CORRELATING MOLECULAR STRUCTURES AND PROPERTIES OF EMERGING CONTAMINANTS WITH ENVIRONMENTAL FATE MODELS

By

KUMAR SHARAD SAMANT

Bachelor of Science in Civil Engineering

University of Mumbai

Mumbai, Maharashtra

2007

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE May, 2010

CORRELATING MOLECULAR STRUCTURES AND PROPERTIES OF EMERGING CONTAMINANTS WITH ENVIRONMENTAL FATE MODELS

Thesis Approved

Dr. John N. Veenstra

Thesis Adviser

Dr. Gregory Wilber

Dr. William McTernan

Dr. A. Gordon Emslie

Dean of the Graduate College

ACKNOWLEDGMENTS

I would like to take this opportunity to thank so many people who have made this journey possible and helped in me in the successful completion of this work. I would first like to thank Dr. John Veenstra, my thesis adviser, who provided me an opportunity to pursue the master's research under his guidance. He has been so helpful and supportive of my work and provided valuable ideas throughout my thesis. His endless guidance, patience, knowledge, time and faith made this work possible. I appreciate your time in reviewing my work and making corrections.

I would like to thank Dr. Gregory Wilber for coming up with the project idea and believing in me. He provided valuable inputs and suggestions from very beginning of this research. This project would not have been possible without him.

I would also like to thanks Dr. William McTernan for serving on the master's committee. I appreciate your time in reviewing my thesis and help me improve, refine and expand my thesis.

I would like to thank Dr. Dee Ann Sanders for inspiring me in my graduate course work. Thank you for the cookies, knowledge, enthusiasm and all the laughter you provided in my graduate education. In addition to the names mentioned above I would like to thank my friends, Hrishikesh, Ketan, Hrishi, Vishvesh, Nitin, Gaurav, Arpit, Harshad, Swapnil, Manish, Dhananjay and Abhishek, for their emotional support over the last two years. I would like to thank Haanbai Park for his support and co-operation. Special thank to Vipin Shankar for inspiring me to pursue a Master's Degree and being my friend for so long.

Last, but not the least, I would like to thank my all my family members, especially my father Sharad Samant and mother Sunita Samant for their unconditional love and support they provided me throughout my education. I also wish to express my gratitude to my sister Anisha and brother Ambrish for your understanding, love and support.

I owe my deepest gratitude towards Oklahoma State University for giving students like me a chance to work with so much great facilities. Without the support of OSU, this and many more such projects would have been a distant reality for aspiring engineers.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION1
1.1 Emerging Contaminants of Environmental Concern 1 1.2 Quantitative Structure-Activity Relationships (QSARs) 2 1.3 Scope of Investigation 5
II. REVIEW OF LITERATURE
2.1 Introduction to Taste and Odor Causing Compounds.62.2 Causes of Taste and Odor.72.3 Sources and Properties of Geosmin and 2-MIB82.4 Geosmin and MIB Producing Species102.5 Substrates for Growth of Species Producing Geosmin and MIB152.6 Biosynthesis of Geosmin and 2-MIB152.7 Properties of Geosmin and 2-MIB172.8 Evaluation of Taste and Odor Problems in Drinking Water182.9 Removal of Off-Flavors232.10 Other Chemiclas of Environmental Concern252.11 Degradation/Removal of contaminants in environmental fate processes32
2.13 Physicochemical Properties of Chemicals
III. METHODOLOGY

3.1 Data Sources	for Physicochemical Properties of Cher	nicals46
3.2 Degradation F	Rates of Chemicals	
012 2 08144441011 1		

Chapter Pag	;e
IV. RESULTS AND DISCUSSION	;
 4.1 Properties of Chemicals used as descriptors	3
V. CONCLUSION)
5.1 Conclusions905.2 Recommendations for Further Research91)
REFERENCES)
APPENDICES	;
APPENDIX A: MOLECULAR MODELING PRO	

LIST OF TABLES

Table

•

Page

1 Chemicals Causing Taste and Odor Problems in Water	8
2 2-MIB Producing Species	11
3 Geosmin Producing Species	12
4 Geosmin and MIB Producing Species	14
5 Properties of Geosmin and 2-MIB	17
6 Comparison of E _{HOMO} and E _{LUMO} values	51
7 Physicochemical Properties of Geosmin	57
8 Physicochemical Properties of 2-Methylisoborneol	58
9 Physicochemical Properties of 2,4-Dichlorophenol	59
10 Physicochemical Properties of Triclosan	60
11 Physicochemical Properties of Acetaminophen	61
12 Physicochemical Properties of Atrazine	
13 Biodegradation Rates of Chemicals	64
14 Oxidation Rates of Chemicals	65
15 Hydrolysis Rates of Chemicals	
16 Summary of Data	67

LIST OF FIGURES

Figure

1 Simplified Biosynthesis Scheme for Formation of 2-MIB and Geosmin in	
Streptomycetes and Myxobacteria	16
2 Schematic Diagram of Realationship Between Instrument and Sensory Method	ls 19
3 Taste and Odor Wheel	
4 (a) Molecular Modeling Pro program screen	49
4 (b) Step to open a molecule in Molecular Modeling Pro	49
5 (a) Geosmin.mol file opened in Molecular Modeling Pro	50
5 (b) MOPAC executed in Molecular Modeling Pro program	
6 Running MOPAC with keywords	50
7 Biodegradation rate vs. Molecular Weight	68
8 Biodegradation rate vs. Log K _{OW}	
9 Biodegradation rate vs. Water Solubility	69
10 Biodegradation rate vs. Henry's Law Constant	70
11 Biodegradation rate vs. Log Octanol Air Partition Coefficient	
12 Biodegradation rate vs. Soil Adsorption Coefficient	
13Biodegradation rate vs. Enthalpy of Vaporization	
14 Biodegradation rate vs. Vapor Pressure	72
15 Biodegradation rate vs. LUMO	
16 Biodegradation rate vs. HOMO	73
17 Log Oxidation rate vs. Molecular Weight	73
18 Log Oxidation rate vs. Log K _{OW}	74
19 Log Oxidation rate vs. Water Solubility	75
20 Log Oxidation rate vs. Henry's Law Constant	75
21 Log Oxidation rate vs. Log Octanol Air Partition Coefficient	
22 Log Oxidation rate vs. Soil Adsorption Coefficient	
23 Log Oxidation rate vs. Enthalpy of Vaporization	77
24 Log Oxidation rate vs. Vapor Pressure	77
25 Log Oxidation rate vs. LUMO	
26 Log Oxidation rate vs. HOMO	
27 Hydrolysis rate vs. Molecular Weight	79
28 Hydrolysis rate vs. Log K _{OW}	79
29 Hydrolysis rate vs. Water Solubility	80
30 Hydrolysis rate vs. Henry's Law Constant	80
31 Hydrolysis rate vs. Log Octanol Air Partition Coefficient	81
32 Hydrolysis rate vs. Soil Adsorption Coefficient	81
33 Hydrolysis rate vs. Enthalpy of Vaporization	82
34 Hydrolysis rate vs. Vapor Pressure	82
35 Hydrolysis rate vs. LUMO	
36 Hydrolysis rate vs. HOMO	
37 Biodegradation rate constant vs. Log octanol/air partition coefficient	
38 Biodegradation rate vs. Enthalpy of vaporization	85

39 Energy of highest occupied molecular orbital vs. Log Oxidation rate	86
40 Energy of lowest unoccupied molecular orbital vs. Hydrolysis rate constan	t 87
41 Energy of highest occupied molecular orbital vs. Hydrolysis rate constant .	87
42 Log octanol-water partition coefficient vs. Hydrolysis rate constant	88

CHAPTER I

INTORDUCTION

1.1 Emerging Contaminants of Environmental Concern

Pharmaceuticals, antibiotics, hormones, personal care products, nanoparticles, and their degradation products have been observed throughout our ecosystem and in some cases in our drinking water (Borch, et al., 2009). This new category of emerging contaminants has attracted the attentions of citizens, scientists and engineers, researchers, state and federal agencies, environmental groups, industrial and commodity groups, and regulators (Yan, et al., 2010). Emerging contaminants have been associated with significant environmental impacts, for example selected pharmaceuticals have been associated with feminization of fish and the non-steroidal anti-inflammatory drug, diclofenac, has been shown to be responsible for the catastrophic decline in vulture populations in Asia and thus, emerging contaminants present numerous challenges for scientists, engineers, regulators and the public (Kehoe, et al., 2007). There are some 60,000 chemicals in current commercial production with approximately 1000 being added each year, and perhaps 500 substances are of environmental concern because of their presence in detectable quantities in various components of the environment, their toxicity, their tendency to bioaccumulate, or their persistence (Mackay, et al., 1997).

These emerging contaminants and their degradation products pose environmental risk and hence need to be regulated. Thus it is crucial to assess the environmental risks associated with the production, transportation, utilization and disposal of the emerging contaminants. There are very limited or no experimental data available for most of the thousands of organic compounds that are produced and often released into the environment (Reinhard and Drefahl, 1999). New pesticides, pharmaceuticals, personal care products and other chemicals are produced at rates that cannot be matched by experimental attempts to determine the outcome when spilled or released into the environment, making it essential to develop systems that can predict their fate in the environment before experimental assessment (Gomez, et al, 2007).

1.2 Quantitative Structure-Activity Relationships (QSARs)

The assessment of fate and distribution of environmental pollutants in various phases including air, water, and soil is important for the risk assessment of chemicals (Basak, et al., 2007). There is also a considerable interest in developing methods for predicting the properties (e.g. Solubility) and activities (e.g. fate, toxicity) of chemicals, especially organics, in the environment and in engineered systems (Sawyer, et al., 2003). Characteristics of organic compounds (physical, chemical and structural) are used and correlations have been developed for a wide variety of structures, properties, and activities (Sawyer, et al., 2003). Various authors have attempted to model important physicochemical properties using quantitative structure-property relationships (QSPRs) and quantitative structure-activity relationships (QSARs) based on calculated molecular descriptors. The tools and approaches used to generate a QSPR and a QSAR are similar.

Quantitative structure-activity relationships (QSARs) are statistically derived models that can be used to predict the physicochemical and biological (including toxicological) properties of molecules from the knowledge of chemical structure (Roy et al, 2009). The description of QSAR models has been a topic for scientific research for more than 40 years and a topic within the regulatory framework for more than 20 years. QSARs are being applied in many disciplines like drug discovery and lead their optimization, risk assessment and toxicity prediction, regulatory decisions, and agrichemicals. QSARs were initially used in drug design and formulation of pesticides, and later extended for use in environmental toxicity.

In QSAR, structural molecular properties of compounds (called descriptors) are correlated with functions (like physicochemical properties, biological activities, toxicity, etc.) by the means of statistical methods resulting in a simple mathematical relationship as shown in equation 1 below.

Function = f (structural, molecular or fragment properties) Equation (1)

'Calculated structural molecular descriptors are preferred to simple experimental or calculated properties in developing quantitative structure–activity/property relationships (QSAR/QSPR) models to predict the physicochemical, biological or toxicological properties of chemicals for the following reasons

a. More than 50% of the current commercial and industrial chemicals have no available experimental data on physicochemical properties or toxicities, and two to three thousand new chemicals are added to this list every year. Determination of the experimental data for all these chemicals would be a Herculean task involving billions of dollars, the sacrifice on many test animals, and enormous amounts of time. b. In drug design, properties often have to be predicted for the virtual libraries of compounds that are not yet synthesized.

c. Calculation of the structural molecular descriptors requires no information other than the molecular structure, and their computation is fast.' (Kraker, et al., 2007)

Hammett correlated some electronic properties of organic acids and bases with their equilibrium constants and reactivity (Tang, 2003). This was the most significant development in QSARs. Hansch and Leo (1995) used log P in QSAR methods as a general description of cell permeability. Katritzky et al., (1998) used descriptors calculated by CODESSA (CODESSA Comprehensive Descriptors for Structural and Statistical Analysis), a comprehensive program for developing quantitative structureactivity/property relationships (QSAR/QSPR) by integrating all necessary mathematical and computational tools, in the formulation of QSPRs for a diverse set of 411 chemicals. Engelhardt et al., (2000) used topological descriptors and computational neural networks (CNNs) in the formulation of QSPRs for the estimation of vapor pressure (VP) for a diverse set of 420 organic compounds. Liang and Gallagher (1998), along with Staikova et al., (2004), used quantum chemically derived indices, polarizability in particular, in the development of QSPRs for vapor pressure estimation. Summarizing the objective of OSAR one can say that OSAR models allow us to predict the activities of untested and sometimes yet unavailable compounds, and to provide insight of which relevant and chemical properties are determinant for the activity of compounds.

4

1.3 Scope of Investigation

In this study an attempt was made to develop correlations between physical chemical properties of geosmin, 2-methylisoborneol, acetaminophen, triclosan, atrazine and 2,4dichlorphneol with their degradation rate constants. Because of their ubiquitous presence in water and the risk associated with them, geosmin, 2-methylisoborneol, acetaminophen, triclosan, atrazine and 2,4-dichlorphneol- were chosen for this research project to investigate their environmental fate through the use of quantitative structure activity relationships. The physical-chemical properties used as descriptors in this study are: log octanol/water partition coefficient (Log K_{OW}), solubility in water, vapor pressure, Henry's law constant, log octanol/air partition coefficient (Log K_{oa}), soil adsorption coefficient (K_{OC}), enthalpy of vaporization, energy of highest occupied molecular orbital (E_{HOMO}) and energy of lowest unoccupied molecular orbital (E_{LUMO}) . These descriptors were correlated with biodegradation rate, oxidation rate and hydrolysis rate constants, which are important properties of compounds in determination of environmental fate. The purpose of this study was to investigate whether physical chemical properties of a compound helps in predicting degradation rate constants. Thus by knowing some of the physical chemical properties of a compound, its fate in environment, risk associated with release of chemicals in the environment and methods to treat the compound when released in the environment can be estimated.

CHAPTER II

REVIEW OF LITERATURE

2.1 Introduction to Taste and Odor causing compounds (Geosmin and 2-Methylisoborneol)

Removing taste and odor compounds from drinking water is a significant challenge for water authorities internationally (Cook, et.al, 2000). The majority of all biologically caused taste and odor outbreaks in drinking water characterized worldwide are caused by microbial production of geosmin and 2-methylisoborneol (Juttner and Watson, 2007). These two earthy-muddy-smelling metabolites have been the focus of considerable research since early 1960s, still geosmin and 2-MIB remain poorly understood throughout much of the water industry, and misconceptions which impede the prediction, treatment, and control of these volatile organic compounds (VOCs) persist (Juttner and Watson, 2007). These compounds are primarily formed intracellularly in blue-green algae (cyanobacteria) and actinobacteria, and are released upon cell destruction. Although taste and odor problems are not considered a direct threat to public health, they are of great concern for many water utilities because consumers generally rely on the taste of their water as the primary indicator of its safety. These two compounds can be detected by consumers as a musty-earthy odor at levels as low as 10 ng/L (Cook, et al., 2000). There are currently no regulations for these two compounds as they have not been associated with any health effects (OWWRC, 2008).

The main challenge faced by the utilities in the treatment of geosmin, 2-MIB and other odor causing substances is associated with their extremely low odor threshold concentrations (OTC) (McGuire, 1995).The OTC for geosmin and MIB are 4 ng/L and 9 ng/L, respectively. Therefore, the treatment methods for these compounds must be very effective (Cook, et.al, 2000).

2.2 Causes of Taste and Odor

Taste and odor can enter water in a variety of manners. Surface water sources can become contaminated through algal blooms or through industrial wastes or domestic sewage introducing taste- and odor-causing chemicals into the water (Hou and Clancy, 1997). Groundwater supplies can be afflicted with dissolved minerals, such as iron and manganese, which enter the water when it passes through rocks underground. Tastes and odors can also enter either type of water in the raw water transmission system and in the treatment plant due to algal growths, accumulated debris and sludge, or disinfection byproducts. The distribution system can have many of the same causes of taste and odor mentioned above, with the addition of problems resulting from cross-connections and low flow zones (Hou and Clancy, 1997). In table 1, a summary of various taste and odor causing chemicals is presented.

 Table 1 Lists of chemicals causing taste and odor problems in water (Hou and Clancy, 1997)

Chemical cause	Taste/odor	Origin	
Geosmin	earthy or grassy odors	Produced by actinomycetes, blue-green	
		algae, and green algae.	
2-Methylisoborneol	musty odor	Produced by actinomycetes and blue-	
(MIB)		green algae.	
2t, 4c, 7c-	fishy odor	Produced by blue-green algae.	
decatrienal			
Chlorine	bleach, chlorinous, or	Addition of chlorine as a disinfectant.	
	medicinal taste and		
	odor		
Chloramines	swimming pool,	Addition of chlorine and ammonia as a	
	bleach, or geranium	disinfectant.	
	odor		
Aldehydes	fruity odor	Ozonation of water for disinfection.	
Phenols and	pharmaceutical or	Phenols usually originate in industrial	
Chlorophenols	medicinal taste	waste. Chlorophenols are formed when	
		phenols react with disinfecting chlorine.	
Iron	rusty or metallic taste	Minerals in the ground.	
Manganese	rusty or metallic taste	Minerals in the ground.	
Hydrogen sulfide	rotten egg odor	Produced by anaerobic microorganisms	
		in surface water or by sulfates in the	
		ground.	
Methane gas	garlic taste	Decomposition of organic matter.	
Isobutanal	Sweet/fruity or malty-	Byproduct from ozonation, chlorination	
	odor	and chloramination	

2.3 Sources and Properties of Geosmin and MIB

Taste and odor can originate from algae in source water, result from water treatment processes or develop in distribution systems. Odor compounds may originate from industrial and municipal sewage effluents or from biological activities of algae and heterotrophic microorganisms (Cees, et al., 1974).

In the period of 1967-1970 two earthy smelling metabolites of *Streptomyces* strains and blue-green algae were identified as geosmin and 2-methylisoborneol and their important role in different water odor problems in the U.S.A. was established (Safferman, et al., 1967). The two compounds were originally identified from isolates of aerobic filamentous actinomycete bacteria and these organisms for some time were and often still are perceived by water industry as the major source of these Volatile Organic Carbons (VOCs). The two compounds are principal odor components of soil and periods of high terrestrial runoff may introduce actinomycetes and/or their odorous metabolites into surface waters, causing episodic odor outbreaks in rivers, particularly in areas of intensive livestock operations (Juttner and Watson, 2007).

The structure of geosmin was first established as *trans*-1, 10-dimethyl-*trans*-9-decalol by Gerber (1965) who detected the volatile oil in 17 different species of *Streptomyces* and blue-green algae following its initial isolation from *S. griseus*. Cyanobacteria (blue-green algae), photoautotroph's, were recognized as a more frequent source of geosmin and 2-methlyisoborneol in water than actinomycetes (Krishnani, et al., 2008). Geosmin in treated water drinking water was traced to the disturbance of thick biofilms that had developed on the pipe surface of a distribution system from groundwater-supplied treatment plant (Juttner, unpublished data, quoted in Juttner and Watson, 2007). Cyanobacteria are considered to be the chief sources of geosmin and MIB. Fewer than 50 of the more than 2000 species classified to date (according to International Code of Botanical Nomenclature) have been directly confirmed as producers, while the majority have yet to be investigated for their production of these and other VOCs. Unsightly and highly visible surface blooms are usually considered to be primary sources of source

water odor, but in fact many of the known cyanobacterial producers are non-planktonic ($\approx 30\%$), while the remainder are benthic or epiphytic, with a single isolate from soil (Juttner and Watson, 2007).

The most common causes of taste and odor issues are geosmin and 2-methylisoborneaol (MIB), which are naturally occurring compounds produced by blue-green algae (cyanobacteria), diatoms, and actinomycetes. Geosmin and 2-MIB are tertiary alcohols, each of which exists as (+) and (-) enatiomers. Odor outbreaks are caused by biological production of the naturally occurring (-) enatiomers. The (-) enatimoers are ten times more potent than the (+) molecules (Juttner and Watson, 2007). Geosmin and 2-MIB are produced by members of certain groups of benthic and pelagic aquatic microorganisms found in source waters such as lakes, reservoirs, and running waters. Other biological sources mainly originate from terrestrial ecosystems, industrial waste treatment facilities and drinking water treatment plants.

2.4 Geosmin and 2-MIB producing species

Geber and Lechevalier (1965) isolated geosmin, an earthy-smelling substance in 1964. Geosmin and MIB were first identified in actinomycetes, then later in cyanobacteria and fungi that inhabit aquatic and soil environments (Krishnani, et al., 2005). Tables 2, 3 and 4 present the various species producing MIB, geosmin and both, respectively.

 Table 2 2-MIB-producing species (Krishnani, et al., 2005)

Species	Origin	Habitat	References
Oscillatoria			
O. perornata (Planktothrix MS988)	Fish pond/USA	Planktonic	van der Ploeg et al. 1995; Tellez et al. 2001a, b; Taylor et al. 2006
O. limosa	Lake/USA	Benthic	Izaguirre and Taylor 1995
Oscillatoria sp.	Fish pond/USA	Planktonic	Martin et al. 1991
O. tenuis	Japan	Planktonic	Negoro et al. 1988
O. geminata	Fish pond/Japan	Fish Pond	Matsumoto and Tsuchiya, 1988
O. limnetica	Fish pond/Japan	Fish Pond	Matsumoto and Tsuchiya, 1988
Oscillatoria cf. curviceps	Lake/USA	Benthic	Izaguirre et al. 1982, 1983
O. tenuis	Water supply/USA	Benthic	Izaguirre et al. 1983
O. variabilis	Fish farming lake/ Japan	Benthic	Tabachek and Yurakowski 1976
O. chalybea	Reservoir/ Israel	Benthic	Leventer and Eren 1970
Phormidium		D (1)	T 1 (1 2006
Phormidium LP684	Lake/USA	Benthic	Taylor et al. 2006
Phormidium aff. formosum	Water supply/ Australia	Benthic	Baker et al. 2001
P. favosum	Lake/Japan	Benthic	Sugiura et al. 1997
Phormidium	USA	Benthic	Izaguirre 1992
P. tenue	Lake/Japan	Benthic	Sugiura et al. 1986
P. tenue	Water supply/ Japan	Planktonic	Yagi et al. 1983
Pseudanabaena	Water Suppry/ Supur		
Pseudanabaena	Reservoirs/USA	Planktonic	Izaguirre et al. 1999 Taylor et al. 2006
Pseudanabaena	Lake/USA	Planktonic	Izaguirre and Taylor 1998
Other species			
Synechococcus sp.	Water reservoirs/USA	Planktonic	Taylor et al. 2006
<i>Leptolyngbya</i> sp.	Periphyton, lake/USA		Taylor et al. 2006
Lyngbya LO198	Reservoir/USA	Benthic	Taylor et al. 2006
Hyella	Aqueduct water/USA	Epiphytic	Izaguirre and Taylor 1995
Lyngbya Cal.Aq.892	Aqueduct lake/USA	Epiphytic	Izaguirre and Taylor 1995
Planktothrix MS988	Catfish pond/ USA	Planktonic	Martin et al. 1991

Species	Origin	Habitat	References
Planktothrix			D 1000
cryptovaginata	Fish, water/Finland	Benthic	Persson 1988
Jaaginema			Tsuchiya and
geminatum	River/Japan	Benthic	Matsumoto, 1988
Synechococcus sp.	Plankton, lake/USA	Planktonic	Izaguirre et al. 1984
			Yurkowski and
			Tabachek, 1980;
<i>Lyngbya</i> cf.	Fish farming lake /		Tabachek and
aestuarii	Japan	Benthic	Yurkowski 1976

Table 3 Geosmin-producing species (Krishnani et al. 2005)

Species	Origin	Habitat	References
Anabaena			
Anabaena sp.	Lake/USA	Planktonic	Saadoun et al. 2001
A. laxa CA 783	Lake plankton/USA	Planktonic	Rashash et al. 1996
			Baker et al. 1994; Komarkova-
			Legnerova and
A. crassa LS698	Lake/USA/Australia	Planktonic	Cronberg, 1992
A. circinalis	River/Australia	Planktonic	Bowmer et al. 1992
A. circinalis	Reservoir/USA	Planktonic	Rosen et al. 1992
A. solitaria	Taiwan	Planktonic	Wu et al. 1991
A. viguieri	Taiwan	Planktonic	Wu et al. 1991
	D: /I		Tsuchiya and
A. macrospora	River/Japan	Planktonic	Matsumoto, 1988
A. scheremetievi	Water supply/USA	Planktonic	Izaguirre et al. 1982
Elenkin			
Oscillatoria			
O. limosa	River/Spain	Benthic	Vilalta et al. 2003, 2004
O. limosa	River/Reservoir/ Netherlands		van Breeman et al. 1992
Oscillatoria sp.	Periphyton, river/ (Philadelphia) USA	Benthic	Burlingame et al. 1986
O. brevis	Inland water/Norway	Benthic	Berglind et. al. 1983b
O. simplicissima	Water supply/USA	Pipeline	Izaguirre et al. 1982
			Continued on next page

Species	Origin	Habitat	References
O. tenuis	Fish pond/Israel		Aschner et al. 1967
Phormidium			
Phormidium LS1283	Algae, lake/USA	Benthic	Taylor et al. 2006
Phormidium cf. inundatum LO584	Reservoir/USA	Sediment	Taylor et al. 2006
Phormidium sp. (SDC202a,b,c)	Canal/USA		Taylor et al. 2006
Phormidium sp. DCR301	Reservoir/USA	Sediment	Taylor et al. 2006
Species	Origin	Habitat	References
Phormidium sp. ER0100	Reservoir/USA	Sediment	Taylor et al. 2006
Phormidium DC 699	Algae/lake/USA	Benthic	Taylor et al. 2006
Phormidium sp. LD499	Algae/ lake	Benthic	Taylor et al. 2006
Phormidium sp. LM494	Lake/USA	Sediments	Taylor et al. 2006
Phormidium sp. LS587	Lake/USA	Sediments	Taylor et al. 2006
Phormidium sp. R12	Canal/USA		Taylor et al. 2006
P. allorgei	Lake/Japan	Benthic	Sugiura et al. 1997
Phormidium sp.	Lake/USA	Benthic	Izaguirre and Taylor, 1995
P. amoenum	Japan	Benthic	Tsuchiya and Matsumoto, 1988
P. simplissimum	Fish, water/Finland	Benthic	Persson 1988
P. formosum	Fish, water/Finland	Benthic	Persson 1988
P. cortianum	Fish farming lake/ Japan	Benthic	Tabachek and Yurakowski, 1976
Other geosmin- producing species			
Nostoc sp.	Creek/USA	Periphytic	Taylor et al. 2006
Microcoleus-like cyano	Aqueduct/USA	Epiphytic	Izaguirre and Taylor, 1995
Lyngbya cf. subtilis	Aquaculture pond/ USA	Benthic	Schrader and Blevins, 1993
Planktothrix prolifica	Norway	Benthic	Naes et al. 1988
Aphanizomenon gracile	Lake/Germany	Planktonic	Jüttner 1984

Species	Origin	Habitat	References
			Berglind et al.
Tychonema bornetii	Lake/Norway	Benthic	1983a
Schizothrix muellerii	Japan	Benthic	Kikuchi et al. 1973
			Tabachek and
			Yurakowski 1976
			(first reported by
	Fish farming lake/		Medsker et al.,
Symploca muscorum	Soil Japan		1968)
Geitlerenema	Fish farming lake/		Tabachek and
splendidum	Japan	Benthic	Yurakowski, 1976
Actinomycetes			
Streptomyces	Aquaculture pond/		Schrader and
halstedii	USA	Sediments	Blevins,2001
Streptomyces			Gerber and
griseus	USA		Lechevalier 1965

 Table 4 Geosmin- and 2-MIB-producing species (Krishnani et al. 2005)

Species	Origin	Habitat	References
Phormidium			
Phormidium sp. Cal			
Aq.0100	Aqueduct/USA	Periphyton	Taylor et al. 2006
Phormidium			
sp.HD798	Algae/lake	Periphytic	Taylor et al. 2006
Phormidium sp.	Lake/USA	Benthic	Izaguirre 1992
			Matsumuto and
Phormidium sp.	River/Japan	Benthic	Tsuchiya 1988
	Inland water/		Berglind et al.
Phormidium sp.	Norway	Benthic	1983b
Other species			
Synechococcus sp			
CL792	Lake/USA	Planktonic	Taylor et al. 2006
	Water treatment		
Nostoc sp.	plant /Taiwan		Hu and Chiang 1996
T I.	Ŧ		Tsuchiya and
T. granulatum	Japan	Benthic	Matsumoto 1988
Planktothrix			Persson 1988;
	Lake/Norway	Planktonic	Berglind et al. 1983a
agardhii	Lake/NOI way	FIAIIKtOIIIC	Berglind et al.
O. brevis			1983b
			17030
Actinomycetes			¥71 1.000 -
Streptomyces	Denmark	Streams/pond	Klausen et al. 2005
Streptomyces	Water supply/		
violaceusniger	Jordon	Sediment	Saadoun et al. 1997
Streptomyces sp.	USA		Gerber 1977

2.5 Substrates for growth of species producing Geosmin and 2-MIB

Zaitlin and Watson (2006) studied how different carbon sources influence the activity and growth of microorganisms in the environment. Schrader and Blevins (2001) evaluated the effect of carbon source, phosphorous and other nutrients on species producing geosmin and MIB. More readily assimilated carbon sources such as glucose were found to increase biomass but not geosmin production (Zaitlin and Watson, 2006). Geosmin per capita and total biomass production increased when phosphorous increased from 0 up to 36 mM while zinc, copper and iron inhibited geosmin production and potassium appeared to have little effect (Zaitlin and Watson, 2006). Copper sulphate addition increased biomass and per capita yield of geosmin in S. tendae, while manganese, magnesium, iron, cobalt, nickel and zinc had limited effects on both growth and per capita geosmin production (Dionigi, et al., 1996). Increased atmospheric carbon dioxide levels and whole cells or lysed cells of the cyanobacterium Oscillatoria tenuis also increased geosmin production, though not biomass production (Schrader and Blevins, 2001). Geosmin production may also be related to growth stage of the actinomycete. Mutants of *Streptomyces sp.* that lost the ability to produce spores or aerial mycelium also stopped producing geosmin (Redshaw, et al., 1979; Bentley and Meganathan, 1981). Normal isolates grown on medium that was not conducive to sporulation reduced their geosmin biosynthesis compared to those grown on medium that promoted sporulation (Dionigi, et. al., 1992).

2.6 Biosynthesis of Geosmin and 2-MIB

2-MIB is a monoterpene and geosmin is an irregular sesquiterpene. The figure 1 below shows the simplified biosynthetic scheme for the formation of 2-MIB and geosmin in streptomycetes and myxobacteria. The structure of geosmin was first established as *trans*- 1, 10-dimethyl-*trans*-9-decalol by Gerber (1965) who detected the volatile oil in 17 different species of *Streptomyces* and a blue-green alga following its initial isolation from *S. griseus*. Shortly thereafter, Bentley (1981) provided evidence that the C12 metabolite geosmin was likely a degraded sesquiterpene, based on the apparent incorporation of both [1-14C]- and [2-14C]acetate into geosmin by strains of *S. antibioticus*.

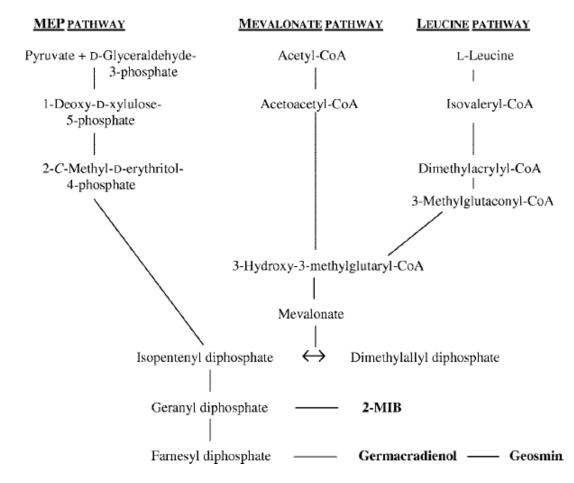


Figure 1 Simplified Biosynthetic scheme for formation of 2-MIB and Geosmin in streptomycetes and myxobacteria (Juttener and Watson, 2007)

2.7 Properties of Geosmin and 2-MIB

2-MIB and geosmin are susceptible to biological degradation (biodegradation) with several studies having implicated a variety of microorganisms responsible for their removal from water. Both cyanobacteria and actinomycetes produce geosmin and 2-methylisoborneol. Geosmin has an earthy odor, which can be defined as dirt, corn silk, and beet while 2-methylisoborneol has a musty odor that can be defined as damp basement (Gerber, 1969), and the properties of these two compounds are summarized in table 5. Geosmin and 2-MIB are produced intracellularly and its release to the water occurs mainly when the algae producing it die and decompose.

Property	Geosmin	2-MIB
Chemical Name	<i>trans</i> -1,10-Dimethyl- <i>trans</i> -9-decalol	1,2,7,7-Tetramethyl-exo- bicyclo-heptan-2-ol
Molecular Formula	C ₁₂ H ₂₂ O	C ₁₁ H ₂₀ O
Molecular Weight (g/mol)	182.31	154.25
Molar Volume (cm ³ /mol)	231	210
Appearance	Light Yellow Oil	White Solid
Boiling Point (⁰ C)	270	-
Odor Threshold Concentration (ng/L)	6-10	2-20
Henry's Law Constant at 20 ⁰ C	0.0023	0.0027

Table 5 Properties of Geosmin and 2-MIB (Krishnani et al. 2005)

Density at 20 ^o C (g/ml)	0.949	0.929
Water Solubility at 20 [°] C	150.2	194.5
(mg/L)		
Vapor Pressure (atm)	5.49×10 ⁻⁵	7.26×10 ⁻⁵
Enthalpy (kJoule/mole)	82.5 ± 13.3	78.7 ± 9.9
CAS	16423-19-1	2371-42-8
Structure		
	ОН	Дон

2.8 Evaluation of taste and odor problems in drinking water

Taste and odor caused by various chemicals and organisms in source water and in distribution system have been identified (Suffet, et al., 2004). The combined use of highly sophisticated analytical techniques such as gas chromatography/mass spectrometry and sensory panel techniques have made it possible to identify the various taste and odor in drinking water. Flavor Profile Analysis (FPA), introduced by Metropolitan Water District (MWD) of Southern California in 1980's, used in the food and beverage industry was modified and adapted for use in the drinking water field. FPA determines the specific characteristics of a water sample and the intensity of each individual characteristic, without dilution.

Rules of evidence describing "the scientific method" are used to define presumptive and confirmatory testing procedures to validate the cause of a taste and odor event in drinking water (Mallevialle and Suffet, 1987; Persson, 1992). Figure 2 shows that in determining

the chemical causes of taste and odor problems requires developing a presumptive statistical correlation between the chemical compounds in the water sample and the tastes or odors by sensory panel techniques and separating and identifying those individual compounds that have the same sensory characteristics as the whole water sample, as described by a sensory panel, by sensory GC analysis (Khiari, et al., 1992). Figure 2 shows that final confirmation is completed by having the sensory panels evaluate the chemical identified by FPA.

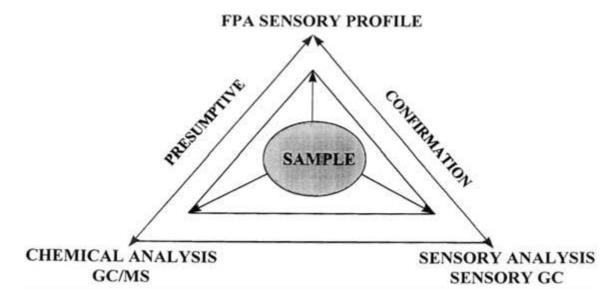


Figure 2 Schematic diagram of relationship between instrument and sensory methods (Khiari, et al., 1992).

Standard Methods for the Examination of Water and Wastewater (APHA, et al., 2000) includes three methods for evaluating taste and odor The flavor threshold test (FTT), also called threshold odor number (TON), the flavor rating scale (FRS), and flavor profile analysis (FPA). TON consists of performing successive dilutions of the water sample with reference water and comparing each dilution with the reference water. The highest dilution in which odor is perceptible is the TON. A threshold odor number less than or

equal to 3 passes the US and European secondary drinking water standards. The limitations with TON are that no descriptive information about the odor is provided, so this test cannot be used to determine the source or cause of a taste-and-odor event, and upon dilution, the type of odor that is smelled can change and thus the effect of each odor type is not defined.

FPA, unlike TON and FRS, requires no dilution and fewer samples, and is therefore suitable for monitoring source water and the entire treatment process, from raw to finished waters. Since FPA directs panelists to record descriptors for all tastes-and-odors, it the most valuable method for forensic purposes. For each FPA descriptor, a quantitative 7 point scale is used; threshold [0 or 1]; slight [2]; weak [4]; medium [6]; medium strong [8]; strong [10]; very strong [12]. It has been observed that consumers can easily identify an off-flavor in drinking water when a descriptor with an intensity level of above 4, occurs e.g. musty, 4. It is pointed out that individual consumers have different threshold concentration levels and some people are anosmic (i.e., cannot smell) a specific odor. FPA requires only a few panelists to test undiluted samples; however, the panelists have to be highly trained. Once panelists are trained, FPA is a relatively inexpensive method of analysis, and is very quick compared to other methods. The major criticism of FPA besides the requirement for trained panelists is that it is not a statistical method, and is therefore more subjective. Also, certain personality traits (e.g., dominant types) can influence other panelists, and the skill of the FPA leader is essential for leading the panel to consensus. New approaches presently combine statistical methods with FPA. Profile Attribute Analysis (PAA), used in the food and beverage industry, is a statistical method that employs aspects of FPA (Neilson, et al., 1988; Meilgaard, 1999). PAA still requires

consensus, and is based closely on FPA, but with the introduction of numerical scales. Average scores are used instead of arriving at a consensus number and data are analyzed using parametric techniques such as ANOVA. A statistical approach can reduce biases and, in general, give more accurate results. Meilgaard (1999) provides the details for designing and evaluating statistical methods for sensory analysis.

The "Taste and Odor Wheel" developed over the last 20 years includes compounds identified in the eight classes of odorants, four tastes, and one mouth feel/nose feel category. To provide water utilities with the information needed to prevent a taste-and-odor event from occurring, or provide solution to mitigate the problem, it is important to determine the source, including the specified chemical(s) that cause certain tastes and odors. The "Taste and Odor Wheel" helps provide the water utilities with this information. A combination of approaches is still needed to determine the sources of contaminants that cause taste-and-odor problems in drinking water (Suffet, et al., 2004).

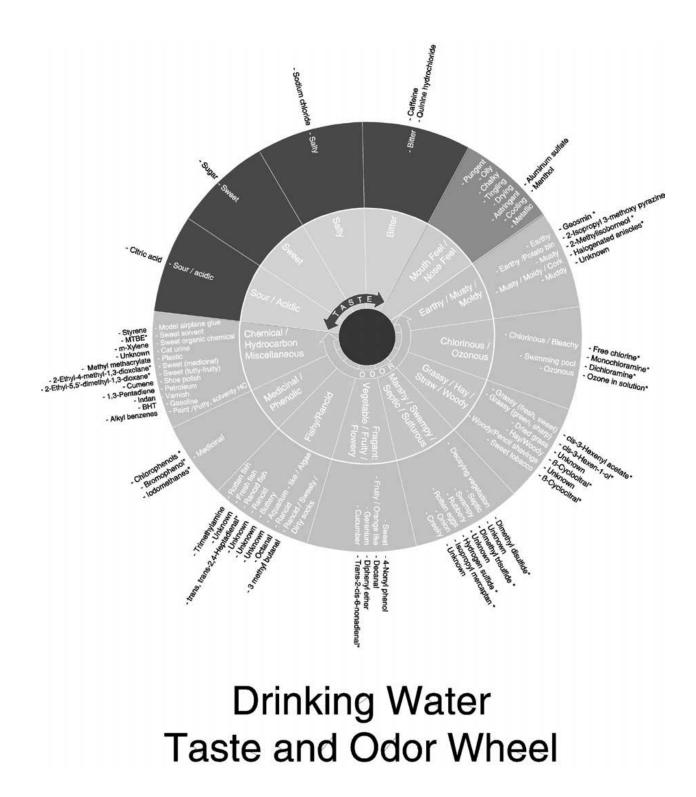


Figure 3 Taste and Odor Wheel 2000 (Suffet, et al., 1999)

2.9 Removal of Off-Flavors

Organic chemicals such as phenol, hydrogen sulfide and other dissolved gases, soluble substances generated by algae, actinomycetes, and other microorganisms are known to impart objectionable odors to water accompanied by an unpleasant taste. Most materials responsible may be removed by adding activated carbon to the water or passing the water through granular carbon. Other taste and odor control practices consist of mechanical removal of gases through aeration or degasification, and oxidation through chemicals such as chlorine dioxide, hypochlorite, potassium permanganate, and ozone (Kim, et al., 1997).

Geosmin and 2-MIB are relatively stable to chemical and biological degradation and can persist in open water in the dissolved form for some time (Juttener and Watson, 2007). Because of their stability geosmin and 2-MIB are recalcitrant to conventional water treatment, however some conventional physical techniques have been recommended (Krishnani, et al., 2005). Studies have shown that conventional water treatment processes such as coagulation, sedimentation, and filtration are unable to achieve any significant removal of MIB and geosmin (Bruce, et al., 2003; Kutschera, et al., 2009). More advanced treatments, such as granular or powdered activated carbon, ozonation, and membrane filtration can be applied with variable success; their effectiveness is modified by factors such as age of filter beds, type of carbon used, levels of source water dissolved organic material, and proportion of dissolved organic material and proportion of dissolved/particulate geosmin and 2-MIB (Juttener and Watson, 2007). The only treatment methods that have been successfully employed by water treatment plants to remove MIB and geosmin are adsorption by activated carbon or oxidation by strong oxidants such as ozone (Srinivasan and Sorial, 2009). Ferguson, et al., (1990) and Bruce,

et al., (2003) studied and demonstrated MIB and geosmin removal using oxidants such as ozone, hydrogen peroxide, and UV. Addition of chemicals however is expensive and can result in formation of disinfection byproducts, which are unacceptable due to health and regulatory concerns (Cook, et al., 2000).

Juttner (1995) reported that a slow sand filtration unit (flow rate of 420 liters m⁻² day⁻¹) achieved excellent rates of elimination of geosmin and other terpenoid alcohols. That study found that geosmin was not detectable in the upper layers of the sand filter when this material was removed and chemically extracted, indicating the efficient degradation of this compound by the immobilized microorganisms. This technology has only recently been recognized in North America for its potential application. 2-MIB and geosmin have tertiary alcoholic structures which make the compounds resistant to oxidation. Powdered activated carbon (PAC) can effectively remove MIB and geosmin when the correct dose is applied (Cook, et al., 2000). However, higher doses of PAC were required for both compounds to produce acceptable quality water when turbidities rose above 26 NTU. Ozone and hydrogen peroxide are advanced oxidants that can eliminate 2-MIB, but the efficiency depends on the water quality (Nerenberg, et al., 2000). Using GAC filter and post-ozonation, taste-and-odor compounds were removed below threshold odor number (TON) (Kim, et al., 1997). Another long-term control measure that is used in United States is application of copper sulphate to surface waters to prevent the algal blooms (Sklenar and Horne, 1999). In addition to geosmin and MIB, other compounds such as haloanisoles, pyrazines, beta-cyclocitral and d-limonene can frequently cause unpleasant taste and odor in water supplies.

Although many of the treatment processes mentioned above are quite effective at geosmin and 2-MIB removal, they are often extremely expensive to install, maintain, and operate, particularly where source waters are of poor quality or high in dissolved organics. More long-term proactive management needs to address the source(s) of the problem, by identifying the environmental and biological agents and their controls.

2.10 Other chemicals of environmental concern

Triclosan

Triclosan is included in many consumer products because of its antimicrobial activity. The main use of triclosan is in the formulation of personal care and cosmetic products, therapeutic products and cleaning agents. Other uses of triclosan are in the treatment of textiles and plastics (sportswear, bed clothes, shoes, carpets) to control the growth of disease or odor-causing bacteria (Saurez, et al., 2007). It is also used in the formulation of some oil-based paints. Triclosan was first registered by the EPA in 1969, and currently there are 20 antimicrobial registrations (U.S. EPA, 2008). Triclosan is often detected in the aquatic environment, e.g. waste water, surface water and sediments, and is acutely and chronically toxic to aquatic organisms (Aranami and Readman, 2006).

In developed countries triclosan is typically transported through a waste disposal conveyance system to a sewage treatment facility. Triclosan is well removed in sewage treatment with measured removal rates of 96% for activated sludge plants, 71% for trickling filter plants and 32% for primary treatment plants (McAvoy, et al., 2002). In the United States, approximately 84% of wastewater flow is processed through activated sludge treatment plants, 12% of wastewater flow is processed by trickling filter and 1% by primary treatment (US EPA, 1989).Trace levels of triclosan not removed during wastewater treatment is released to the receiving waters as part of the effluent matrix.

Subsequent loss mechanisms, including degradation in the river, will further reduce environmental concentrations downstream of the effluent discharge point (Morall, et al., 2004).

2, 4 Dichlorophenol

2,4-Dichlorophenol (2,4-DCP) is produced commercially. It is a substituted phenol used in the manufacture of industrial and agricultural products. 2,4-DCP is utilized as the feedstock for the manufacture of the herbicide, 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-D derivatives (germicides, soil sterilants, etc.) and certain methyl compounds used in mothproofing, antiseptics, and seed disinfectants. 2,4-DCP is also reacted with benzene sulfonyl chloride to produce miticides or further chlorinated to pentachlorophenol, a wood preservative (U.S. EPA, 1980). 2,4-DCP presently has no direct commercial application and is used as an important chemical intermediate, and it is synthesized from dilute aqueous solutions (U.S. EPA, 1980).

2,4- DCP is one of the 129 priority pollutants listed by the U.S. EPA and the major environmental problem is caused by its presence in drinking water and was detected in tap water at various locations in the United States (Tang and Huang, 1996). 2,4dichlorophenol may occur in the environment from its release from manufacturing industry effluent and its use in chemical industry. Small amounts may also be released from water treatment and wood pulp bleaching chlorination processes and from the degradation of various pesticides in soil. There are believed to be no natural sources of 2,4-dichlorophenol (Avialable at

<u>http://www.environment-agency.gov.uk/business/topics/pollution/39415.aspx</u>). A number of physical, chemical, and biological methods have been used to eliminate 2,4-DCP from industrial effluents (Ziagova, 2007).

Acetaminophen

Acetaminophen is the most widely used over-the-counter analgesic in the U.S. with production of 3.6×10^9 g in 2002 (Bedner and Maccrehan, 2006). It is a safe drug when consumed at therapeutic dosages, where the body metabolizes acetaminophen to labile sulfate and glucuronide conjugates for excretion. Consumers spend billions of dollars on prescription drugs and personal care products in the United States (Pontius, 2008). Only 1.4% of Americans return unwanted medicines to pharmacies and more than 35% flush unused drugs down the toilet from which they enter the environment (Burton, 2006). Pharmaceutical compounds such as acetaminophen are detected in the environment are in the range of micrograms per liter to nanograms per liter (Bedner and Maccrehan, 2006; Andreozzi, et al., 2003). Such pharmaceutical products detected in the environment are subjected to wastewater and water treatment plants (Bedner and Maccrehan, 2006). It was reported that at least 46 million people in the United States are exposed to trace amount of pharmaceuticals in drinking (Available water at, http//www.foxnews.com/story/0,2933,421444,00.html). The United States Geological Survey has already been identified acetaminophen as one of the most frequently detected anthropogenic compounds in a survey of 139 streams in the U.S. (Lu, et al., 2009). Kim, et al., (2007) evaluated the acute aquatic toxicity of several widely used pharmaceuticals including acetaminophen and suggested these compounds pose potential ecological risk. However the effects of these compounds on human health and the environment have not been fully characterized (Onesios, et al., 2008).

Most WWTPs are currently struggling to meet other, very basic challenges in design and capacity (particularly combined stormwater/sewer systems) and are likely to balk at expensive measures without tangible human health benefits (Kehoe, et al., 2007). Studies

have shown that conventional water treatment procedures are only moderately effective in the removal of trace pharmaceuticals (Synder, et al., 2003; Bedner and Maccrehan, 2006). Researchers have examined PPCP removal by biodegradation in many different systems, including WWTPs, membrane bioreactors (MBRs), sequencing batch reactors (SBRs), sand columns, and constructed wetlands. Some of these studies focus solely on biodegradation as a removal process, whereas others examine overall removal due to a combination of processes, including biodegradation (Onesios, et al., 2008). Bedner and Maccrehan, (2006) studied the transformation of acteminophen by chlorination as it is the most widely used chemical process for disinfecting wastewater and drinking water in the U. S.

Atrazine

Atrazine is one of the most used herbicides worldwide (Battaglia, 1989) and about 36,000 metric ton/year are applied only in the U.S.A. (Hileman, 1996). Atrazine is a widely used for control of broadleaf and grassy weeds in corn, sorghum, rangeland, sugarcane, macadamia orchards, pineapple, turf grass sod, asparagus, forestry, grasslands, grass crops, and roses and was used until 1993 for control of vegetation in fallow and in noncrop land (U.S. EPA, 2003). Atrazine was estimated to be the most heavily used herbicide in the United States in 1987/89, with its most extensive use for corn and soybeans in Illinois, Indiana, Iowa, Kansas, Missouri, Nebraska, Ohio, Texas, and Wisconsin (U.S. EPA, 2003). Over 64 million acres of cropland were treated with atrazine in the U.S. in 1990 (Available at http://extoxnet.orst.edu/pips/atrazine.htm).

Atrazine may be released to the environment through effluents from manufacturing facilities and through its use as a herbicide. Residues of atrazine and its metabolites are

commonly found in soils, surface water supplies and groundwater (Crawford, et al., 2000). Atrazine was the second most frequently detected pesticide in EPA's National Survey of Pesticides in Drinking Water Wells (U.S. EPA, 2003). EPA's Pesticides in Ground Water Database indicates numerous detections of atrazine at concentrations above the maximum contamination level (MCL) in ground water in several States, including Delaware, Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska and New York. For atrazine the MCL in the U.S.A. is 3 μ g/L. An herbicide concentration in frequently high level in the reservoirs is a great concern for public health and aquatic ecosystems (Chung and Gu, 2009). Chronic and harmful effects of atrazine on human health have been previously reported. Atrazine-contaminated drinking water may contribute to higher risks of breast cancer in women (Patlak, 1996; Eldridge, et al., 1994). Conventional water treatment processes are not able to remove atrazine easily (Hallberg, 1996). The use of granular activated carbon (GAC) or powdered activated carbon (PAC) is the treatment method designated by USEPA as the best available technology (BAT) for removing atrazine from drinking water.

2.11 Degradation/Removal of contaminants in environment

Persistence or degradability of compounds in the environment is an important property for proper risk assessment (Rorije and Peijnenburg, 1996). Chemical compounds can be transformed or degraded by a number of different processes and they can be roughly divided into three separate categories namely biodegradation, photochemical transformation initiated by sunlight and chemical transformation (Rorije and Peijnenburg, 1996). Biodegradation is one of the most important processes determining the fate of organic chemicals in the environment (Parsons and Govers, 1990). Photochemical processes are important transformation pathways for compounds in the gas phase and their contribution to the degradation of compounds present in the soil is generally negligible (Rorije and Peijnenburg, 1996). As far as chemical transformation processes are concerned, they can be roughly subdivided into hydrolysis reaction, oxidation reactions and reduction reactions (Rorije and Peijnenburg, 1996). It is therefore desirable to predict the rate constants of degradation processes especially biodegradation rate constant, oxidation and hydrolysis rate constant, which will prove helpful for determining the risk associated with the compounds.

Biodegradation is the principal abatement process in the environment (Raymond, et al., 2001). It is the most dominant degradative route for various organic chemicals (Peijnenburg, 1994). Biodegradation processes may be distinguished as

- Primary biodegradation; any biologically induced structural transformation in the parent compound alters the molecular integrity.
- Ultimate biodegradation; biological conversion of organic compound to inorganic compounds occur and the products are associated with normal metabolic processes.
- Acceptable biodegradation; biological degradation of an organic compound to the extent that toxicity or other undesirable characteristics are ameliorated.

Factors influencing biodegradation are temperature, population of microorganisms, degree of acclimation, accessibility of metabolic cofactors, cellular transport properties, growth medium, chemical partitioning tendencies and so on (Raymond, et al., 2001).

Oxidation in surface waters is not dominated by a single oxidation process; several oxidants are present at various steady state concentrations (Rorije and Peijnenburg, 1996). Environmental oxidants present in surface water are singlet oxygen, the hydroxyl

radical, and oxyradicals, which can be formed under the influence of sunlight and various other oxidants, can be present depending on the specific environmental conditions (Rorije and Peijnenburg, 1996). The application of ozone in drinking water treatment is widespread throughout the world. Ozone is used for tatste and odor control, decolorization, elimination of micropollutants, disinfection etc. (Gunten, et al., 2003). Ozone decomposes into OH radicals which are the strongest oxidants in water (Gunten, et al., 2003). Disinfection may occur primarily through ozone while oxidation reactions occur through both ozone and OH radicals. Different processes make it difficult to predict the degradation of chemicals in environment. Also, the number of natural or man-made organic compounds present in the biosphere is somewhere between 8 and 16 million molecular species, of which as many as 40 000 are predominant in our daily lives (Hou, et al., 2003). In order to be able to make predictions regarding the fate of chemicals in different environmental compartments, one would have to have various models available, enabling both the calculation of the rate constants of each of the distinct processes mentioned above and the prediction of the products formed. To determine the risk associated with the thousands of chemicals, efforts are made to predict the degradation of chemicals in environment through establishing a reliable structure-activity relationship. Use is made of models that merely require the input of the molecular structure (or properties derived from molecular structure) or physico-chemical properties as the important parameter. Increasing numbers of Quantitative Structure Activity Relationship models are being developed to predict the environmental fate of organic chemicals.

2.12 Quantitative Structure-Activity Relationships in environmental fate processes

Thousands of chemicals must be reviewed by the Environmental Protection Agency to determine toxicological effects to the environment and to human health (Raymond, et al., 2001). The premanufature notices submitted to the EPA for approval often do not contain information regarding degradability of compound (Raymond, et al., 2001). This suggests the need for a method that helps in estimation of degradability of chemicals in environment with little or no dependence on measured input. Among these methods the study of Quantitative Structure Activity Relationships (QSARs) has attracted increasing attention (Peijnenburg, 1994).

The role of QSARs in environmental studies is

- To provide methods for estimation of hazards of contaminants without much dependence on measured input.
- Provide guidelines for chemical classification and to identify outliers.
- Help in understanding the reaction mechanisms (Peijnenburg, 1994).

QSARs have become well established tools in environmental toxicology and chemistry (Parsons and Govers, 1990). However no fundamental theory exists for formulation of QSAR-compatible classes (Peijnenburg, 1994). QSAR from correlation analysis offer a potential approach in predicting reaction rates (Gallagher, 2001). The derivation and application of QSARs require descriptors for molecules (Peijnenburg, 1994). These descriptors are properties or characteristics, inherent to a molecule or to its constituting parts, which together represent the entire molecule (Peijnenburg, 1994). The molecular descriptors may be physico-chemical, geometric, electronic, energy and topological parameters. Electronic structure descriptors represent the number of electrons and describe the way these are distributed in the molecule and its atom. Some well know electronic structure descriptors are valence connectivity index, electronic charges on atoms, electric moments and polarizability (Peijnenburg, 1994). The exact positions of atoms relative to each other are used to calculate geometric descriptors. Lengthwidth ratio, distance index, van der Waals Volume and steric overlap volume are some of the examples of geometric descriptors. Topological descriptors describe those structural properties of molecules, which do not change when a molecule is deformed without cleavage or superposition of bonds (Peijnenburg, 1994). The number of atoms or of atoms groups and connectivity indices are included in topological descriptors. Electronic energy descriptors specify the electronic energy of atoms, bonds and molecules including the attraction and repulsion of electrons by atoms and molecules (Peijnenburg, 1994). They are calculated by quantum-mechanical methods such as extended Huckel theory, or semi-empirical methods (like MNDO, AM1, CNDO/2). The electronic energy properties include ionization potentials, dipole moments, charge densities, energy of highest occupied molecular orbital (E_{HOMO}), energy of lowest unoccupied molecular orbital (E_{LUMO}) .

2.13 Physico-chemical Properties of chemicals

Different chemicals in the environment behave differently and these differences are attributed to physical-chemical properties. The key physicochemical properties are believed to be solubility in water, vapor pressure, octanol-water partition coefficients and dissociation constant in water (Mackay, et al., 1997). Knowing compounds physicochemical properties helps in predicting bioactivity, bioavailability, behavior in chemical separation, and distribution between environmental compartments (Reinhard and Drefahl, 1998).

Important Physico-chemical Properties

1. Log Octanol-Water Partitioning Coefficient (log K_{ow})

The role of the log-octanol/water partition coefficient (K_{OW}) for organic compounds has been important in predictive environmental studies in the last two decades (Finizio, et al., 1997). Partition coefficient is an indicator of the environmental fate of a chemical since it gives a general idea of how a chemical will be distributed in the environment. Evaluative models use this physico-chemical parameter for the prediction of distribution among environmental compartments to estimate plants and animals bioaccumulation factors (Briggs, et al., 1982). This parameter is also used in predicting the toxic effects of a substance in QSAR studies. Nevertheless the availability of reliable K_{OW} values is still a problem for several compounds (Finizio, et al., 1997).

Definition

The octanol-water partition coefficient, K_{OW}, is defined as

$$K_{OW} = \frac{Concentration \text{ in octanol phase}}{Concentration \text{ in aqueous phase}} = \frac{C_0}{C_W}$$
Equation (2)

where C_0 and C_w refer to molar or mass, concentrations in the water-saturated octanol and in the octanol-saturated water phase respectively. The octanol-water partition coefficient (K_{OW}) is a measure of the equilibrium concentration of a compound between octanol and water that indicates the potential for partitioning into soil organic matter (i.e., a high K_{OW} indicates a compound which will preferentially partition into soil organic matter rather than water). K_{OW} is inversely related to the solubility of a compound in water.

Values of K_{OW} are unitless. The parameter is measured using low solute concentrations, where K_{OW} is a very weak function of solute concentration. Values of K_{OW} are usually measured at room temperature (20 °C or 25 °C). The effect of temperature on K_{OW} is not great - usually on the order of 0.001 to 0.01 log K_{OW} units per degree, and may be either positive or negative. Measured values of K_{OW} for organic chemicals have been found as low as 10^{-3} and as high as 10^{7} , thus encompassing a range of ten orders of magnitude. In terms of log K_{OW} , this range is from -3 to 7. The octanol/water partition coefficient is not the same as the ratio of a chemical's solubility in octanol to its solubility in water, because the organic and aqueous phases of the binary octanol/water system are not pure octanol and pure water. At equilibrium, the organic phase contains 2.3 mol/L of water, and the aqueous phase contains 4.5×10^{-8} mol/L of octanol. Moreover, K_{OW} is often found to be a function of solute concentration. The chemical in question is added to a mixture of octanol and water whose volume ratio is adjusted according to the expected value of K_{OW}. Very pure octanol and water must be used, and the concentration of the solute in the system should be less than 0.01 mol/L. The system is shaken gently until equilibrium is achieved (15 min to 1 hr). Centrifugation is generally required to separate the two phases, especially if an emulsion has formed. An appropriate analytical technique is then used to determine the solute concentration in each phase. A rapid laboratory estimate of K_{OW} may be obtained by measuring the retention time in a high-pressure liquid chromatography system; the logarithm of the retention time and the logarithm of K_{OW} have been found to be linearly related. Values of K_{OW} can be considered to have some meaning in themselves, since they represent the tendency of the chemical to partition itself between an organic phase (e.g., a fish, a soil) and an aqueous phase.

Chemicals with low K_{OW} values (e.g., less than 10) may be considered relatively hydrophilic, i.e. they tend to have high water solubilities, small soil/sediment adsorption coefficients, and small bioconcentration factors for aquatic life. Conversely, chemicals with high K_{OW} values (e.g., greater than 10^4) are very hydrophobic (Available at http://pirika.com/chem/TCPEE/LOGKOW/ourlogKow.htm on December, 19, 2009).

In general, a large value means that a chemical tends to be in an organic (non-polar) environment and not in water (polar). The hydrophobicity scale (log K_{OW}) ranges from - 2.6 for hydrophilic compounds to +8.5 for hydrophobic compounds (Reinhard and Drefahl, 1998). Most pesticides are less polar than water so they tend to accumulate in soil or living organisms which contain organic matter. So one can see that K_{OW} values give an overall estimate as to where a chemical will be distributed in the environment.

2. Water Solubility

Water solubility (S_W), is the maximum amount of a substance that can dissolve in water at equilibrium at a given temperature and pressure. Water solubility is also known as aqueous solubility. Solubility is measures of the amount of chemical that can dissolve in water. The units of solubility are generally in ppm (parts per -million) which is mg/L (milligrams per liter). It can also be stated in ppb (parts per - billion) which is $\mu g/L$ (micrograms per liter).

In many environmental studies, this parameter is used to help determine the fate of chemicals in the environment. If a chemical's water solubility is known the distribution of that chemical in the environment and possible degradation pathways can be determined. For example, chemicals that have high solubilities will remain in water and tend to not be adsorbed on soil and living organisms. Water solubility has been correlated

to the octanol/water partition coefficient (K_{OW}), another chemical parameter used to determine the fate of chemicals in the environment. Two of the most important physicochemical properties relating to the environmental behavior of hydrophobic organic compounds are aqueous solubility and octanol-water partition coefficient (Pontolillo and Eganhouse, 2001).

Aqueous/Water solubility (S_W) is defined as the equilibrium distribution of a solute between water and solute phases at a given temperature and pressure. Because S_W is the maximum solute concentration possible at equilibrium, it can function as a limiting factor in concentration dependent (for example, kinetic) processes (Pontolillo and Eganhouse, 2001).

3. Henry's Law Constant

A commonly used method for quantifying the solubility of a gas in a liquid is Henry's law, which asserts that the solubility of a solute (gas) in a solvent (liquid) is proportional to the solute's gas phase partial pressure (Cichowski, et al., 2005). Henry's Law determines the extent, which the odorant molecules can dissolve. Henry's Law states that the solubility of a gas in liquid is a function of the partial pressure of the gas above that liquid. In other terms, the concentration of the gas in the liquid is proportional to the concentration in the atmosphere with the Henry's Law Constant (HLC) describing the relationship.

Chemicals with a high HLC tend to volatilize from water and be distributed in the atmosphere. A chemical with a low HLC will tend to accumulate in water and soil, rather than volatilize. This can be an environmental concern since the accumulation of chemicals in water can have adverse effects upon living organisms. Chemicals in the air

can partition (move) into water droplets in clouds and fog. If the HLC is low, substantial amounts of the volatilized chemical will dissolve in the water droplets and be transported back to the earth's surface by rain. This process of a chemical moving from the gas phase into water droplets and being deposited onto the earth's surface is called wet deposition. Dry deposition is another process that occurs when the chemical is adsorbed onto soil particles in air which is deposited on the earth's surface.

4. Log Octanol-Air Partition Coefficient (K_{OA}) (EPI SUITE User's Guide)

The octanol-air partition coefficient (K_{OA}) is the ratio of a chemical's concentration in octanol to the concentration in air at equilibrium. It is useful for predicting the partitioning behavior between air and environmental matrices such as soil, vegetation, and aerosol particles. Various models utilize K_{OA} to screen and rank chemicals for environmental persistence and long-range transport. At present, experimentally determined K_{OA} values are available for only several hundred compounds. Therefore, the ability to estimate K_{OA} is necessary for screening level evaluation of most chemicals.

5. Soil Adsorption Coefficient (K_{OC})

Adsorption of chemicals on soils or sediments is a major factor in the transportation and eventual degradation of chemicals. Water solubilizes polar chemicals because it can bond with them more easily. Chemicals that are non-polar tend to be pushed out of water and onto soils which contain non-polar carbon material. Soils vary in the amount of organic carbon content, which is mainly what determines the amount of pesticide adsorbed. K_d is called the sorption coefficient and it measures the amount of chemical adsorbed onto soil per amount of water. Values for K_d vary greatly because the organic content of soil is not

considered in the equation. The preferred value for determining a soil's ability to adsorb is soil adsorption coefficient (K_{OC}), since it considers the organic content of the soil. The soil adsorption coefficient, K_{OC} , is crucial for estimating a chemical compound's mobility in soil and the prevalence of leaching from soil. The adsorption of a compound increases with an increase in organic content, clay content, and surface area of the soil. The presence of a chemical compound can also be detected in ground water, and inference can be made about its residence time in the soil and the degradation period before reaching the water table. The presence of continuous pores or channels in soil will increase the mobility of a chemical compound in the soil.

 K_{OC} can be defined as "the ratio of the amount of chemical adsorbed per unit weight of organic carbon (OC) in the soil or sediment to the concentration of the chemical in solution at equilibrium" (Lyman, 1990). It is represented by the following equation (Lyman, 1990)

$$K_{OC} = \frac{\frac{\mu g \text{ adsorbed } /_g \text{ organic carbon}}{\frac{\mu g}{/_{ml \text{ solution}}}}$$
Equation (3)

The units of K_{OC} are typically expressed as either L/kg or mL/g.

 K_{OC} provides an indication of the extent to which a chemical partitions between solid and solution phases in soil, or between water and sediment in aquatic ecosystems. Estimated values of K_{OC} are often used in environmental fate assessment because measurement of K_{OC} is expensive. Traditional estimation methods rely upon the octanol/water partition coefficient or related parameters, but the first-order molecular connectivity index (MCI) has been used successfully to predict K_{OC} values for hydrophobic organic compounds (Sabljic, 1984, 1987; Bahnick and Doucette, 1988).

6. Vapor Pressure

Vapor Pressure is defined as the pressure that a chemical in the gas phase exerts over a surface. This surface can be water or dry soil. At room temperature, vapor pressure values can range from 10⁻⁵ to 300 mm of Hg (mercury).Vapor pressure units are generally expressed in three ways mm Hg (millimeters of mercury), Pa (pascals), atm (atmospheres). The unit mm of Hg is a measure of the pressure exerted by a gas on a mercury surface which pushes the mercury level up so many mm (millimeters). The atmospheric pressure on an average day is 760 mm Hg. One atm is defined as the pressure exerted by a column of mercury 760 mm high at 0°C. If the pressure is 0.95 atm, then it is said that the pressure is 95% of that exerted by a mercury column 760 mm Hg high. Pascals (Pa) is the preferred unit for pressure and is generally in the form MPa (Mega-Pascals). The relationship between the three units is

1 atm = 760 mm Hg = 101325 Pa = 0.1 MP

1 MPa = 106 Pa

7. Enthalpy of vaporization

The enthalpy of vaporization of liquids and subcooled liquids at 298 K (ΔH_{VAP}) is an important parameter in environmental fate assessments that consider spatial and temporal variability in environmental conditions (Macleod, et al., 2007). The enthalpy of vaporization is the heat of vaporization for vaporizing one mole of the substance under three specific conditions (1) the pressure remains constant, (2) the only possible work that

occurs is expansion against the atmosphere and (3) the temperature remains constant during the process.

The enthalpy of vaporization ΔH_{VAP} is defined as the difference between the vapor and liquid-phase enthalpies at a given temperature and the corresponding saturated vapor pressure.

8. Frontier Orbital Energies E_{HOMO} and E_{LUMO}

The chemical reaction between two molecular species is always accompanied by a rearrangement of electron density. For a given pair of two reacting agents, the more electronegative compound will gain some electronic charge upon forming a covalent bond with the reaction partner, which, in turn, loses the respective amount of electron density. The general tendency of molecule to gain or lose electronic charge may serve as a global reactivity parameter in the context of QSAR investigation (Cronin and Livingstone, 2004).

The ionization energy or ionization potential is the energy necessary to remove an electron from the neutral atom. The ionization energy can be thought of as a kind of counter property to electronegativity in the sense that low ionization energy implies that an element readily gives electrons to a reaction, while a high electronegativity implies that an element strongly seeks to take electrons in a reaction. The electron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion (Nave, 2006).

To characterize the global readiness of molecules to donate or accept electron charge, the lowest ionization potential and the greatest electro affinity (that are simply the ionization potential and electron affinity) would be the best parameters to model reactions for

41

nucleophilic and electrophilic interactions of a compound with endogenous reaction partners. The associated molecular orbital energies according to Koopman's theorem, can be regarded as approximations of a compound's ionization potential (IP) and electron affinity (EA) respectively. These are frontier orbital energies of the highest occupied molecular orbital (E_{HOMO}) and lowest unoccupied molecular orbital (E_{LUMO}), shown in equations 2 and 3 (Cronin and Livingstone, 2004).

 $IP = - E_{HOMO}$ Equation (4) $EA = - E_{LUMO}$ Equation (5)

2.14 Relationship between molecular descriptors and degradation rate constants (Biodegradation, oxidation and hydrolysis rate constants)

Application of Quantitative Structure Activity relationship in environmental toxicology and chemistry has been well established and there have been increasing interest in the study of biodegradation and molecular structure relationship (Parsons and Govers, 1988). The most usual approach is the correlation of biodegradation rate data with molecular descriptors such as physic-chemical properties, electronic parameters or structural parameters. Descriptors such as partition coefficients that describe the hydrophobicity and reverse phase HPLC retention time are most commonly used in QSARs for biodegradation (Parsons and Govers, 1988). A study by Banerjee et. al (1984) showed the decrease in biodegradation rate constants with increase in n-octanol-water partition coefficient for chlorinated phenols, anisoles and resorcinols. Paris, et al., (1982) studied the correlation of biodegradation rate constant and various physic-chemical properties such and pK_a, the Hammett substituent parameter, the Taft's steric parameter, log K_{OW}, and the van der Waals radii. In this study the best results were obtained with van der Waals radii suggesting the biodegradation rate of the compounds studied are controlled by steric properties of the substituents which may affect the binding of these compounds to enzymes. Many of the published correlations associating structure and molecular activity to biodegradation typically quantify the degradability of a limited set of homologous chemicals, while for compounds displaying varying chemical structures these correlations are scarce. (Raymond, et al., 2001). Correlations for homologous compounds are represented by a simple linear or quadratic equations that includes one or molecular descriptors which are selected based on their ability to fit the measured data (Raymond, et al., 2001). First-order biodegradation rate of 12 pesticides of various structures were correlated parabolically with their octanol-water partition coefficient (\mathbb{R}^2 = 0.697) and linearly with their alkaline hydrolysis rate constant (\mathbb{R}^2 = 0.454) by Kanazawa (1987).

Chemical oxidation using ozone has been proved to be an effective treatment process for a wide spectrum of organic micropollutants during bench, pilot and full-scale experiments in both wastewater and drinking water (Broséus, et al., 2009). Due to its high oxidation potential, ozone treatment is widely used in drinking water treatment for disinfection, color removal, taste and odor control, decrease of disinfection by-products formation, biodegradability increase and also for the successful degradation of many organic contaminants (Broséus, et al., 2009). Ozone reacts with organic contaminants through both a direct reaction with molecular ozone or through indirect reactions with free radicals (including the hydroxyl radical OH) produced by the decomposition of ozone and the rate of OH radical formation depends on the water matrix, especially its pH, alkalinity, type and content of natural organic matter (Gunten, 2003). Molecular ozone reacts selectively with unsaturated bonds, aromatic systems and amino groups whereas the reaction with OH radicals is a faster and unselective process (Broséus, et al., 2009). To assess the removal efficiency of ozonation, it is necessary to determine the rate constants for the reaction of micropollutants with ozone and OH radicals. The rate constant indicates the reactivity of a reaction, and it becomes of vital importance when deciding whether ozonation is an economically sound option for removing contaminants from raw water during drinking water treatment (Hu, et al., 1999). Estimation of rate constants during oxidation processes are made from the chemical properties in recently developed QSARs (Hu, et al., 1999).

Molecular descriptors such as oxidation potentials, σ constants in the Hammett equation, and molecular orbital energies are employed to correlate with oxdation rate constants of the compounds (Hu, et al., 1999). The σ constant in the Hammett equation is the one most commonly used for QSAR analysis of reactivity of compounds in the oxidation process. For example, the kinetics of the heterogeneous ozonation of o,p-activated aromatic organic compounds (Gould, 1987) and substituted phenols (Hoigne and Bader, 1983) have been successfully correlated with their σ constants. Half-wave potentials have also been employed for QSAR analysis of oxidation rate constants of the reaction between substituted phenols with single oxygen, chlorine dioxide, and manganese (III/IV) oxides (Rorije and Peijnenburg, 1996). However, the use of half-wave potentials as descriptors has a disadvantage because of the limited availability of consistent sets of this descriptor (Rorije and Peijnenburg, 1996). Recently, the energy of the highest occupied molecular orbital (E_{HOMO}) has been used to estimate the kinetic parameters of oxidation of organic compounds (Hu, et al., 1999). Studies on E_{HOMO} based correlation include oxidation of phenols and anilines by H₂O₂ catalyzed by horseradish peroxidase

compound II (Sakurada, et al., 1990) and oxidation of hydrofluorocarbons and hydrofluoroethers by hydroxyl radicals (Cooper and Cunningham, 1992; Percival et al., 1995; Bartolotti and Edney, 1994). Gallagher, et al., (2001) used various descriptors such as diffusion coefficients, solubilities, sediment-water partion coefficients, and vapor pressure for predicting the dechlorination rate of chlorinated alkanes and alkenes. However these descriptors yielded correlation coefficients (R^2) of less than 0.5. Later in this study theoretically derived structure-based descriptors, including quantum-chemistry calculations using the semiempirical method (MOPAC) was used. The energy of the lowest unoccupied molecular orbital (E_{LUMO}) provided the best correlations to the log of the dechlorination rate constant with an R^2 value of 0.85. The fact that E_{HOMO} and E_{LUMO} can be readily calculated for almost all environmentally important compounds by using a standard technique of computational chemistry is a great advantage of E_{HOMO} and E_{LUMO} over other predictors.(Hu, et al., 1999).

CHAPTER III

METHODOLOGY

3.1 Data Sources for Physicochemical Properties of chemicals

Different chemicals in the environment behave differently and these differences are attributed to physical-chemical properties. The key physicochemical properties are believed to be solubility in water, vapor pressure, octanol-water partition coefficients and dissociation constant in water (Mackay, et al., 1997). Knowing compounds physicochemical properties helps in predicting bioactivity, bioavailability, behavior in chemical separation, and distribution between environmental compartments (Reinhard and Drefahl, 1998). The biodegradation rates, oxidation rates and hydrolysis rates are believed to be the important property for persistence or degradability of compounds in environment (Rorije and Peijnenburg, 1996). It is therefore desirable to predict these rate constants to assess the fate of compounds in environment. These degradation rate were related to physical-chemical properties of compounds, for the advantage of this approach is, once an acceptable model is developed, is the ability to predict relative or absolute degradation rates strictly on the basis of the compound structure without laboratory testing other than the calibration data set. Determining various physicochemical properties for each compound experimentally would prove to be costly and time consuming. Physical-chemical properties of geosmin, 2-methylisoborneol, acetaminophen, triclosan, 2,4-dichlorophenol and atrazine have been previously studied and calculated in relevant literature. For these compounds physicalchemical properties available in literature were used as part of data. Properties like log octanol/air partition coefficient, soil partition coefficient were calculated using Estimation Program Interface Suite (EPI Suite v. 4.00) developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC). Quantum chemical properties such as energy of highest occupied molecular orbital (E_{HOMO}) and energy of lowest unoccupied molecular orbital (E_{LUMO}) were calculated using Molecular Modeling Pro software's, Molecular Orbital Package (MOPAC), a sub routine software of Molecular modeling Pro, in which, the AM1 SCF (Self consistent field) semiempirical method implemented in the software was used. AM1 (Austin Model 1) is an popular semiempirical method that uses the parameterized functions that allow a substantially simplified and in particular much faster calculations of the properties and total electronic energy can be obtained using the self consistent field (SCF) (Cronin and Livingstone, 2004).

Estimation Program Interface Suite (EPI)

Estimation Program Interface Suite was available from the EPA website. The software was run on computer with Windows operating system. A single simplified molecular input line entry specification (SMILES) of the chemical whose physical-chemical property needs to be calculated was the only input parameter. The SMILES notations were available from <u>www.daylight.com</u>. The values of log octanol-air partition

coefficient and log soil adsorption coefficient calculated from EPI Suite was used in the study.

Molecular Modeling Pro:

The Molecular Modeling Pro program uses the computational chemistry method for calculation of various physical properties of chemicals. Molecular Modeling Pro software was available from Chem SW. The software was installed and run on computer with Windows operating system. The input parameter to calculate the energy of molecular orbital, molecular file (MDL.mol file) was used. A MDL Molfile is a file format holding information about the atoms, bonds, connectivity and coordinates of a molecule. The molfile consists of some header information, the Connection Table (CT) containing atom info, then bond connections and types, followed by sections for more complex information. The molfile is sufficiently common that most, if not all, cheminformatics software systems/applications are able to read the format. The chemical structures for all six compounds MDL.mol file were available to download from the as www.chemicalbook.com. The molfiles were opened in Molecular Modeling Pro program using the file menu option Open new molecule. Figure 4 explains the process of inputting the chemical in Molecular Modeling Pro.

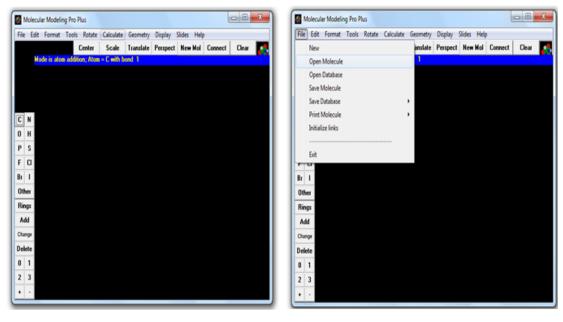


Figure 4(b)

Figure 4 (a) Molecular Modeling Pro program screen.

Figure 4 (b) Step to open a molecule in Molecular Modeling Pro

After the chemical was imported as a .mol file, Molecular Orbital Package (MOPAC) was run with keywords AM1, SCF, and VECTORS to calculate the energies of highest occupied (E_{HOMO}) and lowest unoccupied (E_{LUMO}) molecular orbital's (Stewart, 2000). MOPAC is a subroutine program which is available in the tools menu of the Molecular Modeling Pro program. Figure 5 and 6 explains the steps to run MOPAC. The output is in the form of a word file, an example of which is presented in APPENDIX A, for geosmin.

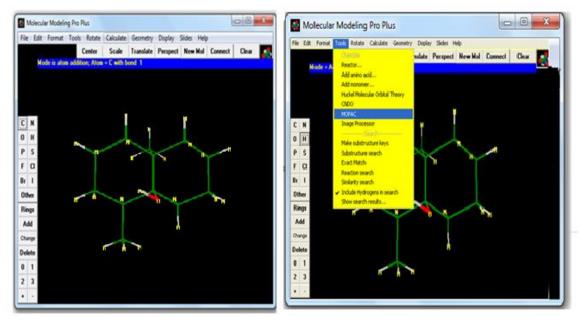


Figure 5 (a)

Figure 5 (b)

Figure 5 (a) Geosmin.mol file opened in Molecular Modeling Pro

Figure 5(b) MOPAC executed in Molecular Modeling Pro program

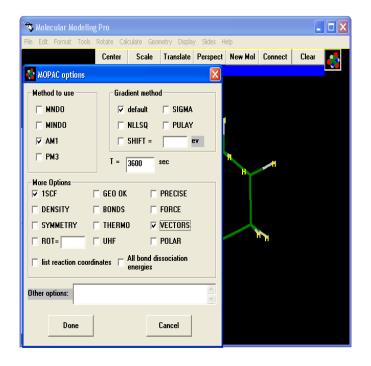


Figure 6 Running MOPAC with keywords

To confirm the accuracy of the molfiles, results from the software (E_{HOMO} and E_{LUMO} values) were validated by making comparisons with the E_{HOMO} and E_{LUMO} values of chemicals that were available in literature (Niu, 2004; Xuejun, 2004, Chen, 1996). The values were all within 20% when compared with the literature value and many were much close. These are presented in Table 6 below.

Chemical	E _{HOMO}	E _{HOMO}	E _{LUMO}	E _{LUMO}
Name	(Calculated)	(Literature)	(Calculated)	(Literature)
Anthracene	-7.86086	-8.248	-1.08445	-0.970
Para-chloro benzonitrile	-8.25645	-9.0004	0.24563	0.2420
Naphthalene	- 8.50559	-8.918	-0.45225	-0.361
2-biphenyl	-8.76252	-8.835	-0.34406	-0.408

Table 6 Comparison of E_{HOMO} and E_{LUMO} values.

The physical-chemical properties used as descriptors in this study are molecular weight, log octanol/water partition coefficient (Log K_{OW}), solubility in water, vapor pressure, Henry's law constant, log octanol/air partition coefficient (Log K_{oa}), soil adsorption coefficient (K_{OC}), enthalpy of vaporization, energy of highest occupied molecular orbital (E_{HOMO}) and energy of lowest unoccupied molecular orbital (E_{LUMO}). The values of descriptors are summarized in Chapter 4.

3.2 Degradation Rates of Chemicals

The biodegradation rates, oxidation rates and hydrolysis rates of geosmin, 2methylisoborneol, acetaminophen, triclosan, 2,4-dichlorophenol and atrazine were extracted from various literature. The following paragraph summarizes the studies from which the three rate constants were extracted

Hoefel, et al., (2009) studied the biodegradation of geosmin caused by Gram-negative bacterium, Geo48, from the biofilm of a water treatment plant sand filters. Ho, et al., (2006), reported biological sand filtration to be an effective process for the complete removal of MIB and geosmin, with removal shown to be predominantly through biodegradation. The bacterial consortium effectively biodegraded 2-chlorophenol, 3chlorophenol and 2,4-dichlorophenol in a study by Herrera, et al., (2006) The biodegradation kinetics of 2,4-dichlorophenol (2,4-DCP) by culture acclimated to mixture of 4-chloropheno (4-CP) and 2,4-DCP and the culture acclimated to 4-CP only were investigated in aerobic batch reactors by Sahinkaya and Dilek, (2006). In this study isolated pure strains from mixed cultures were searched for their ability towards the biodegradation of 2,4-DCP. In situ microcosms (ISM) and laboratory batch microcosms (LBM) were used for determination of the first-order degradation rate constants of 2,4 dichlorophenol by Neilsen, et al., (1996). Ziagova, et al., (2007) studied the kinetics of 2,4-dichlorophenol degradation by *Pseudomonas sp.* cultures in the presence of glucose. Lu, et al., (2009) studied the removal of acetaminophen which followed second-order kinetics with first-order to the concentrations of both the substrate and the enzyme. Hansveit and Hamwijk, (2003) studied the biodegradation of triclosan which followed first-order kinetics with CO₂ evolution. Crawford, et al., (2000) studied the the biodegradation of atrazine under different redox conditions in the presence and absence of an electron donor (glucose) and electron acceptors (oxygen, NO₂). The values of the

biodegradation rate constants extracted from the studies mentioned above is summarized in later chapters (Refer table 12).

Peter and Gunten, (2007) studied the applicability of ozonation to mitigate taste and odor problems in drinking water. Second-order rate constants of eleven taste and odor compounds (geosmin and 2-methylisoborneol) with ozone and hydroxyl radicals were determined under laboratory conditions. Tang and Huang, (1996) studied the oxidation kinetics and mechanism of 2,4-dichlorophenol by Fentons reagent; while advanced oxidation processes (AOPs) using UV, UV/H₂O₂, Fenton and photo-Fenton treatment were investigated at laboratory scale for aqueous solutions of 2,4-dichlorophenol (DCP) by Momani, et al., (2003). Benitez, et al., (2000) studied the oxidation of 2,4-DCP by ozone. Oxidation of the antimicrobial agent triclosan by aqueous ozone was investigated by Suarez, et al., (2007). Latch, et al., (2005) and Arnold, et al., (2003) studied the reaction of triclosan with hydroxyl radicals. Oxidation of atrazine with ozone and hydroxyl radicals were studied by Hoigne and Bader, (1983) and Scholles and Willson, (1967). The values of all the three rate constants are summarized in Chapter 4. The correlation between the descriptors (physical chemical properties found in literature and calculated by the software) and the rate constants (biodegradation, oxidation and hydrolysis) were determined by plotting graphs in Microsoft Excel. The following correlations were made

- Biodegradation rate vs. Molecular Weight
- Biodegradation rate vs. Log K_{OW}
- Biodegradation rate vs. Water Solubility
- Biodegradation rate vs. Henry's Law Constant
- Biodegradation rate vs. Log Octanol Air Partition Coefficient
- Biodegradation rate vs. Soil Adsorption Coefficient
- Biodegradation rate vs. Enthalpy of Vaporization
- Biodegradation rate vs. Vapor Pressure
- Biodegradation rate vs. LUMO
- Biodegradation rate vs. HOMO
- Log Oxidation rate vs. Molecular Weight
- Log Oxidation rate vs. Log K_{OW}
- Log Oxidation rate vs. Water Solubility
- Log Oxidation rate vs. Henry's Law Constant
- Log Oxidation rate vs. Log Octanol Air Partition Coefficient
- Log Oxidation rate vs. Soil Adsorption Coefficient
- Log Oxidation rate vs. Enthalpy of Vaporization
- Log Oxidation rate vs. Vapor Pressure
- Log Oxidation rate vs. LUMO
- Log Oxidation rate vs. HOMO
- Hydrolysis rate vs. Molecular Weight
- Hydrolysis rate vs. Log K_{OW}
- Hydrolysis rate vs. Water Solubility
- Hydrolysis rate vs. Henry's Law Constant
- Hydrolysis rate vs. Log Octanol Air Partition Coefficient
- Hydrolysis rate vs. Soil Adsorption Coefficient
- Hydrolysis rate vs. Enthalpy of Vaporization
- Hydrolysis rate vs. Vapor Pressure
- Hydrolysis rate vs. LUMO
- Hydrolysis rate vs. HOMO

The R-squared value was calculated from the graphs plotted using simple linear regression lines using Microsoft Excel. The results are presented and discussed in Chapter 4 and the conclusions based on the correlations (R2) are discussed in Chapter 5.

CHAPTER IV

RESULTS AND DISCUSSION

4.1 Properties of chemicals used as descriptors

Data extracted from various relevant literature and data which was produced using the Estimation Program Interface (EPI) Suite and MOPAC software are presented in this chapter. The physicochemical properties of geosmin, 2-methylisoborneol, 2,4-dichlorophenol, triclosan, acetaminophen and atrazine are presented in Tables 6 through 11, respectively. The source from which the data was extracted or calculated is also presented in the tables. The values of E_{HOMO} and E_{LUMO} are calculated using MOPAC for all the six compounds. The log octanol-air partition coefficient and log soil adsorption coefficient for all compounds were calculated using EPI Suite. The log soil adsorption coefficient for 2,4-dichlorophenol was available in literature and was used in the study. The enthalpies of vaporization for all compounds were available from Advanced Chemistry Development Labs (ACD/Labs) website, which is commercial service for instant access to chemical databases and property predictions programs.

Table 7 Physicochemical Properties of Geosmin

No	Properties	Geosmin	Reference
1	Log Octanol/water partition coefficient Log K _{OW}	3.57	Nakamura et al, (2001)
2	Solubility in Water (mg/L)	150.20	Pirbazari et al., 1992
3	Boiling Point (⁰ C)	270	Gerber (1967)
4	Melting Point (⁰ C)	47.08	Calculated using EPI Suite
5	Vapor Pressure (atm, 25 ^o C)	5.49×10 ⁻⁵	Pirbazari et al., (1992)
6	Henry's Law Constant (atm-m ³ /mole, 25 ^o C)	1.05×10^{-4}	Pirbazari et al., (1992)
7	Log Octanol-Air Partition Coefficient (Log K _{oa})	6.88	Calculated using EPI Suite
8	Soil Adsorption Coefficient (Log K _{OC})	2.48	Calculated using EPI Suite
9	Enthalpy of Vaporization (kJ/mol)	59	Advanced Chemistry Development Lab Inc. Database.
10	Energy of Highest Occupied Molecular Orbital (eV)	-10.46	Calculated using MOPAC
11	Energy of Lowest Unoccupied Molecular Orbital (eV)	2.96	Calculated using MOPAC

No	Properties	2-Methylisoborneol	Reference
1	Log Octanol/water partition coefficient (Log K _{OW})	3.13	Song et al, 2007
2	Solubility in Water (mg/L)	194.50	Song et al, 2007
3	Boiling Point (⁰ C)	196.70	Song et al, 2007
4	Melting Point (⁰ C)	31.00	Calculated using EPI Suite
5	Vapor Pressure (mm of Hg, 25° C)	55.17×10 ⁻³	Pinar et al, 2005
6	Henry's Law Constant (atm-m ³ /mole, 25 ^o C)	1.149×10 ⁻⁴	Pinar et al, 2005
7	Log Octanol-Air Partition Coefficient (Log K _{oa})	6.75	Calculated using EPI Suite
8	Soil Adsorption Coefficient (Log K _{OC})	2.35	Calculated using EPI Suite
9	Enthalpy of Vaporization (kJ/mol)	51.80	Advanced Chemistry Development Lab Inc. Database.
10	Energy of Highest Occupied Molecular Orbital (eV)	-9.17	Calculated using MOPAC
11	Energy of Lowest Unoccupied Molecular Orbital (eV)	2.32	Calculated using MOPAC

Table 8 Physicochemical Properties of 2-Methylsioborneol

No	Properties	2, 4 Dichlorophenol	Reference
1	Log K _{OW}	3.34	Dean et al, 1996
2	Solubility in Water (mg/L)	4500.00	Bhatnagar et al, 2009
	0		
3	Boiling Point (⁰ C)	210.00	Bhatnagar et al, 2009
		47.00	D1
4	Melting Point (⁰ C)	45.00	Bhatnagar et al, 2009
5	Vener Dressure (mm of Ho	12×10 ⁻²	Successform Light
5	Vapor Pressure (mm of Hg, 25° C)	12×10	Spectrum Lab Chemical Fact Sheet
6	Hanny's Low Constant	4.29×10 ⁻⁶	Dhotmogon et al. 2000
0	Henry's Law Constant (atm-m ³ /mole, 25 ^o C)	4.29×10	Bhatnagar et al, 2009
7	Log Octanol-Air Partition	7.70	Calculated using EPI
	Coefficient (Log K _{oa})		Suite
8	Soil Adsorption Coefficient	2.20	US EPA, 1980.
	(Log K _{OC})		
9	Enthalpy of Vaporization	46.50	Advanced Chemistry
	(kJ/mol)		Development Lab Inc. Database.
10	Energy of Highest	-6.49	Calculated using
	Occupied Molecular Orbital		MOPAC
	(eV)	0.00	
11	Energy of Lowest Unoccupied Molecular	0.82	Calculated using MOPAC
	Orbital (eV)		

Table 9 Physicochemical Properties of 2,4 Dichlorophenol

Table 10 Physicochemical Properties of Triclosan

No	Properties	Triclosan	Reference
1	Log K _{OW}	4.80	Kumar et al, 2009
2	Solubility in Water (mg/L)	10.00	Kumar et al, 2009
3	Boiling Point (⁰ C)	200.00	JEEN INT. CORP, MSDS
4	Melting Point (⁰ C)	54.00 °C to 57.30 °C	Merck Index, 1983
5	Vapor Pressure (mm of Hg, 25^{0} C)	4.60×10 ⁻⁶	Merck Index, 1983
6	Henry's Law Constant (atm-m ³ /mole, 25 ⁰ C)	5×10 ⁻⁹	PBT Profiler (2004)
7	Log Octanol-Air Partition Coefficient (Log K _{oa})	6.75	Calculated using EPI Suite
8	Soil Adsorption Coefficient (Log K _{OC})	2.35	Calculated using EPI Suite
9	Enthalpy of Vaporization (kJ/mol)	61.20	Advanced Chemistry Development Lab Inc. Database.
10	Energy of Highest Occupied Molecular Orbital (eV)	-5.62	Calculated using MOPAC
11	Energy of Lowest Unoccupied Molecular Orbital (eV)	0.52	Calculated using MOPAC

No	Properties	Acetaminophen	Reference
1	Log K _{OW}	0.48	Carlsson and Karlberg, 2000
2	Solubility in Water (mg/L)	1.40×10^4	Yalkowsky et al, 1980
3	Boiling Point (⁰ C)	340.65	Calculated using EPI Suite
4	Melting Point (⁰ C)	170.00	CRC handbook
5	Vapor Pressure (mm of Hg, 25^{0} C)	1.94×10 ⁻⁶	Calculated using EPI Suite
6	Henry's Law Constant (atm-m ³ /mole, 25 ⁰ C)	1.27×10 ⁻¹¹	Calculated using EPI Suite
7	Log Octanol-Air Partition Coefficient (Log K _{oa})	11.04	Calculated using EPI Suite
8	Soil Adsorption Coefficient (Log K _{OC})	1.32	Calculated using EPI Suite
9	Enthalpy of Vaporization (kJ/mol)	66.20	Advanced Chemistry Development Lab Inc. Database.
10	Energy of Highest Occupied Molecular Orbital (eV)	-5.53	Calculated using MOPAC
11	Energy of Lowest Unoccupied Molecular Orbital (eV)	-0.49	Calculated using MOPAC

Table 11 Physicochemical Properties of Acetaminophen

Table 12 Properties of Atrazine

No	Properties	Atrazine	Reference
1	Log K _{ow}	2.60	Hansch et al. 1995
2	Solubility in Water (mg/L)	34.70	Ward and Weber, 1968
3	Boiling Point (⁰ C)	313.03	Calculated using EPI Suite
4	Melting Point (⁰ C)	173 °C to 175 °C	HSDB 2002
5	Vapor Pressure (mm of Hg, 25^{0} C)	2.89×10 ⁻⁷	Tomlin 1997
6	Henry's Law Constant (atm-m ³ /mole, 25 ^o C)	2.96×10 ⁻⁹	Riederer 1990
7	Log Octanol-Air Partition Coefficient (Log K _{oa})	9.63	Calculated using EPI Suite
8	Soil Adsorption Coefficient (Log K _{OC})	2.48	Calculated using EPI Suite
9	Enthalpy of Vaporization (kJ/mol)	61.50	Advanced Chemistry Development Lab Inc. Database.
10	Energy of Highest Occupied Molecular Orbital (eV)	-6.29	Calculated using MOPAC
11	Energy of Lowest Unoccupied Molecular Orbital (eV)	0.19	Calculated using MOPAC

4.2 Biodegradation, Oxidation and Hydrolysis Rate Constants of Chemicals

In this section values for biodegradation, oxidation and hydrolysis rate constant are presented in tables 12, 13 and 14 respectively. The values of the rate constants were extracted from relevant literature (discussed earlier in Chapter 3.) and a brief note of the study made in the literature from which the values were extracted is also presented in the tables. One or more values of biodegradation oxidation and hydrolysis rate constants were available and are recorded in tables 12, 13 and 14 respectively.

Table 13 Biodegradation Rate of chemicals

Chemical Name	Biodegradation Rate	N	ote	Reference
Geosmin	0.25 d ⁻¹	Initial Concentration of 100 ng/L	The degradation of geosmin was in presence of	Hoefel et al. (2009)
Gesomin	0.58 d ⁻¹	Initial Concentration of 500 ng/L	single gram negative bacteria.	
Gesomin	0.67 d ⁻¹	Initial Concentration of 1000 ng/L	(The degradation was at 22 ⁰ C). Pseudo first order reaction rate.	
Geosmin	0.24 d ⁻¹	Initial concentration 200 ng/L	The degradation was in sand filters of the	Ho et al. (2007)
Geosmin	0.21 d ⁻¹	Initial concentration 50 ng/L	water treatment plant. Pseudo first	
Geosmin	0.120 d ⁻¹	Initial concentration 200 ng/L	order reaction rate.	
2-MIB	0.18 d ⁻¹	Initial concentration 200 ng/L	The degradation was in sand filters of the	Ho et al. (2007)
2-MIB	0.14 d ⁻¹	Initial concentration 50 ng/L	water treatment plant. Pseudo first	
2-MIB	0.10 d ⁻¹	Initial concentration 200 ng/L	order reaction rate.	
2,4- Dichlorophenol 2,4-	0.06 d ⁻¹	Nitrogen source NH ₄ Cl Nitrogen	The degradation by consortium of Bacillus	Herrera (2008)
Dichlorophenol 2,4- Dichlorophenol	0.01-0.9 d ⁻¹	source KMNO ₂ Degradation in aerobic aquifer	species. First order rate of reaction.	Nielsen et al. (1996)
2, 4- Dichlorophenol	0.48 d ⁻¹	Addition of glucose as carbon source	First order rate of reaction.	Ziagova et al. (2006)
Acetaminophen	0.393 d ⁻¹	Enzyme reaction	First order rate of reaction	Lu et al. (2009)
Triclosan	0.19-0.28 d ⁻¹	CO ₂ evolution	First order rate of reaction.	Hansveit et al. (2003)
Atrazine	0.9264 d ⁻¹	Degradation in fixed-film sand column	First order rate of reaction.	Crawford et al. (2000)

Table 14 Oxidation rates of chemicals

Chemical Name	Oxidation Rate	N	Note	Reference
Geosmin	0.0633 min^{-1}	Using	Pseudo first	Lawton
		Titanium	order reaction	(2003)
		dioxide	rate.	
		photocatalyst		
Geosmin	5-11 M ⁻¹ s ⁻¹	Ozonation	Second order rate	Westerhoff
			constants	et al. (2006)
Geosmin	$0.10 \text{ M}^{-1}\text{s}^{-1}$	Ozonation	Second order rate	Peter et al.
			constants	(2007)
2-MIB	0.1979 min ⁻¹	Using	Pseudo first	Lawton
		Titanium	order reaction	(2003)
		dioxide	rate.	
		photocatalyst		
2-MIB	$4-9 \text{ M}^{-1}\text{s}^{-1}$	Ozonation	Second order rate	Westerhoff
			constants	et al. (2006)
2-MIB	$0.35 \text{ M}^{-1}\text{s}^{-1}$	Ozonation	Second order rate	Peter et al.
			constants	(2007)
2, 4	$6.085 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$	Ozonation	First order rate of	Benitez et
Dichlorophenol			reaction	al. (2000)
Triclosan	$3.8 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$	Ozonation	Second order rate	Suarez et al.
			of reaction.	(2007)
Atrazine	$3 \times 10^{-3} \text{ M}^{-1} \text{s}^{-1}$	Ozonation	First order rate of	Hoigne and
			reaction	Bader
				(1983)
Acetaminophen	$1.41 \times 10^3 \text{ M}^{-1} \text{s}^{-1}$	Ozonation	Second order rate	Andreozzi
			of reaction	et al. (2003)

Table 15 Hydroxyl Reaction Rate

Chemical Name	Oxidation Rate	No	ote	Reference
Geosmin	$7.80 \times 10^{9} M^{-1} s^{-1}$	UV/H ₂ O ₂	Second order reaction rate.	Peter et al. (2007)
Geosmin	0.12 min ⁻¹	Ultrasonic irradication	First order rate constants	Song et al. (2007)
Geosmin	9.5×10 ⁹ M ⁻¹ s ⁻¹	Oxidation process/ H ₂ O ₂	Second order rate constants	Westerhoff et al. (2006)
2-MIB	0.070 min^{-1}	Ultrasonic irradication	First order rate constants	Song et al. (2007)
2-MIB	$8.2 \times 10^9 \mathrm{M}^{-1} \mathrm{s}^{-1}$	Oxidation process/ H ₂ O ₂	Second order rate constants	Westerhoff et al. (2006)
2-MIB	$5.09 \times 10^9 \text{ M}^{-1} \text{s}^{-1}$	UV/H ₂ O ₂	Second order reaction rate.	Peter et al. (2007)
2,4- Dichlorophenol	$7 \times 10^{-4} \text{ min}^{-1}$	Sono Fenton Method	First order rate constant.	Lee et al. (2005)
2,4- Dichlorophenol	0.057 min^{-1}	Advanced Oxidation Process	First order rate constant.	Momami et al. (2003)
Triclosan	5.4×10 ⁹ M ⁻¹ s ⁻¹	Reaction with hydroxyl radicals	Second order rate of reaction.	Latch et. al(2005); Arnold et al.(2003)
Atrazine	7.3×10 ⁸ M ⁻¹ s ⁻¹	Reaction with hydroxyl radicals	First order rate of reaction.	Scholles and Willson (1967)
Acetaminophen	$1.7 \times 10^9 \mathrm{M}^{-1}\mathrm{s}^{-1}$	Reaction with hydroxyl radicals	Second order rate of reaction	Yang et al. (2009)

In table 15, the data used in the study is summarized. In cases for compounds in which the values of rate constants were more than one, average values were used and these are presented in table 15. Following this table 15, are the graphs which were made for finding the correlations between descriptors and rate constants based on the R^2 value calculated from the graphs. Graphs of biodegradation rate constants were first plotted against the descriptors first (figures 4 to 13), followed by oxidation rate constant (figures 14 to 22) and hydrolysis rate constants (figures 23-32) respectively.

Table 16 Summary of data

Properties			Ch	emicals		
	Geosmin	2-MIB	Triclosan	2,4 DCP	Atrazine	Acetaminophen
Molecular Weight (Da)	182	168	288	162	215	151
Log Kow	3.57	3.31	4.80	2.80	2.60	0.46
Water Solubility (mg/L)	157.00	194.50	10.00	4500.00	34.70	1.29×10 ⁴
Henry's Law Constant (atm- m ³ /mole, 25 ⁰ C)	2.30×10 ⁻³	2.70×10 ⁻³	6.15×10 ⁻⁶	1.00×10 ⁻⁴	1.21×10 ⁻⁷	2.63×10 ⁻¹¹
Log Koa	6.88	6.75	11.45	7.70	9.63	11.04
Log Koc	2.48	2.35	3.93	2.79	2.48	1.32
Enthalpy of Vaporization (kJ/mol)	59.00	51.80	61.20	46.50	61.50	66.20
Vapor Pressure(mm of Hg, 25 ⁰ C)	5.49×10 ⁻⁵	55.1×10 ⁻³	3.26×10 ⁻⁵	12×10 ⁻²	2.89×10 ⁻⁷	1.43×10 ⁻⁷
E _{LUMO} (eV)	2.96	2.32	0.52	0.82	0.19	-0.49
E _{HOMO} (eV)	-10.46	-9.17	-5.62	-6.49	-6.29	-5.53
Biodegradati- -on Rate (per day)	0.35	0.14	0.24	0.07	0.93	0.39
Oxidation Rate (per mole sec)	8.00	6.50	3.80×10 ⁷	6.09×10 ⁸	4.50	3×10 ⁻³
Hydrolysis Rate (per mole sec)	9.50×10 ⁹	8.20×10 ⁹	7.30×10 ⁹	7.20×10 ⁹	2.70×10 ⁹	1.7×10 ⁹

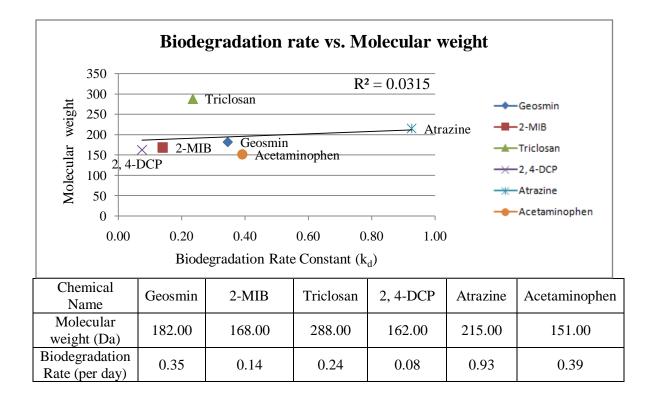
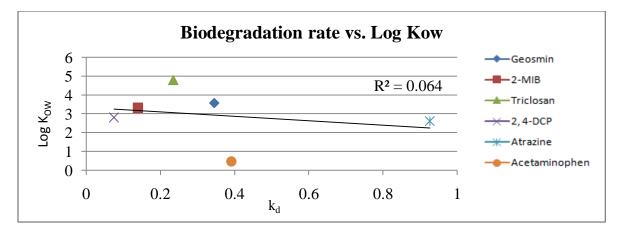
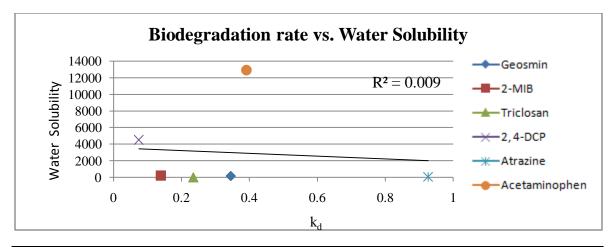




Figure 7 Biodegradation rate vs. Molecular weight

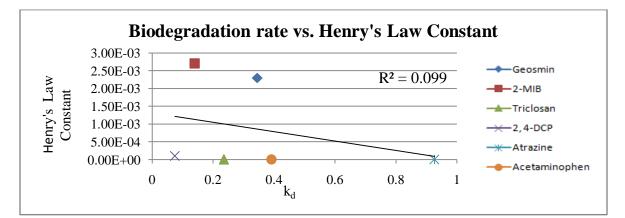

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Log Kow	3.57	3.31	4.8	2.8	2.6	0.46
Biodegradation Rate (per day)	0.35	0.14	0.24	0.08	0.93	0.39

Figure 8 Biodegradation rate vs. Log Kow

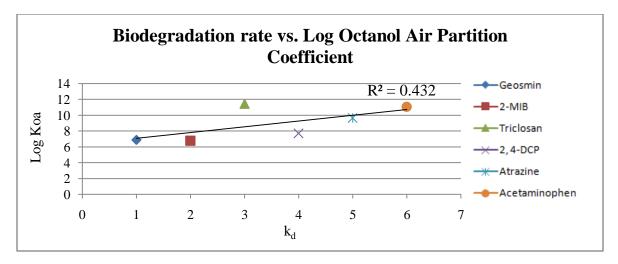

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Water	157.00	194.50	10.00	4500.00	34.70	1.29×10^{4}
Solubility						
(mg/L)						
Biodegradation	0.35	0.14	0.24	0.08	0.93	0.39
Rate (per day)	0.55	0.14	0.24	0.00	0.75	0.57

Figure 9 Biodegradation rate vs. Water Solubility

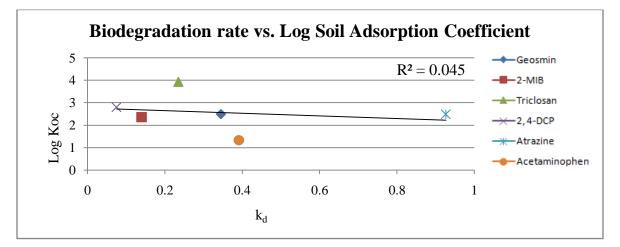

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Henry's Law	2.30×10 ⁻³	2.70×10 ⁻³	6.15×10 ⁻⁶	1.00×10^{-4}	1.21×10 ⁻	2.63×10 ⁻¹¹
Constant (atm-					7	
m ³ /mole,						
25 [°] C)						
Biodegradation	0.35	0.14	0.24	0.08	0.93	0.39
Rate (per day)	0.33	0.14	0.24	0.08	0.95	0.39

Figure 10 Biodegradation rate vs. Henry's Law Constant

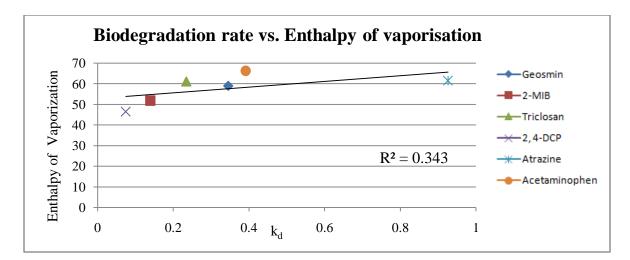

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Log Koa	6.88	6.75	11.45	7.70	9.63	11.04
Biodegradation Rate (per day)	0.35	0.14	0.24	0.08	0.93	0.39

Figure 11 Biodegradation rate vs. Log Octanol Air Partition Coefficient

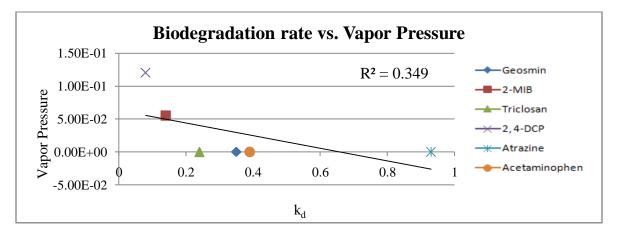

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Log Koc	2.48	2.35	3.93	2.79	2.48	1.32
Biodegradation Rate (per day)	0.35	0.14	0.24	0.08	0.93	0.39

Figure 12 Biodegradation rate vs. Soil Adsorption Coefficient

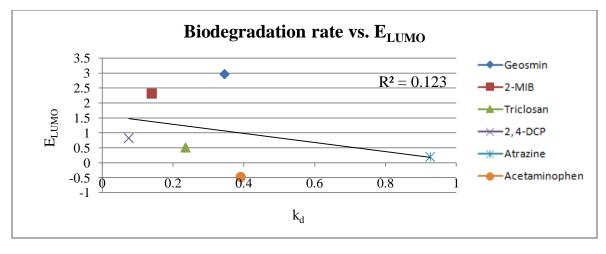

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Enthalpy of Vaporization (kJ/mol)	59.00	51.80	61.20	46.50	61.50	66.20
Biodegradation Rate (per day)	0.35	0.14	0.24	0.08	0.93	0.39

Figure 13 Biodegradation rate vs. Enthalpy of vaporization

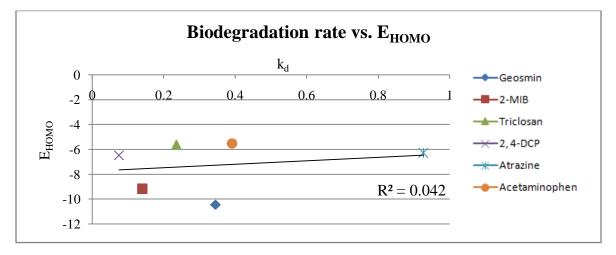

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Vapor	5.49×10 ⁻⁵	55.1×10 ⁻³	3.26×10 ⁻⁵	12×10 ⁻²	2.89×10^{-7}	1.43×10 ⁻⁷
Pressure(mm						
of Hg, 25° C)						
Biodegradation	0.35	0.14	0.24	0.08	0.93	0.39
Rate (per day)	0.33	0.14	0.24	0.08	0.93	0.39

Figure 14 Biodegradation rate vs. Vapor Pressure

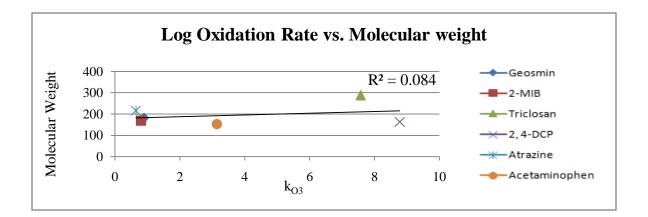

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
E _{LUMO} (eV)	2.96	2.32	0.52	0.82	0.19	-0.49
Biodegradation Rate (per day)	0.35	0.14	0.24	0.08	0.93	0.39

Figure 15 Biodegradation rate vs. E_{LUMO}

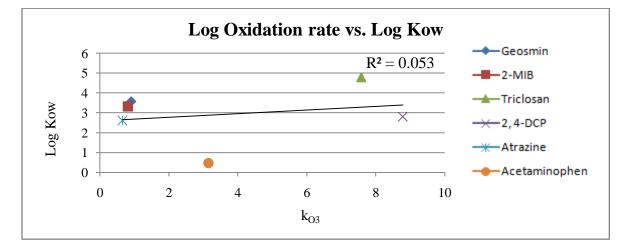

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
E _{HOMO} (eV)	-10.46	-9.17	-5.62	-6.49	-6.29	-5.53
Biodegradation Rate (per day)	0.35	0.14	0.24	0.08	0.93	0.39

Figure 16 Biodegradation rate vs. E_{HOMO}

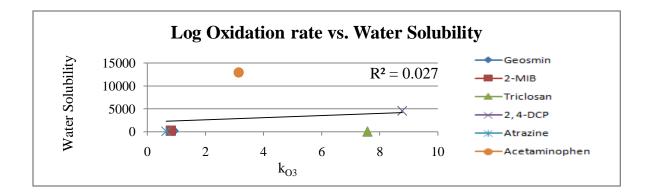

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Molecular weight (Da)	182.00	168.00	288.00	162.00	215.00	151.00
Log Oxidation Rate (per mole sec)	0.90	0.81	7.58	8.78	0.65	3.15

Figure 17 Log Oxidation rate vs. Molecular weight

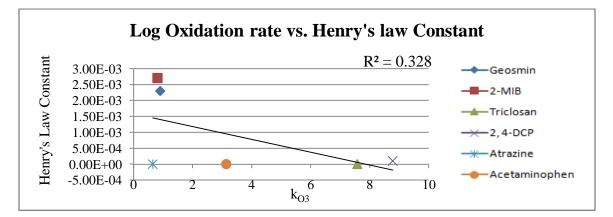

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Log Kow	3.57	3.31	4.8	2.8	2.6	0.46
Log Oxidation Rate (per mole sec)	0.90	0.81	7.58	8.78	0.65	3.15

Figure 18 Log Oxidation rate vs. Log Kow

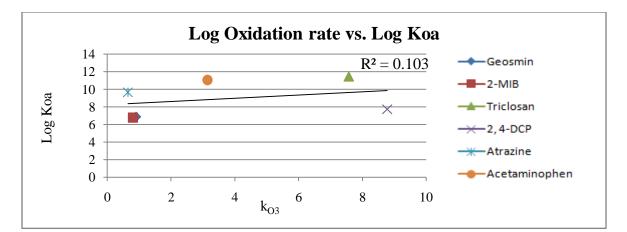

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Water Solubility (mg/L)	157.00	194.50	10.00	4500.00	34.70	1.29×104
Log Oxidation Rate (per mole sec)	0.90	0.81	7.58	8.78	0.65	3.15

Figure 19 Log Oxidation rate vs. Water Solubility

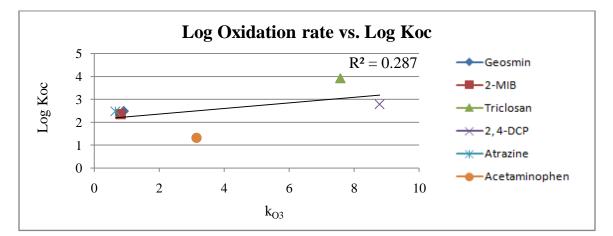

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Henry's Law Constant (atm- m ³ /mole, 25 ⁰ C)	2.30×10 ⁻³	2.70×10 ⁻³	6.15×10 ⁻⁶	1.00×10 ⁻⁴	1.21×10 ⁻ 7	2.63×10 ⁻¹¹
Log Oxidation Rate (per mole sec)	0.90	0.81	7.58	8.78	0.65	3.15

Figure 20 Log Oxidation rate vs. Henry's Law Constant

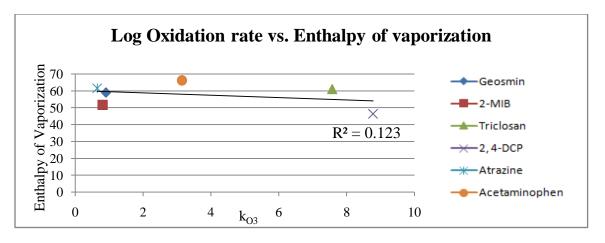

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Log Koa	6.88	6.75	11.45	7.70	9.63	11.04
Log Oxidation Rate (per mole sec)	0.90	0.81	7.58	8.78	0.65	3.15

Figure 21 Log Oxidation rate vs. Log Octanol air partition coefficient (Log Koa)

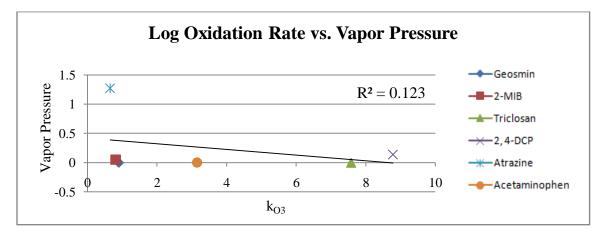

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Log Koc	2.48	2.35	3.93	2.79	2.48	1.32
Log Oxidation Rate (per mole sec)	0.90	0.81	7.58	8.78	0.65	3.15

Figure 22 Log Oxidation rate vs. Soil Adsorption Coefficient

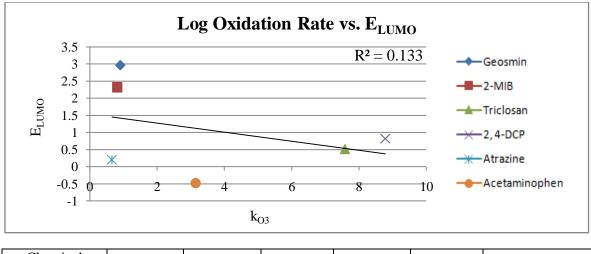

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Enthalpy of Vaporization (kJ/mol)	59.00	51.80	61.20	46.50	61.50	66.20
Log Oxidation Rate (per mole sec)	0.90	0.81	7.58	8.78	0.65	3.15

Figure 23 Log Oxidation rate vs. Enthalpy of vaporization

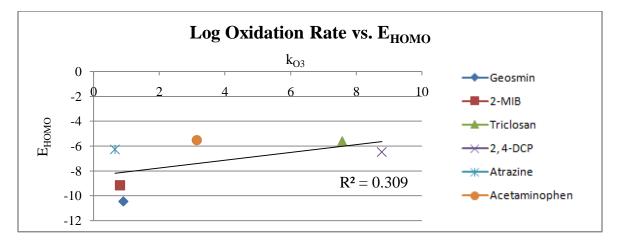

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Vapor	5.49×10 ⁻⁵	55.1×10 ⁻³	3.26×10 ⁻⁵	12×10 ⁻²	2.89×10 ⁻⁷	1.43×10 ⁻⁷
Pressure(mm of Hg, 25 ^o C)						
Log Oxidation Rate (per mole sec)	0.90	0.81	7.58	8.78	0.65	3.15

Figure 24 Log Oxidation rate vs. Vapor Pressure

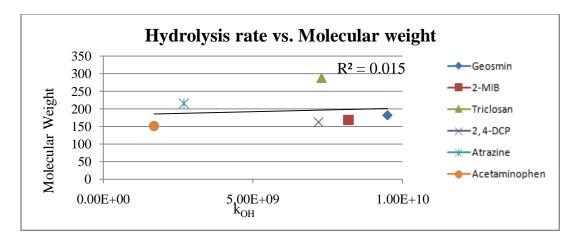

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
E _{LUMO} (eV)	2.96	2.32	0.52	0.82	0.19	-0.49
Log Oxidation Rate (per mole sec)	0.90	0.81	7.58	8.78	0.65	3.15

Figure 25 Log Oxidation rate vs. E_{LUMO}

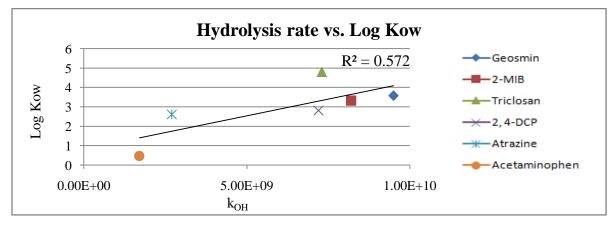

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
E _{HOMO} (eV)	-10.46	-9.17	-5.62	-6.49	-6.29	-5.53
Log Oxidation						
Rate (per mole	0.90	0.81	7.58	8.78	0.65	3.15
sec)						

Figure 26 Log Oxidation rate vs. E_{HOMO}

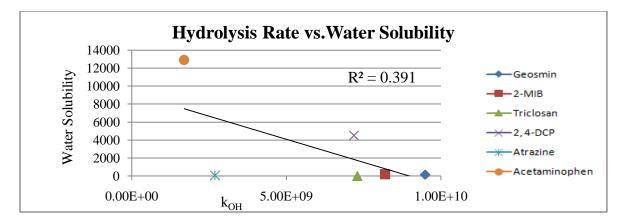

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Molecular weight (Da)	182.00	168.00	288.00	162.00	215.00	151.00
Hydrolysis	9.50×10 ⁹	8.20×10^{9}	7.30×10 ⁹	7.20×10^{9}	2.70×10^{9}	1.70×10^{9}
Rate (per mole sec)						

Figure 27 Hydrolysis rate vs. Molecular weight

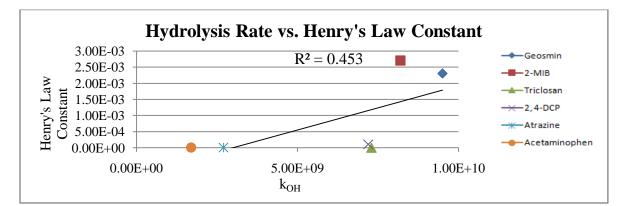

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Log Kow	3.57	3.31	4.8	2.8	2.6	0.46
Hydrolysis Rate (per mole sec)	9.50×10 ⁹	8.20×10 ⁹	7.30×10 ⁹	7.20×10 ⁹	2.70×10 ⁹	1.70×10 ⁹

Figure 28 Hydrolysis rate vs. Log Kow

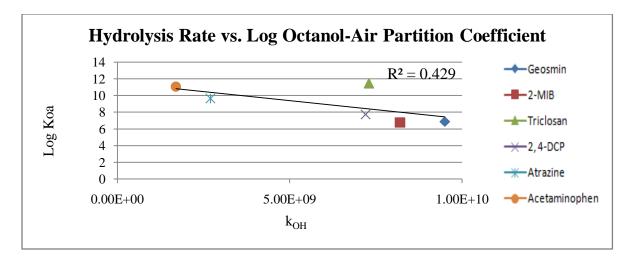

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Water Solubility	157.00	194.50	10.00	4500.00	34.70	1.29×10^{4}
(mg/L)						
Hydrolysis	9.50×10^{9}	8.20×10^{9}	7.30×10^{9}	7.20×10^{9}	2.70×10^{9}	1.70×10^{9}
Rate (per mole						
sec)						

Figure 29 Hydrolysis rate vs. Water Solubility

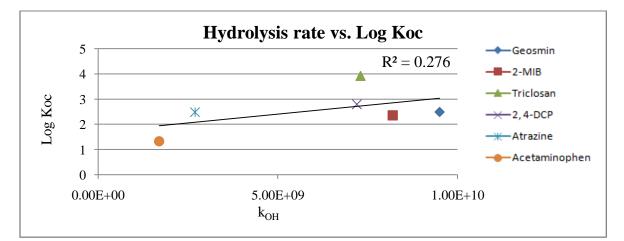

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Henry's Law Constant (atm- m ³ /mole, 25 ⁰ C)	2.30×10 ⁻³	2.70×10 ⁻³	6.15×10 ⁻⁶	1.00×10 ⁻⁴	1.21×10 ⁻ 7	2.63×10 ⁻¹¹
Hydrolysis Rate (per mole sec)	9.50×10 ⁹	8.20×10 ⁹	7.30×10 ⁹	7.20×10 ⁹	2.70×10 ⁹	1.70×10 ⁹

Figure 30 Hydrolysis rate vs. Henry's Law Constant


Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Log Koa	6.88	6.75	11.45	7.70	9.63	11.04
Hydrolysis Rate (per mole sec)	9.50×10 ⁹	8.20×10 ⁹	7.30×10 ⁹	7.20×10 ⁹	2.70×10 ⁹	1.70×10 ⁹

Figure 31 Hydrolysis rate vs. Log Octanol Air Partition Coefficient

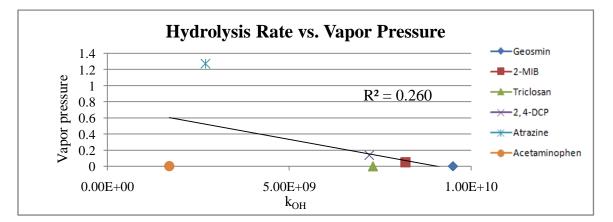

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Log Koc	2.48	2.35	3.93	2.79	2.48	1.32
Hydrolysis Rate (per mole sec)	9.50×10 ⁹	8.20×10 ⁹	7.30×10 ⁹	7.20×10 ⁹	2.70×10 ⁹	1.70×10 ⁹

Figure 32 Hydrolysis rate vs. Soil Adsorption coefficient

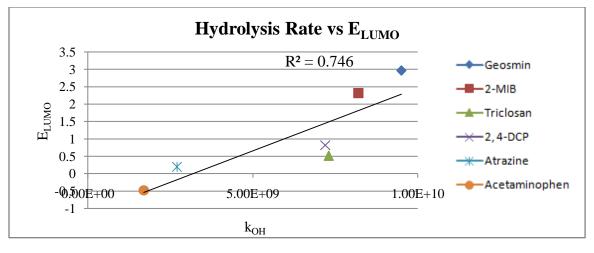

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Enthalpy of	59.00	51.80	61.20	46.50	61.50	66.20
Vaporization						
(kJ/mol)						
Hydrolysis	9.50×10^{9}	8.20×10^{9}	7.30×10^{9}	7.20×10^{9}	2.70×10^{9}	1.70×10^{9}
Rate (per mole						
sec)						

Figure 33 Hydrolysis rate vs. Enthalpy of vaporization

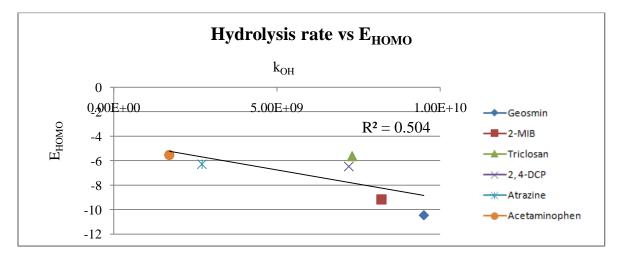

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
Vapor Pressure(mm of Hg, 25 ⁰ C)	5.49×10 ⁻⁵	55.1×10 ⁻³	3.26×10 ⁻⁵	12×10 ⁻²	2.89×10 ⁻⁷	1.43×10 ⁻⁷
Hydrolysis Rate (per mole sec)	9.50×10 ⁹	8.20×10 ⁹	7.30×10 ⁹	7.20×10 ⁹	2.70×10 ⁹	1.70×10 ⁹

Figure 34 Hydrolysis rate vs. Vapor Pressure

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
E _{LUMO} (eV)	2.96	2.32	0.52	0.82	0.19	-0.49
Hydrolysis Rate (per mole sec)	9.50×10 ⁹	8.20×10 ⁹	7.30×10 ⁹	7.20×10 ⁹	2.70×10 ⁹	1.70×10 ⁹

Figure 35 Hydrolysis rate vs. E_{LUMO}

Chemical Name	Geosmin	2-MIB	Triclosan	2, 4-DCP	Atrazine	Acetaminophen
E _{HOMO} (eV)	-10.46	-9.17	-5.62	-6.49	-6.29	-5.53
Hydrolysis Rate (per mole sec)	9.50×10 ⁹	8.20×10 ⁹	7.30×10 ⁹	7.20×10 ⁹	2.70×10 ⁹	1.70×10 ⁹

Figure 36 Hydrolysis rate vs. E_{HOMO}

4.3 Discussion

In this study an attempt was made to correlate the descriptors (physical-chemical properties) of geosmin, 2-MIB, 2,4-dichlorophenol, acetaminophen, atrazine and triclosan with activity rates (biodegradation rate, oxidation rate and hydrolysis rate). In this effort, data commonly used was extracted from available literature and in some cases calculated using computational chemistry software. For most of the data analyzed no significant correlations were obtained between the physical-chemical properties and activity rates (biodegradation rate, oxidation rate and hydrolysis rate). One of the reasons may be attributed to studies made in finding the various rate constants from which the data was extracted. All degradation rate constants were extracted from literature for which the study and calculations were not done under same conditions. Also the compounds used are from heterologous groups. Published correlations that are able to predict degradability of compounds displaying varying chemical structure are scarce in comparison to homologous series of compounds (Raymond, et al., 2001). Geosmin and 2-MIB are naturally occurring organic chemicals while the others are produced artificially for commercial use in various industries. Also the purposes for which these chemicals are used are different. Acetaminophen is used as a drug, while triclosan is used for its antimicrobial activity. Atrazine is an herbicide while 2,4-dichlorophenol is an intermediate chemical used for different applications.

Some correlations that showed a potential relationship were obtained between physicalchemical properties of compounds and the three rate constants. The log octanol/air partition coefficient showed some correlation with the biodegradation rate, with an R^2 value of 0.4325. The R^2 value is still low but this may be because the biodegradation rate constant used were not calculated under identical conditions. The log octanol/air partition coefficient values for compounds were calculated using EPI Suite, so each value was found in a similar manner. The rate of uptake and transport of compound, its binding to the active site of an enzyme, or the rate at which the compound is transformed determines the biodegradation rate of compound. It may be noted that in the absence of a specific uptake mechanism, synthetic organic chemicals are probably transported into bacterial cells by passive diffusion mechanism through the lipid membrane (Parsons and Govers, 1990). As such, a correlation between partitioning in octanol and partitioning in a membrane is not entirely unexpected.

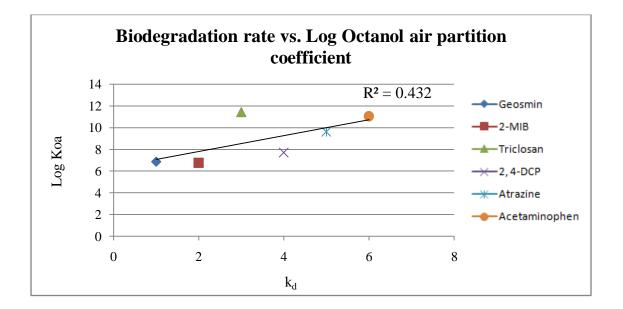


Figure 37 Biodegradation rate constant vs. Log octanol/air partition coefficient.

The enthalpy of vaporization also showed some positive correlation with the biodegradation rate constants with an R^2 value of 0.3431. The R^2 value is still low possibly for the same reasons mentioned above. The rest of the descriptors did not show

any correlations with the biodegradation rate constant, in that most had an R^2 value less than 0.10 for most of the plots.

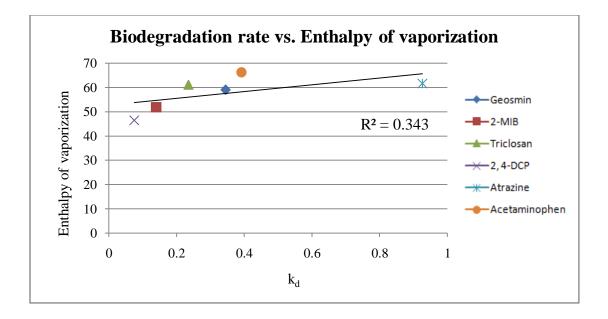


Figure 38 Biodegradation rate vs. Enthalpy of vaporization.

No correlations seemed to exist between the descriptors tested and oxidation rate constants. The oxidation rate constant for the various compounds covered 7 to 8 orders of magnitude. So log of oxidation rate constant was used to plot the graphs, and it appeared to make no significant change in the R^2 value. Similar to biodegradation rate constant the oxidation rate constant extracted from literature were measured under variety of conditions. Most of the correlations, if any can be said to exist, had an R^2 value below 0.20.

The correlation between energy of highest occupied molecular orbital and oxidation rate constant may be explored further. An R^2 value of 0.309 was obtained when energy of highest occupied molecular orbital was plotted against the log of oxidation rate constant. The reasons for this may be that energy of the highest occupied molecular orbital gives a

measure of the energy barrier an electron from the outer electron shell has to overcome to be removed from its orbital. When the reaction mechanism is the same for all compounds, the difference in this energy barrier between different compounds will be rate-determining.

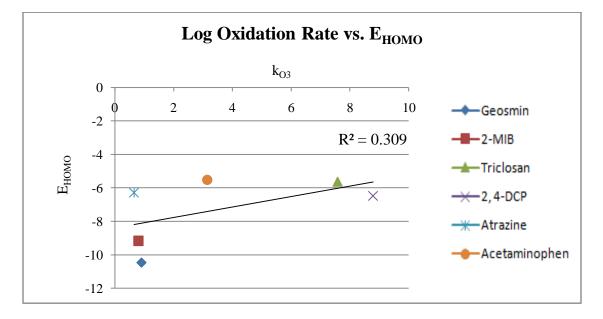


Figure 39 Energy of highest occupied molecular orbital vs. Log oxidation rate.

When the descriptors were plotted against hydrolysis rate most of the plots had low R^2 values as in previous rate constants and may be for the same previous reasons. However an R^2 value of 0.746 and 0.504 was reported when hydrolysis rate was plotted against energy of lowest unoccupied molecular orbital and energy of highest occupied molecular orbit, respectively. Thus a correlation may be said to exist between hydrolysis rate constant and energy of lowest unoccupied molecular orbital (E_{LUMO}). The value of E_{LUMO} and E_{HOMO} can be calculated easily using the MOPAC software and from this an approximate value of hydrolysis rate constant can be predicted saving time and money in calculating the hydrolysis rate constant of other chemicals experimentally.

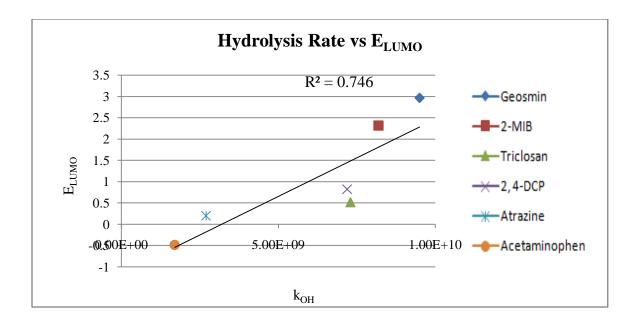


Figure 40 Energy of lowest unoccupied molecular orbital vs. Hydrolysis rate constant.

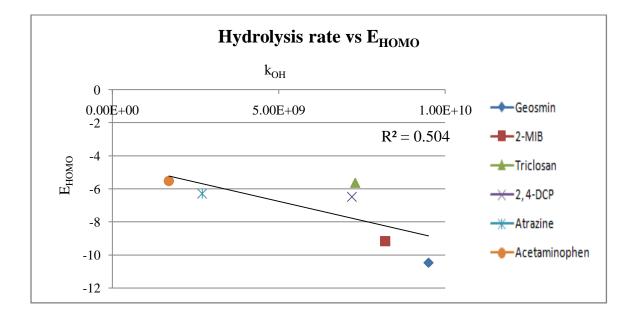


Figure 41 Energy of highest occupied molecular orbital vs. Hydrolysis rate constant.

The hydrolysis rate constant when plotted against log octanol-water partition coefficient, an R^2 value of 0.572 was obtained, indicating a possible correlation between the two.

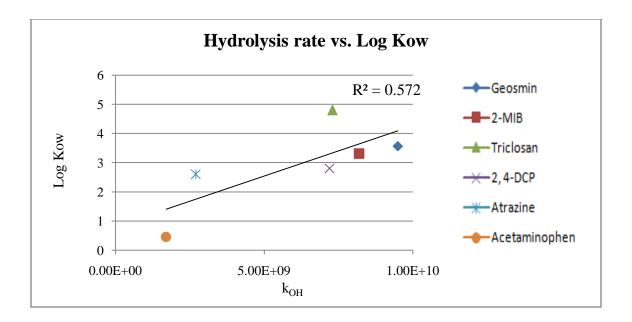


Figure 42 Log octanol-water partition coefficient vs. Hydrolysis rate constant.

In this study it was found that for most of the descriptors used displayed low correlations between physical-chemical properties and degradation rate. There are many reasons for this. One of them and likely the most important may be the data for biodegradation rate, oxidation rate and hydrolysis rate extracted from literature were not studied and calculated under same conditions. For more accuracy it may be useful to calculate data under same conditions. This will reduce or remove the experimental error which may have occurred in the respective studies. Also, when data are calculated under the same conditions the error, if any, will be same for all the data. Another reason for the correlation to not exist between the descriptors and rate constant may be the amount of data. In our study only six compounds were used. In this type of study the number of compounds should have been more for better correlations. Also, these six compounds are from heterologous groups with different structural, physical and chemical properties. Increasing the size of our data set may have resulted in better correlations between the descriptors and rate constants.

CHAPTER V

CONCLUSION

5.1 Conclusions

In the study an attempt was made to find correlations between physical chemical properties of geosmin, 2-methylisobrneol, 2,4-dichlorophenol, acetaminophen, atrazine and triclosan with the biodegradation, oxidation and hydrolysis rate constants. In doing so, various physical chemical properties, quantum chemical properties and structural properties and also the biodegradation, oxidation and hydrolysis rate constants were found, presenting us with valuable information about the chemicals used in the study. The data itself is thus a contribution on its own.

A preliminary analysis is provided from this study that can be used for a full scale quantitative structure analysis relationship. From the study, correlations were found somewhat promising for

- 1. biodegradation rate constant and log octanol-air partition coefficient ($R^2 = 0.432$)
- 2. oxidation rate constant and E_{HOMO} ($R^2 = 0.309$)
- 3. hydrolysis rate constant and E_{LUMO} ($R^2 = 0.746$)
- 4. hydrolysis rate constant and E_{HOMO} ($R^2 = 0.505$)
- 5. hydrolysis rate constant and log octanol-water partition coefficient ($R^2 = 0.572$)

5.2 Recommendations for Further Research

There is variety of directions for further work. Based on the results obtained from the study, the following recommendations are addressed

- One possibility is to increase the data set by increasing the number of chemicals. In this study one six compounds were used. Additions of well studied chemicals for which data may be easily available should be included for full-scale QSARs.
- Data for activity rates (biodegradation, oxidation and hydrolysis rate constants) should be relevant, meaning, studied under same condition. Whenever possible, it is desirable to compile data for a particular measurement from references originating within the same laboratory and measurement system. Data quality and compatibility of data may be an important parameter in this type of study.
- A good model to predict chemicals fate in environment can be obtained by combining physicochemical and molecular-orbital properties when there is no significant correlation between them. Statistical analysis should be performed using variety of descriptors to better understand the correlations between molecular descriptors and fate of chemicals in environment.
- There are many methods available to build a QSAR model that can relate activity to molecular structure. Some methods are designed to work with data that are measured on a nominal or ordinal scale, meaning the results are divided into two or more classes that may bear some relation to one another. These techniques should be explored further.

REFERENCES

1. A. Finizio, M. Vighi and D. Sandroni (1997), Determination of *N*-octanol/water partition coefficient (k_{ow}) of pesticide critical review and comparison of methods. *Chemosphere* ,**34**, 131–161

2. A. J. Neilson, V. B. Ferguson and D. A. Kendall (1988), Profile methods: Flavor profile and profile attribute analysis, *Applied Sensory Analysis of Foods*, **II**, 21–41.

3. A. R. Katritzky, Y. Wang, S. Sild, T. Tamm, M. Karelson, (1998), QSPR Studies on Vapor Pressure, Aqueous Solubility and the Prediction of Water-Air Partition Coefficients. *Journal of Chemical Information Computer Sciences*, **38**, 720-725.

4. A. Sabljic (1984), Predictions of the nature and strength of soil sorption of organic pollutants by molecular topology. *Journal of Agricultural and Food Chemistry*, 32, 243–246.

5. A. Sabljic (1987), On the prediction of soil sorption coefficients of organic pollutants from molecular structure: Application of molecular topology model. *Environmental Science and Technology*, **21**, 358–366

6. Adrian Burton (2006), A headache for water treatment, *Environmental Health Perspective*, **114**, A278.

7. American Public Health Association (APHA), American Water Works Association, and Water Pollution Control Federation (2000), Standard Methods for the Examination of Water and Wastewater, 20th ed. APHA, Washington, D.C., USA.

8. B. Cees, J. Zoeteman and Gerrit J. Piet (1974), Cause and Identification of Taste and Odor Compounds in Water, *The Science of total Environment*, **3**, 103-115.

9. B. Hileman (1996), Strategy for screening environmental hormone disrupters urgently needed. *Chemical and Engineering News*, **74**, 27–28.

10. Beryl Zaitlin and Susan B. Watson (2006), Actinomycetes in relation to taste and odor in drinking water: Myths, tenets and truths, *Water Research*, **40**, 1741-1753.

11. C. Hansch and A. Leo, (1995), Exploring QSAR, Fundamentals and Applications in

Chemistry and Biology, American Chemical Society, Washington, DC.

12. C.P. Dionigi, D.F. Millie, A.M. Spanier and P.B. Johnsen (1992), Spore and geosmin production by *Streptomyces tendae* on several media, *Journal of Agricultural and Food Chemistry*, **40**, 122–125.

13. Cikui Liang and David A. Gallagher, (1998), QSPR Prediction of Vapor Pressure from Solely Theoretically-Derived Descriptors, *Journal of Chemical Information Computer Sciences*, **38**, 321-324.

14. D. A. Bahnick and W. J. Doucette (1988), Use of molecular connectivity indices to estimate soil sorption coefficients for organic chemicals, *Chemosphere* **17**, 1703–1715.

15. D. C. McAvoy, B. Schatowtz, M. Jacob, A. Hauk and W. S. Eckhoff (2002), Measurement of triclosan in wastewater treatment systems, *Environmental Toxicology and Chemistry*, **21**, 1323–1329.

16. D. F. Paris, N. L. Wolfe, and W. C. Steen (1982), Structure-activity relationships in microbial transformation of phenols, *Appi. Environ. Microbiol.*, **44**, 153-158.

17. D. Khiari, L. Brenner, G. A. Burlingame and I. H. Suffet (1992), Sensory gas chromatography for evaluation of taste and odor events in drinking water, *Water Science and Technology*, **25**, 97–104.

18. D. W. Ferguson, M. J. McGuire, B. Koch, R.L. Wolfe and E.M. Aieta (1990), Comparing Peroxone an Ozone for Controlling Taste and Odor Compounds, Disinfection Byproducts, and Microorganisms, *Journal. AWWA*, **82**, 181.

19. David Cook, Gayle Newcombe and Pascale Sztajnbok (2000), The application of powdered activated carbon for MIB and Geosmin removal: Predicting PAC doses in four raw waters, *Water Research*, **35**, 1325-1333.

20. Donald Mackay, Wan Ying Shiu, and Kuo Ching Ma, (1997), Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals, *Lewis Publishers* (Boca Raton).

21. Donna Morall, Drew McAvoy, Bert Schatowitz, Josef Inauen, Martin Jacob, Armin Hauk and William Eckhoff (2004), A field study of triclosan loss rates in river water (Cibolo Creek, TX), *Chemosphere*, **54**, 653-660.

E. Rorije and W. J. G. M. Peijnenburg, (1996), QSARs for oxidation of phenols in the aqueous environment, suitable for risk assessment, *Journal of Chemometrics*, 10, 79-93.

23. Eric C. Cichowski, Todd R. Schmidt, Jeffrey R. Errington (2005), Determination of Henry's law constants through transition matrix Monte Carlo simulation, *Fluid Phase Equilibria*, **236**, 58–65.

24. Friedrich Juttner and Susan B. Watson (2007), Biochemical and Ecological Control of geosmin and 2-Methylisoborneol in Source Waters, *Applied and Environmental Microbiology*, **73**, 4395-4406.

25. G. Battaglia (1989), Atrazine elimination according to the drinking water regulations, *Water Supply*, **1**, 161-168.

26. G. R. Hallberg (1996), Water quality and watersheds: an Iowa perspective. In: Proceedings of the agriculture and environment-building local partnerships, Iowa State University Extension, Ames, IA, Jan 16, pp 1–5 to 1–22.

27. G.G. Briggs, R.H. Bromilov and A.A. Evans (1982), Relationship between lipophilicity and root uptake and translocation of non-ionized chemical by barley. *Pesticide Science*, **13**, 495–504.

28. Heidi Engelhardt McClelland and Peter C. Jurs, (2000), Quantitative Structure-Property Relationships for the Prediction of Vapor Pressures of Organic Compounds from Molecular Structures, *Journal of Chemical Information Computer Sciences*,**40**, 967-975.

29. I.H. (Mel) Suffet, Linda Schweitzer and Djanette Khiari (2004), Olfactory and chemical analysis of taste and odor episodes in drinking water supplies, *Environmental Science and Bio/Technology*, **3**, 3-13.

30. J. C. Eldridge, M. K. Tennant, L. T. Wetzel, C. B. Breckenridge, J. T. Stevens (1994), Factors affecting mammary tumor incidence in chlorotriazine-treated female rats: hormonal properties, dosage, and animal strain, *Environmental Health Perspectives*, **102**, 29–36.

31. J. Mallevialle and I. H. Suffet (1987), Identification and Treatment of Tastes and Odors in Drinking Water. ISBN #0-89867-392-5. AWWA Research Foundation and Lyonnaise Des Eaux Cooperative Research Report, American Water Works Assoc., Denver, CO, USA.

32. J. Niu, and G. Yu (2004), Molecular structural characteristics governing biocatalytic chlorination of PAHs by Chloroperoxidase from Caldariomyces fumago, *SAR and QSAR in Environmental Research*, **15: 3**, 159-167.

33. J. R. Parsons and H. A. J. Govers, (1990), Quantitative Structure-Activity Relationships for biodegradation, *Ecotoxicology and Environmental Safety*, **19**, 212-227.

34. J. W. Chen, L. R. Kong, C. M. Zhu, Q. G. Huang and L. S. Wang (1996), Correlation between photolysis rate constants of polycyclic aromatic hydrocarbons and frontier molecular orbital energy, *Chemosphere*, **33**, 1143-1150.

35. James Pontolillo and Robert P. Eganhouse, 2001, The search for reliable aqueous solubility (SW) and octanol-water partition coefficient (KOW) data for hydrophobic organic compounds--DDT and DDE as a case study: U.S. Geological Survey Water-Resources Investigations Report 01-4201, 51

 Jean Hou and Blake Clancy (1997), Taste and odor, Environmental Engineering Management, Civil Engineering Department Virginia Tech.

37. Jennifer J. Crawford, Samuel J. Traina and Olli H. Tuovinen (2000), Bacterial degradation of atrazine in redox potential gradients in fixed-film sand columns, *Soil Science Society of America Journal*, **64**, 624-634.

38. Jessica J. Kraker, Douglas M. Hawkins, Subhash C. Basak, Ramanathan Natarajan, and Denise Mills, (2007), Quantitative Structure–Activity Relationship

(QSAR) modeling of juvenile hormone activity: Comparison of validation procedures, *Chemometrics and Intelligent Laboratory Systems*, **87**, 33-42.

39. John W. Raymond, Tony N. Rogers, David R. Shonnard and Andrew A. Kline, (2001), A review of structure-based biodegradation estimation method, *Journal Of Hazardous Materials*, **B84**, 189-215.

40. Junhe Lu, Qingguo Huang and Liang Mao (2009), Removal of acetaminophen using enzyme-mediated oxidative coupling processes: I. Reaction rates and pathways, *Environmental Science and Technology*, **43**, 7062-7067.

41. K.K. Schrader and W.T. Blevins (2001), Effects of carbon source, phosphorous concentration, and several micronutrients on biomass and geosmin production by *Streptomyces halstedii*, *Jounal of Industrial Microbiology and Biotechnology*, **26**, 241–247.

42. K.S. Sklenar and A. J. Horne (1999), Horizantal Distribution of Geosmin in a Reservoir Before and after Coper Treatment, *Water Science and Technology*, **40**, 229-237.

43. Kathryn M. Onesios, Jim T. Yu and Edward J. Bouwer (2008), Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review, *Biodegradation*, **20**, 441-466.

44. Kazushi Aranami and James W. Readman (2007), Photolytic degradation of triclosan in freshwater and seawater, *Chemosphere*, **66**, 1052-1056.

45. Kishore Kumar Krishnani, Pitchaiyappan Ravichandran and Subbanna Ayyappan (2008), Microbially derived off-flavor from Geosmin and 2-Methylisoborneol: Sources and Remediation, *Reviews of Environmental Contamination and Toxicology*.

46. Kristin Kutschera, Hilmar Bornick and Eckhard Worch (2009), Photoinitiated oxidation of geosmin and 2-methylisoborneol by irradiation with 254 nm and 185 nm UV light, *Water Research*, **43**, 2224-2232.

47. Linda A. Lawton, Peter K. J. Robertson, Russell F. Robrtson and Fiona G. Bruce (2003), The destruction of 2-methylisoborneol and geosmin using titanium dioxide photocatalysis, *Applied Catalysis B: Environmental*, **44**, 9-13

48. M. G. Meilgaard, G. V. Civille and B. T. Car (1999), Sensory Evaluation Techniques, 3rd edn. CRC Press, Boca Raton, Florida, USA.

49. M. Patlak (1996), Estrogens may link pesticides, breast cancer, *Environmental Science and Technology*, **30**,210–211.

50. M. Staikova, F. Wania, D. J. Donaldson, (2004), Molecular polarizability as a single-parameter predictor of vapor pressures and octanol-air partitioning coefficients of non-polar compounds: a-priori approach and results, *Atmospheric Environment*, **38**(2), 213-225.

51. M. Ziagova and M. Liakopouluo-Kyriakides (2007), Kinetics of 2,4dichlorophenol and 4-Cl-m-cresol degradation by Pseudomonas sp. Cultures in the presence of glucose, *Chemosphere*, **68**, 921-927.

M.T.D. Cronin and D.J. Livingstone (2004), Predicting chemical toxicity and fate,
 CRC Press LLC, Baca Raton, Florida.

53. Martin Reinhard and Axel Drefahl, (1998), Handbook for Estimating Physicochemical Properties of Organic Compounds, *A Wiley-Interscience Publication*, John Wiley and Sons, INC. New York, U.S.

54. Mary Bedner and William A. Maccrehan (2006), Transformation of acetaminophen by chlorination produces the toxicants 1,4-Benzoquinone and N-Acetylp-benzoquinone imine, *Environmental Science and Technology*, **40**, 616-622.

55. Matthew Macleod, Martin Scheringer, and Konrad Hungerbuhler (2007), Estimating Enthalpy of Vaporization from Vapor Pressure Using Trouton's Rule, *Environmental Science and Technology*,**41**, 2827-2832.

56. Micheal J. McGuire (1995), Off-flavor as consumer's measure of drinking water safety, *Water Science and Technology*, **31**, 1-8.

57. N. N. Gerber and H. A. Lechevalier (1965), Geosmin, an earthy-smelling substance isolated from actinomycetes, *Applied Microbiology*, **13**, 935.

58. Nancy N. Geber (1967), Geosmin, an earthy-smelling substance isolated from Actinomycetes, *Biotechnology and Bioengineering*, **9**, 321-327.

59. P.A. Redshaw, P.A. McCann, M.A. Penella and B.M. Pogell (1979), Simultaneous loss of multiple differentiation functions in aerial mycelium-negative isolates of *Streptomyces*, *The Journal of Bacteriology*, **137**, 891–895.

60. Partha Pratim Roy, Somnath Paul, Indrani Mitra and Kunal Roy (2009), On Two Novel Parameters for Validation of Predictive QSAR Models, *Molecules*, **14**, 1660-1701.

61. Persson PE (1992), A summary of problem areas in aquatic off-flavor research, *Water Science and Technology*, **25**, 335.

62. R. Bentley and R. Meganathan (1981), Geosmin and Methylisoborneol biosynthesis in streptomycetes, *FEBS Letters*, **125**, 220–222.

63. R. Nerenberg, B. E. Rittmann and W. J. Soucie (2000), Ozone/Biofiltration for Removing MIB and Geosmin, *Journal AWWA*, **92**, 85-95.

64. Rangesh Srinivasan and George A. Sorial (2009), Adsorption of Geosmin and MIB on Activated Carbon Fibers–Single and Binary Solute System, *Water Air Soil Pollution*, **9**,223-235.

65. Roberto Andreozzi, Vincenzo Caprio, Raffaele Marotta and David Vogna (2003), Paracetamol oxidation from aqueous solutions by means of ozonation and H_2O_2/UV system, *Water Research*, **37**, 993-1004.

66. S. Banerjee, P. H. Howard, A. M. Rosenberg, A. E. Dombrowski, H. Sikka and D. L. Tullis (1984), Development of a general kinetic model for biodegradation and its application to chlorophenols and related compounds, *Environmental Science and Technology*, **18**, 416-422.

67. S. C. Basak, D. Mills, M. M. Mumtaz (2007), A quantitative structure-activity relationship (QSAR) study of dermal absorption using theoretical molecular descriptors, *SAR and QSAR in Environmental Research*, **18**, 45-55.

68. Safferman, R. S., A. A. Rosen, C. I. Mashni and M. E. Morris (1967), Earthysmelling substance from blue-green algae, *Environmental Science and Technology*, **1**, 429-430.

69. Se-Woong Chung and Roy R. Gu (2009), Prediction of the fate and transport processes of atrazine in a reservoir, *Environmental Management*, **44**, 46-61.

70. Song Yan, S. Bala Subramanian, R. D. Tyagi, Rao Y. Surampalli and Tian C. Zhang (2010), Emerging Contaminants of Environmental Concern: Source, Transport, Fate and Treatment, *Practice periodical of Hazardous, Toxic, and Radioactive Waste Management*, **14**, 2-20.

71. Sonia Suarez, Michael C. Dodd, Francisco Omil, and Urs von Gunten, (2007) Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: Relevance to municipal wastewater ozonation, *Water Research*, **41**, 2481-2490.

72. T. Borch and R. B. Young,(2009), Sources, Presence, Analysis, and Fate of Steroid Sex Hormones In Freshwater Ecosystems - A Review. Chapter 4 in *Aquatic Ecosystem Research Trends*, Nairne, G. H., *Ed. Nova Science Publishers*, Inc.: Hauppauge, New York; 103-164.

73. Urs von Gunten, (2003), Ozonation of drinking water: Part I. Oxidation kinetics and product formation, *Water Research*, **37**, 1443-1467.

74. US EPA, 1980, Ambient Water Quality Criteria for 2,4-dichlorophenol, EPA-440-5-80-042, October, Washinghton, DC.

75. US EPA, 1989. Needs Survey: Report to congress-assessment of needed publicly owned wastewater-treatment facilities in the United States, EPA-430/9-89-001, February, Washington, DC.

76. US EPA, 2008, Registration Eligibility Decision for Triclosan, EPA- 739-RO-8009, September, Washington, DC.

77. W. J. G. M. Peijnenburg, (1994), Structure-Activity Relationship for Biodegradation: A critical review, *Pure and Applied Chemistry*,**66**, 1931-1941.

78. W. Z. Tang and C. P. Huang (1996), 2,4-Dichlorophenol oxidation kinetics by Fenton's reagent, *Environmental Technology*, **17**, 1371-1378.

79. W.J. Lyman, W.F. Reehl and D.H. Rosenblatt (1990), Handbook of Chemical Property Estimation Methods. , ACS, Washington, DC

80. Xie Xuejun, Cao Shunan, Pan Ling, Gong Xunjie and Peng Keru (2004), A quantum chemistry calculation study on the inhibition efficiency of the parachlorobenzene nitriles on carbon steel in hydrochloric acid, *Anti-Corrosion Methods and Materials*, **51**, 101-104.

81. Younghee Kim, Kyungho Choi, Jinyong Jung, Sujung Park, Pan-Gyi Kim and Jeongim Park (2007), Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazen and six major sulfonamides, and their potential ecological risks in Korea, *Environment International*, **33**, 370-375.

82. Youngsug Kim, Yeongho Lee, Chai S. Gee and Euiso Choi (1997), Treatment of taste and odor causing substances in drinking water, *Water Science and Technology*, **35**, 29-36.

Weihua Song and Kevin E. O'Shea (2007), Ultrasonically induced degradation of
methylisoborneol and geosmin, *Water Research*, 41, 2672-2678.

84. M. Pirbazari, H.S. Borow, S. Craig, V. Ravindran and M.J. McGuire (1992), Physical chemical characterization of five earthy-musty-smelling compounds, *Water Science and Technology*, **25**, 81–88.

85. Sadao Nakamura, Naomi Nakamura, Satoshi Ito (2001), Determination of 2methylisoborneol and geosmin in water by gas chromatography-mass spectrometry using stir bar sorptive extraction, *Journal of Separation Science*, **24**, 674-677.

86. John R. Dean, William R. Tomlinson, Valeriya Makovskaya, Robert Cumming, Malcolm Hetheridge and Michael Comber (1996), Solid-phase microextraction as a method for estimating the octanol-water partition coefficient, *Analytical Chemistry*, **68**, 130-133.

87. Amit Bhatnagar and A. K. Minocha (2009), Adsorptive removal of 2,4dichlorophenol from water utilizing Punica granatum peel waste and stabilization with cement, *Journal of Hazardous Materials*, **168**, 1111-1117.

88. Kurunthachalam Senthil Kumar, S. Mahalakshmi Priya, Aaron M. Peck, Kenneth S. Sajwan (2009), Mass Loading of triclosan and triclocarbon from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA, *Archives of Environmental Contamination and Toxicology*, **58**, 275-285.

89. Karin Carlsson and Bo Karberg (2000), Determination of octanol-water partition coefficients using a micro-volume liquid-liquid flow extraction system, *Analytica Chimica Acta*, **423**, 137-144.

90. S.H. Yalkowsky, A. Sinkula and S. Valvani (1980), Physical Chemical Properties of Drugs, Marcel Dekker, Inc., New York.

91. T.M. Ward and J.B. Weber (1968), Aqueous solubility of alkylamino-s-triazine as a function of pH and molecular structure, *Journal of Agricultural and Food Chemistry*, 16, 959-961.

92. C. Tomlin, Editor, *The Pesticide Manual*, Farnham, UK (1997).

93. M. Riederer (1990), Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: Discussion of a fugacity-based model, Environmental Science and Technology, 24:829-837.

94. Daniel Hoefel, Lionel Ho, Paul T. Monis, Christopher P. Saint and Gayle Newcombe (2009), Biodegradation of geosmin by a novel Gram-negative bacterium; isolation, phylogenetic characterisation and degradation rate determination, *Water Research*, **43**, 2927-2935.

95. Lionel Ho, Daniel Hoefel, Franziska Bock, Christopher P. Saint and Gayle Newcombe (2007), Biodegradation rates of 2-methylisoborneol (MIB) and geosmin through sand filters and in bioreactors, *Chemosphere*, **66**, 2210-2218.

96. Pinaro Omur Ozbekand and Andream Dietrich (2005), Determination of Henry's Law Constants of odorous contaminants and their application to human perception, *Environmental Science and Technology*, **39**, 3957-3963.

97. Yesenia Herrera, Anthony L Okoh, Laura Alvarez, Norma Robledo and Maria R. Trejo-Hernandez (2008), Biodegradation of 2,4-dichlorophenol by Bacillus constortium, *World Journal of Microbiology and Biotechnology*, **24**, 55-60.

98. Per H. Nielsen, Poul L. Bjerg, Pernille Nielsen, Pernille Smith and Thomas H. Christensen (1996), In situ and laboratory determined first-order degradation rate constants of specific organic compounds in an aerobic aquifer, *Environmental Science and Technolgy*, **30**, 31-37.

99. Paul Westerhoff, Brijesh Nalinakumari and Peng Pei (2006), Kinetics of MIB and Geosmin oxidation during ozonation, *Ozone: Science and Engineering*, **28**, 277-286.

100. Andreas Peter and Urs Von Gunten (2007), Oxidation Kinetcs of selected taste and odor compounds during ozonation of drinking water, *Environmental Science and Technology*, **41**, 626-631.

101. F. Javier Benitez, J. Beltran-Heredia, J.L. Acero and F. Javier Rubio (2000), Rate constants for the reactions of ozone with chlorophenols in aqueous solutions. *Journal of Hazardous Materials*, **79**, 271–285.

102. Hyeon-Cheol Lee, Jung-Hyun In, Jong-Hwa Kim, Kyung-Yug Hwang and Chang-Ha Lee (2005), Kinetic analysis for decomposition of 2,4-dichlorophenol by supercritical water oxidation, *Korean Journal of Chemical Engineering*, **22**, 882-888.

•

APPPENDICES

APPENDIX A MOLECULAR MODELING PRO

The Molecular Modeling Pro program uses the computational chemistry method for calculation of various physical properties of chemicals. The software is available to download at <u>http//www.chemsw.com/13052.htm</u>.

The Molecular Modeling Pro is an interface program developed by ChemSW for Windows. The program estimates various physical properties like mass, sizes, partition coefficients, hydrophobicity, solubility, thermodynamics, properties used for QSAR studies and many other properties of chemicals. The Molecular Modeling Pro is

- a physical property estimation program
- a 3-D chemical structure drawing program
- a chemical data base creation program (used with the companion Molecular Analysis Pro program)
- a molecular graphics modeling tool
- a reaction/mixture editor
- a computer slide show maker
- a batch structure printing program

In the study the software was used to calculate the energy of highest occupied molecular orbital (E_{HOMO}) and energy of lowest unoccupied molecular orbital (E_{LUMO}). The ouput from the program for geosmin as example is presented below

** 32-bit Microsoft Windows, Victor Lobanov, 1996, University of Florida
** max number of heavy atoms = 50, max number of light atoms = 100
**

AM1 CALCULATION RESULTS

********* * MOPAC VERSION 6.00 CALC'D. * VECTORS - FINAL EIGENVECTORS TO BE PRINTED * T= - A TIME OF 3600.0 SECONDS REQUESTED * DUMP=N - RESTART FILE WRITTEN EVERY 3600.0 SECONDS * 1SCF - DO 1 SCF AND THEN STOP * AM1 - THE AM1 HAMILTONIAN TO BE USED ****050BY100 1SCF AM1 VECTORS T=3600 Molecule-1 **MOPAC** calculations ATOM CHEMICAL BOND LENGTH BOND ANGLE **TWIST ANGLE** NUMBER SYMBOL (ANGSTROMS) (DEGREES) (DEGREES) NAI **(I)** NBNAI NCNBNAI NA NB NC 1 0 С 1.54883 * 2 1 3 С 1.54883 * 108.65790 * 2 1

4	С	1.54950 *	109.56250 * -59.25550 * 3 2 1
5	Η	.98719 *	110.35230 * 179.81210 * 1 2 3
6	Η	.99999 *	109.44030 * -179.26520 * 3 2 1
7	Η	1.00004 *	109.43290 * 60.74217 * 3 2 1
8	С	1.54905 *	109.41190 * -59.76140 * 4 3 2
9	Η	.99996 *	109.47920 * -179.73960 * 4 3 2
10	Η	.99994 *	109.48040 * 60.21403 * 4 3 2
11	С	1.54904 *	109.72890 * 59.65221 * 8 4 3
12	Η	.99997 *	109.39990 * -60.37520 * 8 4 3
13	Η	1.00000 *	109.39790 * 179.68080 * 8 4 3
14	С	1.54577 *	109.85980 * -60.39690 * 11 8 4
15	Н	1.00004 *	109.36450 * 179.56100 * 11 8 4
16	Н	1.00001 *	109.36870 * 59.65016 * 11 8 4
17	С	1.56397 *	108.84530 * -61.81910 * 14 11 8
18	С	1.54714 *	109.79920 * 178.91590 * 14 11 8
19	С	1.55859 *	110.05240 * -178.55780 * 2 3 4
20	С	1.54062 *	109.59960 * 59.85987 * 19 2 3
21	С	1.54984 *	109.42190 * 179.70300 * 19 2 3
22	Н	1.09755 *	110.06380 * -60.14360 * 19 2 3
23	С	1.55179 *	109.37580 * 59.49637 * 21 19 2
24	Н	.99992 *	109.49340 * -60.47570 * 21 19 2
25	Н	1.00001 *	109.48760 * 179.46750 * 21 19 2
26	Н	1.00004 *	109.38960 * 59.72116 * 23 21 19
27	Н	.99998 *	109.39280 * 179.66230 * 23 21 19
28	Н	.99997 *	109.50240 * -60.08640 * 20 19 2
29	Н	1.00011 *	109.49870 * 179.92070 * 20 19 2
30	Н	.99998 *	109.50380 * 59.91640 * 20 19 2
31	Н	.99994 *	109.49720 * 180.00000 * 17 14 11
32	Н	1.00007 *	109.49390 * 59.99722 * 17 14 11
33	Н	1.00003 *	109.49830 * -60.00450 * 17 14 11
34	Н	1.00000 *	109.37450 * -58.35430 * 18 14 11
35	Н	1.00003 *	109.37460 * 61.55955 * 18 14 11

CARTESIAN COORDINATES

NO.	АТ	ſОМ	X Y	Z
1	0	.0000	.0000	.0000
2	С	1.5488	.0000	.0000

3	С	2.0443	1.4674 .0000
4	С	1.5031	2.1978 -1.2549
5	Н	3433	92560030
6	Н	3.0442	1.48110121
7	Н	1.7141	1.9301 .8228
8	С	2.0100	1.4768 -2.5288
9	Н	1.8272	3.1438 -1.2558
10	Η	.5033	2.1875 -1.2414
11	С	1.5189	.0077 -2.5286
12	Η	3.0097	1.4928 -2.5440
13	Η	1.6564	1.9452 -3.3384
14	С	2.0685	7296 -1.2862
15	Η	1.8430	4503 -3.3564
16	Η	.5192	0078 -2.5081
17	С	3.6309	7397 -1.3549
18	С	1.5549	-2.1890 -1.2731
19	С	2.0568	7356 1.2768
20	С	1.5230	0198 2.5323
21	С	1.5468	-2.1991 1.2656
22	Η	3.1540	7335 1.3011
23	С	2.0735	-2.91810047
24	Η	.5469	-2.2040 1.2612
25	Η	1.8794	-2.6744 2.0801
26	Η	3.0735	-2.90800013
27	Н	1.7492	-3.86400093
28	Н	1.8504	.9250 2.5425
29	Η	1.8488	4937 3.3506
30	Η	.5232	0255 2.5202
31	Н	3.9971	-1.21495549
32	Η	3.9705	.2008 -1.3679
33	Η	3.9255	-1.2116 -2.1860
34	Η	.5549	-2.1887 -1.2701
35	Η	1.8862	-2.6646 -2.0880

H (AM1) M.J.S. DEWAR ET AL, J. AM. CHEM. SOC. 107 3902-3909 (1985) C (AM1) M.J.S. DEWAR ET AL, J. AM. CHEM. SOC. 107 3902-3909 (1985) O (AM1) M.J.S. DEWAR ET AL, J. AM. CHEM. SOC. 107 3902-3909 (1985)

RHF CALCULATION, NO. OF DOUBLY OCCUPIED LEVELS = 38

O 1 C 2 C 3 C 4 H 5 H 6

O 1 .000000 C 2 1.548832 .000000 C 3 2.516475 1.548832 .000000 C 4 2.943524 2.531203 1.549502 .000000 H 5 .987188 2.106409 3.380436 3.838196 .000000 H 6 3.385370 2.104718 .999993 2.105422 4.155386 .000000 H 7 2.709311 2.104665 1.000044 2.105385 3.615214 1.633311 C 8 3.551886 2.964533 2.529032 1.549052 4.205838 2.720884 H 9 3.846955 3.396733 2.105765 .999962 4.779136 2.406681 H 10 2.565066 2.723832 2.105765 .999941 3.455642 2.909629 C 11 2.949737 2.528820 2.966626 2.533599 3.273740 3.290958 H 12 4.214111 3.291578 2.721093 2.104408 4.852621 2.532122 H 13 4.203884 3.865312 3.394687 2.104402 4.833752 3.633985 C 14 2.542701 1.567382 2.545955 2.981649 2.738951 2.731765 H 15 3.855483 3.399231 3.870904 3.397730 4.031224 4.044484 H 16 2.561323 2.711278 3.285282 2.720906 2.803894 3.850005 C 17 3.945450 2.591920 3.037198 3.628558 4.202004 2.660737 C 18 2.971557 2.532257 3.902497 4.387095 2.610110 4.156598 C 19 2.530116 1.558588 2.546270 3.914095 2.726627 2.747683 C 20 2.955101 2.532513 2.982657 4.388708 3.275922 3.322733 C 21 2.971579 2.537251 3.910558 5.068222 2.608441 4.173514 H 22 3.489818 2.192609 2.787169 4.224999 3.737555 2.577001 C 23 3.579787 2.964903 4.385635 5.297224 3.132331 4.505026 H 24 2.597567 2.729843 4.160791 5.159508 2.006319 4.630055 H 25 3.874485 3.404235 4.637806 5.916265 3.512641 4.796112 H 26 4.231219 3.283503 4.494892 5.486982 3.950332 4.389273 H 27 4.241501 3.869213 5.339616 6.193318 3.607385 5.499755 H 28 3.277798 2.722292 2.606950 4.020021 3.836249 2.874068 H 29 3.858486 3.399991 3.887244 5.345423 4.029680 4.078774 H 30 2.574018 2.721008 3.300616 4.489338 2.815568 3.877843 H 31 4.214337 2.788879 3.363933 4.284405 4.384930 2.910522 H 32 4.204329 2.788540 2.680582 3.176231 4.662706 2.082158 H 33 4.653549 3.448862 3.936252 4.284645 4.803078 3.571118 H 34 2.590705 2.718747 4.147175 4.487855 2.002013 4.609403 H 35 3.875248 3.401996 4.632313 4.948077 3.513144 4.778811

H 7 C 8 H 9 H 10 C 11 H 12

	Н	7	.000000					
	С	8	3.394983	.000000				
	Η	9	2.409599	2.105362	.000000			
	Η	10	2.406863	2.105312	1.633208	.000000		
	С	11	3.868540	1.549042	3.398527	2.727551	.000000	
	Η	12	3.633831	.999969	2.404830	2.908796	2.104406	.000000
	Η	13	4.161617	.999995	2.408933	2.405319	2.104448	1.633230
	С	14	3.412844	2.532949	3.881000	3.310763	1.545771	2.721604
	Η	15	4.811310	2.104020	4.162985	3.636736	1.000038	2.407781
	Η	16	4.034616	2.104050	3.634762	2.534545	1.000009	2.907911
	С	17	3.942661	2.986396	4.283063	4.285233	2.529272	2.604629
	С	18	4.624364	3.901542	5.339710	4.501135	2.530453	4.157794
	С	19	2.725697	4.402173	4.638511	4.159162	3.914449	4.524582
	С	20	2.600253	5.300161	4.944752	4.489213	5.061011	5.501525
	С	21	4.156226	5.303222	5.914551	5.159052	4.389412	5.502999
	Η	22	3.065462	4.567517	4.830229	4.692825	4.229655	4.445408
	С	23	4.931440	5.068598	6.194533	5.482888	3.903655	5.175022
	Η	24	4.318013	5.482081	6.047560	5.054712	4.494369	5.849044
	Η	25	4.776007	6.204206	6.706908	6.046856	5.344587	6.326610
	Η	26	5.092642	5.171696	6.304874	5.840215	4.160059	5.083009
	Η	27	5.853681	5.911029	7.118194	6.300059	4.624954	6.058802
	Η	28	1.996598	5.103720	4.398938	4.210302	5.164080	5.247716
	Η	29	3.504707	6.202882	5.869447	5.485015	5.909746	6.327680
	Η	30	2.850252	5.473536	5.099294	4.364317	5.146148	5.842405
	Η	31	4.123245	3.884617	4.919094	4.924817	3.395910	3.501875
	Η	32	3.588986	2.611403	3.642387	3.997996	2.719422	1.993863
	Η	33	4.879836	3.318727	4.923068	4.914927	2.719523	2.877581
	Η	34	4.763271	4.139786	5.482198	4.376619	2.708759	4.604627
	Η	35	5.441828	4.166649	5.867960	5.115815	2.733187	4.330628
1								
0								
				С 14 Н				
	н	13	.000000					
	С	14	3.396522	.000000				
				2.101100	.000000			

	Η	16	2.407662	2.101102	1.633349	.000000		
	С	17	3.878451	1.563972	2.699384	3.398352	.000000	
	С	18	4.622529	1.547141	2.728747	2.712179	2.533125	.000000
	С	19	5.352299	2.563003	4.646869	4.149634	3.066537	2.977564
	С	20	6.192314	3.922022	5.913085	5.139455	4.480144	4.380300
	С	21	6.195519	2.990513	4.950630	4.483198	3.652426	2.538711
	Η	22	5.562705	2.805792	4.846790	4.688225	2.698457	3.361822
	С	23	5.911023	2.536111	4.168593	4.141682	2.998990	1.552228
	Η	24	6.293158	3.313365	5.106618	4.362610	4.301076	2.727461
	Η	25	7.124041	3.892335	5.873994	5.478463	4.313975	3.403652
	Η	26	6.057989	2.721510	4.337204	4.606581	2.616213	2.107252
	Η	27	6.696190	3.399531	4.781712	4.756852	3.887498	2.107251
	Η	28	5.971929	4.176623	6.057121	5.305775	4.596861	4.933818
	Η	29	7.122367	4.647940	6.707099	6.027295	5.037636	4.933351
	Η	30	6.284195	4.168000	6.037914	5.028338	5.018404	4.487063
	Η	31	4.818055	2.118921	3.615724	4.167540	.999945	2.725572
	Η	32	3.504458	2.118974	2.984086	3.640800	1.000074	3.399285
	Η	33	4.054919	2.118995	2.507230	3.627079	1.000029	2.721769
	Η	34	4.751932	2.102417	3.005584	2.508114	3.401249	1.000003
	Η	35	4.781941	2.102438	2.552169	3.017287	2.699368	1.000031
0								
			C 19	C 20 C 2	21 H 22	C 23	H 24	

С	19	.000000					
С	20	1.540615	.000000				
С	21	1.549837	2.520738	.000000			
Н	22	1.097551	2.164567	2.175401	.000000		
С	23	2.530974	3.890914	1.551787	2.764973	.000000	
Н	24	2.106204	2.709040	.999915	2.993498	2.107846	.000000
Н	25	2.106202	2.716320	1.000010	2.449285	2.107940	1.633205
Н	26	2.717887	4.143051	2.106776	2.536029	1.000035	2.910902
Н	27	3.396449	4.613980	2.106777	3.673020	.999983	2.411540
Н	28	2.098108	.999969	3.388545	2.447660	4.615961	3.623682
Н	29	2.098166	1.000111	2.710394	2.441623	4.145536	2.997480
Н	30	2.098131	.999977	2.710368	2.984784	4.140710	2.516178
Н	31	2.711007	4.132766	3.207277	2.094536	2.627504	4.022469
Н	32	3.396094	4.609796	4.309188	2.943292	3.896757	4.941291
Н	33	3.963471	5.427139	4.306558	3.603215	3.331665	4.927735
Н	34	3.294517	4.483283	2.722841	3.934999	2.107002	2.531422
Н	35	3.882255	5.336087	3.402737	4.101524	2.107051	3.636381

H 25 H 26 H 27 H 28 H 29 H 30

1 0

H 25 .000000 H 26 2.410981 .000000 H 27 2.407881 1.633327 .000000 H 28 3.629109 4.760143 5.427389 .000000 H 29 2.523951 4.308563 4.759983 1.632704 .000000 H 30 3.008288 4.601203 4.757689 1.632650 1.632797 .000000 H 31 3.682150 2.006553 3.516897 4.333706 4.515274 4.789439 H 32 4.952658 3.512460 4.827314 4.506692 5.219947 5.201188 H 33 4.952369 2.894246 4.063170 5.588289 5.956583 5.927054 H 34 3.635135 2.910410 2.412951 5.090147 5.088967 4.364268 H 35 4.168146 2.413151 2.403799 5.858994 5.855918 5.482499 0 H 31 H 32 H 33 H 34 H 35 _____ H 31 .000000 H 32 1.632786 .000000 H 33 1.632667 1.632841 .000000 H 34 3.648063 4.169617 3.626840 .000000 H 35 2.984619 3.615736 2.505873 1.633283 .000000 _____ 1SCF AM1 VECTORS T=3600 Molecule-1 **MOPAC** calculations

1SCF WAS SPECIFIED, SO BFGS WAS NOT USED SCF FIELD WAS ACHIEVED

AM1 CALCULATION VERSION 6.00

FINAL HEAT OF FORMATION = 47.72085 KCAL

TOTAL ENERGY =	-2	155.75281 EV
ELECTRONIC ENERGY	=	-14991.18584 EV
CORE-CORE REPULSION	=	12835.43303 EV

IONIZATION POTENTIAL	. =	10.45765
NO. OF FILLED LEVELS	=	38
MOLECULAR WEIGHT	=	182.305

SCF CALCULATIONS = 1 COMPUTATION TIME = .140 SECONDS

ATOM CHEMICAL BOND LENGTH BOND ANGLE TWIST ANGLE NUMBER SYMBOL (ANGSTROMS) (DEGREES) (DEGREES) (I) NAI NBNAI NCNBNAI NA NB NC

1	0		
2	С	1.54883 *	1
3	С	1.54883 *	108.65790 * 2 1
4	С	1.54950 *	109.56250 * -59.25550 * 3 2 1
5	Н	.98719 *	110.35230 * 179.81210 * 1 2 3
6	Н	.99999 *	109.44030 * -179.26520 * 3 2 1
7	Н	1.00004 *	109.43290 * 60.74217 * 3 2 1
8	С	1.54905 *	109.41190 * -59.76140 * 4 3 2
9	Н	.99996 *	109.47920 * -179.73960 * 4 3 2
10	Η	.99994 *	109.48040 * 60.21403 * 4 3 2
11	С	1.54904 *	109.72890 * 59.65221 * 8 4 3
12	Η	.99997 *	109.39990 * -60.37520 * 8 4 3
13	Η	1.00000 *	109.39790 * 179.68080 * 8 4 3
14	С	1.54577 *	109.85980 * -60.39690 * 11 8 4
15	Η	1.00004 *	109.36450 * 179.56100 * 11 8 4
16	Η	1.00001 *	109.36870 * 59.65016 * 11 8 4

19 C 1.55859 * 110.05240 * -178.55780 * 2 3 4 20 C 1.54062 * 109.59960 * 59.85987 * 19 2 3 21 C 1.54984 * 109.42190 * 179.70300 * 19 2 3 22 H 1.09755 * 110.06380 * -60.14360 * 19 2 3 23 C 1.55179 * 109.37580 * 59.49637 * 21 19 2 24 H .99992 * 109.49340 * -60.47570 * 21 19 2 25 H 1.00001 * 109.48760 * 179.46750 * 21 19 2 26 H 1.00004 * 109.38960 * 59.72116 * 23 21 19 27 H .99998 * 109.39280 * 179.66230 * 23 21 19 28 H .99997 * 109.50240 * -60.08640 * 20 19 2 30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49390 * 59.99722 * 17 14 11 32 H .00007 * 109.49390 * 59.99722 * 17 14 11 33 H	17	С	1.56397 *	108.84530 * -61.81910 * 14 11 8
20 C 1.54062 * 109.59960 * 59.85987 * 19 2 3 21 C 1.54984 * 109.42190 * 179.70300 * 19 2 3 22 H 1.09755 * 110.06380 * -60.14360 * 19 2 3 23 C 1.55179 * 109.37580 * 59.49637 * 21 19 2 24 H .99992 * 109.49340 * -60.47570 * 21 19 2 25 H 1.00001 * 109.48760 * 179.46750 * 21 19 2 26 H 1.00004 * 109.38960 * 59.72116 * 23 21 19 27 H .99998 * 109.39280 * 179.66230 * 23 21 19 28 H .99997 * 109.50240 * -60.08640 * 20 19 2 30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49390 * 59.99722 * 17 14 11 <td>18</td> <td>С</td> <td>1.54714 *</td> <td>109.79920 * 178.91590 * 14 11 8</td>	18	С	1.54714 *	109.79920 * 178.91590 * 14 11 8
21 C 1.54984 * 109.42190 * 179.70300 * 19 2 3 22 H 1.09755 * 110.06380 * -60.14360 * 19 2 3 23 C 1.55179 * 109.37580 * 59.49637 * 21 19 2 24 H .99992 * 109.49340 * -60.47570 * 21 19 2 25 H 1.00001 * 109.48760 * 179.46750 * 21 19 2 26 H 1.00004 * 109.38960 * 59.72116 * 23 21 19 27 H .99998 * 109.39280 * 179.66230 * 23 21 19 28 H .99997 * 109.50240 * -60.08640 * 20 19 2 30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49390 * 59.99722 * 17 14 11 32 H 1.00007 * 109.49390 * 59.99722 * 17 14 11 </td <td>19</td> <td>С</td> <td>1.55859 *</td> <td>110.05240 * -178.55780 * 2 3 4</td>	19	С	1.55859 *	110.05240 * -178.55780 * 2 3 4
22 H 1.09755 * 110.06380 * -60.14360 * 19 2 3 23 C 1.55179 * 109.37580 * 59.49637 * 21 19 2 24 H .99992 * 109.49340 * -60.47570 * 21 19 2 25 H 1.00001 * 109.48760 * 179.46750 * 21 19 2 26 H 1.00004 * 109.38960 * 59.72116 * 23 21 19 27 H .99998 * 109.39280 * 179.66230 * 23 21 19 28 H .99997 * 109.50240 * -60.08640 * 20 19 2 30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49720 * 180.00000 * 17 14 11 32 H 1.00007 * 109.49830 * -60.00450 * 17 14 11 33 H 1.00003 * 109.37450 * -58.35430 * 18 14 11	20	С	1.54062 *	109.59960 * 59.85987 * 19 2 3
23 C 1.55179 * 109.37580 * 59.49637 * 21 19 2 24 H .99992 * 109.49340 * -60.47570 * 21 19 2 25 H 1.00001 * 109.48760 * 179.46750 * 21 19 2 26 H 1.00004 * 109.38960 * 59.72116 * 23 21 19 27 H .99998 * 109.39280 * 179.66230 * 23 21 19 28 H .99997 * 109.50240 * -60.08640 * 20 19 2 29 H 1.00011 * 109.49870 * 179.92070 * 20 19 2 30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49390 * 59.99722 * 17 14 11 32 H 1.00007 * 109.49390 * 59.99722 * 17 14 11 33 H 1.00003 * 109.37450 * -58.35430 * 18 14 11	21	С	1.54984 *	109.42190 * 179.70300 * 19 2 3
24 H .99992 * 109.49340 * -60.47570 * 21 19 2 25 H 1.00001 * 109.48760 * 179.46750 * 21 19 2 26 H 1.00004 * 109.38960 * 59.72116 * 23 21 19 27 H .99998 * 109.39280 * 179.66230 * 23 21 19 28 H .99997 * 109.50240 * -60.08640 * 20 19 2 29 H 1.00011 * 109.49870 * 179.92070 * 20 19 2 30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49720 * 180.00000 * 17 14 11 32 H 1.00007 * 109.49390 * 59.99722 * 17 14 11 33 H 1.00003 * 109.37450 * -58.35430 * 18 14 11	22	Η	1.09755 *	110.06380 * -60.14360 * 19 2 3
25 H 1.00001 * 109.48760 * 179.46750 * 21 19 2 26 H 1.00004 * 109.38960 * 59.72116 * 23 21 19 27 H .99998 * 109.39280 * 179.66230 * 23 21 19 28 H .99997 * 109.50240 * -60.08640 * 20 19 2 29 H 1.00011 * 109.49870 * 179.92070 * 20 19 2 30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49720 * 180.00000 * 17 14 11 32 H 1.00007 * 109.49390 * 59.99722 * 17 14 11 33 H 1.00003 * 109.37450 * -58.35430 * 18 14 11 34 H 1.00000 * 109.37450 * -58.35430 * 18 14 11	23	С	1.55179 *	109.37580 * 59.49637 * 21 19 2
26 H 1.00004 * 109.38960 * 59.72116 * 23 21 19 27 H .99998 * 109.39280 * 179.66230 * 23 21 19 28 H .99997 * 109.50240 * -60.08640 * 20 19 2 29 H 1.00011 * 109.49870 * 179.92070 * 20 19 2 30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49720 * 180.00000 * 17 14 11 32 H 1.00007 * 109.49390 * 59.99722 * 17 14 11 33 H 1.00003 * 109.49830 * -60.00450 * 17 14 11 34 H 1.00000 * 109.37450 * -58.35430 * 18 14 11	24	Η	.99992 *	109.49340 * -60.47570 * 21 19 2
27 H .99998 * 109.39280 * 179.66230 * 23 21 19 28 H .99997 * 109.50240 * -60.08640 * 20 19 2 29 H 1.00011 * 109.49870 * 179.92070 * 20 19 2 30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49720 * 180.00000 * 17 14 11 32 H 1.00007 * 109.49390 * 59.99722 * 17 14 11 33 H 1.00003 * 109.37450 * -58.35430 * 18 14 11	25	Η	1.00001 *	109.48760 * 179.46750 * 21 19 2
28 H .99997 * 109.50240 * -60.08640 * 20 19 2 29 H 1.00011 * 109.49870 * 179.92070 * 20 19 2 30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49720 * 180.00000 * 17 14 11 32 H 1.00007 * 109.49390 * 59.99722 * 17 14 11 33 H 1.00003 * 109.49830 * -60.00450 * 17 14 11 34 H 1.00000 * 109.37450 * -58.35430 * 18 14 11	26	Η	1.00004 *	109.38960 * 59.72116 * 23 21 19
29 H 1.00011 * 109.49870 * 179.92070 * 20 19 2 30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49720 * 180.00000 * 17 14 11 32 H 1.00007 * 109.49390 * 59.99722 * 17 14 11 33 H 1.00003 * 109.49830 * -60.00450 * 17 14 11 34 H 1.00000 * 109.37450 * -58.35430 * 18 14 11	27	Η	.99998 *	109.39280 * 179.66230 * 23 21 19
30 H .99998 * 109.50380 * 59.91640 * 20 19 2 31 H .99994 * 109.49720 * 180.00000 * 17 14 11 32 H 1.00007 * 109.49390 * 59.99722 * 17 14 11 33 H 1.00003 * 109.49830 * -60.00450 * 17 14 11 34 H 1.00000 * 109.37450 * -58.35430 * 18 14 11	28	Η	.99997 *	109.50240 * -60.08640 * 20 19 2
31 H .99994 * 109.49720 * 180.00000 * 17 14 11 32 H 1.00007 * 109.49390 * 59.99722 * 17 14 11 33 H 1.00003 * 109.49830 * -60.00450 * 17 14 11 34 H 1.00000 * 109.37450 * -58.35430 * 18 14 11	29	Η	1.00011 *	109.49870 * 179.92070 * 20 19 2
32 H 1.00007 * 109.49390 * 59.99722 * 17 14 11 33 H 1.00003 * 109.49830 * -60.00450 * 17 14 11 34 H 1.00000 * 109.37450 * -58.35430 * 18 14 11	30	Η	.99998 *	109.50380 * 59.91640 * 20 19 2
33 H 1.00003 * 109.49830 * -60.00450 * 17 14 11 34 H 1.00000 * 109.37450 * -58.35430 * 18 14 11	31	Η	.99994 *	109.49720 * 180.00000 * 17 14 11
34 H 1.00000 * 109.37450 * -58.35430 * 18 14 11	32	Η	1.00007 *	109.49390 * 59.99722 * 17 14 11
	33	Η	1.00003 *	109.49830 * -60.00450 * 17 14 11
35 H 1.00003 * 109.37460 * 61.55955 * 18 14 11	34	Η	1.00000 *	109.37450 * -58.35430 * 18 14 11
	35	Η	1.00003 *	109.37460 * 61.55955 * 18 14 11

INTERATOMIC DISTANCES

0

O 1 C 2 C 3 C 4 H 5 H 6

0	1	.000000					
С	2	1.548832	.000000				
С	3	2.516475	1.548832	.000000			
С	4	2.943524	2.531203	1.549502	.000000		
Η	5	.987188	2.106409	3.380436	3.838196	.000000	
Н	6	3.385370	2.104718	.999993	2.105422	4.155386	.000000
Η	7	2.709311	2.104665	1.000044	2.105385	3.615214	1.633311
С	8	3.551886	2.964533	2.529032	1.549052	4.205838	2.720884
Н	9	3.846955	3.396733	2.105765	.999962	4.779136	2.406681
Η	10	2.565066	2.723832	2.105765	.999941	3.455642	2.909629
С	11	2.949737	2.528820	2.966626	2.533599	3.273740	3.290958
Н	12	4.214111	3.291578	2.721093	2.104408	4.852621	2.532122
Н	13	4.203884	3.865312	3.394687	2.104402	4.833752	3.633985
С	14	2.542701	1.567382	2.545955	2.981649	2.738951	2.731765
Н	15	3.855483	3.399231	3.870904	3.397730	4.031224	4.044484

	Н	16	2.561323	2.711278	3.285282	2.720906	2.803894	3.850005
	С	17	3.945450	2.591920	3.037198	3.628558	4.202004	2.660737
	С	18	2.971557	2.532257	3.902497	4.387095	2.610110	4.156598
	С	19	2.530116	1.558588	2.546270	3.914095	2.726627	2.747683
	С	20	2.955101	2.532513	2.982657	4.388708	3.275922	3.322733
	С	21	2.971579	2.537251	3.910558	5.068222	2.608441	4.173514
	Η	22	3.489818	2.192609	2.787169	4.224999	3.737555	2.577001
	С	23	3.579787	2.964903	4.385635	5.297224	3.132331	4.505026
	Η	24	2.597567	2.729843	4.160791	5.159508	2.006319	4.630055
	Η	25	3.874485	3.404235	4.637806	5.916265	3.512641	4.796112
	Η	26	4.231219	3.283503	4.494892	5.486982	3.950332	4.389273
	Η	27	4.241501	3.869213	5.339616	6.193318	3.607385	5.499755
	Η	28	3.277798	2.722292	2.606950	4.020021	3.836249	2.874068
	Η	29	3.858486	3.399991	3.887244	5.345423	4.029680	4.078774
	Η	30	2.574018	2.721008	3.300616	4.489338	2.815568	3.877843
	Η	31	4.214337	2.788879	3.363933	4.284405	4.384930	2.910522
	Η	32	4.204329	2.788540	2.680582	3.176231	4.662706	2.082158
	Η	33	4.653549	3.448862	3.936252	4.284645	4.803078	3.571118
	Η	34	2.590705	2.718747	4.147175	4.487855	2.002013	4.609403
	Η	35	3.875248	3.401996	4.632313	4.948077	3.513144	4.778811
1								
1 0								
			Н7 С	28 H 9	Н 10	C 11	H 12	
				28 H 9	Н 10	C 11	Н 12	
	H		.000000		• H 10	C 11	Н 12	
	С	8	.000000 3.394983	.000000		C 11	H 12	
	C H	8 9	.000000 3.394983 2.409599	.000000 2.105362	.000000		Н 12	
	C H H	8 9 10	.000000 3.394983 2.409599 2.406863	.000000 2.105362 2.105312	.000000 1.633208	.000000		
	C H H C	8 9 10 11	.000000 3.394983 2.409599 2.406863 3.868540	.000000 2.105362 2.105312 1.549042	.000000 1.633208 3.398527	.000000 2.727551	.000000	000000
	C H H C H	8 9 10 11 12	.000000 3.394983 2.409599 2.406863 3.868540 3.633831	.000000 2.105362 2.105312 1.549042 .999969	.000000 1.633208 3.398527 2.404830	.000000 2.727551 2.908796	.000000 2.104406	.000000
	C H C H H	8 9 10 11 12 13	.000000 3.394983 2.409599 2.406863 3.868540 3.633831 4.161617	.000000 2.105362 2.105312 1.549042 .999969 .999995	.000000 1.633208 3.398527 2.404830 2.408933	.000000 2.727551 2.908796 2.405319	.000000 2.104406 2.104448	1.633230
	C H C H H C	8 9 10 11 12 13 14	.000000 3.394983 2.409599 2.406863 3.868540 3.633831 4.161617 3.412844	.000000 2.105362 2.105312 1.549042 .999969 .999995 2.532949	.000000 1.633208 3.398527 2.404830 2.408933 3.881000	.000000 2.727551 2.908796 2.405319 3.310763	.000000 2.104406 2.104448 1.545771	1.633230 2.721604
	C H C H H C H	8 9 10 11 12 13 14 15	.000000 3.394983 2.409599 2.406863 3.868540 3.633831 4.161617 3.412844 4.811310	.000000 2.105362 2.105312 1.549042 .999969 .999995 2.532949 2.104020	.000000 1.633208 3.398527 2.404830 2.408933 3.881000 4.162985	.000000 2.727551 2.908796 2.405319 3.310763 3.636736	.000000 2.104406 2.104448 1.545771 1.000038	1.633230 2.721604 2.407781
	C H C H H C H H H	8 9 10 11 12 13 14 15 16	.000000 3.394983 2.409599 2.406863 3.868540 3.633831 4.161617 3.412844 4.811310 4.034616	.000000 2.105362 2.105312 1.549042 .999969 .999995 2.532949 2.104020 2.104050	.000000 1.633208 3.398527 2.404830 2.408933 3.881000 4.162985 3.634762	.000000 2.727551 2.908796 2.405319 3.310763 3.636736 2.534545	.000000 2.104406 2.104448 1.545771 1.000038 1.000009	1.633230 2.721604 2.407781 2.907911
	C H C H C H H C H C	8 9 10 11 12 13 14 15 16 17	.000000 3.394983 2.409599 2.406863 3.868540 3.633831 4.161617 3.412844 4.811310 4.034616 3.942661	.000000 2.105362 2.105312 1.549042 .999969 .999995 2.532949 2.104020 2.104020 2.986396	.000000 1.633208 3.398527 2.404830 2.408933 3.881000 4.162985 3.634762 4.283063	.000000 2.727551 2.908796 2.405319 3.310763 3.636736 2.534545 4.285233	.000000 2.104406 2.104448 1.545771 1.000038 1.000009 2.529272	1.633230 2.721604 2.407781 2.907911 2.604629
	C H H C H H C H H C C	8 9 10 11 12 13 14 15 16 17 18	.000000 3.394983 2.409599 2.406863 3.868540 3.633831 4.161617 3.412844 4.811310 4.034616 3.942661 4.624364	.000000 2.105362 2.105312 1.549042 .999969 .999995 2.532949 2.104020 2.104020 2.986396 3.901542	.000000 1.633208 3.398527 2.404830 2.408933 3.881000 4.162985 3.634762 4.283063 5.339710	.000000 2.727551 2.908796 2.405319 3.310763 3.636736 2.534545 4.285233 4.501135	.000000 2.104406 2.104448 1.545771 1.000038 1.000009 2.529272 2.530453	1.633230 2.721604 2.407781 2.907911 2.604629 4.157794
	C H H C H H C H H C C C	8 9 10 11 12 13 14 15 16 17 18 19	.000000 3.394983 2.409599 2.406863 3.868540 3.633831 4.161617 3.412844 4.811310 4.034616 3.942661 4.624364 2.725697	.000000 2.105362 2.105312 1.549042 .999969 .999995 2.532949 2.104020 2.104020 2.986396 3.901542 4.402173	.000000 1.633208 3.398527 2.404830 2.408933 3.881000 4.162985 3.634762 4.283063 5.339710 4.638511	.000000 2.727551 2.908796 2.405319 3.310763 3.636736 2.534545 4.285233 4.501135 4.159162	.000000 2.104406 2.104448 1.545771 1.000038 1.000009 2.529272 2.530453 3.914449	1.633230 2.721604 2.407781 2.907911 2.604629 4.157794 4.524582
	C H C H H C H H C C C C C	8 9 10 11 12 13 14 15 16 17 18 19 20	.000000 3.394983 2.409599 2.406863 3.868540 3.633831 4.161617 3.412844 4.811310 4.034616 3.942661 4.624364 2.725697 2.600253	.000000 2.105362 2.105312 1.549042 .999969 .999995 2.532949 2.104020 2.104020 2.986396 3.901542 4.402173 5.300161	.000000 1.633208 3.398527 2.404830 2.408933 3.881000 4.162985 3.634762 4.283063 5.339710 4.638511 4.944752	.000000 2.727551 2.908796 2.405319 3.310763 3.636736 2.534545 4.285233 4.501135 4.159162 4.489213	.000000 2.104406 2.104448 1.545771 1.000038 1.000009 2.529272 2.530453 3.914449 5.061011	1.633230 2.721604 2.407781 2.907911 2.604629 4.157794 4.524582 5.501525
	C H H C H H C H H C C C	8 9 10 11 12 13 14 15 16 17 18 19	.000000 3.394983 2.409599 2.406863 3.868540 3.633831 4.161617 3.412844 4.811310 4.034616 3.942661 4.624364 2.725697 2.600253 4.156226	.000000 2.105362 2.105312 1.549042 .999969 .999995 2.532949 2.104020 2.104020 2.986396 3.901542 4.402173	.000000 1.633208 3.398527 2.404830 2.408933 3.881000 4.162985 3.634762 4.283063 5.339710 4.638511	.000000 2.727551 2.908796 2.405319 3.310763 3.636736 2.534545 4.285233 4.501135 4.159162 4.489213 5.159052	.000000 2.104406 2.104448 1.545771 1.000038 1.000009 2.529272 2.530453 3.914449	1.633230 2.721604 2.407781 2.907911 2.604629 4.157794 4.524582

	С	23	4.931440	5.068598	6.194533	5.482888	3.903655	5.175022
	Н	24	4.318013	5.482081	6.047560	5.054712	4.494369	5.849044
	Н	25	4.776007	6.204206	6.706908	6.046856	5.344587	6.326610
	Н	26	5.092642	5.171696	6.304874	5.840215	4.160059	5.083009
	Н	27	5.853681	5.911029	7.118194	6.300059	4.624954	6.058802
	Н	28	1.996598	5.103720	4.398938	4.210302	5.164080	5.247716
	Н	29	3.504707	6.202882	5.869447	5.485015	5.909746	6.327680
	Η	30	2.850252	5.473536	5.099294	4.364317	5.146148	5.842405
	Η	31	4.123245	3.884617	4.919094	4.924817	3.395910	3.501875
	Η	32	3.588986	2.611403	3.642387	3.997996	2.719422	1.993863
	Η	33	4.879836	3.318727	4.923068	4.914927	2.719523	2.877581
	Η	34	4.763271	4.139786	5.482198	4.376619	2.708759	4.604627
	Η	35	5.441828	4.166649	5.867960	5.115815	2.733187	4.330628
1								
0								
			H 13 C	C 14 H	15 H 16	C 17	C 18	
	 TT	12						
	H C	13	.000000	000000				
	C H	14		.000000	000000			
	п Н	15	2.402920 2.407662	2.101100 2.101102	.000000 1.633349	.000000		
	п С	16 17	2.407002 3.878451	1.563972	2.699384	3.398352	.000000	
	C C	17	4.622529	1.547141	2.099384	2.712179	2.533125	000000
	C C	19	4.022329 5.352299	2.563003	4.646869	4.149634	3.066537	2.977564
	C C	20	6.192314	2.303003 3.922022	5.913085	4.149034 5.139455	4.480144	4.380300
	C C	20 21	6.195519	2.990513	4.950630	4.483198	3.652426	2.538711
	H	21	5.562705	2.990515	4.846790	4.688225	2.698457	3.361822
	C	23	5.911023	2.536111	4.168593	4.141682	2.998990	
	H	24	6.293158	3.313365		4.362610	4.301076	2.727461
	Н	25	7.124041	3.892335	5.873994	5.478463	4.313975	3.403652
	Н	26	6.057989	2.721510	4.337204	4.606581	2.616213	2.107252
	Н	27	6.696190	3.399531	4.781712	4.756852	3.887498	2.107251
	Н	28	5.971929	4.176623	6.057121	5.305775	4.596861	4.933818
	Н	29	7.122367	4.647940	6.707099	6.027295	5.037636	4.933351
	Н	30	6.284195	4.168000	6.037914	5.028338	5.018404	4.487063
	Н	31	4.818055	2.118921	3.615724	4.167540	.999945	2.725572
	Н	32	3.504458	2.118974	2.984086	3.640800	1.000074	3.399285
	Н	33	4.054919	2.118995	2.507230	3.627079	1.000029	2.721769
	Н	34	4.751932	2.102417	3.005584	2.508114	3.401249	1.000003
	Н	35	4.781941	2.102438	2.552169	3.017287	2.699368	1.000031

C 19 C 20 C 21 H 22 C 23 H 24

_____ C 19 .000000 C 20 1.540615 .000000 C 21 1.549837 2.520738 .000000 H 22 1.097551 2.164567 2.175401 .000000 C 23 2.530974 3.890914 1.551787 2.764973 .000000 H 24 2.106204 2.709040 .999915 2.993498 2.107846 .000000 H 25 2.106202 2.716320 1.000010 2.449285 2.107940 1.633205 H 26 2.717887 4.143051 2.106776 2.536029 1.000035 2.910902 H 27 3.396449 4.613980 2.106777 3.673020 .999983 2.411540 H 28 2.098108 .999969 3.388545 2.447660 4.615961 3.623682 H 29 2.098166 1.000111 2.710394 2.441623 4.145536 2.997480 H 30 2.098131 .999977 2.710368 2.984784 4.140710 2.516178 H 31 2.711007 4.132766 3.207277 2.094536 2.627504 4.022469 H 32 3.396094 4.609796 4.309188 2.943292 3.896757 4.941291 H 33 3.963471 5.427139 4.306558 3.603215 3.331665 4.927735 H 34 3.294517 4.483283 2.722841 3.934999 2.107002 2.531422 H 35 3.882255 5.336087 3.402737 4.101524 2.107051 3.636381 1 0 H 25 H 26 H 27 H 28 H 29 H 30 _____ H 25 .000000 H 26 2.410981 .000000 H 27 2.407881 1.633327 .000000 H 28 3.629109 4.760143 5.427389 .000000 H 29 2.523951 4.308563 4.759983 1.632704 .000000 H 30 3.008288 4.601203 4.757689 1.632650 1.632797 .000000 H 31 3.682150 2.006553 3.516897 4.333706 4.515274 4.789439 H 32 4.952658 3.512460 4.827314 4.506692 5.219947 5.201188 H 33 4.952369 2.894246 4.063170 5.588289 5.956583 5.927054 H 34 3.635135 2.910410 2.412951 5.090147 5.088967 4.364268 H 35 4.168146 2.413151 2.403799 5.858994 5.855918 5.482499 0 H 31 H 32 H 33 H 34 H 35 _____ H 31 .000000 Н 32 1.632786 .000000

Η	33	1.632667	1.632841	.000000			
Η	34	3.648063	4.169617	3.626840	.000000		
Η	35	2.984619	3.615736	2.505873	1.633283	.000000	

EIGENVECTORS

ROOT NO. 1 2 3 4 5 6

-41.72852 -37.47058 -35.83598 -34.41517 -32.28531 -31.21230

S O 1	.20043	07781	42487	.72639	12119	.10961
PX O 1	.06428	00280	06097	.03103	.02449	03870
PY O 1	03024	.03470	.03540	10308	.01727	04046
PZ O 1	00425	01851	01792	01452	.00607	.00301
S C 2	.35148	01364	22773	.07029	.15787	19476
PX C 2	.01759	.01860	.07395	16238	.07657	07025
PY C 2	02290	.09682	07164	04223	02992	10313
PZ C 2	02390	09014	09651	07136	.00397	.02139
S C 3	.23736	.20677	25363	15790	03873	42991
PX C 3	01825	01431	.03430	01302	.02607	.00793
PY C 3	05027	.02942	.01994	02619	08988	.00566
PZC3	03120	07989	00808	.01157	.06666	.00444
S C 4	.19120	.33512	15437	17762	30453	14377
PX C 4	.02054	.03238	00906	02291	01179	01680
PY C 4	05081	05404	.01546	.00833	.00150	00333
PZC4	.00443	02698	04684	00364	.03846	15983
SH 5	.08588	04938	12017	.23503	04924	.05309
SH 6	.09907	.08281	08749	07339	.00387	17861
S H 7	.08500	.06081	11750	06993	00849	17317

PX C 8		.36481 02684	.00771 .00644		23371 .03104	.32615 02422
PYC 8	03495	02191	04950	03034	06428	09289
PZC 8	.04110	.05436	03139	02806	03615	07176
SH 9	.06294	.12235	05981	07447	12986	06504
S H 10	.07447	.12573	06317	05840	12190	05077
S C 11	.24992	.27852	.16705	.03843	.03234	.40136
PX C 11	.02908	.02857	.02829	00640	.03240	.00965
PY C 11	.00046	.06914	04919	04981	08703	.06269
PZ C 11	.06081	.01959	.01825	.02253	.04210	04624
S H 12	.08398	.14334	.00982	04674	07433	.12064
S H 13	.06537	.13288	.00323	04533	10455	.14942
S C 14	.37282	.08323	.25727	.12240	.26327	02608
PX C 14	01134	.00590	.03529	03706	.09304	05195
PY C 14	.00905	.09590	08735	02597	.03498	.04334
PZ C 14	.02442	07201	06915	00695	.00362	12819
S H 15	.08986	.09913	.08081	.01807	.02301	.17490
S H 16	.09751	.10299	.05411	.02603	00418	.16205
S C 17	.21632	.06557	.22653	.03490	.37708	12067
PX C 17	06864	01667	04949	01892	03991	00098
PY C 17 1	.00409	.03109	02280	01040	.00865	.00940
PZ C 17	.01093	02019	01169	00819	.00352	03530
S C 18	.26565	14923	.33419	.11889	10734	11409
PX C 18						
PY C 18	.05210	.03927	.01571	.03437	.10695	.02219
PZ C 18						
S C 19	.26751	28046	22796	24264	.14526	.12431

PX C 19 PY C 19 PZ C 19	00190			00031 .00503 06940	.00402 .11143 .01485	
S C 20 PX C 20 PY C 20 PZ C 20	.01016 01820	.03807	.01076	26203 02339 .02474 .03049	.00428	.26728 .00348 03521 .00034
S C 21 PX C 21 PY C 21 PZ C 21	.01845 .03554	34801 02521 02644 .03813	.01227 07285			
S H 22	.09709	09082	06316	09416	.06495	.02626
S C 23 PX C 23 PY C 23 PZ C 23	01849 .05676	04430	01067 .02454	03777 00287 00308 05545		00274
S H 24	.09072	13774	00949	05368	10427	.05506
S H 25	.07444	13103	00394	08234	10161	.06007
S H 26	.09134	11089	.10116	01811	12587	04974
S H 27	.07285	10806	.09289	01414	16322	04165
S H 28	.05593	06039	11103	10554	.10151	.08629
S H 29	.04796	07596	09379	10833	.08755	.12277
S H 30	.05654	07548	10719	09340	.08695	.11140
S H 31	.09240	.00003	.08946	.00595	.14633	06936
SH 32	.09142	.05029	.07291	.00129	.15132	04792
S H 33	.07981	.02693	.10078	.01883	.14954	03667

S H 34	.10605	06001	.11516	.06251	05861	03102
SH 35 1	.09446	04518	.14077	.04742	03346	04246

 ROOT NO.
 7
 8
 9
 10
 11
 12

-28.88886 -27.84454 -24.83834 -24.11586 -22.14946 -21.34627

S O 114298	.16456	.07467	01981	.05196	.04729
PX O 1 .04596	08921	03989	.08155	12485	05447
PY O 1 .02157	01983	.03994	.03341	03722	.00770
PZ O 101035	.01145	00411	.02495	.04530	.01859
S C 2 .11584	31549	13383	.25242	20292	09627
PX C 2 .00535	06156	02207	.04270	.03888	.01415
PY C 2 .01984	.02838	.20424	.02014	.09032	05071
PZ C 201920	.02019	03451	.09946	.19104	.17386
S C 3 .09389	06115	.31686	02769	.25866	08783
PX C 302071	00154	.02955	.03020	.10917	04903
PY C 302771	.12101	.01855	16774	.05865	.08372
PZ C 3 .03439	03429	.07917	.08286	.13148	01154
S C 405996	.22300	21080	27355	21175	.20381
PX C 401296	.00500	.01835	.04814	.09205	10666
PY C 401241	.04888	06167	07653	04055	.10025
PZ C 4 .04752	03007	.15819	11937	.04769	.05414
SH 504352	.05719	00528	05189	.06694	.00048
SH 6 .01626	02123	.15355	.00835	.18604	06940
SH 7 .05730	00016	.17830	02204	.16936	01641

SC 8	11134	.07173	18023	.32566	.12963	23066
PX C 8 -	.02800	.01147	00508	.05865	.06951	12559
PY C 8 -	.03805	.10634	17492	00688	04001	05335
PZ C 8 -	.00617	.03475	03625	11299	11654	.04583
SH 9	03352	.12060	12202	15292	10130	.13051
SH 10 -	.01697	.09024	09713	14710	14906	.15827
SC 11.	13659	22000	.31664	08995	.02885	.24298
	04870	.01782	01316	.03690	.01381	10161
PY C 11	07031	.02009	04648	.17159	.04238	07632
PZ C 11	.02589	02494	05211	06565	15042	10584
SH 12 -	.07482	.04302	07898	.17884	.10668	18534
SH 13 -	.04847	.03983	10748	.18174	.08879	11623
SC 14.	11171	11564	09930	17299	27586	16424
PX C 14	20835	.10689	.02473	.04477	.03807	.01292
PY C 14	07212	13652	.11187	.06015	14046	01758
PZ C 14	01838	04298	15455	.13527	10637	10093
SH 15	.05478	08168	.17149	04720	.08230	.16699
SH 16	.08533	10038	.14160	06585	.00194	.17178
S C 17 -		.24196	.04188	00339	.05938	.03459
PX C 17						
PY C 17	01669	03270	.02415	.01729	00664	05122
1						
PZ C 17	00487	01514	03657	.04031	03546	.00371
SC 18.						
PX C 18						
PY C 18						
PZ C 18	04429	01160	.03112	.10972	12324	.00245
S C 19 -						
PX C 19	01635	.00222	00092	.04058	.03216	.12747

PY C 19 PZ C 19	.12518 .02230	.07935 .16867	.02609 .09577	.16390 11225	04305 .03390	.03881 01164
S C 20	.20037	.40546	.15140	01954	15380	12689
PX C 20	00084	01167	02645	.02034	.04562	.09801
PY C 20	.03392		.06046	.04443	04826	05665
PZ C 20	.00660	.06679	.07884	04567	09582	14043
S C 21	29157	23971	.04444	30509	.07783	21575
PX C 21	01772	00548	.00149	.07140	03336	.14924
PY C 21	.02232	03404	16688	01648	.10600	.12708
PZ C 21	01713	00709	02170	12808	.08001	06029
SH 22	02900	04659	10465	.05982	.09401	.23387
~						
S C 23	03637	.10465	.26252	.29420	22302	.12953
PX C 23	02845	.01354	.02671	.06821	07551	.11474
PY C 23	.00456	03014	10450	07642	.07119	04368
PZ C 23	15474	13143	.07659	08411	08182	06244
S H 24	11288	09469	.01855	17824	.05836	19431
S H 25	13853	09586	.05529	17638	.03584	13694
S H 26	04306	.05740	.12824	.17019	14296	.13688
S H 27	01213	.05767	.16557	.15879	12676	.06220
S H 28	.10486	.18724	.10533	.01972	07628	07483
S H 29	.07768	.18989	.08211	04077	09389	09503
S H 30	.08270	.17722	.08033	02230	09323	11859
S H 31	21801	.11350	.00232	.03483	.03263	.06903
S H 32	22591	.09699	.04020	.02707	.05900	01365
S H 33	20528	.12713	.03597	01758	.06916	.04394

S H 34	.18308	.08336	09685	05866	.17609	05905
SH 35 1	.16645	.12960	07068	03287	.19493	.00814

ROOT NO. 13 14 15 16 17 18 -19.44764 -17.50267 -16.89143 -16.48386 -15.70798 -15.44644

S O 108529	15979	.04303	01662	01312	.02808
PX O 1 .35021	23743	05900	.04287	.26083	.13733
PY O 1 .15626	42915	.06747	02252	.05251	.09706
PZ O 1 .03154	00119	15559	.11394	05312	06170
S C 2 .26778	.03491	.00110	.01835	04356	.01930
PX C 223020	.20200	.06965	03602	24292	08500
PY C 2 .09402	18441	.13957	00439	14969	06600
PZ C 2 .10992	.01368	22428	.13613	10232	00736
SC 309726	01923	02408	06540	.03594	05817
PX C 319932	.13656	.03056	.01486	.10274	.05612
PY C 311296	.01555	16611	.00199	.20144	.07359
PZ C 3 .01590	02528	22274	08859	16243	.14192
S C 4 .05252	.03710	.00740	.05956	00970	01062
PX C 414606	.02145	.01077	.13280	.25585	.08993
PY C 400384	.04762	21716	.06422	01078	.28246
PZ C 401492	02031	03486	.03487	.13371	02256
SH 517278	.34694	02214	.00450	11015	10245
SH 617648	.08813	.02263	01626	.10626	.02283
SH 702692	04976	20849	08961	04598	.08000
S C 805300	05514	01416	04646	01492	02559

	11461	06660	03726	.25778		
	02328	02233	08539	05427		.16149
PZ C 8	02467	.02915	.20288	.15367	.08965	11923
SH 9-	00723	.05413	14038	.10602	.04991	.22062
S H 10	.12228	00405	.00186	06972	18599	07170
S C 11	.07651	.06920	00444	.00729	.04149	01480
PX C 11	12309	12633	06806	.28751	02503	01330
PY C 11	.04447	.04720	.11350	13437	01232	20088
PZ C 11	11289	04301	.18549	.08337	00755	03339
S H 12	09678	06678	02729	.17099	.14429	.11554
S H 13	.00663	03485	14332	19940	13841	.07386
S C 14	30075	09827	09177	.03773	07859	.02254
PX C 14	06707	06466	09246	.08579	16670	15526
PY C 14	.01560	.10269	.24772	.15986	00720	01645
PZ C 14	.01737	.15336	.03433	23068	.05089	02826
S H 15	.06324	.01160	16402	.06926	.02205	.07795
S H 16	.11724	.12167	.05445	20199	.03762	.00699
S C 17	.15128	.04574	.01921	02254	00098	.01071
PX C 17	.22439	.11693	.12297	10442	.17070	.10949
PY C 17	02028	.09375	.17013	.18318	.05712	.08958
1 PZ C 17	04638	.07348	.05246	22675	.02057	03026
S C 18	.09753	03352	.06711	03763	.00846	01675
PX C 18	12206	20688	20721	03481	04271	26081
PY C 18	13875	03768	17731	14863	.05414	.15312
PZ C 18	03632	.17334	06523	08140	.18254	.01048
S C 19	- 10753	- 03825	04901	11032	.02577	- 01169
PX C 19						
PX C 19 PY C 19						
11 C 19	.00400	.00109	0+/20	.11740	23062	.11174

PZ C 19	06798	15524	.16745	.02934	.01563	03037
S C 20	.00607	.02989	.00361	02214	.02200	00152
PX C 20		07292	.15694	04528	10063	.21895
PY C 20	.02670	.07388		06574	15403	.19527
PZ C 20			.07156	18301	.10176	
12 0 20	.02112	101000	10,120	110201		102007
S C 21	.07127	04274	01404	04526	02827	.00455
PX C 21	14608	18498	.09529	15467	.11442	.11346
PY C 21		.00739	04729	.03520	.24804	23419
PZ C 21	.01169	17989	.13635	00195	14820	06059
SH 22	16955	06931	.18101	07632	05699	.16011
S C 23	06411	.02476	02643	.05213	.04340	.00315
PX C 23	12354	19069	06803	12622	.07069	14820
PY C 23	01697	.00735	12010	22950	.21224	06437
PZ C 23	03456	00990	02568	05234	04646	.22206
SH 24	.12641	.13086	07783	.09185	10357	08949
SH 25	.01705	16996	.11391	07661	16332	.07911
SH 26	10868	12022	06146	08506	.07685	11088
SH 27	.00565	.05069	.08409	.21665	14662	.08483
SH 28	00199	.04324	05160	07597	12784	.20093
SH 29	03475	02097	.12213	11047	.10167	.00872
SH 30	.06415	.06635	11445	.02754	.08174	16975
SH 31	.09166	.05220	.01692	24873	.04480	01474
SH 32	.09392	.11132	.15925	.10420	.10163	.10287
SH 33	.14864	03115	05639	.04496	.00076	.01542
SH 34	.12438	.15206	.18098	.00306	.03255	.18436

SH35.08683 -.15137 .07790 .07368 -.13704 -.13570

ROOT NO. 19 20 21 22 23 24

-15.05341 -14.71400 -14.45132 -14.34951 -13.99294 -13.84561

SO 1 .09301	14485	.12547	04800	.03382	.03556
PX O 106488	.10959	.01470	.06829	08068	12673
PY O 1 .23351	28650	.31374	10160	.08382	.06683
PZ O 100802	06429	.00888	11710	.06444	.00667
SC 215195	06844	12801	.04286	06351	.05761
PX C 200204	18460	02679	04494	.03755	.13294
PY C 2 .04915	03607	02978	05006	04295	.10827
PZ C 200710	02359	00038	16391	.02754	.03195
S C 3 .01324	.06112	.01079	.03412	02701	.03684
PX C 319335	16602	.27119	10757	02485	.13268
PY C 3 .08696	.15728	.03548	.09905	.06225	21402
PZ C 3 .06162	.13085	.06722	.09206	.18364	00501
S C 401006	05264	04097	04054	02917	00560
PX C 420651	06413	.10798	15695	18205	08139
PY C 414563	15742	.05919	.18379	.08966	.01789
PZ C 4 .09299	.00872	17621	.18089	01060	13492
SH 512484	.17120	21739	.05241	03874	00940
SH 613851	10851	.22163	06282	01716	.11927
SH 7.13498	.21567	01256	.12087	.14174	11632
S C 8 .02947	.07928	.00856	02687	00728	02556
PX C 803922	05381	19554	.00367	03137	14475

1100 11010			00935		
PZ C 800498	.01187	.00031	34905	09205	08490
SH 916508	16384	.05034	.07608	.00371	01139
SH 10 .15482	.01882	09657	.09658	.12746	.06082
S C 1100369	05761	00166	02577	00781	04375
PX C 11 .14868	07853	26249	.08726	.00143	01885
PY C 11 .14483	.03678	01942	00825	.03344	12305
PZ C 11 .05983	.29543	.15482	16188	.10962	03867
SH 1201522	00278	14508	00705	00802	11869
SH 1303544	.06353	.13091	.20802	.05677	.15684
S C 14 .06381	.07079	.11226	.06170	.03677	01965
PX C 14 .11244	21122	00593	.07159	00749	00902
PY C 14 .01526	02690	03726	.07782	.11329	00885
PZ C 1403251			.14338		
SH 1505931	25593	17050	.11695	09719	.05085
SH 1611015	.04062	.20248	07966	.00064	00735
S C 17 .01539	.02659	.02273	.01495	.00602	.00216
PX C 1712134	.12698	04821	08209	00428	00134
PY C 17 .07249	13127	.00634	.09423	.39826	.02735
PZ C 1705466	22672	.10219	.08281	.14094	44804
S C 18 .02001	05422	03032	02311	.02758	00492
PX C 1807560	11843	.03833	02793	14413	07535
PY C 18 .01898	.17206	.05169	08140	01201	.04071
PZ C 18 .29936	02115	.08301	.06679	08745	.02078
S C 19 .05767	.07301	.06648	.01223	.00783	.00155
			01065		01285
			09991		
PZ C 19 .02509	1 60 7 7		.14547	05205	08485
		· - · · - ·			

S C 20	00132	01591	00248	00969	00386	.00743
PX C 20	.10055	.04817	03625	.07882	33307	12428
PY C 20	.08259	06944	13243	35758	.06835	18718
PZ C 20	02065	17305	18395	.14293	13288	.18358
S C 21	.01241	05706	03374	06266	.00823	.00581
PX C 21	07469	.04470	21784	06599	.23823	.18603
PY C 21	.07636	.04170	.06082	.10378	.04081	.04234
PZ C 21	29809	.04063	00135	.15207	.05668	14749
SH 22	.07765	03109	03472	00040	06939	03635
S C 23	.04870	.03439	.02888	.00368	00337	.04126
PX C 23	29391	.08287	15076	07749	.14247	04747
PY C 23	.21592	15655	15820	20429	.00962	.09252
PZ C 23	01974	.06955	09593	16571	.08224	.11975
SH 24	.05571	05348	.14034	.01969	18731	14975
SH 25	23159	01128	10486	.01357	.08816	05633
~ 11 20		101120	110.00			100000
SH 26	- 20334	.08079	10419	06446	.10246	03567
5 11 20	.20331	.00077	.1011)	.00110	.10210	.05507
SH 27	- 05732	.11546	.17873	.18145	04842	03670
5 11 27	05752	.11340	.17075	.10145	04042	03070
SH 28	.09327	03654	11012	24950	02759	17940
5 11 20	.09321	03034	11012	24950	02739	1/940
SH 29	02504	00205	08466	25064	20005	16066
SH 29	02504	08385	08400	.25064	20885	.16966
0 11 20	07/07	04450	02102	06050	0(((0)	00020
SH 30	0/68/	04458	.03192	06950	.26668	.09938
G II 01	002 (1	04407	0.470.6	00772	05640	21210
SH 31	09361	04487	.04796	00773	05640	31218
S H 32	.02105	05767	.00321	.04560	.30365	.02430
S H 33	01773	.23550	07733	09973	25391	.30303
S H 34	.05963	.07893	05548	.01484	.12605	.05428

SH35-.20842-.11253-.08686-.03323.02910-.04515

ROOT NO. 25 26 27 28 29 30

-13.53672 -13.08802 -12.89826 -12.85865 -12.59547 -12.46690

S O 104414	.00612	03028	.05310	01691	01433
PX O 1 .15638	.15265	.16446	19627	.09602	02317
PY O 112328	01621	09558	.12750	03821	05707
PZ O 107877	.08410	.00180	38097	25119	.19068
S C 2 .01590	00338	01158	.02983	05299	.00572
PX C 211193	08800	11890	.15746	09122	.00712
PY C 211593	25392	07657	00496	06193	05560
PZ C 203258	.02654	03084	23646	11955	.11434
S C 303277	01156	.00097	00942	.04323	.01649
PX C 3 .12945	.12453	.20783	11299	.06604	21064
PY C 3 .07071	.23314	.02937	.02172	.06334	.11173
PZ C 3 .13946	.02731	17974	05567	27252	09363
S C 402440	00222	.03252	02532	.01782	.02000
PX C 403654	.08372	00824	.08599	10787	.09715
PY C 4 .10500	.01314	07836	.15019	26519	18460
PZ C 409192	.02361	.03932	.16982	.14050	.11170
SH 5.02791	05443	.01014	03811	00075	.03176
SH 6 .09970	.08914	.18427	11437	.10042	16366
SH 7 .07771	.07046	16640	.01076	15362	.04512
S C 801359	.03502	01263	02505	01641	.00498
PX C 812664	18303	18909	.13821	03269	.11162
PY C 801008	19465	12191	02117	.16363	.08392

PZ C 801010	.03550	03350	14474	15292	.06582
SH 9 .05987	.03370	04800	.13581	24779	11824
SH 10 .01329	07361	.02301	07685	.11113	06569
S C 11 .00950	.02659	01087	00368	07711	02948
PX C 1108190	.07899	.11843	12878	.03438	33244
PY C 11 .09040	.24933	.14186	.03640	18549	01844
PZ C 11 .11077	.05576	22569	00830	15395	09147
SH 1209061	15229	16467	.10157	02788	.11954
SH 13 .03296	02558	.02612	.03505	.18102	04599
S C 1401810	.01369	.00614	01024	.00786	.00886
PX C 14 .01711	.13323	.10439	05929	05466	.05600
PY C 14 .10705	.08799	12116	.12432	08217	24247
PZ C 1400685	.04321	.13733	.17598	00054	.10658
SH 1512438	09514	.13233	04091	.15681	04220
SH 16 .07232	05589	11273	.11448	07001	.26178
S C 1700405	.01957	.01469	00655	01235	.01900
PX C 1701296	12833	09937	.05578	.04634	05049
PY C 17 .28991	19892	.06002	12440	.09332	.21527
PZ C 1719436	03002	10326	22501	.04655	05717
S C 18 .01462	02552	.05558	.00315	04543	.03498
PX C 18 .26477	05139	03731	.08511	.06876	.25382
PY C 1819138	14074	.08910	15477	.07647	.10019
PZ C 1804786	16183	.24261	.10260	25756	.04264
S C 1902390	.01977	00703	.02699	.05135	.01056
PX C 1901327	.09650	08900	.04287	.05339	.05748
PY C 1907290	15299	.14613	07237	10793	.07201
PZ C 1903802	23959	.19168	.02867	01304	07743

S C 2001135	01969	.02935	.00837	.01484	00700
PX C 20 .28121	16440	.06568	17891	06303	04689
PY C 20 .17168	.10688	.04891	.19185	.17846	06810
PZ C 20 .10094	.19441	28145	17089	06379	.06698
S C 21 .04910	.00664	02808	.01586	.01861	01737
PX C 2106805	5.17698	.15495	.01323	07332	.12565
PY C 21 .10434	.00873	15088	.07133	.10742	15689
PZ C 2100714	01711	.22440	.12933	18983	.04769
SH2203595	.08767	08263	.03431	.08014	.03805
S C 23 .00559	04530	.01002	00710	01053	.00647
PX C 23 .08794	20171	01928	05249	01982	23117
PY C 23 .12965	519258	.06194	.00326	15814	04327
PZ C 2314495		09373			
		107070	.17001		
SH 24 .07927	14916	15368	01238	.07663	12595
5 11 21 .07927	.11910	.15500	.01250	.07005	.12375
SH 2503578	.04203	.25065	.07032	20218	.13445
5 11 2505576	.04203	.23003	.07052	20218	.13443
S II 26 05479	10602	02246	05400	02722	22210
SH 26 .05478	19603	02246	05490	02733	22310
G II 07 10500	10122	04015	00017	10544	11070
SH 2712599	.19132	04015	.00917	.13544	.11279
		0.44 - 0	–		
SH 28.21751	.03461	.06179	.11117	.12670	07862
SH 29.07163	.03721	18322	25323	14148	.06615
SH 3024304	.12484	03986	.15073	.05896	.04039
SH 3125119	.02617	13205	09565	.00050	15787
SH 32.22481	19572	.03448	08969	.08829	.18261
SH 33 .01802	.08481	.03353	.23163	06272	05267
SH 3420907	.01940	.06595	07247	08735	20738
SH 35.19189	14384	- 18577	02453	15218	02236
5 11 55 .17107	.17507	.10377	.04733	.13210	.02230

ROOT NO.	31	32	33	34 35	36	
-12.268	51	-12.04566	-11.89561	-11.78793	-11.52029	-11.39225

S O 107877	.06744	.02162	00771	.00412	.03997
PX O 1 .12876	18689	06565	.06246	10991	18069
PY O 120038	.18871	.06041	00180	00761	.09292
PZ O 102908	.17346	.02713	.40370	.45710	20879
SC 200380	.01985	00153	02203	.01650	.03671
PX C 211747	.13998	.04299	04376	.05566	.11545
PY C 2 .23855	07507	05030	.03589	.04672	05495
PZ C 205803	.05180	.01633	02219	03846	03837
SC 3 .04034	.01558	.00301	.01971	.02021	.00242
PX C 320755	13432	00692	10524	.03665	17306
PY C 309453	.10822	01104	.04665	07654	.06837
PZ C 304426	22884	.12568	12394	14003	.09844
SC 400034	.01173	.02219	.01259	01451	.02977
PX C 4 .28603	.18348	03828	.14326	07610	.26729
PY C 4 .00140	02501	18180	05647	.06911	05053
PZ C 406723	.25777	23192	.07671	.15441	14747
SH 5.11713	07874	02595	00254	.02216	02922
SH 617088	11845	01036	07887	.04540	17308
SH 7.02082	06645	.10932	02393	13195	.16444
SC 801334	00418	.00689	00408	02268	.04765
PX C 814617	06838	.05265	16424	.01360	29996
PY C 8 .25071	06263	.22141	.07959	00684	02593
PZ C 800560	14654	.22159	08759	21752	.16391

SH 9	.08730	.04152	16140	.00157	.02940	.06090
S H 10	25781	14935	.04969	12936	.05270	23555
S C 11	.00093	02388	01448	.00516	.03243	.01823
PX C 11	04711	12546	01337	.07492	.10314	.27154
PY C 11	15214	.13642	22504	05525	07182	.05241
PZ C 11	.01339	04979	12126	.04198	.18771	09261
S H 12	14940	06478	.05199	15318	00674	26318
S H 13	.15289	.10474	08533	.15761	.14890	00295
S C 14	.00412	.01905	.00506	.02458	.03788	.00585
PX C 14			.04292	08831	28028	24563
PY C 14			.00383			
PZ C 14	12155	.12003	.03481	06636	09734	.06249
S H 15	.03791	07222	.17608	.01528	06597	.15632
S H 16	.04236	.09221	.00460	08047	09153	25656
S C 17	.05401	.03199	.01212	01809	03508	02900
PX C 17	23781	11926	04222	.06417	.27695	.27547
PY C 17	.00128	.03695	03534	.09122	08209	.11537
1						
PZ C 17	.12304	06757	.02249	09410	.09590	.02046
			02041			
			10559			
			02270			.12001
PZ C 18	.02602	16576	.15211	.14325	.05481	04485
S C 19	00507	.02335	.00434	01686	00354	.01583
PX C 19	01414	24460	14948	.34078	14961	08061
PY C 19	10826	.00394	28198	04170	10799	.04504
PZ C 19	.16252	05005	12209	08848	.06212	01086
S C 20	.01339	.01605	03485	04689	.01240	.00806

PX C 20 PY C 20 PZ C 20	.03000	.23873 .03895 .00475	.08181 .20632 .12992	16742 .12510 .13197	.07353	07177
S C 21 PX C 21 PY C 21 PZ C 21	.05647	02218 .10181	.08629	.02523	.03560 .19061 .08614 00500	
S H 22	01258	21962	14001	.30753	14059	07536
S C 23 PX C 23 PY C 23 PZ C 23	.15937	11000	.00946	01813 .16269 03673 23228		
S H 24	12189	.02006	08357	.21492	16620	02819
S H 25	05444	07154	.08187	.02293	.04292	.00396
S H 26	08329	.17251	01116	.14416	18101	05310
S H 27	08375	.01608	.16029	02993	.05688	.05047
S H 28	.03656	.10634	.20147	.02638	.10541	04437
S H 29	09289	.06897	.01312	03451	02817	.02909
S H 30	.00288	20678	10315	.14592	10078	01984
S H 31	.03928	09448	.01664	06874	.16720	.02934
S H 32	06627	.00300	03685	.07438	00896	.14665
S H 33	12516	.02328	00506	.03686	.01315	00762
S H 34	.05116	.19221	.08435	.05393	17201	12356
SH 35 1	.03870	.00958	15057	13507	.04786	.04841

ROOT NO. 37	38	39	40 4	1 42	
-10.72342 -	10.45765	2.96179	3.40776	3.48648	3.60302
S O 1 .04275	.00270	18197	.03549	01098	01247
PX O 105679	.00627	45715	00200	07282	01730
PY O 1 .09510	.00617	.28201	05065	.02846	.04056
PZ O 1 .01247	.46268	.00929	.03380	03958	.01396
SC 2.00696	.00524	.31489	.04234	.19121	.39942
PX C 2 .05442			.07910	.02460	.19627
PY C 234206	03662	.03106	33100	21163	.01910
PZ C 2 .00403	37294	04760	24688	.29630	10095
SC 302646	01816	06927	.08634	03520	14693
PX C 3 .02928	.01810		04773	.02233	.15174
PY C 3 .33181		.17474	23353		.29621
PZ C 302200	.16505	02915	25555	.13267	00240
12 C 502200	.10505	02715	00147	.15207	002+0
S C 4 .02087	00776	04234	.00941	.04230	.01671
PX C 402073	04345	01696	01377	.04834	.04999
PY C 422041	.01286	.03968	07097	06352	.04883
PZ C 4 .03836	17152	05866	08842	.17169	.03180
SH 507798	00783	.28768	10934	00624	.04222
SH 6 .00851	00270	.15266	03551	.01071	03987
SH 7.10396	.13702	03979	.10327	04490	.05137
SC 801116	.00422	.02155	.03536	.02115	00475
PX C 8 .01144	.04209	03300	04802	.01233	.02997
PY C 8 .24188	.01552	00901	19122	05196	.06317
PZ C 800298	.13861	00103	07997	.08495	.02582

SH 9	21202	00900	00222	.09417	.01247	10753
S H 10	.04173	.02875	00417	03031	.01152	.05366
S C 11	.00109	03820	04298	05154	.10537	.03855
PX C 11	.02578	06533	03906	05278	.11431	.08757
PY C 11	25503	.03886	.03064	13571	18587	.01812
PZ C 11	.06226	23407	06868	09501	.24375	02144
S H 12	.00024	.04738	.01687	.02311	04367	03317
S H 13	.10872	12665	04240	03093	.11533	.01028
S C 14	.01252	.03479	06746	03015	05922	18015
PX C 14	02611	03236	15084	05220	.10742	.27491
PY C 14	.32391	.09199	05993	33391	22595	00906
PZ C 14	.01978	.37660	13269	29149	.18329	26019
S H 15	.08277	.14682	.00588	11120	00914	09088
S H 16	02122	.01723	02930	00742	.02791	.07800
S C 17	00515	00995	.07853	.02295	01328	02581
PX C 17	.02099	.02064	21610	06339	.05583	.14005
PY C 17	06929	02537	01586	06150	04587	00602
1						
PZ C 17	00611	08727	02609	05624	.03587	05489
S C 18	03816	02211	03963	10439	.03032	.05325
PX C 18	05281	01796	02258	09981	.05021	.14273
PY C 18	31028	04116	04196	23361	20886	.16495
PZ C 18	.03331	14072	02000	13019	.20061	11282
S C 19	.01110	05149	02680	00566	10689	19944
PX C 19	04751	.09369	09808	.03292	.07847	.26716
		09168				
		.31050				
S C 20	.02043	.02670	02927	.08366	00631	.07642
PX C 20	.02936	.02094	02076	.07455	.00653	.11950

PY C 2012046 PZ C 2004250			13507 16277		08372 11725
S C 2102146 PX C 2101528 PY C 2124464 PZ C 21 .00904	01966	03826 01710 05289 00164	01950 22278	00130	.09540 .16686 .12964 04686
SH2204059	.06462	.16567	03272	.00879	11880
	.02061	.02444 03674 .00866 01994	02588 08776		01396 .08337 .05533 12056
SH 2400714	.03991	02164	01222	.05660	.10212
SH 25.11172	13217	.01738	.03173	17997	04642
SH 26 .03453	.01679	.01738	.04521	00669	09348
SH 2718926	00741	03593	11630	06408	.11757
SH 2809383	01239	.01417	.04377	.06841	02957
SH 29.05307	10361	.00359	03067	11712	05970
SH 3001550	.01939	01759	.01044	.01927	.07635
SH 31 .03961	06486	.03160	.02323	07505	.03029
SH 3207538	02171	.02642	.08149	.05128	01668
SH 33 .04857	.10151	05066	10259	.00377	08387
SH 34 .01902	00578	02887	00195	.02881	.11853
SH 35 .08581 1	.13162	.00402	13077	.02874	13392

	3.7568	37 3	3.82183	4.05869	4.10359	4.20670	4.26398
SO PXO PYO PZO	1 .0 10	892 3401 5033 2104	03430 01082 .06109 01204	.03582	.01593	02778 05647 .05192 01372	.03555 .07492 06323 01571
S C PX C PY C PZ C	2 .1 20	445 3034 2316 7172	10509 12734 .16008 .09887		00437 .03615 02204 26988	05259 13268 10026 .13069	.06129 .16621 .11438 .14085
S C PX C PY C PZ C	30	167 0742 1310 8419	02178 04240 .03428 .09361	02444 .01095 .10983 05116	.05177 03776 .05420 19426	03830 .11721 21101 .06759	.01410 .04303 .17597 06523
S C PX C PY C PZ C	4 .00 41	318 6990 1302 3510	02745 03500 .01455 .11952	.04617 .04562 05450 17895	05831 08036 .03362 21193	.23620 .29343 31897 25190	.01053 .01598 .10580 06693
	506 604		.09483 .07304	.06266 .00862	02325 01544	.04136 08568	05607 05752
	703		11151	.02087	.09924		02445
S C PX C PY C PZ C	80 82	726 8793 0176 2934		01507 14830	03188 12002	16501	02335 05560 .16243 09102
S H	9 .02	208	.02576	00202	.04984	.00912	12673

ROOT NO. 43

S H 10	.00169	02593	.00581	03373	.11185	.02072
S C 11	11016	00503	10230	.06044	.01806	02726
					.08341	
PY C 11			04688		.02837	
PZ C 11	07681	.12083	19668	.11537	10674	20217
S H 12	.02069	.01888	.01612	.02915	13787	.07800
S H 13	.02033	.03345	08706	01552	.05209	16795
S C 14	.03963	.11480	.41577	23887	02254	.11392
PX C 14	26330	12937	.21396	10817	11206	31018
PY C 14	07152	12394	16926	16460	.17529	.07284
PZ C 14	03137	.23980	07997	02827	.03776	18211
S H 15	.01147	.09838	10792	04293	13433	.01423
S H 16	08025	06153	.08699	04434	.08173	09273
S C 17	.06633	.01177	16141	.09367	.04481	.04867
					.04481 09635	
PX C 17	20538	04004	.42289	22500		17974
PX C 17 PY C 17 1	20538 00568	04004 05221	.42289 06771	22500 07474	09635 .08932	17974 .01698
PX C 17 PY C 17 1	20538 00568	04004 05221	.42289	22500 07474	09635 .08932	17974 .01698
PX C 17 PY C 17 1 PZ C 17 S C 18	20538 00568 .00749 16710	04004 05221 .08042 04845	.42289 06771 04705 12016	22500 07474 .00946 .09495	09635 .08932 .01184 .05670	17974 .01698 04735 .09284
PX C 17 PY C 17 1 PZ C 17 S C 18 PX C 18	20538 00568 .00749 16710 26000	04004 05221 .08042 04845 .01798	.42289 06771 04705 12016 .00896	22500 07474 .00946 .09495 .03760	09635 .08932 .01184 .05670 .05023	17974 .01698 04735 .09284 02032
PX C 17 PY C 17 PZ C 17 S C 18 PX C 18 PY C 18	20538 00568 .00749 16710 26000 .00054	04004 05221 .08042 04845 .01798 23567	.42289 06771 04705 12016 .00896 34108	22500 07474 .00946 .09495 .03760 12461	09635 .08932 .01184 .05670 .05023 .08088	17974 .01698 04735 .09284 02032 13898
PX C 17 PY C 17 PZ C 17 S C 18 PX C 18 PY C 18	20538 00568 .00749 16710 26000 .00054	04004 05221 .08042 04845 .01798 23567	.42289 06771 04705 12016 .00896 34108	22500 07474 .00946 .09495 .03760 12461	09635 .08932 .01184 .05670 .05023	17974 .01698 04735 .09284 02032 13898
PX C 17 PY C 17 PZ C 17 S C 18 PX C 18 PY C 18 PZ C 18	20538 00568 .00749 16710 26000 .00054 21119	04004 05221 .08042 04845 .01798 23567 .03757	.42289 06771 04705 12016 .00896 34108 .01196	22500 07474 .00946 .09495 .03760 12461 .26551	09635 .08932 .01184 .05670 .05023 .08088 .07475	17974 .01698 04735 .09284 02032 13898 .14160
PX C 17 PY C 17 PZ C 17 S C 18 PX C 18 PY C 18 PZ C 18 S C 19	20538 00568 .00749 16710 26000 .00054 21119 14865	04004 05221 .08042 04845 .01798 23567 .03757 07551	.42289 06771 04705 12016 .00896 34108 .01196 .04021	22500 07474 .00946 .09495 .03760 12461 .26551 .01219	09635 .08932 .01184 .05670 .05023 .08088	17974 .01698 04735 .09284 02032 13898 .14160 .17715
PX C 17 PY C 17 PZ C 17 S C 18 PX C 18 PY C 18 PZ C 18 PZ C 18 S C 19 PX C 19	20538 00568 .00749 16710 26000 .00054 21119 14865 .15234	04004 05221 .08042 04845 .01798 23567 .03757 07551 .18258	.42289 06771 04705 12016 .00896 34108 .01196 .04021 07111	22500 07474 .00946 .09495 .03760 12461 .26551 .01219 .10525	09635 .08932 .01184 .05670 .05023 .08088 .07475 06431	17974 .01698 04735 .09284 02032 13898 .14160 .17715 .13998
PX C 17 PY C 17 PZ C 17 S C 18 PX C 18 PY C 18 PZ C 18 PZ C 18 PZ C 19 PX C 19 PY C 19	20538 00568 .00749 16710 26000 .00054 21119 14865 .15234 .18684	04004 05221 .08042 04845 .01798 23567 .03757 07551 .18258 .16245	.42289 06771 04705 12016 .00896 34108 .01196 .04021 07111 .21264	22500 07474 .00946 .09495 .03760 12461 .26551 .01219 .10525 .26673	09635 .08932 .01184 .05670 .05023 .08088 .07475 06431 .05431	17974 .01698 04735 .09284 02032 13898 .14160 .17715 .13998 12503
PX C 17 PY C 17 PZ C 17 S C 18 PX C 18 PY C 18 PZ C 18 PZ C 18 S C 19 PX C 19 PY C 19 PY C 19 PZ C 19	20538 00568 .00749 16710 26000 .00054 21119 14865 .15234 .18684 .22854	04004 05221 .08042 04845 .01798 23567 .03757 07551 .18258 .16245 15253	.42289 06771 04705 12016 .00896 34108 .01196 .04021 07111 .21264	22500 07474 .00946 .09495 .03760 12461 .26551 .01219 .10525 .26673 13968	09635 .08932 .01184 .05670 .05023 .08088 .07475 06431 .05431 .03617 .03572	17974 .01698 04735 .09284 02032 13898 .14160 .17715 .13998 12503 .14125
PX C 17 PY C 17 PZ C 17 S C 18 PX C 18 PY C 18 PZ C 18 PZ C 18 S C 19 PX C 19 PX C 19 PX C 19 PZ C 19 PZ C 19 S C 20	20538 00568 .00749 16710 26000 .00054 21119 14865 .15234 .18684 .22854 02675	04004 05221 .08042 04845 .01798 23567 .03757 07551 .18258 .16245 15253 .06235	.42289 06771 04705 12016 .00896 34108 .01196 .04021 07111 .21264 .12360 07654	22500 07474 .00946 .09495 .03760 12461 .26551 .01219 .10525 .26673 13968 .00013	09635 .08932 .01184 .05670 .05023 .08088 .07475 06431 .05431 .03617 .03572	17974 .01698 04735 .09284 02032 13898 .14160 .17715 .13998 12503 .14125 04112

ΡZ	C C	20	.09629	14894	.15456	03917	01591	.13856
S	С	21	.05291	.21347	.04309	02349	.05509	.00173
РХ	C C	21	.01862	.29717	.03831	.05202	.12666	.13756
PY	C C	21	.32131	.03112	.13311	.28858	.00233	21566
PZ	C C	21	.10147	31805	.05396	.22406	07078	.05506
S	Н	22	04252	12248	.04094	10889	00342	27525
S	С	23	.16497	18261	.03146	02999	07026	04327
PX	C C	23	19478	.24559	02987	.07823	.13814	.02027
PY	C C	23	.22944	22095	04300	.03342	03326	19592
ΡZ	C C	23	11847	23630	.10854	.40574	04278	.05988
S	Н	24	01899	.12475	00504	.08195	.07865	.14782
S	Н	25	.02668	00518	03300	05002	03410	20451
S	Η	26	.06446	10049	.00924	06043	08525	.01888
S	Η	27	.01984	.02602	08583	.09335	.07890	14803
S	Н	28	05309	11534	05063	07871	02518	.03070
S	Н	29	04035	.06221	.03186	.05415	.00918	08583
S	Н	30	.04362	.05755	01709	.03836	.01833	.06442
S	Н	31	.01263	08857	01217	03311	.03889	.09664
S	Н	32	.02585	.06047	.06312	.07398	08403	.00515
S	Н	33	.00675	.05363	06405	04569	.04913	02319
S	Н	34	13688	.05617	.11220	04530	00606	09535
S 1	Η	35	.06438	06302	05950	.07323	.03851	02194

ROOT NO. 49	50	51	52 5	3 54	
4.37894	4.42584	4.48113	4.54302	4.61770	4.82634
S O 1 .00346	.00069	02292	.03080	.04921	00428
PX O 1 .05733	.04792	06697	01174	.01243	03959
PY O 100117	.00349	.05152	06054	10211	00443
PZ O 1 .02425	01229	01256	.01882	03506	.00238
S C 2 .02600	.04612	07271	.00859	.06283	.03965
PX C 2 .08454	.07793	15571	.04577	.13816	03330
PY C 2 .23570	.19478	25868	20088	08721	08945
PZ C 219298	.11871	.09086	13377	.24676	02236
S C 319020		.07421		.09527	.02591
PX C 3 .24451	01380	21873		07208	
PY C 3 .06026		18230		.10011	
PZ C 3 .21594	25796	00541	05886	15492	01427
G G 4 05904	04070	0.010	04206	02100	04792
S C 4 .05804	04870	06216	04306	03100	04783
PX C 4 .06917		19199		12083	
PY C 414943				.06722	
PZ C 4 .24256	35976	.02971	.03761	15014	01069
SH 5.03297	.03589	.01927	10947	14339	01150
SH 608217	01354	.16552	03950	01829	.06502
SH 7 .03608	.05963	05177	.06890	02572	02627
S C 8 .12108	.03537	.07287	02028	.02761	.05027
PX C 811455	05319	19976	.01870	17889	.00059
PY C 832479	30598	08932	.09372	02456	07541
PZ C 8 .10179	14937	.01522	.06845	10671	.06804
SH 9.07509	.03041	.21097	.02102	.00536	.08526

S H 10	.01815	02811	16916	01279	09119	05957
S C 11	18743	00530	14232	.07101	01797	04460
					09486	
					05569	
		.15807		.07864		
12 0 11		110007	111700			
S H 12	.02237	.03015	.14994	00542	.15699	03250
S H 13	.09837	02825	08497	.03669	16485	.04474
S C 14	05963	10478	.07372	17818	.02135	06642
					06256	
PY C 14	.15643	.02431	.26215	03249	.09024	.06559
PZ C 14	12365	.24021	10444	02771	02566	01456
с Ц 15	02179	02352	02664	01611	01182	05822
5 П 15	.03178	02552	.03004	.01011	01182	03822
S H 16	06096	01566	04411	01981	07601	.11418
S C 17	.01737	.02488	03321	.06441	03142	00468
PX C 17	04306	01752	.12963	11434	05536	.06338
PY C 17	.06759	00017	.07880	07221	.12800	.21158
1						
PZ C 17	04854	.17352	02996	00515	04579	17206
S C 18	.14202	04587	01411	.03961	.07164	.16831
PX C 18	.19132	02681	.11880	.16878	.03847	12224
PY C 18	.02148	.16294	.14209	.00793	02404	.11771
PZ C 18	.13145	15382	00819	14038	.09158	.19690
S C 19	.11990	.15370	.07448	.15638	41283	.03199
PX C 19	19795	.02216	.17054	19362	19860	.09601
PY C 19	03880	13658	02368	.27378	01008	.10198
PZ C 19	07836	.10570	.04212	.38691	.07655	.11744
S C 20	04039	03815	00874	13017	.09968	00523
PX C 20	11446	02160	.08035	16615	04091	.13813
PY C 20	.00247	01119	.00274	.25101	08898	.15606
PZ C 20	.01126	.11988	.05403	.38756	11029	.10082

PX PY	C C		02425 15425	04712 03059 19060 06438	.13077	.08297	.03412 .08478	06540 .06113
S	Н	22	.08587	12911	20860	.05379	.46235	11475
PX PY	C C	23 23	.10238 12712		.12935 .17577	03645		28660
S	Η	24	01715	.00555	.20700	01092	09730	16898
S	Н	25	04969	.01455	07712	00897	07370	.08660
S	Η	26	05298	.01348	18429	13518	05807	.31974
S	Н	27	03147	02995	.15102	.03918	.08635	13420
S	Η	28	.06379	.05742	01938	08013	.02375	17627
S	Н	29	.06756	06716	06325	02944	01922	04421
S	Η	30	09173	.01286	.09082	04649	12204	.14942
S	Η	31	.07615	14737	.06522	02639	.11259	.19712
S	Η	32	06836	01441	10907	.05195	08556	20380
S	Η	33	01066	.13173	.00328	05606	.06114	05351
S	Н	34	.06653	.00713	.11951	.14161	00560	23896
S 1	Н	35	07199	00277	.03007	19729	01300	.10124

ROOT NO. 55	56	57	58 5	9 60	
4.99318 5	5.05573	5.10149	5.13069	5.15175	5.21729
S O 1 .00064	00260	02569	03622	00348	00889
PX O 1 .00300	02666	00805	05182	01051	.01617
PY O 1 .00009	00092	.06371	.07949	.00995	.02443
PZ O 100457	.00754	00353	00815	.00911	.00785
S C 2 .02462	.04019	04222	.02931	.03265	01824
PX C 2 .01777	01146	08195	11234	00052	00378
PY C 2 .02534	06683	01319	09333	02204	.05171
PZ C 2 .04026	07334	.05574	.03477	10134	04957
SC 309694	02994	.14758	.04766	05417	14145
PX C 300671		.21323	.34930	.03526	04711
PY C 3 .00137	03891	05969			
PZ C 3 .11521	.04805	16236	20707	00263	02432
SC 4 .13245	.02302	12710	07237	.00051	.03679
PX C 4 .01233	.00326	.08434	.02904	01526	
PY C 419193	02226		02359		
PZ C 401436	.05710	.00168	.03194	.10213	03472
SH 5.00548	00974	.07182	.08187	.00831	.04519
SH 6 .06707	.04865	28538	33588	.00258	.14201
SH 700817	00063	.09291	.28417	.06278	.09646
SC 815509	.02993	.09204	08410	.04123	14275
PX C 815616	01109	.02266	16651	07021	.04559
PY C 8 .04807			.04626		.03736
PZ C 820718	03566	.09586	03236	.03295	05121
SH 9.05700	.00014	07288	.06410	00944	.16977
S H 1010259	01695	.18711	.08341	01643	13741

S C 11 .06471 PX C 1112410 PY C 11 .08099 PZ C 11 .05333	02311 .04124	09521	20589 .10985	.04112	
SH 12 .24480		07840	.21418	.03308	
SH 1310200	08043	.01958	03271	05173	.07061
S C 1403170 PX C 14 .01006 PY C 14 .12689 PZ C 1401620	02848 02678	06455	.16349 .01341	.09318 .00374	.03725
S H 15 .06261				13992	
SH 1617086	04285	03831	19152	.03462	04054
S C 1701142	.00784	.01019	.00722	.01260	02297
PX C 1701683	00419	.00420	.13414	.10388	00559
PY C 1733784	.26902	.21127	03605	11426	.14613
1					
PZ C 17 .01696	.52080	08191	.06261	.27982	09511
S C 18 .01012	.07027	10630	.01280	.03050	.09184
PX C 18 .18841	.16032	.09860	08830	30867	.03429
PY C 18 .04795	09047	12909	.09612	.09438	07169
PZ C 18 .07725	08866	.03614	.02738	.25706	15057
S C 1900419	02498	.01041	04230	.02074	02247
PX C 19 .08966		.04217	.02418	04975	.05285
PY C 1902579		.02274	00021		.18360
PZ C 19 .01133	02024		.03660	.03865	06255
S C 20 .01335	.00839	.01516	02836	00904	01505
PX C 20 .15113	.10503	.19409	04045	11661	18058
PY C 2007032	.05766	22166	.14899	23918	38499
PZ C 20 .07723	01617	.21064	13387	.18923	.13223

PX PY	X C Z C	21 21 21 21 21 21	29178		07153 17667 .11207 13744		04549 .10217 .02255 18253	.03254 .15063 .11528 .04038
S	Н	22	06149	00789	04027	.01757	.03448	03434
PX PY	X C Z C	-			.12775	12710 08381		.00399 17308 08952 .00959
S	Н	24	29552	11171	10739	.10020	.11556	.09651
S	Н	25	.19271	00898	.24434	07986	.13511	04695
S	Н	26	.09924	.03981	11472	.11421	06403	.13527
S	Н	27	.02265	17197	.08252	10003	.09124	11715
S	Н	28	.00092	08826	.11327	10600	.23266	.36525
S	Н	29	14318	00115	31153	.18782	19139	18458
S	Н	30	.13807	.09251	.16714	02139	09917	15349
S	Н	31	14215	25351	.14212	10463	27309	.13468
S	Н	32	.28206	22138	16633	01227	.05549	11121
S	Н	33	11911	.48551	.01768	01144	.11772	.00886
S	Н	34	.15656	.08830	.15241	08857	28046	03749
S 1	Н	35	.00935	20073	.02144	.06986	.27493	20322

ROOT NO. 61	62	63	64	65	66
5.29692	5.36110	5.38222	5.46573	5.5106	9 5.53815

SO 1 .00399	.00138	.00942	.02922	01226	00190	
PX O 100915	00995	.04403	.01399	.04614	.02384	
PY O 102301	02642	.00104	07009	.04768	.01552	
PZ O 100803	.00790	.00515	00477	00368	00857	
S C 205108	00176	02442	.11666	.02611	02336	
PX C 202936	01519	.06388	.14388	.05352	.01756	
PY C 203329	.10466	.05515	.03233	.12125	.03622	
PZ C 2 .07330	13062	09250	.03136	.07517	.00362	
S C 3 .01155	02067	.02573	16664	06935	22988	
PX C 305395	.04537	.01649	13971	.24076	07627	
PY C 302811	.04988	.05761	.10155	.05892	13207	
PZ C 316038	.12188	.12534	06832	14430	15144	
S C 413933	.05998	.04804	00584	12631	.19295	
PX C 404007	.03130	02337	07241	33691	.03581	
PY C 4 .05828	10324	09963	11900	29434	.21486	
PZ C 404847	00392	00770	10074	.07039	.00161	
SH 502800	01048	00254	07963	.07850	.02628	
SH 6 .02261	01798	02829	.22810	14870	.20251	
SH 7.10116	06008	10671	.09200	.18852	.29201	
S C 8 .07621	08504	06003	05025	07198	28700	
PX C 8 .23839	04225	04653	.27647	.00576	06865	
PY C 814155	.03054	.04314	07563	.14759	11841	
PZ C 8 .21024	09380	07711	.03225	.12222	.21060	
	07500					
	07580					
SH 9.06763			.11321	.39932	30305	
SH 9 .06763			.11321	.39932	30305	

S C 11 PX C 11 PY C 11 PZ C 11	10128	.03757 02188 .05531 .12580	.06060 .06028 .00098 .06398		01473 .27421 .08117 14054	06366
S H 12	26207	.09843	.08252	18253	.03944	.24557
S H 13	.21225	02495	03719	.16539	.07514	.35665
S C 14	.05510	.01281	07062	.05720	.05255	.03121
PX C 14	03117	.08863	.02295	.01636	12792	.02293
PY C 14	.22451	12124	05143	08761	06744	05283
PZ C 14	09012	.02990	.05405	17014	.01198	.02187
S H 15	.10248	.08539	01874	.33612	12854	16347
S H 16	.04542	04605	.00304	10884	.24124	15789
S C 17	02659	01741	.05112	.03634	10502	18031
PX C 17	.00087	.06149	00157	.06955	11465	06197
PY C 17	28622	.07453	.00505	.05244	.02142	.08103
1						
PZ C 17	.09478	.00528	06996	.03357	.02957	01502
S C 18	.08125	.16414	11627	00843	12389	10585
PX C 18	.05948	21975	03342	14593	00458	00083
PY C 18	.06941	13917	.14389	04510	04351	.01551
PZ C 18	02260	10829	.01485	.09366	.03793	.04243
S C 19	11320	.06477	05928	00794	.00318	.00550
PX C 19	07446	19981	23188	.01111	.00079	05164
PY C 19	.06731	02742	.00559	12118	05742	00182
PZ C 19	08939	08910	09150	.10479	.01379	00443
S C 20	.05386	.03348	.07248	00625	03211	02392
PX C 20	.21241	.29311	.28507	01394	.05126	.08506
PY C 20	10734	.05947	.02839	.13598	.03735	.02557
PZ C 20	.09177	.15080	.12646	07126	03219	.02575
S C 21	.16476	.05349	15345	09038	.05409	.00401

PX C PY C PZ C Z		.02171 19832 .11977	.17180 .05629 .03059	13649 .02128 12191	08394 05823 .02267	03516
SH 2	2 .13483	.09956	.20766	00195	00731	.01875
PX C PY C	301399 2311613 2308150 2301684	17079 .09307 .28362 01744	23805	.21877	.00840 .06676 .05736 03191	01224 .01815
SH 2	402894	01556	.23644	03586	10641	.01684
SH 2	525487	19049	.06542	.17942	04938	03096
SH 2	6 .10608	.04140	22705	23044	06365	.00348
SH 2	708064	.34821	40097	00989	.05092	.01323
SH 2	801726	14953	14575	09875	02910	04319
SH 2	919678	17598	20005	.10258	.04298	01264
SH 3	0.14799	.23191	.19109	00571	.06443	.08576
SH 3	116591	.00670	.01993	03202	.09250	.17158
SH 3	2 .24528	06308	03864	08497	.08469	.04429
SH 3	302775	.03262	08074	00159	.12036	.15260
SH 3	400891	27815	.05068	09867	.07338	.07155
SH3 1	506563	17631	.15585	.08301	.09248	.10381

ROOT NO. 67 68 69 70 71 72

5.56531 5.67080 5.69154 5.82303 5.87477 5.98148

S O 1 .00057	00891	.00751	.00607	01170	.01663
PX O 100186	06906	04329	07171	.02250	03711
PY O 100531	02568	02831	04762	.03078	06323
PZ O 1 .02293	00842	.00326	.01895	.00007	01139
S C 2 .00527	01848	.03888	.03182	00613	.02278
PX C 2 .00207	12502	03403	06954	.00330	.00234
PY C 2 .00609	.01131	03778	07587	02257	02751
PZ C 213554	.06000	03495	07851	02367	02640
SC 304045	.02278	.30899	.17491	01099	.07217
PX C 304698	.05918	.02857	.01497	10036	00661
PY C 300720	04154	.19722	.04473	.02525	.04818
PZ C 3 .04796	04134	.15894	.13872	00465	.04886
S C 4 .02223	.05388	09516	.10931	28124	.01884
PX C 4 .05241	03618	06003	.04773	.21232	03431
PY C 400953	.06918	10561	.08430	11893	.00260
PZ C 4 .01943	00234	18255	10280	.01302	03303
SH 500151	02193	05276	08295	.06084	09883
SH 6 .07222	05203	22068	13549	.06439	04427
SH 701556	.03272	37177	21130	02664	11973
S C 8 .06475	10368	27840	15017	.05607	.00758
PX C 8 .02795	07934	.11559	11319	02063	.04366
PY C 8 .04096	03705	07727	15543	.09095	01113
PZ C 809508	.08470	.21268	00784	01691	00800
SH 902274	07640	.15362	14069	.21003	00548
SH 10 .02808	06852	.02578	04166	.36757	03662
S C 11 .01582	.03340	.20085	33354	.19209	.01194

PX C 1105175	.07490	15442	.15537	12644	03589
PY C 11 .02643	04091	.06901	.09290	06447	.00385
PZ C 11 .10714	08269	13180	.16550	02001	.01690
SH 1205906	14161	11102	17065	04141	02710
SH 1203900	.14161	.11123	.17203	04141	03710
SH 1311009	.11242	.37471	.11601	08259	.00531
S C 1403272	.02438	.02354	01761	02033	01113
PX C 14 .01722	00366	.01431	.05978	.16582	.02765
PY C 1415034	.08647	03002	.00902	.00490	01433
PZ C 1403815	.09018	05834	11586	.04887	02141
0 11 15 07506	10160	1 5077	20206	10066	01000
SH 15 .07596	10162	15277	.30386	12866	.01082
SH 1606120	.04022	26221	.35064	23109	03322
5 11 10 .00120	.04022	.20221	.5500+	.23107	.03322
S C 17 .09788	.20755	.07095	28177	35523	04551
PX C 17 .05139	.11594	.06348	11721	10721	01330
PY C 17 .10953	05407	.03380	01582	00543	.00477
1					
PZ C 1700914	05951	.04669	.08828	04196	.01283
S C 1831930	.21583	06012	00039	.08666	02297
PX C 1800742	15336	.02575	04284	11701	.01160
PY C 18 .12910	02029	00109	.04578	.04776	.01418
PZ C 18 .17622	14476	.04008	.03703	03963	.02701
	00506	010.00		01500	01200
S C 19 .04557					
PX C 19 .03223			.06387		
	.04586			.03563	
PZ C 1905098	03712	00067	00553	.00808	.10619
S C 2002142	08953	.07547	.03666	02083	56515
PX C 2003575			06320		
PY C 2007107		00735		02283	
PZ C 20 .04107					13943
12 C 20 .04107	00123	.01090	.01170	00037	15745
S C 21 .36074	.18180	.00872	.06021	.07631	02574
PX C 2106359					

			14560					
ΡZ	C C	21	.18987	.09416	00083	.02074	.03062	05283
S	Н	22	04716	07038	02662	06512	04922	.06848
S	C	23	.02142	.25882	05146	.05895	.12691	04247
РХ	K C	23	.03872	.23596	03956	.05875	.10857	02385
PY	C	23	.00254	10415	.02354	04262	06826	00016
ΡZ	C C	23	18491	.02014	01159	01376	01539	01798
S	Н	24	28930	26644	.00997	05893	09887	.06391
S	Η	25	39011	11341	01067	03951	04705	.02423
S	Η	26	03732	33423	.06832	09006	17444	.04169
S	Η	27	00349	18114	.03911	05112	09885	.02162
S	Η	28	.07392	.11387	.00089	.01034	.02729	.39881
S	Η	29	02261	.07046	03581	01758	.01599	.35303
S	Η	30	00962	.05595	11761	07048	00366	.47683
S	Η	31	02837	12416	08059	.16070	.28325	.02297
S	Η	32	15344	13395	08090	.21641	.25311	.03328
S	Η	33	04845	20869	01655	.24265	.22202	.03924
S	Η	34	.20972	24706	.06463	02751	13351	.02803
S 1	Н	35	.36879	19349	.05942	.03821	03676	.03054

ROOT NO. 73 74

6.08479 6.27518

S O 1	00623	.08148
PX 0 1	08501	37405
PY 0 1	01488	45734
	00534	
S C 2	.02128	.11017
PX C 2	13321	30048
PYC 2	.00381	.18417
PZC2	02409	.01024
S C 3	.08794	11842
PX C 3	.19669	.06839
PYC 3	03012	.02316
PZC 3	.05182	05180
S C 4	.29509	07011
PX C 4	32102	.05200
PYC4	.07675	05402
PZC4	.03448	.05125
SH 5	03736	62558
SH 6	19046	.03135
SH 7	02810	.11669
	.19052	
	.24483	
		.03397
PZ C 8	09380	.00256
SH 9	15951	.06449
a H 40	10000	00051
SH 10	43929	.09964
0 0 11	14000	00544
	.14822	
PX C 11	19326	.03264

	105886 1 .01025	
12 0 1	1 .01025	.01211
S H 12	229927	.01904
SH 13	311892	02440
S C 14	.00539	.03619
PX C 1	4 .12858	.02198
PY C 1	4 .01135	00659
PZ C 1	4 .04218	.07701
S H 15	506376	03762
S H 16	523156	.01183
	18545	
PX C 1	702763	.02064
	701336	
-	702724	01024
S C 18	.03689	04305
PX C 1	804322	.02799
PY C 1	8 .02655	.00583
PZ C 1	801849	.00883
S C 19	.02468	.03967
PX C 1	9 .04684	.04310
PY C 1	9 .01229	00742
	903032	
S C 20	.06185	.04878
	02563	
	.00072	
	0 .01854	
S C 21	.02240	03861
	02286	
	.00159	

PZ C 21 .01903 -.00875 SH 22 -.04692 -.04487 S C 23 .04327 -.00028 PX C 23 .02702 -.02834 PY C 23 -.02353 .00540 PZ C 23 -.00341 .00039 SH 24 -.02516 .07464 SH 25 -.01783 .02715 SH 26 -.05298 .01812 SH 27 -.03524 -.00294 SH 28 -.03197 -.02728 SH 29 -.04134 -.04144 S H 30 -.05701 -.01818 SH 31 .13459 .01361 SH 32.15342 -.00795 SH 33 .10166 .00334 SH 34 -.04568 .08154 S H 35 -.01595 .02720

NET ATOMIC CHARGES AND DIPOLE CONTRIBUTIONS

ATO	OM NO.	TYPE	CHARGE	ATOM ELECTRON DENSITY
1	0	3536	6.3536	
2	С	.0958	3.9042	
3	С	1302	4.1302	

4	С	1454	4.1454
5	Н	.1973	.8027
6	Н	.0822	.9178
7	Н	.0873	.9127
8	С	1522	4.1522
9	Н	.0722	.9278
10	Н	.0941	.9059
11	С	1350	4.1350
12	Н	.0741	.9259
13	Н	.0762	.9238
14	С	0800	4.0800
15	Н	.0736	.9264
16	Н	.0889	.9111
17	С	1828	4.1828
18	С	1448	4.1448
19	С	1308	4.1308
20	С	1875	4.1875
21	С	1486	4.1486
22	Н	.0989	.9011
23	С	1566	4.1566
24	Н	.0770	.9230
25	Н	.0805	.9195
26	Н	.0810	.9190
27	Н	.0771	.9229
28	Н	.0716	.9284
29	Н	.0651	.9349
30	Н	.0809	.9191
31	Н	.0702	.9298
32	Н	.0738	.9262
33	Н	.0722	.9278
34	Н	.0767	.9233
35	Н	.0810	.9190
DIPOLE	Х	Y Z	TOTAL
POINT-CH	G. 1.2	286371	017 1.339
HYBRID	.008	725 -	.001 .725
SUM	1.294	-1.0960	018 1.696

CARTESIAN COORDINATES

NO.	ATOM	Х	Y	Ζ
1	0	.0000	.0000	.0000
2	С	1.5488	.0000	.0000
3	С	2.0443	1.4674	.0000
4	С	1.5031	2.1978	-1.2549
5	Н	3433	9256	0030
6	Н	3.0442	1.4811	0121
7	Н	1.7141	1.9301	.8228
8	С	2.0100	1.4768	-2.5288
9	Н	1.8272	3.1438	-1.2558
10	Н	.5033	2.1875	-1.2414
11	С	1.5189	.0077	-2.5286
12	Н	3.0097	1.4928	-2.5440
13	Н	1.6564	1.9452	-3.3384
14	С	2.0685	7296	-1.2862
15	Н	1.8430	4503	-3.3564
16	Н	.5192	0078	-2.5081
17	С	3.6309	7397	-1.3549
18	С	1.5549	-2.1890	-1.2731
19	С	2.0568	7356	1.2768
20	С	1.5230	0198	2.5323
21	С	1.5468	-2.1991	1.2656
22	Н	3.1540	7335	1.3011
23	С	2.0735	-2.9181	0047
24	Н	.5469	-2.2040	1.2612
25	Н	1.8794	-2.6744	2.0801
26	Н	3.0735	-2.9080	0013
27	Н		-3.8640	
28	Н	1.8504	.9250	2.5425
29	Н	1.8488	4937	3.3506
30	Н	.5232		2.5202
31	Н		-1.2149	
32	Н		.2008	
33	Н			-2.1860
34	Н		-2.1887	
35	Н	1.8862	-2.6646	-2.0880

ATOMIC ORBITAL ELECTRON POPULATIONS

1.89286 1.18697 1.29278 1.98099 1.24801 .79474 .94564 .91579 1.19363 1.00448 .93485 .99723 1.19406 1.02999 .98411 .93721 .80269 .91782 .91274 1.19470 1.01342 .95827 .98578 .92778 .90590 1.19372 1.02210 .95376 .96541 .92593 .92380 1.22861 .95574 .94264 .95299 .92640 .91112 1.18421 .94229 1.02920 1.02713 1.19553 1.01190 .95197 .98542 1.22765 1.00762 .94572 .94983 1.17998 1.03128 1.00936 .96687 1.19584 1.01418 .95463 .98391 .90113 1.19640 1.02011 .99355 .94653 .92297 .91949 .91902 .92295 .92844 .93491 .91915 .92978 .92620 .92785 .92335 .91897 ARC FILE OPENED TOTAL CPU TIME .17 SECONDS

== MOPAC DONE ==

From the output, identify the number of occupied levels. The atomic orbital coefficients of the HOMO are then given by the eigenvector with that number on the line "Root No." in the "EIGENVECTORS" array. The LUMO is the next higher eigenvector. For example, geosmin ($C_{12}H_{22}O$) is being calculated, then there are 38 doubly occupied levels. The 38th eigenvector is the HOMO and the 39th eigenvector is the LUMO.

APPENDIX B ESTIMATION PROGRAM INTERFACE SUITE (EPI SUITE)

Overview of EPI SUITE

The Estimations Programs Interface for Windows (EPI Suite) is an interface program. The EPI suite of physical/chemical property and environmental fate estimation programs is developed by the EPA's Office of Pollution Prevention Toxics and Syracuse Research Corporation (SRC). EPI Suite estimates physical-chemical properties as well as the fate and transports of these chemicals with accuracy sufficient to support regulatory the screening applications (U.S. EPA). It transfers a single simplified molecular input line entry specification (SMILES) to thirteen separate structure estimation programs that require SMILES notations (The EPI Suite also has Name Lookup feature). EPI Suite is a screening-level tool and should not be used if acceptable measured values are available. A clear understanding of the estimation methods and their appropriate application is very important. The EPI Suite provides 3 types of results

- 1. Physical/Chemical (P/Chem.) properties.
- 2. Environmental fate properties.
- 3. Advanced environmental fate models.

The program's graphical user interfaced runs each of the thirteen separate programs included in the suite and displays resulting information. The thirteen stand-alone programs that are part of the EPI Suite of Programs are

- 1. **AOPWIN** estimates atmospheric oxidation rates.
- 2. **BCFBAF** estimates bioconcentration factor (BCF) and biotransformation rate (kM).

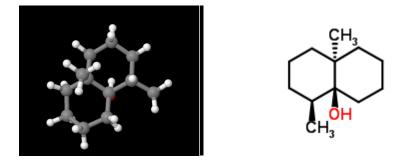
- 3. **BioHCwin** estimates biodegradation of hydrocarbons.
- 4. **BIOWIN** estimates biodegradation probability.
- 5. **ECOSAR** estimates aquatic toxicity (LD50, LC50).
- 6. HENRYWIN estimates Henry's law constant.
- 7. **HYDROWIN** estimates aqueous hydrolysis rates (acid-, base-catalyzed).
- 8. **KOAWIN** estimates octanol-air partition coefficient.
- 9. **KOCWIN** estimates soil sorption coefficient (K_{OC}).
- 10. **KOWWIN** estimates octanol-water partition coefficient.
- 11. MPBPVP estimates melting point, boiling point, and vapor pressure (also referred to as MPBPWIN).
- 12. **WSKOWWIN** estimates water solubility (from log octanol-water partition coefficient).
- 13. WATERNT estimates water solubility (using atom-fragment methodology).

The EPI Suite Interface program is a convenience for users because it automatically executes each program in succession without user interaction. Also, the interface program executes four program models that cannot be run separately (they must be run using the interface); these programs are

- 1. WVOLWIN Volatilization Rate from Water Model.
- 2. **STPWIN** Sewage Treatment Plant Mode.
- 3. **AEROWIN** Sorption to atmospheric particulates.
- 4. LEVEL3NT Level III Fugacity Model.

Molecular Weight, Henry's Law Constant, log octanol-water partition coefficient and other parameters are transferred to these models and allow program execution (they require execution of the stand-alone individual programs). The EPI Interface can also start the Dermal Permeability Program (**DERMWIN**). DERMWIN must be run as a stand-alone program since the EPI Suite interface does not capture its output.

Individual estimation programs and/or their underlying predictive methods and equations have been described in numerous journal articles in peer-reviewed technical journals. The full reference citations are given in the Help files for the individual programs. In addition, EPI SuiteTM has undergone detailed review by a panel of EPA's independent Science Advisory Board (SAB) (http://yosemite.epa.gov/sab/sabpeople.nsf/WebCommittees/BOARD), and the September 2007 report can be downloaded from


http://www.epa.gov/sab/panels/epi_suite_review_panel.htm.

The properties of geosmin, 2-Metylisoborneol, acetaminophen, 2, 4 –Dichlorophenol, triclosan and atrazine were found using the EPI Suite v. 4.00.

Properties of Geosmin

Empirical Formula	C ₁₂ H ₂₂ O
Molecular Weight	182.3025
Nominal Mass	182 Da
Average Mass	182.3025 Da
Monoisotopic Mass	182.167065 Da

Structure of Geosmin

EPI SUMMARY

1. Log Octanol-Water Partition Coef (SRC) (KOWWIN v1.67 estimate) Log Kow = 3.57

|--|

Property	Temperature	Note	
Boiling Point	248.80 ⁰ C	(Adapted Stein & Brown	
		method)	
Melting Point	$47.08^{\circ}C$	(Mean or Weighted MP)	
Vapor Pressure(mm	0.00057 mm Hg	(Modified Grain method)	
Hg,25 [°] C)			
Boiling Point (exp	$270^{\circ}C$		
database)			
Subcooled liquid Vapor	0.000907 mm Hg	(25 ⁰ C , Mod-Grain	
Pressure		method)	

3. Water Solubility Estimate from Log Kow (WSKOW v1.41) Water Solubility at 25 deg C (mg/L) = 156.7 Water Sol Estimate from Fragments

Water Sol (v1.01 est.) = 294.88 mg/L

4. ECOSAR Class Program (ECOSAR v1.00) Class/as found Nautral Organics

Class/es found Neutral Organics

5. Henrys Law Constant (25 deg C) [HENRYWIN v3.10]

Bond Method = 1.18E-005 atm-m³/mole Group Method = 3.15E-006 atm-m³/mole Henrys LC [VP/WSol estimate using EPI values] = 8.726E-007 atm-m³/mole

6. Log Octanol-Air Partition Coefficient (25 deg C) [KOAWIN v1.10]

Log Kow used = 3.57 (KowWin EST.) Log Kaw used = -3.317 (HenryWin EST.) Log Koa (KOAWIN v1.10 estimate) = 6.887 Log Koa (experimental database) = none

7. Probability of Rapid Biodegradation (BIOWIN v4.10)

- Rapid Probability Models Biowin1 (Linear Model) = 0.2929 Biowin2 (Non-Linear Model) = 0.0462
- Expert Survey Biodegradation Results Biowin3 (Ultimate Survey Model) = 2.3721 (weeks-months) Biowin4 (Primary Survey Model) = 3.2778 (days-weeks)
- MITI Biodegradation Probability Biowin5 (MITI Linear Model) = 0.4564 Biowin6 (MITI Non-Linear Model) = 0.4075
- Anaerobic Biodegradation Probability Biowin7 (Anaerobic Linear Model) = -0.7922

Ready Biodegradability Prediction NO

8. Hydrocarbon Biodegradation (BioHCwin v1.01) <u>Structure incompatible with current estimation method!</u>

9. Sorption to aerosols (25 Dec C)[AEROWIN v1.00]

Vapor pressure (liquid/subcooled) = 0.121 Pa (0.000907 mm Hg) Log Koa (Koawin EST) = 6.887 Kp (particle/gas partition coef. (m³/ug)) Mackay model = 2.48E-005 Octanol/air (Koa) model = 1.89E-006 Fraction sorbed to airborne particulates (phi) Junge-Pankow model = 0.000895 Mackay model = 0.00198 Octanol/air (Koa) model = 0.000151

10. Atmospheric Oxidation (25 deg C) [AopWin v1.92]

- Hydroxyl Radicals Reaction
 - OVERALL OH Rate Constant = 22.3859 E-12 cm³/molecule-sec Half-Life = 0.478 Days (12-hr day; 1.5E6 OH/cm³) Half-Life = 5.734 Hrs
- Ozone Reaction No Ozone Reaction Estimation
 Fraction sorbed to airborne particulates (phi) 0.00144 (Junge, Mackay)
 - 0.000151 (Koa Method)

Note The sorbed fraction may be resistant to atmospheric oxidation

11. Soil Adsorption Coefficient (PCKOCWIN v1.66)

	MCI Method	Kow Method
Koc	284.4	307.8

Log Koc 2.454 2.488	
---------------------	--

12. Aqueous Base/Acid-Catalyzed Hydrolysis (25 deg C) [HYDROWIN v1.67] Rate constants can NOT be estimated for this structure!

13. Bioaccumulation Estimates from Log Kow (BCFWIN v2.17)

Log BCF from regression-based method = 2.019 (BCF = 104.5 L/kg wet-wt) Log Biotransformation Half-life (HL) = 0.3185 (HL = 2.082 days) Log BCF Arnot-Gobas method (upper trophic) = 2.430 (BCF = 268.9) Log BAF Arnot-Gobas method (upper trophic) = 2.430 (BAF = 269.1) Log Kow used = 3.57 (estimated)

14. Volatilization from Water

Henry LC = 3.15E-006 atm-m³/mole (estimated by Group SAR Method) Half-Life from Model River = 252.3 hours (10.51 days) Half-Life from Model Lake = 2866 hours (119.4 days)

15. Removal In Wastewater Treatment

Total removal = 14.87 %Total biodegradation = 0.20 %Total sludge adsorption =14.52 %Total to Air = 0.15 %(Using 10000 hr Bio P, A, S)

16. Level III Fugacity Model

	Mass Amount (%)	Half-Life (hr)	Emissions (kg/hr)
Air	0.484	11.5	1000
Water	20.2	900	1000
Soil	78.9	1.8E003	1000
Sediment	0.326	8.1E003	0

Persistence Time 1.07e+003 hr.

VITA

Kumar Sharad Samant

Candidate for the Degree of

Master of Science

Thesis CORRELATING MOLECULAR STRUCTURES AND PROPERTIES OF EMERGING CONTAMINANTS WITH ENVIRONMENTAL FATE MODELS

Major Field: Environmental Engineering

Biographical

Personal Data: Son of Sharad and Sunita Samant Date of Birth 05/22/1985 Country of Citizenship India

Education

Completed the requirements for the Master of Science in Environmental Engineering at Oklahoma State University, Stillwater, Oklahoma in May, 2010.

Completed the requirements for the Bachelor of Science/Arts in Civil Engineering at University of Mumbai, Mumbai, Maharashtra/India in 2007.

Experience

Junior Site Engineer in Kalpataru Properties Pvt. Ltd., Mumbai, India. Teaching Assistant at Oklahoma State University, Stillwater, Oklahoma.

Professional Memberships Chi Epsilon. Name Kumar Sharad Samant

Date of Degree May, 2010

Institution Oklahoma State University

Location Stillwater, Oklahoma

Title of Study CORRELATING MOLECULAR STRUCTURES AND PROPERTIES OF EMERGING CONTAMINANTS WITH ENVIRONMENTAL FATE MODELS

Pages in Study 166

Candidate for the Degree of Master of Science

Major Field Environmental Engineering

Scope and Method of Study

The purpose of this work is to perform a preliminary analysis for future use in a fullscale quantitative structure-activity relationship (QSAR) analysis to ultimately predict the biodegradation, oxidation and hydrolysis rates of emerging chemicals of environmental concern. Computational chemistry software like Estimation Program Interface suite and Molecular Modeling Pro program were used to calculate physicochemical properties. Simple linear regression method was used for statistical analysis of the data.

Findings and Conclusions

A preliminary analysis of quantitative structure-activity relationships was conducted over selected compounds 2-methylisoborneol, six geosmin, 2,4-dichlorophenol, acetaminophen, triclosan and atrazine. Multiple structural, thermodynamic, atomic, electronic and energy descriptors were examined in regards to their correlations with biodegradation, oxidation and hydrolysis rate constants Statistical analysis of the data suggested there are various potential descriptors to predict the activity of these chemicals. Most notably, the descriptors log octanol-air partition coefficient, E_{HOMO}, E_{LUMO} displayed the highest correlations for the biodegradation rate constant, oxidation rate constant and hydrolysis rate constant respectively. Future areas of research might include additional compounds to examine compilation of data for a particular measurement from references originating within the same laboratory and measurement system and investigate other techniques to build QSARs models.