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Chapter 1

INTRODUCTION

This thesis deals with the application of Support Vector Machines (SVM) to

specific problems in remote sensing and the adaptations required for solving them.

The specific problems are mapping and compliance monitoring of US Department

of Agriculture’s (USDA’s) CRP.

This chapter briefly introduces USDA’s CRP program and the problems that

we intend to study. The major algorithms that are used in this work are discussed in

Chapter 2. Datasets and the study area used in our simulations are also presented.

1.1 USDA’s Conservation Reserve Program (CRP)

The Conservation Reserve Program (CRP) is a voluntary program for agri-

cultural landowners. It provides annual rental payments for the establishment of

long term ecologically-beneficial covers on eligible lands. The program is admin-

istered by the Commodity Credit Corporation through the Farm Service Agency

both of which are subsidiaries of the USDA. Information about the CRP program

is available at the CRP website [1].

Overall speaking, the CRP is a long-term program which aims to improve

soil, water and wildlife resources. Under the CRP contract, farmers are encouraged

to plant long-term native plant species (mostly grasses) on agricultural lands for a

period of 10-15 years. These CRP tracts (e.g. Figure 1.2) have to be maintained ac-

cording to CRP contract stipulations, which specify that the land cannot be used for
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commercial purposes except for haying or grazing during weather-related emergen-

cies. In return annual rental payments are made to the farmers by USDA. The CRP

program was established by the Congress in 1985. During the year 2003, 34,110,536

acres were enrolled in the program. The rental payments made amounted to $1.673

billion.

Figure 1.1: Example of CRP lands from [1].

The eligibility of the land for enrollment in the CRP program is based on

various factors given below,

• A cropland that has been planted or considered planted for 4 of the last 6

years.

• A cropland that is cultivable.

• A cropland must have a weighted average Erosion Index of 8 or greater.
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Offers received for CRP enrollment are evaluated and ranked based on an

Environmental Benefit Index (EBI). EBI usage ensures that only the most environ-

mentally sensitive lands are selected. The EBI factors include,

• Wildlife habitat benefits.

• Water quality benefits due to reduced erosion, runoff and leaching.

• On-farm benefits from reduced erosion.

• Air quality benefits from reduced wind erosion.

• Cost.

Lands enrolled in the CRP program have to adhere to contract stipulations.

Mainly the land has to be planted with native vegetation usually native grasses.

In some cases even trees are allowed. Native vegetation is preferred because one

objective is to improve wildlife habitats. Also farming is not allowed during the

contract period. Haying or grazing on enrolled lands is not allowed expect during

weather related emergencies like drought.

1.2 Remote Sensing for CRP related research

1.2.1 CRP Compliance Monitoring

Currently, USDA is faced with the problem of farmers not maintaining CRP

tracts according to contract stipulations. So there is a need to make sure that

enrolled CRP lands are maintained properly i.e. compliance monitoring. Current

methods for CRP compliance monitoring involve intensive manual inspection of

aerial photographs which is time-consuming and costly. USDAs Common Land

Unit (CLU) data [15] which is used for general compliance issues, is generated from

aerial photographs created by the National Agricultural Imagery Program (NAIP)

with a resolution about 1m×1m, which are updated every 1-2 years and may not be
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very efficient for CRP compliance monitoring on a large scale. In addition, existing

CRP reference data obtained from USDAs Natural Resource Conservation Service

(NRCS) is not very accurate or up-to-date for management purposes. Furthermore,

random field inspections are costly affairs. There is an urgent need of an automatic

compliance monitoring method which can examine CRP tracts more efficiently and

promptly with minimum human involvement. Little research has been done in this

area.

1.2.2 CRP Mapping

Existing CRP reference data provided by NRCS has some errors and is out-

of-date. Usually, major errors in the present CRP reference data are the mis-location

and/or misalignment of CRP tracts. This is due to the fact that the reference data

is considerably old and it is possible that there have been new CRP enrollments or

that old enrollments have expired and returned to agriculture. Current CRP maps

are developed based on information provided by farmers upon enrollment into the

program and by manual delineation of aerial photographs. So it is necessary to

update CRP maps regularly and automatically. Past research in CRP mapping is

summarized in the succeeding paragraphs.

An approach for accurate CRP mapping based on multi-seasonal and multi-

year Landsat TM imagery is discussed in[8] and [9]. An unsupervised classification

was performed first to create crop and grass maps. Then after labelling these clus-

ters manually, the CRP tracts were extracted by a post-classification comparison

technique, where the areas with changed cover types can be detected. Although

high classification accuracy had been achieved by this approach, the dependency

on intensive human skill and labor might limit its efficiency and effectiveness in

practical applications to large areas.

In [33], an automated accurate classifier of multi-source geospatial data was

developed where the geospatial data consists of multi-temporal Landsat imagery,
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ancillary geographic information system (GIS) data and other derived features are

involved. Two machine learning approaches, i.e., decision tree classifier (DTC) and

SVM, were implemented as multi-source geospatial data classifiers.

1.3 Machine Learning Approach for Remote Sensing

Machine learning is the ability of a computer algorithm to recognize patterns

that have occurred repeatedly and to improve its performance based on past expe-

riences. In remote sensing classification, the statistical maximum likelihood (ML)

classifier is a widely used tool for land cover classification of multi-spectral imagery.

Each land cover class is assumed to be a unimodal normal distribution which is

not usually true due to the random nature of remote sensing data. Although the

ML method is robust with some deviations in modeling, and the Gaussian mixture

model is applied to better approximate the true distribution, the intensive compu-

tation load makes it impractical for real applications. In addition, there are some

potential relationships among different features, simple statistical models cannot

capture those relationships efficiently. In recent years, some machine learning ap-

proaches have been successfully applied to remote sensing data [33], [31], [3], [11],

[7], [17], [21], [4], [16], [27], [33], [10], [24] and [13]. These approaches are efficient,

robust and flexible without any requirement of statistical modeling. As there are

currently a huge number of machine learning methods and many of these methods

have been applied to problems in Remote Sensing; we will be discussing a few of the

important methods.

The Decision Tree Classifier (DTC) solves a complex classification problem by

dividing it into a set of simpler classification issues. The DTC has shown advantages

in real remote sensing applications for more than ten years [33], [31], [3], [11] and

[7]. However, considering the complexity of feature space, the trained DTC might

have the over-fitting problem with poor generalization performance. Pruning could

mitigate the effect of this problem, but cannot guarantee an optimal solution.
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The SVM has recently enjoyed wide usage for remote sensing applications.

SVM separates different classes by finding optimal classification hyperplanes from

training data, leading to better generalization capability compared with other meth-

ods. Recent research on SVM in Remote Sensing applications have shown impressive

classification results [17], [21], [4], [16], [27], [33], [10], [24] and [13]. More elaboration

on SVM for Landsat TM image classification is given in Section (2.5).

1.4 Experimental Setup

The study area that we have chosen is Texas County (Figure 1.2), Oklahoma.

As of October 2003 Texas county had 217,802 acres out of the total 1,036,441 acres

enrolled in Oklahoma. Here different grass species are grown on the CRP tracts.

This allows us the opportunity to analyze the CRP plots better as plots will have

be less variation due to changes in topography and other factors.

In our work we are using Landsat TM (Thematic Mapper) images obtained

for February, 2000 and June, 2000 (so as to get information for both winter and

summer) covering Texas County, Oklahoma. Hence this data set is multi-temporal.

Each pixel of this image covers an area of 30m × 30m. Landsat TM generated

imagery covers seven spectral bands viz. Band 1 (Blue), Band 2 (Green), Band 3

(Red), Band 4 (Near infrared(IR)), Band 5 (Mid IR), Band 6 (Thermal IR) and

Band 7 (Mid IR).

We also have CRP Reference data obtained from Natural Resources Conser-

vation Service which is used as the ground data. This data shows the CRP tracts

as well as the cover types in each CRP tract as per the information given by the

farmer when his/her land is enrolled in the CRP program.

Feature Extraction is adapted from [33]. Each pattern(representing a single

pixel) composed of totally 38 layers generated solely from the Landsat TM images.

The first 10 layers of each pattern consist of Landsat TM bands from each TM

image. Bands 1 (i.e. blue band is prone to haze) and 6 (i.e. thermal band which has

6



Figure 1.2: Texas County Landsat data superimposed with Road and Stream net-
work information (Courtesy of Dr. Mahesh Rao of the Oklahoma State
University’s Geography Department).

a different resolution and is not useful in vegetation studies) were excluded. The

following 20 layers are texture information that includes the local mean and local

variance within a 3×3 window of each band in each season. The last 8 layers consist

of different derived features like, Normalized Difference Vegetation Index (NDVI),

Band Ratios and Band Differences. These are used for all the simulations conducted

in the Chapters 3 and 4.

1.5 Organization and Contributions

Figure 1.6 gives a graphical representation of the succeeding chapters. Chap-

ter 2 briefly describes the major algorithms used in this thesis. It describes the

7



Figure 1.3: Clip of February 2000 Landsat TM image with superimposed CRP
ground data(in white polygons).

Figure 1.4: Clip of June 2000 Landsat TM image with superimposed CRP ground
data(in white polygons).
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C. Derived Features from Imagery (7 layers)

B. Texture Information from Imagery (20 layers)

A. Multi-Spectral Satellite Imagery (10 layers)

Figure 1.5: Different layers in each pattern.

SVM and the OCSVM. Also given are some details on the effects of kernel selection.

Chapter 3 describes in detail the two methods discussed for compliance monitoring

which are the distance based method and the ν insensitive method. Chapter 4 dis-

cusses the method for CRP mapping based on combinations of multiple OCSVMs.

Chapter 5 is the conclusion.

The contributions of this thesis are mainly development of two methods for

CRP compliance monitoring (discussed in Sections 3.4 and 3.5) and a new CRP

mapping procedure (discussed in Chapter 4). Compliance monitoring methods are

made by combining together the OCSVMs as the first stage and the general SVMs

as the second stage. Difference lies in the method to select reliable training samples

from the first stage for training the second stage. Two kernel space based methods

are used for reliable sample estimation, one of which termed the ν-insensitive ap-

proach is proposed in this thesis. For CRP mapping we implemented a method using

combinations of multiple OCSVM’s trained on different CRP cover types. Also a

pre-clustering procedure has been discussed for combining different CRP cover types

prior to training.
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Conservation
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(Chapter 1)

Support Vector

Algorithms

(Chapter 2)
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CRP

pre-clustering
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Combining

One-class
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(Sec. 4.2.2)

Figure 1.6: Thesis Organization.
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Chapter 2

SUPPORT VECTOR ALGORITHMS

Support Vector Machines (SVMs) began to be widely used in the late 1990’s.

It is a learning algorithm that is based on the principle of margin maximization.

SVMs have been widely applied in the fields of pattern recognition, regression anal-

ysis and density estimation, however we will be focussing on pattern classification as

our problems fall in that domain. Comparative studies have found SVMs to perform

as well as or better than most prevalent learning methods.

This chapter provides a brief review of general SVM; which is a supervised

binary classifier; as well as the One-Class SVM (OCSVM) which is an unsupervised

form of the SVM. Basic concepts of Statistical Learning Theory used for developing

SVM’s are discussed. Finally, we discuss kernel selection.

2.1 Statistical Learning Theory

The statistical learning theory forms the mathematical foundations for de-

velopment of the Support Vector Algorithms. It deals with methods to quantify the

risk in learning. It provides bounds on risk and an effective method to control the

trade-off between risk and complexity of the classification function. This section

is a brief review of concepts necessary to appreciate the Support Vector learning

algorithm contained in [38], [5], [28] and [25].
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2.1.1 General Learning Algorithm

The simplest problem in pattern recognition is the case where there are two

classes, identified by class labels +1 and -1 respectively, requiring a supervised

classification. The general SVM is a supervised binary classifier. We have a set of

example data samples or what will be henceforth referred to as feature vectors xi

and corresponding labels yi which form an independent and identical distribution

related according to an unknown probability distribution P (x, y). The training

patterns are,

(x1, y1), ..., (xl, yl) ∈ RN , y ∈ {±1}, (2.1)

where l is the number of patterns.

Training Patterns

{(x1, y1),…, (xl, yl)}

Class Membership

(y)

Decided by P(x,y)

Patterns

{x1, x2,…, xn}

Learning 

Algorithm

Classification

Algorithm

y = f(x, )

x y

Figure 2.1: The general supervised binary(y ∈ {±1}) classifier. Our objective is
to find the classification function f(x, α).

2.1.2 Risk and Risk bounds

Mapping xi → yi has to be learned. This mapping is defined by f(x, α) = y,

where α ∈ Λ is the set of function parameters also referred as the complexity of

the function. As the number of function parameters increase, its complexity also

increases. We want to learn the particular choice of α giving us the minimum risk.

The expected risk is defined for a particular α as,

R(α) =

∫
1

2
|y − f(x, α)|dP (x, y), (2.2)

12



which cannot be calculated as P (x, y) is unknown. Therefore for minimizing the

risk the empirical risk is used which is defined as,

Remp(α) =
1

2l

l∑
i=1

|y − f(x, α)|. (2.3)

The expected risk is what we get after classification. But during the training stage

what we actually know is the empirical risk. It is possible that when l → ∞, the

empirical risk will converge to the expected risk. However for small sample sizes

large deviations are possible and overfitting may occur. Therefore a small training

error does not guarantee a small classification error.

Overfitting can be avoided by restricting the complexity of the function class

f(x, α). The way for controlling function complexity is given in [38]. For the above

defined learning problem for any α ∈ Λ, l > h(h is defined in Section 2.1.3) and

some η; so that 0 ≤ η ≤ 1. Then the following bounds defined in [38] holds with a

probability of at least 1− η;

R(α) ≤ Remp(α) + φ(
h

l
,
log(η)

l
), (2.4)

where the confidence term φ is defined as,

φ(
h

l
,
log(η)

l
) =

√
h(log(2l

h
) + 1)− log(η

4
)

l
. (2.5)

2.1.3 VC Dimension

The parameter h is called the VC (Vapnik-Chervonenkis) Dimension of a set

of functions. VC dimension is a measure of the capacity of the function. Consider

the case of two-class pattern recognition where the set of functions f(x, α) ∈ {±1},
for such a set of functions f(α) h is the maximum number of training points for

which labels can be correctly assigned in all 2l ways. Usually if the VC Dimension

is h, at least one set of h points can be correctly assigned their labels, but it will

not in general be true that all sets of points are correctly assigned. Thus the VC

Dimension depends on the set of functions f(x, α), α ∈ Λ.
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2.1.4 Structural Risk Minimization

From Equation 2.4 it can be seen that for a fixed number of training samples

l, the risk is controlled by Remp(α) and h. To control h a structure of nested subsets

Sn := f(x, α) : α ∈ Λn of f(x, α) : α ∈ Λ is created such that;

S1 ⊂ S2 ⊂ .... ⊂ Sn ⊂ ..., (2.6)

whose VC Dimensions as a result satisfy,

h1 ≤ h2 ≤ .... ≤ hn ≤ .... (2.7)

For a given set of observations as in Equation 2.1 the Structural Risk Minimization

principle chooses the particular function subset Sn for which the guaranteed risk

bound as in Equation 2.4 is minimal.

Expected Risk

E
rr

o
r

Complexity of function

Confidence Empirical Risk

Sn-1
Sn+1Sn

…… ……
Structure of Nested Subsets

Figure 2.2: Shows the relation between Equation 2.4 and the sets determining
function complexity (Equation 2.6). Thus illustrating Structural Risk
Minimization Principle.
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Figure 2.2 shows that, as the complexity of the function increases the empiri-

cal risk decreases and the VC Dimension increases. But the Expected Risk minimizes

only for a certain particular subset Sn of the classification function, which if used

will guarantee a good classification.

2.2 Support Vector Machine (SVM)

The SVM is a general purpose binary classification algorithm based on the

margin maximizing principle. Reliance on the Structural Risk Minimization princi-

ple provides the theoretical background to guarantee a good classification accuracy.

Here a brief review of basic SVM theory discussed in [38], [5], [28] and [25] is pro-

vided.

2.2.1 Linear Separable Case

This is the simplest case of pattern recognition which is easy to begin the

explanation of the SVM algorithm. Here the feature vectors are assumed to be sep-

arable and can be separated by a linear decision boundary. The decision boundary

is a hyperplane as the input space can be of any dimension. A hyperplane is a plane

with respect to a feature space as it has one dimension less that feature space.

Now for the data set defined in Equation 2.1 it is possible that there will

be a set of hyperplanes called canonical hyperplanes capable of separating the two

classes of data. Our objective is to select the hyperplane separating the two classes

of data with the maximum margin. The hyperplanes are of the form,

x ∈ RN : (w.x) + b = 0, (2.8)

for the above equation b is the offset form the origin and w is the normal to the

hyperplane. Therefore the condition for classifying the data samples without error

is

yi((w.xi) + b) ≥ 1, i = 1, ..., l. (2.9)
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margin

W

origin

b/|W|

Hyperplane

Figure 2.3: Diagrammatic representation of the linear separable case. Two dimen-
sional case is shown for illustration purposes. Feature Vectors of the
first class are represented as triangles and the other as circles. The
hyperplane is in the middle of the margin between the two classes.
The patterns lying on the margins (given in black) are the Support
Vectors and are the ones that will be used in classification.

Consider two different patterns lying on the upper and lower margins (Support

Vectors) i.e (w.x1) + b = 1 and (w.x2) + b = −1. The margin is therefore the

distance between these two points measured perpendicular to the hyperplane i.e

( w
||w|| .(x1 − x2)) = 2

||w|| thus the best hyperplane can be found by maximizing this

margin or by minimizing,

τ(w) =
1

2
||w||2, (2.10)

subject to: yi((w.xi) + b) ≥ 1, i = 1, ..., l.

2.2.2 Relation with VC Dimension

As defined in [38] for a class of hyperplanes, for example of the form f(x) =

sgn((w.x) + b) the VC-Dimension h can be bounded in terms of;

h ≤ R2Λ2 + 1, (2.11)

where Λ is an upper bound constraining the length of the weight vector of the

hyperplane in canonical form, and R is the radius of the smallest sphere containing
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the data in the space where the hyperplane is constructed. The smaller this sphere,

the smaller is the capacity. Thus it can be said that by requiring a large lower bound

on the margin (i.e. a small Λ) we obtain a small VC-dimension. By allowing for

separations with small margin we can potentially separate a much larger class of

problems.

2.2.3 Linear Non-separable Case

In most classification cases data are not separable. In terms of the SVM

classification it means that the margin region cannot be free of feature vectors. The

hyperplanes accommodating this property are referred to as Soft Margin Hyper-

planes. To make this possible slack variables have to be introduced,

ξi ≥ 0, i = 1, ..., l. (2.12)

The equation (2.9) is transformed to,

τ(w, ξ) =
1

2
||w||2 + C

l∑
i=1

ξi, (2.13)

Subject to: yi((w.xi) + b) ≥ 1− ξi, i = 1, ..., l.

Literally this approach allows some misclassification of the data to obtain a

linear classification boundary. The parameter C called the regularization constant

determines the penalty on the errors. The second term in the Equation 2.18 controls

the degree to which the misclassified data will affect the formation of the decision

boundary.

2.2.4 Optimization

To solve the convex optimization problem defined in Equations 2.10 and 2.9

a langragian L is formed. The Equation 2.10 now becomes;

L(w, b, α) =
1

2
||w||2 −

l∑
i=1

αi(yi((xi.w) + b)− 1), (2.14)
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with langragian multipliers αi ≥ 0. The langragian L has to be maximized with

respect to αi and minimized with respect to w and b. The condition that at the

saddle point the derivatives of L with respect to the primal variables (w and b) must

vanish,
∂

∂b
L(w, b, α) = 0,

∂

∂w
L(w, b, α), (2.15)

leads to,
l∑

i=1

αiyi = 0 and w =
l∑

i=1

αiyixi. (2.16)

According to Kuhn-Tucker theorem from optimization theory, at the saddle

point αi can be nonzero only for points xi which satisfy,

αi[yi((xi.w) + b)− 1] = 0, i = 1, ..., l. (2.17)

These points are called Support Vectors and in the Figure 2.3 lie exactly on the

margin. These are the only feature vectors required for classification.

Substituting Equation 2.16 into 2.14 the dual form (used for solving for the

support vectors) of the optimization is derived:

max W (α) =
l∑

i=1

αi − 1

2

l∑
i,j=1

αiαjyiyj(xi.xj) (2.18)

Subject to: αi ≥ 0; i = 1, ..., l;
l∑

i=1

αiyi = 0.

On substituting the above, the decision function is obtained as,

f(x) = sgn(
l∑

i=1

αiyi(x, xi) + b). (2.19)

2.2.5 Non-Linear Support Vector Machines

Non-Linear separation boundaries are needed for solving general purpose

problems. SVM tries to solve this problem by non-linearly transforming the input

feature space by a mapping function Φ : xi ½ zi into a high dimensional feature
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space where a linear separation is done. This is shown in Figure 2.4. A decision

function of the following form is obtained;

f(x) = sgn(
l∑

i=1

αiyi(Φ(x).Φ(xi)) + b), (2.20)

where (Φ(x).Φ(xi)) are dot products computed in the projected space.

R2

Projection

R2R3

Figure 2.4: Non-Linear decision boundaries are constructed by projecting the data
to a higher dimensional space, where a linear classification boundary
is constructed.

2.2.6 Support Vector Classification

From the training procedure the Support Vectors(SV’s) are known. For each

input vector x the kernel distance is calculated and based on the decision function

the vector is assigned to either of the classes. Figure 2.5 shows the case where there

are three SV’s.
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1 2 3

f(x) = sgn(          + b)

SV1
x

k(x,SV1)

SV2

k(x,SV2) k(x,SV3)

SV3

Figure 2.5: Here x is an input vector. There are three Support Vectors. The kernel
function is evaluated with respect to each of them. The classification
function (Equation 2.20) decides to which of the classes ±1 the input
x belongs.

2.3 One-Class Support Vector Machine(OCSVM)

This is an extension of the regular SVM to the case of unsupervised classi-

fication. Here the labels of the training data sample are unknown. In this section

two different approaches to this problem are discussed.

2.3.1 One-Class Classification

In one-class classification only the information about the target class is avail-

able. The boundary between the data of the target class, which is provided, and

all other data, considered as outliers has to be estimated based on the data of the

target class alone. This method is also referred to as novelty detection.

One-Class classification will be introduced with the example given in Figure

2.6 described in [34]. Here training patterns of data about apples and pears are

available. Each object has two feature values viz. weight and width. The two

classes can be separated without errors by the solid line in Figure 2.6, which is the
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Figure 2.6: Figure from [34] shows the difference between the regular classifier and
the One-class classifier.

normal two-class classifier. Consider now that a new pattern of a rotten apple in the

lower right corner is introduced. It cannot be distinguished from the pears. Thus

for a two-class classifier all patterns have to be either regular apples or pears and

anything else won’t be classified correctly. However the one-class classifier (denoted

by dotted line) can differentiate the outlier after training.

2.3.2 Hyperplane based model

This algorithm for OCSVM has been proposed in [30]. It tries to estimate

the region in the projected feature space where majority of the data resides.

Here the objective is to separate the data in the kernel space from the origin

with the maximum margin. So it amounts to finding some hyperplane w ∈ F that

separates the unlabelled training data from the origin with the threshold ρ. The

function fw(x) = (w.Φ(x)) has to be determined and the pattern x belongs to one

class when fw(x) ≥ ρ. To separate the data set from the origin, the following
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Figure 2.7: Triangular objects are outliers and circular objects show the majority
data. Hyperplane is given by the dotted line.

quadratic program has to be solved,

min
w∈F,ξ∈Rl,ρ∈R

1

2
||w||2 +

1

νl

l∑
i=1

ξi − ρ, (2.21)

subject to:(w.Φ(x)) ≥ ρ− ξi , ξi ≥ 0.

This decision function becomes of the form,

f(x) = sgn((w.Φ(x))− ρ), (2.22)

which will be positive for most examples in the training set. The parameter ν ∈ (0, 1)

controls the percentage of outliers.

The dual form for this optimization is obtained as,

min
α

1

2

∑
i,j

αiαjk(xi, xj), (2.23)

subject to 0 ≤ αj ≤ 1

νl
,
∑

i

αi = 1.

At the optimum, the two inequality constraints in Equation 2.21 become equalities

if 0 ≤ αj ≤ 1
νl

. Therefore ρ can be recovered by exploiting that for any such αj the

corresponding pattern xi satisfies,

ρ = (w.Φ(xj)) =
∑

j

αjk(xj, xi). (2.24)

In this algorithm ν is defined as an upper bound on the fraction of outliers

and a lower bound on the fraction of SV’s. For practical implementations it can be

roughly taken as the percentage of outliers.
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2.3.3 Hypersphere based model

This algorithm for OCSVM has been proposed in [34] and [35]. It is also

referred to as Support Vector Data Description. Here the objective is to create a

hypersphere with the minimum volume in kernel space containing all the data. The

sphere is defined by a center a and a radius R > 0. The volume is minimized by

minimizing R2 and the sphere has to contain all the training objects xi.

a

Support Vector

Outlier

R

Figure 2.8: White objects are outliers and black objects show the majority data.
R is radius and a is the center of the hypersphere.

The error function to minimize is:

F (R, a) = R2, (2.25)

subject to: ||xi − a||2 ≤ R2, i = 1, ..., l. (2.26)

To allow for the possibility of outliers in the training data, slack variables ξi ≥ 0

are introduced. The distance from xi to the center a should be strictly smaller than

R2, but larger distances will be penalized. So the minimization problem changes to,

F (R, a) = R2 + C
∑

l

ξi. (2.27)

subject to: ||xi − a||2 ≤ R2 + ξi, ξi ≥ 0,∀i. (2.28)

where the parameter C controls the tradeoff between the volume and the errors. C

is similar to the ν of the hyperplane model.
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Utilizing Lagrangian multipliers αi ≥ 0 and setting the derivatives to 0, the

value of R can be obtained as,

R2 = (xk.xk)− 2
∑

l

αi(xi.xk) +
∑
i,j

αiαj(xi.xj), xk ∈ SV, (2.29)

where SV is the set of support vectors (feature vectors lying at the boundaries of

the sphere) which have αi > 0.

Origin

Hyperplane

Smallest

Hypersphere

enclosing the data

Gaussian kernel 

maps data on to 

this hypersphere

Target samples

classified as 

outliers

( i )

i

Figure 2.9: Equivalance between the hypersphere and hyperplane model for
OCSVM from [37].

2.3.4 Model Equivalence

Using the Gaussian kernel, data is preprocessed to have a unit norm. Thus

feature vectors lie on the surface of a unit hypersphere in kernel space. In [30], [34]

and [35] both methods have been proved to have comparable solutions when the
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Gaussian kernel is used. A diagrammatic representation is shown in Figure 2.9. For

non-normalized data the solutions become incomparable due to the differences in

model description. Among all the commonly used kernels the Gaussian kernel gives

tightest boundary descriptions and hence the best classification results as described

in [34].

2.4 Kernel Selection

The kernel is effectively a mapping function that does the transformation

Φ : xi ½ zi into a higher dimensional space. The projected space H is a very

high dimensional one or in some cases an infinite dimensional space. It can be seen

that maximizing the target function and evaluating the decision functions require

the computation of dot products (Φ(x).Φ(xi)). Under Mercer’s conditions these

expensive computations can be reduced significantly by using a suitable function k

such that;

(Φ(x).Φ(xi)) = k(x.xi), (2.30)

where k is the kernel. As only dot products are required for the solution, it can

be obtained using kernels without even knowing the mapping Φ. Now the decision

function (2.20) is converted to,

f(x) = sgn(
l∑

i=1

αiyi.k(x.xi) + b). (2.31)

The curse of dimensionality in statistics says essentially that the difficulty

of an estimation problem increases drastically with the dimension N of the space.

Here we are not dealing with actual data projections into a high dimensional feature

space. Statistical Learning Theory [38] tells that the contrary can be true; it is

not the dimensionality of the feature space but the complexity of the classification

function that matters.

The generally used kernels are;
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• Polynomial Kernel :k(x, xi) = (x.xi)
d,

• Gaussian Kernel :k(x, xi) = exp(−γ||x− xi||2),

• Sigmoid Kernel :k(x, xi) = tanh(m.(x.xi) + Θ).

2.4.1 Feature Spaces Induced by Kernels

The important thing to understand is data is not physically projected into

the high dimensional space. Only the optimization of the SV algorithm is done

as if the data were in high dimensional space. As the optimization consists of dot

products it is possible to use kernels to simplify the computation.

The kind of kernels used in SV algorithms are Mercer Kernels. The space to

which data ia projected using kernels is described as a Reproducing Kernel Hilbert

Space. Detailed description of the kernel space properties have been given in [29].

The kernel that is normally used is the Gaussian Kernel. This kernel allows

tighter decision boundaries and thus provides better classification. In [34] it was

found to be the best kernel for both types of OCSVMs. This kernel has a width

parameter γ which has to be tuned by the user. This kernel is independent of the

position of the patterns with respect to the origin, it only utilizes the distances

between the patterns. Also the influence of the norms is avoided. Patterns are

mapped to unit norm vectors (norm of mapped objects, Φ(xi).Φ(xi) = 1), only the

angles between the patterns count.

2.4.2 Study on Gaussian Kernel

As the Gaussian Kernel is the most widely used a lot of study has been done

to understand its working and behavior. [20] provides great insight into how the

kernel parameters affect the classification.

26



When γ −→ 0 the Gaussian kernel can be represented as,

K(xi, xj) = exp(−γ||xi − xj||2)
= 1− γ||xi||2 − γ||xj||2 + 2γxT

i xj + o(2γ||xi − xj||2). (2.32)

From the above equation it can be seen that the kernel distances between the differ-

ent patterns will be close to 1. So the patterns in the projected space will be more

spread out than otherwise. SVM’s trained using this kernel will cause underfitting.

Thus less Support Vector’s will be needed to classify the data.

It can be see that in the opposite case of when γ −→∞ the kernel distances

are smaller, and the patterns are more clustered together in the kernel space. In

this case overfitting will occur and a much larger number of Support Vector’s will

be needed to classify the data.

So no fixed γ value will fit all problems. Thus γ values have to be adjusted on

a problem specific basis and the definition of accuracy for the specific problem. The

usual approach is cross-validation. Here the available training samples are divided

into sets and are trained separately using different γ values and the one giving the

best training result is selected as the appropriate value.

2.5 Applications in Remote Sensing

Our problem comes under the domain of Landcover Classification using Land-

sat TM images. SVM is used for this problem domain in [16], [21], [27], [33] [17]

and [4]. In [16] a joint algorithm combining the two-class SVM and contextual clas-

sification using the Iterated Conditional Modes algorithm was proposed. This joint

classifier was found to perform better compared to maximum likelihood, Gaussian

mixture models, 1-nearest neighbor and an SVM. Comparisons of different super-

vised algorithms ware performed in [21], [27], [33] and [17]. The algorithms tested

were the SVM, iterated conditional modes, maximum likelihood classifier, Decision

Tree Classifier and neural networks classifier. The algorithms were tested on differ-

ent problems of land cover classification using Landsat TM images. It was concluded
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that the SVM provided the most statistically accurate results for each of their test

cases. However the SVM results appear noisy as it is not a region based cluster-

ing algorithm. Also the SVM was found to give the best performance when low

amounts of training data were used. Usage of the SVM algorithm to solve linear

spectral mixture models were checked in [4]. It is argued that the SVM framework

based on margin maximization is more appropriate for empirical mixture modeling,

as nonseparable distributions of pure classes can be handled appropriately, as well

as nonlinear mixture modeling.
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Chapter 3

CRP COMPLIANCE MONITORING

3.1 Introduction

USDA is faced with the problem of farmers not maintaining CRP tracts

according to contract stipulations. Current methods for CRP compliance monitoring

involve intensive manual inspection of aerial photographs which is time-consuming

and costly. USDAs Common Land Unit (CLU) data used for general compliance

issues is generated from aerial photographs with a resolution about 1m×1m, which

are updated every 1-2 years and may not be very efficient for CRP compliance

monitoring on a large scale . In addition, existing CRP reference data obtained from

USDAs Natural Resource Conservation Service (NRCS) is not very accurate or up-

to-date for the management purpose. There is a need of an automatic compliance

monitoring method which can examine CRP tracts more efficiently and promptly

with minimum human involvement. Two methods are discussed for this problem.

3.2 Problem Definition

We are tackling our problem by dealing with each CRP tract individually. We

include some non-CRP areas around the boundaries of each CRP tract for reference

purposes. We assume that the majority of region (> 50%) within a CRP tract is

compliant, which is true for most CRP tracts. Each CRP tract can now be thought

of as single large class of data covering majority area belonging to the CRP class

and a mixture of various smaller classes of non-CRP areas (outliers).
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Constrained by these conditions our problem reduces to one of finding the

percentage of the majority cluster lying mostly within the area said to be having

CRP cover type. Based on the CRP reference data, if the classification accuracy is

high, then we think the CRP tract is compliant. While if the classification accuracy

is low, there exists higher probability that the CRP tract is non-compliant.

3.3 General Strategy

Our solution involves incorporating both SVM and OCSVM. Due to the fast

changes in CRP enrollment and expiration during the past years, the present CRP

reference data is not accurate enough for management purpose. Consequently, CRP

compliance monitoring based on the Landsat imagery has to be considered via an

semi-supervised way, where the existing CRP reference data can only provide locality

information to select suitable plots for checking for compliance.

OCSVM (Section 2.3) is first used to separate the majority data from minor

outliers in a tract where the majority is assumed to be the CRP area. The OCSVM

results are used to train a SVM to further refine the previous results. This is done

because the OCSVM produces a complex decision boundary marked by a large

number of Support Vectors, whereas the SVM provides a more natural decision

boundary. Also the usage of data from two classes (CRP and non-CRP) improves the

overall performance. The CRP reference data is used as the baseline of compliance

issue where a high classification accuracy with respect to the reference data indicates

the compliance of CRP enrollment, while a low accuracy implies the possibility of

non-compliance.

The difference between both methods lies in choosing the training samples

for training of the SVM as in step 3 of Figure 3.1. This is difficult because we

do not know anything about the outliers like their samples, class membership and

more importantly about their percentage within a specific clip chosen to check for

compliance.
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Select a CRP tract based on CRP Reference dataStep 1:

Perform OCSVMStep 2:

}Method I or

Method II
Select reliable Training samplesStep 3:

Train a TCSVM to produce final classificationStep 4:

CRP tract

needs

further

inspection

Yes NoCRP

Tract

is compliant

Is accuracy 

high enough ?

Figure 3.1: Flowchart of general strategy.

3.4 Method I 1

3.4.1 Introduction

In this method the reliable training patterns are selected through a two step

process. Initially the model selection is done for the OCSVM. This is done via

a heuristic method discussed in [26] and discussed in Section 3.4.2. The spatial

properties of the data are used to decide the more reliable patterns among the ones

classified belonging to both the majority (CRP) and outlier or minority (non-CRP)

class. This method has been discussed in [6].

3.4.2 Model Selection for OCSVM

Model selection aims at determining ν in OCSVM(Section 2.3.2). ν ∈ (0, 1)

can be ideally set to the fraction of outliers which is unknown for our problem. A

1 Appeared in [6].
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simple and effective heuristic approach for estimating ν was proposed in [26]. This

method works well in cases where the majority and the outliers are well separated.

The idea is to initially try out the classification for different ν values and

then to select the one that has the largest separation distance between the classified

majority and outlier class in kernel space. The separation distance for a particular

value of ν is computed as;

Dν =
1

N+

∑

fw(x)≥ρ

fw(x)− 1

N−

∑

fw(x)<ρ

fw(x) (3.1)

where N− and N+ are the number of patterns in each class and fw(x) = (x.w) + b,

which calculates the distance from the origin. As defined in Equation 3.1 Dν provides

an average estimation of the distance between two patterns in the kernel space, and

the specific ν value which provides the largest Dν should have better separability

among majority and outliers compared with other ν values.

3.4.3 Proposed Algorithm

OCSVM gives us an initial classification of CRP and non-CRP areas. To

get a more natural decision boundary we sample the OCSVM results to get more

reliable training samples for CRP and non-CRP regions. Then we train a SVM to

reclassify the whole clip. The flowchart of this process is illustrated in Figure 3.2.

In this flowchart, the first step is to construct a clip based on the CRP

reference data (Section (1.4)), where the majority of the clip belongs to a single

CRP type with some surrounding non-CRP areas. In order to get the training

samples for OCSVM, we uniformly sample the CRP tract with a 30% rate, which

means 30% of CRP samples are used for training. Then the OCSVM is trained

based on a given ν value, and Equation 3.1 is calculated to get the average inter-

class distance. OCSVM is trained several times with different ν, and the one with

the largest inter-class distance is selected. The trained OCSVM is applied to the

whole clip to get a segmentation map. Afterward, reliable training samples for SVM
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Select a CRP tract based on CRP Reference dataStep 1:

Perform OCSVM classification using specific value

Repeat for all values

Calculate distance between majority and outlierStep 2:

Select Classification with the best separation

Select reliable samples using spatial constraintStep 3:

Train a TCSVM to produce final classificationStep 4:

NoYes CRP tract

needs

further

inspection

CRP

Tract

is compliant

Is accuracy 

high enough ?

Figure 3.2: Flowchart of Method I.

are selected based on the OCSVM result. A sample is considered to be reliable if all

samples within its 5× 5 neighborhood have the same labels. The whole clip can be

reclassified using the trained SVM. Finally, the accuracy of the final classification is

used to determine if the CRP tract is in compliance with the enrollment stipulations.

3.4.4 Experimental Setup

A clip of the derived data set from Section (1.4) is chosen such that the

majority of the feature vectors belong to a single CRP type as specified in the CRP

reference data. OCSVM and SVM implementations found in [2] are used in our

simulation.

For the OCSVM, the Gaussian kernel with γ = 0.000001 is used according

to the cross validation results. The ν value varies from 0.05 to 0.5 in steps of 0.05

to estimate the best possible ν. More accurate estimation of ν can be obtained via

a coarse to fine process with more computation time. The OCSVM classification
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is performed based on the selected ν value. Then as mentioned in Section 3.4.3,

OCSVM results are re-sampled for SVM training via a 5×5 window operation. The

Gaussian kernel is also used for SVM and cross validation shows that γ = 0.1 is the

preferred kernel width.

3.4.5 Simulations and Discussions

Simulations are performed on four different clips as shown in Figure 3.3. In

the simulation, ν value is first determined for each clip based on the separation

distance, and the results are shown in Table 3.1. Figure 3.3 (a) illustrates the

February Landsat images of four clips. Figure 3.3 (b) illustrates the June Landsat

images of four clips. (c) is the CRP reference data of these clips, where light grey

areas are CRP regions and black areas are non-CRP areas. Figure 3.3 (d) shows

the OCSVM results, and (e) indicates the area for SVM training, where light grey

areas are the reliable ones that SVM training samples can be selected, and dark grey

areas are those that are rejected as unreliable samples for SVM training. Figure 3.3

(f) is the classification results after using SVM. These four clips are selected such

that around 1
3

of the area are non-CRP samples.

Table 3.1: Kernel space inter-cluster separation distance at different ν values.
Largest distances for each clip is in bold.

ν Clip− 1 Clip− 2 Clip− 3 Clip− 4
0.05 0.00315 0.00614 0.00095 0.00142
0.1 0.00554 0.00771 0.00244 0.00255
0.15 0.00764 0.00841 0.00328 0.00372
0.2 0.00900 0.00613 0.00410 0.00503
0.25 0.00988 0.00856 0.00435 0.00630
0.3 0.01105 0.01087 0.00511 0.00663
0.35 0.01137 0.01174 0.00586 0.00822
0.4 0.01175 0.01252 0.00633 0.00922
0.45 0.01225 0.00882 0.00730 0.00989
0.5 0.01312 0.01106 0.00724 0.01093
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(a) (b) (c) (d) (e) (f)

Figure 3.3: Simulation results. (a) Landsat Feb. 2002 images: Clip-1 to Clip-4
from top to bottom. (b) Landsat June 2002 images. (c) CRP reference
data. (d) OCSVM results. (e) Resampling areas. (f) Final SVM
classification results.
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From the Figure 3.3 the improvements due to Spatial Processing and SVM

classification is obvious by comparing the images in (d) and (f) groups. A good

amount of noisy class labels have been reduced resulting in a more natural looking

classification. Clip-2 from Figure 3.3 follows the assumption that the majority of

the clip is the compliant CRP area with a single cover type, thus the classification

result is very close to the reference data, resulting in a high accuracy (95.39%). It

had an improvement of 7.3% due to spatial processing followed by SVM. Clip-1 has

some build up area and some variations in the cover type so the accuracy is lower

(78.39%) according to the reference data. There is an improvement of 4.2% due

to spatial processing and application of SVM. Clip-3 has some CRP land bordered

by some agricultural lands. There seems to be different cover types on the CRP

land so the accuracy is even lower than Clip-1 (75.31%). Clip-4 is non-compliant as

can be seen in the image (dark circular regions indicate agriculture being practiced

with pivot irrigation systems). So here the classification accuracy is poor (59.25%).

As can be seen when there is active agricultural land the classification accuracy

becomes low implying a possible non-compliance problem.

3.5 Method II 2

3.5.1 Introduction

Method I (Section 3.4) suffers when the two clusters are not clearly separable,

which occurs quite often in large scale remotely sensed data. Here a ν- insensitive

approach is presented where a mild deviation from true ν, which is unknown, will not

significantly affect the classification performance. This method makes use of pattern

distribution within the kernel space to decide on the reliable training patterns. ν-

insensitivity is achieved by selecting sufficient and reliable training samples according

to their position in kernel space (which does’t change with ν values) with respect

to the hyperplane obtained from the OCSVM. Compared with distance estimation

method from Section 3.4.2, this method reduces the computational load by avoiding

2 Joint work with Xiaomu Song. Presented in [32].
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ν estimation, and also improves the robustness of the classification performance.

By comparing the classification results with the CRP ground data, the compliance

issue can be addressed. This method has been discussed in [32].

3.5.2 Study of Kernel Space

Since ν is the upper bound of the amount of outliers, changing ν actually

changes the position and orientation of the classification hyperplane in the feature

space. An improper ν would cause some outliers to be misclassified as the majority

class, or vice versa. Patterns which are prone to be misclassified, are usually located

around or on the optimal hyperplane associated with the true ν, i.e., ν∗. A graphical

illustration is shown in Figure 3.4, where circles (outliers) and triangles (majority)

represent two classes that are linearly nonseparable in a 2-D feature space. There

are also three hyperplanes represented in the kernel space. These hyperplanes cor-

respond to ν = {νmin, ν
∗, νmax}. The actual values of ν vary between νmin and νmax.

The three oval regions correspond to feature vectors lying in different regions with

respect to the optimal hyperplane. Region III corresponds to those samples lying

to the right of the hyperplane with ν = νmax and so mostly contains the majority

data. Region II corresponds to the region around the optimal ν value i.e. ν∗ and so

has a mixture of outlier and majority data. Region I is composed mostly of outliers

and corresponds to the region lying to the left of the hyperplane having ν = νmin.

SVM score is defined as the distance of a particular data sample in kernel

space from the hyperplane. Feature vectors lying near the origin have negative SVM

score and those lying to the right of the hyperplane have positive scores. SVM score

for a particular sample x in kernel space is calculated by,

SV MScore(x) = (x.w)− ρ. (3.2)
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Figure 3.4: Majority (triangles) and Outliers (circles) are represented in kernel
space. The hyperplanes formed by varying values of ν ∈ νmin, ν

∗, νmax

are shown. The three oval regions named I,II,III show the sampling
areas.

The method using Equation 3.1 may not be accurate because there are al-

ways some misclassified samples involved in the computation due to the linear non-

separability. On the other hand, region I includes outlier samples with large nega-

tive SVM scores, and region III contains majority samples with large positive SVM

scores. The samples in regions I and III can be almost for sure correctly classified

when ν ∈ [νmin; νmax]. Thus if we use samples in regions I and III as outlier and ma-

jority training samples for SVM, the robust classification results that are insensitive

to the variations of ν values could be obtained.

3.5.3 Proposed ν-insensitive Approach

Given a test CRP tract X of N samples, we assume that the majority of X

is compliant, i.e., ν∗ < 0.5. After OCSVM classification, we sort all data samples in
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Select a CRP tract based on CRP Reference dataStep 1:

Perform OCSVM classificationStep 2:

Select reliable training samples in the kernel spaceStep 3:

Train a TCSVM to produce the final classificationStep 4:

CRP tract

needs

further

inspection

Yes NoCRP

Tract

is compliant

Is accuracy 

high enough ?

Figure 3.5: Flowchart of Method II.

the majority and outlier classes according to the their SVM score magnitudes from

the largest to the smallest. XM = {xi
m, i = 1, ..., N+} and XO = {xi

o, i = 1, ..., N−};
denote the sorted majority and outlier data sets, respectively, where l = N+ + N−.

We define X t
M and X t

O as the majority and outlier training sets for SVM, which can

be constructed as follows,

X t
M = {xm

i |i = 1, ..., 0.45l}
X t

O = {xo
j |j = 1, ..., (1− ν)N−}. (3.3)

Since ν∗ < 0.5, we use 0.45l samples in XM with largest positive SVM scores as

majority training samples (e.g., region III in Figure 3.4). The number of outlier

training samples (e.g., region I in Figure 3.4) is set to be (1 − ν)N−. If we choose

small ν, small N− will result. Then most samples in XO could be true outliers, and

we can use most of them for SVM training. On the contrary, if we choose large ν,

large N− will result. XO may mistakenly contain some majority samples, and we

use a small portion of samples in XO with the largest negative SVM scores.

In practice, X t
M and X t

O might not be perfect, and there are still some mis-

classified training samples for both the majority and outlier classes. In order to
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further reduce the side-effect of misclassified training samples, a large margin size

is preferred in the SVM, which requires small C value in Equation 2.18.

3.5.4 Experimental Demonstration

(a) (b) (c) (d)

Figure 3.6: Experimental demonstration of the proposed ν-insensitive method
based on a synthetic mosaic. (a) mosaic. (b) Ground truth(25% out-
liers). (c) OCSVM result with ν = 0.25, 85.18% accuracy. (d) The
result of the proposed method with ν = 0.5, 84.32% accuracy.
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Figure 3.7: Simulation results on synthetic mosaic. Values are in the range of 0
to 1, where 1 indicated 100% purity. (a) Purity of majority training
samples vs. ν. (b) Purity of majority training samples vs. ν.

Specifically, the method proposed in [22] is used to represent the texture pixels

in a 25-dimension feature space, which is derived from pixel intensities within a 7X7

window. The OCSVM is first tested with different ν values ranging from 0.05 to

0.5, and RBF kernel is used with γ = 0.000001. Dν achieves the largest value when

estimated ν̂ = 0.25, which is consistent to true ν∗. Based on the OCSVM results, we
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calculate the purity (precision) of the outlier and majority classes regarding different

ν values as shown in Figure 3.7 (a) and (b). It is seen that when ν changes from

0.05 to 0.5, the purities of both majority and outlier classes vary considerably. The

proposed ν-insensitive method can select sufficient and reliable training samples

with higher purity . This leads to robust and ν-insensitive classification results.

The best classification accuracy 85.18% of OCSVM with ν = 0.25 is illustrated in

Figure 3.6. When testing the proposed method, RBF kernel is also used for SVM

with γ = 0.000001. Even when ν = 0.5, which deviates from true ν∗ significantly,

we still obtain the similar classification performance (i.e., 84.32%) as the OCSVM

that requires many attempts, as shown in Figure (3.6(c) and (d)). This simulation

shows the effectiveness and efficiency of the suggest ν-insensitive method.

3.5.5 Experimental Setup

Principal component analysis (PCA) is applied to reduce feature redundancy

and to preserve 97% variation of the original images and their texture information.

After PCA, around 27 data layers are used in this simulation. A specific software

LIBSVM [2] is used to implement OCSVM and SVM in this work. In the OCSVM,

the Gaussian kernel with γ = 0.000001 is chosen according to the cross validation

results. The ν value is varied from 0.05 to 0.5 with an interval of 0.05. In the SVM,

we select C = 0.5 and a Gaussian kernel with γ = 0.01.

3.5.6 Simulations and Discussions

Simulations are performed on six CRP tracts extracted from Texas County

(Section 1.4). In each CRP tract, we also deliberately add some non-CRP regions

near to CRP boundaries in order to test the robustness of the proposed methods. In

this work, Method-I needs 10 times of OCSVM training and 1 time of SVM training,

while Method-II trains both OCSVM and SVM only once, saving more than 80%

computational load. The simulation results are shown in Figure 3.8 and Table 3.2.

As we can see, the classification performances of both OCSVM and Method-I vary
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significantly as ν changes, while Method- II is not sensitive to the variation of ν

value with much less standard deviation of the classification accuracy.

Table 3.2: Standard Deviations of the classification accuracy.

CRP Tract 1 2 3 4 5 6
OCSVM 5.19 11.81 2.79 4.45 15.08 11.03
Method-I 7.65 20.97 6.16 5.56 17.34 18.47
Method-II 2.07 3.25 1.19 0.94 5.01 4.06

We illustrate the CRP classification results in Figure 3.9, where five rows

from top to bottom refer to, respectively, Landsat images, the CRP reference data

(CRP in gray and non- CRP in black), the OCSVM classification results, the results

of Method-I where

hatnu is estimated from Equation 3.1, and the results of Method-II where ν = 0.4

(there is no significant change with different ν values). Moreover, the percentage of

non-CRP areas according to the CRP reference data (Pnc), the percentage of non-

CRP areas detected by Method-II (P ∗
nc), as well as the their differences (P ∗

nc − Pnc)

are computed for each CRP tract and listed in Table 3.3.

Table 3.3: Non-CRP Percentages(%) Comparison.

CRP Tract 1 2 3 4 5 6
Pnc 33.6 29.8 33.7 21.3 9.3 3.7
P ∗

nc 27.7 25.6 27.6 29.7 32.8 29.8
P ∗

nc − Pnc -6.1 -5.8 -7.9 +8.4 23.5 26.1

In tracts 1, 2, 3, and 4, P ∗
nc is relatively consistent with or even lower than

Pnc. Manual inspection further manifests that the CRP areas in tracts 1, 2, 3, 4 have

good compliance with respect to the CRP reference data. However, the non-CRP

areas in tracts 5 and 6 are have been over detected. This implies that there could

be compliance issues in tracts 5 and 6. As observed from the Landsat images in

the first row of Figure 3.9, there exist some active cultivation areas (darker areas)

in those two tracts, which were previously registered as CRP in the reference data.

Therefore tracts 5 and 6 need further detailed inspection. Moreover, there are also
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Figure 3.8: The plots of classification accuracy vs. ν for the three methods in six
tracts: (a) tract1, (b) tract 2, (c) tract 3, (d) tract 4, (e) tract 5, (f)
tract 6.
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(a) (b) (c) (d) (e) (f)

Figure 3.9: (a)-(f) are the simulations of the six test tracts. The rows refer to the
original Landsat images(June 2000), CRP Reference data, OCSVM
results, Method-I results and Method-II results respectively.
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some man-made buildings in tracts 1, 3, 4, which can be clearly detected by Method

I and Method-II as well. Nevertheless, only non-CRP percentage values may not

provide sufficient information for compliance monitoring, and additional analysis of

the CRP classification maps (the last row of Figure 3.9) may be necessary.

In this work, we also found some limitations of our previously proposed

Method-I. Largest Dν is not necessarily related to the best ν or true ν∗. This

fact indicates that CRP and non-CRP are not clearly separated even in the high

dimensional feature space mapped via RBF kernel. For example, in tract 2, Dν

has the largest value when ν̂ = 0.4, while the best OCSVM result with highest

classification accuracy is obtained when ν = 0.25 which is close to true ν∗.

3.6 Summary

Two methods have been proposed for CRP compliance monitoring. Method-

I relies on distance estimation between the majority and the outliers in the kernel

feature space followed by some spatial processing to get reliable training samples.

Method-II relies on the natural clustering of data in the kernel feature space to

decide on better training samples. The percentage of CRP areas identified imply if

the CRP tract is compliant or not.

Simulation results show that both methods can provide useful guidance for

effective CRP compliance monitoring. It has been found that Method-II has a more

robust classification performance. Also Method-II is more computationally efficient

than Method-I. Both the proposed algorithms could be applied to other compliance

monitoring problems.
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Chapter 4

CRP MAPPING

4.1 Introduction

Existing CRP reference data provided by NRCS is old and has errors due

to misalignment of the CRP tracts. Currently CRP maps are developed based on

information provided by farmers upon enrollment into the program and by manual

delineation of aerial photographs. These maps are needed for reference purposes

and for various assessment activities. So it is necessary to develop methods to

periodically update CRP maps based on reliable training samples to rectify some

locality errors and spatial misalignment of CRP tracts in the reference data. CRP

mapping is very different compared to traditional Land Use Land Cover (LULC)

applications. CRP mapping is a complex classification problem where both CRP

and non-CRP areas are composed of various cover types having highly overlapped

clusters in the spectral space of the satellite imagery. Also CRP mapping is an

uneven classification task where the CRP tracts amount to less than 10% of the

total study area.

4.2 Proposed Approach

Our method is based on Landsat data and CRP ground data (Section 1.4).

This process however, is not easy because there is a huge amount of non-CRP regions

which have to be avoided during classification. In fact the region under study has

only less than 10% of CRP areas (even though it is supposed to have the highest

concentrations among Oklahoma’s counties). So we require a one-class classifier that
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is trained on a particular CRP cover type to find out other instances of the same

cover type. However a major problem is the case where a non-compliant CRP tract

is use for training. In this case other non-CRP areas may also be classified as CRP.

So it is necessary before training to make sure that our classifier is trained only on

reliable CRP tracts. Many of the grass species are related. A simplification that can

be done is to combine data from multiple but related grass types while training. This

can lead to a higher accuracy in classification and also reduce the computational

time due to reduced number of Support Vectors. Finally all the classified regions

have to be combined to produce the final CRP map.

4.2.1 Pre-clustering of CRP Cover Types

This problem can be stated as determining the optimal number of clusters

for an unsupervised classification problem. This has been an ongoing research for

several years. Various cluster indices and validity measures have been proposed

in literature [18], [19], [14], etc; regarding the selection of an optimal number of

clusters. A new approach to this problem has been discussed in [12]. This approach

is based on the representations of patterns in kernel spaces projected by Gaussian

kernels. Now the elements in the projected space can be represented by a N × N

symmetric kernel matrix K.

K = Kij ; i = 1, ..., l ; j = 1, ..., l,

where: Kij = k(xi, xj) ≡ Φ(xi).Φ(xj) and Kij = Kji.

This matrix K consists of the dot product distance between different patterns in the

kernel space. So it is similar to an adjacency or proximity matrix. Thus this matrix

will have a block diagonal structure when there are definite groupings or clusters

within the patterns. The eigenvectors of a permuted matrix are the permutations

of the original matrix and therefore an indication of the number of clusters can be

obtained from the eigenvalue decomposition of the kernel matrix.

Eigenvalue decomposition of the kernel matrix gives K = UΛUT . Where the
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diagonal matrix Λ contains the eigenvalues denoted as λi. The columns of U matrix

contain the individual eigenvectors ui. So we can write,

1T
l K1l = 1T

l {
l∑

i=1

λiuiu
T
i }

=
l∑

i=1

λi{1T
l ui}2. (4.1)

In Equation 4.1, 1l is a l × 1 vector with elements of value 1/l. The final form in

Equation 4.1 indicates that if there are K distinct clustered regions within the l

patterns then there will be K dominant terms λi{1T
l ui}2 in the summation.

4.2.2 Combining multiple OCSVM’s

Combining different one-class classifiers has been discussed in [36] and [34].

But these describe combining different varieties of one-class classifier trained on the

same patterns. Our problem however deviates from the general case. We want to

train each of the different One-Class Classifiers on a different class of patterns. So

hence it is more similar to the case described in [23], where an Image Database

Retrieval problem is discussed. Figure 4.1 depicts that, it is not justified to combine

unrelated cover types as is shown using a single hyperplane H3 created by a single

OCSVM. So multiple OCSVM’s are needed to increase CRP sensitivity.

In our method each class of grass species are trained individually so that

their unique representation (support vectors) is obtained. Now this representation

is used to classify the entire study area. Also some grass species overlap in kernel

space so it is justifiable to combine them. Combining diverse grass species is not

advantageous because the similar number of Support Vectors will be maintained

offering no reduced complexity for the classifier and no improvements in classification

time and performance; however a disadvantage is that larger amount of non-CRP

data will be classified as CRP (Figure 4.1).
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H3

H2

H1

Figure 4.1: Kernel space representation of multiple OCSVMs using the Gaussian
kernel (refer Figure 2.9). Here oval, triangle and crescent shaped ob-
jects represent feature vectors of different CRP cover types, rectangles
depict feature vectors of non-CRP covers. The oval and triangular
CRP covers are related. H1, H2 and H3 are different hyperplanes sub-
tended by different OCSVMs. It can be seen that using H1 and H2
separately avoids misclassification of non-CRP data as CRP, however
using H3 alone some non-CRP data is classified as CRP.

4.3 Simulations and Discussions

The data used for simulations is a clip from the multi-temporal Landsat data

of Texas county of size 552× 523 pixels where each pixel has an area of 30m× 30m.

Simulations have been done using different OCSVM’s combined together to form a

final result. OSCVM implementation in [2] was used for the simulation. As this

mapping is specifically for CRP regions we are interested in having higher accuracy

for CRP areas even if it means that more non-CRP areas will be incorrectly classified.

So for the OCSVM, the Gaussian kernel was used and the γ value was set to 1 to

achieve tighter classification boundaries. The ν parameter was set at 0.1 to avoid

some highly likely outlier data within the CRP training data. CRP tracts which
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Figure 4.2: Ground data for the simulations. Black regions are non-CRP and grey
regions are CRP.

are totally non-compliant were excluded. A single OCSVM classifier’s training data

is formed by combining together grass species data which had only one dominant

term, as in the Equation 4.1. This process was done by ordered combination of the

different CRP cover types till the minimum number of classifiers were obtained.

The classification and training were repeated 20 times using different training

datasets (developed using different initializations for the random sampling proce-

dure) and the average values are shown in the three Tables (4.1, 4.2 and 4.3) which

are used to display the results. The cover types given in normal lettering are the

different grass species which together compose the CRP cover type. The non-CRP

cover type represents the accuracies for all other cover types not included in the

CRP class. A weighted accuracy for all CRP cover types is given as the CRP cover

type. The total accuracy for all the data (CRP + non-CRP) is given as the overall

cover type. The percentage values on the first row (column headings) of the tables

represent the amount of total CRP data used for training the OSCVM classifiers.

This was done using a random sampler to obtain the required sampling size. Count

(a column heading) specifies the number of pixels in the testing data belonging to

each cover type. All numerical values in the table expect for the column count are

in percentage.
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Table 4.1: Accuracy rates without using grass combinations.

CoverType Count 40% sampling 70% sampling
non−CRP 265686 93.77% 89.16%

Old World Bluestem 585 74.27% 87.34%
Plains Bluestem 833 36.18% 68.90%

WW Spar 1029 49.67% 75.99%
Plains Bluestem (1986) 924 62.18% 83.63%

Granada (1986) 336 40.66% 81.41%
Caucasian (1987) 784 66.83% 84.22%

Plains Bluestem (1987) 4765 71.93% 87.42%
Plains (1988) 2422 55.16% 81.76%
Plains (1989) 3843 56.49% 78.31%

WW Spar (1989) 1708 58.94% 82.12%
Old World Bluestem (1990) 4409 68.82% 85.63%

Native Mixture (1990) 1372 59.33% 81.37%
CRP 23071 61.61% 82.01%

Overall 288696 90.76% 91.19%

Table 4.2: Accuracy rates using OCSVMs trained on grass combinations.

CoverTypes Count 40% sampling 70% sampling
non−CRP 265686 90.89% 86.12%

Old World Bluestem 585 77.76% 88.21%
Plains Bluestem 833 36.65% 69.87%

WW Spar 1029 52.93% 79.97%
Plains Bluestem (1986) 924 64.97% 82.98%

Granada (1986) 336 42.18% 79.16%
Caucasian (1987) 784 67.48% 84.56%

Plains Bluestem (1987) 4765 73.71% 88.56%
Plains (1988) 2422 56.21% 82.08%
Plains (1989) 3843 59.67% 80.45%

WW Spar (1989) 1708 64.82% 83.51%
Old World Bluestem (1990) 4409 71.38% 86.31%

Native Mixture (1990) 1372 61.13% 81.06%
CRP 23071 64.32% 83.32%

Overall 288696 88.76% 85.89%
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(a) (b)

(c) (d)

Figure 4.3: The classification results after combining multiple OCSVM’s for differ-
ent training data sets, (a) 40% sampling size with pre-clustering and
without post-processing, (b) 70% sampling size with pre-clustering and
without post-processing, (c) 40% sampling size with pre-clustering and
after post-processing, (d) 70% sampling size with pre-clustering and
after post-processing.
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Table 4.3: Accuracy of OCSVM Classifier trained with pre-clustered data after
morphological processing.

CoverTypes Count 40% sampling 70% sampling
non−CRP 265686 93.56% 87.41%

Old World Bluestem 585 89.97% 97.28%
Plains Bluestem 833 20.55% 90.61%

WW Spar 1029 64.43% 96.59%
Plains Bluestem (1986) 924 68.25% 95.02%

Granada (1986) 336 46.72% 98.80%
Caucasian (1987) 784 85.02% 94.00%

Plains Bluestem (1987) 4765 82.33% 93.98%
Plains (1988) 2422 70.93% 97.92%
Plains (1989) 3843 66.18% 96.57%

WW Spar (1989) 1708 70.67% 96.89%
Old World Bluestem (1990) 4409 74.56% 95.97%

Native Mixture (1990) 1372 71.92% 94.48%
CRP 23071 71.22% 95.56%

Overall 288696 91.44% 88.06%

Table 4.1 shows the classification accuracy without using the pre-clustering

process. So here a OCSVM is trained for each cover CRP cover type individually

and the testing results for the full dataset are combined together. Table 4.2 shows

the classification accuracy using the pre-clustering process. The classification maps

obtained after combining the different OSSVMs in this case is given in Figure 4.3.

Here seven OSCVM classifiers are trained. The different CRP Cover types that are

grouped together are,

• Old World Bluestem.

• Plains Bluestem.

• Caucasian (1987).

• Plains (1988).

• Granada (1986) and Native Mixture (1990).

• WW Spar, Plains (1989) and Old World Bluestem (1990).
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• Plains Bluestem (1986), Plains Bluestem (1987) and WW Spar (1989).

As can be seen the pre-clustering improves the accuracy of the classification by an

average of 2-3% but the accuracy improvement for individual grass species is even

higher. Table 4.3 gives the accuracies after doing morphological processing on the

outputs produced by the OCSVMs trained with pre-clustered data. The classifica-

tion maps obtained after combining the different OSSVMs in this case is given in

Figure 4.3. Morphological processing is used to improve the visual appearance of

the map as well as increasing the classification accuracy. Initially all elements in

the map having the number of connected components less than 50 were removed to

get rid of noise and misclassified regions. Then morphological closing operation was

used to close small holes within the connected regions. As can be seen from the three

Tables (4.1, 4.2 and 4.3) the overall accuracy reduces as we increase the sampling

size. This is due to the reduction in non-CRP detection accuracy. However what

we are interested is in getting higher amount of CRP detection accuracy which is

obtained when increasing the sampling size. Another factor to be kept in mind is

that the CRP reference data we currently have may not be completely accurate so

these accuracies serve only as guidelines. To get the perfect accuracy for our method

it is necessary to obtain true data by conducting field trips when the satellite images

were acquired.

The computational time required for the total classification process trained

on pre-clustered data is given in Table 4.4. The simulations were done on an Intel

P4 2.4GHz system with 1 GB of RAM. As expected there is reduced processing

time when the amount of sampling is reduced. When classifying with OCSVMs

having pre-clustered data the computing time is reduced as there are less number of

OCSVMs to train and classify. Also the number of Support Vectors are reduced so

more compact representation of the training data is used for classifying the testing

dataset. This reduces the classification time.
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Table 4.4: Simulation times for one run of the classification.

Sampling Rate With pre-clustering Without pre-clustering Speed Improvement
40% 23 min 30 min 23%
70% 35 min 49 min 28%

4.4 Summary

Conservation Reserve Program mapping has been implemented using multiple-

OCSVM’s. Kernel space proximity was used as a criterion to combine data from

different grass species so as to marginally improve classification performance and

decrease computational time. High accuracy rates for the classification have been

obtained.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

In this thesis, we have studied two specific remote sensing issues related

to USDA’s CRP program. Specifically, we have proposed two CRP compliance

monitoring methods and one CRP mapping technique. Currently, CRP mapping

and compliance monitoring are accomplished manually, which is very costly and

time-consuming. SVM-based methods using Landsat TM imagery will allow prompt

and accurate CRP classification results that are valuable for CRP management and

evaluation.

• For CRP compliance monitoring, we have implemented two methods. The

first one is a distance estimation based approach that needs to estimate the

ν parameter iteratively for one-class SVM (OCSVM). The second is the ν-

insensitive method which is does not need the ν estimation. Performance

of the ν-insensitive method was more efficient than the first method with

better robustness and less computational time. The simulation results are

satisfactory considering the complexity of multiple CRP species. However the

two methods have to be validated based on field data collection. At present,

it can serve as a guideline for more detailed study into specific CRP plots. As

the first work of its kind, it also will serve as a benchmark for future work into

this area.

• For CRP mapping we have implemented a method by combining multiple

OCSVMs which are trained on different CRP cover types. Also a pre-clustering

procedure has been developed to merge different CRP cover types into one class
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before OCSVM training. This process has been found to marginally improve

classification accuracy and to reduce the classification complexity dramatically.

Simulations were based on varying sampling sizes of the training data, and it

is shown that high accuracy can be achieved even though the training data

was less than 10% of the entire testing data.

Future work on compliance monitoring will have to relax the constraint that

the majority of a CRP tract should be compliant, since there may be the case which

the majority of a CRP tract is not compliant. So the objective will be to split

the data into multiple clusters. This will be based on kernel space distribution of

the feature vectors and the OCSVM can be used to detect the clusters by itera-

tively removing the largest clusters based on inter-cluster and intra-cluster distance.

Residual insignificant noisy data will have to be neglected. Knowledge of CRP and

non-CRP cover types will help in deciding the cluster memberships. Thus producing

a more reliable compliance monitoring result.

Advances in CRP mapping will be to consider group based learning methods

to combine the results from multiple OCSVM classifications by varying ν values thus

obtaining more accurate classification by using purer raining data. Usage of GIS

(Geographic Information Systems) data like slope, elevation, etc; may also improve

the classification accuracy as the GIS information for CRP lands should confirm to

that of agricultural lands. Thus this will reduce the over-detection of CRP tracts in

the areas where the cultivation was never practiced.

Also both compliance monitoring and mapping can be combined into a joint

framework where compliance monitoring will be used to obtain reliable CRP training

data for the mapping procedure. Field studies need to be conducted to validate the

proposed methods. The procedures that we have developed here could be applied to

similar problems where knowledge of classification is only available about the classes

which are of interest.
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A. J. Smola. Input space verses feature space in kernel-based methods. IEEE
Transactions on Neural Networks, 10(5):1000–1017, September 1999.

[30] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson.
Estimating the support of a high-dimensional distribution. Neural Computa-
tion, 13(7):1443–1471, 2001.

[31] M. Simard, S. S. Saatchi, and G. D. Grandi. The use of decision tree and
multiscale texture for classification of jers-1 sar data over tropical forest. IEEE
Trans. Geoscience and Remote Sensing, 38(5):23102321, Sept. 2000.

[32] X. Song, G. Cherian, G. Fan, and M.Rao. A ν-insensitive svm approach for
automatic compliance monitoring of the conservation reserve program (crp)
tracts. resubmitted after corrections to IEEE Geoscience and Remote Sensing
Letters, August 2004.

[33] X. Song, G. Fan, and M. Rao. Machine learning approaches for multisource
geospatial data classification with application to crp mapping in texas county,
oklahoma. Proc. IEEE Workshop on Advances in Techniques for Analysis of
Remotely Sensed Data, October 2003.

[34] D. M. J. Tax. One-class Classification. Ph.D. dissertation, Technische Univer-
siteit Delft, The Netherlands, 2001.

[35] D. M. J. Tax and R. P. W. Duin. Support vector data description. Machine
Learning, 54(1):45–66, Jan. 2004.

[36] D.M.J. Tax and R.P.W. Duin. Combining one-class classifiers. in Proc. Multiple
Classifier Systems, MCS 2001 ,J. Kittler, F. Roli (eds.), pages 299–308, 2001.

[37] R. Unnthorsson, T. P. Runarsson, and M. T. Jonsson. Model selection in one-
class ν-svms using rbf kernels. 2003. Paper available at http://www.hi.is/ run-
son/svm/paper.pdf.

[38] V. N. Vapnik. The Nature of Statistical Learning Theory. New York: Spinger-
Verlag, 1995.

60



VITA

Ginto Cherian

Candidate for the degree of

Master of science

Support Vector Machines for Conservation Reserve Program (CRP)

Mapping and Compliance Monitoring

Major Field: Electrical Engineering

Biographical:

Born in Vellathooval, Kerala, India, on Feburary 22, 1980, the son of O. V.

Cherian and Mary Cherian.

Graduated from St. Berchmans College, Changnacherry, India in May 1997.

Received Bachelor of Technology degree in Computer Science and Engineering from

Mahatma Gandhi University, India, in June 2001. Completed the requirement for

the degree in Master of Science Electrical Engineering in December, 2004 from

Oklahoma State University.

Worked as a Software Engineer at Win Win Computer Solutions, India from

September 2001 to June 2002. Presently working as a Research Assistant in the

department of Electrical and Computer Engineering at Oklahoma State University

since January 2003.

A Student Member of IEEE since January 2003.



ABSTRACT

Advisor : Dr. Guoliang Fan

This research focuses on two specific remote sensing problems associated with

the United States Department of Agriculture (USDA)’s Conservation Reserve Pro-

gram (CRP). The CRP program seeks to convert highly erodible lands with active

crop production to permanent vegetative cover. Specifically, there are two essential

needs pertaining to CRP management and evaluation, i.e., CRP compliance moni-

toring and CRP mapping. Multi-spectral and multi-temporal Landsat TM images

are used to generate the data. Compliance monitoring checks if a CRP tract is fol-

lowing the contract stipulations. CRP mapping produces up-to-date and accurate

maps of CRP lands based on satellite images. We invoke approaches based on the

Support Vector Machine (SVM) to address these two issues where two classes, CRP

and non-CRP, are involved for data classification. The SVM is a recently developed

supervised classifier aiming at maximizing the margin between two clusters in a

projected feature space. The SVM was also adapted to solve one-class problems,

i.e., novelty detection. The one-class SVM (OCSVM) has a parameter ν to control

the percentage of outliers or minority data.

We propose two SVM-based methods for CRP compliance monitoring. The

first method uses OCSVMs trained with different ν values and selects the one pro-

ducing the maximum margin between clusters in the projected space. Then a two-

class SVM (TCSVM) is trained by using the initial OCSVM classification results.

The second method only involves the OCSVM training once. Training samples for

the TCSVM are selected based on their relative locations to the classification bound-

ary in the projected feature space i.e. SVM scores. The second method is proven

more efficient than the first one with similar or better accuracy. We also develop



an OCSVM based algorithm for CRP mapping. Reduction in classifier complexity

is achieved by combining different CRP species based on their data distribution in

a projected feature space. Multiple OCSVMs are trained on different CRP cover

types, and are applied for CRP classification individually. The complete CRP map

is obtained by merging the different classifier outputs.

This research further manifests the usefulness of the SVM in remote sens-

ing applications. The proposed compliance monitoring and mapping tools will be

valuable for CRP management and evaluation.


