
MATLAB GEOMETRY BUILDER AND MLFMA MODELER

By

CHRISTOPHER CARRERO

Master of Science in Electrical Engineering
Oklahoma State University

Stillwater, OK, USA
2011

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
MASTER OF SCIENCE

July, 2011

COPYRIGHT c©

By

CHRISTOPHER CARRERO

July, 2011

MATLAB GEOMETRY BUILDER AND MLFMA MODELER

Thesis Approved:

Dr. James West

Thesis Advisor

Dr. Chuck Bunting

Dr. James Stine

Dr. Mark E. Payton

Dean of the Graduate College

iii

ACKNOWLEDGMENTS

First and foremost I need to thank God for his constant presence during my

countless hours spent performing research, generating and debugging code, creating

geometries and models, and writing and re-writing the documentation itself. As I

found myself doing more and more work under the cover of night, He was my only

companion. I give Him all the glory for the work I have produced. I’d like to thank

Dr. West for all his careful explanations of the inner-workings of the pre-existing code

and for his quick responses to my inquisitive and long-winded emails. I’d like to thank

my wife for her patience in rarely being the center of my attention in our first year

of marriage and for her willingness to support my hectic work and study schedule;

always providing meals and words of encouragement whenever I would emerge from

the office. I’d like to thank my friends and family for all their prayers and support

and for putting up with all the missed calls and unanswered messages.

iv

TABLE OF CONTENTS

Chapter Page

1 Introduction 1

2 Basic Computational Electromagnetic Code Theory 4

2.1 Incident Fields and Induced Currents 4

2.2 Geometry Discretization . 4

2.3 Iterative Solvers and Preconditioners 5

2.4 Calculate Currents and Fields . 6

2.5 EM Software . 6

3 File Structure and Functional Blocks 8

3.1 Directory Hierarchy . 10

3.1.1 MLFMA Directory . 11

3.1.2 Projects Directories . 12

3.1.3 Geometry Directories . 13

3.1.4 Model Directories . 14

3.2 File Types . 15

3.2.1 Interface Geometry Files . 16

3.2.2 Delaunay Geometry Files . 17

3.2.3 Field Source Files . 19

3.2.4 Surface Current Data Files . 20

3.2.5 Field Intensity Files . 21

3.2.6 Log Files . 22

v

3.3 Functional Blocks . 24

3.3.1 Project Loader . 25

3.3.2 GUI Workspace . 26

3.3.3 Geometry Builder . 27

3.3.4 Geometry Modifier . 28

3.3.5 Geometry Updater . 34

3.3.6 Element Remover . 37

3.3.7 Element Joiner . 41

3.3.8 System Modeler . 43

3.3.9 Data Visualization . 46

4 Geometry Modeling 50

4.1 Backscatter Models . 50

4.1.1 Sphere . 51

4.1.2 Plate . 56

4.1.3 Cube . 58

4.1.4 Hemispherical Dipole . 60

4.2 Radiation Models . 63

4.2.1 Dipole . 63

4.2.2 Yagi-Uda Antenna . 66

4.2.3 Dipole In Spherical Cavity . 69

4.2.4 Helical Antenna . 70

4.2.5 Dipole Over Finite Ground Plane 72

5 CONCLUSIONS 75

BIBLIOGRAPHY 80

vi

LIST OF TABLES

Table Page

1.1 Primary Thesis Goals . 3

3.1 Files Common to MLFMA Directory 11

3.2 File Types . 15

3.3 Function Block Descriptions . 24

3.4 Builder Geometries . 28

3.5 Viewer Types . 46

4.1 Yagi-Uda Dimensions . 66

4.2 Component Geometry Parameters . 67

4.3 Helix Parameters . 70

vii

LIST OF FIGURES

Figure Page

3.1 Typical Directory Hierarchy . 10

3.2 Projects Folder Contents . 12

3.3 Geometry Directories . 13

3.4 Model Directory . 14

3.5 Interface Geometry File Format . 16

3.6 Delaunay Geometry File Format . 18

3.7 Field Source File . 19

3.8 Add Field Source GUIs . 19

3.9 Surface Current Data File Format . 20

3.10 Backscatter Field Intensity File Format 21

3.11 Log File Information . 22

3.12 Model Log File Information . 23

3.13 Project Loader GUI . 25

3.14 GUI Workspace . 26

3.15 Geometry Builder . 27

3.16 Geometry Modifier . 28

3.17 Translation in X-Y Plane . 29

3.18 Translation in Z . 29

3.19 Centroid Rotation in θ . 30

3.20 Centroid Rotation in Phi . 30

3.21 Rotate Around Origin in θ . 31

3.22 Rotate Around Origin in θ then φ . 31

viii

3.23 Scale Centroid . 32

3.24 Scale Origin . 33

3.25 Geometry Updater . 34

3.26 Original Plate Copied and Shifted 3 Times 35

3.27 Plates Combined to Form Columns 36

3.28 Element Remover . 37

3.29 Cartesian Removal of Sphere Elements 38

3.30 Spherical Removal of Retro-reflector Elements 39

3.31 Spherical Removal of Retro-reflector Elements 40

3.32 Element Joiner . 41

3.33 Triangular Element Creation . 42

3.34 Common Portion of System Modeler GUIs 43

3.35 Backscatter GUI . 44

3.36 Source Model GUIs . 45

3.37 GUI Workspace, Completed Models, and Surface Currents 46

3.38 Geometry Viewer . 47

3.39 Surface Current Viewer . 48

3.40 Field Pattern Viewer . 49

4.1 Loading the GUI from the MATLAB Command Line 51

4.2 Create Project . 51

4.3 Toolbar Element . 52

4.4 geoconvert.m Progress Bar . 52

4.5 Sphere Geometry . 53

4.6 Models and Currents . 54

4.7 Sphere Surface Currents . 54

4.8 Sphere Backscatter Pattern . 55

4.9 Plate Build . 56

ix

4.10 Plate Surface Currents . 57

4.11 Plate Backscatter Pattern . 57

4.12 Cube Build . 58

4.13 Plate Surface Currents . 59

4.14 Cube Backscatter Pattern . 59

4.15 Hemisphere Components . 60

4.16 Element Creation . 61

4.17 Finished Geometry . 61

4.18 Error Output . 62

4.19 Error Output Continued . 62

4.20 Load Project . 63

4.21 Dipole Geometry . 64

4.22 Dipole Surface Currents . 64

4.23 Radiation Patterns for λ/2, λ, 5λ/4, and 3λ/2 Dipoles 65

4.24 Yagi Array Geometry . 67

4.25 Surface Currents Due to Source at Origin 68

4.26 Radiation Pattern . 68

4.27 Vertex Coordinates to Combine . 71

4.28 Halfwave Dipole at Height of λ/2 . 72

4.29 Halfwave Dipole at Height of λ . 73

4.30 Surface Currents for Dipole Height of λ/2 74

x

CHAPTER 1

Introduction

The intent of this project is to improve user access to software based on Moment

Method (MM) and extended using multilevel fast multipole algorithm (MLFMA)

developed at Oklahoma State University Robust Electromagnetic Field Testing and

Simulation (REFTAS) Laboratory. Development of this software has spanned many

years and the capabilities have increased as the work has progressed. At the outset,

the MLFMA software was contained in a multitude of individual files with each file

containing instructions to build a single geometry and then model it according to hard-

coded parameters. Each geometry file runs from the Linux command line environment

by calling an executable compiled from files written in C++ programming language.

As a result, whenever changes needed to be made to either the model conditions,

geometry build criteria, or data display methods, the source code would need to be

edited using a command line editor, code revisions made, recompiled, and then linked

to core routines. Execution from the command line meant that all user parameters

had to either be hard-coded into the source code or typed in response to command

line queries for input values. After user input was gathered, the software would

produce a multitude of data printed to the command line or written to data files, the

culmination of which was the displaying of the resultant re-radiated field strengths.

This software is capable of finding fields scattered due to an externally incident

field or finding the radiation due to a directly applied voltage source. Despite having

the processing power and numerical capabilities to solve scattering and radiation

problems, it did not facilitate user interaction. In order to build a custom geometry,

1

an entirely new source file had to be created. In most instances, the user had no visual

feedback verifying that the geometry to be modeled was what they had intended

and no interim opportunity to change anything about the modeled environment. By

default, model-produced standard output was printed to the command line or printed

to file. All resultant data pertaining to the geometry and the induced surface currents

were invisible to the user and irretrievable after completion of the program. This left

the user with a very limited selection of pre-compiled options and little opportunity

for adjustment of non user-controlled inputs aside from modifying the C++ code and

recompiling against the core files. To compile modified code, a user would have to

be sitting at a REFTAS workstation or accessing one via a VPN connection running

Secure Shell (SSH). For a user to fully modify and utilize the software’s capabilities

would require understanding of, or familiarity with, basic command line interaction,

code modification using workstation editor software, C++ programming language,

and the general layout and function structure commonly used to create a geometry file.

This resulted in severe limitations to the software’s approachability by the average

user.

The goal of this project is to improve accessibility to the average user and provide

a method by which structures can be built from individual pieces including, but not

limited to, wires, plates, apertures, spheres, cubes, and cavities. The main improve-

ments to be made included a point-click interface for building shapes to be modeled, a

method for viewing and modifying geometry elements, access to the most commonly

used modeling parameters, a method for visualization of induced surface currents and

re-radiated field magnitudes, and the ability to walk away from the terminal while it

processed data without concern for the resultant command-line output being lost to

inadvertent log-off or restart. The primary project goals are listed in Table 1.1

2

Goal No. Description

1 Facilitate Creation of Custom Geometries

2 Increase Approachability of Modeling Capabilities

3 Reduce Learning Curve Required for Proficiency

4 Expand Data Storage and File Retrieval Options

5 Improve Data Presentation

6 Remove Access Limitations

Table 1.1: Primary Thesis Goals

3

CHAPTER 2

Basic Computational Electromagnetic Code Theory

Determination of re-radiated fields from complex geometries in the presence of an

incident electric field is of particular importance in the field of antennas and propa-

gation in that it gives insight into the radiation characteristics of the geometry under

examination. The law of reciprocity states that, for a given antenna structure, the

radiation pattern of the antenna during reception of incident electric fields is the same

as that of the antenna during transmission [1]. Therefore, calculation of a given ge-

ometry’s re-radiated pattern simultaneously yields the radiation pattern that would

result from its use as a transmitter.

2.1 Incident Fields and Induced Currents

In the presence of an incident electric field, surface currents are induced on the surface

of a geometry. These surface currents take the form of conducting currents on an ideal

conductor or equivalent currents on a dielectric interface. These induced surface

currents re-radiate scattered fields that, in turn, induce new surface currents. The

total field is ultimately found by adding the incident source field to the re-radiated

scattered fields to be solved.

2.2 Geometry Discretization

For any sufficiently complex geometry, the surface currents cannot be solved in closed

form and instead must be solved numerically. By dividing (or discretizing) the ge-

ometry into N surfaces (or elements) over which the current can be represented by

4

basis functions, the field contribution from all elements can be used to find the sur-

face current on any one element. Simultaneous performance of this process effectively

discretizes the integral equation and produces a linear system of N equations and N

unknowns.

The Moment Method (MM) uses basis functions to model the surface current on

each element, each possessing an unknown weighting that must be solved. The linear

system of N equations and N unknowns is then achieved by adding the scattered

field created by the N basis functions to the incident source field and matching the

boundary conditions at each of the N surfaces. Surface current modeling using basis

functions is covered in C. W. Steele [2].

2.3 Iterative Solvers and Preconditioners

Smaller systems formed from the Moment Method can be solved by direct solution

using LU factorization. However, larger systems necessitate acceleration of the MM

system solution by use of MLFMA. This is due to the fact that, when large numbers

of unknowns exist, LU factorization is unfeasible and iterative methods are employed

to solve the linear system. Some commonly used iterative methods include the gen-

eralized minimal residual method (GMRES), biconjugate gradient method (BiCG),

and biconjugate gradient stabilized method (BiCGSTAB), to name a few [3].

In matrix notation, the problem is written as V m = Zmn∗In where V m is the field

voltage, Zmn is the interaction matrix containing the basis function representation of

the each element, and In are the coefficients used to represent the constant surface

current magnitude on each element. Solving for the coefficients results in In = Z
−1

mn ∗

V m where Z
−1

mn is referred to as the inversion matrix.

Interaction matrices resulting from the moment method matrix are often poorly

conditioned and iterative techniques converge slowly. Preconditioning can be used

to improve the convergence of the interaction matrix. The preconditioned system

5

M
−1

∗ Z ∗ I = M
−1

∗ V is solved, where M
−1

is the preconditioning matrix and

approximates Z
−1

. Some of the most common preconditioners are Jacobi, incomplete

LU factorization (ILU), and sparse approximate inverse (SAI) [4]. Preconditioners

and the trade-offs of their implementation are discussed in Barrett [5].

2.4 Calculate Currents and Fields

Direct factorization can now be used to solve smaller problems or problems where

moment method alone is employed. For larger problems utilizing MLFMA, precon-

ditioning of the sparse near-field matrix can be used to accelerate the convergence of

iterative methods. Convergence is achieved when the last iteration brings the error

magnitude below a pre-defined threshold. Once the error is reduced to an acceptable

value the solution is complete. The solved interaction matrix represents the physics

of the interactions between the basis currents on every element, and can be used to

find the fields present anywhere in the near-field or the far-field.

In backscattering problems, the source and observation angles are collocated as

they rotate around the geometry. Therefore the system must be re-solved at each

source/observation angle. In these problems, modification of the source results in a

new excitation vector V . However, the interaction matrix Z iteratively solved above

remains valid for any source and does not require recalculation.

2.5 EM Software

The procedure described above is typically carried out by computational EM software

in the following steps:

1. Discretize subject geometry into individual surface patches and wire segments.

2. Create moment-method basis function set to represent the surface currents

present on the resultant patches and segments.

6

3. Find the interactions between the surface current basis functions and the field

testing functions.

4. Generate the field source due to an incident plane wave, a voltage across a patch

or a segment on the geometry, or an infinitesimal (Hertzian) dipole in space.

5. Solve the resultant linear system of N equations and N unknowns by using

direct matrix factorization (MM) or an iterative solution (MM or MLFMA) to

get currents.

6. Determine the scattered/radiated field from the currents.

Geometry discretization in step 1 is accomplished by the Geometry Builder GUI (Sec-

tion 3.3.3) and data pertaining to the resultant geometry is stored in a “geo” interface

geometry file (Section 3.2.1). Basis function creation in step 2 and interaction de-

termination in steps 3 are both accomplished within the “scatter” and “radiation”

modeling executables 1 called by the System Modeler GUI (Section 3.3.8); no output

files are produced by either. The field sources required for step 4 are contained in

an “src” field source file (Section 3.2.3) and are passed to the modeling executables

by the System Modeler GUI. Solution of the linear system in step 5 and determina-

tion of fields from the surface currents in step 6 also take place within the modeling

executables. Surface current data and scattered/radiated field data are retrieved by

the System Modeler GUI and stored as surface current files (Section 3.2.4) and field

magnitude files (Section 3.2.5) for later visualization by the surface current viewer

(Section 3.3.9) and field magnitude viewer (Section 3.3.9).

1Function calls to the computational EM software developed at REFTAS Laboratory are made

from within the modeling executables

7

CHAPTER 3

File Structure and Functional Blocks

Several factors were taken into consideration when selecting the platform for the GUI.

Due to the massive computational workload taking place, it made sense to store and

retrieve data as often as possible to minimize the memory and processing requirements

of the software. Therefore, any platform selected would need to offer the flexibility

of being able to read from and write to multiple file types. It would also require

the ability to obtain detailed information about the file system to facilitate successful

absolute referencing of files. The computational code does not provide visual feedback

to the user and it made sense that the user would want access to this information to

see what is happening. Therefore, the selected platform would need to offer multiple

methods of visualizing and graphically interacting with the data. Additionally, the

ability to retrieve and reuse the data outside the interface would allow users to re-

utilize the data without the need to rebuild the model, a process that can be extremely

time intensive. Therefore, any platform chosen would need to have multiple entrance

and exit points to preclude the requirement that all commands be run end-to-end.

Furthermore, in order to provide access to all programming options, both current

and yet to be produced, would require the ability to accommodate a large library of

commands and thousands of lines of control code without getting bogged down. The

platform would need to offer modular development options to provide flexibility in

provision of future visual and functional updates. Lastly, the platform would need

to be prevalent in both the academic and professional world to prevent the tethering

present in the software’s current form.

8

Mathworks, Incorporated’s MATLAB language and computing environment [6] meets

all requirements. It has widespread use in both academia and the commercial world

and most potential users would already be familiar with it. Data visualization is fast

and efficient and multiple options are available for reading from and writing to both

text and data files. MATLAB GUI development provides an effective interface with

a multitude of instructional videos, forum discussions, and code examples publicly

available. Also, MATLAB served as the platform for a forerunner effort by student

Ryan Salisbury [7]. His project standardized the format for interface geometry files

(see Section 3.2.1) and established the procedure for obtaining surface currents from

within the modeling executable. Lastly, MATLAB allows executables to be run from

the command line, a necessary feature when MLFMA functions are contained in

command line executable files. Looking ahead, MATLAB also has the ability to

compile a GUI and its associated files into an executable that can be run independent

of a MATLAB installation.

9

3.1 Directory Hierarchy

To understand the inner workings of the GUI, it is necessary to discuss each functional

block separately (see Section 3.3). Before going into the details of each functional

block, it is important to understand how data is stored and retrieved (see Section 3.2).

And before discussing how data is handled, some explanation of the directory hi-

erarchy needs to be given. The folder structure is responsible for separating and

maintaining all operational, geometry, model, and log files. Each of the four folder

types has a unique purpose and holds specific files required by the GUI. Figure 3.1

shows a typical GUI file hierarchy and identifies what each file and folder represent.

Figure 3.1: Typical Directory Hierarchy

Each directory type and file type are de-

tailed in the sections that follow. To

provide the maximum amount of oper-

ational flexibility the GUI will operate

regardless of what names are selected

for the MLFMA, project, geometry, and

model directories. In fact, changing the

directory names between building /mod-

eling sessions is expected and encour-

aged. As more and more files are pro-

duced, users will develop their own per-

sonal naming scheme that helps them

logically sort through folders. The only caveat to this liberty is that the MLFMA

directory must have a subfolder named “projects” at the time of invocation or one

will automatically be created. The GUI will only accept project pathways to absolute

folder references terminated in a “projects” directory. Anything else will produce an

error.

10

3.1.1 MLFMA Directory

All files necessary for the correct operation of the MLFMA GUI are located in the

MLFMA directory. These files include the geometry executables necessary for gen-

eration of geometry elements, the MLFMA core code responsible for performing the

modeling, MATLAB conversion codes used to generate geometry interface files, and

the actual GUI figure layout and control code. To maximize operational flexibility,

the GUI can be called from the MLFMA directory regardless of where that direc-

tory is absolutely stored within the file system. This is accomplished by creating an

absolute reference to the MLFMA directory at the time of invocation. This feature

allows the GUI files to be run from a thumb drive, back-up hard drive, MATLAB

directory, or any other file storage location. The only limitation to hosting options

is the requirement that users have the ability to write to the MLFMA directory and

any nested subdirectories. File types commonly encountered and their functions are

provided in Table 3.1.

File Name File Type Description

buildhelix.m MATLAB Function Helical geometry builder

builder C++ Executable Basic geometry builder

cline.m MATLAB Function Plots segments using colorbar information [8]

iconvertall.m MATLAB Function Converts original surface current files to SC*.dat files

geoconvert.m MATLAB Function Converts Interface Geometry Files to Delaunay Geometry Files

georevert.m MATLAB Function Rebuilds Interface Geometry Files from Delaunay Geometry Files

mlfma.fig MATLAB GUI Layout Layout of project loader GUI

radiate C++ Executable Radiation modeler

scatter C++ Executable Scattering modeler

quadmesh.m MATLAB Function Plots quadrilateral elements using Delaunay format [9]

Table 3.1: Files Common to MLFMA Directory

11

3.1.2 Projects Directories

The only required sub-folder within the MLFMA directory is the “projects” directory.

This folder stores projects separately from each other and within which all geometry

creation and subsequent modeling takes place. Creating a new project in the GUI

results in the creation of a new project folder within this directory. Storing each

project in its own project folder provides logical sorting of user-generated geometries

into projects identified by their respective end product. To maximize user access,

the overarching projects folder can be stored in multiple locations for access by dif-

ferent users. The only limitation is that each folder must be named “projects” to

be acceptable to the GUI. The default projects folder location is within the MLFMA

directory. If no projects sub-folder exists at the time of invocation, one will be created

automatically. The names of the files present in the default projects folder are used

to populate the list of existing projects available for selection in the project loader

covered in Section 3.3.1.

Figure 3.2: Projects Folder Contents

12

3.1.3 Geometry Directories

Within each project directory are geometry directories associated with that project.

Each time a new geometry is built, a new geometry folder is created to house the files

that define it. Each geometry folder is named according to the shape it represents, as

defined by the user at the time of creation, and all geometry folders contain the same

filenames. Geometry folders can be produced as a result of the Build function block

(Section 3.3.3), user-created MATLAB functions, or the copying and combination of

other geometries. Every geometry directory holds three distinct file types: interface

geometry files produced by the builder and passed to the modeler, log files that store

creation and modification information, and Delaunay geometry files that are used

for visualization and modification of the geometry data. These file types and their

descriptions are discussed in Section 3.2. After creation, these files are read, modified,

and re-written by the other functional blocks, and serve as the basis for system

modeling. Modeling cannot be performed without first identifying the geometry folder

containing the element file to be modeled.

Figure 3.3: Geometry Directories

13

3.1.4 Model Directories

Whenever a geometry is modeled, a new model folder is created to house the resultant

output files in order to keep files associated with a particular model from being

incorrectly associated with others. Sorting the model data in this manner serves to

logically sort the hundreds of potential output files and allows the user to retrieve all

files attributed to a particular model without having to re-model the system. This

separation also allows the same naming scheme to be used within every model folder.

Each model folder contains six file types responsible for storing surface current and

field data, model log files, and the original geometry data being modeled. Copying

the geometry files allows accurate interpretation of the model data in relation to the

geometry data even if the underlying data in the geometry folder is modified. This

effectively produces a snapshot of the geometry at the time of modeling that will

remain unmodified even if the geometry itself is modified.

Figure 3.4: Model Directory

14

3.2 File Types

The MLFMA GUI utilizes six different types of data files to store geometry and model

information. Each file type retains its standardized name regardless of the folder in

which it is located. This naming scheme facilitates location of files and prevents the

need for a file map to be built. The different type of data files, their names, and a

description of each file are provided in Table 3.2.

File Type File Names Description

Interface Geometry Files geo Geometry Format Expected by Modeler

Delaunay Geometry Files

vertex.dat Vertices as Cartesian Coordinate Triplets

elms line.dat Line Elements Comprised of vertex.dat Row Indices

elms tri.dat Triangular Elements Comprised of vertex.dat Row Indices

elms quad.dat Quadrilateral Elements Comprised of vertex.dat Row Indices

elmnum.dat Quantity of Each Element Type

Field Source Files src Source(s) to be Modeled

Surface Current Files

curr# Surface Current Vectors per Element

SC#.dat Average Normalized Surface Current Magnitude per Vertex

currheader Surface Current Header File

Field Pattern Files fiel Field Magnitude for Given Observation Angle

Log Files
log Log of Geometry Creation

modellog Log of Model Creation

Table 3.2: File Types

15

3.2.1 Interface Geometry Files

Interface geometry files, or “geo” files, are created by the builder function block exe-

cutables and is typically generated by the C++ builder executable. They are referred

to as interface files because their sole responsibility is to interface with the modeler

executables, supplying easily assimilated element information upon which the model

is based. Every geo file follows a strict format that allows multiple element types to

be contained within the same file. Each row represents a unique element, the type

of which is designated by the first character of each row. An “L” represents a line,

“T” represents a triangle, and “Q” represents a quadrilateral. Vertex information

then follows the alpha character. Line elements are nine characters long and contain

the alpha designator followed by the Cartesian coordinate triplets of two vertices,

the segment radius, and the resistance per wavelength of the wire segment. Trian-

gular elements are ten characters long and contain the alpha designator followed by

the Cartesian coordinate triplets of three vertices. Quadrilateral elements are similar

to triangular elements but with twelve characters representing Cartesian coordinate

triplets for four vertices instead of three. Figure 3.5 shows the formatting of each

element type within a geo file. The geo file is created at the time the geometry is

Figure 3.5: Interface Geometry File Format

created. It is never modified or edited, but it can be overwritten with updated geom-

etry information via the georevert.m MATLAB function. The georevert.m MATLAB

16

function rebuilds the interface geometry file from the appropriate Delaunay geometry

files. Quadrilateral elements are converted first, followed by triangular elements, and

finally linear segments. Although interface files are not required to follow elemental

grouping or ordering, a geo file produced by the georevert.m function exhibits both

elemental grouping and elemental ordering and follows the same strict formatting of

the original interface geometry files. Prior to modeling, the geo file is rebuilt using the

georevert.m function to capture any modifications made to the Delaunay geometry

files by the updater function block discussed in Section 3.3.5. This step is necessary

to standardize the element order prior to interfacing with the modeler executables.

Once passed to the modeler executable, the C++ source code unpacks each row of the

geo file into its corresponding element within the elements array. More information

on the modeler function is discussed in Section 3.3.8.

3.2.2 Delaunay Geometry Files

Delaunay geometry files contain the same information as interface geometry files,

but in Delaunay format. Delaunay format stores all the vertices in a single file and

stores vertex relationships in separate element files. The element files contain all the

same relationship information as the interface geometry files, but require indexing

into the vertex file to obtain the actual Cartesian coordinate triplet of each vertex.

The resultant vertex file contains three columns representing point values in X-, Y-,

and Z-coordinates, effectively representing one vertex per row. The three element

files (elms line.dat, elms tri.dat, and elms quad.dat) represent linear, triangular, and

quadrilateral elements and contain two, three, or four vertex values per row. These

integers reference the rows in the vertex.dat file that contain the Cartesian coordinate

triplets of which each element is composed. Figure 3.6 shows the formatting of each

type of .dat file. After modeling is completed, the geoconvert.m function is again

called to produce vertex and element files. This guarantees accurate surface current

17

visualization by insuring the vertices are retrieved from the modeler in the same order

that they were sent. Because the underlying MATLAB geometry files associated with

the parent directory can be changed by the modifier at any time, especially after

subject model is produced, these files must be generated and segregated at the time

of modeling. Otherwise, the user runs the risk of using modified .dat files that are

invalid for representation of the modeled system. Since the geo file is never modified,

the Delaunay geometry files are directly updated by the updater function block and

ultimately serve to rebuild the interface geometry files when it is time to model the

system or save permanent changes to the geometry.

Figure 3.6: Delaunay Geometry File Format

18

3.2.3 Field Source Files

Field source files store field source information in the form of an “src” file. Fig-

ure 3.7 shows the contents of a typical “src” file. When the “radiate” system modeler

Figure 3.7: Field Source File

executable is called, the source infor-

mation is unpacked from within the

modeler executable and each source

represented individually as either an

incident plane wave, a voltage source

on a geometry patch or segment, or as an infinitesimal (Hertzian) dipole in space.

Within the “src” file, each source is stored in its own row and designated by a single

alpha character. Plane waves are designated by a “P” and have four characteristic

values which define the incidence angle and plane wave polarization. Delta sources

(voltages on patches or segments of the geometry) are designated by a “D” and have

five characteristic values which define the Cartesian coordinate location and complex

voltage. Hertzian dipole sources are designated by an “H” and have six characteristic

values which define the Cartesian coordinate location and dipole orientation vector

in Cartesian unit-vectors. To facilitate manipulation of the “src” file from within the

radiation system modeler, not-a-number (NaN) values are used to fill space and make

each row seven entries long. The radiation modeler GUIs responsible for addition of

sources to the “src” file are shown in Figure 3.8. Sources are loaded into the system

Figure 3.8: Add Field Source GUIs

model one at a time and are, by default, additive in nature. More information on the

radiation system modeler is discussed in Section 3.3.8.

19

3.2.4 Surface Current Data Files

Surface current files are generated by the modeler executables and contain both the

surface current magnitude on each vertex and the surface current vectors on each

element. A “currheader” file is also created and populated with one row of data for

each current file produced. Each row identifies the observation angle elevation and

Figure 3.9: Surface Current Data File Format

azimuth (θ and φ) as well as the

model type: scattering or radia-

tion. The currheader file serves

to populate the current-viewer

dropdown menu when an appro-

priate geometry is loaded to the

workspace. Figure 3.9 shows the

formatting of both surface cur-

rent data file types and the currheader file. Radiation and bistatic scatter modeling

produce one surface current file that is valid for all incident angles. Monostatic scatter

modeling, or backscatter modeling, produces surface current files for every scattering

angle. Files produced by the model executables follow the naming scheme curr1,

curr2, and so on. These files contain the surface current vectors on each element.

After modeling is complete the iconvertall.m function is called. This function calcu-

lates the surface current vector magnitude normalized by the hypervolume for each

element, identifies all elements touching each vertex, finds the average normalized

surface current magnitude of all connected elements, and assigns that value to the

vertex. This data is appended to vertex.dat and re-saved as SC1.dat, SC2.dat, etc.

This conversion reduces disk space usage by up to 75% and greatly accelerates surface

current visualization as the resultant format can be plotted directly.

20

3.2.5 Field Intensity Files

Field intensity files store the radiation intensity measured in the far-field as orthogonal

plane-wave components E theta scat and E phi scat. These components represent the

complex intensity in the θ and φ vectoral directions, respectively. Observation values

in θ and φ are followed by three magnitudes. These three magnitudes represented

at each incident angle represent the vertically polarized component of the field, the

horizontally polarized component of the field, and the magnitude of both the vertically

polarized and horizontally polarized field components. Formatting of the fiel file is

show in Figure 3.10. The fiel file is directly responsible for creation of the View Field

plots. Each of these plots can be set to display the appropriate column representing

either the vertical component, horizontal component, or component magnitude when

selected in the corresponding dropdown menu.

Figure 3.10: Backscatter Field Intensity File Format

21

3.2.6 Log Files

Log files are created whenever the builder or modeler executables are called to docu-

ment the settings used to generate the resultant geometry of model files. Generation

of geometry data produces a “log” file and generation of model data produces a

“modellog” file. The log file contains all the information sent to and generated by

the geometry builder executable. It serves as a birth certificate by recording the

timestamp for the associated part and contains all the information that would be

needed to rebuild it exactly. It also displays how many vertices and elements were

created by the geoconvert.m function. Whenever a geometry is modified, the log file

is appended to include the steps that were carried out and the time and date that

the modifications took place. Figure 3.11 shows a log file for a newly built geometry.

Figure 3.11: Log File Information

The modellog file contains all the model settings and applicable information displayed

in the MATLAB command line during model creation. This is the text that the orig-

inal MLFMA executables output to the command line with the only difference being

that it is a verbatim log of the output data produced in the MATLAB command

line environment instead of the Unix CLI. As a result, these files can be thousands of

lines long when the system is iteratively solved for multiple incidence angles. Example

modellog output for a modeled geometry is shown in Figure 3.12.

22

Figure 3.12: Model Log File Information

23

3.3 Functional Blocks

The MLFMA GUI is capable of performing a multitude of complex tasks that can

be logically grouped into nine functional blocks. These functional blocks perform the

tasks of referencing, creating, modifying, writing, reading, interpreting, adding to,

removing from, updating, and modeling the data files. The MLFMA GUI is actually

comprised of four separate GUIs: the Project Loader GUI, Main GUI, Geometry

Builder GUI, and System Modeler GUI. The Workspace, Modifier, Remover, Joiner,

Updater, Data Visualization function blocks are all stored within the main GUI.

Project Selection, New Geometry Builder, and System Modeler are all contained in

their own, individual GUIs.

Function Block GUI Description

Project Loader Project Loader GUI Store User-Defined Project Path, Call Main GUI

GUI Workspace Main GUI Maintain Pathways to Geometries of Interest

Geometry Builder Builder GUI Produce Interface and Delaunay Interface Files

Geometry Modifier Main GUI Make Modifications to Delaunay Interface Files

Geometry Updater Main GUI Convert Delaunay Geometry Files to Interface Geometry Files

Element Remover Main GUI Remove User-Specified Elements

Element Joiner Main GUI Create New Vertex and Element Entries in Delaunay Geometry Files

System Modeler Modeler GUIs Produce Model Files from Interface Geometry Files

Data Visualization Main GUI Produce Graphical Representation of Data Files

Table 3.3: Function Block Descriptions

24

3.3.1 Project Loader

The project loader, shown in Figure 3.13, is the first screen to greet the user after the

MLFMA command is executed from the MATLAB command prompt. At invocation,

the absolute pathway to the MLFMA directory is determined and stored. From the

project loader, users can choose to load existing projects from the default projects

folder rooted in the MLFMA directory or from any other projects folder directory

Figure 3.13: Project Loader GUI

in the file system. To choose an existing project

from the default folder, the user selects a project

from the list in the middle of the project loader

GUI and then clicks the load button. This list

is generated from the folders located within the

default projects folder rooted in the MLFMA di-

rectory. To choose existing projects from another

projects folder in the file system, the user clicks

on the button labeled “..” and locates the desired

folder. The list is updated with all folders con-

tained in the selected “projects” folder and the

user can then select the desired project and click the load button. To create a new

project folder, the user enters the desired project name in the new project box and

then clicks the “create” button. Clicking on either the “load” or “create” button

stores the absolute path to the selected project folder to allow absolute referencing of

sub-directories and their files for use elsewhere in the MLFMA GUI. The main GUI

is then opened, the MLFMA directory path and the selected project directory path

passed to it, and then the project loader GUI closes.

25

3.3.2 GUI Workspace

The GUI Workspace component of the main GUI (Figure 3.14) is responsible for

maintaining absolute references to all geometries that the user has loaded. The GUI

workspace essentially serves as the function core with which all other functional blocks

interact. At invocation the workspace starts out without any geometries loaded. The

selected project folder is displayed in the top left corner and clicking the “Load” but-

ton allows the user to select any geometry within that project folder to load into the

Figure 3.14: GUI Workspace

workspace. When a geometry folder is loaded,

it and any other geometries already present in

the workspace are visualized with the Geometry

Viewer. Geometries can be removed individually

by selecting them and clicking on the “Unload”

button or all at once by clicking on the “Reset”

button. The user can select individual geometries

in the workspace to be the subject of modification

(Section 3.3.4), modeling (Section 3.3.5), or visu-

alization of model-produced surface current and

field pattern data (Section 3.3.6). At the top of the workspace is a toolbar with entries

titled Project, Geometry, and Model. The Project toolbar entry allows the user to

load from an existing project or create a new project within the current project folder.

Either option pulls up an intermediate GUI with either a list of available projects and

a “Load” button or an empty box for entry of the new project name and a “Create”

button. The Geometry toolbar entry allows the user access to the geometry builder,

discussed in Section 3.3.3 below. The Model entry gives the user the option to begin

a backscatter, delta source, or Hertzian dipole source model. The function of these

options is discussed in Section 3.3.5. Finally, clicking on the “MLFMA” button allows

the user to revisit the Project Loader GUI covered in Section 3.3.1.

26

3.3.3 Geometry Builder

Geometry Builders are contained within their own GUI and are called when the

user selects one of the options stored under the “Build” entry on the main GUI

toolbar. Each Builder effectively builds a string to be executed in the Unix command

Figure 3.15: Geometry Builder

line. These strings call executables based on

test cases1 created by Dr. West or call user-

created MATLAB functions that build geome-

tries, store them as Delaunay geometry files, and

then call georevert.m to create the geo interface

geometry file. At the bottom of each geome-

try builder are two buttons. The “reset” button

clears all attribute entries and resets to default values. The “build” button creates

the execution string containing an absolute path to the geometry executable as well

as all applicable attributes to be passed as arguments. The resultant geo and log

files are moved from the MLFMA Directory to the newly created geometry directory

where the geoconvert.m function creates .dat files from the geo file. The builder GUI,

shown in Figure 3.15, allows the user to select from among several basic geometries,

define geometry-specific attributes, and create a folder name for the resultant geom-

etry files. The attributes available are dependent on the geometry type selected and

the user’s ability to edit each input block changes according to the geometry selected.

Input blocks include vertices, radius, center point, x-length, y-length, z-length, and

other geometry-specific attributes (all relative to λ). Other geometries can be created

using custom MATLAB functions as well, provided the resultant elements are written

to Delaunay geometry files and georevert.m run. Basic geometries available through

the basic builder and their input parameters are listed in Table 3.4.

1Originally, test case executables created a geometry, modeled it, and displayed the results in

one step. Now they build the geometry and provide interface geometry files to the GUI.

27

Geometry Parameters Element Type

Plate
Length, Width, Centroid tri or quad

Vertex1, Vertex2, Vertex3 tri or quad

Box Length, Width, Height, Centroid tri or quad

Cube Length, Width, Height, Centroid tri or quad

Wire Vertex1, Vertex2, Radius, Resistance/λ seg

Sphere Radius, Centroid tri

Sphere Cavity Radius, Centroid tri

Cube Cavity Length, Centroid tri or quad

Box Cavity Length, Width, Height, Centroid tri or quad

Table 3.4: Builder Geometries

3.3.4 Geometry Modifier

The geometry modifier is part of the main GUI and allows modification of geometries

loaded to the workspace. Once a geometry is selected in the workspace, selecting an

entry in the modifier will load the contents of the associated vertex.dat file, modify

each row, and save over the vertex.dat file. Note that only the entries within the

vertex.dat file are modified since the element files reference the vertex file by row

number. These references will remain valid even after changes have been made. An

important distinction to make is that only the geometry selected within the loader

will be modified. To modify complex geometries as a whole the user will need to call

the Combine function covered in Section 3.3.5 prior to modification. This will insure

that all vertices to be modified are stored within a single vertex.dat file.

Figure 3.16: Geometry Modifier

28

Cartesian Translation

The “translate” command loads all vertices into an nx3 matrix of Cartesian coordinate

points and then moves each vertex by the x, y, and z magnitudes defined by the user.

The matrix is then re-saved to the appropriate vertex.dat file, effectively replacing

every vertex in the original file with a vertex shifted by the user-defined amounts.

The images below show the modifier values used and the resulting effect they have

on the geometry.

Figure 3.17: Translation in X-Y Plane

Figure 3.18: Translation in Z

29

Rotation with Respect to Centroid

The “rotate centroid” command loads the vertex.dat file into an nx3 matrix of Carte-

sian coordinate triplets and takes the average of each of the X, Y and Z columns to

determine the overall centroid of the geometry. The entire array is then translated by

the amounts required to shift the centroid to the origin. Each point is then converted

to spherical coordinates and rotated by the user-defined θ and φ magnitudes. After

each vertex is rotated about the centroid, the matrix is converted back to 3D Carte-

sian coordinates and then shifted back by the amounts required to shift the centroid

back to its original position. The result is that the geometry appears to rotate about

its center. Figures 3.19 and 3.20 demonstrate a flat plate being shifted about its

centroid.

Figure 3.19: Centroid Rotation in θ

Figure 3.20: Centroid Rotation in Phi

30

Rotation with Respect to Origin

The “rotate origin” command loads the vertex.dat file to the workspace as an nx3

matrix and then converts the vertex array to spherical coordinates. Each vertex is

then rotated by the user-defined θ and φ magnitudes, the array converted back to

3D Cartesian coordinates, and then re-saved as vertex.dat. As a result the geometry

rotates around the origin in an orbital manner. Figures 3.21 and 3.22 demonstrate

the rotation of a flat plate about the origin.

Figure 3.21: Rotate Around Origin in θ

Figure 3.22: Rotate Around Origin in θ then φ

31

Scale with Respect to Centroid

The “scale centroid” command loads the contents of vertex.dat to an nx3 matrix,

centroid shifted to the origin, and converts the vertices to spherical coordinates. θ

and φ are held constant while the radius is multiplied by the percentage provided

by the user. The vertices are then converted back to Cartesian coordinates, shifted

back to the original centroid, and re-saved as vertex.dat. This causes the geometry to

shrink or grow in place without shifting otherwise. Scaling is controlled by a percent

input. Figures 3.23 demonstrates a sphere being scaled 200% with respect to its

centroid.

Figure 3.23: Scale Centroid

32

Scale with Respect to Origin

The “scale origin” command loads vertex.dat into an nx3 array and immediately con-

verts each vertex from Cartesian to spherical coordinates. θ and φ are held constant

while the radius is multiplied by the user-specified percentage. The vertex array is

then converted back to Cartesian coordinates and re-saved as vertex.dat. This causes

the geometry to shrink or grow as well as move nearer to or further away from the

origin. Scaling is controlled by a percent input. Figure 3.24 shows a sphere scaled

to 25% of its original size with respect to the origin. As a result the sphere is 1/4

its original size and the distance from the geometry to the origin is 1/4 the original

distance.

Figure 3.24: Scale Origin

33

3.3.5 Geometry Updater

As files undergo changes, the need arises for the user to both save their progress as

well as recover from any mistakes made along the way. The updater block gives the

user the ability to save their progress by overwriting the original geo file with new

data as well as the ability to undo changes by reverting back to the most recent geo file

configuration. Additionally, the Update block allows currently existing geometries to

be copied to new geometry names and allows all geometries present in the workspace

to be combined into a single geometry file. The Updater block of the GUI is shown

in Figure 3.25.

Figure 3.25: Geometry Updater

Update: Revert to Original (Undo)

“Revert to Original” allows the user to return the geometry vertex.dat file back to the

state it was in at creation. This is accomplished by calling the geoconvert.m function

that rebuilds the Delaunay geometry files from the original interface geometry files.

Update: Overwrite Original (Save)

“Overwrite Original” allows the user to permanently save all the changes that they

have made to a geometry via modification since the time that it was created. This is

accomplished by calling the georevert.m function that rebuilds interface geometry file

geo from the Delaunay geometry files. After geo is rebuilt, geoconvert.m is called to

rebuild the vertex.dat and elms*.dat files. This insures that, even if an overwritten

34

geo file is used as the basis for a model, the surface current files produced will have

the same vertex order as those passed to the modeler.

Update: Copy to New Name

“Copy to New Name” gives the user the option to copy the geometry folder contents

to a new folder. Therefore, if a geometry takes 10 steps to complete, the resultant

Delaunay geometry files can be used to update the geo file via overwrite and can then

be copied as many times as the user pleases. The copied file contains the same files as

the original, and thus the same Delaunay geometry files. Therefore, when it is loaded

it is indistinguishable from the original when viewed in the Geometry Viewer and

can be highlighted and modified as a separate geometry from within the workspace.

Figure 3.26 shows a single plate copied and translated 3 times to produce a column

of duplicate plates.

Figure 3.26: Original Plate Copied and Shifted 3 Times

35

Update: Combine to New Name

“Combine to New Name” appends all the geo files associated with the geometries

loaded into the workspace into a single geo file. Note that all geometry files being

combined must have been updated via overwrite if modified, otherwise the original

geometry will be used for combination instead of the modified geometry. After the

geo files are concatenated into a single file, the geoconvert.m function is run on the

new geo file to produce new Delaunay geometry files. Figure 3.27 shows the plates

from Figure 3.26 combined and copied twice to form multiple columns of plates.

Figure 3.27: Plates Combined to Form Columns

36

3.3.6 Element Remover

In general, the remover identifies all vertices that lie within a user-selected domain in

3D space and removes any elements that utilize those vertices. Making the job simpler

is the fact that the vertices within the vertex.dat file are identified by the row number

they occupy. The vertex array is then searched for values within the removal array and

output the row numbers they appear on. The element files are then scanned and any

elements using the removed vertices are deleted from the elements array and then re-

saved to the appropriate element file. Note that the vertex.dat file is never saved over,

meaning that the removed vertices still exist. This features allows the vertices to be

re-used for creation of new elements using the element joiner discussed in Section 3.3.7.

When the geometry is updated in preparation for modeling, the georevert.m function

creates elements directly from the element files, using the vertex file for reference

only. Any vertices not referenced are not included in the output interface geometry

file and are effectively deleted. Figure 3.28 shows the layout of the element remover

portion of the main GUI.

Figure 3.28: Element Remover

37

Cartesian Removal

The Cartesian Remover provides six planar values that can be used to create a removal

domain. The vertex.dat file is first opened and, depending on the settings, vertices

found to lie either inside or outside of the specified domain are identified for removal.

All element data files associated with the selected geometry are opened and searched

for elements using one of the vertices marked for removal. Individual element rows

found to contain such vertices are deleted and the element data files are re-saved. The

left side of Figure 3.29 shows the results of removing all vertices found to be within

the domain x ≤ 0, y ≤ 0, and then found to be in the domain z ≥ 0 in a second

call to the remover. The right side of Figure 3.29 shows that element removal of

vertices in the domain x ≤ 0.25, y ≤ 0.25, z ≥ 0.25 results in removal of a triangular

patch. Swapping the rows of the remover arguments would result in the compliment

of the domain being removed, effectively leaving the triangular patch and removing

all others.

Figure 3.29: Cartesian Removal of Sphere Elements

38

Spherical Removal

The spherical removal function allows the user to remove elements containing vertices

within a specified distance from the given centroid. The centroid coordinates can

either be entered manually or the user can use the data cursor capability within the

geometry viewer to select a single point and then click the Import button to have

the coordinates automatically entered. The vertex.dat file is then opened and all

x,y,z values shifted per the centroid coordinates. The magnitude of the adjusted

x,y,z coordinates is taken and the radial limits applied. If a value is placed in the

greater-than-or-equal-to (GTEq) row, then all vertices identified as falling outside the

specified radius are marked for removal. If the radius value is placed in the less-than-

or-equal-to (LTEq) row, then all vertices identified as falling within the specified

radius are marked for removal. Each element data file pertaining to the geometry

selected in the workspace is sequentially opened and searched for elements containing

the vertices marked for removal. The rows of elements meeting the search criteria are

returned and eliminated. At this point each element data file is re-saved since they

contain only elements comprised of vertices not meeting removal criteria.

Figure 3.30: Spherical Removal of Retro-reflector Elements

39

Cursor Point Removal

When working with the geometry viewer, the user has the option of identifying vertices

for removal using the data cursor feature of the figure. When the desired vertex is

located and selected using the data cursor, the user can press the Cursor button to

remove all elements connected to that vertex. Clicking on the cursor button opens

the vertex.dat file and shifts all row values by the coordinates of the vertices selected

in the geometry viewer. The magnitude of the adjusted x,y,z coordinates is taken

and the minimum value located. This value represents the minimal radial distance

between the selected point and the available vertices and effectively locates the row of

the vertex closest to the selected coordinates. Each element data file is then opened

and a list made of all elements found to contain the vertex marked for removal. The

row containing reference to the vertex marked for removal are themselves removed

and the elemental data files are then re-saved.

Figure 3.31: Spherical Removal of Retro-reflector Elements

40

3.3.7 Element Joiner

To create complex geometries from basic geometries it can be necessary to manually

join two geometries together. The Joiner block portion of the main GUI, shown

in Figure 3.34, allows the user to create new vertices at designated x-, y-, and z-

coordinates and to then use these new vertices to create new elements. The Joiner

block also allows the user to select already-existing vertices directly from the data

cursor feature of the geometry visualization and create new elements using them.

Figure 3.32: Element Joiner

Add Vertex

As geometries are joined together, the necessity of creating new, intermediate vertices

sometimes arises. If multiple vertices need to be added, the user has the option of

adding the x,y,z coordinates directly to vertex.dat and recording the rows of the

newly created vertices. This method can prove especially useful in conjunction with

MATLAB generation of points. Vertices created in this manner can then be selected

using the data cursor feature from within the geometry viewer.

Add Segments, Triangles and Quads

Elements can also be added to the appropriate .dat file depending on the number of

vertices selected by the user. This function is also facilitated by the user’s ability

to identify points within the geometry viewer using the data points tool to identify

41

two2, three, or four vertices from which to form a new element. The vertices selected

are compared to the vertex.dat file to check for existence and new entries are created

if found to be unique. The row containing each vertex of interest is then added to the

appropriate elms *.dat file. If multiple points need to be entered as xyz coordinate

sets, the points can be added directly to the geo file and geoconvert called from

the command line. Calling the geoconvert function will create vertices and element

data files based on all element sets found in the geo file (including the newly added

elements). Figure 3.33 shows three vertices being selected with the data cursor and

subsequently joined into a triangular element.

Figure 3.33: Triangular Element Creation

2Segments are created with radius = 0.001λ and resistance = 0Ω.

42

3.3.8 System Modeler

The system modeler GUIs pass interface geometry files and user settings to the mod-

eler executables and then process and relocate the resultant model files. The “radi-

ate” and “scatter” modeler executables are called from GUIs available through the

“model” dropdown of the main GUI toolbar. Both modeler GUIs contain the com-

mon settings shown in Figure 3.34. Common attributes are broken down into five

areas: Geometry, Solver, Preconditioner, System, and Incident Angle Range. The

user first selects a geometry from the dropdown menu at the top of the GUI. This

dropdown menu contains all geometries listed under the current project folder. At-

tributes for the Solver, Preconditioner, and System can then be changed from default

values; however, the function of these parameters are outside this scope of this thesis.

Additional information can be found in Barrett [5].

Figure 3.34: Common Portion of System Modeler GUIs

43

Scatter Model GUI

Monostatic scatter modeling, or backscatter modeling, illuminates the geometry with

a plane wave source from multiple user-defined incidence angles and measures the

resultant re-radiated field intensity. The fields produced by the plane wave source

induce surface currents on the geometry which, in turn, re-radiate fields of their own

that are measured as backscatter. The source is relocated for each incident angle and

the system is solved for each scattering angle. The field intensity measured at each

scattering angle produces a backscatter pattern showing how strongly the geometry

re-radiates when illuminated from that angle. The scatter model GUI accepts input

of illumination angles by definition of start, stop, and step values in both θ and

φ. After specifying the desired model name, pressing the “Model” button calls the

backscatter model executable, creates the new model folder, and then processes and

relocates the resultant model files from the MLFMA directory to the newly created

model directory. Figure 3.35 shows the top portion of the backscatter GUI. Due to the

time investment required to solve the system multiple times, the user is encouraged

to judiciously select the observation angles and step size employed. Selecting too

few observation steps can lead to poor backscatter pattern resolution and potential

omission of sidelobes. Bistatic scattering can also be accomplished using the scatter

model GUI.

Figure 3.35: Backscatter GUI

44

Radiation Model GUI

Radiation modeling allows a field source to be introduced as a plane wave, a voltage

on a geometry patch or segment, or an infinitesimal (Hertzian) dipole in space. Each

type of source is introduced by clicking the appropriate button: add plane wave

source, add delta source, or add Hertzian dipole. Each button opens a small GUI

(see Figure 3.8) that accepts user input describing each type of source. A plane wave

source requires the user to identify the angle of incidence in θ and φ and the plane

wave polarization as a vector combination of θ and φ components. A delta source

Figure 3.36: Source Model GUIs

requires a position in Cartesian

coordinates and the real and

imaginary components of the

complex voltage be given. The

segment closest to the Cartesian

coordinate point is selected as

the source segment and the com-

plex voltage applied to it. A

Hertzian dipole requires a posi-

tion given in Cartesian coordi-

nates as well as a dipole orientation given as a vector combination of unit vectors in

the x-, y-, and z-direction. Individual sources can be removed from the “src” file by

selecting them in the source list and then pressing the “remove” button. Pressing

the “refresh” button will reload the source list from the “src” file and pressing the

“reset” button will delete the “src” file. The radiation intensity is then measured at

multiple user-defined observation angles and the results plotted to produce a radia-

tion pattern. In contrast to backscatter modeling, radiation modeling only needs to

be solved once since the source does not change between observation measurements.

The default step size of the radiation model is five degrees in both θ and φ.

45

3.3.9 Data Visualization

The data visualization function block is responsible for converting raw data into

graphical representations and can only be invoked by interaction with the GUI workspace.

Geometry visualization occurs when a new geometry is loaded to the workspace, a

geometry is selected within the workspace, or as a companion figure whenever a sur-

face current visualization is requested. Geometry visualization occurs in Figure 1 and

is discussed in Section 3.3.9. Surface current visualization occurs when an entry in

the current viewer dropdown menu is selected or the Up/Down buttons are pressed.

Surface current visualization occurs in Figure 2 and is discussed in Section 3.3.9.

Field pattern visualization occurs when one of the three field visualization buttons

is pressed. Field visualization occurs in Figure 3 and is discussed in Section 3.3.9.

Table 3.5 lists the figures and files associated with each viewer.

Figure Title Files Visualized

1 Geometry Viewer vertex.dat, elms line.dat, elms tri.dat, elms quad.dat

2 Surface Current Viewer curr#, SC#.dat, currheader

3 Field Pattern Viewer fiel

Table 3.5: Viewer Types

Figure 3.37: GUI Workspace, Completed Models, and Surface Currents

46

Geometry Viewer

The geometry viewer is responsible for generating mesh geometric representations

from Delaunay geometry files whenever a selection is made in the GUI workspace

(Figure 3.37). The geometry viewer systematically explores every geometry folder

Figure 3.38: Geometry Viewer

present in the workspace and plots all el-

ement files found. The resultant shape

data is displayed in the geometry viewer

shown in Figure 3.38. Element data for

every geometry in the workspace is plot-

ted together, giving the impression that

all geometries in the workspace are avail-

able for modification or modeling as a

single geometry. Users are encouraged to

“combine” geometries when this result is

desired, since only a single geometry file

can be modified or modeled at a time.

MATLAB figure tools allow the user to

interact with the shape by zooming in, zooming out, moving, rotating, or selecting

data points. The Geometry Viewer also serves as the primary avenue by which the

user interacts with the element joiner and element remover function blocks. To bypass

the geometry viewer in these instances would require the user to manually modify

the Delaunay geometry files instead. It must be stressed that colors in the geometry

viewer represent height in the z-direction only.

47

Surface Current Viewer

Whenever a selection is made within the current viewer (Figure 3.37), the surface

current files corresponding to the observation angle are loaded, the surface current

magnitude at each vertex is plotted on the left, and the surface current vector on

each element is plotted on the right. The surface current magnitudes are mapped to

representative colors to visually demonstrate the current distribution over the surface

of the geometry. The result is very similar to the geometry viewer output, with two

differences: the mesh geometry has been replaced with patch elements and the colors

represent the surface current magnitude instead of the elevation in z. Filling the

checkbox marked ”View from Incident Angle” changes the plot view to that of the

incident angle. The surface current viewer is show below in Figure 3.39.

(a) Magnitude (b) Direction

Figure 3.39: Surface Current Viewer

48

Field Pattern Viewer

When a model is located within the selected geometry folder, pressing any of the three

visualization buttons produces a plot of the field magnitudes. This data is stored in

the “fiel” file and its representation differs depending on which button is pressed.

Pressing the “dB” button displays the relative field strength scaled to between 0 and

-50dB. Pressing the “linear” button displays the absolute field strength, resulting

in large returns in directions orthogonal to flat surfaces. Pressing the “unit circle”

button projects the field magnitude onto a sphere of unit radius. The user can also

elect to display the actual field magnitude values by making the appropriate selection

from the dropdown menu. In Figure 3.40, the left plot displays the pattern of the

vertically polarized field component and the right plot displays the pattern of the

horizontally polarized field component.

(a) Vertically Polarized (b) Horizontally Polarized

Figure 3.40: Field Pattern Viewer

49

CHAPTER 4

Geometry Modeling

Before modeling any complex geometries, it is important to establish a good rela-

tionship between GUI output and theoretical output of common antenna structures.

To achieve this, several basic geometries have been modeled and compared to their

well-known radiation patterns. Several structures have been selected for modeling:

a sphere, a yagi antenna, a planar plate, several dipoles, a helical antenna, and a

3D cube. In the following sections, the procedure for building and modeling each

geometry is discussed. Afterward, results are presented and compared to theoreti-

cal expectations. When creating any significantly complex piece of software it helps

to have examples to follow. The examples below fully show the capabilities of the

MLFMA GUI and its associated software components.

4.1 Backscatter Models

Backscatter Modeling provides an indication of which incident angles produce the

strongest returns for a given geometry. This is of primary importance when the

geometry serves to produce strong signals in all directions (as is the case of a retro-

reflector). On the other hand, if a geometry is meant to have low radar visibility,

backscatter modeling provides insight into illumination directions that provide unac-

ceptably large radar cross sections.

50

4.1.1 Sphere

The first geometry to be built and modeled is a basic sphere. To begin, the MLFMA

GUI is loaded in MATLAB by first changing the working directory to the MLFMA

GUI directory and then executing the “mlfma” command from the command prompt.

In Figure 4.1 the path is displayed at the top of the window and the appropriate

command is being called from the command line at the bottom. The Project Loader

Figure 4.1: Loading the GUI from the MATLAB Command Line

GUI appears pre-loaded with all currently available projects for user-selection. As this

is the first basic geometry to be modeled, a new project folder will need to be created.

Figure 4.2: Create Project

This is accomplished by selecting a name for the

project folder, in this case the project name will be

“basic geometries”, and then typing it into the appro-

priate edit box at the bottom of the GUI. After “ba-

sic geometries” is typed into the new project edit box

the “Create” button is clicked, as shown in Figure 4.2.

Pressing the “Create” button creates a new folder

within the projects folder titled “basic geometries”

and stores the absolute path to the newly created

project folder. The Project Loader GUI is automatically closed and the Main GUI is

opened in the top-left corner of the screen with the name of the new project folder

identified in the top-left corner of the GUI.

51

No geometries yet exist in the basic geometries project folder, so a new geometry

will need to be built. To build the sphere geometry, the user clicks on the Geome-

try entry in the toolbar at the top of the main GUI and then the sub-entry titled

Figure 4.3: Toolbar Element

“Basic”, as shown in Figure 4.3. This loads the Basic

Geometry Builder GUI and commands the main GUI

to wait for the Build GUI to finish its task. From

the Basic Builder GUI, the user can select the de-

sired geometry from a list of choices in the dropdown

menu at the top of the GUI. To build a sphere, the

sphere tri(R,C) option is selected in the dropdown

menu. The sphere tri geometry requires the designa-

tion of a centroid vertex and radius and then creates

a sphere comprised of triangular elements, all of which have dimensions not exceeding

ideal del. Once the user-attributes are selected, a unique name must be given to the

geometry before the “Create” button is pressed. After the builder subroutine finishes

creating the geometry, the geoconvert.m function converts the “geo” file to vertex.dat

and any necessary elm*.dat files. Figure 4.4 shows the progress bar that is displayed

to notify the user of the relative time remaining before file conversion is complete.

Figure 4.4: geoconvert.m Progress Bar

When the files conversion process is complete the geometry will automatically

appear in the workspace and the geometry viewer will appear, displaying a mesh

representation of the new geometry along with any other geometries present in the

workspace. If other geometries are present, the user can remove them by highlighting

their name in the workspace and pressing the “Remove” button. Alternately, the

52

Figure 4.5: Sphere Geometry

“Reset” button can be pressed to unload all

geometries present in the workspace. Fig-

ure 4.5 shows the sphere build parameters

and the resultant sphere created by the build

process. With the sphere geometry created,

the user has the option of creating a model

based on the geometry. The sphere geometry

is selected from the dropdown and then the

available model attributes can be adjusted to

give the user the desired environment. Once

the user-parameters are set, a unique model

name will need to be entered into the model

name edit box at the bottom of the GUI be-

fore the “Model” button is pressed. Default

values are selected for modeling and incident

angles of θ and φ are selected to range from 0◦ to 180◦ in 10◦ increments and from 0◦

to 360◦ in 20◦ increments, respectively. Although model creation can take a signifi-

cant amount of time, the user will be able to see the mlfma code outputting to the

MATLAB command window. This information is the basis for the “modellog” log

file.

Once the model subroutine is complete, the resultant surface current and field

pattern files are copied from the MLFMA directory to the newly created model folder

along with the “geo”, elms*.dat, and vertex.dat files. From there, the curr files

containing the complex currents at each vertex are converted to SC#.dat files after

redundancies are removed. At this time, the “Completed Models” portion of the

workspace is updated to reflect any model folders found within the geometry folder.

Likewise, the “Induced Currents” portion of the workspace is updated with all current

53

Figure 4.6: Models and Currents

files found within the selected model

folder. In Figure 4.6, the “model sphere”

model folder is selected and the induced

surface current files resultant from a field

incident at θ = 0 and φ = 0 are loaded.

The induced current files are all iden-

tified by the plane-wave incidence-angle

responsible for their creation. Clicking

on the listbox and selecting an incidence angle will cause the surface current viewer

to appear with the corresponding current files loaded into the viewer. Figure 4.7

shows the result of clicking on the entry displayed in the “Induced Currents” listbox.

In this instance, the incidence angle is 60◦ in θ and 45◦ in φ. The left subplot displays

(a) Magnitude (b) Direction

Figure 4.7: Sphere Surface Currents

surface current magnitudes at each vertex and the right subplot displays surface cur-

rent vectors present on each element. Clicking the “Up” and “Down” buttons next

to the currents listbox allow the user to move between adjacent current files. Each

54

time the button is clicked, the surface current viewer redraws the surface currents ac-

cording to the current .dat files associated with the listbox entry. The currheader file

is responsible for maintaining the relationship between the surface current filenames

and the incidence angle responsible for their creation. By selecting the “View from

Incident Angle” checkbox, all induced surface current plots are auto-viewed from the

direction of the incoming plane wave instead of the default viewing angle. Finally,

the user has the option of viewing the actual field magnitudes resultant from all the

incidence angles processed during modeling. In the instance of a sphere, the field

pattern is expected to be entirely independent of the incidence angle. As expected,

the field magnitude values of Figure 4.8 show minimal directional-dependence and

extreme values differ by only 0.03.

(a) Vertically Polarized (b) Horizontally Polarized

Figure 4.8: Sphere Backscatter Pattern

55

4.1.2 Plate

The second geometry to be built and modeled is a planar plate. Development

of a plate geometry follows the same procedure as that of Section 4.1.1. If the

GUI has just been loaded from the MATLAB command line the basic geometries

Figure 4.9: Plate Build

project folder is loaded from the Project

Loader GUI. Otherwise it can be loaded

directly from the Main GUI. Build Basic

Geometry is selected from the toolbar and

the plate tri(L,W,C) geometry is selected

from the dropdown. The plate tri geome-

try requires the user to define the centroid,

length in the x-direction, and width in the

y-direction. Figure 4.9 shows the geometry

will be named “plate” and will have a length

of x = 2λ, y = 3λ, and will be centered on

the origin. Figure 4.9 displays the geometry

build parameters and the resultant geome-

try built at z = 0 in the x-y plane. Modeling

is accomplished by selecting the “Scattering”

option from under the “Model” toolbar ele-

ment. The GMRES solver is again used and, to achieve good resolution, θ and φ are

selected to range from 0◦ to 180◦ and 0◦ to 360◦, respectively, in 10◦ increments. The

resulting surface current plots show, as expected, that the currents are strongest when

the source is orthogonal to the plate and are weakest when the source is parallel to

the plate. Figure 4.10 shows the induced surface currents for θ = 45◦, φ = 45◦. The

resultant field pattern plots indicate that the strongest response occurs directly above

or below the plate. Additionally, for vertically polarized incident plane waves the re-

56

(a) Magnitude (b) Direction

Figure 4.10: Plate Surface Currents

sponse is almost null at incident angles of around θ = 90◦. Horizontally-polarized

incident plane waves do not have the same near-null response and appear unaffected

by the minimal available surface area. Figure 4.11 shows the field patterns for both

vertically and horizontally polarized backscatter.

(a) Vertically Polarized (b) Horizontally Polarized

Figure 4.11: Plate Backscatter Pattern

57

4.1.3 Cube

The third geometry to be built and modeled is a basic cube with faces parallel to the

xy-, xz-, or yz-plane. The cube geometry is created by selecting the cube tri(L,W,H,C)

entry from the build geometry drop-down menu. The cube tri geometry requires the

user to define the length, width, height, and centroid of the desired cube to be cre-

ated. Figure 4.12 shows the user parameters selected to build the plate geometry.

The far field model used for this geometry again uses the GMRES solver and values

Figure 4.12: Cube Build

of θ and φ ranging from 0◦ to 180◦ and 0◦ to

360◦ in 10◦ increments. The resultant surface

current plots show that the strongest surface

currents occur when the source is orthogo-

nal to one of the planar sides. Also, when

viewing the back of the cube and stepping

through the different incident angles it is pos-

sible to see the formation of creeping waves

on the back of the geometry. Figure 4.13

shows the surface currents induced by a verti-

cally polarized plane wave incident at θ = 45◦

and φ = 90◦. The resultant field intensities

are strongest when the source is orthogonal

to one of the sides. Figure 4.14 shows the

field patterns for vertically and horizontally

polarized backscatter due to that same inci-

dent plane wave. The red portions of the vertically polarized backscatter indicate

that the response in the direction of the flat surfaces is 10dB stronger than in any

other direction. The field pattern also shows that diagonal backscatter angles have a

sinusoidal response as constructive and destructive interference occurs.

58

(a) Magnitude (b) Direction

Figure 4.13: Plate Surface Currents

(a) Vertically Polarized (b) Horizontally Polarized

Figure 4.14: Cube Backscatter Pattern

59

4.1.4 Hemispherical Dipole

The hemispherical dipole consists of two hemispheres (half spheres) connected by a

wire. To create the top hemisphere, a sphere of radius = 0.5λ and a square plate

of length = λ are created, both with an ideal del value of 0.1λ. The destructor is

called to remove sphere vertices lying in the z ≤ 0 domain and plate vertices lying

in the r ≥ 0 domain. The resulting geometries are shown below in Figure 4.15

The two geometries are each saved via overwrite and then combined to a new shape

Figure 4.15: Hemisphere Components

named top half. The gap between the two components is filled in using the element

joiner portion of the main GUI. The data cursor feature of the geometry viewer is

selected and sets of three vertices are identified directly on the part representation.

After the vertices of the new triangular element are identified, the import button is

pressed to identify the vertices that are selected (indexed rows within vertex.dat) and

then the add button is pressed to concatenate the new element onto the elms tri.dat

file. Figure 4.16 shows the first element that was created in this manner as well as a

representation of the geometry after about 90% of the new elements had been created.

Once all the new elements have been created the top half geometry is saved and copied

to a new geometry named bottom half. To create the gap for the wire, top half is

first translated upward by z = 0.05 and then bottom half is translated downward

by z = −0.05. The two geometries are both saved via overwrite and then combined

into a new geometry named hemi dipole to produce a common vertex.dat file that

60

Figure 4.16: Element Creation

the wire element can be added against. The data cursor feature in the geometry

viewer is again employed and the points (0,0,0.05) and (0,0,-0.05) located. These two

points form the start and stop vertices for the wire segment to be created. Once the

points are located and selected the import button in the element joiner portion of

the main GUI is pressed followed by pressing the add button. This creates a new file

titled elms line.dat with one entry. Figure 4.17 shows the top half and bottom half

geometries before they are separated and the finished geometry. Once again the

Figure 4.17: Finished Geometry

geometry is saved via overwrite in preparation for modeling. The delta source model

GUI is called from the toolbar and a source placed on the segment nearest the point

(0,0,0), which can be expected to be the only wire segment in the elms line.dat file.

61

The modeling proceeds as usual until the f s.solve() function is called from within

the C++ model executable. At this time two errors are generated due to the current

version of the software attempting to use an incorrect method of attaching a wire to

a segment. The error output are provided below in Figure 4.18 and Figure 4.19. This

is a known issue and a fix is available in a newer revision of the code.

Figure 4.18: Error Output

Figure 4.19: Error Output Continued

62

4.2 Radiation Models

Radiation models provide insight into the radiation characteristics of an antenna

structure. Of particular importance is the antenna pattern produced by plotting the

radiation intensity as a function of azimuth and elevation. In the paragraphs that

follow, several well known and oft-analyzed geometries are built and their radiation

patterns plotted.

4.2.1 Dipole

The simplest radiating element to model is a basic dipole. Creation of the dipole

is carried out in much the same manner as the sphere from Section 4.1.1. After

the Project Loader GUI has been called from the MATLAB command prompt, the

previously-created “basic geometries” project is selected from the listbox and then

the “Load” button is clicked, as shown in Figure 4.20. The Main GUI window loads

Figure 4.20: Load Project

to the top-left corner of the screen and with the appropriate project displayed in

the top-left corner of the GUI. To create the new dipole geometry, the user will

click on the Geometry toolbar element and then on the Basic sub-element as before.

The appropriate listbox entry for creating the dipole is the wire(v1,v2,r,f odd,rpl)

geometry. This geometry requires the user to specify the two vertices to be connected

by the wire, the radius of the wire, whether or not to force the number of segments

to an odd number, and the resistance-per-length (rpl) of the wire. This will be

63

a half-wave dipole extending from (0,0,-.25) to (0,0,.25). The wire is created with

radius=0.001λ, rpl = 0Ω, and force odd = no. The corresponding entries in the

Figure 4.21: Dipole Geometry

Basic Builder GUI are shown in Fig-

ure 4.20 and the resulting geometry is

plotted in Figure 4.21. The geometry is

modeled by selecting “Radiate” from un-

der the Model toolbar element. The GM-

RES solver is used and θ and φ are se-

lected to range from 0◦ to 180◦ and 0◦ to

360◦, respectively, each in 5◦ increments

each. The resulting surface current plots

exhibit the expected sinusoidal nature of

the current on the dipole. Figure 4.22

shows the surface currents resulting from a delta source at the origin. Only vertically-

polarized scattered fields are discernible in field plots. Additional dipoles of length

λ, 5λ/4, and 3λ/2 were also modeled. Figure 4.23 compares the resultant radiation

patterns. These results show good agreement to those discussed in Kraus [10].

(a) λ/2 (b) λ (c) 5λ/4 (d) 3λ/2

Figure 4.22: Dipole Surface Currents

64

Figure 4.23: Radiation Patterns for λ/2, λ, 5λ/4, and 3λ/2 Dipoles

(clockwise from top-left)

65

4.2.2 Yagi-Uda Antenna

The Yagi-Uda antenna [11] consists of an array of linear dipoles. One dipole is driven

with a source current and the other dipole elements serve to direct the beam. The ele-

ment opposite the intended direction of radiation is longer than the driven element and

serves as a reflector. The elements in the intended direction of radiation are shorter

than the driven element and serve as directors [12]. Table 4.1 give the optimal array

dimensions for a six-element Yagi-Uda array after spacing and length perturbation as

Length Spacing and Radius

l1/λ 0.472 s21/λ 0.250

l2/λ 0.452 s32/λ 0.289

l3/λ 0.436 s43/λ 0.406

l4/λ 0.430 s54/λ 0.323

l5/λ 0.434 s65/λ 0.422

l6/λ 0.430 r/λ 0.003369

Table 4.1: Yagi-Uda Dimensions

developed by Chen and Cheng [13]. To build

the Yagi-Uda antenna described in Table 4.1

six wire elements need to be created. The

array will lie in the xz-plane, be directed in

the positive x-direction, and be driven by a

source current placed at the origin. There-

fore, the reflector element will have a negative

x-value, the driven element will be located at

x = 0, and the director elements will have

positive x-values. Each element will be modeled using a wire centered on the x-axis

and will have a radius of 0.003369λ and a unit resistance of 0Ω. The coordinate

values of the start and stop vertices, the wire radius, rpl, and element name are

shown below in Table 4.2. For reasons explained below, all wires are created with

ideal del = 0.01λ and force odd = true. Similar results can be achieved by produc-

ing each element centered at the origin and then translating each element along the

x-axis by the distance specified in column 2 of Table 4.2. This would effectively

place each element in the same location as the first procedure, but would require

that each component be saved via Overwrite (a step that can be quite lengthy for

large geometries). Regardless of the procedure used, once all the elements are placed

appropriately and saved via “Overwrite” as required, the geometries need to all be

66

Element Start Vertex Stop Vertex Wire Resistance

Name X Y Z X Y Z Radius Per Length

reflector1 -0.250 0 0.236 -0.250 0 -0.236 0.003369λ 0 Ω

driven2 0 0 0.226 0 0 -0.226 0.003369λ 0 Ω

director3 0.289 0 0.218 0.289 0 -0.218 0.003369λ 0 Ω

director4 0.695 0 0.215 0.695 0 -0.215 0.003369λ 0 Ω

director5 1.018 0 0.217 1.018 0 -0.217 0.003369λ 0 Ω

director6 1.440 0 0.215 1.440 0 -0.215 0.003369λ 0 Ω

Table 4.2: Component Geometry Parameters

loaded to the workspace and combined by pressing the “Combine” button. For this

example the elements were saved to yagi uda 6element, the workspace was reset, and

geometry yagi uda 6element was loaded by itself. Figure 4.24 shows the spacing and

dipole lengths of the resulting geometry. To create the radiation pattern, the radi-

Figure 4.24: Yagi Array Geometry

ation modeler is used to place a delta source on the segment nearest the origin. To

achieve accurate model output it is necessary to insure the selected segment is placed

uniformly over the x-axis. If wire elements are created with force odd = false it is

possible to have a vertex lying directly on x-axis. As a result, the source current

would be placed on a segment that is offset from the x-axis resulting in an inaccurate

model. To remedy this the vertex at (0,0,0) would need to be destroyed using the

remover and three new segments created, one of which extends equal directions in

both positive and negative z to insure the source current is truly placed at the center

of the driven element. By selecting force odd = true, this step can be skipped. The

67

surface current plot in Figure 4.25 shows the surface currents created by a voltage

source placed at the origin. Surface currents are strongest on the driven element and

first director and show a marked reduction on the reflector element and subsequent

directors. Radiation patterns for the yagi-uda antenna are shown in Figure 4.26 in

both dB and linear scale. Both patterns show good directivity in the main lobe, but

larger than expected backlobes when compared with results obtained by Balanis [12].

Figure 4.25: Surface Currents Due to Source at Origin

(a) dB (b) Absolute

Figure 4.26: Radiation Pattern

68

4.2.3 Dipole In Spherical Cavity

Cavities are often used for testing of radiating structures. The first geometry is a

full-wave dipole created with a maximum element length of ideal del = .01λ. The

start vertex is located a (0,0,.5) and the end vertex is located at (0,0,-.5). The radius

is .003λ and the resistance per length is 0Ω. The second geometry is a spherical

cavity created with a maximum element length of ideal del = 0.1λ and radius =

2λ centered at the origin. A third geometry is a cubic cavity centered at the origin

created with a maximum element length of ideal del = 0.1λ and dimensions = 2λ. No

modification is required as all elements are centered on the origin. Both geometries

were saved via overwrite and then the dipole was combined with the spherical cavity

to form FWDIP SPHCAV and with the cubic cavity to form FWDIP CUBCAV. The

delta source modeler is used to place the current source on the segment closest to the

origin, which is expected to be the center of the dipole. This will allow the dipole

to radiate as intended within the spherical and cubic cavities. Model output appears

typical until convergence is attempted during iterative solve. After 280 iterations

the error was still two orders of magnitude greater than the specified target. During

advisement it was explained achieving convergence within an unloaded PEC cavity

was unrealistic and that the model results were inaccurate due to the poor system

conditioning. However, despite the undesirable results the software shows that the

possibilities for system realization are great enough to allow for even poorly modeled

systems.

69

4.2.4 Helical Antenna

The helical antenna is comprised of a long wire coiled into a helix and attached to a

ground plane. Studies show that a helical antenna shows good end-fire radiation char-

acteristics when the circumference of the helix is roughly equal to λ. Balanis provides

an easy-to-follow example where a 10-loop helical antenna is designed for end-fire ra-

diation. The design parameters are shown below in Table 4.3 and will be used to build

the helical antenna to be modeled using the GUI [12]. Good end-fire performance

Circumference λ

Spacing 0.231λ

Loops 10

Diameter 1/π

Table 4.3: Helix Parameters

is achieved when the ground plane is larger than

λ/2, helix circumference is roughly equal to λ,

and spacing is near λ/4. The first element to be

created is the ground plane. It is built at the ori-

gin with l = w = λ and ideal del = 0.05λ. No

helix geometry is available in the builder GUI,

so a custom MATLAB function named buildhelix.m was created. The buildhelix.m

function accepts arguments specifying the ideal del, loop diameter, spacing between

loops, number of loops, wire radius, wire resistance per λ, and path to the geom-

etry directory and produces a corresponding helix extending from the origin in the

+z direction. With both geometries loaded to the workspace, the user can choose

to directly connect the two by moving the end of the helix to a common vertex on

the plate and running geoconvert.m to create a common vertex.dat file. The rebuilt

geo file would only use Cartesian coordinate representation of the vertices so the

difference in nodal indices would not be an issue. Another option that can be em-

ployed when geometry vertices do not line up nicely is to use an intermediate piece

of wire to join the two geometries. This small wire can then be resistively loaded

to model the source impedance. To achieve this, the helix is first translated .001 in

the +z direction and the joiner used to to connect the two vertices identified by their

data cursor information. In this example, the first method will be employed along

70

with a secondary method to verify vertex commonality in the final geometry. The two

vertices to be connected are located at (0, -0.15, 0) on the plate and (0, -0.1592, 0) on

the helix. In instances like this where decimal error can be a factor, it is sometimes

simplest to make a ballpark translation and then edit the elms line.dat file directly.

Figure 4.27 shows the Cartesian coordinates of the vertices before and after trans-

lation. After translating the helix by z = 0.0092λ the resultant geometries show a

(a) Before Translation (b) After Translation

Figure 4.27: Vertex Coordinates to Combine

persistent gap of 0.0001λ. Although small, this discrepancy is large enough to allow

the existence of two vertices right next to each other. To remedy this, the reference to

the desired vertex at (0,-0.15,0) is located and copied to the corresponding location in

elms line.dat. The first step is to create a new geometry through combination, in this

case the geometry is named helix plate for simplicity. Investigation indicates that the

desired vertex is located on line 742 of the vertex.dat file and the unwanted vertex

is located at line 743. Simply replacing the reference to vertex 743 with a reference

to vertex 742 removes the discrepancy. At this point the geometry can be saved via

overwrite in preparation for modeling. A delta source model with a voltage source

at (0, -0.15, 0) is selected. Unfortunately, the connection between the wire segment

and the plate triangular element creates the same modeling failures as were created

by the hemispheric dipole in Section 4.1.4

71

4.2.5 Dipole Over Finite Ground Plane

A single dipole geometry was used in each of the models. The half-wave dipole was

initially created between the vertices (-0.25,0,0) and (0.25,0,0) with an ideal segment

size of ideal del = .01λ. The wire radius and rpl were set to .003λ and 0Ω, respectively.

Two plate geometries were created using an ideal element size of ideal del = 0.1λ and

were centered at the origin. The first plate was 2λ x 2λ and the second plate was 5λ

x 5λ. Four final geometries were created that varied in ground-plane size and dipole

height. The first and second geometries had their dipole placed h = 0.5λ above the

center of the ground plane. The third and fourth geometries had their dipole placed

h = 1.0λ above the center of the ground plane. The first and third geometry used

a ground-plane size of 2λ x 2λ and the second and fourth geometry used a ground-

plane size of 5λ x 5λ. The system was modeled using the delta source model with

the current source placed on the segment nearest (0,0,0.5) for the first two dipoles

and nearest (0,0,1.0) for the second two dipoles. Each dipole exhibited the expected

(a) Over 2λ x 2λ Plate (b) Over 5λ x 5λ Plate

Figure 4.28: Halfwave Dipole at Height of λ/2

sinusoidal current distribution radiation from the center. The radiation patterns of

the dipole over the smaller plate were nowhere near the results obtained by Kraus

72

(a) Over 2λ x 2λ Plate (b) Over 5λ x 5λ Plate

Figure 4.29: Halfwave Dipole at Height of λ

and Marhefka for a half-wave dipole over an infinite ground-plane [10]. However, the

dipoles over the larger ground-planes showed that the radiation pattern was trending

toward the theoretical pattern for a dipole over an infinite ground plane. Figures 4.28

and 4.29 show the resultant radiation patterns for a dipole at height h = 0.5λ and h

= λ above a plate, respectively. Increasing the size of the plate provides a noticeable

reduction in the size of the backlobes as well as better development of the sidelobes as

energy is prevented from reaching the backside of the plate and instead is re-radiated

in the direction of the dipole. As the size of the plate grows it can be expected that

the radiation pattern will continue to converge with the theoretical radiation pattern

for a dipole over an infinite plate. Figure 4.30 displays the surface currents resulting

from a half-wave dipole at a height of λ/2 above a 5λ x 5λ plate.

73

Figure 4.30: Surface Currents for Dipole Height of λ/2

74

CHAPTER 5

CONCLUSIONS

The primary purpose of this thesis was to make the computation modeling software

developed by RAFTAS more approachable. The main challenges to overcome were the

limited avenues for geometry creation, code-intensive modeling procedures, significant

user learning curve, unsorted approach to data storage, cursory presentation of data,

and limitations in work locale. Each of the main challenges identified in Table 1.1 is

addressed below and a before-and-after look provided in each area.

Facilitate Creation of Custom Geometries

The software originally had 89 test cases available to users. Although plenty of

pre-coded structures existed, the opportunity for user customization was typically

limited to pre-defined allowable variances in dimensional tolerances. All geometry

creation was accomplished inside C++ executables with no readily available method

for combination of test cases. To create new geometry options a user would need to

correctly produce a C++ executable to accomplish their goals.

By comparison, the MLFMA GUI only offers six pre-loaded geometries. How-

ever, every aspect of these geometries can be customized to accommodate specific

modeling requirements and geometries can now be combined and arranged relative

to other geometries in 3D space. All geometry creation is accomplished within a soft-

ware function as before; however, the resultant components of the geometry are now

available for manipulation within the MLFMA GUI environment as well as within the

MATLAB workspace. Within the MATLAB workspace, for example, the astute user

75

can introduce roughness by nodal introduction of radial and planar randomness using

the MATLAB rand() function. And finally, the opportunity for expansion of the ge-

ometry build library is facilitated by ease of function creation afforded by MATLAB.

Geometry creation functions can produce Delaunay geometry files by adding the six

lines of code below, as required, where ppath is the hyphen-terminated path to the

desired geometry folder.

unix([’mkdir ’,ppath]);

dlmwrite([ppath,’vertex.dat’],pts);

dlmwrite([ppath,’elms_line.dat’],line);

dlmwrite([ppath,’elms_tri.dat’],tri);

dlmwrite([ppath,’elms_quad.dat’],quad);

georevert(ppath);

Increase Approachability of Modeling Capabilities

Creating a model using the original REFTAS software required either, at a minimum,

an understanding of the source, solver, preconditioner, and system parameters or a

copy of the source code used to perform the desired modeling on a similar geometry.

To understand what form of modeling was taking place within a given file, the source

code had to be opened and investigated for calls to source creation function.

The MLFMA GUI provides three standardized modeling options: backscatter,

delta source, or Hertzian dipole. The procedure is already provided and default model

parameters already provided for each type of modeling. The only options available

to the astute coder that are not provided in the MLFMA GUI are those that were

overlooked and and can easily be incorporated into a future revision of the GUI.

76

Reduce Learning Curve Required for Proficiency

Interfacing with the original software executables took place at the command line.

Test case files had to be called from the directory they were stored in and variable

input was provided by C++ cin and cout functions. For anyone but the original

creator to understand the capabilities of the source code, they would need to open it

and read the author’s comments, if any were provided. Creation of executables from

the command line also required a debugging and trial and error.

By its very nature, the MLFMA GUI provides visual clues as to what each button,

dropdown box, and file list relate to. This prevents the cause-and-effect focuses

learning curve present in command line interaction. Additionally, the GUI maintains

a list of pathways to relevant geometry files in the GUI workspace to limit the user’s

need to dig through the actual folder hierarchy in search of data. Lastly, trial and error

is limited to the creation of geometries within the MATLAB workspace and function

creation environment. All modeling algorithms are standardized and methods of

interaction limited to provision of interface geometry files and selection of model

parameters within the model GUIs.

Expand Data Storage and File Retrieval Options

The standard output was the only form of data stored using the original software.

The information contained in the standard out was the computation progression of

the modeler as it allocated memory, performed linear algebra, and pursued conver-

gence. The culmination of which consisted of a table of field magnitudes observed

at pre-determined observation angles. Retrieval of these files allowed insight into the

radiation and scattering characteristics of the model, but did not preserve any data

concerning the patches and wires that constituted the geometry nor any information

about the surface currents present on those patches and wires.

77

The MLFMA continues to store the standard output in the form of model logs.

However, the field magnitudes stored at the end of the standard output are segregated

and post-processed to produce easily assimilated data files. Additionally, the patch

and wire data used to build the original geometry is available for reference in the

model directory and also available in the geometry folder for follow-on models based

on the same geometry. Lastly, the surface currents present at each vertex are retrieved,

segregated and post processed for easy assimilation by the surface current viewer.

Improve Data Presentation

Data produced by the command line software was presented in the form of a table at

the end of the standard out and a command-line call to the BAMG function provided

mesh visualization, however that was the extent of the graphical presentation of

the data. The MLFMA GUI has three visualization options. The geometry viewer

provides a mesh representation of the patches elements and wire segments in 3D

space. The surface current viewer allows the surface currents induced by each source

to be drawn. And the field pattern viewer provides visual interpretation of the field

magnitudes provided by the original standard out.

Remove Access Limitations

Originally, all software was hosted on REFTAS workstations. To have access to the

software, users had to either be on location or have an active SSH connection to

a REFTAS workstation. Despite the method of access, interaction was conducted

through the command line.

Now, the software is portable. Reducing the reliance on custom implementation

files and only carrying the executables means that the entire MLFMA directory takes

up less than 10 MB of disk space; a size requirement easily satisfied by even the oldest

of usb thumb drives. The only user limitations are the requirement that a Linux OS

78

be used and a MATLAB installation is accessible. However, further development of

GUI file handling and installation of ispc() and isunix() switch statements whenever

commands are executed from the command line could easily remove the OS limitation.

Additionally, conversion of the GUI MATLAB files to mex files would allow the

software to operate outside the presence of a MATLAB installation.

79

BIBLIOGRAPHY

[1] R. F. Harrington, Time-Harmonic Electromagnetic Fields. John Wiley and Sons,

Inc, 2001.

[2] C. W. Steele, Numerical Computation of Electric and Magnetic Fields. Chapman

Hall, 2nd ed., 1997.

[3] J. L. Volakis and D. B. Davidson, “Evaluation of the bicgstab(l) algorithm for

the finite-element/boundary-integral method,” IEEE Antennas and Propagation

Magazine, vol. 43, no. 6, pp. 124–131, 2001.

[4] J. Lee, J. Zhang, and C.-C. Lu, “Performance of preconditioned krylov iterative

methods for solving hybrid integral equations in electromagnetics,” Tech. Rep.

373-03, Department of Computer Science, University of Kentucky, 2003.

[5] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Ei-

jkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the Solution of

Linear Systems: Building Blocks for Iterative Methods. SIAM, 2nd ed., 1994.

[6] MATLAB, version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks

Inc., 2010.

[7] R. Salisbury, “gtools v1.0 documentation.” gtools Package for MLFMA, 2008.

[8] S. Holz, “cline.” (http://www.mathworks.com/matlabcentral/fileexchange/14677-

cline) MATLAB Central File Exchange. Retrieved March 31st, 2011.

[9] A. P. Engsig-Karup, “Quadmesh quadrilateral mesh plot.”

(http://www.mathworks.com/matlabcentral/fileexchange/20266-quadmesh-

80

quadrilateral-mesh-plot) MATLAB Central File Exchange. Retrieved March

11th, 2011.

[10] J. D. Kraus and R. J. Marhefka, Antennas for all Applications. McGraw-Hill

Higher Education, 3rd ed., 2002.

[11] H. Yagi, “Beam transmission of ultra-short waves,” Proceedings of the IRE,

vol. 16, pp. 715–741, June 1928.

[12] C. A. Balanis, Antenna Thoery. Wiley Interscience, 3rd ed., 2005.

[13] C. A. Chen and D. K. Cheng, “Optimum element lengths for yagi-uda arrays,”

IEEE Transactions Antennas and Propagation, vol. AP-23, pp. 8–15, January

1975.

[14] L. Lamport, LATEXUser’s Guide and Reference Manual. Addison Wesley, 2nd ed.,

1994.

[15] C. A. Balanis, Advanced Engineering Electromagnetics. John Wiley and Sons,

Inc, 1st ed., 1989.

[16] J. C. West and C. Bunting, “Modeling of lossy, enclosed rooms using mlfma,”

Proceedings of the 2009 IEEE Antennas and Propagation Society International

Symposium, June 2009.

[17] F. Hecht, “Bamg: Bidimensional anisotropic mesh generator,” tech. rep., Uni-

versity Pierre et Marie Curie, 2006.

81

VITA

Christopher Carrero

Candidate for the Degree of

Master of Science

Thesis: MATLAB GEOMETRY BUILDER AND MLFMA MODELER

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Bend, OR, USA on January 25th, 1981.

Education:
Received the B.S. degree from Oklahoma Christian University, Edmond,
OK, USA, 2004, in Electrical Engineering
Received the Master of Business Administration from Oklahoma Christian
University, Edmond, OK, USA, 2005.
Completed the requirements for the degree of Master of Science with a
major in Electrical Engineering Oklahoma State University in July, 2011.

Experience:
Lifecycle Sustainment Engineer with the Department of Defense, United
States Air Force, Tinker AFB.

Name: Christopher Carrero Date of Degree: July, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: MATLAB GEOMETRY BUILDER AND MLFMA MODELER

Pages in Study: 81 Candidate for the Degree of Master of Science

Major Field: Electrical Engineering

Development of MATLAB graphical user interface to facilitate building and modifica-
tion of discretized geometries for use in moment method and multilevel fast multipole
algorithm modeling and graphical depiction of resultant geometry, surface currents,
and field magnitudes. MM and MLFMA software developed at Oklahoma State
University Robust Electromagnetic Field Testing and Simulation (REFTAS) Labo-
ratory.

ADVISOR’S APPROVAL:

