power the boards from batteries, which is the desired configuration to support the 

smart sensor car.  The initial system suffered from noise issues on the power transmission 

lines.  This was resolved by decoupling and isolation.  The next component was the 

motor control switch.  The author designed a circuit using a Darlington pair of BJTs 
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driven by an opticoupler.  After the individual components were ready, the author 

designed and fabricated the board mounting fixtures.  Once all the system components 

were working together, the author modeled the smart sensor car to obtain PD controller 

gains.  The author worked with Dr. Hagan to modify the microcontroller code to match 

the car steering and motor performance.  A total of five cars were produced for the class.  

During the summer academy, the author assisted students with modules and equipment in 

the lab.  The author contributed to some of the writing for the summer academy 

documents.  The author instructed students about how to use the smart sensor cars and 

assisted them as needed.  After the summer academy, the author documented all system 

components.   
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8.3 Future Work 

The smart sensor car provides a flexible platform for future work with FPGAs, 

neural networks, control systems and other physical implementations.  Future projects 

could include work with the sensor board, A/D converter, neural network, controller and 

electric car. 

The sensor board provides a means to gather information about the outside world 

and provide feedback in signals that can be converted by A/D converters.  The sensor 

board currently uses inductors as antennas.  There may be more effective or more useful 

antenna designs than the basic coil.  Another possible project would be to alter the 

number or placement of the sensors.  This could be as simple as doubling the number of 

sensors and reducing the sensor spacing from two inches to one inch.  The project could 

investigate using two rows of sensors to calculate the angle between the car and the wire.  

Another option would be to change the signal conditioning circuit.  This project could 

involve experiments with different components that would allow manual or automatic 

tuning of individual sensors to provide a more consistent response.  The project could 

also explore ways to build a conditioning circuit that could tune itself to adjust to 

automatically to changes in the track. 

The A/D converter translates information from the outside world in the form of 

voltages into digital numbers the components on the FPGA can use.  One future project 

could be to eliminate current redundant processes from the A/D FSM.  Another project 

could add a filter to the A/D readings.  Because the Spartan 3E starter kit has unused 
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serial peripheral interface ports, it would be possible to incorporate more external serial 

A/D converters.  A more complicated project could build a FPGA board with parallel 

A/D converters. 

The current serial neural network design has been used in two projects and could 

be useful in many more.  One possible change to the neural network code would be to 

change the implementation of the network.  The current code is build around a single 

neuron with a single input.  The three other possibilities are a single neuron with multiple 

inputs, multiple single input neurons and multiple neurons, each with multiple inputs.  

Each of these structures could provide the same functionality as the current structure.  

Another option that would maintain the functionality would be to implement different 

types of neural networks, such as a radial basis network.  An added function to the neural 

network could be a filter on the calculation.  Another option would be to incorporate the 

calculation of the angle between the car and wire.  The neural network could also be used 

to calculate the steering angle or even servo command.  This would reduce the need for 

extra components and calculations. 

The controller takes the position calculation from the neural network and converts 

it into commands for the car.  The current PD controller could be implemented on the 

FPGA.  Once on the FPGA, more elaborate controllers could be experimented with.  

Another project could be to use the existing controller for steering while incorporating 

speed control.  A follow on project to that could be to incorporate breaking.  A different 

project could allow the controller to identify when the car is too far away from the track 
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to sense the wire.  The second part of this project could be to introduce a way for the car 

to begin a search for the lost wire. 

The electric car takes inputs from the controller and provides motion to the 

system.  The forward velocity source provides many opportunities for projects.  The 

current motor control switch could be replaced by a half H bridge to allow breaking, or a 

full H bridge to allow the car to change directions.  Another project could explore ways 

to increase efficiency of the system by using different chassis with different drive 

configurations.  Also, different power sources such as fuel cells or solar panels could be 

investigated.  A similar platform could also utilize an internal combustion motor allowing 

different experiments with bio-fuels.  A different experiment could be to make the fixed 

wheels the front of the car and the articulated wheels the rear of the car, similar to most 

industrial forklifts.  Another experiment could be to use a chassis with front and rear 

wheel articulation.  A related project could be to explore a chassis that has fixed front and 

rear wheels and center articulation or the chassis.  The smart sensor position 

measurement and steering control could also be used with different platforms.  The 

system could be transferred to a tracked platform, a two or three wheel platform, or even 

a walking robot.  

The current system is capable of making a circle around the track.  One simple 

project could be to add a battery powered web cam to the car to monitor the system as it 

goes around the track.  A follow on project could be to allow user feedback to shut off the 

car if they see it go off the track.  A different project could be to broadcast other 

information such as sensor readings, position calculations and steering commands. 
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APPPENDICES 
 

 

Appendix A: Code for Master FSM to Calculate a Position 
begin 
if rising_edge(CLOCK) then 
 case state is 
 
 when IDLE => 
  Enable_Network <= '0'; 
  nd_fixed2float1 <= '0'; 
  nd_fixed2float2 <= '0'; 
  nd_fixed2float3 <= '0'; 
  nd_fixed2float4 <= '0'; 
  NN_data (15 downto 0) <= (others => '0'); 
  rs232_receiver_rst <= '0'; 
  next_state <= WAIT_RECEIVE;  
 
 when WAIT_RECEIVE => -- wait for RS232 data 
  led(3 downto 0) <= "0001"; 
  if (rs232_receiver_stb = '1') then -- data done 
   rs232_receiver_rst <= '1'; 
   train_mode <= '0'; 
   next_state <= START_ADC; 
  else 
   next_state <= WAIT_RECEIVE; -- receiving data 
  end if;  
 
 when START_ADC => 
  ce_amp <= '1'; --active high 
  start_conv <= '1'; 
  next_state <= ADC; 
 
 when ADC => 
  if ADC_DONE = '1' then 
   next_state <= ADC2FIXED; 
   ce_amp <= '0'; --active low 
   start_conv <= '0'; 
  else 
   next_state <= ADC; 
  end if; 
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 when ADC2FIXED => 
  nd_fixed2float1 <= '1'; 
  next_state <= FIXED2FLOAT1; 
 
 when FIXED2FLOAT1 =>     -- fixed to float 1 
  nd_fixed2float1 <= '0'; 
  if (rdy_fixed2float1 = '1') then 
   P1 <= fixed2float_result1; 
   nd_fixed2float2 <= '1'; 
   next_state <= FIXED2FLOAT2; 
  else 
   next_state <= FIXED2FLOAT1; 
  end if; 
 
 when FIXED2FLOAT2 =>     -- fixed to float 2 
  nd_fixed2float2 <= '0'; 
  if (rdy_fixed2float2 = '1') then 
   P2 <= fixed2float_result2; 
   nd_fixed2float3 <= '1'; 
   next_state <= FIXED2FLOAT3; 
  else 
   next_state <= FIXED2FLOAT2; 
  end if; 
    
 when FIXED2FLOAT3 =>     -- fixed to float 3 
  nd_fixed2float3 <= '0'; 
  if (rdy_fixed2float3 = '1') then 
   P3 <= fixed2float_result3; 
   nd_fixed2float4 <= '1'; 
   next_state <= FIXED2FLOAT4; 
  else 
   next_state <= FIXED2FLOAT3; 
  end if; 
 
 when FIXED2FLOAT4 =>     -- fixed to float 4 
  nd_fixed2float4 <= '0'; 
  if (rdy_fixed2float4 = '1') then 
   P4 <= fixed2float_result4; 
   next_state <= WRITE_ADC_DATA1; 
  else        
   next_state <= FIXED2FLOAT4; 
  end if; 
 
 when WRITE_ADC_DATA1 => -- 1 clock cycle every tim e 
  Enable_network <= '0'; 
  ce_RAM <= '1'; 
  RAM_DATA <= P1; 
  RAM_ADDR <= "0000"; -- P1 address 
  next_state <= WRITE_ADC_DATA2; 
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 when WRITE_ADC_DATA2 => -- 1 clock cycle every tim e 
  RAM_DATA <= P2; 
  RAM_ADDR <= "0001"; -- P2 address 
  next_state <= WRITE_ADC_DATA3; 
 
 when WRITE_ADC_DATA3 => -- 1 clock cycle every tim e 
  RAM_DATA <= P3; 
  RAM_ADDR <= "0010"; -- P3 address 
  next_state <= WRITE_ADC_DATA4; 
 
 when WRITE_ADC_DATA4 => -- 1 clock cycle every tim e 
  RAM_DATA <= P4; 
  RAM_ADDR <= "0011"; -- P4 address 
  next_state <= WRITE_ADC_DONE; 
 
 when WRITE_ADC_DONE => 
  ce_RAM <= '0'; 
  next_state <= START_NN; 
 
 when START_NN => 
  Enable_Network <= '1'; 
  next_state <= NN; 
  counter <= (others => '0'); 
 
 when NN => 
  if rdy_NN = '1' then  
   next_state <= FLOAT2FIXED; 
   NN_Data <= N; 
   Enable_Network <= '0'; 
   nd_float2fixed <= '1'; 
  else 
   next_state <= NN; -- NN 
  end if; 
 
 when FLOAT2FIXED => 
  if (rdy_float2fixed = '1') then 
   nd_float2fixed <= '0'; 
   next_state <= START_RS232_HI; 
  else 
   nd_float2fixed <= '1'; 
   next_state <= FLOAT2FIXED; 
  end if; 
 
 when START_RS232_HI => 
  counter <= (others => '0'); 
  rs232_sender_stb <= '1'; -- start pulse on 
  rs232_sender_dat <= "000"&NN_fixed (12 downto 8);  
  next_state <= RS232_HI; 
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 when RS232_HI => 
  counter <= counter + 1; 
  if rs232_sender_ack = '1' then  
   rs232_sender_stb <= '0'; --start pulse off 
  elsif counter (19 downto 0) = 

CONV_STD_LOGIC_VECTOR (system_speed/baudrate*10, 20 ) then  
   next_state <= START_RS232_LO; 
  else 
   next_state <= RS232_HI; 
  end if; 
 
 when START_RS232_LO => 
  counter <= (others => '0'); 
  rs232_sender_stb <= '1'; -- start pulse on 
  rs232_sender_dat <=  NN_fixed (7 downto 0); 
  display_data (12downto0)<=NN_fixed(12downto0); 
  next_state <= RS232_LO; 
 
 when RS232_LO => 
  counter <= counter + 1; 
  if rs232_sender_ack = '1' then  
   rs232_sender_stb <= '0'; --start pulse off 
  elsif counter (19 downto 0) = 

CONV_STD_LOGIC_VECTOR (system_speed/baudrate*10, 20 ) then  
   next_state <= IDLE; 
  else 
   next_state <= RS232_LO; 
  end if; 
 
 end case; -- state   
end if; -- clock 
 
end process sensor_state_machine; 
 
ADC1_fixed <= ADC1(13) & ADC1(13 downto 2); 
ADC2_fixed <= ADC2(13) & ADC2(13 downto 2);  
ADC3_fixed <= ADC3(13) & ADC3(13 downto 2);  
ADC4_fixed <= ADC4(13) & ADC4(13 downto 2);  
  
state <= next_state; 
 
RS232_DCE_TXD  <= RS232_TX_out; 
SPI_AMP_SHDN  <= '0'; 
DAC_CS   <= '1'; -- could not find in chipscope 
SPI_SS_B   <= '1'; 
 
gain <= "00010001"; 
 
end Behavioral; 
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Appendix B: Code for A/D FSM 
begin 
 when IDLE => 
  MUX_SELECT <= '0'; 
  AMP_CS <= '1'; 
  counter <=0; 
  if ce_amp ='1' then 
   next_state <= START; 
  else 
   next_state <= IDLE; 
  end if; 
 
 when START => 
  AMP_CS <= '0'; --turn amp on 
  next_state <= START2; 
  index1 <= 7; -- 8 bit value 
 
 when START2 => 
  MOSI <= gain(index1); 
  next_state <= HI; 
  bit_count <= 0; 
 
 when HI => 
  SCK <= '1'; 
  counter <= counter +1; 
  if counter = 2 then 
   next_state <= HI_DUMMY; 
  else 
   next_state <= HI; 
  end if; 
 
 when HI_DUMMY => 
  counter <=0; 
  bit_count <= bit_count + 1; 
  index1 <= index1-1; 
  next_state <= LO; 
 
 when LO => 
  SCK <= '0'; 
  counter <= counter +1; 
  if counter = 2 then 
   next_state <= LO_DUMMY; 
  else 
   next_state <= LO; 
  end if; 
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 when LO_DUMMY => 
  counter <=0; 
  if bit_count = 8 then 
   next_state <= FINISH; 
  else 
   MOSI <= gain(index1); 
   next_state <= HI; 
  end if; 
 
 when FINISH => 
  next_state <= IDLE_AD; 
  AMP_CS <='1'; 
  SCK <= '0'; 
  MOSI <= '0'; 
 
 when IDLE_AD => 
  if start_conv ='1' then 
   next_state <= START_AD; 
  else 
   next_state <= IDLE_AD; 
  end if; 
 
 when FINISH => 
  next_state <= IDLE_AD; 
  AMP_CS <='1'; 
  SCK <= '0'; 
  MOSI <= '0'; 
 
 when IDLE_AD => 
  if start_conv ='1' then 
   next_state <= START_AD; 
  else 
   next_state <= IDLE_AD; 
  end if; 
  CONV <= '0'; 
  prime <= '1'; 
  MUX_SELECT <= '0'; 
 
 when START_AD => 
  SCK <= '0'; 
  CONV <= '1'; 
  counter <= -1; 
  index1 <= 13; -- 14 bit value 
  index2 <= 13; -- 14 bit value 
  next_state <= HI_AD;  
 
 when HI_AD =>  
  SCK <= '1'; 
  CONV <= '0'; 
  counter <= counter +1; 
  next_state <= LO_AD; 
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 when LO_AD => 
  SCK <= '0'; 
  if prime = '0'  and mux_sel = '0' then    
   if(counter > 2 and counter < 17) then 
    ADC1(index1)  <= SPI_MISO; 
    index1 <= index1 -1; 
   elsif(counter > 18 and counter < 33) then 
    ADC2(index2)  <= SPI_MISO; 
    index2 <= index2 -1; 
   end if; 
 
   if counter = 34 then -- DONE 
    next_state <= FINISH_AD; 
   else 
    next_state <= HI_AD; 
   end if; 
 
  elsif prime = '1' and mux_sel = '0' then 
   if counter = 34 then -- done priming 
    prime <= '0'; 
    next_state <= START_AD; 
   else 
    next_state <= HI_AD; 
   end if; 
 
  elsif prime = '0' and mux_sel = '1' then    
   if(counter > 2 and counter < 17) then 
    ADC3(index1)  <= SPI_MISO; 
    index1 <= index1 -1; 
   elsif(counter > 18 and counter < 33) then 
     ADC4(index2)  <= SPI_MISO; 
   index2 <= index2 -1;    
   end if; 
 
   if counter = 34 then -- DONE 
    ADC_DONE <= '1'; 
    next_state <= FINISH_AD; 
   else 
    next_state <= HI_AD; 
   end if; 
 
  elsif prime = '1' and mux_sel = '1' then  
   if counter = 34 then -- done priming 
    prime <= '0'; 
    next_state <= START_AD;  
   else 
    next_state <= HI_AD; 
   end if; 
  end if; 
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 when FINISH_AD => 
  counter <= 0; 
  MUX_counter <= 0; 
  SCK <= '0'; 
  CONV <= '0'; 
  if MUX_SELECT = '0' then 
   prime <= '1'; 
   MUX_SELECT <='1'; 
   next_state <= MUX_SWITCH_1; 
  else 
   next_state <= IDLE;  
  end if; 
 
 when MUX_SWITCH_1 => 
  MUX_counter <= MUX_counter + 1; 
  next_state <= MUX_SWITCH_2; 
 
 when MUX_SWITCH_2 => 
  if MUX_counter = 100 then 
   next_state <= START_AD; 
  else 
   next_state <= MUX_SWITCH_1; 
  end if; 
 
 when others =>  
  MUX_SELECT <= '0'; 
  mux_sel <= '0'; 
  SCK <= '0'; 
  CONV <= '0'; 
  AMP_CS <= '1'; 
  MOSI <='0'; 
  next_state <= IDLE; 
 end case; 
 
end process; 

  



263 

 

Appendix C: Code for Neural Network FSM  
process (CLOCK) 
begin 
 
 if CLOCK = '1' and CLOCK'event then 
  if WRITE_INPUT = '0' and Enable_Network = '0' the n  
   a_addr_tmp   <= "0011"; 
   p_addr_tmp   <= "0000"; 
   w_addr_tmp   <= "00000";-- 
   b_addr_tmp   <= "0000"; 
   shift_addr_tmp <= "0000"; 
   input_base_tmp <= "0000"; 
   input_num_tmp  <= "0000"; 
   neuron_num_tmp <= "0000"; 
   R_S1_flag   <= "00"; 
   cuenta_tmp   <= "00"; 
   b_0       <= "0000000000000000"; 
   r       <= "0011"; 
   s1       <= "0000"; 
   q_tmp     <= '0'; 
   rdyQ_tmp    <= '0'; 
   flag_tmp    <= '1'; 
   write_ena    <= '0'; 
   nd_tmp     <= '0'; 
   start_tmp    <= '0'; 
   start_flag_tmp <= '0'; 
   completion_flag_tmp <= '1'; 
   enable_tmp   <= '0'; 
   init_flg_tmp   <= '1'; 
   ram_b_input  <= "0000000000000000";  
   write_enb    <= '0'; 
    
  elsif WRITE_INPUT = '1' and Enable_Network = '0' then 
    
   ram_b_input   <= INPUT_DATA; 
   p_addr_tmp   <= INPUT_ADDR; 
   write_enb    <= '1'; 
   rdyNN_tmp    <= '0'; 
    
  elsif WRITE_INPUT = '0'  
  -and Enable_Network = '1' and S1 = "1111" then 
   rdyNN_tmp    <= '1'; 
   a_addr_tmp   <= "0011"; 
   p_addr_tmp   <= "0000"; 
   w_addr_tmp   <= "00000 
   b_addr_tmp   <= "0000"; 
   shift_addr_tmp <= "0000"; 
   input_base_tmp <= "0000"; 
   input_num_tmp  <= "0000"; 
   neuron_num_tmp <= "0000"; 
   R_S1_flag   <= "00"; 
   cuenta_tmp   <= "00"; 
   b_0       <= "0000000000000000"; 
   r       <= "0011"; 
   s1       <= "0000"; 
   q_tmp     <= '0'; 
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   rdyQ_tmp    <= '0'; 
   flag_tmp    <= '1'; 
   write_ena    <= '0'; 
   nd_tmp     <= '0'; 
   start_tmp    <= '0'; 
   start_flag_tmp  <= '0'; 
   completion_flag_tmp <= '1'; 
   enable_tmp   <= '0'; 
   init_flg_tmp   <= '1'; 
   ram_b_input  <= "0000000000000000";  
   write_enb    <= '0'; 
       
  elsif WRITE_INPUT = '0'  
  -and Enable_Network = '1' and S1 /= "1111" then  
   ram_b_input  <= zero; 
   write_enb   <= '0'; 
   rdyNN_tmp   <= '0'; 
 
-- The neural network should only run when told to,  and must 
-- tell the controling system it is done by setting  rdy_nn to '1' 
-- When we are at the end of the shiftrom (1111), 
-- set rdy_nn to '1' 
--if (r = "1111") then  
--   rdyNN_tmp <= '1'; 
--end if; 
 
-- When an addition is completed, update b_0. 
-- We don't want to do this during an addition, bec ause  
-- intermediate values will be wrong. 
 
   if (rdyAD_tmp = '1' ) then 
    b_0    <= b_tmp; 
   end if; 
 
-- Select either bias or partial n to be added to w  times p 
-- When input_num is zero, bias is added. 
-- When input_num is not zero, then partial n is ad ded. 
 
   if input_num_tmp = "0000" then 
    if flag_tmp = '1' then 
     q_tmp   <= '0'; 
     rdyQ_tmp  <= '1'; 
     flag_tmp  <= '0'; 
    end if; 
 
    if (rdyQ_tmp = '1') then 
     b_0    <= b_tmp; 
     rdyQ_tmp  <= '0'; 
     q_tmp   <= '1'; 
     q2_tmp  <= '1'; 
    end if; 
     
    if (q2_tmp = '1') then 
     write_ena <= '0'; 
     q2_tmp   <= '0'; 
    end if; 
   else 
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    flag_tmp   <= '1'; 
   end if; 
 
-- When R_S1_flag is 00, then R is read from the sh ift_rom 
 
   if R_S1_flag = "00" then 
    if (nd_tmp = '0' and rdySH_tmp = '0') then 
     nd_tmp   <= '1'; 
    else 
     if (rdySH_tmp = '1' and nd_tmp = '1') then 
      nd_tmp <='0'; 
      r   <= memory_tmp; 
      R_S1_flag <= R_S1_flag + "01"; 
     end if; 
    end if; 
   end if; 
 
-- When R_S1_flag is 01, then S1 is read from the s hift_rom 
 
   if R_S1_flag = "01" then 
    if (nd_tmp = '0' and rdySH_tmp = '0') then 
     shift_addr_tmp  <= shift_addr_tmp + "0001";  
     nd_tmp    <= '1'; 
    else 
     if (rdySH_tmp = '1' and nd_tmp = '1') then 
      nd_tmp   <='0'; 
      s1    <= memory_tmp; 
      R_S1_flag   <= "11"; 
     end if; 
    end if; 
   end if; 
 
-- When R_S1_flag is 11, then we continue to comput e partial 
-- sums until all inputs have been applied, and the n we compute 
-- neuron outputs until all of the neurons in the c urrent layer 
-- have been computed. Then we set R_S1_flag back t o 00 to  
-- restart. 
 
   if R_S1_flag = "11" then 
 
-- When addition is complete, check that all other events are  
-- completed - end of neuron, end of layer.  comple tion_flag 
-- will be 1 until all events are complete, then it  is set to 0. 
 
    if (rdyAD_tmp= '1') then 
     completion_flag_tmp <= '1'; 
     enable_tmp <= '0'; 
     start_tmp <= '1'; 
    end if; 
 
-- Wait two clocks to be sure that the addresses ha ve settled  
-- before starting the neuron calculation. 
 
    if start_flag_tmp = '1' then 
     cuenta_tmp   <= cuenta_tmp + 1; 
     if cuenta_tmp = "10" then 
      start_tmp   <= '0'; 
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      start_flag_tmp  <= '0'; 
      cuenta_tmp  <= "00"; 
     end if; 
    end if; 
 
--completion_flag_tmp will be 1, if an addition has  been  
-- completed, or if we are on the initial pass. 
 
    if (completion_flag_tmp = '1') then 
 
-- The following if is for the first time. It is on ly done once. 
 
     if init_flg_tmp = '1' then 
      init_flg_tmp   <= '0'; 
      start_tmp    <= '1'; 
      enable_tmp   <= '1'; 
      start_flag_tmp   <= '1'; 
      completion_flag_tmp  <= '0'; 
     else --init_flg_tmp  
 
-- When the input # eq r, start the tansig conversi on. 
-- The conversion starts when a_eq_b_temp is 1. 
 
      if input_num_tmp = r then 
       a_eq_b_tmp <= '1'; 
      end if; 
 
--We wait until rdyTF is 1, if we are at the last i nput. 
--If we are not at the last input, we update the ad dresses 
--and start the next input calculation. 
 
      if ((rdyTF_tmp = '1')  
      -or (not(input_num_tmp = r))) then 
       completion_flag_tmp  <= '0'; 
       enable_tmp    <= '1'; 
       w_addr_tmp   <= w_addr_tmp + 1; 
       start_flag_tmp   <= '1'; 
       start_tmp    <= '1'; 
        
--If we are at the last input, start a new neuron 
 
       if (input_num_tmp = r) then 
        a_eq_b_tmp  <= '0'; 
        write_ena   <= '1'; 
        input_num_tmp  <= "0000"; 
        a_addr_tmp  <= a_addr_tmp + 1; 
        b_addr_tmp  <= b_addr_tmp + 1; 
 
--If we are at the last neuron, start a new layer. 
 
        if neuron_num_tmp = s1 then 
       input_base_tmp <= input_base_tmp+r+1; 
         neuron_num_tmp <= "0000"; 
         R_S1_flag      <= "00"; 
       p_addr_tmp     <= input_base_tmp+r+1; 
        else 
       neuron_num_tmp <= neuron_num_tmp + 1; 
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        p_addr_tmp     <= input_base_tmp; 
        end if; --neuron_num_tmp 
 
--If we are not at the last input, update the input  #. 
 
       else ----input_num_tmp 
       input_num_tmp  <= input_num_tmp + 1; 
        p_addr_tmp  <= input_num_tmp +  
             input_base_tmp +1; 
       end if; --input_num_tmp 
      end if; --rdyTF_tmp 
     end if; --init_flg_tmp 
    end if; --completion_flag_tmp 
   end if; --R_S1_flag = '11' 
  end if; -- write/enable_network 
 end if; --CLOCK 
end process; 
 
not_q_tmp  <= NOT q_tmp; 
N      <= n_tmp;  
A      <= a_tmp; 
P      <= p_tmp; 
B      <= b_tmp; 
B_OUT    <= b_0; 
W        <= w_tmp; 
OUT_B    <= out_b_tmp; 
B_ADDR    <= a_addr_tmp; 
SHIFT_ADDR   <= p_addr_tmp;  -- NOTE SWITCH 
INPUT_BASE  <= input_base_tmp; 
INPUT_NUM   <= input_num_tmp; 
NEURON_NUM  <= neuron_num_tmp; 
Q      <= q_tmp; 
RDY_Q    <= rdyQ_tmp; 
RDY_AD    <= rdyAD_tmp; 
RDY_SH   <= init_flg_tmp; 
RDY_TF    <= rdyTF_tmp; 
A_EQ_B    <= a_eq_b_tmp; 
FLAG    <= write_ena;  
R_OUT    <= r; 
S1_OUT   <= s1; 
R_S1_FLG   <= R_S1_flag; 
MEMORY   <= memory_tmp; 
ND     <= start_flag_tmp; 
WRITE_A   <= write_ena;  
START    <= start_tmp; 
CUENTA   <= cuenta_tmp;  
COMPLETION  <= completion_flag_tmp; 
ENABLE    <= enable_tmp; 
RDY_NN   <= rdyNN_tmp; 
 
end Behavioral; 
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Appendix D: Code for Master FSM to Transmit Training Data 
begin 
if rising_edge(CLOCK) then 
 case state is 
 
 when IDLE => 
  Enable_Network <= '0'; 
  next_state <= WAIT_RECEIVE; 
  rs232_receiver_rst <= '0'; 
 
 when WAIT_RECEIVE => -- wait for RS232 data 
  if (rs232_receiver_stb = '1') then -- data done 
   rs232_receiver_rst <= '1'; 
   if  (rs232_receiver_dat = x"74" ) then -- 't' 
    train_mode <= '1'; 
    next_state <= START_ADC; 
   elsif (rs232_receiver_dat = x"6E" ) then -- 'n' 
    train_mode <= '0'; 
    next_state <= START_ADC; 
   else 
    next_state <= IDLE; 
   end if; 
  else 
   next_state <= WAIT_RECEIVE; --receiving data 
  end if; 
 
 when START_ADC => 
  ce_amp <= '1'; --active high 
  start_conv <= '1'; 
  next_state <= ADC; 
 
 when ADC => 
  if ADC_DONE = '1' then 
   if (train_mode = '1') then 
    next_state <= START_RS232_TRAIN1; 
   else 
    next_state <= ADC2FIXED; 
   end if; 
   ce_amp <= '0'; --active low 
   start_conv <= '0'; 
  else 
   next_state <= ADC; 
  end if; 
 
 when START_RS232_TRAIN1 => 
  counter <= (others => '0'); 
  rs232_sender_stb <= '1'; -- start pulse on 
  rs232_sender_dat <= ADC1(13) & ADC1(13) & ADC1(13 ) & 

ADC1(13) & ADC1 (13 downto 10); 
  next_state <= RS232_TRAIN_HI1; 
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 when RS232_TRAIN_HI1 => 
  counter <= counter + 1; 
  if rs232_sender_ack = '1' then – 
   rs232_sender_stb <= '0'; --start pulse off 
  elsif counter (19 downto 0) = 

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20)  then  
   next_state <= START_RS232_TRAIN_LO1; 
  else 
   next_state <= RS232_TRAIN_HI1; 
  end if; 
 
 when START_RS232_TRAIN_LO1 => 
  counter <= (others => '0'); 
  rs232_sender_stb <= '1'; -- start pulse on 
  rs232_sender_dat <=  ADC1 (9 downto 2); 
  next_state <= RS232_TRAIN_LO1; 
 
 when RS232_TRAIN_LO1 => 
  counter <= counter + 1; 
  if rs232_sender_ack = '1'  
   rs232_sender_stb <= '0'; --start pulse off 
  elsif counter (19 downto 0) = 

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20)  then 
   next_state <= START_RS232_TRAIN2; 
  else 
   next_state <= RS232_TRAIN_LO1; 
  end if; 
 
 when START_RS232_TRAIN2 => 
  counter <= (others => '0'); 
  rs232_sender_stb <= '1'; -- start pulse on 
  rs232_sender_dat <=  ADC2(13) & ADC2(13) & ADC2(1 3) & 

ADC2(13) & ADC2 (13 downto 10); 
  next_state <= RS232_TRAIN_HI2; 
 
 when RS232_TRAIN_HI2 => 
  counter <= counter + 1; 
  if rs232_sender_ack = '1' then  
   rs232_sender_stb <= '0'; --start pulse off 
  elsif counter (19 downto 0) = 

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20)  then  
   next_state <= START_RS232_TRAIN_LO2; 
  else 
   next_state <= RS232_TRAIN_HI2; 
  end if; 
 
 when START_RS232_TRAIN_LO2 => 
  counter <= (others => '0'); 
  rs232_sender_stb <= '1'; -- start pulse on 
  rs232_sender_dat <=  ADC2 (9 downto 2); 
  next_state <= RS232_TRAIN_LO2; 
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 when RS232_TRAIN_LO2 => 
  counter <= counter + 1; 
  if rs232_sender_ack = '1' then  
   rs232_sender_stb <= '0'; --start pulse off 
  elsif counter (19 downto 0) = 

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20)  then  
   next_state <= START_RS232_TRAIN3; 
  else 
   next_state <= RS232_TRAIN_LO2; 
  end if; 
 
 when START_RS232_TRAIN3 => 
  counter <= (others => '0'); 
  rs232_sender_stb <= '1'; -- start pulse on 
  rs232_sender_dat <= ADC3(13) & ADC3(13) & ADC3(13 ) & 

ADC3(13) & ADC3 (13 downto 10); 
  next_state <= RS232_TRAIN_HI3; 
 
 when RS232_TRAIN_HI3 => 
  counter <= counter + 1; 
  if rs232_sender_ack = '1' then  
   rs232_sender_stb <= '0'; --start pulse off 
  elsif counter (19 downto 0) = 

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20)  then  
   next_state <= START_RS232_TRAIN_LO3; 
  else 
   next_state <= RS232_TRAIN_HI3; 
  end if; 
 
 when START_RS232_TRAIN_LO3 => 
  counter <= (others => '0'); 
  rs232_sender_stb <= '1'; -- start pulse on 
  rs232_sender_dat <=  ADC3 (9 downto 2); 
  next_state <= RS232_TRAIN_LO3; 
 
 when RS232_TRAIN_LO3 => 
  counter <= counter + 1; 
  if rs232_sender_ack = '1' then  
   rs232_sender_stb <= '0'; --start pulse off 
  elsif counter (19 downto 0) = 

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20)  then  
   next_state <= START_RS232_TRAIN4; 
  else 
   next_state <= RS232_TRAIN_LO3; 
  end if; 
 
 when START_RS232_TRAIN4 => 
  counter <= (others => '0'); 
  rs232_sender_stb <= '1'; -- start pulse on 
  rs232_sender_dat <=  ADC4(13) & ADC4(13) & ADC4(1 3) & 

ADC4(13) & ADC4 (13 downto 10); 
  next_state <= RS232_TRAIN_HI4; 
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 when RS232_TRAIN_HI4 => 
  counter <= counter + 1; 
  if rs232_sender_ack = '1' then  
   rs232_sender_stb <= '0'; --start pulse off 
  elsif counter (19 downto 0) = 

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20)  then  
   next_state <= START_RS232_TRAIN_LO4; 
  else 
   next_state <= RS232_TRAIN_HI4; 
  end if; 
 
 when START_RS232_TRAIN_LO4 => 
  counter <= (others => '0'); 
  rs232_sender_stb <= '1'; -- start pulse on 
  rs232_sender_dat <=  ADC4 (9 downto 2); 
  next_state <= RS232_TRAIN_LO4; 
 
 when RS232_TRAIN_LO4 => 
  counter <= counter + 1; 
  if rs232_sender_ack = '1' then –  
   rs232_sender_stb <= '0'; --start pulse off 
  elsif counter (19 downto 0) = 

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20)  then  
   next_state <= IDLE; 
  else 
   next_state <= RS232_TRAIN_LO4; 
  end if; 
 
 when others => 
  next_state <= IDLE; 
 end case; -- state   
end if; -- clock 
 
end process sensor_state_machine; 
 
 ADC1_fixed <= ADC1(13) & ADC1(13 downto 2); 
 ADC2_fixed <= ADC2(13) & ADC2(13 downto 2); 
 ADC3_fixed <= ADC3(13) & ADC3(13 downto 2); 
 ADC4_fixed <= ADC4(13) & ADC4(13 downto 2); 
 F8PIN  <= rdy_tf; 
 E8PIN  <= '0'; 
  
 led(4) <= '0'; 
 led(5) <= '0'; 
 led(6) <= train_mode; 
 led(7) <= not RS232_DCE_RXD; 
  
 state <= next_state; 
 
 RS232_DCE_TXD  <= RS232_TX_out; 
 SPI_AMP_SHDN  <= '0'; 
 DAC_CS   <= '1'; 
 SPI_SS_B   <= '1'; 
 gain <= "00010001"; 
 AMP_DOUT_OUT <= AMP_DOUT_IN; 
  
end Behavioral;   
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Appendix E: PD Controller Real Time Executive Code: CODE FROM main.c 
 
#include "main.h" 
#include <string.h> 
 
unsigned char input1=127; //High byte of position f rom FPGA 
unsigned char width1=10;//Debugging pulse width in high byte read 
unsigned char width2=137;//Debugging pulse width in  low byte rea 
unsigned char input2=127; //Low byte of position fr om FPGA 
unsigned int16 input=400; //Total position from FPG A 
unsigned char servoWidthCounter=127;//Counter used in servo loop 
short servoFlag = 1;  //Flag to indicate 20ms servo  

window 
short servoPhase = 0;  //Flag to indicate servo res tart 
int x;     //Counter indicating which byte is 

read 
signed int16 servoWidth=30; //Width of servo pulse in counts 
 
#include "pid.h" 
 
// Received Data Available Interupt Subroutine 
// Reads 1 byte of data from our RS232 in 
// Stores the byte to the in global variable 
// Then write the letter 'n' to request for a new p osition 
 
#int_RDA 
void  RDA_isr(void) 
{ 
if(x==1) 
 { 
 //Read high byte of position from FPGA 
 
 input1 = getc(); 
 x++; 
 } 
else if(x==2) 
 { 
 input2 = getc(); 
 PIDWindow = 1; //lets compute another sample3 
 x=0; 
 input = make16(input1,input2); 
 } 
} 
 
// RTCC Interuput Subroutine 
// Interputed every 51.2us 
// Used to control the pulse width for the servo 
// Most servos should be between 1 and 2 ms pulses 
// window may be different for different servos 
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#int_RTCC 
void  RTCC_isr(void)  
{ 
if(servoFlag == 1) //Has our 20ms window passed? 
 { 
 if(servoWidthCounter<servoWidth) 
  //Are we in the variable 0-2ms window? 
  { 
  output_high(SERVO);          //Set the servo pin high 
  servoWidthCounter++;         //And increment our counter 
  } 
 else 
  { 
  output_low(SERVO);//outside of the pulse, turn of f pulse 
  servoFlag = 0; 
  } 
 } 
} 
 
// Timer1 Interuput Subroutine 
// Interputed every 13.1ms 
// Used to trigger step of the PID controller/Resta rt Servo PW 
 
#int_TIMER1 
void  TIMER1_isr(void)  
{ 
//Servo can only be triggered every 20ms, 
//  but we are sampling ever 13.1ms. 
//A flag, ServoPhase is set to set  
//  to determine if the servo can be updated. 
 
if(servoPhase==0)//restart servo pulse 
 { 
 servoWidthCounter = 0; 
 servoFlag = 1; 
 servoPhase = 1; 
 } 
else //servo is resting 
 { 
 servoPhase = 0; 
 } 
} 
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void main(void) 
{ 
init(); 
set_pwm1_duty(255); 
while(1) 
 { 
 if(PIDwindow==1) 
  { 
  //request another position from the FPGA 
 
  putc('n',osu); 
 
  //Indicate that the first byte should be read 
 
  x=1; 
 
  //Call the PID controller 
 
  PID_Controller();  
  } 
 } 
} 
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Appendix F: PD Controller Real Time Executive Code: CODE FROM main.h 
 
#include <18F1220.h> 
#FUSES NOWDT   //No Watch Dog Timer 
#FUSES WDT128   //Watch Dog Timer uses 1:128 

Postscale 
#FUSES H4    //High speed osc with HW enabled 4X 

PLL 
#FUSES FCMEN   //Fail-safe clock monitor enabled 
#FUSES BROWNOUT  //Reset when brownout detected 
#FUSES BORV42   //Brownout reset at 4.2V 
#FUSES NOPUT   //No Power Up Timer 
#FUSES NOCPD   //No EE protection 
#FUSES STVREN   //Stack full/underflow will cause 

reset 
#FUSES NODEBUG  //No Debug mode for ICD 
#FUSES NOLVP  //No low voltage prgming, 
      //B3(PIC16) or B5(PIC18) used for I/O 
#FUSES NOWRT  //Program memory not write protected 
#FUSES NOWRTD   //Data EEPROM not write protected 
#FUSES NOWRTC //configuration not registers write p rotected 
#FUSES IESO  //Internal External Switch Over mode e nabled 
#FUSES NOEBTR  //Memory not protected from table re ads 
#FUSES NOEBTRB //Boot block not protected from tabl e reads 
#FUSES MCLR   //Master Clear pin enabled 
#FUSES NOPROTECT  //Code not protected from reading  
#FUSES NOCPB    //No Boot Block code protection 
#FUSES NOWRTB   //Boot block not write protected 
#use delay(clock=40M) 
 
#use 

rs232(baud=38400,parity=N,xmit=PIN_B1,rcv=PIN_B4,bi ts=8,stream=osu) 
 
#define SERVO  PIN_A0 
void init(void) 
{ 
setup_adc_ports(NO_ANALOGS|VSS_VDD); 
setup_adc(ADC_CLOCK_DIV_2|ADC_TAD_MUL_0); 
setup_wdt(WDT_OFF); 
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_2|RTCC_8_bit);  
setup_timer_1(T1_INTERNAL|T1_DIV_BY_2); 
setup_timer_2(T2_DIV_BY_16,255,1); 
setup_timer_3(T3_DISABLED|T3_DIV_BY_1); 
setup_ccp1(CCP_PWM); 
enable_interrupts(INT_RTCC); 
enable_interrupts(INT_TIMER1); 
enable_interrupts(INT_RDA); 
enable_interrupts(GLOBAL); 
set_pwm1_duty(0); 
output_high(PIN_B2); 
} 
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Appendix G: PD Controller Real Time Executive Code: CODE FROM PID.h 
 
short PIDWindow = 1;  //Flag to indicate that contr ol  
        // loop should execute 
float32 prevPos = 0;  //Previous position (meters) 
float32 currentPos = 0; //Current position (meters)  
float32 vel = 0;   //Velocity (meters/s) 
float32 st_angle = 0;  //Steering angle (radians) 
float32 position=0; //Car position from center line  in meters 
signed int16 fullpos=400; //temp variable to conver t input 
        // to signed int16 
// Define parameters 
 
float32 kp = -60.0;  //Position feedback gain (radi ans/meter) 
float32 kv = -500.000; //Velocity feedback gain (ra dians/meter/s) 
float32 alpha = 0.02;  //Filter parameter (0<alpha< 1) 
float32 one_m_alpha = 0.98; // (1-alpha) 
float32 setpoint = 0.0; //Position set point (meter s) 
float32 dt = 0.02;  //Sampling interval (s) 
signed int16 poscenter=400; //Center position in 1/ 100 in 
float32 met_conv = 0.000254;//Conversion from 1/100  in to meters 
 
void PID_Controller() 
{ 
//Adjust for the center position and convert to met ers 
 
fullpos = input; 
position = met_conv*(fullpos - poscenter);  
 
// Increment time - save the old position 
 
prevPos = currentPos; 
 
// Filter the position 
 
currentPos = alpha*position + one_m_alpha*prevPos;  
 
// Compute the velocity 
 
vel = (currentPos-prevPos)/dt; 
 
// Compute the control signal (steering angle in ra dians) 
 
st_angle = (currentPos - setpoint)*kp + kv*vel; 
 
// Convert the control signal to pulse width count 
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servoWidth = 19.1*st_angle + 29.0;   
if(servoWidth>39) 
 { 
 //servoWidth=42; 
 servoWidth=39; 
 } 
else if(servoWidth<19) 
 { 
 //servoWidth=30; 
 servoWidth=19;  
 } 
//clear the PIDwindow so we can wait for the next s ample 
PIDwindow=0; 
return; 
} 
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