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CHAPTER |

INTRODUCTION

1.1Background and Problem Definition

Finite element analysis (FEA) is a computational technique tesdishd approximate
solutions of field problems that are described by differentiagps or by an integral
expression. The finite element solution technique helps in solvinglernfield

problems by numerical approximations of the differential or integral expressi

Finite element analysis has significant advantages when contpattesl other numerical
analysis methodologies. It is very powerful and applicable inyreagineering problems
such as displacements of a structural systems, stress-atraysis, heat transfer and
magnetic fields. In addition, for individual elements differentanat properties can be
incorporated. One of the most important advantages of finite ateamalysis is that
there are no limitations concerning the geometry or boundary condiDdfesent types
of geometry and boundary conditions can be accommodated easily. lioradalithese
properties, it is easy to modify the problem and increase theaagoof the results while

usually only at the expense of computational efficiency.



At present many commercial software packages use the finite elembsisahacause of

the advantages mentioned above. ANSYS, ALGOR, ABAQUS, COSMOS/M and
SAP2000 are some of the well-known commercial software packageare based on
finite element analysis. That is to say that the finite el@nanalysis has wide range of

usage and isonveniently available for engineers and researchers.

For research purposes, finite element analysis is very usedilbw for examination of
“what if” design scenarios. As mentioned earlier, it has almmmstlimitation for
engineering problems in terms of geometry and boundary conditionaugeof these

properties it is very powerful for researchers.

In this study, four types of dynamic loads are applied sepatatelifferent beams. The
finite element analysis is used to define the beam and detethe problem solution for
both loading cases. Furthermore, Q4 finite elements are considered the analysis
and these elements are combined to form a mesh. During the dyaaalysis

calculation procedure a numerical procedure, Newmark’s methodedstasiumerically

integrate the equations of motion with respect to time.

1.2 Objectives

The primary objective of this research is the development aifite felement analysis

computer program written using MATLAB. This program will be dige determine

structural displacements or response of structural systems tostadith and dynamic



loading conditions. As a method of illustrating the use of this praogsawveral case
studies are presented that find the displacements and defornpedo$faabeam under the
dynamic loading with change of time by using finite elermeethod. The purpose of this
study is development of a coupled finite element analysis/stalaynamics computer
program. This study does not focus on accuracy of the results. Invathds, the best
approximation to the exact results is not the main intentiomrégously mentioned, the
computer codes are written in MATLAB which is a computationgigwerful

programming language for research purposes.

Explained in its most basic form, this computer code has the dapadbilcalculate

approximate displacements which can be calculated using desigvarsofpackages.
Besides these capabilities, the development of this prograss ghe author the
understanding of what is going on behind the software packagesprbigiem has the
capacity to incorporate different scenarios for dynamiditaa In other words, any time-
dependent loading scenario to calculate the dynamic load can bedajgpthe beam to

obtain displacements and the deformed shape of the structure.

1.3 Overview

The next several chapters present the methodology behind this stusiyrdasy of each

chapter is provided to give a brief overview of the remaining sections of this study

e Chapter 2 — Literature Review:



Current and recent studies are provided from a broad viewpoint includingfa
discussion about the usage of the finite element method and struaymaahics.
The literature review gives several examples that use niite 8lement method,
structural dynamics and structural dynamics combined withfitliie element

method.

Chapter 3 — Finite Element Theoretical Derivations:

Detailed theoretical development of the finite element analysossedure and
structural dynamics is presented and discussed. This informateirectly used
to develop the MATLAB code for the FEA program. Theoreticgiagions are
derived and explained in this chapter. Topics that are covered inchalessions
about generating element matrices, boundary and loading conditiom®, fi

element solution techniques, and structural dynamics solution technique.

Chapter 4 — Case Studies:

The capabilities of the MATLAB FEA program developed as a coresemguof
this study are demonstrated. Four case studies consideringraidyoading are
demonstrated on different structural beam configurations. Hand a#od
(included in Appendix B of this study) are provided for confirmatiorhef EEA

program.



e Chapter 5 — Summary, Conclusion and Recommendations:
A summary of the results and conclusions of the study are providdds
includes a brief discussion and capability of this study. In aohditi

recommendations about the study and its expandability are provided.



CHAPTER Il

LITERATURE REVIEW

2.1 Finite Element Method

The finite element method is an approximation method that can be as=dculate
stresses, movements of loads and forces, displacements, heat tasasigther basic
physical behaviors while using very large matrix arrays megh diagrams. In recent
years, the finite element method has been used to obtain the sototiangariety of
engineering problems. A few applications of finite element rvogl¢hat have been used

for engineering research are subsequently illustrated.

Li et al. (2001) presented a quadratic finite element considénmgrinciple that the
local displacement fields of the elements are compatible thié global displacement
field of the corresponding systems by using generalized degréesddbm (GDOF) and
a quadratic finite strip with GDOF. They developed a glokalldcement field based on
guadratic B-spline functions and created local displacement fighd $or the elements.
Therefore, they formed models for the finite elements and fatitps corresponding to
the GDOF by rearranging the local displacement fields ahehs and strips to be

compatible with their corresponding global displacement fieldshéir study, several



numerical examples were provided for authenticity, simplicity aedsatility of the
element and strip in the analysis of thin-walled structures.alitieors determined that
the finite element and finite strip with GDOF can handle inconnee® in the analysis
of beams, plates and other structures when the thickness changedition to handling
such problems, the authors also determined that the finite elemefihiéadtrip gave
similar results with fewer degrees of freedom when compargdditional finite element

solutions.

Ozcan et al. (2008) presented three steel fiber-added reinfoooedete models which
were analyzed experimentally and numerically with a finilement analysis. They
created a finite element model using ANSYS. The authors considagednode solid
brick elements in their finite element modeling. Experimentsh dend finite element
analysis results were compared. Figure 2-1 is given agduairation for comparison of
experimental research and finite element modeling. As a re$ulheir study, the
experimental data and finite element modeling gave very claadtgein terms of
deflections and stresses at the center line along with iniiglpaogressive cracking,
failure mechanism and load, deflections and stresses at thale®zotion point and

decompression.
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Figure 2-1: Crack Distributions at the Ultimate Load Step (Ozcan, 2008)

2.2 Structural Dynamics

Incorporation of the dynamic response of structural systems fintteaelement model is
a natural extension of the numerical time-stepping methods formdgnanalysis.
Recently, many studies have considered this kind of “coupling” of a ffiBgram and

structural dynamics models. A review of some of these studies is provided herein.



Du et al. (1992) considered a three-dimensional elastic beam watbirary and large
moving base with six degrees of freedom by creating a gefn@tal element structural
dynamics model. In their study, six degrees of freedom ob#aen base may include
either a particular arbitrary motion of the base or the cougintpe beam with other
structures. The beam can be pre-twisted and has a mass ckatiefroim the elasticity
center. In the study, the authors derived the equations of motion usipgrtbipal of
virtual work in the finite element analysis. To simplify thelgsia, the authors combined
the beam inertia at the end nodes of each element. At the conadfishenstudy, it was
determined that the model provided flexibility because of the coitndamaf the finite
element method and arbitrary base motion variables that were iniseuilti-body
dynamics and a fundamental element to solve the dynamic problerotgatifg beam-

like structures.

Cerioni et al. (1995) presented a finite element model that a@abte of analyzing the
dynamic nonlinear behavior of unreinforced masonry panels in a betrégls field by
using a non-conforming quadrilateral element. The study derived dbdibaum
equations including the inertial and damping actions by a dirgetbststep integration
procedure in the time domain known as Newmark’s method. The resriéscampared
with experimental results in terms of displacement, velocitgelaration, strain and
stress. The comparison of the results indicated good performanaenigotfor non-
conforming quadrilateral elements but also time-dependent and nondinalyses. In
addition to these results, the model provided a very simple, computbtienahomical

and convenient analysis of complex structural problems.



Mermertas et al. (1997) introduced a curved bridge deck to examenealynamic
interaction between a vehicle that is assumed to have four-degréeeddm and a
curved beam. The finite element method was used to model the curvecsmamed to
be simply supported neglecting any damping of the structure. The swatlsorapplied a
multi-predictor-corrector procedure in conjunction with the Newmasthod in the
solution of the resulting equations of motion. The authors determinedithspan
deflection of the bridge for different vehicle speeds and varydg of curvature for the

curved deck.

2.3 MATLAB Usage in Structural Dynamics

The usage of computer programs to use the finite element method andcalitimae-
stepping methods for the structural dynamics has become increasingtyainipo recent
years. Advances in computer technology allow even simple compystens to model
very complex systems with ease and efficiency. A popularanogn research studies is
MATLAB. This program can be utilized very easily to accosiplboth a finite element
analysis and structural dynamics analysis due to its fyenahtrix manipulations.
Several recent research studies have considered MATLAB andrindyrtner outlined

here.

Kiral et al. (2008) presented a fixed-fixed laminated compds&tan that was subjected

to a concentrated force traveling at a constant velocity tordiete the dynamic behavior

10



of a beam. The authors used classical lamination theory in ordeedte ca three-
dimensional finite element model. In addition, the Newmark integrati@thod to
compute the dynamic response was implemented in MATLAB. Theardic
magnification, defined as the ratio between the dynamic anad sliaplacements, was
determined from their study. As a result of the study, it determined that the load
velocity and ply orientation may affect the dynamic responsefisignily. It was also
determined that if the total traveling time is equal to tre¢ hatural period of the beam,

the maximum deflection occurs at the mid-point of the beam.

Bozdogan et al. (2009) demonstrated an approximate method using a continuum
approach and transfer matrix method for static and dynamic sasalgf multi-bay
coupled shear walls. The authors assumed the structure systesarabnach beam and
thus wrote the differential equation whose solution gave the shape funfdroaach
story of the sandwiched beam. The system modes and periodsdrasieel boundary
conditions and story transfer matrices, found by the shape functiansthen be
calculated. Using MATLAB, a computer program was written tévesmumerical
examples to show the reliability of the method used. Results wamgpared with
previous work done in the literature that was in good agreement. Thh@rsastggested

that their method is appropriate to use on a wide range of structural systeratepyslic

11



CHAPTER Ill

FINITE ELEMENT THEORETICAL DERIVATIONS

3.1 Introduction

The primary objective of this study is to develop a finite elenasrdlysis program
coupled with a structural dynamics response modeling program tondetethe dynamic
response of a structure due to a dynamic load. The use of tleediament method,
however, influences the dynamic response of the structure. Ayafiéihite elements
may be chosen for the analysis, each having its advantages addadisges. As such,
one element is not always superior to another with respect to any givensan@lftein, it
is the experience of the analyst that determines the appgeofinge element to be used
in the analysis. The purpose of this study is not to determingpheiateness of the
finite element method chosen. In addition, there are also ayafistructural dynamic
response algorithms that can be used to determine the respons¢rudtare due to a
dynamic load application. As such, it is also not the purpose oétidy to determine
the “best” algorithm to be used for determining the dynamic respaindee structural
system. Rather, this study seeks only to combine the theoretical developmentrofehe fi
element method with an approach for determining the dynamictstali response into a

seamless computer application that can be expanded for future use.

12



To develop the coupled finite element/structural dynamics prograranderstanding of
the theoretical development of both topics is necessary. Finiteels are the basis for
modeling the structural system into a set of discretized ptee¢san be assembled into
a set of structural equations. The structural dynamicsitdgorcan then analyze these
structural equations at discrete points in time due to a deflgedmic loading. The
combination of these two procedures produces displacements of theratrsigstem as a
function of time. In the discussion to follow herein, the theoretiealelopment will
center on these topics. Included in these discussions will be faionglaof element
matrices, derivations of finite element method equations, dynanalysis procedures
and solution techniques which were used while developing the coupleddi@itent

analysis/structural dynamics program.

3.2 Interpolation and Shape Functions

The finite element method, at its most basic form, is a seintefpolations or
approximations of a dependent variable with respect to an independeableari
Unknown degrees-of-freedom (DOF) are utilized to ensure a smabled
approximation for a set of conditions. An interpolating polynomial witpeddent
variable¢ and independent variabkein terms of generalized DQt; can be expressed
in the form

¢ = Xioaix'ord = |X|{a} (3-1)

whereX and a can be written as vectors

13



1X]= [1xx?.. x"|and {a} = |aga; a, ... a, |7 (3-2)

For linear interpolatiom can be taken 1 and for quadratic interpolatiazan be taken 2.
The a; can be written in terms of nodal values (known locationg) aff ¢ for known
values ofx. The relation betweei; and the nodal values can be written as

{®.} = [Al{a} (3-3)
where each row ofA]is |X| calculated at the appropriate nodal location. From the
eguations above, substitution produces

¢ = INJ{®.} where|N] = [X||IA]™" = [N, N; ... ] (3-4)

In matrix |[N] an individualN; is represented as a shape function. In this study, the
bilinear rectangle (Q4) finite element is considered. Theeeflinear interpolation is
considered when generating the shape functions. That is to sdyetheeen two points

(x1, 1) and(x,, ¢,) on a linear line fotX| = |1 x| we can obtain

{22}= [A] {Zg} where [4] = 1 2] (3-5)

Inverting [A] and using equation 3-4,

(A= [ and vl = |22 22 (3-6)

x,—x1 L—1 1 X2—=X1 X2—X1

Equation 3-6 gives the shape functions of two points on a straighwhirod are called

N1 ansz.

14



Consider the general Q4 element shown in Figure 3-1. To find the fsimaiens of the

Q4 element, linear interpolation is made along the top and bottomteiddsain side

displacementi;» anduss Thus, in equation 3-5%, = —a and x, = a, so that
a-x at+x a-x a+x
Ui = Eul + E yUgz = Eull + Euﬁ (3-7)

Linear interpolation is then made in the y direction betweeandu,; as

b-y b+y
u=—u —Uu 3-8
op Wz T U (3-8)

Substitution of equations 3-7 into 3-8 yields= Y N;u; which gives the shape functions

of the rectangular Q4 element used in this study as

N= —(1-x)(1-y)
Ny = —(1+x)(1-7)
Ny = —(1+x)(1+7)
Ny= —(1-20(1+Y)

(3-9)

y
A
\/ a a N|
K a a 7
/
V4 V3
4 o
UZ.4 31Uus
b
> X
b
u; 11 21 u
Dy , S
Vy V2

Figure 3-1: Q4 Finite Element Nodal Degrees of Fezlom
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A similar procedure is repeated for the DOF in the y directidamely, these DOF are
Vi, Vo, V3 andvy.  Similarly, the same shape functions given in equation 3-9 are found
the shape functions in thg-direction. Therefore, the same interpolation, or

approximation, is made in both thké€or u) andy (or v) directions.

3.3 Formulation of Element Stiffness Matrices

The principal of virtual work is used to obtain element stiffnesgrix for the Q4
element shown in Figure 3-1. This is appropriate for commonly use@migmvhich are
based on interpolation of displacements from nodal DOF. The prirafipattual work
states
{8} {o}dV = [{6u}T {F}dV + [{6u}T {®}dS (3-10)
where {6¢},{F}and {®} represent the virtual strains produced by the Vvirtual
displacements, body forces and surface tractions, respectively.digglacements |}
are interpolated over an element utilizing shape functions ssidhose provided by
equation 3-9 as
{u} = [N]{d} where {u}= |lu v w|” (3-11)
{e} = [6]{u} and {e} = [B]{d} where[B] = [0][N] (3-12)
where B] is the strain-displacement matrix. From equations 3-11 and 3-12
{6u}’ = {6d3}T[N]T and {5¢}T = {64} [B]" (3-13)
Substitution of equation 3-13 back into the statement of virtual work, equatiLO,

produces

16



{6d}"( [[BI"[E1[B]dV — [[B]" [El{eo}aV + [[B]"{gp}aV —
NTFdV— NT®dS =0 (3-14)
Equation 3-14 can be simplified to produce

[k]{d} = {re} (3-15)

As a result of the principle of virtual work, the element stiffnesatrix can be
determined as
= [[B]"[E][B]dV (3-16)
Specifically, for the Q4 element, equation 3-16 can be written as
= 7 [° [BI'[E][B]tdxdy (3-17)

For the case of two-dimensional plane stress analysis (aglemtiin this study), the

material constitutive matrix [E] is

0

0 -
(1-9) (3-18)

2

S R g

1
__E v
[E] - (1—‘!72) 0

In two-dimensional analyses, the thickneissn equation 3-17 is commonly taken as

unity.

3.4 Element Boundary and Loading Conditions

Before the solution of the structural equations, both boundary conditionbaaidg
conditions must be prescribed for the system. Without boundary conditiostsLtieiral
eqguations will not produce a single unique solution for the prescribdoh¢gpeonditions.

As such, the structural system will have rigid body motions.h®it loading conditions

17



the structural equations will produce no displacements of the stalsttatem. Thus, it
is necessary that both boundary and loading conditions be prescribed &rutttaral

system. These conditions are prescribed at particular DOF of the strggsieah.

Boundary conditions, or support conditions, can be arranged by providing tlog ragier
stiffness to the related DOF to produce a prescribed displacemdfdr zero
displacement, the prescribed stiffness can be a numerically frarmber (several orders
of magnitude larger than the largest magnitude in the stiffnegsxjnsuch that a
relatively small displacement at that DOF is produced. The boymdaditions can be
applied to any DOF on the structure no matter its direction. Irptégent study, only
translational DOF are considered in the finite elements fere tare no rotational DOF)
and therefore only translational displacements are restrictéd respect to particular

support conditions such as a fixed-support, pinned-support, or roller-support.

Loading conditions are prescribed in a fashion similar to boundary/supguttions.

The load can be applied to the any DOF. The structural sysi@ynbe subjected to a
single loading condition or multiple loading conditions. As this stahsiders dynamic
loads, beyond the typical static load cases considered in a tijpitaklement analysis,

further explanation of the dynamic load is presented in Section 3.6.3.

18



3.5 Solution Techniques

Equation 3-17 is integrated over a rectangular surface as giveRigure 3-1.
Numerically, however, to integrate this equation is cumbersome areffioognt. Thus,
integration is achieved using Gauss Quadrature. Gauss Quadmatar numerical
approximation of the integration by use of simple algebraic eqeattmaluated at
specific points. To use Gauss Quadrature, however, the elemenbaniastnulated in
the isoparametric space. The use of the isoparametric spmwuifies that an
isoparametric element is used rather than the physical mleniéus, the integrands in

the integration formulas are expressed as functiorgsaafl n rather tharx andy. For

the functiongd = @(¢, n), the Quadrature rule is given as

1= [0 [ 6Gndgdn = ;% W,We(5n) (3-19)
where W; andW; are weighting factors for each Gauss poiandj. The weighting
factors for two-point Gauss Quadrature, as used in this studydéoQ4 element, are

taken as unity.

For the Q4 element shown in Figure 3-1, the individual isoparametric shape fucetions
simply be determined from equation 3-9 by assigrang 1,b = 1,x = ¢ andy =g
producing
Ni=;1-HA-n)
Ny = (1+HA -7

Ny = (1+HA+7)
Ny= 21— +n)

(3-20)
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Since the isoparametric Q4 element is not in the same coordiysitan as the physical
Q4 element, a mapping function is needed to relate the two coordysiéens. The
Jacobian matrix is used to accomplish this mapping. The Jacobiar imatiscale factor
that multipliesdédy to produce the physical area incremaxdy and is expressed as (for
the Q4 isoparametric element)

X1 N
—(1_77) (1_77) (1-}—77) —(1+77) 2 Y2 _ J11 ]12](3_21)

-(1-8) -(1+9 A+ A-9J|*s rs 21 J22
X4 YVa

=

U=

Thus, the element stiffness matrix for the Q4 isoparametric element is then

[k = [[[BI"[ENB] t dx dy = [, [1,[BI"[E1[B] t] d¢ dn (3-22)
By substituting equation 3-22 into equation 3-19, the integration can be nalyeri

calculated using Gauss Quadrature.

Following the determination of the stiffness of each element iririite element mesh,
the system stiffness must be assembled. Based on theesmemigof the finite element
mesh, the stiffness for each element corresponding to partsystem DOF is “fed” into

the system stiffness corresponding to the same system O@Is. process, called the
assembly process, is a simply a mapping technique relatinp@#ecorresponding to

each element to the DOF of the system.
After assembly of the elements into the system equations tringtusal equations are

then in the form that can be solved. Gauss elimination is used totkehstructural

equations for given boundary and loading conditions. In Gauss eliminatiorioequa
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[KK{D} = {R} are solved for {D}, the displacements, by reducing] to upper triangular

form and then solving for unknowns in the reverse order by back substitution.

3.6 Structural Dynamics

An integral part of this study is the incorporation of a structdsalamics response
algorithm into the finite element method. These two coupled methddgraduce a

seamless method by which to analyze a structural systeny tisnfinite element
method, under an applied dynamic load(s) for a specified periochef tAs a result, the
response of the structural system as a function of time wikebermined. The following
sections explain the theoretical development of the structural dgmamethodology

used in this study. Structural dynamics derivations and solutibnitpes are outlined
briefly. The equations are derived for time-dependent loads. Tidy sinly considers
undamped structures, thus, the formulation of damping is not presentadsatakén as
zero in all equations. The following sections introduce the thealatkplanations of

structural dynamics that were used in the development of the coupled computamprogr

3.6.1 Equation of Motion

The equation of motion is the basic and fundamental part of structymamics. All

formulations are derived based on the equation of motion in structymalmics. The

equation of motion is generally given as

mi + cu + ku = p(t) (3-23)
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The right side of the equation is the time dependent f@fte, On the left side of
equation 3-23m represents massrepresents damping,represents stiffness andu, U
represent displacement, velocity and acceleration, respectitielyoyerdot represents a
time derivative). The structure system, which has multiplé&8@s of course considered
in this study. The specific number of DOF depends on the fireteezit model of the
structural system. As a result, all variables in equation 3-83nmatrices or column

vectors of size related to the number of DOF for the system.

3.6.2 Formulation of Element Mass Matrices

The formulation of the element mass matrix is based on the lwvtrk principal and is
similar to the formulation of the element stiffness madsxdiscussed in Section 3.3. The
work done by externally applied loads is equal to the sum of the vimdrized by
inertial, dissipative, and internal forces for any virtual disphaent. For an element
volume V and surface S
JBWT(FYaV + [{6u) (®}dS + T, (6ul’ (p);
= J({ou}Tpli} + {6u} clu} + {8e} {o})av (3-24)

Where{F} and{®} are prescribed body forces and surface tractigrnis,and{éu}; are
prescribed concentrated loads and their corresponding virtual disglatsemis mass
density anct is the damping coefficient. Following Section 3.3, the nodal displacement
nodal velocities, nodal accelerations, and strains are approximated by

{u}= [NI{d} f(u}= [Nl{d} {u}= [N{d} {e}= [BHd} (3-25)

Substitution of equation 3-25 into equation 3-24 produces the virtual work expression
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{6d}"(f pINIT[N]av{d} + [c[NIT[N]av{d}+ [[B]"{c}dV —
NTFaV— VT dS— i=1npi=0 (3-26)
The first integral in equation 3-26 provides the element mass matrix as
[ml = [ p[NI"[N]aV (3-27)

For two-dimensional analysis, equation 3-27 yields

[m] = [°, [* pINI"[N]tdxdy (3-28)

Following the procedure for assembly of element stiffness matoxthe system matrix,
the element mass matrix for each individual element is asedmbthe same procedure.
The DOF for the mass and stiffness matrices are identi¢alus, from a numerical
perspective, the element stiffness and mass matrices cassbmbled into the system

stiffness and mass matrices simultaneously.

3.6.3 Dynamic Loading Conditions

There are many types of dynamic loads from a realistgppetive. In this study, several
common idealized dynamic loadings are considered. Namely, thésgeinice harmonic
loading, the impulse loading and the step loading. It should be noted, hothevehe
MATLAB program written as a consequence of this study can hamglaiser-input for
the dynamic loading. The user only has to provide the value dddldeat specified time
intervals, or sampling points. These three idealized loads arelodgn based on their

commonality in structural dynamic simplifications.
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Harmonic loading is a function of the sine or cosine functions andgigtion is in
general

p(t) = pysinwt or pycoswt (3-29)
wherepg is the amplitude or maximum value of the force and its frecue is the
exciting frequency or forcing frequency. Figure 3-2 providesxamele of a harmonic
loading. Examples of a harmonic loading includes wind driven loadingroctiges,

earthquake (highly idealized) loading, and vehicular motion on bridges.

Amplitude,
Po

N\

Period, T=211/W
Figure 3-2: Harmonic Loading

A very large force that acts for a very short time but &itime integral that is finite is
called an impulsive force. In general, an impulsive force is defined by

p(t) = 1/¢ (3-30)
with a time duratiorz starting at the time instabt 7, also called the time lagigure 3-
3 is an illustration of an impulse loading. Examples of an impulsiad primarily

include blast loadings such as those due to detonation of blast devices.
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1/e

| t »iee
Figure 3-3: Impulse Loading

Finally, another typical dynamic loading is a force that jurapddenly from zero to
magnitudep, and stays constant at that value is called step force. nergethe step
loading is defined by

p(t) = po (3-31)
Figure 3-4 provides an example of an impulse loading that jumips neagnitudep, at
time 0 seconds as indicated. Examples of a step loading includadtlen application

of a full load rather than being applied gradually over time.

»
>

Po

Figure 3-4: Step Loading
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3.6.4 Numerical Integration

There are several numerical integration methods for lineaeragsto numerically
integrate the equation of motion previously defined as equation 3-28. rivethods for
the purposes of this study, initial displacements and velociteetaken zero (the system
is initially at rest in an underformed position) gid is known at all time intervals The
aim of numerical integration is analyzing the system ovee imervalsAt. Some of the
numerical integration methods, that are called time-steppinigoti&tare interpolation of

excitation, central difference method and Newmark’s method.

Interpolation of excitation uses recurrence formulas. It can befasathall At and for
linear systems. In addition, this method is suitable for singl€& Bgtems but it is not
appropriate for multi DOF systems. Central differencahous are based on finite
difference approximations of the time derivatives of displacemealocity and
acceleration. Solution at;,; which represents the displacement at the step is
determined from the equation of motion at time stépurthermore,u; andu;_; must be
known to find the displacement at time stef, u;.;,. Newmark’s method, used in this
study, is a family of time-stepping methods based on the darafii;,,. A detailed

discussion is presented in the next section.
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3.6.5 Newmark-Beta Solution Technique

Newmark’s technique, also known as the more general Newmaak-Betution
technique, is based on the following equations
Uipr = W+ [(L—p)At]i; + (YA (3-32)

Uipr = w + (AU + [(0.5 = B)(At)?]i; + [B(AL)?[liz4q (3-33)
The parameter$ and y define the variation of acceleration over a time step and
determine the stability and accuracy characteristics aietttenique. Typical selection of
y is 1/2, andp can vary between 1/4 and 1/6. For the average acceleratibndnased
in this studyg is taken as 1/4. All equations are matrix equations for mult BSis the
case in this study. The Newmark-Beta solution procedure can enped step by step

for linear, multi DOF systems.

Initial conditions are defined as, = u(0) and ©t, = u(0) representing the initial
displacement and initial velocity, respectively. Initial cédtions are only calculated one

time and they are presented in equations 3-34 thorough 3-37 as

Solving for the initial acceleratioii;
muo = pO - Cuo - kuo (3'34)
After selectingt and the Newmark-Beta parametefsandy the effective stiffness of

the system can be calculated as

k=k+-Lc+ —m (3-35)

Calculation constants, andb, for use at each time step are calculated as
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a=—m+ Lc (3-36)

1

b=2ﬁ

m + At(% — 1)c (3-37)
For each time step, equations 3-38 thorough 3-42 are be repeated timg gteps are
done. The effective force at time siap then calculated as

Solving for the change in displacement during the timeAtgjis then

kau; = Ap; (3-39)

During the same time step, the change in velocity and the change in amelE@also

o= Y Ay — Yo — i -
Au; = ﬁAtAul 5 Ui + At (1 Zﬁ) U; (3-40)
. 1 1 . 1 ..
Aul- = m Uu; — mui - iui (3-41)

Finally, updating the displacement, velocity and acceleratioednund relative to the
previous position, velocity and acceleration as
Uiy = U + Ay
Uipr = U + Aty (3-42)
Ujpq = U; + Al
Repeating these calculations, equations 3-38 through 3-42, the displagevatatities

and accelerations can be found for discrete time points for the structurat.syste
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CHAPTER IV

CASE STUDIES

4.1 Introduction

Case studies are provided to illustrate the capabilities of tR€LMMB FEA program.
This code has one main program file, one input file and multiple subesutd analyze
the structural system. Material properties, geometrical pregefioundary conditions,
loading conditions and more can be easily defined by the user in thefiiepot the
MATLAB code. The case studies all consider two-dimensional myeely loaded
beams modeled using a finite element mesh of Q4 elements. Tontahérprocedure
and accuracy, a basic example is solved by hand in Appendix B ofstinfy.
Additionally, the main program and input file of the MATLAB code i®pded in

Appendix A of this study.

Table 4-1 shows the beams properties that are used in the fostwdiss E represents
modulus of elasticityy and p represent Poisson's ratio and the mass density of the beam,
respectively. In the first case study, the beam is fixethealdft end. The second case
study considers a beam that is simply supported. Finally, the third and dasetlstudies

both consider continuous beams that are supported at the left end, the right end, and at the
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midpoint. The geometry of the beams, boundary conditions and loading condigons a

provided with the case studies.

Modulus Beam Beam
of Poisson’'s Mass Density  Number of Number of  Type of Lenath  Debth
Elasticity Ratio (Ibsfin®) Elements Nodes Loading ny =P
(psi) (in) (in)
Casel 4.35(1) 0.15 0.0868 48 65 Harmonic 144 12
Case2 4.35(8) 0.15 0.0868 48 65 Impulse 144 12
Case3 4.35(f) 0.15 0.0868 57 80 Step 240 12
Case4 4.35(8) 0.15 0.0868 57 80 Multiple 240 12

Table 4-1: Case Studies

As seen in Table 4-1, four types of loading cases are considenedsystem is un-
damped for all cases. Because two-dimensional analyses arderedsieach node has
two degrees of freedom in tikxeandy directions while the beam width is taken as unity

for all cases.

The dynamic analysis duration is 10 seconds, the timeAstisptaken as 0.1 seconds and
initial displacements and velocities for all DOF are zertinaé = 0 seconds. With the
given time duration and time step, each case study has 100 #@p®etstsolve in the
dynamic response analysis. The MATLAB FEA program has the dapdbiproduce
movies of the displacements during the time duration of the dyriaadog. As it is not
possible to place a movie in a text format, select “snap-sihat& been provided for
each case study to illustrate the dynamic response of tletustl system. These figures
serve only as illustrations as to the full capabilities of th&TMAB FEA program

developed as a consequence of this study.
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4.2 Harmonic Loading

A harmonic loading is applied to the first beam which is camgil®eam. The illustration
of the beam is given in the Figure 4-1. The applied load F represents thenltaioad as

it is applied at the right side of the beam. The properties ob¢laen are provided in

Table 4-1 as Case 1.

L =ydeq—>

Length = 12'
Figure 4-1: Case Study 1 — Cantilever Beam

The harmonic load is a sine function and is illustrated in Fig@eThe harmonic load is
applied between 0 and 10 seconds with sampling points taken at intd@r@alsseconds.

The magnitude of the load varies between 1800 Ibs and -1800 Ibs.
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Harmonic Load

1500

1000

500

Load [lbs]

-500

-1000

-1500

| | | | | | | | J
0 1 2 3 4 5 6 7 8 9 10

Time [seconds]

Figure 4-2: Case Study 1 — Harmonic Loading

As stated in Table 4-1, the beam is formulated with 48 rectan@4aglements having
130 DOFs. lllustration of the finite element mesh of the beashasvn in Figure 4-3.
Green circles indicate node numbering and red circles indétateent numbering in the
mesh. Figure 4-4 illustrates the displacement of the beandeoing a mesh of Q4 finite
elements. Sub-figures (a) — (f) provide a representation of ¢teergenerated at discrete

time intervals as indicated on each sub-figure.
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Finite Element Mesh

14+

12

10+

[u] yadep

0

80 100 120 140
length [in]

60

40

20

Figure 4-3: Case Study 1 — Finite Element Mesh

1 seconds

Dynamic Displacements / Time

[u] yadap

length [in]

Figure 4-4(a): Case Study 1 — Displacements
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Figure 4-4(c): Case Study 1 — Displacements
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Figure 4-4(f): Case Study 1 — Displacements

As seen from the sub-figures of Figure 4-4, the free end of the ineaes up and down
due to the harmonic loading. Comparison of hand calculations of thdystede
displacement response and computer results are presented in AppemdDFB/8 at

node 39 is considered while comparing the results of displacements in Appendix B.

4.3 Impulse Loading

An impulse loading is applied to the 12ft long simply-supported bedra. |[dad is

applied at the middle of the beam. The illustration of the beashawsn in Figure 4-5.

The applied loadF represents the impulse load in the figure. The properties difeidn®

are provided in Table 4-1 as Case 2.
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Length = 12'
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g \(§A

Figure 4-5: Case Study 2 — Simply-Supported Beam

The impulse loading, as shown in Figure 4-6, is applied between 0 anddHdisevith
sampling points taken at intervals of 0.1 seconds. At time = lérpelse loading

immediately jumps to a value of —2500 Ibs. At all other titn&se loading is zero.

x 10° Impulse Load

-1.5+

Load [lbs]

-0.5

0 I | | | | | | I I J
0 1 2 3 4 5 6 7 8 9 10

Time [seconds]

Figure 4-6: Case Study 2 — Impulse Loading
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As stated in Table 4-1, the beam, which has 130 DOFs, is constructed withaig)uésat
Q4 elements. lllustration of the finite element mesh of thenheashown in Figure 4-7.
Figure 4-8 illustrates the displacement of the beam considaringesh of Q4 finite
elements. Sub-figures (a) — (f) provide a representation of thveergenerated at discrete

time intervals as indicated on each sub-figure.
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Figure 4-7: Case Study 2 — Finite Element Mesh
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Until time = 1 second there is no displacement at the beanpasted. At that time, the
impulse load is applied to the beam. Because the system is undafigretl, second the



beam starts oscillating up and down and goes forever with thenmaxdisplacement at

the midpoint as seen from the Figure 4-8 and its subfigures.

4.4 Step Loading

A step loading is applied to the third case study. The 20ft long baam pin support at
the left end and roller supports at the middle and right end. The doadated 5 feet
from the right side of the beam. The illustration of the beashasvn in Figure 4-9. The
applied load F represents the step load in the figure. The propeftibe beam are

provided in Table 4-1 as Case 3.

M

L = yideg—3

Ay Ay
10 X 5' X 5'
Length = 20

7~ 7T§

A A2

Figure 4-9: Case Study 3 — Continuous Beam

The step loading, as shown in Figure 4-10, is applied between 0 anddiisevith

sampling points taken at intervals of 0.1 seconds. As with the imfmdging of Case 2,
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there is no load applied before the time reaches 1 second.sAwiht in time, the value

of the load jumps suddenly to —20000 |bs and stays constant for the duration of time.

x 10" Step Load

-1.81

-1.6+-

1.4+

-1.2+-

Load [lbs]
[
T

-0.8-

-0.6 -

0.4

-0.2+-

0 I I | I I I | I I |
0 1 2 3 4 5 6 7 8 9 10

Time [seconds]

Figure 4-10: Case Study 3 — Step Loading

As stated in Table 4-1, the beam is comprised of 57 rectar@dlatements having 160
DOFs. lllustration of the finite element mesh of the beamh@ve in Figure 4-11.
Figure 4-12 illustrates the displacement of the beam consydarimesh of Q4 finite
elements. Sub-figures (a) — (f) provide a representation of ¢tveergenerated at discrete

time intervals as indicated on each sub-figure.
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Figure 4-12(a): Case Study 3 — Displacements
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Dynamic Displacements / Time =10 seconds
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Figure 4-12(f): Case Study 3 — Displacements

Because of the step load, the beam displacement never becomés/a gisplacement
(with respect to the coordinate system used) between the soifgrorts and never
becomes a negative displacement between the pin and roller suppoete résults are

as expected.

4.5 Multiple Dynamic Loads

The final case study considers the same beam that was usled floird case study when
the step loading was considered. However, the loading conditiorieeedif in this case.

F1 represents a harmonic load dfdrepresents a step load. The harmonic load is located
5ft away from the pin support and the step load is located 5ft &emaythe left end of

the beam as shown in the Figure 4-13.
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Figure 4-13: Case Study 4 — Continuous Beam

The harmonic load is applied to the beam from time = 0 sscontd 10 seconds and its
magnitude varies between -15000 Ibs to 15000 Ibs. At time = 4 seconds, suddenly
another load is applied, the step load, and it stays constant for thiemofaime with a

magnitude of —20000 Ibs. These two time-dependent loads are shown the Figure 4-14.
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Figure 4-14: Case Study 4 — Multiple Loading

As stated in Table 4-1, the beam is comprised of 57 rectangulale@#nts and having

160 DOFs. The finite element mesh of the beam is illustratéloeifrigure 4-15. Figure
4-16 illustrates the displacement of the beam considering a mé&3th tiite elements.

Sub-figures (a) — (f) provide a representation of the moviergtatk at discrete time
intervals as indicated on each sub-figure.
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Dynamic Displacements / Time =9 seconds
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Figure 4-16(f): Case Study 4 — Displacements

As shown in Figure 4-16, the influence of the step load when apgiligde = 4 seconds
is readily distinguishable. Before the application of the steg, Idesplacements are
limited due to the harmonic load. However, clearly the displaceafehe beam before
4 seconds is harmonic in nature as illustrated. After a peritchefafter 4 seconds, the

displacement again begins to resemble a harmonic pattern as expected.
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CHAPTER V

CONCLUSION

5.1 Summary and Conclusions

The primary objective of this study was to develop a MATLABeblasomputer program
coupling the finite element method and structural dynamics sinalgchniques. The
primary reason for using the finite element method is its sogmf advantages in
engineering problems. It is a powerful solution technique foewfftial and integral
equations in complex engineering problems. When combined with a satudymamic

solution algorithm, the capabilities of the two become very unique.

Theoretical equations are derived for both the finite element medhddstructural
dynamics during this study. Fundamentally, formulation of elemetticas, integration
techniques, boundary conditions, and time-stepping methods are discuss#teiand

equations are presented. These concepts are used to develop the computer code.

Several case studies are analyzed during this study witheditfeypes of dynamic loads

including harmonic loading, impulse loading, and step loading. Tloesks lare also

applied to a variety of different beams including a cantiléeam, a simply-supported
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beam and a continuous beam with three supports. Displacements and defbapes|

are found using MATLAB FEA program written as a consequence of this study.

This study presents a discussion of the finite element methoskrigtural dynamics
applications. It provides a basic understanding of the behavior of stlugystems under
different dynamic loads. The computer code, which is writteMATLAB, allows for

further flexibility not explicitly discussed in this study suchussng different material
properties throughout the structure, a variety of geometricgleshaf the structure,
varying types of loads, and multiple finite element types beyoad# element used in

the finite element mesh.

5.2 Recommendations

This study is open to development and further development is expectied fature.
Although currently it is limited to Q4 elements for beams, it can be expanded tcadva
finite elements and other types of structures (see Igbal, 2009)MAH&AB code is
written to be expanded to allow for the analysis of more coatglicstructural systems
utilized more advanced finite elements and finite elememdtations. Moreover, one
can develop this study in not only finding displacements, deformedssh&tpesses, and
strains but also other topics such as calculating fracturebitityr@r even reliability of

structures.

55



Although the computer code has good properties, it is also recommendéduktiea
meshing capabilities may be implemented in the MATLAB code. ddraputer code
covers linear programming for now. Therefore, the computer progtam be
incorporated with nonlinearity. If these modifications can be dtmg,computer code

can become a more powerful finite element analysis program.

Work done in conjunction with this study includes the incorporation of adsdiuee

element formulations beyond the Q4 element used herein (Igbal, 2009).
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APPENDIX A

MATLAB FEA PROGRAM

The Matlab FEA program that was developed during the coursesadttidy is provided
herein. First, the main FEA program (not containing the subaeaitsince the FEA
program is still under development) is provided. Second, the general iiepusdd to
setup an analysis is provided. Both of these files are Matiapt files and can be
executed in all versions of Matlab. To generate graphical outputuliheefsion of

Matlab is required.

Main Program

%
% Finite Element Analysis (FEA) Program to Deterenihe Structural and Thermal Response of Struc8ystems
% Written By: Muhammet Saglar & Rameez Igbal (A@dBy: Dr. Jonathan S. Goode)

% School of Civil and Environmental Engineering

% Oklahoma State University

%

%
%
% Begin Program

% Clear Variables and Settings
clearall

% Clear Screen
clc;

% Inhibit Warning Messages
warning(off','all’);

disp( );
disp(Finite Element Analysiy'

disp(Written by: Saglar/lgbal (Goodg)'

disp(School of Civil and Environmental Engineering'
disp(Oklahoma State Universi}y'

disp( ),
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disp( 0
disp(Running Analysis ...);
disp( );

% Begin Timer
tic;

%
% Pre-Processing Section
%

disp(Pre-Processing ..);."

% Call M-File for User Input Data from fea_input.m
disp(..... Obtaining Input ...);"
fea_input;

% Call M-File for Initialization of Variables frorfea_initialize.m
disp(..... Initializing Program ...);'
fea_initialize;

%
% End Pre-Processing Section
%

%
% Processing Section
%

disp(Processing ...);'

%
% Assembly Process

disp(..... Assembly Process .);.."

% Determine Element Property Matrices (ConstitytMass, Conducitivity)

[property_matrix_k,property_matrix_m,propertyatnix_t] =
fea_property_matrix(analysis_type_material, mateEahaterial_v,material_rho,material_t);

% Determine Gauss Quadrature Sampling Points anghtge
[gauss_points,gauss_weights] = fea_gauss_2aéele type);

% Initialize Global Index of DOF
index_global = zeros(edof,nel);

% Assemble System Matrices According to Analysis
if analysis_type ==5'

% Static Analysis

disp(.... ..... Static Analysis ..);."
disp(.... cooov oo Building Stiffness ..);.'

% Loop Through All Elements to Determine Systemiidas (Stiffness, Mass, and Conductivity)
% NOTE: Depending on the Analysis Type, Some Magi@/ill Not be Generated
forj = 1lnnel

% Call Sub-Routine to Extract Nodes for the j-terEént
[element_nodes,element_xcoord,elemenbryl] = fea_node_coordinates(j,nnel,node_conniggtiode_coord);

% Call Sub-Routine to Extract System DOFs for thte fElement
index = fea_index_dof(element_noded,ndef,edof);

% Save Index of DOF to Global Variable
index_global(:,j) = index;

% Call Sub-Routine to Generate Element Stiffnestrikla
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element_k =
fea_element_matrix_stiffness(element_type,gausatqgauss_weights,element_xcoord,element_ycoorgedioé property_matrix_
K);

% Call Sub-Routine to Assemble System StiffnessriMat
system_k = fea_element_matrix_assemsysefm_k,element_k,index,edof);

end
elseifanalysis_type ==D'
% Dynamic Analysis

disp(.... ..... Dynamic Analysis ..);."
disp(.... cccov .. Building Stiffness and Mass'); ..

% Loop Through All Elements to Determine Systemidas (Stiffness, Mass, and Conductivity)
% NOTE: Depending on the Analysis Type, Some Magié/ill Not be Generated
forj=1nel

% Call Sub-Routine to Extract Nodes for the j-tbrEént
[element_nodes,element_xcoord,elemenbryl] = fea_node_coordinates(j,nnel,node_conniggtiode_coord);

% Call Sub-Routine to Extract System DOFs for thte fElement
index = fea_index_dof(element_noded,ndef,edof);

% Save Index of DOF to Global Variable
index_global(:,j) = index;

% Call Sub-Routine to Generate Element Stiffnestika

element_k =
fea_element_matrix_stiffness(element_type,gausatqgauss_weights,element_xcoord,element_ycoorcedoé property _matrix_
K);

% Call Sub-Routine to Assemble System Stiffnessridat
system_k = fea_element_matrix_assemsysefém_k,element_k,index,edof);

% Call Sub-Routine to Generate Element Mass Matrix
element_m =
fea_element_matrix_mass(element_type,gauss_paintsgweights,element_xcoord,element_ycoord,nnélpedperty_matrix_m);

% Call Sub-Routine to Assemble System Mass Matrix
system_m = fea_element_matrix_assesydtm_m,element_m,index,edof);

end
end

% End Assembly Process
%

%
% Boundary and Loading Conditions

disp(..... Applying Boundary and Loading Conditions’);.

% Apply Boundary and Loading Conditions Accordinginalysis
if analysis_type ==5'

% Static Analysis

% Call Sub-Routine to Apply Boundary and Loadingn@itions
[system_k,system_f] = fea_system_boundanad(system_k,system_f,boundary_dof,boundary_dofoeal dof,load_dof val);

elseifanalysis_type ==D'
% Dynamic Analysis

% Boundary and Loading Conditions Must Be Applie@&ach Point in Time During the Dynamic Analysis
% See the Analysis Section Below
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end

% End Boundary Conditions
%

%
% Analysis

disp(..... Solving ....);

% Based on Analysis Type
if analysis_type ==5'

% Static Analysis
disp(.... ..... Static Analysis ..);."

% Solve System Equations for Static Displacements
system_d = system_k \ system_f;

elseifanalysis_type ==D'
% Dynamic Analysis
disp(.... ..... Dynamic Analysis ..);."
% Call Sub-Routine to Solve System Equations fand@wgic Displacements
[system_d,system_d_vel,system_d_acc,sys$tgymamic_time] =
fea_dynamic_analysis(system_k,system_m,boundanbalefdary_dof_val,load_dof,load_file,dynamic_del@dynamic_beta,dyna
mic_gamma,sdof);

end

% End Analysis
%

%
% End Processing Section
%

%
% Post-Processing Section
%

disp(Post-Processing ..);."

%
% Plot Generation

% Plot Finite Element Mesh
if plot_element_mesh =¥"

disp(.... Plotting Element Mesh .);.'

% Call Sub-Routine to Plot Finite Element Mesh

plot_handle =
fea_plot_mesh(proj_name,nel,node_coord,node_canitggiot_element_mesh_numbers,plot_element_mestle mumbers);

end

% Based on Analysis Type
if analysis_type ==5'

% Static Analysis
disp(.... Static Analysis ..));'

% Plot Static Displacements
if plot_static_displacement =¥'
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disp(.... ..... Plotting Static Displacements);..."

% Call Sub-Routine to Plot Static Displacements
plot_handle = fea_plot_static_displaeatfproj_name,nel,node_coord,node_connectivityesyst,index_global);

if plot_static_contour_displacement ==

% Call Sub-Routine to Plot Displacement Contours
plot_handle = fea_plot_static_disgiment_contour(proj_name,node_coord,node_conitg&ystem_d,sdof,nel);

end

end

% Determine Static Stresses and Strains for Plots
if plot_static_stress =% || plot_static_strain ="

disp(.... ..... Determining Static Stresses and Sirain);

% Call Sub-Routine to Determine Stresses and Stfeam Displacements

[system_stress,system_strain,gausstspa@ioord] =
fea_stress_strain(nel,nnel,edof,node_connectiatiencoord,index_global,system_d,property_matrixekent_type,gauss_points);

end

% Plot Static Stresses
if plot_static_stress =¥"

disp(.... ..... Plotting Static Stresses);..."

% Call Sub-Routine to Plot Static Stresses
plot_handle = fea_plot_static_stress(prame,nel,node_coord,node_connectivity,systemssauss_points_coord);

if plot_static_contour_stress
% Call Sub-Routine to Plot Stress Contours
[plot_handle] =
fea_plot_static_stress_contour(proj_name,nel,nas&rdenode_connectivity,system_stress,gauss_poiasd;
end

end

% Plot Static Strains
if plot_static_strain =="

disp(.... ..... Plotting Static Strains .);.."

% Call Sub-Routine to Plot Static Strains
plot_handle = fea_plot_static_strain{pname,nel,node_coord,node_connectivity,systeminstlauss_points_coord);

if plot_static_contour_strain
% Call Sub-Routine to Plot Strain Contours
[plot_handle] =
fea_plot_static_strain_contour(proj_name,nel,nodera;node_connectivity,system_strain,gauss_points.dg;
end
end
elseifanalysis_type ==D'
% Dynamic Analysis

disp(.... Dynamic Analysis ..);'

% Call Sub-Routine to Plot Dynamic Displacementsyid)
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plot_handle =
fea_plot_dynamic_displacement(proj_name,nel,noderdsmode_connectivity,system_d,dynamic_time,indé&ba);

disp.... ..... Plotting Dynamic Displacements);..."

%
% End Post-Processing Section
%

disp( 0
disp(Analysis Done ...);
disp( 0

% End Timer
analysis_time = toc;

disp([Total Time of Analysis,hum2str(analysis_time}second$);
disp( 0

% End Program
%
%

Input File

%
% Finite Element Analysis (FEA) - Input File

% Written By: Muhammet Saglar & Rameez Igbal (A@dBy: Dr. Jonathan S. Goode)
% School of Civil and Environmental Engineering

% Oklahoma State University

%

%
%
% Begin Input File

%
% Project Name

% Define Project Name
% NOTE: Automatically Saved Figures and Data W@l Broceeded with the Project Name
proj_name =est,

%
% Analysis Options

% Define Analysis Type

% Analysis Type Options:

% Input 'S' = Static Analysis

% Input 'D' = Dynamic Analysis
% Input 'T' = Thermal Analysis
analysis_type =5}

%
% Input Finite Element Mesh Properties

% Input Element Type

% Input 'Q4" for Bilinear Rectangular Element

% Input 'Q8' for Quadratic Rectangular Element

% Input 'CST' for Constant Strain / Linear TriaraguElement
% Input 'LST" for Linear Strain / Quadratic TriamguElement
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element_type %4}

% Input Node Coordinates (x and y coordinates) §Ndnits => Length]
node_coord=[ 0.0 0.0 ...;
120 0.0 ..;
240 0.0 ..;
36.0 0.0 ..;
48.0 0.0 ..;
60.0 0.0 ..;
720 0.0 ..;
840 0.0 ..;
96.0 0.0 ..;
108.0 0.0 ..;
120.0 0.0 ..;
0.0 120 ..;
12.0 12.0 ..;
240 120 ..;
36.0 12.0 ..;
48.0 12.0 ..;
60.0 12.0 ..;
720 120 ..;
84.0 12.0 ..;
96.0 12.0 ..;
108.0 12.0 ...;
120.0 120 J;

% Input Nodal Connectivity for Each Element (CCWirr Bottom-Left)
node_connectivity=[ 1 2 13 12.;
2 3 14 13..;

4
5
6
7
8
9
1

%
% Input Boundary Conditions

% Input DOF Constrained
boundary_dof = [1 2 23 24];

% Input Constrained DOF Prescribed Values [Noteéds+ Length]
% NOTE: For Dynamic Analysis, All Prescribed ValldsIST BE Zero (0)
boundary_dof_val =[0 0 0 0];

%
% Input Material Properties

% Material Properties
% NOTE: If the property is not being used, entézero)

% Modulus of Elasticity [Note Units => Force / Leh¢2]
material_E = 1e6;

% Poisson's Ratio [Unitless]
material_v =0.3;

% Mass Density [Note Units => Mass / Length”3]
material_rho = 1;

% Define Material Analysis Type

% Material Analysis Type Options:

% Input '1' = Plane Stress Analysis (2-D)

% Input '2' = Plane Strain Analysis (2-D)

% Input '3' = Three-Dimensional Anslysis (3-D)
analysis_type_material = 1;
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%
% Input Load Properties

% Static Loading (If Applicable)
% NOTE: If Static Analysis is not being considerBi) changes are needed

if strcmp(analysis_typ&) ==

% Input DOF Statically Loaded
load_dof = [18 20];

% Input DOF Statically Loaded Prescribed ValuestfNdnits => Force]
load_dof_val = [-500 -500];

% Dynamic Loading (If Applicable)
% NOTE: If Dynamic Analysis is not being considerdi® changes are needed

elseifstrcmp(analysis_typ®') == 1
% Input DOF Dynamically Loaded
load_dof = [44];

% Input Load Time-Series File Name [Note Units orde]

% NOTE: First Number Designates the Load at Tinfeseconds
% Column 1 -> n = DOFs

% Row 1 ->n = Load at Time Increments

load_file =load.dat’

% Input Time Step of Load Time-Series [seconds]
dynamic_delta_t=0.1;

% Define Newmark-Beta Parameters [Unitless]

% Average Acceleration Method => Beta = 0.25 & GaamrD.5 (Unconditionally Stable)

% Linear Acceleration Method => Beta = 0.16667 &baa = 0.5 (Conditionally Stable -> delta_t/ Tn&551)
dynamic_beta = 0.25;

dynamic_gamma = 0.5;

end

%
% Output Options

% General Plots

% Plot Element Mesh (Y or N)
plot_element_mesh"¥;

% Plot Element Mesh Options

% Display Element Numbers on Element Mesh Plot (X
plot_element_mesh_number¥'s

% Display Element Node Numbers on Element Mesh ®latr N)
plot_element_mesh_node_numbeis ;=

% Static Analysis (If Applicable)
% NOTE: If Static Analysis is not being considerBd) changes are needed

% Plot Static Displacements (Y or N)
plot_static_displacement¥;

% Contour Plots of Displacements (Y or N)
% NOTE: Must Plot Static Displacements to Plot ©on$
plot_static_contour_displacemenyts

% Plot Static Stresses (Y or N)
plot_static_stress'K’;

% Contour Plots of Stresses (Y or N)

% NOTE: Must Plot Static Stresses to Plot Contours
plot_static_contour_stressrs
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% Plot Static Strains (Y or N)
plot_static_strain #l';

% Contour Plots of Strains (Y or N)
% NOTE: Must Plot Static Strains to Plot Contours
plot_static_contour_strain&;

% Dynamic Analysis (If Applicable)
% NOTE: If Dynamic Analysis is not being considersi® changes are needed

% Movie of Dynamic Displacements (Y or N)
movie_dynamic_displacementy=;

% End Input File

%

%
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APPENDIX B
CONFIRMATION CALCULATIONS
Appendix B provides confirmation calculations of the element fornauabr the Q4
elements as well as a few select time intervalshferstructural dynamics response of the

structural system. These calculations were done by hand andcdhgrared to the

results developed by the Matlab FEA program as provided in Appendix A.
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Comparison of Hand Calculation and Computer Results - Case 1

Computer Results

Hand Calculation Results

DOF (in) (in)
ul -7.32E-48 0
u2 -2.69E-34 0
u3 0.003575 0.0036
ud -0.024134615 -0.0241
us 0.00715 0.0071
ué -2.69E-34 0
u7 0.007 0.007
u8 -0.000184615 -0.00018
u9 0.003575 0.0036
ulo -0.02405 -0.024
ull 0.00015 0.00015
ul2 -0.000184615 -0.00018

Comparison of the Hand Calculation and Computer Results - Case 2

Computer Results

Hand Calculation Results

DOF (in) (in)
ul -1.40E-32 0
u2 -2.69E-34 0
u3 -0.021 -0.021
ud -0.118 -0.118
us -0.028 -0.028
ué -0.376 -0.376
u7 1.40E-32 0
us -2.69E-34 0
u9 0.021 0.021
ulo -0.118 -0.118
ull 0.028 0.028
ul2 -0.376 -0.376
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Time

Step: t=0.1second t=0.2 second
Hand Calculation Computer Hand Calculation Computer
DOF Results Results Results Results
ul 0 2.29E-28 0 6.24E-28
u2 0 9.15E-29 0 3.37E-28
u3 -0.00028 -0.00028 -0.001 -0.00141
ud 0.00037 0.000374 -0.001 -0.00101
u5 0.00074 -0.00075 -0.003 -0.00342
ué -0.0059 -0.0059 -0.029 -0.02951
u7 0 -2.27E-28 0 -6.31E-28
u8 0 1.51E-29 0 2.27E-28
u9 0.00021 0.00021 0.001 0.00127
ulo 0.00042 0.000422 -0.0009 -0.00093
ull 0.00087 0.000872 0.003 0.003711
ul2 -0.0061 -0.00611 -0.0298 -0.02983
Time
Step: t=0.3 second t=0.4 second
Hand Calculation Computer Hand Calculation Computer
DOF Results Results Results Results
ul 0 -8.05E-29 0 -2.87E-27
u2 0 4.09E-28 0 -4.15E-29
u3 -0.003 -0.00365 -0.006 -0.00672
ud -0.011 -0.01184 -0.036 -0.03605
us -0.007 -0.00701 -0.009 -0.00935
ué -0.071 -0.0719 -0.121 -0.12166
u7 0 8.65E-29 0 2.87E-27
u8 0 3.02E-28 0 -8.43E-29
u9 0.003 0.003589 0.006 0.006715
ulo -0.011 -0.01178 -0.036 -0.03603
ull 0.007 0.007254 0.009 0.009488
ul2 -0.072 -0.07217 -0.121 -0.12177
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Comparison of Hand Calculation(Steady-State) and Computer Results

Hand Calculation
e Computer

Displacement [in]
o

-1.5

2.5

Time [seconds]

Note: The displacement response shown compares the steadhktats ©f the hand-
calculation only. The computer program results include both thdysgtate response
and the transient response of the system. As a result, some=dmagt, particularly at

the peaks of the steady-state response, is expected and confirmed in &e figur

98



VITA
Muhammet Ali Saglar
Candidate for the Degree of

Master of Science

Thesis: DEVELOPMENT OF A FINITE ELEMENT ANALYSIS PRGRAM FOR
STRUCTURAL DYNAMICS APPLICATIONS

Major Field: Civil Engineering
Biographical:

Personal Data:
Born in Balikesir, Turkey, August 221984, son of Remzi Saglar and Asiye

Saglar.

Education:

Graduated high school from Ataturk Anatolian, Ankara, Turkey in June 2002;
received Bachelor of Engineering degree in Civil Engineefingh Istanbul
Technical University, Istanbul, Turkey in June 2007. Completed the
requirements for the Master of Science in Civil EngineerinQlkdahoma State
University, Stillwater, Oklahoma in July, 2009.

Experience:

Employed by Oklahoma State University as a research adsisien January
2008 to July 2009. Employed by Tekfen Corporation as a civil engineering
intern from May 2006 to July 2006. Employed by Yuksel Construction
Corporation as a civil engineering intern from May 2005 to July 2005.

Professional Memberships:
American Concrete Institute, American Institute of Steel Construction.



Name: Muhammet Ali Saglar Date of Degree: July, 2009
Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: DEVELOPMENT OF A FINITE ELEMENT ANALYS PROGRAM
FOR STRUCTURAL DYNAMICS APPLICATIONS

Pages in Study: 107 Candidate for the Degree of Master of Science
Major Field: Civil Engineering
Scope and Method of Study:

The finite element method is a powerful method to find solutions mgineering
problems. Structural dynamics is an important concept for undensgabéhavior of
structures under different types of dynamic loads. The combinafiotnese two
concepts into a seamless, integrated computer program to analyzirat systems
considering dynamic, time-dependent loads provides tremendous capabithiesspect
to numerical analysis. The implementation of the theoreticaéldpment of both
concepts into a fully-functional MATLAB computer program providée fprimary
objective of this study.

Findings and Conclusions:

The development of the MATLAB computer program to analyze a stalcsystem

using the finite element method incorporating structural dynarsjgorese due to time-
varying loads was accomplished. Several case studies weenia®@ that illustrate the
capabilities of this program with respect to determining the respohshe structural
system. In the current study, bilinear quadrilateral (Q4) isapatrec finite elements
were used to construct the finite element mesh of the staliciystem. The finite
element method was then integrated with a numerical time-steppethod, the

Newmark-Beta method, to determine the response of the strusistm due to a
dynamic loading.

ADVISER’S APPROVAL:__ Dr. Jonathan S. Goode




