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CHAPTER I 
 

 

INTRODUCTION 

 

1.1 Background 

 

America has been renowned for its great infrastructure since the post World War II era. A lot of 

the infrastructure systems were built then, and have significantly deteriorated by now. Some older 

systems have been in place for up to a hundred years, and the growing American population 

continues to place increasing demands on them (Powell, 2010). We can see roads and bridges 

getting older and developing cracks, but what about the water pipes below the ground? Imagine 

drinking water from such an old pipe. 

Water infrastructure includes drinking water and wastewater infrastructure systems. In 2009, The 

American Society of Civil Engineers (ASCE) Report Card for America’s Infrastructure gave 

these systems a D- grade. While utilities are facing the challenge of keeping up with deteriorating 

assets, they have to make sure that the Clean Water Act (CWA) requirements are being met 

(GHD, 2010). The CWA contains regulations and quality standards for water that is discharged 

into the waters of America. Polluted water is not only unsafe for drinking; it is a threat to many 

activities including fishing and swimming (USEPA, 2009). 
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America’s water infrastructure system is in deep financial crisis. It has the highest projected 

shortfall of $108.6 billion, after roads and bridges that are estimated at $549.5 billion, for the next 

5 years (ASCE, 2009). As we wait, the price tag will become more and more costly. 

Utilities need an investment strategy that represents the best integration of maintenance, 

operations, and capital investment, where this integration delivers sustained performance at an 

acceptable level of service, at the lowest total cost of ownership, and at a level of risk the 

community is willing to tolerate. At the same time, utilities also have to ensure safety, security 

and resilience of the systems. This makes it necessary to include risk management into asset 

management practices (Santora and Wilson, 2008). 

 

1.2 Problem Statement 

 

Risk management helps an asset manager to decide the best time to intervene in an asset’s 

lifecycle. That refers to maintenance, rehabilitation, or replacement activities. The timing of these 

activities greatly impacts the effectiveness of these assets. In some cases, it is best to take action 

before an asset fails. In other cases, it is otherwise. Hence, asset managers have questions such as: 

 Which assets, and how likely will they fail this year, in 5 years, in 10 years, etc. 

 Should current operations and maintenance activities be improved or should an asset be 

renewed now 

 Should investments be proactive (take action before an asset fails) or reactive (take action 

after an asset fails) 

 When and how much should be invested in inspections and condition assessments 

 How can changes in risks be accounted for 
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Risk is the product of likelihood of failure (LoF) and consequence of failure (CoF). In light of 

realizing the need for risk management, many methods have been used to determine the LoF of 

an asset, which is the dominant component of risk. Thus, the determination of LoF is critical as it 

greatly affects management decisions. Current common practices include using decision tree and 

table based methods. A decision tree looks like a map of branches that displays the procedure to 

determine LoF. It leads the asset manager through a series of decisions and concludes with a 

subjective level of risk. The table based method is a table where the asset manager uses 

qualitative assessment – very high, high, medium, low, and very low, to assess the LoF and CoF 

and decides the level of risk.  

There is a lot of subjectivity in both decision tree and table based methods. This can lead to a lot 

of variation in the level of risk depending on how the asset manager interprets each situation at 

hand. Thus, there can be a lot of problems and bias in justifying what actions to take. Therefore, a 

better way of determining LoF is needed for more effective determination of risk and asset 

management. Specifically, a more science based method is required to predict LoF. Among some 

quantitative methods, survival analysis has many advantages. It is able to use various factors to 

predict the LoF and it accounts for incomplete information, such as that faced by underground 

assets. These assets are seldom tracked and certain information is difficult to obtain due to their 

nature of being buried. Survival analysis can also account for data that change over time. 

Therefore, it directly addresses the needs of utilities. 

In short, current methods to determine underground linear asset LoF are too subjective. Asset 

managers need to justify their decisions about what to do when, and to which assets. A more 

advanced method is needed to help determine underground linear asset LoF. 

 



4 

 

1.3 Objective 

 

The objective of this research is to develop survival models to help asset managers better 

determine the LoF of underground water and sewer pipes. Water data will be collected from the 

Greater Cincinnati Water Works (GCWW) while sewer data will be collected from the 

Metropolitan Sewer District of Greater Cincinnati (MSD).  

 

1.4 Tasks 

 

The following tasks have to be completed to accomplish this research’s objective. 

1. Review current methods used to assess asset risk and determine asset LoF. 

2. Develop parametric and non-parametric survival models for water and sewer pipes to 

predict their LoF or survival probability at a given age. 

3. Determine the best parametric model for both water and sewer pipes comparing Weibull, 

Exponential, Lognormal, Gamma and Loglogistic distributions. 

4. Compare the performance between parametric and non-parametric models. 

5. Compare the performance between models developed for assets that are carefully 

grouped and assets that are not grouped.  
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CHAPTER II 
 

 

PREVIOUS STUDIES RELATED TO DETERMINING END OF ASSET LIFE 

 

This chapter reviews previous studies that have been done in the area of determining LoF of an 

underground linear asset. It is a major part of determining risk and helps an asset manager decide 

when to intervene in an asset’s lifecycle. The methods used can be simply grouped into judgment 

based and data based methods.  

 

2.1 Judgment Based Methods 

 

Judgment based methods are, as its name implies, based on judgment or experience. If relevant 

historical data are not available, the asset manager should consider these non-statistical 

techniques and/or embark upon a program to capture the relevant data. Non-statistical methods 

may use expert judgment and subjective assessment with structured evaluation criteria. One such 

technique is the table-based method, which uses the percentage of asset physical life that has been 

consumed to estimate remaining life.  

The first step in this process is to evaluate the percentage of physical life used in terms of 5 

performance aspects: 
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 Technical performance (structural condition) 

 Operational performance 

 Reliability 

 Availability 

 Maintainability 

These aspects of performance are rated according to the following table: 

Table 2.1: Performance Aspects (GHD) 

Element Description 

SCORE 1 3 5 7 9 10 

Technical 

Performance 

Substantially 

exceeds current 

requirements 

Exceeds 

current 

requirements 

Meets current 

requirements 

but with room 
for 

improvement 

Obvious 

concerns: 

cost/benefit 
questions 

Inefficient; 

becoming 

ineffective, 
obsolete 

Failing, not 

capable of 

sustaining 
required 

performance 

Operational 

Performance 

Negligible 

attention 
required 

Exceeds 

current 
requirements 

Meets current 

requirements 
but with room 

for 

improvement 

Obvious 

concerns: 
cost/benefit 

questions 

Difficult to 

sustain 
performance 

Failing, not 

capable of 
sustaining 

required 

performance 

Reliability As specified by 
manufacturer 

Infrequent 
breakdown 

Occasional 
breakdown 

Periodic 
breakdown 

Continuous 
recurrent 

breakdown 

Virtually 
inoperable 

Availability Virtually 

always 
operational 

Out of service 

only for very 
short periods 

Out of service 

for moderate 
period; 

moderately 
difficult to 

return to 

service 

Increasingly 

difficult to return 
to service; parts 

becoming a 
challenge 

Extensive 

downtime 
duration; 

difficult to 
return to 

service; parts, 

difficult to 
acquire, rare 

skills required 

Virtually 

impossible to 
return to 

service; parts 
no longer 

available; 

unavailable 
trained 

personnel 

Maintainability Easily 

maintained; 
OEM 

maintenance is 

straightforward 

Largely 

preventive 
maintenance 

with some 

corrective 
maintenance 

beginning to 

show up; 
baseline 

monitoring 

Increasing 

minor 
maintenance 

required; 

periodic 
corrective 

maintenance 

including some 
repair 

shortening of 

monitoring 
intervals 

Scheduled 

maintenance 
becoming 

frequent; more 

experienced 
trades people 

required for 

maintenance; 
frequency of 

work orders 

increasing 
substantially 

with short 

monitoring 
intervals 

Work orders 

well above 
average for 

type of asset; 

recurrent minor 
repair; close 

monitoring 

required; most 
senior people 

required to 

sustain 
performance 

Maintenance is 

frequent with 
recurrent 

patterns of 

failure; asset 
must be 

virtually 

constantly 
monitored to 

sustain 

performance 

% Physical life 

consumed 

Almost new; up 

to 10% physical 

life consumed 

Up to 30% 

physical life 

consumed 

Up to 50% 

physical life 

consumed 

Up to 70% 

physical life 

consumed 

Up to 90% 

physical life 

consumed 

Virtually 

consumed, 

imminent 
failure 

SCORE 1 3 5 7 9 10 
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The performance scores of all 5 aspects are averaged and converted to percent effective life 

consumed according to the following table: 

Table 2.2: Converting Performance Scores to % Life Consumed (GHD) 

% Effective Life 

Consumed 
10% 20% 30% 40% 50% 60% 70% 80% 90% Failed 

Composite Asset 

Performance Score 
1 2 3 4 5 6 7 8 9 10 

 

This percentage of effective life consumed is then converted into LoF in a 1 to 10 scale according 

to the following table. 

Table 2.3: Converting % Life Consumed to LoF (GHD) 

% Effective Life 

Consumed 
10% 20% 30% 40% 50% 60% 70% 80% 90% Failed 

LoF 1 2 3 4 5 6 7 8 9 10 

 

For example, if the average performance score of an asset is 4.5, the effective life consumed 

would be 45% and the LoF would be 4.5 on a scale of 10 (GHD). 

This method is good when data is very limited or not available. However, judgments can vary 

among users and this can produce very different results. 

 

2.2 Data Based Methods 

 

Data based methods use data to prove an outcome. These methods require a substantial amount of 

historical data to make a prediction. Data based models are model driven, where an attempt is 

made to find the best model that explains data that is analyzed. It usually involves a probability 
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distribution and model parameters that explain the relationship between input and output data. 

Models will then be calibrated using maximum likelihood methods and goodness of fit tests will 

be done to validate them. Data based methods include statistical models, and soft computing 

models which will be discussed (Marlow, Davis, Trans, Beale and Burn, 2009). 

 

2.2.1 Statistical Methods 

 

Eight statistical methods will be reviewed here. They are failure event data-based, service 

lifetime-based, cohort-survival, ordinal regression, Markov Chain, Bayesian, deterministic, and 

physical probabilistic. 

The first one is failure event data approaches. These models are applied where recorded failure 

data is available. They predict failure rates of asset groups. The asset groups are formed using 

information such as pipe length, pipe diameter, installation date, breakage history, soil type, etc. 

Shamir and Howard developed an exponential equation considering only pipe age (one factor) to 

predict the number of breaks of water pipes. They first classified assets by material, construction 

method, soil, temperature, and pressure conditions, and suggested that an equation can be 

developed for each homogenous group. They combined these prediction values with cost data to 

determine the best time to repair or replace assets. They concluded that this methodology can help 

in decision making but not replace good judgment (Shamir and Howard, 1979).   

The next type is service lifetime approaches. These models are very similar to failure event data 

approaches but are used with service lifetime data. They are also applied to asset groups. The 

difference between these models and failure event data models is that these models only consider 

the time to first failure. Herz developed a probability model and predicted renewal or service rates 
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for different water pipe groups in Europe. Similarly, the groups had to be homogenous or 

containing pipes in similar environments. It was reported that maintenance and repair activities 

can extend the life of pipes (Herz, 1996).  

Next are survival models. These models predict the probability of survival within a condition 

over a certain number of years. They require condition data and predict the number of years it 

might take for an asset to transition into a worse state. This information helps with knowing when 

an asset will be in critical condition and with planning inspection activities. These models are 

applied to asset groups. Two most popular distribution assumptions used in survival models are 

the exponential and Weibull distributions. In Duchesne et al.’s work, the parametric method of 

survival analysis has been done for various asset group sizes. They have found that the 

exponential model is more suitable for smaller sample sizes (1000 samples or less) compared to 

the Weibull model (Duchesne, Beardsell, Villeneuve, Toumbou and Bouchard, 2012). In 

Syachrani’s paper, the non-parametric method of survival analysis has been used on underground 

pipes, eliminating the need of any distribution assumption. He had also found that the non-

parametric method was not suitable for equipment failures (Syachrani, 2010). In this paper, a 

comparison between the parametric and non-parametric methods will be included. 

Next are ordinal regression methods. They are similar to survival models and require condition 

data and asset attributes. They are also applied to asset groups. These models assume that 

deterioration is a continuous process and threshold values are used to distinguish assets with 

different conditions. Several researchers have used these models to classify assets into good or 

bad conditions. Davies et al. investigated the factors affecting sewer condition in a London utility 

using logistic regression. They found that sewer section length, size, location, material, depth, 

use, background soil properties, local ground water regime, and traffic flow were significant 

factors. However, they found that root penetration, burst history of adjacent water pipes, and age 

were insignificant, which surprised them (Davies, Clarke, Whiter, Cunningham and Leidi, 2001). 
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Ariaratnam et al. studied sewer pipes from Edmonton, Canada and found that age, diameter and 

waste type were significant variables. Their model was able to predict the probability of a sewer 

system being in a deficient state (Ariaratnam, El-Assaly and Yang, 2001). Both these research 

acknowledged that collecting enough quality data was a challenge.  

The next type is Markov Chain approaches. They also use condition data. The uniqueness about 

Markov Chain models is their assumption that deterioration occurs as steps from one condition to 

another. The probability of transitioning from one state to a worse one depends on age and 

operating environment. These models can be applied to both individual assets and asset groups. A 

Markov chain model predicts the probability that pipes in one condition state progress to other 

condition states, as defined by a transition matrix. It assumes that the progress is discrete, not 

continuous, and that all the assets grouped together will have the same transition matrix. The 

Markov Chain theory recognizes that the next state of an asset depends only on its current state, 

not its previous. Likewise, a future condition depends on its current condition. If an asset is 

currently at condition state 1 out of 5, it is more likely to progress into state 2 than states 3, 4, or 

5. This likelihood to change from one state to another is known as the Markovian transition 

probability. In a Markovian deterioration model, the transition probabilities and deterioration 

rates can be estimated by experts using condition assessment data. Estimating transition 

probabilities is the biggest challenge in using the Markov model. Baik et al. proposed the ordered 

probit model to estimate transition probabilities in a Markov deterioration model. Sewer data 

from the City of San Diego was used. The results did not perform very well in the goodness of fit 

tests. The team suggested that they lacked quality data. In order to improve their results, they 

needed continuous condition assessment data (Baik, Jeong and Abraham, 2006).  

Next are Bayesian approaches. These models forecast the probabilities of failure or condition 

states of asset groups. The Bayes’ Theorem provides a relationship between the probability that 

an initial prediction is correct after the addition of new data and the previous estimates before the 
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new data is added. It allows previous estimates of the asset conditions to be combined with 

inspected data that is available so that new predictions can be made about the conditions of the 

asset group. The challenge of these models is in grouping the assets using suitable criteria. 

Kulkarni et al. learned that assets need to be grouped into various condition states. Their team 

studied deterioration of gas pipelines and developed a model combined with cost data. The result 

was the Cast Iron Maintenance Optimization System for the gas industry that can help asset 

managers make decisions on managing their pipeline assets (Kulkarni, Golabi and Chuang, 

1986). 

Deterministic approaches are used when the relationship between input variables and failure rates 

are known. Deterministic models are divided into empirical and physical approaches.  

The empirical approach uses equations to fit a set of data. One example is regression analysis. 

Shamir and Howard developed a regression equation as follows to predict failure rate of water 

pipes: 

 ( )   (  )      (   )       (2.1) 

where t is the time in years from present; N(t) is the failure rate per unit length per year; N(t0) is 

the failure rate at year of installation; g is the age of the pipe at time t and A is the coefficient of 

failure rate (in year
-1

) (Shamir and Howard, 1979). Empirical deterministic models must be 

applied to homogenous groups of assets that have historical failure data. Asset related data such 

as pipe length, pipe diameter, and installation date are also needed to group the assets. While 

Shamir and Howard developed a simple exponential model using one variable to predict water 

pipe failure rates, Clark et al. improved the model. They showed that the time to first failure 

follows a linear pattern but once a pipe starts requiring maintenance, its maintenance rate 

increases exponentially (Clark, Stafford and Goodrich, 1982). Some disadvantages of these 
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models are that fitting the equations to observations can be very challenging, they may only be 

applied to homogenous groups of assets, and they cannot account for time-dependent factors. 

Physical deterministic models are mechanism-based models that explain degradation and failure 

processes. Therefore, a critical requirement is information on asset deterioration. For example, 

these models have been used to predict time to corrosion failure of water pipes. Variables that 

describe the assets’ degradation have to be obtained, such as the corrosion rate. Physical 

deterministic models usually predict the service lifetime (rather than failure rate) of an individual 

asset. Randall-Smith et al. (1992) developed a model to predict corrosion failure of water pipes: 

  (
 

     
 )          (2.2) 

where   is the remaining service life; t is the age of the pipe; Pe is the external pit depth; Pi is the 

internal pit depth; and   is the thickness of the original pipe wall. One problem with this model is 

that a linear assumption was used for corrosion rate (Marlow, Davis, Trans, Beale and Burn, 

2009). 

Physical probabilistic models can be used when historical failure data are not available. These 

models use small samples to study actual deterioration and degradation. They are based on load-

capacity relationships that study loading conditions and their effects on failure such as corrosion. 

These models require information on pipe material, operating loads (internal and external), and 

condition data. The uncertainties within variables are represented using probability distributions. 

This can be done using techniques such as Monte Carlo simulation. Then, the results can be 

applied to a network of assets. Examples of uncertainties are variations in soil electrochemistry, 

water chemistry in contact with a pipe, and defects in pipe processing (Marlow, Davis, Trans, 

Beale and Burn, 2009).  



13 

 

Monte Carlo simulation is used to estimate probability functions together with an underlying 

physical model. In a Monte Carlo simulation, random variable values are generated continuously. 

Each value is then used to predict a failure time. This is done until a certain number of trials is 

reached or until the standard error of the mean predicted lifetime is below a certain designated 

value. Davis et al. used this simulation to estimate the probability of longitudinal fracture in 

Asbestos Cement pipes(Davis, De Silva, Marlow, Moglia, Gould and Burn, 2008).. The predicted 

lifetimes are then fitted to a probability distribution, which is finally used to estimate failure 

probability over time. One of the most popular probability distributions used is the Weibull 

distribution, due to its two-parameter property that makes it fit datasets well. The challenge in 

using this approach is in gathering actual asset deterioration and degradation data. However, it is 

attractive because it can be used on newer assets. Statistical models that use historical data are 

more suitable for older assets.  

 

2.2.2 Soft Computing Methods 

 

Soft computing methods are data driven models. These models process inputted information in 

several steps or “layers” and create a connection with predicted output results. They use a lot of 

historical data for calibration and are tested using independent data.  

Artificial Neural Network (ANN) is a type of soft computing approach that predicts values for 

individual assets and asset groups. It uses all variables that are thought to influence failure rates, 

such as pipe diameter, pipe length, pipe age, installation year and geographical location. Model 

coefficients are adjusted so that predicted outputs are as close to historical outputs as possible. 

These models are considered “Black Box” solutions and the computations behind the models are 

often unknown. Extra care should be taken when using these models because it is difficult to 
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judge how much data is ideal to make good predictions. Tran et al. used ANN to predict 

deterioration in stormwater pipes in Australia. They had approximately 650 data points and 

validated the model using Bayesian weight estimation and conventional back-propagation weight 

estimation. The prediction accuracies turned out to be only 69% and 58% respectively (Tran, Ng 

and Perera, 2007) 

Next are fuzzy models. These models incorporate “vagueness” to compensate for processes that 

are difficult to understand, such as the deterioration process. For example, when pipes are given 

condition scores (e.g. 1-5 score), it is difficult to justify the boundaries of each score. Fuzzy 

models are usually used to “fuzzify” input data and are used with other models. Kleiner et al. 

(2006) have used this model. The table below shows an example of deterioration rate chart for 

given pipe ages and conditions:  

Table 2.4: Fuzzy Rule Base for Deterioration Model (Kleiner, Sadiq and Rajani, 2006) 

Pipe Condition (C): excellent good adequate fair poor bad failed 

Age (A): new slow average fast very fast very fast very fast very fast 

 

young slow average fast fast fast very fast very fast 

 

medium very slow slow average average fast fast very fast 

 

old very slow very slow slow slow average average fast 

 

very old very slow very slow very slow slow slow average average 

 

For example, if a pipe is new and the condition is adequate, its deterioration rate is fast. However, 

if the same pipe is in fair condition, its deterioration rate is very fast. Every rate (very slow, slow, 

average, fast, and very fast) has an associated numerical value. By using such associations, 

different deterioration curves can be estimated for every asset throughout their lifecycle. In short, 

this method uses fuzzy logic and expert opinions to determine the LoF, rather than using data 

from a database. Figure 2.1 below illustrates the deterioration of a sewer pipe from age 20 to 40. 

The asset condition changes from good to adequate, fair, and poor. The lower half of the figure 

shows the condition rating at age 40. However, if another figure was provided for the condition 
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rating at age 20, the reader could tell that the area enclosed shifted from a good state to a worse 

state. 

 

Figure 2.1: Fuzzy Model (Kleiner, Sadiq and Rajani, 2006) 

One problem with these models is that they must be validated using assets that have been 

consistently inspected (Kleiner, Sadiq and Rajani, 2006).  
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CHAPTER III 
 

 

PROCEDURE TO PREDICT LOF USING SURVIVAL ANALYSIS 

 

This chapter presents the methodology and theoretical background involved to predict asset LoF. 

The use of this methodology requires an intermediate level of knowledge in statistics. The 

procedure is illustrated in a flowchart that can be found in Appendix B. The procedure involves 

two major stages; a) classification of assets by common behavior into “management strategy 

groups” and b) development of survival curves.  

 

3.1 Data Collection, Quality Assurance, and Management 

 

In this step, data is collected and checked for missing information, inconsistency, redundancy, 

etc. Data points are then recoded, replaced, or transformed whenever necessary. In other words, 

the master spreadsheet database is prepared so that a statistical analysis could be applied.  

Data collection, quality assurance and management of data is the process of putting the data in 

order and getting rid of irrelevant data. This section explains what information needs to be 

collected, where to find them, and how to prepare them for analysis.  

.
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In order to predict the LoF, the asset manager must first have a clear definition of failure of each 

type of asset. Without a clear definition, consistency in the determination of failure and the 

specific date of failure cannot be readily determined. 

There are three types of asset failures otherwise known as “end-of-asset-life” upon which an 

investment strategy has to consider: 

Table 3.1: End-of-Asset Life Descriptions 

End-of-Asset-Life Description 

End of physical life An asset physically stops working, collapses, or is otherwise non-

functional or non-operational. 

End of service level / 

capacity life 

An asset can no longer do what customers or operators require it to do 

(including reaching capacity limits). 

End of economic life An asset ceases to be the lowest cost alternative to satisfy a specified 

level of performance or service at an acceptable level of risk. 

 

This research addresses physical failure. For example, many utilities now use the Pipeline 

Assessment Certification Program (PACP) scores when assessing sewer pipe conditions and plan 

their management strategies using the PACP assessment results. The PACP report is used to 

calculate the structural condition of sewer pipes using a five point scale 1, 2, 3, 4, and 5. Table 

3.1 defines these scores. 

Table 3.2: PACP Score Definitions (Elizabeth Ehret, 2011) 

PACP score Definition 

1 Excellent; minor defects 

2 Good; has not begun to deteriorate 

3 Fair; moderate 

4 Poor; will become grade 5 in near future 

5 Immediate attention needed 

 



18 

 

Although immediate attention is needed for a grade 5 sewer pipe, it does not really mean that the 

pipe has collapsed. The pipe may still be functioning but based on PACP definitions, it is at 

critical condition and requires immediate attention due to defects such as cracking and sagging. 

Unless actual sewer pipe failure records are available, this grade 5 is considered as a failure in 

this study in order to apply statistical theories to determine the LoF. If the asset manager has a 

clear definition of failure and keeps good failure records (specifically, the systematic and 

consistent recordation of the date of failure), those data must be used to develop the LoF instead 

of the PACP based condition assessment data set. 

Physical failure may be defined very differently for different assets. Different failures require 

different approaches. For pumps, if there is no pumping of fluid, it could be time to replace 

certain components such as the motor or fuse. However, if there is high current draw, rough 

cycle, or low pressure, maintenance activities such as cleaning or lubricating may be needed. 

Take a light bulb as another illustration. The bulb could fail due to a burn out, flashing, or 

dimming. It may require replacement or reconnection. Water pipes may fail due to leaks, low 

pressure, or corrosion while sewer pipes may fail due to leaks, corrosion, collapse, etc. It is very 

important that failure be clearly defined, because it affects operations and maintenance activities 

that are required.  

In order to use a statistical method to estimate the LoF, the asset manager also needs to check 

whether sufficient amount of asset failure related data is available since any statistical method is a 

data intensive approach. Rich historical asset data may lead to accurate and reliable models in 

predicting the LoF. The recommended data for water and sewer pipes to determine physical 

failure include; 

a) Physical attributes such as age, length, material, diameter, etc. 

b) Performance data such as condition assessment data 
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c) Environmental attributes such as soil type, density of proximate trees, corrosivity, climate 

and freeze/thaw properties, groundwater level, etc.  and  

d) Operational attributes such as maintenance, repair, installation and failure records 

Other available information might be an advantage. When only limited data are available, the 

statistical analysis may not be able to produce the most accurate and reliable result. However, 

limited data does not indicate that a statistical analysis cannot be carried out so long as 

interpretation of the results is within the constraints of the data.  

For water and sewer pipes, physical attributes, installation and failure records or condition 

assessment data are the minimally required data for a basic level of statistical analysis. However, 

since survival analysis requires censoring, some data points with missing failure records or 

condition assessment data are required. For an advanced level of statistical analysis, additional 

data attributes such as environmental and other operational attributes are needed. Having a 

broader range of data attributes means that more factors can be considered to determine the LoF. 

Although some input data may not be useful, these insignificant input variables will be screened 

out by a statistical analysis procedure and only statistically meaningful input variables will 

remain and be used to develop the prediction model. 

In collecting asset data, various databases such as Geographical Information System (GIS), 

Computerized Maintenance Management System (CMMS), condition assessment data, and others 

should be used. These data may be managed by different departments in a utility organization. So, 

coordinating efforts between departments are required. Then, these data have to be put together 

into a master spreadsheet based database. Various asset attributes from different datasets must be 

associated with each asset ID for further statistical analysis in developing a master database and 

this master database should be easily accessible. Figure 3.1 shows a sample master database with 
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the first few data points and some of its available attributes. It contains more than 50,000 sewer 

pipe entries with 23 different attributes arranged nicely in one spreadsheet. 

 

 

Figure 3.1: Master Database 

After collecting data, they need to be prepared for analysis. For example, data for “material” 

might need to be recoded so that specific numbers can represent different types of materials. This 

is because statistical software recognizes numbers better than words. As another example, 

“Length” data may need to be checked to ensure the units are consistent. Obvious typographical 

errors in the database such as “2.00” instead of “200” or instances when alphabets were in place 

by mistake should also be corrected. 

It is also important to recognize that a pipe may have multiple failure records. These records can 

be treated independently if the failures do not occur on the same spot. In most cases, only the first 

failures are of interest in an analysis, because that shows how long a new pipe can last before 

more resources have to be invested. 

Figure 3.2 shows how failure records can be treated independently. 
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Figure 3.2: Treatment of Failure Records 

On a particular pipe, the 1
st
 failure is recorded at age 40. After 28 years, a 2

nd
 failure is recorded 

on the same pipe. Although these 2 failures occurred on the same pipe, they can be used as 2 

independent data points if the asset manager decides so – one failure at age 40 and another at age 

68. 

 

3.2 Asset Classification 

 

The next step is to classify assets into Management Strategy Groups (MSGs) for effective 

management in the long run. The following explains how MSGs are created.  

MSGs tend to be sub-groups of asset classes. Each MSG is expected to contain assets that are 

likely to display a similar behavior over their lifetime, especially with respect to aging and failure 

patterns. These similar behavior patterns are a composite expression of three separate groups of 

factors that drive failure: 

 Core or intrinsic factors 

• Steady, continuous deterioration mechanics related to engineering design and 

specification, material, manufacturing processes, manufacturer, 

construction/installation management 
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 Operating Environment factors  

• Operating condition mechanisms such as temperature, corrosivity, nature of 

material being handled, weather exposure, soil moisture, soil chemistry, depth, 

soil type and aggressiveness, proximity to electrical fields, etc. 

 Operational factors 

• O&M factors such as quality, nature and frequency of maintenance, nature and 

timing of renewal, historic rate of failure 

For example, consider an inventory of gravity pipes that contains reinforced concrete pipes 

(RCP). The utility knows that RCP gravity pipes that were installed before 1950 and that tend to 

have high H2S content have a maximum potential life of 75 years. Then, the following criteria 

may be used to group these pipes as a unique cluster (this grouping effectively divides the asset 

class “RCP gravity pipe” into two behavior groups – one defined as follows and one for all else. 

 [Type] = Gravity Pipes 

[Material] = Contains RCP 

[Install Year] = <1950 

[H2S Category] = True 

When MSG group classification fields like these are determined, MSGs can be set, and models 

can be developed for each group of assets. The models should be able to explain the MSGs well. 

In other words, if a model is developed to predict the LoF of a certain MSG, the model should 

reasonably predict the LoF of each asset in that MSG. Otherwise, either the model or the MSG 

criteria needs to be redeveloped for more effective management.  

MSGs facilitate the development of management strategies that are fine tuned for the behaviors 

observed. The utility might have existing MSGs that could be used. However, the MSGs’ 



23 

 

designations could be obsolete or have not been effective. In such cases, the utility might want to 

validate or redevelop MSGs to be used for analysis.  

There are generally two methods to develop MSGs; 1) Judgment based MSGs and 2) Statistics 

Based MSGs. Judgment based MSGs use the management team’s professional judgment, 

experience and engineering knowledge to classify assets. It should be a deliberative process 

where the team most knowledgeable about the asset gathers and discusses criteria to be used to 

classify assets. When statistics based MSGs are developed, the existing asset related data needs to 

be fed into a statistical program to indicate groups of assets or clusters.  

Using a judgment based method is beneficial because the team’s expertise and years of 

experience can be clearly reflected into classifying asset groups. However, the results of 

judgment based MSGs cannot be validated without empirical verification. The statistics based 

method is certainly more evidence-based (what we think we know and what the data really show 

are not always the same) and could be used by a less experienced team. However, it will likely 

require at least a modest level of statistical knowledge and experience and access to a statistical 

package. Interpretation of the results could also be a challenge for users. However, this method 

can easily be validated since statistics is based on numerical facts. In other words, validly 

rendered statistics based results are truly ‘correct’ since there are supporting numerical facts to 

identify the groups.  

 

3.2.1 Judgment Based Classification 
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In judgment based classification, a series of discussions within the utility involving asset 

managers, maintenance engineers, operation engineers and field superintendents may be 

necessary and are encouraged to capture their judgment and experience in developing the criteria.   

It is important to note that a high number of criteria will lead to a large number of MSGs and may 

reduce the number of assets in each MSG but will improve the accuracy and reliability of 

subsequent prediction models such as the LoF for each MSG. However, too many criteria may 

lead to inefficient management of MSGs simply because there are too many MSGs to manage. A 

small number of criteria will increase the number of assets in each MSG and increase the 

variability of deterioration and failure patterns, leading to lower accuracy and lower reliability of 

prediction models. However, a small number of MSGs will be easy and simple for the utility to 

manage. Thus, a reasonable number of criteria should be used as a trade-off value between the 

efficiency of management and the accuracy/reliability of prediction models. 

Once the MSG criteria are established, the utility can classify various assets into different groups 

according to the criteria. All assets have to belong to a certain MSG. External studies may also be 

conducted to find MSG criteria that can be used. For example, an asset manager may find that 

practice or research performed by other utilities or practitioner groups show certain criteria to be 

relevant in helping to classify his assets.  

Table 3.2 shows a sample of judgment based MSGs developed for a real utility in the U.S. This 

utility used material type, diameter, installation year, and soil corrosivity as the criteria for 

developing MSGs for water pipes. Note that specific years were used to classify CIPs and DIPs. 

This is due to major specification changes that occurred to these pipes in certain years and the 

utility is confident that this change would affect the deterioration and failure patterns of the pipes. 

It is also important to note that this type of judgment may only be obtainable from experienced 

engineers, field personnel and managers. Due to a lack of historical data, a judgment based 
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approach is appropriate. A statistics based approach, which will be explained in the next section, 

cannot detect these important changes unless they are recorded as a data attribute in the database.  

Table 3.3: Sample of Judgment Based MSGs 

Material Type Diameter and Installation Year Soil Corrosivity 

Cast Iron Pipe (CIP) 

CIP-large diameter (≥ 15”) High / Medium /Low 

CIP, small diameter (< 15”), pre 1955 High / Medium /Low 

CIP, small diameter (< 15”), 1955-

1966 

High / Medium /Low 

CIP, small diameter (< 15”), post 1966 High / Medium /Low 

Ductile Iron Pipe (DIP) 
DIP_P1_(pre 2002) N/A 

DIP_P1_(post 2002) N/A 

Pre-stressed Concrete 

Cylinder Pipe (PCCP) 
PCCP all N/A 

 

 

3.2.2 Statistics Based Classification 

 

There are several ways to classify data statistically. In general, a statistics based approach could 

be either data driven or model driven. Data driven methods find natural groupings in the data, 

while model driven methods attempt to separate data into predefined groups based on a 

combination of practice based knowledge (the body of engineering science, for example) and 

emerging science. To have predefined groups is equivalent to using the judgment based method. 

Therefore data driven methods are discussed here since the judgment based method has already 

been explained in the previous section.  

Statistical clustering techniques are advanced data driven methods that create virtual groups of 

assets with a maximum degree of association among each other using statistical software and 
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numerical computation. This method should likely be more “accurate” than the judgment based 

method, but is not necessarily more efficient.  

Figure 3.3 shows an example of how statistical clusters may look like. It can be seen that there are 

three clusters in the data. Statistical software can calculate the distances between data points and, 

using sophisticated mathematics, identify clusters in the dataset. As shown in Figure 3.3b, three 

clusters have been identified using different colors. However, without systematic analysis, 

clusters are not evident, as shown in Figure 3.3a. 

 

Figure 3.3: Statistical Clustering 

There are several different clustering methods, such as hierarchical clustering, k-means clustering 

and factor analysis. The difference among these methods is the computational concepts used to 

identify the clusters. Ultimately, the clustering process groups data that are similar in some 

fashion with each other.  

Table 3.3 shows a real sample of MSGs developed for a utility in the U.S. through a statistical 

clustering method. In total, six clusters were identified for each type of sewer pipe material. It 

shows that sewer pipes under highway crossing and right of way (ROW) may have different 

aging and failure patterns than pipes buried under a large number of trees. Also, pipes under 

(a) (b) 
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single family residential area may have different deterioration patterns than pipes under 

commercial and restaurant zones. This type of grouping of assets may not be apparent if only a 

judgment based classification method is used. 

Table 3.4: Sample of MSGs Developed Using Clustering Method 

Clusters 
Frequency 

count (%) 
Strong characteristics 

Cluster A 33.88% Single family residential area 

Cluster B 29.83% Non-Single family residential area 

Cluster C 21.05% Trees 

Cluster D 8.34% Multifamily residential area 

Cluster E 5.08% Commercial, restaurant 

Cluster F 1.83% Highway crossing, transportation, ROW 

Total 100.00% 
 

 

After the classifications have been confirmed and MSGs are created, survival curves may be 

developed. Any necessary modifications or adjustments to the MSGs should be performed at this 

step. No changes should be made to the MSGs subsequently during the analysis process. 

 

3.3 Survival Model Development 

 

In this step, the survival model is developed for each MSG. The process involves selecting 

significant variables, assuming distributions, and developing survival curves. 

Failure often has many different potential causes (the progression of mechanical events that leads 

to a typical failure is called the “failure mode”; an asset can have many different failure modes). 

The challenge to the asset manager is to identify those failure modes that account for most 
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failures for a given class of assets in a designated operating environment. Recalling the three 

separate groups of factors that drive failure is helpful here to organize which variables (“causes”) 

to pursue: 

 Core or intrinsic factors 

• Steady, continuous deterioration mechanics related to engineering design and 

specification, material, manufacturing processes, manufacturer, 

construction/installation management 

 Operating Environment factors  

• Operating condition mechanisms such as temperature, corrosivity, nature of 

material being handled, weather exposure, soil moisture, soil chemistry, depth, 

soil type and aggressiveness, proximity to electrical fields, etc. 

 Operational factors 

• O&M factors such as quality, nature and frequency of maintenance, nature and 

timing of renewal, historic rate of failure 

The above list is generic; not all of the listed variables are significant in producing the bulk of 

failures. Which variables are significant vary from agency to agency and even zone to zone or 

plant to plant within an agency. Some variables may be correlated with other variables. For 

example, a larger sewer pipe will obviously have a lower velocity compared to a smaller pipe that 

carries the same amount of sewer in the same network. In such a scenario, only one of the two 

variables is needed. By selecting more significant variables, the efficiency of the analysis process 

may be improved. In addition, insignificant variables only contribute a very small percentage to 

the outcome as compared with significant variables. Therefore, only the variables that are 

significant should be selected and used.  

Figure 3.4 here illustrates the concept of significant variables. 
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Figure 3.4: Concept of Significant Variables 

Assume that all five circles A, B, C, D, and E are in a basket and they represent different weights. 

Larger circles weigh more than smaller circles. We want to estimate the weight that the basket is 

carrying, but our weighing scale cannot accommodate the whole basket with all the weights at 

once. Therefore, the weights have to be measured one at a time. After measuring A, B and C, the 

added weights yield 15 pounds. Weight D is 0.12 pounds and weight E is 0.11 pounds. Finally, 

we can conclude that the basket is carrying 15 pounds, because D and E are insignificant to some 

degree. Certainly, this process helps us eliminate possible insignificant variables to improve the 

efficiency of the analysis. 

There are many methods that can be used to select significant variables. Among them are 

stepwise regression, forward selection, and backward elimination. This process has to be done for 

each MSG that has been determined. To verify the selected variables, be sure that all their p-

values are small (e.g. <0.05), implying significance. A p-value of 0.05 implies a 95% confidence 

level, or that the chance of being incorrect is 5%. Similarly, a p-value of 0.1 implies a 90% 

confidence that the variable is significant. A maximum acceptable p-value should be defined. 

Figure 3.5 shows a sample result of the initial process of selecting significant variables using the 

backward elimination method for a selected utility. There were 15 variables, in which all of them 

were tested simultaneously: 

 DIAMETER: Pipe diameter (in.) 

  

 

 

A B 
D 

C 

 E 
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 LENGTH: Pipe length (ft.) 

 SLOPE: Pipe slope 

 STREAMX: Pipe is located under stream crossing, 1 is yes 

 HIGHWAYM: Pipe is located under highway or major road crossing, 1 is yes 

 RAILROAD: Pipe is located under rail road crossing, 1 is yes 

 LAKEWETL: Pipe is located under lake or wetland, 1 is yes 

 RESTAURA: Number of surrounding restaurants 

 ROOTPROB: The presence of root problem, 5 is worst 

 SLUDGEPR: The presence of sludge problem, 5 is worst 

 DEBRIPRO: The presence of debris problem, 5 is worst 

 GREASEPR: The presence of grease problem, 5 is worst 

 JOINTPRO: The presence of joint problem, 1 is yes 

 COLLAPSE: Pipe with collapsed section, 1 is yes 

 BROKENPR: Pipe with broken section, 1 is yes 

From the initial test, it was found that variable RAILROAD has a p value of 0.9998, which is the 

most insignificant variable. To refine the result, variable RAILROAD can first be removed before 

running the analysis again. Then, variables “LAKEWETL”, “JOINTPRO”, “BROKENPR”, and 

“DIAMETER” were also removed since they have no data points. The process continues where 

the most insignificant variable is removed every time the analysis is repeated, until all remaining 

variables are significant.  
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Figure 3.5: Selecting Significant Variables 

In this example, the final variables remaining that are significant are STREAMX and 

RESTAURA with p-values of 0.0323 and 0.0169 respectively as shown in the figure below. 
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Figure 3.6: Selecting Significant Variables 

Forward selection method however starts with no variables in the model. As variables are being 

added, their degrees of significance are being checked. The process stops when an added variable 

causes one or more of the variables to be insignificant. The model must end with all significant 

variables.  

Stepwise regression is a combination of both forward selection and backward elimination and is 

the most popular method. It starts with no variables in the model. As variables are being added, 

the resulting model is checked to see if any variable included gives significant contribution and if 

the contribution is independent of other variables (that is, it is not measuring the same thing as 

another variable already in the equation). In other words, the variable(s) in the model have to be 

significant and independent. If the contribution from a particular variable is very small compared 

to those of other variables or is insignificant, that variable should be dropped.  

In most statistical software packages, the process of selecting significant variables is relatively 

simple. Therefore, comparisons can be done between the results from different methods easily. 

After significant variables are selected, a distribution assumption has to be made for each MSG 

for the development of parametric models. 
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The essence of survival analysis is its associated distribution (curve) of “deaths” – in our case the 

failure distribution curve. Survival data may take on many distribution patterns.  It may, for 

example, take the shape of the common “bell” curve with a peak (center) and symmetrical 

“sides”, or it may have one side dominating the other (“skewed”). The challenge is to capture the 

shape of the distribution curve in a mathematical statement. Survival analysis is a set of 

mathematical theories used to do this. Doing so systematically allows for the accurate projection 

of the “how many, when” question raised before (in section 1.2). 

Survival analysis has been widely used in reliability studies. Its aim is to predict the probability 

that an asset can continue to function as intended for a given period of time, given its current 

conditions. There are two types of survival models – parametric and non-parametric. The 

parametric model has specific assumptions about the distribution of survival data. When the right 

assumptions are used, the results are more accurate. However, the non-parametric models do not 

rely on any distribution assumptions. These models will be further explained throughout this 

paper.  

For the parametric model, a group discussion among team members would be an excellent way to 

come up with a general consensus regarding any typical failure pattern of a specific MSG. The 

LoF is related to the survival function. So, if the utility feels confident that the MSG failure 

pattern follows a certain distribution (e.g. Exponential, Weibull, and Lognormal) based on expert 

judgments, then a parametric method can be used to develop a survival model for predicting the 

LoF. Below are some samples of Exponential, Weibull and Lognormal distributions: 
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Figure 3.7: Exponential Distribution (NIST, 2012) 

 

 

Figure 3.8: Weibull Distribution (NIST, 2012) 

 



35 

 

 

Figure 3.9: Lognormal Distribution (NIST, 2012) 

The parametric method has several advantages over the non-parametric method. 

 Standard errors (inaccuracy) of parameter estimates tend to be smaller 

 Closed-form (predefined) expressions of the hazard and survival functions are available 

 Good results can be obtained even in the case of small sample sizes 

 Estimation procedure is more efficient if the assumed distribution model is correct 

However, in the case of non-parametric models, no assumptions of the underlying distribution are 

required. This method uses the natural distribution it finds from the given data. These models are 

more flexible and are able to deal with any probability distribution. The disadvantage of the non-

parametric approach is that it needs much more data to get reasonable results. Although there is 

no certain threshold value, it is understood that if this method is chosen, the results depend on 

how much data is available. The more data available, the more accurate results would be. It is 

also more difficult to get estimates of functions that are needed for this method.  

When using statistical software to perform analysis, the procedural differences between 

parametric and non-parametric methods are minimal, however, except for the results. Since the 

non-parametric method finds the natural distribution in the data, it may be more accurate. 
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However, the parametric method is mainly attractive because it typically yields smaller standard 

errors and is much more efficient.  

Next, the survival curves are to be generated. 

In using survival analysis, several functions are involved: 

 Hazard Function 

 Survival Function 

 Probability Density Function 

The hazard function is also known as a risk or mortality rate. It is the instantaneous rate at which 

an event such as failure happens. For example, if an asset records 1 failure in 10 years, its hazard 

rate would be 1/10 or 0.1, assuming constant hazard over those 10 years.  Of course, the hazard 

may not be constant for such a long period of time for most assets. As a comparative statement, 

when we say that a car is traveling at 70 miles per hour it does not mean that the car will travel 

exactly 70 miles after one hour. This statement is valid only if the speed of the car is kept 

constant. The hazard function can be used to derive survival or probability density function, and 

vice versa. The hazard functions are different for parametric and non-parametric models. 

The survival function gives the probability that an asset survives past a certain time t. The plot it 

generates is the survival curve. The survival function is also called reliability function and is 

related to the hazard function such that if the failure rate is increasing, the probability of survival 

past time t will decrease. It is important to note that the survival function is a probability while 

the hazard function is a rate. As an example, the survival function can also tell how many failures 

would have occurred by 60 years. The general equation for survival function is defined by: 

 ( )        ∫  ( )  
 

 
 ,      (3.1) 

where  ( ) is the hazard function. 
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The survival function can also be defined as: 

 ( )      (    (   )   )      (3.2) 

where                       . Here,         are estimated parameters.           

are the values of k covariates.   is a random error term, and   is the scale parameter, and   is   

 . The survival function tells the probability of survival for any pipe of age t. 

The probability density function in survival analysis is the probability of event occurrence, or 

failure, at various times t. The popular normal distribution which is a bell-curve is an example of 

probability density function. The probabilities (of occurrence) of each value (on the x-axis) 

increase to a peak and then decrease again. At the peak, the probability is at its highest (0.5), and, 

consequently, the corresponding value is known as the expected value. 

The following explains how the related functions are developed. Parametric survival analysis is 

similar to ordinary linear regression. Assuming Ti to be a random variable representing survival 

time for the ith individual in the sample, and let xi1, …, xik be the values of k covariates for that 

same individual, the model is then: 

                           ,    (3.3) 

or 

       (                    ) ,    (3.4) 

where   is a random error term, and        and   are parameters to be estimated.  

When an assumption can be made about the distribution of survival time for any particular MSG, 

parametric survival analysis will be performed. Here is a list of parametric models, and every 

distribution has different hazard and survival functions: 
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 Exponential 

 Weibull 

 Extreme Value 

 Lognormal 

 Gamma 

 Birnbaum-Saunders 

However, if the non-parametric method is chosen, tools such as the Cox proportional hazards 

model or Kaplan-Meier estimator is used to develop hazard and survival functions.  

Based on the selected parametric or non-parametric method, the associated functions should be 

developed. These functions contain several parameters such as the shape, scale, shift, and others 

depending on the model. To estimate these parameters, several methods may be used: 

 Graphical Estimation  

 Maximum Likelihood  

 Method of Moments 

 Least Squares 

 Probability Plot Correlation Coefficient (PPCC) and Probability Plots 

The most popular methods are the graphical estimation and maximum likelihood. When using 

statistical software, these estimation procedures are not explicitly revealed. The statistical 

software program will perform the calculations in the background and show only the results.  

Figure 3.10 shows the results of a parametric analysis using the Weibull model. The two 

significant variables selected and used here are STREAMX and RESTAURA. Notice that besides 

estimates for the two variables and the intercept, there are also estimates for the Weibull scale and 

shape factors.  
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Figure 3.10: Parametric Analysis Using Weibull Distribution 

It can be deduced that for every increment in STREAMX (stream crossing) there will be a 24.8% 

decrease in survival time. The calculation is as follows: 100[exp(-0.2852)-1] = -24.8% 

Similarly, for every increment in RESTAURA (surrounding restaurant present), there will be a 

52% decrease in survival time. This also implies that this variable is more significant than 

STREAMX because it affects the survival time by 52% as opposed to 24.8%. The calculation is 

as follows: 100[exp(-0.7338)-1] = -52% 

The scale estimate is  . Changes in this estimate may affect the shape (compress / expand) of the 

hazard function, depending on the type of distribution. Since it is between 0 and 1 in this Weibull 

model, it implies that the hazard is increasing and survival time is decreasing. 

The Weibull Shape parameter is the reciprocal of the scale parameter. It has no special use; some 

statisticians prefer it over the scale estimate. 
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After these parameters have been estimated, reliability data should be plotted. There are a few 

types of plots: 

 Hazard and Cumulative Hazard plots 

 Survival plots  

 Cumulative Distribution Function (CDF) plots 

The figures in the next few pages show examples of hazard plot, cumulative hazard plot, and 

survival plot and the ways to interpret them. Figure 3.11 shows the hazard plot for the Weibull 

distribution. The plot is smooth, and the hazard increases at a constant rate. At point A, which is 

about age 30, the hazard or failure rate is 0.02 / year, or 1 in 50 years. At point B, which is about 

age 60, the failure rate increases to 1 in 26 years. This is the failure rate of assets in this MSG 

over time. Operations and maintenance activities can be planned by defining the maximum 

allowable failure rate.  
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Figure 3.11: Hazard Plot for Weibull Distribution 

The figure below shows the results of a non-parametric analysis using Cox Regression model. 

Notice that the analysis results show hazard ratios for each variable.  

B 

A 
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Figure 3.12: Non-Parametric Analysis Using Cox Regression 

It can be inferred that for each increase in STREAMX there is a 65.7% increase in hazard. The 

calculation is as follows: (1.657-1) x 100 = 65.7%. 

Similarly, for each increase in RESTAURA there is a 250.3% increase in hazard. The calculation 

is as follows: (3.503-1) x 100 = 250.3%. 

Figures 3.13 and 3.14 show sample plots of the cumulative hazard and survival function from the 

non-parametric analysis above. It can be seen that this MSG’s survival probability drops rapidly 

from age 18 to 40. Therefore, the asset manager would probably plan for more inspection or 

maintenance activities before this age range. Between ages 40 and 57, the survival probability is 

quite stable. If the utility’s goal is to perform major rehabilitation to assets that fall below the 

survival probability of 0.4, it can definitely be deduced that this activity can be done the latest at 

age 57. There is no need to perform major rehabilitation at age 40 because the survival 

probability is quite stable up to age 58. 
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Figure 3.13: Non-Parametric Cumulative Hazard Plot  

 

Figure 3.14: Non-Parametric Survival Plot 

The cumulative hazard plot shows that the failure rate of the asset group is increasing at an 

increasing rate from age 18 to 40, since it is curved upward. The failure rate increases at a 

decreasing rate from age 40 to 57. 
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3.4 Model Validation 

 

The figure below shows a distribution curve and some data points. The basic concept of model 

validation is to measure the distance between the data points and the curve. The smaller the 

distances, the better a curve fits. 

 

Figure 3.15: Distribution Curve 

Numerical or graphical methods can be used to validate a survival model. Numerical methods use 

fit statistics such as “-2Loglikelihood” and “AIC”. They are usually used to compare several 

models. Lower statistics mean a better fit.   

Graphical methods are plots that show how well a model fits. Figure 3.16 shows a graphical 

method of the previous example parametric analysis, called the probability plot. If all the data 

points are on the straight line, the assumed distribution is perfect. If they are within the shaded 

area, the fit is within the 95% confidence limit.  
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Figure 3.16: Probability Plot for Weibull Distribution 

It can be seen that a Weibull distribution assumption may not be the best (less than 95% 

confidence) for this example since there are data points lying outside the shaded area. We might 

have to consider a different distribution assumption. 

Figure 3.17 shows a repeated analysis using a Gamma distribution. This distribution fits better 

and should be chosen over Weibull distribution, because all the data points fall within the shaded 

area. 
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Figure 3.17: Probability Plot for Gamma Distribution 

If the data points do not fit the plot nicely, either new MSGs have to be defined or the model has 

to be redeveloped. Otherwise, the validated model is ready to be applied to asset networks.  

 

3.5 Model Application 

 

A validated model is ready to be applied to the entire network of assets in the same MSG. This 

model should be used together when reviewing CoF score and risk mitigation strategies to help 

the asset manager decide whether the risk exposure is within tolerable limits or not. It will also 

help estimate when this limit will be exceeded, and hence what short and long term decisions 

should be made. 
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CHAPTER IV 
 

 

RESULTS OF PREDICTING LOF USING SURVIVAL ANALYSIS 

 

This chapter presents the results of survival analysis for predicting end of asset life for both water 

and sewer pipes.  

 

4.1 Water Pipe Data 

 

The water pipe data was provided by the Greater Cincinnati Water Works (GCWW). This section 

presents the analysis results of water pipe data. Failure was defined by any repair or rehab 

activities that were done on a pipe. These water pipes were interfered due to leaks, pressure 

losses, or other unusual symptoms were discovered either from regular inspections or from their 

users. In this analysis, only the first failures on each pipe were used. 
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4.1.1 Data Collection, Quality Assurance, and Management 

 

This section describes the data attributes that were collected from GCWW data. Table 2 shows 

the data attributes of the water data that was collected from GCWW. 

Table 4.1: Major Data Attributes of Collected Water Data 

Attribute Attribute Type Definition 

Asset ID Physical 
5 or 6 digit asset identifier unique for each main segment 

(for example, 74967, 107433) 

Serviceare Other Area the pipe is located at (for example, EH) 

Lifecycle Other Identifies a main segment as active or abandoned 

Strlabel Other Street name 

Installyea Operational Installation year of pipe segment 

Report Date Operational Date of reported failure 

Material Physical Material of pipe (AC, CI, CU, DI, etc.) 

Diameter Physical Diameter of pipe in inches 

C_factor Other Calculated Hazen Williams coefficient 

Pressure Other Operating pressure of pipe segment 

Elevation Other Estimated elevation of pipe from GIS contours 

Shape_leng Physical Length of pipe in feet calculated by GIS 

Deadend Other Identifies main segment as plugged or capped 

Pitodist Other Pitometer district used to manage leak surveys 

100Scale Other 
Identifies specific 100-scale record drawing of portion of 

distribution system 

Groundsurf Environmental Ground surface type above pipe segment 

Administra Other Administrative area in which pipe segment resides 

Fixed_asse Physical 
Number assigned to all main segments related to a specific 

capital project 

Neighborho Other Neighborhood where pipe is located 

Size_wm Physical Diameter of pipe in inches 

Joint_type Physical Type of joint (flange, compression, lead, etc.) 

Break_desc Other Description of failure (corrosion, circular crack, 
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longitudinal crack, etc.) 

Out_pipe_c Other Exterior description of pipe condition 

In_pipe_c Other Interior description of pipe condition 

Outside_co Other Internal number representing Out_pipe_c information 

Inside_con Other Internal number representing In_pipe_c information 

Main_break Other Internal number representing Break_desc 

Address Other Address of pipe location 

Recno Other Internal record number for maintenance activity 

Year_recno Other Year recorded for maintenance activity 

 

The water data had 30 variables. Those that had duplicated information, missing information, 

irrelevant data or were the same for every asset were disregarded. In the end, 10 variables were 

used in the analysis. They were “Asset ID”, “Installyea”, “Report Date”, “Material”, “Diameter”, 

“C_factor”, “Pressure”, “Elevation”, “Shape_leng”, and “Neighborho”. 

 

4.1.2 Asset Classification 

 

GCWW’s master spreadsheet had over 17,000 data points. In this study, a simple judgment based 

classification was being done where pipe material and size were assumed to be good criteria. 

After discarding data points with missing installation year records, there were 9,886 remaining. 

There were 7 different types of materials, of which the majority were cast iron. The material 

distribution is shown in Figure 4.1.  
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Figure 4.1: Material Distribution of GCWW Records 

The cast iron pipes were selected and it was found that the majority were 6 inches in diameter. 

Therefore, this group of records was selected for further analysis. Figure 4.2 shows the diameter 

distribution of cast iron records, after further analysis and removal of duplicate records. The 6 

inch cast iron records were still the majority, by far.  
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Figure 4.2: Diameter Distribution of Cast Iron Pipe Records 

The MSG confirmed for water pipes were 6” cast iron pipes. The number of good data points was 

5,702, from 5,245 pipes. This was because some pipes had failed more than once.  

A subset of these water pipes was also selected to be another MSG. The figure below shows the 

distribution of data points in different neighborhoods. Most of the data points did not have 

neighborhood information, except for 971 of them. There were altogether 53 different 

neighborhoods. Out of these data points, 60 of them were from the Bond Hill neighborhood, 

which were the majority. Although this was not a very big number, it had been selected to test the 

effect of grouping. Only the first failures in this dataset were used. In other words, failure records 

of pipes that failed more than once were disregarded. There were 48 data points for Bond Hill 

neighborhood being used. The “Other” slice of the pie chart shows the total number of data points 

from all other minority neighborhoods. 
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Figure 4.3: Neighborhood Distribution of Water Pipes 

 

4.1.3 Survival Model Development 

 

This section shows the results of developing parametric and non-parametric survival models for 

the 2 groups of water pipes –5,702 cast iron pipes and 48 Bond Hill Neighborhood pipes. 

 

4.1.3.1 Parametric Survival Model 

 

The 6” cast iron water pipes had 4 variables that were potentially affecting physical survival 

time– “C_FACTOR”, “PRESSURE”, “ELEVATION”, and “SHAPE_LENG”. The results of 

selecting significant variables are shown in Figure 4.4. 



53 

 

 

Figure 4.4: Selection of Significant Variables for Water Pipes 

Before any selection was done, all the variables were tested. It can be seen that all the 4 variables 

were tested to be significant. Therefore, these 4 variables – “C_FACTOR”, “PRESSURE”, 

“ELEVATION”, and “SHAPE_LENG” were selected for this analysis. Here, we can deduce that 

the survival time, S can be expressed as S = exp [-3677.28 – 0.005(C_Factor) + 8.952(Pressure) + 

3.8763(Elevation) – 0.0007(Shape_Leng)]. In the statistical software used, the survival curve was 

then generated to show survival probabilities. 
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Figure 4.5 shows the parametric survival curve for 6” cast iron water pipes. Here, the Weibull 

distribution was first assumed because of its flexibility to fit datasets, and its popularity. 

 

Figure 4.5: Parametric Survival Curve for Water Pipes 

Recalling equation 3.2 for a survival curve: 

 ( )      (    (   )   )       

where                       . Here,         are the estimated parameters, which 

in this case equals -0.0050, 8.9520, 3.8763, and -0.0007.           are the values of k covariates. 

  is a random error term, and   is the scale parameter, which in this case equals 0.2314.   is 

simply     or 4.3212. 

Therefore, to find the survival probability of a 70 year old water pipe, for example, from the 

curve in Figure 4.5, the equation would be:  

 (  )      (     (        )(        ))    (4.1) 
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It can be seen from Figure 4.5 that the probability of survival of 6” cast iron water pipes is 99% at 

age 38 and continues to decrease to 67% at age 100.   

 

Figure 4.6: Parametric Survival Curve for Bond Hill Water Pipes 

Figure 4.6 shows the parametric survival curve for 6” cast iron water pipes from the Bond Hill 

neighborhood. In this data set, only “C_FACTOR” was the significant variable. It can be seen in 

Figure 4.6 that the survival probability of this group of pipes is 98% at age 51. It decreases until 

age 85 where the survival probability becomes 0%. The equation for this curve is: 

 ( )      (     (         )(        ))    (4.2) 

The result from selecting significant variables is shown below. 
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Figure 4.7: Selection of Significant Variables for Bond Hill Water Pipes 

Although we see 2 different curves, a concrete conclusion cannot be made here because the 

quality of subgroup chosen here can be questioned. This subgroup was only approximately 1% of 

the main group (48 out of 5,702 records), and any subgroup chosen can coincidently follow the 

pattern of the 1
st
 curve (5,702 pipes) or be totally contradicting. Nonetheless, these curves 

obviously show that groups have to be selected carefully because they indeed can have very 

different deterioration patterns.  

 

4.1.3.2 Non-Parametric Survival Model 

 

For the 5,702 water pipe data, the significant variables were the same as the parametric analysis. 

They were “C_FACTOR”, “PRESSURE”, “ELEVATION”, and “SHAPE_LENG”. Figure 4.7 

shows the non-parametric survival curve for this group of data.  
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Figure 4.8: Non-Parametric Survival Curve for Water Pipes 

It can be seen that the survival probability starts decreasing when the pipes approach 

approximately age 38. They have a survival probability of 73% at age 100. We see that the 

survival probability stopped at year 110. This is due to the presence of censored data. Censored 

data causes the possibility that a curve does not end with zero survival probability.  

For the Bond Hill neighborhood data, the significant variables found using the non-parametric 

analysis were “C_FACTOR” and “SHAPE_LENG”. Figure 4.9 shows the non-parametric 

survival curve for water pipes in Bond Hill neighborhood.  
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Figure 4.9: Non-Parametric Survival Curve for Bond Hill Water Pipes 

It can be seen that the survival probability starts decreasing after the pipes pass 51 years of age. 

Here, they do approach a 0% survival probability at about age 67.  

 

4.1.4 Model Application 

 

This section discusses applications of the survival curves that were developed for water pipes. It 

will predict the LoF (or survival probability) of a pipe for a certain number of years, given any 

age of interest. This helps the asset manager answer management questions presented earlier in 

chapter 1. However, the CoF score and risk mitigation strategies have to be considered 

simultaneously to help the asset manager decide whether the risk exposure is within tolerable 

limits or not. 

Figure 4.10 shows the parametric survival curve for water pipes.  
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Figure 4.10: Parametric Survival Curve for Water Pipes 

The probability of a 60 year old pipe to survive the next 10 years can be calculated as: 

                                         
                              

                              
 

    

    
 

       

Similarly, the probability to survive another 20 years at age 60 is: 

                                        
                              

                              
 

    

    
 

       

Using this information, the user can prioritize assets available and effectively plan management 

activities. It can be seen here that the probability of a 60 year old water pipe to survive another 10 

years is 95.8% and to survive another 20 years, this probability has only dropped slightly, to 

89.6%.  
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The non-parametric survival curve of water pipes in Figure 4.8 is slightly different from the 

parametric curve.  The graphs are overlapped and shown below. 

 

Figure 4.11: Overlapped Survival Curves for Water Pipes 

It can be seen that the survival probability shown in the parametric curve decreases at a consistent 

pattern. However, the non-parametric curve shows the survival probability decreasing in one 

pattern until age 73 and then it decreases in a different pattern. Nonetheless, they both show that 

the survival probability starts decreasing at age 38. At age 100, the survival probabilities are 67% 

and 73%. 

Figure 4.12 shows the parametric survival curve for water pipes from Bond Hill neighborhood.  
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Figure 4.12: Parametric Survival Curve for Bond Hill Water Pipes 

The probability of a 60 year old pipe to survive the next 10 years can be calculated as: 

                                         
                              

                              
 

   

    
 

       

Similarly, the probability to survive another 20 years at age 60 is: 

                                        
                              

                              
 

    

    
 

      

Using this information, the user can prioritize assets available and effectively plan management 

activities. It can be seen here that the probability of a 60 year old water pipe in Bond Hill 

neighborhood to survive another 10 years is 57.5% but it only has a 6.9% chance to survive 

another 20 years.  
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The non-parametric survival curve of Bond Hill neighborhood water pipes in Figure 4.9 is quite 

different from the parametric curve in Figure 4.6, and this indicates that the distribution assumed 

for the parametric model may not be the best. Another possible reason is the nature of the non-

parametric model. It is a step curve and due to the small number of data points, the steps can have 

a very different pattern as when more data points are available. The graphs are overlapped and 

shown below. 

 

Figure 4.13: Overlapped Survival Curves for Bond Hill Water Pipes 

In the non-parametric survival curve, there is extremely little probability (<1%) for a pipe to 

survive past age 67, whereas the parametric curve shows survivability until age 85. However, 

both parametric and non-parametric survival curves show that the survival probability starts 

decreasing at about age 51.  

 

4.2 Sewer Pipe Data 
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The sewer pipe data was provided by the Metropolitan Sewer District of Greater Cincinnati 

(MSD). This section presents the analysis results of sewer pipe data. Failure was defined by any 

maintenance that was done on a pipe. These sewer pipes were only interfered when leaks, 

collapses, or other unusual symptoms were discovered either from regular inspections or from 

their users. In this analysis, only the first failures on each pipe were used. 

 

4.2.1 Data Collection, Quality Assurance, and Management 

 

This section describes the data attributes that were collected from MSD data. Table 4.2 shows the 

data attributes of the sewer data that was collected from MSD. 

Table 4.2: Major Data Attributes of Collected Sewer Data 

Attribute Attribute Type Definition 

Asset Name Physical 
16 digit asset identifier (for example, 28407001-

28402014) 

COF Other Consequence of failure score for the asset 

Current 

Condition 
Performance 

Current condition rating of the asset at the time of running 

the analysis 

Diameter Physical Diameter of the asset in inches 

Failure Code Other Failure code assigned at time of recorded failure 

Failure Date Operational Dates of failure 

Hierarchy 

Level 1 
Other Textual description of hierarchy level 1  

Hierarchy 

Level 2 
Other Textual description of hierarchy level 2  

Hierarchy 

Level 3  
Other Textual description of hierarchy level 3 

Hierarchy 

Level 4  
Other Textual description of hierarchy level 4 

Hierarchy Other Textual description of hierarchy level 5 
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Level 5 

Install Year  Operational Year in which the asset was installed 

Intervention 

Condition 
Other 

Minimum condition score below which the asset cannot be 

allowed to drop 

Length Physical Length of pipe segment in feet 

Lining Cost Other Cost of lining the asset 

Material Physical Type of pipe segment material (e.g. conc) 

Material Class Other 
Class of material that the pipe segment belongs to (e.g. 

lined, or unlined) 

Maximum 

Life 
Other 

Maximum life of the pipe segment in years before 

replacement will occur 

Maximum 

Rehab Count 
Other 

Maximum possible number of times that the pipe segment 

can be rehabilitated before being replaced 

Max Risk 

Limit 
Other 

Maximum risk score that the pipe segment is allowed to 

reach before appropriate action is triggered 

OpCost Other Average annual operational costs for the pipe segment 

Original Initial 

Condition 
Other 

Original condition of the pipe segment without any 

modifiers 

Physical 

Effective Life 
Other 

Life of the pipe segment if no rehabilitation was 

undertaken on it 

PmCost Other 
Average annual preventative and predictive maintenance 

costs for the pipe segment 

POF Other Probability of failure 

Problem code Other Code of problem leading to maintenance 

PrvRhbCount Other 
Number of times the pipe segment has been rehabilitated 

in the past 

RehabCost Other Cost to rehabilitate the pipe segment 

RehabDate Other Date of last rehabilitation on pipe segment 

Renewal 

Years 
Other Year(s) in which pipe segment was renewed 

Replace 

Action Type 
Other 

Type of action to be taken during replacement (e.g. open-

cut, trenchless, etc.) 

Replacement 

Cost 
Other Cost to replace the pipe segment 

RpCost Other Cost to repair the pipe segment 

Type Other 
Type of asset (e.g. sewer segment, joint, butterfly valve, 

etc.) 
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The sewer data had 34 variables. Those that had duplicated information, missing information, 

irrelevant or were the same for every asset were disregarded. In the end, 5 variables were used in 

the analysis. They were “Asset Name”, “Diameter”, “Failure Date”, “Install Year”, and “Length”. 

 

4.2.2 Asset Classification 

 

MSD’s master spreadsheet was populated with over 5,000 data points. All the pipes were made of 

concrete. The diameter distribution is shown in Figure 4.14.  

 

Figure 4.14: Diameter Distribution of Sewer Pipes 

The majority of the sewer pipes were 12 inches in diameter. Therefore, this group of pipes was 

selected for further analysis. There were 1,791 data points. 
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4.2.3 Survival Model Development 

 

This section shows the results of developing parametric and non-parametric survival models for 

sewer pipe data.  

 

4.2.3.1 Parametric Survival Model 

 

The 12” concrete sewer pipes had only 1 variable selected, as shown in Figure 4.15. It was tested 

to be significant. The variable used in this analysis was “LENGTH”. 
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Figure 4.15: Selection of Significant Variables for Sewer Pipes 

Figure 4.16 shows the parametric survival curve for 12” concrete sewer pipes. It can be seen that 

the probability of survival of these pipes start to decrease at about age 22. At 120 years, the 

survival probability is approximately 26%. 
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Figure 4.16: Parametric Survival Curve for Sewer Pipes using Variable “Length” 

The survival function for the curve in Figure 4.16 would be:  

 ( )      (     (        )(       ))    (4.3) 

 

In an attempt to further study the variable “Length”, a new variable “Mod_length” was created 

whereby pipe lengths were grouped as follows: 

Table 4.3: Variable "Mod_length" Groups 

Pipe Length (ft.) Group 

<100 1 

99<Length<200 2 

199<Length<300 3 

299<Length<400 4 
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Figure 4.17 shows the new survival curves for these 4 groups of pipes. It can be seen that there 

are 4 distinct curves for 4 different length categories. The survival probabilities start decreasing at 

about age 20 and they decrease at different rates. The longer pipes have survival probabilities that 

decrease at a faster rate compared to shorter pipes. 

Figure 4.17: Parametric Survival Curves for Sewer Pipes using Variable “Mod_Length” 

The equations for these 4 curves are as follows: 

Group 1:  ( )      (     (        )(       ))   (4.4) 

Group 2:  ( )      (     (        )(       ))   (4.5) 

Group 3:  ( )      (     (        )(       ))   (4.6) 

Group 4:  ( )      (     (        )(       ))   (4.7) 

The result tables are shown below. 
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Figure 4.18: Result Tables for Sewer Groups 

For this study, a hypothesis test was established to test if the survival curves for different pipe 

lengths were significantly different.  

H0: Survival curves of different pipe lengths were not different. 

H1: Survival curves of different pipe lengths were different 
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This was done by creating a new variable called “Mod_length” and categorizing the pipe lengths 

into 5 groups as shown in Table 4.3. A test was then performed on the new variable 

“Mod_length” to see if the survival curves of different pipe lengths were different. The 

motivation behind this study was due to the way sewer pipes are being assessed. 

The PACP sewer asset condition scoring is the most common scoring system in the United States. 

There are 3 scoring methods in this system. The Overall Pipe Rating is the total defect score on a 

pipe. For example, if a pipe has 1 defect score of 5 and 3 defect scores of 4, the Overall Pipe 

Rating will be 5+4+4+4 = 17. The Quick Rating is a 4 digit number where the first and third digit 

shows the 2 most severe defect scores. The second and forth digit shows the frequency of these 

scores. For example, the previous example would have a Quick Rating of 5143. Finally, the Pipe 

Ratings Index is the average defect score of a pipe. For example, the previous example would 

have a Pipe Ratings Index of 4.25 (Overall Pipe Rating divided by total number of defects) 

(Opila, 2011).  

The problem with the PACP scoring system is that longer pipes will automatically have poorer 

scores. This is simply because longer pipes have a higher chance to get more defect scores. More 

defect scores translate to a worse PACP score. This was the reason “Length” turned out to be a 

significant variable when analyzing the sewer pipes. Subsequently, special precaution has to be 

taken when an asset manager makes decisions based on these scores.  

As the survival curve for sewer pipes shows, the survival probability of longer pipes decreases at 

a faster rate compared to shorter pipes. In this analysis, a failed pipe was one that had a defect 

score of 5. Some utilities would replace the entire pipe segment when in fact only one pipe 

section had a defect score of 5. Therefore, longer pipes have a higher chance of being classified 

as a failed pipe and many pipe sections that are still in good condition may be replaced 

redundantly. 
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Figure 4.19 shows the analysis results when using variable “Mod_length”.  

 

Figure 4.19: Results for Testing the Significance of Variable "Mod_length" 

The results show that pipe length is indeed sensitive to survival probability (p<0.0001). This 

infers that as the pipe lengths increase from one group to another (100 ft. increments), there is a 

18.2% drop in survival time. The calculation is as follows: 100[exp(-0.2005)-1] = -18.2%. In 

other words, longer pipes have lower probability of survival compared to shorter pipes of the 

same age. This is a biased judgment based on length. Therefore, there is a need to assess pipes 

according to their lengths so that such biases would not exist. 

To improve the PACP scoring system, defect scores should be assigned according to pipe lengths. 

The scores should be compared for same lengths of pipes. For example, an asset manager could 

create a database with pipe segments of similar lengths and assign condition scores. Therefore, no 

pipe will have a higher chance of getting a poorer score than the other due to being longer. Pipes 

segments that are longer could be broken down so that there are defect scores for every same 

length of pipe segments. 

 

4.2.3.2 Non-Parametric Survival Model 
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Figure 4.20 shows the non-parametric survival curve for sewer pipes when variable “Length” was 

the significant variable. It can be seen that the survival probability of these pipes starts decreasing 

at age 33. At age 120, the survival probability reaches 43%.  

 

Figure 4.20: Non-Parametric Survival Curve for Sewer Pipes using Variable “Length” 

Figure 4.21 shows the survival curve when variable “Mod_length” was used instead of variable 

“Length”. It can be seen that the curve is identical to Figure 4.20, where variable “Length” was 

used.  
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Figure 4.21: Non-Parametric Survival Curve for Sewer Pipes using Variable “Mod_length” 

The figure below shows non-parametric curves for the 4 length groups of sewer pipes. 
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Figure 4.22: Non-Parametric Survival Curves for Sewer Pipes using Variable “Mod_length” 

It can clearly be seen that the longer pipes have survival probabilities that drop more rapidly than 

the shorter ones. We see that the curve for group 4 intersected the curve for group 3, and has a 

constant survival probability from approximately age 76 to 105. This could be due to limited data 

for group 4. It has only 131 observations, compared to 398, 672, and 587 observations for groups 

1, 2, and 3 respectively. 

 

4.2.4 Model Application 

 

This section discusses applications of the survival curves that were developed for sewer pipes. It 

will predict the LoF (or survival) of a pipe for a certain number of years, given any age of 

interest. This helps the asset manager answer management questions presented earlier in chapter 



76 

 

1. However, the CoF score and risk mitigation strategies have to be considered simultaneously to 

help the asset manager decide whether the risk exposure is within tolerable limits or not. 

Figure 4.23 shows the survival curves for 12” concrete sewer pipes using variable “Mod_length”. 

For a pipe that is less than 100 ft. long, its survival probability at age 60 is 95%. At this age, its 

survival probability for the next 20 years can be calculated as: 

                                         
                              

                              
 

    

    
 

       

The survival probability for the next 40 years can be calculated as: 

                                         
                               

                              
 

    

    
 

       

Using this information, the user can prioritize assets available and effectively plan management 

activities. It can be seen that the probability of a 60 year old sewer pipe to survive another 20 

years is only 7.3% higher than to survive another 40 years. 
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Figure 4.23: Parametric Survival Curves for Sewer Pipes using Variable “Mod_length” 

For a pipe that is between 200 ft. and 300 ft., its survival probability at age 60 is 81%. At this age, 

its survival probability for the next 20 years is calculated as: 

                                         
                              

                              
 

    

    
 

       

The survival probability for the next 40 years can be calculated as: 
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Here, the probability of a 60 year old pipe that is less than 100 ft. to survive another 20 years 

versus 40 years drops by 7.3%. However, the probability of a 60 year old pipe that is 200 ft. to 

300 ft. to survive another 20 years versus 40 years drops by 42%.  

The non-parametric survival curve for 12” concrete sewer pipes is shown in Figure 4.23. At age 

60, its survival probability for the next 20 years can be calculated as: 

                                         
                              

                              
 

    

    
 

       

The survival probability for the next 40 years can be calculated as: 
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Figure 4.24: Non-Parametric Survival Curve for Sewer Pipes 

Here, the probability of a 60 year old sewer pipe to survive another 20 years versus 40 years 

drops by 11.6%.  

 

4.3 Discussions 

 

This section discusses the results that were obtained from various aspects including data collected 

and model performances. The distribution assumptions for parametric models will be compared 

to find the best fitting distribution. Then, the parametric models will also be compared with the 

non-parametric model. 

 

4.3.1 Data Collected 

 

Both water and sewer data were managed by different organizations. Therefore, they contained 

different data attributes. Table 4.4 shows what attributes were available from the obtained data 

versus those that were unavailable.  

Table 4.4: Water and Sewer Datasets Comparison 

Attribute 
GCWW Data MSD Data 

Available Unavailable Available Unavailable 

Physical X  X  

Performance  X X  

Environmental  X  X 

Operational X  X  
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Both datasets met the minimally required attributes to perform the study, which included the 

physical and operational (installation and failure records) attributes. However, many other 

physical, environmental, and operational attributes such as soil condition, soil corrosivity, land 

use type, tree density, proximity to highway, railroads and other structures, etc. that might be 

obtainable from the engineering department, Geographic Information System (GIS) system and 

Computerized Maintenance Management System (CMMS) system had not been included in these 

datasets. 

Since this study used survival analysis as a method to determine the LoF and the life expectancy 

of a pipe, failure data was used rather than condition ratings. Data points that had the physical 

attributes and installation year but missing failure records were used as censored data points.  

In the water data, several additional attributes of interest were available, such as “C_factor”, 

“Pressure”, and “Elevation”. In the sewer data, attributes such as “Failure Code”, “Intervention 

Condition”, “PrvRhbCount”, and “Renewal Years” were created for future use. The utility 

believed that keeping track of these data attributes would help in planning rehabilitation and 

replacement activities in the future.  

The following data points were disregarded in this study: 

 Those missing installation year records 

 Those without pipe material and diameter information  

 Duplicate records 

 

4.3.2 Model Performances and Validation 
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The table below shows the performances of various distribution assumptions used on water pipe 

data that were not grouped. The water pipe data had 5,702 data points, and the parametric model 

was tested using Weibull, Exponential, Lognormal, Gamma, and Loglogistic distributions. The 

table summarizes the fit statistics using “-2 Log Likelihood”, and “AIC”. Smaller numbers infer a 

better fit. It can be seen that for the water data, the gamma distribution fitted the best (-2 log 

likelihood of 2798.319). It was also compared with the non-parametric model. The non-

parametric model did not fit the data well. 

 

Table 4.5: Water Data Fit Statistics 

Distribution -2 Log Likelihood AIC 

Weibull 3020.001 3032.001 

Exponential 4371.847 4381.847 

Lognormal 2870.278 2882.278 

Gamma 2798.319 2812.319 

Loglogistic 2951.451 2963.451 

Non-

Parametric 

18809.991 18817.991 

 

The table below shows the fit statistics for water pipe data that was grouped. Bond Hill data was a 

subset of data points from the water data set. It contains the records of pipes from the Bond Hill 

neighborhood. As shown in the table, the models produced fitted much better than the models for 

the water pipe data that were not grouped. This was partly because Bond Hill data set was 

smaller. More importantly, the data should fit better because the smaller data set represented a 

group of pipes that behaved more similarly than in the pool. From the analysis results, we see 

very different patterns between the plot generated from the pool and the one from Bond Hill 

neighborhood. This means that the first plot could be generic, and that further classification was 

necessary. From the Bond Hill data results, it can be seen that the Gamma distribution was also 
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the best fit among all distribution assumptions (-2 log likelihood of -44.135), and the non-

parametric model. 

Table 4.6: Bond Hill Water Data Fit Statistics 

Distribution -2 Log Likelihood AIC 

Weibull -34.252 -28.252 

Exponential 68.744 72.744 

Lognormal -41.858 -35.858 

Gamma -44.135 -36.135 

Loglogistic -41.354 -35.354 

Non-

Parametric 

244.619 246.619 

 

The figures below illustrate a graphical method to test how well an assumed distribution fits the 

model. It is a cross-check against the fit statistics presented above. Here, the Bond Hill data was 

tested. The crosses are estimates for the non-parametric model, while the solid straight-sloped 

line represents the parametric survival model. The dotted lines show the 95% confidence interval 

limits. Ideally, the non-parametric estimates would match the parametric model. From the figures 

below, the Exponential model is definitely not a good fit. However, it is difficult to tell which of 

the other four models is best.  
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Figure 4.25: Probability Plot for Weibull Distribution 

 

Figure 4.26: Probability Plot for Exponential Distribution 
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Figure 4.27: Probability Plot for Lognormal Distribution 

 

 

Figure 4.28: Probability Plot for Gamma Distribution 

 



85 

 

 

Figure 4.29: Probability Plot for Loglogistic Distribution 

The table below shows the fit statistics for sewer data. The sewer data comprised of 1,791 data 

points. It can be seen from the fit statistics that the gamma distribution produced the best model 

for these pipes (-2 Log Likelihood of 703.973). 

Table 4.7: Sewer Data Fit Statistics 

Distribution -2 Log Likelihood AIC 

Weibull 761.369 767.369 

Exponential 1063.456 1067.456 

Lognormal 722.855 728.855 

Gamma 703.973 711.973 

Loglogistic 743.378 749.378 

Non-

Parametric 

3525.772 3527.772 

 

Gamma distribution could very well produce the best results repeatedly because it is a big family 

of distributions. In other words, it is much related to the other distributions such as Weibull, 

Exponential, Lognormal and Loglogistic. However, from these statistics, the Exponential and 

Non-Parametric distributions can consistently be eliminated.
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CHAPTER V 
 

 

CONSLUSIONS AND RECOMMENDATIONS 

 

There are a number of conclusions that can be drawn from this research. Survival analysis is a 

great tool because it accounts for censored data, which is a common situation with underground 

assets. It uses incomplete information to generate results in a way that is consistent and can be 

trusted. It also accounts for time-dependent data, which is a major advantage over other tools. 

Here, the parametric models performed better than the non-parametric models, for these 

underground water and sewer pipes. The fit statistics for parametric models were at least three 

times better than that of the non-parametric models. Specifically, from the fit statistics, the 

gamma distribution appeared to be superior for all the data sets. This is probably because it is a 

big family of distributions. However, the Weibull, Lognormal and Loglogistic distributions 

seemed to fit well too and may be chosen. 

Next, assets need to be grouped. It can be seen that the survival curves for all data sets were 

different. By creating asset groups, a survival curve that fits better can be created. This can help 

answer questions such as: 

 Which assets, and how likely will they fail this year, or in a particular future year? 

 Should current operations and maintenance activities be improved or should an asset be 

replaced now? 

 Should investments be proactive or reactive? 
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 When and how much should be invested in inspections and condition assessments? 

 How can changes in risks be quantified? 

However, the size of asset groups needs to be considered because larger groups yield easier 

management with less survival curves and vice versa.  

Thirdly, sewer length is sensitive to survival time due to the way they are assessed. Sewer pipes 

are scored according to pipe segments, which vary in length. Therefore, longer pipe segments will 

probably have more defect scores and will have a higher chance of being rated poorer than shorter 

pipe segments. Results show that for every 100 ft. increment in pipe length, there is an 18.2% 

drop in survival time. 

Recommendations for asset managers include: 

 Apply survival analysis to be able to make use of incomplete information. Instead of 

discarding the entire information on an asset, survival analysis can utilize partial 

information that is collected and produce reliable results. 

 Classify assets strategically using expert judgment or statistical tools. Classifying assets 

that deteriorate in a similar manner will help identify when and which assets need 

attention. It will also help answer many asset management questions and improve the 

effectiveness of the management strategy. 

 Assess sewer pipes according to length groups. This will eliminate the bias of longer 

pipes having lower survival probability.  

Recommendations for future researchers in this area include studying the effect of various sample 

sizes on both parametric and non-parametric models. It is also recommended that the assets be 

classified statistically, so that the MSGs can be numerically verified. Finally, simpler statistical 

software may be used so that future researchers will not have to face problems with the software 
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itself. In this project, a lot of time was spent learning how to use SAS. There were many functions 

and codes to learn regarding survival analysis, while it was not very easy to find references 

specifically for this topic. If a freeware such as “R” was used, references might be more easily 

available. 
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APPENDIX A: LIST OF ACRONYMS 
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Acronym Description 

ASCE American Society of Civil Engineers 

CoF Consequence of failure 

CWA Clean Water Act 

GCWW Greater Cincinnati Water Works 

GHD Name of private consultant 

LoF Likelihood of failure 

MSD Metropolitan Sewer District of Greater Cincinnati 

MSG Management Strategy Groups 

PACP Pipeline Assessment Certification Program 

ROW Right of Way 

USEPA United States Environmental Protection Agency 
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APPENDIX B: REVIEWING LOF SCORE FRAMEWORK 
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2

Retrieve, Organize and Clean 

Available  Data

15

Parametric Survival Analysis 

Method

Determine the best fitting 

probability distribution:

 Weibull

 Exponential

18

Validate Model

Test models using available data. Once the 

model is validated, it is ready to be applied to 

the network.

20

Apply Model

Apply validated model to network of assets.

Box 6

Review Residual Physical Life

Box 10

Determine Business Risk 

Exposure Score (BRE)

1

Data Availability

Does utility have sufficient 

reliable asset level failure 

data to predict failure?

Yes

11

Consider Non-probabilistic Analysis  

and/or establish Data Collection 

Strategy

16

Non-Parametric or Semi-

Parametric Survival 

Analysis Method

Use tools such as Cox model 

or Kaplan-Meier estimator to 

develop hazard and survival 

functions.

17

Develop Survival Model for Each MSG

Using the selected significant variables, 

estimate the parameters needed and develop 

the models to estimate the likelihood of 

failure. Interpret and understand the model.

No

3

Asset Classification

Does utility have acceptable 

management strategy groups 

(MSG)?

7

Classify Assets

Classify assets using the 

criteria for MSG according 

to their characteristics and  

behavior based on 

maintenance records.

8

Clustering 

Develop statistics based 

MSGs using clustering 

techniques.

6

Develop MSG Criteria

Develop criteria for 

classifying asset types into 

different MSGs.

A

13

Initiate Development of Survivor Curve 

(Probability Distribution) for MSGs to 

predict failure frequency by age cohort

9

Confirm MSG Designation; Modify 

MSGs As Relevant

Group Assets by Failure Behavior
Develop Survivor Curves; 

Project Failure Distribution

19

Is the model 

successfully 

validated?

14

Distribution 

Assumption

Can a probability 

distribution be 

assumed for the MSG?

Yes

Yes

No

Yes No

4

Does utility want to redevelop 

MSGs?

No

5

Does utility want to develop 

judgment based or statistics 

based MSGs?

Statistics Based
Judgment Based

12

Select Significant Variables

Conduct a statistical test such as stepwise 

regression, forward selection or backward 

elimination for each MSG or cluster of assets 

to identify significant variables.

No

Yes

Developing and Applying “Management Strategy Groups” and 

“Conditional Probabilities” to Determine End of Physical Life

Developed by Oklahoma State 

University and GHD Inc.

Start

10

Does utility want to 

develop survivor 

curves?

End

No

A

Yes
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