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CHAPTER |

INTRODUCTION

The objective of this project was to develop a platform that could be used to
demonstrate two concepts: 1) how neural networks can be implemented on FPGAs, and
2) how the FPGA neural network can be used as the fundamental component of a smart
sensor system. This chapter provides an overview of this platform and an outline of the

rest of this thesis.



1.1 Project Overview

The purpose of this project is to produce a test bed for demonstrating soft sensors,
and how they can be implemented with neural networks on FPGAs. The test bed of
choice is a smart sensor car. The smart sensor car follows a wire. THhermse track
and produces a changing magnetic field. This magnetic field is treshahdd a position
measurement using sensors, signal conditioning, analog to digital convertaneandla
network. The position measurement is used by a PD controller that sends si¢imals t
car motor and steering mechanism, and results in motion around the track. Figure 1-1

shows the main block diagram.
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! Digital I
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. | conditioning | ! : _ i
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: A ! : I
| I | I
1 | [ Y 1
1 1 1 I
i Sensors € T CarBody | 1
| I | I

Figure 1-1: Main Block Diagram

2



Smart sensor concepts translate the magnetic field into a position meagureme
First, four inductors produce signals in response to the strength of the rodigiekin
their area. These signals go through a signal conditioning circuit anceareaiverted
to digital numbers by the analog to digital (A/D) converters. The four digitabarsm
become the four inputs to the artificial neural network on the Field Programatae
Array (FPGA). The output of the neural network is position. The controller uses this
position to generate motor speed and steering servo commands for the elecffiwecar
electric car responds by moving around the track. When the car moves, the s#esors e
a different magnetic field, which results in a new position calculation and neringte

command. Figure 1-2 shows the system functional overview.

System Functional Overview

; Car Motion
Steering Angle
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and Speed Electric Magnetic
—>| PD Controller >» Field |
Car
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— < Digital |e Bl €
Network Conditioning
Converter o
Circuit

Figure 1-2: System Functional Overview



1.2 Project History and Current Status

The main component of the smart sensor is the artificial neural network. In the
summer of 2008, Dr. Hagan, Dr. Latino and Dr. Moreno-Armendariz wrote code to
implement the neural network on an FPGA. During the fall of 2008, Jeff Henson, Daniel
Nash, Craig Noltensmeyer and Taylor York worked together to expand the code to work
as a smart position sensor. This work was part of a capstone design clashanfakl
State University. Their project used the output of two light sensors as inputs&uthé
network. The neural network calculated the position of an object in front of the sensors
blocking the light. Their project incorporated use of the on-board A/D converter and
LCD display. During the fall of 2009, the project was given to another group in the
capstone design class. The team included Amanuel Assefa, Kellen Butléephdrfte
Pickrel. The team was successful in building a microcontroller board to conateunic
with the FPGA and generate speed and steering commands for the ectiitie team
also changed the code to read in four sensor readings by incorporating an off board

multiplexer.

The author’s contributions began during the fall of 2009 by assisting Amanuel
Assefa with the Xilinx software to change the FPGA code to read in four s@msbrs
control the multiplexer. In the spring of 2010, the author began work on the rest of the
smart sensor car. This included development, fabrication and testing of the sergor boar
The next contribution was the design, testing and fabrication of the motor contati.swi
After the individual components were ready, the author designed and fabricated the
power system and board mounting fixtures. Five cars were prepared fodamgdar
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high school students during summer 2010. During the summer academy, the author
assisted students with modules and equipment in the lab. The author contributed to some
of the writing for the summer academy documents. The author instructed stlutauntts

how to use the smart sensor cars and assisted them as needed. After the summer

academy, the author documented all system components.

The current status of the project is that the smart sensor car is ablertoigod a
simple track slowly. The car has considerable steering oscillation. Tleetnegched

this point before the summer academy.



1.3 Thesis Outline

Chapter two covers the sensors and signal conditioning circuit. It describes the
magnetic field and sensors to detect it. It also describes the signalamnditircuit,
defining the circuit components, how they were tested and the fabrication ofritesl pri

circuit board.

Chapter three focuses on the A/D converter. It describes the on-board hardware
and off-board multiplexer operation, and the control of the A/D conversion. The chapter

also describes how the A/D conversion process was tested.

Chapter four focuses on the artificial neural network. It begins by providing basi
information about the artificial neural network implemented on the smart sensor car
Next, It describes the implementation of the neural network showing timingadiadgor
the process. The chapter also discusses how the neural network was trailsed. It a
includes discussion about the support equipment required to make the FPGA neural

network functional.

Chapter five describes the PD controller. The chapter describes how the
controller is implemented and explains how the controller works. The chapter also
describes the modeling process and how the model was used to determine thercontroll
parameters. It also includes discussion about the support equipment required to make the

controller functional.



Chapter six describes the electric car. It describes the componemakeatip
the electric car, including the motor control switch. The chapter also destedasard-

mounting fixture and how the individual boards connect to each other.

Chapter seven describes the summer soft sensor academy. It provides an
overview of the academy and states the academy objectives. The chaptes@albesie

the student activities.

Chapter eight, Conclusions and Future Work, is the last chapter. It provides a
summary of the project and reiterates the author’s contributions. The chapteitarals w

description of possible future work.



CHAPTER Il

SENSORS AND SIGNAL CONDITIONING CIRCUIT

This chapter discuses how the magnetic field coming from a wire is trarezfo
into signals that can be sampled by analog to digital converters (A/D)achthte the
FPGA neural network, as shown in Figure 2-1. The chapter begins with an introduction,
followed by a brief discussion of sensors, magnetic fields and how they interattonSe
two covers the basic design of the signal conditioning circuit. Section thredbdsshe
steps in proto-board testing. Section four is on the printed circuit board. Section five

summarizes the chapter.
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Figure 2-1: Main Block Diagram




2.1 Magnetic Fields and Inductors

As the car moves along the wire track, it encounters a magnetic field coonmg fr
current moving through the wire. Sensors detect the magnetic field andtgemdtiages
that go to the signal conditioning circuit. Figure 2-2 shows how these functions fit int

the rest of the system. This section describes the magnetic field and sesisdesect it.

System Functional Overview
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Figure 2-2: System Functional Overview
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The magnetic field is generated by passing a sinusoidal wave through alve
generated field is a series of rings perpendicular to the path of the elentroing

through the wire, as shown in Figure 2-3.

Magnetic Field from Wire

Front View Side View

: § Wire

uaiing

Magnetic

Magnetic
Field

Field

Figure 2-3: Magnetic Field from Wire

The Biot-Savart law describes the magnetic field generated by an etecteat:
B =kq % where B is the magnetic field, k is a constant, q is the charge moving
through a wire, v is charge velocity and x is the distance from the wire to the point being
observed. In parallel wires, a charge moving in the first wire will causggaetic field.

The magnetic field will cause a charge to move in the second wire. The movigg char

in the second wire can be measured as a voltage difference between the tofdlends

second wire.
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An experiment with a wire and inductor can help visualize the magnetic field.
(see Figure 2-4) The first wire is connected to a function generator prorislies the
moving charge in the first wire, which results in the magnetic field. The indsctor i
placed in the magnetic field. The voltage across the inductor is due to Faradayf's la
induction. The voltage induced in a coil is proportional to the time rate of change of the
magnetic flux through the coil. The voltage difference is measured alceossd leads
of the inductor. The field strength is proportional to the inverse square of the distance.
The field strength is directional. As the angle between the two wires sestdhe
magnetic induction effects are reduced. Figure 2-4 shows an inductor on #nwire.
Figure 2-4, distance between the center of the wire and center of the induetorasna

the angle between wire and inductor is ninety degrees.

Figure 2-4: Inductor on a Wire
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Figure 2-5 shows the voltage measured across an inductor as distance from the
center of the inductor to the center of the wire is increased. This displays ae inver

square relationship, as predicted by the Biot-Savart law.
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Figure 2-5: Voltage Across an Inductor versus Distance
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Figure 2-6 shows the voltage across the inductor as the angle between the
inductor and wire is increased. This shows that the field effect depends on thdionenta
of the wire, with parallel wires having the strongest inductive effeciseaicted by
Faraday’s law. If the changing magnetic field does not pass through thenooitsitage

will be induced.
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Figure 2-6: Voltage versus Angle

14



2.1.1 PNI Magneto Inductive Sensors

One possibility for sensing magnetic fields is the application of PNI Btagn
inductive position sensors, from PNI Sensor Corporation. This sensor is designed to be
sensitive enough to detect the Earth’s magnetic field. The maximum allowadevolt
between sensor terminals is 2.5 volts, unlike the inductors that experiencezhdéfeof
over 25 volts between the terminals without obvious signs of damage. Previous OSU
students have used inductors for sensing magnetic fields. The PNI sensor pedorman
was compared against inductors. The response of both sensors was normalized to unity.
Figure 2-7 shows the percent of maximum signal strength versus distance in mm

measured from the center of the wire to the center of the sensor, for both sensors.

Amount of Signal Range Remaining

1.2

w 1 N
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£ -
]
£ 08 '
< [ ]
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wv
s )
§ 04 TS M PNI Sensor %
] .. * ™~ Remaining
o002 *
...l. e oo
. gl LT T SV ere—"
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Distance in Inches

Figure 2-7: Normalized Circuit Output Response versus Distance fromr©éstensor
to Center of Wire

The magneto-inductive sensors did not outperform the inductors. Because
inductors have been used in the past, are cheaper, more readily available, and more

robust, inductors are the sensor of choice for this project.
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2.1.2 Inductors

A previous NATCAR team of OSU Tulsa students suggested using 33 millihenry
inductors to sense a magnetic field from a wire carrying a 100 mA sine wiva Wb-
kilohertz frequency. Experiments showed that these inductors have a slightsr gre
response at higher frequencies, with a maximum near 100 kHz. 33 millihenry inductors
sensing a magnetic field from a wire carrying a 100-kilohertz sive wee used for this

project.
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Figure 2-7 was created at a single sensor elevation above the wire. Tdre sens
stayed at the same vertical height and moved horizontally away from the Tar
determine the most useful sensor elevation, multiple sets of data wergéecodiec
different elevations. The normalized results are shown in Figure 2-8. Tioessenth
greater elevation have a lower voltage output when directly over the wire,oathbe
compensated by amplifying the signal. The advantage of the greateragiesdkiat the
signal drop-off with distance is much slower. This gives the sensor a widergan
operation, and therefore fewer sensors will be needed. Extensive testing showresl that
sensors could be raised to 2.75 in. This provided enough signal strength and a wide range

of operation. The final design used a sensor elevation of 2.75 inches.

Normalized Output Sensor Elevation Testing

@ 1) Inductor close to wire

M 2) PNI Sensor close to wire

A 3)0.5 inch sensor elevation

X 4)1.25 inch sensor elevation

% 5) 2 inch sensor elevation

Fraction of Signal Remaining

3 35 4 ©6)2.75in sensor elevation

Distance Between Sensor and Wire in Inches

Figure 2-8: Sensor Elevation Testing

The peak-to-peak inductor voltage only indicates the distance from sensoe,to wir
but not the direction. Applying the smart sensor concept allows the neural netwaek to us
multiple sensors in concert to determine the position of the wire. Placing the isdoctor

a straight line increases the horizontal distance over which the smart sesffective.
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Figure 2-9 shows four sensors laid out in a straight line. Figure 2-8 showstthat w
2.75-inch elevation, the sensor has a range of nearly three inches. A spacing of two
inches between inductors ensures the wire will not fall into a flat spot betweeromduct
response curves. Figure 2.10 shows four sensor responses at a spacing of two inches.
The smart sensor car uses four sensors resulting in an effective measuaage off

eight inches.
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Figure 2-9: Multiple Sensor Layout
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Figure 2-10: Sensor Responses
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2.2 Signal Conditioning Circuit

Figure 2-11 shows how the sensors and signal conditioning circuit fit into the
functional overview. The signal conditioning circuit makes the sensor output usable for

the A/D converters.

System Functional Overview
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Figure 2-11: System Functional Overview

19



Figure 2-12 shows the major components on the sensor and signal conditioning
board. The signal conditioning board has four sensors. There are only two A/D channels
on the FPGA board. The output of the four signal conditioning circuits are passed
through an analog four to two multiplexer to allow four sensors to be read by the two

A/D channels.

Sensors and Signal Conditioning Major

Components
Magnetic AC DC Analog
Field Voltages Signal Voltages
—>{ Inductors > Conditioning > Multiplexer —
Circuit

Figure 2-12: Sensors and Signal Conditioning Macro Components

The signal conditioning circuit accepts signals from the inductor and provides
signals to the analog to digital converters. The inductor provides a sinusoid wavefor
voltage oscillating at 100 kilohertz with a magnitude that changes with prgxtortite
wire. The inductor output is never more than 100 millivolts peak to peak. The A/D
converter accepts DC signals in the range of 0.4 to 2.9 volts. The signal conditioning
circuit converts the sinusoidal voltage from the inductor to a DC value between 0.4 and

2.9 volts.
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Figure 2-13 shows the six individual components of the signal conditioning
circuit. The inductor output first goes through a voltage follower that prevensehsor
from being loaded by the rest of the circuit. The non-inverting amplifier nitakesgnal
large enough to work with. The peak detector changes the 100 kHz sine wave into a DC
signal. The second voltage follower prevents loading of the peak detector. Theagummi
amplifier provides the appropriate gain and offset to match the input ratige A/'D
converters. A first order low pass filter prevents high frequency noise foorg mto

the A/D converters.

Signal Conditioning Circuit

Components
0-100 mV p-p 0-700 mV p-p
ACVoltage ACVoltage
Voltage Non-Inverting Peak
—_> > X >
Follower Amplifier Detector
0-350 mV 0.4-2.9V
DCVoltage
5 Voltage Summing BCYOase Output
Follower Amplifier Filter

Figure 2-13: Signal Conditioning Circuit Components
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The first component in the signal conditioning circuit is a voltage follower. The
voltage follower goes between the inductor and remaining circuit to adiudteato
prevent loading of the inductor. The equation for a voltage followéy, js= V;,,. Figure

2-14 shows an op amp in a voltage follower configuration.

Voltage Follower
Vin Vout

L J

Figure 2-14: Voltage Follower

For the first voltage follower, the input is a 100 mV p-p sine wave at 100 kHz.

Figure 2-15 shows a Multisim Circuit to simulate a 100 mV p-p sine wave at 100 kH

XFG1

AL T

Voltage Follower

Figure 2-15: Multisim Simulation of a Voltage Follower

22



Figure 2-16 shows the oscilloscope reading from the voltage follower simulation.

The input is channel 1, show on top. The output is channel 2, shown on bottom. Both

channels are set to 20 mV per division, and the time scale is two microseconds per

division. This shows that the input matches the output for the voltage follower.
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Figure 2-16: Voltage Follower Simulation Oscilloscope
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Figure 2-17 is a plot of the oscilloscope reading from testing the completed
circuit, where the output is nearly a perfect match to the input. Figures 2-161&nd 2-

show that the simulated and actual oscilloscope readings are similar.

First Voltage Follower
60

Voltage Follower Input
O Voltage Follower Output

200

Milivolts

0 100 200 300 400 500 600

f=100 kHz

Figure 2-17: Voltage Follower Physical Oscilloscope Data

The voltage follower input is shown as a continuous signal to make its plot
distinguishable from the output. Both the input and output were digitally sampled. The

noise on the voltage follower input signal came from the physical connectwedrethe

function generator and oscilloscope.
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The output of the voltage follower then goes to the input of a non-inverting
amplifier. The non-inverting amplifier ensures the incoming signal ie langugh for
the peak detector to work with. Specifically, the non-inverting amplifiskkesghe signal
large enough to overcome the turn-on voltage of the diode. Figure 2-18 shows an op amp

in a non-inverting amplifier configuration.

Non-Inverting Amplifier

Vin Vout

R1

W=

- R2

i

Figure 2-18: Non-Inverting Amplifier

The equation for a non-inverting amplifierlig;; = Vi, * (1 + RZ/Rl)' For the
sensor board, R2 is a 150-kOhm resistor and R1 is a 6.8 kOhm resistor, and the resulting
gain for the circuit is 23.1. A non-inverting op amp with an input of 2100 mV p-p and a

gain of 23.1 should produce an output of about two volts peak to peak.
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Figure 2-19 shows the oscilloscope output for simulating the non-inverting
amplifier. Channel 1 is the input on top and is still 100 mV p-p. Channel 2 is on bottom.
The volts per division for channel 2 has changed to 500 mV per division, which means
the output signal is almost two volts peak to peak which is close to the expected value

from the equation.
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Figure 2-19: Non-Inverting Amplifier Simulation Oscilloscope
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Figure 2-20 shows the measured input and output of the physical circuit. Figures
2-19 and 2-20 show that the physical implementation matches the theoretical

expectations from the simulation.
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Figure 2-20: Non-Inverting Amp Physical Oscilloscope

Note that the voltage follower which has a gain of 1 had no phase shift, but the
non-inverting amplifier with a gain over 20 had a noticeable phase shift. The gamulat

predicted this phase shift, and the physical response verified the model.
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The output of the non-inverting amplifier is fed into a peak detector circuit. The

peak detector circuit converts the sine wave signal into a DC signal. Figdrshidws a

negative peak detector.

Peak Detector

Vin Vout

CT R

Figure 2-21: Negative Peak Detector

The time constant for the RC circuitis= R * C. For the sensor board, R is 61.9
kOhms and C is 0.1 pFarads,tam = 0.1*107°X 61.9 « 103 = 6.2 « 103 or

6.2milleseconds. The input wave period.i& + 10> seconds.
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For tau values that are large with respect to the frequency of the wavétdrey f
the output of a peak detector circuit can appear as a DC signal. Figure 2-22r&hows t

oscilliscope output for the simulation.

Tektronix Oscilloscope-x5C1
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Figure 2-22: Peak Detector Simulation Oscilloscope
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Figure 2-23 shows the measured signals from the physical circuit.e5ig#2
and 2-23 show that the simulated outcome and the measured outcome of the physical

circuit are close.
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Figure 2-23: Peak Detector Physical Oscilloscope

The output of the peak detector is passed to the input of the second voltage
follower. The second voltage follower is used to prevent loading of the peak detector
circuit. The output of the second voltage follower is connected to one input of a
summing amplifier. The summing amplifier is used to adjust the voltage hge 04 0.4
to 2.9 volts. A summing amplifier can add together many inputs and apply different

gains to those inputs. The equation for a summing amplifier is

V 1*xR (—Vl + —Vz + -+ —V;l)
out ! Ri R, R,
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The summing amplifier for the signal conditioning circuit has two inputs. Figure

2-24 shows the summing amplifier for the signal conditioning circuit.

Summing Amplifier
Vout

L R1 |
V1—I Rf

R2

V2

Figure 2-24: Summing Amplifier with Two Inputs

The first input, V1, comes from the second voltage follower. The second input,
V2, comes from a voltage divider. The voltage divider input provides an offset to the

signal. Figure 2-25 shows a voltage divider.

Voltage Divider
R1

Vin
I Vout

R2

Figure 2-25: Voltage Divider
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The equation for a voltage divider is:

v =V (i)
= ES
27 "1 \R, +R,

For the voltage divider, R2 is 1.8 kOhms and R1 is two kOhms. The input to the
voltage divider is -5 volts, the output of the voltage divider is -2.37 volts. The gain for
the V2 is -1*26.7k/130k or about -0.21. This means the voltage divider will contribute -
0.21 * -2.37 volts or 0.4977 volts to the output. The summing amplifier signal gain is

26.7k/4.64k or 5.75. Figure 2-26 shows the summing amplifier simulation circuit.
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Figure 2-26: Summing Amplifier Simulation Circuit
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Figure 2-27 shows the simulation oscilloscope for the summing amplifierreFigu

2-28 shows the physical oscilloscope readings for the summing amplifier.
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Figure 2-27: Summing Amplifier Simulation Oscilloscope
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Figure 2-28: Summing Amplifier Physical Oscilloscope
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The output of the summing amplifier is passed to the output filter. The purpose of
this filter is to reduce high frequency noise on the circuit output, which is most@y a D

analog voltage. Figure 2-29 shows the signal conditioning circuit output filtex cut
off frequency in hertz isf, = ﬁ , Where R is a 15-kOhm resistor and C is a 3,300 pF

capacitor, angf, = 3.2 kHz. Figure 2-29 shows an output filter and Figure 2-30 shows

the frequency response.

Output Filter

Figure 2-29: Output Filter

Magnitude (dB)
b

-35 - : (
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Figure 2-30: Frequency Response of Filter
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In summary, the circuit has six main components. The first voltage follower
prevents loading of the inductor. The non-inverting amp makes the signal large enough
to work with. The peak detector smoothes the sine wave into a DC signal. The second
voltage follower prevents loading of the peak detector. The inverting amp and voltage
divider offset and amplify the signal to fill the range of 0.5 to 2.9 volts to matchgbe i

range of the A/D converters. The filter reduces noise.
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2.3 Proto-Board Testing

The circuit was tested in proto-board form before finalizing the printeditirc
board design. This was the first hardware testing to validate the circuit madkls, a

helped ensure proper component selection.
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2.3.1 General Concerns for Proto-Board Testing

One primary goal of the proto-board testing phase was to test physpraises
for the actual components intended for the final design. Printed circuit board layout,
ordering, manufacturing, shipping, populating and testing take a considerable amount
time. A misplaced wire or wrong component can make this process take even longer

Proto-Board testing helps reduce the likelihood of these mistakes.
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2.3.2 Fixture Development

The test bench fixture holds the sensors and wire for taking readings. The
prototype-testing fixture as constructed to allow precision consistent motefaethe
sensors. The sensors are moved laterally with respect to the wire wimtainiag a set
elevation. The fixture was built to allow testing of different sensor elevadiuhs

different wire angles with respect to the sensors.

Figures 2-31 and 2-32 show the test fixture. The test fixture helped geneyate ver
consistent results. Consistent results are important in choosing the coraeattess in
the signal conditioning circuit. Consistent results also help in debugging othempsoble

from the rest of the smart sensor car system.

Figure 2-31: CAD Drawing of Test Fixture
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Figure 2-32: Photo of Test Fixture
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2.3.3 Proto-Board Testing Results

The next important experiment helped select an appropriate op amp. The op amp
is the basis of most components in the signal conditioning circuit. The 741 chip is the
traditional op amp of choice. Slew rate is the amount the output voltage can chaetge in s
amount of time. The 741 op amp has a slew rate of about half a volt per microsecond.

For some of the experiments, the 741 op amp slew rate was not sufficient, whigdresult

in degraded performance. Figure 2-33 shows the results of an insuffielwnbagt. A 2-

volt peak-to-peak 75 kHz sine wave is the input signal for a voltage follower cirmgt us

a 741 op amp. The output of the voltage follower was a sharp saw toothed wave form.
The output waveform is about four volts peak-to-peak. The saw tooth appearance is
because the op amp is responding as fast as it can to the input, which is not fast enough to

show the actual sine wave.

Figure 2-33: Scope Reading for Amplifier Circuit, gain of 2.99
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Going to the device with a higher slew rate resolves this issue. The TL0O82 op
amp has a slew rate of 16 volts per microsecond. Figure 2-34 is from an input wavefor
over ten volts peak-to-peak and has the same period. The voltage follower was

implemented using a TL 082 op amp. Note the difference in the shape of the waveforms.

Figure 2-34: Output of TLO82 Op-Amp in Voltage Follower Configurations

In order to accommodate the input of the first voltage follower and the output of
the summing amplifier, both positive and negative rails are required for each op amp

chip. This will require positive and negative voltage supplies for the sensor board.
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2.4 Printed Circuit Board Development

Printed circuit boards increase circuit density, reduce noise and look proféssiona
National Instruments’ provides two programs to do circuit modeling and printed circui
board design. First, a circuit is laid out and simulated in Multisim, and then Ultiboard is

used for printed circuit board design.

Printed wiring boards behave differently than simulations and protoboards. This
can be due to the differences between surface mount and through hole components, as
well as electromagnetic interference between traces on the printed baands. After

manufacture, testing must be performed to verify that design specificateosisllanet.

During prototype testing, a single signal conditioning circuit would cover an
entire bread board. Using a printed circuit board allowed testing of four signal
conditioning circuits and the multiplexer could be placed on a single small board. The
A/D converter did not load the output of the signal conditioning circuit during bread
board testing, but it did load the output of the multiplexer during printed wiring board
testing. This was resolved by passing the multiplexer outputs through an off board
voltage follower before going to the A/D converters. The second board design

incorporated the voltage followers.

Initial car designs called for a separate board that would regulate teeybat
output down to the needed voltage for the sensor board. The first board design showed

that there was enough un-used board space to incorporate the separate power board onto
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the sensor board. The second board design incorporated linear voltage regulators to
power the sensor board and FPGA board, as they both required ground and five volts
power. Testing of the second board showed that the FPGA current load caused excessive
noise on the sensor board circuits. Large decoupling capacitors and decade decoupling
capacitors were not successful in reducing the noise to an acceptable lefagiinglshe

FPGA power by installing a separate voltage regulator away from ther $seasd did

reduce the noise to an acceptable level. The third sensor board design only powered the

sensor board from the on board regulators.

Figure 2-35 shows the sensor board layout. This image does not include the top
and bottom ground planes. This shows the four identical circuits used to condition the

output of four inductors. The output of each circuit is fed into a multiplexer.

Figure 2-35: Sensor Board Layout
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Figure 2-36 shows a photograph of the completed sensor board. The only
connection to the printed circuit board is the RJ45 header in the upper left corner.
Positive power, negative power, A/D grounds, the output signals and mux selats sig

go through the RJ45 connector.

Figure 2-36: Sensor Board Photo

One way to ensure consistent results was to adjust the current flowing in khe trac
wire to give a specific voltage from one of the circuit outputs. The right handfside
sensor board has a black mark and the number 2.5, as shown in Figure 2.36. The black
mark shows where the wire should pass under the board, and 2.5 is the voltage that circuit
should output. Tuning the amplitude of the sine wave on the signal generator that drives
the track wire so that the output of the signal conditioning circuit produces 2.5 volts

produces consistent sensor board results.
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Figure 2-37 shows a photograph of the completed sensor board with labels.

"N Sensor Board
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Figure 2-37: Labeled Sensor Board Photo
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Figure 2-38 shows the ADC4 layout. This layout shows connections on top and
bottom, as well as the silk screen text to help identify components. This layout desig
focused on allowing ample area between components to make soldering easier. This
layout avoids traces making right angles, which could cause noise. The siggsl trac
never pass from the top copper layer to the bottom copper layer. This helps reduce noise

on the signal.

ADC4

Sensor 4

Figure 2-38: ADC4 Layout
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Figure 2-39 shows where the individual components of the signal conditioning

circuit fall onto the board layout.
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Figure 2-39: Sensor 4 Photo
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Figure 2-40 shows the a photograph of where the individual components of the signal

conditioning circuit fall onto the board layout with the components labeled.
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Figure 2-40: Sensor 4 Photo with Labels
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2.5 Summary of Input Signal Capture Circuit

The sensors and signal conditioning circuit provide a path for information about
the magnetic field to travel to the A/D converter. The sensors and comparehts f
signal conditioning board are common and readily available from local vendorsrmand ca
be used with prototyping boards. Inductors are a good choice for sensing aienagnet
field because they are readily available, have been used for this applicétia; aed
their output can be measured as a voltage. Proto-board testing reduced the likelihood of
problems during printed wiring board development. Printed wiring boards are the
method of choice for the final implementation of the signal conditioning circuitteBr
wiring boards presented unique challenges there were not seen duringdeargar

phases.

49



CHAPTER Il

ANALOG TO DIGITAL CONVERSION

As the Car moves along the magnetic field track, sensors detect the magnetic
field. The sensors signals go through a signal conditioning circuit which preyeeg
sensor readings for the Analog To Digital (A/D) converters on the FPGA bobhed. T
A/D converters change the analog signals into digital numbers for the newatkt
use as inputs for the position calculation. The position calculation is fed to the PD
controller, which generates steering angle and speed commands for thét cans
continue moving along the track. This chapter focuses on the A/D convertere Bifjur

shows the main block diagram.
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Figure 3-1: Main Block Diagram

Figure 3-2 shows how the A/D converter fits into the system functional owervie

System Functional Overview

s Car Motion
Steering Angle
Along Track "
and Speed Electric Magnetic
—>| PD Controller > > Field |+
Car
Track
Position Magnetic
Calculation Field coming
from Track
Digital Analog
Sensor Sensor
) ) Sensors and
Readings Analogto Readings .
Neural o Signal
— < Digital [ fa
Network Conditioning
Converter o
Circuit

Figure 3-2: System Functional Overview
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3.1 Introduction, Purpose and Overview of Analog to Digital Hardware and Software

Interface

The A/D converter converts analog signals into digital numbers. The sensor
board outputs analog signals. The neural network on the FPGA accepts digital numbers.
The A/D conversion changes the available output of the sensor board into the acceptable
inputs of the neural network. The rest of this chapter describes the hardwaredrémjuir

this process and the intelligence that controls it.
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3.2 Hardware

Figure 3-3 shows the five major pieces of hardware required for the A/D
conversion. The FPGA is the one piece of hardware that will hold all the imekige
control everything else. The FPGA drives the multiplexer on the signal icoalit
circuit with a single channel. The FPGA communicates with the pre-amplifteA/D
converter chip with a data bus. The signal conditioning circuit is the hardware that
produces the input voltages which are key signals for the operation of the smart sensor

car. This section describes the major pieces of the hardware.

) Input Analog
Signal Voltages Pre Signals A/D
Conditioning [r———— ol By p—1 Converter
Circuit P Chip
A
I Digital Digital
: Information Data Information
i Bus
i
i Mux Digital M
§ Select Information
= FPGA <

Figure 3-3: Hardware Overview
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3.2.1 Input Voltage

The input voltages come from the signal conditioning circuit, pass through a
multiplexer and go to the pre-amplifier. The input voltages tell the rest of shensy
about the magnetic field the sensors are experiencing. These voltagaasated into
the car position and used to steer the car. Figure 3-4 shows the major components that

produce the input voltages.

Input Voltage Major Components

4 Signals 2 Input
Voltages
4 Signal > 2 Pre-A
itioning [———2 Multiplexer f———> reamp
Congitioning: g VIUITIRIEXEE g it
Circuits e A
i
: Mux
1 Select

=== FPGA

Figure 3-4: Input Voltage Major Components
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Four signal conditioning circuits produced four signals. A multiplexer with two
outputs allows the FPGA to choose which two signals are input voltages to the two pre-
amp channels at any time. The FPGA chooses withitixe SELECThannel. Figure 3-5
shows the relationship between the pre-amplifier channels, input voltages and

MUX_SELECThannel with a timing diagram.

Mux Timing Diagram

Pre-Amp Channel A Sensorl Sensor 3
Pre-Amp Channel B Sensor 2 Sensor4
Mux Select Low High

Figure 3-5: Mux Timing Diagram

Note that whemux_SELECTgoes from low to high, there is a bit of transition

time before the input voltages have settled to sensors three and four.
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3.2.2 Pre-Amplifier

Figure 3-6 shows how the pre-amplifier ties to the other hardware components.

The LTC6912-1 programmable inverting pre-amplifier by Linear Techmdagpmes on

the FPGA board. The purpose of the pre-amplifier is to ensure the input signals

completely fill the input range of the A/D converter chip.

Pre-Amplifier Major Components

2 Digital
Numbers

2A/D
Channels

&———

Signals 2 Input 2 Input
1-4 Voltages Voltages
< .  2Pre-Amp J
Multiplexer <[ >
a
I
: Control
: Signals Data
i Bus
I
I
I
]
1

Mux Digital
Select Information
—————— FPGA

Figure 3-6: Pre-Amplifier Major Components

The pre-amplifier communicates with the FPGA through the data bus using five

different channels. The inverting pre-amplifier has eight possible gaimgse ranging

from 0 to -100. The A/D converter chip can only accept signals between -0.4 and -2.9

volts. The pre-amplifier is in place to magnify signals if needed. Excesgnhadssthat

exceed this range saturate the A/D converter. This is why increased galy needed

for smaller input signals For the smart sensor car project, the input voltages a
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sufficiently large to fill the input range of the A/D chip, and a the gain ofusesl. This
means that the pre-amplifier inverts the voltage without changing the magnitade be
passing the signals on to the A/D chip. By making the input voltages coming from the
signal conditioning circuit as large as possible, effects of noise on the inpus signa

minimized.
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3.2.3 Converter Chip

Figure 3-7 shows how the A/D converter chip connects with the other hardware
components. The LTC1407A-1 dual channel A/D converter by Linear Technologies
comes on the FPGA board. The A/D converter converts the two Input voltages into two
14 bit two’s complement numbers. The A/D converter chip uses the data bus to

communicate with the FPGA using three channels.

A/D Converter Chip Major

Components
2 Input 2 Input 2 Digital
Voltages Voltages Numbers
2 Pre-Amp 2A/D
—> > <
—>| Channels > Channels

Control
Data

Signals
5 Bus <

Digital
Information
FPGA

Figure 3-7: A/D Converter Chip Major Components

The A/D conversion takes time. The serial data transmission also takes time
When the A/D converter receives the command, it takes a sample of the current input
voltages, then serially transmits the results of the previous data conversioourigms

sample is converted while the previous sample is transmitted.
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3.2.4 Data Bus

The FPGA uses the data bus to get information to and from the other devices.
The FPGA has intelligence to control the other devices on the board. The FPGA has a
limited number of pins it can use to communicate with other devices. The FP&a#ssel
one device to communicate with and de-selects the remaining devices. ThBGe F
uses a shared set of communication lines to send information to all the devices, but only
the selected device responds to the communication. The hardware used for device
selection and communication is the data bus. The data bus has multiple channels. The
FPGA uses chip select commands to identify which device it wants to work witle, whil
turning off other devices. This allows the FPGA to use the same pins to communicate
with a device without interference or contention from other devices. To furtheeredu
the number of channels required for communication, serial communication is used when

possible.

Figure 3-8 shows the data bus connections for the pre-amplifier. The pre-
amplifier and FPGA communicate using the data bus using five differentssighiad
first four are inputs to the pre-amplifier, the last one is an output from the préi@ampl
Pre-amp enable  tells the pre-amplifier when to load new gains for two channels.
Master out slave in tells the pre-amplifier what the gains for each channel should be.
Peripheral clock provides the timing for the pre-amplifier to read in the gams-
amp shut down is used shut down or reset the pre-amplifiae-amp gain echo is the
channel the pre-amplifier uses to echo back the gain settings to the FirGafnp

shut down andpre-amp enable load gain only have two statesere-amp gain echo
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is a serial transmission of eight bits. Pre-amplifier specific channalsect the pre-
amplifier to the FPGA. The pre-amplifier specific channelparamp shut down
pre-amp enable load gain andpre-amp gain echo . Signals that are shared with
other devices include theripheral clock andmaster out slave in . The
peripheral clock is used by peripheral devices uses for timing their serial
communications Master out slave in is the channel the FPGA uses to serially

communicate the data to peripheral devices.

Data Bus Connections for Pre-Amplifier

2Input 2 Input 2 Digital
Voltages
2 Pre-Amp Voltages J 2A/D Numbers_’
—>| Channels > Channels
DATA BUS CHANNELS

From FPGA to Pre-Amp
=Pre-Amp Shut Down
=Master Out Slave In
=Pre-Amp Enable Load Gain
=Peripheral Clock

From Pre-Amp to FPGA
=Pre-Amp Gain Echo

FPGA €

Figure 3-8: Data Bus Connections for Pre-Amplifier

Figure 3-9 shows the data bus connections used with the A/D converter. The A/D
converter chip uses the data bus to communicate with the FPGA using three channels.

The only A/D converter chip specific channehZ converter start , Which tells the
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A/D converter when to capture a sample and read off the previous conversion. The two
shared channels are theipheral clock andmaster in slave out . Master in

slave out  is the channel the FPGA uses to serially receive information from the
peripheral devices. After the A/D chip receives the A/D converter stamnand, it

captures a sample and reads off the previous conversion. The previous conversion
consists of two 14 bit two’s complement numbers. These numbers are transmitted one bit
at a time from the A/D converter to the FPGA over the master in slave outetiuan the

data bus.

Data Bus Connections for A/D
Converter

2 Pre-Amp | 2Input Voltages 2A/D
Channels Channels

DATA BUS CHANNELS

From FPGA to A2D Converter
=A/D Converter Start
=Peripheral Clock

From A/D Converter to FPGA
"Master In Slave Qut

FPGA

Figure 3-9: Data Bus Connections for A/D Converter
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3.2.5 FPGA

Field Programmable Gate Arrays (FPGA) are re-programmable asedwhe

FPGA board used for this project came with the Xilinx XC3S500E Spartan-3E FPGA

chip. The FPGA has three main tasks. First, it controls the A/D conversion. Second it

uses a neural network to calculate the car position. Third, it transmits themptsitine

PD controller. The FPGA was a good choice for this project for two reasass. itFian

do the needed tasks at processing speeds that allow stable control of the soracasens

Second, the FPGA circuitry is designed using code and can be quickly re-programmed.

This helped reduce development time. Figure 3-10 shows the FPGA circuit desggn cyc

FPGA Circuit Design Cycle

Design
Circuit

Write Circuit Description
> in Hardware Description

Language

v

Program
FPGA

Edit Circuit Description in
Hardware Description
Language

n

v
Evaluate
Circuit
Performance

Edit Circuit |,
Design

Figure 3-10: FPGA Circuit Design Cycle

The time between finishing changes to the code and evaluating circuit

performance can be as little as a few minutes. This is much preferred tdlypnanua

changing circuit wiring by hand or sending away for a newly fabricatgd crhis

allowed the smart sensor car to be developed in time for use with the summenacadem
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3.3 Finite State Machine

Figure 3-11 is the system functional overview that shows the required process to
steer the car around the track. The PD controller gives the car the stesnmgnd.
The PD controller needs the position calculation from the neural network to know how to
steer the car. The neural network needs the digital sensor readings frorD the A/
converter to calculate the position. The A/D converter needs analog sensorfeagmals
the signal conditioning circuit to concert to digital numbers. The signal condgjioni
circuit needs the voltages from the sensors to produce the analog signalsnsbine se
need the magnetic field from the track to produce a voltage. The magnetstifezigth
will depend on the motion of the car, which was determined by the previous steering

command from the PD controller.

System Functional Overview
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Figure 3-11: System Functional Overview
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For the car to follow the wire, the process needs happen in a sequence. The PD
Controller initiates the sequence by sending a request for a new position tsthe ma
Finite State Machine (FSM), then waits for a response. When the masteebEds
with a position, the PD controller calculates the steering command and scagetster

position. Figure 3-12 shows the PD controller process.

PD Controller Process
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Position

GatherA/D
Reading

Calculate
Position

Calculate
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\
A 4 v Master ¢
~-- ‘CFSM LY

Figure 3-12: PD Controller Process
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When the master FSM receives the request from the PD controller, it goesithroug
a series of tasks. The first task is to command the A/D FSM to start a conversie
master FSM waits for a response from the A/D FSM and then completes ittasiteer

Figure 3-13 shows the master FSM process and gives an overview of the AID FSM

aster FSM Process
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Controller

Read
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Flag
Conversion
Complete
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/
*\Master FSM, /

-
- e am

Figure 3-13: Master FSM Process Overview

After receiving the start command, the A/D FSM will initialize thediaare, take
a reading from the first two sensors, switch the multiplexer, take a refaoinghe
second two sensors, flag the master FSM that the conversion is complete amtb ribkeir

statelIDLE. The remainder of this section focuses on the A/D FSM.
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3.3.1 Master FSM Initiates A/D Conversion

The code from the master FSM to initiate the A/D conversion is below. The code

is written in VHDL which is a hardware description language. The

rs232_receiver_stb bit is driven by the transmission from the PD controller and lets

the master FSM know that the request transmission is complete. Two of the digrel

the A/D FSM. The first ise_amp that lets the A/D FSM initialize the hardware. The

second iSTART_ADawhich allows the A/D FSM to read the four sens®xBC_DONE

comes from the A/D FSM and lets the master FSM know when the conversion is

complete. The code for the master FSM is in Appendix A, and below is a copy of the

first four states that start the A/D FSM.

T
MASTER FINITE STATE MACHINE CODE START
begin
when IDLE =>
next_state <= WAIT_RECEIVE;

when WAIT_RECEIVE => -- wait for RS232 data
if (rs232_receiver_stb ='1") then -- data done
next_state <= START_ADC;
else
next_state <= WAIT_RECEIVE;
end if;

when START_ADC =>
ce_amp <="'1"; --active high
start_conv <="1"
next_state <= ADC,;

when ADC =>
if ADC_DONE ="'1'then
ce_amp <='0"; --active low
start_conv <="'0';
next_state <= ADC2FIXED;
else
next_state <= ADC,;
end if;
MASTER FINITE STATE MACHINE CODE STOP
M T
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Figure 3-14 shows the initial states of the master FSM. The master HSbbpy
in the statevAIT_RECEIVE until the PD controller has completed its request. After that,
it will pass through the staBrART_ADCwhich sends the command to the A/D FSM to

begin the conversion. Then the master FSM will loop in the statantil the A/D FSM

completes the conversion.

Master FSM Initial States
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/
Request
Position

START_ADC
sce amp<=1
sstart conv <=1

—

|
l
I
[

i

Calculate ADC_DONE = 1

e ———

St@ering mce amp <= 0
\ Command sstart _conv <=0
‘ 4 C_ADC2FIXED >
\ /
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« Controller ,’ \ Master /
) ’

|

I

I FSM /
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Figure 3-14: Master FSM Initial States
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3.3.2 A/D FSM Initializes Hardware

Figure 3-13 shows that after the A/D FSM receives the start commandhieom
master FSM, it leaves the stabeE. Figure 3-6 shows the pieces of hardware the A/D
FSM initializes. The multiplexer is set to read the first two sensors, ¢renmp and
converter chip are turned on. Next, the gain settings are loaded into the preeamplifi
The variableMux_SELECTs tied to the multiplexer addresslUX_SELECT = 0 will read
sensors 1 and 22MP_cSs tied topre-amp enable load gain channel of the data bus.
WhenAMP_cSs high, the pre-amplifier and A/D converter chips are sleeping and will not
accept changes to the gain settinggslis connected to th@aster out slave in
channel of the data busckdrives theperipheral clock . In this codepre-amp shut
down and pre-amp gain echo are not shownPre-amp shutdown IS set to a constant
andpre-amplifier gain echo back to the FPGA is not recorded. Figure 3-15 is the
A/D FSM state map corresponding to the code to initialize the hardware. /DHeSM

code is in Appendix B. The first nine states load the gains for the pre-amplifier.

T it
ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO INITILIZE
HARDWARE START

begin
when IDLE =>

MUX_SELECT <= "0

AMP_CS <="1%

counter <=0;

if ce_amp ="1' then
next_state <= START;

else
next_state <= IDLE;

end if;

when START =>

AMP_CS <="'0"; --turn amp on
next_state <= STARTZ2;
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index1 <= 7; -- 8 bit value

when START2 =>
MOSI <= gain(indexl);
next_state <= Hl;
bit_count <= 0;

when HI =>
SCK <="1"
counter <= counter +1;
if counter = 2 then
next_state <= HI_ DUMMY;
else
next_state <= Hl;
end if;

when HI_DUMMY =>
counter <=0;
bit_count <= bit_count + 1;
index1 <= index1-1;
next_state <= LO;

when LO =>
SCK <="0"
counter <= counter +1;
if counter = 2 then
next_state <= LO_DUMMY;
else
next_state <= LO;
end if;

when LO_DUMMY =>

counter <=0;

if bit_count = 8 then
next_state <= FINISH;

else
MOSI <= gain(index1);
next_state <= Hl;

end if;

when FINISH =>
next_state <= IDLE_AD;
AMP_CS <="1";
SCK <="0%
MOSI <="0"

when IDLE_AD =>
if start_conv ='1' then
next_state <= START_AD;
else
next_state <= IDLE_AD;
end if;

ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO INITILIZE

HARDWARE STOP
T n§n M
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3.3.2.1 Set Multiplexer to Read the First Two Sens@vbien the device is

powered on, it will begin in thi®LE state. In theDLE state the multiplexer is set to read
the first two sensors and the pre-amp and A/D converter chip are put to sledpewith t

line of codeaAMP_Cs <='1' . This means that the pre-amplifier and A/D converter chip
are dormant and will not respond to commands. The A/D FSM will loop in the state

IDLE until ce_amp is set to 1 by the master FSM. Figure 3-14 shows that the master FSM
setsce_amp 1 in the statsTART_ADCThe dashed line on the left signifies that after all

the other states in the A/D FSM are complete, the machine retumsto

A/D FSM for Initializing Hardware

ce amp =1

ce amp = 0

S A
IDLE

"ux Select <= 0

AP CS <= 1

mcounter <= 0

STARTZ2
"OST <= gain(indext)
*Hit count <=0

START
=AUP_ (S <=0
mindexi <=7

=counter <= counter + 1
sSOK <=1
bit count =8
={0SI <=gain(indexT)

counter = 2

]

1

I

I

| ,

i bit_count =8
| HI_DuMmy

counter <= 0

| =Hit count <= bit count + 1
\ sindex? <=indexi-1
' FINISH
mAMP CS <=1

Figure 3-15: A/D FSM State Map for Initializing Hardware

3.3.2.2 Turn on Pre-Amp and Converter Chipuring the statsTART, the A/D

FSM wakes up the pre-amplifier and A/D chip and with the commawe,Cs <=1’
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3.3.2.3 Load Gain Into Pre-Amp.oading the gain into the pre-amplifier is a

serial operation. This requires the A/D FSM to load the gain bits one at a tionthent
master out slave in channel of the data bus, and then cycle the peripheral clock. The
FPGA clock is too fast for the peripheral devices, so the A/D FSM goes thragh ex
states to increase the peripheral clock period. The pre-amplifier gairighd bit

variable. The gain transmission starts with the most significant bit. ates gLE and
STARTare used in setting the multiplexer and turning on the pre-amplifier and A/D
converter chip. These states are also used to initialize the two vaciabies , index1
andbit_count . These variables are integers and help control the timing for the serial

communication between the FPGA and pre-amplifier.

The A/D FSM waits in the stateLE until the master FSM sets_amp high.
During IDLE, the multiplexer is set to read the first two signals, the pre-amplifieAdnd
chip are put to sleep, amdunter is reset to 0. Aftete_amp goes high, the A/D FSM
transitions tasTARTWhere it wakes up the pre-amplifier and A/D chip and initializes
index1 to 7. The A/D FSM automatically goes to the next s&iteRT2 whereMoOslis
set to the most significant bit of the gain. The variableount is set to zero as well.
The A/D FSM automatically goes to the next state, In this state, it will set the
peripheral clock high and loop back into itself until the variableter has been
indexed to two. Then the A/D FSM will transitionHo DUMMYwherecounter  is reset
to 0,bit_count is incremented, aniddex1 is decremented. The A/D FSM will
automatically go to the next state. InLO, the peripheral clock is set low and the A/D

FSM loops back intao until counter is incremented to two. Next, the A/D FSM goes to
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the state. O_DUMMYWherecounter is reset to 0. The variabb@ _count  drives A/D

FSM to either sewiosIto the next bit of gain and make another cycle through the states
HI, HI_DUMMYLO andLO_DUMMyYor go toFINISH . If bit_count is eight, the A/D FSM

will go to FINISH , put the pre-amplifier back into a dormant state and set the peripheral

clock low. The A/D FSM will automatically go fromNISH to IDLE_AD.
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3.3.3 Read Sensors 1 and 2

After the A/D FSM has initialized the hardware, it passes through the state
FINISH and walits in the stateLE_AD for the master FSM to set the variable
start_conv  high. Figure 3-14 shows that this happens in the master FSM state
START_ADG S0 the A/D FSM can continue. Figure 3-13 shows an overview of the A/D
FSM. The code for the remainder of the A/D process makes a large loop. That loop
includes steps to read the first two sensors, switch the multiplexer, readdhd 8go
sensors and set the flapc_DONEhigh. The variabl&ux_sSeLEcTshows if the A/D
conversion is recording the first or second pair of sensors. Explanations of theecode ar
in the following sub sections. As mentioned in section 3.2.3, the A/D chip will transmit
the previous reading while it converts the current sample. The vasialde is high if
the current transmission being clocked in is old data or low if the desired reabgigg
recorded. Figure 3-16 is an overview of the relationshipiaé , MUX_Select and

sensor readings.

73



A/D FSM Overview for Reading Sensors

Initialize
Hardware
Idle

F N

prime=1
MUX_SELECT=0

Clockthrough 2 junk
sensor readings

Flag
Conversion
Complete

prime=0

Record 2 sensor readings
MUX_SELECT=0

asADC1 and ADC2

Record 2 sensor readings
asADC1 and ADC2

Clock through 2
junk sensor
readings

Figure 3-16: A/D FSM Overview for Reading Sensors

The states next eight states in the A/D FSM complete the tasks listiggiia B-

16. Figures 3-17 through 3-19 show corresponding the state transition maps.

T it
ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO READ SENSORS

AND SIGNAL COMPLETION START

when FINISH =>
next_state <= IDLE_AD,;
AMP_CS <="1";
SCK <='01
MOSI <="0"

when IDLE_AD =>
if start_conv ='1' then
next_state <= START_AD;

else
next_state <= IDLE_AD;

end if;
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CONV <="04
prime <="1"
MUX_SELECT <="0/

when START_AD =>
SCK <="0"
CONV <="'1";
counter <= -1;
index1 <= 13; -- 14 bit value
index2 <= 13; -- 14 bit value
next_state <= HI_AD;

when HI_AD =>
SCK <=1},
CONV <="04
counter <= counter +1;
next_state <= LO_AD;

when LO_AD =>
SCK <='0}
if prime ='0' and mux_sel ='0'then  -- REAL A
if(counter > 2 and counter < 17) then
ADC1(index1) <= SPI_MISO;
index1 <= index1 -1;
elsif(counter > 18 and counter < 33) then
ADC2(index2) <= SPI_MISO;
index2 <= index2 -1;
end if;

if counter = 34 then -- DONE
next_state <= FINISH_AD;
else
next_state <= HI_AD,;
end if;

elsif prime = '1" and mux_sel ='0"then -- pri
if counter = 34 then -- done priming
prime <="'0";
next_state <= START_AD,; -- start real data

else
next_state <= HI_AD;
end if;
elsif prime ='0' and mux_sel ='1' then -- REAL

if(counter > 2 and counter < 17) then
ADC3(index1) <= SPI_MISO;
index1 <= index1 -1;

elsif(counter > 18 and counter < 33) then
ADC4(index2) <= SPI_MISO;
index2 <= index2 -1;

end if;

if counter = 34 then -- DONE
ADC_DONE <="11
next_state <= FINISH_AD;
else
next_state <= HI_AD;
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end if;

elsif prime = '1' and mux_sel ='1'then -- pri me=1
if counter = 34 then -- done priming
prime <="'0";
next_state <= START_AD; -- start real data
else
next_state <= HI_AD,;
end if;
end if;

when FINISH_AD =>

counter <= 0;

MUX_counter <= 0;

SCK <='0%

CONV <="0"

if MUX_SELECT ="'0'then
prime <="'1";
MUX_SELECT <="1",
next_state <= MUX_SWITCH_1;

else
next_state <= IDLE;

end if;

when MUX_SWITCH_1 =>
MUX_counter <= MUX_counter + 1;
next_state <= MUX_SWITCH_2;

when MUX_SWITCH_2 =>
if MUX_counter = 100 then
next_state <= START_AD;
else
next_state <= MUX_SWITCH_1;
end if;

when others =>
MUX_SELECT <="'0"
mux_sel <="'0";
SCK <='0%;
CONV <="'0";
AMP_CS <="'1";
MOSI <='0";
next_state <= IDLE;
end case;

end process;
ANALOG TO DIGITAL CONVERTER FINITE STATE MACHINE CO DE TO READ SENSORS

AND SIGNAL COMPLETION STOP
T n§n M
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Figure 3-16 gives an overview of the A/D FSM state maps. Figures 3-17 and 3-
18 show the state maps corresponding to the A/D FSM code for input voltage conversion.

The key state is0O_AD InLO_AD the A/D FSM will decide if the incoming data should

be recorded and how it should be stored.

1‘ A/D FSM for Reading Sensors Map 1

start conv = 1

start_conv = 1

IDLE AD
=SCK <= 0

=CONV <= 0
mrime <= 1
=\UX_SELECT <= O

START _AD
mSOK <= 0
50NV <= 1
counter <= -1
mindexi <= 13
=index2 <= 13

counter
& prime

; LO AD
"SCK <= 0
=if prime is high, cyde through junk sensor readings and set
prime low
=ifprime is low record the readings
mIfMUX_SELEGT is low
=|f counter is between 2 and 17, record as ADC1
=|f counter is between 18 and 33 record as ADC2
sIf MUX_SELECT is high
u|f counteris between 2 and 17, record as ADC3
=|f counter is between 18 and 33 record as ADC4

counter
& prime

FINISH AD
scounter <= 0
sYUX _counter <= 0
SCK <= 0
20NV <= 0

HI_AD
"SCK <= 1
CONV <= 0
scounter <= counter + 1

~—-)

Figure 3-17: A/D FSM for Reading Sensors Map 1

3.3.3.1 Cycle Through one set of Old Conversio@sction 3.3.2.3 concluded
after the A/D FSM passed through the stakesH and into the stat®LE_AD. The A/D
FSM begins the process of the data conversion when it leaves thabistare. This

happens when the variakenv is high. The master FSM sets this variable high in the

StateSTART_ADC
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In the A/D FSM stateDLE_AD, the peripheral clock is set low, the variaiene
is set high, the multiplexer is set to read the first two sensors, and the vaoabis set
low. CONMs connected to the data bus chamael Converter Start . When itis low,
the A/D chip will transmit its previous conversion, changing bits in time with the
peripheral clock. WheaoONWVs set high, the A/D chip captures a new sample and will

begin transmitting the previous sample conversion.

After the A/D FSM leaveOLE_AD, it goes to the stateTART_AD INSTART_AD
the peripheral clock stays low, the variabteNv goes high, causing the A/D chip to take
a new sample. The integer variablesnter ,index1 andindex2 are initialized.
Reading two samples from the A/D chip requires 34 peripheral clock cycles. aldne st
HI_AD will index the variableounter , every time the A/D FSM enters that state.
Because the peripheral clock has not been cycledogeter is set to -1 in the state
START_AD so that it will be O after leavingi_AD the first time and go to 1 only after the
peripheral clock has been cycled once. The A/D chip generates a pair ofvid it
complement numbers, one for each sample. When appropriate, these samples will be
stored as one of fowDcvariables. The ADC variables store th& b first and bit 0

last.This is whyndex1 andindex2 are setto 13.

After the A/D FSM leaveSTART_ADIit automatically goes tal_AD. InHI_AD,
the peripheral clock is set high, the variabtnvis set low and the variabbeunter is

incremented.
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The A/D FSM enters the state_abautomatically after being in the state AD.
In LO_AD the peripheral clock is set low. During the first pass thraagiAp the
variableprime is high andvMux_SELECTs low, and the variableounter will be 0. The
logic will then put the A/D FSM back into the statieAD, where the peripheral clock
will be set high again and the variabtenter will be incremented to 1, signifying that
the peripheral clock cycled once. The A/D FSM will cycle betweembandHI_AD
until counter has incremented to 34. At that time, the variabtee will be set low and
the A/D FSM will go back to the staB¥ART_ADand where it begins the cycle to record a

good set of conversions from sensors 1 and 2.

3.3.3.2 Cycle and Record Good Set of Conversididter cycling through the

first set of readings, the A/D FSM is ready to record the first two seratings as the
two 14 bit variableabc1andADC2 This process starts in the staf@RT_AD where the
peripheral clock is set low, the variabtesnter ,index1 andindex2 are reset and the
variablecoNvcommands the A/D chip to take a sample and transmit the previous

conversion.

The A/D FSM will automatically go frorsTART_ADIO HI_AD. InHI_AD, the
peripheral clock is set higbheunter is incremented and the varialdenws set low.

The A/D FSM will automatically go frorai_AD to LO_AD

In LO_AD the peripheral clock is set low. The previous section explains that the
last cycle througho_ADsets the variablgrime to 0. Becausgrime is now 0, the state

LO_ADwill complete a different process than before, and record the two sensor seading
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coming from the A/D chip. The sample being transmitted now was collectedsthe fi
time the A/D FSM was in the sta3@ ART_AD whenMuXx_SELECWas setto 0. The

timing diagram for the A/D chip is available from Linear Technologies.th&first pass
throughLo_ADfor this cyclecounter is not yet greater than 2, so the A/D FSM will go
back and fourth betwea®_ADandHI_AD to run the peripheral clock until the variable
counter has been indexed to 3. At that time, when the A/D FSML®inAQ the
variableADC1will store the information from the data bus channel Master In Slave Out in
its 13" bit. When the A/D FSM leave® AR the variablendex1 is decremented and
the FSM goes tall_AD. This process is completed until all 14 bits\bt1have been
recorded. At that poinipdex1 is O,counter is 16, andndex2 is 13. The peripheral
clock is run by looping betweam®_ADandHI_AD until counter has been incremented to
19. At this point, the variablkedc2will store the information from the data bus channel
Master In Slave Out in its 13" bit. When the A/D FSM leave® AR the variable of
index2 is decremented and the FSM goesitaD. This process repeats until all 14 bits
of ADC2have been recorded. At this pointiexl andindex2 are both O andounter is
32. The peripheral clock is run some more by looping betweam andLO_ADuntil
counter reaches 34, at which time the A/D FSM goes to the BtiateH_AD. This

completes the cycle to record the first two sensors as digital numbers.
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3.3.4 Switch Multiplexer to Read Sensors 3 and 4

After the first two sensor readings are recorded, the A/D FSM is reatipnge
the multiplexer to read and convert the second two sensors. The A/D FSM was in the

stateFINISH_AD at the end of the last process. Figure 3-18 shows how the A/D FSM

changes the multiplexer and resets the variabte .

A2D FSM for Reading Sensors Map 2 +
1

MUX_SELECT = 0 I
CIDLED ‘
-~
-_—o s b -

MUX_SELECT = O
mrime <= 1
"WUX SELECT <= 1

MUX_SWITCH 1
UX_counter <= MUX_counter + 1

10¢

FINISH AD
wcounter <= @
w{UX counter <= 0
wSCK <= (0
2CONV <= 0

MUX SELECT =

START_AD
aSCK <= (0
CONV <= 1
"UX_SELECT <= 0
scounter <= -
mindex! <= 13
=index2 <= 13

MUX_SELECT = 100

Figure 3-18: A/D FSM for Reading Sensors Map 2

This process begins when the A/D FSM is in the statisH_AD and the

multiplexer is set to read the first two sensors. In the stateH_AD, the variables

andMUX_counter are setto 0. The peripheral clock and the variablevare

counter
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set low. Becauskux_SELECTs 0, the variablerime will be set to 1 anthUX_SELECT

will be setto 1. This causes the multiplexer to switch the input voltages frdirsthe

two sensors to the second two sensors. The varigbtes andMUX_SELECHre

changed during the A/D FSM state transition freMISH_AD to MUX_SWITCH_1 In the
stateMUX_SWITCH_j1the variablevnuX_counter is incremented. The A/D FSM will
automatically transition to the stax_SwiITCH_2 The A/D FSM will go back to
MUX_SWITCH_A&and increment the variabl&uX_counter until it reaches 100. This was
done to allow enough delay between switching the multiplexer and sampling thelshanne
for the input voltages to settle. AftatuX_counter has reached 100, the A/D FSM will

go back to the staterTART_AD This time though, the multiplexer is set to read the second
two voltages. This completes the process to switch the multiplexer to readdhd set

of sensors.
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3.3.5 Read Sensors 3 and 4

Section 3.3.3 describes how the A/D FSM records the first two sensor readings as
ADC1andADC2 Section 3.3.4 describes the process to switch the multiplexer and restart
the A/D FSM. This section describes how the A/D FSM records the secondisar se
readings aabc3andADC4 Figure 3-19 shows the A/D FSM state map to record sensor
readings. This is the same process used to record the first two sensor rexdiegfs

that now the readings will be recordedaas3andADCA4

' A2D FSM for Reading Sensors Map 1

start_conv = 1

gtart_conv = 1

START_AD
sSCK <= 0
GONY <= 1
counter <= -1
sindex! <= 13
mindex? <= 13

IDLE AD
=SCK <= 0
=CONV <= 0
m;mrime <= 1
=UX_SELECT <= 0O

counter
& prime

LO_AD

BSCK <= 0
=if prime is high, cycle through junk sensor readings and set
prime low
=If prime is low record the readings
n|f MUX_SELECT is low
u|f counteris between 2 and 17, record as ADC1
=If counteris between 18 and 33 record as ADC2
=If MUX_SELECT is high
uIf counteris between 2 and 17, record as ADC3
u|f counteris between 18 and 33 record as ADC4

counter
& prime

FINISH AD
scounter <= 0

"YUX_counter <= 0
"SCK <= 0
BCONV <= 0

HI_AD
BSCK <= 1

CONV <= 0
scounter <= counter + 1

~-=»

Figure 3-19: A/D FSM for Reading Sensor Map 1
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3.3.5.1 Cycle Through One Set of Old Conversiohlse A/D FSM is in the state

START_AD after switching the multiplexer. BTART_AD the peripheral clock stays low,
the variableconvgoes high, causing the A/D chip to take a new sample. The integer
variablescounter ,index1 andindex2 are initialized. FronsTART_AD the A/D FSM

will automatically go to the staté_AD. InHI_AD, the peripheral clock is set high, the

variableCoONVis set low and the variabteunter is incremented.

The A/D FSM enters the state_abautomatically after being in the state AD.
In LO_AD the peripheral clock is set low. During this pass thramian the variable
prime is high andvux_SELECTs high, and the variabl®unter will be 0. The logic
will then put the A/D FSM back into the state AD, where the peripheral clock will be
set high again and the variabtenter will be incremented to 1, signifying that the
clock cycled once. The A/D FSM will cycle betweaem ADandHI_AD until counter has
incremented to 34. At that time, the variahime will be set low and the A/D FSM will
go back to the stateTART_ADand where it begins the cycle to record a good set of
conversions from sensors 3 and 4. This completes the phase to cycle through an old

reading.

3.3.5.2 Cycle and Record Good Set of Conversiddter cycling through the old

reading, the A/D FSM is ready to record the second two sensor readingsves 1debit
variablesaAbc3andADC4 This process starts in the stat@RT_AD where the peripheral
clock is set low, the variablesunter ,index1 andindex2 are reset and the variable

coNvcommands the A/D chip to take a sample and transmit the previous conversion.
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The A/D FSM will automatically go frorBTART_ADto HI_AD. InHI_AD, the
peripheral clock is set highounter is incremented and the varialdenvis set low.

The A/D FSM will automatically go froral_AD toLO_AD

In LO_AD the peripheral clock is set low. Becapsee is now 0, the state
LO_AD will complete a different process than before, and record the two sensor readings
coming from the A/D chip. The sample being transmitted now was collectedthiena
the A/D FSM was in the staBTART_AD but this time the multiplexer was set to read the
second two channels. For the first pass thraugaD for this cyclecounter is not yet
greater than 2, so the A/D FSM will go back and forth betvii€2rAD andHI_AD to run
the peripheral clock until the variahleunter has been indexed to 3. At that time, when
the A/D FSM is inLO_AD the variableaDc3will store the information from the data bus
channeMaster In Slave Out in its 13" bit. When the A/D FSM leave® ADQ the
variableindex1 is decremented and the FSM goeBItaD. This process is repeated
until all 14 bits ofabc3have been recorded. At that poindiex1 is O,counter is 16,
andindex2 is 13. The peripheral clock is run by looping betweamb andHI_AD
until counter has been incremented to 19. At this point, the varisib= will store the
information from the data bus channel Master In Slave Out in ft$it3 When the A/D
FSM leaves.0_AD the variable oindex2 is decremented and the FSM goeBIta\D.
This process repeats until all 14 bitsaoic4have been recorded. At this pointiex1
andindex2 are both 0 andounter is 32. This completes the process to convert the four

sensor readings to digital numbers.
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3.3.6 Set Flag “ADC DONE" High so Master FSM Can Continue and Use A/D

Conversion Results

The last process ended with the A/D FSM in the stat@aband the variable
counter at 32. The peripheral clock is run some more by looping betweap and
LO_ADuntil counter reaches 34. At this time, the variab®C_DONEs set high. This
signals the master FSM that the conversion is complete, and it can continue to its next

task.

After completing the four conversions and signaling the master FSM to continue,
the A/D FSM resets itself and prepares for the next reading. From thecstan the
A/D FSM transitions to the stakNISH_AD. In the stat€&INISH_AD, the variables
counte r andMUX_counter are setto 0. The peripheral clock and the variablevare
set low. Becauskux_SELECTs 1, the A/D FSM will transition to the stateLE, and
will wait there until the master FSM requests the next sensor readmg cdmpletes the

process to tell the master FSM the conversion is complete.
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3.4 Testing the A/D Converter

This section describes the validation process for the A/D conversion hardware.
The multiplexer is examined to ensure it has ample settling time and will acddaece
of noise on the system. The A/D conversion consistently has noise on the readings.

Testing helped rule out possible sources of the noise.
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3.4.1 Testing the Multiplexer Timing

The multiplexer is a VISHAY DG409L Precision Dual 4 Channel Low Voltage
Analog Multiplexer. The multiplexer is supplied with ground and 5 volts. In this
configuration, the maximum transition time should be 138 ns. The FPGA clock has a 20
ns period. The delay allowed in the A/D FSM is 200 clock cycles. This results in an

allowed delay of 4000 ns to ensure that the signal has no leftover transition effects.
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To test the multiplexer timing, the first channel was connected to a signal
conditioning circuit outputting 0.4 volts. The second channel was connected to a
different signal conditioning circuit tuned to output about 3 volts. An oscilloscope
captured the output of the multiplexer triggering off the multiplexer contrel li
According to the data sheet for the multiplexer, a digital control logic high inptaigeol
is 2.4 volts. In Figure 3-20, the switching threshold is after the 253 ns point. At 353 ns,

the multiplexer appears to be past any transient unique to the switching condition.

Multiplexer Response Timing Diagram

¢ MUX SELECT
Vout

Volts

e 0 100 200 300 400 500 600
Time in nSec

Figure 3-20: Multiplexer Response Timing Diagram
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3.4.2 Testing for Noise in the A/D system

Isolating the A/D system allowed testing for noise. To isolate theraysin
FPGA was powered from the wall socket transformer and connected direcpipicea

supply. Table 1 was collected at 0.8 volts and Table 2 was collected at 2.4 volts.

Table 1: Voltage Supply Readings at 0.8 Volts

Reading ADC1 ADC2 ADC3 ADC4
Max 1418 1414 1419 1417
Min 1404 1393 1404 1392
Spread | 14 21 15 25
Average | 1411.3 1404.51 1411.93 1403.68
Standard| 2.17 5.88 2.48 5.45
Deviation
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Table 2: Voltage Supply Feadings at 2.4 Volts

Reading ADC1 ADC2 ADC3 ADC4
Max -1290 -1289 -1290 -1289
Min -1307 -1315 -1307 -1316
Spread 17 26 17 27
Average -1297.52 -1302.33 -1297.96 -1302.69
Standard

Deviation 2.30 5.62 2.72 6.13

Both sets of results for tables 1 and 2 are from 190 samples. Both channels of the
A/D converter were connected to the same line from the voltage supply. $imslés
to results found when running the boards from battery supplies while taking readings

with the sensor boards.
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Table 3 and Table 4 gathered using battery power and a test fixture to move the
board. These two position readings were chosen because they show that even though the

sensor readings may change in sign or magnitude, the noise pattern stays the same

Table 3: Sensor Readings from Data Collection at 12.5 Inches

Reading ADC1 ADC2 ADC3 ADC4
Max 2040 1975 2015 1613
Min 2033 1958 2007 1599
Spread 7 17 8 14
Average 2035.74 1965.22 2010.54 1606.04
Standard

Deviation 1.04 5.00 1.14 5.20

Table 4: Sensor Readings from Data Collection at 6.0 Inches

Reading ADC1 ADC2 ADC3 ADC4
Max -892 207 1026 1869
Min -907 183 1016 1851
Spread 15 24 10 18
Average -899.19 194.71 1021.68 1861.52
Standard

Deviation 2.96 5.58 1.83 5.29
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It appears that value®ciandAbc3will have less noise than valuesc2and

ADC4 but the noise is not because of the sensor board, multiplexer or power supply.

Data was collected using a slower clock speed for the FPGA, which in turn
slowed down the A/D FSM. Results were very similar to those above and the original

clock speed was kept for the FPGA.
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3.5 Credit for Previous Help on Writing the A/D FSM Code

Taylor York and Daniel Nash, former Oklahoma State University students
enrolled in a capstone design course, submitted most of the A/D code. Amanuel Assefa,
another Oklahoma State University student, contributed to changing the A/D code to

incorporate the multiplexer and doubled the number of sensor readings.
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3.6 Summary of the A/D Conversion Process

The A/D conversion provides the neural network with sensor readings by
converting the input voltages to digital numbers. This process requires hardware and
software. Most of the hardware came with the FPGA board. Intelligence anckasr
to control the hardware enables the A/D FSM to do its job which contributes to the smar

sensor car being able to follow a wire.
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CHAPTER IV

ARTIFICIAL NEURAL NETWORK

The neural network is a function that maps four sensor readings to the car
position. The A/D converter produces four digital sensor readings. The PD controller
accepts the car position. The neural network changes the output of the A/D converter

into the desired input for the PD controller. Figure 4-1 shows the main block diagram.
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Figure 4-1: Main Block Diagram
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4.1 Introduction to Neural Networks

The PD controller gives the car the steering command. The PD controliisr nee
the position calculation from the neural network to know how to steer the car. The neural
network needs the digital sensor readings from the A/D converter to cakhdate
position. The A/D converter needs analog signals from the signal conditiorocog to
produce the digital numbers. The signal conditioning circuit needs the voltagefiérom t
sensors to produce the analog signals. The sensors need the magnetic field tirack the
to produce a voltage. The magnetic field strength will depend on the position of the car,
which was determined by the previous steering command from the PD contradi@re F
4-2 is the system functional overview that shows the required process to steer the ca

around the track.

System Functional Overview

: Car Motion
Steering Angle
and Speed Alang Track Magnetic
PID P Electric 8
— = »  Field
Controller Car
Track
Position Magnetic
Calculation Field coming
from Track
Digital Analog
Sensor Sensor
; i Sensors and
Readings Analogto Readings .
Neural . Signal
— < Digital |e e €
Network Conditioning
Converter ..
Circuit

Figure 4-2: System Functional Overview
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For the car to follow the wire, the process needs happen in a sequence. The PD
Controller initiates the sequence by sending a request for a new position tastee m
Finite State Machine (FSM), and then the PD controller waits for a response théhe
master FSM responds with a position, the PD controller calculates the staermingand

and requests another position. Figure 4-3 shows the PD controller process.

PD Controller Process
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Figure 4-3: PD Controller Process
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When the master FSM receives the request from the PD controller, it goesithroug
a series of tasks. As covered in chapter 3, one of these tasks is to cycle tomyerter

FSM. Figure 4-4 shows an overview of how the master FSM interacts with the A/D

FSM.
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Figure 4-4: Master FSM Process Overview

After starting the A/D FSM, the master FSM waits for the A/D FSMdgoad
completion, then the master FSM continues with its tasks. One of those tasks is

calculating position. The neural network calculates the car position using thedibair di
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sensor readings as inputs. Like the A/D FSM, the neural network is implehirente

hardware on the FPGA.

The neural network calculates the car position. This calculation can be thought of
as a function or equation that has four inputs, the four digital sensor readings. That
function combines the four inputs and generates a single answer, the car position.
Training the neural network ensures that this equation is correct. Trainingdes thr

major components. The first step is collection of training data. The four seadiogse
are training inputs. The car position that corresponds to that set of sensor inputs wil
serve as the training target. Together, the inputs and target form the trainingldata. T
car will operate over a range of different positions. The training data skt teeleave
samples over that range. After the training data is collected, the netwalrk
parameters are adjusted to properly map the sensor inputs to the car position. This
process is called training. After the network is trained, its performagemisivalidation.

This process is covered in section 4.4. Section 4.5 covers neural network supporting
components. Supporting components do not fit in the main block diagram as the car goes
around the track, but are an important part of making the smart car work. These
components help with debugging, compiling and keeping all the other pieces of code
working together. Another supporting component is custom software to help automate

data collection.
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4.2 Multilayered Perceptron

The neural network does a mapping from four sensor readings into a single car
position. A neural network is a group of individual components called neurons. A
neuron is also made of components. Figure 4-5 shows the neural network in decreasing
levels of abstraction, down to the component level in line 3. Most of the information

about the multilayered perceptron is from [1].

Neural Network Components

Car
1. Position

Car

2. Position
Neuron
weight bias
v h 4
3. > X > > >

Transfer
Function

multiplier Summation

Figure 4-5: Neuron Components
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4.2.1 Log Sigmoid Transfer Function

One of the components in the neuron is the transfer function. The smart car uses
the log sigmoid transfer function in most of its neurons. The equation for the log sigmoid
transfer function is:

1
1+e —input

Output =
This transfer function is a squashing function because over the full range of inputs, the
output will only vary between zero and one. Figure 4-6 shows a plot of the log sigmoid
function.

Log Sigmoid Response Around 0
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Figure 4-6: Log Sigmoid Response
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4.2.2 Single Input Neuron

The single input neuron is made up of several components. The singléphput
is multiplied by a weighfw). The weight determines the neuron sensitivity to the input.
The product of the input and weight is passed through a summation. The summation
adds together the product and a fi@sand produces the net ingut). The bias helps
set the threshold for the neuron response. The equation for the net mputis: p +
b. The net input is passed into the transfer fun(f[ﬁ(n )). The output of the transfer
function is the output of the neurga). The equation for the single neuromis= f(n)
which can be equivalently written:

a=f(w=p+b)
The perceptron neuron uses the log sigmoid transfer function, so it has the equation:
a=1/(1+e”(—n))
This equation can be equivalently written:

1
CT T e-wpd)

Figure 4-7 shows a single input neuron.

Single Input Neuron
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Figure 4-7: Single Input Neuron
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Log Sigmoid Response
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Figure 4-8 shows the response of a single input log sigmoid neuron.

-b/w

a = logsig(wp+b)

Figure 4-8: Single Input Log Sigmoid Neuron Response
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4.2.3 Multiple Input Neuron

Multiple input neurons are similar to single input neurons. Each {ppitis
multiplied by its corresponding weight; ), so that each input has a unique sensitivity.
The product of each input and weight is added together with the products of the other
inputs and weights and is then added to the bias. The result of the summation is the net
input. The equation for the net input with R neuron inputs3sw; * p; + w, * p, +
-+ wg * pg + b. The net input goes through the transfer function to be the neuron

output. Figure 4-9 shows a multiple input neuron

Multiple Input Neuron
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Figure 4-9: Multiple Input Neuron
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The equation for a neuron with R inputs can be written:
a=f(wy*p;+wyxp, + -+ wg*pg+b)

or equivalently:

a=f(n)
For a multiple input perceptron neuron, the equation is
1
Civer
which can also be written as:
1

1 + e(W1*p1+Wa*po+-+WR*pR+D)
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4.2.4 Multilayer Perceptron Network

Several neurons can be used together at once. When the neurons get the same
inputs at the same time, they are said to be in the same layer. If thereas@niput to
the layer, then each neuron in that layer will have a single weight for that iiplo¢re
are multiple inputs to a layer, each neuron has a weight for every input. Figure 4-10

shows one layer of neurons.

One Layer of Neurons

(0

Figure 4-10: One Layer of Neurons

Layers of neurons can be linked together to form Multilayer Perceptron Networks
(MLPs). The network inputs are the inputs to the first layer. The outputs ofgthe fir
layer become the inputs to the second layer. The output of the last layer is the output of
the network. The number of neurons in the last layer determines the number of outputs
for the neural network. A superscript can show which layer a variable is asdogith,
and subscripts can be used to identify the place of the neuron in a layer and which input it

is associated with. For example, the weight for the second neuron in the &rdolathe
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third input isw; ;. The typical MLP network used in smart sensors has two layers. The
first layer of neurons uses the log sigmoid transfer function, and the second &syar us
linear transfer function. It can be shown that a two-layer MLP networknsvarsal
approximator. This means it can approximate almost any data set with féatiding.

The smart car uses an MLP network with five neurons in the first layer and ooe ireur
the second layer. The one network output is car position. The network has four inputs
from the four sensors. Each neuron in the first layer has a weight for each input. The
neuron in the second layer has a weight for each neuron in the first layer. Figure 4-11

shows the smart car MLP network focusing on the first neuron in the first layer.

Smart Car MLP Network First Neuron
@‘

Neuronl

bias

Sensor 2

Fa

e
Position

Figure 4-11: Smart Car MLP Network with Detailed Connections for Riestron in the
First Layer
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Figure 4-12 shows the smart car MLP network focusing on the neuron in the

output layer.

Smart Car MLP Network Last Neuron

_ Neuron 1

Car
Position

Figure 4-12: Smart Car MLP Network Connections for the Output Layer
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The output equations for the five neurons in the first layer are as follows:

1_1
a =
1 /1 + e—(Wil*pl+w11_2*p2+w11_3*p3+w11’4*p4+b%)
1 _
a2_1/ — (W3 (*P1+ W3, xDo+ Wi o xps+wd  xpy+bi
1+e (W3 1*P1 W3 %P2+ W3 3¥P3+W; 4 *Da+b7)
1 _
a3—1/ — (W3 (*p1+ Wi xpy+wioxps+wl  xpy+bi
1+e (W3 1*¥D1+W3 5 %P2 +W3 3¥P3+W3 4 *¥Ds+D1)
1
a4_1/ — (W} *D1+Wi o *Da+Wi 35D +W]  *py+bi
1+e (Wa1*P1+Wa2*¥D2+ Wi 3*D3+Wy 4 *Ps+b1)
1_1
a5_/ —(Wi xp+wd L xpa+wi oxps+wi  xpy+b1
1+e (Wg5 %P1+ W5 %P2+ W5 3¥P3+Ws 4 *Pa+b7)

The function for car position is as follows:

Car Position = 1/1

+e —(Wi *ai+w3 xaz+wjxaz+wiraz+ws  +ag+bi)
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4.3 Artificial Neural Network State Machine

The neural network provides the PD controller with the car position. The PD
controller uses the car position in calculations that will help steer theazardathe track.
This process happens in a sequence driven by the PD controller. Figure 4-13 shows the

system functional overview.
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Figure 4-13: System Functional Overview
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Every time the PD controller sends the command to the master FSM, the master
FSM generates a new position. This section focuses on the processes insidecthe mast
FSM that allows it to generate a new car position. Figure 4-14 shows ho® the P

controller process interacts with the master FSM.
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Figure 4-14: PD Controller Process
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4.3.1 Introduction and Purpose: Position Calculation and the Master FSM

The master FSM has several pieces that work together to provide the PD
controller with a new car position. Chapter 3 detailed the A/D conversion. Fidire 4-

shows the initial states the master FSM completed in order to cycle@heoAversion

process.

Master FSM Map 1: Initial States

rs232 receivert sth = 1
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ce amp <= 0
sgtart conv <=0
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FSM /

Figure 4-15: Master FSM Initial States
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After the A/D conversion process, the master FSM has access to four digital
numbers corresponding to the four sensor readings. In order to produce a new position
calculation, the master FSM will put the numbers into the correct number format and
store them into RAM. After storing them into RAM, the master FSM starts tivalne
network FSM. When the neural network FSM is complete, it sets a flag high and the
master FSM can continue. The master FSM will convert the neural network oudput int
the correct format, transmit the data to the PD controller, update the LCDydibla go
back to the stat®LE and wait for the next request. Figure 4-16 shows an overview of

the master FSM process.

Master FSM Overview
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Figure 4-16: Master FSM Overview

The code for the master FSM to calculate a position is appendix A. In the code,
many of the master FSM states interact with other FSMs and have bagtdidrive
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transitions only after an outside FSM has completed its required task. Tiee Rlgl

uses other FSMs to convert the fixed-point numbers that come from the A/D KEM int
floating point numbers for use in the neural network FSM. After the neural network FSM
calculates a new position, it gives the calculation result as a floatingfponber. The
master FSM drives another FSM to convert the floating-point output into a fixed-point
number to transmit to the PD controller. In the states that drive conversions, anargy h
variable withnd in the name. These variables refer to the inputs of other FSMs and
signify when the available data to convert is valid, meaning there is nedhdeddi and

the operation can begin. These variables are set high in the state prior to theaonvers
and set low once the conversion process begins. The conversion FSMs also have a
variable withrdy in the name. This bit is set high by the conversion FSMs when the

conversion result is valid.

When the master FSM is ready to store data into the RAM for later use by the
neural network, it toggles the varialske RAMhigh. This variable drives the port in the
neural network FSM with the variable namRITE_INPUT. This variable needs to be
high for the RAM to accept new information. The varialsiasi_DATANARAM_ADDRell
the neural network FSM the sensor reading conversion and the address to store it in. The
neural network FSM uses the variabdeable Network andrdy NN to interface with
the master FSM. When the variaBleble_Network is high, the network FSM can
begin the calculation. When the variakilg NN goes high, the neural network FSM is
done with its conversion and the master FSM can continue. When the variable

display_data  is set, the master FSM updates the LCD display. After the master FSM
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completes the transmission to the PD controller, it returns to themtatand awaits the

next request from the PD controller.

The process to cycle the A/D converter FSM begins with thestsite RECEIVE
where the master FSM waits on the PD controller to request a new signal améhends
the master FSM leaves the state ADC because the A/D FSM has gigoagletion.
Chapter 3 covers these states in greater detail. Figure 4-17 shows the térstdiei

machine map and first five states of the master FSM.

Master FSM Map 1: Initial States
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When the master FSM leaves the staig it automatically goes to the state
ADC2FIXED. In this state, the variabhe_fixed2floatl is set high, indicating that there
is valid new data available and ready to be converted. The master FSM will
automatically go fronADC2FIXEDt0 the stat&IXED2FLOAT1. In the state
FIXED2FLOAT1, the variablend_fixed2float1 is set low. This signifies that the new
data is now being converted. When the conversion is complete, the FSM to convert the
first sensor reading will set the lify_fixed2float1 high. This will allow the master
FSM to transition from the stafeXED2FLOATL1 to the stat&IXED2FLOAT2. During the
transition, the variable1 is set to the result of the first conversion. The variableill
be stored into the RAM and be the first input to the neural network. Also during the
transition, the variabled_fixed2float2 is set high indicating that there is valid new
data available and ready to be converted for the FSM that converts the second sensor

reading.

In the stateFIXED2FLOAT2, the second sensor reading is converted from fixed
point to floating point. In this state, the variabdefixed2float2 is set low. When the
conversion is complete, the FSM to convert the second sensor reading will set the bit
rdy_fixed2float2 high. This will allow the master FSM to transition from the state
FIXED2FLOAT2 to the stat&IXED2FLOAT3. During the transition, the varialse is set to
the result of the second conversion. Also during the transition, the variable
nd_fixed2float3 is set high.In the statd~IXED2FLOATS3, the third sensor reading is
converted from fixed point to floating point. In this state, the variable

nd_fixed2float3 is set low. When the conversion is complete, the FSM to convert
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the third sensor reading will set the ildly_fixed2float3 high. This will allow the
master FSM to transition from the st&t®ED2FLOAT3 to the stat&IXED2FLOAT4.

During the transition, the variabbs is set to the result of the third conversion. Also
during the transition, the variabié_fixed2float4 is set high.In the state

FIXED2FLOAT4, the fourth sensor reading is converted from fixed point to floating point.
In this state, the variablei_fixed2float4 is set low. When the conversion is complete,
the FSM to convert the fourth sensor reading will set thehbitixed2float4 high.

This will allow the master FSM to transition from the sEED2FLOAT4 to the state
WRITE_ADC_DATA1 During the transition, the varial®é is set to the result of the fourth

conversion. Figure 4-18 shows the second master FSM map.

Master FSM Map 2: Converting Inputs

-

ADC2FIXED
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Figure 4-18: Master FSM Map 2: Input Conversion
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The process to convert the four numbers takes 28 clock cycles at 20 nSec per
clock cycle. Figure 4-19 shows the timing diagram for process to convert the number
format for the four inputs. Figure 4-19 was generated using the XilinxsGippe

software.

NN Timing Diagram 1: Convert Numbers

Bus/Signal X 0o 5‘]":' 5?0 5?0 5:;0 5?0
/ADC_DONE 0 0

/rdy_fixed2float1 0 0

/rdy_fixed2float2 0 0

/rdy_fixed2float3 0 o | Y
Irdy_fixed2float4 0 0

Figure 4-19: Timing Diagram for Number Conversion

The master FSM works together with the neural network FSM to write the four
sensor readings to the RAM. In the st&f®TE_ADC_DATALthe first sensor reading is
loaded into the RAM for later use with the neural network FSM. The variable
Enable_Network is set low. This variable is tied to the neural network FSM that will be
discussed in the next section. The variabl®AMis set high. This enables the RAM to
load new values. The varial#aM_DATAS set to the variable1l. The variableRAM_ADDR
is set to the valu®ooo" . This will set the first address in the RAM equal to the first
converted sensor reading. The master FSM will automatically transitiorttiestate

WRITE_ADC_DATA10 the Stat®VRITE_ADC_DATA2
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In the stateVRITE_ADC_DATA2the second sensor reading is loaded into the RAM.
The variableRAM_DATAS set to the variable2. The variabl&RAM_ADDRs set to the value
"0001" . This will set the second address in the RAM equal to the second converted
sensor reading. The master FSM will automatically transition from ttee sta

WRITE_ADC_DATAZ0 the Stat®VRITE_ADC_DATA3

In the stat&RITE_ADC_DATA3the variableRAM_DATAS set to the variables.
The variableRAM_ADDRs set to the valu®010" . The master FSM will automatically

transition from the staMRITE_ADC_DATA30 the stat®/RITE_ADC_DATA4

In the stat&VRITE_ADC_DATA4the variableRAM_DATAs set to the variable P4. The
variableRAM_ADDRs set to the valu®o11" . The master FSM will automatically

transition from the staMRITE_ADC_DATA40 the stat®/RITE_ADC_DONE

In the stat&VRITE_ADC_DONRhe variablee RAMis set low. The master FSM
will automatically transition from the stat¢RITE_ADC_DONK the statSTART_NN In
the statesTART_NNthe variableEnable_Network IS set high and the integer variable
counter is set tazero. The master FSM will automatically transition from the state

START_NNtO the stat@IN

In the stateuN the neural network FSM calculates the car position. Section 4.3.2
covers this calculation in greater detail. If the neural network FSM has npteteththe
calculation, the master FSM will loop back into the statelf the neural network FSM
has completed its task, the variakle Data is set taN, the variableEnable_Network is

set low, and the variabtel_float2fixed is set high in preparation for the next
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conversion. After the neural network FSM has completed the calculation, the master

FSM will transition from the stateNto the stateFLOAT2FIXED.

In the state&LOAT2FIXED, a FSM converts the floating-point car position from the
neural network into a fixed-point number the master FSM can transmit to the PD
Controller. If the converting FSM has completed its task, the variabieat2fixed
is set low and the master FSM will transition from the Sta@AT2FIXED to the state

START_RS232_HI.

Figure 4-20 shows the third master FSM state map and includes the statiés to wr

the four sensor readings to the RAM for the neural network FSM.

Master FSM Map 3: Writing Inputs to RAM

WRITE_ADC DATA1
=Enable_network <= 0
m"ce RAM <=1

"RAM _DATA <= P1;
"RAM ADDR <= "0000"

WRITE ADC DATAZ
"RAM DATA <= P2;
*RAM_ADDR <= "0001"

WRITE_ADC DATA3
"RAM_DATA <= P3;
=RAM_ADDR <= “0010"

WRITE_ADC DATA4
"RAM_DATA <= P4;

rey_ NN = 1 ="RAM _ADDR <= “0011"
o ] ) sNN_Data <= N
rdy_float2fixed = 1 sEnable Network <= 0

fi i =
=nd_float2fixed <=1 mnd float2fixed <=1

WRITE_ADC_DONE
m rdy NN = 1 "ce RAM <=0

<

rdy_float2fived = 1
"nd_float2fixed <=0

START_RS232_HI

P4
-

START_NN
=Enable_Network <= 1;
"counter <= 0’

4d -

Figure 4-20: Master FSM Map 3: Writing Inputs to RAM
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Loading the ram takes fewer than 10 clock cycles. Figure 4-19 shows thestthe |
conversion is complete at clock cycle 584. Figure 4-21 is the timing diagram fordoadi
the four inputs into the RAM and shows that by clock cycle 596 the RAM address has

cycled through all four inputs.

NN Timing Diagram 2: Loading the RAM

Bus/Signal X 0] STO S 5?5 § o %0 n
/ADC_DONE 0 0

Enable_Network 1 0

/ce_RAM 0 1 g1
rdyNN_tmp 0] 0

/rdy_float2fixed 0 0

/nd_float2fixed 0 0 ) Y !
/RAM_ADDR 3 0 | XoeX | i 3

Figure 4-21: Loading the RAM
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The variableEnable_Network is high as long as the neural network FSM is calculating a position. The newalknetikes

less than 700 clock cycles from start to finish. Figure 4-22 shows the timing diagrampassing the neural network calculation.

NN Timing Diagram 3: Network Calculation

=60 640 720 800 880 960 1040 1120 1200

Bus/Signal X o @ | ! | M | - | | @
/ADC_DONE 0 ) '

fce_RAM o 1 '.

/RAM_ADDR 3 0 o X 3 =
Enable_Metwark 0 0 | .
rdyMi_tmp 0 0 | 1 I
fnd_foat2fixed 0 0 i
frdy_float2fixed 0 0 il

Figure 4-22: Neural Network Calculation Timing Diagram
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After converting the car position from floating point to fixed point, the master
FSM will transition from the stateL OAT2FIXED to the statSTART_RS232_HI. In the
stateSTART_RS232_HI, the variableounter is set to zero, the RS232 sender FSM loads
three zeros and the first five bits of the car position into the vars#3iz sender_dat
The master FSM will automatically transition from the stateRT_RS232_HI to the
staterRs232_HI. In the stat®s232_HI, the RS232 sender FSM broadcasts the variable
rs232_sender_dat . When the variableounter reaches ten times the system speed
divided by the baud rate, the transmission is complete and the master FSkbgotsef
stateRS232_HI to the statSTART _RS232 _LQO In the statSTART_RS232_LQ the variable
counter IS set to zero, the RS232 sender FSM loads the bottom byte of the car position
into the variables232_sender_dat . The master FSM will automatically transition from
the stateSTART_RS232_LOto the stat&ks232_LO. In the stat&®s232_LO, the RS232
sender FSM broadcasts the variabis2_sender dat . When the variableounter
reaches ten times the system speed divided by the baud rate, the transmissigidate

and the master FSM goes from the skge32_LO to the stateDLE.

The serial communication from the FPGA uses the 38400/8N1 parameter setting.
This means the communication happens at 38400 pulses per second, there are eight data
bits, no parity bit and one stop bit. The 8N1 setting is a common configuration for PC
serial communications. The 38400-baud rate allows communication between the FPGA
and PD controller to be quick enough to not interfere with steering the car. This
configuration information allows other serial devices, such as a computer, to

communicate with the master FSM.
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Figure 4-23 shows the master FSM map that includes the states to traesrait t

position to the PD controller.

Master FSM Map 4: Transmit Position

_—— e e e

START_RS232_HI

Bcounter<=0

=rs232 sender sth <=1 tounter =
=r5232 sender dat <= "000" & NN _fixed (12 downto 8) CONV_STD _LOGIC_VECTOR

RS232 HI
"counter<= counter + 1
"frs232 sender_ack= 1 then
rs232 sender_stb <=0

counter =
CONV_STD _LOGIC_VECTOR

START_RS232_LO

=counter<=0
=rs232 sender_sth <=1
"rs232 sender_dat <= NN_fixed (7 downto 0)

=display_data <= NN_fixed

counter #
CONV_STD LOGIC VECTOR

RS232 1O
"counter<= counter + 1
"ifrs232 _sender_ack= 1 then
rs232 sender stb <=0

counter =

¢ CONV_STD_LOGIC_VECTOR

*___—

Figure 4-23: Master FSM Map 4: Transmit Position
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4.3.2 Serial Implementation Description and Neural Network FSM Overview

The previous section described the master FSM. The master FSM drives many
other FSMs to complete tasks, including the neural network FSM. The neural network
and master FSM work together to load the sensor readings into the RAM. Then the
neural network FSM calculates the car position. This calculation is apecalss,
starting with calculating the output of the first layer, followed by calaugéatne output of
the second layer. The network used here is described in [2]. Figure 4-24 shows an

overview of this process.

Neural Network FSM Overview 1

Write Sensor 2 Write Sensor 3
to RAM to RAM
Write Sensor 1
to RAM
Write Sensor 4

Calculate Second Calculate First
Layer Output Layer Output

Figure 4-24: Neural Network FSM Overview 1
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The process to calculate each layer output is also serial. Each layer output is
found a single neuron at a time. Figure 4-25 shows the order the neuron outputs are
calculated. This example is for five neurons in the first layer and one neuron in the
second layer, but the NN FSM can be used with any MLP architecture. The number of
neurons in each layer and the number of inputs is loaded into a structure ROM, as shown

in Figure 4-27.

NN FSM Overview 2: First Layer Output

Write Sensor 4
to RAM

Calculate Qutput
of First Neuronin
First Layer

Calculate Output
of Second Neuron
in First Layer

hd

Calculate Output
of Third Neuronin
First Layer

h 4

Calculate Qutput
of Fourth Neuron
in First Layer

Calculate Output
of Fifth Neuronin
First Layer

Calculate Second
Layer Qutput

Figure 4-25: Neural Network Overview 2: First Layer Output

Each neuron output is also found serially. The first input is multiplied by its
corresponding weight (which is loaded in a weight ROM, as show in Figure 4-27). That
product is added to the bias, and stored as a temporary variahiey ( as shown in

Figure 4-27). Then the second input is multiplied by its corresponding weight and that

128



product is added to the previously stored temporary variable. The new sum is written
over the old sum. Then the third input is multiplied by its corresponding weight, and that
product is added to the previously stored temporary variable. The new sum is written
over the old sum. This process continues until the stored temporary variable becomes the
net input to the transfer function. When that happens, the net input goes through the
transfer function and the output of that neurmnpfp ) is stored in dual-ported RAM as

an input to the next layer (see Figure 4-27). The rest of the neurons in they/érst

follow the same process. When all of the neuron outputs for the first layer areetsmpl

(and stored in dual-ported RAM), the neural network begins calculations for the second
layer. Figure 4-26 shows this process for the first neuron. The output of the neuron in

the last layer is stored as the car position.

NN FSM Overview 3: First Neuron Output
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Overwrite Temporary Variable
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Weight
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Temporary Variableand

-

Overwrite Temporary Variable
Add Product to Saved
Temporary Variable and
Save Neuron Output as Saveas NetInput
Inputfor Next Layer

Calculate Qutput
of Next Neuron

Figure 4-26: NN FSM Overview 3: First Neuron Output
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The code for the neural network FSM is in appendix C. The master FSM drives
the neural network code. The neural network code is a series of case stesmient
works the same as a state machine, only with different syntax. Figure 4-27owidsgr
by Dr. Hagan and shows the architecture of the neural network implemented on the
FPGA. The description of the operations illustrated in Figure 4-27 follow in the

remainder of this section.

In Figure 4-27 there are several ROMs and a dual-ported RAM that control the
operation of the FPGA neural network. The structure ROM contains data that define t
network architecturer, the number of inputs to the network (four for the car position
application);s1, the number of neurons in the first laygz; the number of neurons in the
second layer, etc. The final item in the structure ROM is a delimiter, widataies that
the final layer has been reached. The weight ROM contains all of the waidihs i
neural network. The bias ROM contains all of the neural network biases. The dual-
ported memory is used to store the inputs to the network (the four sensor values, in this
case) and the neuron outputs. Before the network calculations begin, the network inputs
are loaded into the dual-ported memory. As the neuron outputs in the first layer are
computed, they are stored in the dual-ported RAM at locations immediately folltveng
network inputs. After the first layer neuron outputs have all been computed, these
outputs act as inputs to the second layer, and the entire process is repeated. 84ss proc

will be described in more detail in the following.
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Figure 4-27: Neural Network on FPGA Schematic
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The different case statements in the neural network code can be described with a
series of flow charts. The master FSM controls the variatta®sE_INPUT and
Enable_Network . When the variableRITE_INPUT andEnable_Network —are low, the
neural network code initializes a number of different variables in preparatitdmefor
calculation. Figure 4-28 is the first flow chart for the neural network cbtiny of the

variable names in Figure 4-28 are shown in Figure 4-27.

Neural Network Flow Chart 1

Neural
Network
Go to
Neural
Enable Network = 0 Network
? Chart 2
a_addr_tmp <= "0011"; cuenta_tmp <= "00"; start_tmp <='0";
p_addr_tmp <= "0000"; b 0<="0" completion_flag_tmp <="'1";
w_addr_tmp <= "00000"; r<="0011"; start_flag_tmps<= '0";
b_addr_tmp <= "0000"; sl <= "0000" enable_tmp <='0'
shift_addr_tmp <= "0000"; g_tmp <="'0"; init_flg_tmp <="'1"
input_base_tmp <= "0000"; dyQ_tmp <='0' ram_b_input <= ‘0;
input_num_tmp <= "0000"; flag_ tmp <='1"; write_enh <='0";
neuron_num_tmp <= "0000"; write_ena <="'0";
R_S1_flag <="00"; nd_tmp <='0
I

Figure 4-28: Neural Network Flow Chart 1

When the variableg/RITE_INPUTandENABLE_Network are not both low, the
code will go into the second flow chart. In this state, when the vakahieE_INPUT is

high and the variablENABLE_Network is low, the neural network code is going to record

132



the sensor inputs into the dual ported memadiye variableam_b_input  will accept the
sensor inputs from the master FSM and store them for the neural network. The variable
p_addr_tmp tells the neural network which address to store the sensor inputs to in the
dual-ported RAM (see Figure 4-27). The master FSM drives the varialfles DATA

andi NPUT_ADDR. Each input will have a single value and single address. The neural
network is in flow chart 2 while the master FSM goes through the states
WRITE_ADC_DATAIWRITE_ADC_DATA2WRITE_ADC_DATAANAWRITE_ADC_DATA4

Figure 4-21 shows that loading each input happens in a single 20 nSec clock cycle, and
the RAM loading process takes less than 10 clock cycles. The vaviaddlenb

determines if the network inputs can be written to memory or not. The variable
rdyNN_tmp is a flag that is set high when the network output is ready to be read. Figure

4-29 shows the second neural network flow chart.

Neural Network Flow Chart 2

Return to From
Neural Neural
Network Network

Chart 1

N

Go to
Neural
Network
Chart 3

WRITE INPUT =1
AND
Enable Network = 0 7

YES

ram_b_input <= INPUT_DATA;
p_addr_tmp <= INPUT_ADDR;
write_enb <='1";
rdyNN_tmp <=0

Figure 4-29: Neural Network Flow Chart 2
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When the master FSM has loaded the inputs to the dual ported memory, it will
change the variable8RITE_INPUT andEnable_Network  to different values and put the
neural network into a different state. The third flow chart shows a spet@igiere the
network has been enabled, and the number of neurons for the layer vatiapvdjch
was loaded from the structure ROM, as in Figure 4-27) is equal to the delinhiter va
This is a special flag that the neural network code uses to signal the Rigt¢hat the
calculation is complete (the last layer has been reached). During tajgistaneural
network code resets the neural network variables for the next calculatione &igQr

shows the third flow chart for the neural network.

Neural Network Flow Chart 3

From

Return to Neural
Neural Network
Network Chart 2

[ Go to
WRITE_INPUT = 0 AF_VD Neural
Enable Network = 1
AND ST = 1111 Network
Chart 4
rdyNN_tmp <= '1"; R_S1_flag <="00", nd_tmp <='0";
a_addr_tmp <= "0011"; cuenta_tmp <= "00"; start_tmp <='0";
p_addr_tmp <= "0000"; b 0 <=0 start_flag_tmp <='0";
w_addr_tmp <= "00000 r<="0011"; -- completion_flag_tmp <="1";
b_addr_tmp <= "0000"; sl <= "0000"; enable tmp <='0";
shift_addr_tmp <= "0000"; q_tmp<="'0"; init_flg_tmp <="'1";
input_hase_tmp <= "0000"; rdyQ_tmp <='0"; ram_b_input <= 0;
input_num_tmp <= "0000"; flag_tmp <="'1%; write_enb <='0";
neuron_num_tmp <= "0000"; write_ena <='0";
|

Figure 4-30: Neural Network Flow Chart 3
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If the number of neurons is not equal to the delimiter value, the code goes on to
the fourth flow chart. In the fourth flow chart, when conditions are correctpttewill
set the variablerite_enb low and the variableam_b_input is set to zero. This will

keep the dual ported memory from loading new inputs. Figure 4-31 shows the fourth

neural network flow chart.

Neural Network Flow Chart 4

From
Neural Return to
Network Neural
Chart 3 Network

WRITE INPUT = 0O AND
Enable Network = 1
AND ST /= 1111

ram_b_input <= "“Zero”;
write_enb <='0';
rdyNN_tmp <=0"; G0 To
| Neural
Network
Chart 5

Figure 4-31: Neural Network Flow Chart 4
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The fifth flow chart is focused on the buffers. The fifth flow chart shows the code
selecting between chart 6, which deals with the timing for switching nenpanh buffers,
or chart 7, which will decide if the neuron layer structure is loaded or if a neuron output
is calculated. The variabieyAD_tmp is driven by the adder in the summation junction
and will go high when the current addition is complete and ready to be read. The variable
input_num_tmp  keeps track of when to add in the bias or partial sum for each neuron.
Wheninput_num_tmp IS zero, the neuron will add in the bias. When it is not zero, the
partial sum stored from the previous calculation will be stored. The variablesd
b_tmp are used with the tri-state buffers, and is only updated after the output of the
adder is ready. (see Figure 4-27 to see the relationship beivweandb_tmp) The
variableflag_tmp is used with the tri-state buffer to help control timing. Figure 4-32

shows the fifth flow chart.

Neural Network Flow Chart 5

From
Neural
Network
Chart 4

1

input _num tmp
= 0000

flag_tmp <=0;

Go to
Neural
Network
Chart 6

Go to

Neural
Network
Chart 7

Figure 4-32: Neural Network Flow Chart 5
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Depending on the condition of the variables, the code will go on to chart 6 or
chart 7. The variable tmp is used with the variablet_q_tmp to drive the buffers that
help load the variable 0. The first input to the neuron summation is a bias. The second
input to the neuron summation will be the partial net input resulting from the first
calculation. (see Figure 4-27) To avoid contention, buffers are used to connect to both
inputs, but only let one input be used at a time. The varnigJagetmp controls the
timing of the buffer switching. The varialileg_tmp controls the timing ofdyQ _tmp .
Figure 4-33 shows the sixth neural network flow chart, which deals with thegtfion

switching neuron input buffers.

Neural Network Flow Chart 6

From
Neural
Network
Chart 5

>

>

|
-

NO NO
YES NO

g_tmp <=0 YES write_ena <= 0;

rdyQ_tmp <=1 b o <=b_tmp; g2 _tmp <=1
flag tmp <= "0 rdyQ_tmp <=0
| Q[mp <= ’1';
g2_tmp <=1}

le <

Go to Neural
Network Chart 7

Figure 4-33: Neural Network Flow Chart 6
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The seventh flow chart shows how the code selects between loading the variables

r ands1 from the structure ROM (see Figure 4-27) or calculating the neuron output. The

variabler_S1 flag

is 00 for loading the number of inputs for the laygr Q01 for

loading the number of neurons in the lay&r)( or 11 for calculating the network output.

Figure 4-34 shows the seventh flow chart.

Neural Network Flow Chart 7

Neural Network
Flow Chart 7

R S1_f1

R S1 flag = 11
R S1 _flag = 01

_ YES
ag = 00 Goto Neura

Network

YES

Cha

Go to Neural
Network Flow

Go to Neural low Chart 10
Network Flow

Chart9

rt8

Figure 4-34: Neural Network Flow Chart 7

In the eighth chart, the code is loading the number of inputs to the layer. The

variablend_tmp is used with the shifter ROM (structure ROM in Figure 4-27). It signals

that there is valid new data available to be recorded. The vatdgbie tmp identifies

when the output of the shifter ROM is valid and ready to be read. The variahlee

number of inputs for a layer. For the first layewill be four inputs from the four
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sensors, but for the second layenill be five, indicating the number of neurons in the
first layer. (The NN FPGA works for arbitrary numbers of inputs, numbersuobnge

and numbers of layers, but for this particular application we are Rsigs1 =5 and
s2=1.) The variablememory_tmp is the output of the shifter ROM. Figure 4-35 shows

the eighth flow chart.

Neural Network Flow Chart 8

Neural Network
Flow Chart 8

1
1

rdySH_tmp
AND nd_tmp

nd tmp <= “1°;

nd_tmp <= ‘07;
i <= memory_tmp;
R S1_flag <= R 81 flag +"01";

Return to top of
Neural Network
Flow Chart 1

Figure 4-35: Neural Network Flow Chart 8

In chart 9, the code is loading the number of neurons in the layer from the shifter
ROM (structure ROM in Figure 4-27) into the variakle The variable
shift_addr_tmp  keeps track of the shift ROM memory that stores the neural network
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structure. Inside the shift ROM, for this application, the first address st00€4.1".

Zero corresponds to the first number in the counting sequence, so three in binary
corresponds to having four inputs. The second address stores “0100” which is for the
five hidden neurons. The third address stores “0000” which corresponds to the one
output neuron, and the fourth address stores “1111” which is the delimiter, identifying
that the network has only two layers. The vari&blgl_flag is “11” so the code will

begin to calculate the layer output. Figure 4-36 shows neural network flow chart 9.

Neural Network Flow Chart 9
Neural Network
Flow Chart 9

rdySH tmp = 0
AND nd _tmp = 0

1

rdySH tmp =
= 1

AND nd_tmp

shift _addr tmp <=
shift_addr tmp + “0001%;

nd_tmp <= f17;
nd_tmp <= 07
st <= memory tmp;
R 81 _flag <= "11";

Return to top of
Neural Network
Flow Chart 1

Figure 4-36: Neural Network Flow Chart 9
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Flow charts ten through fourteen show how the code calculates the output of the
neuron. lfrdyAD_tmp is high, the result of the summation in the neuron is ready, so the
next calculation can begin. This will cause the variafale tmp  to go high which will
start the calculation of the next neuron and set the vagaiide tmp low which
signifies that the output of the neuron is not valid. This gives time after sitting
variablestart_flag_tmp high for all the addresses to settle before the neuron
calculation begins. The variakdempletion_flag_tmp will go high when an addition
has been completed or if the first calculation is being performed. The variable
enable_tmp goes high when a neuron output calculation is complete. The variable
cuenta_tmp IS a counter used to add delays, and is counted in binary. Figure 4-37 shows

the tenth neural network flow chart.

Neural Network Flow Chart 10

Neural Network
Flow Chart 10

Go to Neural
Network Flow
Chart 11

start_flag tmp
=1
YES

|cuenta_tmp <= cuenta tmp + "17; |

cuenta tmp
=10
YES

completion flag tmp <= “17;

enable tmp <= 0°;
start_tmp = e
start tmp <= 07;
start_flag tmp <= ‘07;
cuenta tmp <= “00%;
Return to
> Neural Network
Flow Chart 1

Figure 4-37: Neural Network Flow Chart 10

141



Neural network flow chart eleven hinges on the variati@letion_flag_tmp
This variable will be high if the summation output is available and valid or if the first
calculation for a neuron is being performed. The variabl@ag_tmp identifies if
the first calculation for a neuron is being performed. If the first catiom for a neuron
is being performed, variables are set such that the neuron bias is loaded into the
summation junctiono{_tmp is set toout_b , as shown in Figure 4-27). Else, the variable
init_flag_tmp is low and the partial net input is fed into the summatiamp in

Figure 4-27). Figure 4-38 shows neural network flow chart eleven.

Neural Network Flow Chart 11

Neural Network
Flow Chart 11
completion flag tmp
=1

NO

Go to Neural
Network Flow
Chart12

init_flag tmp
=1

init flag tmp <= 0';
start_tmp <= 1’;
enable tmp <= “1’;
start _flag tmp <= 1';
completion flag tmp <= “0°;

Returnto
Neural Network
Flow Chart 1

Figure 4-38: Neural Network Flow Chart 11

The twelfth neural network flow chart shows decisions based on two variables.

The variablenput_num_tmp tells the code to add in the bias on the first input for a
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neuron, and when it equals the variahl¢éhe last input for that neuron has been loaded.
The variabledyTF_tmp is a flag to identify when the transfer function output is

available. The transfer function is implemented with a look up table. The input to the
transfer function serves as the address for the look up table. At the corresponding
address, the output of the transfer function is stored. The vasiales_tmp is a flag

that triggers the transfer function look up table. When it is high, the look up table input is
a valid address. When the variaklgrF_tmp is high, the neuron output is ready. The
variablew_addr_tmp is the weight address, which is incremented every cycle through

flow chart twelve. Figure 4-39 shows neural network flow chart 12.

Neural Network Flow Chart 12

Neural Network
Flow Chart 12

rdyTF_tmo NO

completion flag tmp <= ‘0’;

enable tmp <= 17; Go to Neural
w addr tmp <= w addr tmp + “17; Network Flow
start flag tmp g= F1;

start_tmp <= "17; Chart 13

input num tmp NO

a eq b tmp <= “17;

Return to
Neural Network
Flow Chart 1

Figure 4-39: Neural Network Flow Chart 12

143



Given that conditions are correct, after the code completes setting theasnmabl
chart 12, it will go on to chart 13. In flow chart 13, if the neuron is on the last input, the
code will write the output to the dual ported memarynip in Figure 4-27), increment
the addresses for the neuron input and output and set the input number counter variable to
zero. The variable_addr_tmp tells what address the neuron output will be stored in.
The variable_addr_tmp tells what address the neuron input will be retrieved from (see
Figure 4-27). The variablerite_ena determines if the dual ported memory will accept
new neuron outputs. The variablput_base_tmp  keeps track of which input is to be
added next. If the neuron has not added all the inputs, the input number counter variable
is incremented, and the input address is set back to its base value for thaFigyss 4-

40 shows neural network flow chart 13.

Neural Network Flow Chart 13

Neural Network
Flow Chart 13

input_num tmp NG
input num tmp <= input num tmp + “1°;
p_addr_tmp <= input _base tmp;

a eq b tmp <= 0

write ena g e Return to
Input_num_tmp <= “00007; Neural Network
a_addr_tmp <= a addr _tmpo + “1°; l

— = = = ow Chart 1
p_addr_tmp <= p_addr _tmp + “17°;

Go to Neural
Network Flow
Chart 14

Figure 4-40: Neural Network Flow Chart 13
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If the neuron is on the last input in flow chart 13, then the code will move on to
flow chart 14. The variableeuron_num_tmp keeps track of which neuron output is
being calculated. In flow chart 14, the code checks to see if it has cadctiiatlast
neuron in the layer. If so, it will reset the variakles1_flag so the code can load the
architecture for the next layer, and shifts over the input address so thatphis efithe
finished layer become the inputs to the next layer. If the last neuron output forethe la
has not been calculated, the input address is reset to the first input address fgerthat la
and the neuron number counter is incremented to the next neuron. Figure 4-41 shows

neural network flow chart 14.

Neural Network Flow Chart 14
Neural Network
Flow Chart 14
= gl

VES v

neuren_num tmp <= neuron_hum tmp + “1°;
p_addr_tmp <= input base tmp;

input base tmp <= input base tmp + 1°;
neureon_num tmp <= “00007;

R 81 flag <= 00",

p_addr _tmp <= input _base tmp + “1°;

Return to
Neural Network
Flow Chart 1

Figure 4-41: Neural Network Flow Chart 14
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The entire neural network code is built around hardware for a single neuron. That

hardware is going to multiply two numbers, a weight and input, and then add the product

to a bias to produce a partial net input to the transfer function. Depending on how

variables are set inside the neural network code, different numbers are ltadbed i

inputs, weights and biases. Figure 4-42 shows the timing diagram for the hardivare. T

diagram shows the delay between enabling the hardware, starting thatwaicamhd the

calculation being ready. In the timing diagram, the variabte®TandCE show when

the calculation is started and when the multiplier and adder are enabled. Thiesgria

wandp are the weight, bias and input. The variabie the output. The input, weight,

bias and output are all in a 16-bit floating point format. The varrRible Nis set high

when the output is available.

End Time:
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all ce
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Figure 4-42: Example Timing Diagram for one Neuron
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The neural network flow charts describe the process to calculate the posh®n. T
calculation is a serial process in which a single hardware neuron dalcugatepeated as
many times as needed to complete the full network calculation. Figure 4-48 ahow
Chipscope waveform displaying most of the signals for this calculation. The black
vertical lines signify the end of the calculations for the output of one part of d neura
network and the beginning of the next calculation. Figure 4-44 shows the waveform for
the calculation of the first neuron in the first layer. In Figure 4-44, the blaek |
separate calculations of the four partial sums for the four different inputs tosthe fi
neuron. Figure 4-45 shows the waveform for the first input to the first neuron of the firs

layer.
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Figure 4-43: Overview of Neural Network Calculation
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Figure 4-44: ChipScope Waveform for Calculating Output of First Neuron inL&yer
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Figure 4-45: First Input to First Neuron in First Layer

In summary, the neural network completes the calculation of the car position

using four inputs. Those inputs come from four electromagnetic sensors. The serial
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calculation is completed with one multiplier, one adder, two buffers and several
memories. One layer is calculated at a time, and inside each layer, one nepubrsout
calculated at a time. To calculate the neuron output, one input is multipliexviogight

and added to the bias on the first calculation or the partial net input for the remaining
calculations for that input. Once a complete net input is available for a neuron, it is
passed through a look up table, which replaces the transfer function. The outputs of the
first layer are stored as the inputs to the second layer. The output of the secoisd laye

the car position.
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4.3.3 Credit for Previous Work to Write the Neural Network Code

The original neural network code was a group effort between Professoins Mart
Hagan and Carl Latino from Oklahoma State University and Professor Marco A.

Moreno-Armendariz from Instituto Politecnico Nacional, Mexico.

Taylor York, a former Oklahoma State University student, provided most of the
code for the master FSM. Amanuel Assefa, another Oklahoma State Unistrdént,

provided changes to the code to increase the number of sensors read to four.
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4.4 Training the Neural Network

The neural network maps the four sensor readings into the car position. The
neural network can be thought of as an equation. The sensor readings are the input to the
equation and the car position is the output. The MLP network is a universal
approximator, and given enough parameters or degrees of freedom, it can approximat
nearly any relationship. To approximate a single set of data, mapping argeitsfto
outputs, requires a specific set of parameters. Training the neural netWdikdxhe
correct parameters. The training cycle has three key phases. Thidss is data
collection. The second phase is adjusting the function parameters. The thirdsphase i
validating the network performance. If the validation phase reveals the network
performance is not acceptable, training will loop back to data collectionamptar
adjustment as needed. This is followed by another phase of network performance

validation.
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4.4.1 Data Collection

Data collection gathers sensor inputs and corresponding car positions. One data
point is four sensor readings and one car position measurement. The data collection
process requires a fixture to allow for consistent readings. The smarsdaaha
holding a marker taped to the front of the sensor board for data collection. The marker
indicates the center of the car, which is used as the car position. Tape holds tioe wi
the floor, and tape holds a ruler over the top of the wire. The wire goes under the ruler at
the four-inch mark. The smart car position of four inches is directly on top of the wire.

Figure 4-46 shows the smart car ready to collect a single data point.

Figure 4-46: Smart Sensor Car for Data Collection
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A training set for the smart sensor car spans eight inches, with measurements

every quarter of an inch. This data set is large enough to ensure the sméltheaew

accurate position measurements, but small enough that the students in the summer

academy can complete the task in a reasonable amount of time. Capturiafy sever

samples at each position reduces the effect of small disturbances on theesatisgsr

and makes for a more robust training set. At each measurement, 20 samplesare ta

Figure 4-47 shows a complete set of training data. Sensor 4 has the most negative

reading around 0.75 inches; sensor 2 has the bottom of its valley around 2.75 inches,

sensor 1 at 4.75 inches and sensor 3 at 6.75 inches. The bottom of the valley occurs

when the sensor is directly over the wire.
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Figure 4-47: Sensor Responses versus Position
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4.4.2 Training

One measure of neural network performance is the mean square position error
over all data points. The goal of training the neural network is to adjust the persame
(weights and biases) in such a way as to reduce the mean square errcs.aBtamdard
unconstrained optimization problem, and any optimization method can be used. We used
the Levenberg Marquardt optimization algorithm, as implemented in the Nezivab i
toolbox for MATLAB. Figure 4-48 shows how the mean square error improves during
training. After 465 iterations (epochs), the neural network fits the traintagadaest it

can. This means the network is trained.

Best Training Performance is 0.00055678 at epoch 465
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Figure 4-48: Mean Squared Error versus Training Epochs

156



4.4.3 Network Validation

A trained network produces calculated outcomes that closely match the true
positions at the training points. Several steps go into the validation processthEne
needs to be training data over the full range of desired inputs. If the trainangpgetars
to be insufficient, additional data is collected, focusing on the problem arease Fig7
shows that training data is available for all areas the neural network isecetju
perform(4 inches on either side of the wire). Figure 4-49 shows neural network
performance that appears acceptable. The network output and the true positijpalare e

over the range from O to 8.

Neural Network Position vs. True Position - Original Data

9 T T T T T T T

Neural Network Position

-1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8
True Position

Figure 4-49: Neural Network Position versus True Position
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Figure 4-50 shows the readings from sensor 2 at car positions of 2.75, 3 and 3.25
inches. Note the amount of noise on the sensor readings. The noise results in a vertical

stack of points at each horizontal position.
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1 | 1 | 1 1 1 1 | 1
5 2.8 2.85 29 2.95 3 3.05 3:1 3.15 32 3.25
Position

Figure 4-50: Sensor 2 Reading at 3 Inches

Because there is noise on the sensor readings, the neural network will have
different inputs that should generate the same output. Noise on the systethajives
training algorithm several points to match where readings were taken, andnmaaitidn
about what to do between measurements. In an effort to reach more points, a training
algorithm can configure a neural network in an undesirable way. One way to check

performance between training points is to use a model to estimate data poirtnhibisv
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training points. Because the curves for the smart sensor car are mostlly, ssneot

option for modeling the data is interpolation. Linear interpolation is used toaener

sensor inputs between points. The sensor inputs are averaged at each measurement. A
line is fit to the averages of each point. Then additional inputs are evenly spaced on the
line between points. The new interpolated sensor inputs are then passed through the
neural network. Because the interpolated inputs are mostly on a straight lieerbetw
measured inputs, the neural network outputs should also be near a straight line. Figure 4-
51 shows the neural network response with the interpolated data. The response between

measurements is still close to a straight line.

Neural Network Position vs. True Position - Interpolated Data
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Figure 4-51: Neural Network Position versus True Position with Interpolated Data
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Figure 4-52 is zoomed in to a small region of Figure 4-49. Note that the curve
appears as a line passing through the averages of each measuremeantaibithe

network is not over-fitting the data.

Neural Network Position vs. True Position - Original Data
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Figure 4-52: Neural Network Position versus True Position, Zoomed in at 3 Inches
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4.5 Neural Network Supporting Components

Support equipment is not part of the system functional diagram when the car goes
around the track, but is necessary for making some of the pieces work. The purpose of
the training support equipment is to collect meaningful data using the same leatfusvar
car uses to go around the track. In order to collect data with the mastearféSMisting
hardware, a computer replaces the PD controller. That computer runs custom data
collection automation software. The code for the A/D FSM and master FSM wer
written, verified, compiled, and loaded onto the hardware using the Xilinx ISE design

suite.
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4.5.1 Master FSM Modifications for Training

Training the neural network requires training data. That training data isdluele
four digital sensor readings and the position. The position measurement comes fr

ruler taped to the floor. Figure 4-53 shows the smart car at a position ofitines.i

Figure 4-53: Car position of Three inches
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The digital sensor readings come from the A/D FSM. The first moddicadi
the master FSM lets it know if the request for new information is for a position
calculation from the neural network or for training data from the A/D FSMs Thi
modification happens in the statalT_RECEIVE If the master FSM reads in symbols
representing the letter “t” then it will send out the four sensor readings. |#ttee"r” is
read, it will transmit a position. The next step is the same for position cedoudaid
data collection. The master FSM cycles the A/D converter to get four geal densor
readings. When the digital sensor readings are complete, train modenit sta
broadcast the positions over the RS232 communication. The code for this process is in

Appendix D: Code for Master FSM to Transmit Training Data. Figure 4-54 is the dat

collection process overview showing how the computer and master FSM interact.

Data Collection Process
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I Transmit Request \
4y 7 \

Gather A/D

Readings
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Data I}
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. Computer Y
. 1 < FSM
N pd o R
\\ ,/

Figure 4-54: Data Collection Process Overview
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The A/D FSM remains the same for both position calculation and data collection

Figure 4-55 shows how the master FSM drives the A/D FSM.
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Figure 4-55: Master FSM Process Overview
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The master FSM starts in the stiiee and automatically goes to the state
WAIT_RECEIVE In the stat®AIT_RECEIVE, the computer will transmit the letter “t” over
serial communication. After the master FSM receives the command from tpeteom

it sets the variableain_mode high and moves on to the st&eART_ADC In the state

START_ADGthe master FSM sets variables to start the A/D FSM in motion. After the
stateSTART_ADGthe master FSM automatically moves to the state The master FSM
will loop in this state until the A/D FSM signals completion. At that timentlhaster

FSM will transition to the stateTART_RS232_TRAINL Figure 4-56 shows the master

FSM state map for this initial process.

Master FSM Map 1: Initial States

rs232 receivert _sth = 1

Tf‘a
hsm It Re 2
est
\

rs232 receivert sth = 1
=rg232 receiver rst <= 1|

WAIT_RECIEVE

START_ADC
sce amp<=1
sgstart conv <=1

ADC_DONE = 1

ADC DONE = 1
"ce _amp <= 0
sstart_conv <=0

START_RS232_TRAIN1

\
v

Figure 4-56: Master FSM Map 1: Initial States
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When the master FSM enters the s&t@RT_RS232_TRAINY, it begins the
process to transmit the converted readings to the computer. The process to bratalcast d
is similar for a single number representing a position calculation or four nsmber
representing four sensor readings. Figure 4-57 shows the master E&SMagbafor

transmitting the first sensor reading.

Master FSM Map 2: Transmit ADC1

-

START _RS232 TRAIN1
"counter<=0

"rs232 sender stb <=1

=rs232 sender dot <= ADCI1(13) & ADC1(13) &
DC1(13) & ADC1(13) & ADC1 (13 downto 10)

counter #
CONV_STD L 0GIC_VECTOR

RS232 TRAIN_HI1
mcounter<= counter + 1

"f rs232 _sender_ack= 1 then
rs232_sender_stb <=0

counter =
CONV_STD LOGIC VECTOR

START RS232 TRAIN LO1
=counter<=0

®rs232 sender_sth <=1

"rs232 sender_dat <= ADC4 (9 downto 2)

counter #
CONV_STD_LOGIC_VEGTOR

RS232 TRAIN_LO1
mcounter<= counter + 1
"/frs232_sender_ack= 1 then
rs232 sender stbh <=0

< START_RS232_ TRA;Wn ter =
JONV STD LOGIC _VECTOR

===

Figure 4-57: Master FSM Map 2: Transmit ADC1
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Transmitting the next three sensor readings will require the samespnwith
appropriate changes to the state names and variables to transmit. A$tmittnag all
four sensor readings, the master FSM will automatically transition tdetess E .

Figure 4-58 shows the last sensor reading transmission.

Master FSM Map 3: Transmit ADC4

- OEE B S RO OO W am a

START _RS232 TRAIN4
"counter<=0

"rs232 sender sth <=1

"rs232 sender dat <= ADC4(13) & ADC4(13) &
DC4(13) & ADC4(13) & ADC4 (13 downto 10)

counter #
CONV_STD L OGIG_VEGTOR

R5232 TRAIN_Hi4
"counter<= counter + 1

"frs232 sender_ack= 1 then
rs232 _sender_stb <=0

counter =
CONV_STD LOGIC VECTOR

START_RS5232 _TRAIN_LO4
"counter<=0

=rs232_sender_sthb <=1
=rs232_sender_dat <= ADC4 (9 downto 2)

counter #
CONV_STD_LOGIC_VECTOR

RS232 TRAIN_LO4
"counter<= counter + 1
u/frs232 sender ack= 1 then
rs232_sender_stb <=0

C IDLE counter =
JONY STD [ OGIC _VECTOR

«-=---"

Figure 4-58: Master FSM Map 3: Transmit ADC4
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4.5.2 Automated Data Collection Software

A computer replaces the PD controller for data collection. Figure 4-54 shows
how the computer and master FSM interact. If the “Start Logging” bidtpressed, the
computer program writes the four sensor readings to the screen and rieeords &
comma-separated file. If “Start Logging” is not pressed or if “Stugging” is pressed,
the computer program writes the four sensor readings to the screen. Figure 469 show

the computer program configured to write data to the screen only.

M Natcar Training Data Collector

Train ] [ Fur ] [gtart L:-ggingl [ ik I

a0cC1 = 1385 ADC2 = -1856 aDC3 =7 A0 =1

it

Figure 4-59: Computer Program Writing to Screen Only
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Figure 4-60 shows the computer program writing both screen and comma

separated file.

I Matcar Training Data Collector

Train ] [ Run ] [gtup Lngging] [ Quik ]

aiC1 = 1365 ADCE = -1836 anC3=7 Az =1

2.5

Figure 4-60: Computer Program Writing to Screen and Data File

Jeff Henson, a former Oklahoma State University Student, wrote the computer
program for data collection. Amanuel Assefa, another Oklahoma State Universit
student, contributed to changing the computer program to double the number of sensor

readings. Dr. Hagan helped de-bug the code.
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4.5.3 Other Support Software

The code for the master FSM and A/D FSM were written using the Xilinx ISE

design suite. Xilinx ISE is a file management program. It makes surallttize

different codes for the different components work together. Figure 4-61 shovega sc
capture of Xilinx ISE. After the codes are working, Xilinx ISE is usedtople the

code and generate programming files. A different Xilinx program is used t@oofi

the FPGA using the programming files.
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Another program inside Xilinx ISE is the Xilinx Core Generator. This program
generates VHDL code to do common tasks such as floating-point conversion or
generating blocks of memory. Figure 4-62 shows a screen capture of theCQIRE

Generator software.
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Figure 4-62: Xilinx CORE Generator Screen Capture
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The third major component utilized from the Xilinx ISE design suite is
ChipScope. This is software used to analyze designs while they run on the FPGA. This
tool allows debugging in the same environment where the code will be deplogede Fi

4-63 is a screen capture of the ChipScope software.
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Figure 4-63: Xilinx ChipScope Screen Capture
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4.6 Summary

The neural network maps four sensor readings into a car position calculation. The
A/D converter produces four digital sensor readings. The PD controller adeepta t
position. The neural network changes the output of the A/D converter into the acceptable
input for the PD controller. The neural network calculates the car positionyseltahg
one arithmetic step at a time. Training helps ensure the neural networkteslthsacar
position correctly. The master FSM has some modifications that allow it ttacee
with a computer to collect training data. In order to ensure the neural network; maste
FSM, A/D FSM and all other components work together properly, other support

equipment is required. This support equipment is part of the Xilinx ISE design suite.
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CHAPTER V

PD CONTROLLER

This chapter discuses the PD controller. The PD controller takes information
from the neural network and generates commands for the car steering servo and motor to
produce motion around the track. The neural network takes inputs from the analog to
digital converters and calculates the car position. That position is sent to the PD
controller. The PD controller uses the car position in a calculation to determine the
command for the steering servo. The PD controller also controls the car motor.r The ca
responds by producing motion around the track. Figure 5-1 is the main block diagram
that shows how the components work together. This chapter describes the real-time
executive program that implements the PD controller, as well as the ésdd@edware

and support equipment. The chapter also describes the controller design.
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Figure 5-1: Main Block Diagram
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51 Overview

The PD controller takes the distance of the car from the wire and uses it to
determine the steering angle. As the Car moves along the track, sensurthdete
magnetic field coming from the track. The sensor signals go through a signal
conditioning circuit that prepares analog sensor readings for the Analogital DA/D)
converters on the FPGA board. The A/D converters change the analog signals into
digital numbers for the neural network to use as inputs for the position calculation. The
calculated position tells the PD controller the distance of the car from the Wie PD
controller then generates steering angle and speed commands fordtét can
continue moving along the track. This chapter focuses on the PD controller. FRyure 5-

shows how the PD controller fits into the system functional overview.

System Functional Overview

. Car Motion
Steering Angle
Along Track "
and Speed Electric Magnetic
—> PD Controller > > Field |
Car
Track
Position Magnetic
Calculation Field coming
from Track
Digital Analog
Sensor Sensor
. i Sensors and
Readings Analogto Readings .
Neural i 2 Signal
— < Digital | A <
Network Conditioning
Converter .
Circuit

Figure 5-2: System Functional Overview
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The PD controller algorithm controls the data flow and communication that make
the timing of the process work. The PD controller starts the process by semdmgest
for a new distance. As discussed in chapter 3, the master FSM will then cy&l®the
converter to generate four digital sensor readings. Chapter 4 explains hovstee ma
FSM then cycles the neural network to calculate the distance of the cah&anré.
After calculating the distance, the master FSM transmits the newabsia the PD

controller. Figure 5-4 shows an overview of the interaction between the PD controller

and master FSM.

PD Controller Interaction with Master FSM

- - -

Calculate
Steering
Command
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I/
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‘. Controller ,/ N FSM L

—~— -

< P -

Figure 5-3: PD Controller Interaction with Master FSM
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The PD controller repeats a process in order to keep the car moving around the
track. The process begins with a request from the PD controller to the neurakrfetwor
a new distance measurement. The PD controller waits until the neural netsprkde
with the measurement. The PD controller then calculates how fast the carng movi
toward or away from the wire. The PD controller uses the lateral velboutylistance
measurement to calculate the necessary steering angle thatevith&tear directly over
the wire while maintaining stability. The PD controller then converts tleeis¢eangle
into a pulse that the steering servo can accept as an input. The PD controller also
generates a pulse for the motor control switch to set the car speed. Ehwittyepeat
as the car continues to circle around the track. Figure 5-4 shows the PD controller

process overview.

PD Controller Overview

Wait for
Measurementfrom
Neural Network

Request Distance
Measurement from
Neural Network

Receive
Measurementfrom
Neural Network

Generate Speed
Command

Convert Steering
Angle into Steering
Command

Calculate Car Lateral
Velocity

Calculate Car
Steering Angle

Figure 5-4: PD Controller Overview
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5.2 Implementation

The real-time executive algorithm controls the data flow and communicatidns tha
make the timing of the processes work. The algorithm will first communictiehe
master FSM to obtain a distance measurement from the neural network. Thbralgor

will then perform the calculation of the steering and speed commands.

The real-time executive algorithm is software. The software is suddmyte
hardware. That hardware comes in the form of a printed circuit board with ackigr
PI1C microcontroller. The PIC board provides power to the PIC and an interface to the
rest of the boards and processes. The real-time executive algorithm ilsetescr

section 5.2.1. The PIC board circuit and hardware is described in section 5.2.2.
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5.2.1 Real-Time Executive Algorithm

The code for the real time executive algorithm can be found in appendix E: PD
Controller Real Time Executive Algorithm Code. Figure 5-4 described the thaks of
the real-time executive algorithm. The algorithm has three sepaoatefor three
separate tasks. The first task is calculating the steering angle.s @hoisa by the
programpPID_Controller in the top loop. The second task is controlling the servo. The
middle loop takes care of timing for the twenty millisecond window with the variable
servoPhase and also handles the one to two millisecond pulse to control the servo with
the variableservowidthCounter . The bottom loop has the task of importing new data

from the neural network. Figure 5-5 shows the real-time executive algaitbmiew.

Real-Time Executive Algorithm Overview

s Run the
When PIDwindowis high, BEh dontraiiar

request new data and call the
PID Controllerprogram peogram and.set
- PIDwindow low

If servoWidthCounter
islarge enough, stop the
servo pulse

If servoPhase is low,
make it high, start the
servo pulse and window

If servoPhase is high,
make it low

When new datais
available, storeit and
set PIDwindow high

Figure 5-5: Real-TimeExecutive Algorithm Overview
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The algorithm begins in the programain. This program includes the three
interrupts,RDA Timerl andRTCC The progranmain calls the program
PID_Controller . The variableet_pwm1 _duty controls the motor speed, with 255
being the maximum allowed speed. The vari@ubsvindow controls the algorithm
timing related to reading in a new distance from the master FSM basagIculating a
new steering command. When a new position is read in, the varialiadow is set
high. This allows the programain to request a new position from the master FSM by
broadcasting the letten:” When the variableiDwindow is high, the programain will
also call the programiD_Controller . Figure 5-6 shows the first diagram for the real-

time executive algorithm flow chart.

Real-Time Executive Flow Chart 1

>
Call the Subroutine
RDA (Chart 4)
7 . YES
Call the Subroutine ’zf’;c( Y, vEi
Timer1 (Chart5) PiD Controlisrt);
v v
Call the Subroutine Call the Subroutine
RTCC (Chart 6) PID Controller
v (Chart 6)
set pwml duty(255)
I YES

Figure 5-6: Real-Time Executive Algorithm Flow Chart 1
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The PD controller subroutine performs the following tasks:

e Load the last raw position received from the neural network into the variable
fullpos . The raw position is a number between 0 and 800, and has units of

hundredths of an inch.

e Adjust for the center position and convert all measurements from hundredths of
inches to meters. After this operation, the variabstion represents the distance

of the car to the right of the wire in meters.

e Save the old position infgevPos

e Filter the position to remove some noise using the equatioantPos = alpha *
position + (1 — alpha) * prevPos . The variablealpha is the filter parameter

that determines how many points are averaged together to find the position.

e Compute the velocity with the equatia®l = (currentPos — prevPos)/dt . The

variabledt is the time between samples in seconds.

e Compute the steering angle in radians using a proportional-derivative corirthev
eguationst_angle = (currentPos — setpoint) * kp + kv * vel . The
variablekp is the proportional gain and the variakleis the derivative gain.

Modeling to find these gain values is discussed in section 5.3.

e Convert the steering angle into a pulse width count and save it as the variable
servoWidth that can be sent to the servo. The count is a number that ranges from 19

to 39. The value 19 corresponds approximately to a 1 ms pulse and a steering angle
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of — 7T/6 radians. The value of 39 corresponds to approximately a 2 ms pulse and a
steering angle df/6 radians. The controller will adjust the calculated count to stay

in the range of 19 to 39 if the calculation results in a count outside that range.

The flowchart for the PD controller routine is shown in Figures 5-7 and 5-8. At
the end of the routine the varial®i®window is set to zero, which ensures that the PD

controller does not run again until another position is read.

Real-Time Executive Flow Chart 2

PID Controller

float32 prevPos = 0; //Previous position (meters)

float32 currentPos = 0; //Current position (meters)

float32 vel = 0; //Velocity (meters/s)

float32 st _angle = 0; //Steering angle (radians)

float32 position=0; //Car position from center line in meters
signed int16 fullpos=400;//temp variable to convert input to signed int16
float32 kp = -60.0; //Position feedback gain (radians/meter)
float32 kv = -500.000; //Velocity feedback gain (radians/meter/s)
float32 alpha = 0.02; //Filter parameter (O<alpha<71)

float32 one m alpha = 0.98; [/ (1-alpha)

float32 setpoint = 0.0; //Position set point (meters)

float32 dt = 0.02; //Sampling interval (s)

signed int16 poscenter=400; //Center position in 1/100 in

float32 met _conv = 0.000254; //Conversion from 1/100 in to meters

Go to Flow Chart 3

Figure 5-7: Real-Time Executive Flow Chart 2
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Real-Time Executive Flow Chart 3

fullpos = input;

position = met conv*(fullpos - poscenter);
prevPos = currentPos;

currentPos = alpha*position + one_m alpha*prevPos;
vel = (currentPos-prevPos) /dt;

st _angle (currentPos - setpoint)*kp + kv*vel;

servollidth 19.1*st_angle + 29.0;

NO

if(servowidth>39)

R
—>| PIDwindow=0;

servowidth=39;

if(servowidth<19)

YES

servowidth=19;
I

Figure 5-8: Real-Time Executive Flow Chart 3

The servo pulse width calculations are specific to the servo. For the servo used
for the summer academy, the pulse was one to two milliseconds long in a twenty
millisecond window. Setting the variallevowidth to 39 corresponded to a pulse
width of two milliseconds and a steering anglergé radians. When the variable
servowidth ~ was set to 29, the pulse was 1.5 milliseconds wide and the front tires were
straight forward. When the varialievowidth ~ was set to 19, the pulse was one

millisecond wide and the steering angle was/6 radians.
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There are several interrupt routines in the PIC software. The firsuiptésRDA
and it starts when the port connected to the RS232 communication lines has received a
transmission from the FPGA and has new data available. The comgm&hd stores
the eight bits read in through the port. In the interrigs if the variablex is one, the
bits are stored to the variabhputl , and the variablg is incremented. If the variable
is two, the bits are stored to the variabpat2 . When the interrupt is complete, it sets
the variableriDwindow high, sets the variableto zero and combines the two eight bit
numbers into a single 16-bit distance. Setting the varrbl®indow high allows the
program main to call the PD controller subroutine to calculate another steemmgand
and ask for another distance from the neural network. Figure 5-9 shows the interrupt

routineRDAIN the fourth flow chart of the real-time executive algorithm.

Real-Time Executive Flow Chart 4

NO

- - input2 =
input] = gete(); width2 = 40;

gete();

width! = 40; 'l'

PIDWindow = 1;
x = 0;
input = makel6(inputl,input?2);

Figure 5-9: Real-Time Executive Flow Chart 4
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The second interrupt routine Tignerl , which is executed every 13.1
milliseconds. This interrupt controls the timing for the 20 millisecond window for the
steering servo command. If the variatevoPhase is low, the variable
servoWidthCounter IS set to zero, the varialdervoFlag is set high, and the variable
servoPhase is set high. In the event that the variadel@oPhase is high, then the
variableservoPhase is set low. The variablegrvoFlag andservowWidthCounter — are
used in the interrugTCC The variableervowidthCounter  controls the pulse width
for the steering servo command. The variableoFlag ensures that the one to two
millisecond pulse for the servo command happens only at the start of the twenty
millisecond window. Figure 5-10 shows the fifth flow chart for the real-timetdxe

algorithm that shows the interruptnerl .

Real-Time Executive Flow Chart 5

if(servoPhase == 0)

YES

servoPhase = 0;

servoWidthCounter = 0;
servoFlag = 1;
servoPhase = 1;

l

Figure 5-10: Real-Time Executive Flow Chart 5
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The interruptrimerl controls the timing of the interrupt routir&cg which is
executed every 51.2 microseconds. The interuptcontrols the variables that drive
the car steering servo command. In the interRaaiG if the variableservoFlag is high,
the interrupt will compare the variabdervowidthCounter ~ against the variable
servowidth . If the variableservowidthCounter is less than the variabdervowidth
the pin connected to the steering servo control is set high and the variable
servoWidthCounter  is incremented. If the variabdervowidthCounter s less than the
variableservowidth , the pin connected to the steering servo control is set low and the
variableservoFlag is set low. The variablkervoFlag  will be reset to high in the
interrupt routinerRTCcCafter the current twenty millisecond window has ended. Figure 5-
11 shows the sixth flow chart for the real-time executive algorithm thatiloesthe

interrupt routineRTCC

Real-Time Executive Flow Chart 6

NO

if(servoFlag == 1)

NO
if(servoWidthCounter<servoWidth) |

I\r ES J'

output high(SERVOQ); output low(SERVO) ;
servollidthCounter++; servoFlag = 0;

Figure 5-11: Real-Time Executive Flow Chart 6
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5.2.2 Hardware

The real-time executive algorithm is implemented on a Microchip PIC 185F1220
microcontroller. The chip needs several connections and other components to support the
real-time executive algorithm. A printed circuit board supports the chip and ceitnect
to the other components. The PIC board receives power from a battery pack. The batter
provides between nine and eleven volts. The PIC board connects to the battery through
connector J3, shown in Figures 5-12 through 5-15, which is a two pin header. The power
then goes through traces with decoupling capacitors into a pair of voltagatoegul
Both regulators are Texas Instrument TLV1117050CDCYR linear voltageatergithat
output five volts with a current load up to 0.8 amps. Component U6 provides power to
the PIC and other on board components. Component U7 provides power to the center pin
of header J1. J1is a three pin header used to connect to the servo. The first pin is tied to
ground, the second pin has power at five volts, and the third pin is controlled by the real-
time executive algorithm with the varial8eRvO To operate the algorithm quickly, the
PIC requires an external clock signal. That clock signal comes from conipdfhe The
real-time executive algorithm controls the motor through the connection h@adefiodr
pin header. The first pin is connected to ground; the third pin is tied to the pulse width
modulation port of the PIC chip. The second and fourth pins of header J2 are not
connected in the current configuration. Loading the real-time execugegthim onto
the chip happens through the connection header U21. This is the standard connection
header, built to conform to the requirements of the Microchip PICKit 3 device. RS232
communication goes through header J4, a DSUB9 receptacle. The PIC oférates a

volts, but the RS232 communication can be between three and fifteen volts. The RS232

188



communication is passed through a Texas Instruments MAX232E dual RS-232
driver/receiver, which is component U5. Figure 5-12 shows the PIC board schematic

which displays the connections between all the components.
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Figure 5-12: PIC Board Schematic
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Figure 5-13 shows the printed circuit board layout for the PIC board.

Figure 5-13: PIC Board PCB Layout
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Figure 5-14 shows a photo of a populated printed circuit board.
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Figure 5-14: Photo of PIC Board
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Figure 5-15 shows a picture of the PIC board with labels.

PIC Board Photo with Labels
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Figure 5-15: PIC Board Photo with Labels

Kellen Butler, an Oklahoma State University student designed the schameéti

printed circuit board layout. Megan Brady, an Oklahoma State University student

fabricated the PIC boards.
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5.3 Modeling and Controller Design

A system model needs developed to enable controller design. The system model
will be part of the controller design loop. The first step in the controller design loop is
building or updating a system model. This is a set of general equations that describe how
the different parts of the system interact. The second design step is to defiystd¢he
parameters. For the smart sensor car, this includes car speed, possibig atepes and
car length. The third design step is to select the proportional and derivative Hams
fourth step in designing the controller is simulation. The closed loop system iatsichul
to verify proper response. If the response is not satisfactory, the control gain can be
adjusted. The final control gains are loaded into the PIC software, which is then
implemented with the entire physical system for testing. Based on the oéshks
physical testing, the model and controller are updated. This restartsitiretesess,
and the process will continue until all the measures of performance are meate 36

shows the controller design loop.

Controller Design Loop
Develop or Update Incorporate known
the System Model System Parameters
Test the Controller Desighthe
Controller

with the Physical
System

Figure 5-16: Controller Design Loop
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The smart sensor car can be modeled like the wheeled robot described in [3] and
[4]. They describe the motion of the vehicle with equations 1-3 which correspond to
Figure 5-17:

(1) x =wvx*cos(¢p) *cos(6)

(2) y =wv=*cos(¢) *sin()

. v
(3) 6 = I * sin(¢)

Basic Model

- — —
'

Figure 5-17: Basic Plant Model
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The system model equations were implemented as a Simulink model. Figure 5-18
shows the Simulink model for the basic plant. The plant model has the car length
modeled at one quarter of a meter and the car velocity is three metersopet. s€Ehe
plant input is the steering angle, The input goes through trig function blocks, then
gains, and other multiplication blocks. The blocks are arranged in such a way to

represent the model equations. The integrator block outputs are the state variables

3 1
v X B 3
Velocity (m/sec)
Product X
cos ¢
cos(theta )
1
P cos cos(ohD X 4 = —}.y
- Oout1
cos(phi) Product 1 y
sin [«
GO |
phi X sin(theta 1
——P sin —P‘: >—P ‘ s | theta
. ; Product 2
sin(phi)  1/Lenght (m) L

Figure 5-18: Simulink Model of Plant

The MATLAB software is able to take the Simulink nonlinear plant model and
make a linearized set of equations to represent it. The software can takedhsystem
and form a transfer function to represent the original plant model. The Simulink model
of the plant is saved as the fil&aiModelDesign .” Inside the MATLAB software, the

commands to linearize the model and provide a transfer function are:

linsys = linearize ( '‘CarModelDesign’  );
tf_model = tf(linsys);
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The resulting state equations from this command are:

;- g 8]§+[102]¢

y
2]
y=10 1l +[0l
This model transfer function is:
y 36
¢ s?

The transfer function has two repeated roots at the origin. If only proportional

feedback is useflp = k,, * y), then the root locus is shown in Figure 5-19. It is not

possible to produce a stable system with simple proportional control.

Imaginary Axis

Root Locus

tf_model

-05 1

15 1 1 I 1 1
-0.2 -0.15 -01 -0.05 0 0.05 0.1 015

Real Axis

Figure 5-19: Root Locus of Linearized Car Model
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To verify the model behaves as expected, a fixed steering angle of 7.5 degrees

input to the Simulink model, as shown in Figure 5-20.

animCar
8 v X » 1_
s
Velocity (m/sec) X Animation
Product X X
cos Py P output
cos(theta) : theta To Workspace
% L
cos cos (phi) S v Mux
cos(phi) Product 1 — y
sin [
> % sin(theta ) 1
pi/24 —* sin s theta
phi sin(phi)  1/Lenth (m) Product2 theta

Figure 5-20: Open Loop Simulink Model with Fixed Steering Angle

The expected outcome from this model is the car going in a large circle. 5igure

21 shows the results from the Simulink model.

Open Loop Response
T T T

Vertical Position (m)

Horizontal Position (m)

Figure 5-21: Open Loop Car Simulation Response for 7.5 degree Steering Angle
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Figure 5-19 shows that the car model is marginally stable with two poles on the
imaginary axis. A proportional controller alone will not move the roots of thensyste
the left of the imaginary axis. A proportional plus derivative controller can adpingm
which would allow the roots of the system to move left of the imaginary axis and
improve the system stability. A proportional plus derivative controller canpbesented

by the following transfer function.

GC = de +kp

The closed loop system transfer function is

y 36(kgs + ky)

u s+ 36(kds + kp)

Figure 5-22 shows the Simulink model for the closed loop system.

3
g%}
" 4 S
Velocity (m/sec)
Product ﬁ X
cos &

cos(theta )
Hrs.e
Y

z X
cos (phi)
Product 1

sin |4

sin (theta

A

Derivative Gain

sin(phi)  1/Lenght (m)

Figure 5-22: Closed Loop Simulink Model
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The characteristic equation for this system is:

s? 4 36kgs + 36k,

The characteristic equation matches the standard form:

s? + 2{w, + w2

For this controller design, the settling time is set to one second and the output is
set to be critically damped, §iis set to one. Assuming that the response should settle
within a few percent of steady state after four time constants, thegéitlie can be

estimated by:
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To validate the controller design, the closed loop model was given an initial
position for y of 0.1 m or ten centimeters. The model had no other input, so the system
should settle close to zero after one second. Figure 5-23 shows the model response.
Although the original model is nonlinear, the controller design based on the lidearize

model is satisfactory.

System Response
0.01 T T T T T

0.009 |- =
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0.007

0.006

£ 0.005f S

=
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0.004

0.003

0.002

0.001 i -

0 05 1 1.5 2 2.5 3
Time (sec)

Figure 5-23: Validation of Model Response

The plant model and controller use units of meters. The FPGA provides positions
in hundredths of an inch. This is why the real-time executive algorithm must cdrevert t

FPGA distance measurement from units of inches into units of meters.
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There are three parameters of the car model that need to be set. The first
parameter is length. The length between the front and rear axle of th@%amns or
one quarter of a meter. The second parameter for the car is forward velocity st€ke fa
the smart sensor car will travel at the summer academy is thres petesrecond. The
third parameter that will affect the model is maximum allowed steangte. The
steering mechanism can only turn the wheels so far before it runs out of fFayale 5-
24 shows the steering mechanism turning the wheel as far as possible to thiedeft

steering mechanism runs out of travel after turning the wheels 30 degf@’%sradians.

Figure 5-24: Maximum Possible Steering Angle
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The system model should incorporate the same limitations. To include the
steering limitation, a saturation block is inserted to limit the possil#eisgeangle
before it is fed into the rest of the plant model. Figure 5-25 shows the plant and

controller with the saturation block.

¥ B x 1 *
- < CRE
Velocity (m/sec)
“ :

Product '—|‘
L=
cos(theta )

3 D

X .
cos(phi < 7l s animCar
G ¥ Out1
Product 1 y
Animation

X sin (theta 1_
s theta

To Workspace

data _out

Figure 5-25: Plant and Controller Simulink Model with Steering Saturation Block

The gains are then adjusted to obtain the fastest response possible while not
saturating the steering angle. Because the simulation begins withianpos0.1

meters, and the maximum allowed steering andlfglésradians, the proportional gain
should be less thar0 * 7T/6. The simulation was ran with the fixed proportional gain.

The derivative gain was varied in each run to find the fastest response time oadditi
simulations with the final model suggest using gains of 0.749 for the derivativengain a
5.043 for the proportional gain. The resulting linearized closed-loop system transfer

function is:

y 181.5

U s2+2695s + 1815
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This transfer function has the pole zero map shown in Figure 5-26. Because there
are two poles on the real axis, the step response should have no oscillation. In addition,
because the real components of the roots are more than eight, the system respahse shoul

settle in less than half a second.

Pole-Zero Map

1 T T T T T T
0.8 >
06 =
0.4 .
System: linsys_w_Controller
- Pole : -13.5
5 0.21- Damping: 1 T
Overshoot (%): 0
E Frequency (rad/sec): 13.5
| =4
=) 0 a3
(]
E
02 -1
04 =
08 =
0.8 -
A 1 1 I 1 1 1
-14 -12 -10 -8 -6 -4 -2 0

Real Axis

Figure 5-26: Pole Zero Map for the Controller and Plant Model
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Figure 5-27 shows the model response to a ten-centimeter initial error. When
time is about 0.3 seconds, position should be about (1-0.911)*-0.1 meters, or
approximately -0.0089. The Figure shows that model response is close to thecthleoreti

expectations.

System Response
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Figure 5-27: Model Response with Tuned Controller

The plots show that the model output and theoretical expected response are
similar. The current gains should provide the best response for the car and not send

commands to the servo that over extend the steering mechanism. This system model
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provides a safe starting point to begin testing the smart sensor car per®imanc

following a straight wire.

During testing of the smart sensor car, the final gains were chosen bysiteuri
optimization process. The proportional and derivative gains were adjusted ormaeat a ti
and car performance in following a wire was measured. The gains that produbedtthe

performance were used during the summer academy.
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5.4  Support Equipment

Support equipment is not part of the process while the car is going around the
track, but is a necessary part of the smart sensor car project. Separateesppporent

is required for the software and hardware.

The PIC MCU C Compiler by Custom Computer Services, Inc. provided a
platform to write the code for the real-time executive algorithm. The ¢engaime with
a library of functions that simplified many of the processes, including the RS232
communication. The compiler converted the code into assembly languagerfise f

with other software.

The Microchip MPLAB Integrated Development Environment provided an
interface between the personal computer running the compiler and the hardware that
could connect to the PIC board. The MPLAB IDE software would take the assembly
language file and convert it into machine code for the microcontroller. Theaseftiaen

sent the machine code from the personal computer to the programmer.

The Microchip PICkit 3 programmer provides the hardware interface between the
personal computer and the PIC board. The programmer takes the machine code from the

personal computer and writes it to the memory of the microcontroller.
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5.5 Summary

The PD controller takes a distance measurement from the neural network and
calculates the steering angle to keep the car as close to the trackible pdhe
controller executive software controls the process flow. The control algauthgon a

PIC microcontroller, which requires its own board.
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CHAPTER VI

ELECTRIC CAR

This chapter discuses the electric car. The electric car takes irgatthe PD
controller and provides motion around the track. The car provides the platform for
motion while holding all other components together. Figure 6-1 is the main block

diagram that shows how the components work together.

e 1 PIC :

| FPGA ! 1 I

: Neural I > Controller | !

: | Network | | T :
! e

: Analogto !
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: 1 : Steerin

! Circuit 1 ! g :
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I 1 ] |
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I 1 | |

Figure 6-1: Main Block Diagram
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6.1 Overview

The electric car provides the platform for motion while holding all other
components together. The car is a standard one tenth-scale hobby car andstisels the
motor that came with the car kit. The PD controller sends commands to the car motor
control switch and steering servo. The motor control switch provides current to the
motor, which results in forward motion. The steering servo adjusts the cargtasgle
and the car moves along the track. The car motion moves the sensor board into a new
location with a unique magnetic field. The field generates a new response fragn#te s
conditioning circuit, which is fed through the Analog to Digital (A2D) converéerd
into the neural network. The neural network provides the PD controller with a new
distance measurement, which the PD controller uses to calculate the maxg stegle
and speed commands. Figure 6-2 shows the system functional overview, which describes

how the different system components relate to each other.

System Functional Overview

< Car Motion
Steering Angle
Along Track ”
and Speed Electric Magnetic
—>| PD Controller > Field [
Car
Track
Position Magnetic
Calculation Field coming
from Track
Digital Analog
Sensor Sensor
i ) Sensors and
Readings Analog to Readings :
Neural . Signal
— € Digital | s €
Network Conditioning
Converter .
Circuit

Figure 6-2: System Functional Overview
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6.2 Components

Several components make up the electric car. The chassis is the basic piece tha
holds everything else together. The motor converts current into torque to spin the tires
The batteries provide power for the motor control switch, sensor board, FPGA board and
PIC board. The motor control switch provides current to the motor. The servo steers the
front tires. All of the boards are mounted to the car chassis with the board-mounting

fixture. Figure 6-3 shows the electric car and components.

Electric Car

Sensor
Board

"o\ € Control
Switch

Figure 6-3: Electric Car
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6.2.1 Chassis

The car chassis is a standard one tenth-scale hobby car. This chassimysa Ta
USA TT-01, on-road, shaft driven all wheel drive bathtub chassis. Figure 6-4 shows the

car chassis with the battery, motor control switch, motor and steering servo.

Car Chassis

Car
Battery

—— -.Mu;..'ri.i Allamun
W e B

MotorControl
Switch Board

Figure 6-4: Car Chassis

The steering mechanism for the car chassis is a four bar linkage thatdor

parallelogram. The frame provides the first bar, which can be thought of asthsdey
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of the parallelogram. The two trailing arms form the top and bottom of the
parallelogram. The two trailing arms stay parallel as the carrsgesmngle changes. The
trailing arms have three connection points. The leading edge of each arm idextmec
the frame. The middle is connected to the tire. The third connection is to thegsteerin
linkage. The steering linkage is the fourth bar and fourth side of the parallelogheam
steering servo connects to the linkage to provide animation to the system. Figure 6-

shows the steering mechanism parallelogram drawing.

Steering Mechanism: Parallelogram

Car Frame

Trailing
Arm

Linkage

Figure 6-5: Steering Mechanism Parallelogram
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Figure 6-6 shows a photograph of the car steering mechanism.

Car Chassis Steering Mechanism

OSteering Mechanis

jS‘ENO \—m\(a%

Figure 6-6: Car Chassis Steering Mechanism
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6.2.2 Motor

The car motor is a standard size 540 brushed electric motor that came with the
chassis. The motor has two 14-gage wires with male bullet connector teomsrtati
interface with the motor control switch board. The large wires adequatelieithe
considerable current passing through the motor. Other motors were used in t&sting
rock crawler motor is a low speed high torque motor, which allows the car move slowly.
The rock crawler motor is designed for long periods of use at high torque and low speed
without requiring maintenance. This was useful during the initial stages of deQuggi
Another high-speed racing motor was considered for the summer academy. This motor
required rebuilding per few hours of use, and was designed with an operating point much
faster than the desired speed for the summer academy. The racing nsotot wsed.

Figure 6-7 shows the testing motor in the electric car.

Figure 6-7: Car Motor
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6.2.3 Batteries

The smart sensor car has three battery packs. The first two battesyppacer
the sensor board, FPGA board and PIC board. These are generic 9.6-volt Nizkel-Me
Hydride 8 cell battery packs, rated to last 2000 milliamp hours. These two Isatterie
connect to the main power switch on the board-mounting fixture. The third battery
powers the motor control switch that provides power to the motor. This is a generic 6-
cell 7.2-volt Nickel Cadmium battery, rated to last 2200 milliamp hours. All three
batteries have male two conductor RC battery connector plugs. Figure 6-8 lsows t

three batteries for the smart sensor car.

Car Batteries

Sensor Board Battery
Packs

Car Battery Pack

Figure 6-8: Car Batteries
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6.2.4 Motor Control Switch

The purpose of the motor control switch is to convert the pulse-width modulated
motor drive signal from the PIC microcontroller into current flow from thesbato the
motor. The motor control switch has three connections. The first connection is a pair of
female bullet connectors to connect to the car motor. These connectors arehiged t
motor control switch board with fourteen-gage wire to adequately handle the larg
amount of current flowing through the motor. The second connector is a female two-
conductor RC battery connector plug for use with the 7.2-volt battery pack. The last
connector is a four pin female header to connect to the four pin male header of the PIC
board. Pin one of the header provides the ground reference and pin three carries the
control signal from the microcontroller to the motor control switch board. The control
signal drives the LED side of a 4N33 opti-coupler. The opti-coupler isolates the high
current motor circuit from the more sensitive microcontroller circuit. Theubwatf the
opti-coupler feeds a Darlington pair of bipolar junction transistors. The firstst@anis
a TIP41A. The second transistor is a TIP31C, rated to carry a load of 25 amps
continuously. When conducting, the TIP31C provides a path for the current to flow from
the positive car battery terminal through the motor to the negative car battanyal.
Protection diodes and current limiting resistors help protect circuit componegtse Fi

6-9 shows the motor control switch schematic.
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Figure 6-9: Motor Control Switch Schematic
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The motor control switch board was designed for ease of fabrication while
maintaining the capability of carrying significant currents. Ldrgees are easier to mill

and solder. Figure 6-10 shows the motor control switch board layout.

Motor Control Switch Board Layout

Battery
: Maotor
Connection :
Connection

Headerto
connectto
Microcontroller

| X

Opticoupler

Figure 6-10: Motor Control Switch Board Layout
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The large BJT required a heat sink to dissipate heat during long testingsperiod

Figure 6-11 shows the motor control switch board photograph with part labels.

Motor Control Switch Board Photo

Battery - Motor
Connection / Connection

| :
Opticoupler
F -
) '
| -
.J

¥

_ .
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®
L)
“

Headerto i

connectto
Microcontroller

Figure 6-11: Motor Control Switch Board with Labels

The opti-coupler takes inputs from the microcontroller and sends current to the
Darlington pair of BJTs. The purpose of the opti-coupler is to protect the moreveensi
low current circuit of the microcontroller from the high current circuit ofrtfweor. The
opti-coupler is rated to turn on in five ps, and turn off in 100 us. The TIP41C BJT is the
first transistor in a Darlington pair and provides the current to activatetteepower

transistor. This device has a minimum current gain of 30, a saturation voltage of 0.8
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volts, a bandwidth up to 3 MHz, and can supply up to six amps. The TIP35 is the main
power transistor for the motor control switch and provides the current path from the
battery, through the motor, to ground. It has a minimum current gain of 10, has a
bandwidth up to 3 MHz, and can supply up to 25 amps continuously. The TIP35 has a

collector-emitter saturation voltage of 1.8 volts.

The motor control switch board converts the pulse-width modulated motor drive
signal from the PIC microcontroller into current flow from the positive side of ttierpa
through the motor to the negative side of the battery. Figure 6-12 is a guide talataere

was collected for the motor control switch plots.
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Guide to Motor Control Switch Plots
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Figure 6-12: Guide to Motor Control Switch Plots
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Figure 6-13 shows the microcontroller signal and opticoupler command. To
adjust the current needed to trigger the opticoupler, the 10-kOhm resistor in timatche

was replaced with a 671-Ohm resistor, resulting in a much lower voltage conainigant

top of the diode of the opticoupler.

Microcontroller Signal and Opticoupler Command

e S 5 : . 4 2

Microcontroller Signal
—©&— Opticoupler Command

Volts
n
T

Time in mSec

Figure 6-13: PIC Microcontroller Signal and Opticoupler Input
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Because of the low speed needed for the operations of the smart sensor cars,

neither of the BJTs were supplied enough current to saturate them. The result of

operating in the transition phase was that both devices generated considerable heat.

Figure 6-14 shows the two signals going into the base terminals of the two BJT

Microcontroller Signal and BJT Inputs

—— Microcontroller Signal
Small BJT Input
—&— Large BJT Input

Volts

|
6

Time in mSec

10

Figure 6-14: Microcontroller Signal and BJT Base Terminal Inputs
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Figure 6-15 shows the voltages on the positive and negative terminals of the car
motor. Note that when the microcontroller signal changes it has little iropdbe
voltage across the motor. This signifies that the control signal pulse windtwarts

enough to allow the motor to run smoothly.

Microcontroller Signal and Motor Terminal Connections

Microcontroller Signal
—&— Positive Motor Terminal
Negative Motor Terminal

Volts
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Figure 6-15: Microcontroller Signal and Motor Terminal Connections
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Figure 6-16 shows a photo of the motor control switch connected to the battery
and car motor. During operation, the motor control switch board is attached to the top of

the servo.

Motor Control Switch Connections

Car Battery

Motor
Control
Switch

Microcontroller
Board

Figure 6-16: Motor Control Switch Connections
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6.2.5 Servo

The car servo is a generic Tower Hobbies TS-53 standard servo. A one to two
millisecond pulse with a twenty-millisecond window controls the servo. A pulse of 1.5
milliseconds will drive the servo to have the wheels straight forward. Alisenond
pulse will drive the servo to have the wheels turn left by 30 degrees. A 2 roificsec
pulse will drive the servo to turn the wheels right 30 degrees. Figure 6-17 shows the

connection of the servo to the steering mechanism.

Servo Connection to Steering Mechanism

Steering Mech

.

J \,\T\\‘ E

Figure 6-17: Car servo Connection to Steering Mechanism
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6.3 Board Mounting

The main block diagram in Figure 6-18 shows the major components of the smart
sensor car. The sensor board is attached with screws to the electriogane$oard-
mounting fixture. The signals from the sensor board go to the A/D converter using a
RJ45 connector. The A/D chip and neural network are on the FPGA board and connected
by traces. The neural network sends the position calculation to the microcobiwalidr
over RS232 communication. The microcontroller transmits the steering commaed to t

servo through a three-pin header.
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Figure 6-18: Main Block Diagram
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Figure 6-19 shows the assembled car.

Assembled Car with Boards
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; RlJ45
. Connector 4

Control
Switch

Figure 6-19: Assembled Car with Boards
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The sensor board is discussed in detail in chapter 2. Figure 6-20 shows the
connections for the sensor board. The sensor board is connected to the board-mounting
fixture by screws. Signals and power for the sensor board go through an RJ4faeight
eight connect header. Pin 1 carries the first output of the multiplexer, whichogbes t
first channel of the A/D converter. Pin 3 carries the second output of the multjplexer
which goes to the second channel of the A/D converter. Pins 2, 4, and 5 are connected to
the sensor board ground. Pin 6 carries the multiplexer select pin from the FPGAoboard t

the multiplexer. Pin 7 connects to positive power and pin 8 connects to negative power.

Sensor Board Connections
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RJ45 Connector
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Mounting
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Figure 6-20: Sensor Board Connections
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Figure 6-21 shows the FPGA board connections. The first connection is power
and ground. This is a 2.1mm plug connection and comes from the board-mounting
fixture. The next connection is a three-pin header that carries the two outputbdrom
multiplexer as well as a connection for ground. The third connection is a single pin
header that the FPGA board uses to transmit the multiplexer selegtiah sThe fourth
connection is the DSUB 9 connector that carries the RS232 communication to the
microcontroller board. This communication is sent through a null modem adapter. The
FPGA board is fastened to the board mounting fixture with a hook and pile fastener

underneath the board.

FPGA Board Connections
7 ] \\;T ‘1;Eip' ‘P
| y ///ﬁ;;‘ :‘

DSUB 9
Connector

A/D 3 Pin
Header

Figure 6-21: FPGA Board Connections
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Figure 6-22 shows the four microcontroller board connections. It receives the
RS232 position calculation through the null modem adapter. Power and ground come
from a two-pin header from the board-mounting fixture. The microcontroller board
controls the servo with a three-pin header. Pin 1 is ground, pin 2 carries five Volts, and
pin 3 carries the steering servo signal pulse. The microcontroller comatesweith the
FPGA board using RS232 communication, which it transmits with the DSUB9
connection through a null modem adapter. The microcontroller sends the motor control
signal to the motor control switch board using a four-pin header. Pin 1 is connected to
ground and pin 3 carries the motor control signal pulse. Pins 2 and 4 are not connected.
The microcontroller board is physically held in place by screws connecting the
microcontroller board to the null modem adapter and screws connecting the null modem
adapter to the FPGA board.

Microcontroller Board Connections

3 Pin
Servo ——
Cantrol

v "
Null Modem
Adapter

DSUB9
Connector

Figure 6-22: Microcontroller Board Connections

232



6.4 Summary

This chapter has described the hardware components of the electric car, whi

forms the platform for the neural network smart sensor demonstration system.
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CHAPTER VII

SUMMER SOFT SENSOR ACADEMY

This chapter discuses the summer soft sensor academy. This summer
academy for local high school students provides an opportunity for them to learn
about science and engineering. Various activities demonstrate basieezmy

concepts.
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7.1 Overview and Academy Obijectives

The summer soft sensor academy has two main objectives. The primary objective is to
introduce students to the idea of smart sensors using neural networks. The students are shown
that neural networks can be implemented in digital logic on a FPGA. The secondary objective is

to show that science and mathematics are important to engineering.
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7.2 Activities

The summer academy is divided into five training modules, each covering
different concepts from engineering and science. The first module focuses on
electromagnetic sensors and different ways to visualize a mage#tic Tihe second
module covers data fitting and using data fitting software. The fourth modubgrespl
the basics of digital circuits. The third and fifth modules introduce the basic centept

neural networks and how to train them.
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7.2.1 Electromagnetic Sensors

During the electromagnetic sensors module, the students have a chance to work
with different electromagnetic sensors and magnetic fields. The threesstreso
students use are a compass, a coil of wire and a 33 milli-Henry inductor. The three
magnetic field sources are a bar magnet, a steady moving current througlpawered
by a voltage source and the third source is a time varying magnetic field prodwueced by
function generator driving a sine wave through a wire. In the first block, they use a
compass to map the magnetic field lines coming from a permanent bar magnet. In th
second block, they use a simple piece of wire rolled into a coil. They move the bar
magnet through the wire coil. The time varying magnetic field inducesentin the
coil, which they observe with an analog voltage meter and digital oscillosaoiee |
third block, the students use a power supply to produce current flow inside a wire to
generate a magnetic field. A compass next to the wire will have a clmangedle
directions as they toggled the power supply on and off. The students complete three
experiments that use a function generator to provide a time varying cloweméesulting
in a time-varying magnetic field. In the fourth block, they use the coil of wiobserve
that magnetic fields have directionality. They observe this by changimgiédmtation of
their loop with respect to the source wire. The next experiment uses the cudtoyre
with the strongest response to observe the effects of distance betweehdhd source
wire. These experiments are repeated using an inductor to replace the leahdicei
Next, the inductor is used in data collection. The students put a block of wood with a
ruler taped on top over the top of the wire. They use the ruler to measure horizontal

distance between the center of the inductor and center of the source wire. cbney re
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the average peak-to-peak voltage across the inductor measured by thscopal With
each voltage reading, they also record the inductor horizontal distance awalgdrom t

wire.
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7.2.2 Data Fitting

The second module focuses on data fitting activities. The first activigsis b
function plotting. The next activity is fitting a line to data. The students then learn how
to use software to fit a function to the data. Next, the students make a plot datheir
from the electromagnetic sensors module and model the data with a curve. tHtedirs
of this process used distance as the independent variable and voltage as the dependent
variable. The students are then asked to invert the relationship between voltage and
distance. Finally, the students are asked to predict optimal sensor spaeshg#seir

collected data and models.
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7.2.3 Neural Networks

The third module introduces the students to the application of neural networks to
data fitting. First, the students learn about the basic structure of neuronsidenities
between the biological and artificial neurons. The students have a chance toitvork w
single layer and multilayer networks to observe how changing network parauchetes
the network output. Students then adjust the network parameters by hand to fit the
network output to the data collected in the first module. Finally, the students learn how

to use software to train the neural network to fit the data.
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7.2.4 Diqital Circuits

The fourth module provides an opportunity for students to learn about digital
circuits. The module begins with an introduction to binary numbers. Next, the students
learn the basics of Boolean algebra. The students apply this knowledge to design
combinational circuits. The students are then given a basic circuit desigegaireadl
hardware to assemble the circuit and test its functionality. The module cawalitldle@n
introduction to sequential logic basics, such as how a flip-flop works and how to read a

timing diagram.
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7.2.5 Training the Brain

During this module, the students train a neural network. The process begins with
data collection. The students record car position and sensor readings atiseatoals.
They use this data to train the neural network with the training software. Thearketw
learns to produce the car position from the four sensor readings. Finally, thestudent
validate the network performance by comparing the trained network respdhse t
collected data. The students also use interpolated data to check for over §tting, a

discussed in chapter four.
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7.2.6 Race Day

On the last day of the summer academy, the students have the opportunity to
observe a performance evaluation of their smart sensor car systemsmaectois
measured with three tests. The first test is a static measuremarier & taped over the
wire in the same configuration as data collection. The car is moved to severahposit
along the ruler. At each position, the error between the physical car loaadidimea
position calculated by the smart sensor car is recorded (as shown on there@baof
the FPGA board). The total squared error for each car is calculated andhi thae
lowest total error wins the challenge. The second test is following a linehi&tedt, a
ten-foot long piece of paper is placed over a straight run of the wire track.aphare
removed from the markers on the front of the cars to allow the cars to mark their paths
The students run the cars down the wire. The car that stays closest to¢heeenins
the challenge. The third and final test is time to complete a lap. A simglérack is
laid out on the floor. Each team records three lap attempts. The shortest lapthme
three is kept for each team. The team with the shortest single lap tim#evins
challenge. This module focuses on performance evaluation. It displays howndiffere

tests show different performance characteristics

243



7.3 Summary

The summer soft sensor academy provides local high school students a chance to
learn about engineering by working with soft sensors. The academy has modules
focusing on five separate engineering concepts. The first module is about
electromagnetic sensors and different ways to visualize a mage#tic Tihe second
module is about data fitting and using data fitting software. The fourth modules ¢bege
basics of digital circuits. The third and fifth modules cover the basic corufapsiral
networks and how to train them. The academy ended with a competition comparing

system performance.

244



CHAPTER VI

SUMMARY AND FUTURE WORK

This chapter is a summary of the thesis and project. The chapter begins with
chapter summaries, followed by a description of the author’s contributions to the.projec
The chapter ends with a discussion of some possible future work with the project

components.
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8.1 Summary of Thesis

The first chapter is an introduction to the project. The chapter begins with the
system overview and description of the main block diagram. The chapter providds a brie
project history and describes the current state of the project. The chaptesntarals

outline of the rest of the thesis.

Chapter two covers the sensors and signal conditioning circuit. It describes the
magnetic field and sensors to detect it. It also describes the signal@unditircuit,
defining the circuit components, how they were tested and the fabrication ofritesl pri
circuit board. The sensors and signal conditioning circuit provide a path for information
about the magnetic field to travel to the A/D converter. The sensors and components for
the signal conditioning board are common and readily available from local vendors and
can be used with prototyping boards. Inductors are a good choice for sensing a magnetic
field because they are readily available, have been used for this applicétia; aed
their output can be measured as a voltage. Proto-board testing reduced the likelihood of
problems during printed circuit board development. Printed circuit boards aretiedm

of choice for the final implementation of the signal conditioning circuit.

Chapter three focuses on the A/D converter. It describes the on-board leardwar
and off-board multiplexer operation, control of the A/D conversion and how the A/D
conversion process was tested. The A/D conversion provides the neural network with
sensor readings by converting the input voltages to digital numbers. This progesssre

hardware and software. Most of the hardware came with the FPGA boardgeénie!
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and a process to control the hardware enables the A/D FSM to do its job which

contributes to the smart sensor car being able to follow a wire.

Chapter four is about the artificial neural network. It begins by providing basi
information about the artificial neural network implemented on the smart sensor car
Next, It describes the FPGA implementation of the neural network, showiimg
diagrams for the process. The neural network maps four sensor readings into a car
position calculation. The neural network changes the outputs of the A/D converter into
the acceptable input for the PD controller. The neural network calculates fesitanm
serially, doing one arithmetic step at a time. Training helps ensureuha network
calculates the car position correctly. The master FSM has some rabadifgthat allow
it to interface with a computer to collect training data. In order to ensenecural
network, master FSM, A/D FSM and all other code components work together properly,

software support equipment is required.

Chapter five describes the PD controller. The chapter describes how the
controller is implemented and explains how the controller works. The chapter also
describes the modeling process used to design controller parameters. ddrwrieher
takes a distance measurement from the neural network and calculates thg atege
to keep the car as close to the track as possible. The controller executiveesoftwa
controls the process flow. The control algorithm runs on a PIC microcontroller, which

requires its own board.
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Chapter six describes the electric car. The electric car is médenany
standard components. These components work together to provide motion around the
track. The components share signals through various connections. The board-mounting

fixture holds the components together.

Chapter seven describes the summer soft sensor academy. The summer soft
sensor academy provides local high school students a chance to learn about eggineerin
by working with soft sensors. The academy has modules focusing on five separate
engineering concepts. The first module is about electromagnetic sengaliferent
ways to visualize a magnetic field. The second module is about data fitting agdiata
fitting software. The fourth module covers the basics of digital circuitsthifteand
fifth modules cover the basic concepts of neural networks and how to train them. The

academy ended with a competition comparing system performance.
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8.2  Author’s Contributions to Project

The author’s contributions began during the Fall of 2009 by assisting Amanuel
Assefa with the Xilinx software to change the FPGA code to read in four s@msbrs
control the multiplexer. This included mapping the states of the Master FSM and A/D
FSM. The author learned Chipscope and used it to monitor code execution on the FPGA
to verify the proper operation. The author also assisted with regeneration of cores using

the CoreGen software modules.

In the Spring of 2010 the author began work on the rest of the smart sensor car.
This began with collection of basic characteristics about how the inductor behtdves
the magnetic field generated by the function generator. This provided astanderg
of how to set up the different test fixtures. The next step was the introduction of op amp
circuits. This allowed the development and tuning of a circuit to condition the output of a
single sensor using a bread board. The experiments used different circuidiffsiagt
components in different configurations. The author then developed a printed circuit
board design and had it manufactured. The author populated the professionally
fabricated board and tested it. The author integrated the FPGA board and sensor board
together and verified the timing for the multiplexer. After the sensor board &W FP
were able to generate consistent results from bench power, the author develmpesha s
to power the boards from batteries, which is the desired configuration to support the
smart sensor car. The initial system suffered from noise issues on the pogmigsion
lines. This was resolved by decoupling and isolation. The next component was the
motor control switch. The author designed a circuit using a Darlington pair of BJTs
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driven by an opticoupler. After the individual components were ready, the author
designed and fabricated the board mounting fixtures. Once all the system component
were working together, the author modeled the smart sensor car to obtain PDezontroll
gains. The author worked with Dr. Hagan to modify the microcontroller code to match
the car steering and motor performance. A total of five cars were produchd thags.
During the summer academy, the author assisted students with modules and @gnipme
the lab. The author contributed to some of the writing for the summer academy
documents. The author instructed students about how to use the smart sensor cars and
assisted them as needed. After the summer academy, the author documeygtshall s

components.
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8.3 Future Work

The smart sensor car provides a flexible platform for future work with FRGA
neural networks, control systems and other physical implementations. Futuotsproje
could include work with the sensor board, A/D converter, neural network, controller and

electric car.

The sensor board provides a means to gather information about the outside world
and provide feedback in signals that can be converted by A/D converters. The sensor
board currently uses inductors as antennas. There may be more effective osehdre
antenna designs than the basic coil. Another possible project would be to alter the
number or placement of the sensors. This could be as simple as doubling the number of
sensors and reducing the sensor spacing from two inches to one inch. The project could
investigate using two rows of sensors to calculate the angle between dmel the wire.
Another option would be to change the signal conditioning circuit. This project could
involve experiments with different components that would allow manual or automatic
tuning of individual sensors to provide a more consistent response. The project could
also explore ways to build a conditioning circuit that could tune itself to adjust to

automatically to changes in the track.

The A/D converter translates information from the outside world in the form of
voltages into digital numbers the components on the FPGA can use. One future project
could be to eliminate current redundant processes from the A/D FSM. Another project

could add a filter to the A/D readings. Because the Spartan 3E starter kit hed unus
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serial peripheral interface ports, it would be possible to incorporate more éstsrah
A/D converters. A more complicated project could build a FPGA board with parallel

A/D converters.

The current serial neural network design has been used in two projects and could
be useful in many more. One possible change to the neural network code would be to
change the implementation of the network. The current code is build around a single
neuron with a single input. The three other possibilities are a single neunomuliiple
inputs, multiple single input neurons and multiple neurons, each with multiple inputs.
Each of these structures could provide the same functionality as the curtretirstr
Another option that would maintain the functionality would be to implement different
types of neural networks, such as a radial basis network. An added function to the neural
network could be a filter on the calculation. Another option would be to incorporate the
calculation of the angle between the car and wire. The neural network caulealsed
to calculate the steering angle or even servo command. This would reduce the need for

extra components and calculations.

The controller takes the position calculation from the neural network and converts
it into commands for the car. The current PD controller could be implemented on the
FPGA. Once on the FPGA, more elaborate controllers could be experimented with.
Another project could be to use the existing controller for steering while incorgpra
speed control. A follow on project to that could be to incorporate breaking. A different

project could allow the controller to identify when the car is too far away frertrabk
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to sense the wire. The second part of this project could be to introduce a way for the ca

to begin a search for the lost wire.

The electric car takes inputs from the controller and provides motion to the
system. The forward velocity source provides many opportunities for projects. The
current motor control switch could be replaced by a half H bridge to allow breakiag, or
full H bridge to allow the car to change directions. Another project could explore ways
to increase efficiency of the system by using different chassis widnett drive
configurations. Also, different power sources such as fuel cells or solar pandi®eoul
investigated. A similar platform could also utilize an internal combustion ratitaving
different experiments with bio-fuels. A different experiment could be to nhekixed
wheels the front of the car and the articulated wheels the rear of the dlar, imost
industrial forklifts. Another experiment could be to use a chassis with front and rear
wheel articulation. A related project could be to explore a chassis that lhfdimeand
rear wheels and center articulation or the chassis. The smart sensonpositi
measurement and steering control could also be used with different platfdnss. T
system could be transferred to a tracked platform, a two or three wheel platfawen

a walking robot.

The current system is capable of making a circle around the track. One simpl
project could be to add a battery powered web cam to the car to monitor the system as i
goes around the track. A follow on project could be to allow user feedback to shut off the
car if they see it go off the track. A different project could be to broadcast othe
information such as sensor readings, position calculations and steering commands.
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APPPENDICES

Appendix A: Code for Master FSM to Calculate a Position
begin
if rising_edge(CLOCK) then
case state is

when IDLE =>
Enable_Network <="0";
nd_fixed2floatl <="'0";
nd_fixed2float2 <="'0",
nd_fixed2float3 <="'0",
nd_fixed2float4 <="'0";
NN_data (15 downto 0) <= (others =>'0");
rs232_receiver_rst <="'0";
next_state <= WAIT_RECEIVE;

when WAIT_RECEIVE => -- wait for RS232 data
led(3 downto 0) <="0001";
if (rs232_receiver_stb ='1') then -- data done
rs232_receiver_rst <="'1";
train_mode <='0";
next_state <= START_ADC;
else
next_state <= WAIT_RECEIVE; -- receiving data
end if;

when START_ADC =>
ce_amp <="1"; --active high
start_conv <="1";
next_state <= ADC,;

when ADC =>

if ADC_DONE ='1' then
next_state <= ADC2FIXED;
ce_amp <='0"; --active low
start_conv <="'0';

else
next_state <= ADC;

end if;
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when ADC2FIXED =>
nd_fixed2floatl <="1",
next_state <= FIXED2FLOAT1Z,;

when FIXED2FLOAT1 =>  -- fixed to float 1
nd_fixed2floatl <="'0";
if (rdy_fixed2floatl = '1") then
P1 <= fixed2float_resultl;
nd_fixed2float2 <="1";
next_state <= FIXED2FLOAT?2;
else
next_state <= FIXED2FLOAT1Z,;
end if;

when FIXED2FLOAT2 =>  -- fixed to float 2
nd_fixed2float2 <="0";
if (rdy_fixed2float2 = '1") then
P2 <= fixed2float_result2;
nd_fixed2float3 <="1";
next_state <= FIXED2FLOATS;
else
next_state <= FIXED2FLOAT?2;
end if;

when FIXED2FLOAT3 =>  -- fixed to float 3
nd_fixed2float3 <="'0";
if (rdy_fixed2float3 = '1') then
P3 <= fixed2float_result3;
nd_fixed2float4 <= "1,
next_state <= FIXED2FLOAT4;
else
next_state <= FIXED2FLOATS;
end if;

when FIXED2FLOAT4 =>  -- fixed to float 4
nd_fixed2float4 <="'0";
if (rdy_fixed2float4 = '1") then
P4 <= fixed2float_result4;
next_state <= WRITE_ADC_ DATAI1;
else
next_state <= FIXED2FLOAT4;

end if;

when WRITE_ADC_DATAL => -- 1 clock cycle every tim
Enable_network <="'0";
ce_RAM <="11
RAM_DATA <= P1;
RAM_ADDR <="0000"; -- P1 address
next_state <= WRITE_ADC_DATAZ,;
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when WRITE_ADC_DATAZ2 => -- 1 clock cycle every tim
RAM_DATA <= P2;
RAM_ADDR <= "0001"; -- P2 address
next_state <= WRITE_ADC_DATAS;

when WRITE_ADC_DATA3 => -- 1 clock cycle every tim
RAM_DATA <= P3;
RAM_ADDR <="0010"; -- P3 address
next_state <= WRITE_ADC_DATA4;

when WRITE_ADC_DATA4 => -- 1 clock cycle every tim
RAM_DATA <= P4;
RAM_ADDR <="0011"; -- P4 address
next_state <= WRITE_ADC _DONE;

when WRITE_ADC_DONE =>
ce_RAM <=0}
next_state <= START_NN;

when START_NN =>
Enable_Network <="1";
next_state <= NN;
counter <= (others =>"'0");

when NN =>

if rdy_NN ="1" then
next_state <= FLOAT2FIXED;
NN_Data <= N;
Enable_Network <="0";
nd_float2fixed <="1";

else
next_state <= NN; -- NN

end if;

when FLOAT2FIXED =>
if (rdy_float2fixed = '1") then
nd_float2fixed <='0';
next_state <= START_RS232_Hl;
else
nd_float2fixed <= "1,
next_state <= FLOAT2FIXED;
end if;

when START_RS232 HI =>
counter <= (others =>"'0");
rs232_sender_stb <="'1"; -- start pulse on
rs232_sender_dat <="000"&NN_fixed (12 downto 8);
next_state <= RS232_Hl;
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when RS232_HI =>

counter <= counter + 1;

if rs232_sender_ack ='1' then
rs232_sender_stb <="'0'; --start pulse off

elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR (system_speed/baudrate*10, 20 ) then

next_state <= START_RS232 LO;

else
next_state <= RS232_Hl;

end if;

when START_RS232_LO =>
counter <= (others =>"'0");
rs232_sender_stb <="1"; -- start pulse on
rs232_sender_dat <= NN_fixed (7 downto 0);
display_data (12downto0)<=NN_fixed(12downto0);
next_state <= RS232_LO;

when RS232 LO =>

counter <= counter + 1;

if rs232_sender_ack ='1' then
rs232_sender_stb <="'0"; --start pulse off

elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR (system_speed/baudrate*10, 20 ) then

next_state <= IDLE;

else
next_state <= RS232_LO0O;

end if;

end case; -- state
end if; -- clock

end process sensor_state_machine;

ADC1 fixed <= ADC1(13) & ADC1(13 downto 2);
ADC2_fixed <= ADC2(13) & ADC2(13 downto 2);
ADC3_fixed <= ADC3(13) & ADC3(13 downto 2);
ADC4 _fixed <= ADC4(13) & ADC4(13 downto 2);
state <= next_state;

RS232 DCE_TXD <=RS232 TX_ out;
SPI_AMP_SHDN <='04

DAC_CS <="1"; -- could not find in chipscope
SPI_SS B <="1"

gain <= "00010001";

end Behavioral;
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Appendix B: Code for A/D FSM

when IDLE =>
MUX_SELECT <="0"
AMP_CS <="1"
counter <=0;
if ce_amp ="1' then
next_state <= START;
else
next_state <= IDLE;
end if;

when START =>
AMP_CS <="0"; --turn amp on
next_state <= STARTZ;
index1 <= 7; -- 8 bit value

when START2 =>
MOSI <= gain(index1);
next_state <= Hl;
bit_count <= 0;

when HI =>
SCK <="1%
counter <= counter +1;
if counter = 2 then
next_state <= HI_DUMMY;
else
next_state <= Hl;
end if;

when HI_DUMMY =>
counter <=0;
bit_count <= bit_count + 1;
index1 <= index1-1;
next_state <= LO;

when LO =>
SCK <="0"
counter <= counter +1;
if counter = 2 then
next_state <= LO_DUMMY;
else
next_state <= LO;
end if;
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when LO_DUMMY =>

counter <=0;

if bit_count = 8 then
next_state <= FINISH;

else
MOSI <= gain(index1);
next_state <= Hl;

end if;

when FINISH =>
next_state <= IDLE_AD;
AMP_CS <="1"
SCK <="0%
MOSI <="0';

when IDLE_AD =>
if start_conv ='1' then
next_state <= START_AD;
else
next_state <= IDLE_AD;
end if;

when FINISH =>
next_state <= IDLE_AD;
AMP_CS <="11
SCK <="0"
MOSI <="0"

when IDLE_AD =>
if start_conv ='1' then
next_state <= START_AD;
else
next_state <= IDLE_AD;
end if;
CONV <="04
prime <=1
MUX_SELECT <="'0"

when START_AD =>
SCK <="0%
CONV <="1"
counter <= -1;
index1 <= 13; -- 14 bit value
index2 <= 13; -- 14 bit value
next_state <= HI_AD;

when HI_AD =>
SCK <="1"
CONV <="0"
counter <= counter +1;
next_state <= LO_AD;
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when LO_AD =>
SCK <="0"
if prime ='0" and mux_sel ='0' then
if(counter > 2 and counter < 17) then
ADC1(index1) <= SPI_MISO;
index1 <= index1 -1;
elsif(counter > 18 and counter < 33) then
ADC2(index2) <= SPI_MISO;
index2 <= index2 -1;
end if;

if counter = 34 then -- DONE
next_state <= FINISH_AD;
else
next_state <= HI_AD;
end if;

elsif prime = '1' and mux_sel ='0' then
if counter = 34 then -- done priming
prime <='0";
next_state <= START_AD;
else
next_state <= HI_AD;
end if;

elsif prime ='0" and mux_sel ='1' then

if(counter > 2 and counter < 17) then
ADC3(index1) <= SPI_MISO;
index1 <= index1 -1;

elsif(counter > 18 and counter < 33) then

ADC4(index2) <= SPI_MISO;
index2 <= index2 -1;
end if;

if counter = 34 then -- DONE
ADC_DONE <="1"
next_state <= FINISH_AD;

else
next_state <= HI_AD;

end if;

elsif prime ='1' and mux_sel ='1' then
if counter = 34 then -- done priming
prime <="0";
next_state <= START_AD;
else
next_state <= HI_AD;
end if;
end if;
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when FINISH_AD =>

counter <= 0;

MUX_counter <= 0;

SCK <="0%

CONV <=0

if MUX_SELECT ="0' then
prime <="'1";
MUX_SELECT <=1
next_state <= MUX_SWITCH_1;

else
next_state <= IDLE;

end if;

when MUX_SWITCH_1 =>
MUX_counter <= MUX_counter + 1;
next_state <= MUX_SWITCH_2;

when MUX_SWITCH_2 =>
if MUX_counter = 100 then
next_state <= START_AD;
else
next_state <= MUX_SWITCH_1;
end if;

when others =>
MUX_SELECT <="'0"
mux_sel <="0;
SCK <="0%
CONV <="01
AMP_CS <="1%
MOSI <=0
next_state <= IDLE;
end case;

end process;
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Appendix C: Code for Neural Network FSM

process (CLOCK)
begin

if CLOCK ='1"and CLOCK'event then
if WRITE_INPUT ="'0" and Enable_Network ='0' the

a_addr_tmp <=
p_addr_tmp

w_addr_tmp

b_addr_tmp

shift_addr_tmp <= "0000";
input_base_tmp <= "0000";
input_num_tmp <=

"0011";

<="0000";
<="00000";--
<="0000"

"0000";

neuron_num_tmp <= "0000";

R_S1 flag
cuenta_tmp
b_0

r

sl

q_tmp
rdyQ_tmp
flag_tmp
write_ena
nd_tmp
start_tmp
start_flag_tmp <="0";

<="00":
<="00";
<="0000000000000000";
<="0011";
<="0000";
<='0%
<='0"%
<='1"
<='0%
<="0%
<='0"%

completion_flag tmp <="1"

enable_tmp <=
init_flg_tmp <='1%
ram_b_input <=
write_enb

IOI;

"0000000000000000";

<='0%

elsif WRITE_INPUT ="1" and Enable_Network ="'0'

ram_b_input
p_addr_tmp <=
write_enb

rdyNN_tmp

elsif WRITE_INPUT ='0'

-and Enable_Network ='1' and
rdyNN_tmp
a_addr_tmp <
p_addr_tmp
w_addr_tmp
b_addr_tmp
shift_addr_tmp <= "0000";
input_base_tmp <= "0000";
input_num_tmp <=

<= INPUT_DATA;

INPUT_ADDR;
<='1Y
<='0%

S1="1111"then
<="1%
"0011";
<= "0000";
<="00000
<="0000";

"0000";

neuron_num_tmp <= "0000";

R_S1 flag
cuenta_tmp
b_0

r

sl

q_tmp

<="00";
<="00";
="0000000000000000";
<="0011";
<="0000";
<='0%
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rdyQ_tmp <='0%

flag_tmp <='1"%

write_ena <='0%

nd_tmp <='0}

start_tmp <='0"
start_flag_tmp <='0}

completion_flag_tmp <="1"

enable_tmp <='0%

init_flg_tmp <='1"%

ram_b_input <= "0000000000000000";
write_enb <='0"

elsif WRITE_INPUT ='0'

-and Enable_Network ='1' and S1 /="1111" then

ram_b_input <= zero;
write_enb <='0"Y
rdyNN_tmp <='0}

-- The neural network should only run when told to,
-- tell the controling system it is done by setting

-- When we are at the end of the shiftrom (1111),
--setrdy _nnto'l'

--if (r = "1111") then

-- rdyNN_tmp <="1";

--end if;

-- When an addition is completed, update b_0.
-- We don't want to do this during an addition, bec
-- intermediate values will be wrong.

if (rdyAD_tmp ='1") then
b0 <=b_tmp;
end if;

-- Select either bias or partial n to be added to w
-- When input_num is zero, bias is added.
-- When input_num is not zero, then partial n is ad

if input_num_tmp = "0000" then
if flag_tmp ='1" then

g_tmp <='0%
rdyQ_tmp <='1%
flag_tmp <='0%

end if;

if (rdyQ_tmp ="'1") then
b 0 <=b_tmp;
rdyQ_tmp <='0%
g_tmp <='1%
g2_tmp <="1"

end if;

if (q2_tmp ="'1") then
write_ena <='0%
g2_tmp <='0,

end if;

else
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flag_tmp <='1"%
end if;

--When R_S1 flag is 00, then R is read from the sh

if R_S1 flag = "00" then

if (nd_tmp ='0" and rdySH_tmp ="'0") then

nd_tmp <='1ly
else

if (rdySH_tmp ='1" and nd_tmp ="'1") then

nd_tmp <='0";
r <= memory_tmp;

R_S1 flag<=R_S1 flag +"01";

end if;
end if;
end if;
--When R_S1 flagis 01, then S1 is read from the s

if R_S1 flag = "01" then

if (nd_tmp ='0" and rdySH_tmp ="'0") then

shift_addr_tmp <= shift_addr_tmp + "0001";
nd_tmp <='1%
else
if (rdySH_tmp ="1" and nd_tmp ="'1") then
nd_tmp <='0";
sl <= memory_tmp;
R_S1_flag <="11"
end if;
end if;
end if;

--When R_S1 flag is 11, then we continue to comput

-- sums until all inputs have been applied, and the
-- neuron outputs until all of the neurons in the ¢

-- have been computed. Then we set R_S1 flag back t

-- restart.
if R_S1 flag="11"then

-- When addition is complete, check that all other
-- completed - end of neuron, end of layer. comple
-- will be 1 until all events are complete, then it

if (rdyAD_tmp="1") then
completion_flag_tmp <="1";
enable_tmp <="0";
start_tmp <="1",

end if;

-- Wait two clocks to be sure that the addresses ha
-- before starting the neuron calculation.

if start_flag_tmp = '1' then

cuenta_tmp <= cuenta_tmp + 1;

if cuenta_tmp = "10" then
start_tmp <='04
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start_flag_tmp  <='0
cuenta_tmp <="00";
end if;
end if;

--completion_flag_tmp will be 1, if an addition has been
-- completed, or if we are on the initial pass.

if (completion_flag_tmp ='1") then
-- The following if is for the first time. It is on ly done once.

if init_flg_tmp = '1" then

init_flg_tmp <='0}
start_tmp <='1"
enable_tmp <='1%
start_flag_tmp <='1l}
completion_flag_tmp <='0%
else --init_flg_tmp
-- When the input # eq r, start the tansig conversi on.

-- The conversion starts when a_eq_b_temp is 1.

if input_num_tmp =r then
a eq_b_tmp<='1}

end if;
--We wait until rdyTF is 1, if we are at the last i nput.
--If we are not at the last input, we update the ad dresses

--and start the next input calculation.

if ((rdyTF_tmp ='1")
-or (not(input_num_tmp =r))) then

completion_flag_tmp <='0%
enable_tmp <='1}
w_addr_tmp <=w_addr_tmp + 1,
start_flag_tmp <='14
start_tmp <="1Y

--If we are at the last input, start a new neuron

if (input_num_tmp =r) then
a_eq b tmp <='04
write_ena <='1l%
input_num_tmp <="0000"
a_addr_tmp <=a_addr_tmp + 1;
b_addr_tmp <=b_addr_tmp + 1;

--If we are at the last neuron, start a new layer.

if neuron_num_tmp = sl then
input_base_tmp <= input_base_tmp+r+1;
neuron_num_tmp <= "0000";
R_S1_flag <="00";
p_addr_tmp <=input_base tmp+r+1;
else
neuron_num_tmp <= neuron_num_tmp + 1;
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p_addr_tmp <=input_base tmp;
end if; --neuron_num_tmp

--If we are not at the last input, update the input #.

else ----input_num_tmp
input_num_tmp <= input_num_tmp + 1;
p_addr_tmp <=input_num_tmp +
input_base_tmp +1;
end if; --input_num_tmp
end if; --rdyTF_tmp
end if; --init_flg_tmp
end if; --completion_flag_tmp
end if; --R_S1 flag ='11'
end if; -- write/enable_network
end if; --CLOCK
end process;

not_q_tmp <= NOT g_tmp;

N <= n_tmp;

A <=a_tmp;

P <= p_tmp;

B <=b_tmp;

B_OUT <=b_0;

W <= w_tmp;

OuT B <=out_b_tmp;

B_ADDR <=a_addr_tmp;

SHIFT_ADDR <= p_addr_tmp; -- NOTE SWITCH

INPUT_BASE <= input_base_tmp;
INPUT_NUM <= input_num_tmp;
NEURON_NUM <= neuron_num_tmp;

Q <= q_tmp;

RDY_Q <= rdyQ_tmp;
RDY_AD <= rdyAD_tmp;
RDY_SH <=init_flg_tmp;
RDY_TF <=rdyTF_tmp;

A EQ B <=a_eq_b_tmp;
FLAG <= write_ena;
R_OUT <=r;

S1_OuUT <=sl;

R _S1 FLG <=R_S1 flag;
MEMORY <= memory_tmp;
ND <= start_flag_tmp;
WRITE_A <= write_ena;
START <= start_tmp;
CUENTA <= cuenta_tmp;
COMPLETION <= completion_flag_tmp;
ENABLE <= enable_tmp;
RDY_NN <= rdyNN_tmp;

end Behavioral;
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Appendix D: Code for Master FSM to Transmit Training Data
begin
if rising_edge(CLOCK) then

case state is

when IDLE =>
Enable_Network <="0";
next_state <= WAIT_RECEIVE;
rs232_receiver_rst <=0

when WAIT_RECEIVE => -- wait for RS232 data
if (rs232_receiver_stb ='1") then -- data done

rs232_receiver_rst <="1";

if  (rs232_receiver_dat = x"74" ) then -- 't'
train_mode <="1",
next_state <= START_ADC;

elsif (rs232_receiver_dat = x"6E" ) then -- 'n’
train_mode <="0";
next_state <= START_ADC;

else
next_state <= IDLE;
end if;
else
next_state <= WAIT_RECEIVE; --receiving data
end if;

when START_ADC =>
ce_amp <="1"; --active high
start_conv <="1";
next_state <= ADC,;

when ADC =>
if ADC_DONE = '1' then
if (train_mode = '1") then
next_state <= START_RS232_TRAIN1,;
else
next_state <= ADC2FIXED;
end if;
ce_amp <='0"; --active low
start_conv <="'0';
else
next_state <= ADC,;
end if;

when START_RS232_TRAIN1 =>
counter <= (others =>'0");
rs232_sender_stb <="'1'; -- start pulse on
rs232_sender_dat <= ADC1(13) & ADC1(13) & ADC1(13
ADC1(13) & ADC1 (13 downto 10);
next_state <= RS232_TRAIN_HI1;
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when RS232_TRAIN_HI1 =>
counter <= counter + 1;
if rs232_sender_ack ='1' then —
rs232_sender_sth <="'0"; --start pulse off
elsif counter (19 downto 0) =
CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
next_state <= START_RS232_TRAIN_LO1;
else
next_state <= RS232_TRAIN_HI1;
end if;

when START_RS232_TRAIN_LO1 =>
counter <= (others =>'0");
rs232_sender_stb <="'1'; -- start pulse on
rs232_sender_dat <= ADC1 (9 downto 2);
next_state <= RS232_TRAIN_LO1;

when RS232_TRAIN_LO1 =>
counter <= counter + 1,
if rs232_sender_ack ='1'
rs232_sender_stb <="'0"; --start pulse off
elsif counter (19 downto 0) =
CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
next_state <= START_RS232_TRAINZ2;
else
next_state <= RS232_TRAIN_LO1,;
end if;

when START_RS232_TRAIN2 =>
counter <= (others =>"'0");
rs232_sender_sth <="1"; -- start pulse on
rs232_sender_dat <= ADC2(13) & ADC2(13) & ADC2(1
ADC2(13) & ADC2 (13 downto 10);
next_state <= RS232_TRAIN_HI2;

when RS232_TRAIN_HI2 =>
counter <= counter + 1;
if rs232_sender_ack = '1' then
rs232_sender_sth <="'0"; --start pulse off
elsif counter (19 downto 0) =
CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
next_state <= START_RS232_TRAIN_LO2;
else
next_state <= RS232_TRAIN_HI2;
end if;

when START_RS232_TRAIN_LO2 =>
counter <= (others =>'0");
rs232_sender_stb <="'1'; -- start pulse on
rs232_sender_dat <= ADC2 (9 downto 2);
next_state <= RS232_TRAIN_LOZ2;
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when RS232_TRAIN_LO2 =>
counter <= counter + 1;
if rs232_sender_ack = '1' then
rs232_sender_sth <="'0"; --start pulse off
elsif counter (19 downto 0) =
CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
next_state <= START_RS232_TRAINS;
else
next_state <= RS232_TRAIN_LO2;
end if;

when START_RS232_TRAIN3 =>
counter <= (others =>'0");
rs232_sender_stb <="'1'; -- start pulse on
rs232_sender_dat <= ADC3(13) & ADC3(13) & ADC3(13
ADC3(13) & ADC3 (13 downto 10);
next_state <= RS232_TRAIN_HI3;

when RS232_TRAIN_HI3 =>
counter <= counter + 1;
if rs232_sender_ack ='1' then
rs232_sender_stb <="'0"; --start pulse off
elsif counter (19 downto 0) =
CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
next_state <= START_RS232_TRAIN_LO3;
else
next_state <= RS232_TRAIN_HI3;
end if;

when START_RS232_TRAIN_LO3 =>
counter <= (others =>"'0");
rs232_sender_sth <="'1"; -- start pulse on
rs232_sender_dat <= ADC3 (9 downto 2);
next_state <= RS232_TRAIN_LO3;

when RS232_TRAIN_LO3 =>
counter <= counter + 1;
if rs232_sender_ack = '1' then
rs232_sender_sth <="'0"; --start pulse off
elsif counter (19 downto 0) =
CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
next_state <= START_RS232_TRAIN4;
else
next_state <= RS232_TRAIN_LO3;
end if;

when START_RS232_TRAIN4 =>
counter <= (others =>'0");
rs232_sender_stb <="'1'; -- start pulse on
rs232_sender_dat <= ADC4(13) & ADC4(13) & ADC4(1
ADC4(13) & ADC4 (13 downto 10);
next_state <= RS232_TRAIN_HI4;
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when RS232_TRAIN_HI4 =>
counter <= counter + 1;
if rs232_sender_ack = '1' then
rs232_sender_sth <="'0"; --start pulse off
elsif counter (19 downto 0) =
CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then
next_state <= START_RS232_TRAIN_LO4;
else
next_state <= RS232_TRAIN_HIi4;
end if;

when START_RS232_TRAIN_LO4 =>
counter <= (others =>'0");
rs232_sender_stb <="'1'; -- start pulse on
rs232_sender_dat <= ADC4 (9 downto 2);
next_state <= RS232_TRAIN_LO4;

when RS232_TRAIN_LO4 =>

counter <= counter + 1,

if rs232_sender_ack ='1' then —
rs232_sender_stb <="'0"; --start pulse off

elsif counter (19 downto 0) =

CONV_STD_LOGIC_VECTOR(system_speed/baudrate*10, 20) then

next_state <= IDLE;

else
next_state <= RS232_TRAIN_LO4;

end if;

when others =>
next_state <= IDLE;
end case; -- state
end if; -- clock

end process sensor_state_machine;

ADC1_fixed <= ADC1(13) & ADC1(13 downto 2);
ADC2_fixed <= ADC2(13) & ADC2(13 downto 2);
ADC3_fixed <= ADC3(13) & ADC3(13 downto 2);
ADC4 _fixed <= ADC4(13) & ADC4(13 downto 2);
F8PIN <=rdy_tf;

E8PIN <='0'

led(4) <=0}

led(5) <="'0";

led(6) <= train_mode,;

led(7) <= not RS232_DCE_RXD;

state <= next_state;

RS232 DCE_TXD <= RS232_TX_out;
SPI_AMP_SHDN <='0"

DAC_CSs <="'1"
SPI_SS_B <="'1"

gain <="00010001";

AMP_DOUT_OUT <= AMP_DOUT _IN;

end Behavioral;
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Appendix E: PD Controller Real Time Executive Code:

#include "main.h"
#include <string.h>

CODE FROM main.c

unsigned char input1=127; //High byte of position f rom FPGA
unsigned char width1=10;//Debugging pulse width in high byte read
unsigned char width2=137;//Debugging pulse width in low byte rea
unsigned char input2=127; //Low byte of position fr om FPGA
unsigned int16 input=400; /[Total position from FPG A
unsigned char servoWidthCounter=127;//Counter used in servo loop
short servoFlag = 1; /[Flag to indicate 20ms servo

window
short servoPhase = 0; /[Flag to indicate servo res tart
int x; //[Counter indicating which byte is

read
signed intl6 servoWidth=30; //Width of servo pulse in counts
#include "pid.h"
/I Received Data Available Interupt Subroutine
/I Reads 1 byte of data from our RS232 in
/I Stores the byte to the in global variable
/I Then write the letter 'n' to request for a new p osition

#int_RDA
void RDA _isr(void)

{
if(x==1)
{
/[Read high byte of position from FPGA

inputl = getc();
X++;

else if(x==2)

input2 = getc();
PIDWindow = 1; //lets compute another sample3
x=0;
input = makel16(inputl,input2);
}
}

/I RTCC Interuput Subroutine

/I Interputed every 51.2us

/I Used to control the pulse width for the servo

/I Most servos should be between 1 and 2 ms pulses
/I window may be different for different servos
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#int RTCC
void RTCC_isr(void)

if(servoFlag == 1) //Has our 20ms window passed?

{
if(servoWidthCounter<servoWidth)
/IAre we in the variable 0-2ms window?

{
output_high(SERVO); /[Set the servo pin
servoWidthCounter++; /IAnd increment our
}

else

output_low(SERVO);//outside of the pulse, turn of
servoFlag = 0;

}
}
}

/I Timerl Interuput Subroutine
/I Interputed every 13.1ms
/I Used to trigger step of the PID controller/Resta

#int_ TIMER1

void TIMERZ1_isr(void)

{

/IServo can only be triggered every 20ms,

1 but we are sampling ever 13.1ms.

/IA flag, ServoPhase is set to set

/I to determine if the servo can be updated.

if(servoPhase==0)//restart servo pulse

servoWidthCounter = 0;
servoFlag = 1;
servoPhase = 1;

else //servo is resting

{

servoPhase = 0;

}
}
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void main(void)

init();

set_pwml_duty(255);

while(1)

i{f(PIDwindowzzl)

E/request another position from the FPGA
putc('n',osu);
/lindicate that the first byte should be read
x=1,

/ICall the PID controller

PID_Controller();
}
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Appendix F: PD Controller Real Time Executive Code: CODE FROM main.h

#include <18F1220.h>

#FUSES NOWDT /INo Watch Dog Timer
#FUSES WDT128 //Watch Dog Timer uses 1:128
Postscale
#FUSES H4 //High speed osc with HW enabled 4X
PLL
#FUSES FCMEN /[Fail-safe clock monitor enabled
#FUSES BROWNOUT //Reset when brownout detected
#FUSES BORV42 /[Brownout reset at 4.2V
#FUSES NOPUT /INo Power Up Timer
#FUSES NOCPD /INo EE protection
#FUSES STVREN //Stack full/lunderflow will cause
reset
#FUSES NODEBUG //No Debug mode for ICD
#FUSES NOLVP /INo low voltage prgming,
/IB3(P1C16) or B5(PIC18) used for I/O
#FUSES NOWRT /[Program memory not write protected
#FUSES NOWRTD /[Data EEPROM not write protected
#FUSES NOWRTC /lconfiguration not registers write p rotected
#FUSES IESO /lInternal External Switch Over mode e nabled
#FUSES NOEBTR //Memory not protected from table re ads
#FUSES NOEBTRB //Boot block not protected from tabl e reads
#FUSES MCLR //Master Clear pin enabled
#FUSES NOPROTECT //Code not protected from reading
#FUSES NOCPB /INo Boot Block code protection
#FUSES NOWRTB //Boot block not write protected
#use delay(clock=40M)
#use
rs232(baud=38400,parity=N,xmit=PIN_B1,rcv=PIN_B4,bi ts=8,stream=0su)
#define SERVO PIN_AO

void init(void)

{

setup_adc_ports(NO_ANALOGS|VSS_VDD);
setup_adc(ADC_CLOCK_DIV_2|ADC_TAD_MUL_0);
setup_wdt(WDT_OFF);
setup_timer_O(RTCC_INTERNAL|RTCC_DIV_2|RTCC_8_hit);
setup_timer_1(T1_INTERNAL|T1_DIV_BY_2);
setup_timer_2(T2_DIV_BY_16,255,1);
setup_timer_3(T3_DISABLED|T3_DIV_BY_1);
setup_ccpl(CCP_PWM);
enable_interrupts(INT_RTCC);
enable_interrupts(INT_TIMER1);
enable_interrupts(INT_RDA);
enable_interrupts(GLOBAL);

set_pwm1_duty(0);

output_high(PIN_B2);
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Appendix G: PD Controller Real Time Executive Code: CODE FROM PID.h

short PIDWindow = 1; /[Flag to indicate that contr ol
I loop should execute
float32 prevPos = 0; /[Previous position (meters)
float32 currentPos = 0; //Current position (meters)
float32 vel = 0; /IVelocity (meters/s)
float32 st_angle = 0; //Steering angle (radians)
float32 position=0; /[Car position from center line in meters
signed int16 fullpos=400; /ltemp variable to conver t input

/ to signed int16
/I Define parameters

float32 kp = -60.0; //Position feedback gain (radi ans/meter)
float32 kv = -500.000; //Velocity feedback gain (ra dians/meter/s)
float32 alpha = 0.02; /[Filter parameter (O<alpha< 1)
float32 one_m_alpha =0.98; // (1-alpha)

float32 setpoint = 0.0; //Position set point (meter s)

float32 dt = 0.02; //Sampling interval (s)

signed intl6 poscenter=400; //Center position in 1/ 100 in
float32 met_conv = 0.000254;//Conversion from 1/100 in to meters

void PID_Controller()
/[Adjust for the center position and convert to met ers

fullpos = input;
position = met_conv*(fullpos - poscenter);

/I Increment time - save the old position

prevPos = currentPos;

/I Filter the position

currentPos = alpha*position + one_m_alpha*prevPos;

/l Compute the velocity

vel = (currentPos-prevPos)/dt;

/I Compute the control signal (steering angle in ra dians)
st_angle = (currentPos - setpoint)*kp + kv*vel;

/I Convert the control signal to pulse width count

276



servoWidth = 19.1*st_angle + 29.0;
if(servoWidth>39)

{
/lservoWidth=42;
servoWidth=39;

}
else if(servoWidth<19)

{
/IservoWidth=30;
servoWidth=19;

/Iclear the PIDwindow so we can wait for the next s
PIDwindow=0;
return;

}
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