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INTRODUCTION

Up to affine conjugacy, we describe rank two affine groups which act prop-

erly discontinuously on Rn (primarily n = 2, 3) in terms of “coordinates” of

generators. In dimension two this coincides with all affine structures on the

torus, S1×S1. Any such two-dimensional group G acts as “translation” along

two transverse families of curves that each foliate the plane. A parameter

space of normalized (two-dimensional) groups is defined and can be identified

with R2 (where different points need not correspond to distinct groups), and

a continuous homomorphism, Res : R2 → R characterizes those groups that

are isomorphic to Z ⊕ Z and act properly discontinuously. In our main re-

sult we find necessary and sufficient conditions for two properly discontinuous

rank two affine groups to be affinely conjugate. Consequences include (i) Each

conjugacy class in the parameter space can be identified with the left cosets

of H in GL(2,Z), where H is the subgroup of upper triangular matrices; (ii)

Any neighborhood of a point of Ker(Res) contains a representative from each

conjugacy class of properly discontinuous G ∼= Z ⊕ Z (equivalently, for every

affine structure of the torus there corresponds a point that lies in this open

set); (iii) There are an uncountable number of conjugacy classes of properly

discontinuous rank two affine groups (in all dimensions n ≥ 2). If isometries

are considered, there are a finite number of (affine) conjugacy classes (this is

one of the Bieberbach theorems). Any two properly discontinuous affine groups

G ∼= Z ⊕ Z are conjugate in the larger group of quadratic polynomial maps:

this is shown by first conjugating G by such a map to a translation group by

“straightening out” the curves mentioned above, and then applying the fact
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that any two translation groups (generated by independent translations) are

affinely conjugate. See also pp. 13-14 in [F-G].

In dimension three, if G ∼= Z ⊕ Z acts properly discontinuously, then

Det(A) = Trace(A) − 1 for each generator α = [A, a] ∈ G. If in addition

the matrix part of α has characteristic polynomial (x− 1)3, then G acts as a

combination of “translation” along curves and “shearing” along surfaces. A

parameter space of such α (normalized) is defined, and two elements of this

space produce a properly discontinuous Z⊕ Z action exactly when one of the

elements does not lie on a curve kept invariant by the other (here as in dimen-

sion two, the parameter space is essentially the same as the space upon which

the groups act). This generalizes the Residue.

Tartar and A. Yakir (1997) characterized affine conjugacy of single abstract

affine maps using a formula that resembles the Rank-Nullity theorem for linear

maps. See p. 156 in [T-Y].

In 1953 N. Kuiper showed that any 2-dimensional properly discontinuous

affine group contains a finite-index subgroup that sits inside one of three par-

ticular affine groups. See p. 317 in [A].

In summary, we answer the following questions:

(a) When do α, β ∈ Affine(R2) generate a rank two properly discontinuous

group?

(b) When are two such groups affinely conjugate?

(c) How many conjugacy classes are there?

(d) How are these conjugacy classes distributed in the parameter space of

groups?
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(e) Can the characterization in (a) be generalized to any dimension n?

1. Notation

(i) ei: The ith unit vector (point) of Rn

(ii) Span(b): The set {tb : t ∈ R} ⊆ Rn

(iii) span(b)⊥: {x ∈ Rn : x � b = (0, 0, ..., 0)}

(iv) τi: The ith coordinate function, that is, τi(x1, x2, ..., xn) = xi

(v) X: The topological closure of the set X

(vi) Homeo(X): The group of homeomorphisms of the topological space X

(vii) I: The n× n identity matrix

(viii) [A, a] : The affine map with matrix part A ∈ GL(n,R) and translation

part a ∈ Rn, that is, x 7→ A(x) + a

(iv) Affine(Rn): The group of all affine maps of Rn

(x) αi: The ith normalized affine map

(xi) β = β(b,r): The 2-dimensional normalized affine map which commutes

with α1

(xii) Res(β): The real number b− 1
2
r(r − 1)

(xiii) ℘(b,r): The base point parabola of β = β(b,r) (dimension 2)

(xiv) Ωα1 : The parameter space {[b, r] : Res(β(b,r)) 6= 0}

(xv) Cβ: The base point curve of β (dimension 3)

2. Preliminaries

When a group acts freely and properly discontinuously, the corresponding

quotient space will be a manifold. A properly discontinuous action also implies

that the group in question is discrete when given the compact-open topology

(but not conversely). Definitions, some examples, and a lemma follow.
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Definition 2.1. A group G ≤ Homeo(X) acts properly discontinuously on

X if for each compact E ⊆ X the set {g ∈ G : g(E) ∩ E 6= ∅} is finite.

When X = Rn this is equivalent to gi(E) → ∞ for all sequences {gi} in G

of distinct elements and all compact sets E.

Example: Let G1 =< (x, y) 7→ (x + 1, y) >, G2 =< (x, y) 7→ (x +

1, y), (x, y) 7→ (x, y + 1) >, G3 =< (x, y) 7→ (2x, 2y) >, G4 =< (x, y) 7→

(2x, 1
2
y) > be subgroups of Homeo(R2), and G5 =< (x, y, z) 7→ (2x, 2y, z +

1) > be a subgroup of Homeo(R3). These are all affine groups. G1 and G2 iv

act properly discontinuously on R2, while G3 does not. G3 does act prop-

erly discontinuously on R2 − {(0, 0)}, however. G4 does not act properly

discontinuously on R2−{(0, 0)} (use E=circle centered at (0, 0)). Since planes

orthogonal to the z-axis are translated by the generator of G5, this group also

acts properly discontinuously (on R3).

Definition 2.2. A group G ≤ Homeo(X) acts freely if no nontrivial element

of G fixes a point of X, that is, g(x) = x for some x ∈ X implies g = identity.

G1 and G2 in the previous examples act freely on R2, but G3 does not. The

group < (x, y) 7→ (2x, 2y), x 7→ (x + 1, y) > does not act freely either, since

(0, 0) is fixed by the first generator (but not by each element of the group,

which was the case with G3).

If G ≤ Homeo(Rn) acts freely, then G is torsion free (When g ∈ G has order

m ∈ Z+, g fixes (x + g(x) + ... + gm−1(x)) for any x ∈ X - see [C]), but not

conversely (G3 above is torsion free).
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A group (of homeomorphisms) containing an infinite order element that has

a fixed point cannot act properly discontinuously.

In particular, any torsion free group that acts properly discontinuously must

act freely as well. The converse is false. For example, G4 acts freely on

R2 − {(0, 0)}.

When an infinite cyclic affine group acts on all of Rn, acting freely is equiv-

alent to acting properly discontinuously.

A finite group of homeomorphisms acts properly discontinuously “by de-

fault”.

Computations can be divided in half with the following lemma:

Lemma 2.3. If {gi} ⊆ G ≤ Homeo(Rn) are distinct and E is a compact set,

then gi(E) →∞ implies g−1
i (E) →∞.

Proof.

Assume there is a compact set D such that g−1
i (D) ∩ B(N, 0) 6= ∅ for all

i, where B(N, 0) denotes the Euclidean (metric) ball centered at the origin

having radius N. For each i let xi ∈ g−1
i (D) ∩ B(N, 0). Since B(N, 0) is

compact, there is a subsequence (call the same) {xi} → d ∈ B(N, 0). The set

T = {xi : i ∈ Z+} ∪ {d} is compact, so gi(T ) → ∞ by hypothesis. But for

each i, gi(xi) ∈ gi(T ) ∩D, which is a contradiction.

�

Definition 2.4. Let X be compact. A group G ≤ Homeo(X) is discrete

if there is no sequence {gi} in G such that gi converges uniformly to some

5



f ∈ Homeo(X). This is equivalent to the set G being discrete as a subspace

of Homeo(X) with the compact-open topology.

Remark 2.5. If a group acts properly discontinuously, it must be discrete.

The converse is false. For example, the cyclic group G generated by g = 2 0

0 1

 is a discrete group. Although the sequence g−1, g−2, g−3, ... converges

to

 0 0

0 1

, this limit map is not a homeomorphism. But (0, 0) is fixed by

every element of this infinite group, preventing a properly discontinuous action.

3. General Facts About Affine Groups

Let β = [B, b] denote the affine map having matrix part B ∈ GL(n,R) and

translation part b ∈ Rn, i.e., β(x) = B(x) + b for x ∈ Rn. β is bijective (a

homeomorphism), and maps straight lines (planes, three-dimensional hyper-

planes,...) onto straight lines (planes, three-dimensional hyperplanes,...), but

does not map vector subspaces (of Rn) onto vector subspaces unless its trans-

lation part is trivial. An affine map β = [B, b] is an isometry of the Euclidean

metric if and only if B is an orthogonal matrix.

The group Affine(Rn) is the semi-direct product RnoGL(n,R) in a natural

way. The multiplication (composition) is (a,A)·(b, B) = (A(b)+a,AB) and the

map ψ : GL(n,R) → Aut(Rn) defined by ψ(A)(x) = A(x) is a homomorphism,

where Aut(Rn) is the group of automorphisms of Rn. Here, the orders of the

matrix part and the translation part have been reversed (notation).
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Any two affine maps or affine groups will be considered the “same” when

they are affinely conjugate, since the (geometric) properties of interest in this

paper are preserved under conjugation. In particular:

(1) g ∈ Affine(Rn) has infinite order if and only if any conjugate of g has

infinite order.

(2) g ∈ Affine(Rn) is a translation if and only if any (affine) conjugate

of g is a translation. In particular, a subgroup G of Affine(Rn) is a pure

translation group (consists of translations only) if and only if any conjugate

of G is a pure translation group, and G contains no translations (besides the

identity) if and only if any conjugate of G contains no translations.

(3) The fixed point set of fgf−1 is the set {f(x) : x is fixed by g}. In

particular, g has no fixed points if and only if any conjugate of g has no fixed

points.

(4) G acts freely if and only if any conjugate of G acts freely.

(5) G is discrete if and only if any conjugate of G is discrete.

(6) G acts properly discontinuously if and only if any conjugate of G acts

properly discontinuously.

(7) Conjugate affine groups are isomorphic (the conjugating map is an

isomporphism), but isomorphic groups need not be conjugate. For instance,

G =< [I, e1], [I, e2] >∼= Z ⊕ Z ∼=< [I, e1], [I,
√

2e1] >, but they are not

affinely conjugate (they’re not conjugate by any homeomorphism either), since

the first group acts properly discontinuously and the second does not.

7



The following facts are the result of a computation:

(α = [A, a], β = [B, b] ∈ Affine(Rn))

(i) For all positive integers j

βj = [Bj,

j−1∑
i=0

Bi(b)]

(ii) α = β if and only if A = B and a = b.

(iii) αβ = βα if and only if AB = BA and A(b) + a = B(a) + b.

(iv) If α = [I, ei], then (ii) above becomes B(ei) = ei.

(v) The affine group G contains a non-trivial translation if and only if there

are α = [A, a], β = [B, b] ∈ G so that AkBj = I and the translation part of

αkβj is not the zero vector.

Below is a characterization of a properly discontinuous infinite cyclic group

that is an immediate consequence of a normalized affine form given in a paper

by H. Abels. See [A].

Lemma 3.1. If β ∈ Affine(Rn) has infinite order, then the group G =< β >

acts properly discontinuously (on Rn) if and only if β is fixed point-free.

Proof.

Certainly infinite order β must act freely if the group it generates acts

properly discontinuously. The converse is not so clear. β has no fixed points if

and only if the equation B(x)+b = x has no solution in Rn, which is equivalent

to b /∈ Image(I −B). This implies that B has a 1-eigenvector.

β is affine conjugate to some [Bi, en], Bi =

 Ci 0

0 Jn−i

, 1 ≤ i ≤ n (∗)
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where Ci ∈ GL(i−1,R) and Jn−i is the (n−i+1)×(n−i+1) matrix having

1’s along the diagonal and along the super diagonal, with 0’s everywhere else.

B1 = Jn−1. For any x ∈ Rn, the nth coordinate of βk(x) grows arbitrarily

large as k → +/−∞. Since the nth coordinates of any compact set E of Rn

are bounded, < β > acts properly discontinuously.

�

The normalized form (∗) above is the cornerstone for the results in this

paper. Therefore, the two and three dimensional versions are emphasized

below:

Normalized Fixed Point Free Affine Maps

(i) Any two dimensional fixed point free affine map is affinely conjugate to

one of α1 = [A1, e2] or α2 = [A2, e2],

where A1 =

 1 1

0 1

 and A2 =

 a0 0

0 1

, a0 6= 0.

(ii) Any three dimensional fixed point free affine map is affinely conjugate

to one of α1 = [A1, e3], α2 = [A2, e3] or α3 = [A3, e3],

Where A1 =


1 1 0

0 1 1

0 0 1

, A2 =


a0 0 0

0 1 1

0 0 1

, a0 6= 0,

and A3 =

 A0 0

0 1

, A0 ∈ GL(n,R).

In general, if span(b) is transverse to a family of co-dimension one B-

invariant subspaces, then the group generated by β = [B, b] acts properly
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discontinuously. A more detailed proof of the above lemma in dimension two

is given later as well.

Given the translation [I, a], a 6= 0, the conjugate C[I, a]C−1 = [I, ei] for any

matrix C such that C(a) = ei. For this reason [I, a] = [I, ei] may be assumed.

Lemma 3.2. Let α = [I, e1], β = [B, b] ∈ Affine(Rn) with β fixed point-free

and βα = αβ. Then the group < α, β > is GL(n,R) - conjugate to < α, β′ >,

where β′ = [B′, b′] and there is a foliation by B′ - invariant codimension one

hyperplanes that are either orthogonal to span(e1) or span(en), none contain-

ing span(b′).

Proof.

Conjugating G =< α, β > by a matrix that fixes each point in span(e1)

will preserve the form of α. The form (∗) given in the proof of Lemma 3.1

implies there is a family of B-invariant parallel codimension one hyperplanes,

none of which contain span(b). If span(e1) is not contained in any of these

hyperplanes, we can shear B (i.e., conjugate G) twice along span(e1) so that

the resulting invariant hyperplanes are orthogonal to span(e1).

If some hyperpane from this family contains span(e1), then by rotating

around span(e1), the resulting invariant hyperplanes will be orthogonal to

span(en).

�

Lemma 3.3 (B-invariant codimension one hyperplanes orthogonal to span(en)).

Let β = [B, b] ∈ Affine(Rn) commute with α = [I, e1], and suppose that each

codimension one hyperplane that is orthogonal to the span(en) is B-invariant,
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and that none contain span(b). Then G =< α, β >∼= Z ⊕ Z, acts freely and

properly discontinuously on Rn.

Proof.

The matrix part of β will have the form B =

 1 B0

0 1

, with

B0 ∈ GL(n− 1,R), where the two 1’s are in the (1, 1) and (n, n) positions,

and where the 0 in the corner represents 0′s in the (s, 1) positions, s = 2, 3, ..., n

and the (n, t) positions, t = 1, 2, ..., n− 1.

The translation part of β will have the form b = (b1, b2, ..., bn) where bn 6= 0.

Let {gi} be a sequence of distinct elements in G =< α, β >. Then the powers

of α or β are increasing (positive or negative). Assume the latter (the former

is similar). αkβj(x1, x2, ..., xn) = (∗1, ∗2, ..., ∗(n−1), xn + jbn), where the first

(n − 1) coordinates are complicated and don’t need to be examined. Since

bn 6= 0, and the xn coordinates of any compact set E are bounded, gi(E) →∞

as j →∞. By Lemma 2.3, g−1
i (E) →∞ as j →∞.

�

Lemma 3.4 (B-invariant codimension one hyperplanes orthogonal to the

span(e1)). Let β = [B, b] ∈ Affine(Rn) commute with α = [I, e1], and sup-

pose that each codimension one hyperplane that is orthogonal to span(e1) is B-

invariant, and that none contain span(b). If proj(b)|span(e1)⊥ /∈ Image(I−B),

then G ∼= Z⊕ Z and acts freely and properly discontinuously on Rn.

(span(e1)
⊥ = {x ∈ Rn : x � e1 = 0})
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Proof.

Now B =

 1 0

0 B0

, B0 ∈ GL(n− 1,R) and b = (b1, b2, ..., bn), b1 6= 0.

By hypothesis proj(b)|span(e1)⊥ = (0, b2, b3, ..., bn) /∈ Image(I − B). This is

equivalent to (b2, b3, ..., bn) /∈ Image(I −B0).

G can be conjugated further (leaving α intact) so that B0 has the form given

in Lemma 3.1 and with b = (b1, 0, 0, ..., 0, 1). This implies that βj(E) →∞ as

j → +/−∞ (independent of the α action). �

Proposition 3.5. Let fixed point free β = [B, b] commute with α = [I, e1],

where

(1) B keeps invariant each codimension one hyperplane orthogonal to span(e1),

none containing span(b), or

(2) B keeps invariant each codimension one hyperplane orthogonal to span(en),

none containing span(b). The following are equivalent:

(i) G =< α, β >∼= Z⊕ Z and acts properly discontinuously on Rn

(ii) proj(b)|span(e1)⊥ /∈ Image(I −B)

Proof.

To show that (i) implies (ii), assume that G ∼= Z ⊕ Z and acts properly

discontinuously on Rn.

If (2) holds, then proj(b)|span(e1)⊥ /∈ Image(I−B). See the form of β in the

proof of Lemma 3.3.
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Suppose that (1) holds. If proj(b)|span(e1)⊥ ∈ Image(I−B), then (b2, b3, ..., bn) ∈

Image(I − B0) - see the form of β in the proof of Lemma 3.4. This implies

that there is a point (x2, x3, ..., xn) fixed by [B0, (b2, b3, ..., bn)], and so the line

{(x, x2, x3, ..., xn) : x ∈ R} is G invariant. Thus, either G is cyclic or G does

not act properly discontinuously, a contradiction.

Conversely, assume that proj(b)|span(e1)⊥ /∈ Image(I − B). By Lemmas 3.3

or 3.4, G ∼= Z⊕ Z and acts properly discontinuously on Rn.

�

A proof will be given later in dimensions 2 in which the normalization con-

dition is unnecessary.

4. A Look at Dimension One

A non-vertical/horizontal line in the plane viewed as the graph of a function

f : R → R can be considered a 1-dimensional affine map, where the linear part

is a 1-by-1 matrix (a real number). f will have no fixed points exactly when

this line does not intersect the line y=x, i.e., when f 6= identity and graph(f)

has slope 1. The cyclic group < f > will act properly discontinuously on R in

this case (and the quotient space R/ < f > is homeomorphic to S1).

Lemma 4.1. If f : R → R is a non-constant linear map, then the cyclic group

G =< f > acts properly discontinuously on R if and only if f(x) = x + b for

some b ∈ R

Remark 4.2. When b = 0, the above group is G =< identity >, which acts

properly discontinuously too.
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5. Actions on R2

5.1. Cyclic Groups (Z-Actions).

This was discussed in the general (n-dimensional) section. A more detailed

proof of the cyclic case is given below.

β = [B, b] ∈ Affine(R2) will have no fixed points when the equation B(z)+

b = z has no solution in R2, which is equivalent to b /∈ Image(I − B). This

implies B has a 1-eigenvector. The Jordan form of B is one of

B1 =

 1 1

0 1

, or B2 =

 b0 0

0 1

.

Let β1 = [B1, b] and β2 = [B2, b], where b =
(

b1
b2

)
.

Then πiβiπ
−1
i = [Bi, e2] where πi = [C, ai], C =

 1
b2

0

0 1
b2

,

a1 =
(

0
1
b2

)
, and a2 =

( b1
b2(b0−1)

1
b2

)
showing that any fixed point free β ∈

Affine(R2) is affine conjugate to one of the [Bi, e2], i = 1, 2.

Now βj
1 =

 1 j

0 1

 , ( j(j−1)
2
j

) and βj
2 =

 bj0 0

0 1

 , (0
j

).

If E is compact, the y-coordinate of βj
i (E) grows arbitrarily large as j → +∞

or −∞. This proves:

Lemma 5.1. If β ∈ Affine(R2) has infinite order, then the group G =< β >

acts properly discontinuously on R2 if and only if β is fixed point free.

With two generators, an affine group that acts freely need not act properly

discontinuously (on R2). For example, the group
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G =< z 7→ z + e1, z 7→ z +
√

2e1 > acts freely, yet does not act properly

discontinuously on R2 since it is not discrete.

5.2. Z⊕ Z Actions-Translation Extensions.

An affine map [B, b] is a translation when B = I (in any dimension). A

translation group G is isomorphic to Z⊕Z and acts properly discontinuously if

and only if the translation parts of the two generators are linearly independent

(otherwise, the group they generate is cyclic when the translation parts are

rational multiples of each other, or isomorphic to Z ⊕ Z and does not act

properly discontinuously if one is an irrational multiple of the other). If only

one map in a generating set is a translation, the other must be analyzed to

determine whether the group they generate acts properly discontinuously. A

subgroup G of Affine(Rn) will be called a translation extension if there is

a generating set that contains a translation.

Lemma 5.2. Let α = [I, e1] and fixed point free β = [B, b] be elements of

Affine(R2), and assume that αβ = βα. The following are equivalent:

(i) G ∼= Z ⊕ Z and acts properly discontinuously (and therefore freely) on

R2.

(ii) B =

 1 r

0 1

 and b =
(

b1
b2

)
with b2 6= 0.

Proof.

Since β commutes with α, B(e1) = e1 and so B =

 1 r

0 s

.
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Thus the matrix part of αkβj is Bj =

 1 r(1 + s+ ...+ sj−1)

0 sj

,

and the translation part is
(

k+jb1+b2r(1+(1+s)+...+(1+s+s2+...+sj−2))
b2(1+s+...+sj−1)

)
.

To show (i) implies (ii), assume that s 6= 1 or b2 = 0. If b2 = 0 then span(e1)

is G invariant, prohibiting a properly discontinuous Z⊕Z action. Assume now

that s 6= 1. The condition b /∈ Image(I −B) is equivalent to b1
b2
6= r

s−1
. (∗)

The matrix part of αkβj is Bj =

 1 r(1−sj

1−s
)

0 sj

, which has bounded entries

(assume that |s| < 1 by choosing β−1 if necessary). The translation part is(k+jb1+b2r( j−1
1−s

− s(1−sj−1)

(1−s)2
)

b2( 1−sj

1−s
)

)
. Considering only parts that have growth potential,

this may be written essentially as
(k+jb1+

jb2r
1−s

constant

)
=

(k+j(b1+
b2r
1−s

)

constant

)
. By (∗), ji, ki ∈ Z

can be chosen so that the first coordinate converges.

To show that (ii) implies (i), assume that b2 6= 0 and s = 1. Then the second

coordinates of images grow arbitrarily large when a given sequence of elements

of G have unbounded powers of β. Otherwise the action is essentially an α

action since βj1(E) ∪ βj2(E) ∪ ... ∪ βjt(E) is compact when E is. G ∼= Z⊕ Z

is clear. �

5.3. General Z⊕ Z Actions.

In 1953, N. Kuiper characterized properly discontinuous subgroups ofAffine(R2)

as follows:
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Theorem 5.3. (Kuiper)

Let H = {[At,
(
0
t

)
] : t ∈ R}, At =

 et 0

0 1

,

T = {[I,
(

s
t

)
] : s, t ∈ R},

and P = {[Bs,
(

t
s

)
] : s, t ∈ R}, Bs =

 1 s

0 1

.

Every discrete subgroup of H,T, or P acts properly discontinuously on R2,

and any properly discontinuous subgroup G of Affine(R2) contains a finite-

index subgroup which is a subgroup of H,T, or P .

See [A].

The above theorem includes the possibility that G is non-abelian or contains

finite-order elements. In this paper, the question of properly discontinuous ac-

tions will be restricted to groups G ∼= Z⊕Z. Since any element of Affine(R2)

can be considered a point in R6, such a map can be examined in terms of its

“coordinates”. It will turn out that the generators of interest will correspond

to points of the smaller Euclidean space R2.

Suppose that G ∼= Z ⊕ Z does not consist solely of translations. After

normalizing a non-translation generator (by conjugation), the coordinates of

the second generator will be simplified. Conditions for a properly discontinuous

action are then determined. The effect of group elements on points of the plane

can be described as “translation along two transverse families of curves that

each foliate R2”. (Affine) conjugacy of two such groups is closely related to

the features that insure that each acts properly discontinuously.
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Recall that α1 = [A1, e2] and α2 = [A2, e2],

where A1 =

 1 1

0 1

, and A2 =

 a0 0

0 1

, a0 6= 0.

α2 is a one-parameter family of maps that includes the conjugacy class of

translations (which is the set of translations). Fixed point free β = [B, b] is

conjugate to α1 if and only if B(b) 6= b. The group P in the above theorem by

Kuiper is the set of all β that commute with α1.

Lemma 5.4. Suppose α2 and β commute. If G =< α2, β >∼= Z ⊕ Z and

acts properly discontinuously, then α2 is a translation. In particular, any non-

translation of a properly discontinuous rank two group is conjugate to α1.

Proof.

Let β = [B,
(

b1
b2

)
] where B =

 r1 r2

s1 s2

.

α2β = βα2 implies a0r2 = r2, a0s1 = s1, s2 = 1, and a0b1 = r2 +b1. If a0 6= 1

then s1 = 0 = r2 and b1 = r2

a0−1
= 0. G cannot be isomorphic to Z ⊕ Z

and act properly discontinuously because each element keeps invariant the line

span(e2).

�

5.3.1. The Residue.

Let β = [B, b] ∈ Affine(R2) where b =
(

b1
b2

)
. The following fact will be used

often:

If β commutes with α1 then A1B = BA1 and A1(b) + e2 = B(e2) + b,

18



implying that B =

 1 b2

0 1

. This also shows that β is fixed point free

when β 6= identity.

Corollary 5.5. If G ∼= Z ⊕ Z is a properly discontinuous affine group, then

A ∈ SL(2,R) and Trace(A) = 2 for all α = [A, a] ∈ G.

Proof.

Follows from the previous computation and Lemma 5.4 since the determi-

nant and trace are conjugation invariant (the result is clear in a translation

group).

�

β =

 1 r

0 1

 , (b
r

) = β(b,r) will be written when β commutes with α1.

Since each point (b, r) ∈ R2 can be identified with the group < α1, β(b,r) >,

it is natural to ask which correspond to properly discontinuous Z⊕Z actions.

Example: Let β = [B,
(
2
2

)
]. ThenG =< α1, β >∼= Z⊕Z acts freely and prop-

erly discontinuously on R2: gi = αki
1 β

ji =

 1 (2ji + ki)

0 1

 , ( 1
2
(2ji+ki)

2− 1
2
ki

2ji+ki

).

If the sequence {2ji + ki} is unbounded, then the second coordinate of images

under gi grow arbitrarily large as i→∞ (gi are distinct). Otherwise, the first

coordinate will grow arbitrarily large as i→∞.

Example: Let β = [B,
(
1
2

)
]. Then group G =< α1, β >=< α1 >∼= Z since

α−2 = β−1.
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Example: Let β = [B,
(1− 1√

2√
2

)
]. Then G =< α1, β >∼= Z⊕Z. Choose ji, ki ∈

Z so that the sequence {ji
√

2 + ki} converges (to 0, say). Then the sequence

of distinct elements gi = αki
1 β

ji converges to the identity map, implying that

G is not discrete and therefore does not act properly discontinuously.

Remark 5.6. If β = [B,
( 1

2
r(r−1)

r

)
] where r = p

q
is rational then the group

G =< α1, β > is cyclic with generator

 1 1
q

0 1

 , ( 1
2q

( 1
q
−1)

1
q

).

Definition 5.7. Call the number b− 1
2
r(r − 1) the residue of β(b,r), denoted

by Res(β).

Proposition 5.8. Let α1β = βα1.

< α1, β > ∼= Z ⊕ Z and acts properly discontinuously on R2 if and only if

Res(β) 6= 0.

In particular, the following are equivalent:

(i) The affine group G ∼= Z⊕Z is not a translation group and acts properly

discontinuously on R2

(ii) G is affinely conjugate to < α1, β > where Res(β) 6= 0

Remark 5.9. For another viewpoint, see [C] page 8.
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Proof.

If r = 0 and β 6= I then Res(β) 6= 0. β is a translation and the group G ∼=

Z⊕Z acts properly discontinuously, since the second coordinate of gi = αki
1 β

ji

grows arbitrarily large when ki →∞. Otherwise, the action of gi is essentially

that of β since for any compact set E, the finite union ∪{αki
1 (E) : i ∈ Z} is

compact. So assume that r 6= 0.

Suppose that G =< α1, β >∼= Z⊕ Z and acts properly discontinuously.

Since < α1, β >=< α1, β
−1 > and β−1

(b,r) = β(r2−b,−r), assume that r < 0.

Choose an infinite set (ji, ki) ∈ Z+⊕ Z+ so that the sequence {jir + ki}

converges to t ∈ R (including repetitions if r ∈ Q).

αki
1 β

ji = [Aki
1 B

ji , v], where Aki
1 B

ji =

 1 (jir + ki)

0 1

 ,

and v =
(

jib+
1
2
r2ji(ji−1)+ 1

2
ki(ki−1)+kijir

jir+ki

)
.

The first coordinate of the translation part above can be

rewritten as 1
2
(jir + ki)

2 + ji(b− 1
2
r2)− 1

2
ki.

If b = 1
2
r(r − 1), then this becomes 1

2
(jir + ki)

2 − 1
2
(jir + ki).

If r /∈ Q then the sequence {gi = αki
1 β

ji} converges to the affine map [C, c],

where C =

 1 t

0 1

 and c =
( 1

2
t(t−1)

t

)
,

preventing a properly discontinuous action, while if r ∈ Q then G is cyclic

- both contradictions.

Conversely, suppose b 6= 1
2
r(r− 1). Then b− 1

2
r2 = −1

2
r+ d for some d 6= 0.
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To show proper discontinuity, let {gi = αki
1 β

ji} be a sequence of distinct

elements of G. There are two cases:

(a) There exist ji, ki ∈ Z with {jir + ki} converging to some t ∈ R

(b) There are no such ji, ki

Case (a) We may assume that ji, ki ∈ Z+, since {jir + ki} diverges when

ji and ki are opposite in sign (because r < 0), while Lemma 2.3 implies that

ji, ki < 0 need not be examined. Then αki
1 β

ji(x, y) converges to

 1 t

0 1

(
x
y

)
+

( 1
2
t2− 1

2
t+dji

t

)
. Since the x and y coordinates of any compact set E are bounded,

the x coordinate of gi(E) will grow arbitrarily large.

Case (b) Again, it can be assumed that ji, ki > 0, getting gi(E) →∞.

This finishes the first equivalence.

(i) implies (ii) follows from Lemma 5.4. (ii) implies (i) is immediate. �

Lemma 5.10. Res : {β : βα1 = α1β} → R defined by β 7→ Res(β) is a

surjective group homomorphism having the following properties

(let G =< α1, β >, Res(β) 6= 0):

(i) Res(G) ∼= Z with generator Res(β).

(ii) If g ∈ G and Res(g) is a generator of Res(G), then g is a generator of

G (but not conversely) .

(iii) If f, g ∈ G, then < α1, f > is a subgroup of < α1, g > if and only if

< Res(f) > is a subgroup of < Res(g) >, and <α1,g>
<α1,f>

∼= <Res(g)>
<Res(f)>

, a finite

cyclic group of order [< Res(g) >:< Res(f) >].
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Proof.

Suppose β = (b, r) and β = (b, r) commute with α1.

Then ββ = (b+ b+ rr, r + r) and so

Res(ββ) = b+ b+ rr − 1
2
(r + r)(r + r − 1) =

b+ b+ rr − 1
2
(r2 + r2 + 2rr − r − r) = b+ b− 1

2
r2 − 1

2
r2 + 1

2
r + 1

2
r

= b− 1
2
r(r − 1) + b− 1

2
r(r − 1).

If t ∈ R, then Res(β(t,0)) = t, showing that Res is onto.

Properties (i), (ii) and (iii) are immediate.

�

When G =< α1, β > is isomorphic to Z ⊕ Z, Proposition 5.8 implies that

the following are equivalent:

(i) G acts properly discontinuously (and freely) on R2.

(ii) G is a discrete subgroup of Affine(R2) with the compact-open topology.

The above equivalence does not hold in general (see remark after Defini-

tion 2.4).

The Parameter Space of Groups

Part (ii) in Proposition 5.8 states that the point
(

b
r

)
does not lie on the

parabola x = 1
2
y(y − 1), which will be denoted by ℘(0,1) (℘(0,1) = Ker(Res)).

The points of R2 can be viewed as a parameter space of maps β that commute

with α1 (or as groups G =< α1, β >). Define an equivalence relation on R2
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by (b, r) ≈ (b′, r′) if and only if < α1, β(b,r) >=< α1, β(b′,r′) >, and let [(b, r)]

denote the equivalence class of (b, r).

Definition 5.11. Ωα1 = {[(b, r)] : (b, r) /∈ ℘(0,1)}. Ωα1 corresponds to the set

of distinct G which are isomorphic to Z⊕Z and act properly discontinuously.

The operation (x1, y1) ∗ (x2, y2) = (x1 +x2 + y1y2, y1 + y2) on points of R2 is

simply composition of affine maps β(x1,y1) and β(x2,y2). (R2, ∗) is a topological

group and Res : R2 → R is a continuous homomorphism (R2 and R having the

Euclidean topology). A “set action” can be examined where the acting set(s)

need not form a group. For example, the vertical line ` = {(1, y) : y ∈ R}

action on the line m = {(x, 1
2
x) : x ∈ R} can be described as “leveling off” the

lines (a, b) ∗m as the points (a, b) of ` move up (b→ +∞), while slopes of the

(a, b)∗m become much steeper (large positive) as b→ −2+. More examples of

this geometric viewpoint will be analyzed later (invariant sets and distortion

of certain sets, for example).

Recall that the affine group G =< α = [A, a], β = [B, b] > contains a

non-trivial translation if and only if AkBj = I for some integers j, k where

the translation part of αkβj is not the zero vector. In particular, G =<

α1, β(b,r) >∼= Z ⊕ Z and contains a translation if and only if r ∈ Q and

Res(β) 6= 0. If this is the case, then G must be a translation extension:

Example: Let β = β(0, 1
2
). Then α−1

1 β2 = [I,
( 1

4
0

)
] = π. Here, < α1, π > is

a proper subgroup of < α1, β >, but < β, π >=< α1, β >, so this group is a

translation extension (it also acts properly discontinuously).

Example: Let β = β(0, 2
3
). Then < α1, β >=< α−2

1 β3, α3
1β

−4 > and α−2
1 β3 =

[I,
(−2

0

)
].
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Lemma 5.12.

(i) α1(℘(0,1)) = ℘(0,1)

(ii) Each parabola ℘(0,1) + te1 is α1 invariant.

Proof.

(i) If
(

x0

y0

)
lies on ℘(0,1), then α1

(
x0

y0

)
=

(
x0+y0

y0+1

)
=

( 1
2
y0(y0−1)+y0

y0+1

)
=

( 1
2
y0(y0+1)
y0+1

)
also lies on ℘(0,1).

(ii) Immediate, since any point that lies on ℘(0,1)+te1 has the form
( 1

2
y0(y0−1)+t

y0

)
.

�

There is a corresponding family of parabolas that are β(b,r)-invariant, where

β is not a translation (that is, r 6= 0). The “base point parabola” ℘(b,r) of β(b,r)

(containing the point
(

b
r

)
) is x = 1

2
y(y + 2b

r
− r).

Proposition 5.13.

(i) β(b,r)(℘(b,r)) = ℘(b,r).

(ii) Each parabola ℘(b,r) + te1 is β(b,r) invariant.

Proof.

(i) Let
(

x0

y0

)
lie on ℘(b,r). Then x0 = 1

2
y0(y0+ 2b

r
−r) and β

(
x0

y0

)
=

(
x0+ry0+b

y0+r

)
=( 1

2
y0(y0+ 2b

r
−r)+ry0+b

y0+r

)
.

The first coordinate can be rewritten as 1
2
(y0 + r)(y0 + r + 2b

r
− r).

(ii) Immediate from the form of β.

�
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Thus, if G ∼= Z ⊕ Z acts properly discontinuously, then the elements of G

act as “translations” along two transverse families of curves that foliate R2:

Let G =< γ, δ >, πα1π
−1 = γ and πβπ−1 = δ where π ∈ Affine(R2). The

two families are {π(℘(0,1) + te1) : t ∈ R} and {π(℘(b,r) + te1) : t ∈ R}.

When Res(β(b,r)) 6= 0 no two maps that lie on ℘(b,r) have the same residue.

That is, Res : ℘(b,r) → (R,+) is an isomorphism.

Proposition 5.14. (Geometric Viewpoint for Inverse Pairs)

Let ` be the tangent line to ℘(b,r) at the origin. Any line parallel to ` that

meets ℘(b,r) passes through inverse pairs.

Proof.

Let ℘(b,r) be the parabola containing the base points of the non-translations

β = β(b,r) and β−1 = β(b′,r′). Write ℘(y) = 1
2
y(y + 2b

r
− r).(

b′

r′

)
=

(
r2−b
−r

)
and ℘′(y) = y + 1

2
(2b

r
− r), showing that ℘′(0) = b−b′

r−r′
.

�

A Geometric Viewpoint of the Residue

The group < α1, β >∼= Z ⊕ Z (not a translation group and therefore not

affine conjugate to a translation group) is conjugate to a translation group if

the conjugating map is a “polynomial mapping”, which generalizes a matrix

of real numbers (linear transformation).

Definition 5.15. A Polynomial Mapping is a matrix having polynomial func-

tions (R → R) as entries. An n × n polynomial mapping acts as a function
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Rn → Rn. Composition is performed by the composition of the polynomial

entries resulting from matrix multiplication.

Remark 5.16. In fact, a polynomial mapping generalizes an affine map.

In dimension two, π =

 a1 a2

a3 a4

 , (c1
c2

) in Affine(R2) can be written

as g1 g2

g3 g4

 where g1(x) = a1x+ c1, g2(x) = a2x, g3(x) = a3x+ c2,

and g4(x) = a4x are linear maps R → R.

Using such a map, an alternate proof of Proposition 5.8 can be given:

Proof.

Let ϕ =

 f1 f2

f3 f4

 where f1(x) = f4(x) = x, f2(x) = −1
2
x(x − 1), and

f3(x) = 0. Denote this by ϕ =

 x −1
2
x(x− 1)

0 x

.

Then ϕ :
(

a
b

)
7→

(
f1(a)+f2(b)
f3(a)+f4(b)

)
=

(
a− 1

2
b(b−1)

b

)
is a homeomorphism. ϕ(℘(0,1)) =

span(e2). ϕ maps the parabola ℘(0,1) + te1 onto the vertical line x = t. When

Res(β) 6= 0, ϕ maps the parabola ℘(b,r) onto the non-vertical line x = 1
2
(2b

r
−

r+ 1)y, and the parabola ℘(b,r) + te1 is sent to the line x = 1
2
(2b

r
− r+ 1)y+ t.

The group H = ϕ < α1, β > ϕ−1 =< [I, e2], ϕβϕ
−1 > is therefore a translation

group generated by two independent translations if and only if Res(β) 6= 0.

In this case, < α1, β >∼= Z⊕Z and acts properly discontinuously on R2 (since

H does).

�
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When β = β(b,r), ϕ
(

b
r

)
=

(
Res(β)

r

)
, that is, ϕ = (ϕ1, ϕ2), where ϕ1

(
b
r

)
=

Res(β) and ϕ2 is projection onto the second coordinate. Since ϕ1 and ϕ2 are

homomorphisms, so is ϕ. See also [F-G], page:.

Corollary 5.17. If G ∼= Z⊕Z is a 2-dimensional properly discontinuous affine

group, then G is conjugate to a translation group by a quadratic polynomial

map.

The group Affine(R2) is a subgroup of the group of 2 × 2 polynomial

homeomorphisms ϕ : R2 → R2 of any degree (denote Poly(R2)). In this larger

group there are a finite number of conjugacy classes of properly discontinuous

affine groups G ∼= Z ⊕ Z, since translations are isometries, which divide into

a finite number of affine conjugacy classes (Bieberbach). In fact, they are all

conjugate, see [F,G].

5.3.2. Conjugacy Classes in terms of Residue.

Conjugacy of individual affine maps (abstract and in any dimension) was

characterized in the following theorem by L. Tartar and A. Yakir:

Theorem 5.18. (Tartar, Yakir - 1997) The affine maps [A, a] and [B, b] are

affine conjugate if and only if A is similar to B and τ(a,A) = τ(b, B), where

τ(a,A) is the least k ∈ Z+ such that a ∈ Image(I − A) +Kernel(I − A)k.

Such a number k always exists since for any linear map A : V → V there

is an m so that V = Image(I − A) +Kernel(I − A)m. Here, V is any vector

space. See [T-Y].
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For example, τ(e2, A1) = 2 and τ(e2, A2) = 1 (recall that α1 = [A1, e2] and

α2 = [A2, e2]).

If the groups < α1, β >6=< f, g > are conjugate, then < f, g > must be

conjugate to < α1, β > for some β ∈ Affine(R2) and so without loss of

generality we may assume that π < α1, β > π−1 =< α1, β > for some π that

does not commute with α1.

Each matrix M =

 a b

c d

 ∈ GL(2,R) can be viewed as a map M : R → R

given by x 7→ ax+b
cx+d

(a Mobius transformation).

Lemma 5.19. Let β = β(b,r) and β = β(b,r) both have non-zero residues.

If G =< α1, β > is affinely conjugate to G =< α1, β >, then ϕ(r) = r for

some matrix ϕ ∈ GL(2,Z).

Proof.

Suppose that πGπ−1 = G for π = [C, a] where C =

 c1 c2

d1 d2

 and a =
(

a1

a2

)
.

Then πα1π
−1 = αt

1β
u

(equivalently, πα1 = αt
1β

u
π) and πβπ−1 = αv

1β
w

(equivalently, πβ = αv
1β

w
π) where wt− uv = ±1 (because πα1π

−1 and πβπ−1

generate G).

The following equations are obtained:

πα1 = [CA1,
(

a1+c2
a2+d2

)
], where CA1 =

 c1 (c1 + c2)

d1 (d1 + d2)

;
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αt
1β

u
π = [At

1B
u
C,

(
x0

a2+ur+t

)
], whereAt

1B
u
C =

 (c1 + d1(ur + t)) (c2 + d2(ur + t))

d1 d2

;

πβ = [CB,
(

c1b+c2r+a1

d2r+a2

)
], where CB =

 c1 (c1r + c2)

d1 (d1r + d2)

;

αv
1β

w
π = [Av

1B
w
C,

(
x1

a2+wr+v

)
], whereAv

1B
w
C =

 (c1 + d1(wr + v)) (c2 + d2(wr + v))

d1 d2

.

The expressions x0 and x1 need not be specified at this juncture. The

second coordinates of the translation equations imply that d2 = ur + t and

d2r = wr + v. The matrix equation CA1 = At
1B

u
C implies d1 = 0 (and

c1 = d2
2, which is used in Theorem 5.21) so that d2 6= 0, since C is invertible.

Therefore r = wr+v
ur+t

= ϕ(r) where ϕ =

 w v

u t

.

�

Definition 5.20. If π ∈ Affine(R2) where πα1π
−1 = αt

1β
u

and

πβπ−1 = αv
1β

w
, then define ϕπ ∈ GL(2,Z) to be

 w v

u t

 and say “ϕπ is

induced by π”.

Example: Let β = β(1,
√

2), β = β(3,5). Then the groups < α1, β > and

< α1, β > are not affinely conjugate because 5w+v
5u+t

is rational for all integers

w, v, u, t (there is no ϕ ∈ GL(2,Z) so that ϕ(5) =
√

2).
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Theorem 5.21. (Necessary Condition for Conjugacy)

Let β = β(b,r) and β = β(b,r) have non-zero residues. If G =< α1, β > and

G =< α1, β > are conjugate via π ∈ Affine(R2) (πGπ−1 = G) then the

following two conditions are satisfied:

(i) ϕπ(r) = r

(ii) ϕ′π(r) = Det(ϕπ)
(

Res(β)

Res(β)

) 2
3

If this is the case, then

(iii) ϕπ upper triangular implies G = G. The converse holds when G

contains no translations.

(iv) There is a C ∈ GL(2,R) conjugating G to G with

Det(ϕπ)Det(C) = Res(β)

Res(β)
.

Proof.

(i) follows from Lemma 5.19, which can be written as

(5.1)
wr + v

ur + t
= r

where ϕπ =

 w v

u t

.

To show (ii), let π = [C, a], where C =

 c1 c2

d1 d2

 and a =
(

a1

a2

)
.

It is being assumed that

(5.2) πα1π
−1 = αt

1β
u

31



(which is the same as πα1 = αt
1β

u
π)

and

(5.3) πβπ−1 = αv
1β

w

(which is the same as πβ = αv
1β

w
π).

In the proof of Lemma 5.19 it was shown that C =

 (ur + t)2 c2

0 (ur + t)

.

Thus αt
1β

u
π has matrix part

 (ur + t)2 ((ur + t)2 + c2)

0 (ur + t)

 and translation

part
(

ub+ 1
2
r2u(u−1)+tur+ 1

2
t(t−1)+a1+a2(ur+t)

ur+t+a2

)
,

πα1 has matrix part

 (ur + t)2 ((ur + t)2 + c2)

0 (ur + t)

 and translation part(
c2+a1

ur+t+a2

)
,

and πβ has matrix part

 (ur + t)2 (r(ur + t)2 + c2)

0 (ur + t)

 and translation

part
(

b(ur+t)2+c2r+a1

r(ur+t)+a2

)
.

The form of αv
1β

w
π is the same as that of αt

1β
u
π (replace t with v and u

with w).

The first coordinates of the translation parts of 5.2 imply

(5.4) c2 = ub+
1

2
r2u(u− 1) + tur +

1

2
t(t− 1) + a2(ur + t)
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and the first coordinates of the translation parts of 5.3 imply

(5.5) b(ur + t)2 + c2r = wb+
1

2
r2w(w − 1) + vwr +

1

2
v(v − 1) + a2(wr + v)

Consider the following equations:

(5.6)

b(ur+t)2+r(ub+
1

2
r2u(u−1)+

1

2
t(t−1)+tur) = wb+

1

2
r2w(w−1)+

1

2
v(v−1)+vwr

(5.7)

b =
(1

2
(wr + v)2 + w(b− 1

2
r2)− 1

2
(v − tr)− ur(b− 1

2
r2)− 1

2
r(ur + t)2)

(ur + t)2

(5.8) Res(β) =
(b− 1

2
r2)(w − ur)− 1

2
(v − tr)

(ur + t)2

(5.9) ϕ′π(r) = Det(ϕ)

(
Res(β)

Res(β)

) 2
3

It will be shown that { 5.4 and 5.5} ⇒ 5.6 ⇒ 5.7 ⇒ 5.8 ⇒ 5.9.

Proof that { 5.4 and 5.5 } ⇒ 5.6:
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Replace c2 in 5.5 with the right side of 5.4.

5.1 implies a2(ur+ t)r = a2(wr+ v), which now appear on each side of the

above equation and can be cancelled. This is 5.6. We may now assume that

π = [C,
(
0
0

)
].

Proof that 5.6 ⇒ 5.7:

5.6 can be rewritten as:

b(ur+ t)2 + ur(b− 1
2
r2) + 1

2
r(ur+ t)2− 1

2
tr = w(b− 1

2
r2) + 1

2
(wr+ v)2− 1

2
v.

Solve for b. This is 5.7.

Proof that 5.7 ⇒ 5.8:

Subtract 1
2
r(r − 1) = 1

2
(wr+v

ur+t
)(wr+v

ur+t
− ur+t

ur+t
) =

1
2
(wr+v)2− 1

2
(wr+v)(ur+t)

(ur+t)2

=
1
2
(wr+v)2− 1

2
r(ur+t)2

(ur+t)2
from both sides of 5.7:

b−1
2
r(r−1) =

(− 1
2
(wr+v)2+ 1

2
r(ur+t)2+ 1

2
(wr+v)2+w(b− 1

2
r2)− 1

2
(v−tr)−ur(b− 1

2
r2)− 1

2
r(ur+t)2)

(ur+t)2

=
(w(b− 1

2
r2)− 1

2
(v−tr)−ur(b− 1

2
r2))

(ur+t)2

=
((b− 1

2
r2)(w−ur)− 1

2
(v−tr))

(ur+t)2
. This is 5.8.

Proof that 5.8 ⇒ 5.9:

5.1 implies v − tr = r(ur − w), which in turn implies that

Res(β) = b− 1
2
r(r − 1) =

(w−ur)(b− 1
2
r2+ 1

2
r)

(ur+t)2
= (w−ur)Res(β)

(ur+t)2
.

From w − ur = w(ur+t
ur+t

)− u(wr+v
ur+t

) = wt−uv
ur+t

= Det(ϕπ)
ur+t

it follows that
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(5.10)
Res(β)

Res(β)
=
Det(ϕπ)

(ur + t)3

.

Since ϕ′π(r) = Det(ϕπ)
(ur+t)2

, then ϕ′π(r)3 = Det(ϕπ)
(ur+t)6

= Det(ϕπ)(Res(β)

Res(β)
)2.

This is equivalent to ϕ′π(r) = Det(ϕπ)
(

Res(β)

Res(β)

) 2
3
, which is 5.9. It has been

shown that πGπ−1 = G implies {(i) and (ii)}.

Now suppose that ϕ = ϕπ, where ϕ =

 w v

u t

 (and πGπ−1 = G, where

G =< α1, β > and G =< α1, β >). From the proof that { 5.4 and 5.5 } ⇒ 5.6,

we may also assume that π = [C,
(
0
0

)
] where C =

 (ur + t)2 c2

0 (ur + t)

.

To show (iii), suppose that ϕπ is upper triangular,

that is, ϕπ =

 w v

u t

 =

 w1 m

0 w2

, where m ∈ Z and wi ∈ {1,−1}.

Since the matrix

 −w1 −m

0 −w2

 represents the same map R → R, we may

assume w2 = 1.

Thus u = 0, t = 1 and C =

 w1 ±c2

0 1

, where w1 ∈ {1,−1}.

c2 in 5.4 (with a2 = 0) can be rewritten as c2 = 1
2
(ur+t)2 +u(b− 1

2
r2)− 1

2
t =

1
2
− 1

2
= 0. Therefore C = I and so G = G.
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Conversely, assume that G = G contains no translations (r, r /∈ Q by (v)

in General Facts About Affine Groups) and that ϕπ is not upper triangular.

Then u 6= 0 and β = αk
1β

j for some j, k ∈ Z, and so Res(β) = Res(αk
1) +

Res(βj) = kRes(α1) + jRes(β) = jRes(β) since Res(α1) = 0. Therefore

1
j

= Res(β)

Res(β)
= Det(ϕ)

(ur+t)3
= ±1

(ur+t)3
, a contradiction. This finishes the proof of (iii).

(iv) follows immediately, since CGC−1 = G is equivalent to C−1GC = G

and Det(C−1) = 1
Det(C)

= Res(β)

Res(β)
.

�

Theorem 5.22. (Sufficient Condition for Conjugacy)

Let β = β(b,r) and β = β(b,r) have non-zero residues.

Suppose there is a ϕ =

 w v

u t

 in GL(2,Z) for which

(i) ϕ(r) = r and

(ii) ϕ′′(r) = −2uRes(β)

Res(β)

Then G =< α1, β > and G =< α1, β > are affinely conjugate.

In this case, there is a π ∈ Affine(R2) so that πGπ−1 = G and ϕ = ϕπ.

If in addition G contains no translations, then G = G if and only if u = 0.

Proof.

We claim that ϕ = ϕπ where π = [C,
(
0
0

)
] for C =

 (ur + t)2 c2

0 (ur + t)


and c2 = ub+ 1

2
r2u(u− 1) + 1

2
t(t− 1) + tur = 1

2
(ur + t)2 + u(b− 1

2
r2)− 1

2
t.

It will be shown that πα1π
−1 = αt

1β
u

and πβπ−1 = αv
1β

w
.
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πα1π
−1 =

 (ur + t)2 c2

0 (ur + t)

 1 1

0 1

 1
(ur+t)2

− c2
(ur+t)3

0 1
(ur+t)

 , C(
0
1

)

=

 1 (− c2(ur+t)2

(ur+t)3
+ (ur+t)2+c2

(ur+t)
)

0 1

 , ( c2
ur+t

)

=

 1 (ur + t)

0 1

 , (ub+ 1
2
r2u(u−1)+ 1

2
t(t−1)+tur

ur+t

) = αt
1β

u
.

πβπ−1 =

 (ur + t)2 c2

0 (ur + t)

 1 r

0 1

 1
(ur+t)2

− c2
(ur+t)3

0 1
(ur+t)

 , C(
b
r

)

=

 (ur + t)2 (r(ur + t)2 + c2)

0 (ur + t)

 1
(ur+t)2

− c2
(ur+t)3

0 1
(ur+t)

 , (b(ur+t)2+rc2
r(ur+t)

)

=

 1 (− c2(ur+t)2

(ur+t)3
+ r(ur+t)2+c2

(ur+t)
)

0 1

 , (b(ur+t)2+rc2
r(ur+t)

)

=

 1 r(ur + t)

0 1

 , (b(ur+t)2+r( 1
2
(ur+t)2+u(b− 1

2
r2)− 1

2
t)

r(ur+t)

). (∗)

And αv
1β

w
=

 1 (wr + v)

0 1

 , (wb+ 1
2
r2w(w−1)+ 1

2
v(v−1)+vwr

(wr+v)

).

The matrix parts (same as second coordinates of translation parts) of πβπ−1

and αv
1β

w
are equal because wr+v

ur+t
= ϕ(r) = r.

Since ϕ′′(r) = −2uDet(ϕ)
(ur+t)3

, our assumption (ii) implies Res(β)

Res(β)
= Det(ϕ)

(ur+t)3
, which

can be rewritten as

b = 1
2
r(r − 1) +

Det(ϕ)(b− 1
2
r(r−1))

(ur+t)3
= 1

2
(wr+v

ur+t
)(wr+v

ur+t
− ur+t

ur+t
) +

Det(ϕ)(b− 1
2
r(r−1))

(ur+t)3
.

37



By replacing b in (∗) with the rightmost side of the above string of equations,

the first coordinate of the translation part of πβπ−1 becomes

(1
2
(wr+v

ur+t
)(wr+v

ur+t
− ur+t

ur+t
) +

Det(ϕ)(b− 1
2
r(r−1))

(ur+t)3
)(ur + t)2+

wr+v
ur+t

(ub+ 1
2
r2u(u− 1) + tur + 1

2
t(t− 1))

= 1
2
((wr + v)2 − (wr + v)(ur + t)) +

Det(ϕ)(b− 1
2
r(r−1))

(ur+t)

+(wr+v
ur+t

)(1
2
(ur + t)2 + u(b− 1

2
r2)− 1

2
t)

= 1
2
(wr + v)2 +

Det(ϕ)(b− 1
2
r(r−1))

(ur+t)
+ r(u(b− 1

2
r2)− 1

2
t) (∗∗)

(r has replaced wr+v
ur+t

in (∗∗) above).

The first coordinate of the translation part of αv
1β

u
is

wb+ 1
2
r2w(w − 1) + 1

2
v(v − 1) + vwr, which can be rewritten as

1
2
(wr + v)2 + w(b− 1

2
r2)− 1

2
v.

It must be shown that

1
2
(wr+v)2+

Det(ϕ)(b− 1
2
r(r−1))

(ur+t)
+r(u(b− 1

2
r2)− 1

2
t) = 1

2
(wr+v)2+w(b− 1

2
r2)− 1

2
v,

or equivalently,
Det(ϕ)(b− 1

2
r(r−1))

(ur+t)
= (w − ur)(b− 1

2
r2)− 1

2
(v − tr).

This is the same as showing

Det(ϕ)(b− 1
2
r(r−1))

(ur+t)3
= 1

(ur+t)2
((w − ur)(b− 1

2
r2)− 1

2
r(ur − w))

which equals 1
(ur+t)2

((w − ur)(b− 1
2
r2 + 1

2
r)).

Since w − ur = Det(ϕ)
ur+1

(see the calculation just above line 5.10 in the proof

of Theorem 5.19), it follows that 1
(ur+t)2

((w−ur)(b− 1
2
r2 + 1

2
r)) = Det(ϕ)Res(β)

(ur+t)3
.
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Therefore ϕ = ϕπ.

When G contains no translations (r /∈ Q) G = G if and only if ϕ is upper

triangular (same as u = 0) follows from Theorem 5.19.

�

Corollary 5.23. Let β = β(b,r) and β = β(b,r) have non-zero residues, and set

G =< α1, β >, G =< α1, β >. The following are equivalent:

1. G and G are affinely conjugate

2. There is a ϕ =

 w v

u t

 in GL(2,Z) so that

(i) ϕ(r) = r and

(ii) ϕ′′(r) = −2uRes(β)

Res(β)

Proof.

By Theorem 5.22 we only need to show that 1 implies 2.

If πGπ−1 = G for some π ∈ Affine(R2), then by

Theorem 5.19 there is a ϕ = ϕπ =

 w v

u t

 so that ϕ(r) = r. In the proof

of that theorem, it was shown that Res(β)

Res(β)
= Det(ϕ)

(ur+t)3
(see line 5.10).

It follows that ϕ′′(r) = −2uDet(ϕ)
(ur+t)3

= −2uRes(β)

Res(β)
.

�

Lemma 5.24. If G =< α1, β(b,r) >=< α1, β = β(b,r) >= G, then r− r ∈ Z or

r + r ∈ Z.
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Proof.

Assume the above hypothesis. Then β = αr
1β

s
and β = αk

1β
j, implying that

sj = 1 (since Res(β) = sRes(β) and Res(β) = jRes(β)).

β =

 1 r

0 1

 , (b
r

) and αk
1β

±1 =

 1 k ± r

0 1

 , ( 1
2
k(k−1)+b±kr

k±r

).

This implies that r = k ± r, and so r − r ∈ Z or r + r ∈ Z.

�

Lemma 5.25. If G =< α1, β > contains no translations, G =< α1, β > and

Res(β) = Res(β), then G conjugate to G implies G = G.

Proof.

If Res(β) = Res(β) and G is conjugate to G via ϕ, then by 5.10 in the proof

of Theorem 5.21, 1 = Res(β)

Res(β)
= Det(ϕ)

(ur+t)3
= ±1

(ur+t)3
forces u = 0 (r /∈ Q implies

r /∈ Q). So ϕ is upper triangular and G = G.

�

Proposition 5.26. There are uncountably many affine conjugacy classes of

affine groups isomorphic to Z⊕ Z that act properly discontinuously on R2.

Proof.

Let T be a maximal set of the form T = {{r, r} ⊆ (R−Q)∩ (0, 1
2
) : no two

sets have a common element} (such a T is not unique). Then T is uncountable.

Let T0 = {{(b, r), (b, r)} : {r, r} ∈ T, b− 1
2
r(r−1) = b−r(r−1) and r±r /∈ Z}.

Then T0 is uncountable as well. Let G =< α1, β(b,r) > and G =< α1, β(b,r) >,

where {(b, r), (b, r)} ∈ T0, and suppose (for a contradiction) G is conjugate to
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G. Lemma 5.25 implies G = G, which in turn implies r±r ∈ Z (Lemma 5.24),

a contradiction. Therefore there must be uncountably many conjugacy classes

of properly discontinuous groups isomorphic to Z⊕ Z.

�

In the case where the maps are (two-dimensional) isometries, there are two

affine conjugacy classes (Bieberbach). See [C], page 41.

Proposition 5.27. Let G =< α1, β >, G =< α1, β > and Ĝ =< α1, β̂ >.

(i) ϕ(π−1) = ϕ−1
π .

(ii) ϕπϕτ = ϕτπ

(iii) If G contains no translations, πGπ−1 = G and τGτ−1 = G, then ϕτπ

is upper triangular.

Proof.

(i) and (ii) follow from Corollary 5.23: πGπ−1 = G implies π−1Gπ =

π−1G(π−1)−1 = G, while {πGπ−1 = G and τGτ−1 = Ĝ} imply τπG(τπ)−1 =

Ĝ. To show (iii), if πGπ−1 = G and τGτ−1 = G, then τπG(τπ)−1 = G and

ϕτπ is upper triangular by Theorem 5.22.

�

If G =< α1, β > contains no translations (and Res(β) 6= 0), then GL(2,Z)

acts on its conjugacy class by ϕG = Ĝ where πĜπ−1 = G and ϕ = ϕπ. We
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can extend this GL(2,Z) action to {(b, r) ∈ R2− ℘(0,1) : r /∈ Q} as well (when

r = p
q

is rational, ϕ(r) = ∞ where ϕ =

 w v

q −p

).

The kernel of this action is the subgroup H of upper triangular matrices.

Corollary 5.28. Suppose G =< α1, β > contains no translations

(and Res(β) 6= 0).

There is a natural one-to-one correspondence between each normalized mem-

ber of the conjugacy class of G and the left cosets of H in GL(2,Z).

Proof.

We are assuming that all groups contain α1 as a generator.

Let πGπ−1 = G and τGτ−1 = Ĝ.

Assume first that ϕπH = ϕτH.

The conjugacy equations above imply τ−1Ĝτ = G and G = πτ−1Ĝτπ−1 =

πτ−1Ĝ(πτ−1)−1.

Since ϕ−1
τ ϕπ = ϕτ−1ϕπ = ϕπτ−1 is upper triangular and r /∈ Q, Theorem 5.22

implies G = Ĝ.

Now assume that G = Ĝ. Then G = πτ−1Ĝ(πτ−1)−1 = Ĝ. Again, Theo-

rem 5.22 implies ϕπτ−1 = ϕτ−1ϕπ is upper triangular (ϕπH = ϕτH).

�

Another Look at the Kernel of the Residue

Recall that an affine group that contains a non-translation is isomorphic to

Z⊕ Z and acts properly discontinuously if and only if it is conjugate to some

G =< α1, β(b,r) > where (b, r) /∈ Ker(Res) = ℘(0,1), and the parameter space
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Ωα1 = {[(b, r)] : (b, r) /∈ ℘(0,1)} corresponds to the set of such distinct G.

Theorem 5.29. (Conjugacy Classes Limit to ℘(0,1))

Any open ε-disc centered at (x0, y0) ∈ ℘(0,1) contains a representative from

each conjugacy class of properly discontinuous affine G ∼= Z⊕ Z that contain

a non-translation.

Proof.

Let ε > 0 and assume that D = Dε((x0, y0)) is an open disc centered at

(x0, y0) ∈ ℘(0,1). Let n = inf{y : (x, y) ∈ D ∩ ℘(0,1)} and N = sup{y : (x, y) ∈

D ∩℘(0,1)}. Suppose G ∼= Z⊕Z is not a pure translation group, acts properly

discontinuously and is conjugate to < α1, β > where β = β(b,r). Then r /∈ Q.

Choose w
u
∈ Q, n < w

u
< N . We may assume that w

u
is reduced, that is,

gcd(w, u) = 1. Then there exist t, v ∈ Z so that wt− uv = 1.

Let ϕ =

 w v

u t

. ϕH corresponds to a group < α1, β > that is conjugate

to < α1, β >, and is therefore conjugate to G (recall that H is the subgroup

of upper triangular matrices of GL(2,Z)).

Specifically, for each m ∈ Z, < α1, β >=< α1, β(bm,rm) >,

where rm = wr+v+mw
ur+t+mu

and bm = Res(β)
(ur+t+mu)3

+ 1
2
rm(rm − 1).

Thus rm → w
u

as m→ ±∞.

Res(β) is fixed, which implies that { Res(β)
(ur+t+mu)3

} → 0 as m → ±∞. There-

fore (bm, rm) ∈ D for large enough m.

�
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As a consequence of Theorem 5.29, if we let V be the “ε−neighborhood of

℘(0,1)”, then {[(b, r)] : (b, r) ∈ V − ℘(0,1)} = Ωα1 .

6. Actions in R3

When two generators are involved, acting freely (on R3) is not sufficient for

a properly discontinuous action as there are non-discrete examples (see the

2-dimensional case).

However, being discrete will not insure a properly discontinuous action ei-

ther.

Example: Let G =< α, β >, where α is the Euclidean translation by

e1 and β = [B, b] with B =


1 0 0

0 1 1

0 0 1

 and b = (
√

2, 1, 0).

G ≤ Affine(R3) and is isomorphic to Z ⊕ Z, acts freely, and is discrete.

Yet this group does not act properly discontinuously on R3:

The element g = αkβj maps (x, y, z) to (x+j
√

2+k, y+j(z+1), z). Choose

a sequence {ji, ki} of pairs of integers with ji →∞ and (ji
√

2+ki) → r ∈ R as

i→∞. Each gi = αkiβji keeps the plane z = −1 invariant. The sequence {gi}

converges uniformly to f : (x, y, z) 7→ (x+r, y, z) when restricted to this plane.

Set hi = gig
−1
i+1 and let U be any open set of R3 meeting the plane z = −1.

hi(U)∩ (U) 6= ∅ for large i, showing that G does not act discontinuously (and

hence not properly discontinuously) on R3. Since G does act discontinuously

at any point not in this plane, it is a discrete group.
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6.1. Z⊕ Z Actions (The General Case).

Properly discontinuous G ∼= Z⊕Z are characterized in a similar manner to

those in dimension 2: One generator is normalized, the form of the other gen-

erator simplifies from the commuting condition, and a properly discontinuous

action is determined by the coordinates of the latter generator. In the case in

which the matrix part of a generator has characteristic polynomial (x − 1)3,

the group acts as “translation” along curves or “shearing” along surfaces.

Recall that αi = [Ai, e3] where A1 =


1 1 0

0 1 1

0 0 1

,

A2 =


a0 0 0

0 1 1

0 0 1

, a0 6= 0 and A3 =

 A0 0

0 1

, A0 ∈ GL(2,R).

The cases are divided as follows:

(i) There is a generator that is conjugate to α1

(ii) There is a generator that is conjugate to α2

(iii) Both generators are conjugate to α3

Also, unless stated otherwise, it will always be assumed that β = [B, b].

By the theorem of Tartar and Yakir stated earlier:

(i) β is affine conjugate to α1 if and only if B is similar to A1 and τ(b, B) =

τ(e3, A1) = 3
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(ii) β is affine conjugate to α2 if and only if B is similar to A2 and τ(b, B) =

τ(e3, A2) = 2

(iii) β is affine conjugate to α3 if and only if B is similar to A3 and τ(b, B) =

τ(e3, A3) = 1.

Since α1 and the families represented by α2 and α3 are specific, another

description can be made:

Lemma 6.1. Let β = [B, b] ∈ Affine(R3) be fixed point free.

(i) β is (affine) conjugate to α1 if and only if B(b) 6= b and there is no

2-dimensional subspace that is β-invariant.

(ii) β is conjugate to α2 if and only if B(b) 6= b and there is a 2-dimensional

β-invariant subspace.

(iii) β is conjugate to α3 if and only if B(b) = b

(The conjugacy class of translations (the translations themselves) are a sub-

set of all maps of the form α3.)

Proof.

The equationB(b) = b holds if and only if β is conjugate to α3 from τ(b, B) =

1 being equivalent to B(b) = b.

(i) Suppose α1 keeps a plane through the origin invariant. This plane would

then be A1-invariant implying that it contains span(e3) = z − axis. Since the

xy-plane is A1-invariant, the intersection of these planes is A1-invariant (a one

dimensional subspace, say ` = span(re1 + se2), r, s ∈ R). Let v = (tr, ts, 0) be

a point on `. Now A1(v) = v + se1, but also A1(v) = (dr, ds, 0) implying that

s = 0 and so ` is the x-axis. But the xz-plane is not α1-invariant.
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(ii) and (iii) are immediate.

�

Lemma 6.2. If < αi, β >∼= Z⊕ Z then the following simplifications occur:

(i) i = 1: B =


1 r2 r3

0 1 r2

0 0 1

 and b = (b1, r3, r2).

This also implies β is fixed point free.

(ii) i = 2: B =


r1 0 0

s1 1 s3

0 0 1

 and b = (b1, b2, s3).

If a0 6= 1, then s1 = 0 and b1 = 0.

(iii) If in addition β is conjugate to α3 and b /∈ span(e3), then α3 further

conjugates to [A, e3] where

A =


a1 0 0

a2 1 0

0 0 1

. Then B =


r1 r2 0

s1 s2 s3

t1 t2 1

.

In this setting the following possibilities arise:

(a) If a1 6= 1 then r2 = s3 = b1 = t1 = t2 = 0 (so b2 6= 0), s2 = 1, and

b(r1 − 1) = s1(a1 − 1). In this case, either r1 6= 1 or β is a translation.

(b) If a1 = 1 and α3 is not a translation, then r2 = t2 = 0, r1 = s2 = 1, and

b1 = s3

a2
. Also either s3 = 0 or both b3 = − s1

a2
and b1t1 = 0.
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Proof.

(i) and (ii) follow from the computations AB = BA and A(b)+e3 = B(e3)+

b.

(iii) Let B =


r1 r2 r3

s1 s2 s3

t1 t2 t3

 and b = (b1, b2, b3).

BA(e3) = AB(e3) implies A0(r3, s3) = (r3, s3). If r3 6= 0 or s3 6= 0, then A

is the identity on a plane containing span(e3).

If r3 = s3 = 0, then A(b) + e3 = B(e3) + b imply A0(b1, b2) = (b1, b2),

which is not (0, 0) by assumption (this last computation also implies t3 = 1).

Thus A has a 2-dimensional 1-eigenspace containing the span(e3). Now rotate

(conjugate) this plane to span(e1)
⊥.

The form of β follows from AB = BA, A(b) + e3 = B(e3) + b, Det(B) =

Trace(B)− 2, and B(b) = b.

�

In (iii), if b ∈ span(e3), then the group G would keep the span(e3) invariant

and therefore not act properly discontinuously.

A necessary condition for a properly discontinuous Z⊕Z action which does

not rely on normalizing the group is given by:

Corollary 6.3. Let G ∼= Z⊕ Z be a three dimensional affine group that con-

tains a non-translation. If G acts properly discontinuously, then Det(A)=Trace(A)-

2 for any generator α = [A, a] ∈ G.
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Proof. Follows immediately from Lemma 6.2 since the trace and determinant

are conjugation invariant.

�

The following two facts follow from a computation.

(1) For all integers k,

Ak
1 =


1 k k(k−1)

2

0 1 k

0 0 1

, Ak
2 =


ak

0 0 0

0 1 k

0 0 1

, and Ak
3 =

 Ak
0 0

0 1

.

(2) For all integers k,

(i) αk
1 = [Ak

1, ak] where ak = (k(k−1)(k−2)
6

, k(k−1)
2

, k).

(ii) αk
2 = [Ak

2, ak] where ak = (0, k(k−1)
2

, k).

(iii) αk
3 = [Ak

3, ke3].

6.2. A General Notion of Residue.

In dimension two, Res(β(b,r)) 6= 0 is equivalent to (b, r) /∈ ℘(0,1), that is, the

translation part of β does not lie on a certain parabola. In dimension three

the analogous condition will be that the translation part of β not lie on a non-

planar curve in R3. This condition generalizes in any dimension (See General

Facts About Affine Groups)
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Proposition 6.4. Let G =< α1, β >∼= Z⊕Z, where β = [B, b]. The following

are equivalent:

(i) G acts properly discontinuously (and freely) on R3

(ii) b does not lie on the curve {(1
6
z(z − 1)(z − 2), 1

2
z(z − 1), z) : z ∈ R}

Proof.

Let B =


1 r2 r3

0 1 r2

0 0 1

 and b = (b1, r3, r2).

Two proofs will be given. The first will involve coordinates, and the second

will use a polynomial map.

Proof 1:

Suppose b 6= (1
6
r2(r2 − 1)(r2 − 2), 1

2
r2(r2 − 1), r2). (∗)

Assume that all j, ji ∈ Z+ and k, ki ∈ Z.

βj has matrix part Bj =


1 jr2 (jr3 +

r2
2j(j−1)

2
)

0 1 jr2

0 0 1

 and translation

part (jb1 + r2r3j(j − 1) + 1
6
r3
2j(j − 1)(j − 2), jr3 + 1

2
r2
2j(j − 1), jr2).

Then αk
1β

j = [Ak
1B

j, (c1, c2, c3)] where Ak
1B

j =


1 c3 c2

0 1 c3

0 0 1

,

c3 = jr2 + k,

c2 = jr3 + 1
2
r2
2j(j − 1) + r2jk + 1

2
k(k − 1), and
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c1 = jb1 +r2r3j(j−1)+ 1
6
r3
2j(j−1)(j−2)+k(jr3 + 1

2
r2
2j(j−1))+ 1

2
r2jk(k−

1) + 1
6
k(k − 1)(k − 2).

Suppose there is a sequence gi = αki
1 β

ji in G in which {ti = jir2 + ki}

converges to t (otherwise gi(E) →∞ via the third coordinate for all compact

E ⊆ R3).

There are two cases (1) r3 6= 1
2
r2(r2 − 1) and (2) r3 = 1

2
r2(r2 − 1).

(1) Then c2 = 1
2
(jr2 + k)2 − 1

2
(jr2 + k) + d, d 6= 0 and gi(E) → ∞ in the

second coordinate.

(2) By (∗), b1 6= 1
6
r2(r2 − 1)(r2 − 2) and so b1 = 1

6
r3
2 − 1

2
r2
2 + 1

3
r2 + d where

d 6= 0.

c1 above can be rewritten as

1
6
(jr2 + k)3 + jb1 − 1

2
r3
2j − 1

2
r2
2j

2 + 1
2
r2
2j + 1

3
r3
2j − r2jk − 1

2
k2 + 1

3
k

= 1
6
(jr2 + k)3 − 1

2
(jr2 + k)2 + j(b1 − 1

6
r3
2 + 1

2
r2
2) + 1

3
k

= 1
6
(jr2 + k)3 − 1

2
(jr2 + k)2 + 1

3
(jr2 + k) + jd, (∗∗)

implying that gi(E) →∞ as i→∞.

By Lemma 2.3 the inverse sequence need not be examined.

A free action follows from G being torsion free.

Conversely, suppose that b = (1
6
r2(r2 − 1)(r2 − 2), 1

2
r2(r2 − 1), r2).

Choose ji, ki so that (jir2 + ki) → t ∈ R and then αki
1 β

ji converges to the
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affine map having matrix part


1 t 1

2
t(t− 1)

0 1 t

0 0 1

 and translation part

(1
6
t(t− 1)(t− 2), 1

2
t(t− 1), t). G does not act properly discontinuously.

Proof 2:

Let ϕ =


f1 f2 f3

f4 f5 f6

f7 f8 f9

 where f1(x) = f5(x) = f9(x) = x, f2(x) = f4(x)

= f7(x) = f8(x) = 0, f6(x) = −1
2
x(x− 1), and f3(x) = −1

6
x(x− 1)(x− 2).

That is, ϕ =


x 0 −1

6
x(x− 1)(x− 2)

0 x −1
2
x(x− 1)

0 0 x

. This is a homeomorphism.

Then ϕGϕ−1 = ϕ < α1, β > ϕ−1 =< [I, e3], ϕβϕ
−1 > is generated by two

independent translations when r3 = 1
2
r2(r2 − 1) and b1 6= 1

6
r2(r2 − 1)(r2 − 2).

When r3 6= 1
2
r2(r2 − 1), the action of ϕβϕ−1 is ”translation” along parallel

parabolas not orthogonal to the y-axis. In this case the y-coordinate or the

z-coordinate of gj(E) grows arbitrarily large for any sequence {gj} of distinct

elements of ϕGϕ−1 and compact set E (and G ∼= Z⊕ Z). When b lies on the

curve Cα1 , either ϕGϕ−1 does not act properly discontinuously or is cyclic. �

Corollary 6.5. Suppose α = [A, a], β ∈ Affine(R3) are fixed point free and

commute, and that the characteristic polynomial of A is (x−1)3. The following

are equivalent:
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(i) G =< α, β > is isomorphic to Z⊕ Z and acts properly discontinuously.

(ii) The translation part of β does not lie on a curve ℘α kept invariant by

α.

When G is conjugated so that the matrix of α is in Jordan form, the curve

℘α becomes {(1
6
z(z − 1)(z − 2), 1

2
z(z − 1), z) : z ∈ R}.

Remark 6.6. This result holds in any dimension. The normal form of ℘α is then

{( 1
n!
x1,

1
(n−1)!

x2, ...,
1
2
xn−1, x) : x ∈ R}, where xi = x(x−1)(x−2)...(x−(n−i)).

The elements of < α1, β > keep invariant families of curves or surfaces

(proofs are omitted):

(i) α1 keeps the curve Cα1 = {(1
6
z(z − 1)(z − 2), 1

2
z(z − 1), z) : z ∈ R}

invariant.

(ii) Each curve Ct = {(1
6
(z(z−1)(z−2)+ t, 1

2
z(z−1), z) : z ∈ R} = Cα1 + te1

is α1 invariant.

(iii) Each curve Ct,s = {(1
6
z(z − 1)(z − 2) + t, 1

2
z(z − 1) + s, z) : z ∈ R} =

Cα1 + te1 + se2 is sheared s units in the span(e1) direction by α1 about the

surface

∪{Ct : t ∈ R}.

In particular, each surface ∪{Ct,s : t ∈ R} is α1 invariant.

(iv) The curve Cβ = {(1
6
z3+( r3

r2
− r2

2
)z2+( b1

r2
+ 1

3
r2
2−r3)z, 1

2
z2+( r3

r2
− 1

2
r2)z, z) :

z ∈ R} is β invariant.
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(v) Each curve Cβ +te1 is β invariant and each curve Cβ +te1 +se2 is sheared

sr2 units in the span(e1) direction by β.

In particular, each surface ∪{Cβ + te1 + se2 : t ∈ R} is β invariant.

Lemma 6.7. Let G =< α2, β >∼= Z ⊕ Z with a0 6= 1 and fixed point free β

having the form given in Lemma 6.2. The following are equivalent:

(i) G acts freely and properly discontinuously on R3

(ii) b2 6= 1
2
s3(s3 − 1)

When this occurs, the behavior of G is essentially the same as the subgroup

< α1, β > of Affine(R2) with Res(β) 6= 0.

Specifically, αk
2β

j(x, y, z) = (∗, αk
1β

j(y, z)) where the α1 and β on the right

side of the equation are two-dimensional.

Proof. Assume that all j, ji ∈ Z+ and k, ki ∈ Z.

βj = [Bj, (0, jb2 + 1
2
s2
3j(j − 1), js3)] where Bj =


rj
1 0 0

0 1 js3

0 0 1

.

αk
2β

j has matrix part Ak
2B

j =


ak

0r
j
1 0 0

0 1 (js3 + k)

0 0 1

 and

translation part (0, jb2 + 1
2
s2
3j(j − 1) + jks3 + 1

2
k(k − 1), js3 + k).

Suppose first that b2 6= 1
2
s3(s3 − 1). Then b2 − 1

2
s2
3 = −1

2
s3 + d, d 6= 0.
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Given a sequence {gi = αki
2 β

ji}, assume that {jis3 + ki} converges to t ∈ R

(else done).

The second coordinate of the translation part of αk
2β

j can be

rewritten as jb2 + 1
2
(js3 + k)2 − 1

2
s2
3j − 1

2
k = 1

2
(js3 + k)2 + j(b2 − 1

2
s2
3)− 1

2
k

= 1
2
(js3 + k)2 − 1

2
(js3 + k) + jd.

This implies that gi(E) →∞ as i→∞ for any compact E.

Then G torsion free implies G acts freely.

Conversely, assume that b2 = 1
2
s3(s3 − 1) and choose ji, ki so that {jis3 +

ki} → t ∈ R.

The translation part of αki
2 β

ji converges to (0, 1
2
t(t−1), t). If E is the closure

of any neighborhood of (0, 0, 0) then gi(E) ∩ E 6= ∅ for infinitely many i.

�

If s3 = 0, the conclusion of the lemma still holds (b2 6= 0 is then equivalent

to β having no fixed points).

Corollary 6.8. There are uncountably many affine conjugacy classes of 3-

dimensional G ∼= Z⊕ Z that act properly discontinuously.

Proof.

A 2-dimensional copy of < α1, β > sits inside the 3-dimensional < α2, β >

above. Apply Theorem 5.21. �
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