
 TEST BED FOR DEMONSTRATING

 AND TEACHING SOFT

 SENSOR CONCEPTS

 By

 JEREMY PAUL EVERT

 Bachelor of Science in Mechanical

and Nuclear Engineering

 Kansas State University

 Manhattan, Kansas

 2003

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 MASTER OF SCIENCE

 December, 2010

ii

 TEST BED FOR DEMONSTRATING

 AND TEACHING SOFT

 SENSOR CONCEPTS

 Thesis Approved:

 Dr. Martin Hagan

 Thesis Adviser

 Dr. Carl D. Latino

 Dr. James E. Stine, Jr.

 Dr. Mark E. Payton

 Dean of the Graduate College

iii

ACKNOWLEDGMENTS

Thank you Amey Phadke and Surpriya Tike for your support with Xilinx. It was

always comforting to know I could come to you for help with the software. To my friend

Amanuel Aseffa, many thanks for the long hours working through the A/D FSM code

and learning Chipscope. We will need to drink some of your coffee and go over the new

code together some time. Thank you Jarett Teel for finishing the motor control switch

design and laying it out for milling. It was good to have the company of the NATCAR

team down in the basement last summer. Thank you Megan Brady for your help with

soldering the PIC boards and sensor boards. Thank you Kellen Butler for your help with

the motor control switch and PIC board. You were very kind to come back to the project

and help us learn to use the compiler. Thank you Max Murphy for your technical council

and assistance with many aspects of the project. Thank you Jeff Henson for your

continued support of the Smart Position Sensor GUI code. Thanks also to Taylor York

and Daniel Nash for your work with the HDL code for the Smart Position Sensor project.

Thank you Lory Ferguson for your help in purchasing the necessary components to make

this project work.

.

iv

I am thankful for the guidance and assistance of my committee. Thank you Dr.

Stine for your help with Xilinx and the FPGA boards. Thank you Dr. Latino for the use

of your lab and your time and guidance with the project. Thank you Dr. Hagan for all of

your time and your help. I am very grateful for your help and patience.

Thank you to all my friends and family for your love and support throughout this

process. I am especially grateful for my loving wife Amanda. Thank you for bearing

with me while I completed this project.

v

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Project Overview ...2
 1.2 Project History and Current Status ..4
 1.3 Thesis Outline ..6

II. SENSORS AND SIGNAL CONDITIONING CIRCUIT ...8

 2.1 Magnetic Fields and Inductors ...10
 2.1.1 PNI Magneto Inductive Sensors ...15
 2.1.2 Inductors ...16
 2.2 Signal Conditioning Circuit ...19
 2.3 Proto-Board Testing ...36
 2.3.1 General Concerns for Proto-Board Testing ..37
 2.3.2 Fixture Development ..38
 2.3.3 Proto-Board Testing Results ...40
 2.4 Printed Circuit Board Development...42
 2.5 Summary of Input Signal Capture Circuit ...49

vi

Chapter Page

III. ANALOG TO DIGITAL CONVERSION ..50

 3.1 Introduction, Purpose and Overview of Analog to Digital Hardware and Software

Interface ...52
 3.2 Hardware ..53
 3.2.1 Input Voltage ..54
 3.2.2 Pre-Amplifier ..56
 3.2.3 Converter Chip ..58
 3.2.4 Data Bus ..59
 3.2.5 FPGA ..62
 3.3 Finite State Machine ..63
 3.3.1 Master FSM Initiates A/D Conversion ...66
 3.3.2 A/D FSM Initializes Hardware ...68
 3.3.3 Read Sensors 1 and 2 ..73
 3.3.4 Switch Multiplexer to Read Sensors 3 and 4 ..81
 3.3.5 Read Sensors 3 and 4 ..83
 3.3.6 Set Flag “ADC_DONE” High so Master FSM can Continue and Use A/D

Conversion Results ..86
 3.4 Testing the A/D Converter ...87
 3.4.1 Testing the Multiplexer Timing ..88
 3.4.2 Testing for Noise in the A/D System ..90
 3.5 Credit for Previous Help on Writing the A/D FSM Code94
 3.6 Summary of the A/D Conversion Process ...95

vii

Chapter Page

IV. ARTIFICIAL NEURAL NETWORK ...96

 4.1 Introduction to Neural Networks ...98
 4.2 Multilayered Perceptron ...102
 4.2.1 Log Sigmoid Transfer Function ..103
 4.2.2 Single Input Neuron ..104
 4.2.3 Multiple Input Neuron ..106
 4.2.4 Multilayer Perceptron Network ..108
 4.3 Artificial Neural Network State Machine ..112
 4.3.1 Introduction and Purpose; Position Calculation and the Master FSM ..114
 4.3.2 Serial Implementation Description and Network FSM Overview127
 4.3.3 Credit for Previous Work to Write the Neural Network Code152
 4.4 Training the Neural Network ...153
 4.4.1 Data Collection ...154
 4.4.2 Training ...156
 4.4.3 Network Validation ...157
 4.5 Neural Network Supporting Components ..161
 4.5.1 Master FSM Modifications for Training...162
 4.5.2 Automated Data Collection Software ...168
 4.5.3 Other Support Software ..170
 4.6 Summary ..173

V. PD CONTROLLER ..174

 5.1 Overview ..176
 5.2 Implementation ..179
 5.2.1 Real-Time Executive Algorithm ...180
 5.2.2 Hardware ...188
 5.3 Modeling and Controller Design ...194
 5.4 Support Equipment ..207
 5.5 Summary ..208

viii

Chapter Page

VI. ELECTRIC CAR ...209

 6.1 Overview ..210
 6.2 Components ...211
 6.2.1 Chassis ..212
 6.2.2 Motor...215
 6.2.3 Batteries ..216
 6.2.4 Motor Control Switch ...217
 6.2.5 Servo ...227
 6.3 Board Mounting ...228
 6.4 Summary ..233

VII. SUMMER SOFT SENSOR ACADEMY ..234

 7.1 Overview and Academy Objectives ...235
 7.2 Activities ..236
 7.2.1 Electromagnetic Sensors ...237
 7.2.2 Data Fitting ...239
 7.2.3 Neural Networks ...240
 7.2.4 Digital Circuits ..241
 7.2.5 Training the Brain ...242
 7.2.6 Race Day ...243
 7.3 Summary ..244

VIII. SUMMARY AND FUTURE WORK...245

 8.1 Summary of Thesis ..246
 8.2 Author’s Contributions to Project ..249
 8.3 Future Work ...251

REFERENCES ..254

APPENDICES ...255

ix

LIST OF TABLES

Table Page

 1: Voltage Supply Readings at 0.8 Volts ..90
 2: Voltage Supply Readings at 2.4 Volts ..91
 3: Sensor Readings from Data Collection at 12.5 Inches ...92
 4: Sensor Readings from Data Collection at 6.0 Inches ...92

x

LIST OF FIGURES

Figure Page

Figure 1-1: Main Block Diagram ...2
Figure 1-2: System Functional Overview ..3
Figure 2-1: Main Block Diagram ..9
Figure 2-2: System Functional Overview ...10
Figure 2-3: Magnetic Field from Wire ..11
Figure 2-4: Inductor on a Wire ..12
Figure 2-5: Voltage Across an Inductor versus Distance ..13
Figure 2-6: Voltage versus Angle ..14
Figure 2-7: Normalized Circuit Output Response versus Distance from Center of Sensor
to Center of Wire ...15
Figure 2-8: Sensor Elevation Testing ...17
Figure 2-9: Multiple Sensor Layout ...18
Figure 2-10: Sensor Responses ..18
Figure 2-11: System Functional Overview ..19
Figure 2-12: Sensors and Signal Conditioning Macro Components20
Figure 2-13: Signal Conditioning Circuit Components ...21
Figure 2-14: Voltage Follower...22
Figure 2-15: Multisim Simulation of a Voltage Follower ...22
Figure 2-16: Voltage Follower Simulation Oscilloscope ..23
Figure 2-17: Voltage Follower Physical Oscilloscope Data ..24
Figure 2-18: Non-Inverting Amplifier ...25
Figure 2-19: Non-Inverting Amplifier Simulation Oscilloscope26
Figure 2-20: Non-Inverting Amp Physical Oscilloscope...27
Figure 2-21: Negative Peak Detector ...28
Figure 2-22: Peak Detector Simulation Oscilloscope ..29
Figure 2-23: Peak Detector Physical Oscilloscope ..30
Figure 2-24: Summing Amplifier with Two Inputs ...31
Figure 2-25: Voltage Divider ...31
Figure 2-26: Summing Amplifier Simulation Circuit ..32
Figure 2-27: Summing Amplifier Simulation Oscilloscope ..33
Figure 2-28: Summing Amplifier Physical Oscilloscope ..33

xi

Figure Page

Figure 2-29: Output Filter ..34
Figure 2-30: Frequency Response of Filter ...34
Figure 2-31: CAD Drawing of Test Fixture ..38
Figure 2-32: Photo of Test Fixture...39
Figure 2-33: Scope Reading for Amplifier Circuit, gain of 2.9940
Figure 2-34: Output of TL082 Op-Amp in Voltage Follower Configurations41
Figure 2-35: Sensor Board Layout ...43
Figure 2-36: Sensor Board Photo ...44
Figure 2-37: Labeled Sensor Board Photo ...45
Figure 2-38: ADC4 Layout ..46
Figure 2-39: Sensor 4 Photo ..47
Figure 2-40: Sensor 4 Photo with Labels ...48
Figure 3-1: Main Block Diagram ...51
Figure 3-2: System Functional Overview ..51
Figure 3-3: Hardware Overview ..53
Figure 3-4: Input Voltage Major Components ...54
Figure 3-5: Mux Timing Diagram ...55
Figure 3-6: Pre-Amplifier Major Components ..56
Figure 3-7: A/D Converter Chip Major Components ..58
Figure 3-8: Data Bus Connections for Pre-Amplifier ..60
Figure 3-9: Data Bus Connections for A/D Converter ..61
Figure 3-10: FPGA Circuit Design Cycle ..62
Figure 3-11: System Functional Overview ..63
Figure 3-12: PD Controller Process ...64
Figure 3-13: Master FSM Process Overview...65
Figure 3-14: Master FSM Initial States ...67
Figure 3-15: A/D FSM State Map for Initializing Hardware70
Figure 3-16: A/D FSM Overview for Reading Sensors...74
Figure 3-17: A/D FSM for Reading Sensors Map 1 ..77
Figure 3-18: A/D FSM for Reading Sensors Map 2 ..81
Figure 3-19: A/D FSM for Reading Sensor Map 1..83
Figure 3-20: Multiplexer Response Timing Diagram ..89
Figure 4-1: Main Block Diagram ...97
Figure 4-2: System Functional Overview ..98
Figure 4-3: PD Controller Process ...99
Figure 4-4: Master FSM Process Overview...100
Figure 4-5: Neuron Components ...102
Figure 4-6: Log Sigmoid Response Around 0 ...103
Figure 4-7: Single Input Neuron ..104

xii

Figure Page

Figure 4-8: Single Input Log Sigmoid Neuron Response Around 0105
Figure 4-9: Multiple Input Neuron ..106
Figure 4-10: One Layer of Neurons ...108
Figure 4-11: Smart Car MLP Network with Detailed Connections for First Neuron in the
First Layer ..109
Figure 4-12: Smart Car MLP Network Connections for the Output Layer110
Figure 4-13: System Functional Overview ..112
Figure 4-14: PD Controller Process ...113
Figure 4-15: Master FSM Initial States ...114
Figure 4-16: Master FSM Overview ..115
Figure 4-17: Master FSM Map 1: Initial States ...117
Figure 4-18: Master FSM Map 2: Input Conversion ...119
Figure 4-19: Timing Diagram for Number Conversion ...120
Figure 4-20: Master FSM Map 3: Writing Inputs to RAM122
Figure 4-21: Loading the RAM ...123
Figure 4-22: Neural Network Calculation Timing Diagram......................................124
Figure 4-23: Master FSM Map 4: Transmit Position...126
Figure 4-24: Neural Network FSM Overview 1 ..127
Figure 4-25: Neural Network Overview 2: First Layer Output128
Figure 4-26: NN FSM Overview 3: First Neuron Output..129
Figure 4-27: Neural Network on FPGA Schematic ..131
Figure 4-28: Neural Network Flow Chart 1 ...132
Figure 4-29: Neural Network Flow Chart 2 ...133
Figure 4-30: Neural Network Flow Chart 3 ...134
Figure 4-31: Neural Network Flow Chart 4 ...135
Figure 4-32: Neural Network Flow Chart 5 ...136
Figure 4-33: Neural Network Flow Chart 6 ...137
Figure 4-34: Neural Network Flow Chart 7 ...138
Figure 4-35: Neural Network Flow Chart 8 ...139
Figure 4-36: Neural Network Flow Chart 9 ...140
Figure 4-37: Neural Network Flow Chart 10 ...141
Figure 4-38: Neural Network Flow Chart 11 ...142
Figure 4-39: Neural Network Flow Chart 12 ...143
Figure 4-40: Neural Network Flow Chart 13 ...144
Figure 4-41: Neural Network Flow Chart 14 ...145
Figure 4-42: Example Timing Diagram for one Neuron ...146
Figure 4-43: Overview of Neural Network Calculation ..148
Figure 4-44: ChipScope Waveform for Calculating Output of First Neuron in First Layer
..149

xiii

Figure Page

Figure 4-45: First Input to First Neuron in First Layer ..150
Figure 4-46: Smart Sensor Car for Data Collection...154
Figure 4-47: Sensor Responses versus Position...155
Figure 4-48: Mean Squared Error versus Training Epochs156
Figure 4-49: Neural Network Position versus True Position157
Figure 4-50: Sensor 2 Reading at 3 Inches ..158
Figure 4-51: Neural Network Position versus True Position with Interpolated Data 159
Figure 4-52: Neural Network Position versus True Position, Zoomed in at 3 Inches160
Figure 4-53: Car position of Three inches ...162
Figure 4-54: Data Collection Process Overview ...163
Figure 4-55: Master FSM Process Overview...164
Figure 4-56: Master FSM Map 1: Initial States ...165
Figure 4-57: Master FSM Map 2: Transmit ADC1 ...166
Figure 4-58: Master FSM Map 3: Transmit ADC4 ...167
Figure 4-59: Computer Program Writing to Screen Only ...168
Figure 4-60: Computer Program Writing to Screen and Data File169
Figure 4-61: Xilinx ISE Screen Capture ..170
Figure 4-62: Xilinx CORE Generator Screen Capture ..171
Figure 4-63: Xilinx ChipScope Screen Capture ..172
Figure 5-1: Main Block Diagram ..175
Figure 5-2: System Functional Overview ..176
Figure 5-3: PD Controller Interaction with Master FSM...177
Figure 5-4: PD Controller Overview ...178
Figure 5-5: Real-Time Executive Algorithm Overview ..180
Figure 5-6: Real-Time Executive Algorithm Flow Chart 1181
Figure 5-7: Real-Time Executive Flow Chart 2 ..183
Figure 5-8: Real-Time Executive Flow Chart 3 ..184
Figure 5-9: Real-Time Executive Flow Chart 4 ..185
Figure 5-10: Real-Time Executive Flow Chart 5 ..186
Figure 5-11: Real-Time Executive Flow Chart 6 ..187
Figure 5-12: PIC Board Schematic ..190
Figure 5-13: PIC Board PCB Layout ...191
Figure 5-14: Photo of PIC Board ...192
Figure 5-15: PIC Board Photo with Labels..193
Figure 5-16: Controller Design Loop ..194
Figure 5-17: Basic Plant Model ...195
Figure 5-18: Simulink Model of Plant ...196
Figure 5-19: Root Locus of Linearized Car Model ...197
Figure 5-20: Open Loop Simulink Model with Fixed Steering Angle198

xiv

Figure Page

Figure 5-21: Open Loop Car Simulation Response for 7.5 degree Steering Angle ..198
Figure 5-22: Closed Loop Simulink Model ...199
Figure 5-23: Validation of Model Response ..201
Figure 5-24: Maximum Possible Steering Angle...202
Figure 5-25: Plant and Controller Simulink Model with Steering Saturation Block .203
Figure 5-26: Pole Zero Map for the Controller and Plant Model204
Figure 5-27: Model Response with Tuned Controller ...205
Figure 6-1: Main Block Diagram ...209
Figure 6-2: System Functional Overview ..210
Figure 6-3: Electric Car ...211
Figure 6-4: Car Chassis ..212
Figure 6-5: Steering Mechanism Parallelogram ..213
Figure 6-6: Car Chassis Steering Mechanism ..214
Figure 6-7: Car Motor ..215
Figure 6-8: Car Batteries ..216
Figure 6-9: Motor Control Switch Schematic ..218
Figure 6-10: Motor Control Switch Board Layout ..219
Figure 6-11: Motor Control Switch Board with Labels ...220
Figure 6-12: Guide to Motor Control Switch Plots ...222
Figure 6-13: PIC Microcontroller Signal and Opticoupler Input...............................223
Figure 6-14: Microcontroller Signal and BJT Base Terminal Inputs224
Figure 6-15: Microcontroller Signal and Motor Terminal Connections225
Figure 6-16: Motor Control Switch Connections ..226
Figure 6-17: Car servo Connection to Steering Mechanism227
Figure 6-18: Main Block Diagram ...228
Figure 6-19: Assembled Car with Boards ..229
Figure 6-20: Sensor Board Connections ..230
Figure 6-21: FPGA Board Connections ...231
Figure 6-22: Microcontroller Board Connections..232

1

CHAPTER I

INTRODUCTION

The objective of this project was to develop a platform that could be used to

demonstrate two concepts: 1) how neural networks can be implemented on FPGAs, and

2) how the FPGA neural network can be used as the fundamental component of a smart

sensor system. This chapter provides an overview of this platform and an outline of the

rest of this thesis.

2

1.1 Project Overview

The purpose of this project is to produce a test bed for demonstrating soft sensors,

and how they can be implemented with neural networks on FPGAs. The test bed of

choice is a smart sensor car. The smart sensor car follows a wire. The wire forms a track

and produces a changing magnetic field. This magnetic field is translated into a position

measurement using sensors, signal conditioning, analog to digital converter and a neural

network. The position measurement is used by a PD controller that sends signals to the

car motor and steering mechanism, and results in motion around the track. Figure 1-1

shows the main block diagram.

Figure 1-1: Main Block Diagram

3

Smart sensor concepts translate the magnetic field into a position measurement.

First, four inductors produce signals in response to the strength of the magnetic field in

their area. These signals go through a signal conditioning circuit and are then converted

to digital numbers by the analog to digital (A/D) converters. The four digital numbers

become the four inputs to the artificial neural network on the Field Programmable Gate

Array (FPGA). The output of the neural network is position. The controller uses this

position to generate motor speed and steering servo commands for the electric car. The

electric car responds by moving around the track. When the car moves, the sensors enter

a different magnetic field, which results in a new position calculation and new steering

command. Figure 1-2 shows the system functional overview.

Figure 1-2: System Functional Overview

4

1.2 Project History and Current Status

The main component of the smart sensor is the artificial neural network. In the

summer of 2008, Dr. Hagan, Dr. Latino and Dr. Moreno-Armendariz wrote code to

implement the neural network on an FPGA. During the fall of 2008, Jeff Henson, Daniel

Nash, Craig Noltensmeyer and Taylor York worked together to expand the code to work

as a smart position sensor. This work was part of a capstone design class at Oklahoma

State University. Their project used the output of two light sensors as inputs to the neural

network. The neural network calculated the position of an object in front of the sensors

blocking the light. Their project incorporated use of the on-board A/D converter and

LCD display. During the fall of 2009, the project was given to another group in the

capstone design class. The team included Amanuel Assefa, Kellen Butler and Stephanie

Pickrel. The team was successful in building a microcontroller board to communicate

with the FPGA and generate speed and steering commands for the electric car. The team

also changed the code to read in four sensor readings by incorporating an off board

multiplexer.

The author’s contributions began during the fall of 2009 by assisting Amanuel

Assefa with the Xilinx software to change the FPGA code to read in four sensors and

control the multiplexer. In the spring of 2010, the author began work on the rest of the

smart sensor car. This included development, fabrication and testing of the sensor board.

The next contribution was the design, testing and fabrication of the motor control switch.

After the individual components were ready, the author designed and fabricated the

power system and board mounting fixtures. Five cars were prepared for an academy for

5

high school students during summer 2010. During the summer academy, the author

assisted students with modules and equipment in the lab. The author contributed to some

of the writing for the summer academy documents. The author instructed students about

how to use the smart sensor cars and assisted them as needed. After the summer

academy, the author documented all system components.

The current status of the project is that the smart sensor car is able to go around a

simple track slowly. The car has considerable steering oscillation. The project reached

this point before the summer academy.

6

1.3 Thesis Outline

Chapter two covers the sensors and signal conditioning circuit. It describes the

magnetic field and sensors to detect it. It also describes the signal conditioning circuit,

defining the circuit components, how they were tested and the fabrication of the printed

circuit board.

Chapter three focuses on the A/D converter. It describes the on-board hardware

and off-board multiplexer operation, and the control of the A/D conversion. The chapter

also describes how the A/D conversion process was tested.

Chapter four focuses on the artificial neural network. It begins by providing basic

information about the artificial neural network implemented on the smart sensor car.

Next, It describes the implementation of the neural network showing timing diagrams for

the process. The chapter also discusses how the neural network was trained. It also

includes discussion about the support equipment required to make the FPGA neural

network functional.

Chapter five describes the PD controller. The chapter describes how the

controller is implemented and explains how the controller works. The chapter also

describes the modeling process and how the model was used to determine the controller

parameters. It also includes discussion about the support equipment required to make the

controller functional.

7

Chapter six describes the electric car. It describes the components that make up

the electric car, including the motor control switch. The chapter also describes the board-

mounting fixture and how the individual boards connect to each other.

Chapter seven describes the summer soft sensor academy. It provides an

overview of the academy and states the academy objectives. The chapter also describes

the student activities.

Chapter eight, Conclusions and Future Work, is the last chapter. It provides a

summary of the project and reiterates the author’s contributions. The chapter ends with a

description of possible future work.

8

CHAPTER II

SENSORS AND SIGNAL CONDITIONING CIRCUIT

This chapter discuses how the magnetic field coming from a wire is transformed

into signals that can be sampled by analog to digital converters (A/D) and read into the

FPGA neural network, as shown in Figure 2-1. The chapter begins with an introduction,

followed by a brief discussion of sensors, magnetic fields and how they interact. Section

two covers the basic design of the signal conditioning circuit. Section three describes the

steps in proto-board testing. Section four is on the printed circuit board. Section five

summarizes the chapter.

9

Figure 2-1: Main Block Diagram

10

2.1 Magnetic Fields and Inductors

As the car moves along the wire track, it encounters a magnetic field coming from

current moving through the wire. Sensors detect the magnetic field and generate voltages

that go to the signal conditioning circuit. Figure 2-2 shows how these functions fit into

the rest of the system. This section describes the magnetic field and sensors that detect it.

Figure 2-2: System Functional Overview

11

The magnetic field is generated by passing a sinusoidal wave through a wire. The

generated field is a series of rings perpendicular to the path of the electrons moving

through the wire, as shown in Figure 2-3.

Figure 2-3: Magnetic Field from Wire

The Biot-Savart law describes the magnetic field generated by an electric current:

� � �� ���
|�|	 , where B is the magnetic field, k is a constant, q is the charge moving

through a wire, v is charge velocity and x is the distance from the wire to the point being

observed. In parallel wires, a charge moving in the first wire will cause a magnetic field.

The magnetic field will cause a charge to move in the second wire. The moving charge

in the second wire can be measured as a voltage difference between the two ends of the

second wire.

12

An experiment with a wire and inductor can help visualize the magnetic field.

(see Figure 2-4) The first wire is connected to a function generator. This provides the

moving charge in the first wire, which results in the magnetic field. The inductor is

placed in the magnetic field. The voltage across the inductor is due to Faraday’s law of

induction. The voltage induced in a coil is proportional to the time rate of change of the

magnetic flux through the coil. The voltage difference is measured across the two leads

of the inductor. The field strength is proportional to the inverse square of the distance.

The field strength is directional. As the angle between the two wires increases, the

magnetic induction effects are reduced. Figure 2-4 shows an inductor on a wire. In

Figure 2-4, distance between the center of the wire and center of the inductor is zero and

the angle between wire and inductor is ninety degrees.

Figure 2-4: Inductor on a Wire

13

Figure 2-5 shows the voltage measured across an inductor as distance from the

center of the inductor to the center of the wire is increased. This displays an inverse

square relationship, as predicted by the Biot-Savart law.

Figure 2-5: Voltage Across an Inductor versus Distance

14

Figure 2-6 shows the voltage across the inductor as the angle between the

inductor and wire is increased. This shows that the field effect depends on the orientation

of the wire, with parallel wires having the strongest inductive effects, as predicted by

Faraday’s law. If the changing magnetic field does not pass through the coils, no voltage

will be induced.

Figure 2-6: Voltage versus Angle

15

2.1.1 PNI Magneto Inductive Sensors

One possibility for sensing magnetic fields is the application of PNI Magneto-

inductive position sensors, from PNI Sensor Corporation. This sensor is designed to be

sensitive enough to detect the Earth’s magnetic field. The maximum allowed voltage

between sensor terminals is 2.5 volts, unlike the inductors that experienced differences of

over 25 volts between the terminals without obvious signs of damage. Previous OSU

students have used inductors for sensing magnetic fields. The PNI sensor performance

was compared against inductors. The response of both sensors was normalized to unity.

Figure 2-7 shows the percent of maximum signal strength versus distance in mm,

measured from the center of the wire to the center of the sensor, for both sensors.

Figure 2-7: Normalized Circuit Output Response versus Distance from Center of Sensor
to Center of Wire

The magneto-inductive sensors did not outperform the inductors. Because

inductors have been used in the past, are cheaper, more readily available, and more

robust, inductors are the sensor of choice for this project.

16

2.1.2 Inductors

A previous NATCAR team of OSU Tulsa students suggested using 33 millihenry

inductors to sense a magnetic field from a wire carrying a 100 mA sine wave with a 75-

kilohertz frequency. Experiments showed that these inductors have a slightly greater

response at higher frequencies, with a maximum near 100 kHz. 33 millihenry inductors

sensing a magnetic field from a wire carrying a 100-kilohertz sine wave are used for this

project.

17

Figure 2-7 was created at a single sensor elevation above the wire. The sensor

stayed at the same vertical height and moved horizontally away from the wire. To

determine the most useful sensor elevation, multiple sets of data were collected at

different elevations. The normalized results are shown in Figure 2-8. The sensors with

greater elevation have a lower voltage output when directly over the wire, but this can be

compensated by amplifying the signal. The advantage of the greater elevation is that the

signal drop-off with distance is much slower. This gives the sensor a wider range of

operation, and therefore fewer sensors will be needed. Extensive testing showed that the

sensors could be raised to 2.75 in. This provided enough signal strength and a wide range

of operation. The final design used a sensor elevation of 2.75 inches.

Figure 2-8: Sensor Elevation Testing

The peak-to-peak inductor voltage only indicates the distance from sensor to wire,

but not the direction. Applying the smart sensor concept allows the neural network to use

multiple sensors in concert to determine the position of the wire. Placing the inductors in

a straight line increases the horizontal distance over which the smart sensor is effective.

18

Figure 2-9 shows four sensors laid out in a straight line. Figure 2-8 shows that with a

2.75-inch elevation, the sensor has a range of nearly three inches. A spacing of two

inches between inductors ensures the wire will not fall into a flat spot between inductor

response curves. Figure 2.10 shows four sensor responses at a spacing of two inches.

The smart sensor car uses four sensors resulting in an effective measurement range of

eight inches.

Figure 2-9: Multiple Sensor Layout

Figure 2-10: Sensor Responses

19

2.2 Signal Conditioning Circuit

Figure 2-11 shows how the sensors and signal conditioning circuit fit into the

functional overview. The signal conditioning circuit makes the sensor output usable for

the A/D converters.

Figure 2-11: System Functional Overview

20

Figure 2-12 shows the major components on the sensor and signal conditioning

board. The signal conditioning board has four sensors. There are only two A/D channels

on the FPGA board. The output of the four signal conditioning circuits are passed

through an analog four to two multiplexer to allow four sensors to be read by the two

A/D channels.

Figure 2-12: Sensors and Signal Conditioning Macro Components

The signal conditioning circuit accepts signals from the inductor and provides

signals to the analog to digital converters. The inductor provides a sinusoid waveform

voltage oscillating at 100 kilohertz with a magnitude that changes with proximity to the

wire. The inductor output is never more than 100 millivolts peak to peak. The A/D

converter accepts DC signals in the range of 0.4 to 2.9 volts. The signal conditioning

circuit converts the sinusoidal voltage from the inductor to a DC value between 0.4 and

2.9 volts.

21

Figure 2-13 shows the six individual components of the signal conditioning

circuit. The inductor output first goes through a voltage follower that prevents the sensor

from being loaded by the rest of the circuit. The non-inverting amplifier makes the signal

large enough to work with. The peak detector changes the 100 kHz sine wave into a DC

signal. The second voltage follower prevents loading of the peak detector. The summing

amplifier provides the appropriate gain and offset to match the input range of the A/D

converters. A first order low pass filter prevents high frequency noise from going into

the A/D converters.

Figure 2-13: Signal Conditioning Circuit Components

22

The first component in the signal conditioning circuit is a voltage follower. The

voltage follower goes between the inductor and remaining circuit to act as a buffer to

prevent loading of the inductor. The equation for a voltage follower is:
��
 �
��. Figure

2-14 shows an op amp in a voltage follower configuration.

Figure 2-14: Voltage Follower

For the first voltage follower, the input is a 100 mV p-p sine wave at 100 kHz.

Figure 2-15 shows a Multisim Circuit to simulate a 100 mV p-p sine wave at 100 kHz.

Figure 2-15: Multisim Simulation of a Voltage Follower

23

Figure 2-16 shows the oscilloscope reading from the voltage follower simulation.

The input is channel 1, show on top. The output is channel 2, shown on bottom. Both

channels are set to 20 mV per division, and the time scale is two microseconds per

division. This shows that the input matches the output for the voltage follower.

Figure 2-16: Voltage Follower Simulation Oscilloscope

24

Figure 2-17 is a plot of the oscilloscope reading from testing the completed

circuit, where the output is nearly a perfect match to the input. Figures 2-16 and 2-17

show that the simulated and actual oscilloscope readings are similar.

Figure 2-17: Voltage Follower Physical Oscilloscope Data

The voltage follower input is shown as a continuous signal to make its plot

distinguishable from the output. Both the input and output were digitally sampled. The

noise on the voltage follower input signal came from the physical connection between the

function generator and oscilloscope.

25

The output of the voltage follower then goes to the input of a non-inverting

amplifier. The non-inverting amplifier ensures the incoming signal is large enough for

the peak detector to work with. Specifically, the non-inverting amplifier makes the signal

large enough to overcome the turn-on voltage of the diode. Figure 2-18 shows an op amp

in a non-inverting amplifier configuration.

Figure 2-18: Non-Inverting Amplifier

The equation for a non-inverting amplifier is:
��
 �
�� � �1 � �2 �1� �. For the

sensor board, R2 is a 150-kOhm resistor and R1 is a 6.8 kOhm resistor, and the resulting

gain for the circuit is 23.1. A non-inverting op amp with an input of 100 mV p-p and a

gain of 23.1 should produce an output of about two volts peak to peak.

26

Figure 2-19 shows the oscilloscope output for simulating the non-inverting

amplifier. Channel 1 is the input on top and is still 100 mV p-p. Channel 2 is on bottom.

The volts per division for channel 2 has changed to 500 mV per division, which means

the output signal is almost two volts peak to peak which is close to the expected value

from the equation.

Figure 2-19: Non-Inverting Amplifier Simulation Oscilloscope

27

Figure 2-20 shows the measured input and output of the physical circuit. Figures

2-19 and 2-20 show that the physical implementation matches the theoretical

expectations from the simulation.

Figure 2-20: Non-Inverting Amp Physical Oscilloscope

Note that the voltage follower which has a gain of 1 had no phase shift, but the

non-inverting amplifier with a gain over 20 had a noticeable phase shift. The simulation

predicted this phase shift, and the physical response verified the model.

28

The output of the non-inverting amplifier is fed into a peak detector circuit. The

peak detector circuit converts the sine wave signal into a DC signal. Figure 2-21 shows a

negative peak detector.

Figure 2-21: Negative Peak Detector

The time constant for the RC circuit is � � � � �. For the sensor board, R is 61.9

kOhms and C is 0.1 µFarads, so ��� � 0.1 � 10 ! " 61.9 � 10% � 6.2 � 10% or

6.2milleseconds. The input wave period is 0.1 � 10 & seconds.

29

For tau values that are large with respect to the frequency of the wave they filter,

the output of a peak detector circuit can appear as a DC signal. Figure 2-22 shows the

oscilliscope output for the simulation.

Figure 2-22: Peak Detector Simulation Oscilloscope

30

Figure 2-23 shows the measured signals from the physical circuit. Figures 2-22

and 2-23 show that the simulated outcome and the measured outcome of the physical

circuit are close.

Figure 2-23: Peak Detector Physical Oscilloscope

The output of the peak detector is passed to the input of the second voltage

follower. The second voltage follower is used to prevent loading of the peak detector

circuit. The output of the second voltage follower is connected to one input of a

summing amplifier. The summing amplifier is used to adjust the voltage to a range of 0.4

to 2.9 volts. A summing amplifier can add together many inputs and apply different

gains to those inputs. The equation for a summing amplifier is

��
 � '1 � �(�)
*
�*

�
+
�+

� , �
�
��

-

31

The summing amplifier for the signal conditioning circuit has two inputs. Figure

2-24 shows the summing amplifier for the signal conditioning circuit.

Figure 2-24: Summing Amplifier with Two Inputs

The first input, V1, comes from the second voltage follower. The second input,

V2, comes from a voltage divider. The voltage divider input provides an offset to the

signal. Figure 2-25 shows a voltage divider.

Figure 2-25: Voltage Divider

32

The equation for a voltage divider is:

+ �
* �) �+
�* � �+

-

For the voltage divider, R2 is 1.8 kOhms and R1 is two kOhms. The input to the

voltage divider is -5 volts, the output of the voltage divider is -2.37 volts. The gain for

the V2 is -1*26.7k/130k or about -0.21. This means the voltage divider will contribute -

0.21 * -2.37 volts or 0.4977 volts to the output. The summing amplifier signal gain is

26.7k/4.64k or 5.75. Figure 2-26 shows the summing amplifier simulation circuit.

Figure 2-26: Summing Amplifier Simulation Circuit

33

Figure 2-27 shows the simulation oscilloscope for the summing amplifier. Figure

2-28 shows the physical oscilloscope readings for the summing amplifier.

Figure 2-27: Summing Amplifier Simulation Oscilloscope

Figure 2-28: Summing Amplifier Physical Oscilloscope

34

The output of the summing amplifier is passed to the output filter. The purpose of

this filter is to reduce high frequency noise on the circuit output, which is mostly a DC

analog voltage. Figure 2-29 shows the signal conditioning circuit output filter. The cut

off frequency in hertz is: ./ � *
+012 , where R is a 15-kOhm resistor and C is a 3,300 pF

capacitor, and ./ � 3.2 �45. Figure 2-29 shows an output filter and Figure 2-30 shows

the frequency response.

Figure 2-29: Output Filter

Figure 2-30: Frequency Response of Filter

35

In summary, the circuit has six main components. The first voltage follower

prevents loading of the inductor. The non-inverting amp makes the signal large enough

to work with. The peak detector smoothes the sine wave into a DC signal. The second

voltage follower prevents loading of the peak detector. The inverting amp and voltage

divider offset and amplify the signal to fill the range of 0.5 to 2.9 volts to match the input

range of the A/D converters. The filter reduces noise.

36

2.3 Proto-Board Testing

The circuit was tested in proto-board form before finalizing the printed circuit

board design. This was the first hardware testing to validate the circuit models, and

helped ensure proper component selection.

37

2.3.1 General Concerns for Proto-Board Testing

One primary goal of the proto-board testing phase was to test physical responses

for the actual components intended for the final design. Printed circuit board layout,

ordering, manufacturing, shipping, populating and testing take a considerable amount of

time. A misplaced wire or wrong component can make this process take even longer.

Proto-Board testing helps reduce the likelihood of these mistakes.

38

2.3.2 Fixture Development

The test bench fixture holds the sensors and wire for taking readings. The

prototype-testing fixture as constructed to allow precision consistent movements for the

sensors. The sensors are moved laterally with respect to the wire while maintaining a set

elevation. The fixture was built to allow testing of different sensor elevations and

different wire angles with respect to the sensors.

Figures 2-31 and 2-32 show the test fixture. The test fixture helped generate very

consistent results. Consistent results are important in choosing the correct parameters in

the signal conditioning circuit. Consistent results also help in debugging other problems

from the rest of the smart sensor car system.

Figure 2-31: CAD Drawing of Test Fixture

39

Figure 2-32: Photo of Test Fixture

40

2.3.3 Proto-Board Testing Results

The next important experiment helped select an appropriate op amp. The op amp

is the basis of most components in the signal conditioning circuit. The 741 chip is the

traditional op amp of choice. Slew rate is the amount the output voltage can change in set

amount of time. The 741 op amp has a slew rate of about half a volt per microsecond.

For some of the experiments, the 741 op amp slew rate was not sufficient, which resulted

in degraded performance. Figure 2-33 shows the results of an insufficient slew rate. A 2-

volt peak-to-peak 75 kHz sine wave is the input signal for a voltage follower circuit using

a 741 op amp. The output of the voltage follower was a sharp saw toothed wave form.

The output waveform is about four volts peak-to-peak. The saw tooth appearance is

because the op amp is responding as fast as it can to the input, which is not fast enough to

show the actual sine wave.

Figure 2-33: Scope Reading for Amplifier Circuit, gain of 2.99

41

Going to the device with a higher slew rate resolves this issue. The TL082 op

amp has a slew rate of 16 volts per microsecond. Figure 2-34 is from an input waveform

over ten volts peak-to-peak and has the same period. The voltage follower was

implemented using a TL 082 op amp. Note the difference in the shape of the waveforms.

Figure 2-34: Output of TL082 Op-Amp in Voltage Follower Configurations

In order to accommodate the input of the first voltage follower and the output of

the summing amplifier, both positive and negative rails are required for each op amp

chip. This will require positive and negative voltage supplies for the sensor board.

42

2.4 Printed Circuit Board Development

Printed circuit boards increase circuit density, reduce noise and look professional.

National Instruments’ provides two programs to do circuit modeling and printed circuit

board design. First, a circuit is laid out and simulated in Multisim, and then Ultiboard is

used for printed circuit board design.

Printed wiring boards behave differently than simulations and protoboards. This

can be due to the differences between surface mount and through hole components, as

well as electromagnetic interference between traces on the printed wiring boards. After

manufacture, testing must be performed to verify that design specifications are still met.

During prototype testing, a single signal conditioning circuit would cover an

entire bread board. Using a printed circuit board allowed testing of four signal

conditioning circuits and the multiplexer could be placed on a single small board. The

A/D converter did not load the output of the signal conditioning circuit during bread

board testing, but it did load the output of the multiplexer during printed wiring board

testing. This was resolved by passing the multiplexer outputs through an off board

voltage follower before going to the A/D converters. The second board design

incorporated the voltage followers.

Initial car designs called for a separate board that would regulate the battery

output down to the needed voltage for the sensor board. The first board design showed

that there was enough un-used board space to incorporate the separate power board onto

43

the sensor board. The second board design incorporated linear voltage regulators to

power the sensor board and FPGA board, as they both required ground and five volts

power. Testing of the second board showed that the FPGA current load caused excessive

noise on the sensor board circuits. Large decoupling capacitors and decade decoupling

capacitors were not successful in reducing the noise to an acceptable level. Isolating the

FPGA power by installing a separate voltage regulator away from the sensor board did

reduce the noise to an acceptable level. The third sensor board design only powered the

sensor board from the on board regulators.

Figure 2-35 shows the sensor board layout. This image does not include the top

and bottom ground planes. This shows the four identical circuits used to condition the

output of four inductors. The output of each circuit is fed into a multiplexer.

Figure 2-35: Sensor Board Layout

44

Figure 2-36 shows a photograph of the completed sensor board. The only

connection to the printed circuit board is the RJ45 header in the upper left corner.

Positive power, negative power, A/D grounds, the output signals and mux select signals

go through the RJ45 connector.

Figure 2-36: Sensor Board Photo

One way to ensure consistent results was to adjust the current flowing in the track

wire to give a specific voltage from one of the circuit outputs. The right hand side of the

sensor board has a black mark and the number 2.5, as shown in Figure 2.36. The black

mark shows where the wire should pass under the board, and 2.5 is the voltage that circuit

should output. Tuning the amplitude of the sine wave on the signal generator that drives

the track wire so that the output of the signal conditioning circuit produces 2.5 volts

produces consistent sensor board results.

45

Figure 2-37 shows a photograph of the completed sensor board with labels.

Figure 2-37: Labeled Sensor Board Photo

46

Figure 2-38 shows the ADC4 layout. This layout shows connections on top and

bottom, as well as the silk screen text to help identify components. This layout design

focused on allowing ample area between components to make soldering easier. This

layout avoids traces making right angles, which could cause noise. The signal traces

never pass from the top copper layer to the bottom copper layer. This helps reduce noise

on the signal.

Figure 2-38: ADC4 Layout

Sensor 4

47

Figure 2-39 shows where the individual components of the signal conditioning

circuit fall onto the board layout.

Figure 2-39: Sensor 4 Photo

Sensor 4

48

Figure 2-40 shows the a photograph of where the individual components of the signal

conditioning circuit fall onto the board layout with the components labeled.

Figure 2-40: Sensor 4 Photo with Labels

Sensor 4

49

2.5 Summary of Input Signal Capture Circuit

The sensors and signal conditioning circuit provide a path for information about

the magnetic field to travel to the A/D converter. The sensors and components for the

signal conditioning board are common and readily available from local vendors and can

be used with prototyping boards. Inductors are a good choice for sensing a magnetic

field because they are readily available, have been used for this application before, and

their output can be measured as a voltage. Proto-board testing reduced the likelihood of

problems during printed wiring board development. Printed wiring boards are the

method of choice for the final implementation of the signal conditioning circuit. Printed

wiring boards presented unique challenges there were not seen during earlier design

phases.

50

CHAPTER III

ANALOG TO DIGITAL CONVERSION

As the Car moves along the magnetic field track, sensors detect the magnetic

field. The sensors signals go through a signal conditioning circuit which prepares analog

sensor readings for the Analog To Digital (A/D) converters on the FPGA board. The

A/D converters change the analog signals into digital numbers for the neural network to

use as inputs for the position calculation. The position calculation is fed to the PD

controller, which generates steering angle and speed commands for the car so it can

continue moving along the track. This chapter focuses on the A/D converter. Figure 3-1

shows the main block diagram.

51

Figure 3-1: Main Block Diagram

Figure 3-2 shows how the A/D converter fits into the system functional overview.

Figure 3-2: System Functional Overview

52

3.1 Introduction, Purpose and Overview of Analog to Digital Hardware and Software

Interface

The A/D converter converts analog signals into digital numbers. The sensor

board outputs analog signals. The neural network on the FPGA accepts digital numbers.

The A/D conversion changes the available output of the sensor board into the acceptable

inputs of the neural network. The rest of this chapter describes the hardware required for

this process and the intelligence that controls it.

53

3.2 Hardware

Figure 3-3 shows the five major pieces of hardware required for the A/D

conversion. The FPGA is the one piece of hardware that will hold all the intelligence to

control everything else. The FPGA drives the multiplexer on the signal conditioning

circuit with a single channel. The FPGA communicates with the pre-amplifier and A/D

converter chip with a data bus. The signal conditioning circuit is the hardware that

produces the input voltages which are key signals for the operation of the smart sensor

car. This section describes the major pieces of the hardware.

Figure 3-3: Hardware Overview

54

3.2.1 Input Voltage

The input voltages come from the signal conditioning circuit, pass through a

multiplexer and go to the pre-amplifier. The input voltages tell the rest of the system

about the magnetic field the sensors are experiencing. These voltages are translated into

the car position and used to steer the car. Figure 3-4 shows the major components that

produce the input voltages.

Figure 3-4: Input Voltage Major Components

55

Four signal conditioning circuits produced four signals. A multiplexer with two

outputs allows the FPGA to choose which two signals are input voltages to the two pre-

amp channels at any time. The FPGA chooses with the MUX_SELECT channel. Figure 3-5

shows the relationship between the pre-amplifier channels, input voltages and

MUX_SELECT channel with a timing diagram.

Figure 3-5: Mux Timing Diagram

Note that when MUX_SELECT goes from low to high, there is a bit of transition

time before the input voltages have settled to sensors three and four.

56

3.2.2 Pre-Amplifier

Figure 3-6 shows how the pre-amplifier ties to the other hardware components.

The LTC6912-1 programmable inverting pre-amplifier by Linear Technologies comes on

the FPGA board. The purpose of the pre-amplifier is to ensure the input signals

completely fill the input range of the A/D converter chip.

Figure 3-6: Pre-Amplifier Major Components

The pre-amplifier communicates with the FPGA through the data bus using five

different channels. The inverting pre-amplifier has eight possible gain settings, ranging

from 0 to -100. The A/D converter chip can only accept signals between -0.4 and -2.9

volts. The pre-amplifier is in place to magnify signals if needed. Excessive signals that

exceed this range saturate the A/D converter. This is why increased gain is only needed

for smaller input signals For the smart sensor car project, the input voltages are

57

sufficiently large to fill the input range of the A/D chip, and a the gain of -1 is used. This

means that the pre-amplifier inverts the voltage without changing the magnitude before

passing the signals on to the A/D chip. By making the input voltages coming from the

signal conditioning circuit as large as possible, effects of noise on the input signals are

minimized.

58

3.2.3 Converter Chip

Figure 3-7 shows how the A/D converter chip connects with the other hardware

components. The LTC1407A-1 dual channel A/D converter by Linear Technologies

comes on the FPGA board. The A/D converter converts the two Input voltages into two

14 bit two’s complement numbers. The A/D converter chip uses the data bus to

communicate with the FPGA using three channels.

Figure 3-7: A/D Converter Chip Major Components

The A/D conversion takes time. The serial data transmission also takes time.

When the A/D converter receives the command, it takes a sample of the current input

voltages, then serially transmits the results of the previous data conversion. The current

sample is converted while the previous sample is transmitted.

59

3.2.4 Data Bus

The FPGA uses the data bus to get information to and from the other devices.

The FPGA has intelligence to control the other devices on the board. The FPGA has a

limited number of pins it can use to communicate with other devices. The FPGA selects

one device to communicate with and de-selects the remaining devices. Then the FPGA

uses a shared set of communication lines to send information to all the devices, but only

the selected device responds to the communication. The hardware used for device

selection and communication is the data bus. The data bus has multiple channels. The

FPGA uses chip select commands to identify which device it wants to work with, while

turning off other devices. This allows the FPGA to use the same pins to communicate

with a device without interference or contention from other devices. To further reduce

the number of channels required for communication, serial communication is used when

possible.

Figure 3-8 shows the data bus connections for the pre-amplifier. The pre-

amplifier and FPGA communicate using the data bus using five different signals. The

first four are inputs to the pre-amplifier, the last one is an output from the pre-amplifier.

Pre-amp enable tells the pre-amplifier when to load new gains for two channels.

Master out slave in tells the pre-amplifier what the gains for each channel should be.

Peripheral clock provides the timing for the pre-amplifier to read in the gains. Pre-

amp shut down is used shut down or reset the pre-amplifier. Pre-amp gain echo is the

channel the pre-amplifier uses to echo back the gain settings to the FPGA. Pre-amp

shut down and pre-amp enable load gain only have two states. Pre-amp gain echo

60

is a serial transmission of eight bits. Pre-amplifier specific channels connect the pre-

amplifier to the FPGA. The pre-amplifier specific channels are pre-amp shut down ,

pre-amp enable load gain and pre-amp gain echo . Signals that are shared with

other devices include the peripheral clock and master out slave in . The

peripheral clock is used by peripheral devices uses for timing their serial

communications. Master out slave in is the channel the FPGA uses to serially

communicate the data to peripheral devices.

Figure 3-8: Data Bus Connections for Pre-Amplifier

Figure 3-9 shows the data bus connections used with the A/D converter. The A/D

converter chip uses the data bus to communicate with the FPGA using three channels.

The only A/D converter chip specific channel is A2D converter start , which tells the

61

A/D converter when to capture a sample and read off the previous conversion. The two

shared channels are the peripheral clock and master in slave out . Master in

slave out is the channel the FPGA uses to serially receive information from the

peripheral devices. After the A/D chip receives the A/D converter start command, it

captures a sample and reads off the previous conversion. The previous conversion

consists of two 14 bit two’s complement numbers. These numbers are transmitted one bit

at a time from the A/D converter to the FPGA over the master in slave out channel on the

data bus.

Figure 3-9: Data Bus Connections for A/D Converter

62

3.2.5 FPGA

Field Programmable Gate Arrays (FPGA) are re-programmable hardware. The

FPGA board used for this project came with the Xilinx XC3S500E Spartan-3E FPGA

chip. The FPGA has three main tasks. First, it controls the A/D conversion. Second it

uses a neural network to calculate the car position. Third, it transmits the position to the

PD controller. The FPGA was a good choice for this project for two reasons. First, it can

do the needed tasks at processing speeds that allow stable control of the smart sensor car.

Second, the FPGA circuitry is designed using code and can be quickly re-programmed.

This helped reduce development time. Figure 3-10 shows the FPGA circuit design cycle.

Figure 3-10: FPGA Circuit Design Cycle

The time between finishing changes to the code and evaluating circuit

performance can be as little as a few minutes. This is much preferred to manually

changing circuit wiring by hand or sending away for a newly fabricated chip. This

allowed the smart sensor car to be developed in time for use with the summer academy.

63

3.3 Finite State Machine

Figure 3-11 is the system functional overview that shows the required process to

steer the car around the track. The PD controller gives the car the steering command.

The PD controller needs the position calculation from the neural network to know how to

steer the car. The neural network needs the digital sensor readings from the A/D

converter to calculate the position. The A/D converter needs analog sensor signals from

the signal conditioning circuit to concert to digital numbers. The signal conditioning

circuit needs the voltages from the sensors to produce the analog signals. The sensors

need the magnetic field from the track to produce a voltage. The magnetic field strength

will depend on the motion of the car, which was determined by the previous steering

command from the PD controller.

Figure 3-11: System Functional Overview

64

For the car to follow the wire, the process needs happen in a sequence. The PD

Controller initiates the sequence by sending a request for a new position to the master

Finite State Machine (FSM), then waits for a response. When the master FSM responds

with a position, the PD controller calculates the steering command and requests another

position. Figure 3-12 shows the PD controller process.

Figure 3-12: PD Controller Process

65

When the master FSM receives the request from the PD controller, it goes through

a series of tasks. The first task is to command the A/D FSM to start a conversion. The

master FSM waits for a response from the A/D FSM and then completes its other tasks.

Figure 3-13 shows the master FSM process and gives an overview of the A/D FSM.

Figure 3-13: Master FSM Process Overview

After receiving the start command, the A/D FSM will initialize the hardware, take

a reading from the first two sensors, switch the multiplexer, take a reading from the

second two sensors, flag the master FSM that the conversion is complete and return to the

state IDLE . The remainder of this section focuses on the A/D FSM.

66

3.3.1 Master FSM Initiates A/D Conversion

The code from the master FSM to initiate the A/D conversion is below. The code

is written in VHDL which is a hardware description language. The

rs232_receiver_stb bit is driven by the transmission from the PD controller and lets

the master FSM know that the request transmission is complete. Two of the signals drive

the A/D FSM. The first is ce_amp that lets the A/D FSM initialize the hardware. The

second is START_ADC which allows the A/D FSM to read the four sensors. ADC_DONE

comes from the A/D FSM and lets the master FSM know when the conversion is

complete. The code for the master FSM is in Appendix A, and below is a copy of the

first four states that start the A/D FSM.

/// ///////////////////
MASTER FINITE STATE MACHINE CODE START
begin
 when IDLE =>
 next_state <= WAIT_RECEIVE;

 when WAIT_RECEIVE => -- wait for RS232 data
 if (rs232_receiver_stb = '1') then -- data done
 next_state <= START_ADC;
 else
 next_state <= WAIT_RECEIVE;
 end if;

 when START_ADC =>
 ce_amp <= '1'; --active high
 start_conv <= '1';
 next_state <= ADC;

 when ADC =>
 if ADC_DONE = '1' then
 ce_amp <= '0'; --active low
 start_conv <= '0';
 next_state <= ADC2FIXED;
 else
 next_state <= ADC;
 end if;
MASTER FINITE STATE MACHINE CODE STOP
/// ///////////////////

67

Figure 3-14 shows the initial states of the master FSM. The master FSM will loop

in the state WAIT_RECEIVE until the PD controller has completed its request. After that,

it will pass through the state START_ADC which sends the command to the A/D FSM to

begin the conversion. Then the master FSM will loop in the state ADC until the A/D FSM

completes the conversion.

Figure 3-14: Master FSM Initial States

68

3.3.2 A/D FSM Initializes Hardware

Figure 3-13 shows that after the A/D FSM receives the start command from the

master FSM, it leaves the state IDLE . Figure 3-6 shows the pieces of hardware the A/D

FSM initializes. The multiplexer is set to read the first two sensors, the pre amp and

converter chip are turned on. Next, the gain settings are loaded into the pre-amplifier.

The variable MUX_SELECT is tied to the multiplexer address. MUX_SELECT = 0 will read

sensors 1 and 2. AMP_CS is tied to pre-amp enable load gain channel of the data bus.

When AMP_CS is high, the pre-amplifier and A/D converter chips are sleeping and will not

accept changes to the gain settings. MOSI is connected to the master out slave in

channel of the data bus. SCK drives the peripheral clock . In this code, pre-amp shut

down and pre-amp gain echo are not shown. Pre-amp shut down is set to a constant

and pre-amplifier gain echo back to the FPGA is not recorded. Figure 3-15 is the

A/D FSM state map corresponding to the code to initialize the hardware. The A/D FSM

code is in Appendix B. The first nine states load the gains for the pre-amplifier.

/// ///////////////////
ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO INITILIZE
HARDWARE START

begin
 when IDLE =>
 MUX_SELECT <= '0';
 AMP_CS <= '1';
 counter <=0;
 if ce_amp ='1' then
 next_state <= START;
 else
 next_state <= IDLE;
 end if;

 when START =>
 AMP_CS <= '0'; --turn amp on
 next_state <= START2;

69

 index1 <= 7; -- 8 bit value

 when START2 =>
 MOSI <= gain(index1);
 next_state <= HI;
 bit_count <= 0;

 when HI =>
 SCK <= '1';
 counter <= counter +1;
 if counter = 2 then
 next_state <= HI_DUMMY;
 else
 next_state <= HI;
 end if;

 when HI_DUMMY =>
 counter <=0;
 bit_count <= bit_count + 1;
 index1 <= index1-1;
 next_state <= LO;

 when LO =>
 SCK <= '0';
 counter <= counter +1;
 if counter = 2 then
 next_state <= LO_DUMMY;
 else
 next_state <= LO;
 end if;

 when LO_DUMMY =>
 counter <=0;
 if bit_count = 8 then
 next_state <= FINISH;
 else
 MOSI <= gain(index1);
 next_state <= HI;
 end if;

 when FINISH =>
 next_state <= IDLE_AD;
 AMP_CS <='1';
 SCK <= '0';
 MOSI <= '0';

 when IDLE_AD =>
 if start_conv ='1' then
 next_state <= START_AD;
 else
 next_state <= IDLE_AD;
 end if;

ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO INITILIZE
HARDWARE STOP
/// ///////////////////

70

3.3.2.1 Set Multiplexer to Read the First Two Sensors. When the device is

powered on, it will begin in the IDLE state. In the IDLE state the multiplexer is set to read

the first two sensors and the pre-amp and A/D converter chip are put to sleep with the

line of code, AMP_CS <= '1' . This means that the pre-amplifier and A/D converter chip

are dormant and will not respond to commands. The A/D FSM will loop in the state

IDLE until ce_amp is set to 1 by the master FSM. Figure 3-14 shows that the master FSM

sets ce_amp 1 in the state START_ADC. The dashed line on the left signifies that after all

the other states in the A/D FSM are complete, the machine returns to IDLE .

Figure 3-15: A/D FSM State Map for Initializing Hardware

3.3.2.2 Turn on Pre-Amp and Converter Chip. During the state START, the A/D

FSM wakes up the pre-amplifier and A/D chip and with the command, AMP_CS <= '1' .

71

3.3.2.3 Load Gain Into Pre-Amp. Loading the gain into the pre-amplifier is a

serial operation. This requires the A/D FSM to load the gain bits one at a time onto the

master out slave in channel of the data bus, and then cycle the peripheral clock. The

FPGA clock is too fast for the peripheral devices, so the A/D FSM goes through extra

states to increase the peripheral clock period. The pre-amplifier gain is an eight bit

variable. The gain transmission starts with the most significant bit. The states, IDLE and

START are used in setting the multiplexer and turning on the pre-amplifier and A/D

converter chip. These states are also used to initialize the two variables counter , index1

and bit_count . These variables are integers and help control the timing for the serial

communication between the FPGA and pre-amplifier.

The A/D FSM waits in the state IDLE until the master FSM sets ce_amp high.

During IDLE , the multiplexer is set to read the first two signals, the pre-amplifier and A/D

chip are put to sleep, and counter is reset to 0. After ce_amp goes high, the A/D FSM

transitions to START where it wakes up the pre-amplifier and A/D chip and initializes

index1 to 7. The A/D FSM automatically goes to the next state, START2, where MOSI is

set to the most significant bit of the gain. The variable bit_count is set to zero as well.

The A/D FSM automatically goes to the next state, HI . In this state, it will set the

peripheral clock high and loop back into itself until the variable counter has been

indexed to two. Then the A/D FSM will transition to HI_DUMMY where counter is reset

to 0, bit_count is incremented, and index1 is decremented. The A/D FSM will

automatically go to the next state LO. In LO, the peripheral clock is set low and the A/D

FSM loops back into LO until counter is incremented to two. Next, the A/D FSM goes to

72

the state LO_DUMMY, where counter is reset to 0. The variable bit_count drives A/D

FSM to either set MOSI to the next bit of gain and make another cycle through the states

HI , HI_DUMMY, LO and LO_DUMMY, or go to FINISH . If bit_count is eight, the A/D FSM

will go to FINISH , put the pre-amplifier back into a dormant state and set the peripheral

clock low. The A/D FSM will automatically go from FINISH to IDLE_AD.

73

3.3.3 Read Sensors 1 and 2

After the A/D FSM has initialized the hardware, it passes through the state

FINISH and waits in the state IDLE_AD for the master FSM to set the variable

start_conv high. Figure 3-14 shows that this happens in the master FSM state

START_ADC, so the A/D FSM can continue. Figure 3-13 shows an overview of the A/D

FSM. The code for the remainder of the A/D process makes a large loop. That loop

includes steps to read the first two sensors, switch the multiplexer, read the second two

sensors and set the flag ADC_DONE high. The variable MUX_SELECT shows if the A/D

conversion is recording the first or second pair of sensors. Explanations of the code are

in the following sub sections. As mentioned in section 3.2.3, the A/D chip will transmit

the previous reading while it converts the current sample. The variable prime is high if

the current transmission being clocked in is old data or low if the desired reading is being

recorded. Figure 3-16 is an overview of the relationship of prime , MUX_Select and

sensor readings.

74

Figure 3-16: A/D FSM Overview for Reading Sensors

The states next eight states in the A/D FSM complete the tasks listed in Figure 3-

16. Figures 3-17 through 3-19 show corresponding the state transition maps.

/// ///////////////////
ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO READ SENSORS
AND SIGNAL COMPLETION START

when FINISH =>
 next_state <= IDLE_AD;
 AMP_CS <='1';
 SCK <= '0';
 MOSI <= '0';

when IDLE_AD =>
 if start_conv ='1' then
 next_state <= START_AD;
 else
 next_state <= IDLE_AD;
 end if;

75

 CONV <= '0';
 prime <= '1';
 MUX_SELECT <= '0';

when START_AD =>
 SCK <= '0';
 CONV <= '1';
 counter <= -1;
 index1 <= 13; -- 14 bit value
 index2 <= 13; -- 14 bit value
 next_state <= HI_AD;

when HI_AD =>
 SCK <= '1';
 CONV <= '0';
 counter <= counter +1;
 next_state <= LO_AD;

when LO_AD =>
 SCK <= '0';
 if prime = '0' and mux_sel = '0' then -- REAL A DC data
 if(counter > 2 and counter < 17) then
 ADC1(index1) <= SPI_MISO;
 index1 <= index1 -1;
 elsif(counter > 18 and counter < 33) then
 ADC2(index2) <= SPI_MISO;
 index2 <= index2 -1;
 end if;

 if counter = 34 then -- DONE
 next_state <= FINISH_AD;
 else
 next_state <= HI_AD;
 end if;

 elsif prime = '1' and mux_sel = '0' then -- pri me = 1
 if counter = 34 then -- done priming
 prime <= '0';
 next_state <= START_AD; -- start real data
 else
 next_state <= HI_AD;
 end if;

 elsif prime = '0' and mux_sel = '1' then -- REAL ADC data
 if(counter > 2 and counter < 17) then
 ADC3(index1) <= SPI_MISO;
 index1 <= index1 -1;
 elsif(counter > 18 and counter < 33) then
 ADC4(index2) <= SPI_MISO;
 index2 <= index2 -1;
 end if;

 if counter = 34 then -- DONE
 ADC_DONE <= '1';
 next_state <= FINISH_AD;
 else
 next_state <= HI_AD;

76

 end if;

 elsif prime = '1' and mux_sel = '1' then -- pri me = 1
 if counter = 34 then -- done priming
 prime <= '0';
 next_state <= START_AD; -- start real data
 else
 next_state <= HI_AD;
 end if;
 end if;

when FINISH_AD =>
 counter <= 0;
 MUX_counter <= 0;
 SCK <= '0';
 CONV <= '0';
 if MUX_SELECT = '0' then
 prime <= '1';
 MUX_SELECT <='1';
 next_state <= MUX_SWITCH_1;
 else
 next_state <= IDLE;
 end if;

when MUX_SWITCH_1 =>
 MUX_counter <= MUX_counter + 1;
 next_state <= MUX_SWITCH_2;

when MUX_SWITCH_2 =>
 if MUX_counter = 100 then
 next_state <= START_AD;
 else
 next_state <= MUX_SWITCH_1;
 end if;

when others =>
 MUX_SELECT <= '0';
 mux_sel <= '0';
 SCK <= '0';
 CONV <= '0';
 AMP_CS <= '1';
 MOSI <='0';
 next_state <= IDLE;
end case;

end process;

ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO READ SENSORS
AND SIGNAL COMPLETION STOP
/// ///////////////////

77

Figure 3-16 gives an overview of the A/D FSM state maps. Figures 3-17 and 3-

18 show the state maps corresponding to the A/D FSM code for input voltage conversion.

The key state is LO_AD. In LO_AD, the A/D FSM will decide if the incoming data should

be recorded and how it should be stored.

Figure 3-17: A/D FSM for Reading Sensors Map 1

3.3.3.1 Cycle Through one set of Old Conversions. Section 3.3.2.3 concluded

after the A/D FSM passed through the state FINISH and into the state IDLE_AD. The A/D

FSM begins the process of the data conversion when it leaves that state IDLE_AD. This

happens when the variable conv is high. The master FSM sets this variable high in the

state START_ADC.

78

In the A/D FSM state IDLE_AD, the peripheral clock is set low, the variable prime

is set high, the multiplexer is set to read the first two sensors, and the variable CONV is set

low. CONV is connected to the data bus channel A2D Converter Start . When it is low,

the A/D chip will transmit its previous conversion, changing bits in time with the

peripheral clock. When CONV is set high, the A/D chip captures a new sample and will

begin transmitting the previous sample conversion.

After the A/D FSM leaves IDLE_AD, it goes to the state START_AD. In START_AD,

the peripheral clock stays low, the variable CONV goes high, causing the A/D chip to take

a new sample. The integer variables counter , index1 and index2 are initialized.

Reading two samples from the A/D chip requires 34 peripheral clock cycles. The state

HI_AD will index the variable counter , every time the A/D FSM enters that state.

Because the peripheral clock has not been cycled yet, counter is set to -1 in the state

START_AD so that it will be 0 after leaving HI_AD the first time and go to 1 only after the

peripheral clock has been cycled once. The A/D chip generates a pair of 14 bit two’s

complement numbers, one for each sample. When appropriate, these samples will be

stored as one of four ADC variables. The ADC variables store the 13th bit first and bit 0

last.This is why index1 and index2 are set to 13.

After the A/D FSM leaves START_AD it automatically goes to HI_AD. In HI_AD,

the peripheral clock is set high, the variable CONV is set low and the variable counter is

incremented.

79

The A/D FSM enters the state LO_AD automatically after being in the state HI_AD.

In LO_AD, the peripheral clock is set low. During the first pass through LO_AD, the

variable prime is high and MUX_SELECT is low, and the variable counter will be 0. The

logic will then put the A/D FSM back into the state HI_AD, where the peripheral clock

will be set high again and the variable counter will be incremented to 1, signifying that

the peripheral clock cycled once. The A/D FSM will cycle between LO_AD and HI_AD

until counter has incremented to 34. At that time, the variable prime will be set low and

the A/D FSM will go back to the state START_AD and where it begins the cycle to record a

good set of conversions from sensors 1 and 2.

3.3.3.2 Cycle and Record Good Set of Conversions. After cycling through the

first set of readings, the A/D FSM is ready to record the first two sensor readings as the

two 14 bit variables ADC1 and ADC2. This process starts in the state START_AD, where the

peripheral clock is set low, the variables counter , index1 and index2 are reset and the

variable CONV commands the A/D chip to take a sample and transmit the previous

conversion.

The A/D FSM will automatically go from START_AD to HI_AD. In HI_AD, the

peripheral clock is set high, counter is incremented and the variable CONV is set low.

The A/D FSM will automatically go from HI_AD to LO_AD.

In LO_AD, the peripheral clock is set low. The previous section explains that the

last cycle through LO_AD sets the variable prime to 0. Because prime is now 0, the state

LO_AD will complete a different process than before, and record the two sensor readings

80

coming from the A/D chip. The sample being transmitted now was collected the first

time the A/D FSM was in the state START_AD, when MUX_SELECT was set to 0. The

timing diagram for the A/D chip is available from Linear Technologies. For the first pass

through LO_AD for this cycle, counter is not yet greater than 2, so the A/D FSM will go

back and fourth between LO_AD and HI_AD to run the peripheral clock until the variable

counter has been indexed to 3. At that time, when the A/D FSM is in LO_AD, the

variable ADC1 will store the information from the data bus channel Master In Slave Out in

its 13th bit. When the A/D FSM leaves LO_AD, the variable index1 is decremented and

the FSM goes to HI_AD. This process is completed until all 14 bits of ADC1 have been

recorded. At that point, index1 is 0, counter is 16, and index2 is 13. The peripheral

clock is run by looping between LO_AD and HI_AD until counter has been incremented to

19. At this point, the variable ADC2 will store the information from the data bus channel

Master In Slave Out in its 13th bit. When the A/D FSM leaves LO_AD, the variable of

index2 is decremented and the FSM goes to HI_AD. This process repeats until all 14 bits

of ADC2 have been recorded. At this point, index1 and index2 are both 0 and counter is

32. The peripheral clock is run some more by looping between HI_AD and LO_AD until

counter reaches 34, at which time the A/D FSM goes to the state FINISH_AD . This

completes the cycle to record the first two sensors as digital numbers.

81

3.3.4 Switch Multiplexer to Read Sensors 3 and 4

After the first two sensor readings are recorded, the A/D FSM is ready to change

the multiplexer to read and convert the second two sensors. The A/D FSM was in the

state FINISH_AD at the end of the last process. Figure 3-18 shows how the A/D FSM

changes the multiplexer and resets the variable prime .

Figure 3-18: A/D FSM for Reading Sensors Map 2

This process begins when the A/D FSM is in the state FINISH_AD and the

multiplexer is set to read the first two sensors. In the state FINISH_AD , the variables

counter and MUX_counter are set to 0. The peripheral clock and the variable CONV are

82

set low. Because MUX_SELECT is 0, the variable prime will be set to 1 and MUX_SELECT

will be set to 1. This causes the multiplexer to switch the input voltages from the first

two sensors to the second two sensors. The variables prime and MUX_SELECT are

changed during the A/D FSM state transition from FINISH_AD to MUX_SWITCH_1. In the

state MUX_SWITCH_1, the variable MUX_counter is incremented. The A/D FSM will

automatically transition to the state MUX_SWITCH_2. The A/D FSM will go back to

MUX_SWITCH_1 and increment the variable MUX_counter until it reaches 100. This was

done to allow enough delay between switching the multiplexer and sampling the channels

for the input voltages to settle. After MUX_counter has reached 100, the A/D FSM will

go back to the state START_AD. This time though, the multiplexer is set to read the second

two voltages. This completes the process to switch the multiplexer to read the second set

of sensors.

83

3.3.5 Read Sensors 3 and 4

Section 3.3.3 describes how the A/D FSM records the first two sensor readings as

ADC1 and ADC2. Section 3.3.4 describes the process to switch the multiplexer and restart

the A/D FSM. This section describes how the A/D FSM records the second two sensor

readings as ADC3 and ADC4. Figure 3-19 shows the A/D FSM state map to record sensor

readings. This is the same process used to record the first two sensor readings, except

that now the readings will be recorded as ADC3 and ADC4.

Figure 3-19: A/D FSM for Reading Sensor Map 1

84

3.3.5.1 Cycle Through One Set of Old Conversions. The A/D FSM is in the state

START_AD after switching the multiplexer. In START_AD, the peripheral clock stays low,

the variable CONV goes high, causing the A/D chip to take a new sample. The integer

variables counter , index1 and index2 are initialized. From START_AD, the A/D FSM

will automatically go to the state HI_AD. In HI_AD, the peripheral clock is set high, the

variable CONV is set low and the variable counter is incremented.

The A/D FSM enters the state LO_AD automatically after being in the state HI_AD.

In LO_AD, the peripheral clock is set low. During this pass through LO_AD, the variable

prime is high and MUX_SELECT is high, and the variable counter will be 0. The logic

will then put the A/D FSM back into the state HI_AD, where the peripheral clock will be

set high again and the variable counter will be incremented to 1, signifying that the

clock cycled once. The A/D FSM will cycle between LO_AD and HI_AD until counter has

incremented to 34. At that time, the variable prime will be set low and the A/D FSM will

go back to the state START_AD and where it begins the cycle to record a good set of

conversions from sensors 3 and 4. This completes the phase to cycle through an old

reading.

3.3.5.2 Cycle and Record Good Set of Conversions. After cycling through the old

reading, the A/D FSM is ready to record the second two sensor readings as the two 14 bit

variables ADC3 and ADC4. This process starts in the state START_AD, where the peripheral

clock is set low, the variables counter , index1 and index2 are reset and the variable

CONV commands the A/D chip to take a sample and transmit the previous conversion.

85

The A/D FSM will automatically go from START_AD to HI_AD. In HI_AD, the

peripheral clock is set high, counter is incremented and the variable CONV is set low.

The A/D FSM will automatically go from HI_AD to LO_AD.

In LO_AD, the peripheral clock is set low. Because prime is now 0, the state

LO_AD will complete a different process than before, and record the two sensor readings

coming from the A/D chip. The sample being transmitted now was collected the last time

the A/D FSM was in the state START_AD, but this time the multiplexer was set to read the

second two channels. For the first pass through LO_AD for this cycle, counter is not yet

greater than 2, so the A/D FSM will go back and forth between LO_AD and HI_AD to run

the peripheral clock until the variable counter has been indexed to 3. At that time, when

the A/D FSM is in LO_AD, the variable ADC3 will store the information from the data bus

channel Master In Slave Out in its 13th bit. When the A/D FSM leaves LO_AD, the

variable index1 is decremented and the FSM goes to HI_AD. This process is repeated

until all 14 bits of ADC3 have been recorded. At that point, index1 is 0, counter is 16,

and index2 is 13. The peripheral clock is run by looping between LO_AD and HI_AD

until counter has been incremented to 19. At this point, the variable ADC4 will store the

information from the data bus channel Master In Slave Out in its 13th bit. When the A/D

FSM leaves LO_AD, the variable of index2 is decremented and the FSM goes to HI_AD.

This process repeats until all 14 bits of ADC4 have been recorded. At this point, index1

and index2 are both 0 and counter is 32. This completes the process to convert the four

sensor readings to digital numbers.

86

3.3.6 Set Flag “ADC_DONE” High so Master FSM Can Continue and Use A/D

Conversion Results

The last process ended with the A/D FSM in the state LO_AD and the variable

counter at 32. The peripheral clock is run some more by looping between HI_AD and

LO_AD until counter reaches 34. At this time, the variable ADC_DONE is set high. This

signals the master FSM that the conversion is complete, and it can continue to its next

task.

After completing the four conversions and signaling the master FSM to continue,

the A/D FSM resets itself and prepares for the next reading. From the state LO_AD, the

A/D FSM transitions to the state FINISH_AD . In the state FINISH_AD , the variables

counte r and MUX_counter are set to 0. The peripheral clock and the variable CONV are

set low. Because MUX_SELECT is 1, the A/D FSM will transition to the state IDLE , and

will wait there until the master FSM requests the next sensor reading. This completes the

process to tell the master FSM the conversion is complete.

87

3.4 Testing the A/D Converter

This section describes the validation process for the A/D conversion hardware.

The multiplexer is examined to ensure it has ample settling time and will not be a source

of noise on the system. The A/D conversion consistently has noise on the readings.

Testing helped rule out possible sources of the noise.

88

3.4.1 Testing the Multiplexer Timing

The multiplexer is a VISHAY DG409L Precision Dual 4 Channel Low Voltage

Analog Multiplexer. The multiplexer is supplied with ground and 5 volts. In this

configuration, the maximum transition time should be 138 ns. The FPGA clock has a 20

ns period. The delay allowed in the A/D FSM is 200 clock cycles. This results in an

allowed delay of 4000 ns to ensure that the signal has no leftover transition effects.

89

To test the multiplexer timing, the first channel was connected to a signal

conditioning circuit outputting 0.4 volts. The second channel was connected to a

different signal conditioning circuit tuned to output about 3 volts. An oscilloscope

captured the output of the multiplexer triggering off the multiplexer control line.

According to the data sheet for the multiplexer, a digital control logic high input voltage

is 2.4 volts. In Figure 3-20, the switching threshold is after the 253 ns point. At 353 ns,

the multiplexer appears to be past any transient unique to the switching condition.

Figure 3-20: Multiplexer Response Timing Diagram

90

3.4.2 Testing for Noise in the A/D system

Isolating the A/D system allowed testing for noise. To isolate the system, an

FPGA was powered from the wall socket transformer and connected directly to a power

supply. Table 1 was collected at 0.8 volts and Table 2 was collected at 2.4 volts.

Table 1: Voltage Supply Readings at 0.8 Volts

Reading ADC1 ADC2 ADC3 ADC4

Max 1418 1414 1419 1417

Min 1404 1393 1404 1392

Spread 14 21 15 25

Average 1411.3 1404.51 1411.93 1403.68

Standard
Deviation

2.17 5.88 2.48 5.45

91

Table 2: Voltage Supply Feadings at 2.4 Volts

Reading ADC1 ADC2 ADC3 ADC4

Max -1290 -1289 -1290 -1289

Min -1307 -1315 -1307 -1316

Spread 17 26 17 27

Average -1297.52 -1302.33 -1297.96 -1302.69

Standard
Deviation 2.30 5.62 2.72 6.13

Both sets of results for tables 1 and 2 are from 190 samples. Both channels of the

A/D converter were connected to the same line from the voltage supply. This is similar

to results found when running the boards from battery supplies while taking readings

with the sensor boards.

92

Table 3 and Table 4 gathered using battery power and a test fixture to move the

board. These two position readings were chosen because they show that even though the

sensor readings may change in sign or magnitude, the noise pattern stays the same.

Table 3: Sensor Readings from Data Collection at 12.5 Inches

Reading ADC1 ADC2 ADC3 ADC4

Max 2040 1975 2015 1613

Min 2033 1958 2007 1599

Spread 7 17 8 14

Average 2035.74 1965.22 2010.54 1606.04

Standard
Deviation 1.04 5.00 1.14 5.20

Table 4: Sensor Readings from Data Collection at 6.0 Inches

Reading ADC1 ADC2 ADC3 ADC4

Max -892 207 1026 1869

Min -907 183 1016 1851

Spread 15 24 10 18

Average -899.19 194.71 1021.68 1861.52

Standard
Deviation 2.96 5.58 1.83 5.29

93

It appears that values ADC1 and ADC3 will have less noise than values ADC2 and

ADC4, but the noise is not because of the sensor board, multiplexer or power supply.

Data was collected using a slower clock speed for the FPGA, which in turn

slowed down the A/D FSM. Results were very similar to those above and the original

clock speed was kept for the FPGA.

94

3.5 Credit for Previous Help on Writing the A/D FSM Code

Taylor York and Daniel Nash, former Oklahoma State University students

enrolled in a capstone design course, submitted most of the A/D code. Amanuel Assefa,

another Oklahoma State University student, contributed to changing the A/D code to

incorporate the multiplexer and doubled the number of sensor readings.

95

3.6 Summary of the A/D Conversion Process

The A/D conversion provides the neural network with sensor readings by

converting the input voltages to digital numbers. This process requires hardware and

software. Most of the hardware came with the FPGA board. Intelligence and a process

to control the hardware enables the A/D FSM to do its job which contributes to the smart

sensor car being able to follow a wire.

96

CHAPTER IV

ARTIFICIAL NEURAL NETWORK

The neural network is a function that maps four sensor readings to the car

position. The A/D converter produces four digital sensor readings. The PD controller

accepts the car position. The neural network changes the output of the A/D converter

into the desired input for the PD controller. Figure 4-1 shows the main block diagram.

97

Figure 4-1: Main Block Diagram

98

4.1 Introduction to Neural Networks

The PD controller gives the car the steering command. The PD controller needs

the position calculation from the neural network to know how to steer the car. The neural

network needs the digital sensor readings from the A/D converter to calculate the

position. The A/D converter needs analog signals from the signal conditioning circuit to

produce the digital numbers. The signal conditioning circuit needs the voltages from the

sensors to produce the analog signals. The sensors need the magnetic field from the track

to produce a voltage. The magnetic field strength will depend on the position of the car,

which was determined by the previous steering command from the PD controller. Figure

4-2 is the system functional overview that shows the required process to steer the car

around the track.

Figure 4-2: System Functional Overview

99

For the car to follow the wire, the process needs happen in a sequence. The PD

Controller initiates the sequence by sending a request for a new position to the master

Finite State Machine (FSM), and then the PD controller waits for a response. When the

master FSM responds with a position, the PD controller calculates the steering command

and requests another position. Figure 4-3 shows the PD controller process.

Figure 4-3: PD Controller Process

100

When the master FSM receives the request from the PD controller, it goes through

a series of tasks. As covered in chapter 3, one of these tasks is to cycle the A/D converter

FSM. Figure 4-4 shows an overview of how the master FSM interacts with the A/D

FSM.

Figure 4-4: Master FSM Process Overview

After starting the A/D FSM, the master FSM waits for the A/D FSM to signal

completion, then the master FSM continues with its tasks. One of those tasks is

calculating position. The neural network calculates the car position using the four digital

101

sensor readings as inputs. Like the A/D FSM, the neural network is implemented in

hardware on the FPGA.

The neural network calculates the car position. This calculation can be thought of

as a function or equation that has four inputs, the four digital sensor readings. That

function combines the four inputs and generates a single answer, the car position.

Training the neural network ensures that this equation is correct. Training has three

major components. The first step is collection of training data. The four sensor readings

are training inputs. The car position that corresponds to that set of sensor inputs will

serve as the training target. Together, the inputs and target form the training data. The

car will operate over a range of different positions. The training data set needs to have

samples over that range. After the training data is collected, the neural network

parameters are adjusted to properly map the sensor inputs to the car position. This

process is called training. After the network is trained, its performance needs validation.

This process is covered in section 4.4. Section 4.5 covers neural network supporting

components. Supporting components do not fit in the main block diagram as the car goes

around the track, but are an important part of making the smart car work. These

components help with debugging, compiling and keeping all the other pieces of code

working together. Another supporting component is custom software to help automate

data collection.

102

4.2 Multilayered Perceptron

The neural network does a mapping from four sensor readings into a single car

position. A neural network is a group of individual components called neurons. A

neuron is also made of components. Figure 4-5 shows the neural network in decreasing

levels of abstraction, down to the component level in line 3. Most of the information

about the multilayered perceptron is from [1].

Figure 4-5: Neuron Components

103

4.2.1 Log Sigmoid Transfer Function

One of the components in the neuron is the transfer function. The smart car uses

the log sigmoid transfer function in most of its neurons. The equation for the log sigmoid

transfer function is:

6��7�� � 1
1 � 8 ��9�

This transfer function is a squashing function because over the full range of inputs, the

output will only vary between zero and one. Figure 4-6 shows a plot of the log sigmoid

function.

Figure 4-6: Log Sigmoid Response

104

4.2.2 Single Input Neuron

The single input neuron is made up of several components. The single input �7�

is multiplied by a weight �:�. The weight determines the neuron sensitivity to the input.

The product of the input and weight is passed through a summation. The summation

adds together the product and a bias �;� and produces the net input �<�. The bias helps

set the threshold for the neuron response. The equation for the net input is < � : � 7 �
;. The net input is passed into the transfer function =.� �>. The output of the transfer

function is the output of the neuron ���. The equation for the single neuron is � � .�<�

which can be equivalently written:

� � .�: � 7 � ;�

The perceptron neuron uses the log sigmoid transfer function, so it has the equation:

� � 1/�1 � 8^�'<� �

This equation can be equivalently written:

� � 1
1 � 8 �A�9BC�

Figure 4-7 shows a single input neuron.

Figure 4-7: Single Input Neuron

105

Figure 4-8 shows the response of a single input log sigmoid neuron.

Figure 4-8: Single Input Log Sigmoid Neuron Response

106

4.2.3 Multiple Input Neuron

Multiple input neurons are similar to single input neurons. Each input �7*�, is

multiplied by its corresponding weight �:*�, so that each input has a unique sensitivity.

The product of each input and weight is added together with the products of the other

inputs and weights and is then added to the bias. The result of the summation is the net

input. The equation for the net input with R neuron inputs is < � :* � 7* � :+ � 7+ �
, � :1 � 71 � ;. The net input goes through the transfer function to be the neuron

output. Figure 4-9 shows a multiple input neuron

Figure 4-9: Multiple Input Neuron

107

The equation for a neuron with R inputs can be written:

� � .�:* � 7* � :+ � 7+ � , � :1 � 71 � ;�

or equivalently:

� � .�<�

For a multiple input perceptron neuron, the equation is

� � 1
1 � 8 �

which can also be written as:

� � 1
1 � 8�AD�9DBAE�9EB,BAF�9FBC�

108

4.2.4 Multilayer Perceptron Network

Several neurons can be used together at once. When the neurons get the same

inputs at the same time, they are said to be in the same layer. If there is only one input to

the layer, then each neuron in that layer will have a single weight for that input. If there

are multiple inputs to a layer, each neuron has a weight for every input. Figure 4-10

shows one layer of neurons.

Figure 4-10: One Layer of Neurons

Layers of neurons can be linked together to form Multilayer Perceptron Networks

(MLPs). The network inputs are the inputs to the first layer. The outputs of the first

layer become the inputs to the second layer. The output of the last layer is the output of

the network. The number of neurons in the last layer determines the number of outputs

for the neural network. A superscript can show which layer a variable is associated with,

and subscripts can be used to identify the place of the neuron in a layer and which input it

is associated with. For example, the weight for the second neuron in the first layer for the

109

third input is :+,%* . The typical MLP network used in smart sensors has two layers. The

first layer of neurons uses the log sigmoid transfer function, and the second layer uses a

linear transfer function. It can be shown that a two-layer MLP network is a universal

approximator. This means it can approximate almost any data set with few limitations.

The smart car uses an MLP network with five neurons in the first layer and one neuron in

the second layer. The one network output is car position. The network has four inputs

from the four sensors. Each neuron in the first layer has a weight for each input. The

neuron in the second layer has a weight for each neuron in the first layer. Figure 4-11

shows the smart car MLP network focusing on the first neuron in the first layer.

Figure 4-11: Smart Car MLP Network with Detailed Connections for First Neuron in the
First Layer

110

Figure 4-12 shows the smart car MLP network focusing on the neuron in the

output layer.

Figure 4-12: Smart Car MLP Network Connections for the Output Layer

111

The output equations for the five neurons in the first layer are as follows:

�** � 1
1 � 8 =AD,DD �9DBAD,ED �9EBAD,	D �9	BAD,HD �9HBCDD>�

�+* � 1
1 � 8 �AE,DD �9DBAE,ED �9EBAE,	D �9	BAE,HD �9HBCDD��

�%* � 1
1 � 8 �A	,DD �9DBA	,ED �9EBA	,	D �9	BA	,HD �9HBCDD��

�I* � 1
1 � 8 �AH,DD �9DBAH,ED �9EBAH,	D �9	BAH,HD �9HBCDD��

�&* � 1
1 � 8 �AJ,DD �9DBAJ,ED �9EBAJ,	D �9	BAJ,HD �9HBCDD��

The function for car position is as follows:

��K LMNO�OM< � 1
1 � 8 �AD,DE �PDDBAE,DE �PEDBA	,DE �P	DBAH,DE �PHDBAJ,DE �PJDBCDE��

112

4.3 Artificial Neural Network State Machine

The neural network provides the PD controller with the car position. The PD

controller uses the car position in calculations that will help steer the car around the track.

This process happens in a sequence driven by the PD controller. Figure 4-13 shows the

system functional overview.

Figure 4-13: System Functional Overview

113

Every time the PD controller sends the command to the master FSM, the master

FSM generates a new position. This section focuses on the processes inside the master

FSM that allows it to generate a new car position. Figure 4-14 shows how the PD

controller process interacts with the master FSM.

Figure 4-14: PD Controller Process

114

4.3.1 Introduction and Purpose: Position Calculation and the Master FSM

The master FSM has several pieces that work together to provide the PD

controller with a new car position. Chapter 3 detailed the A/D conversion. Figure 4-15

shows the initial states the master FSM completed in order to cycle the A/D conversion

process.

Figure 4-15: Master FSM Initial States

115

After the A/D conversion process, the master FSM has access to four digital

numbers corresponding to the four sensor readings. In order to produce a new position

calculation, the master FSM will put the numbers into the correct number format and

store them into RAM. After storing them into RAM, the master FSM starts the neural

network FSM. When the neural network FSM is complete, it sets a flag high and the

master FSM can continue. The master FSM will convert the neural network output into

the correct format, transmit the data to the PD controller, update the LCD display, then go

back to the state IDLE and wait for the next request. Figure 4-16 shows an overview of

the master FSM process.

Figure 4-16: Master FSM Overview

The code for the master FSM to calculate a position is appendix A. In the code,

many of the master FSM states interact with other FSMs and have bits or flags to drive

116

transitions only after an outside FSM has completed its required task. The master FSM

uses other FSMs to convert the fixed-point numbers that come from the A/D FSM into

floating point numbers for use in the neural network FSM. After the neural network FSM

calculates a new position, it gives the calculation result as a floating-point number. The

master FSM drives another FSM to convert the floating-point output into a fixed-point

number to transmit to the PD controller. In the states that drive conversions, many have a

variable with nd in the name. These variables refer to the inputs of other FSMs and

signify when the available data to convert is valid, meaning there is new valid data and

the operation can begin. These variables are set high in the state prior to the conversion

and set low once the conversion process begins. The conversion FSMs also have a

variable with rdy in the name. This bit is set high by the conversion FSMs when the

conversion result is valid.

When the master FSM is ready to store data into the RAM for later use by the

neural network, it toggles the variable ce_RAM high. This variable drives the port in the

neural network FSM with the variable name WRITE_INPUT. This variable needs to be

high for the RAM to accept new information. The variables RAM_DATA and RAM_ADDR tell

the neural network FSM the sensor reading conversion and the address to store it in. The

neural network FSM uses the variables Enable_Network and rdy_NN to interface with

the master FSM. When the variable Enable_Network is high, the network FSM can

begin the calculation. When the variable rdy_NN goes high, the neural network FSM is

done with its conversion and the master FSM can continue. When the variable

display_data is set, the master FSM updates the LCD display. After the master FSM

117

completes the transmission to the PD controller, it returns to the state IDLE and awaits the

next request from the PD controller.

The process to cycle the A/D converter FSM begins with the state WAIT_RECEIVE

where the master FSM waits on the PD controller to request a new signal and ends when

the master FSM leaves the state ADC because the A/D FSM has signaled completion.

Chapter 3 covers these states in greater detail. Figure 4-17 shows the first finite state

machine map and first five states of the master FSM.

Figure 4-17: Master FSM Map 1: Initial States

118

When the master FSM leaves the state ADC, it automatically goes to the state

ADC2FIXED. In this state, the variable nd_fixed2float1 is set high, indicating that there

is valid new data available and ready to be converted. The master FSM will

automatically go from ADC2FIXED to the state FIXED2FLOAT1. In the state

FIXED2FLOAT1, the variable nd_fixed2float1 is set low. This signifies that the new

data is now being converted. When the conversion is complete, the FSM to convert the

first sensor reading will set the bit rdy_fixed2float1 high. This will allow the master

FSM to transition from the state FIXED2FLOAT1 to the state FIXED2FLOAT2. During the

transition, the variable P1 is set to the result of the first conversion. The variable P1 will

be stored into the RAM and be the first input to the neural network. Also during the

transition, the variable nd_fixed2float2 is set high indicating that there is valid new

data available and ready to be converted for the FSM that converts the second sensor

reading.

In the state FIXED2FLOAT2, the second sensor reading is converted from fixed

point to floating point. In this state, the variable nd_fixed2float2 is set low. When the

conversion is complete, the FSM to convert the second sensor reading will set the bit

rdy_fixed2float2 high. This will allow the master FSM to transition from the state

FIXED2FLOAT2 to the state FIXED2FLOAT3. During the transition, the variable P2 is set to

the result of the second conversion. Also during the transition, the variable

nd_fixed2float3 is set high. In the state FIXED2FLOAT3, the third sensor reading is

converted from fixed point to floating point. In this state, the variable

nd_fixed2float3 is set low. When the conversion is complete, the FSM to convert

119

the third sensor reading will set the bit rdy_fixed2float3 high. This will allow the

master FSM to transition from the state FIXED2FLOAT3 to the state FIXED2FLOAT4.

During the transition, the variable P3 is set to the result of the third conversion. Also

during the transition, the variable nd_fixed2float4 is set high. In the state

FIXED2FLOAT4, the fourth sensor reading is converted from fixed point to floating point.

In this state, the variable nd_fixed2float4 is set low. When the conversion is complete,

the FSM to convert the fourth sensor reading will set the bit rdy_fixed2float4 high.

This will allow the master FSM to transition from the state FIXED2FLOAT4 to the state

WRITE_ADC_DATA1. During the transition, the variable P4 is set to the result of the fourth

conversion. Figure 4-18 shows the second master FSM map.

Figure 4-18: Master FSM Map 2: Input Conversion

120

The process to convert the four numbers takes 28 clock cycles at 20 nSec per

clock cycle. Figure 4-19 shows the timing diagram for process to convert the number

format for the four inputs. Figure 4-19 was generated using the Xilinx Chipscope

software.

Figure 4-19: Timing Diagram for Number Conversion

The master FSM works together with the neural network FSM to write the four

sensor readings to the RAM. In the state WRITE_ADC_DATA1, the first sensor reading is

loaded into the RAM for later use with the neural network FSM. The variable

Enable_Network is set low. This variable is tied to the neural network FSM that will be

discussed in the next section. The variable ce_RAM is set high. This enables the RAM to

load new values. The variable RAM_DATA is set to the variable P1. The variable RAM_ADDR

is set to the value "0000" . This will set the first address in the RAM equal to the first

converted sensor reading. The master FSM will automatically transition from the state

WRITE_ADC_DATA1 to the state WRITE_ADC_DATA2.

121

In the state WRITE_ADC_DATA2, the second sensor reading is loaded into the RAM.

The variable RAM_DATA is set to the variable P2. The variable RAM_ADDR is set to the value

"0001" . This will set the second address in the RAM equal to the second converted

sensor reading. The master FSM will automatically transition from the state

WRITE_ADC_DATA2 to the state WRITE_ADC_DATA3.

In the state WRITE_ADC_DATA3, the variable RAM_DATA is set to the variable P3.

The variable RAM_ADDR is set to the value "0010" . The master FSM will automatically

transition from the state WRITE_ADC_DATA3 to the state WRITE_ADC_DATA4.

In the state WRITE_ADC_DATA4, the variable RAM_DATA is set to the variable P4. The

variable RAM_ADDR is set to the value "0011" . The master FSM will automatically

transition from the state WRITE_ADC_DATA4 to the state WRITE_ADC_DONE.

In the state WRITE_ADC_DONE, the variable ce_RAM is set low. The master FSM

will automatically transition from the state WRITE_ADC_DONE to the state START_NN. In

the state START_NN the variable Enable_Network is set high and the integer variable

counter is set to zero. The master FSM will automatically transition from the state

START_NN to the state NN.

In the state NN, the neural network FSM calculates the car position. Section 4.3.2

covers this calculation in greater detail. If the neural network FSM has not completed the

calculation, the master FSM will loop back into the state NN. If the neural network FSM

has completed its task, the variable NN_Data is set to N, the variable Enable_Network is

set low, and the variable nd_float2fixed is set high in preparation for the next

122

conversion. After the neural network FSM has completed the calculation, the master

FSM will transition from the state NN to the state FLOAT2FIXED.

In the state FLOAT2FIXED, a FSM converts the floating-point car position from the

neural network into a fixed-point number the master FSM can transmit to the PD

Controller. If the converting FSM has completed its task, the variable nd_float2fixed

is set low and the master FSM will transition from the state FLOAT2FIXED to the state

START_RS232_HI.

Figure 4-20 shows the third master FSM state map and includes the states to write

the four sensor readings to the RAM for the neural network FSM.

Figure 4-20: Master FSM Map 3: Writing Inputs to RAM

123

Loading the ram takes fewer than 10 clock cycles. Figure 4-19 shows that the last

conversion is complete at clock cycle 584. Figure 4-21 is the timing diagram for loading

the four inputs into the RAM and shows that by clock cycle 596 the RAM address has

cycled through all four inputs.

Figure 4-21: Loading the RAM

124

The variable Enable_Network is high as long as the neural network FSM is calculating a position. The neural network takes

less than 700 clock cycles from start to finish. Figure 4-22 shows the timing diagram encompassing the neural network calculation.

Figure 4-22: Neural Network Calculation Timing Diagram

125

After converting the car position from floating point to fixed point, the master

FSM will transition from the state FLOAT2FIXED to the state START_RS232_HI. In the

state START_RS232_HI, the variable counter is set to zero, the RS232 sender FSM loads

three zeros and the first five bits of the car position into the variable rs232_sender_dat .

The master FSM will automatically transition from the state START_RS232_HI to the

state RS232_HI . In the state RS232_HI , the RS232 sender FSM broadcasts the variable

rs232_sender_dat . When the variable counter reaches ten times the system speed

divided by the baud rate, the transmission is complete and the master FSM goes from the

state RS232_HI to the state START_RS232_LO. In the state START_RS232_LO, the variable

counter is set to zero, the RS232 sender FSM loads the bottom byte of the car position

into the variable rs232_sender_dat . The master FSM will automatically transition from

the state START_RS232_LO to the state RS232_LO. In the state RS232_LO, the RS232

sender FSM broadcasts the variable rs232_sender_dat . When the variable counter

reaches ten times the system speed divided by the baud rate, the transmission is complete

and the master FSM goes from the state RS232_LO to the state IDLE .

The serial communication from the FPGA uses the 38400/8N1 parameter setting.

This means the communication happens at 38400 pulses per second, there are eight data

bits, no parity bit and one stop bit. The 8N1 setting is a common configuration for PC

serial communications. The 38400-baud rate allows communication between the FPGA

and PD controller to be quick enough to not interfere with steering the car. This

configuration information allows other serial devices, such as a computer, to

communicate with the master FSM.

126

Figure 4-23 shows the master FSM map that includes the states to transmit the car

position to the PD controller.

Figure 4-23: Master FSM Map 4: Transmit Position

127

4.3.2 Serial Implementation Description and Neural Network FSM Overview

The previous section described the master FSM. The master FSM drives many

other FSMs to complete tasks, including the neural network FSM. The neural network

and master FSM work together to load the sensor readings into the RAM. Then the

neural network FSM calculates the car position. This calculation is a serial process,

starting with calculating the output of the first layer, followed by calculating the output of

the second layer. The network used here is described in [2]. Figure 4-24 shows an

overview of this process.

Figure 4-24: Neural Network FSM Overview 1

128

The process to calculate each layer output is also serial. Each layer output is

found a single neuron at a time. Figure 4-25 shows the order the neuron outputs are

calculated. This example is for five neurons in the first layer and one neuron in the

second layer, but the NN FSM can be used with any MLP architecture. The number of

neurons in each layer and the number of inputs is loaded into a structure ROM, as shown

in Figure 4-27.

Figure 4-25: Neural Network Overview 2: First Layer Output

Each neuron output is also found serially. The first input is multiplied by its

corresponding weight (which is loaded in a weight ROM, as show in Figure 4-27). That

product is added to the bias, and stored as a temporary variable, (n_tmp , as shown in

Figure 4-27). Then the second input is multiplied by its corresponding weight and that

129

product is added to the previously stored temporary variable. The new sum is written

over the old sum. Then the third input is multiplied by its corresponding weight, and that

product is added to the previously stored temporary variable. The new sum is written

over the old sum. This process continues until the stored temporary variable becomes the

net input to the transfer function. When that happens, the net input goes through the

transfer function and the output of that neuron,(a_tmp) is stored in dual-ported RAM as

an input to the next layer (see Figure 4-27). The rest of the neurons in the first layer

follow the same process. When all of the neuron outputs for the first layer are complete

(and stored in dual-ported RAM), the neural network begins calculations for the second

layer. Figure 4-26 shows this process for the first neuron. The output of the neuron in

the last layer is stored as the car position.

Figure 4-26: NN FSM Overview 3: First Neuron Output

130

The code for the neural network FSM is in appendix C. The master FSM drives

the neural network code. The neural network code is a series of case statements, which

works the same as a state machine, only with different syntax. Figure 4-27 was provided

by Dr. Hagan and shows the architecture of the neural network implemented on the

FPGA. The description of the operations illustrated in Figure 4-27 follow in the

remainder of this section.

In Figure 4-27 there are several ROMs and a dual-ported RAM that control the

operation of the FPGA neural network. The structure ROM contains data that define the

network architecture: R, the number of inputs to the network (four for the car position

application); S1, the number of neurons in the first layer; S2, the number of neurons in the

second layer, etc. The final item in the structure ROM is a delimiter, which indicates that

the final layer has been reached. The weight ROM contains all of the weights in the

neural network. The bias ROM contains all of the neural network biases. The dual-

ported memory is used to store the inputs to the network (the four sensor values, in this

case) and the neuron outputs. Before the network calculations begin, the network inputs

are loaded into the dual-ported memory. As the neuron outputs in the first layer are

computed, they are stored in the dual-ported RAM at locations immediately following the

network inputs. After the first layer neuron outputs have all been computed, these

outputs act as inputs to the second layer, and the entire process is repeated. This process

will be described in more detail in the following.

131

Figure 4-27: Neural Network on FPGA Schematic

132

The different case statements in the neural network code can be described with a

series of flow charts. The master FSM controls the variables WRITE_INPUT and

Enable_Network . When the variables WRITE_INPUT and Enable_Network are low, the

neural network code initializes a number of different variables in preparation for the

calculation. Figure 4-28 is the first flow chart for the neural network code. Many of the

variable names in Figure 4-28 are shown in Figure 4-27.

Figure 4-28: Neural Network Flow Chart 1

When the variables WRITE_INPUT and ENABLE_Network are not both low, the

code will go into the second flow chart. In this state, when the variable WRITE_INPUT is

high and the variable ENABLE_Network is low, the neural network code is going to record

133

the sensor inputs into the dual ported memory. The variable ram_b_input will accept the

sensor inputs from the master FSM and store them for the neural network. The variable

p_addr_tmp tells the neural network which address to store the sensor inputs to in the

dual-ported RAM (see Figure 4-27). The master FSM drives the variables INPUT_DATA

and INPUT_ADDR. Each input will have a single value and single address. The neural

network is in flow chart 2 while the master FSM goes through the states

WRITE_ADC_DATA1, WRITE_ADC_DATA2, WRITE_ADC_DATA3 and WRITE_ADC_DATA4.

Figure 4-21 shows that loading each input happens in a single 20 nSec clock cycle, and

the RAM loading process takes less than 10 clock cycles. The variable write_enb

determines if the network inputs can be written to memory or not. The variable

rdyNN_tmp is a flag that is set high when the network output is ready to be read. Figure

4-29 shows the second neural network flow chart.

Figure 4-29: Neural Network Flow Chart 2

134

When the master FSM has loaded the inputs to the dual ported memory, it will

change the variables WRITE_INPUT and Enable_Network to different values and put the

neural network into a different state. The third flow chart shows a special state where the

network has been enabled, and the number of neurons for the layer variable, s1 (which

was loaded from the structure ROM, as in Figure 4-27) is equal to the delimiter value.

This is a special flag that the neural network code uses to signal the master FSM that the

calculation is complete (the last layer has been reached). During this state, the neural

network code resets the neural network variables for the next calculation. Figure 4-30

shows the third flow chart for the neural network.

Figure 4-30: Neural Network Flow Chart 3

135

If the number of neurons is not equal to the delimiter value, the code goes on to

the fourth flow chart. In the fourth flow chart, when conditions are correct, the code will

set the variable write_enb low and the variable ram_b_input is set to zero. This will

keep the dual ported memory from loading new inputs. Figure 4-31 shows the fourth

neural network flow chart.

Figure 4-31: Neural Network Flow Chart 4

136

The fifth flow chart is focused on the buffers. The fifth flow chart shows the code

selecting between chart 6, which deals with the timing for switching neuron input buffers,

or chart 7, which will decide if the neuron layer structure is loaded or if a neuron output

is calculated. The variable rdyAD_tmp is driven by the adder in the summation junction

and will go high when the current addition is complete and ready to be read. The variable

input_num_tmp keeps track of when to add in the bias or partial sum for each neuron.

When input_num_tmp is zero, the neuron will add in the bias. When it is not zero, the

partial sum stored from the previous calculation will be stored. The variables b_0 and

b_tmp are used with the tri-state buffers, and b_0 is only updated after the output of the

adder is ready. (see Figure 4-27 to see the relationship between b_0 and b_tmp) The

variable flag_tmp is used with the tri-state buffer to help control timing. Figure 4-32

shows the fifth flow chart.

Figure 4-32: Neural Network Flow Chart 5

137

Depending on the condition of the variables, the code will go on to chart 6 or

chart 7. The variable q_tmp is used with the variable not_q_tmp to drive the buffers that

help load the variable b_0 . The first input to the neuron summation is a bias. The second

input to the neuron summation will be the partial net input resulting from the first

calculation. (see Figure 4-27) To avoid contention, buffers are used to connect to both

inputs, but only let one input be used at a time. The variable rdyQ_tmp controls the

timing of the buffer switching. The variable flag_tmp controls the timing of rdyQ_tmp .

Figure 4-33 shows the sixth neural network flow chart, which deals with the timing for

switching neuron input buffers.

Figure 4-33: Neural Network Flow Chart 6

138

The seventh flow chart shows how the code selects between loading the variables

r and s1 from the structure ROM (see Figure 4-27) or calculating the neuron output. The

variable R_S1_flag is 00 for loading the number of inputs for the layer (R), 01 for

loading the number of neurons in the layer (S1), or 11 for calculating the network output.

Figure 4-34 shows the seventh flow chart.

Figure 4-34: Neural Network Flow Chart 7

In the eighth chart, the code is loading the number of inputs to the layer. The

variable nd_tmp is used with the shifter ROM (structure ROM in Figure 4-27). It signals

that there is valid new data available to be recorded. The variable rdySH_tmp identifies

when the output of the shifter ROM is valid and ready to be read. The variable r is the

number of inputs for a layer. For the first layer, r will be four inputs from the four

139

sensors, but for the second layer, r will be five, indicating the number of neurons in the

first layer. (The NN FPGA works for arbitrary numbers of inputs, numbers of neurons

and numbers of layers, but for this particular application we are using R = 4, S1 = 5 and

S2 = 1.) The variable memory_tmp is the output of the shifter ROM. Figure 4-35 shows

the eighth flow chart.

Figure 4-35: Neural Network Flow Chart 8

In chart 9, the code is loading the number of neurons in the layer from the shifter

ROM (structure ROM in Figure 4-27) into the variable s1 . The variable

shift_addr_tmp keeps track of the shift ROM memory that stores the neural network

140

structure. Inside the shift ROM, for this application, the first address stores a “0011”.

Zero corresponds to the first number in the counting sequence, so three in binary

corresponds to having four inputs. The second address stores “0100” which is for the

five hidden neurons. The third address stores “0000” which corresponds to the one

output neuron, and the fourth address stores “1111” which is the delimiter, identifying

that the network has only two layers. The variable R_S1_flag is “11” so the code will

begin to calculate the layer output. Figure 4-36 shows neural network flow chart 9.

Figure 4-36: Neural Network Flow Chart 9

141

Flow charts ten through fourteen show how the code calculates the output of the

neuron. If rdyAD_tmp is high, the result of the summation in the neuron is ready, so the

next calculation can begin. This will cause the variable start_tmp to go high which will

start the calculation of the next neuron and set the variable enable_tmp low which

signifies that the output of the neuron is not valid. This gives time after setting the

variable start_flag_tmp high for all the addresses to settle before the neuron

calculation begins. The variable completion_flag_tmp will go high when an addition

has been completed or if the first calculation is being performed. The variable

enable_tmp goes high when a neuron output calculation is complete. The variable

cuenta_tmp is a counter used to add delays, and is counted in binary. Figure 4-37 shows

the tenth neural network flow chart.

Figure 4-37: Neural Network Flow Chart 10

142

Neural network flow chart eleven hinges on the variable completion_flag_tmp .

This variable will be high if the summation output is available and valid or if the first

calculation for a neuron is being performed. The variable init_flag_tmp identifies if

the first calculation for a neuron is being performed. If the first calculation for a neuron

is being performed, variables are set such that the neuron bias is loaded into the

summation junction (b_tmp is set to out_b , as shown in Figure 4-27). Else, the variable

init_flag_tmp is low and the partial net input is fed into the summation(n_tmp in

Figure 4-27). Figure 4-38 shows neural network flow chart eleven.

Figure 4-38: Neural Network Flow Chart 11

The twelfth neural network flow chart shows decisions based on two variables.

The variable input_num_tmp tells the code to add in the bias on the first input for a

143

neuron, and when it equals the variable r , the last input for that neuron has been loaded.

The variable rdyTF_tmp is a flag to identify when the transfer function output is

available. The transfer function is implemented with a look up table. The input to the

transfer function serves as the address for the look up table. At the corresponding

address, the output of the transfer function is stored. The variable a_eq_b_tmp is a flag

that triggers the transfer function look up table. When it is high, the look up table input is

a valid address. When the variable rdyTF_tmp is high, the neuron output is ready. The

variable w_addr_tmp is the weight address, which is incremented every cycle through

flow chart twelve. Figure 4-39 shows neural network flow chart 12.

Figure 4-39: Neural Network Flow Chart 12

144

Given that conditions are correct, after the code completes setting the variables in

chart 12, it will go on to chart 13. In flow chart 13, if the neuron is on the last input, the

code will write the output to the dual ported memory (a_tmp in Figure 4-27), increment

the addresses for the neuron input and output and set the input number counter variable to

zero. The variable a_addr_tmp tells what address the neuron output will be stored in.

The variable p_addr_tmp tells what address the neuron input will be retrieved from (see

Figure 4-27). The variable write_ena determines if the dual ported memory will accept

new neuron outputs. The variable input_base_tmp keeps track of which input is to be

added next. If the neuron has not added all the inputs, the input number counter variable

is incremented, and the input address is set back to its base value for that layer. Figure 4-

40 shows neural network flow chart 13.

Figure 4-40: Neural Network Flow Chart 13

145

If the neuron is on the last input in flow chart 13, then the code will move on to

flow chart 14. The variable neuron_num_tmp keeps track of which neuron output is

being calculated. In flow chart 14, the code checks to see if it has calculated the last

neuron in the layer. If so, it will reset the variable R_S1_flag so the code can load the

architecture for the next layer, and shifts over the input address so that the outputs of the

finished layer become the inputs to the next layer. If the last neuron output for the layer

has not been calculated, the input address is reset to the first input address for that layer

and the neuron number counter is incremented to the next neuron. Figure 4-41 shows

neural network flow chart 14.

Figure 4-41: Neural Network Flow Chart 14

146

The entire neural network code is built around hardware for a single neuron. That

hardware is going to multiply two numbers, a weight and input, and then add the product

to a bias to produce a partial net input to the transfer function. Depending on how

variables are set inside the neural network code, different numbers are loaded into the

inputs, weights and biases. Figure 4-42 shows the timing diagram for the hardware. This

diagram shows the delay between enabling the hardware, starting the calculation and the

calculation being ready. In the timing diagram, the variables START and CE show when

the calculation is started and when the multiplier and adder are enabled. The variables B,

W and P are the weight, bias and input. The variable N is the output. The input, weight,

bias and output are all in a 16-bit floating point format. The variable RDY_N is set high

when the output is available.

Figure 4-42: Example Timing Diagram for one Neuron

147

The neural network flow charts describe the process to calculate the position. The

calculation is a serial process in which a single hardware neuron calculation is repeated as

many times as needed to complete the full network calculation. Figure 4-43 shows a

Chipscope waveform displaying most of the signals for this calculation. The black

vertical lines signify the end of the calculations for the output of one part of a neural

network and the beginning of the next calculation. Figure 4-44 shows the waveform for

the calculation of the first neuron in the first layer. In Figure 4-44, the black lines

separate calculations of the four partial sums for the four different inputs to the first

neuron. Figure 4-45 shows the waveform for the first input to the first neuron of the first

layer.

148

Figure 4-43: Overview of Neural Network Calculation

149

Figure 4-44: ChipScope Waveform for Calculating Output of First Neuron in First Layer

150

Figure 4-45: First Input to First Neuron in First Layer

In summary, the neural network completes the calculation of the car position

using four inputs. Those inputs come from four electromagnetic sensors. The serial

151

calculation is completed with one multiplier, one adder, two buffers and several

memories. One layer is calculated at a time, and inside each layer, one neuron output is

calculated at a time. To calculate the neuron output, one input is multiplied by its weight

and added to the bias on the first calculation or the partial net input for the remaining

calculations for that input. Once a complete net input is available for a neuron, it is

passed through a look up table, which replaces the transfer function. The outputs of the

first layer are stored as the inputs to the second layer. The output of the second layer is

the car position.

152

4.3.3 Credit for Previous Work to Write the Neural Network Code

The original neural network code was a group effort between Professors Martin

Hagan and Carl Latino from Oklahoma State University and Professor Marco A.

Moreno-Armendariz from Instituto Politecnico Nacional, Mexico.

Taylor York, a former Oklahoma State University student, provided most of the

code for the master FSM. Amanuel Assefa, another Oklahoma State University student,

provided changes to the code to increase the number of sensors read to four.

153

4.4 Training the Neural Network

The neural network maps the four sensor readings into the car position. The

neural network can be thought of as an equation. The sensor readings are the input to the

equation and the car position is the output. The MLP network is a universal

approximator, and given enough parameters or degrees of freedom, it can approximate

nearly any relationship. To approximate a single set of data, mapping a set of inputs to

outputs, requires a specific set of parameters. Training the neural network will find the

correct parameters. The training cycle has three key phases. The first phase is data

collection. The second phase is adjusting the function parameters. The third phase is

validating the network performance. If the validation phase reveals the network

performance is not acceptable, training will loop back to data collection or parameter

adjustment as needed. This is followed by another phase of network performance

validation.

154

4.4.1 Data Collection

Data collection gathers sensor inputs and corresponding car positions. One data

point is four sensor readings and one car position measurement. The data collection

process requires a fixture to allow for consistent readings. The smart car has foam

holding a marker taped to the front of the sensor board for data collection. The marker

indicates the center of the car, which is used as the car position. Tape holds the wire to

the floor, and tape holds a ruler over the top of the wire. The wire goes under the ruler at

the four-inch mark. The smart car position of four inches is directly on top of the wire.

Figure 4-46 shows the smart car ready to collect a single data point.

Figure 4-46: Smart Sensor Car for Data Collection

155

A training set for the smart sensor car spans eight inches, with measurements

every quarter of an inch. This data set is large enough to ensure the smart car will have

accurate position measurements, but small enough that the students in the summer

academy can complete the task in a reasonable amount of time. Capturing several

samples at each position reduces the effect of small disturbances on the sensor readings

and makes for a more robust training set. At each measurement, 20 samples are taken.

Figure 4-47 shows a complete set of training data. Sensor 4 has the most negative

reading around 0.75 inches; sensor 2 has the bottom of its valley around 2.75 inches,

sensor 1 at 4.75 inches and sensor 3 at 6.75 inches. The bottom of the valley occurs

when the sensor is directly over the wire.

Figure 4-47: Sensor Responses versus Position

156

4.4.2 Training

One measure of neural network performance is the mean square position error

over all data points. The goal of training the neural network is to adjust the parameters

(weights and biases) in such a way as to reduce the mean square error. This is a standard

unconstrained optimization problem, and any optimization method can be used. We used

the Levenberg Marquardt optimization algorithm, as implemented in the Neural Network

toolbox for MATLAB. Figure 4-48 shows how the mean square error improves during

training. After 465 iterations (epochs), the neural network fits the training data as best it

can. This means the network is trained.

Figure 4-48: Mean Squared Error versus Training Epochs

157

4.4.3 Network Validation

A trained network produces calculated outcomes that closely match the true

positions at the training points. Several steps go into the validation process. First, there

needs to be training data over the full range of desired inputs. If the training data appears

to be insufficient, additional data is collected, focusing on the problem areas. Figure 4-47

shows that training data is available for all areas the neural network is required to

perform(4 inches on either side of the wire). Figure 4-49 shows neural network

performance that appears acceptable. The network output and the true position are equal

over the range from 0 to 8.

Figure 4-49: Neural Network Position versus True Position

158

Figure 4-50 shows the readings from sensor 2 at car positions of 2.75, 3 and 3.25

inches. Note the amount of noise on the sensor readings. The noise results in a vertical

stack of points at each horizontal position.

Figure 4-50: Sensor 2 Reading at 3 Inches

Because there is noise on the sensor readings, the neural network will have

different inputs that should generate the same output. Noise on the system gives the

training algorithm several points to match where readings were taken, and no information

about what to do between measurements. In an effort to reach more points, a training

algorithm can configure a neural network in an undesirable way. One way to check

performance between training points is to use a model to estimate data points between the

159

training points. Because the curves for the smart sensor car are mostly smooth, one

option for modeling the data is interpolation. Linear interpolation is used to generate

sensor inputs between points. The sensor inputs are averaged at each measurement. A

line is fit to the averages of each point. Then additional inputs are evenly spaced on the

line between points. The new interpolated sensor inputs are then passed through the

neural network. Because the interpolated inputs are mostly on a straight line between

measured inputs, the neural network outputs should also be near a straight line. Figure 4-

51 shows the neural network response with the interpolated data. The response between

measurements is still close to a straight line.

Figure 4-51: Neural Network Position versus True Position with Interpolated Data

160

Figure 4-52 is zoomed in to a small region of Figure 4-49. Note that the curve

appears as a line passing through the averages of each measurement. This means the

network is not over-fitting the data.

Figure 4-52: Neural Network Position versus True Position, Zoomed in at 3 Inches

161

4.5 Neural Network Supporting Components

Support equipment is not part of the system functional diagram when the car goes

around the track, but is necessary for making some of the pieces work. The purpose of

the training support equipment is to collect meaningful data using the same hardware the

car uses to go around the track. In order to collect data with the master FSM and existing

hardware, a computer replaces the PD controller. That computer runs custom data

collection automation software. The code for the A/D FSM and master FSM were

written, verified, compiled, and loaded onto the hardware using the Xilinx ISE design

suite.

162

4.5.1 Master FSM Modifications for Training

Training the neural network requires training data. That training data includes the

four digital sensor readings and the position. The position measurement comes from a

ruler taped to the floor. Figure 4-53 shows the smart car at a position of three inches.

Figure 4-53: Car position of Three inches

163

The digital sensor readings come from the A/D FSM. The first modification to

the master FSM lets it know if the request for new information is for a position

calculation from the neural network or for training data from the A/D FSM. This

modification happens in the state WAIT_RECEIVE. If the master FSM reads in symbols

representing the letter “t” then it will send out the four sensor readings. If the letter “r” is

read, it will transmit a position. The next step is the same for position calculation and

data collection. The master FSM cycles the A/D converter to get four new digital sensor

readings. When the digital sensor readings are complete, train mode will start to

broadcast the positions over the RS232 communication. The code for this process is in

Appendix D: Code for Master FSM to Transmit Training Data. Figure 4-54 is the data

collection process overview showing how the computer and master FSM interact.

Figure 4-54: Data Collection Process Overview

164

The A/D FSM remains the same for both position calculation and data collection.

Figure 4-55 shows how the master FSM drives the A/D FSM.

Figure 4-55: Master FSM Process Overview

165

The master FSM starts in the state IDLE and automatically goes to the state

WAIT_RECEIVE. In the state WAIT_RECEIVE , the computer will transmit the letter “t” over

serial communication. After the master FSM receives the command from the computer,

it sets the variable train_mode high and moves on to the state START_ADC. In the state

START_ADC, the master FSM sets variables to start the A/D FSM in motion. After the

state START_ADC, the master FSM automatically moves to the state ADC. The master FSM

will loop in this state until the A/D FSM signals completion. At that time, the master

FSM will transition to the state START_RS232_TRAIN1. Figure 4-56 shows the master

FSM state map for this initial process.

Figure 4-56: Master FSM Map 1: Initial States

166

When the master FSM enters the state START_RS232_TRAIN1, it begins the

process to transmit the converted readings to the computer. The process to broadcast data

is similar for a single number representing a position calculation or four numbers

representing four sensor readings. Figure 4-57 shows the master FSM state map for

transmitting the first sensor reading.

Figure 4-57: Master FSM Map 2: Transmit ADC1

167

Transmitting the next three sensor readings will require the same process with

appropriate changes to the state names and variables to transmit. After transmitting all

four sensor readings, the master FSM will automatically transition to the state IDLE .

Figure 4-58 shows the last sensor reading transmission.

Figure 4-58: Master FSM Map 3: Transmit ADC4

168

4.5.2 Automated Data Collection Software

A computer replaces the PD controller for data collection. Figure 4-54 shows

how the computer and master FSM interact. If the “Start Logging” button is pressed, the

computer program writes the four sensor readings to the screen and records them in a

comma-separated file. If “Start Logging” is not pressed or if “Stop Logging” is pressed,

the computer program writes the four sensor readings to the screen. Figure 4-59 shows

the computer program configured to write data to the screen only.

Figure 4-59: Computer Program Writing to Screen Only

169

Figure 4-60 shows the computer program writing both screen and comma

separated file.

Figure 4-60: Computer Program Writing to Screen and Data File

Jeff Henson, a former Oklahoma State University Student, wrote the computer

program for data collection. Amanuel Assefa, another Oklahoma State University

student, contributed to changing the computer program to double the number of sensor

readings. Dr. Hagan helped de-bug the code.

170

4.5.3 Other Support Software

The code for the master FSM and A/D FSM were written using the Xilinx ISE

design suite. Xilinx ISE is a file management program. It makes sure that all the

different codes for the different components work together. Figure 4-61 shows a screen

capture of Xilinx ISE. After the codes are working, Xilinx ISE is used to compile the

code and generate programming files. A different Xilinx program is used to configure

the FPGA using the programming files.

Figure 4-61: Xilinx ISE Screen Capture

171

Another program inside Xilinx ISE is the Xilinx Core Generator. This program

generates VHDL code to do common tasks such as floating-point conversion or

generating blocks of memory. Figure 4-62 shows a screen capture of the Xilinx CORE

Generator software.

Figure 4-62: Xilinx CORE Generator Screen Capture

172

The third major component utilized from the Xilinx ISE design suite is

ChipScope. This is software used to analyze designs while they run on the FPGA. This

tool allows debugging in the same environment where the code will be deployed. Figure

4-63 is a screen capture of the ChipScope software.

Figure 4-63: Xilinx ChipScope Screen Capture

173

4.6 Summary

The neural network maps four sensor readings into a car position calculation. The

A/D converter produces four digital sensor readings. The PD controller accepts the car

position. The neural network changes the output of the A/D converter into the acceptable

input for the PD controller. The neural network calculates the car position serially, doing

one arithmetic step at a time. Training helps ensure the neural network calculates the car

position correctly. The master FSM has some modifications that allow it to interface

with a computer to collect training data. In order to ensure the neural network, master

FSM, A/D FSM and all other components work together properly, other support

equipment is required. This support equipment is part of the Xilinx ISE design suite.

174

CHAPTER V

PD CONTROLLER

This chapter discuses the PD controller. The PD controller takes information

from the neural network and generates commands for the car steering servo and motor to

produce motion around the track. The neural network takes inputs from the analog to

digital converters and calculates the car position. That position is sent to the PD

controller. The PD controller uses the car position in a calculation to determine the

command for the steering servo. The PD controller also controls the car motor. The car

responds by producing motion around the track. Figure 5-1 is the main block diagram

that shows how the components work together. This chapter describes the real-time

executive program that implements the PD controller, as well as the associated hardware

and support equipment. The chapter also describes the controller design.

175

Figure 5-1: Main Block Diagram

176

5.1 Overview

The PD controller takes the distance of the car from the wire and uses it to

determine the steering angle. As the Car moves along the track, sensors detect the

magnetic field coming from the track. The sensor signals go through a signal

conditioning circuit that prepares analog sensor readings for the Analog To Digital (A/D)

converters on the FPGA board. The A/D converters change the analog signals into

digital numbers for the neural network to use as inputs for the position calculation. The

calculated position tells the PD controller the distance of the car from the wire. The PD

controller then generates steering angle and speed commands for the car so it can

continue moving along the track. This chapter focuses on the PD controller. Figure 5-2

shows how the PD controller fits into the system functional overview.

Figure 5-2: System Functional Overview

177

The PD controller algorithm controls the data flow and communication that make

the timing of the process work. The PD controller starts the process by sending a request

for a new distance. As discussed in chapter 3, the master FSM will then cycle the A/D

converter to generate four digital sensor readings. Chapter 4 explains how the master

FSM then cycles the neural network to calculate the distance of the car from the wire.

After calculating the distance, the master FSM transmits the new distance to the PD

controller. Figure 5-4 shows an overview of the interaction between the PD controller

and master FSM.

Figure 5-3: PD Controller Interaction with Master FSM

178

The PD controller repeats a process in order to keep the car moving around the

track. The process begins with a request from the PD controller to the neural network for

a new distance measurement. The PD controller waits until the neural network responds

with the measurement. The PD controller then calculates how fast the car is moving

toward or away from the wire. The PD controller uses the lateral velocity and distance

measurement to calculate the necessary steering angle that will steer the car directly over

the wire while maintaining stability. The PD controller then converts the steering angle

into a pulse that the steering servo can accept as an input. The PD controller also

generates a pulse for the motor control switch to set the car speed. The cycle will repeat

as the car continues to circle around the track. Figure 5-4 shows the PD controller

process overview.

Figure 5-4: PD Controller Overview

179

5.2 Implementation

The real-time executive algorithm controls the data flow and communications that

make the timing of the processes work. The algorithm will first communicate with the

master FSM to obtain a distance measurement from the neural network. The algorithm

will then perform the calculation of the steering and speed commands.

The real-time executive algorithm is software. The software is supported by

hardware. That hardware comes in the form of a printed circuit board with a Microchip

PIC microcontroller. The PIC board provides power to the PIC and an interface to the

rest of the boards and processes. The real-time executive algorithm is described in

section 5.2.1. The PIC board circuit and hardware is described in section 5.2.2.

180

5.2.1 Real-Time Executive Algorithm

The code for the real time executive algorithm can be found in appendix E: PD

Controller Real Time Executive Algorithm Code. Figure 5-4 described the basic tasks of

the real-time executive algorithm. The algorithm has three separate loops for three

separate tasks. The first task is calculating the steering angle. This is done by the

program PID_Controller in the top loop. The second task is controlling the servo. The

middle loop takes care of timing for the twenty millisecond window with the variable

servoPhase and also handles the one to two millisecond pulse to control the servo with

the variable servoWidthCounter . The bottom loop has the task of importing new data

from the neural network. Figure 5-5 shows the real-time executive algorithm overview.

Figure 5-5: Real-Time Executive Algorithm Overview

181

The algorithm begins in the program main . This program includes the three

interrupts, RDA, Timer1 and RTCC. The program main calls the program

PID_Controller . The variable set_pwm1_duty controls the motor speed, with 255

being the maximum allowed speed. The variable PIDwindow controls the algorithm

timing related to reading in a new distance from the master FSM as well as calculating a

new steering command. When a new position is read in, the variable PIDwindow is set

high. This allows the program main to request a new position from the master FSM by

broadcasting the letter “n.” When the variable PIDwindow is high, the program main will

also call the program PID_Controller . Figure 5-6 shows the first diagram for the real-

time executive algorithm flow chart.

Figure 5-6: Real-Time Executive Algorithm Flow Chart 1

182

The PD controller subroutine performs the following tasks:

• Load the last raw position received from the neural network into the variable

fullpos . The raw position is a number between 0 and 800, and has units of

hundredths of an inch.

• Adjust for the center position and convert all measurements from hundredths of

inches to meters. After this operation, the variable position represents the distance

of the car to the right of the wire in meters.

• Save the old position into prevPos

• Filter the position to remove some noise using the equation: currentPos = alpha *

position + (1 – alpha) * prevPos . The variable alpha is the filter parameter

that determines how many points are averaged together to find the position.

• Compute the velocity with the equation: vel = (currentPos – prevPos)/dt . The

variable dt is the time between samples in seconds.

• Compute the steering angle in radians using a proportional-derivative control with the

equation: st_angle = (currentPos – setpoint) * kp + kv * vel . The

variable kp is the proportional gain and the variable kv is the derivative gain.

Modeling to find these gain values is discussed in section 5.3.

• Convert the steering angle into a pulse width count and save it as the variable

servoWidth that can be sent to the servo. The count is a number that ranges from 19

to 39. The value 19 corresponds approximately to a 1 ms pulse and a steering angle

183

of ' Q 6� radians. The value of 39 corresponds to approximately a 2 ms pulse and a

steering angle of Q 6� radians. The controller will adjust the calculated count to stay

in the range of 19 to 39 if the calculation results in a count outside that range.

The flowchart for the PD controller routine is shown in Figures 5-7 and 5-8. At

the end of the routine the variable PIDwindow is set to zero, which ensures that the PD

controller does not run again until another position is read.

Figure 5-7: Real-Time Executive Flow Chart 2

184

Figure 5-8: Real-Time Executive Flow Chart 3

The servo pulse width calculations are specific to the servo. For the servo used

for the summer academy, the pulse was one to two milliseconds long in a twenty

millisecond window. Setting the variable servowidth to 39 corresponded to a pulse

width of two milliseconds and a steering angle of Q 6⁄ radians. When the variable

servowidth was set to 29, the pulse was 1.5 milliseconds wide and the front tires were

straight forward. When the variable servowidth was set to 19, the pulse was one

millisecond wide and the steering angle was 'Q 6⁄ radians.

185

There are several interrupt routines in the PIC software. The first interrupt is RDA,

and it starts when the port connected to the RS232 communication lines has received a

transmission from the FPGA and has new data available. The command getc() stores

the eight bits read in through the port. In the interrupt RDA, if the variable x is one, the

bits are stored to the variable input1 , and the variable x is incremented. If the variable x

is two, the bits are stored to the variable input2 . When the interrupt is complete, it sets

the variable PIDWindow high, sets the variable x to zero and combines the two eight bit

numbers into a single 16-bit distance. Setting the variable PIDWindow high allows the

program main to call the PD controller subroutine to calculate another steering command

and ask for another distance from the neural network. Figure 5-9 shows the interrupt

routine RDA in the fourth flow chart of the real-time executive algorithm.

Figure 5-9: Real-Time Executive Flow Chart 4

186

The second interrupt routine is Timer1 , which is executed every 13.1

milliseconds. This interrupt controls the timing for the 20 millisecond window for the

steering servo command. If the variable servoPhase is low, the variable

servoWidthCounter is set to zero, the variable servoFlag is set high, and the variable

servoPhase is set high. In the event that the variable servoPhase is high, then the

variable servoPhase is set low. The variables servoFlag and servoWidthCounter are

used in the interrupt RTCC. The variable servoWidthCounter controls the pulse width

for the steering servo command. The variable servoFlag ensures that the one to two

millisecond pulse for the servo command happens only at the start of the twenty

millisecond window. Figure 5-10 shows the fifth flow chart for the real-time executive

algorithm that shows the interrupt Timer1 .

Figure 5-10: Real-Time Executive Flow Chart 5

187

The interrupt Timer1 controls the timing of the interrupt routine RTCC, which is

executed every 51.2 microseconds. The interrupt RTCC controls the variables that drive

the car steering servo command. In the interrupt RTCC, if the variable servoFlag is high,

the interrupt will compare the variable servoWidthCounter against the variable

servoWidth . If the variable servoWidthCounter is less than the variable servoWidth ,

the pin connected to the steering servo control is set high and the variable

servoWidthCounter is incremented. If the variable servoWidthCounter is less than the

variable servoWidth , the pin connected to the steering servo control is set low and the

variable servoFlag is set low. The variable servoFlag will be reset to high in the

interrupt routine RTCC after the current twenty millisecond window has ended. Figure 5-

11 shows the sixth flow chart for the real-time executive algorithm that describes the

interrupt routine RTCC.

Figure 5-11: Real-Time Executive Flow Chart 6

188

5.2.2 Hardware

The real-time executive algorithm is implemented on a Microchip PIC 185F1220

microcontroller. The chip needs several connections and other components to support the

real-time executive algorithm. A printed circuit board supports the chip and connects it

to the other components. The PIC board receives power from a battery pack. The battery

provides between nine and eleven volts. The PIC board connects to the battery through

connector J3, shown in Figures 5-12 through 5-15, which is a two pin header. The power

then goes through traces with decoupling capacitors into a pair of voltage regulators.

Both regulators are Texas Instrument TLV1117050CDCYR linear voltage regulators that

output five volts with a current load up to 0.8 amps. Component U6 provides power to

the PIC and other on board components. Component U7 provides power to the center pin

of header J1. J1 is a three pin header used to connect to the servo. The first pin is tied to

ground, the second pin has power at five volts, and the third pin is controlled by the real-

time executive algorithm with the variable SERVO. To operate the algorithm quickly, the

PIC requires an external clock signal. That clock signal comes from component U4. The

real-time executive algorithm controls the motor through the connection header J2, a four

pin header. The first pin is connected to ground; the third pin is tied to the pulse width

modulation port of the PIC chip. The second and fourth pins of header J2 are not

connected in the current configuration. Loading the real-time executive algorithm onto

the chip happens through the connection header U21. This is the standard connection

header, built to conform to the requirements of the Microchip PICKit 3 device. RS232

communication goes through header J4, a DSUB9 receptacle. The PIC operates at 5

volts, but the RS232 communication can be between three and fifteen volts. The RS232

189

communication is passed through a Texas Instruments MAX232E dual RS-232

driver/receiver, which is component U5. Figure 5-12 shows the PIC board schematic

which displays the connections between all the components.

190

Figure 5-12: PIC Board Schematic

191

Figure 5-13 shows the printed circuit board layout for the PIC board.

Figure 5-13: PIC Board PCB Layout

192

Figure 5-14 shows a photo of a populated printed circuit board.

Figure 5-14: Photo of PIC Board

193

Figure 5-15 shows a picture of the PIC board with labels.

Figure 5-15: PIC Board Photo with Labels

Kellen Butler, an Oklahoma State University student designed the schematic and

printed circuit board layout. Megan Brady, an Oklahoma State University student,

fabricated the PIC boards.

194

5.3 Modeling and Controller Design

A system model needs developed to enable controller design. The system model

will be part of the controller design loop. The first step in the controller design loop is

building or updating a system model. This is a set of general equations that describe how

the different parts of the system interact. The second design step is to define the system

parameters. For the smart sensor car, this includes car speed, possible steering angles and

car length. The third design step is to select the proportional and derivative gains. The

fourth step in designing the controller is simulation. The closed loop system is simulated

to verify proper response. If the response is not satisfactory, the control gain can be

adjusted. The final control gains are loaded into the PIC software, which is then

implemented with the entire physical system for testing. Based on the results of the

physical testing, the model and controller are updated. This restarts the design process,

and the process will continue until all the measures of performance are met. Figure 5-16

shows the controller design loop.

Figure 5-16: Controller Design Loop

195

The smart sensor car can be modeled like the wheeled robot described in [3] and

[4]. They describe the motion of the vehicle with equations 1-3 which correspond to

Figure 5-17:

�1� ST � U � cos�Y� � cos�Z�

�2� [T � U � cos�Y� � sin�Z�

�3� ZT � U
^ � sin�Y�

Figure 5-17: Basic Plant Model

196

The system model equations were implemented as a Simulink model. Figure 5-18

shows the Simulink model for the basic plant. The plant model has the car length

modeled at one quarter of a meter and the car velocity is three meters per second. The

plant input is the steering angle, φ. The input goes through trig function blocks, then

gains, and other multiplication blocks. The blocks are arranged in such a way to

represent the model equations. The integrator block outputs are the state variables.

Figure 5-18: Simulink Model of Plant

The MATLAB software is able to take the Simulink nonlinear plant model and

make a linearized set of equations to represent it. The software can take the linear system

and form a transfer function to represent the original plant model. The Simulink model

of the plant is saved as the file, “CarModelDesign .” Inside the MATLAB software, the

commands to linearize the model and provide a transfer function are:

linsys = linearize ('CarModelDesign');
tf_model = tf(linsys);

197

The resulting state equations from this command are:

ZT
[T � _0 0

3 0` Z
[� _12

0 ` Y

[� a0 1bZ
[� a0bY

This model transfer function is:

[
Y � 36

N+

The transfer function has two repeated roots at the origin. If only proportional

feedback is used =Y � �9 � [>, then the root locus is shown in Figure 5-19. It is not

possible to produce a stable system with simple proportional control.

Figure 5-19: Root Locus of Linearized Car Model

198

 To verify the model behaves as expected, a fixed steering angle of 7.5 degrees is

input to the Simulink model, as shown in Figure 5-20.

Figure 5-20: Open Loop Simulink Model with Fixed Steering Angle

The expected outcome from this model is the car going in a large circle. Figure 5-

21 shows the results from the Simulink model.

Figure 5-21: Open Loop Car Simulation Response for 7.5 degree Steering Angle

199

Figure 5-19 shows that the car model is marginally stable with two poles on the

imaginary axis. A proportional controller alone will not move the roots of the system to

the left of the imaginary axis. A proportional plus derivative controller can add damping

which would allow the roots of the system to move left of the imaginary axis and

improve the system stability. A proportional plus derivative controller can be represented

by the following transfer function.

c/ � �dN � �9

The closed loop system transfer function is

[
� � 36=�dN � �9>

N+ � 36=�dN � �9>

Figure 5-22 shows the Simulink model for the closed loop system.

Figure 5-22: Closed Loop Simulink Model

200

The characteristic equation for this system is:

N+ � 36�dN � 36�9

The characteristic equation matches the standard form:

N+ � 2ef� � f�+

For this controller design, the settling time is set to one second and the output is

set to be critically damped, or ζ is set to one. Assuming that the response should settle

within a few percent of steady state after four time constants, the settling time can be

estimated by:

gh � 4
ef�

So f� � 4, �d � 2 9� and �9 � 4 9� .

201

To validate the controller design, the closed loop model was given an initial

position for y of 0.1 m or ten centimeters. The model had no other input, so the system

should settle close to zero after one second. Figure 5-23 shows the model response.

Although the original model is nonlinear, the controller design based on the linearized

model is satisfactory.

Figure 5-23: Validation of Model Response

The plant model and controller use units of meters. The FPGA provides positions

in hundredths of an inch. This is why the real-time executive algorithm must convert the

FPGA distance measurement from units of inches into units of meters.

202

There are three parameters of the car model that need to be set. The first

parameter is length. The length between the front and rear axle of the car is 25 cm, or

one quarter of a meter. The second parameter for the car is forward velocity. The fastest

the smart sensor car will travel at the summer academy is three meters per second. The

third parameter that will affect the model is maximum allowed steering angle. The

steering mechanism can only turn the wheels so far before it runs out of travel. Figure 5-

24 shows the steering mechanism turning the wheel as far as possible to the left. The

steering mechanism runs out of travel after turning the wheels 30 degrees or Q 6� radians.

Figure 5-24: Maximum Possible Steering Angle

203

The system model should incorporate the same limitations. To include the

steering limitation, a saturation block is inserted to limit the possible steering angle

before it is fed into the rest of the plant model. Figure 5-25 shows the plant and

controller with the saturation block.

Figure 5-25: Plant and Controller Simulink Model with Steering Saturation Block

The gains are then adjusted to obtain the fastest response possible while not

saturating the steering angle. Because the simulation begins with a position of 0.1

meters, and the maximum allowed steering angle is Q 6� radians, the proportional gain

should be less than 10 � Q 6� . The simulation was ran with the fixed proportional gain.

The derivative gain was varied in each run to find the fastest response time. Additional

simulations with the final model suggest using gains of 0.749 for the derivative gain and

5.043 for the proportional gain. The resulting linearized closed-loop system transfer

function is:

[
� � 181.5

N+ � 26.95N � 181.5

204

This transfer function has the pole zero map shown in Figure 5-26. Because there

are two poles on the real axis, the step response should have no oscillation. In addition,

because the real components of the roots are more than eight, the system response should

settle in less than half a second.

Figure 5-26: Pole Zero Map for the Controller and Plant Model

205

Figure 5-27 shows the model response to a ten-centimeter initial error. When

time is about 0.3 seconds, position should be about (1-0.911)*-0.1 meters, or

approximately -0.0089. The Figure shows that model response is close to the theoretical

expectations.

Figure 5-27: Model Response with Tuned Controller

The plots show that the model output and theoretical expected response are

similar. The current gains should provide the best response for the car and not send

commands to the servo that over extend the steering mechanism. This system model

206

provides a safe starting point to begin testing the smart sensor car performance in

following a straight wire.

During testing of the smart sensor car, the final gains were chosen by a heuristic

optimization process. The proportional and derivative gains were adjusted one at a time

and car performance in following a wire was measured. The gains that produced the best

performance were used during the summer academy.

207

5.4 Support Equipment

Support equipment is not part of the process while the car is going around the

track, but is a necessary part of the smart sensor car project. Separate support equipment

is required for the software and hardware.

The PIC MCU C Compiler by Custom Computer Services, Inc. provided a

platform to write the code for the real-time executive algorithm. The compiler came with

a library of functions that simplified many of the processes, including the RS232

communication. The compiler converted the code into assembly language files for use

with other software.

The Microchip MPLAB Integrated Development Environment provided an

interface between the personal computer running the compiler and the hardware that

could connect to the PIC board. The MPLAB IDE software would take the assembly

language file and convert it into machine code for the microcontroller. The software then

sent the machine code from the personal computer to the programmer.

The Microchip PICkit 3 programmer provides the hardware interface between the

personal computer and the PIC board. The programmer takes the machine code from the

personal computer and writes it to the memory of the microcontroller.

208

5.5 Summary

The PD controller takes a distance measurement from the neural network and

calculates the steering angle to keep the car as close to the track as possible. The

controller executive software controls the process flow. The control algorithm runs on a

PIC microcontroller, which requires its own board.

209

CHAPTER VI

ELECTRIC CAR

This chapter discuses the electric car. The electric car takes inputs from the PD

controller and provides motion around the track. The car provides the platform for

motion while holding all other components together. Figure 6-1 is the main block

diagram that shows how the components work together.

Figure 6-1: Main Block Diagram

210

6.1 Overview

The electric car provides the platform for motion while holding all other

components together. The car is a standard one tenth-scale hobby car and uses the stock

motor that came with the car kit. The PD controller sends commands to the car motor

control switch and steering servo. The motor control switch provides current to the

motor, which results in forward motion. The steering servo adjusts the car steering angle

and the car moves along the track. The car motion moves the sensor board into a new

location with a unique magnetic field. The field generates a new response from the signal

conditioning circuit, which is fed through the Analog to Digital (A2D) converters and

into the neural network. The neural network provides the PD controller with a new

distance measurement, which the PD controller uses to calculate the next steering angle

and speed commands. Figure 6-2 shows the system functional overview, which describes

how the different system components relate to each other.

Figure 6-2: System Functional Overview

211

6.2 Components

Several components make up the electric car. The chassis is the basic piece that

holds everything else together. The motor converts current into torque to spin the tires.

The batteries provide power for the motor control switch, sensor board, FPGA board and

PIC board. The motor control switch provides current to the motor. The servo steers the

front tires. All of the boards are mounted to the car chassis with the board-mounting

fixture. Figure 6-3 shows the electric car and components.

Figure 6-3: Electric Car

212

6.2.1 Chassis

The car chassis is a standard one tenth-scale hobby car. This chassis is a Tamya

USA TT-01, on-road, shaft driven all wheel drive bathtub chassis. Figure 6-4 shows the

car chassis with the battery, motor control switch, motor and steering servo.

Figure 6-4: Car Chassis

The steering mechanism for the car chassis is a four bar linkage that forms a

parallelogram. The frame provides the first bar, which can be thought of as the right side

213

of the parallelogram. The two trailing arms form the top and bottom of the

parallelogram. The two trailing arms stay parallel as the car steering angle changes. The

trailing arms have three connection points. The leading edge of each arm is connected to

the frame. The middle is connected to the tire. The third connection is to the steering

linkage. The steering linkage is the fourth bar and fourth side of the parallelogram. The

steering servo connects to the linkage to provide animation to the system. Figure 6-5

shows the steering mechanism parallelogram drawing.

Figure 6-5: Steering Mechanism Parallelogram

214

Figure 6-6 shows a photograph of the car steering mechanism.

Figure 6-6: Car Chassis Steering Mechanism

215

6.2.2 Motor

The car motor is a standard size 540 brushed electric motor that came with the

chassis. The motor has two 14-gage wires with male bullet connector terminations to

interface with the motor control switch board. The large wires adequately handle the

considerable current passing through the motor. Other motors were used in testing. A

rock crawler motor is a low speed high torque motor, which allows the car move slowly.

The rock crawler motor is designed for long periods of use at high torque and low speed

without requiring maintenance. This was useful during the initial stages of debugging.

Another high-speed racing motor was considered for the summer academy. This motor

required rebuilding per few hours of use, and was designed with an operating point much

faster than the desired speed for the summer academy. The racing motor was not used.

Figure 6-7 shows the testing motor in the electric car.

Figure 6-7: Car Motor

216

6.2.3 Batteries

The smart sensor car has three battery packs. The first two battery packs power

the sensor board, FPGA board and PIC board. These are generic 9.6-volt Nickel-Metal

Hydride 8 cell battery packs, rated to last 2000 milliamp hours. These two batteries

connect to the main power switch on the board-mounting fixture. The third battery

powers the motor control switch that provides power to the motor. This is a generic 6-

cell 7.2-volt Nickel Cadmium battery, rated to last 2200 milliamp hours. All three

batteries have male two conductor RC battery connector plugs. Figure 6-8 shows the

three batteries for the smart sensor car.

Figure 6-8: Car Batteries

217

6.2.4 Motor Control Switch

The purpose of the motor control switch is to convert the pulse-width modulated

motor drive signal from the PIC microcontroller into current flow from the battery to the

motor. The motor control switch has three connections. The first connection is a pair of

female bullet connectors to connect to the car motor. These connectors are tied to the

motor control switch board with fourteen-gage wire to adequately handle the large

amount of current flowing through the motor. The second connector is a female two-

conductor RC battery connector plug for use with the 7.2-volt battery pack. The last

connector is a four pin female header to connect to the four pin male header of the PIC

board. Pin one of the header provides the ground reference and pin three carries the

control signal from the microcontroller to the motor control switch board. The control

signal drives the LED side of a 4N33 opti-coupler. The opti-coupler isolates the high

current motor circuit from the more sensitive microcontroller circuit. The output of the

opti-coupler feeds a Darlington pair of bipolar junction transistors. The first transistor is

a TIP41A. The second transistor is a TIP31C, rated to carry a load of 25 amps

continuously. When conducting, the TIP31C provides a path for the current to flow from

the positive car battery terminal through the motor to the negative car battery terminal.

Protection diodes and current limiting resistors help protect circuit components. Figure

6-9 shows the motor control switch schematic.

218

Figure 6-9: Motor Control Switch Schematic

219

The motor control switch board was designed for ease of fabrication while

maintaining the capability of carrying significant currents. Large traces are easier to mill

and solder. Figure 6-10 shows the motor control switch board layout.

Figure 6-10: Motor Control Switch Board Layout

220

The large BJT required a heat sink to dissipate heat during long testing periods.

Figure 6-11 shows the motor control switch board photograph with part labels.

Figure 6-11: Motor Control Switch Board with Labels

The opti-coupler takes inputs from the microcontroller and sends current to the

Darlington pair of BJTs. The purpose of the opti-coupler is to protect the more sensitive

low current circuit of the microcontroller from the high current circuit of the motor. The

opti-coupler is rated to turn on in five µs, and turn off in 100 µs. The TIP41C BJT is the

first transistor in a Darlington pair and provides the current to activate the other power

transistor. This device has a minimum current gain of 30, a saturation voltage of 0.8

221

volts, a bandwidth up to 3 MHz, and can supply up to six amps. The TIP35 is the main

power transistor for the motor control switch and provides the current path from the

battery, through the motor, to ground. It has a minimum current gain of 10, has a

bandwidth up to 3 MHz, and can supply up to 25 amps continuously. The TIP35 has a

collector-emitter saturation voltage of 1.8 volts.

The motor control switch board converts the pulse-width modulated motor drive

signal from the PIC microcontroller into current flow from the positive side of the battery

through the motor to the negative side of the battery. Figure 6-12 is a guide to where data

was collected for the motor control switch plots.

222

Figure 6-12: Guide to Motor Control Switch Plots

223

Figure 6-13 shows the microcontroller signal and opticoupler command. To

adjust the current needed to trigger the opticoupler, the 10-kOhm resistor in the schematic

was replaced with a 671-Ohm resistor, resulting in a much lower voltage coming into the

top of the diode of the opticoupler.

Figure 6-13: PIC Microcontroller Signal and Opticoupler Input

224

Because of the low speed needed for the operations of the smart sensor cars,

neither of the BJTs were supplied enough current to saturate them. The result of

operating in the transition phase was that both devices generated considerable heat.

Figure 6-14 shows the two signals going into the base terminals of the two BJTs.

Figure 6-14: Microcontroller Signal and BJT Base Terminal Inputs

225

Figure 6-15 shows the voltages on the positive and negative terminals of the car

motor. Note that when the microcontroller signal changes it has little impact on the

voltage across the motor. This signifies that the control signal pulse window is short

enough to allow the motor to run smoothly.

Figure 6-15: Microcontroller Signal and Motor Terminal Connections

226

Figure 6-16 shows a photo of the motor control switch connected to the battery

and car motor. During operation, the motor control switch board is attached to the top of

the servo.

Figure 6-16: Motor Control Switch Connections

227

6.2.5 Servo

The car servo is a generic Tower Hobbies TS-53 standard servo. A one to two

millisecond pulse with a twenty-millisecond window controls the servo. A pulse of 1.5

milliseconds will drive the servo to have the wheels straight forward. A 1 millisecond

pulse will drive the servo to have the wheels turn left by 30 degrees. A 2 millisecond

pulse will drive the servo to turn the wheels right 30 degrees. Figure 6-17 shows the

connection of the servo to the steering mechanism.

Figure 6-17: Car servo Connection to Steering Mechanism

228

6.3 Board Mounting

The main block diagram in Figure 6-18 shows the major components of the smart

sensor car. The sensor board is attached with screws to the electric car using the board-

mounting fixture. The signals from the sensor board go to the A/D converter using a

RJ45 connector. The A/D chip and neural network are on the FPGA board and connected

by traces. The neural network sends the position calculation to the microcontroller board

over RS232 communication. The microcontroller transmits the steering command to the

servo through a three-pin header.

Figure 6-18: Main Block Diagram

229

Figure 6-19 shows the assembled car.

Figure 6-19: Assembled Car with Boards

230

The sensor board is discussed in detail in chapter 2. Figure 6-20 shows the

connections for the sensor board. The sensor board is connected to the board-mounting

fixture by screws. Signals and power for the sensor board go through an RJ45 eight place

eight connect header. Pin 1 carries the first output of the multiplexer, which goes to the

first channel of the A/D converter. Pin 3 carries the second output of the multiplexer,

which goes to the second channel of the A/D converter. Pins 2, 4, and 5 are connected to

the sensor board ground. Pin 6 carries the multiplexer select pin from the FPGA board to

the multiplexer. Pin 7 connects to positive power and pin 8 connects to negative power.

Figure 6-20: Sensor Board Connections

231

Figure 6-21 shows the FPGA board connections. The first connection is power

and ground. This is a 2.1mm plug connection and comes from the board-mounting

fixture. The next connection is a three-pin header that carries the two outputs from the

multiplexer as well as a connection for ground. The third connection is a single pin

header that the FPGA board uses to transmit the multiplexer selection signal. The fourth

connection is the DSUB 9 connector that carries the RS232 communication to the

microcontroller board. This communication is sent through a null modem adapter. The

FPGA board is fastened to the board mounting fixture with a hook and pile fastener

underneath the board.

Figure 6-21: FPGA Board Connections

232

Figure 6-22 shows the four microcontroller board connections. It receives the

RS232 position calculation through the null modem adapter. Power and ground come

from a two-pin header from the board-mounting fixture. The microcontroller board

controls the servo with a three-pin header. Pin 1 is ground, pin 2 carries five Volts, and

pin 3 carries the steering servo signal pulse. The microcontroller communicates with the

FPGA board using RS232 communication, which it transmits with the DSUB9

connection through a null modem adapter. The microcontroller sends the motor control

signal to the motor control switch board using a four-pin header. Pin 1 is connected to

ground and pin 3 carries the motor control signal pulse. Pins 2 and 4 are not connected.

The microcontroller board is physically held in place by screws connecting the

microcontroller board to the null modem adapter and screws connecting the null modem

adapter to the FPGA board.

Figure 6-22: Microcontroller Board Connections

233

6.4 Summary

This chapter has described the hardware components of the electric car, which

forms the platform for the neural network smart sensor demonstration system.

234

CHAPTER VII

SUMMER SOFT SENSOR ACADEMY

This chapter discuses the summer soft sensor academy. This summer

academy for local high school students provides an opportunity for them to learn

about science and engineering. Various activities demonstrate basic engineering

concepts.

235

7.1 Overview and Academy Objectives

The summer soft sensor academy has two main objectives. The primary objective is to

introduce students to the idea of smart sensors using neural networks. The students are shown

that neural networks can be implemented in digital logic on a FPGA. The secondary objective is

to show that science and mathematics are important to engineering.

236

7.2 Activities

The summer academy is divided into five training modules, each covering

different concepts from engineering and science. The first module focuses on

electromagnetic sensors and different ways to visualize a magnetic field. The second

module covers data fitting and using data fitting software. The fourth module explains

the basics of digital circuits. The third and fifth modules introduce the basic concepts of

neural networks and how to train them.

237

7.2.1 Electromagnetic Sensors

During the electromagnetic sensors module, the students have a chance to work

with different electromagnetic sensors and magnetic fields. The three sensors the

students use are a compass, a coil of wire and a 33 milli-Henry inductor. The three

magnetic field sources are a bar magnet, a steady moving current through a wire powered

by a voltage source and the third source is a time varying magnetic field produced by a

function generator driving a sine wave through a wire. In the first block, they use a

compass to map the magnetic field lines coming from a permanent bar magnet. In the

second block, they use a simple piece of wire rolled into a coil. They move the bar

magnet through the wire coil. The time varying magnetic field induces a current in the

coil, which they observe with an analog voltage meter and digital oscilloscope. In the

third block, the students use a power supply to produce current flow inside a wire to

generate a magnetic field. A compass next to the wire will have a change in needle

directions as they toggled the power supply on and off. The students complete three

experiments that use a function generator to provide a time varying current flow resulting

in a time-varying magnetic field. In the fourth block, they use the coil of wire to observe

that magnetic fields have directionality. They observe this by changing the orientation of

their loop with respect to the source wire. The next experiment uses the coil orientation

with the strongest response to observe the effects of distance between the coil and source

wire. These experiments are repeated using an inductor to replace the hand coiled wire.

Next, the inductor is used in data collection. The students put a block of wood with a

ruler taped on top over the top of the wire. They use the ruler to measure horizontal

distance between the center of the inductor and center of the source wire. They record

238

the average peak-to-peak voltage across the inductor measured by the oscilloscope. With

each voltage reading, they also record the inductor horizontal distance away from the

wire.

239

7.2.2 Data Fitting

The second module focuses on data fitting activities. The first activity is basic

function plotting. The next activity is fitting a line to data. The students then learn how

to use software to fit a function to the data. Next, the students make a plot of their data

from the electromagnetic sensors module and model the data with a curve. The first step

of this process used distance as the independent variable and voltage as the dependent

variable. The students are then asked to invert the relationship between voltage and

distance. Finally, the students are asked to predict optimal sensor spacing based on their

collected data and models.

240

7.2.3 Neural Networks

The third module introduces the students to the application of neural networks to

data fitting. First, the students learn about the basic structure of neurons and similarities

between the biological and artificial neurons. The students have a chance to work with

single layer and multilayer networks to observe how changing network parameters drives

the network output. Students then adjust the network parameters by hand to fit the

network output to the data collected in the first module. Finally, the students learn how

to use software to train the neural network to fit the data.

241

7.2.4 Digital Circuits

The fourth module provides an opportunity for students to learn about digital

circuits. The module begins with an introduction to binary numbers. Next, the students

learn the basics of Boolean algebra. The students apply this knowledge to design

combinational circuits. The students are then given a basic circuit design and required

hardware to assemble the circuit and test its functionality. The module concludes with an

introduction to sequential logic basics, such as how a flip-flop works and how to read a

timing diagram.

242

7.2.5 Training the Brain

During this module, the students train a neural network. The process begins with

data collection. The students record car position and sensor readings at several locations.

They use this data to train the neural network with the training software. The network

learns to produce the car position from the four sensor readings. Finally, the students

validate the network performance by comparing the trained network response to the

collected data. The students also use interpolated data to check for over fitting, as

discussed in chapter four.

243

7.2.6 Race Day

On the last day of the summer academy, the students have the opportunity to

observe a performance evaluation of their smart sensor car systems. Performance is

measured with three tests. The first test is a static measurement. A ruler is taped over the

wire in the same configuration as data collection. The car is moved to several positions

along the ruler. At each position, the error between the physical car location and the

position calculated by the smart sensor car is recorded (as shown on the LCD screen of

the FPGA board). The total squared error for each car is calculated and the car with the

lowest total error wins the challenge. The second test is following a line. For this test, a

ten-foot long piece of paper is placed over a straight run of the wire track. The caps are

removed from the markers on the front of the cars to allow the cars to mark their paths.

The students run the cars down the wire. The car that stays closest to the centerline wins

the challenge. The third and final test is time to complete a lap. A simple wire track is

laid out on the floor. Each team records three lap attempts. The shortest lap time of the

three is kept for each team. The team with the shortest single lap time wins the

challenge. This module focuses on performance evaluation. It displays how different

tests show different performance characteristics

244

7.3 Summary

The summer soft sensor academy provides local high school students a chance to

learn about engineering by working with soft sensors. The academy has modules

focusing on five separate engineering concepts. The first module is about

electromagnetic sensors and different ways to visualize a magnetic field. The second

module is about data fitting and using data fitting software. The fourth module covers the

basics of digital circuits. The third and fifth modules cover the basic concepts of neural

networks and how to train them. The academy ended with a competition comparing

system performance.

245

CHAPTER VIII

SUMMARY AND FUTURE WORK

This chapter is a summary of the thesis and project. The chapter begins with

chapter summaries, followed by a description of the author’s contributions to the project.

The chapter ends with a discussion of some possible future work with the project

components.

246

8.1 Summary of Thesis

The first chapter is an introduction to the project. The chapter begins with the

system overview and description of the main block diagram. The chapter provides a brief

project history and describes the current state of the project. The chapter ends with an

outline of the rest of the thesis.

Chapter two covers the sensors and signal conditioning circuit. It describes the

magnetic field and sensors to detect it. It also describes the signal conditioning circuit,

defining the circuit components, how they were tested and the fabrication of the printed

circuit board. The sensors and signal conditioning circuit provide a path for information

about the magnetic field to travel to the A/D converter. The sensors and components for

the signal conditioning board are common and readily available from local vendors and

can be used with prototyping boards. Inductors are a good choice for sensing a magnetic

field because they are readily available, have been used for this application before, and

their output can be measured as a voltage. Proto-board testing reduced the likelihood of

problems during printed circuit board development. Printed circuit boards are the method

of choice for the final implementation of the signal conditioning circuit.

Chapter three focuses on the A/D converter. It describes the on-board hardware

and off-board multiplexer operation, control of the A/D conversion and how the A/D

conversion process was tested. The A/D conversion provides the neural network with

sensor readings by converting the input voltages to digital numbers. This process requires

hardware and software. Most of the hardware came with the FPGA board. Intelligence

247

and a process to control the hardware enables the A/D FSM to do its job which

contributes to the smart sensor car being able to follow a wire.

Chapter four is about the artificial neural network. It begins by providing basic

information about the artificial neural network implemented on the smart sensor car.

Next, It describes the FPGA implementation of the neural network, showing timing

diagrams for the process. The neural network maps four sensor readings into a car

position calculation. The neural network changes the outputs of the A/D converter into

the acceptable input for the PD controller. The neural network calculates the car position

serially, doing one arithmetic step at a time. Training helps ensure the neural network

calculates the car position correctly. The master FSM has some modifications that allow

it to interface with a computer to collect training data. In order to ensure the neural

network, master FSM, A/D FSM and all other code components work together properly,

software support equipment is required.

Chapter five describes the PD controller. The chapter describes how the

controller is implemented and explains how the controller works. The chapter also

describes the modeling process used to design controller parameters. The PD controller

takes a distance measurement from the neural network and calculates the steering angle

to keep the car as close to the track as possible. The controller executive software

controls the process flow. The control algorithm runs on a PIC microcontroller, which

requires its own board.

248

Chapter six describes the electric car. The electric car is made with many

standard components. These components work together to provide motion around the

track. The components share signals through various connections. The board-mounting

fixture holds the components together.

Chapter seven describes the summer soft sensor academy. The summer soft

sensor academy provides local high school students a chance to learn about engineering

by working with soft sensors. The academy has modules focusing on five separate

engineering concepts. The first module is about electromagnetic sensors and different

ways to visualize a magnetic field. The second module is about data fitting and using data

fitting software. The fourth module covers the basics of digital circuits. The third and

fifth modules cover the basic concepts of neural networks and how to train them. The

academy ended with a competition comparing system performance.

249

8.2 Author’s Contributions to Project

The author’s contributions began during the Fall of 2009 by assisting Amanuel

Assefa with the Xilinx software to change the FPGA code to read in four sensors and

control the multiplexer. This included mapping the states of the Master FSM and A/D

FSM. The author learned Chipscope and used it to monitor code execution on the FPGA

to verify the proper operation. The author also assisted with regeneration of cores using

the CoreGen software modules.

In the Spring of 2010 the author began work on the rest of the smart sensor car.

This began with collection of basic characteristics about how the inductor behaves with

the magnetic field generated by the function generator. This provided an understanding

of how to set up the different test fixtures. The next step was the introduction of op amp

circuits. This allowed the development and tuning of a circuit to condition the output of a

single sensor using a bread board. The experiments used different circuits using different

components in different configurations. The author then developed a printed circuit

board design and had it manufactured. The author populated the professionally

fabricated board and tested it. The author integrated the FPGA board and sensor board

together and verified the timing for the multiplexer. After the sensor board and FPGA

were able to generate consistent results from bench power, the author developed a system

to power the boards from batteries, which is the desired configuration to support the

smart sensor car. The initial system suffered from noise issues on the power transmission

lines. This was resolved by decoupling and isolation. The next component was the

motor control switch. The author designed a circuit using a Darlington pair of BJTs

250

driven by an opticoupler. After the individual components were ready, the author

designed and fabricated the board mounting fixtures. Once all the system components

were working together, the author modeled the smart sensor car to obtain PD controller

gains. The author worked with Dr. Hagan to modify the microcontroller code to match

the car steering and motor performance. A total of five cars were produced for the class.

During the summer academy, the author assisted students with modules and equipment in

the lab. The author contributed to some of the writing for the summer academy

documents. The author instructed students about how to use the smart sensor cars and

assisted them as needed. After the summer academy, the author documented all system

components.

251

8.3 Future Work

The smart sensor car provides a flexible platform for future work with FPGAs,

neural networks, control systems and other physical implementations. Future projects

could include work with the sensor board, A/D converter, neural network, controller and

electric car.

The sensor board provides a means to gather information about the outside world

and provide feedback in signals that can be converted by A/D converters. The sensor

board currently uses inductors as antennas. There may be more effective or more useful

antenna designs than the basic coil. Another possible project would be to alter the

number or placement of the sensors. This could be as simple as doubling the number of

sensors and reducing the sensor spacing from two inches to one inch. The project could

investigate using two rows of sensors to calculate the angle between the car and the wire.

Another option would be to change the signal conditioning circuit. This project could

involve experiments with different components that would allow manual or automatic

tuning of individual sensors to provide a more consistent response. The project could

also explore ways to build a conditioning circuit that could tune itself to adjust to

automatically to changes in the track.

The A/D converter translates information from the outside world in the form of

voltages into digital numbers the components on the FPGA can use. One future project

could be to eliminate current redundant processes from the A/D FSM. Another project

could add a filter to the A/D readings. Because the Spartan 3E starter kit has unused

252

serial peripheral interface ports, it would be possible to incorporate more external serial

A/D converters. A more complicated project could build a FPGA board with parallel

A/D converters.

The current serial neural network design has been used in two projects and could

be useful in many more. One possible change to the neural network code would be to

change the implementation of the network. The current code is build around a single

neuron with a single input. The three other possibilities are a single neuron with multiple

inputs, multiple single input neurons and multiple neurons, each with multiple inputs.

Each of these structures could provide the same functionality as the current structure.

Another option that would maintain the functionality would be to implement different

types of neural networks, such as a radial basis network. An added function to the neural

network could be a filter on the calculation. Another option would be to incorporate the

calculation of the angle between the car and wire. The neural network could also be used

to calculate the steering angle or even servo command. This would reduce the need for

extra components and calculations.

The controller takes the position calculation from the neural network and converts

it into commands for the car. The current PD controller could be implemented on the

FPGA. Once on the FPGA, more elaborate controllers could be experimented with.

Another project could be to use the existing controller for steering while incorporating

speed control. A follow on project to that could be to incorporate breaking. A different

project could allow the controller to identify when the car is too far away from the track

253

to sense the wire. The second part of this project could be to introduce a way for the car

to begin a search for the lost wire.

The electric car takes inputs from the controller and provides motion to the

system. The forward velocity source provides many opportunities for projects. The

current motor control switch could be replaced by a half H bridge to allow breaking, or a

full H bridge to allow the car to change directions. Another project could explore ways

to increase efficiency of the system by using different chassis with different drive

configurations. Also, different power sources such as fuel cells or solar panels could be

investigated. A similar platform could also utilize an internal combustion motor allowing

different experiments with bio-fuels. A different experiment could be to make the fixed

wheels the front of the car and the articulated wheels the rear of the car, similar to most

industrial forklifts. Another experiment could be to use a chassis with front and rear

wheel articulation. A related project could be to explore a chassis that has fixed front and

rear wheels and center articulation or the chassis. The smart sensor position

measurement and steering control could also be used with different platforms. The

system could be transferred to a tracked platform, a two or three wheel platform, or even

a walking robot.

The current system is capable of making a circle around the track. One simple

project could be to add a battery powered web cam to the car to monitor the system as it

goes around the track. A follow on project could be to allow user feedback to shut off the

car if they see it go off the track. A different project could be to broadcast other

information such as sensor readings, position calculations and steering commands.

254

REFERENCES

[1] M. T. Hagan, H. B. Demuth, M. H. Beale, Neural Network Design. Boston, 1996.
[2] C. Latino, M. Moreno-Armendariz, "Realizing general MLP networks with

minimal FPGA resources," in 2009 International Joint Conference on Neural
Networks, IJCNN 2009, June 14, 2009 - June 19, 2009, Atlanta, GA, United
states, 2009, pp. 1722-1729.

 [3] I. E. Paromtchik and C. Laugier, "Motion generation and control for parking an
autonomous vehicle," vol. 4, ed, 1996, pp. 3122 vol.4-3122 vol.4.

[4] J. P. Laumond, P. E. Jacobs, M. Taix, R. M. Murray, "A motion planner for
nonholonomic mobile robots," vol. 10, ed, 1994, pp. 577-93.

255

APPPENDICES

Appendix A: Code for Master FSM to Calculate a Position
begin
if rising_edge(CLOCK) then
 case state is

 when IDLE =>
 Enable_Network <= '0';
 nd_fixed2float1 <= '0';
 nd_fixed2float2 <= '0';
 nd_fixed2float3 <= '0';
 nd_fixed2float4 <= '0';
 NN_data (15 downto 0) <= (others => '0');
 rs232_receiver_rst <= '0';
 next_state <= WAIT_RECEIVE;

 when WAIT_RECEIVE => -- wait for RS232 data
 led(3 downto 0) <= "0001";
 if (rs232_receiver_stb = '1') then -- data done
 rs232_receiver_rst <= '1';
 train_mode <= '0';
 next_state <= START_ADC;
 else
 next_state <= WAIT_RECEIVE; -- receiving data
 end if;

 when START_ADC =>
 ce_amp <= '1'; --active high
 start_conv <= '1';
 next_state <= ADC;

 when ADC =>
 if ADC_DONE = '1' then
 next_state <= ADC2FIXED;
 ce_amp <= '0'; --active low
 start_conv <= '0';
 else
 next_state <= ADC;
 end if;

256

 when ADC2FIXED =>
 nd_fixed2float1 <= '1';
 next_state <= FIXED2FLOAT1;

 when FIXED2FLOAT1 => -- fixed to float 1
 nd_fixed2float1 <= '0';
 if (rdy_fixed2float1 = '1') then
 P1 <= fixed2float_result1;
 nd_fixed2float2 <= '1';
 next_state <= FIXED2FLOAT2;
 else
 next_state <= FIXED2FLOAT1;
 end if;

 when FIXED2FLOAT2 => -- fixed to float 2
 nd_fixed2float2 <= '0';
 if (rdy_fixed2float2 = '1') then
 P2 <= fixed2float_result2;
 nd_fixed2float3 <= '1';
 next_state <= FIXED2FLOAT3;
 else
 next_state <= FIXED2FLOAT2;
 end if;

 when FIXED2FLOAT3 => -- fixed to float 3
 nd_fixed2float3 <= '0';
 if (rdy_fixed2float3 = '1') then
 P3 <= fixed2float_result3;
 nd_fixed2float4 <= '1';
 next_state <= FIXED2FLOAT4;
 else
 next_state <= FIXED2FLOAT3;
 end if;

 when FIXED2FLOAT4 => -- fixed to float 4
 nd_fixed2float4 <= '0';
 if (rdy_fixed2float4 = '1') then
 P4 <= fixed2float_result4;
 next_state <= WRITE_ADC_DATA1;
 else
 next_state <= FIXED2FLOAT4;
 end if;

 when WRITE_ADC_DATA1 => -- 1 clock cycle every tim e
 Enable_network <= '0';
 ce_RAM <= '1';
 RAM_DATA <= P1;
 RAM_ADDR <= "0000"; -- P1 address
 next_state <= WRITE_ADC_DATA2;

257

 when WRITE_ADC_DATA2 => -- 1 clock cycle every tim e
 RAM_DATA <= P2;
 RAM_ADDR <= "0001"; -- P2 address
 next_state <= WRITE_ADC_DATA3;

 when WRITE_ADC_DATA3 => -- 1 clock cycle every tim e
 RAM_DATA <= P3;
 RAM_ADDR <= "0010"; -- P3 address
 next_state <= WRITE_ADC_DATA4;

 when WRITE_ADC_DATA4 => -- 1 clock cycle every tim e
 RAM_DATA <= P4;
 RAM_ADDR <= "0011"; -- P4 address
 next_state <= WRITE_ADC_DONE;

 when WRITE_ADC_DONE =>
 ce_RAM <= '0';
 next_state <= START_NN;

 when START_NN =>
 Enable_Network <= '1';
 next_state <= NN;
 counter <= (others => '0');

 when NN =>
 if rdy_NN = '1' then
 next_state <= FLOAT2FIXED;
 NN_Data <= N;
 Enable_Network <= '0';
 nd_float2fixed <= '1';
 else
 next_state <= NN; -- NN
 end if;

 when FLOAT2FIXED =>
 if (rdy_float2fixed = '1') then
 nd_float2fixed <= '0';
 next_state <= START_RS232_HI;
 else
 nd_float2fixed <= '1';
 next_state <= FLOAT2FIXED;
 end if;

 when START_RS232_HI =>
 counter <= (others => '0');
 rs232_sender_stb <= '1'; -- start pulse on
 rs232_sender_dat <= "000"&NN_fixed (12 downto 8);
 next_state <= RS232_HI;

258

 when RS232_HI =>
 counter <= counter + 1;
 if rs232_sender_ack = '1' then
 rs232_sender_stb <= '0'; --start pulse off
 elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR (system_speed/baudrate*10, 20) then
 next_state <= START_RS232_LO;
 else
 next_state <= RS232_HI;
 end if;

 when START_RS232_LO =>
 counter <= (others => '0');
 rs232_sender_stb <= '1'; -- start pulse on
 rs232_sender_dat <= NN_fixed (7 downto 0);
 display_data (12downto0)<=NN_fixed(12downto0);
 next_state <= RS232_LO;

 when RS232_LO =>
 counter <= counter + 1;
 if rs232_sender_ack = '1' then
 rs232_sender_stb <= '0'; --start pulse off
 elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR (system_speed/baudrate*10, 20) then
 next_state <= IDLE;
 else
 next_state <= RS232_LO;
 end if;

 end case; -- state
end if; -- clock

end process sensor_state_machine;

ADC1_fixed <= ADC1(13) & ADC1(13 downto 2);
ADC2_fixed <= ADC2(13) & ADC2(13 downto 2);
ADC3_fixed <= ADC3(13) & ADC3(13 downto 2);
ADC4_fixed <= ADC4(13) & ADC4(13 downto 2);

state <= next_state;

RS232_DCE_TXD <= RS232_TX_out;
SPI_AMP_SHDN <= '0';
DAC_CS <= '1'; -- could not find in chipscope
SPI_SS_B <= '1';

gain <= "00010001";

end Behavioral;

259

Appendix B: Code for A/D FSM
begin
 when IDLE =>
 MUX_SELECT <= '0';
 AMP_CS <= '1';
 counter <=0;
 if ce_amp ='1' then
 next_state <= START;
 else
 next_state <= IDLE;
 end if;

 when START =>
 AMP_CS <= '0'; --turn amp on
 next_state <= START2;
 index1 <= 7; -- 8 bit value

 when START2 =>
 MOSI <= gain(index1);
 next_state <= HI;
 bit_count <= 0;

 when HI =>
 SCK <= '1';
 counter <= counter +1;
 if counter = 2 then
 next_state <= HI_DUMMY;
 else
 next_state <= HI;
 end if;

 when HI_DUMMY =>
 counter <=0;
 bit_count <= bit_count + 1;
 index1 <= index1-1;
 next_state <= LO;

 when LO =>
 SCK <= '0';
 counter <= counter +1;
 if counter = 2 then
 next_state <= LO_DUMMY;
 else
 next_state <= LO;
 end if;

260

 when LO_DUMMY =>
 counter <=0;
 if bit_count = 8 then
 next_state <= FINISH;
 else
 MOSI <= gain(index1);
 next_state <= HI;
 end if;

 when FINISH =>
 next_state <= IDLE_AD;
 AMP_CS <='1';
 SCK <= '0';
 MOSI <= '0';

 when IDLE_AD =>
 if start_conv ='1' then
 next_state <= START_AD;
 else
 next_state <= IDLE_AD;
 end if;

 when FINISH =>
 next_state <= IDLE_AD;
 AMP_CS <='1';
 SCK <= '0';
 MOSI <= '0';

 when IDLE_AD =>
 if start_conv ='1' then
 next_state <= START_AD;
 else
 next_state <= IDLE_AD;
 end if;
 CONV <= '0';
 prime <= '1';
 MUX_SELECT <= '0';

 when START_AD =>
 SCK <= '0';
 CONV <= '1';
 counter <= -1;
 index1 <= 13; -- 14 bit value
 index2 <= 13; -- 14 bit value
 next_state <= HI_AD;

 when HI_AD =>
 SCK <= '1';
 CONV <= '0';
 counter <= counter +1;
 next_state <= LO_AD;

261

 when LO_AD =>
 SCK <= '0';
 if prime = '0' and mux_sel = '0' then
 if(counter > 2 and counter < 17) then
 ADC1(index1) <= SPI_MISO;
 index1 <= index1 -1;
 elsif(counter > 18 and counter < 33) then
 ADC2(index2) <= SPI_MISO;
 index2 <= index2 -1;
 end if;

 if counter = 34 then -- DONE
 next_state <= FINISH_AD;
 else
 next_state <= HI_AD;
 end if;

 elsif prime = '1' and mux_sel = '0' then
 if counter = 34 then -- done priming
 prime <= '0';
 next_state <= START_AD;
 else
 next_state <= HI_AD;
 end if;

 elsif prime = '0' and mux_sel = '1' then
 if(counter > 2 and counter < 17) then
 ADC3(index1) <= SPI_MISO;
 index1 <= index1 -1;
 elsif(counter > 18 and counter < 33) then
 ADC4(index2) <= SPI_MISO;
 index2 <= index2 -1;
 end if;

 if counter = 34 then -- DONE
 ADC_DONE <= '1';
 next_state <= FINISH_AD;
 else
 next_state <= HI_AD;
 end if;

 elsif prime = '1' and mux_sel = '1' then
 if counter = 34 then -- done priming
 prime <= '0';
 next_state <= START_AD;
 else
 next_state <= HI_AD;
 end if;
 end if;

262

 when FINISH_AD =>
 counter <= 0;
 MUX_counter <= 0;
 SCK <= '0';
 CONV <= '0';
 if MUX_SELECT = '0' then
 prime <= '1';
 MUX_SELECT <='1';
 next_state <= MUX_SWITCH_1;
 else
 next_state <= IDLE;
 end if;

 when MUX_SWITCH_1 =>
 MUX_counter <= MUX_counter + 1;
 next_state <= MUX_SWITCH_2;

 when MUX_SWITCH_2 =>
 if MUX_counter = 100 then
 next_state <= START_AD;
 else
 next_state <= MUX_SWITCH_1;
 end if;

 when others =>
 MUX_SELECT <= '0';
 mux_sel <= '0';
 SCK <= '0';
 CONV <= '0';
 AMP_CS <= '1';
 MOSI <='0';
 next_state <= IDLE;
 end case;

end process;

263

Appendix C: Code for Neural Network FSM
process (CLOCK)
begin

 if CLOCK = '1' and CLOCK'event then
 if WRITE_INPUT = '0' and Enable_Network = '0' the n
 a_addr_tmp <= "0011";
 p_addr_tmp <= "0000";
 w_addr_tmp <= "00000";--
 b_addr_tmp <= "0000";
 shift_addr_tmp <= "0000";
 input_base_tmp <= "0000";
 input_num_tmp <= "0000";
 neuron_num_tmp <= "0000";
 R_S1_flag <= "00";
 cuenta_tmp <= "00";
 b_0 <= "0000000000000000";
 r <= "0011";
 s1 <= "0000";
 q_tmp <= '0';
 rdyQ_tmp <= '0';
 flag_tmp <= '1';
 write_ena <= '0';
 nd_tmp <= '0';
 start_tmp <= '0';
 start_flag_tmp <= '0';
 completion_flag_tmp <= '1';
 enable_tmp <= '0';
 init_flg_tmp <= '1';
 ram_b_input <= "0000000000000000";
 write_enb <= '0';

 elsif WRITE_INPUT = '1' and Enable_Network = '0' then

 ram_b_input <= INPUT_DATA;
 p_addr_tmp <= INPUT_ADDR;
 write_enb <= '1';
 rdyNN_tmp <= '0';

 elsif WRITE_INPUT = '0'
 -and Enable_Network = '1' and S1 = "1111" then
 rdyNN_tmp <= '1';
 a_addr_tmp <= "0011";
 p_addr_tmp <= "0000";
 w_addr_tmp <= "00000
 b_addr_tmp <= "0000";
 shift_addr_tmp <= "0000";
 input_base_tmp <= "0000";
 input_num_tmp <= "0000";
 neuron_num_tmp <= "0000";
 R_S1_flag <= "00";
 cuenta_tmp <= "00";
 b_0 <= "0000000000000000";
 r <= "0011";
 s1 <= "0000";
 q_tmp <= '0';

264

 rdyQ_tmp <= '0';
 flag_tmp <= '1';
 write_ena <= '0';
 nd_tmp <= '0';
 start_tmp <= '0';
 start_flag_tmp <= '0';
 completion_flag_tmp <= '1';
 enable_tmp <= '0';
 init_flg_tmp <= '1';
 ram_b_input <= "0000000000000000";
 write_enb <= '0';

 elsif WRITE_INPUT = '0'
 -and Enable_Network = '1' and S1 /= "1111" then
 ram_b_input <= zero;
 write_enb <= '0';
 rdyNN_tmp <= '0';

-- The neural network should only run when told to, and must
-- tell the controling system it is done by setting rdy_nn to '1'
-- When we are at the end of the shiftrom (1111),
-- set rdy_nn to '1'
--if (r = "1111") then
-- rdyNN_tmp <= '1';
--end if;

-- When an addition is completed, update b_0.
-- We don't want to do this during an addition, bec ause
-- intermediate values will be wrong.

 if (rdyAD_tmp = '1') then
 b_0 <= b_tmp;
 end if;

-- Select either bias or partial n to be added to w times p
-- When input_num is zero, bias is added.
-- When input_num is not zero, then partial n is ad ded.

 if input_num_tmp = "0000" then
 if flag_tmp = '1' then
 q_tmp <= '0';
 rdyQ_tmp <= '1';
 flag_tmp <= '0';
 end if;

 if (rdyQ_tmp = '1') then
 b_0 <= b_tmp;
 rdyQ_tmp <= '0';
 q_tmp <= '1';
 q2_tmp <= '1';
 end if;

 if (q2_tmp = '1') then
 write_ena <= '0';
 q2_tmp <= '0';
 end if;
 else

265

 flag_tmp <= '1';
 end if;

-- When R_S1_flag is 00, then R is read from the sh ift_rom

 if R_S1_flag = "00" then
 if (nd_tmp = '0' and rdySH_tmp = '0') then
 nd_tmp <= '1';
 else
 if (rdySH_tmp = '1' and nd_tmp = '1') then
 nd_tmp <='0';
 r <= memory_tmp;
 R_S1_flag <= R_S1_flag + "01";
 end if;
 end if;
 end if;

-- When R_S1_flag is 01, then S1 is read from the s hift_rom

 if R_S1_flag = "01" then
 if (nd_tmp = '0' and rdySH_tmp = '0') then
 shift_addr_tmp <= shift_addr_tmp + "0001";
 nd_tmp <= '1';
 else
 if (rdySH_tmp = '1' and nd_tmp = '1') then
 nd_tmp <='0';
 s1 <= memory_tmp;
 R_S1_flag <= "11";
 end if;
 end if;
 end if;

-- When R_S1_flag is 11, then we continue to comput e partial
-- sums until all inputs have been applied, and the n we compute
-- neuron outputs until all of the neurons in the c urrent layer
-- have been computed. Then we set R_S1_flag back t o 00 to
-- restart.

 if R_S1_flag = "11" then

-- When addition is complete, check that all other events are
-- completed - end of neuron, end of layer. comple tion_flag
-- will be 1 until all events are complete, then it is set to 0.

 if (rdyAD_tmp= '1') then
 completion_flag_tmp <= '1';
 enable_tmp <= '0';
 start_tmp <= '1';
 end if;

-- Wait two clocks to be sure that the addresses ha ve settled
-- before starting the neuron calculation.

 if start_flag_tmp = '1' then
 cuenta_tmp <= cuenta_tmp + 1;
 if cuenta_tmp = "10" then
 start_tmp <= '0';

266

 start_flag_tmp <= '0';
 cuenta_tmp <= "00";
 end if;
 end if;

--completion_flag_tmp will be 1, if an addition has been
-- completed, or if we are on the initial pass.

 if (completion_flag_tmp = '1') then

-- The following if is for the first time. It is on ly done once.

 if init_flg_tmp = '1' then
 init_flg_tmp <= '0';
 start_tmp <= '1';
 enable_tmp <= '1';
 start_flag_tmp <= '1';
 completion_flag_tmp <= '0';
 else --init_flg_tmp

-- When the input # eq r, start the tansig conversi on.
-- The conversion starts when a_eq_b_temp is 1.

 if input_num_tmp = r then
 a_eq_b_tmp <= '1';
 end if;

--We wait until rdyTF is 1, if we are at the last i nput.
--If we are not at the last input, we update the ad dresses
--and start the next input calculation.

 if ((rdyTF_tmp = '1')
 -or (not(input_num_tmp = r))) then
 completion_flag_tmp <= '0';
 enable_tmp <= '1';
 w_addr_tmp <= w_addr_tmp + 1;
 start_flag_tmp <= '1';
 start_tmp <= '1';

--If we are at the last input, start a new neuron

 if (input_num_tmp = r) then
 a_eq_b_tmp <= '0';
 write_ena <= '1';
 input_num_tmp <= "0000";
 a_addr_tmp <= a_addr_tmp + 1;
 b_addr_tmp <= b_addr_tmp + 1;

--If we are at the last neuron, start a new layer.

 if neuron_num_tmp = s1 then
 input_base_tmp <= input_base_tmp+r+1;
 neuron_num_tmp <= "0000";
 R_S1_flag <= "00";
 p_addr_tmp <= input_base_tmp+r+1;
 else
 neuron_num_tmp <= neuron_num_tmp + 1;

267

 p_addr_tmp <= input_base_tmp;
 end if; --neuron_num_tmp

--If we are not at the last input, update the input #.

 else ----input_num_tmp
 input_num_tmp <= input_num_tmp + 1;
 p_addr_tmp <= input_num_tmp +
 input_base_tmp +1;
 end if; --input_num_tmp
 end if; --rdyTF_tmp
 end if; --init_flg_tmp
 end if; --completion_flag_tmp
 end if; --R_S1_flag = '11'
 end if; -- write/enable_network
 end if; --CLOCK
end process;

not_q_tmp <= NOT q_tmp;
N <= n_tmp;
A <= a_tmp;
P <= p_tmp;
B <= b_tmp;
B_OUT <= b_0;
W <= w_tmp;
OUT_B <= out_b_tmp;
B_ADDR <= a_addr_tmp;
SHIFT_ADDR <= p_addr_tmp; -- NOTE SWITCH
INPUT_BASE <= input_base_tmp;
INPUT_NUM <= input_num_tmp;
NEURON_NUM <= neuron_num_tmp;
Q <= q_tmp;
RDY_Q <= rdyQ_tmp;
RDY_AD <= rdyAD_tmp;
RDY_SH <= init_flg_tmp;
RDY_TF <= rdyTF_tmp;
A_EQ_B <= a_eq_b_tmp;
FLAG <= write_ena;
R_OUT <= r;
S1_OUT <= s1;
R_S1_FLG <= R_S1_flag;
MEMORY <= memory_tmp;
ND <= start_flag_tmp;
WRITE_A <= write_ena;
START <= start_tmp;
CUENTA <= cuenta_tmp;
COMPLETION <= completion_flag_tmp;
ENABLE <= enable_tmp;
RDY_NN <= rdyNN_tmp;

end Behavioral;

268

Appendix D: Code for Master FSM to Transmit Training Data
begin
if rising_edge(CLOCK) then
 case state is

 when IDLE =>
 Enable_Network <= '0';
 next_state <= WAIT_RECEIVE;
 rs232_receiver_rst <= '0';

 when WAIT_RECEIVE => -- wait for RS232 data
 if (rs232_receiver_stb = '1') then -- data done
 rs232_receiver_rst <= '1';
 if (rs232_receiver_dat = x"74") then -- 't'
 train_mode <= '1';
 next_state <= START_ADC;
 elsif (rs232_receiver_dat = x"6E") then -- 'n'
 train_mode <= '0';
 next_state <= START_ADC;
 else
 next_state <= IDLE;
 end if;
 else
 next_state <= WAIT_RECEIVE; --receiving data
 end if;

 when START_ADC =>
 ce_amp <= '1'; --active high
 start_conv <= '1';
 next_state <= ADC;

 when ADC =>
 if ADC_DONE = '1' then
 if (train_mode = '1') then
 next_state <= START_RS232_TRAIN1;
 else
 next_state <= ADC2FIXED;
 end if;
 ce_amp <= '0'; --active low
 start_conv <= '0';
 else
 next_state <= ADC;
 end if;

 when START_RS232_TRAIN1 =>
 counter <= (others => '0');
 rs232_sender_stb <= '1'; -- start pulse on
 rs232_sender_dat <= ADC1(13) & ADC1(13) & ADC1(13) &

ADC1(13) & ADC1 (13 downto 10);
 next_state <= RS232_TRAIN_HI1;

269

 when RS232_TRAIN_HI1 =>
 counter <= counter + 1;
 if rs232_sender_ack = '1' then –
 rs232_sender_stb <= '0'; --start pulse off
 elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
 next_state <= START_RS232_TRAIN_LO1;
 else
 next_state <= RS232_TRAIN_HI1;
 end if;

 when START_RS232_TRAIN_LO1 =>
 counter <= (others => '0');
 rs232_sender_stb <= '1'; -- start pulse on
 rs232_sender_dat <= ADC1 (9 downto 2);
 next_state <= RS232_TRAIN_LO1;

 when RS232_TRAIN_LO1 =>
 counter <= counter + 1;
 if rs232_sender_ack = '1'
 rs232_sender_stb <= '0'; --start pulse off
 elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
 next_state <= START_RS232_TRAIN2;
 else
 next_state <= RS232_TRAIN_LO1;
 end if;

 when START_RS232_TRAIN2 =>
 counter <= (others => '0');
 rs232_sender_stb <= '1'; -- start pulse on
 rs232_sender_dat <= ADC2(13) & ADC2(13) & ADC2(1 3) &

ADC2(13) & ADC2 (13 downto 10);
 next_state <= RS232_TRAIN_HI2;

 when RS232_TRAIN_HI2 =>
 counter <= counter + 1;
 if rs232_sender_ack = '1' then
 rs232_sender_stb <= '0'; --start pulse off
 elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
 next_state <= START_RS232_TRAIN_LO2;
 else
 next_state <= RS232_TRAIN_HI2;
 end if;

 when START_RS232_TRAIN_LO2 =>
 counter <= (others => '0');
 rs232_sender_stb <= '1'; -- start pulse on
 rs232_sender_dat <= ADC2 (9 downto 2);
 next_state <= RS232_TRAIN_LO2;

270

 when RS232_TRAIN_LO2 =>
 counter <= counter + 1;
 if rs232_sender_ack = '1' then
 rs232_sender_stb <= '0'; --start pulse off
 elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
 next_state <= START_RS232_TRAIN3;
 else
 next_state <= RS232_TRAIN_LO2;
 end if;

 when START_RS232_TRAIN3 =>
 counter <= (others => '0');
 rs232_sender_stb <= '1'; -- start pulse on
 rs232_sender_dat <= ADC3(13) & ADC3(13) & ADC3(13) &

ADC3(13) & ADC3 (13 downto 10);
 next_state <= RS232_TRAIN_HI3;

 when RS232_TRAIN_HI3 =>
 counter <= counter + 1;
 if rs232_sender_ack = '1' then
 rs232_sender_stb <= '0'; --start pulse off
 elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
 next_state <= START_RS232_TRAIN_LO3;
 else
 next_state <= RS232_TRAIN_HI3;
 end if;

 when START_RS232_TRAIN_LO3 =>
 counter <= (others => '0');
 rs232_sender_stb <= '1'; -- start pulse on
 rs232_sender_dat <= ADC3 (9 downto 2);
 next_state <= RS232_TRAIN_LO3;

 when RS232_TRAIN_LO3 =>
 counter <= counter + 1;
 if rs232_sender_ack = '1' then
 rs232_sender_stb <= '0'; --start pulse off
 elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
 next_state <= START_RS232_TRAIN4;
 else
 next_state <= RS232_TRAIN_LO3;
 end if;

 when START_RS232_TRAIN4 =>
 counter <= (others => '0');
 rs232_sender_stb <= '1'; -- start pulse on
 rs232_sender_dat <= ADC4(13) & ADC4(13) & ADC4(1 3) &

ADC4(13) & ADC4 (13 downto 10);
 next_state <= RS232_TRAIN_HI4;

271

 when RS232_TRAIN_HI4 =>
 counter <= counter + 1;
 if rs232_sender_ack = '1' then
 rs232_sender_stb <= '0'; --start pulse off
 elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
 next_state <= START_RS232_TRAIN_LO4;
 else
 next_state <= RS232_TRAIN_HI4;
 end if;

 when START_RS232_TRAIN_LO4 =>
 counter <= (others => '0');
 rs232_sender_stb <= '1'; -- start pulse on
 rs232_sender_dat <= ADC4 (9 downto 2);
 next_state <= RS232_TRAIN_LO4;

 when RS232_TRAIN_LO4 =>
 counter <= counter + 1;
 if rs232_sender_ack = '1' then –
 rs232_sender_stb <= '0'; --start pulse off
 elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
 next_state <= IDLE;
 else
 next_state <= RS232_TRAIN_LO4;
 end if;

 when others =>
 next_state <= IDLE;
 end case; -- state
end if; -- clock

end process sensor_state_machine;

 ADC1_fixed <= ADC1(13) & ADC1(13 downto 2);
 ADC2_fixed <= ADC2(13) & ADC2(13 downto 2);
 ADC3_fixed <= ADC3(13) & ADC3(13 downto 2);
 ADC4_fixed <= ADC4(13) & ADC4(13 downto 2);
 F8PIN <= rdy_tf;
 E8PIN <= '0';

 led(4) <= '0';
 led(5) <= '0';
 led(6) <= train_mode;
 led(7) <= not RS232_DCE_RXD;

 state <= next_state;

 RS232_DCE_TXD <= RS232_TX_out;
 SPI_AMP_SHDN <= '0';
 DAC_CS <= '1';
 SPI_SS_B <= '1';
 gain <= "00010001";
 AMP_DOUT_OUT <= AMP_DOUT_IN;

end Behavioral;

272

Appendix E: PD Controller Real Time Executive Code: CODE FROM main.c

#include "main.h"
#include <string.h>

unsigned char input1=127; //High byte of position f rom FPGA
unsigned char width1=10;//Debugging pulse width in high byte read
unsigned char width2=137;//Debugging pulse width in low byte rea
unsigned char input2=127; //Low byte of position fr om FPGA
unsigned int16 input=400; //Total position from FPG A
unsigned char servoWidthCounter=127;//Counter used in servo loop
short servoFlag = 1; //Flag to indicate 20ms servo

window
short servoPhase = 0; //Flag to indicate servo res tart
int x; //Counter indicating which byte is

read
signed int16 servoWidth=30; //Width of servo pulse in counts

#include "pid.h"

// Received Data Available Interupt Subroutine
// Reads 1 byte of data from our RS232 in
// Stores the byte to the in global variable
// Then write the letter 'n' to request for a new p osition

#int_RDA
void RDA_isr(void)
{
if(x==1)
 {
 //Read high byte of position from FPGA

 input1 = getc();
 x++;
 }
else if(x==2)
 {
 input2 = getc();
 PIDWindow = 1; //lets compute another sample3
 x=0;
 input = make16(input1,input2);
 }
}

// RTCC Interuput Subroutine
// Interputed every 51.2us
// Used to control the pulse width for the servo
// Most servos should be between 1 and 2 ms pulses
// window may be different for different servos

273

#int_RTCC
void RTCC_isr(void)
{
if(servoFlag == 1) //Has our 20ms window passed?
 {
 if(servoWidthCounter<servoWidth)
 //Are we in the variable 0-2ms window?
 {
 output_high(SERVO); //Set the servo pin high
 servoWidthCounter++; //And increment our counter
 }
 else
 {
 output_low(SERVO);//outside of the pulse, turn of f pulse
 servoFlag = 0;
 }
 }
}

// Timer1 Interuput Subroutine
// Interputed every 13.1ms
// Used to trigger step of the PID controller/Resta rt Servo PW

#int_TIMER1
void TIMER1_isr(void)
{
//Servo can only be triggered every 20ms,
// but we are sampling ever 13.1ms.
//A flag, ServoPhase is set to set
// to determine if the servo can be updated.

if(servoPhase==0)//restart servo pulse
 {
 servoWidthCounter = 0;
 servoFlag = 1;
 servoPhase = 1;
 }
else //servo is resting
 {
 servoPhase = 0;
 }
}

274

void main(void)
{
init();
set_pwm1_duty(255);
while(1)
 {
 if(PIDwindow==1)
 {
 //request another position from the FPGA

 putc('n',osu);

 //Indicate that the first byte should be read

 x=1;

 //Call the PID controller

 PID_Controller();
 }
 }
}

275

Appendix F: PD Controller Real Time Executive Code: CODE FROM main.h

#include <18F1220.h>
#FUSES NOWDT //No Watch Dog Timer
#FUSES WDT128 //Watch Dog Timer uses 1:128

Postscale
#FUSES H4 //High speed osc with HW enabled 4X

PLL
#FUSES FCMEN //Fail-safe clock monitor enabled
#FUSES BROWNOUT //Reset when brownout detected
#FUSES BORV42 //Brownout reset at 4.2V
#FUSES NOPUT //No Power Up Timer
#FUSES NOCPD //No EE protection
#FUSES STVREN //Stack full/underflow will cause

reset
#FUSES NODEBUG //No Debug mode for ICD
#FUSES NOLVP //No low voltage prgming,
 //B3(PIC16) or B5(PIC18) used for I/O
#FUSES NOWRT //Program memory not write protected
#FUSES NOWRTD //Data EEPROM not write protected
#FUSES NOWRTC //configuration not registers write p rotected
#FUSES IESO //Internal External Switch Over mode e nabled
#FUSES NOEBTR //Memory not protected from table re ads
#FUSES NOEBTRB //Boot block not protected from tabl e reads
#FUSES MCLR //Master Clear pin enabled
#FUSES NOPROTECT //Code not protected from reading
#FUSES NOCPB //No Boot Block code protection
#FUSES NOWRTB //Boot block not write protected
#use delay(clock=40M)

#use

rs232(baud=38400,parity=N,xmit=PIN_B1,rcv=PIN_B4,bi ts=8,stream=osu)

#define SERVO PIN_A0
void init(void)
{
setup_adc_ports(NO_ANALOGS|VSS_VDD);
setup_adc(ADC_CLOCK_DIV_2|ADC_TAD_MUL_0);
setup_wdt(WDT_OFF);
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_2|RTCC_8_bit);
setup_timer_1(T1_INTERNAL|T1_DIV_BY_2);
setup_timer_2(T2_DIV_BY_16,255,1);
setup_timer_3(T3_DISABLED|T3_DIV_BY_1);
setup_ccp1(CCP_PWM);
enable_interrupts(INT_RTCC);
enable_interrupts(INT_TIMER1);
enable_interrupts(INT_RDA);
enable_interrupts(GLOBAL);
set_pwm1_duty(0);
output_high(PIN_B2);
}

276

Appendix G: PD Controller Real Time Executive Code: CODE FROM PID.h

short PIDWindow = 1; //Flag to indicate that contr ol
 // loop should execute
float32 prevPos = 0; //Previous position (meters)
float32 currentPos = 0; //Current position (meters)
float32 vel = 0; //Velocity (meters/s)
float32 st_angle = 0; //Steering angle (radians)
float32 position=0; //Car position from center line in meters
signed int16 fullpos=400; //temp variable to conver t input
 // to signed int16
// Define parameters

float32 kp = -60.0; //Position feedback gain (radi ans/meter)
float32 kv = -500.000; //Velocity feedback gain (ra dians/meter/s)
float32 alpha = 0.02; //Filter parameter (0<alpha< 1)
float32 one_m_alpha = 0.98; // (1-alpha)
float32 setpoint = 0.0; //Position set point (meter s)
float32 dt = 0.02; //Sampling interval (s)
signed int16 poscenter=400; //Center position in 1/ 100 in
float32 met_conv = 0.000254;//Conversion from 1/100 in to meters

void PID_Controller()
{
//Adjust for the center position and convert to met ers

fullpos = input;
position = met_conv*(fullpos - poscenter);

// Increment time - save the old position

prevPos = currentPos;

// Filter the position

currentPos = alpha*position + one_m_alpha*prevPos;

// Compute the velocity

vel = (currentPos-prevPos)/dt;

// Compute the control signal (steering angle in ra dians)

st_angle = (currentPos - setpoint)*kp + kv*vel;

// Convert the control signal to pulse width count

277

servoWidth = 19.1*st_angle + 29.0;
if(servoWidth>39)
 {
 //servoWidth=42;
 servoWidth=39;
 }
else if(servoWidth<19)
 {
 //servoWidth=30;
 servoWidth=19;
 }
//clear the PIDwindow so we can wait for the next s ample
PIDwindow=0;
return;
}

VITA

Jeremy Paul Evert

Candidate for the Degree of

Master of Science

Thesis: TEST BED FOR DEMONSTRATING AND TEACHING SOFT SENSOR

CONCEPTS

Major Field: Electrical and Computer Engineering

Biographical:

Education:

Completed the requirements for the Master of Science in Electrical and
Computer Engineering at Oklahoma State University, Stillwater, Oklahoma in
December, 2010.

Completed the requirements for the Bachelor of Science in Mechanical and
Nuclear Engineering at Kansas State University, Manhattan, Kansas in 2003.

Experience:

Active Duty Air Force Officer from April 2004 through April 2008.
 Executive Officer, 448th Combat Sustainment Wing, Tinker Air Force Base,

OK from November 2007 through March 2008.
Staff Officer, Oklahoma City Air Logistics Center/LR, Tinker Air Force Base,

OK from April 2005 through November 2007.
Staff Officer, Oklahoma City Air Logistics Center Engineering Directorate,

Tinker Air Force Base, OK from April 2004 through April 2005.

Professional Memberships:

Institute of Electrical and Electronics Engineers
International Society of Automation

ADVISER’S APPROVAL: Dr. Martin Hagan

Name: Jeremy Paul Evert Date of Degree: December, 2010

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: TEST BED FOR DEMONSTRATING AND TEACHING SOFT

SENSOR CONCEPTS

Pages in Study: 277 Candidate for the Degree of Master of Science

Major Field: Electrical and Computer Engineering.

The smart sensor car is a test bed for demonstrating soft sensor concepts. The
smart car follows the magnetic field coming from a wire track. Sensors on the smart car
detect the magnetic field and generate signals. Those signals are conditioned and
converted to digital numbers, which are used by the neural network as inputs. The neural
network calculates the car position from these inputs. The car position is sent to a
controller that calculates the car steering angle. The commands from the controller drive
the smart sensor car around the track, where the sensors generate different signals
resulting in different commands from the controller. The neural network is implemented
on an Field Programmable Gate Array (FPGA) in a serial configuration.

