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GLOSSARY 

 

Abbreviations: 

ADC  - Analog to Digital Converter 

ALF  - Advanced Library Format 

ASIC  - Application Specific Integrated Circuit 

BSIM  - Berkeley Short Channel IGFET Model 

CAD  - Computer Aided Design 

CMOS  - Complementary Metal Oxide Semiconductor 

DAC  - Digital to Analog Converter 

DRC  - Design Rule Check 

EDA  - Electronic Design Automation 

ELC  - Encounter Library Characterizer 

FIR  - Finite Impulse Response 

GDS  - Graphic Database System 

GUI  - Graphical User Interface 

HDL  - Hardware Description Language 

IC  - Integrated Circuit 

IEDM  - International Electron Devices Meeting 

IGFET  - Insulated Gate Field Effect Transistor 

IITC  - International Interconnect Technology Conference 

IO  - Input-Output 

IP  - Intellectual property 

ITRS  - International Technology Roadmap for Semiconductors 
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LEF  - Layout Exchange Format 

*.lib  - Liberty 

LVS  - Layout Versus Schematic 

MGC  - Mentor Graphics Corporation 

MIPS  - Micro-processor without Interlocked Pipeline Stages 

MOSFET - Metal Oxide Semiconductor Field Effect Transistor 

MSVLSI - Mixed Signal VLSI lab 

NCSU  - North Carolina State University 

OSU  - Oklahoma State University 

PC  - PipeCleaner 

PDK  - Process Design Kit 

P&R  - Place and Route 

QA  - Quality Assurance 

RAM  - Random Access Memory 

*.sdc  - Synopsys delay constraint 

SOC  - System On Chip 

SPICE  - Simulation Program with Integrated Circuit Emphasis 

VCAG  - VLSI Computer Architecture Group 

VHDL  - Very High Speed Integrated Circuit Hardware Description Language 

VLSI  - Very large scale integration 

 

Parameters: 

Cd  - Diffusion node capacitance 

Cin  - Input Capacitance 

Cout  - Output Capacitance 

Cox  - Gate oxide capacitance 

d, td, tpd  - Propagation delay 

f  - Effort delay 

g  - Logical effort 
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gx  - Horizontal grid 

gy  - Vertical grid 

h  - Fan-out 

p  - Parasitic delay 

td, tpd   - Propagation delay 

Ts  -  Input slew or rise/fall time of inputs 

Vth  - Threshold voltage at which the outputs are measured 
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CHAPTER I 
 

 

INTRODUCTION 

 

Mentor Graphics Corporation (MGC) and VLSI Computer Architecture Research Group 

(VCAG), Oklahoma State University (OSU), started the PipeCleaner (PC) project. PC, an 

application specific integrated circuit (ASIC) represents some of the most commonly used blocks 

in many integrated circuit (IC) applications today. In this chapter an overview of the ASIC‟s 

components, its functionality and some of the applications MGC‟s intended usage are presented. 

A brief description of the FREEPDK45[1, 2], a non-proprietary 45 nm process on which the 

design is based is given. The design that was completed previously needed some improvements 

which are also discussed. This thesis is about optimization and characterization of the existing 

cell library to re-implement the PC-ASIC. The design is intended for use with testing the 

Electronic design automation (EDA) tools by MGC and cannot be fabricated. However, the 

procedures established for characterizing the cell library can be used as a reference for any other 

cell library. 

1.1 Components and functionality of the PC-ASIC: 

The ASIC contains the following components: 

1. A digital finite impulse response (FIR) filter implemented with a Microprocessor without 

Interlocked Pipeline Stages (MIPS) like processor. 
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2. Random Access Memory (RAM), for FIR filter calculations and coefficient storage. 

3. 6-bit Analog to Digital Converter (ADC). 

4. 6-bit Digital to Analog Converter (DAC). 

The function of the IC can pretty well be understood from its components. The input is an analog 

signal, which is digitized by the ADC and fed to the processor. The processor filters this signal 

and gives it back to the DAC, where it is again converted back to an analog signal and output. 

The filter coefficients are stored in the memory which is also used by the processor for the 

storage of any intermediate results. 

1.2 PC-ASIC & MGC: 

To effectively demonstrate their EDA (Electronic design automation) tool capabilities such as 

software quality or solving specific customer problems, MGC needed an ASIC which reflects real 

world user designs. Although the company gets use-case data from many of the users for doing 

case studies, it cannot be shared universally or used to develop debugging tutorials due to 

intellectual property (IP) law violations. Hence, it is proposed to design the PC-ASIC using a 

non-proprietary and foundry-agnostic process. 

Some of the purposes, MGC states it wants to use the ASIC for are listed below: 

1. Example Kits: The PC-ASIC is used as input data for example kits. The example kits 

are developed for demonstrating specific capabilities of the tools like physical 

verification. The IC provides a framework for the user to try out the tasks and explore 

the tools. 

2. Training Material: The IC is used to develop training materials for the internal staff 

as well as for the users. 

3. Quality Assurance (QA) checks: The example kits can be used for QA check during 

the testing and verification phase of the software release cycle. Since, the IC 
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represents a real world design; it provides a good foundation for quality checks of the 

tools. 

4. Customer Assistance: This is an area that‟s being worked on. If a user cannot provide 

data to the customer service personnel, the teams can use the PC-ASIC data to 

reproduce a problem that the customer is experiencing and solve them. 

1.3 FREEPDK45: 

FREEPDK is a 45 nm open-source process with much of the contributions coming from North 

Carolina State University (NCSU) and Oklahoma State University (OSU) for Very large scale 

integration (VLSI) research and education purposes with MGC being one of the sponsors. It is 

distributed under the open-source Apache License and may be freely used and modified. The 

technology is intended to work with BSIM4 predictive technology model. BSIM stands for 

Berkeley short channel IGFET (insulated gate field effect transistor) model. It addresses the 

physical characteristics of a Metal oxide field effect transistor (MOSFET) in the designs below 

100 nm. The Process design kit (PDK) includes: 

- Technology library 

- Tech files and display resources 

- Design rules compatible with Calibre 

- Standard cell library[1, 2] 

-  Memory compiler[1, 2] 

- Analog blocks ADC and DAC[1, 2] 

- Setup file for characterization of the standard cells[3-6] 

- Design flow for  place and route developed by [J. Chen, I. Castellanos and J. Stine] 

The commercial PDKs have IP restrictions on using them for academic purposes and classroom 

instruction. Also it‟s a very difficult procedure for the academic institutions to maintain the 
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design flow for the EDA tools to implement an IC. FREEPDK resolves the problem by being 

open-source and including the scripts for design flows within the PDK [1, 2]. 

Scaling down the devices to nanometer level has brought in many design challenges, variation 

being the most dominant factor. The variability in the physical parameters i.e. doping 

concentrations, width, length and many others at the nanometer regime affects the electrical 

characteristics of the devices to a great extent. Care has to be taken to understand these effects on 

designs in order to obtain desired yields. FREEPDK aims at including this variation awareness 

into it, so that these design intricacies are accurately modeled in order to support their 

understanding by novel users, students before going into the industry. The minimum feature size 

and amount of variation to be expected are developed with references to the ITRS and conference 

publications such as IEDM and IITC[7]. 

FREEPDK thus allows the student researchers to test and validate their designs, the different 

architectures, System on chips (SOCs). The design kit can be downloaded by typing the following 

command at the user‟s Linux terminal: 

svn co https://svn.unity.ncsu.edu/osi/freepdk45/trunk . 

This will download the PDK into the user‟s current directory. However, the user needs to have 

the EDA tools installed in his Linux machine and have internet access. Useful information on the 

latest news, design rules for the PDK can be found at 

http://www.eda.ncsu.edu/wiki/FreePDK45:Contents . 

1.4 Proposed changes for the existing PC-ASIC: 

1. The standard cell library included with the PDK is generated automatically from a 

software tool Cadabra, from Synopsys, Inc. The cells generated had long poly 

http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
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interconnects and some unnecessary layer extensions. These needed to be optimized 

for better performance. 

2. The cells are to be characterized including all device and interconnect parasitics.  

3. The previously existing PC-ASIC had the digital core, analog blocks and 

Input/output (IO) pads connected to a common power supply. It is proposed to have 

isolated power domains in order to observe and determine the tools‟ capability to 

work under such a situation. Doing layout verses schematic (LVS) checks after the 

place and route of the entire chip is quite challenging when we have different power 

nets. 

In addition, there were several existing layout problems. The poly interconnects in the existing 

cell library were long. Their excessive lengths made them difficult to understand, and rework for 

greater cell tightness. Cells with larger drive strength had wide PMOS transistors and laid out as a 

single transistor without the use of fingers. The poly runs over the active diffusion areas were 

very long. After some investigation, it was also found that the cell height could and should be 

reduced as well. Hence it was proposed to redo the standard cell library manually. 

1.5 Tasks accomplished: 

The cell library was reworked manually with the changes noted above, abstracted and 

characterized including the parasitics. The PC-ASIC is re-implemented or laid out using this new 

library and with separate power domains for the IO, core digital and analog blocks. The IC has 

been physically verified for design rule check (DRC) and LVS errors. The design flows for doing 

the characterization and place and route have been obtained along with the PDK [1, 2]. 
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CHAPTER II 
 

 

STANDARD CELL LIBRARY DESIGN 

 

2.1 Introduction 

Modern integrated circuits are very large containing over a billion transistors. For example a 

5mm x 5mm chip may contain over a 750 million transistors or approximated at 30 transistors per 

um
2
. This makes it clear that the job can be done only with the help of computer aided tools 

(CADs). Designs are completed and tested at a higher level using a hardware description 

language (HDL) like Verilog or Very High Speed Integrated Circuit HDL (VHDL). 

Implementation at the device level is achieved by conversion to an interconnection of simple well 

defined blocks much like the Lego toys. These blocks are referred to as the standard cells. Since 

the interconnection is made by an automated tool, the blocks have to be designed following a 

specific rule set in order to achieve a final chip that is DRC/LVS (Design rule check/ layout vs. 

schematic) clean. In this chapter, we will take a close look at many of the rules needed to specify 

the standard cell format to produce error free designs. 

2.2 Standard cell library 

The Standard cell library describes a list of cells that a synthesizer may use to implement error 

free designs. The cell library information required to implement an ASIC design are summarized 

on next page: 
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1. Circuit schematics, layouts, circuit netlists (from schematics), and parasitic extracted 

netlists (from layouts). In this work, the schematics and layouts are designed using the 

Virtuoso tool from Cadence; netlists are extracted using Calibre Interactive from Mentor. 

2. Abstracted views of each of the standard cell. The abstract view of a cell contains the 

bounding dimensions of the cell, routing obstructions and pin locations. These are 

required for placing and routing of the final chip by the Place and Route (P&R) tool. 

Through a process called Abstraction using the Abstract tool from Cadence, we get these 

views. The information is described in a text file in LEF-format. 

3. The timing, power, functionality, and operating conditions should be given in a standard 

industry file format, Synopsys Liberty format (or *.lib file). This data is used by other 

design tools like synthesizer and the P&R tool. 

4. Verilog/VHDL models for all the cells. 

Figures showing this information for an example Inverter cell are shown below.  

 

Fig 2.1: Inverter Schematic 
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Fig 2.2 Inverter Layout 

Fig 2.3 Inverter Abstract View 
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.SUBCKT INVX1 A Y gnd vdd 

*.PININFO A:B Y:B gnd:B vdd:B 

MM0 Y A vdd vdd PMOS_VTL W=5e-07 L=5e-08 

MM1 Y A gnd gnd NMOS_VTL W=2.5e-07 L=5e-08 

.ENDS 

Fig 2.4: Circuit netlist Inverter (Schematic) 

 

.SUBCKT INVX1  A GND VDD Y 

MM1 N_Y_MM1_d N_A_MM1_g N_GND_MM1_s GND__2 NMOS_VTL L=5e-08 W=2.5e-07 

+ AD=2.625e-14 AS=2.625e-14 PD=7.1e-07 PS=7.1e-07 

MM0 N_Y_MM0_d N_A_MM0_g N_VDD_MM0_s N_VDD_MM0_b PMOS_VTL L=5e-08 W=5e-07 

+ AD=5.25e-14 AS=5.25e-14 PD=1.21e-06 PS=1.21e-06 

.include "INVX1.pex.netlist.INVX1.pxi" 

.include "INVX1.pex.netlist.pex" 

.ends 

Fig 2.5: Netlist with parasitic information Inverter (Layout) 

 

Fig 2.4 and fig2.5 show the netlists extracted from the inverter schematic and layout respectively. 

The schematic netlist contains the net connections, width and length parameters of the transistors 

whereas the layout netlist includes the source and drain diffusion areas and perimeters as well. 

The two files included in the layout netlist in fig2.5: "INVX1.pex.netlist.pex", 

"INVX1.pex.netlist.INVX1.pxi" have details of interconnect resistances and capacitances 

respectively. The netlists are used for the following purposes: 

1. Schematic netlist - LVS. 

2. Layout netlist  - Timing extraction. 
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Table 2.1 lists the standard cells in the FREEPDK Library.  

Table 2.1: List of Standard Cells 

No. CELL NAME FUNCTION 

1 AND2X1 Y = A.B 

2 AND2X2 Y = A·B 

3 AOI21X1 Y=NOT(A·B + C) 

4 AOI22X1 Y=NOT(A·B + C·D) 

5 BUFX2 Y = A 

6 BUFX4 Y = A 

7 CLKBUF1 Y = A 

8 CLKBUF2 Y =  A 

9 CLKBUF3 Y = A 

10 DFFNEGX1 D-Type Flip-flop with negative edge clock  

11 DFFPOSX1 D-Type Flip-flop with positive edge clock 

12 DFFSR D-Type Flip-flop with positive edge clock and negative 

SET and negative RESET 

13 FAX1 YS = A  B  C 

YC = A·B + B·C + C·A 

14 FILLCELL_1,2,4,8,16 Filler Cells 

15 HAX1 YS = A  B 

YC = A·B 

16 INVX1 Y = NOT(A) 

17 INVX2 Y = NOT(A) 

18 INVX4 Y = NOT(A) 

19 INVX8 Y = NOT(A) 

20 LATCH D-Type Latch with positive clock level 

21 MUX2X1 2 to 1 Multiplexer 

22 NAND2X1 Y = NOT (A·B) 

23 NAND3X1 Y = NOT (A·B·C) 

24 NOR2X1 Y = NOT(A+B) 

25 NOR3X1 Y = NOT(A+B+C) 

26 OAI21X1 Y = NOT((A+B) ·C) 

27 OAI22X1 Y = NOT((A+B) ·(C+D)) 

28 OR2X1 Y = NOT(A+B) 

29 OR2X2 Y = NOT(A+B) 

30 TBUFX1 Y = A·EN; Y = HiZ for( NOT E) 

31 TBUFX2 Y = A·EN; Y = HiZ for( NOT E) 

32 XNOR2X1 Y = NOT (A  B ) 

33 XOR2X1 Y = A  B 
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The cells can be categorized as follows: 

1. Logic Cells implementing Boolean logic. 

2. Latches and Flip-flops to implement the state storage etc. 

3. Clock Buffers. 

4. Buffers/Inverters. 

As we can see from table 2.1, the cell name is followed by the number of inputs it has. There are 

cells ending with X1, X2 etc. These implement the same logic function but have relative drive 

strengths of 1 and 2 respectively. Also there are three types of buffers: regular buffers (BUF), 

clock buffers (CLKBUF) and tri-state buffers (TBUF). Let us understand why we need them. 

2.3 Drive Strength: 

 When the synthesizer compiles the design from a behavioral description into a collection of 

standard cells, often large nets are created, i.e. many gates connected to a single net. The greater 

the number of devices (gates & interconnects) connected to a net, the greater drive strength 

required to sustain maximum clock speed. This also happens as the Place and route tool wires in 

the standard cells. As a result, we need to design cells with a wide range of buffer drive strengths 

in the library, in order to support the synthesizer and P&R tool in the optimal buffering of large 

nets. A 2X cell drives twice the load driven by 1X cell, a 4X twice that of a 2X and so on. The 1X 

load is the load presented by the minimum sized inverter in the cell library. The dimensions of 

INVX1 in this library are: 

PMOS_VTL W=0.5e-06 L=0.05e-06 

NMOS_VTL W=0.25e-06 L=0.05e-06 

Cox for this process = 26.67 fF/um2  (obtained from simulation) 
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If the net is larger than what the cells in the library can drive, the compiler breaks them into 

smaller nets using buffering to drive each branch. 

2.4 CLOCK Buffers and Clock Tree Synthesis: 

The clock signal is another very large net that regularly requires very high drive currents. These 

nets are broken down into simpler nets and designed as a tree as shown in fig2.6[8]. But, there are 

skew problems which are frequently made worse just by adding buffers. Skew is the time 

difference between the clock signals arriving at different clocked elements in a chip. Fig 2.6 just 

gives an idea of how big nets are broken into simpler ones. 

 

Fig 2.6: Clock Tree 

The Place and Route tool automatically designs a balanced clock tree, and then adjusts the buffers 

depending on the load a particular clock net sees to partially compensate the skew differences. 

For this effort the library needs specific cells referred to as the clock buffers, CLKBUF in our 
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library. CLKBUF buffers have high drive strength and near equal rise/fall time delays and noise 

margins (not exactly equal because the PMOS are scaled only by 2 instead of beta which is 

approximately 3). Also the transistors are made wider to reduce the variation (threshold 

mismatch, greater  device area lessens mismatch[9]) among the different buffers in the clock tree 

and hence the skew. The global clock drives the clock distribution network, which in turn drives 

the individual functional blocks. The main sources of clock skew are summarized below[10]: 

1. A random skew that occurs because of the manufacturing variations which affect 

transistor parameters like width, length, threshold voltage, oxide thickness and the wire 

width and thickness. 

2. A systematic skew due to the differences in the load seen by different branches of the 

clock distribution network.  

3. Drift in parameters due to temperature gradient also affects the delay and hence the skew. 

4. High frequency environmental variations like power supply noise cause jitter that leads to 

variation in delay for the clock buffer branch causing skew. 

2.5 Design rules for the Standard Cells: 

In the Standard cell based design flow, after the behavioral code is synthesized into a collection 

of standard cells, the place and route tool, SOC Encounter places them in sets of rows. Since the 

process is automated it follows specific rules to make routing simple and correct by construction. 

Wiring between the standard cells is done by the router following a grid. The tool routes the wires 

only on the grid as shown in fig2.7 except at the m1 level. The standard cells must also have 

dimensions that are a multiple of the grid value. The tool places the standard cells such that their 

origin lies on the grid points. To have the power rails abutted without any DRC errors, the height 

and width of all the cells should be multiples of the grid value. 
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Fig 2.7: Routing is done by following the grid. gx and gy are horizontal and vertical grid values.  

2.5.1 Grid: 

Fig 2.7 demonstrates library cell gridding. gx and gy in the figure represent the horizontal and 

vertical grid spacing/values respectively. The values are obtained based on how close two 

identical wires can be placed while, accommodating via to via switching between horizontal and 

vertical layers and minimum area for each metal layer without creating DRC errors. Fig 2.8 

gives an idea of selecting the appropriate grid size. It shows four M2-M1 vias in the FREEPDK 

process. The minimum spacing at which they can be placed without a DRC error gives the grid 

value. Often to avoid confusion both the horizontal and vertical grid spacings are chosen to be the 

same. The grid value used for FREEPDK project is 0.19 um. 

gx 

gy 
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Fig 2.8: Selecting grid value 

2.5.2 Horizontal and Vertical layering technique: 

Routing the metal layer haphazardly creates dead-ends and results in some nets that are land 

locked resulting in larger chip area, longer interconnects and adds significant parasitics increasing 

delays and power and reduces the bandwidth of the chip. A simple rule followed from the initial 

stage of designing with standard cells to the final routing of the chip is: 

 Metal 1 freeform within the cell and horizontal for the power rails, VDD and VSS. 

 Even metal layers 2, 4, ..., 2n always vertical. 

 Odd metal layers 3,5, … always horizontal. 

It‟s not necessary that one should follow the same pattern but it should be noted that alternate 

metal layers always run perpendicular to each other. In this way, it is ensured no metal layer 

blocks a routing path. When designing mixed signal ASICs, the pattern should be communicated 

to all the members in the design team to avoid any problems when stitching together the chip. In 
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order to connect between the layers vias are used. For example, as shown in fig2.9 to connect 

points A and B, we go horizontally in metal1 and then switch to metal2 that runs vertically using 

a via. 

 

Fig 2.9: HV grid 

By following this directional technique we are accommodating extra wires horizontally and 

vertically thus being able to connect more nets within the same area. This results in the total wire 

run length between two nets being as short as possible, reducing parasitic delay and power 

consumption.  

Observation: 

Do we have to strictly follow the direction rules always? The answer depends on the situation. If 

the jump is only one or two grids and we are not going to route any extra wires within that space 

we may continue with the same layer without switching. Fig 2.10 shows a situation which shows 

the switching between layers is a bad choice. By switching to metal2 for the short jumps we are 

reducing the reliability as well as blocking the area for any vertical wiring that may be come from 

above. 

B 

A 
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Fig 2.10[8]: Bad choice of switching layers 

2.5.3 Pins: 

All the input and output pins of all the standard cells should be on the grid intersection points of 

horizontal and vertical grids so that the tool can find grid points and route efficiently. This is 

because the P&R tool places the vias only at these intersection points as discussed earlier. 

2.5.4 Fixed Height, Variable Width: 

Digital layout with particularly interest on standard cells should have fixed height and variable 

width (integer grid width) for all the cells, because we are constrained by the P&R tool. The 

height is determined by the most complex cell in the library. Cell complexity may come in terms 

of the number of transistors, internal routing or both which leads to more wiring path as in the 

case of a D-Flipflop with set and reset inputs (fig2.11) or due to device sizes as can be the case 

with series PMOS structures. For example in a 3 input NOR gate, the PMOS transistors in the 

pull-up have to be made wide enough to adjust for the poor rise time and high leakage currents 

due to the parallel NMOS transistors in the pull-down. 
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 Fig 2.11: D-Flipflop with Set and Reset inputs. 

If we need cells with high drive strength buffers, the transistors are made wider. Transistors are 

folded, drawn as fingers so that the cell fits into the fixed height. There are no restrictions on the 

width of the cell except that it should be a multiple of horizontal grid value. In this way, when the 

cells are placed on the power rails, they are abutted without any DRC errors. 

2.5.5 Contiguous N-Well: 

In any process, there is a spacing rule defining how close two identical layers can be placed. The 

N-well spacing is a large value than the transistor spacing. If each cell has its own well, they have 

to be separated by a greater distance whereas if all the cells in a row have a common N-well, then 

the cells can be placed such that it just satisfies the transistor spacing rule leading to greater 

circuit density. Fig 2.12 gives an idea of the spacing rules in the two cases. 
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An important observation is, how far to extend the N-well for each cell to achieve a DRC free 

chip from the P&R tool. The answer depends on the design of FILLER CELL. 

2.5.6 FILLER CELLS: 

There are two approaches to design a FILLER CELL: 

Approach 1: FILLER0 

After the final optimization phase during the place and route, there are gaps left out between the 

cells in different rows. These gaps will cause DRC errors. To avoid them and make the N-well 

continuous the gaps are filled with the FILLER CELLs. Fig 2.13 shows a minimum dimension 

filler cell. It has no active devices, just the power rails and an N-well[11]. Usually there are a 

number of such cells in the library whose widths are multiples of a unit grid width. With this 

approach, the n-well should be at least extended to the cell boundaries in all the standard cells to 

Fig 2.12 Nwell spacing 
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get a clean chip after place and route. As a safety measure, it might be extended a little beyond 

the cell boundary. 

 

Fig 2.13: FILLER0 CELL Approach 1 where the boundary width is one grid. 

Approach 2: FILLERn 

This approach says the filler cells have to achieve more than just filling the gaps. The main idea 

besides filling the gaps is that these cells act as decoupling capacitors[12]. The decoupling 

capacitors prevent the sagging of power supply in the event of drawing large currents from the 

power rails. An example of such an event is when a register is being set or reset. When this 

approach is considered, the N-well in the standard cells should be extended beyond the cell 

boundary by a distance equal to half the FILLERn CELL width to ensure a DRC clean chip from 

P&R tool as shown in fig2.14. 



21 
 

 

Fig 2.14: FILLERn cell and N-well extension for the standard cells 

When two standard cells are placed such that the N-wells overlap, the result is a successful 

scenario. But when they are placed so that there is a gap, we should have enough space to 

accommodate a FILLERn CELL there to avoid DRC errors. But if the gap is insufficient to place 

a FILLERn cell then a FILLER0 cell can be used there. This requires the FILLER0 cell to be a 

single grid in width. The approach adopted here is a hybrid approach taking advantage of both by 

using FILLERn cells in the larger gaps for supply decoupling and FILLER0 to ensure a 

continuous N-well. 

W/2 
W 
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2.5.7 Half-design rule: 

When we abut two cells adjacent to each other, we have to be careful about how it affects the 

internal components. If the spacing is not correct DRC errors can result. To ensure the errors 

don‟t occur, when abutting cells, all the layers should be set at specific distances from the cell 

boundaries by at least half the minimum spacing rule between them. In fig2.15, the violet box 

represents the cell boundary (the P&R tool abuts these boundaries when placing two cells side by 

side) and cyan box represents the boundary beyond which no internal layers of the cell may exist.  

 

Fig 2.15: Standard Cell design template 

Table 2.2 lists the distances from the P&R boundary, which no internal layer of a cell should 

cross. Nwell is made continuous and active layer has the maximum spacing rule after the nwell, 

which is 80 nm for the FREEPDK process. So, 45nm a little more than half of this spacing rule is 
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chosen. When this rule is followed, since the other layers have a spacing rule less than this, it‟s 

guaranteed that DRC errors don‟t occur when two cells are abutted horizontally or vertically. 

Table 2.2: Rules for the internal layers from P&R boundary 

Horizontal 45nm 

Vertical 45nm 

 

2.5.8 Antenna rules: 

The antenna rule checks whether all the gate inputs are tied to diffusion before metal one is 

processed. This is because during dry etching of the metal layers charge builds upon the 

interconnect wires which can destroy the gate oxide if not allowed to discharge through the 

substrate. In the modern deep submicron processes where the oxide thickness is scaled down to a 

few nanometers, enforcing this rule is very important. For this process FREEPDK, the oxide 

thickness is 1.1 nm. 

In order to make sure all gates are tied down, reverse biased protection diodes are connected to 

the FET inputs of all library cells as shown in fig2.16. If a gate is driven by the output from 

another node in metal1 and within a library cell, then it becomes unnecessary to add the 

protection diodes. The antenna rules for this process are yet to be incorporated. 
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Fig 2.16[8]: Input of A is floating, so it needs a tie-down. However, the input B doesn‟t need any 

diode, since it is tied down by the output of inverter A and the internal run of the cell is short. 

B A metal1 

GND 

VDD 
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CHAPTER III 
 

 

CHARACTERIZATION OF THE STANDARD CELL LIBRARY 

 

3.1 Introduction 

The VHDL/VERILOG simulator needs to have process specific software descriptions of each 

logic function in the library, such as the rise time, fall time and propagation delays, etc. for 

multiple circuit conditions of loading and input slews. This information along with other device 

parameters and physical representation of each of the gates are collectively known as the standard 

cell library. When synthesizing the behavioral Verilog description into a collection of standard 

cells, the synthesis tools need to have access to this library description information which is 

obtained by a process referred to as characterization. 

The main objectives attained by the characterization process: 

 Logic function of each cell. 

 Load, each cell input will present to a signal connecting to it. 

 Speed of the cell under different input rise/fall time and output loading conditions. 

 Power consumed by the cell. 

Cell Characterization is the process of simulating a standard cell with an analog simulator or an 

automated characterization tool to extract this information and convert into a format that other 

tools can utilize. Characterization requires; adequate logic, timing, power consumption for each 
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cell in the library. 

Cell Characterization can be completed by analog simulation using Spectre/HSPICE simulator, 

whose output can be evaluated to generate the timing characterization data or by using an 

automated tool to tabulate this data. However, using an automated tool like Encounter library 

characterizer (ELC) makes the process clean, easy and error free when setup properly. The tool 

uses an analog simulator to simulate the design, and wraps up a nice interface to automate the 

process and give the results in the standard Synopsys liberty file format. 

The chapter focuses on developing a tutorial for characterizing any given standard cell library, 

explaining not only the tool setup but how the above mentioned objectives are reliably attained 

and what drives us to select the different parameters such as the input slew, loads etc. that need to 

be set up. To know how delay is estimated, but more importantly understand its origin so that we 

can achieve realistic specifications for library timing, a delay model is presented. 

3.2 RC Delay model 

Model: A model is a simplified representation of a physical element for carrying out analysis on, 

so that when the entity is experimented or simulated, it yields results comparable to those 

obtained from analysis. 

A delay model for example is used to estimate the delay of a circuit. The circuit is an 

interconnection of different circuit elements like transistors, resistors, capacitors etc, some of 

which are linear and others non-linear. They should be modeled to perform analysis on the circuit 

and obtain the delay. In the RC delay model, the transistor is modeled as a switch in series with a 

resistor (fig3.1), with an effective resistance chosen to match the average amount of current 

delivered by the transistor and a capacitor representing the diffusion node capacitance, with its 
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other end connected to ground. The gate capacitance of the transistor is modeled as a capacitor 

connecting between the incoming signal input and the ground. 

R

Cd

Cin

R

ID

VDD

 

Fig 3.1: RC model for a transistor 

3.2.1 Linear Delay Model: [10] 

The propagation delay of a gate d (normalized with 1X inverter), can be defined as  

     d = f + p [10] 

f: effort delay 

p: parasitic delay 

3.2.1.1 Effort delay: The complexity (g) and the fan-out (h) of a gate contribute to the effort 

delay and can be written as  

     f = gh [10] 

The complexity (g) can also be called as logical effort which determines the capability of a logic 

gate in delivering output current compared to an inverter, given the inputs of a logic gate 

experience the same capacitance as that of an inverter input. This can be calculated from  

                                    [10] 
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It can be seen that the logical effort thus depends on two factors: 

1. The device scaling of NMOS and PMOS devices. If the devices are scaled to account for 

the mobility differences of electrons and holes, then the capacitance each input sees 

increases as the number of inputs increase. However, the parasitic delay goes down 

because of reduced resistance of the wide transistor. 

2. If all the gates use minimum sized transistors, then the logical effort is same for all of 

them. But in this case the parasitic delay for complex gates becomes large. 

Thus, for complex gates that are beta-matched the input sees a larger input capacitance and hence 

a greater logical effort indicating they take longer to drive a given fan-out compared to a simple 

inverter. The complexity of a NAND2X1 compared to INVX1 is as shown in fig3.2:  

A A
B

W

2W

2W

2W

2W2W

INV NAND

g = 1

g = 4/3

 

Fig 3.2[10]: logical efforts of INVX1 and NAND2X1 
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The fan-out (h) is defined as the number of identical copies of itself, a gate is driving. Or simply 

             

Cout is the load capacitance being driven. 

Cin is the input capacitance of the gate. 

So, the greater the load that has to be driven, the greater is the fan-out and hence resulting in 

greater delay. The cell library will be characterized for different fan-outs/loads. The 1X load has 

been established in section 2.3. 

3.2.1.2 Parasitic delay: 

The delay of the gate when it is driving no external load is called the parasitic delay and is 

constant for a given gate. This can be estimated from the Elmore delay model. Each of the 

transistors is modeled as a switch in series with a resistor and a capacitor and the delay can be 

calculated depending on how the inputs change. Let us see an example to understand how the 

Elmore delay is calculated: 

 

n

nC

n

nC

2 2 2

3nC

3nCnC nC nC

R/nR/nR/nR/n

 

Fig 3.3: n-input NAND gate and its equivalent RC delay model when all the inputs are rising. 
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The Elmore[13] delay estimates delay as 

tpd = sum over each node the product of resistance between that node and the supply, and the 

capacitance on the node. 

In fig3.3, the devices are assumed to be beta-matched accounting for equal rise and fall 

resistances. We are calculating the fall delay, i.e. when all the inputs are rising. 

   

                            

                             

In this manner delay can be calculated from the model. An important observation to be made here 

is that the delay through a gate increases quadratically as the number of devices in series increase. 

Determining the worst case parasitic delay in the FREEPDK library: 

As we just saw the delay is quadratically increased by connecting devices in series, the worst case 

parasitic delay occurs for a 3 input NOR gate where the pull-up network has 3 PMOS transistors 

connected in series. Let us calculate its delay. Note the 3 input NAND would also be as large 

were it not for the higher mobility of NMOS.  

6W

6C

6C

W W W

6C 6C 7C

6W

6W

7C

R/6 R/6R/6

R = resistance of min PMOS

 

Fig 3.4: Elmore delay for a 3 input NOR gate 
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Calculating R (resistance of minimum PMOS transistor L = 50nm, W = 90nm) 

Process parameters: 

Ion,PMOS = -213 uA/um 

Vdd = 1.1V 

 

Table 3.1 compares the calculated value to resistances of minimum PMOS transistors for IBM 

0.18um and TSMC 0.18um processes: 

Table 3.1: Rmin, PMOS for different processes 

PDK FREEPDK45 IBM 0.18um TSMC 0.18um 

Rmin, PMOS 57 KΩ 32.7 KΩ 24 KΩ 

Calculating C (source or drain diffusion capacitance of minimum transistor):The diffusion 

capacitance (Cd) results because of the reverse biased pn diode that forms between the active and 

nwell regions in case of a PMOS transistor as shown in fig3.5. Also, there are sidewall 

capacitances as shown in fig3.6: 

p+

Cd

N p+

 

Fig 3.5: Diffusion capacitance (Nwell diode) 
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Fig 3.6 by [Dr. Louis Johnson in 4303 class notes, Parasitic R, L and C]: Sidewalls contributing 

to Diffusion capacitance 

Therefore, total diffusion capacitance is, 

 

Where,  = diffusion capacitance per unit area 

             = diffusion capacitance per unit perimeter next to thick oxide 

             = diffusion capacitance per unit perimeter next to gate 

 W   = width of the transistor 

          D    = Diffusion beyond the poly gate. 

The above values for the FREEPDK process are: 
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Substituting the values, we get 

    
 

              

             

The  term in the equation remains constant with increase in width W of the transistor. But 

for the NOR3X1 gate rise time delay is calculated by scaling the total capacitance with W which 

gives capacitance a little higher. 

Therefore, the parasitic delay of a NOR3 gate, when all the inputs are falling is 

 

The library should be characterized by inputs which don‟t rise faster than 55.57ps. 

Summary of RC delay model: 

The linear delay model for a logic gate demonstrates that the delay through a gate has two terms, 

the first one an effort delay which is proportional to the complexity of the gate and is linear in 

relationship with fan-out and the second one is inherent parasitic/intrinsic delay dependent on 

gate topology. 

d = gh + p 

The model can be represented in the form of a graph as shown in fig3.7: 
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Fig 3.7[10]: Linear Delay model, delay vs. fan-out 
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The y-intercept gives the parasitic delay and it can be seen that the effort delay depends on the 

fan-out linearly. 

The simple but useful linear delay model gives us a good estimate of delay, its contributors and 

how it can be modeled. However, it cannot be used as such to characterize a cell because of 

model limitations, some of which are: 

1. The slope of the incoming signal affects the delay because until or unless the signal 

reaches fully high it doesn‟t turn ON/OFF the transistors completely. Hence the slower 

the signal rises, greater is the delay. This effect has to be modeled for more accurate 

delays. 

2. The arrival timing of different gate input signals affects the delay. 

3. Gate and D/S to body capacitances are nonlinear. 

4. Effective switch resistance is nonlinear. 

Incorporating all these effects into the delay model, makes the analysis complicated and results 

unpredictable and hence simulation is the only means by which we get the accurate delays needed 

by Encounter (P&R), Synopsys Design Compiler (Synthesizer) tools and is carried out by the 

Encounter Library Characterizer. The Encounter Library Characterizer contains a SPICE 

simulator. 
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3.3 Encounter Library Characterizer (ELC): 

Encounter Library Characterizer

Setup

Cell Netlist

(SPICE)

Device

Models

.lib

Verilog VHDL

HTML

  

Fig 3.8: I/O Encounter Library Characterizer. 

Let us review what Cadence describes as the capabilities of the Encounter Library characterizer. 

Fig 3.8 shows its inputs and outputs. 

ELC performs a series of operations to complete the characterization: 

1. The cell netlists are analyzed to determine the logic function and the type of logic used 

i.e. which circuit family whether CMOS, Pass transistor or tristate logic for 

combinational cells. 

2. The different electrical specifications such as the pin-to-pin delay, setup and hold-time 

constraints, pin direction are defined for the combinational and sequential cells. 

3. Accepts input parameters such as the supply voltage, temperature, input slew rates, 

output loads and process corners from the setup file. With the transistor model coming 
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from the device model file, the HSPICE simulator is invoked and executed. The timing, 

power and logic results are summarized and delays tabulated. 

4. The characterized data is obtained in advanced library format (*.alf) that can be 

converted into any of the formats shown in fig 3.8. The liberty file format is a often used 

standard and recognized by many CAD tools. 

We will look at how to set up each of the inputs to the tool to yield correct results. 

3.4 ELC inputs: 

3.4.1 SPICE Netlists: 

The netlist defines how the devices are connected i.e. node connections between the transistors. It 

also defines the device geometries: length, width, diffusion areas and perimeters. These help in 

estimating the parasitics where the per unit values of capacitance, resistance come from the 

device model file. These netlists are extracted from the layout using the Calibre Interactive tool. 

To stress, it‟s the extracted layouts not schematics that must be used because only then are the 

parasitics accurately estimated. Calibre Interactive can also be used to perform the physical 

verification DRC/LVS, and parasitic extraction (PEX). It has both a gui and command line option 

to work with. A tutorial on how to work with this tool can be found at this reference[14]. 

3.4.2 Device model file: 

The device models come with the given PDK and consist of both passive and active device 

models. Typically in the library we are only interested in transistor models. It defines various 

parameters such as the threshold, per unit capacitances, resistances, oxide thickness, etc. If we are 

characterizing a cell at different corners i.e. slow-n slow-p, slow-p fast-n, fast-p fast-n, typical-n 

typical-p then we must have the transistor models for all such cases. The cell library presented 

and developed here has only been characterized for the typical case. 
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3.4.3 Setup file: 

Setup.ss file defines many parameters which determine the characterization conditions: 

3.4.3.1 Process Corner definitions: 

The operating conditions of a transistor affect the propagation delays. The temperature affects the 

parameters like threshold voltage, mobility of electrons and holes. The transistor thus runs faster 

or slower. All the standard cells are in general characterized for 3 sets of conditions: best case, 

worst case and the typical case. The best case is when both the PMOS and NMOS transistors run 

faster than usual, with a higher power supply (typically +10% more than nominal) available and 

at the lowest expected operating temperature. The worst case is when both transistors are slow, at 

the higher expected temperature and lower supply voltage (-10% usually). Typical case is at the 

room temperature when both the transistors are typical and the nominal VDD. We have to 

characterize at different conditions because the temperature and vdd on a chip vary from day to 

day and with different applications as well as with die to die and in addition they may not be 

uniform throughout the die. The chip has to function, unaffected by these slight variations. So if 

we have the timing information under different conditions, the synthesizer can synthesize the 

design that can meet the timing across the corners. 

3.4.3.2 Intrinsic delay and input slew: 

The intrinsic delay is the inherent parasitic delay exhibited by a logic gate for the transistors to 

turn ON/OFF. The transistor currents cannot switch faster than this. The input slew is the rise/fall 

time of the input. Usually the output of a gate is connected to input of another, and hence when 

we are characterizing the logic gate individually it should not be given inputs that rise/fall faster 

than the intrinsic delay. This should be considered, while setting up the input slew. The rise time 

value is calculated using the linear delay model in section 3.2.1.2 and found to be 55.57ps. An 

easy approach to calculate it through simulation is as shown in the fig3.9: 
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Fig 3.9: Input slew rate calculation. 

 

By connecting three NOR3 gates from the FREEPDK cell library in series and driving the first 

with an ideal source, we will get  1X rise/fall at the output from the second as shown in fig3.9. 

Taking this slew rate as the fastest any input can rise/fall, we are making a conservative estimate, 

to ensure the cell to be characterized is driven at a safe slew rate. The cell is characterized for 

different slew rates that are decreasing multiples of this, since this will be the case when multiple 

gates are connected in parallel increasing the load factor or fan-out. Having this information, the 

synthesizer will do a better job in optimizing the design. Specifically for the NOR3s of this 

library the rise time is found to be 25pS from simulation versus 55pS for hand analysis. 

Table 3.2: Parasitic delays of NOR3X1 gate 

RC delay model 55 pS 

Simulation (tr/tf) 25/22 pS 

 

Table 3.2 shows the rise times for a NOR3 gate obtained from RC delay model and simulation, 

which highlights the importance of simulation for accurate results. 
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3.4.3.3 Output net Capacitance: 

The capacitance on the output node also contributes to the delay. Hence the cells are 

characterized for different loads to get the timing, to be used by the synthesizer. The 1X load is 

determined using the minimum sized inverter (INVX1) of the cell library and is found to be 1 fF 

in section 2.3. 

The characterization data is output in the form of a matrix with the input slew on one axis and the 

output load on the other axis. An example of how we setup the slew and the load is as shown 

below: 

Index X1{ 

 Slew = 0.025n 0.05n 0.075n 0.1n 0.125n; 

 Load = 0.05f 1f 2f 4f 8f; 

};  

Index X2{ 

 Slew = 0.025n 0.05n 0.075n 0.1n 0.125n; 

 Load = 0.05f 2f 4f 8f 16f; 

};  

Note the use of 25pS as the fastest rise time. The choice of the 25pS as fastest rise and fall time is 

conservative. Though the fall time of the NORs, inverters etc. will be faster, the choice of 25pS 

result in conservative timing results from ELC. Any cell whose name ends in X1 will be 

characterized for the slews and loads defined in the X1 index, and for those which end in X2 will 

be characterized for twice the load as X1. If we have cells with more drive strengths, then we 

define more index statements. In the FREEPDK library cells, the maximum drive strength is 8X. 

The 0.05 fF in the load index is to obtain the parasitic delays of the gates. 
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3.4.3.4 Characterizing pin to pin delay: 

ELC provides the pin to pin delays for the cells. This is the time that a change at the input pin 

takes to affect a change at the output pin. Pin-to-pin delay is defined as demonstrated in fig3.10 

where vth is the threshold voltage level at which the delay is measured and is defined as half of 

logic high value or VDD/2. 

Fig 3.10: Pin to pin delay 

3.4.3.5 Characterizing set up and hold times: 

When characterizing a sequential cell, the timing constraints have to be met for the data to 

propagate correctly through it. Let us understand them. Fig 3.11 shows a negative edge triggered 

D-Flipflop. 
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Fig 3.11: Negative edge triggered D Flip-flop 

For the latch to properly acquire D, the signal should properly set up at Dp before the internal 

clocks (C & C_bar) disable the forward tri-state and enable the feedback tri-state.  Note that both 

tri-states switch nearly simultaneously but due to the later arrival of C to the feedback tri-state it 

is an intrinsic delay later when a “0” is stored and an intrinsic delay earlier when a “1” is stored. 

(As a result the forward tri-state is selected stronger than the feedback tri-state.) The D to Dp 

delay is two gate delays each with a 1X load while the Clk to C is also two gate delays with each 

having a 2X load.  Now depending on gate geometries i.e. minimum geometry, optimal delay or 

beta matched, the set up times can be either positive or negative depending on the relative delay 

of Clk to C and D to Dp. When the clock goes negative the output of the positive latch is 

Dp 
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propagated to the output after a delay called clock to Q delay.  The data should be stable until the 

clocked transistors in positive latch are turned off by the clock when it goes negative. Or else, the 

output of forward tri-state cannot be at a stable value. This time constraint is called the hold time. 

Since there is a delay from the external Clk to C & C_bar, the actual clock Clk may arrive at the 

same time the data arrives or even before the data arrives depending on the delay from D to Dp. 

The definitions of set up, hold times and Clock to Q delay are summarized below: 

Set up time is the amount of time the data input of the sequential logic should remain stable 

before the active clock edge, so that the correct value is latched at the output. Keep in mind that 

negative set up time values can be valid. 

Hold time is the minimum time the input signal to the sequential logic should remain stable after 

the active clock edge, so that the correct value is latched at the output. Note zero values for hold 

times can be valid. 

Clock to Q delay is the time taken by the output to become stable after the active clock edge. 

 

Fig 3.12: Set up time, hold time and Clock to Q delays 
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Binary Search: ELC characterizes the sequential cells by simulating them repeatedly to find the 

minimum set up and hold times to achieve the correct output within the pre-determined clock to 

Q delay. It uses the binary search algorithm to determine these timings. For example, in the set up 

time calculation, two initial values for which the simulation passes and fails respectively are 

given in the setup file. In the first iteration, the simulation is done by allowing the data to change 

with respect to clock at the midpoint of these two values. If it passes then the pass set up time 

value is updated or else the fail time is updated, and the iterations are continued until the specified 

resolution is obtained. The resolution determines when to quit the algorithm. If successive results 

don‟t show an improvement greater than this value the simulations are stopped. The resolution is 

chosen to be equal to the intrinsic delay of the fastest gate in the library. For INVX1, the rise time 

delay is 3RC = 3 * 57K * 0.15f = 0.03ns. Similarly the hold time is also determined. 

Bisec 6n 6n 0.1ns 

In the above statement the initial pass and fail set up times are +6n and -6n with respect to clock 

and the final resolution is 0.1ns. Here „+‟ means before the active clock edge and „-„ means after 

the active clock edge which is quite confusing. 5 to 10 times the worst case parasitic delay (5*25 

= 125 pS) which would be greater than the delay through the first stage latch (positive latch 

incase of –ve edge sensitive FF) may be chosen for the pass and fail values. But the values chosen 

are much greater than this because the library is being characterized for a worst case input slew of 

125ps which leads to a greater propagation delay and hence more set up time. An alternate and 

more accurate approach is to simulate the reset or preset DFF using the slow-slow process to find 

the initial window timing. The setup file is presented in Appendix1 and the timing information for 

the cells in the library in HTML format is included in Appendix2. 
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CHAPTER IV 
 

 

ASIC INTEGRATION 

 

4.1 Introduction 

The different blocks we have such as the Analog to Digital Converter (ADC), Digital to Analog 

Converter (DAC), memory and the standard cells should be integrated according to the structural 

Verilog/VHDL netlist physically to complete the PC-ASIC. This is done with the help of a CAD 

tool and the process is called place and route (P&R). SOC Encounter has been used for this 

project. The basic design flow developed by the VLSI computer architecture group, OSU  has 

been used to do the P&R. The main objectives of this chapter will be modifying the floorplan for 

the design to have separate power domains and discuss the problems involved while doing LVS 

for the final design using Calibre tool from MGC. 

4.2 Setup 

We have the following data available: 

1. Structural Verilog code representing the design we want to implement interconnecting 

the ADC, DAC, memory and the Standard cells. 

2. Timing information for the standard cells obtained from the characterization process, and 

other blocks in the liberty (*.lib) file format. The *.lib files for analog blocks and 

memory blocks just contain the input and output pin capacitances. 
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3. Abstract views of the Standard cells and other blocks in layout exchange format (*.lef). 

One of the LEF files should include the technology information for the process. All the 

design rules for the metal layers, vias, and antenna rules should be included to do the 

place and route without creating errors. 

5. The delay constraint information in the Synopsys design constraint (*.sdc) format. This is 

obtained during the synthesis of behavioral code and describes the timing and loading of 

the primary inputs and outputs including the clock. It is needed by the P&R tool during 

timing optimization and clock tree synthesis. 

6. Input/output (IO) assignment file. This describes the placement of pads around the chip. 

The input and outputs are from the ADC/DAC blocks and should be placed close to each 

other. The blocks are placed near these pads. The power pads are distributed around the 

chip, with the analog power pads placed again near to the I/O pins. 

Place and route is now, placing the custom blocks manually and asking the tool to place the 

standard cells and interconnect them so that it functions according to the delay constraints given.  

The files used to do P&R for this project are listed below: 

1. top.vh 

2. stdcells.lib, pads.lib, ADC_5bit_sc_5.lib, dac_op2.lib, myram.lib 

3. stdcells.lef, pads.lef, ADC_5bit_sc_5.lef, dac6_op2.lef, myram.lef 

4. top.sdc 

The stdcells.lib and stdcells.lef (characterization data and abstract file for the new standard cells) 

are obtained in this work and the other files came from the previous work done by [J. Chen and J. 

Stine]. 
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4.3 Design Import: 

It‟s a good idea to create a separate directory in which we can run the encounter tool because 

it creates many files during execution. All the above files should be copied into it. After the 

encounter install directory is included in the shell $PATH (try echo $PATH to find out) we can 

start the tool from the terminal using encounter –win command which brings up the gui as shown 

in fig4.1. 

 

Fig 4.1: Encounter GUI (copyright 2005, 2010, Cadence Design Systems. Inc) 

The input file paths are filled in (fig4.2) and in the Advanced Tab shown in fig4.3, the power net 

names are specified. Since the library has been characterized only for the typical case, we can 

only specify the path to that file in the common timing libraries field. We have separate power 

names for the core, analog and IO which are vdd, vdda, vddio and a common gnd respectively. 

The design import configuration should be saved. It is saved as *.conf file. If something goes 

wrong we can then restart the encounter again and just use this file to import the design back. 
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Fig 4.2: Design import – specifying the input files 

 

 

Fig 4.3 Design import specifying the power domain names 
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4.4 Floorplanning: 

The initial floorplan for this design has been developed by [Dr. Junchen and Dr. James Stine, 

VCAG, OSU]. In this work it has been modified to include two analog pads and isolated power 

rings for the analog blocks. Also the power rings and stripes have to be changed to metal5 and 

metal6 from metal1 and metal2 to reduce the voltage drop on them. 

After the design import, the GUI can be seen as shown in fig4.4.  If there are any errors they will 

show up in the terminal window and have to be corrected before proceeding. The errors result 

usually because of syntax errors in LEF file. The abstraction procedure during which the LEF is 

obtained is explained in the thesis[15].  

 

Fig 4.4: Floorplanning (copyright 2005, 2010, Cadence Design Systems. Inc) 
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We can see the following elements in fig4.4: 

1. Pink area represents the amount of digital logic we have. 

2. There are four custom blocks: ADC, DAC and two instances of memory on the right. 

3. We can see there are some grey rows surrounded by the IO pads. The logic and other 

blocks have to be placed in this area. 

4. There are four corner pads. The IO pads are designed in such a way that the digital core 

vdd and gnd rails form a continuous strip when any two pads are abutted. The corner 

pads join the strips on four sides to form a ring. 

Now, to set some parameters, select Floorplan -> Specify 

 

Fig 4.5: Specifying floorplan-1 

Aspect ratio and core utilization can be left at their default values. An aspect ratio close to 1 

means the chip will look like a square. The core utilization indicates how dense the standard cells 

should be placed. For a large chip this has to be reduced if the timing is not being met after P&R, 
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so that the standard cells are placed loosely to provide additional space for inserting buffers and 

meet the timing.  

Core margins – Apart from the power rings in the pads mentioned earlier, we need to have 

another set of power rings between the pads and the core boundary. The Standard cell rows are 

connected to these rings. There should be enough space between the IO boundary and core 

boundary to accommodate the power rings. Since these rings are very long, the higher metal 

layers metal5-horizontal and metal6-vertical which have less resistance are used. The metal layers 

are chosen to be 0.95u which is 5 times the grid value.  

A problem observed was, when spacing numbers to leave sufficient gap for the power rings 

between IO and core are given in the Core margins field, instead of shrinking the core, the die is 

expanded and pads moved out to accommodate the rings. The pad dimensions are set such that 

when they are placed around the die a continuous power ring is formed. Hence expanding the die 

will cause gaps between the IO pads causing breaks in the power ring. This is solved by choosing 

specify by -> Die/Io/Core coordinates option in fig4.5. The form that appears is shown in fig4.6. 

 

Fig 4.6: Specify floorplan-2 
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LL represents lower left corner and UR represents upper right corner in the fig4.6. Die and IO 

positions are left unchanged. Looking at the IO coordinates, the core options are changed to 

(113.81, 113.81) and (433.5, 431.81). This shrinks the core area leaving sufficient margin for 

power rings. 

 In the Advanced Tab the fields including row height, Bottom IO Pad Orientation and others 

should be verified if they are correct. The row height is equal to the height of the standard cells. If 

it‟s incorrect it can be changed only in the SITE core definition in the LEF file. 

 

Fig 4.7: Specify floorplan-3 

SAVE!! The design should be saved, when considerable effort has been spent and expected 

results are observed. An undo feature is not available in Encounter. The file can be saved using 

Design -> Save Design as -> SOCE in SOCE format. When something wrong occurs later, we 

can restore the design using this file rather than starting over. 
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Block Placement: 

There are four blocks in this IC designed by [J. Chen and J. Stine]: 

1. ADC 

2. DAC 

3. Memory – 2 instances 

When we click on a block, we see a set of flight lines showing all the connections coming in and 

out of the block. Depending on the connections to the IO pads and complexity of wiring it leads 

to, they are placed at appropriate locations inside the core area. After that, all the standard cell 

rows in those areas should be deleted. This can be done by selecting Floorplan -> Edit Floorplan 

-> core rows -> cut 

 

Fig 4.8: Cut the core rows in the areas where blocks are placed. 

Select the option Cut by -> Specified area and then click the Draw box option to select the areas 

in which the rows should be deleted. 
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Power Planning: 

In this step the power rings are added around the core and then the stripes are created to form a 

grid like structure. Since the analog blocks have a different power supply, they should have their 

own rings around them. The main objectives of designing a power grid are to counter the 

following effects: 

1. IR drop on the power rails: The devices in a grid and the power rails form a voltage 

divider. The effective resistance of a grid should be much greater than the resistance on 

the power rails to avoid any voltage drop on the power rails and ensure the gates don‟t 

fail due to insufficient vdd.  This is taken care of by dividing the power distribution 

network into smaller grids. 

2. Inductance on the Power lines: When a group of gates suddenly source/sink current 

from/to the power rails, the inductance on the rails oppose it, causing delay. Gridding 

reduces the inductance on each grid, and hence the delay, increasing/meeting the 

performance. 

3. Electron migration: By gridding, all the smaller power grids are connected in parallel 

with each other dividing the average current among the grids. If there were no gridding or 

insufficient grids the power ring might be destroyed because of electron migration. This 

can be overcome by having wider metal slightly if at all because of the increased ac 

resistance due to skin effect.  

More discussion on selecting the width of power lines and planning the power distribution 

network can be found in references [16-18]. 

After placing the blocks and power planning, the floorplan looks as shown in fig4.9. The original 

floorplan is developed by [J. Chen and J. Stine] which is modified to do P&R with the optimized 

(reduced height) standard cells and to accommodate multiple power domains. 
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Fig 4.9: Final floorplan[2] (copyright 2005, 2010, Cadence Design Systems. Inc) 

SAVE!! The floorplan can be saved so that if there any future changes in the timing or LEF files, 

we can just repeat the design import step with the new files and use the same floorplan to get to 

this point instead of repeating everything again. To save floorplan select Design -> save -> 

floorplan. The file will be saved with *.fp extension. 

Sroute 

This step connects all the standard cell rows to the power rings and stripes and the power rings to 

the power pads. The analog blocks are connected to the pads manually.  
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The next steps that follow are: 

1. Placing the Standard cells. 

2. The First optimization phase (Pre-Clock tree synthesis) during which a Trial route is 

performed that estimates the amount of wiring and indicates how poorly timing 

requirements are being met. For small designs i.e. implementing a counter, we don‟t need 

a clock tree and it may well satisfy the timing requirements. But the PC-ASIC is a very 

large design and requires a clock tree. 

3. Clock tree synthesis is done by the tool to overcome the skew problem. 

4. Second optimization phase, (Post-Clock tree synthesis) to evaluate how the timing has 

improved after the clock tree has been established and optimized by adding buffers as 

needed. 

5. Route the design. 

6. Post-route optimization to improve the timing, by further buffer tweaking. 

7. Adding Filler cells to fill the gaps between the standard cells in the rows. 

8. Checking and fixing any design rule violations. 

They have been integrated into a script developed by [J.Chen, I. Castellanos and J. Stine], and is 

used to complete the above steps. 

When the design cannot meet the timing or routing errors result, this is a strong indication that a 

change in floorplan is required and the P&R process must be repeated. For example, we can 

reduce the core utilization parameter to place the standard cells more loosely resulting in 

additional space for buffering and routing. Or we might leave gaps between the standard cell rows 

to leave room for wiring or move the analog blocks providing improved routing opportunities. 

After the P&R process has been completed and we see no routing and timing errors the gds 

(Graphic Database System) file and the Verilog netlist (obtained after the optimizations done by 
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Encounter tool) are saved and imported into the Virtuoso layout editor for physical verification of 

the final chip. 

4.5 Physical Verification: 

The tool Calibre from MGC has been used to complete the physical verification. DRC and LVS 

rules have been provided with the PDK. The design rule check could be completed with a few 

errors that were corrected manually. But for doing the layout vs. schematic, there were a few 

problems. 

First, the structural Verilog netlist has to be converted into a SPICE netlist using the Calibre tool. 

The command to do this is: 

v2lvs -v final.v -o source.net -s cells.sp -s0 gnd -s1 vdd 

final.v – The structural Verilog netlist output from Encounter. 

source.net –The SPICE netlist that is going to be generated from the above Verilog file. 

cells.sp – The file that contains the SPICE netlists for all the standard cells. It will be included in 

the source.net file. 

s0  and s1 options define the gnd and vdd as global connections in the output source.net file. 

source.net now has the top level SPICE netlist and the individual SPICE netlists for all the 

standard cells. This is because when we do LVS for a large design it is done hierarchically. Also 

we need to include the SPICE netlists for the analog blocks and the memory into this file. 

Thus, source.net includes: 

 Top level SPICE netlist 

 SPICE netlists for all the standard cells 
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 SPICE netlists for the analog and memory blocks 

This IC has multiple power names: 

1. Core (standard cells): vdd   gnd 

2. ADC/DAC  vdda, vdda! gnd! 

3. Memory  vdd!  gnd! 

4. IO   vddio  gnd 

The „!‟ symbol used at the end of some of the sub-cells in the memory and analog blocks created 

many problems. The following statements must be included in the source.net file to solve the 

issues: 

.GLOBAL vdd 

.GLOBAL vdd! 

.GLOBAL vdda 

.GLOBAL vdda! 

.GLOBAL vddio      

.GLOBAL gnd 

.GLOBAL gnd! 

 

*.J vdd vdd! 

*.J vdda vdda! 

*.J gnd gnd! 

 

With these changes incorporated into the source.net file, it is compared with the layout using the 

Calibre tool and the design passed LVS. 

These statements ensured that the supply 

names are global and the verification tool 

Calibre nmLVS recognizes all of them, not 

depending on where they are in the hierarchy. 

The *.J statement connects any two nets so that they are 

interpreted to be the same. So we now have only 3 power supply 

names at the top level vdd, vdda, vddio and a common gnd 

irrespective of the inconsistencies in the names between the 

blocks and their sub-cells. 
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CHAPTER V 
 

 

RESULTS AND CONCLUSION 

 

An optimized standard cell library is developed by redoing the layouts manually for the cell 

library designed earlier, for the FREEPDK45 process. The cell library has been characterized for 

timing, power and functionality data. It also contains the abstract views for doing the place and 

route. This library can be used for research in academic institutions or industry to test new 

architectures or implementing an ASIC. The cell library has been documented and the users may 

add new cells to the library if needed following the specifications set in Chapter2. 

5.1 Evaluation of the results: 

The timing results obtained are evaluated and compared with the linear delay model presented in 

chapter3.  

Ts[ns] 0.015   0.03 0.045 0.06 0.075 

CL[pF] 

5e-05 0.022 0.026 0.030 0.034 0.037 

0.001 0.024 0.028 0.033 0.037 0.040 

0.002 0.027 0.031 0.035 0.039 0.043 

0.004 0.032 0.035 0.040 0.044 0.048 

0.008 0.041 0.044 0.048 0.053 0.057 

Table 5.1: Timing characterization data for NOR3X1 gate 
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Table 5.1 shows the propagation delays (rounded to 3 decimal places) obtained for a NOR3X1 

gate for different input rise/fall times (Ts) and loads (CL). The first row gives the parasitic delays 

for the gate. Subtracting these values from the delay values gives the effort delays. The plot 

showing how delay varies with the load for different input slew rates is shown in fig5.1: 

g = 2.32

g = 2.14

g = 2.36

g = 2.23

g = 2.32

Fig 5.1: Delay vs. load  

Observations from fig5.1: 

1. The parasitic delay for input slew rate of 15 pS is 22 pS. This agrees with the value 

obtained through simulation in section 3.4.3.2 which is 25pS. However, the slight 

difference is due to the fact that, the value obtained in section 3.4.3.2 is for an input 

slew rate of 25ps. 
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2. The parasitic delays (y-intercept) through the gate increase with input slew rates. This 

is because the transistors in the pull-up/pull-down networks are not completely 

switched ON/OFF respectively until the input signal reaches its final value. So the 

leakage current acts against the charging/discharging of the output node. 

3. The effort delays increase linearly with the increase in output load that has to be 

driven. The slope of the lines (g) gives the logical effort. This should be constant for 

a given gate independent of loads/input slew rates, which can be verified from the 

graph. Also it agrees with the theoretical value (7/3 = 2.33). 

5.2 Comparison of results (new vs. existing): 

The new standard cells (laid out manually) are compared with the previous cell library (generated 

by an automated tool):  

1. Physical representations: 

 

Fig 5.2 Layout generated by software tool for DFFSR cell. 
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Fig 5.2 Layout done manually for DFFSR cell. 

2. Reduction in height of the cells 

The height of the standard cells has been reduced from 2.47 um to 2.09 um. The new cells are 

more compact and dense. 

3. Improvement in timing: 

The timing is expected to be improved for the new cells because of the optimization in the poly 

routing. But the results are found to be almost similar. This is because the resistance of the poly 

hasn‟t been modeled in the parasitic extraction rules file for this process. Hence the improvement 

in the delay couldn‟t be observed. 

5.3 LVS problems for a multiple power domain ASIC when using Calibre[19]: 

1. The goal is to be able to run LVS straight from the Verilog source obtained from the 

P&R tool (using v2lvs as the intermediary) and the SPICE library (standard cells, analog 
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and memory blocks). v2lvs by default provides only vdd and vss as .GLOBAL signals. 

But there are other supply names (vdd!, gnd!, vdda!, vdda) in addition to them in the 

SPICE library. Hence they have to be added manually after the v2lvs has output the 

SPICE netlist. The solution to make the process automated has to be found yet. 

2. Also this needs to happen: 

*.J vdd vdd! 

*.J vdda vdda! 

*.J gnd gnd! 

v2lvs doesn‟t know that the above nets are connected up-front. Hence they have to be 

added manually. 

The final issue is, that Verilog has modules for all the PAD* cells. As a result, v2lvs translates all 

of these as .SUBCKT statements in SPICE with X calls. But Calibre when extracting a layout 

doesn't create a call to a .SUBCKT statement if it doesn't have a device in it. The PADCORNER 

cells have no devices. So .SUBCKT statement never gets called for these four instances. When 

doing LVS, it results in an instance mismatch: 4 PADCORNER instances in the source, none in 

the layout. To overcome this, the PADCORNER X calls in the source are commented out. A 

possible and better solution might be creating dummy devices (devices for decoupling) in the 

layout so the PADCORNER sub-circuit actually gets called 4 times.
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APPPENDIX1 

 

CHARACTERIZATION SETUP 

 

Before we can start the Encounter library Characterizer we should have the following files under 

one directory. 

1. Netlists of all the Standard cells with parasitics extracted. 

2. elccfg 

3. gpdk45nm.m 

4. setup.ss 

elccfg:   

#Specify the environment variable settings. 

EC_SIM_USE_LSF=1; 

EC_SIM_LSF_CMD=" "; 

EC_SIM_LSF_PARALLEL=10; 

EC_SIM_TYPE="hspice"; 

EC_SIM_NAME="hspice"; 

 

#Specify the characterization inputs. 

SUBCKT="stdcells.pex.netlist"; 

MODEL="gpdk45nm.m"; 

DESIGNS="AND2X1 AND2X2 AOI21X1 AOI22X1 BUFX2 BUFX4 CLKBUF1 CLKBUF2 

CLKBUF3 DFFNEGX1 DFFPOSX1 DFFSR FAX1 HAX1 INVX1 INVX2 INVX4 INVX8 LATCH 

MUX2X1 NAND2X1 NAND3X1 NOR2X1 NOR3X1 OAI21X1 OAI22X1 OR2X1 OR2X2 TBUFX1 

TBUFX2 XNOR2X1 XOR2X1";



66 
 

EXPAND="AND2X1 AND2X2 AOI21X1 AOI22X1 BUFX2 BUFX4 CLKBUF1 CLKBUF2 
CLKBUF3 DFFNEGX1 DFFPOSX1 DFFSR FAX1 HAX1 INVX1 INVX2 INVX4 INVX8 LATCH 
MUX2X1 NAND2X1 NAND3X1 NOR2X1 NOR3X1 OAI21X1 OAI22X1 OR2X1 OR2X2 TBUFX1 
TBUFX2 XNOR2X1 XOR2X1"; 
SETUP="setup.ss"; 
PROCESS="typical"; 
  

In the environment setup we have chosen hspice simulator to carry out the simulations. So, it 

should be ensured the PATH variable in the shell includes the path to this tool. The first three 

lines in the elccfg file relates to a feature of ELC that lets us start servers on a bunch of machines 

and do the simulation on them during characterization. This feature is very useful to speed up the 

process when we have a large library. 

 

SUBCKT: This specifies the SPICE subcircuit file. I‟ve copied all the netlists of the standard 

cells into a single file “stdcells.pex.netlist”. 

 

MODEL: Specifies the model file for the transistors which is gpdk45nm.m for FREEPDK 

process. 

 

DESIGNS: Specifies the name of the cells to be worked on. 

 

EXPAND: This specifies the name of the cells that should be expanded and must be specified 

when characterizing hierarchical cells. 

 

SETUP: Specifies the simulation setup file 

 

PROCESS: Specifies the process corner of the setup file. 
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After having set up the above files, ELC can be started by typing elc at the terminal. The 

commands to run the tool are as follows: 

 

db_open -   opens a database. 

db_prepare - installs the transistor models and the subckt descriptions into the 

database. 

db_gsim - evaluates the transistor networks and generates the test vectors for                     

characterization. 

db_spice - simulates the design using the test vectors derived to extract the timing 

and power numbers using hspice. 

db_output -  outputs the cell library characterization results. 

 

The output can be obtained in different formats. ALF-Advanced library format is an 

intermediate format to transfer data to other EDA tools. A more detailed explanation of the 

commands can be obtained from the Encounter Library Characterizer user guide. 

 
Setup file: 
Process typical{ 
 voltage = 1.1; 
 temp = 27; 
 Corner = ""; 
 Vtn = 0.471; 
 Vtp = 0.423; 
}; 
 
Signal std_cell { 
 unit = REL; 
 Vh=1.0 1.0; 
 Vl=0.0 0.0; 
 Vth=0.5 0.5; 
 Vsh=0.8 0.8; 
 Vsl=0.2 0.2;  
}; 
 
Simulation std_cell{ 

REL indicates the values specified 

are a percentage of logic high and 

logic low values. Vsh Vsl represent 

the voltage levels for calculating 

the delays. 

Defines the typical process 
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 transient = 0.1n 80n 10p; 
 dc = 0.01 1.1 0.01; 
 bisec = 6.0n 6.0n 0.05n; 
 resistance = 10MEG; 
}; 
 
Index X1{ 
 Slew = 0.025n 0.05n 0.075n 0.1n 0.125n; 

 Load = 0.05f 1f 2f 4f 8f; 

}; 
 
Index X2{ 
 Slew = 0.025n 0.05n 0.075n 0.1n 0.125n; 
  Load = 0.004f 0.008f 0.0016f 0.0032f; 

}; 

 
Index X4{ 
 Slew = 0.025n 0.05n 0.075n 0.1n 0.125n; 
  Load = 0.008f 0.0016f 0.0032f 0.0064f; 
}; 
 
Index X8{ 
 Slew = 0.025n 0.05n 0.075n 0.1n 0.125n; 
  Load = 0.0016f 0.0032f 0.0064f 0.0128f; 
}; 
 
Index Clk_Slew{ 
 bslew = 0.025n 0.05n 0.075n 0.1n 0.125n; 
}; 
 
Group X1{ 
 CELL = *x1 ; 
}; 
 
Group X2{ 
 CELL = *X2 ; 
}; 
 
Group X4{ 
 CELL = *X4 ; 
}; 
 
Group X8{ 
 CELL = *X8 ; 
}; 
 
 
 
 

All the cells ending in names x1, x2 etc 

are characterized with respect to the 

slew and load values specified in the 

INDEX1, INDEX2 etc respectively. 

Setting up the index and slew 

values are explained in chapters 

2,3, p11, 38. 
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Margin m0 { 
 setup  = 1.0 0.0 ; 
 hold  = 1.0 0.0 ; 
 release = 1.0 0.0 ; 
 removal = 1.0 0.0 ; 
 recovery = 1.0 0.0 ; 
 width = 1.0 0.0 ; 
 delay  = 1.0 0.0 ; 
 power  = 1.0 0.0 ; 
 cap  = 1.0 0.0 ; 
} ; 
 
Nominal n0 { 
 delay = 0.5 0.5 ; 
 power = 0.5 0.5 ; 
 cap   = 0.5 0.5 ; 
} ; 
 
set process(typical){ 
 simulation = std_cell; 
 signal = std_cell; 
 margin = m0; 
 nominal = n0; 
}; 
 
set index(typical){ 
 Group(X1) = X1; 
 Group(X2) = X2; 
 Group(X4) = X4; 
 Group(X8) = X8; 
 Group(Clk_Slew)  = Clk_Slew; 
}; 
 

Specifies the correction factors. Final 

value = (measured value * 1.0) + 0.0 

Specifies the threshold values between which 

pin to pin delays, power are calculated. 
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APPENDIX 2 

CHARACTERIZATION DATA (HTML FORMAT) 

 

 

AND2X1 (value: delay=typ, power=typ, check=typ, cap=typ) 

 

 

Function 

Y=(A&B) 

 

 

  

Static Power: 

When Static Power [nW] 

- 27.8069 

 

  

Port: 

Name Direction 

A INPUT 

B INPUT 

Y OUTPUT 
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Name 
Pin Capacitance [pF] Internal Power [pJ] 

Rise  Fall Rise  Fall 

A 0.000641961 0.000790923 0.000128 0.000535 

B 0.00138115 0.000824827 0.0005 0.000494 

 

  

Output Driving Strength 

Name 
Rise Fall 

Strength (sec/F) Limit (pF) Strength (sec/F) Limit (pF) 

Y 3967.54 0.230939 1766.7 0.230939 

 

   

  

Link To Path 

PATH WHEN 

(01A=>01Y)  - 

(10A=>10Y)  - 

(01B=>01Y)  - 

(10B=>10Y)  - 
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(01A=>01Y)  

DELAY [ns] 

ts[ns] 
0.015 0.03 0.045 0.06 0.075 

cl[pF] 

5e-05 0.022888 0.026517 0.029796 0.030854 0.031641 

0.001 0.026561 0.029896 0.033344 0.034198 0.034764 

0.002 0.029921 0.033325 0.036522 0.03802 0.038698 

0.004 0.036389 0.03979 0.042832 0.044099 0.045069 

0.008 0.049054 0.052214 0.055177 0.056138 0.056968 

 

 

POWER [pW] 

ts[ns] 
0.015 0.03 0.045 0.06 0.075 

cl[pF] 

5e-05 0.002477 0.002693 0.00294 0.003082 0.003279 

0.001 0.003018 0.003152 0.003441 0.003538 0.003672 

0.002 0.003609 0.003702 0.004011 0.00406 0.004263 

0.004 0.004756 0.004738 0.005035 0.005217 0.00539 

0.008 0.007028 0.006939 0.007197 0.00734 0.007637 
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(10A=>10Y)  

DELAY [ns] 

ts[ns] 
0.015 0.03 0.045 0.06 0.075 

cl[pF] 

5e-05 0.030989 0.035837 0.040553 0.045072 0.049647 

0.001 0.034241 0.038915 0.043428 0.048427 0.052854 

0.002 0.038027 0.04191 0.046197 0.051462 0.05548 

0.004 0.043161 0.046696 0.051533 0.056098 0.060919 

0.008 0.051245 0.055429 0.060045 0.064685 0.06969 

 

 

POWER [pW] 

ts[ns] 
0.015 0.03 0.045 0.06 0.075 

cl[pF] 

5e-05 0.002936 0.00318 0.003405 0.003477 0.003641 

0.001 0.00268 0.002577 0.002661 0.002737 0.003218 

0.002 0.001998 0.002122 0.00224 0.002325 0.002517 

0.004 0.000923 0.000951 0.001048 0.001217 0.001376 

0.008 0.001501 0.00143 0.001382 0.001235 0.001028 
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(01B=>01Y)  

DELAY [ns] 

ts[ns] 
0.015 0.03 0.045 0.06 0.075 

cl[pF] 

5e-05 0.025073 0.027251 0.029244 0.030473 0.031035 

0.001 0.028938 0.031032 0.033153 0.034304 0.035223 

0.002 0.032383 0.03466 0.036813 0.038027 0.038879 

0.004 0.038951 0.041321 0.043382 0.044973 0.04588 

0.008 0.051713 0.053873 0.056029 0.057469 0.058105 

 

 

POWER [pW] 

ts[ns] 
0.015 0.03 0.045 0.06 0.075 

cl[pF] 

5e-05 0.00237 0.002417 0.002468 0.002541 0.002649 

0.001 0.002932 0.002983 0.003131 0.003126 0.003179 

0.002 0.003542 0.003578 0.003427 0.003765 0.003821 

0.004 0.004699 0.004749 0.004858 0.005123 0.005073 

0.008 0.00699 0.007074 0.007096 0.007273 0.007442 
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(10B=>10Y)  

DELAY [ns] 

ts[ns] 
0.015 0.03 0.045 0.06 0.075 

cl[pF] 

5e-05 0.034032 0.038883 0.043784 0.048801 0.053191 

0.001 0.037379 0.04228 0.046818 0.051852 0.056243 

0.002 0.040245 0.045091 0.049467 0.054299 0.059145 

0.004 0.045044 0.049525 0.05439 0.058967 0.064483 

0.008 0.05371 0.058336 0.06262 0.067742 0.072492 

 

 

POWER [pW] 

ts[ns] 
0.015 0.03 0.045 0.06 0.075 

cl[pF] 

5e-05 0.003649 0.003687 0.0041 0.004273 0.004515 

0.001 0.003081 0.003131 0.00349 0.003588 0.003754 

0.002 0.002421 0.002537 0.00281 0.002987 0.003 

0.004 0.001445 0.001484 0.001678 0.001753 0.001943 

0.008 0.000889 0.00082 0.000785 0.000612 0.000362 

 

 

   

(c) Cadence Design Systems Inc. 2006 
   

 



76 
 

DFFNEGX1 (value: delay=typ, power=typ, check=typ, cap=typ) 

 

 

Function 

FLIPFLOP{ 

  DATA=D 

  CLOCK=!CLK 

  Q=DS0000 

  QN=N_NET82_MM18_G 

} 

Q=DS0000 

 

 

  

Static Power: 

When Static Power [nW] 

- 57.6366 

 

  

Port: 

Pin Direction Signaltype Polarity 

CLK INPUT CLOCK FALLING_EDGE 

D INPUT DATA - 

Q OUTPUT - - 
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Name 
Pin Capacitance [pF] Internal Power [pJ] 

Rise  Fall Rise  Fall 

CLK 0.00748444 0.00752119 0.003939 0.008904 

D 0.00124059 0.000861589 0.002572 0.003208 

 

  

Output Driving Strength 

Name 
Rise Fall 

Strength (sec/F) Limit (pF) Strength (sec/F) Limit (pF) 

Q 1092.05 0.486759 2023.19 0.486759 

 

  

Link To Path 

PATH WHEN 

(10CLK=>01Q)  - 

(10CLK=>10Q)  - 

 

    

Link To Constraint 

Type  Path 

SETUP (01D=>10CLK)  

SETUP (10D=>10CLK)  

HOLD (10CLK=>01D)  

HOLD (10CLK=>10D)  

PULSEWIDTH (01CLK=>10CLK)  

PULSEWIDTH (10CLK=>01CLK)  
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(10CLK=>01Q)  

DELAY [ns] 

ts[ns] 
0.06 0.24 0.48 0.9 1.2 1.8 

cl[pF] 

5e-05 0.15909 0.220712 0.253671 0.330673 0.394863 0.489424 

0.001 0.163508 0.225051 0.258183 0.334835 0.397757 0.493404 

0.002 0.167347 0.229286 0.260706 0.338729 0.401164 0.493467 

0.004 0.174225 0.236548 0.268644 0.345768 0.409201 0.501859 

0.008 0.18733 0.249488 0.28359 0.353432 0.423051 0.517468 

POWER [pW] 

ts[ns] 
0.06 0.24 0.48 0.9 1.2 1.8 

cl[pF] 

5e-05 0.014744 0.016327 0.016759 0.020559 0.022794 0.02676 

0.001 0.015244 0.016749 0.017244 0.020904 0.023103 0.027231 

0.002 0.015864 0.017367 0.017722 0.021368 0.023601 0.026916 

0.004 0.016917 0.01851 0.018806 0.022323 0.024731 0.027978 

0.008 0.019278 0.020874 0.020849 0.023727 0.026925 0.031242 

 

Back To Path Index 

 

  

(10CLK=>10Q)  
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DELAY [ns] 

ts[ns] 
0.06 0.24 0.48 0.9 1.2 1.8 

cl[pF] 

5e-05 0.065845 0.108134 0.164478 0.245956 0.279957 0.373157 

0.001 0.069159 0.112977 0.167775 0.246802 0.285841 0.375903 

0.002 0.072174 0.117711 0.170645 0.247716 0.291536 0.378702 

0.004 0.077683 0.125355 0.175877 0.249615 0.300872 0.384251 

0.008 0.087676 0.13743 0.186763 0.253738 0.306952 0.410924 

 

 

POWER [pW] 

ts[ns] 
0.06 0.24 0.48 0.9 1.2 1.8 

cl[pF] 

5e-05 0.012265 0.014455 0.019401 0.023419 0.030163 0.039802 

0.001 0.011696 0.014372 0.018911 0.022829 0.029822 0.038988 

0.002 0.010804 0.013664 0.018138 0.022212 0.028925 0.038184 

0.004 0.009836 0.012561 0.016422 0.021218 0.027485 0.036181 

0.008 0.007396 0.009884 0.013846 0.018696 0.024524 0.034381 
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Timing Constraints 

  

SETUP(01D=>10CLK) 

re [ns] 
0.015 0.03 0.045 0.06 0.075 

co [ns] 

0.015 0.09375 0.08125 0.06875 0.05625 0.1 

0.03 0.10625 0.09375 0.08125 0.06875 0.1125 

0.045 0.0625 0.10625 0.09375 0.08125 0.06875 

0.06 0.075 0.0625 0.10625 0.09375 0.08125 

0.075 0.0875 0.075 0.11875 0.10625 0.09375 

 

  

Timing Constraints 

  

SETUP(10D=>10CLK) 

re [ns] 
0.015 0.03 0.045 0.06 0.075 

co [ns] 

0.015 0.15 0.1375 0.125 0.1125 0.15625 

0.03 0.10625 0.09375 0.1375 0.125 0.1125 

0.045 0.11875 0.10625 0.15 0.1375 0.125 

0.06 0.13125 0.11875 0.10625 0.15 0.1375 

0.075 0.0875 0.13125 0.11875 0.10625 0.15 
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 Timing Constraints 

  

HOLD(10CLK=>01D) 

re [ns] 
0.015 0.03 0.045 0.06 0.075 

co [ns] 

0.015 -0.01875 -0.00625 0.00625 -0.0375 -0.025 

0.03 -0.03125 -0.01875 -0.00625 0.00625 -0.0375 

0.045 -0.04375 -0.03125 -0.01875 -0.00625 -0.05 

0.06 -0 -0.04375 -0.03125 -0.01875 -0.00625 

0.075 -0.0125 0 -0.04375 -0.03125 -0.01875 

 

 

 Timing Constraints 

  

HOLD(10CLK=>10D) 

re [ns] 
0.015 0.03 0.045 0.06 0.075 

co [ns] 

0.015 0.0375 0.05 0.00625 0.01875 0.03125 

0.03 0.025 0.0375 0.05 0.00625 0.01875 

0.045 0.0125 0.025 0.0375 0.05 0.00625 

0.06 0.05625 0.0125 0.025 0.0375 0.05 

0.075 0.04375 0.05625 0.0125 0.025 0.0375 
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Timing Constraints 

  

PULSEWIDTH(01CLK=>10CLK) 

 
6e-11 2.4e-10 4.8e-10 9e-10 1.2e-09 1.8e-09 

  0.155355 0.184674 0.177585 0.176364 0.160871 0.128285 

 

 

Timing Constraints 

  

PULSEWIDTH(10CLK=>01CLK) 

 
6e-11 2.4e-10 4.8e-10 9e-10 1.2e-09 1.8e-09 

  0.134222 0.196873 0.226511 0.298716 0.358855 0.450921 

 

 

(c) Cadence Design Systems Inc. 2006 
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APPENDIX 3 

 

 

LEF Technology header 

 

 

 

This section includes the technology information required by the P&R tool when it places 

and routes the design. The information includes the design rules for different layers 

(metals) and vias for the FREEPDK process. 
 

VERSION 5.6 ; 
BUSBITCHARS "[]" ; 

DIVIDERCHAR "/" ; 

 
PROPERTYDEFINITIONS 

LAYER contactResistance REAL ; 

MACRO viewNameList STRING ; 

END PROPERTYDEFINITIONS 
 

UNITS 

DATABASE MICRONS 2000 ; 
END UNITS 

MANUFACTURINGGRID 0.0025 ; 

LAYER poly 

  TYPE MASTERSLICE ; 
END poly 

 

LAYER contact 
  TYPE CUT ; 

  SPACING 0.075 ; 

  PROPERTY contactResistance 10.5 ; 
END contact 

 

LAYER metal1 

  TYPE ROUTING ; 
  DIRECTION HORIZONTAL ; 

  PITCH 0.19 ; 

  WIDTH 0.065 ; 
  SPACING 0.065 ; 

  RESISTANCE RPERSQ 0.38 ; 

END metal1 
 

LAYER via1 

  TYPE CUT ; 

  SPACING 0.075 ; 
  PROPERTY contactResistance 5.69 ; 

END via1 

 
LAYER metal2 
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  TYPE ROUTING ; 

  DIRECTION VERTICAL ; 
  PITCH 0.19 ; 

  WIDTH 0.07 ; 

  SPACING 0.075 ; 

  RESISTANCE RPERSQ 0.25 ; 
END metal2 

 

LAYER via2 
  TYPE CUT ; 

  SPACING 0.085 ; 

  PROPERTY contactResistance 11.39 ; 
END via2 

 

LAYER metal3 

  TYPE ROUTING ; 
  DIRECTION HORIZONTAL ; 

  PITCH 0.19 ; 

  WIDTH 0.07 ; 
  SPACING 0.07 ; 

  RESISTANCE RPERSQ 0.25 ; 

END metal3 
 

LAYER via3 

  TYPE CUT ; 

  SPACING 0.085 ; 
  PROPERTY contactResistance 16.73 ; 

END via3 

 
LAYER metal4 

  TYPE ROUTING ; 

  DIRECTION VERTICAL ; 

  PITCH 0.285 ; 
  WIDTH 0.14 ; 

  SPACING 0.14 ; 

  RESISTANCE RPERSQ 0.25 ; 
END metal4 

 

LAYER via4 
  TYPE CUT ; 

  SPACING 0.16 ; 

  PROPERTY contactResistance 21.44 ; 

END via4 
 

LAYER metal5 

  TYPE ROUTING ; 
  DIRECTION HORIZONTAL ; 

  PITCH 0.285 ; 

  WIDTH 0.14 ; 
  SPACING 0.14 ; 

  RESISTANCE RPERSQ 0.25 ; 
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END metal5 

 
LAYER via5 

  TYPE CUT ; 

  SPACING 0.16 ; 

  PROPERTY contactResistance 24.08 ; 
END via5 

 

LAYER metal6 
  TYPE ROUTING ; 

  DIRECTION VERTICAL ; 

  PITCH 0.285 ; 
  WIDTH 0.14 ; 

  SPACING 0.14 ; 

  RESISTANCE RPERSQ 0.25 ; 

END metal6 
 

LAYER via6 

  TYPE CUT ; 
  SPACING 0.16 ; 

  PROPERTY contactResistance 11.39 ; 

END via6 
 

LAYER metal7 

  TYPE ROUTING ; 

  DIRECTION HORIZONTAL ; 
  PITCH 0.855 ; 

  WIDTH 0.4 ; 

  SPACING 0.44 ; 
  RESISTANCE RPERSQ 0.25 ; 

END metal7 

 

LAYER via7 
  TYPE CUT ; 

  SPACING 0.44 ; 

  PROPERTY contactResistance 5.69 ; 
END via7 

 

LAYER metal8 
  TYPE ROUTING ; 

  DIRECTION VERTICAL ; 

  PITCH 0.855 ; 

  WIDTH 0.4 ; 
  SPACING 0.44 ; 

  RESISTANCE RPERSQ 0.25 ; 

END metal8 
 

LAYER via8 

  TYPE CUT ; 
  SPACING 0.44 ; 

  PROPERTY contactResistance 16.73 ; 
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END via8 

 
LAYER metal9 

  TYPE ROUTING ; 

  DIRECTION HORIZONTAL ; 

  PITCH 1.71 ; 
  WIDTH 0.8 ; 

  SPACING 0.8 ; 

  RESISTANCE RPERSQ 0.21 ; 
END metal9 

 

LAYER via9 
  TYPE CUT ; 

  SPACING 0.88 ; 

  PROPERTY contactResistance 21.44 ; 

END via9 
 

LAYER metal10 

  TYPE ROUTING ; 
  DIRECTION VERTICAL ; 

  PITCH 1.71 1.71 ; 

  WIDTH 0.8 ; 
  SPACING 0.8 ; 

  RESISTANCE RPERSQ 0.21 ; 

END metal10 

 
LAYER OVERLAP 

  TYPE OVERLAP ; 

END OVERLAP 
 

VIA M2_M1_via DEFAULT 

  LAYER metal1 ; 

    RECT -0.0675 -0.0325 0.0675 0.0325 ; 
  LAYER via1 ; 

    RECT -0.0325 -0.0325 0.0325 0.0325 ; 

  LAYER metal2 ; 
    RECT -0.035 -0.0675 0.035 0.0675 ; 

END M2_M1_via 

 
VIA M3_M2_via DEFAULT 

  LAYER metal2 ; 

    RECT -0.035 -0.07 0.035 0.07 ; 

  LAYER via2 ; 
    RECT -0.035 -0.035 0.035 0.035 ; 

  LAYER metal3 ; 

    RECT -0.07 -0.035 0.07 0.035 ; 
END M3_M2_via 

 

VIA M4_M3_via DEFAULT 
  LAYER metal3 ; 

    RECT -0.07 -0.035 0.07 0.035 ; 
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  LAYER via3 ; 

    RECT -0.035 -0.035 0.035 0.035 ; 
  LAYER metal4 ; 

    RECT -0.07 -0.07 0.07 0.07 ; 

END M4_M3_via 

 
VIA M5_M4_via DEFAULT 

  LAYER metal4 ; 

    RECT -0.07 -0.07 0.07 0.07 ; 
  LAYER via4 ; 

    RECT -0.07 -0.07 0.07 0.07 ; 

  LAYER metal5 ; 
    RECT -0.07 -0.07 0.07 0.07 ; 

END M5_M4_via 

 

VIA M6_M5_via DEFAULT 
  LAYER metal5 ; 

    RECT -0.07 -0.07 0.07 0.07 ; 

  LAYER via5 ; 
    RECT -0.07 -0.07 0.07 0.07 ; 

  LAYER metal6 ; 

    RECT -0.07 -0.07 0.07 0.07 ; 
END M6_M5_via 

 

VIA M7_M6_via DEFAULT 

  LAYER metal6 ; 
    RECT -0.07 -0.07 0.07 0.07 ; 

  LAYER via6 ; 

    RECT -0.07 -0.07 0.07 0.07 ; 
  LAYER metal7 ; 

    RECT -0.2 -0.2 0.2 0.2 ; 

END M7_M6_via 

 
VIA M8_M7_via DEFAULT 

  LAYER metal7 ; 

    RECT -0.2 -0.2 0.2 0.2 ; 
  LAYER via7 ; 

    RECT -0.2 -0.2 0.2 0.2 ; 

  LAYER metal8 ; 
    RECT -0.2 -0.2 0.2 0.2 ; 

END M8_M7_via 

 

VIA M9_M8_via DEFAULT 
  LAYER metal8 ; 

    RECT -0.2 -0.2 0.2 0.2 ; 

  LAYER via8 ; 
    RECT -0.2 -0.2 0.2 0.2 ; 

  LAYER metal9 ; 

    RECT -0.4 -0.4 0.4 0.4 ; 
END M9_M8_via 
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VIA M10_M9_via DEFAULT 

  LAYER metal9 ; 
    RECT -0.4 -0.4 0.4 0.4 ; 

  LAYER via9 ; 

    RECT -0.4 -0.4 0.4 0.4 ; 

  LAYER metal10 ; 
    RECT -0.4 -0.4 0.4 0.4 ; 

END M10_M9_via 

 
VIA M2_M1_viaB DEFAULT 

  LAYER metal1 ; 

    RECT -0.0675 -0.0325 0.0675 0.0325 ; 
  LAYER via1 ; 

    RECT -0.0325 -0.0325 0.0325 0.0325 ; 

  LAYER metal2 ; 

    RECT -0.0675 -0.035 0.0675 0.035 ; 
END M2_M1_viaB 

 

VIA M2_M1_viaC DEFAULT 
  LAYER metal1 ; 

    RECT -0.0325 -0.0675 0.0325 0.0675 ; 

  LAYER via1 ; 
    RECT -0.0325 -0.0325 0.0325 0.0325 ; 

  LAYER metal2 ; 

    RECT -0.035 -0.0675 0.035 0.0675 ; 

END M2_M1_viaC 
 

VIA M3_M2_viaB DEFAULT 

  LAYER metal2 ; 
    RECT -0.035 -0.07 0.035 0.07 ; 

  LAYER via2 ; 

    RECT -0.035 -0.035 0.035 0.035 ; 

  LAYER metal3 ; 
    RECT -0.035 -0.07 0.035 0.07 ; 

END M3_M2_viaB 

 
VIA M3_M2_viaC DEFAULT 

  LAYER metal2 ; 

    RECT -0.07 -0.035 0.07 0.035 ; 
  LAYER via2 ; 

    RECT -0.035 -0.035 0.035 0.035 ; 

  LAYER metal3 ; 

    RECT -0.07 -0.035 0.07 0.035 ; 
END M3_M2_viaC 

 

VIA M4_M3_viaB DEFAULT 
  LAYER metal3 ; 

    RECT -0.035 -0.07 0.035 0.07 ; 

  LAYER via3 ; 
    RECT -0.035 -0.035 0.035 0.035 ; 

  LAYER metal4 ; 
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    RECT -0.07 -0.07 0.07 0.07 ; 

END M4_M3_viaB 
 

VIARULE M2_M1 GENERATE 

  LAYER metal1 ; 

    ENCLOSURE 0 0.035 ; 
  LAYER metal2 ; 

    ENCLOSURE 0 0.035 ; 

  LAYER via1 ; 
    RECT -0.0325 -0.0325 0.0325 0.0325 ; 

    SPACING 0.14 BY 0.14 ; 

END M2_M1 
 

VIARULE M3_M2 GENERATE 

  LAYER metal2 ; 

    ENCLOSURE 0 0.035 ; 
  LAYER metal3 ; 

    ENCLOSURE 0 0.035 ; 

  LAYER via2 ; 
    RECT -0.035 -0.035 0.035 0.035 ; 

    SPACING 0.155 BY 0.155 ; 

END M3_M2 
 

VIARULE M4_M3 GENERATE 

  LAYER metal3 ; 

    ENCLOSURE 0 0.035 ; 
  LAYER metal4 ; 

    ENCLOSURE 0 0 ; 

  LAYER via3 ; 
    RECT -0.035 -0.035 0.035 0.035 ; 

    SPACING 0.155 BY 0.155 ; 

END M4_M3 

 
VIARULE M5_M4 GENERATE 

  LAYER metal4 ; 

    ENCLOSURE 0 0 ; 
  LAYER metal5 ; 

    ENCLOSURE 0 0 ; 

  LAYER via4 ; 
    RECT -0.07 -0.07 0.07 0.07 ; 

    SPACING 0.3 BY 0.3 ; 

END M5_M4 

 
VIARULE M6_M5 GENERATE 

  LAYER metal5 ; 

    ENCLOSURE 0 0 ; 
  LAYER metal6 ; 

    ENCLOSURE 0 0 ; 

  LAYER via5 ; 
    RECT -0.07 -0.07 0.07 0.07 ; 

    SPACING 0.3 BY 0.3 ; 
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END M6_M5 

 
VIARULE M7_M6 GENERATE 

  LAYER metal6 ; 

    ENCLOSURE 0 0 ; 

  LAYER metal7 ; 
    ENCLOSURE 0.13 0.13 ; 

  LAYER via6 ; 

    RECT -0.07 -0.07 0.07 0.07 ; 
    SPACING 0.3 BY 0.3 ; 

END M7_M6 

 
VIARULE M8_M7 GENERATE 

  LAYER metal7 ; 

    ENCLOSURE 0 0 ; 

  LAYER metal8 ; 
    ENCLOSURE 0 0 ; 

  LAYER via7 ; 

    RECT -0.2 -0.2 0.2 0.2 ; 
    SPACING 0.8 BY 0.8 ; 

END M8_M7 

 
VIARULE M9_M8 GENERATE 

  LAYER metal8 ; 

    ENCLOSURE 0 0 ; 

  LAYER metal9 ; 
    ENCLOSURE 0.2 0.2 ; 

  LAYER via8 ; 

    RECT -0.2 -0.2 0.2 0.2 ; 
    SPACING 0.8 BY 0.8 ; 

END M9_M8 

 

VIARULE M10_M9 GENERATE 
  LAYER metal9 ; 

    ENCLOSURE 0 0 ; 

  LAYER metal10 ; 
    ENCLOSURE 0 0 ; 

  LAYER via9 ; 

    RECT -0.4 -0.4 0.4 0.4 ; 
    SPACING 1.6 BY 1.6 ; 

END M10_M9 

 

VIARULE M1_POLY GENERATE 
  LAYER poly ; 

    ENCLOSURE 0 0 ; 

  LAYER metal1 ; 
    ENCLOSURE 0 0.035 ; 

  LAYER contact ; 

    RECT -0.0325 -0.0325 0.0325 0.0325 ; 
    SPACING 0.14 BY 0.14 ; 

END M1_POLY 



91 
 

 

SPACING 
  SAMENET metal1 metal1 0.065 ; 

  SAMENET metal10 metal10 0.8 ; 

  SAMENET metal2 metal2 0.07 ; 

  SAMENET metal3 metal3 0.07 ; 
  SAMENET metal4 metal4 0.14 ; 

  SAMENET metal5 metal5 0.14 ; 

  SAMENET metal6 metal6 0.14 ; 
  SAMENET metal7 metal7 0.44 ; 

  SAMENET metal8 metal8 0.44 ; 

  SAMENET metal9 metal9 0.8 ; 
END SPACING 

 

SITE CoreSite 

  CLASS CORE ; 
  SIZE 0.19 BY 2.09 ; 

END CoreSite 
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