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Chapter 1   

Clock Recovery Circuits 

1.1 Introduction 

Signals in communication systems pick up noise and delays while traversing their 

respective mediums. Also, the data is asynchronous when we take into consideration that 

the receiver and the transmitter are signal wise independent with the exception of the 

communication link path(s). In other words, since the clocks used in the receiver and 

transmitter have different phase relationships, the data transmitted by the transmitter 

becomes asynchronous with respect to the receiver. Therefore, for effective 

communication between two Rx-Tx units there must be a mechanism for recovering the 

original signal from the asynchronous, noisy distorted signal. Clock recovery circuits 

perform such an operation – which is retiming and "cleaning" or reconstruct the signal.  

In brief, as depicted in Figure 1.1, we can summarize the primary functions of a 

clock recovery system as: 

1. Recovery of clock.  

2. Retiming of data. 
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Figure 1.1 Primary function of a clock recovery system 

1.2 Clock Recovery Mechanisms 

1.2.1 Oversampling Technique 

The Oversampling Technique decouples the clock generator from the sampling or 

tracking of data. Data is over-sampled and the phase alignment is performed digitally. 

Figure 1.2 shows the block diagram for this technique. 

Figure 1.2 Oversampling Technique for Clock Recovery 



3

The loop control consists of a PLL which tries to lock on to the “ext_clk” signal. 

The Voltage Controlled Oscillator generates the clocks which are used to oversample.  

Multiple phase clocks can be generated by tapping the different stages of the VCO as 

shown in Figure 1.3. 

Figure 1.3 Multi-phase clocks used to oversample the data 

Input samplers shown in Figure 1.2 use these multi-phase clocks to sample the 

input data. Transition Detection/Phase Selection Logic finds the position of data 

transitions in the sampled data and then generates a control signal for the multiplexers 

which select the data farthest from the transition. The sampled data is delayed by an 

amount which is equivalent to the time the Transition Detection/Phase Selection Logic 

takes to generate the control signal. 

Generation of clocks with precise phase relationship is required otherwise 

considerable quantization jitter can result. Also, extra decision logic is required for post-

processing, leading to a large active area and in turn high power consumption. Latch 

meta-stability is also an issue. The external clock used is an estimate of the time period or 

clock of the input data. 
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1.2.2 Clock Recovery using Hogge’s Phase Detector 

The Hogge’s phase detector does the phase detection and retiming the data in the 

same circuit [1]. Figure 1.4 shows a Hogge’s Phase Detector that can be used for clock 

recovery. 

Figure 1.4 Hogge’s Phase Detector 

The above phase detector has two outputs X and Y. Referring to Figure 1.5 Y 

output gives us the phase difference between Din and CK inputs. To understand this let us 

consider the output B of FF1. It is effectively a delayed replica of Din. It changes only 

when CK goes high. Therefore, if we pass them (Din and B) through an XOR gate we 

would get the phase difference between the two. X is an output with constant width with 

pulses appearing only on data edges. If we refer back to Figure 1.4 we can see that FF2

receives an inverted clock. Since the points A and B are connected to the XOR gate the 

output Y will have pulses only when there is a transition otherwise there will be no pulse. 

These pulses will be of fixed width TCK/2. These pulses are also referred as the reference 

clock. Now, Y will be dependent on the transition density and X is dependent on the phase 

difference. The difference in the on time between these two pulses will give the required 
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phase difference. As shown in Figure 1.6 this difference can be obtained using a charge 

pump. 

Figure 1.5 Output Waveforms of the Hogge’s Phase Detector 

Hogge’s Phase Detector can be used as a Clock and Data Recovery circuit as 

shown in Figure 1.6.  The retimed data is available at Dout and the recovered clock is 

Figure 1.6 Hogge’s Phase Detector in a Clock Recovery Circuit 
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obtained from the VCO. A draw back of the circuit in Figure 1.6 is that it produces a 

triangular wave as shown in Figure 1.7 when in lock. 

Figure 1.7 Waveforms of Hogge’s PD when in lock 

This Triangular wave exhibits a non-zero net area. As a result, the VCO 

frequency and phase is constantly disturbed due to this perturbance on its control voltage. 

Also, as will be seen in section 3.2 activity on the charge pump inputs causes other 

problems. In order to improve this situation in Hogge’s Phase Detector it can be modified 

to include extra Flip Flops which provide extra reference pulses [2]. These pulses attempt 

to reduce the disturbances on the VCO control line by producing a negative triangular 

pulse. Consequently, a net zero area under locked condition is produced, lowering the 

disturbance level on the VCO phase. However, there is still some disturbance on the 

control line and this may lead to undesired charge deposit due to the non ideal operation 

of the charge pump. Also, there is a range of phase differences close to zero which this 



7

phase detector is not able to detect. This range is decided by the meta-stability of the flip-

flops. 

Most importantly, the clock is extracted from the data stream unlike the 

Oversampiling Technique where is the clock used is an estimate of the input data. 

1.2.3 Clock Recovery using Half-Rate Phase Detector 

Clock recovery circuits employing a Half-Rate phase detector are used with data 

streams with full-rate but the VCO employed runs at half the input rate [3]. This type of 

phase detector is used in high speed clock recovery systems. 

Figure 1.8 shows the configuration of a Half-Rate PD. Its principle of operation is 

depicted in Figure 1.9. 

Figure 1.8 Simple Half-Rate PD 
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Figure 1.9 Principle of Operation of Half-Rate PD 

As shown in Figure 1.9, to detect transitions in the data both edges of the half-rate clock 

are utilized. Referring to Figure 1.8, the latch L1 is level high sensitive latch and L2 is a 

level low sensitive latch. In the Figure 1.9 Din is assumed to lead CK by ∆T. The output 

of L1 thus will have a pulse width of TCK/2+∆T. Similarly, the output of L2 will be TCK/2-

∆T because it is transparent when CK is low and latches when CK goes high. When we 

pass these outputs through a XOR gate the resulting output will have a pulse width of ∆T.

However, just like the Hogge’s phase detector shown in Figure 1.4 this topology 

also exhibits the same dc output for two different phase differences resulting in a false 

lock. This can also be remedied by adding a reference pulse, as shown in Figure 1.10, 

with the help of L3 and L4.
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Figure 1.10 Complete Half-Rate PD 

Figure 1.11 Waveforms of the Half-Rate PD 

From Figure 1.11 we can observe that while Vout1 gives information about the 

phase difference between the input data, Din, and the clock, CK, Vout2 gives information 

about the transition density. In this way the drawback of the topology of Figure 1.9 can 
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be overcome. However, meta-stability of the flip-flops still affects the phase detection 

range of the phase detector. 

1.2.4 Clock recovery using Gated VCO [4] 

Figure 1.12 shows the block diagram for the gated recovery scheme.  

Figure 1.12 Clock Recovery using Gated Oscillators 

In this recovery method a gated VCO is used – the VCO is started and stopped 

according to the incoming data. Figure 1.13 shows a Gated VCO. Their outputs are then 
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Figure 1.13 Gated VCO Oscillator 

passed through a NOR gate which gives the recovered clock. The recovered clock is then 

used to retime the data using a D-latch. Figure 1.14 shows the recovered clock and data 

waveforms of the  

Figure 1.14 Clock and Data recovery using Gated VCO. 

A key requirement for this clock recovery circuit is that the three oscillators 

should match each other in phase. All the oscillators are controlled by the same control 

voltage generated by the phase lock loop. The phase lock loop locks on to the external 



12

reference frequency. Glitches may appear in the recovered clock if there are mismatches 

between the oscillator phases.  

1.3 Brief Overview of Design and Estimation of PLL 

parameters 

As is observed in the section 1.2, the crux of a clock and data recovery circuit is 

the PLL. To develop a feel for the PLL let us first recognize the important parameters in a 

PLL and then estimate their values. This will give us a rough idea of what must be 

considered while designing the different blocks. 

The block diagram of a PLL is shown in Figure 1.15. The transfer function of 

each of the blocks is shown in Figure 1.16. 

Figure 1.15 Block Diagram of a charge pump PLL 

Both the charge pump and VCO contribute a pole at the origin. PLL with two 

poles at the origin are referred to as Type II PLLs. The presence of two poles at origin 

makes the system unstable without added compensation. Therefore, a zero in the form of 

loop filter is added to the loop to compensate or stabilize it. Figure 1.16 shows the linear 
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model of the charge pump PLL in the Laplace domain. All delays of the phase detector 

can be ignored. 

Figure 1.16  A Linear model of simple charge-pump PLL 

From Figure 1.16 the open-loop transfer function is derived as given in 

equation(1.1). 

 ( ) 1
2

out VCOP
LF

in LFopen

KIs R C s s
φ
φ π

 = +  
, (1.1) 

Where, RP and CP form the loop filter resistor capacitor network. KVCO is the 

sensitivity of the VCO in Hz/V. IP is the charge pump current. 

 
The closed loop transfer function then becomes 

 ( ) ( )
2

1
1

LF LF

LF LF
VCOP

LF

N sC RH s ssC R KI
C N

+=
+ +

, (1.2) 

In control systems or system theory form the general equation for the closed loop 

transfer function may be rewritten as; 

 ( )
( )

( )
( ) ( )2

1 2 /
1 2 / /

out N

in N N

s sNs s s
φ ζ ω
φ ζ ω ω

+= + +  (1.3) 
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where,ζ is the damping factor and it is equal to 

 21 1
2 P VCO LF LFI K R CNζ = (1.4) 

and Nω is defined as the loop bandwidth and it is equal to 

 1 P VCO
N

LF

I K
N Cω = . (1.5) 

The denominator of equation (1.3) can also be written as 

 
2

21
N N

s s
Qω ω+ +  (1.6) 

Q is the Q-Factor of the transfer function and is given by 

 1
2Q ζ= (1.7) 

Q = ½ or ζ = 1 is recommended for most PLL applications [5].This value of Q results in 

a critically damped system. Further, to ensure stability ωN should be much less than the 

ωOsc, preferably 10 times less [5]. This is a practical limitation or implementation of 

sampling theory.   

From equations (1.4) and (1.5) we have, 

 2
LF LF

Osc

nR C ζ
ω= (1.8) 

Assuming a value of 5pF for the loop filter capacitor. Then from equation(1.8) we obtain 

a value of 16KΩ for the loop resistor R. If we further assume a value of 30µA for the 

charge pump current, ICH and N as 2, we get a value of about KVCO = 200MHz/V from 

equation(1.4). 
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1.4 Thesis Organization 

There are a total of 6 chapters in this thesis. Chapter 2 presents a Manchester 

Encoder-Decoder developed using the Harsh Environment Cell Library developed in the 

lab using Peregrine 0.5u process. It presents the test results attained at both room and 

high temperature. 

Chapter 3 discuss the Charge Pump. A review of different topologies reported in 

the literature is presented where their advantages and disadvantages are enumerated. A 

discussion in section 3.2 attempts to convey the fact that the charge pump is the most 

critical aspect of any PLL. Factors affecting Charge Pump performance are discussed and 

means to mitigate their effects are formulated. A selected topology is then proposed that 

tries to minimize all non-ideal operations of the charge pump. 

Chapter 4 discusses the Voltage Controlled Oscillator. Topologies from literature 

are discussed and again an optimum topology is selected. Section 4.4 briefly discusses 

the “kink effect” found in Peregrine transistors on the performance of the VCO and it 

effects on circuit design. Ways to reduce the “kink effect” on VCO performance are 

proposed in section 4.5. Chapter 5 introduces and reviews significant topologies of Phase 

Frequency Detectors available in literature. A future effort for a high temperature PLL 

design for use with the Manchester Decoder of Chapter 2 is outlined in Chapter 6. 
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Chapter 2  

Manchester Encoder and Decoder 

2.1 Introduction 

 
Manchester encoding is a mechanism 1) to convert parallel data to serial data and 

2) to redefine data (ones and zeros) representation from level to an edge (rising or falling) 

at mid clock, i.e. to represent “ones”, as shown in Figure 2.1, Manchester encoded data 

starts high at the start of clock period and goes low (a falling edge) at mid clock period. It 

is opposite for a “zero”. Decoder’s function is to recover the encoded data back to level 

representation. 

 

Figure 2.1. Data Representation 
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The general format of the transmitted data is shown in Figure 2.3. The additional 

Sync signal and Parity are inserted to the front and back before transmission. Sync signal 

has two variations; command and data. Command Sync signal is used by master devices 

and the Data Sync signal is used by slave devices (Figure 3). Figure 4 shows an example 

waveform of 16 bit data stream (3814H) with Command Sync and odd parity. An even 

parity can also be used. However, in the encoder discussed in this report an odd parity 

was used.  

 

Figure 2.2. General format of a Manchester Encoded Data 

(a) (b) 
Figure 2.3. (a) Command Sync (b) Data Sync.
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Figure 2.4. Waveform of 16 bit data “3814H” with odd parity (4X oversampling is used 
to encode and decode the data). 

If we observe the waveform in Figure 2.4 clock rate of the embedded clock 

(clk1x) is half the data rate of the Manchester stream. 

2.2 Encoder 

Figure 2.5 Encoder System Diagram 

The encoder operates in two modes: single write mode and two byte write mode. 

A high on 1wr/2wr’ pin indicates a single write mode, whereas a low indicates double 
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byte write mode. During the single write mode the din[15:0] is directly routed to the shift 

register by the multiplexer. During the double byte write mode a positive edge on the 

msb/lsb’ pin latches the data on din[7:0] to the upper byte of the internal register. A 

negative edge on the msb/lsb’ pin latches the data on din[7:0] to the lower byte of the 

internal register. The multiplexer then selects this 16 bit internal register and passes it on 

to the shift register. The serial data out from the shift register is passed through a XNOR 

gate whose second input is a divide by 4 clock, derived from the input clock (clk4x). The 

output of XNOR gate is the Manchester Data Out. 

2.3 Decoder 

Figure 2.6. Decoder System Diagram 

As shown in Figure 6 the decoded parallel outputs of the Decoder (dout[15:0])

are connected to tri-state buffers with a high enable. Also as shown, EN is the enable pin 

of the tri-state buffers. The serial Manchester Data In is decoded using a XNOR gate 
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whose second input is a divide by 4 clock derived from the clock input (clk4x). The result 

is then stored in a shift register. If the decoder operates in a single write mode, 1wr/2wr’ 

signal is high and all the tri-state buffers are enabled. Since the output of the OR gate is 

always high in this mode the 16 bit output is at dout[15:0] pins. If the decoder operates in 

a double byte write mode then the tri-state buffers of dout[8:15] are disabled since 

1wr/2wr’ is low. When msb/lsb’ pin is pulled high the output of the OR gate is high, the 

upper byte of the shift register is valid at dout[7:0]. When it is low the output of the OR 

gate is low, the lower byte is valid at dout[7:0].Decoder converts the incoming serial 

Manchester data to parallel data. 

2.4 Simulation and Test Results 

2.4.1 Encoder 

Figure 2.7 Pin diagram of Encoder 

As shown in Figure 2.7 the input pins are: 
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1. 1WR/2WR’ – when this pin is low, the encoder operates in double write mode 

and accepts two 8 bytes. It operates in single write mode when this is high. 

2. MSB/LSB’ – when this pin is high DIN[7:0] pins should have MSB loaded onto 

them. When low it indicates LSB should be loaded. This pin can go low to 

high or high to low. A low to high transition is needed to load MSB into the 

internal registers and similarly a high to low transition is needed to load LSB 

into the internal registers. 

3. DIN[7:0] – LSB of the input data during both double and single write operation. 

4. DI/DIN[15:8] – Disabled internally during double write mode, MSB input data 

during single write mode. 

5. RESET – resets all internal flip-flops. 

6. CLK – clock input 

7. WR_XMIT – input pulse which tells the encoder to latch data on its input bus and 

start encoding of data. A low to high transition is all that is needed. Width of 

the pulse is not important. 

8. DATA’/CMD – attaches Data Sync when this pin is low and a Command Sync 

when high. 

The output pins are : 

1. MDO – Manchester Data Out. 

2. TRANS_IN_P – indicates that transmission is in progress. 

3. TR_COMP – when high it indicates that transmission is complete. Encoder waits 

for the next data. 
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2.4.1.1 Single write mode with a Command Sync  
inputs - 1WR/2WR’ = 1, cmd/data’ = 1, din = A863H 

 
Figure 2.8 shows the simulation results in this mode. The “1wr/2wr’ ” or “bit16” 

signal is high, so the encoder operates in the single write mode. It accepts a 16 bit input 

and encodes it. Encoding starts when there is a rising edge on the “wrn” input. Since the 

“sync” or “cmd/data’ ” signal is high the encoder attaches a Command Sync to the 

encoded Manchester output signal. During encoding the “trans_in_p” is high. When 

encoding is complete “trans_in_p” goes low. At the end of encoding, “tbre” or 

“tran_comp” signal goes high indicating that the encoder is ready for the next data. Any 

change on the “msb” or “msb/lsb’ ” pin does not affect the operation of the encoder 

during the single write mode. 

 

Figure 2.8. Simulation of single write mode with a Command Sync inputs 1WR/2WR’ = 
1, cmd/data’ = 1, din = A863H 

 
Figure 2.9 shows the measurement results of the Encoder obtained from Logic 

Analyzer at room temperature. Figure 2.10 shows the measurement results at 195°C. 
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Figure 2.9. Measurement of Single write mode with a Command Sync, 1WR/2WR’ = 1, 

cmd/data’ = 1, din = A863H at Room Temperature 

 

Figure 2.10. Measurement of Single write mode with a Command Sync, 1WR/2WR’ = 1, 
cmd/data’ = 1, din = A863H at 195°C 

2.4.1.2 Single write mode with a Data Sync inputs - 1WR/2WR’ = 1, cmd/data’ = 0, 
din = A863H 

 

Figure 2.11 shows the simulation results in this mode. In this mode the “sync” or 

“cmd/data’ ” signal is low, so a Data Sync is attached. 



24

 

Figure 2.11. Simulation of Single write mode with a Data Sync  
inputs - 1WR/2WR’ = 1, cmd/data’ = 0, din = A863H 

Figure 2.12 shows the measurement results of the Encoder obtained from Logic 

Analyzer at room temperature. Figure 2.13 shows the measurement results at 195°C. 

 

Figure 2.12. Measurement of Single write mode with a Data Sync  
inputs - 1WR/2WR’ = 1, cmd/data’ = 0, din = A863H, at Room Temperature 
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Figure 2.13. Measurement of Single write mode with a Data Sync, 
inputs - 1WR/2WR’ = 1, cmd/data’ = 0, din = A863H, at 195°C 

2.4.2 Decoder 

Figure 2.14 Pin diagram for Decoder 

As shown in Figure 2.14 the input pins are: 

1. MDI – Manchester Data In. 

2. RESET – resets all internal flop-flops. 

3. CLK – clock input 

4. 1WR/2WR’ – when this pin is low, the encoder operates in double write mode 

and accepts two 8 bytes. It operates in single write mode when this is high. 
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5. MSB/LSB’ – when this pin is high it indicates that the data on DOUT[7:0] pins 

have MSB loaded onto them. When low it indicates that LSB is loaded. This 

pin can go low to high or high to low. 

The output pins are 

1. DOUT[7:0] – LSB of the output data during both double and single write 

operation. 

2. DOUT[15: 8] – Tri-stated during double write mode and MSB of output data 

during single write mode. 

3. LATCH – when high it indicates that the data is ready and is ready to be latched. 

4. DATA_TYPE – when low it indicates that the input Manchester data has Data 

Sync and when high it has a Command Sync attached to it. 

2.4.2.1 Single write mode with a Command Sync input, 1WR/2WR’ = 1, ‘mdi’ 
corresponds to AAD5 

 
Figure 2.15 shows the simulation results in this mode. Since the “bit16” or 

“1wr/2wr’ ” input is high, the decoder operates in a single write mode. As soon as the 

decoder detects the sync command at the beginning of serial Manchester data input it 

begins decoding. If a Command Sync is attached to the data input the “data_type” output 

goes high. If a Data Sync is attached to the data input the “data_type” output goes low. At 

the completion of decoding the output signal “data_ready” or “latch” goes high. 
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Figure 2.15. Simulation of Single write mode with a Command Sync input, 

1WR/2WR’ = 1, ‘mdi’ corresponds to AAD5H 

Figure 2.16 shows the measurement results of the Encoder obtained from Logic 

Analyzer at room temperature. Figure 2.17 shows the measurement results at 195°C. 

 

Figure 2.16. Measurement of Single write mode with a Command Sync input, 
1WR/2WR’ = 1, ‘mdi’ corresponds to AAD5H, at room temperature 
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Figure 2.17. Measurement of Single write mode with a Command Sync input, 
1WR/2WR’ = 1, ‘mdi’ corresponds to AAD5H, at 195°C 

2.4.2.2 Single write mode with a Command Sync input, 1WR/2WR’ = 1, ‘mdi’ 
corresponds to AAAA 

 
Figure 2.18 shows the simulation results in this mode. In this case a 16 bit data of 

AAAA is decoded. 

 

Figure 2.18. Simulation of Single write mode with a Command Sync input, 
1WR/2WR’ = 1, ‘mdi’ corresponds to AAAAH 

 

Figure 2.19 shows the measurement results of the Encoder obtained from Logic 

Analyzer at room temperature. Figure 2.20 shows the measurement results at 195°C. 
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Figure 2.19. Measurement of Single write mode with a Command Sync input, 

1WR/2WR’ = 1, ‘mdi’ corresponds to AAAAH, at Room Temperature 

Figure 2.20. Measurement of Single write mode with a Command Sync input, 
1WR/2WR’ = 1, ‘mdi’ corresponds to AAAAH, at 195°C 

2.4.2.3 Single write mode with a Data Sync input, 1WR/2WR’ = 1, ‘mdi’ 
corresponds to AAAA 

 
Figure 2.21 shows the simulation results in this mode. In this case a Data Sync is 

attached to the input serial Manchester data. 
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Figure 2.21. Simulation of Single write mode with a Data Sync input, 

1WR/2WR’ = 1, ‘mdi’ corresponds to AAAAH 

Figure 2.22 shows the measurement results of the Encoder obtained from Logic 

Analyzer at room temperature. Figure 2.23 shows the measurement results at 195°C. 

 
Figure 2.22. Measurement of Single write mode with a Data Sync input, 
1WR/2WR’ = 1, ‘mdi’ corresponds to AAAAH, at Room Temperature 
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Figure 2.23. Measurement of Single write mode with a Data Sync input, 
1WR/2WR’ = 1, ‘mdi’ corresponds to AAAAH, at 195°C 

2.4.3 Summary of Test Results 

Figure 2.24. Frequency vs Power and Frequency vs Temperature for Manchester Encoder 
and Decoder 
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Figure 2.24 shows the power consumption of the Manchester Decoder and 

Encoder with varying frequency at different temperatures (27°C, 120°C, 145°C, 170°C 

and 195°C). The curves show that the power consumption follows the classic CV2f curve 

and is independent of temperature. The maximum operational frequency of the Decoder 

at Room Temperature was found to be 25MHz, whereas, the Encoder was found to 

operate at a maximum frequency of 20MHz at room temperature. Temperature de-rating 

of both circuits was found to follow the mobility degradation with temperature, measured 

in the MSVLSI Lab [6].  
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Chapter 3   

Charge Pump 

3.1 Introduction 

The Charge pump is the critical block of any PLL the PFD-charge pump 

combination PLL. It is responsible for the accurate conversion of digital levels of the 

PFD to stable analog levels. Charge pump has two inputs – up (UP) and down (DW). One 

of these inputs causes either a deposition or removal of the charge from the capacitor 

following it. The capacitor is a part of the loop filter in Phase Locked Loop. The PFD, 

which precedes it, determines which of these events occur. By doing so, it changes the 

voltage across the capacitor. This voltage is fed to the VCO modifying its frequency of 

operation. The input which increases the frequency is designated as UP. Depending on 

the architecture of the VCO this input may either deplete or deposit charge in the output 

capacitor. 

Since the voltage generated by the charge pump in conjunction with the loop filter 

acts as a control voltage of the VCO, any spike in this voltage produces undesirable 

spurious tones in the VCO output signal[7]. Ripples or spikes in the control voltage are 



34

produced mainly due to the following reasons – charge injection, charge sharing, 

mismatch in the UP and DW currents due to channel length modulation, mismatch in the 

switching time of the UP and DW switches and off-state leakage. When we examine the 

aforementioned causes of non-ideal behavior we can conclude that the charge pump in a 

PLL is the most critical block. A thorough understanding of these irregularities is 

essential in order to build a close to ideal PLL. 

3.2 Factors causing Non Ideal Operation 

The factors can be separated into two categories. Factors like mismatch in UP – 

DW currents due to channel length modulation, mismatch in turn on times of the UP – 

DW switches and leakage of the switches can be categorized together. The reason for 

flocking them together is that they cause the loop filter voltage to either rise up or go 

down slowly or quickly during the UP or DW phases. The loop finally reaches the 

desired frequency and phase. Thus it is desirable to reduce these error but not extremely 

critical. 

Other causes – charge injection and charge sharing can be grouped together as 

well. Minimizing the error due to these is very critical for the operation of PLL because 

they result in a frequency error that exists between the VCO and reference clocks. The 

following sub-sections discuss these errors in depth. 

3.2.1 Charge Injection 

Charge injection occurs when switches turn off. When an NMOS (PMOS) switch 

is opened, the electron (hole) charge accumulated in the channel of the MOS switch to 
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escape either through the drain or the source. If this escaping charge gets deposited on the 

loop filter then it causes ripples or spikes in the control voltage as mentioned before. In 

order to minimize this we must first recognize the factors causing it and then attempt to 

find ways of mitigating its impact on the loop filter error voltage. 

The charge in the channel is mainly composed of (1) Body Charge and (2) 

Channel Charge. Body charge appears in the channel when the switch reaches weak 

inversion. When the switches go to inversion, channel charge shows up in the channel. In 

most commonly used charge pump topologies - [8], [9], [10], [11], [12], a differential 

pair is used. When one of the transistors in the source coupled pair is turning on, the other 

is turning off. To investigate where or how the charges of the switches move when the 

switching or current steering operation occurs a differential pair shown in Figure 3.1 was 

used. The swing on the inputs was chosen such that the switches go from strong inversion 

to weak inversion. 

Figure 3.1 Differential Pair Used for Charge Flow Investigation 
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As is depicted in Figure 3.1 transistor M1 is being turned off and M2 is being 

turned on. When the switch M2 goes from weak inversion to strong inversion additional 

electrons (NMOS) are required to charge up or invert its channel. In an NMOS, electrons 

flow from source to drain. Therefore, for this to be true, the source current should be 

higher than drain current for transistor M2 i.e. more electrons enter the source than are 

leaving the drain. The “missing” electrons are used to charge up the channel.  

On the other hand, M1 in Figure 3.1 is turning off. The inversion charge in its 

channel must be removed as transistor M1 moves towards accumulation. It can only 

accomplish this by ejecting it through its drain. This conclusion can be supported by 

realizing that in a differential pair the potentials at each node necessitate that the common 

terminals in M1 and M2 act as sources. We know that the source in an NMOS device 

always acts as a supplier of electrons and as current flows from source to drain. Due to 

the imposed potentials across the terminals of the differential pair electrons always end 

up ejecting out of the drain. As a result, the drain current of M1 should be higher than its 

source current. 

To verify the conclusions presented in the above paragraphs a simulation of the 

differential pair was carried out using Spectre of Cadence. Figure 3.2 shows the 

difference in drain and source currents (ID-IS) of the switches M1 and M2, observed when 

simulating the pair. 
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Figure 3.2 Simulation of differential pair 

As observed in Figure 3.2, source current is higher than drain current in M2 as 

M2 is turning on. Doubling the widths and hence the currents while maintaining the same 

voltage bias conditions doubles the difference in drain and source currents, implying that 

double the charge is required to charge up the channel. This is consistent with the fact 

that charge in the channel doubles with a doubling of the width. After this initial transient 

phase, as observed in Figure 3.2, the difference in currents settles to zero during the 

steady state.  
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Conversely, the drain current is higher than the source current in the transistor 

which is turning off – M1 in this case. Thus, it is verified that channel charge escapes 

through the drain when the switch goes towards accumulation. This is bad news with 

respect to a charge pump because the loop filter is classically connected to the drain of 

the differential switch. 

We know that the depletion region and inversion under the channel go away when 

the switch reaches the edge of accumulation. The depletion region is replenished by holes 

from drain. The net result being that negative charge is ejected from drain on to the filter 

capacitor. 

It would be better if the switch is turned off to the extent that it remains in weak 

inversion but with only a negligible current compared with its allow able error. 

The objective here is to develop a few guidelines with respect to the choice of 

widths and lengths of the devices so that charge in the channel is minimized. To 

accomplish this let us identify the parameters that constitute the total charge in the 

channel. It consists of two components: 

• Body Charge, Qb.

4 | |b A Si FQ qN ε φ= (3.1) 

• Channel Charge, Qch 

ch oxQ WLC V= ∆ (3.2) 

Let Qinj the injected charge be a fraction of the total channel charge, Qch and body 

charge, Qb that is injected due to the switching operation. Then, the error voltage due to 

this charge is given by equation(3.3). 
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 ,
inj

out inj
Loop

QV C∆ = (3.3) 

 

Worst case Qinj is the sum of Qb and Qch. For a given process Qb is fixed. We have 

different processes – bulk, SOI, thin film SOI. The amount body charge as well as 

depletion region varies in these processes. 

We control Qch by optimally selecting the dimensions of the switch. Assuming 

that the switch is turned on in saturation to minimize the channel charge as well as for 

other reasons to be explained in section 3.2.2 Assuming square law operation equation 

(3.2) can be written in the following form. 

 2 22 2 2
3 3 3

D D
ch ox ox ox

p

I I LQ WLC V WLC WLC Wkβ= ∆ = =  (3.4) 

Since the current of the charge pump is decided by the loop factors of the PLL we 

can consider it as constant and conclude that 

 3
chQ WL∝ (3.5) 

Based on equation (3.5) we can develop the following guidelines, 

• Choose the minimum length possible. Decreasing length improves the 

switching speed but the lower limit is set by the minimum analog length 

allowable, set by channel length modulation, leakage and matching. 

• Decreasing width improves the situation only by its square root, because, 

though we are decreasing the area we are increasing the ∆V for the same 

current. The lower limit is set by matching requirements to minimize 

offsets. 
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To have a better estimate of the amount of charge being injected while switches 

turn off, it is desirable to match the UP and DW switches. Equation for matching the 

currents in the two legs of a current mirror is given in equation(3.6) [6]. 

 2 2 2
2

4 ( )( )
d

th
d GS th

I VI V V
βσ σ σβ

 ∆  ∆= + ∆    −  
 (3.6) 

 Therefore, to improve matching one has to increase the overdrive voltage. 

Matching of currents is also essential for bringing UP and DW currents close to each 

other, given that there is still the effect of channel length modulation to account for. 

3.2.2 Charge Sharing 

Another cause of frequency spike or ripple is charge sharing. Charge sharing 

takes place across switches when ever VGS changes potential. Parasitic capacitances Cgd 

and Cgs form a capacitor divider network which relays changes in the inputs to the output. 

This is conceptually depicted in Figure 3.3. 

Figure 3.3 Parasitic Capacitances causing Charge Sharing 

Changes in input voltage Vin are conveyed to the output through the parasitic 

capacitances shown in Figure 3.3. A relationship between the two is given in equation 

(3.7). 
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 gd gd
out in in

Loop gd LF

C CV V VC C C∆ = ∆ ≈ ∆+ (3.7) 

As seen from equation (3.7) to reduce fluctuations on the output voltage one 

should reduce the swing on the output and keep Cgd to a minimum. Again this speaks 

towards minimizing device width W. Both these objectives can be realized if we prevent 

the input to the charge pump from swinging rail to rail – which throws the switch into 

triode and increases Cgd, along with pushing ∆Vin to its maximum value. Again it is 

desirable to reduce W. Limiting the swing of the ensures that the switches turn on while 

keeping all devices in saturation and throughout both their switching period. Cgd is at its 

minimum during saturation keeping charge coupling to its minimum. 

It is worthwhile to note here that using the topology shown in Figure 3.3 can lead 

to mismatch in the UP and DN currents due to channel length modulation effects. To 

improve the situation one has to increase the length of the transistors. This, however, 

leads to reduction in switching speed and also increase in Cgd.

One could use a cascoded structure as shown in Figure 3.4. This would allow us 

to use short channel devices. Adding a cascode device does not improve or improve the 

charge sharing situation if short channel devices were used in Figure 3.4 but does reduce 

the effects of channel length modulation on the UP and DW currents. 
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Figure 3.4. Using a Cascoded Architecture 

3.3 “Frequency Jump” 

The factors described in sections 3.2.1 and 3.2.2 contribute to an error charge 

which translates to a “frequency jump” of VCO clock. In other words this represents the 

closest we can get to a reference clock given a particular topology of a charge pump. To 

understand how this “frequency jump” comes to existence lets consider generic switch 

prevalent in charge pump topologies (refer to Section 3.4) shown in Figure 3.5. 
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Figure 3.5 Generic Switch occurring in charge pumps 

These switches are controlled by a Phase Frequency Detector (Chapter 5) which 

produces pulses as shown in Figure 3.5. Due to the charge sharing effect discussed in 

Section 3.2.2 a small disturbance occurs at the output of the charge pump. This deposits 

and then takes away charges at the positive and negative edges respectively. Therefore, 

the net effect on the output due to charge sharing is almost zero when both devices have 

matched CGD. However at the negative edge the switch is turned off and charge injection 

occurs from the channel, depositing charges on the capacitor and thereby changing the 

frequency. This can be depicted pictorially as shown in Figure 3.6. 
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Figure 3.6 “Frequency Jump” 

In Figure 3.6 ∆f is the difference in VCO frequency and the Reference Frequency. 

∆q is the difference in positive charge (or holes) corresponding to the VCO frequency 

and the positive charge (or holes) corresponding to the Reference Frequency. Let us now 

assume that the VCO frequency is higher than the Reference Frequency (i.e. ∆f is 

positive). Also let’s assume that the VCO frequency is directly proportional to the 

positive charge in the capacitor. The NMOS switch shown in Figure 3.5, which acts as 

DN switch of the charge pump, takes out holes or increases electrons when it is turned on 

using the pulse shown. At the negative edge, however, there is a jump in the total number 

of electrons due to charge injection by the NMOS switch. This reduces the total number 

of holes beyond the desired level resulting in a frequency jump – depicted by the arrows 

in blue in Figure 3.6. The PLL tries to increase the frequency by producing an UP pulse. 

If we assume the UP switch is a PMOS as shown in the Figure 3.5 then holes or positive 

charges get deposited on the loop filter when the switch is turned on. When, the PMOS 

switch is turned off there is an injection of extra holes and the frequency change follows 

the red curve shown in Figure 3.6. 
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The “frequency jump” can be quantified by using the 

equationError! Reference source not found.. The error charge due to charge injection, 

∆qErr, can be written as in equation(3.8). 

 ,Err LF out injq C V∆ = ∆ (3.8) 

 Err
Err

LF

qV C
∆∆ = (3.9) 

CLF is the loop filter capacitor. The corresponding frequency error ∆fErr is can then be 

given by equation(3.10). 

 Err err VCOf V K∆ = ∆ (3.10) 

KVCO is the sensitivity of the VCO in Hz/V. 

3.4 Overview of Topologies of Charge Pump 

3.4.1 Switch at Drain 

A Charge Pump with switch connected to the drain of the current source is shown 

in Figure 3.7. 



46

Figure 3.7 Charge Pump with Switch at Drain 

When the UP switch is turned on the current IUP is mirrored through M4 and M2 

and pumped into the output capacitor increasing its voltage. Turning on the DW switch 

mirrors the current IDW through M3 and M1 to the output and capacitor is discharged,   

decreasing the voltage. 

This charge pump circuit shown above has many limitations. Problems of charge 

injection and charge sharing are obvious. UP and DW currents can differ due to channel 

length modulation effect. Also, when both the switches are turned off, the voltage at 

capacitor C is left floating, while the voltages at the drains of M2 and M1 are rapidly 

pulled to VDD and ground respectively. When one of the switches is turned on charge 

sharing takes place between the capacitor of the filter and the capacitor at the drain nodes. 

This results in a jump or spiking of the voltage of the loop filter capacitor. 

3.4.2 Switch at Source 

Figure 3.8 shows a charge pump with the switch connected to the source of the 

current source. 
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Figure 3.8 Charge Pump with switch at Source 

With the switch connected at the source, charge injection problems are avoided to 

some extent. Switches DW and UP see a resistance of 1/gm towards their drain due to the 

cascoding transistors M1 and M2, Figure 3.9. Therefore the charges tend to flow into the 

power rails where they face less resistance. Also, as discussed in section 3.2.2, cascoding 

also reduces charge sharing. Figure 3.10 shows the complete schematic with switches at 

the source [13]. M4 and M3 act as switches instead of M2 and M1. Hence, when compared 

with switch at drain in Figure 3.7 this topology does a better job of avoiding the problem 

of charge sharing and charge injection. Still, the problem of charge injection exists when 

M1 or M2 turn off. 
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Figure 3.10 Complete Schematic of a Switch at Source 

Figure 3.10 however suffers from long fall time of current pulses because of large 

impedances seen at the sources of M2 and M1 when they are off. During this period their 

overdrive voltages become very small. The topology shown in Figure 3.11, proposed by 

Chih-Ming et al, [14] seeks to remove this shortcoming.  
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Figure 3.11 Charge Pump Proposed by Chih-Ming et al 

Transistors M1, M2 and M3 form a current reference. Vcp is mostly connected to 

VDD. The current is copied by M6, M5 and M9, M8. Transistors M4 and M9 are added for 

accurate copying of current to the transistors forming the actual charge pump (M10, M11,

M12 and M13). Glitches due to the switching of M10 and M13 are absorbed at the sources 

of M11 and M12 and are not conveyed to the output as the latter are still off [14]. M11 and 

M12 are softly turned on due to the time constants seen at their sources. This minimizes 

charge injection. Transistors M14 and M15 improve the switching time constant of the 

switches M10 and M13 by provided extra charging/discharging paths. The 10pF bypass 

capacitors C1 and C2 help attenuate glitches as they provide additional paths to ground 

[14]. 

This architecture, however, still has the problem of mismatches between UP and 

DW switches. The UP switch is implemented as a PMOS and the DW switch is 

implemented as NMOS. Also, channel length modulation effects can lead to a difference 

in UP and DW current. 

3.4.3 Current Steering Charge Pump 

The problems of Switch at Drain topology shown in Figure 3.7 can also be 

mitigated to an extent by introducing an op amp as shown in Figure 3.12 [8]. It is a 

current steering charge pump which implements the UP switch with PMOS and DW 

switch. The op amp serves to avoid channel length modulation effects by keeping the 

drain voltages at equal values thereby reducing disparity in UP and DW currents. The op 

amp also stabilizes the voltages at the two points thereby preventing the jump 

phenomenon as discussed in section 3.4.1. 
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Figure 3.12 Current Steering Charge Pump suggested by Chen et al 

However in this case matching the UP and DW switches is a problem. Also, just 

like the switch at drain topology discussed in section 3.4.1 the problems of charge 

injection and charge sharing are present. 

Figure 3.13 shows a topology [9] which achieves almost the same performance as 

that in Figure 3.12 but uses less area and power. It employs only one op amp in unity gain 

configuration.  
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Figure 3.13 Current Steering Charge Pump suggested by Young et al 

The topology of Figure 3.13 still suffers from the problems of charge injection 

and charge sharing. Arshak et al [10] proposes the placement of dummy switches M3, 

M4, M5 and M6 shown in Figure 3.14 to ameliorate these problems.  
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Figure 3.14 Switches at Drain with Dummy Switches 

However, in the above discussed topology, switching time of the UP and DW 

switches varies due to the use both N and PMOS types of MOS devices.  

Topology shown in Figure 3.15 achieves better matching between the turn on 

time of UP and DW switches since it uses NMOS devices for implementing them. A 

schematic for understanding this type of charge pump is shown in Figure 3.15 [11].  



53

Figure 3.15 Current Steering Charge Pump suggested by Maneatis et al 

This topology has two source coupled pairs. The left pair comes into play when 

DW signal is high and the right pair comes into play when UP signal is high.  Owing to 

the current mirror, charge will be transferred to the loop filter when DW signal is high. 

Capacitor charge will be depleted when UP signal is high. The current mirror will not be 

active during this period. However, it does provide a leakage path that is near constant 

and puling up. A complete schematic is shown in Figure 3.16 [11]. 

Figure 3.16 Complete Schematic of Current Steering Charge Pump suggested by 
Maneatis et al 

As can be observed from the Figure 3.15 that matching is readily obtained 

between UP and DW switches. Matching is reduced to having sufficient area. When 
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compared with Figure 3.11 where one is required to take in consideration the differences 

in mobility in addition to area. 

Figure 3.17 shows a charge pump suggested by Chang et al [12]. This topology 

also helps achieve matching between the UP and DW switches just like the topology in 

Figure 3.15. However, Figure 3.17 still has the problem of charge sharing. Also, when 

compared with the topology in Figure 3.15 it has a longer delay time constant in its DW 

path.  

Figure 3.17 Current Steering Charge Pump suggested by Chang et al 

3.5 Proposed Topology 

Figure 3.18 shows the topology selected. It is essentially an improved version of 

the topology of Figure 3.16. As discussed in 3.2.2, cascoding the switches reduces the 

channel length modulation effects. Also, a swing limiting circuit is added to it to limit the 

changes in the inputs which again, as discussed in section 3.2.2, reduces charge sharing 

and injection. 
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Figure 3.18 Proposed Topology  

Under quiescent conditions, the output settles at an operating point (VQ) and 

moves around this point. The op amp connected in a unity gain mode helps maintain the 

drains of transistors M4 and M10 at this point. This op amp is a simple single ended 

differential pair shown in Figure 3.19. The down side is the high VDD or high headroom 

requirement. 
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Figure 3.19 Op Amp used in the Proposed Topology 

Following the discussion in section 3.3, since the VCO frequency is inversely 

proportional to the positive charge in the loop filter capacitor and also due to the fact that 

when DW switch is turned off electrons are mirrored and injected to the loop filter 

capacitor Figure 3.6 can be redrawn as shown in Figure 3.20. 

Figure 3.20 “Frequency Jump” in the proposed topology 

 
Where the blue line represents the change when UP switch, of Figure 3.18, is turned on 

and off. Red line represents the time when DW switch is turned on and off. As is evident 

from the Figure 3.20 the “Frequency Jump” is reduced to half of the value in Figure 3.6. 

The problem of headroom can be lessened by introducing an Op Amp as shown in 

Figure 3.21. It is a NMOS differential pair. 
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Figure 3.21 Improving headroom available constraint  

3.5.1 Swing Limiting Circuit 

A swing limiting circuit has the job of limiting the swing on the inputs of the 

charge pump so that the problems of charge sharing are a bit alleviated. The upper level 

of the swing is limited such that the switches (M1, M2, M11 or M12 of Figure 3.18) turn 

on in saturation for reasons discussed in 3.2.1 and 3.2.2. For reasons discussed in 3.2.1, 

the lower level is decided so that the switches turn off to the extent that the switches 

remains in weak inversion but with only a negligible current compared with an allowable 

error. 
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Figure 3.22 Swing limiting circuit 

Figure 3.22 shows the swing limiting circuit that can be employed. Note the VGS5 

voltage can be controlled by an OTA similar to that of Figure 3.19 to further improve 

accuracy.  

Output swings of Figure 3.22 are shown in Figure 3.23. The swings are 

represented in terms of the ∆V of the charge pump in Figure 3.18.  
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Figure 3.23 Outputs Swings of the swing limiting circuit 

To turn on the switch in saturation the final output level of the circuit should be at 

least 2∆V+VT. To completely switch the current from one branch to the other the 

difference in the levels of the two outputs should be greater than 2 V∆ .

Figure 3.24 shows the output of the charge pump of Figure 3.18 when only the 

DW signal is active. DW comes in the form of pulses. In the presence of a pulse there is 

an increase in the loop filter voltage indicated by the ramp. In the absence of the pulse the 

voltage remains approximately constant. An increase in the loop filter voltage decreases 

the frequency since frequency is inversely proportional to the control voltage in the 

selected topology of the VCO. Figure 3.25 shows the output when only the UP signal is 

active. UP signal effects a decrease in the loop filter voltage increasing the frequency 

because.  
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Figure 3.24 Output Voltage of the Charge Pump when DW signal is active 

Figure 3.25 Output Voltage of the Charge Pump when UP signal is active 
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Chapter 4  

Voltage Controlled Oscillator 

4.1 Introduction 

A Voltage Controlled Oscillator changes its frequency of Oscillation based on a 

voltage control applied to it. It is basically a CMOS ring oscillator which has several 

stages connected in a loop. The applied control changes the bandwidth or delay through 

each stage of the oscillator which in turn changes the frequency of oscillation. 

The Barkhausen requirement for an oscillator to sustain oscillations is that it 

should have a gain of greater than one and a phase shift of 360° around the loop. In the 

case of an oscillator with single ended topology an odd number of stages give a DC phase 

shift of 180°. The remainder of the 180° phase shift is voltage dependent, i.e., at a 

frequency decided by the bias conditions of the stages in the oscillator the total phase 

shift around the loop becomes 360°. This frequency becomes the oscillation frequency of 

the oscillator. By changing the bias conditions on the oscillator stages the delay can be 

varied and thereby the oscillation frequency.  

 1
2osc

d
f Nτ= (4.1) 
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In a differential ring oscillator the 180° DC phase shift can be attained with the 

help of even number of stages by swapping the feedback lines. An even number of stages 

is particularly useful for obtaining quadrature signals. The choice of the number of stages 

affects the amount of power consumed and also the frequency of operation. Using a 

fewer number of stages increases the frequency of operation and the power consumption 

along with it. The effect of an increase in frequency on power consumption may get 

mitigated to some extent by the decrease in the number of stages. As the number of 

stages go down it also becomes increasingly difficult to get the required gain and phase 

shift from each stage. 

Consider a four-stage differential ring oscillator as shown in Figure 4.1. 

 

Figure 4.1 Four Stage Differential Ring Oscillator 

The transfer function of each stage may be approximated, by neglecting the gate 

to drain overlap capacitance, as shown in equation(4.2). 

 0

0
1

A
s

ω
−

+
(4.2) 

The total loop gain can now be written as 
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Oscillations occur if the total phase shift around the loop is 360°. The total 

frequency dependent phase shift should be 180°. The balance of the phase shift is 

provided by the negative feedback of the four stages. Hence, with four stages, then the 

phase shift introduced by each stage is 45° i.e.  
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(4.4)  

Therefore, in a four stage oscillator the oscillation frequency is equal to the bandwidth of 

a single dominant pole stage. This simplifies the design greatly because the desired 

frequency of operation can be achieved by adjusting the bandwidth of a single stage. 

Not only does the Barkhausen require the total phase shift around the loop to be 

360° but also the minimum gain at the frequency of oscillation should be greater than or 

equal unity. i.e. 

 0
0

3

1 2
1 osc

dB

A Aω
ω

= ⇒ =
+

(4.5)  

Therefore, the minimum gain per stage should be around 1.414 to ensure 

oscillators. Generally, the minimum gain is designed to be much greater than this to 

account for process and temperature variations. 

As can be seen, selecting the number of stages as four, simplifies the design of a 

ring oscillator. Frequency of operation is simply equal to the bandwidth of a single stage. 
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4.2 Overview of Topologies 

4.2.1 Single-Ended Topologies 

Single ended topologies are implemented as either a shunt capacitor or as current 

starved inverters. These topologies have full swing outputs. Hence, they have high SNR. 

They also have fewer intrinsic noise contributing devices. 

4.2.1.1 Shunt Capacitor Inverter 
A shunt capacitor inverter topology is shown in Figure 4.2 [15]. In this topology 

the output time constant is varied by varying the resistance of the shunt transistor. The 

capacitor is usually implemented using a MOS device.  

Figure 4.2. Shunt Capacitor Inverter 

Matching of the resistor and the capacitor is an issue. Also, the capacitor, which is 

most frequently implemented using a MOS device, may take up large area for low 

frequency designs. 

4.2.1.2 Current Starved Topology 
Figure 4.3 shows a current starved topology [16]. Change in frequency is 

achieved by varying the delay by limiting the current through the inverter. 
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Figure 4.3 Current Starved Inverter 

Single ended topologies, however, have the problem of being susceptibility to 

supply- voltage variation and even order harmonic distortion. In other words, these 

topologies have low PSSR. 

4.2.2 Differential Topology 

A differential topology reduces the effect of common mode noise and the 

magnitude of current spikes injected into the VCO from the power supply and the 

substrate. Their ability to reject common mode noise results in high PSSR. 

While deciding on the topology, however, we have to make sure that the loads of 

the differential cell remain linear during the operation of VCO. Nonlinearities in a VCO 

cell cause the up-conversion of low frequency noise [17]. This can be averted by 

choosing a load which has a linear relationship between voltage and current. In other 

words the load should act like a linear variable resistor. 
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4.2.2.1 Loads in Triode 

Figure 4.4 Differential Pair with Triode Loads  

A MOS device biased in triode behaves like a linear resistor. For small drain to 

source voltages compared to its gate to source bias its drain current is approximately 

directly proportional to its drain-source voltage. Figure 4.4 shows a differential pair with 

MOS loads. Its control voltage VC can be adjusted to bring it into triode. Resistance of the 

MOS can also be varied by changing VC. The disadvantage of using a triode load, 

however, is low gain. 

4.2.2.2 Loads in Saturation 
The differential pair of Figure 4.4 can be biased in saturation by adjusting the 

voltage VC. When the load is in saturation we achieve the maximum gain as a result of the 

high output resistance. However, there is reduced swing of the output at higher overdrive 

voltages. 
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4.2.2.3 Maneatis Load [18] 

Figure 4.5 Load for the Differential Pair suggested by Maneatis [18] 

The load suggested by Maneatis [18] is shown in Figure 4.5. It consists of a diode 

connected MOS device and a current source connected in parallel. This combination has 

an I-V characteristic as shown in Figure 4.6. 

 

Figure 4.6 Simulated Characteristics of Maneatis Load  

As is implied by Figure 4.6 the characteristics are approximately linear. This load 

also maintains sufficient gain and swing. 

4.3 Selected Topology 

VC = 2.4 
VC = 2.1 
VC = 1.9 
VC = 1.7 
VC = 1.5 
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Figure 4.7 Differential Pair with Maneatis Loads 

The selected topology uses a differential amplifier with MOS diode loads [19]. A 

PMOS current source is also connected in parallel with the diode load. This combination 

of diode and current source provides a near linear load [19]. It acts as a variable resistor 

whose resistance can be changed with the help of a control voltage connected to the 

current source. Variation in resistance translates to variation in the frequency of 

oscillation. 

4.3.1 Expression for Gain and Oscillation Frequency 

The small signal model of Figure 4.7 is shown in Figure 4.8. 
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Figure 4.8 Small Signal Model of the differential pair 

Using Figure 4.8 one can derive the transfer function as  

 
1

mM

o mD dsM dsI dsD

gsM gsD dbM dbIi

mD dsM dsI dsD

g
V g g g g

C C C CV s g g g g

+ + += − + + + +  + + + 

(4.6) 

Equation(4.6) can be written in the following form 
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0
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AH s s
ω

= −
+

(4.7) 

Where A0 is the gain of the differential pair and is given in equation(4.8) and ω0 is the 

3dB frequency of the differential pair and is given in equation(4.9). 

 0
mM

mD dsM dsI dsD

gA g g g g= − + + +  (4.8) 

 0 3
mD dsM dsI dsD mD

dB
gsM gsD dbM dbI gsM gsD

g g g g g
C C C C C Cω ω + + += = ≈+ + + +  (4.9) 

From equation(4.9), where gmD equal β∆VD, we can conclude that the oscillation 

frequency is approximately proportional to ∆VD, the overdrive voltage of the diode. 

Hence, the frequency can be varied by varying ∆VD.

4.3.2 Bias Circuit for the Differential Pair 

Control voltages Vctrl1 and Vctrl2 in Figure 4.7 are generated from a bias circuit 

shown in Figure 4.9. 
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Figure 4.9 Bias Circuit for the Differential Pair of Figure 4.7 

The Bias Circuit generates the control voltages from the voltage VC, which comes 

from the loop filter. Amplifier A continually adjusts VCtrl1 which is the gate voltage of MT.

This adjusts the current through MT so that VCtrl2 closely follows VC. The complete circuit 

of the bias circuit is shown in Figure 4.10. 

Figure 4.10 Complete Schematic of the Bias Circuit  
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Figure 4.11 shows the transistor level details of the amplifier A in Figure 4.9 

including its bias circuit. Transistors M1, M2 and M3 form its bias circuit. They 

continually adjust the bias of the current source M4 so that the circuit chooses its ∆V

based on the control voltage VC. The voltages VCtrl1 and VCtrl2 are also generated 

accordingly. 

M1 Wnl / Ll M7 Wp / L

M2 Wnl/ L M8 Wp / L

M3 Wpl / Ll M9 (1/8)(Wp/ L) 

M4 2Wpl / Ll M10 (1/8)(Wpl/ LL)

M5 Wp / L M11 Wn/ L

M7 Wp / L

Table 4.1. Geometries of the transistor in Figure 4.10 

4.4 Test Results 

4.4.1 Test Setup 

Figure 4.11 shows the test setup bed for testing the Differential Pair of Figure 4.7 

along with its Bias Circuit. 
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Figure 4.11 Test Setup 

Bias Circuit and Differential run on different VDD supplies but they have a 

common VSS. The outputs Vo+ and Vo- were padded out. Inputs VC, Vi+ and Vi- were also 

padded out. 

4.4.2 Tail Current Test 

To test the tail current of the differential pair of Figure 4.11, VDDA was 

disconnected from the supply. VDDB and VSS were however connected to the supply. 

Differential inputs were applied to Vi+ and Vi- and currents at Vo- and Vo+ were measured 

using a Keithley 4200 Semiconductor Parameter Analyzer. 

Results of the measurements done are shown in figure 3. Test results show a 

decrease in current in the differential pair as the control voltage VC is increased. This 

decrease in current is attributed to the kink effect present in Peregrine transistors [6]. 



73

-500.0E-6

000.0E+0

500.0E-6

1.0E-3

1.5E-3

2.0E-3

2.5E-3

3.0E-3

3.5E-3

0.0 1.0 2.0 3.0 4.0

Io_plus
Io_minus
Io_plus Simulat ion
Io_minus

-500.0E-6

000.0E+0

500.0E-6

1.0E-3

1.5E-3

2.0E-3

2.5E-3

0.0 1.0 2.0 3.0 4.0

Io_plus

Io_minus

Io_plus Simulat ion

Io_minus
Simulat ion

 
(a) VC = 0.9 (b) VC = 1.2 
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(c) VC = 1.5 (d) VC = 1.8 
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(e) VC = 2.1 (f) VC = 2.4 

Figure 4.12 Results of the tests done to measure tail current 
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In the Peregrine transistors the kink effect sets in when the VDS is greater than 

1.5V. Referring to Figure 4.11, for values of VC above 1.5V M1 enters the kink region. 

This is happens because, VCtrl2 closely follows VC and M2 is in triode. As a result, the VDS 

drop across it (3.3 – VCtrl2 – VDS2) can get greater than 1.5V. This is illustrated in Figure 

4.13, which shows the simulated VDS across the transistor M1.

Figure 4.13 Simulation showing the magnitude of VDS of M1 while sweeping VC from 0 to 
3.3V. 

On the other hand M4 is not in the kink region. In fact it enters kink region only 

when VC is less than 1.8V. VCtrl2 has to closely follow VC no matter which transistor is in 

the kink region. Since M4 is not in the kink region, to develop the required voltage across 

itself, the current required by it does not change. However, to supply this current the Vgs 

across M1 has to drop since current through a transistor increases when it enters kink. 

This lowers the Vgs across M11 too and the current in the gain stage is lesser than desired. 
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Tying the gate of the transistor M2 to VDD allows the VDS across M1 to increase 

beyond 1.5V. This is because M2 enters triode and VDS across it is very small – allowing 

higher VDS drops across M1. Similar problems occur in the branch consisting of M1, M2

and M3 in Figure 4.10. 

4.5 Proposed Improvements 

To ensure operation of the circuit in the desired way it is necessary to make sure 

that VDS across M1 does not get larger than 1.5V. To achieve this, the gate voltage of M2

must not be connected to VDD but should be dynamically adjusted based on the existing 

operating conditions or in other words, the existing ∆V.

Figure 4.14 shows the improved circuit which has the modifications done to the 

circuit Figure 4.9 indicated in blue. 

Figure 4.14 Bias Circuit with proposed improvements 
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Transistors M13, M14 and M15 (M13, M14 and M15 ) serve to control the gate bias of 

M11 (M2 ) according to the ∆V conditions of the circuit set by the control voltage VC. To 

maintain transistors M12 (M1) and M11 (M2) in saturation equation(4.10) must be satisfied. 

 11 1 2 , argG T NL SafetyM inV V V V V= ∆ + ∆ + +  (4.10) 

VG11 can also be calculated from the equation(4.11), 

 11 17 , 16 ,| |G T NL T PLV V V V V= ∆ + + ∆ + (4.11) 

Comparing equation (4.10) and equation (4.11) we have a VSafety Margin = |VT, PL|.

Figure 4.15 shows the VDS across the transistors M12 and M15 of Figure 4.14. 

 

Figure 4.15 Simulation showing the VDS across M12, in orange and M15, in blue of Figure 
4.14 

M12 
M15 
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As is evident the VDS across the transistor M12 stays below 1.5V keeping out of the 

“kink region”. However, M15 is in the “kink region”. In the peregrine PMOS transistors 

“kink effect” is not as severe as NMOS transistors [6]. Therefore, we can more easily 

afford to keep the VDS across M15 higher than 1.5V. 
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Chapter 5  

Phase Detector 

5.1 Introduction 

In a PLL there is a need for comparison of the frequency generated within the 

loop and a reference frequency. The purpose of comparison is solely the correction of 

generated frequency. Corrections are possible only when one knows the magnitude of 

disparity between the generated and reference frequency. This difference has to be then 

fed, in a compatible form, to a voltage controlled oscillator present in the loop which is 

responsible for copying the reference frequency for use by the application.  

Phase Detector is the name given to the block in PLL which performs this 

function of comparing two frequencies and generating an error signal or phase difference 

voltage which is proportional to the difference of the two frequencies. The selection of its 

topology depends on the type of input, i.e. a sine wave or a square wave. With a sine 

input the phase detector is usually a multiplier, often implemented with a Gilbert-type 

topology. Square inputs entail the use of XOR or sequential detectors. These are mostly 
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digital and hence present a relatively less arduous design effort. Being digital also makes 

them attractive for use in digital applications. 

Another important criterion is type of lock desired in the application. Some 

applications require only a phase lock between the two frequencies whereas others 

require both the frequency and phase to match. For some applications it’s only sufficient 

to achieve a quadrature lock whereas others require a zero phase difference between the 

two frequencies of concern. Analog multipliers necessitate locking at quadrature for 

PLLs employing them because their gain is maximum at that point. Sequential detectors 

on the other hand can assist in lock at zero phase difference and also provide frequency 

detection. 

A phase detectors average output, outV , is linearly proportional to the phase 

difference, ∆φ, of its inputs. Ideally their relationship is linear as shown in figure 3.1, 

crossing the origin for ∆φ = 0. KD is defined as the gain of the phase detector and it is the 

slope of the line in figure 3.1. It is expressed in V/rad. 

Figure 5.1 Ideal Characteristic of a Phase Detector 
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5.2 Overview of Phase Detectors 

5.2.1 Analog Multiplier 

An analog multiplier as indicated before is used in PLLs with sine wave inputs. 

Its output my be expressed as in equation (5.1), 

( ) ( )cos cos cos cos 22
ABAB t t tω ω φ φ ω φ + = − +  (5.1) 

As is evident the output consists of a DC term and a double-frequency term. The DC term 

is used for phase detection. Phase detector gain for a multiplier is given in equation (5.2). 

 ( ) sin2D out
d ABK Vd φφ= = − (5.2) 

Where Vout is the output of the phase detector, A and B are the amplitudes of the two 

inputs and φ is the phase difference between the two inputs. From equation (5.2) we note 

that phase detector gain constant is zero when the phase difference is zero. It is maximum 

when the phase difference is 90°. Therefore a PLL utilizing the multiplier as a phase 

detector lock at a phase difference of 90° to maximize the useful phase detection range. 

An advantage of this phase detector is that it can operate at high speeds. However 

it exhibits high static power consumption and moreover cannot detect frequency 

differences. Also its phase detection range is limited to 0 to 90°. Another problem of the 

analog multiplier is that it has the tendency to lock on to harmonics of the input 

frequency.  

5.2.2 XOR Phase Detector 

If an analog multiplier is driven with square inputs it becomes a XOR phase 

detector. In other words, it starts behaving like a digital two input XOR gate with the 
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reference and generated frequencies applied at its inputs. Figure 5.2(b) shows the 

operation of an XOR phase detector. 

Figure 5.2 (a) XOR gate as a PD (b) Input and Output Waveforms 

As indicated, with increase in phase difference between the inputs, the width of 

the output pulses increases thereby producing a DC level in proportion with the phase 

difference, ∆φ, of the inputs. 

This phase detector has the undesirable property of dependence on the duty cycle 

of its inputs. Even if both of them have the same frequency and phase it will produce a 

DC value. The acquisition range of this phase detector is 0 to 180°. 

5.2.3 Sequential Detectors 

Sequential detectors, also known as Phase Frequency Detectors (PFD), are used 

for many digital applications, like clock recovery, where the phase difference required is 

zero. Sequential phase detectors become necessary in such cases. They can compare both 

phase and frequency of the input with reference clock and thus assist the PLL achieve a 

lock of zero phase difference. Further, in some applications it is important to have some 

information about the magnitude of any frequency difference between the inputs. 

Multiplier based phase detectors cannot provide such information but sequential phase 
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detectors can. They are also independent of the duty cycle of the inputs. Their operation 

depends only on the edges present in the inputs. 

Phase Frequency Detectors are made up of flip flops. The simplest form of this 

phase detector is shown in Figure 5.3. 

Figure 5.3 Phase Frequency Detector 

The operation of the circuit shown in Figure 5.3 can be explained as follows. If 

we initially assume that UP = DW = 0, then a rising edge on RCLK leads to UP = 1, DW 

= 0. This state is preserved until there is a rising edge on the VCLK input. A rising edge 

on VCLK causes DW to go high. The AND gate now gives a true value and resets both 

the flip-flops. Both the outputs now return to zero. A similar sequence of events follow 

when there is a rising edge on VCLK before RCLK. In this case, however, DW goes 

high. 

Figure 5.4 depicts the situation when the two inputs have equal frequencies but 

RCLK has phase difference with VCLK. 



83

Figure 5.4 Operation of PFD when RCLK VCLKφ φ≠

As is seen, DW stays at zero while UP produce pulses whose width is 

proportional to φRCLK − φVCLK. Figure 5.5 shows the case when RCLK has a higher 

frequency than VCLK. 

Figure 5.5 Operation of PFD when RCLK VCLKω ω≠

Now UP generates pulses while DW does not. It follows that if RCLK lags VCLK 

or has a lower frequency than VCLK, then DW produces pulses and UP remain quiet. It 
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can be inferred from the above that the DC contents of UP and UP indicate the 

relationship between φRCLK − φVCLK or ωRCLK − ωVCLK.

From the Figure 5.6, which shows the characteristic of a PFD, we can observe 

that this phase detector has a range of 4π. It has a constant gain given by equation(5.3), in 

this region. 

 2
DD

D
VK π= (5.3) 

Figure 5.6 Characteristic of a PFD 

However, in the real world the characteristic does not look this perfect. There is a 

dead zone in the region around zero phase difference - depicted in Figure 5.7(b) and 

explained in section 5.3. 

Sequential phase detectors have the advantage of and extended phase detection 

range as shown in Figure 5.6. Since they perform phase detection based on the edges of 

the input, they can be quite sensitive to missing edges. This makes them unsuitable for 

detecting phase differences between the incoming data (like Manchester or NRZ encoded 

data) with clock. 

5.2.4 Phase Detectors for Data and Clock recovery 
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These phase detectors are insensitive to missing edges. Detectors like Hogge’s 

phase detector among others as discussed in section 1.2 are used to recover clock from 

the data stream and also retime the data. 

5.3 Dead Zone 

Dead zone is the name given to the range of phase differences for which the PLL 

does not take any corrective action. This problem arises when the charge pump fails to 

deposit or take out sufficient charge from the loop filter.  Figure 5.7(a), shows the 

behavior of the charge pump current, IP, for different phase differences, ∆φ, between the 

reference clock and the VCO clock. For phase differences below φDZ the charge pump 

fails to turn on. This results in the dead zone as shown in Figure 5.7(b). 

(a) (b) 
Figure 5.7 (a) Charge Pump Current for different Phase Differences (b) Dead Zone of 

PFD 

This problem can be traced back to the PFD. For small phase differences the PFD 

produces small UP (or DW) pulses (Figure 5.8). The dotted lines represent the actual 
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pulses and the solid lines indicate the pulses due to the finite time constant the PFD sees 

at its output. These small pulses fail to turn on the charge pump. As a result, no current is 

sourced or sinked and the VCO maintains its phase. This allows the VCO to accumulate 

phase error as no corrective feedback is provided. 

Figure 5.8 Cause of Dead Zone in PFD 

The dead zone can be reduced if the PFD provides simultaneous UP and DW 

pulses of sufficient width when the PLL is in lock, or in other words, when there is no 

phase difference between input and VCO frequencies the PFD should produce UP and 

DW pulses instead of remaining calm, as illustrated in Figure 5.9(b). This can be 

achieved by introducing a delay in the reset path as shown in Figure 5.9(a). This delay 

prevents the pulling down of UP and DW outputs. These pulses of sufficient widths, 

created by the delay, ensure that the UP and DW pulses reach considerable voltage levels, 

so that a small phase difference is enough to bring them to adequate levels, ensuring that 

they turn on the charge pump. 
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(a) (b) 

Figure 5.9 (a) Reducing Dead Zone introducing Delay (b) Resulting Waveforms 

5.4 Overview of Topologies of Phase Frequency Detectors 

A Phase Frequency Detector is a suitable topology because of its wide phase 

detection range and an all digital topology. However, a charge pump has to follow to 

ensure proper frequency setting of the control voltage of VCO. 

5.4.1 Conventional Phase Frequency Detector [20], [21], [22] 
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Figure 5.10 Conventional PFD 

START is used to set the initial conditions of the circuit. When START is initially 

low, RST is low. Now assuming that both VCO and REF signals are low then both UP 

and DW signals are low. When START is held high RST becomes high, DW and UP 

outputs remain the same but the Q outputs of SR1 and SR2 become high. Let’s now 

suppose that the REF signal comes before VCO signal. As soon as REF signal becomes 

high Q output of SR3 and so does UP. Since RST is high SR1 maintains its state. Now, 

three of the four inputs to N8 are high. As soon as the VCO signal goes high the fourth 

input also goes high and RST becomes zero. Both the inputs of SR3 and SR4 are held at 

zero and both of their outputs become high. This resets DW and UP signals. As soon as 
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any of the REF or VCO inputs go low RST is pulled high and the circuit is ready to 

perform its next comparison.  

The reset path shown in Figure 5.10 in bold acts and resets both DW and UP 

outputs. The reset path consists of the gate N8 and not SR2 because the latter’s output is 

already set. When VCO signal gets high, Q output of SR4 begins to go high and as a 

result all the inputs to N8 are high. Now the output of N8 goes low and so does RST – 

resetting both the DW and UP outputs. 

If we add delay in this path the UP and DW outputs remain high for some time. 

This can help reduce or eliminate the dead zone [23]. 

5.4.2 PFD suggested by Won-Hyo et al [24] 

The PFD suggested by Won-Hyo et al [24] uses the circuit shown in Figure 5.11 

as the flip flop. 

Figure 5.11 Schematic of D Flip Flop for use in PFD 

Referring to Figure 5.11, initially when the CLK and RST inputs are low, node A 

is connected to VDD through M1 and M2. This charges the node to VDD during this 

time. This turns off M4 and since M5 is off when the CLK is low, QB is pulled high. If 
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the CLK now goes high then M5 turns on. Since M6 is already on, as A was previously 

charged to VDD, QB is pulled low. To reset the flip-flop, RST is pulled high, the node A 

now gets connected to GND through M3. This turns off M6 and turns on M4. The flip-

flop is now reset and QB goes high. 

The flip-flop of Figure 5.11 can be used in PFD as shown in Figure 5.12.  

Figure 5.12 PFD suggested by Won-Hyo et al 



91

The flip-flops of the PFD showed in Figure 5.12, have a functionality similar to 

that of those in the topology in Figure 5.3, however with less delay. A Pseudo-NOR gate 

is used to generate the reset signal.  

5.4.3 PFD suggested by Sungjoon et al [25] 

Figure 5.13 PFD suggested by Sungjoon et al 

Referring to Figure 5.13, initially the both inputs to the NOR gate are high pulling 

the gate of M1 low. Let us assume that the RCLK edge has not arrived yet (a logic 1) and 

hence the gates of the transistors M1 and M2 are pulled low. This brings the gates of M6 

and M8 to VDD turning off M6 and turning on M8. When the RCLK edge arrives M7 is 
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turned on and M2 is turned off. Since the gates of M6 and M8 were held high before the 

UP signal now becomes high. 

Through a similar sequence of events on the respective gates, DW is pulled high 

when the VCLK arrives. Now both the inputs to the NOR gate are low forcing the gates 

of M3 and M6 high. Since M2 and M5 are off as both RCLK and VCLK are high the 

gates of M6 and M10 are pulled low and as a result UP and DW are reset to zero. 

5.4.4 PFD suggested by Kondoh et al [26] 

Figure 5.14 PFD suggested by Kondoh et al 

Referring to Figure 5.14 let us supposed that RCLK signal arrives before VCLK. 

Then M4 turns on forcing the gates of M9 and M11 to be held low. Since M10 is also 

turned on, M9-M11 act as an inverter and DW is pulled low. In the UP half, M5 is on and 
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M8 is off, forcing the gates of M12 and M14 high. M13 is also off and so is M12. Since 

M14 is on, UP is pulled high – indicating that the VCLK frequency should be increased. 

When the VCLK arrives, M8 turns on and M5 is turned off. This pulls the gates of 

M12 and M14 low. As a result UP is pulled low, because M12 is on, resetting the PFD. 
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Chapter 6  

Future Efforts 

First, a decision on the clock recovery architecture needs to be made. Clock 

recovery using a Hogge’s phase detector type topology ensures that the clock is directly 

recovered from the data. This is the most desirable way of determining the clock of the 

input data. However, there are problems with the dead zone of the phase detector and 

ripples on the control line of the VCO as discussed in sections 1.2.2 and 1.2.3. Therefore, 

Clock recovery scheme suggested in section 1.2.3 could be adapted for use in the 

recovery of Manchester Encoded Data, if clocks of the transmitter and receiver drift too 

much with respect to each other. 

However, if the clocks of the transmitter and receiver don’t drift too much with 

respect to each other then Clock recovery scheme discussed in section 1.2.4 could be 

used because of its simple architecture. In this case a conventional phase frequency 

detector of section 5.4.1 should be used which has the advantage of being able to 

eliminate dead zone. It will work for frequencies close to 30MHz using the Harsh 

Environment Peregrine Cell-Library developed in the MSVLSI lab. For higher 

frequencies one has to adopt a faster PFD discussed in sections 5.4.2 - 5.4.4. 
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Charge pump discussed in section 3.5 could be used in the PLL because it reduces 

the “frequency jump” phenomenon to half the value as discussed in the same. 

If “kink effect” is found to affect the performance of the VCO then the technique 

discussed in section 4.5 could be employed. However, it may not be the complete or 

universal solution. 

Variation of temperature during operation of the PLL changes the loop parameters 

like charge pump current, KVCO etc. resulting in degradation of the bandwidth of the PLL. 

As a result temperature considerations must be carefully considered in the design of bias 

generators for the charge pump. PLL design techniques discussed in [11, 27], called 

Adaptive Bandwidth PLLs could be employed to make the bandwidth independent of 

temperature dependent variables. This would prevent the bandwidth from being effected 

by temperature variations. 
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