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OKLAHOMA SURFACE WATER 
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Abstract: Taste and odor problems in drinking water have been addressed more and more 
by water utilities around the world. Consumer complaints must be considered by most 
drinking water treatment plants. A number of studies investigated that geosmin and 2-
MIB are major compounds that cause these taste and odor problems in drinking water. 
The sources of geosmin and 2-MIB are cyanobacteria and actinomycetes. These two 
bacteria cause earthy and musty odor in drinking water. Although this unpleasant odor 
can be detected by consumers, currently, there are no regulations on geosmin and 2-MIB 
since these compounds are not threats to public health. The most successful treatment 
technologies used by most water treatment plants to remove geosmin and 2-MIB in 
drinking water are granular/powdered activated carbon (GAC/PAC), advanced oxidation 
processes (AOP), biofiltration, and other integrated systems. However, these methods are 
very expensive to install, maintain, and operate. For current and further studies, more 
efficient and economic taste and odor control technologies need to be addressed and 
investigated. Algaecides are used to stop the growth of algae; however, recent studies 
reported that the application of EarthTec®, an example of algaecides, resulted in 
effective removal of geosmin and 2-MIB in drinking water. Also, Tulsa water treatment 
plant found that EarthTec® has shown excellent abilities to remove these compounds in 
lakes. Therefore, this study investigated on algaecide removal of geosmin and 2-MIB in 
drinking water. Three experiments were conducted and compared. The results found that 
sorption and biodegradation in the study lake does not result in significant removal of 
geosmin and 2-MIB. The recommended EarthTec® dosage and twice that dosage water 
samples without agitation found no significant contribution on the removal of geosmin 
and 2-MIB. However, the unfiltered lake water with EarthTec® and agitation removed 
76.58% geosmin and 78.64% 2-MIB, respectively, over 48 hours.   
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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Overview 

Taste and odor problems in drinking water have been addressed more and more 

by water utilities around the world. Consumer complaints must be addressed by most 

drinking water treatment plants since these problems may threaten the quality and safety 

of drinking water. Many researchers found that numerous taste and odor compounds, 

including geosmin and 2-methylisoborneol (2-MIB), make major contributions to this 

problem (Pirbazari et al., 1993). These compounds are metabolites of actinomycetes and 

cyanobacteria, low molecular weight volatile tertiary alcohols mostly from blue-green 

algae and fungus.  

Currently, there are no regulations for geosmin and 2-MIB, which are not 

harmful; however, their presence in drinking water results in aesthetically unpleasant 

odors. This unpleasant odor in drinking water may deteriorate the reliability of and 

consumers` trust on water quality. Eventually, it may cause people to switch to alternate 

drinking water sources, such as bottled water (Watson, 2004). 

Many studies have focused on the removal of geosmin and 2-MIB from drinking 
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water sources; however, these taste and odor-causing compounds are challenging to 

remove due to their extremely low odor threshold concentrations (OTC), about 1–10 ng/L 

for geosmin and 4–12 ng/L for 2-MIB (McGuire et al., 1981; Young et al., 1996). Taste 

and odor-causing compounds show relatively strong resistance to chemical and biological 

degradation and can persist in dissolved form in water sources (Juttener and Watson, 

2007). Therefore, conventional water treatment processes, such as coagulation, 

sedimentation, and filtration are not effective for the removal of geosmin and 2-MIB. 

However, granular/powdered activated carbon (GAC/PAC), advanced oxidation 

processes (AOP), biofiltration, and other integrated systems have been found to present 

effective removal of geosmin and 2-MIB and are applied on many water utilities 

(Srinivasan and Sorial, 2011). The analytical technique used to determine concentrations 

of geosmin and 2-MIB is solid-phase microextraction (SPME) with gas 

chromatography/mass spectrometry (GC/MS). A manual assembly SPME with an 

extraction fiber coated on the outside is an advanced extraction method due to its 

promptness, potable, and solvent-free (Saito et al., 2008). 

Recently, some studies have been investigating the removal of taste and odor-

causing compounds, geosmin and 2-MIB, by algaecides. Schweitzer and Ekstrom (2006) 

found that EarthTec® application resulted in effective removal of these compounds, 

especially with geosmin. In Tulsa, Oklahoma at one water treatment plant, EarthTec® 

has shown excellent abilities to remove geosmin and 2-MIB in lakes. Therefore, the 

assumption that EarthTec® and other similar copper-based algaecides have abilities to 

remove taste and odor-causing compounds can be made based on these results. Further 

studies need to be explored to provide accurate evidence about this assumption. 
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1.2 Objectives 

The major objectives for this study are to investigate the parameters that affect the 

removal of geosmin and 2-MIB and to find the reaction between algaecides, especially 

EarthTec®, and geosmin and 2-MIB. 

� To investigate geosmin and 2-MIB reactions under various conditions and to 

identify the optimum parameters, such as pH, algaecide, sunlight, and temperature. 

� To investigate geosmin and 2-MIB loss mechanisms including volatilization, 

photolysis, sorption, and/or biodegradation and examine.  
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

 

2.1 Taste and odor compounds 

Taste and odor (T&O) problems cause common concerns of water quality for 

water utilities (Lalezary et al., 1984, 1986). It associates with the reliability and safety of 

drinking water. Presence of this problem may result in decreased consumer trust and 

eventually cause decreased water consumption since the public switch to use alternate 

drinking water sources, such as bottled water and in-home treatment systems (Srinivasan 

and Sorial, 2011). A large number of volatile organic compounds (VOCs) causing T&O 

problems can be identified from algal cultures or water samples and are listed in Table   

2-1. However, the most prevalent T&O customer complaints are earthy-musty odors, 

which are primarily the result of two T&O-causing compounds, geosmin (trans-1,10-

dimethyl-trans-9 decalol, C12H22O) and 2-MIB (2-methyl isoborneol, C11H20O), in 

drinking water obtained from surface water sources (Pirbazari et al., 1993). These two 

compounds are secondary metabolites of actinomycetes (soil bacteria) and Cyanobacteria 

(blue green algae) (Mamba et. al., 2007). The identification, quantification, and control of 

these compounds from water are essential since these compounds impact the aesthetic 

quality and consumer acceptability of drinking water (Sung et al., 2005). 
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Table 2-1 Survey of major odor compounds identified from algal cultures or field samples 

α-Campholene Isopropyl thiol Methyl n-valerate 
γ-Cadinene Isopropyl trisulfide Octan-3-ol 
Camphor Isopropyl methyl disulfide n-Heptanal 
Chlorophene Methyl 2-methyl 

propanethiolate 
Octa-1,5-dien-3-ol 

Cieneol Methyl 3-disulfide Oct-1-ene 
Trimethyl Methyl mercaptan n-Heptanal 
Cyclohex-1-ene Methylbutane Octene 
β-Cyclocitral Methylethane thiolate Octane 
Hydroxy- β -cylocitral 2,4-Heptadienal Oct-1-en-3-one 
Cyclohexanone 2,4-Decadienal Ectocarpene 
Dihydrotrimethylnapthalene 2,4 –Nonadienal Dictyopterene A’ 
Dihydroactinidiolide 2,6 –Nonadienal Dictyopterene C’ 
α -Ionone 2-Octene n-Nonadecane 
β -Ionone Oct-1-en-3-ol n-Heptadecane 
Geosmin 1,3,5-Octatriene Heptadec-5-ene 
Geranyl acetone 2,4 –Octadienal 2-Pentenal 
Geraniol 2-Furfural Octan-1-ol 
Germacrene-D Propenal Oct-2-en-1-ol 
Limonene Hexan-1-ol Isobutyrate 
Linalool n-Hexanal Methyl acetate 
Menthone 3-Hexen-1-ol Methyl butanoate 
Methyl gerianate Pent-1-en-3-one 2-Methyl propan-1-ol 
Myrcene 1-Pentanol 3-Methyl butanal 
2-Methylisoborneol n-Heptane 2-Methyl but-2-en-1-ol 
6-Methyl-5-hepten-2-one 2,4,7-Decatrienal 2-Pentylfuran 
6-Methyl-5-hepten-2-ol Undecan-2-one 2-Methylpent-2-enal 
3-Methylbut-2en-1-ol Heptan-1-ol 3-Methyl -1-butanol 
4-Methylpent-3-en-2-one Pent-1-en-3-ol 3-Methylbut-2-enal 
Nerol Octene 3-Methylbutan-2-one 
Phytol Actetaldehyde Butanone 
Squalene Heptadec-5-ene Isobutyl alcohol 
Skatol Heptan-2-ol Ethyl propionate 
Styrene n-Hexanol Isobutyl acetate 
Trimethylcyclohex-2-en-1-one Octan-3-ol Isopropyl alcohol 
γ -Terpinene Octan-3-one Methyl 2-methyl formate 
Isopropyl disulfide Octadecene Methylbutanoate 
Dimethyl sulfide n-Octadecane 2,4,6-Trichloroanisole 
Dimethyl trisulfide n-Hexanol  
Dimethyl tetrasulfide 2-Octenal  
 1,3-Octadiene  

(Watson, 1999, 2003) 
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Geosmin is an organic compound isolated by Gerber and Lechevalier (1965) with 

molecular formula of C12H22O and molecular weight of 182.3 g/mol. The molecular 

structure of this compound shows a bicyclic tertiary alcohol in Figure 2-1. Geosmin was 

first identified in actinomycetes by Gerber and Lechevalier (1965) and in cyanobacteria 

(blue-green algae) by Safferman et al. (1967). It is produced both intracellularly and 

extracellularly and released to the water when those microbes die. 

 

(Gerber and Lechevalier, 1965) 

Figure 2-1 Molecular structure of geosmin 

Under acidic conditions, geosmin decomposes into odorless substances, such as 

argosmin (Gerber and LeChevalier, 1965). The term geosmin means “earth odor” (from 

the Greek “ge” means earth and “osme” means odor). This compound is responsible for 

an earthy T&O problems in drinking water supplies. These problems are reported by 

customers at starting concentrations around 7 ng/L (Simpson and MacLeod, 1991a). The 

odor threshold concentration (OTC) for geosmin is 1 to 10 ng/L at 45°C (McGuire et al., 

1981; Rashash et al., 1997). OTCs for other odor compounds are shown in Table 2-2. 

Other physical and chemical properties of geosmin are listed in Table 2-3. 
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Table 2-2 Odor threshold concentrations of selected odorous algal metabolites 
Compound OTC µg/L Odor 
Sulfurous   
    Dimethyl trisulfide 0.01 Septic, garlic, putrid, swampy 
    Dimethyl disulfide <4.0 Septic, garlic, putrid 
    Methanethiol 2.1  
    Ethanethiol 1  
    Propanethiol 0.74  
    t-Butythiol 0.09  
    Dimethyl sulfide 1  
    Hydrogen sulfide 7.2  
PUFA derivatives   
    n-Heptanal 3 Fishy, oily 
    n-Hexanal 4.5 Grassy, fatty 
    3-Methylbutyrate 20 Rotten, rancid 
    n-Pentanal 60 Fishy 
    trans-2-Nonenal 0.8 Cucumber 
    1-Penten-3-one 1.25 Pungent; rancid; fishy 
    trans-2-Hexenal 17  
    cis-3-Hexen-1-ol 70 Grassy 
    2-Methylpent-2-enal 290 Rum, marzipan 
    trans-2,cis-6-Nonadienal 0.08 Grassy; cucumber 
    1,3-Octadiene 5600 Earthy/mushroom 
    trans,cis-2,4-Heptadienal 5 Fishy, oily 

trans,cis,cis-2,4,7-Decatrienal 1.5 Fishy, oily 
Amines   
    Ethanolamine 6.5 Mild ammonia –fishy 
    Isopropylamine 210 Ammonical, amine 
    Butylamine 80 Sour, ammonical, amine 
    Propylamine  90,000 Ammonia 
    Methylamine 21 Ammonia 
    Trimethylamine 0.21 Pungent, fishy, ammonia 
    Dimethylamine 47  
Terpenoids   
    α-Ionone 0.007 Violets 
    β-Ionone 0.007 Violets 
    Epoxy-α-ionone 0.007  
    Geosmin 0.004 Earthy/musty 
    3-Methylbut-2-enal 0.15 Rancid, putrid 
    3-Methyl butanal 0.15 Rancid, putrid 
    2-Methylisoborneol 0.015 Earthy, musty 
    Limonene 4 Citrus 
    Linalool 6 Grassy, floral 
    Cieneole (1,8) 12 Camphor, spicy, cool 
    6-Methyl-5-hepten-2-one 50 Fruity, esterlike 
    β-Cyclocitral 19.3 Tobacco, smoky, moldy 
    Styrene 65 Sweet, balsamic 
Pyrazines   
    2,6-Dimethyl pyrazine 6 Cocoa, roasted nuts, coffee 
    3-Methoxy-2-isopropyl pyrazine 0.0002 Earthy/potato bin 
    2-Isobutyl-3-methoxy pyrazine 0.001 Earthy/potato bin 

(Mallevialle & Suffet, 1987; Young et al., 1996; Watson & Ridal, 2002) 
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Table 2-3 Physical and chemical properties of geosmin and 2-MIB 

 Geosmin 2-MIB 

Full Name tran-1, 10-dimethyl-trans-9-

decalol 

1,2,7,7-Tetramethyl-exo-

bicyclo-heptan-2-ol 

Chemical Formula C12H22O C11H20O 

Molecular Weight (g/mol) 182.31 168.28 

Log Kow 3.57 3.31 

Water Solubility (mg/L) 156.7 305.1 

Vapor Pressure (Pa) 3.57 3.31 

Henry`s Law Constant 

(atm·m3/mol) 

1.18E-05 8.90E-06 

Boiling Point (°C) 270 196.7 

(Pirbazari et al., 1992) 

The unpleasant odor produced by geosmin is not only found in drinking water 

supplies, but also observed in pungent-smelling food. For instance, geosmin has been 

determined to cause an earthy off-flavor in channel catfish (Lovell and Sackey, 1973); 

Darriet et al. (2000) identified that this compound was also present in the fresh grape 

juices; further studies have shown that red beets are able to synthesize geosmin 

endogenously (Lu et al., 2003a; Lu et al., 2003b). The earthy-smelling compound is also 

observed in cured meat, dry beans, canned mushrooms, and other root crops. (Lloyd and 

Grimm, 1999; Maga, 1987). 

2-MIB is a bridged cycloalkanol with molecular formula of C11H20O and 

molecular weight of 168.28 g/mol. The molecular structure of 2-MIB shown in Figure   



 

2-2 illustrates that the distinguished characteristic of 2

hydroxyl group. Pendleton 

roughly spherical in shape with diameter 0.6 nm. 

of actinomycetes by Medsker 

it as 2-methylisoborneol. In addition, Rosen 

produced by an actinomycete in natural water

that 2-MIB is produced as 

actinomycete, and several other blue

Izaguirre et al., 1982). Other physical and chem

Table 2-3. 

Figure 

2-MIB is characterized by an earthy

at very low concentration. 

been investigated. McGuire 

Simpson and MacLeod (1991b) found that no more than 12 ng/L of 2

concentrations could cause

documented that OTC of 2

4 to 12 ng/L. 
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illustrates that the distinguished characteristic of 2-MIB is aliphatic structure and one 

hydroxyl group. Pendleton et al. (1997) identified that 2-MIB can be considered to be 

roughly spherical in shape with diameter 0.6 nm. It was first found as a natural metabolite 

of actinomycetes by Medsker et al. (1969) and Gerber (1969). Gerber (1969) first named 

methylisoborneol. In addition, Rosen et al. (1970) determined 2

produced by an actinomycete in natural waters. Subsequently, many researchers found 

MIB is produced as a secondary metabolite by different species of cyanobacteria, 

actinomycete, and several other blue-green algae (Tabachek and Yurkowski, 1976; 

, 1982). Other physical and chemical properties of 2-MIB are also listed in 

(Gerber, 1969

Figure 2-2 Molecular structure of 2-MIB 

MIB is characterized by an earthy-musty odor, which can be detected by people 

at very low concentration. Different odor threshold concentrations (OTC) of 2

been investigated. McGuire et al. (1981) reported that the OTC of 2-MIB was 4 ng/L. 

Simpson and MacLeod (1991b) found that no more than 12 ng/L of 2

concentrations could cause customer complaints. Later, Young et al. 

documented that OTC of 2-MIB was 6.3 ng/L. Consequently, the range of 2

MIB is aliphatic structure and one 

MIB can be considered to be 

It was first found as a natural metabolite 

Gerber (1969) first named 

(1970) determined 2-MIB to be 

s. Subsequently, many researchers found 

by different species of cyanobacteria, 

green algae (Tabachek and Yurkowski, 1976; 

MIB are also listed in 

9)    

musty odor, which can be detected by people 

Different odor threshold concentrations (OTC) of 2-MIB have 

MIB was 4 ng/L. 

Simpson and MacLeod (1991b) found that no more than 12 ng/L of 2-MIB 

et al. (1996) also 

range of 2-MIB OTC is 
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2.2 Sources of geosmin and 2-MIB 

In summer, T&O complaints from consumers are frequent problems for water 

utilities. Relatively high concentrations of geosmin and 2-MIB that exceed the odor 

thresholds are frequently detected in drinking water sources (Klausen et al., 2004). 

Geosmin and 2-MIB were first identified in actinomycetes (Gerber, 1968, 1969, 1979, 

1983; Blevins, 1980; Yagi et al., 1981, 1983; Bentley and Meganathan, 1981; Schrader 

and Blevins, 1993), then later in cyanobacteria (Izaguirre et al., 1982; Wu and Jüttner, 

1988; Martin et al., 1991; Matsumuto and Tsuchiya, 1988; Tsuchiya et al., 1981; 

Tsuchiya and Matsumoto, 1988; Schrader and Blevins, 1993; Tabachek and Yurkowski, 

1976) and fungi (Kikuchi et al., 1981) that inhabit aquatic and soil environments. 

Geosmin and 2-MIB-producing species are listed in Table 2-4, Table 2-5, and Table 2-6. 

However, previous research by Watson (2004) indicated that the primary source of 

geosmin and 2-MIB in water are cyanobacteria (commonly referred to as blue-green 

algae). Zaitlin and Watson (2006) demonstrated that the source of these two compounds 

in water reservoirs can also be attributed to the presence of actinomycetes.  

As the major source of the T&O compounds, cyanobacteria have been present on 

earth for around 2.5 billion years and keep evolving and adapting to our environmental 

conditions, especially in water sources, such as ocean, lakes, and reservoirs (Paerl et al., 

2001). More than 200,000 known species of cyanobacteria have been identified as odor 

sources, including Anabaena, Aphanizomenon, Lyngbya, Oscillatoria, Phormidium, 

Planktothrix, and Pseudanabaena (Peterson et al., 1995; Sugiura et al., 1997, 1998; 

Izaguirre and Taylor, 1998; Schrader et al., 1998, 2005; Zimba et al., 1999; Sugiura and 

Nakano, 2000; Saadoun et al., 2001; Zimba et al., 2001). 
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Table 2-4 2-MIB-producing species 

Species Origin Habitat References 
Oscillatoria    
    O. perornata  Fish pond/USA Planktonic van der Ploeg et al. 1995; 
        (Planktothrix MS988)        Tellez et al. 2001a, b;    

      Taylor et al. 2006  
    O. limosa Lake/USA Benthic Izaguirre and Taylor 1995 
    Oscillatoria sp. Fish pond/USA Planktonic Martin et al. 1991 
    O. tenuis Japan Planktonic Negoro et al. 1988 
    O. geminata Fish pond/Japan Fish Pond Matsumoto and Tsuchiya 

      1988 
    O. limnetica Fish pond/Japan Fish Pond Matsumoto and Tsuchiya 

      1988 
    Oscillatoria cf. Lake/USA Benthic Izaguirre et al. 1982, 1983 
        curviceps    
    O. tenuis Water supply/USA Benthic Izaguirre et al. 1983 
    O. variabilis Fish farming lake/ 

      Japan 
Benthic Tabachek and  

      Yurakowski 1976 
    O. chalybea Reservoir/Israel Benthic Leventer and Eren 1970 
Phormidium    
    Phormidium LP684 Lake/USA Benthic Taylor et al. 2006 

Phormidium aff.      
      formosum 

Water supply/       
      Australia 

Benthic Baker et al. 2001 

    P. favosum Lake/Japan Benthic Sugiura et al. 1997 
    Phormidium USA Benthic Izaguirre 1992 
    P. tenue Lake/Japan Benthic Sugiura et al. 1986 
    P. tenue Water supply/      

      Japan 
Planktonic Yagi et al. 1983 

Pseudanabaena    
    Pseudanabaena Reservoirs/USA Planktonic Izaguirre et al. 1999; 

     Taylor et al. 2006 
    Pseudanabaena Lake/USA Planktonic Izaguirre and Taylor 1998 
Other species    
    Synechococcus sp. Water reservoirs/USA Planktonic Taylor et al. 2006 
    Leptolyngbya sp. Periphyton, lake/USA  Taylor et al. 2006 
    Lyngbya LO198 Reservoir/USA Benthic Taylor et al. 2006 
    Hyella Aqueduct water/USA Epiphytic Izaguirre and Taylor 1995 
    Lyngbya Cal.Aq.892 Aqueduct lake/USA Epiphytic Izaguirre and Taylor 1995 
    Planktothrix MS988 Catfish pond/ USA Planktonic Martin et al. 1991 
    Planktothrix  
         cryptovaginata 

Fish, water/Finland Benthic Persson 1988 

    Jaaginema geminatum River/Japan Benthic Tsuchiya and Matsumoto 
     1988 

    Synechococcus sp. Plankton, lake/USA Planktonic Izaguirre et al. 1984 
    Lyngbya cf. aestuarii Fish farming lake /    

      Japan 
Benthic Yurkowski and Tabachek 

      1980 
Tabachek and Yurkowski 
      1976 
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Table 2-5 Geosmin-producing species 

Species Origin Habitat References 
Anabaena    
    Anabaena sp. Lake/USA Planktonic Saadoun et al. 2001 
    A. laxa CA 783 Lake plankton/USA Planktonic Rashash et al. 1996 
    A. crassa LS698 Lake/USA/Australia Planktonic Baker et al. 1994; 

     Komarkova-Legnerova 
     and Cronberg 1992 

    A. circinalis River/Australia Planktonic Bowner et al. 1992 
    A. circinalis Reservoir/USA Planktonic Rosen et al. 1992 
    A. solitaria Taiwan Planktonic Wu et al. 1991 
    A. viguieri Taiwan Planktonic Wu et al. 1991 
    A. macrospora River/Japan Planktonic Tsuchiya and Matsumoto 

      1998 
    A. scheremetievi Water supply/USA Planktonic Izaguirre et al. 1982 
          Elenkin       
Oscillatoria    
    O. limosa River/Spain Benthic Vilalta et al. 2003, 2004 
    O. limosa River/Reservoir/ 

     Netherlands 
  Van Breeman et al. 1992 

    Oscillatoria sp. Periphyton, river/   
         (Philadelphia) USA Benthic Burlingame et al. 1986 
    O. brevis Inland water/Norway Benthic Berglind et al. 1983b 
    O. simplicissima Water supply/USA Pipeline Izaguirre et al. 1982 
    O. tenuis Fish pond/Israel   Aschner et al. 1967 
Phormidium    
    Phormidium LS1283 Algae, lake/USA Benthic Taylor et al. 2006 
    Phormidium cf.      
    Inundatum LO584 

Reservoir/USA Sediment Taylor et al. 2006 

    Phormidium sp. Canal/USA   Taylor et al. 2006 
        (SDC202a,b,c)    
    Phormidium sp. Reservoir/USA Sediment Taylor et al. 2006 
        DCR301    
    Phormidium sp. Reservoir/USA Sediment Taylor et al. 2006 
        ER0100       
    Phormidium DC 699 Algae/lake/USA Benthic Taylor et al. 2006 
    Phormidium sp. LD499 Algae/lake Benthic Taylor et al. 2006 
    Phormidium sp. LM494 Lake/USA Sediment Taylor et al. 2006 
    Phormidium sp. LS587 Lake/USA Sediment Taylor et al. 2006 
    Phormidium sp. R12 Canal/USA   Taylor et al. 2006 
    P. allorgei Lake/Japan Benthic Sugiura et al. 1997 
    Phormidium sp. Lake/USA Benthic Izaguirre and Taylor 

      1995 
    P. amoenum Japan Benthic Tsuchiya and Matsumoto 

      1988 
    P. simplissimum Fish, water/Finland Benthic Persson 1988 
    P. formosum Fish, water/Finland Benthic Persson 1988 
    P. cortianum Fish farming lake/ 

    Japan 
Benthic Tabachek and 

Yurakowski 1976 
   (continued) 
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Table 2-5 (continued) 
Species Origin Habitat References 
Other geosmin-producing species 
    Nostoc sp. Creek/USA Periphytic Taylor et al. 2006 
    Microcoleus-like cyano Aqueduct/USA Epiphytic Izaguirre and Taylor 

     1995 
    Lyngbya cf. subtilis Aquaculture pond/ 

      USA 
Benthic Schrader and Blevins 

      1993 
    Planktothrix prolifica Norway Benthic Naes et al. 1988 
    Aphanizomenon gracile Lake/Germany Planktonic Juttner 1984 
    Tychonema bornetii  Lake/Norway Benthic Berglind et al. 1983a 
    Schizothrix muellerii Japan Benthic Kikuchi et al. 1973 
    Symploca muscorum Fish farming lake/ 

     Japan 
Soil Tabachek and Yurakowski 

     1976 (first reported by  
     Medsker et al. 1968) 

Actinomycetes 
    Streptomyces halstedii Aquaculture pond/ 

      USA 
Sediments Schrader and Blevins 

      2001 
    Streptomyces griseus    USA   Gerber and Lechevalier 

      1965 
 

Table 2-6 Geosmin- and 2-MIB-producing species 

Species Origin Habitat References 
Phormidium    
    Phormidium sp. Cal 
      Aq.0100 

Aqueduct/USA Periphyton Taylor et al. 2006 

    Phormidium sp.HD798     Algae/lake Periphytic Taylor et al. 2006 
    Phormidium sp. Lake/USA Benthic Izaguirre 1992 
    Phormidium sp. River/Japan Benthic Matsumuto and Tsuchiya 

      1988 
    Phormidium sp. Inland water/ 

    Norway 
Benthic Berglind et al. 1983b 

Other species    
    Synechococcus sp. 
      CL792 

Lake/USA Planktonic Taylor et al. 2006 

    Nostoc sp. Water treatment 
    Plant/Taiwan 

 Hu and Chiang 1996 

    T. granulatum Japan Benthic Tsuchiya and Matsumoto 
      1988 

    Planktothrix agardhii Lake/Norway Planktonic Persson 1988 
      Berglind et al. 1983a 
    O. brevis     Berglind et al. 1983b 
Actinomycetes    
    Streptomyces Denmark Streams/ponds Klausen et al. 2005 
    Streptomyces        
      violaceusniger 

Water supply/  
      Jordon 

Sediment Saadoun et al. 1997 

    Streptomyces sp. USA  Gerber 1977 
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Table 2-7 represents cyanobacteria species and classification.  

Table 2-7 Cyanobacteria species and classification 

Kingdom/Phylum Genus 
Prokaryota 
Cyanobacteria 
  (N2-fixing) 

 
Anabaena 
Aphanizomenon 
Cylindrospermopsis 
Gloeotrichia 
Lyngbya 
Nodularia 
Pseudanabaena 
 

(Non-N2-fixing) Gomphosphaeria 
Microcystis 
Oscillatoria 
Phormidium 
Planktothrix 

(Paerl et al., 2001) 

Cyanobacteria are prokaryotic. Three basic characteristics of cyanobacteria have 

been documented by earlier studies. First, both N2-fixing and non- N2-fixing 

cyanobacteria species are filamentous in morphology. Second, they are unicellular in 

structure. Third, they are found in the plankton and/or parasitize other aquatic plants 

(Watson, 2003; Humpage et al., 2000). 

Cyanobacteria synthesize geosmin and 2-MIB throughout growth, which relates 

to photosynthesis and pigment synthesis. These algal cells store or release these T&O 

compounds depending on growth phase and environmental factors that affect these 

processes (Naes et al., 1988; Rashash et al., 1995, 1996; Srinivasan and Sorial, 2011). 

Cell damage due to death, senescence, and biodegradation releases geosmin and 2-MIB 

into water (Srinivasan and Sorial, 2011). Figure 2-3 expresses the formation process of 

geosmin and 2-MIB. 
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               Nutrients                                          Biodegradation 
Cyanobacteria                      Cyanobacteria bloom                                 Release of geosmin  

                        Warmer                                                                        and 2-MIB in water 
                     Temperatures                  

(Srinivasan and Sorial, 2011) 

Figure 2-3 Pathway of geosmin and 2-MIB formation 

Most of the earthy-musty T&O problems in water sources reported by water 

supply utilities have also been attributed to actinomycetes (Henley et al., 1969; Rosen et 

al., 1970; Silvey and Roach, 1953). Actinomyectes, defined as plant pathogenic bacteria, 

gram-positive, filamentous (most species), and spore-forming bacteria, present in a wide 

variety of environments including sediments, water, and aquatic plant life (Klausen et al., 

2004). 

Actinomycetes have been associated with earthy-musty odors in water and fish 

since the early 1900s (Adams, 1929; Thaysen, 1936) but their actual contribution to odor 

in freshwater was unknown. In the late 1960s, the T&O compounds, geosmin and 2-MIB, 

were identified from actinomycete cultures (Gerber and Lechevalier, 1965; Gerber, 1979, 

1983). Since then, actinomycetes have attracted considerable attention in the water 

industry as a major T&O source of drinking water. 

The most common actinomycetes explored from freshwater environments include 

Actinoplanes, Micromonospora, Rhodococcus, Streptomyces, and Thermoactinomyces 

(Goodfellow and Williams, 1983). In addition, Actinomyces, Kitasatosporia, and 

Nocardia are found in aquatic environments less frequently (Cross, 1981; Jiang and Xu, 

1996; Wohl and McArthur, 1998, 2001). 
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Actinomycetes are common soil inhabitants, where their production of the earthy-

odor compounds, geosmin and 2-MIB, contributes significantly to the characteristic odor 

of soil (Gerber and Lechevalier, 1965; Buttery and Garibaldi, 1976). Stronger smells of 

those T&O compounds have been associated with periods of increased runoff (Raschke et 

al., 1975; Hrudey et al., 1992; Jensen et al., 1994), and increased actinomycete 

concentrations are associated with increased flow rate or turbidity (Jensen et al., 1994; 

Uhna´kova´ et al., 2002; Lanciotti et al., 2003).  

Actinomycetes have also been isolated from sediment near or in water and nearly 

all aquatic environments, from freshwater to saltwater. Species from these environments 

do not necessarily mean they are actively growing there, since spores may wash into 

terrestrial environments and reside in the aquatic environment for extended periods of 

time (Niemi et al., 1982; Wood et al., 1983; Takizawa, 1993; Zaitlin et al., 2003).  

Moreover, in freshwater systems, odor producing actinomycetes have been found 

in association with cyanobacteria (Sugiura et al., 1994), with aquatic plants (Raschke et 

al., 1975; Zaitlin et al., 2003), and with zebra mussels (Lange and Wittmeyer, 1997; 

Zaitlin et al., 2003). Actinomycetes have also been found in association with terrestrial 

plant litter that had fallen into streams (Raschke et al., 1975; Makkar and Cross, 1982), 

and with chitin exoskeletons in streams (Aumen, 1980). In artificial environments, 

actinomycetes were found in association with cat-tail and bulrush roots in a constructed 

wetland (Hatano et al., 1994), in drinking water pipeline deposits (Zacheus et al., 2001), 

and in sewage treatment scum (Lemmer, 1986; Jenkins et al., 1993). Many actinomycetes 

are capable of forming spores, which can survive adverse conditions (e.g. salinity) and 
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play an important role in their widespread distribution in wind and water-borne sediment 

(Lloyd, 1969; Goodfellow and Williams, 1983). 

 

2.3 Health effects and regulation 

T&O problems in drinking water result in aesthetic concerns and consumer 

complaints; however, numerous studies indicated that those problems have not been 

associated with any health effects. Therefore, currently, there are no regulations on the 

two T&O-causing compounds geosmin and 2-MIB (Dionigi et al., 1993). Although these 

compounds are not regulated by primary drinking water standards as a direct threat to 

public health, they are great concern for many water utilities because consumers 

generally rely on the taste of their water as the primary indicator of its safety. These two 

compounds can be detected by consumers as a musty-earthy odor at levels as low as 10 

ng/L (Cook et al., 2000).  

Some consumers express concern about purchasing other products that are 

contaminated by algae, such as fish, DHA, and other nutrient supplies that associate with 

contaminated water. However, some researchers have detected that geosmin/2-MIB in 

various species of fish do not result in any health effects to human (Schulz et al., 2004; 

Robedson et al., 2006). 

Earthy and musty odors, which are the most frequent types of T&O in drinking 

water, always reduce consumers` trust on water quality safety, even though there is no 

toxicity to human health (McGuire, 1995). Watson (2004) found that consumers tried to 

find alternative supplies of drinking water, such as bottled water. Water utilities address 



 

18 

concerns and avoid their consumer complaints by treating those compounds down to 

concentrations below their OTCs during seasonal outbreaks.  

Recently, a study found that these odor-causing compounds, geosmin and 2-MIB, 

can be influenced by some factors, such as water temperature, pH, light, et al. (Whelton 

and Dietrich, 2004). There are a number of treatment processes for these compounds 

removals, including GAC/PAC adsorption, advanced oxidation processes, biological 

treatment, and some other treatment methods. 

 

2.4 Treatment technologies 

T&O-causing compounds, geosmin and 2-MIB, present relatively strong stability 

to their chemical and biological degradation and can persist in dissolved forms in water 

sources (Juttener and Watson, 2007). Conventional water treatment processes, such as 

coagulation, sedimentation, and filtration, have been tried for T&O problems control. 

However, studies have shown that these processes are unable to achieve any significant 

removal of geosmin and 2-MIB (Kutschera, et al., 2009). Oxidation has been used as 

another common T&O treatment method. The common oxidants, such as Cl2, ClO2, and 

KMnO4, are not very effective in removing geosmin and 2-MIB (Lalezary et al., 1986; 

Glaze et al., 1990). Studies have shown that only O3 has significant removal of these 

compounds (85% for 3.8 mg/L dosage rate at a contact time (CT) of 6.4 min) (Jung et al., 

2004).  

Currently, the most successful technologies used by most water treatment plants 

in removing T&O-causing compounds are granular/powdered activated carbon 
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(GAC/PAC) and advanced oxidation processes (AOP) (Srinivasan and Sorial, 2009). 

Some other advanced treatment methods, such as ozonation and membrane filtration, can 

be applied efficiently as well. Ferguson et al. (1990) studied and demonstrated that 

geosmin and 2-MIB can be removed by using oxidants, such as ozone, hydrogen 

peroxide, and UV. Juttner (1995) reported that a slow sand filtration unit (flow rate of 

420 liters m-2 day-1) achieved excellent rates of elimination of geosmin and other 

terpenoid alcohols. These treatment technologies mentioned above and some others are 

discussed in detail in the following section. 

Although many of these treatment processes are quite effective at geosmin and 2-

MIB removal, they are extremely expensive to install, maintain, and operate. For current 

and future studies, more efficient and economic T&O control technologies need to be 

addressed and explored by researchers. 

2.4.1 GAC/PAC adsorption 

Activated carbons can be classified into two categories based on particle size: 

granular activated carbon (GAC) and powdered activated carbon (PAC). Either one of 

these activated carbons is being widely used as the most efficient method to adsorb T&O-

causing compounds, geosmin and 2-MIB (Ridal et al., 2001). 

GAC is used in the form of a filtration bed and is installed as a granular media 

above the sand/gravel media filter for the removal of geosmin and 2-MIB as the water 

passes through the filter. The removal efficiency of GAC depends on many factors listed 

below.   

1) Surface area of GAC 
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2) Concentration of dissolved organic carbon(DOC) 

3) Contact time 

4) Types of activated carbon used 

5) Filter age 

The surface area of GAC is directly proportional to the removal efficiency of 

geosmin and 2-MIB. The large surface area can adsorb a large amount of these 

compounds from water; however, there is a competition between geosmin/2-MIB and 

other organic compounds to reserve a seat in the activated carbon pores. Ridal et al. 

(2001) concluded that competitive adsorption was a bigger factor for the reduced 

performance of geosmin and 2-MIB removal than some reasons pointed out above. 

Simultaneous adsorption between DOC and 2-MIB on GAC was primarily influenced by 

pore size/volume distribution (Newcombe et al., 2002a). Smaller DOC molecules 

compete by direct and strong adsorption for the available adsorption sites, larger DOC 

compounds reduce equilibrium adsorption capacity by adsorbing closer to external 

surfaces and blocking access to pores (Newcombe et al., 2002b). Another factor which 

affects GAC performance is contact time. The contact time is the period over which 

water flows through the GAC filter. The removal efficiency increases as the contact time 

is increased. Different types of GAC have different absorption rates. Ho et al. (2010) 

studied and compared two different types of GAC: a wood-based carbon and a coal-based 

carbon. They observed that wood-based carbons are suitable for 2-MIB removal, both at 

equilibrium and short contact times. The GAC performance also depends on filter age. 

Newcombe et al. (1996) reported that with an empty bed contact time (EBCT) of 20 min, 

18 months was the maximum time that their GAC could be expected to reduce 2-MIB 
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concentrations to below the odor threshold. Ridal et al. (2001) found that the removal 

efficiency of geosmin and 2-MIB substantially decreased after 12 months. They 

suggested that an economic bed life of GAC filters is less than 2 years. 

GAC and other technologies combination treatment method are more effective for 

geosmin and 2-MIB removal. Srinivasan and Sorial (2009) reported that the complete 

removal of geosmin and 2-MIB occur in a GAC combined with a biofilter or followed by 

ozonation. Drikas et al. (2009) investigated geosmin and 2-MIB removal for over two 

years by using GAC followed by either coagulation or microfiltration (MF). Ridal et al 

(2001) removed about 60% of geosmin and 80% of 2-MIB concentrations by using GAC 

and capped filters after 12 months operation. Although the removal efficiency of GAC is 

achieved below odor threshold concentrations of those compounds, the complex 

procedure and high cost of this technology make it difficult to implement in drinking 

water treatment plant. 

PAC is typically added to the water prior to alum treatment and must be added 

continuously during taste-and-odor outbreak season (Ridal et al., 2001). It is currently the 

most common technology for geosmin and 2-MIB removal. The primary advantages of 

PAC are its low capital cost and the ability to apply it only when needed (Najm et al., 

1990a). When the taste-and-odor problem becomes long-term, consistent PAC is applied. 

Gardiner (1973) suggested that PAC can be more economical than GAC to solve taste-

and-odor problems if carbon adsorption is required for less than three months per year. 

Like GAC, several factors including pore size distribution, surface characteristics, 

types of PAC, presence of DOC, and PAC dose, influence the PAC effectiveness of 
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geosmin and 2-MIB removal. Pelekani and Snoeyink (1999, 2000, 2001) reported that the 

competitive mechanism depends greatly on the pore size distribution of the carbon. They 

found that a wider pore size distribution in the adsorbent resulted in less pore blockage 

and consequently less evidence of competition. Bruce et al. (2002) described how the 

effectiveness of PAC for the removal of geosmin and 2-MIB depends on the type of PAC 

used. They found that bituminous coal-based PAC performed better than lignite or wood-

based PAC. Newcomb et al. (1997) and Chen et al. (1997) also reported that wood-based 

PAC shows inferior adsorption for 2-MIB compared with coconut- or coal-based PAC. In 

the case of PAC, optimizing the PAC dosage is an important factor, since overdosing 

could result in excessive sludge production, reduced filter performance, larger operating 

costs, and consumer complaints regarding the quality of the water (Cook et al., 2001). 

2.4.2 Advanced oxidation process (AOP) 

Advanced oxidation processes (AOP), such as ozone, UV, and hydrogen peroxide 

(H2O2), are also effective methods to remove geosmin and 2-MIB. Similar to activated 

carbons adsorption, the characterization of natural organic matter (NOM) in water can 

affect ozonation of geosmin and 2-MIB as well (Ho et al., 2002). This study concluded 

that NOM with higher specific UV absorbance (SUVA) characteristics had lower contact 

times and faster reaction with ozone; thus, the highest geosmin and 2-MIB removal 

(98%) is observed for the lowest contact time. In addition, some NOM competed with 

geosmin and 2-MIB for generating hydroxyl radicals during ozonation (Ho et al., 2002). 

Although UV/H2O2 successfully destroyed geosmin and 2-MIB and removed them, 

ozone oxidation parameters, such as pH, ozone and H2O2 dosage, water temperature, and 

initial concentrations of geosmin and 2-MIB, can affect the removal efficiencies of both 
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geosmin and 2-MIB (Rosenfeldt et al., 2005). Nerenberg et al. (2000) found that removal 

efficiencies of these compounds increased with increase in temperature, ozone dosage, 

pH, and H2O2 concentration. Westerhoff et al. (2006) investigated that geosmin showed 

better removal than 2-MIB because of better second order reaction kinetics. AOPs can 

effectively eliminate geosmin and 2-MIB in water; however, high cost and fouling 

problems should to be considered before their installation.  

2.4.3 Biological treatment 

Geosmin and 2-MIB can be biodegraded by gram-positive bacteria because their 

structure is similar to biodegradable alicyclic alcohols and ketones (Rittmann et al. 1995). 

However, biological processes require electron-donor and electron-acceptor substrates. 

The substrates transfer electrons from the donor to the acceptor and provide the energy to 

grow and maintain the bacteria used for geosmin and 2-MIB biodegradation (Odencrantz, 

1990). Since the odor threshold concentrations of geosmin and 2-MIB are very low (< 10 

ng/L), the presence of these compounds in raw drinking water does not support the 

growth of microorganisms in biofilters. Hence, geosmin and 2-MIB behave as secondary 

substrates while biofilm microorganisms are maintained by the primary substrates 

(Rittmann et al. 1995). Assimilable organic carbon (AOC) and biodegradable dissolved 

organic carbon (BDOC) are always considered as primary substrates. 

According to previous studies, the most common biological treatment method for 

taste-and-odor causing compounds removal is biofiltration. Huck et al. (1995) performed 

one of the first studies to investigate biological removal of geosmin and 2-MIB in 

drinking water. They concluded that these compounds removals were very low and 
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biodegradation was not the most effective technology to remove these compounds. 

Conversely, Ho et al. (2007) illustrated geosmin and 2-MIB can be removed by a 

biological sand filtration. Their results showed that rapid biodegradation of these 

compounds were observed in biological sand filters and four different bacteria were 

identified to be responsible for this biodegradation. Elhadi et al. (2006) found that 

different factors such as temperature, media type, biodegradable organic matter (BOM) 

concentration, and influent concentrations, can affect the removal efficiency of geosmin 

and 2-MIB. The study showed that higher removals were observed at higher temperature, 

at higher influent concentrations, and at higher BOM concentrations. 

2.4.4 Other innovative treatment methods 

A number of studies that investigated some of the integrated technologies like 

GAC + biofiltration and ozonation + biofiltration have shown effective removal of 

geosmin and 2-MIB and have potential to do further research to apply these technologies. 

Some other innovative treatment methods have been investigated in recent years. Lawton 

et al. (2003) reported geosmin and 2-MIB can be removed by using titanium dioxide 

photocatalysis. The results showed rapid degradation of both geosmin and 2-MIB (>99%) 

removal within 60 minutes. Song and O’Shea (2007) found geosmin and 2-MIB removal 

in water by ultrasonic irradiation and concluded that the removal process could be 

achieved in terms of minutes. 
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2.5 Algaecides 

The substances producing taste-and-odor compounds are associated with algae. 

Algaecides can kill or inhibit the growth of algae either by direct toxicity or by metabolic 

interference (Wagner, 2004). They are applied in drinking water reservoirs to control 

taste and odor problems at least once per year, and even more often when algal blooms 

occur. Algaecides are classified into four categories, including natural, copper-based, 

synthetic organic, and oxidizers.  

2.5.1 Natural algaecides 

Natural algaecides are allelopathic chemicals, which inhibit the growth of a plant 

when they are naturally released by a different plant. This type of algaecide is typically 

more effective than other types of algaecides, since it provides appropriate amount of 

increased oxygen demand caused by algal mortality during this algaecide application 

(Deas et al., 2009).  

Barley straw is a kind of natural algaecide. It is typically applied in small water 

sources, such as farm ponds, small lakes, or small reservoirs. The study reported by 

Wagner (2004) illustrated that barley straw is a relatively economical treatment due to 

inexpensive initial and operating cost; however, it is difficult to control precisely due to 

uncontrollable water chemistry factors. Barley straw has not been applied in large scale 

fields because it is not a comprehensive, advanced, and desirable algae control 

technology that contains potentially uncontrollable factors (Deas et al., 2009). 

 



 

2.5.2 Copper-based algaecides

Copper is an essential micronutrient for growth of algae and 

been using in various metabolic and enzyme processes (Cid 

higher concentration of copper may serve as a cellular toxicant. The mechanism of 

copper toxicity was found by Kenefick 
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following treatment with copper (0.64 mg L
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Figure 2-4 The transport of copper complexes into a cell by facilitated diffusion
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lgaecides 

Copper is an essential micronutrient for growth of algae and Cyanobacteria

been using in various metabolic and enzyme processes (Cid et al., 1995). However, 

higher concentration of copper may serve as a cellular toxicant. The mechanism of 

s found by Kenefick et al. (1993) in a study where membrane damage 

was seen within 24 hours in cultured cells of the cyanobacterium Microc

following treatment with copper (0.64 mg L-1 Cu as CuSO4). At lower concentration, 

copper ions need to be transported into cells by a process of facilitated diffusion through 

the membrane (Florence and Stauber, 1986). Figure 2-4 shows the transport of copper 

complexes into the cell membrane by diffusion. 

(Florence and Stauber, 1986)

4 The transport of copper complexes into a cell by facilitated diffusion

based algaecides, including chelated copper and copper sulfate 

, have been used for an effective removal and growth inhabitation

-based algaecides treatments tend to inhibit rapid repopulation of 

algae, particularly chelated forms, since chelated copper form contains less copper th

Cyanobacteria. It has 

, 1995). However, 

higher concentration of copper may serve as a cellular toxicant. The mechanism of 

(1993) in a study where membrane damage 

Microcystis aeruginosa 

). At lower concentration, 

copper ions need to be transported into cells by a process of facilitated diffusion through 

transport of copper 

 

(Florence and Stauber, 1986) 

4 The transport of copper complexes into a cell by facilitated diffusion 

including chelated copper and copper sulfate in two 

inhabitation of algae 

based algaecides treatments tend to inhibit rapid repopulation of 

algae, particularly chelated forms, since chelated copper form contains less copper than 
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copper sulfate. Moreover, copper-based algaecides can be less effective in alkaline waters 

or at lower temperatures, although chelated forms perform better (Wagner, 2004; García-

Villada et al., 2004). The application of these algaecides can kill certain algae species if 

they are applied properly.  

2.5.3 Synthetic organic algaecides 

Synthetic organic algaecides are absorbed by algae and remove algae by 

containing “membrane active” chemicals that disrupt algae metabolism (Deas et al., 

2009). These quick and useful treatment methods are typically used as a backup plan 

when copper based algaecides are ineffective. Limitations of synthetic organic algaecides 

include extended periods of restricted water use after application; non-selective 

characteristic that they provide; and possibly toxicity to other desirable aquatic fauna 

(Wagner, 2004). Therefore, synthetic organic algaecides could not be applied in some 

situations. Toxicity to zooplankton or other grazers affects ecological balance while 

removing algae in aquatic systems. 

2.5.4 Oxidizer algaecides 

Oxidizer algaecides have the ability to disrupt cellular functions, such as breaking 

cellular membranes. That is how these algaecides remove algae in water resources. 

Sodium carbonate peroxyhydrate is a typical form of oxidizer algaecides. It only effects 

blue-green algae while leaving other forms of algae in the system to produce oxygen via 

photosynthesis (Deas et al., 2009). Oxidizer algaecides can work with copper-based 

algaecides as integrated treatment methods. Oxidizer algaecides also work quickly and 

are non-persistent in the water body (Solvay Chemicals, 2005). However, oxidizer 
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algaecides are a relatively new and simple type of algaecide comparing to copper-based 

algaecides. 

The mode of action, example products, general advantages, and general 

disadvantages of four major types of algaecides discussed above are summarized in Table 

2-8. Six commercially available algaecides categorized into different types are listed in 

Table 2-9. EarthTec® will be investigated in this study as an example and also due to its 

most efficacy removal of taste-and-odor compounds comparing with other algaecides. 
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Table 2-8 Types of algaecides and the associated advantages and disadvantages 
Algaecide Type Natural Copper-Based Synthetic 

Organic 
Oxidizer 

Mode of Action Allelopathic Inhibits photosynthesis, 
nitrogen metabolism and 
membrane transport 

Disrupts 
algae 
metabolism 

Ruptures the cell 
membranes and 
disrupts most 
cell functions 

Example Products Barley 
Straw 

Algimycin PWF; 
Captain; Copper Sulfate 
Crystals; Cutrine Plus; 
Cutrine Ultra 

Hydrothol 
191 

GreenClean 
PRO; PAK-27; 
Phycomycin 

G
en

er
al

 A
dv

an
ta

g
es

 

Low Cost × - - - 
Gradual effect × - - - 
Effective when 
Copper is not 
effective 

- - × - 

Fast acting - × × × 
Controls wide 
range of algae - × - - 

Approved for 
differing water 
bodies 

- × - × 

Can be used 
with copper 
based 
algaecide 

- - - × 

Non persistent - - - × 
Selective - - - × 

G
en

er
al

 D
is

ad
va

nt
ag

es
 

Inconsistent 
results × - - × 

Limited to 
small bodies of 
water 

× - - × 

Restricts water 
body use after 
application 

- - × - 

Non-selective - - × - 
Not affective 
on all algae 
types 

- - × - 

Can be toxic to 
aquatic fauna - × × - 

Can be 
ineffective at 
cold 
temperatures 

- × - - 

Long-term use 
results in 
accumulation 

- × - - 

Some algae 
show 
resistance 

- × - - 

Limited 
testing/history - - - × 

(Deas et al., 2009) 
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Table 2-9 Commercially available algaecides 

Algaecide Components Type Manufacturer 

EarthTec® 
Copper Sulfate Pentahydrate: 20.0% 

Inert Ingredients: 80% 

Acidified 
Copper 

Earth Science 
Laboratories 

Bentonville, AR 

Bluestone 
Copper Sulfate Pentahydrate: 99.0% 

Other ingredients: 1% 

Neutral 
Copper 

General 
Chemical 

Parsippany, NJ 

Aqua-
Ox™ 446 

Copper Sulfate Pentahydrate: 19 - 21% 

Soluble Cupric Iron : 4.8 - 5.3% 

Sodium Permanganate: 4% 

Copper/ 
Permanganate 

General 
Chemical 

Parsippany, NJ 

Cutrine®- 
Plus 

Copper as elemental: 9.0% 

Inert Ingredients: 91.0% 

Chelated 
Copper 

Applied 
Biochemists 

Germantown, WI 

PAK™ 27 

Sodium carbonate peroxyhydrate: 85 % 

Sodium carbonate: 13% 

Sodium silicate: 1.5-2% 

Hydrogen 
peroxide 

Solvay 
Chemicals 

Houston, TX 

Sulfuric 
Acid 

H2SO4 Acid 
Fisher Scientific 

Pittsburgh, PA 

(Wilber et al., 2010) 

 



 

 

3.1 Experimental materials

The reagent standard

(2-MIB) (CAS # 2371-42

MO, USA) as a 100 µ

compounds is shown in Table 3

dilution with deionized water or reagent water. 

Table 3-1 Compound name, compound structure, molecular formula, molecular weight, 
and CAS registry number of the compounds used
Compound Name Compound Structure

Geosmin 

2-methylisoborneol 
(2-MIB) 
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CHAPTER III 
 

 

MOTHODOLOGY 

materials 

standards of geosmin (CAS # 23333-91-7) and 2-methylisoborneol 

42-8) was purchased from Supelco (Sigma-Aldrich, St. Louis, 

µg/mL solution in methanol. Basic information about these 

shown in Table 3-1. The solutions were stored at 4 °C and used after 

dilution with deionized water or reagent water.  

1 Compound name, compound structure, molecular formula, molecular weight, 
and CAS registry number of the compounds used 

Compound Structure Molecular 
Formula 

Molecular 
Weight 

CAS registry number

 

C12H22O 182.3 CAS # 23333

 

C11H20O 168.3 
 

CAS # 2371

methylisoborneol 

Aldrich, St. Louis, 

g/mL solution in methanol. Basic information about these 

C and used after 

1 Compound name, compound structure, molecular formula, molecular weight, 

CAS registry number 

CAS # 23333-91-7 

CAS # 2371-42-8 
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Water was obtained from the Mohawk Drinking Water Treatment Plant (Tulsa, 

OK). This water plant receives water via a closed-pipe system from Lake Eucha, a water 

supply reservoir located in Delaware County in northeastern Oklahoma. Water samples 

were collected from the storage tank before lake water enters into the water plant. At that 

collection site, during the testing period no geosmin and 2-MIB were found in water 

samples used as water in experiments. 

EarthTec® was obtained from Earth Science Laboratories, Inc. (Bentonville, AR, 

USA) as an example of algaecides used in this study. It is a copper solution containing 

99.99% cupric ions (Cu++), which are toxic to microscopic organisms at low doses. 

EarthTec® is used in lakes, ponds, municipal drinking reservoirs, or other water systems. 

It has the ability to remain in suspension over long periods with mathematically 

predictable copper levels which allow precise control of algae and bacteria without over-

treatment (Earth Science Laboratories, Inc. 2009). 

A solid phase micro-extraction (SPME) extraction technique was used to analyze 

the concentrations of geosmin and 2-MIB. Manual assemblies of SPME including a 2cm-

50/30µm DVB/Carboxen™/PDMS StableFlex™ SPME coated fiber (Supelco part 

number 57348–U) and SPME fiber holder (Supelco part number 57330–U) (Figure 3-1) 

were purchased from Supelco (Bellefonte, PA).  

 

Figure 3-1 SPME fiber holder 
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Other apparatus and instrumentation used for this study are listed below. They 

include a GCMS-QP5050A gas chromatograph-mass spectrometer (GC-MS) device 

(SHIMADZU corporation), GC/MS software (CLASS-5000 Version 2.2), GC carrier gas 

(helium, 99.999 percent), sodium chloride, electronic balance, laboratory oven, amber 

sample vials (40mL), heating block (a temperature of 60 to 65 °C), laboratory heater 

(with magnetic stirrer), magnetic bars, volumetric glassware (50, 250, 500 mL), pipettes 

(0.2 and 25 mL), laboratory stopwatch. 

 

3.2 Headspace solid-phase microextraction 

The SPME method was used to extract target compounds, geosmin and 2-MIB, 

present in the water samples. The device has a polymer-coated fiber that is fused within a 

syringe. The type of polymer coating is chosen in order to match the characteristics of the 

target analytes (Nakamura and Daishima, 2005). For this study, a fiber coated with 

DVB/Carboxen™/PDMS StableFlex™ with film thickness of 50/30µm was used. To 

ensure that the fiber was clean before analyzing water samples, it was conditioned at the 

first time using it. The conditioning was carried out with exposing the fiber in the inlet of 

the gas chromatograph overnight at 270 °C. 

The manual SPME procedure (Figure 3-2) is depicted below. A 25 mL volume of 

water sample was transferred into a 40 mL screw-cap sample vial with a PTFE septum. 

3.37 g of sodium chloride and a PTFE-coated magnetic stir bar were added in the sample 

vial. The vial with solution was placed in a heating block at 65 °C and was stirred with 

the magnetic bar. The SPME needle pierced the septum of sample vial and the SPME 
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fiber was exposed in the sample for 35 minutes for complete adsorption. After extraction, 

the fiber was retracted into the needle. The SPME assembly was removed from the 

sample vial and directly injected into the GC-injection port of the GC–MS system. The 

fiber was exposed in the GC column immediately and the analysis software was started. 

After 20 minutes analysis, SPME assembly was removed from the GC-injection port and 

used for the next sample.  

 

Figure 3-2 The manual SPME procedure 

 

3.3 Gas chromatography–mass spectrometry (GC-MS) 

Analysis of water samples using gas chromatography-mass spectrometry (GC-

MS) was carried out with a Shimadzu Model QP5050A GC-MS device in conjunction 

with a CLASS-5000 (Version 2.2) GC-MS workstation. The instrument conditions used 

for this study are indicated in Table 3-2. This technique is a very useful analyzing tool 

due to its ability to separate and uniquely identify organic compounds from water 
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samples (Mallevialle and Suffet, 1987). A number of compounds at parts per trillion to 

parts per billion levels can be detected.  

Table 3-2 GC-MS Conditions 

Parameter Condition 

Model Shimadzu GC/MS-QP5050A 

Column  type EquityTM-5 (30m×0.25mm×0.25µm) 

Injector Split-less, 10 min sample exposure 

Injector temperature 250°C 

Oven temperature 60 °C (hold for 2-4 min) to 250°C at 10°C/min 

Carrier gas Helium, 99.999 percent (at 70 kPa) 

Flow rate 7 mL/min 

Mass spectrometry Ion-source temperature, 200 °C. 

Mode SIM (m/z = 112 for geosmin, m/z = 95 for 2-MIB) 

 

The chromatogram peaks from the GC-MS results are proportioned to the 

concentration of the injected standards compounds. The retention times of different 

compounds are based on the types of the organic compounds. The type, length, and 

diameter of column, temperature of GC oven, detector type, and carrier gas flow rate are 

key factors for consistent separation and were kept constant for every sample. The MS 

part ionizes the compounds with an electron beam, and then the different fragments are 

separated according to their mass to charge ratio. The target compound can be identified 

by the resulting fragmentation pattern.  
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In this research, geosmin and 2-MIB were desorbed from SPME fiber at the inlet 

of gas chromatograph and eluted from GC column to the MS for identification. Selected 

ion monitoring (SIM) mode detections for geosmin and 2-MIB were selected with mass 

to charge ratios, m/z = 112 (geosmin) and m/z = 95 (2-MIB). The peak areas were 

measured to determine concentrations of geosmin and 2-MIB in water samples. The 

method detection limits (MDLs) for these compounds are 0.5 ng/L. 

 

3.4 Sample preparation 

A series of control standards were prepared for a calibration curve at 

concentrations ranging from 0 to 200 ng/L (0, 25, 50, 100, 150 and 200 ng/L). First, the 

standard of geosmin and 2-MIB solution in methanol (100 µg/mL) was added to 500 mL 

deionized water to make a 200 ng/L control standard and then aliquots of the 200 ng/L 

standard were transferred to different flasks to dilute to 150, 100, 50, and 25 ng/L control 

standards with deionized water. A blank standard (0 ng/L) was prepared using unspiked 

deionized water. SPME was used to extract the geosmin and 2-MIB from the control 

standards and the GC-MS was employed for the analyses of these compounds. Peak areas 

of geosmin and 2-MIB were found by GC-MS at each standard concentration and then a 

calibration curve was generated to determine their concentrations of other water samples. 

Five water samples were prepared for different removal analyses of geosmin and 

2-MIB. The first one is named contaminated water, which was made by unfiltered 

reagent water, Lake Eucha water, spiked with 200 ng/L geosmin and 2-MIB. The second 

water sample is filtered reagent water spiked with 200 ng/L geosmin and 2-MIB. Reagent 
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water was filtered through a glass-fiber filter (0.7 µm nominal pore diameter) using a 

duo-seal vacuum pump to remove bacteria, dissolved solid, and other suspended 

particulate matters. Another water sample was made by deionized water spiked with 200 

ng/L geosmin and 2-MIB to identify the fate of these taste and odor-causing compounds. 

The other two water samples are treatment samples, which were treated with a 

commercial algaecide, EarthTec®, at recommended dosage (1.188×10-9 mg/L; 1 

gal/1,000,000 gal raw water) and twice dosage (2.376×10-9 mg/L; 2 gal/1,000,000 gal 

raw water). Both algaecide dosages were added to contaminated water samples, which is 

unfiltered reagent water and 200 ng/L geosmin and 2-MIB. All these water samples were 

tested through SPME extraction method and analyzed by GC-MS at five time points (0, 

12, 24, 36, and 48 hours) under room temperature (25°C).  

 

3.5 Experimental design 

For this study, three experiments were conducted to analyze the removal and 

effect of various reaction conditions for earthy and musty odorants, geosmin and 2-MIB, 

in water samples. This includes the fate of geosmin and 2-MIB experiment, algaecide 

treatment experiment, and mixing effect experiment.  

3.5.1 Experiment one 

The first experiment is developed by the analysis of mechanisms of geosmin and 

2-MIB in lakes to determine any natural removal mechanisms. The production of 

geosmin and 2-MIB are from algae added in the experimental lab. Four loss mechanisms 

including volatilization, photolysis, sorption, and/or biodegradation contributed to the 
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decreased concentration. Volatilization of geosmin and 2-MIB require long times to make 

observable change in lakes. Photolysis of these compounds can only be found near the 

surface of reservoirs; therefore, volatilization and photolysis losses are probably 

negligible. However, sorption and biodegradation of geosmin and 2-MIB could 

contribute significant removals of these compounds. Sorption could occur when 

particulate matter is present in lakes. Biodegradation as the major mechanism could 

affect the removal of geosmin and 2-MIB by native bacteria. Therefore, the purpose of 

this experiment is to identify the sorption and biodegradation of analytes that affect the 

removal of these compounds. Unfiltered lake water with dissolved solid and bacteria and 

filtered lake water without them spiked separately with 200 ng/L geosmin and 2-MIB 

were tested simultaneously for 48 hours. A control water sample of deionized water with 

200 ng/L geosmin/2-MIB was compared to determine the removal efficiency of analytes 

in other two water samples, unfiltered lake water and filtered lake water with 200 ng/L 

geosmin/2-MIB, respectively. 

3.5.2 Experiment two 

Algaecides have the ability to stop the growth of algae in lakes, ponds, reservoirs, 

or other water bodies. Recent studies conducted at a Tulsa water treatment plant found 

that algaecides can also contribute to the removal of taste and odor-causing compounds, 

geosmin and 2-MIB. Schweitzer and Ekstrom (2006) indicated that algaecide is effective 

in reducing taste and odor causing-compounds concentrations, especially with geosmin. 

Therefore, the purpose of algaecide treatment experiment in this study is to identify the 

removal of analytes by EarthTec®, which is used as an example of algaecide due to its 

most effective removal. Manufactured recommended dosage (1.188×10-9 mg/L; 
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1gal/1,000,000gal raw water) and twice dosage (2.376×10-9 mg/L; 2gal/1,000,000gal raw 

water) of EarthTec® treatment water samples with unfiltered lake water were conducted 

simultaneously in this experiment and compared the removal efficiency of geosmin and 

2-MIB. A control sample without algaecide was run as a control simultaneously as well 

to verify the stability of these compounds in solution. 

3.5.3 Experiment three 

In water treatment plants, water sources are obtained from surface water bodies, 

such as lakes, rivers, or reservoirs. The common way to transport raw water from water 

sources to water treatment plants is using pipelines. For certain study cases, the removal 

of geosmin and 2-MIB by algaecides was found in pipelines while raw water was 

traveling through them. The algaecide was injected at the intake point of surface water 

body and raw water was traveling for about two days to water treatment plant. The water 

is unstable while traveling through pipelines; therefore, the purpose of the mixing effect 

experiment is to simulate the reality of the situation of water inside the pipelines and to 

identify the removal of geosmin and 2-MIB under this environment. Two water samples 

treated by twice recommended dosage (2gal/1,000,000gal raw water) of EarthTec® with 

and without agitation were conducted simultaneously in mixing effect experiment to 

compare and identify the removal of geosmin and 2-MIB. A control sample with 200 

ng/L geosmin/2-MIB and unfiltered lake water (without agitation) was tested as a 

standard to determine the removal efficiency of analytes. In addition, a water sample with 

200 ng/L geosmin/2-MIB and unfiltered lake water (with agitation) was conducted as 

well as a reference. 



 

40 

 

CHAPTER IV 
 

 

FINDINGS 

 

4.1 Calibration curve 

The analysis of the removal of earthy and musty odorants, geosmin and 2-MIB, in 

water samples were conducted with the SPME extraction technique and GC-MS analysis 

method. Results and discussions of each of three experiments are described below. 

Duplicate samples under the equivalent condition were conducted at each data point. In 

order to minimize experimental errors, the averages of duplicate samples` results were 

used as final results of these experiments. The relative percentage difference within 20 

percent for final geosmin/2-MIB concentration of each extraction set is the goal of these 

experiments. 

��� � ��� � �	
�
 � � 100, 

where    RPD = relative percentage difference; 

 |�� � �	|= absolute value of the difference between the two values; and 
   �
 = average of the two values. 



 

The GC-MS chromatogram of 200 ng/L geosmin and 2

from another source (Mamba 

illustrates geosmin and 2

respectively. This chromatogram is used as the reference chromatogram in the 

determination of geosmin and 2

also detected by comparing their spectra with those in standard NIST reference libr

which are in the software.

Figure 4-1 The GC-MS chromatogram of 200 ng/L geosmin and 2

Two calibration curves of geosmin and 2

200 ng/L (0, 25, 50, 100, 150 and 200 ng/L) were generated from ea

experiments to determine their concentrations in other water samples. A number of 

calibration curves were obtained and the slopes of them are relatively similar. Thus, 

Figure 4-2 and Figure 4-
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MS chromatogram of 200 ng/L geosmin and 2-MIB standards is obtained 

Mamba et. al., 2007) and shown as an example in Figure 4

illustrates geosmin and 2-MIB peaks at retention times of 10.3 

respectively. This chromatogram is used as the reference chromatogram in the 

determination of geosmin and 2-MIB in the water samples. The target compounds are 

also detected by comparing their spectra with those in standard NIST reference libr

which are in the software. 

MS chromatogram of 200 ng/L geosmin and 2-MIB standards

Two calibration curves of geosmin and 2-MIB at concentrations ranging from 0 to 

200 ng/L (0, 25, 50, 100, 150 and 200 ng/L) were generated from ea

experiments to determine their concentrations in other water samples. A number of 

calibration curves were obtained and the slopes of them are relatively similar. Thus, 

-3 are representative calibration curves of geosmin a

MIB standards is obtained 

) and shown as an example in Figure 4-1. It 

MIB peaks at retention times of 10.3 and 11.7 min, 

respectively. This chromatogram is used as the reference chromatogram in the 

MIB in the water samples. The target compounds are 

also detected by comparing their spectra with those in standard NIST reference libraries, 

 

MIB standards 

MIB at concentrations ranging from 0 to 

200 ng/L (0, 25, 50, 100, 150 and 200 ng/L) were generated from each of three 

experiments to determine their concentrations in other water samples. A number of 

calibration curves were obtained and the slopes of them are relatively similar. Thus, 

3 are representative calibration curves of geosmin and 2-MIB. 
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Excellent linearity is obtained for both geosmin and 2-MIB with R2 values of 0.9933 and 

0.9957, respectively. Peak areas of analytes are found in Table 4-1 and Table 4-2 by GC-

MS at each standard concentration. 

 

 

Figure 4-2 Calibration curve of geosmin at concentration ranging from 0 to 200 ng/L 

 

Table 4-1 Peak areas of geosmin at each standard concentration 

Calibration Curve Set 1 Set 2 Average Area 
0 0 0 0 
25 1112796 649096 880946 
50 3286277 3307871 3297074 
100 6667865 6580972 6624418.5 
150 13278533 9815629 11547081 
200 16428125 14838617 15633371 

 

y = 80322x - 697673
R² = 0.9933
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Figure 4-3 Calibration curve of 2-MIB at concentration ranging from 0 to 200 ng/L 

 

Table 4-2 Peak areas of 2-MIB at each standard concentration 

Calibration Curve Set 1 Set 2 Average Area 
0 0 0 0 
25 462905 509134 486019.5 
50 1631465 1683905 1657685 
100 3891530 3144448 3517989 
150 5988644 4933410 5461027 
200 8248732 7263620 7756176 

 

 

4.2 Result and discussion 

4.2.1 Experiment one 

The first experiment is designed by the analysis of mechanisms of geosmin and 2-

MIB in lakes to determine any natural removal mechanisms. The results of geosmin fate 
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experiment are listed in Table 4-3 and Figure 4-4. These results indicate that 200 ng/L 

geosmin is removed by 14.78% in unfiltered lake water sample and 9.62% in filtered lake 

water sample. However, comparing with the control water sample, which is deionized 

water, slight differences of final concentrations can be found in these two water samples. 

The conclusion from the results is that two major mechanisms, sorption and 

biodegradation, could not make effective contribution on the removal of geosmin in lakes 

since the concentrations of geosmin in unfiltered lake water, filtered lake water, and 

deionized water are relatively similar over 48 hours.  

The results of 2-MIB for this experiment are shown in Table 4-4 and Figure 4-5. 

Similar conclusions are found here. Since the slightly different concentrations of three 

water samples in this experiment, little removal of 2-MIB was caused by mechanisms in 

the lake, such as sorption and biodegradation. 

Table 4-3 The concentrations of geosmin for the compound fate experiment 

Experiment 1   Concentration 
Water Sample Time, hrs 0 12 24 36 48 

200ng/L Geosmin + 
Deionized Water  

Set 1 228.86 223.28 213.01 207.67 197.38 
Set 2 216.08 206.31 211.67 191.73 180.18 
Average 222.47 214.79 212.34 199.70 188.78 

200ng/L Geosmin + 
Unfiltered Lake Water  

Set 1 239.86 219.98 207.64 203.04 204.91 
Set 2 230.33 198.95 205.77 187.31 195.79 
Average 235.09 209.47 206.71 195.17 200.35 

200ng/L Geosmin + 
Filtered Lake Water 

Set 1 205.96 215.29 213.69 202.76 198.60 
Set 2 204.77 195.87 190.83 191.73 172.63 
Average 205.37 205.58 202.26 197.25 185.62 
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(      is 200ng/L Geosmin + Deionized Water;      is 200ng/L Geosmin + Unfiltered Lake 
Water;      is 200ng/L Geosmin + Filtered Lake Water) 

Figure 4-4 The plots of geosmin concentrations for the compound fate experiment 

 

Table 4-4 The concentrations of 2-MIB for the compound fate experiment 

Experiment 1   Concentration 
Water Sample Time, hrs 0 12 24 36 48 

200ng/L 2-MIB + 
Deionized Water  

Set 1 200.61 160.76 171.99 176.02 173.45 
Set 2 205.72 216.57 186.41 207.10 151.28 
Average 203.16 188.66 179.20 191.56 162.36 

200ng/L 2-MIB + 
Unfiltered Lake Water 

Set 1 202.47 165.70 166.04 186.87 176.87 
Set 2 255.01 227.97 242.72 218.35 233.84 
Average 228.74 196.83 204.38 202.61 205.35 

200ng/L 2-MIB + 
Filtered Lake Water 

Set 1 167.04 178.22 165.79 170.58 158.73 
Set 2 183.64 173.67 158.35 172.78 159.65 
Average 175.34 175.95 162.07 171.68 159.19 
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(      is 200ng/L 2-MIB + Deionized Water;      is 200ng/L 2-MIB + Unfiltered Lake 
Water;      is 200ng/L 2-MIB + Filtered Lake Water) 

Figure 4-5 The plots of 2-MIB concentrations for the compound fate experiment 

 The mass balance of geosmin/2-MIB in actual lakes includes production and loss 

of these compounds. Four major loss mechanisms, volatilization, photolysis, sorption, 

and biodegradation, may affect the concentrations of geosmin and 2-MIB in reservoirs. 

Volatilization of geosmin and 2-MIB depends on their Henry`s constants (Hc), depth and 

surface area of lakes or reservoirs, and average wind speed. The degradation processes of 

these compounds by volatilization are too slow to be considered significant. Photolysis of 

geosmin and 2-MIB has been found near the surface of water bodies; however, Wetzel 

(1983) documented that UV light is too hard to penetrate deep enough into large lakes or 

reservoirs. A small percentage of photolysis near the surface of lakes could not contribute 

significantly to removal of geosmin and 2-MIB.  
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The experiment comparing unfiltered lake water with filtered lake water in this 

study investigated the potential effects of sorption and biodegradation of geosmin and 2-

MIB. Although the conclusion of the experiment is that no analytes can be removed by 

sorption and biodegradation due to low suspended solids in the study lake, a number of 

studies investigated this and reported these two mechanisms could effectively remove the 

analytes instead. Sorption may remove geosmin and 2-MIB onto particulate matter in 

lakes. It may be important in lakes with high suspended particulate concentrations. 

Biodegradation in lakes is the dominant mechanism since other potential mechanisms are 

minimized. Although the above experiment with bacteria and organisms in water samples 

does not show any impressive removals, much evidence for geosmin 2-MIB 

biodegradation is available from literatures. Hoehn (1965) reported that Bacillus cereus 

has been suggested as the major Bacillus species responsible for degradation of earthy-

musty odors in lakes and sand filters. He observed increased population of gram positive 

heterotrophic bacilli when concentrations of earthy-musty odors were highest. The 

disappearance of the earthy-musty odors was obtained in his study by decreases in 

bacillus populations. Therefore, native bacteria could be responsible for geosmin and 2-

MIB degradation in the lakes. 

4.2.2 Experiment two 

The purpose of the second experiment in this study is to identify the removal of 

analytes by EarthTec®. The results of the algaecide treatment experiment for both 

geosmin and 2-MIB are shown in Table 4-5 and Table 4-6 and plots are displayed in 

Figure 4-6 and Figure 4-7. According to the results of geosmin, they show the removals 

are 14.27% and 19.36% for recommended dosage (1.188×10-9 mg/L; 1 gal/1,000,000 gal 
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raw water) and twice dosage (2.376×10-9 mg/L; 2gal/1,000,000gal raw water) of 

EarthTec®, respectively. The differences of final analytes concentrations between control 

sample and both dosage samples are 6.85% and 12.37%, respectively. The results of 2-

MIB conclude that the removals of both recommended dosage and twice dosage of 

EarthTec® are 9.5% and 17.31%, respectively. The differences between control sample 

and both dosage samples are 12.36% and 19.93%, respectively.  

Therefore, the conclusion of the algaecide treatment experiment is that the 

algaecide does not show significant contribution to the removal of both geosmin and 2-

MIB and the algaecide dosage could not significantly affect the removal efficiency of 

analytes since the removal efficiencies and differences between control samples and 

algaecide treated samples with two dosages are relatively low, within 20%. This low 

percentage removals could be caused by EarthTec®, instrument deviations, or operation 

errors.  

Table 4-5 The concentrations of geosmin for algaecide treatment experiment 

Experiment 2   Concentration 
Water Sample Time, hrs 0 12 24 36 48 

200ng/L Geosmin + Unfiltered 
Lake Water 

Set 1 239.86 219.98 207.64 203.04 204.91 
Set 2 230.33 198.95 205.77 187.31 195.79 
Average 235.09 209.47 206.71 195.17 200.35 

200ng/L Geosmin + Unfiltered 
Lake Water + EarthTec 
(1gal/1,000,000gal raw water) 

Set 1 237.43 221.04 209.85 202.05 203.53 
Set 2 197.97 191.67 178.11 189.40 169.73 
Average 217.70 206.35 193.98 195.73 186.63 

200ng/L Geosmin + Unfiltered 
Lake Water + EarthTec 
(2gal/1,000,000gal raw water) 

Set 1 237.43 197.18 206.44 195.33 182.05 
Set 2 197.97 191.67 185.41 178.13 169.07 
Average 217.70 194.43 195.93 186.73 175.56 
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(      is 200ng/L Geosmin + Unfiltered Lake Water;      is 200ng/L Geosmin + Unfiltered 
Lake Water + EarthTec (1gal/1,000,000gal raw water);      is 200ng/L Geosmin + 
Unfiltered Lake Water + EarthTec (2gal/1,000,000gal raw water)) 

Figure 4-6 The plots of geosmin concentrations for algaecide treatment experiment 

 

Table 4-6 The concentrations of 2-MIB for algaecide treatment experiment 

Experiment 2   Concentration 
Water Sample Time, hrs 0 12 24 36 48 

200ng/L 2-MIB + Unfiltered 
Lake Water 

Set 1 202.47 165.70 166.04 186.87 176.87 
Set 2 255.01 227.97 242.72 218.35 233.84 

Average 228.74 196.83 204.38 202.61 205.35 

200ng/L 2-MIB + Unfiltered 
Lake Water + EarthTec 

(1gal/1,000,000gal raw water) 

Set 1 213.45 206.38 197.68 199.69 189.18 
Set 2 184.22 177.75 172.55 168.75 170.73 

Average 198.84 192.06 185.12 184.22 179.96 

200ng/L 2-MIB + Unfiltered 
Lake Water + EarthTec 

(2gal/1,000,000gal raw water) 

Set 1 213.45 201.70 192.64 184.53 171.65 
Set 2 184.22 173.30 174.44 161.43 157.18 

Average 198.84 187.50 183.54 172.98 164.42 
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(      is 200ng/L 2-MIB + Unfiltered Lake Water;      is 200ng/L 2-MIB + Unfiltered Lake 
Water + EarthTec (1gal/1,000,000gal raw water);      is 200ng/L 2-MIB + Unfiltered 
Lake Water + EarthTec (2gal/1,000,000gal raw water)) 

Figure 4-7 The plots of 2-MIB concentrations for algaecide treatment experiment 

Although the algaecide treatment experiment in this study does not show 

significant removal of geosmin and 2-MIB, earlies studies (Park, 2012) with 100 times 

the algaecide dosage indicates significant removal of geosmin and 2-MIB in water 

samples. It demonstrated that these taste and odor-causing compounds can be readily 

removed under acidic conditions. EarthTec®, a biologically active form of cupric ion 

(Cu++), is applied as an example of algaecide in this study not only to stop the growth of 

algae and the production of geosmin and 2-MIB, but also to reduce the concentrations of 

these compounds in water solutions. The acidity of EarthTec® removes the odor of 

geosmin by converting geosmin to argosmin or other odorless products (Schweitzer, 

2006). Schweitzer (2006) proposed that EarthTec® decreases the concentrations of 

y = -0.3416x + 215.78
R² = 0.2786

y = -0.38x + 197.16
R² = 0.94

y = -0.6946x + 198.13
R² = 0.9855

0.00

50.00

100.00

150.00

200.00

250.00

0 10 20 30 40 50

C
on

ce
nt

ra
tio

n

Time, hours



 

51 

geosmin and 2-MIB in two ways, by dehydration reactions under acidic conditions and 

by killing the biomass that produces geosmin and 2-MIB. She reported that the pH was 

reduced in the water solution at the point EarthTec® was injected. Subsequently, 

geosmin converted into argosmin by acid dehydration; meanwhile, the copper of 

EarthTec® entered the organic cells and stopped the production and release of geosmin. 

Although no experiments with pH as a variable were conducted in this study and 

the pH of all water samples in this study were in the neighborhood of neutral, a series of 

investigations for the effect of pH on the removals of geosmin and 2-MIB were 

documented in literature reviews. The results from previous studies indicate that the 

solution pH has an important impact on the determination of geosmin and 2-MIB. Hsich 

et al. (2012) detected that the concentrations of geosmin and 2-MIB were significantly 

reduced in acidic water samples and the effect was more pronounced at low pH 

condition. For geosmin, the concentration was decreased significantly at pH less than 

approximately 5.0 in water samples. Similarly, much more 2-MIB was removed at acidic 

conditions, especially at pH less than 4.6. They also concluded that the results of 

experiments show similar pH-dependent behaviors in both natural water and deionized 

water. 

Dehydration reactions of geosmin and 2-MIB under acidic conditions have also 

been reported in experiments testing pH-dependent behaviors of these analytes. Odorless 

products were converted due to dehydration of these compounds (Gerber and Lechevalier 

1965; Gerber 1967). Dehydration reactions of tertiary alcohols, such as geosmin and 2-

MIB, are more rapid under acidic conditions. The dehydration products of 2-MIB are 2-

methyl-2-bornene, 2-methylenebornane, and 1-methylcamphene; argosmin is produced 
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from geosmin as a dehydration product. Current studies (Park, 2012) have also observed 

these products under acidic conditions.  

4.2.3 Experiment three 

The purpose of the last experiment is to simulate the reality situation of water in 

the closed pipeline system and to identify the removal of geosmin and 2-MIB under this 

condition. The results of mixing effect experiment (Table 4-7 and Figure 4-8) show that 

geosmin in treated water sample without agitation is removed by 19.36%; however, the 

significant removal of geosmin in treated water sample with agitation is obtained, which 

is 76.58%. There is obvious difference between treated water sample and control sample. 

In addition, the water sample with 200 ng/L geosmin/2-MIB and unfiltered lake water 

(with agitation) shows slightly removal. Therefore, the conclusion from these results is 

that most geosmin can be removed by twice EarthTec® dosage with agitation in water 

samples. 

Table 4-7 The concentrations of geosmin for mixing effect experiment 
Experiment 3   Concentration 
Water Sample Time, hrs 0 12 24 36 48 

200ng/L Geosmin + Unfiltered 
Lake Water (w/o agitation) 

Set 1 239.86 219.98 207.64 203.04 204.91 
Set 2 230.33 198.95 205.77 187.31 195.79 

Average 235.09 209.47 206.71 195.17 200.35 

200ng/L Geosmin + Unfiltered 
Lake Water (w/ agitation) 

Set 1 239.86 214.80 207.32 206.15 193.66 
Set 2 230.33 193.99 189.23 188.38 180.87 

Average 235.09 204.39 198.27 197.27 187.27 
200ng/L Geosmin + Unfiltered 

Lake Water + EarthTec 
(2gal/1,000,000gal raw water) 

(w/o agitation) 

Set 1 237.43 197.18 206.44 195.33 182.05 
Set 2 197.97 191.67 185.41 178.13 169.07 

Average 217.70 194.43 195.93 186.73 175.56 
200ng/L Geosmin + Unfiltered 

Lake Water + EarthTec 
(2gal/1,000,000gal raw water) 

(w/ agitation) 

Set 1 234.10 221.84 207.30 109.20 51.06 
Set 2 220.33 217.90 94.12 98.61 55.36 

Average 227.21 219.87 150.71 103.91 53.21 
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(      is 200ng/L Geosmin + Unfiltered Lake Water (w/o agitation);      is 200ng/L 
Geosmin + Unfiltered Lake Water (w/ agitation);      is 200ng/L Geosmin + Unfiltered 
Lake Water + EarthTec (2gal/1,000,000gal raw water) (w/o agitation);   ×   is 200ng/L 
Geosmin + Unfiltered Lake Water + EarthTec (2gal/1,000,000gal raw water) (w/ 
agitation)) 

Figure 4-8 The plots of geosmin concentrations for mixing effect experiment 

 

The experiments of 2-MIB show similar results (Table 4-8 and Figure 4-9). The 

removal of 2-MIB in treated water sample without agitation is 17.31%; however, 2-MIB 

in treated water sample with agitation was removed 78.64%. Although the final 

concentrations of geosmin and 2-MIB do not drop to odor threshold concentrations 

(10ng/L), the significant removals of both compounds with twice recommended 

EarthTec® dosage and sample mixing are concluded from the results of this experiment. 
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Table 4-8 The concentrations of 2-MIB for mixing effect experiment 

Experiment 3   Concentration 
Water Sample Time, hrs 0 12 24 36 48 

200ng/L 2-MIB + Unfiltered 
Lake Water (w/o agitation) 

Set 1 202.47 165.70 166.04 186.87 176.87 
Set 2 255.01 227.97 242.72 218.35 233.84 

Average 228.74 196.83 204.38 202.61 205.35 

200ng/L 2-MIB + Unfiltered 
Lake Water (w/ agitation) 

Set 1 202.47 217.92 201.26 196.80 195.42 
Set 2 255.01 197.60 183.45 181.63 180.42 

Average 228.74 207.76 192.36 189.22 187.92 
200ng/L 2-MIB + Unfiltered 

Lake Water + EarthTec 
(2gal/1,000,000gal raw water) 

(w/o agitation) 

Set 1 213.45 201.70 192.64 184.53 171.65 
Set 2 184.22 173.30 174.44 161.43 157.18 

Average 198.84 187.50 183.54 172.98 164.42 
200ng/L 2-MIB + Unfiltered 

Lake Water + EarthTec 
(2gal/1,000,000gal raw water) 

(w/ agitation) 

Set 1 207.60 174.31 176.21 120.57 40.23 
Set 2 193.45 160.56 101.08 52.84 45.46 

Average 200.53 167.44 138.64 86.70 42.84 
 

 
(      is 200ng/L 2-MIB + Unfiltered Lake Water (w/o agitation);      is 200ng/L 2-MIB + 
Unfiltered Lake Water (w/ agitation);      is 200ng/L 2-MIB + Unfiltered Lake Water + 
EarthTec (2gal/1,000,000gal raw water) (w/o agitation);   ×   is 200ng/L 2-MIB + 
Unfiltered Lake Water + EarthTec (2gal/1,000,000gal raw water) (w/ agitation)) 

Figure 4-9 The plots of 2-MIB concentrations for mixing effect experiment 
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Sample agitation may promote organisms’ activities and enhance reactions in lake 

water. A Tulsa water treatment plant observed significant removal of geosmin and 2-MIB 

with lake water which is obtained from surface water source through pipelines. Since 

water travel through pipelines with complete mixing, this experiment was conducted to 

simulate the same condition on mixing. Much reaction was observed between EarthTec® 

and geosmin/2-MIB present in unfiltered lake water with agitation. Therefore, the results 

of mixing effect experiment show significant removal of geosmin and 2-MIB in 

EarthTec® and unfiltered lake water sample with agitation. Further studies can be 

investigated to confirm the conclusion.  

 

4.3 Other variables 

The seasonal change of geosmin and 2-MIB concentrations is documented in 

literature. Temperature is a factor in the growth of algal and production of geosmin and 

2-MIB. Organisms in lakes, such as actinomycetes and cyanobacteria are responsible for 

producing these compounds; their development in water environment is dependent on 

temperature. Several studies investigated the performance of different temperatures (a 

range of 10 to 35°C) on the removals of geosmin and 2-MIB in water samples. Zhang et 

al. (2009) indicated that higher temperatures may promote the releases of geosmin and 2-

MIB into water columns. Therefore, taste and odor problems caused by algae are more 

serious from late spring to early autumn.  

Some studies found that light can affect the concentrations of geosmin and 2-MIB 

in lakes or reservoirs. Light intensity (10, 20, and 75 µmol m−2 s−1) experiments were 
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conducted by Zhang et al. (2009) to determine the effect of geosmin and 2-MIB 

concentrations. They reported that the maximum concentrations of these compounds 

were found at 20 µmol m−2 s−1 since this optimum light intensity condition promotes cells 

growth and enhances geosmin and 2-MIB productions. Therefore, low light intensity 

(<20 µmol m−2 s−1) can contribute the T&O problems control. 
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CHAPTER V 
 

 

CONCLUSION 

 

Geosmin and 2-MIB have been identified as common taste and odor-causing 

compounds in drinking water. Although these compounds have been not been associated 

with any serious health effects, water utilities aim to remove these odor-causing 

compounds due to consumers` complaints. Granular/powdered activated carbon 

(GAC/PAC), advanced oxidation processes (AOP), ozonation, and biofitration are the 

most effective techniques to remove geosmin and 2-MIB in most water treatment plants. 

However, these removal methods are extremely expensive to install, maintain, and 

operate. More efficient and economic taste and odor control technologies would be 

welcome. 

In this study, the analysis of effecting removal factors of geosmin and 2-MIB in 

water samples were determined. It was determined that when biomass concentration is 

low (less than 10 ng/L), sorption and biodegradation did not effectively contribute to the 

significant removal of these odor-causing compounds. The algaecide treatment 

experiment finds that the recommended dosage (1.188×10-9 mg/L; 1gal/1,000,000gal raw 

water) and twice dosage (2.376×10-9 mg/L; 2gal/1,000,000gal raw water) of EarthTec® 

do not significantly reduce the concentrations geosmin and 2-MIB in treated water
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samples. However, the experiment with greater mixing identifies that 76.58% geosmin 

and 78.64% 2-MIB can be removed at the doubled EarthTec® dosage with agitation over 

48 hours in water samples. 

Further studies can be investigated to confirm the results from this study in 

several ways. First, biodegradation may yet prove significant on reducing the 

concentrations of geosmin and 2-MIB in lakes. Alterative experiment designs using 

varying concentrations of biomass should be employed to determine the difference more 

accurately. In addition, further data sets on the effects of mixing should be done in 

subsequent experiments. The other recommendation is that the design of agitation 

removal experiment could be done better. The principle of this experiment is to simulate 

the water traveling through pipelines at water treatment plant; therefore, more similar 

design to real water condition needs to be conducted in further study. 
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