
ARTIFICIAL NEURAL NETWORKS TO PREDICT THE NITRATE 

DISTRIBUTION IN CIMARRON TERRACE AQUIFER, OKLAHOMA 

 

 

   By 

   PRATIMA POUDYAL 

   Bachelor’s Degree in Civil Engineering 

   Tribhuvan University 

Institute of Engineering 

   Pokhara, Nepal 

   2003 

 

   Submitted to the Faculty of the 

   Graduate College of the 

   Oklahoma State University 

   in partial fulfillment of 

   the requirements for 

   the Degree of 

   MASTER OF SCIENCE  

   December, 2007 



 

 ii 

ARTIFICIAL NEURAL NETWORKS TO PREDICT THE NITRATE DISTRIBUTION 

IN CIMARRON TERRACE AQUIFER, OKLAHOMA 

 

 

 

 

 

 

 

    Thesis Approved: 

 
 

 

Dr. William F. McTernan 

Thesis Co-Advisor 

Dr. Avdhesh K. Tyagi 

Thesis Co-Advisor 

Dr. Gregory G. Wilber 

 

 

Dr. A. Gordon Emslie 

   Dean of the Graduate College 
 

 



 

 iii 

ACKNOWLEDGEMENTS 

 

I wish to thank members of my committee for their support and patience, Dr. 

William F. McTernan, Dr. Avdhesh K. Tyagi, and Dr. Gergroy W. Wilber. Their 

valuable comments and contributions strengthen this thesis. I would like to take this 

opportunity to thank Dr. Avdhesh K. Tyagi for providing the financial assistance in the 

form of research assistantship. The financial support was provided by the city of Enid and 

the Oklahoma Department of Transportation. I am very grateful and forever indebted to 

professor Dr. William F. McTernan for his endless support and guidance. Working with 

him has been a great pleasure for me. I would also like to thank Dr. Gregory G. Wilber 

for his time, valuable comments and support as a committee member.  

I cannot finish without saying how grateful I am with my family. I wish to thank 

my parents for their love. Most importantly, I would like to thank my brothers Nabin 

Poudyal and Prabin Poudyal for their love and support in every moment of my life. I 

would also like to express my warmest thanks to my fiancé Kabindra Joshi for his love 

and encouragement. 

Finally, I would like to thank my invaluable friends Moti K.C. and Roji 

Manandhar for their help.  

 



 

 iv 

TABLE OF CONTENTS 

 

 

Chapter                                                                                                     Page 

INTRODUCTION............................................................................................................. 1 

1.1. Introduction.............................................................................................................. 1 

1.2. Problem statement.................................................................................................... 4 

1.3. Objectives of study .................................................................................................. 8 

STUDY AREA DESCRIPTIONS.................................................................................... 9 

2.1. Location of study area.............................................................................................. 9 

2.2. Geology….............................................................................................................. 11 

2.2. Groundwater hydrology......................................................................................... 11 

2.3. Land use. ………………………………………………………………………….12 

NEURAL NETWORKS ................................................................................................. 15 

3.1. Introduction............................................................................................................ 15 

3.2. Artificial neural networks ...................................................................................... 16 

METHODOLOGY ......................................................................................................... 23 

4.1. Background ............................................................................................................ 23 

4.2. Spatial models........................................................................................................ 23 

        4.2.1. Overall aquifer model ................................................................................. 26 

        4.2.2. Central area model ...................................................................................... 32 

        4.2.3. Individual wellfield models ........................................................................ 35 

                  4.1.3.1. Cleospring wellfield spatial model ................................................ 36 

                  4.1.3.2. Ringwood wellfield spatial model ................................................. 44 

                  4.1.3.3. Ames wellfield spatial model......................................................... 51 

                  4.1.3.4. Drummond wellfield spatial model ............................................... 56 

4.3. Constituent relationship models............................................................................. 61 

4.4. Management models .............................................................................................. 67 

4.5. Stochastic model .................................................................................................... 70



 

 v 

Chapter                                                                                                     Page 

RESULTS……. ............................................................................................................... 72 

5.1. Spatial models........................................................................................................ 72 

        5.1.1. Overall aquifer model ................................................................................. 72 

        5.1.2. Central area model ...................................................................................... 82 

        5.1.3. Individual ellfield spatial model ................................................................. 87 

                  5.1.3.1. Celospring wellfield spatial model ................................................ 87 

                  5.1.3.2. Ringwood wellfield model............................................................. 91 

                  5.1.3.3. Ames wellfield model .................................................................... 94 

                  5.1.3.4. Drummond wellfield model........................................................... 98 

5.2. Constituent relationship models........................................................................... 101 

       5.2.1. Cleospring constituent relationship model................................................. 101 

       5.2.2.Ringwood constituent relationship model .................................................. 104 

       5.2.3. Ames constituent relationship model......................................................... 107 

       5.2.4. Drummond constituent relationship model................................................ 111 

5.3. Management models ............................................................................................ 114 

5.4. Stochastic model .................................................................................................. 118 

DISCUSSION... ............................................................................................................. 123 

6.1. Discussion on results of spatial models ............................................................... 123 

       6.2.1. Discussion on results of overall aquifer spatial model .............................. 124 

       6.2.2. Discussion on results of central area spatial model ................................... 126 

       6.2.3. Discussion on results of individual wellfield spatial model ...................... 126 

6.3. Discussion on results of constituent relationship models .................................... 127 

6.4. Discussion on results of management model....................................................... 131 

6.5. Discussion on results of stochastic model ........................................................... 133 

CONCLUSIONS AND RECOMMENDATIONS...................................................... 134 

7.1. Conclusions.......................................................................................................... 134 

7.2. Recommendations................................................................................................ 138 

REFERENCES ………………………………………………………………………...139 

APPENDICES ………………………………………………………………………...151



 

 vi 

LIST OF FIGURES 

 

 

Figure                                    Page 

  

Figure 1-2. Time series of NO3-N concentration in the Cimarron Terrace Aquifer (KC, 

2007) ................................................................................................................. 6 

 

Figure 2-1. Location map of Cimarron Terrace Aquifer .................................................. 10 

 

Figure 2-2. Major land-use determinations from 2001 NLCD ......................................... 14 

 

Figure 3-1. Schematic drawing of biological neuron........................................................ 16 

 

Figure 3-2. A three layer, four neuron-input layer, three neuron-hidden layer back 

propagation neural network model ................................................................. 18 

 

Figure 3-3. Schematic of neural network operation.......................................................... 19 

 

Figure 4-1. Cimarron Terrace Aquifer with ANN 1000m*1000m grid system ............... 25 

 

Figure 4-2. Box plot of nitrate concentrations in city of Enid four wellfiels and in USGS 

study wells, sampled in 2003.......................................................................... 26 

 

Figure 4-3. Location of City of Enid sampling wells and USGS sampling wells ............ 31 

 

Figure 4-4. Location of focused area in central area model ............................................. 33 

 

Figure 4-5. Subdivision of 1000m*1000m grid to 200m*200m grid............................... 36 

 

Figure 4-6. Location of focused area in Cleospring wellfield model ............................... 38 

 

Figure 4-7. Location of focused area in Ringwood wellfield model ................................ 45 

 

Figure 4-8. Location of focused area in Ames wellfield model ....................................... 52 

 

Figure 4-9. Location of focused area in Drummond wellfield model .............................. 57 

 

Figure 4-10. Extractions of land cover variables within a statistical area of well influence 

around each groundwater ............................................................................. 62



 

 vii 

Figure                                    Page 

 

Figure 5-1. RMS error plots of various alternatives……………………………………..74 

 

Figure 5-2. Neural kriging estimation of groundwater nitrate distribution for the year 

2003 in Cimarron Terrace Aquifer ................................................................. 80 

 

Figure 5-3. RMS error plots of network no. 5 .................................................................. 84 

 

Figure 5-4. Neural kriging estimation of groundwater nitrate distribution for the year 

2003 in central area of Cimarron Terrace Aquifer.......................................... 85 

 

Figure 5-5. RMS error plots of network no. 7 .................................................................. 88 

 

Figure 5-6. Neural kriging estimation of groundwater nitrate distribution in Cleospring 

wellfield .......................................................................................................... 90 

 

Figure 5-7. RMS error plots of network no. 7 .................................................................. 92 

 

Figure 5-8. Neural kriging estimation of groundwater nitrate distribution in Ringwood 

wellfield .......................................................................................................... 93 

 

Figure 5-9. RMS error plots of network no. 6 .................................................................. 95 

 

Figure 5-10. Neural kriging estimation of groundwater nitrate distribution in Ames 

wellfield ....................................................................................................... 97 

 

Figure 5-11. RMS error plots of network no. 6 ................................................................ 99 

 

Figure 5-12. Neural kriging estimation of groundwater nitrate distribution in Drummond 

wellfield ..................................................................................................... 100 

 

Figure 5-13. RMS error plots of network no. 6 .............................................................. 102 

 

Figure 5-14. Observed and predicted nitrate concentration by Cleospring constituent 

relationship model...................................................................................... 103 

 

Figure 5-15. RMS error plots of network no. 3 .............................................................. 105 

 

Figure 5-16. Observed and predicted nitrate concentration by Ringwood constituent 

relationship model...................................................................................... 106 

 

Figure 5-17. RMS error plots of network no. 4 .............................................................. 109 

 

Figure 5-18. Observed and predicted nitrate concentration by Ames constituent 

relationship model...................................................................................... 110 



 

 viii 

 

 

Figure                                    Page 

 

Figure 5-19. RMS error plots of network no. 1 .............................................................. 112 

 

Figure 5-20. Observed and predicted nitrate concentration by Drummond wellfield 

constituent relationship model ................................................................... 113 

 

Figure 5-21. Nitrate concentrations in all wells of Ames wellfield with varying on ground 

nitrogen application reduction ................................................................... 115 

 

Figure 5-22. RMS error plots of network no. 3 .............................................................. 117 

 

Figure 5-23. Nitrate concentrations in wells of Ames wellfield having measured nitrate 

concentrations above 40 mg/L with varying on ground nitrogen application 

reduction .................................................................................................... 118 

 

Figure 5-24. Well A1: Mean versus number of simulations........................................... 119 

 

Figure 5-25. Well A1: Standard deviation versus number of simulations...................... 119 

 

Figure 5-26. Well A1: Best fit curve probability density ............................................... 120 

 

Figure 5-27. Well A1: Best fit curve for cumulative density ......................................... 121 

 

Figure 6-1. Average soil profile clay content derived from STATSGO database……...130 

 

Figure 6-2. Statistical summary (box plots) of observed and predicted nitrate 

concentrations in four wellfields…………………………………………....131 

 

 

 

 

 

..



 

 ix

LIST OF TABLES 

 

 

Table                                                 Page 

Error! No table of figures entries f 

Table 4-1. Training and testing data sets for overall aquifer model ................................. 28 

 

Table 4-2. Training and testing data sets for central area model ...................................... 34 

 

Table 4-3. Training and testing data sets for Cleospring wellfield model........................ 39 

 

Table 4-4. Training and testing data sets for Ringwood wellfield model......................... 46 

 

Table 4-5. Training and testing data sets for Ames wellfield model ................................ 53 

 

Table 4-6. Training and testing data sets for Drummond wellfield model....................... 58 

 

Table 4-7. Cleospring wellfield constituent relationship model configuration ................ 64 

 

Table 4-8. Ringwood wellfield constituent relationship model configuration ................. 65 

 

Table 4-9. Ames wellfield constituent relationship model configuration......................... 66 

 

Table 4-10. Drummond wellfield constituent relationship model configuration ............. 67 

 

Table 4-11.  Ames wellfield management model ............................................................. 70 

 

Table 5-1. Alternatives for building overall aquifer model .............................................. 73 

 

Table 5-2. Example of overall aquifer model outputs ...................................................... 79 

 

Table 5-3. Areas of nitrate concentrations in three different ranges................................. 81 

 

Table 5-4.  Calculated mean absolute percentage error (MAPE) for comparisons between 

observed and predicted nitrate concentrations by overall aquifer model ....... 82 

 

Table 5-5. Alternatives for central area model ................................................................. 83 

 

Table 5-6. Calculated mean absolute percentage error (MAPE) for comparisons between 

observed and predicted nitrate concentrations by central area model ............ 86



 

 x

Table 5-7. Alternatives for Cleospring wellfield spatial model........................................ 87 

 

Table 5-8. Alternatives for Ringwood wellfield spatial model......................................... 91 

 

Table 5-9. Alternatives for Ames wellfield spatial model................................................ 94 

 

Table 5-10. Alternatives for Drummond wellfield spatial model..................................... 98 

 

Table 5-11. Alternatives for Cleospirng wellfield constituent relationship model......... 101 

 

Table 5-12. Calculated mean absolute percentage error (MAPE) for comparisons between 

observed and predicted nitrate concentrations by Cleospring wellfield 

constituent relationship model ................................................................... 104 

 

Table 5-13. Alternatives for Ringwood wellfield constituent relationship model.......... 104 

 

Table 5-14. Calculated mean absolute percentage error (MAPE) for comparisons between 

observed and predicted nitrate concentrations by Ringwood wellfield 

constituent relationship model ................................................................... 107 

 

Table 5-15. Alternatives for Ames wellfield constituent relationship model................. 108 

 

Table 5-16. Calculated mean absolute percentage error (MAPE) for comparisons between 

observed and predicted nitrate concentrations by Ames wellfield constituent 

relationship model......................................................................................... 111 

 

Table 5-17. Alternatives for Drummond wellfield constituent relationship model........ 111 

 

Table 5-18. Calculated mean absolute percentage error (MAPE) for comparisons between 

observed and predicted nitrate concentrations by Drummond wellfield 

constituent relationship model ...................................................................... 114 

 

Table 5-19. Alternatives for Ames wellfield high concentrations constituent relationship 

model............................................................................................................. 116 

 

Table 5-20. Summary of results of best fit curves .......................................................... 122



 

 1 

CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1  Introduction 

Groundwater provides approximately 19% of total water consumed in United 

States (Solley et al., 1998).  Generally groundwater is a safe source of drinking water; 

however, numerous contaminants can render groundwater unsuitable for human 

consumption. Nitrogen (N), particularly in the form of nitrate (NO3) is the most common 

groundwater pollutant found in United States (Postma et al., 1991). Several studies 

showed high association between agriculture and nitrate concentration in groundwater 

(Mueller et al., 1993; Ryker and Jones, 1995; Ling and El-Kadi, 1998; Shrestha and 

Ladha, 2002). The Midwestern United States has been identified areas of high nitrate 

vulnerable areas which also includes north-west Oklahoma (Bukart and Stoner, 2002; 

Nolan et al., 1999). Highly permeable soils, shallow well depths and intensive fertilizer 

application are key factors associated with high nitrate levels in this area (Bukart and 

Stoner, 2002).  

 Agricultural activities are the main non-point sources of nitrate. When the total 

nitrogen input exceeds the amount used by plants, nitrate accumulates in the soil and 

leaches to the underlying aquifer. Nitrate is highly soluble in water and easily moves with 

water through the soil profile. Landfill leachate, and septic tank effluents are most
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frequently reported point sources of nitrate. Private septic system processes serve 

approximately one quarter of all households in the United States (US Bureau of the 

Census, 1993). Ammonia is a typical form of nitrogen that is released from septic tanks, 

but nitrification in the vadose zone can convert ammonia to nitrate, which can leach into 

groundwater (Makowshi, 2006). Earth’s atmosphere consists of 78% nitrogen gas. 

Naturally occurring nitrate may also cause groundwater nitrate contamination. During 

lightning storms, atmospheric nitrogen is converted to nitrate and deposited in the soil 

through precipitation. The infiltrating rainwater can transport the nitrate to the shallow 

groundwater above the acceptable level for drinking water (Faris et al., 2000).  

 Nitrate is non-volatile inorganic compound which is highly soluble in water. As 

nitrate has become one of the common sources of groundwater contamination, its 

remediation from the drinking water is of key concern. Chlorination, the most common 

water treatment method, can not remove nitrate from water, however, it may prevent 

nitrates from being reduced to the toxic nitrite form (Bergsrud et al., 1992). The 

biological dentrification process is a process which converts nitrate to harmless nitrogen 

gas (William, 2007). However, biological denitrification process also suffers from several 

drawbacks including difficulties in maintaining a viable culture of bacteria, high cost of 

chemicals to maintain the bacterial culture, and unpredictable reaction rates (Murphy, 

1997).  Reverse osmosis, ion exchange, and electrolysis are several other processes that 

are currently employed in nitrate removal. However, disposal of the reject water is a 

major expense and environmental issue related with these processes. Therefore, 

protection of wells and wellfields from nitrate contamination by the identification and 
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eventual removal by reduction of potential contaminant sources is more effective action 

rather than groundwater contaminant remediation.    

 Identification of unknown contaminant sources, a critical issue in environmental 

management and regional assessment of ground water quality, is made difficult by the 

fact that nitrogen sources are spatially distributed (Tesoriero and Voss, 1997). Numerical 

flow and transport models are extensively used to simulate the fate and transport of 

nitrogen in soils and groundwater. These models provide valuable information for 

planning remediation strategies and long term monitoring designs (Li et al., 2006) but 

there are many fundamental difficulties associated with developing them (Almasri and 

Kaluarachchi, 2004). The key difficulties are:  

•  the models are highly data intensive and the data are generally not available and 

costly to obtain, 

• the development of these models require detailed characterization of the study 

area including the physical, chemical, and biological processes when such 

processes are not fully known (McGrail, 2001), 

• in order to simulate multiple scenarios, these models often require fine spatial and 

temporal discretization that involves substantial computational resources 

(Morshed and Kaluarachchi, 1998b and McGrail, 2001), and 

• with these forward models it is difficult to identify the source and to solve the 

problem in inverse direction. 

 The inverse problem is often ill-posed (Skaggs and Kabala, 1994; Liu and Ball, 

1999; Mahinthakumar and Sayeed, 2005) because it is extremely sensitive to errors in the 

measurement data (Li et al., 2006). To overcome these difficulties in contaminant source 
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identification, a number of methods have been developed such as geostatistical modeling, 

nitrogen isotopes tracers (Masoner and Mashburn, 2004), nonlinear optimization 

modeling (Aral et al., 2001), and dynamic optimization modeling (Liu et al., 2006) 

among others. Use of artificial neural networks (ANN) is another approach to identify the 

groundwater contaminant source (McTernan and Bonnet, 2002, Li et al., 2006; Singh et 

al., 2004).   

 ANN is a powerful tool which builds a model with a combination of linear and 

non-linear equations which it formulates as it attempts to link the output data with input 

data. ANN may be successfully used in a variety of applications because it has ability to 

“learn” from examples. ANN has found use in successfully determining the spatial 

distribution of nitrate in an aquifer, and it can also simulate the management alternatives 

that aim at reducing the groundwater nitrate concentration below maximum 

contamination level (MCL) by reducing the surface ground nitrogen loading (Almasri 

and Kaluarachchi, 2005). In addition to that, neural conditional simulations are stochastic 

tools that define probability of occurrence of output predicted as well as model 

uncertainties.  

  

1.2  Problem statement 

 Groundwater in the Cimarron River Alluvial Terrace Aquifer is an important 

economic resource for northwest Oklahoma. Ninety percent of the drinking water 

requirement for the city of Enid and its surrounding area in Oklahoma is satisfied by 

Cimarron River Alluvial Terrace Aquifer (KC, 2007). According to the pumpage data 

provided by the city of Enid, more than 3 billion gallons of groundwater annually are 
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pumped from the aquifer. In spite of being the main water supply source, previous studies 

have identified large number of wells and wellfields in this aquifer contaminated with 

nitrate (Becker, 1994; Maoner and Mashburn, 2004; KC, 2007).   

 Thirty-one percent of groundwater samples collected from the Cimarron Terrace 

Aquifer from 1985 to 1993 had nitrate (NO3-N) concentration above the MCL (Becker, 

1994). Similarly, a study conducted by USGS and DEQ (2003) showed that 38% of total 

samples collected in Cimarron Terrace Aquifer had nitrate (NO3-N) concentration in the 

range of 10.0mg/L to 31.8mg/L (Maoner and Mashburn, 2004). The City of Enid has also 

performed sampling of four public supply wellfields, Cleo Spring, Ringwood, Ames and 

Drummond, located at in the central part of the aquifer. A total of 821 samples were 

collected from 1997 to 2005. Figure 1-1 shows the time series of nitrate (NO3-N) 

concentration during the sampling period. The average nitrate in the aquifer showed an 

increasing trend from 1997 to 1999, decreasing trend from 1999 to 2000, again increasing 

from 2000 to 2002 and fairly constant after 2002 (KC, 2007). 
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Figure 1-1. Time series of NO3-N concentration in the Cimarron Terrace Aquifer 

(KC, 2007)

 

  

 The U.S. Environmental Protection Agency (US EPA) has established a 

Maximum Contaminant Level (MCL) of 10mg/L nitrate-nitrogen (NO3-N) as drinking 

water criteria (EPA, 1996). Excess levels of nitrate in drinking water are especially 

problematic in infants because they can cause blue baby syndrome, methemoglobinemia 

(Weyer, 2001). Methemoglobin is a form of hemoglobin in which the heme iron is 

reduced to its ferric state (Fe
2+

) and is unable to deliver oxygen (Avery, 1999). 

Methemoglobinemia results when amounts of methemoglobin in the blood become high, 

usually 15% of the total circulating hemoglobin (Avery, 1999). Nitrate ingestion is also 

linked with other health problems such as adult brain and central nervous system tumors, 

spontaneous abortion, insulin dependent diabetes, and non-Hodgkin lymphoma (Weyer, 

2001).  
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 Identification of groundwater nitrate distributions and their probable sources is 

important for water resources managers and local residents to better protect the water 

supplies. A primary aim in this study was to extend the closely clustered monitoring data 

over aquifer space and time. Kriging is a common method of interpolation of 

concentration point data over space. The semi-variograms of the kriging define the spatial 

variability of the data. Neural kriging is one of the emerging techniques to extend the 

monitoring data over space and time (Koike et. al., 2002; Rizzo and Dougherty, 1994; 

Spichak, 2006). Neural kriging is data-driven and requires no estimation of a covariance 

function (Rizzo and Dougherty, 1994). The extension of monitoring data in the overall 

aquifer provides the picture of high nitrate concentration locations and its trend over the 

study period. Each of the four wellfields in the Cimarron Terrace Aquifer was also 

modeled separately to determine the pattern of nitrate distribution at those locations.  

 Another step in this research was to integrate the critical geophysical variables to 

predict the nitrate concentration in each wellfield. Nitrogen application rates, developed 

land, percent of clay, and groundwater depth have previously been found to be the four 

most significant variables that influence nitrate concentration in Cimarron Terrace 

Aquifer (KC, 2007). Among the most significant variables, surface nitrogen application 

rate was used as input to predict the nitrate concentrations in the aquifer in this research. 

A Geographic Information System (GIS) which integrates the National Land Cover 

Database (NLCD) was used to determine the land use patterns and corresponding 

nitrogen application rate. A management alternative model was then developed to address 

options needed to reduce the groundwater nitrate concentration below the MCL.  In 
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addition to this, this research also focused on stochastic (conditional simulation) 

modeling to define the probability of occurrence of predictions made.  

 

1.3  Objectives of study 

 Groundwater nitrate contamination has become a common problem worldwide. 

Remediation of contaminated groundwater is always difficult and costly. In order to 

protect the groundwater, a determination of spatial distribution of contaminant is most 

important. Following are the specific objectives of this study: 

1. Develop a neural kriging model to estimate the spatial nitrate distribution over the 

entire Cimarron Terrace Aquifer. 

2. Develop the neural kriging method to estimate the spatial nitrate distribution in 

each city of Enid four wellfields. 

3. Determine the management alternatives to reduce the groundwater nitrate 

concentrations below the MCL.  

4. Address the probability of occurrence of predicted nitrate concentrations using 

stochastic conditional simulation. 
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CHAPTER 2 

 

 

STUDY AREA DESCRIPTIONS 

 

 

2.1 Location of study area 

The Cimarron Terrace Aquifer is located in northwestern Oklahoma, extending 

from Freedom to Guthrie as illustrated in Figure 2-1. The aquifer underlies portions of 8 

counties of northwest Oklahoma, namely: Woods, Woodward, Alfalfa, Major, Garfield, 

Blaine, Kingfisher, and Logan. This aquifer consists of 1305 square miles of area 

underlain by quaternary alluvial, terrace, and dune sand deposits (Adams and Bergman, 

1996). The Cimarron Terrace Aquifer lies within the Cimarron River watershed, which 

has a drainage area of approximately 18,927 square miles (Adams and Bergman, 1996). 



 
 

Figure 2-2. Location map of Cimarron Terrace Aquifer 

1
0
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2.2 Geology 

 The quaternary alluvial, terrace, and dune sand deposits unconformably overlie 

the Permian geologic units in Cimarron Terrace Aquifer (Adams and Bergman, 1996). 

Alluviums in the Cimarron Terrace Aquifer were originally deposited by the southward 

migration of the ancestral Cimarron River (Adams and Bergman, 1996). The thickness of 

alluvium deposits ranges from 0 to 50 feet (Adams and Bergman, 1996). The terrace 

deposits consists of interfingering lenses of clay, sandy clay, and cross-bedded poorly 

sorted sand and gravel and its thickness varies from 0 to 120 feet (Adams and Bergman, 

1996). These terrace sediments have been reworked by water and wind that created sand 

dunes (Masoner and Mashburn, 2004) up to 70 feet in height.  The Permian geologic 

units, also referred as red bed, in the aquifer are composed of a thick sequence of red 

shales, fine grained sand-stones, siltstones, dolomite, gypsum, and salt beds (Morton, 

1980; Bingham and Bergman, 1980; Bingham and Moore, 1975; and Carr and Bergman, 

1976).  

 

2.2 Groundwater hydrology  

Regional groundwater flow is generally southeast to southwest towards the 

Cimarron River, except flow direction is influenced by perennial tributaries to the 

Cimarron River. However, in the northeastern boundary groundwater is flowing away 

from the Cimarron River and its perennial tributaries to the northeast out of the aquifer 

(Adams and Bergman, 1996). Regionally, the aquifer is an unconfined aquifer, although 

it may be confined locally by silt and clay layers (Adams and Bergman, 1996). Over the 

1985-1986 period the saturated thickness of the aquifer range from 0 to more than 100 



 

 12 

feet, averaging 28 feet (Adams and Bergman, 1996). The regional average groundwater 

gradient is 0.0035 feet/feet (Reely, 1992). Pump tests on the alluvium and terrace 

deposits were conducted by Reed et al. (1952) and Engineering Enterprises (1977, 1983) 

in 23 selected wells. Based on the pumping test results, transmissivity of the aquifer was 

estimated from 603 ft
2
/day to 10,184 ft

2
/day, hydraulic conductivity from 15 feet/day to 

542 feet/day, and specific yields from 0.0016 to 0.39 (Adams and Bergman, 1996). Deep 

percolation of precipitation, irrigation return flow, and subsurface inflow through 

alluvium are the main sources of recharge to the aquifer (Adams and Bergman, 1996). 

Seeping water from the aquifer into the Cimarron River and its perennial tributaries is the 

main discharge from the aquifer (Adams and Bergman, 1996).  

 

2.3 Land use 

Figure 2-2 shows the National Land Cover Database (NLCD) grid overlying the 

Cimarron Terrace Aquifer in 2001. Agricultural lands, referring to areas that have been 

planted or are intensely managed for the production of livestock for food, are the 

predominant land use in the study area (Masoner and Mashburn, 2004). Among the 46.86 

percent of total agricultural land use, 46.54 percent was cultivated crops and 0.32 percent 

was pasture and hay.  Additional land use types in the study area in 2001 were grassland 

(41.09 percent), developed areas (5.11 percent), shrublands (0.08 percent), and forests 

(4.25 percent). In comparison with the 1992 NLCD, agricultural land use decreased from 

55.21 percent to 46.86 percent in 2001. Due to the development of modern irrigation 

systems, cultivation of small grains has changed to production of cultivated crops in the 

1992 to 2001 interval (KC, 2007).  Increased agricultural activity required high nitrogen 
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application on the agricultural field and consequently produced more threat of increasing 

nitrate concentration in the underlying aquifer.  

 

  

 



 

Figure 2-3. Major land-use determinations from 2001 NLCD

1
4
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CHAPTER 3 

 

 

NEURAL NETWORKS 

 

 

3.1  Introduction 

 The human brain is composed of a highly interconnected set of approximately 

10
11 

neurons (Hagen et al., 1996). Each neuron is composed of three principal 

components: the dendrites, the cell body (soma and nucleus), and the axon, as shown in 

Figure 3-1. The dendrites are treelike extensions which are receptors carrying information 

in the form of electric signals generated by other neurons. The cell body joins the signals 

from the dendrites and passes on to the axon. The axon (elongated fiber), transmits the 

neural signal to the cells. The axon transmits the output from each cell to the dendrites of 

other cells over a bridge called a synaptic junction.   The communication over synaptic 

junction is a complex chemical process and depends on the strength of incoming and 

outgoing signals (Kumar, 2000). The massive interconnection between neurons and the 

complex chemical process of communication over synaptic junctions establishes the 

functioning of biological neural networks (Hagen et al., 1996).   

 Neural network models are computer architectures based on theories of the human 

brain. Analogous to the human brain, artificial neural networks work with the 

interconnected group of artificial neurons. Besides the structure, the similarity between 

the human brain and neural networks is an ability to “learn” from a phenomenon 
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and adapt their behavior based on thus learning (Rogers et al., 1995). The neurons in the 

neural network models are developed by computer algorithms. The iterative computer 

algorithms are used to develop a combination of linear and non-linear equations for 

modeling real world complex situations (Kumar, 2000). These computer based models 

are called artificial neural networks (ANN).  

 

 

 

Figure 3-1. Schematic drawing of biological neuron 

Source: (http://understanding_ocd.tripod.com/ocd_neurons_serotonin.html) 

 

 

 

3.2 Artificial neural networks 

 While artificial neural networks are less intricate than the human brain, they 

exhibit a close correspondence with their biological counterparts because of two key 

characteristics. Both biological and artificial neural networks use computational devices 

to process input signals and outputs. The computational devices are highly interconnected 

and thereby able to model and understand complex situations. Secondly, the behavior of 

synaptic junctions (interconnection between neurons) in processing the information 
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determines the functionality of both structures (Hagan et al., 1996). The strength of 

synaptic junctions are called weights in ANN terminology and “the computational power 

of the neural network lies the interconnection weights that designate the strength of a 

node to produce the output at the node to which it is connected (Basheer et al., 1996). 

 An ANN is a universal approximator and nonlinear in nature (Singh and Datta, 

2006). From a mathematical viewpoint it may be helpful to think of artificial neural 

networks (ANNs) as “nonparametric, nonlinear regression techniques” (Rogers et al., 

1995). As opposed to traditional data analysis techniques, where a model is initially 

selected and then appropriate data are applied, an ANN infer solutions from the data 

presented to them, often capturing quite subtle relationship (Aggarwal and Song, 1997). 

This is possible with neural nets because of their ability to “learn” and then apply this 

learning in a generalized sense to similar situations. In this adaptive learning approach the 

net undergoes the training process and learns the significance of all data values, which 

include peaks and plateaus. A neural network not only assigns a significance (or weight) 

to the magnitude of each relationship among all data points. As more training is executed, 

a neural network can make better predictions.  Consequently the precision with the 

network can make predictions also increases (Kumar, 2000).  

 The neural network software “Neuralyst” developed by Cheshire Engineering 

(1994) was used in this research effort. Neuralyst operates as an Excel add-in and 

employs the back propagation algorithm. Figure 3-2 illustrates the structure of three layer 

back propagation algorithm neural model. The input layers describe the problem of 

concern and the number of input neurons is the number of input variables used to define 

the problem. The output layer collects the information from the neural processing in the 
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input and hidden layers and gives a response. As shown in the figure, each layer has all 

its inputs connected to either a preceding or inputs from the external world, but not with 

the same layer.  

 

Figure 3-2. A three layer, four neuron-input layer, three neuron-hidden layer back 

propagation neural network model 

(Cheshire Engineering, 1994) 

 

 

Figure 3-3 shows the operation of ANN where the basic processing element of an 

ANN is the neuron and it performs its work by two basic processes: (i) internal 

activation; and (ii) activation function. These two processes are described by following 

equations: 

( * )Uj Xj wij=∑ ……………………..(1) 

( )Yj Fth Uj tj= +  ………………………(2) 

 Every neuron j, takes inputs from all the i neurons connected to it. Each input Xi, 

from the input layer is multiplied to a weight, wij. The weights are constantly updated 

after being randomly assigned initially. Internal activation sums up all weighted inputs 
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together, resulting the internal value, Uj which is defined as scalar product of the weight 

and input vector (Zurada, 1997). The internal value, Uj, is then biased by a previously 

established threshold value, tj, and sent through an activation function, Fth. A typical 

activation function is sigmoid function. The resulting output, Yj, from the activation 

function is the neural network response for the given input.  

 

Figure 3-3. Schematic diagram of neural network operation 

(Cheshire Engineering, 1994) 

 

 

 The process of internal activation and transfer function is repeated several times 

until the network can produce outputs within a user-specified tolerance. This occurs when 

the network reaches a plateau in its learning and further runs do not improve its 

performance (Kumar, 2000). The entire process of repeatedly modifying network weights 

is called training. Training of an ANN is thus equivalent to performing a minimization 

procedure of error criterion or calibration in a classic mathematical modeling sense.  

The error is called root mean square error (RMS) and it is the sum of the squares 

of the difference between actual and desired outputs in each of neurons in output layers 



 

 20 

and can be expressed as function of the connection weights (McTernan and Bonnett, 

2002). A portion of RMS error is passed back through the hidden layers of the network to 

the input so that the connection weights on all pervious neurons can be altered in such a 

manner as to minimize the quadratic error between desired and actual outputs (Hagen et 

al., 1996).  

The ANN’s ability to learn in the training process defines the accuracy of model 

predictions. Learning in a multi-layer feed forward network with back propagation 

training algorithm is achieved in three phases:  

• Structure the network, assign the initial random weights, forward feed- input 

training set, proceed through network from layer to layer applying weights, 

calculate output. 

• Calculate total error as difference between actual output and desired outputs. 

• Back propagate the error by passing back through net causing each connection 

weight to be refined. 

 In addition to the overall model configuration there are variety of parameters that 

had significant role in network development in this research. Within each model 

development, default values were used initially and if the results were not satisfying 

alternative values were employed over many trials. These tested parameters are listed 

below with brief description: 

Learning Rate (LR):  Learning rate determines the amount of weight adjustment to be 

made based on the error passed back. The learning rate did not seem to significantly 

affect the results therefore the default value of 1.0 was used.  
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Momentum:  Momentum allows a change to the weights to persist for a number of 

adjustment cycles. The default value of 0.9 was used throughout the experiment because 

changing the momentum was not important to this experiment because we would have 

liked to have a significant portion of the impact of the old weights affect the newest 

weight. This minimizes the chance of the network becoming stuck in local minima of the 

error surface curve (Chim, 1996).  

Training Tolerance: Training tolerance determines the how much training the neural 

network undergoes. Once all the training output falls within the target output, plus or 

minus the training tolerance, the network stops training and scores the output as “Right”. 

Training tolerance does not have effect in learning algorithm. However, the training of 

network stops when it finds training outputs 100% “Right”.  The experiments showed 

that the training tolerance sometimes had to be raised from the default value of 0.1 to 

0.27 in order to allow the neural network to finish training.  

Testing Tolerance:  Testing tolerance works in the same way as training tolerance, but for 

the testing data. It does not have an affect on the neural network results. It is just measure 

to determine whether or not all of the tested data fall within the specified error. 

Number of layers and number of neurons in hidden layers:  Various studies had 

recommended that 3 layers neural networks work best (Kumar, 2000; Kumar and 

DebRoy, 2006; McTernan and Bonnet 2000). Therefore, throughout the experiment 3 

layers networks were used. The networks were tested with different number of neurons in 

the hidden layer in order to achieve best results.  

Initial Weights: Initial weights are a very important factor in developing neural network 

models. Different sets of initial weights can significantly affect the results of the model. 
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In order to achieve more reliable results, tests were repeated for each model with 

different initial weights. The most frequently occurring results were taken as the final 

results.  

Activation Function: Six activation functions: Sigmoid, hyperbolic, linear, Gaussian, 

augmented ratio, and step are available for the modeling in the neuralyst. The sigmoid 

function is the default transfer function and all the models in this research effort. Sigmoid 

function is the most popular function since it is non linear and differentiable (Mendil and 

Benmahammed, 1999).   
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CHAPTER 4 

 

METHODOLOGY 

 

 

4.1  Background 

 This chapter explains methods used in this study in order to address problems 

mentioned in Chapter 1. Artificial neural networks were used in this study effort. A 

spatial decremental approach was utilized to identify the groundwater nitrate distribution 

pattern in the overall Cimarron Terrace Aquifer to the individual wellfields in it. The 

method of determining spatial nitrate distribution using neural network models is called 

neural kriging (NK) (Rizzo and Dougherty, 1994). Constituent relationship models were 

developed to predict the nitrate concentration in wells of each wellfield with respect to on 

ground nitrogen application rate under existing conditions. Management alternatives were 

simulated with a constituent relationship model in order to predict decreased nitrate 

concentrations below the MCL. Finally, stochastic modeling was performed using neural 

conditional simulation to define the probabilities associated with the predicted nitrate 

concentrations by constituent relationship model for Ames wellfield.  

 

4.2 Spatial models 

 Groundwater nitrate distributions were evaluated in this effort by developing 2D 

models. The method is known as neural kriging. In this study neural kriging was similar 

to ordinary kriging but required no estimation of a covariance function. 
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A neural kringing (NK) network was developed by dividing the entire aquifer into 

1000m*1000m grids as shown in Figure 4-1. The grid system was developed in 

AutoCAD, imported in ArcGIS and projected in NAD_1983_ Albers coordinate system. 

The origin for NAD (North American Datum) of 1983 is the earth’s center of mass. 

Albers Projection is a conic projection to represent the earth’s surface.  

 A total of 2776 grids were developed and each grid was represented by (X, Y) 

coordinates. The identification described (coordinates) grid network was implemented in 

parallelizing algorithm, and applied in GIS to develop maps of discrete spatially 

distributed groundwater nitrate concentrations. This modeling approach was applied to 

the entire aquifer, sequentially to the critical central area of the aquifer, and in each of the 

four wellfields. 



 
 

Figure 4-1. Cimarron Terrace Aquifer with ANN 1000m*1000m grid coordinate system 
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4.2.1 Overall aquifer model 

 The city of Enid sampling data were available from 1997 to 2005. The samples 

were collected from highly clustered wells in four public supply wellfields, located in the 

central part of the aquifer. Those samples could not represent the nitrate distribution 

throughout the aquifer. In a study conducted by USGS in cooperation with the DEQ in 

2003, an additional 45 private wells were sampled (Maoner and Mashburn, 2004). Figure 

4-2 shows the box plot of 2003 nitrate concentrations in the four wellfields and in the 

USGS study wells. The plot shows that the range of nitrate concentration from USGS 

study wells was higher then that of from city of Enid wellfields. Nitrate concentration 

range in USGS study wells was observed from 0.06 mg/L to 31.8 mg/L. However, the 

plot shows that median nitrate concentration of 9.3 mg/L was observed in Ames wellfield 

which is the highest value among the city of Enid’s four wellfields and the USGS study 

wells.   

USGSDrummondAmesRingwoodCleospring
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Figure 4-2. Box plot of nitrate concentrations in city of Enid four wellfiels and in 

USGS study wells, sampled in 2003
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 Figure 4-3 shows that USGS sampling wells were located throughout the aquifer. 

The first model developed for this effort integrated the 2003 nitrate concentration data 

from the four wellfields with the USGS data to develop an overall aquifer model of 

nitrate.  

 The critical factor in this study was the development of stable and reliable neural 

network models for making precise predictions. Each well in the study area was 

represented by the grid (X, Y) coordinates. The nitrate concentration in each well was 

then represented by the grid having the well in it. The mean value of multiple samples 

was used to represent the nitrate concentration in those grids which had more then one 

well. Using the grid coordinates, the entire aquifer was modeled to identify the nitrate 

distribution pattern. Grid (X, Y) coordinates were used as input. A total 96 nitrate 

concentration data points were used as the target values. Eighty percent of nitrate 

concentration data were used for training and 20 percent of randomly selected data were 

used for testing.  

 Table 4-1 presents the training and testing data sets for this overall aquifer model. 

In this table the training data sets are presented first and followed by the testing data sets. 

The first column in the table shows the identification of wells present in the grid 

represented by the (X, Y) coordinates presented in second and third column. Origin of the 

grid coordinates is the bottom left corner of the aquifer. The (X,Y) coordinates are the 

inputs for this mode. The fourth column presents the observed nitrate concentrations 

corresponding to the wells in the first column. In the case of multiple wells in a grid, a 

mean concentration was calculated. The model was trained to predict the nitrate 

concentrations presented in this column. The fifth column represents the predicted values 



 

 28 

of nitrate concentrations after training and testing the data. The blank rows indicate the 

values before training and testing. The sixth column is known as “mode flag column” 

which categories the data sets into training and testing as designated in each row of the 

column. 

 

 Table 4-1. Training and testing data sets for overall aquifer model 

 

Input Target 
Well_ID 

X-Cord Y-Cord NO3_2003 (mg/L) 
Output MF 

W1 15 9 9.37  TRAIN 

W2 16 22 12.30  TRAIN 

W3 7 36 2.19  TRAIN 

W4 13 32 14.80  TRAIN 

W5 10 43 16.80  TRAIN 

W6 6 50 6.14  TRAIN 

W8 15 48 6.93  TRAIN 

W10 13 54 5.83  TRAIN 

W12 14 61 9.01  TRAIN 

W13 19 61 1.11  TRAIN 

A5,W14 13 72 4.71  TRAIN 

A4 14 72 6.80  TRAIN 

A11,W15 15 71 14.50  TRAIN 

A6 14 73 2.47  TRAIN 

A7,A3 15 72 3.70  TRAIN 

A8 15 73 3.60  TRAIN 

A2 16 72 9.30  TRAIN 

A9 16 73 1.80  TRAIN 

D23 23 65 10.73  TRAIN 

A23,A22,A20,W16 15 75 8.14  TRAIN 

A29 14 77 9.40  TRAIN 

A27,A24 15 76 8.20  TRAIN 

A14 20 70 13.00  TRAIN 

A25 15 77 13.40  TRAIN 

A1 20 71 11.73  TRAIN 

D12 22 69 5.43  TRAIN 

D21,D20 24 67 8.07  TRAIN 

D18,D1 25 66 6.27  TRAIN 

A19 18 75 14.00  TRAIN 

D3 24 69 8.50  TRAIN 

D5 25 68 9.80  TRAIN 

D33 24 70 6.00  TRAIN 

D25 26 69 7.68  TRAIN 

D27 27 70 6.90  TRAIN 

D28 26 71 9.60  TRAIN 
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Table 4-1. (Continued) 

 

Input Target 
Well_ID 

X-Cord Y-Cord NO3_2003 (mg/L) 
Output MF 

W19 23 75 2.27  TRAIN 

R28,W18 15 85 18.05  TRAIN 

D29 26 72 9.30  TRAIN 

W20 20 81 14.40  TRAIN 

R22 14 90 4.20  TRAIN 

R24,R18 15 89 4.28  TRAIN 

R16,R17,R12,W21 15 90 5.31  TRAIN 

R19,R14,R20 16 89 9.33  TRAIN 

R21 17 88 13.25  TRAIN 

R8,R13 16 90 8.33  TRAIN 

R5 15 92 7.30  TRAIN 

R6,R2,R3,R7 16 91 7.63  TRAIN 

R4 17 91 8.35  TRAIN 

W22 18 92 16.40  TRAIN 

W24 17 97 8.03  TRAIN 

W25 22 96 11.20  TRAIN 

CS29,CS28,CS30,W26 16 104 3.36  TRAIN 

CS10 13 108 8.70  TRAIN 

CS17 14 107 8.40  TRAIN 

CS2 11 110 1.25  TRAIN 

CS25,CS26 16 105 2.33  TRAIN 

CS5,CS3 17 104 5.63  TRAIN 

CS8 13 109 4.60  TRAIN 

CS19 15 107 3.20  TRAIN 

CS22,CS21,CS20 16 106 10.65  TRAIN 

CS4,CS1 12 111 3.83  TRAIN 

CS27 17 105 1.80  TRAIN 

CS12,CS9 14 109 6.10  TRAIN 

CS18 16 107 16.00  TRAIN 

CS23 17 106 3.90  TRAIN 

W27 11 113 8.35  TRAIN 

W29 27 96 0.95  TRAIN 

W28 23 103 2.48  TRAIN 

W30 12 120 14.90  TRAIN 

W33 12 128 3.63  TRAIN 

W35 18 126 1.24  TRAIN 

W37 26 120 3.68  TRAIN 

W36 13 136 0.37  TRAIN 

W39 22 128 2.20  TRAIN 

W39 22 128 2.20  TRAIN 

W40 11 143 8.48  TRAIN 

W45 43 136 17.90  TRAIN 

W11 17 54 15.30  TEST 

A21 15 74 10.70  TEST 
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Table 4-1. (Continued) 

 

Input Target 
Well_ID 

X-Cord Y-Cord NO3_2003 (mg/L) 
Output MF 

A18 18 73 14.80  TEST 

A16 20 72 12.40  TEST 

D2 23 69 8.20  TEST 

A17 20 74 15.60  TEST 

D6,D8 26 68 8.6  TEST 

W17 22 74 21.3  TEST 

R25,R27,R26 14 87 7.3  TEST 

R15 14 91 5.3  TEST 

R11,R10 15 91 6.7  TEST 

R9 17 90 9.6  TEST 

R1 16 92 7.4  TEST 

W23 23 87 31.8  TEST 

CS13,CS14 14 108 4.8  TEST 

CS6 13 110 6.8  TEST 

CS11,CS16,CS15 15 108 6.5  TEST 

W31 4 131 0.1  TEST 

W32 29 102 6.0  TEST 

W34 23 115 15.6  TEST 

 

The model set in Table 4-1 was trained to establish the relationship between the 

grids coordinates and nitrate concentrations. Various networks were evaluated to make 

the best prediction. Different alternatives were tried by varying the network architecture 

until some consistency in results in terms of prediction accuracy and numbers of 

iterations were achieved. Finally, the best model was used to predict the nitrate 

concentrations at the locations where it was not measured. The best model finalization 

will be discussed in detail in results chapter. 



 
 

Figure 4-3. Location of City of Enid sampling wells and USGS sampling wells 
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4.2.2 Central area model 

 The modeling approach and grid size of this model was the same as used in the 

overall aquifer model but in this approach only the central area of the aquifer was 

addressed. Figure 4-4 shows this central area. The data sets used in this modeling effort 

were the city of Enid 2003 data set. The USGS data set was not used in this modeling 

effort to see how well nitrate concentrations can be predicted only with four wellfield 

data sets since the modeling area is smaller then the overall aquifer model. A total 92 

wells were used for this model. Among them 20 percent were randomly selected for 

testing. Table 4-2 shows the training and testing data sets for the central area model. Data 

in Table 4-2 are arranged in the same way as in Table 4-1. 



 
 

Figure 4-4. Location of focused area in central area model
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Table 4-2. Training and testing data sets for central area model 

 

Input Target 
Well_ID 

X-Cord Y-Cord NO3_2003 (mg/L) 
Output MF 

CS29 10 46 0.5  TRAIN 

CS2 5 54 1  TEST 

CS27 11 48 1.5  TEST 

CS25,CS26,CS28 10 48 1.56  TRAIN 

A9 10 16 1.8  TRAIN 

A6 8 16 2.47  TEST 

CS4,CS1 6 54 3.1  TRAIN 

CS19 9 50 3.3  TRAIN 

A8 9 16 3.6  TRAIN 

A3,A7 9 15 3.7  TRAIN 

CS23 11 49 4  TEST 

R22 8 33 4.2  TRAIN 

R24,R18 9 32 4.275  TRAIN 

CS30 10 47 4.4  TEST 

CS13,CS14 8 51 4.5  TRAIN 

A5 7 15 5.2  TEST 

R15 8 34 5.25  TRAIN 

CS8 7 52 5.3  TRAIN 

D12 16 12 5.43  TRAIN 

CS5,CS3 6 53 5.5  TEST 

CS12,CS9 8 52 5.95  TRAIN 

D33 18 14 6  TRAIN 

CS11,CS16,CS15 9 51 6.26  TRAIN 

D18,D1 19 9 6.265  TRAIN 

CS6 7 53 6.4  TEST 

R16,R17,R12 9 33 6.51  TRAIN 

R10,R11 9 34 6.725  TRAIN 

A4 8 15 6.8  TRAIN 

D27 20 13 6.9  TRAIN 

R5 9 35 7.3  TRAIN 

R25,R27,R26 8 30 7.31  TRAIN 

R1 10 35 7.4  TEST 

R6,R2,R3,R7 10 34 7.625  TRAIN 

D25 20 12 7.68  TRAIN 

A23,A22,A20 9 18 7.91  TRAIN 

D21,D20 18 10 8.065  TRAIN 

A27,A24 9 19 8.2  TRAIN 

D2 17 12 8.2  TRAIN 

R13,R8 10 33 8.325  TRAIN 

R4 11 34 8.35  TRAIN 

D6,D8 20 11 8.625  TRAIN 

CS17 8 50 8.7  TRAIN 

D3 18 12 8.85  TRAIN 

CS10 7 51 9.1  TRAIN 
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Table 4-2. (Continued) 

 

Input Target 
Well_ID 

X-Cord Y-Cord NO3_2003 (mg/L) 

 

Output 

 

MF 

A2 10 15 9.3  TRAIN 

D29 20 15 9.3  TRAIN 

R19,R14,R20 10 32 9.33  TEST 

A29 8 20 9.4  TRAIN 

R9 11 33 9.6  TRAIN 

D28 20 14 9.6  TRAIN 

CS22,CS21,CS20 10 49 10.4  TRAIN 

A21 9 17 10.7  TRAIN 

A1 14 14 11.73  TRAIN 

A16 14 15 12.4  TRAIN 

A14 14 13 13  TRAIN 

R21 11 31 13.25  TRAIN 

A25 9 20 13.4  TRAIN 

A11 9 14 13.6  TRAIN 

A19 12 18 14  TRAIN 

A18 12 16 14.8  TRAIN 

CS18 10 50 15.4  TEST 

R28 9 28 15.6  TRAIN 

A17 14 17 15.6  TRAIN 

 

In this model, local grid coordinates were assigned for each grid by considering 

the origin at the bottom left corner of the focused area. Again, grid coordinates were used 

to predict nitrate concentrations in the central part of the Cimarron Terrace Aquifer. 

Different alternatives were evaluated by varying the network architecture until some 

consistency in results in terms of prediction accuracy and numbers of iterations were 

achieved. Finally, the best model was used to predict the nitrate concentration in each 

grid of the central area. 

 

4.2.3 Individual wellfield spatial models 

 In order to identify groundwater nitrate distribution within individual wellfields in 

detail, the grid system was further divided into 200m*200m as shown in Figure 4-5. 
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Local grid coordinates were assigned and used for each of these models by considering 

the origin at bottom left of the individual wellfield.   

 
Figure 4-5. Subdivision of 1000m*1000m grid to 200m*200m grid 

 

 In this modeling effort, the city of Enid database for years 1997-2005 was used. 

The previously presented Figure 1-1 showed that the nitrate concentration increased from 

1995 to 2005 with the exception of 2000. Therefore 2000 data were not included in this 

study.  Among the eight yearly data sets, the 1998 and 2004 data sets were used for 

testing. Four individual wellfields models were developed in this effort: 

• Cleospring wellfield model, 

• Ringwood wellfield model, 

• Ames wellfield model, and 

• Drummond wellfield model. 

 

4.1.3.1 Cleospring wellfield spatial model 

 The point data of nitrate concentrations at well locations were used to identify the 

nitrate distribution pattern in the Cleospring wellfield. Figure 4-6 presents the area 

included in this model. The method employed was the same as was used in the overall 

aquifer and central area models, but a smaller grid and multiple years’ data were used. A 
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total of 218 nitrate concentration data observed from 1997 to 2005 (except 2000) were 

used in this modeling. Among them the 1998 and 2004 data were used for testing and the 

rest for training. Table 4-3 presents the configuration of the Cleospring wellfield model 

where training datasets are presented first and then the testing data sets. First column of 

the table shows the year of data observation in wells presented in column two. Column 3 

and 4 presents the (X,Y) coordinates of each grid and column 5 presents the nitrate 

concentration observed in each wells presented in the column 2 in the corresponding year 

presented in column 1. The results of the model after training and testing will be 

presented in the output column. The “mode flag” column defines the data points as 

training and testing.  

Networks with varying architectures were executed until model predicted the 

consistent result in terms of prediction accuracy and time required to train the model. The 

model architectures and their performances are discussed in detail in results section.  

Finally, the most consistent model was determined as best model and it was used to 

predict the nitrate concentrations at the unmeasured locations.   

 

 

 

 



 
 

Figure 4-6. Location of focused area in Cleospring wellfield model
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Table 4-3. Training and testing data sets for Cleospring wellfield spatial model  

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

C1 8 45 4.52  TRAIN 

C2 6 44 0.90  TRAIN 

C3 12 41 4.85  TRAIN 

C4 9 42 3.08  TRAIN 

C6 13 37 7.70  TRAIN 

C8 16 35 4.88  TRAIN 

C10 17 32 6.10  TRAIN 

C11 23 31 4.06  TRAIN 

C13 22 28 4.02  TRAIN 

C14 19 29 3.80  TRAIN 

C15 27 29 4.78  TRAIN 

C16 25 27 4.03  TRAIN 

C17 22 24 4.70  TRAIN 

C18 28 25 11.26  TRAIN 

C19 26 23 2.63  TRAIN 

C20 28 21 11.37  TRAIN 

C21 30 19 12.20  TRAIN 

C22 28 17 2.70  TRAIN 

C23 33 19 2.65  TRAIN 

C25 31 16 2.24  TRAIN 

C26 29 14 1.00  TRAIN 

C27 33 13 1.45  TRAIN 

C29 29 6 0.38  TRAIN 

 
 
 
 
 
 
 
 
 
 

1997 
 
 
 
 
 
 
 
 
 
 
 
 
 

C30 32 7 3.28  TRAIN 

C1 8 45 4.47  TRAIN 

C2 6 44 1.00  TRAIN 

C3 12 41 6.38  TRAIN 

C4 9 42 3.63  TRAIN 

C5 10 39 8.30  TRAIN 

C6 13 37 9.53  TRAIN 

C8 16 35 5.27  TRAIN 

C9 18 34 8.12  TRAIN 

C10 17 32 8.02  TRAIN 

C11 23 31 4.82  TRAIN 

C12 21 32 4.74  TRAIN 

C13 22 28 4.57  TRAIN 

C14 19 29 4.47  TRAIN 

C15 27 29 6.86  TRAIN 

C16 25 27 5.40  TRAIN 

C17 22 24 6.80  TRAIN 

C18 28 25 19.23  TRAIN 

C19 26 23 2.80  TRAIN 

C20 28 21 15.63  TRAIN 

 
 
 
 
 
 
 
 

1998 
 
 
 
 
 
 
 
 
 
 
 

C21 30 19 15.52  TRAIN 
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Table 4-3. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

C22 28 17 3.06  TRAIN 

C23 33 19 3.90  TRAIN 

C24 35 16 2.70  TRAIN 

C25 31 16 3.42  TRAIN 

C26 29 14 0.65  TRAIN 

C27 33 13 1.38  TRAIN 

C28 31 11 0.07  TRAIN 

C29 29 6 0.12  TRAIN 

 
 
 
 

1998 
 
 
 
 

C30 32 7 3.60  TRAIN 

C1 8 45 3.92  TRAIN 

C2 6 44 1.36  TRAIN 

C3 12 41 5.24  TRAIN 

C4 9 42 5.40  TRAIN 

C5 10 39 7.90  TRAIN 

C6 13 37 7.88  TRAIN 

C8 16 35 4.76  TRAIN 

C9 18 34 7.30  TRAIN 

C10 17 32 7.72  TRAIN 

C11 23 31 4.68  TRAIN 

C12 21 32 4.56  TRAIN 

C13 22 28 4.68  TRAIN 

C14 19 29 4.88  TRAIN 

C15 27 29 7.86  TRAIN 

C16 25 27 5.70  TRAIN 

C17 22 24 6.84  TRAIN 

C18 28 25 16.44  TRAIN 

C19 26 23 3.00  TRAIN 

C20 28 21 13.50  TRAIN 

C21 30 19 14.36  TRAIN 

C22 28 17 3.27  TRAIN 

C23 33 19 3.10  TRAIN 

C24 35 16 0.88  TRAIN 

C25 31 16 3.04  TRAIN 

C26 29 14 0.70  TRAIN 

C27 33 13 1.52  TRAIN 

C28 31 11 0.40  TRAIN 

C29 29 6 0.30  TRAIN 

 
 
 
 
 
 
 
 
 
 
 
 

2001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C30 32 7 4.24  TRAIN 

C1 8 45 3.24  TRAIN 

C2 6 44 1.40  TRAIN 

C3 12 41 4.40  TRAIN 

C4 9 42 4.64  TRAIN 

C5 10 39 7.90  TRAIN 

 
 

2002 
 
 
 

C6 13 37 7.65  TRAIN 
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Table 4-3. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

C8 16 35 4.80  TRAIN 

C9 18 34 7.68  TRAIN 

C10 17 32 8.08  TRAIN 

C11 23 31 4.92  TRAIN 

C12 21 32 4.88  TRAIN 

C13 22 28 4.68  TRAIN 

C14 19 29 5.00  TRAIN 

C15 27 29 7.88  TRAIN 

C16 25 27 5.75  TRAIN 

C17 22 24 6.64  TRAIN 

C18 28 25 15.96  TRAIN 

C19 26 23 3.36  TRAIN 

C20 28 21 14.48  TRAIN 

C21 30 19 14.20  TRAIN 

C22 28 17 4.05  TRAIN 

C23 33 19 3.70  TRAIN 

C24 35 16 0.40  TRAIN 

C25 31 16 2.55  TRAIN 

C26 29 14 1.80  TRAIN 

C27 33 13 1.96  TRAIN 

C29 29 6 0.80  TRAIN 

 
 
 
 
 
 
 
 
 

2002 
 
 
 
 
 
 
 
 
 
 
 
 

C30 32 7 4.76  TRAIN 

C1 8 45 2.95  TRAIN 

C2 6 44 1.25  TRAIN 

C3 12 41 3.90  TRAIN 

C4 9 42 4.70  TRAIN 

C5 10 39 7.35  TRAIN 

C6 13 37 6.75  TRAIN 

C8 16 35 4.60  TRAIN 

C9 18 34 7.45  TRAIN 

C10 17 32 8.70  TRAIN 

C11 23 31 5.00  TRAIN 

C12 21 32 4.75  TRAIN 

C13 22 28 4.70  TRAIN 

C14 19 29 4.80  TRAIN 

C15 27 29 8.35  TRAIN 

C16 25 27 6.05  TRAIN 

C17 22 24 8.40  TRAIN 

C18 28 25 16.00  TRAIN 

C19 26 23 3.20  TRAIN 

C20 28 21 13.95  TRAIN 

C21 30 19 13.95  TRAIN 

 
 
 
 
 
 
 
 

2003 
 
 
 
 
 
 
 
 
 
 
 
 

C22 28 17 4.05  TRAIN 
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Table 4-3. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

C23 33 19 3.90  TRAIN 

C25 31 16 3.00  TRAIN 

C26 29 14 1.65  TRAIN 

C27 33 13 1.80  TRAIN 

C28 31 11 1.00  TRAIN 

C29 29 6 0.90  TRAIN 

 
 

2003 
 
 
 
 

C30 32 7 5.10  TRAIN 

C1 8 45 1.80  TRAIN 

C2 6 44 1.10  TRAIN 

C3 12 41 4.08  TRAIN 

C4 9 42 3.56  TRAIN 

C5 10 39 6.92  TRAIN 

C6 13 37 6.00  TRAIN 

C8 16 35 4.36  TRAIN 

C10 17 32 9.80  TRAIN 

C11 23 31 4.80  TRAIN 

C12 21 32 4.36  TRAIN 

C13 22 28 4.32  TRAIN 

C14 19 29 4.76  TRAIN 

C15 27 29 7.32  TRAIN 

C16 25 27 5.28  TRAIN 

C17 22 24 9.56  TRAIN 

C18 28 25 14.88  TRAIN 

C19 26 23 3.40  TRAIN 

C20 28 21 13.04  TRAIN 

C21 30 19 12.88  TRAIN 

C22 28 17 3.96  TRAIN 

C23 33 19 3.40  TRAIN 

C24 35 16 4.00  TRAIN 

C25 31 16 2.55  TRAIN 

C26 29 14 1.10  TRAIN 

C27 33 13 1.45  TRAIN 

C29 29 6 0.93  TRAIN 

 
 
 
 
 
 
 
 
 
 
 
 
 

2005 
 
 
 
 
 
 
 
 
 
 
 
 
 

C30 32 7 4.30  TRAIN 

C1 8 45 3.80  TEST 

C3 12 41 4.30  TEST 

C4 9 42 4.40  TEST 

C6 13 37 8.12  TEST 

C8 16 35 4.90  TEST 

C9 18 34 8.60  TEST 

C10 17 32 8.40  TEST 

C11 23 31 4.45  TEST 

C12 21 32 5.60  TEST 

 
 
 
 

1999 
 
 
 
 
 

C13 22 28 4.64  TEST 



 

 43 

Table 4-3. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

C14 19 29 4.83  TEST 

C15 27 29 7.42  TEST 

C16 25 27 5.90  TEST 

C17 22 24 6.20  TEST 

C18 28 25 18.50  TEST 

C19 26 23 3.20  TEST 

C20 28 21 16.90  TEST 

C21 30 19 15.03  TEST 

C22 28 17 3.02  TEST 

C23 33 19 3.66  TEST 

C25 31 16 3.08  TEST 

C27 33 13 1.42  TEST 

C28 31 11 0.37  TEST 

C29 29 6 0.34  TEST 

 
 
 
 
 
 

1999 
 
 
 
 
 
 
 
 

C30 32 7 4.08  TEST 

C1 8 45 2.00  TEST 

C2 6 44 1.00  TEST 

C3 12 41 3.92  TEST 

C4 9 42 4.23  TEST 

C5 10 39 7.07  TEST 

C6 13 37 6.43  TEST 

C8 16 35 5.28  TEST 

C9 18 34 7.40  TEST 

C10 17 32 9.13  TEST 

C11 23 31 4.93  TEST 

C12 21 32 4.53  TEST 

C13 22 28 4.30  TEST 

C14 19 29 4.73  TEST 

C15 27 29 8.33  TEST 

C16 25 27 5.57  TEST 

C17 22 24 8.73  TEST 

C18 28 25 15.37  TEST 

C19 26 23 3.27  TEST 

C20 28 21 13.40  TEST 

C21 30 19 13.67  TEST 

C22 28 17 4.07  TEST 

C23 33 19 4.00  TEST 

C25 31 16 2.60  TEST 

C26 29 14 1.37  TEST 

C27 33 13 1.47  TEST 

C28 31 11 0.70  TEST 

C29 29 6 0.47  TEST 

 
 
 
 
 
 
 
 
 
 

2004 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C30 32 7 4.37  TEST 
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4.1.3.2  Ringwood wellfield spatial model 

 Groundwater nitrate distribution in Ringwood wellfield area was studied in this 

effort. Figure 4-7 shows the area included in this model. The method was same as the 

previously presented Cleospring wellfield model where grid coordinates (X,Y) were used 

as input to predict the nitrate concentration in the corresponding grid. A total of 205 

nitrate concentration data points from 1997 to 2005 (excluding 2000) were used in this 

model for training and testing. Table 4-4 presents the training and testing data sets used in 

this model. The values presented in this table are arranged in the same way as in 

previously explained Table 4-3.  

 



 
 

 Figure 4-7. Location of focused area in Ringwood wellfield model

4
5
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Table 4-4. Training and testing data sets for Ringwood wellfield spatial model  

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

R1 12 40 5.64  TRAIN 

R2 14 37 4.28  TRAIN 

R4 18 33 4.52  TRAIN 

R5 10 38 5.70  TRAIN 

R6 12 36 4.46  TRAIN 

R8 15 31 5.56  TRAIN 

R9 17 28 5.22  TRAIN 

R10 8 36 3.38  TRAIN 

R11 10 34 3.70  TRAIN 

R12 11 31 3.54  TRAIN 

R13 12 28 3.95  TRAIN 

R14 15 27 4.66  TRAIN 

R15 5 35 4.10  TRAIN 

R16 7 32 3.32  TRAIN 

R18 11 27 3.25  TRAIN 

R19 12 25 3.32  TRAIN 

R20 14 23 5.04  TRAIN 

R22 5 30 3.35  TRAIN 

R24 9 25 3.30  TRAIN 

R25 4 17 2.50  TRAIN 

R26 6 14 4.67  TRAIN 

R27 3 14 2.83  TRAIN 

 
 
 
 
 
 
 
 
 

1997 
 
 
 
 
 
 
 
 
 
 
 
 
 

R28 9 6 10.00  TRAIN 

R1 12 40 8.22  TRAIN 

R2 14 37 7.34  TRAIN 

R3 16 35 7.40  TRAIN 

R5 10 38 7.87  TRAIN 

R6 12 36 6.87  TRAIN 

R7 13 33 6.10  TRAIN 

R8 15 31 9.20  TRAIN 

R9 17 28 8.28  TRAIN 

R10 8 36 6.56  TRAIN 

R11 10 34 6.30  TRAIN 

R12 11 31 5.70  TRAIN 

R13 12 28 7.00  TRAIN 

R14 15 27 7.33  TRAIN 

R15 5 35 4.84  TRAIN 

R16 7 32 5.24  TRAIN 

R17 9 29 3.60  TRAIN 

R18 11 27 4.48  TRAIN 

R19 12 25 4.34  TRAIN 

R20 14 23 8.48  TRAIN 

R21 17 22 9.20  TRAIN 

 
 
 
 
 
 
 
 

1998 
 
 
 
 
 
 
 
 
 
 
 
 

R22 5 30 3.87  TRAIN 
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Table 4-4. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

R24 9 25 3.25  TRAIN 

R25 4 17 3.03  TRAIN 

R26 6 14 9.60  TRAIN 

R27 3 14 4.70  TRAIN 

 
1998 

 
 
 R28 9 6 15.82  TRAIN 

R1 12 40 7.87  TRAIN 

R2 14 37 7.63  TRAIN 

R3 16 35 9.10  TRAIN 

R4 18 33 8.13  TRAIN 

R5 10 38 7.27  TRAIN 

R6 12 36 7.00  TRAIN 

R7 13 33 7.52  TRAIN 

R8 15 31 9.87  TRAIN 

R9 17 28 9.27  TRAIN 

R10 8 36 6.93  TRAIN 

R11 10 34 6.80  TRAIN 

R12 11 31 5.90  TRAIN 

R13 12 28 8.07  TRAIN 

R14 15 27 12.17  TRAIN 

R15 5 35 5.43  TRAIN 

R16 7 32 7.40  TRAIN 

R17 9 29 4.57  TRAIN 

R18 11 27 4.60  TRAIN 

R19 12 25 4.80  TRAIN 

R20 14 23 10.83  TRAIN 

R21 17 22 12.87  TRAIN 

R22 5 30 3.85  TRAIN 

R24 9 25 3.53  TRAIN 

R25 4 17 2.75  TRAIN 

R26 6 14 10.27  TRAIN 

R27 3 14 5.40  TRAIN 

 
 
 
 
 
 
 
 
 
 
 
 

2001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R28 9 6 16.00  TRAIN 

R1 12 40 7.52  TRAIN 

R2 14 37 7.28  TRAIN 

R3 16 35 9.00  TRAIN 

R4 18 33 8.10  TRAIN 

R5 10 38 7.28  TRAIN 

R6 12 36 6.76  TRAIN 

R7 13 33 7.52  TRAIN 

R8 15 31 9.30  TRAIN 

R9 17 28 9.37  TRAIN 

R10 8 36 7.32  TRAIN 

R11 10 34 7.00  TRAIN 

 
 
 
 
 

2002 
 
 
 
 
 
 

R12 11 31 6.17  TRAIN 
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Table 4-4. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

R13 12 28 7.77  TRAIN 

R14 15 27 11.63  TRAIN 

R15 5 35 5.30  TRAIN 

R16 7 32 7.50  TRAIN 

R17 9 29 4.50  TRAIN 

R18 11 27 4.87  TRAIN 

R19 12 25 5.47  TRAIN 

R20 14 23 10.47  TRAIN 

R21 17 22 13.50  TRAIN 

R22 5 30 4.20  TRAIN 

R24 9 25 3.27  TRAIN 

R25 4 17 3.47  TRAIN 

R26 6 14 10.84  TRAIN 

R27 3 14 6.32  TRAIN 

 
 
 
 
 

2002 
 
 
 
 
 
 
 
 
 

R28 9 6 15.60  TRAIN 

R1 12 40 7.40  TRAIN 

R2 14 37 7.25  TRAIN 

R3 16 35 9.15  TRAIN 

R4 18 33 8.35  TRAIN 

R5 10 38 7.30  TRAIN 

R6 12 36 6.80  TRAIN 

R7 13 33 7.30  TRAIN 

R8 15 31 8.95  TRAIN 

R9 17 28 9.60  TRAIN 

R10 8 36 7.00  TRAIN 

R11 10 34 6.45  TRAIN 

R12 11 31 6.45  TRAIN 

R13 12 28 7.70  TRAIN 

R14 15 27 12.10  TRAIN 

R15 5 35 5.25  TRAIN 

R16 7 32 8.40  TRAIN 

R17 9 29 4.70  TRAIN 

R18 11 27 5.10  TRAIN 

R19 12 25 5.10  TRAIN 

R20 14 23 10.80  TRAIN 

R21 17 22 13.25  TRAIN 

R22 5 30 4.20  TRAIN 

R24 9 25 3.45  TRAIN 

R25 4 17 3.70  TRAIN 

R26 6 14 11.20  TRAIN 

R27 3 14 7.05  TRAIN 

 
 
 
 
 
 
 
 
 
 

2003 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R28 9 6 15.60  TRAIN 

R1 12 40 6.80  TRAIN 2005 
 R2 14 37 7.07  TRAIN 
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Table 4-4. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

R3 16 35 9.20  TRAIN 

R4 18 33 8.37  TRAIN 

R5 10 38 6.83  TRAIN 

R7 13 33 7.27  TRAIN 

R8 15 31 8.93  TRAIN 

R9 17 28 9.32  TRAIN 

R10 8 36 6.73  TRAIN 

R11 10 34 6.53  TRAIN 

R12 11 31 6.53  TRAIN 

R13 12 28 7.87  TRAIN 

R14 15 27 13.63  TRAIN 

R17 9 29 4.93  TRAIN 

R18 11 27 5.47  TRAIN 

R19 12 25 5.10  TRAIN 

R20 14 23 11.70  TRAIN 

R21 17 22 13.33  TRAIN 

R24 9 25 3.80  TRAIN 

R25 4 17 3.33  TRAIN 

R26 6 14 12.17  TRAIN 

R27 3 14 7.80  TRAIN 

 
 
 
 
 
 
 
 

2005 
 
 
 
 
 
 
 
 
 
 
 
 

R28 9 6 15.73  TRAIN 

R1 12 40 8.52  TEST 

R2 14 37 7.73  TEST 

R3 16 35 7.60  TEST 

R4 18 33 8.26  TEST 

R5 10 38 7.85  TEST 

R6 12 36 6.93  TEST 

R7 13 33 8.80  TEST 

R8 15 31 9.88  TEST 

R9 17 28 9.55  TEST 

R10 8 36 6.73  TEST 

R11 10 34 6.60  TEST 

R12 11 31 6.02  TEST 

R13 12 28 7.66  TEST 

R14 15 27 10.48  TEST 

R15 5 35 5.58  TEST 

R16 7 32 6.05  TEST 

R17 9 29 3.80  TEST 

R18 11 27 4.20  TEST 

R19 12 25 4.17  TEST 

R20 14 23 9.62  TEST 

R21 17 22 12.00  TEST 

R22 5 30 3.60  TEST 

 
 
 
 
 
 
 
 
 

1999 
 
 
 
 
 
 
 
 
 
 
 
 
 

R24 9 25 2.80  TEST 
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Table 4-4. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

R25 4 17 2.80  TEST 

R26 6 14 10.60  TEST 

R27 3 14 4.97  TEST 

 
1999 

 
 R28 9 6 18.80  TEST 

R1 12 40 7.53  TEST 

R2 14 37 7.60  TEST 

R3 16 35 9.03  TEST 

R4 18 33 8.60  TEST 

R5 10 38 7.27  TEST 

R6 12 36 7.00  TEST 

R7 13 33 7.65  TEST 

R8 15 31 9.13  TEST 

R9 17 28 10.20  TEST 

R10 8 36 7.35  TEST 

R11 10 34 6.55  TEST 

R12 11 31 6.65  TEST 

R13 12 28 7.80  TEST 

R14 15 27 13.60  TEST 

R15 5 35 5.00  TEST 

R17 9 29 4.65  TEST 

R18 11 27 5.47  TEST 

R19 12 25 5.40  TEST 

R20 14 23 12.00  TEST 

R21 17 22 13.65  TEST 

R24 9 25 3.55  TEST 

R25 4 17 3.40  TEST 

R26 6 14 11.90  TEST 

R27 3 14 8.00  TEST 

 
 
 
 
 
 
 
 
 
 

2004 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R28 9 6 16.15  TEST 

 

 

 

With the model configuration presented in Table 4-4 different network 

architectures were evaluated until some consistency in results in terms of prediction 

accuracy and numbers of iterations was achieved. The model with high prediction 

accuracy and least epochs required was selected as best model and it was used to predict 

the nitrate concentrations in each grid of the wellfield. Determination of best model is 

discussed in detail in Results.  
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4.1.3.3  Ames wellfield spatial model 

 Data from the Ames wellfield was modeled in a similar manner as the Cleospring 

and Ringwood spatial models. Figure 4-8 presents the area included in this model. A total 

of 154 nitrate and well location data from 1997 to 2005 (except 2000) were used in this 

model for training and testing. Among eight years data set, 1998 and 2004 data sets were 

used for testing and rest for training the model and they are presented in Table 4-5 

presents these data arranged as training and testing respectively. The data are arranged in 

the same way as previously explained Tables 4-3 and 4-4.  

This model was executed with different architectures to determine the best model. 

Model architectures and their performances evaluated in this effort are discussed in detail 

in Results section. A model which required least training time and consistent in results in 

terms of prediction accuracy was defined as a best. The best model was then used to 

predict the nitrate concentrations at the unmeasured locations. 



 
 

 

 Figure 4-8. Location of focused area in Ames wellfield model

5
2
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Table 4-5. Training and testing data sets for Ames wellfield spatial model  

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

A1 42 10 11.35  TRAIN 

A2 20 15 7.03  TRAIN 

A3 20 10 3.67  TRAIN 

A4 9 17 5.40  TRAIN 

A5 6 16 3.35  TRAIN 

A6 13 21 1.50  TRAIN 

A7 14 19 3.23  TRAIN 

A11 17 14 8.65  TRAIN 

A12 18 12 7.08  TRAIN 

A13 3 33 12.60  TRAIN 

A14 41 6 10.90  TRAIN 

A16 40 18 12.23  TRAIN 

A17 39 25 12.29  TRAIN 

A18 33 23 18.30  TRAIN 

A21 18 27 8.85  TRAIN 

A22 17 31 5.80  TRAIN 

A24 14 35 7.20  TRAIN 

A25 17 42 11.25  TRAIN 

 
 
 
 
 
 
 

1997 
 
 
 
 
 
 
 
 
 
 
 

A29 11 41 8.33  TRAIN 

A1 42 10 12.93  TRAIN 

A2 20 15 10.33  TRAIN 

A3 20 10 4.07  TRAIN 

A4 9 17 7.03  TRAIN 

A5 6 16 3.55  TRAIN 

A6 13 21 1.73  TRAIN 

A7 14 19 2.90  TRAIN 

A8 17 20 3.45  TRAIN 

A9 21 24 1.00  TRAIN 

A11 17 14 11.80  TRAIN 

A12 18 12 10.08  TRAIN 

A13 3 33 14.87  TRAIN 

A14 41 6 14.27  TRAIN 

A15 46 11 4.30  TRAIN 

A16 40 18 17.33  TRAIN 

A17 39 25 16.80  TRAIN 

A18 33 23 20.33  TRAIN 

A19 31 30 8.45  TRAIN 

A20 18 30 6.67  TRAIN 

A21 18 27 11.10  TRAIN 

A22 17 31 7.90  TRAIN 

A23 14 32 10.25  TRAIN 

A24 14 35 8.90  TRAIN 

A25 17 42 12.00  TRAIN 

 
 
 
 
 
 
 
 
 
 

1998 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A29 11 41 10.25  TRAIN 
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Table 4-5. (Continued) 

  

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

A1 42 10 10.00  TRAIN 

A2 20 15 9.64  TRAIN 

A4 9 17 7.60  TRAIN 

A5 6 16 8.60  TRAIN 

A6 13 21 1.80  TRAIN 

A7 14 19 2.80  TRAIN 

A8 17 20 3.80  TRAIN 

A9 21 24 1.20  TRAIN 

A15 46 11 4.40  TRAIN 

A17 39 25 14.50  TRAIN 

A20 18 30 6.60  TRAIN 

A22 17 31 7.80  TRAIN 

A24 14 35 10.00  TRAIN 

A25 17 42 14.00  TRAIN 

 
 
 
 
 

2001 
 
 
 
 
 
 
 
 
 

A29 11 41 9.90  TRAIN 

A1 42 10 11.50  TRAIN 

A2 20 15 9.89  TRAIN 

A3 20 10 3.80  TRAIN 

A4 9 17 6.60  TRAIN 

A5 6 16 5.80  TRAIN 

A6 13 21 2.40  TRAIN 

A7 14 19 5.60  TRAIN 

A8 17 20 3.00  TRAIN 

A9 21 24 1.80  TRAIN 

A11 17 14 14.80  TRAIN 

A13 3 33 14.00  TRAIN 

A14 41 6 12.90  TRAIN 

A16 40 18 13.60  TRAIN 

A17 39 25 16.00  TRAIN 

A18 33 23 15.30  TRAIN 

A19 31 30 12.80  TRAIN 

A20 18 30 6.60  TRAIN 

A21 18 27 8.70  TRAIN 

A22 17 31 6.40  TRAIN 

A23 14 32 9.30  TRAIN 

A24 14 35 8.70  TRAIN 

A25 17 42 14.07  TRAIN 

 
 
 
 
 
 
 
 
 

2002 
 
 
 
 
 
 
 
 
 
 
 
 
 

A29 11 41 9.40  TRAIN 

A1 42 10 11.73  TRAIN 

A2 20 15 9.30  TRAIN 

A3 20 10 3.40  TRAIN 

A4 9 17 6.80  TRAIN 

A5 6 16 5.20  TRAIN 

 
 

2003 
 
 
 

A6 13 21 2.47  TRAIN 
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Table 4-5. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

A7 14 19 4.00  TRAIN 

A8 17 20 3.60  TRAIN 

A9 21 24 1.80  TRAIN 

A11 17 14 13.60  TRAIN 

A14 41 6 13.00  TRAIN 

A16 40 18 12.40  TRAIN 

A17 39 25 15.60  TRAIN 

A18 33 23 14.80  TRAIN 

A19 31 30 14.00  TRAIN 

A20 18 30 6.80  TRAIN 

A21 18 27 10.70  TRAIN 

A22 17 31 7.60  TRAIN 

A23 14 32 9.35  TRAIN 

A24 14 35 8.60  TRAIN 

A25 17 42 13.40  TRAIN 

A27 15 36 7.80  TRAIN 

 
 
 
 
 
 

2003 
 
 
 
 
 
 
 
 
 
 

A29 11 41 9.40  TRAIN 

A1 42 10 11.67  TRAIN 

A2 20 15 9.24  TRAIN 

A4 9 17 8.30  TRAIN 

A6 13 21 2.00  TRAIN 

A8 17 20 3.50  TRAIN 

A11 17 14 11.20  TRAIN 

A14 41 6 11.00  TRAIN 

A16 40 18 11.20  TRAIN 

A18 33 23 12.80  TRAIN 

A19 31 30 11.70  TRAIN 

A20 18 30 6.10  TRAIN 

A24 14 35 9.20  TRAIN 

A27 15 36 7.80  TRAIN 

A29 11 41 9.20  TRAIN 

A30 16 36 7.60  TRAIN 

A32 18 32 7.90  TRAIN 

 
 
 
 
 
 

2005 
 
 
 
 
 
 
 
 
 
 

A33 19 30 5.93  TRAIN 

A1 42 10 13.00  TEST 

A2 20 15 10.73  TEST 

A3 20 10 4.10  TEST 

A4 9 17 7.00  TEST 

A5 6 16 3.65  TEST 

A6 13 21 1.72  TEST 

A7 14 19 2.86  TEST 

A8 17 20 2.67  TEST 

A9 21 24 1.00  TEST 

 
 
 

1999 
 
 
 
 
 
 

A11 17 14 12.20  TEST 
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Table 4-5. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

A14 41 6 14.20  TEST 

A15 46 11 4.37  TEST 

A16 40 18 16.30  TEST 

A18 33 23 18.60  TEST 

A19 31 30 13.00  TEST 

A20 18 30 6.70  TEST 

A21 18 27 10.50  TEST 

A22 17 31 8.00  TEST 

A24 14 35 9.37  TEST 

A25 17 42 15.00  TEST 

 
 
 
 
 

1999 
 
 
 
 
 

A29 11 41 9.80  TEST 

A1 42 10 11.80  TEST 

A2 20 15 9.36  TEST 

A6 13 21 2.50  TEST 

A20 18 30 6.80  TEST 

A23 14 32 9.60  TEST 

A25 17 42 13.40  TEST 

A27 15 36 8.60  TEST 

A29 11 41 9.80  TEST 

A30 16 36 7.60  TEST 

A32 18 32 7.40  TEST 

 
 
 

2004 
 
 
 
 
 
 
 

A33 19 30 5.90  TEST 

 

 

 

4.1.3.4  Drummond wellfield spatial model 

 Groundwater nitrate distribution in Drummond wellfield area was studied in this 

effort in the manner similar to other three individual wellfield spatial models. Figure 4-9 

shows the area included in this model. A total of 121 data points from 1997 to 2005 

(except 2000) were used in this model. The observed data shows that nitrate 

concentrations were relatively less in the wells of this wellfield compared with others 

since the aquifer is semi-confined and the percent of clay is also high in this area. Table 

4-6 presents the training and testing data sets used in this model which are arranged in the 

same way as previously explained Tables 4-3, 4-4, and 4-5.  
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Figure 4-9. Location of focused area in Drummond wellfield model

5
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Table 4-6. Training and testing data sets for Drummond wellfield spatial model 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

D3 15 24 8.04  TRAIN 

D5 21 21 6.06  TRAIN 

D6 24 23 5.40  TRAIN 

D8 25 19 10.43  TRAIN 

D12 6 25 4.83  TRAIN 

D18 19 10 6.52  TRAIN 

D20 15 17 6.94  TRAIN 

D21 12 14 5.73  TRAIN 

D23 6 6 8.50  TRAIN 

D25 22 27 6.75  TRAIN 

D27 23 33 5.50  TRAIN 

D29 26 40 6.84  TRAIN 

D31 16 33 5.40  TRAIN 

D32 11 41 3.40  TRAIN 

 
 
 
 
 
 

1997 
 
 
 
 
 
 
 
 

D33 14 37 3.99  TRAIN 

D1 20 10 8.20  TRAIN 

D3 15 24 9.45  TRAIN 

D5 21 21 9.38  TRAIN 

D6 24 23 6.86  TRAIN 

D8 25 19 12.90  TRAIN 

D12 6 25 5.54  TRAIN 

D18 19 10 9.08  TRAIN 

D20 15 17 8.50  TRAIN 

D21 12 14 7.09  TRAIN 

D23 6 6 12.45  TRAIN 

D25 22 27 8.70  TRAIN 

D26 20 31 3.60  TRAIN 

D27 23 33 8.84  TRAIN 

D28 25 36 8.60  TRAIN 

D29 26 40 9.43  TRAIN 

D31 16 33 3.93  TRAIN 

D32 11 41 4.40  TRAIN 

 
 
 
 
 
 
 
 

1998 
 
 
 
 
 
 
 
 
 

D33 14 37 5.58  TRAIN 

D3 15 24 9.00  TRAIN 

D5 21 21 9.00  TRAIN 

D6 24 23 6.88  TRAIN 

D8 25 19 10.70  TRAIN 

D12 6 25 5.70  TRAIN 

D18 19 10 9.63  TRAIN 

D20 15 17 8.60  TRAIN 

D21 12 14 7.28  TRAIN 

D23 6 6 10.75  TRAIN 

D25 22 27 8.00  TRAIN 

 
 
 
 

2001 
 
 
 
 
 
 

D29 26 40 9.23  TRAIN 
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Table 4-6. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

D32 11 41 4.73  TRAIN  
2001 D33 14 37 7.30  TRAIN 

D1 20 10 7.00  TRAIN 

D2 11 25 9.20  TRAIN 

D3 15 24 9.13  TRAIN 

D5 21 21 9.33  TRAIN 

D6 24 23 7.07  TRAIN 

D8 25 19 10.80  TRAIN 

D12 6 25 5.51  TRAIN 

D18 19 10 8.50  TRAIN 

D20 15 17 8.44  TRAIN 

D21 12 14 7.65  TRAIN 

D23 6 6 10.60  TRAIN 

D25 22 27 7.53  TRAIN 

D27 23 33 7.07  TRAIN 

D28 25 36 10.00  TRAIN 

D29 26 40 9.11  TRAIN 

 
 
 
 
 

2002 
 
 
 
 
 
 
 
 
 

D33 14 37 5.97  TRAIN 

D1 20 10 3.60  TRAIN 

D2 11 25 8.20  TRAIN 

D3 15 24 8.85  TRAIN 

D5 21 21 9.80  TRAIN 

D6 24 23 6.80  TRAIN 

D8 25 19 10.45  TRAIN 

D12 6 25 5.43  TRAIN 

D18 19 10 8.93  TRAIN 

D20 15 17 8.53  TRAIN 

D21 12 14 7.60  TRAIN 

D23 6 6 10.73  TRAIN 

D25 22 27 7.68  TRAIN 

D27 23 33 6.90  TRAIN 

D28 25 36 9.60  TRAIN 

D29 26 40 9.30  TRAIN 

 
 
 
 
 
 
 

2003 
 
 
 
 
 
 
 
 

D33 14 37 6.00  TRAIN 

D1 20 10 4.00  TRAIN 

D5 21 21 10.00  TRAIN 

D6 24 23 7.25  TRAIN 

D12 6 25 5.80  TRAIN 

D18 19 10 8.80  TRAIN 

D20 15 17 8.70  TRAIN 

D21 12 14 7.40  TRAIN 

D23 6 6 11.05  TRAIN 

 
 
 
 

2005 
 
 
 
 

D25 22 27 7.24  TRAIN 
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Table 4-6. (Continued) 

 

Input Target 
Year 

Well_ID X-Cord Y-Cord NO3 (mg/L) Output MF 

D27 23 33 7.10  TRAIN 

D29 26 40 9.40  TRAIN 

 
2005 

 D33 14 37 5.85  TRAIN 

D2 11 25 7.30  TEST 

D3 15 24 9.48  TEST 

D5 21 21 9.66  TEST 

D6 24 23 6.95  TEST 

D8 25 19 12.40  TEST 

D12 6 25 5.51  TEST 

D18 19 10 9.36  TEST 

D20 15 17 8.43  TEST 

D21 12 14 7.09  TEST 

D23 6 6 11.73  TEST 

D25 22 27 8.23  TEST 

D26 20 31 6.95  TEST 

D27 23 33 8.65  TEST 

D28 25 36 7.80  TEST 

D29 26 40 9.41  TEST 

D31 16 33 6.20  TEST 

D32 11 41 4.38  TEST 

 
 
 
 
 
 
 

1999 
 
 
 
 
 
 
 
 
 
 

D33 14 37 5.98  TEST 

D3 15 24 9.00  TEST 

D5 21 21 10.12  TEST 

D6 24 23 6.96  TEST 

D8 25 19 10.53  TEST 

D12 6 25 5.60  TEST 

D18 19 10 9.05  TEST 

D20 15 17 8.80  TEST 

D21 12 14 7.40  TEST 

D23 6 6 11.28  TEST 

D25 22 27 7.60  TEST 

D27 23 33 6.76  TEST 

D29 26 40 9.48  TEST 

 
 
 
 
 
 

2004 
 
 
 
 
 
 

D33 14 37 5.56  TEST 

 

 

With the configuration presented in Table 4-6 different network alternatives were 

evaluated by varying the network architecture until some consistency in results in terms 

of prediction accuracy and numbers of iterations were achieved. Performances of various 

networks evaluated in this effort are discussed in detail in results section. The architecture 
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with consistent prediction and least training time required was determined as best model.  

Finally, the best model was used to predict the nitrate concentrations at the locations 

where was not measured.  

 

4.3 Constituent relationship models   

With a spatial modeling approach, a relationship between the spatial locations of 

the aquifer and the nitrate concentrations was established. The constituent relationship 

models were developed for individual wellfield to establish the relationship between 

surface nitrogen application rate and nitrate concentrations in each well of the four 

wellfileds. The basic objective of developing constituent relationship models was to 

further expand these models as management models.  

In a study KC (2007) performed logistic regression analysis to establish a 

relationship between groundwater nitrate and the type of land cover around the sampled 

wells in Cimarron Terrace Aquifer. The results reveled that land use at a 1,000 meter 

radial distance from the well had significant effect on nitrate concentration in the 

corresponding well. Figure 4-10 shows the land use types within this radial distance. 

Hence, nitrogen application rates in 1,000 meter radial distance of each well were 

determined. A county-wide fertilizer nitrogen of 110 kg/ha was apportioned equally to 

agricultural and developed land to account for residential fertilizer use.  

 

 



 
 

 Figure 4-10. Extractions of land cover variables within a statistical area of well influence around each groundwater 

well sampled in the Cimarron Terrace Aquifer (KC, 2007)

6
2
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Table 4-7 to 4-10 presents the model configuration for Cleospring, Ringwood, 

Ames, and Drummond constituent relationship model respectively. The first column of 

each model presents the well identification, and second column presents the nitrogen 

application rate in kg per square mile in 1000 meter radial distance of wells 

corresponding in column one. Third column presents the observed nitrate concentrations 

in the wells corresponding to column one. The output column presents the predicted 

nitrate concentrations in each well after training and testing the model, and the fifth 

“mode flag” column categorizes the target observed nitrate concentrations as training and 

testing. Twenty percent of randomly selected nitrate concentrations in each wellfields 

were used for testing and rest of them for training. To determine the best model, different 

alternatives were tried by varying the network architecture until some consistency in 

results in terms of prediction accuracy and numbers of iterations were achieved. The best 

model determination is described in detail in Results.  
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Table 4-7. Cleospring wellfield constituent relationship model configuration 

 

Input Target 

Well_ID Nitrogen Application 

 (kg/sq. mile) 
NO3 (mg/L) 

Output MF 

CS29 5.987 0.90  TEST 

CS28 3.014 1.00  TRAIN 

CS2 5.592 1.25  TRAIN 

CS26 3.482 1.65  TRAIN 

CS27 3.466 1.80  TRAIN 

CS1 6.179 2.95  TRAIN 

CS25 3.877 3.00  TEST 

CS19 17.099 3.20  TEST 

CS3 23.952 3.90  TRAIN 

CS23 14.578 3.90  TEST 

CS22 2.871 4.05  TRAIN 

CS8 38.636 4.60  TRAIN 

CS4 14.713 4.70  TEST 

CS13 31.334 4.70  TRAIN 

CS12 21.270 4.75  TRAIN 

CS14 39.480 4.80  TRAIN 

CS11 12.863 5.00  TRAIN 

CS30 5.075 5.10  TRAIN 

CS16 22.739 6.05  TRAIN 

CS6 32.113 6.75  TEST 

CS5 27.513 7.35  TRAIN 

CS9 26.156 7.45  TRAIN 

CS15 21.258 8.35  TRAIN 

CS17 29.845 8.40  TRAIN 

CS10 27.049 8.70  TRAIN 

CS20 18.154 13.95  TRAIN 

CS21 14.623 13.95  TRAIN 

CS18 34.815 16.00  TRAIN 
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Table 4-8. Ringwood wellfield constituent relationship model configuration 

 

Input Target 

Well_ID Nitrogen Application 

 (kg/sq. mile) 
NO3 (mg/L) 

Output MF 

R24 9.827 3.45  TEST 

R25 4.171 3.70  TRAIN 

R22 11.375 4.20  TRAIN 

R17 11.353 4.70  TRAIN 

R18 9.906 5.10  TRAIN 

R19 8.975 5.10  TRAIN 

R15 8.817 5.25  TRAIN 

R11 8.749 6.45  TEST 

R12 8.821 6.45  TEST 

R6 6.202 6.80  TEST 

R10 8.282 7.00  TRAIN 

R27 7.487 7.05  TRAIN 

R2 3.681 7.25  TRAIN 

R5 3.327 7.30  TRAIN 

R7 8.734 7.30  TRAIN 

R1 3.568 7.40  TRAIN 

R13 9.371 7.70  TRAIN 

R4 16.089 8.35  TRAIN 

R16 9.386 8.40  TRAIN 

R8 8.007 8.95  TEST 

R3 9.823 9.15  TRAIN 

R9 24.777 9.60  TRAIN 

R20 20.772 10.80  TRAIN 

R26 15.584 11.20  TRAIN 

R14 20.772 12.10  TRAIN 

R21 48.624 13.25  TEST 

R28 56.427 15.60  TRAIN 
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Table 4-9. Ames wellfield constituent relationship model configuration 

 

Input Target 

Well ID Nitrogen Application  

(kg/sq. mile) 
NO3 (mg/L) 

Output 

 

MF 

 

A9 27.25 1.80  TRAIN 

A6 62.20 2.47  TEST 

A3 47.99 3.40  TRAIN 

A8 27.08 3.60  TRAIN 

A7 52.75 4.00  TRAIN 

A5 38.31 5.20  TRAIN 

A4 45.10 6.80  TEST 

A20 31.17 6.80  TRAIN 

A22 32.69 7.60  TRAIN 

A27 13.64 7.80  TRAIN 

A24 20.36 8.60  TEST 

A2 84.32 9.30  TRAIN 

A23 30.72 9.35  TRAIN 

A29 8.59 9.40  TRAIN 

A21 40.56 10.70  TRAIN 

A1 70.54 11.73  TRAIN 

A16 104.10 12.40  TRAIN 

A14 84.05 13.00  TRAIN 

A25 32.48 13.40  TRAIN 

A11 72.99 13.60  TRAIN 

A19 78.41 14.00  TEST 

A18 70.36 14.80  TEST 

A17 90.64 15.60  TRAIN 
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Table 4-10. Drummond wellfield constituent relationship model configuration 

 

Input Target 

Well_ID Nitrogen Application 

 (kg/sq. mile) 
NO3 (mg/L) 

Output MF 

D9 54.299 3.07  TRAIN 

D1 70.101 3.60  TRAIN 

D10 75.093 4.87  TEST 

D12 118.352 5.43  TRAIN 

D19 59.483 6.00  TRAIN 

D33 105.436 6.00  TRAIN 

D6 102.591 6.80  TRAIN 

D27 117.188 6.90  TRAIN 

D21 117.354 7.60  TRAIN 

D25 103.895 7.68  TRAIN 

D2 94.901 8.20  TRAIN 

D20 83.662 8.53  TRAIN 

D3 83.507 8.85  TRAIN 

D18 79.283 8.93  TRAIN 

D29 125.688 9.30  TEST 

D28 123.273 9.60  TRAIN 

D5 78.266 9.80  TEST 

D8 88.997 10.45  TEST 

D23 107.207 10.73  TRAIN 

D7 101.759 12.00  TRAIN 

 

 

 

 

4.4 Management models 

Control of potential contaminant sources and land use managements are the best 

options to protect the groundwater quality. The need to introduce management options to 

protect the groundwater quality of Cimarron Terrace Aquifer is of critical important. To 

identify the management options, management models were developed to represent 

current land use practices. The management modeling approach is based on the results of 

a study conducted by KC (2007) in Cimarron Terrace Aquifer.  
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In his study, KC (2007) also developed a multivariable logistic model which 

determined that developed land, fertilizer nitrogen, percent clay, and depth to water table 

were the most significant variables for the groundwater nitrate concentrations.  Percent 

clay and depth of groundwater were the natural phenomenon and can not be altered to 

reduce groundwater nitrate contamination level. City of Enid and its surrounding areas 

are growing residential areas and reducing them may not be the practically feasible 

option. Therefore, reduction in application of fertilizer N was determined as a best option 

to protect the groundwater in Cimarron Terrace Aquifer.   

 Ames wellfield constituent relationship model with the best model architecture 

was used to developed management model since Ames wellfield was the most 

contaminated wellfield among the four.  In this modeling effort, on ground nitrogen 

application rate was reduced and corresponding effect on the groundwater nitrate 

concentration in this wellfield was observed. The nitrate application rate was reduced 

10% successively and the model was simulated to predict nitrate concentration. The 

nitrate application rate was reduced until the nitrate concentrations in each well of Ames 

wellfield were predicted below the MCL.   

 In order to accurately determine the amount of surface nitrogen application rates 

reduction, a separate Ames constituent relationship models was also developed for the 

wells with nitrate concentrations above 10 mg/L. Three data points with nitrate 

concentrations below 10 mg/L and less surface nitrogen application rate were also used to 

train the model; thus they could learn to predict low nitrate concentrations for less 

nitrogen application rate. Again, various networks with different architecture were 

executed to determine the best model.  The developed best models were simulated with 
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subsequent 10 % reduction of surface nitrogen application rate until the nitrate 

concentrations in the wells were predicted below the MCL.  

 Table 4-11 presents the configuration of management model with nitrate 

concentration data above 10 mg/L and 10% reduction in nitrate application rate. Column 

one in the table presents the well of Ames wellfield with nitrate concentrations above 10 

mg/L except wells A25, A27, and A29. Upper half of the column two presents the 

nitrogen application rate in current land use conditions and lower half of it presents the 

reduced value of nitrogen application by 10 %. Third column presents the observed 

nitrate concentrations in the wells corresponding to column one. The models were trained 

and tested to predict nitrate concentrations with reduced nitrogen application rate. The 

training and testing data were categorized as mentioned in the “mode flag” column.  
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Table 4-11.  Ames wellfield management model  

 

Input Target 

Well_ID 
Nitrogen application 

 (kg/sq. mile) NO3 (mg/L) Output MF 

A1 32.48 13.40  TRAIN 

A11 40.56 10.70  TRAIN 

A14 70.36 14.80  TRAIN 

A16 70.54 11.73  TRAIN 

A17 72.99 13.60  TEST 

A18 78.41 14.00  TRAIN 

A19 84.05 13.00  TEST 

A21 90.64 15.60  TRAIN 

A24 104.10 12.40  TRAIN 

A25 13.64 7.80  TRAIN 

A27 20.36 8.60  TRAIN 

A29 8.59 9.40  TRAIN 

A1 29.23   TEST 

A11 36.50   TEST 

A14 63.32   TEST 

A16 63.49   TEST 

A17 65.69   TEST 

A18 70.57   TEST 

A19 75.65   TEST 

A21 81.58   TEST 

A24 93.69   TEST 

A25 12.28   TEST 

A27 18.32   TEST 

A29 7.73   TEST 

 

 

4.5 Stochastic model 

The Ames management model was used as a base for the stochastic or neural 

conditional simulation. The Ames management model employed nitrogen application 

rates as inputs, which were then targeted to predict nitrate concentrations in each well. 
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The Ames constituent relationship model was initiated as the base approach for additional 

simulations. The randomly selected neural estimation weights were altered sequentially 

and additional simulations were completed.  The mean and standard deviation of 

predicted nitrate concentration in each well of Ames wellfield were determined with each 

successive simulation and plotted versus number of simulations. The conditional 

simulation was considered complete when these plot asymptoted to a constant value. The 

prediction of constant value indicated that the level of maximum precision had been 

reached.  

Probability and cumulative density function were then developed for each well’s 

nitrate concentration with @Risk (Palisades Crop, 2002) software. @ Risk is an excel 

based risk analysis software, which plots the various distribution functions for the given 

set of data and allows the user to preview and select the best fit curve. The distributions 

can be set up using percentiles as well as standard parameters.  In this study distributions 

were set up using percentiles and the 50
th

 and 95
th

 percentile probability of predicted 

nitrate concentrations in each well of Ames wellfield were identified. 
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CHAPTER 5 

 

 

RESULTS 

 

This chapter presents the results of all the analysis methods explained in Chapter 

4. This includes results of spatial models, constitutive relationship models, the 

management model, and the stochastic model.  

 

5.1 Spatial models 

In the following sections of spatial models, outputs of an overall aquifer spatial 

model, a central area spatial model, and individual wellfields spatial models are 

presented.  

 

5.1.1 Overall aquifer model 

In this modeling effort, the entire aquifer was considered. Table 5-1 lists the 

model architecture, and results obtained in terms of number of layers, neurons per layers, 

training tolerance, percentage of “Right” scores, and training epochs in this modeling 

approach.  
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Table 5-1 Alternatives for building overall aquifer model 

 

Network 

no. 

No. of 

layers 

Neurons 

per layer* 

Training 

tolerance 

% Right Epochs 

1 3 2-20-1 0.1 85 18986 

2 3 2-34-1 0.1 85 13256 

3 3 2-46-1 0.1 85 8336 

4 3 2-61-1 0.1 85 7774 

5 3 2-46-1 0.2 85 7796 

6 3 2-61-1 0.2 85 7632 

7 3 2-70-1 0.2 85 9293 

8 3 2-61-1 0.27 85 7395 
* each value corresponds to number of neurons in input layer, hidden layer, and output layer respectively.  

Other parameters: Learning Rate = 1.0; Momentum = 0.9; Input Noise = 0; Testing Tolerance = 0.3, Error 

Limit = 0.01 (All the other parameters have default values except Error Limit) 

 

The model was initially started with default parameter settings and a small 

number of neurons in the hidden layer. Subsequently, the numbers of neurons in hidden 

layers, and default value of training tolerance (0.1) were increased to see the effect on 

prediction precision and time required to train the model.  

All of the three layers, back propagation network alternatives for this model had 

consistent prediction rate of 85% “Right”. The percentage of “Right” scores was 

measured by the number of predictions within the specified tolerance limit of the testing 

data. Changes in number of hidden neurons and training tolerance had no effect on this 

percentage. However, the epochs required to train the model and root-mean-square 

(RMS) error were sensitive to these architectural modification.  

Figure 5-1 presents the RMS error plots for the network alternatives presented in 

Table 5-1. RMS error plots, used to monitor the network training and testing process, 

present the differences between the actual output and the target output in training and 

testing data after every simulation. The RMS plots serve two purposes: (1) they tell us the 

maximum learning achieved and (2) they tell us the consistency in the learning approach 

(Kumar, 2000). Theoretically, when the training curve dips to zero on the y-axis, the 
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learning is said to be complete. If there are sharp peaks in the curve, rather than a gradual 

decent or a straight line, the network learning is considered inappropriate and the 

predictions are thought to be unreliable. In this case, learning was considered complete 

when the error graph achieved a constant value and plot achieved a straight line.  

. 
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Figure 5-1. RMS error plots of various alternatives  
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        Network no. 2 
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             Network no. 3 

 

Figure 5-1. RMS error plots of various alternatives (Continued) 
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               Network no. 5 

 

 

Figure 5-1. RMS error plots of various alternatives (Continued) 
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            Network no. 7 

 

 

Figure 5-1. RMS error plots of various alternatives (Continued) 
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               Network no. 8 

 

 

Figure 5-1. RMS error plots of various alternatives (Continued) 
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With the exception of network number 5, all the RMS error plots for networks 

presented in Table 5-1 exhibited similar characteristics; a gradual stabilization over the 

epochs was achieved. After a while the plots achieve the constant straight lines indicating 

that the models had learned maximum and further training does not improve the learning 

of the models. This is considered to be ideal “learning” behavior (Kumar, 2000). Network 

with 61 neurons in the hidden layer (network no. 4, 6, and 8) exhibited the most 

consistent plot. Since, the percentage “Right” in all the cases was the same, the best 

model configuration was decided on the basis of the time required for training (i.e. 

epochs required for training). Network number 8 required the least training epochs and 

was selected as best model and was used to predict groundwater nitrate concentrations at 

other unmeasured locations. Table 5-2 presents the example of best model nitrate 

concentration predictions at the locations where nitrate concentrations were measured and 

they were used for training the model, at the locations where nitrate concentrations were 

measured and they were used for testing the model, and at the locations where nitrate 

concentrations were not measured.  
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Table 5-2. Example of overall aquifer model outputs 

 

Input Target Output 

Well_ID X-Cord 

Y-

Cord 

NO3_2003 

(mg/L) 

NO3_2003  

(mg/L) MF 

W1 15 9 9.37 10.79 TRAIN 

W2 16 22 12.30 10.62 TRAIN 

W3 7 36 2.19 6.85 TRAIN 

A5,W14 13 72 4.71 8.03 TRAIN 

A4 14 72 6.80 8.38 TRAIN 

A23,A22,A20,W16 15 75 8.14 8.62 TRAIN 

D12 22 69 5.43 10.18 TRAIN 

D21,D20 24 67 8.07 10.10 TRAIN 

R22 14 90 4.20 7.79 TRAIN 

R24,R18 15 89 4.28 8.07 TRAIN 

R16,R17,R12,W21 15 90 5.31 8.02 TRAIN 

CS10 13 108 8.70 6.73 TRAIN 

CS17 14 107 8.40 6.91 TRAIN 

A21 15 74 10.7 8.65 TEST 

A18 18 73 14.8 9.51 TEST 

A16 20 72 12.4 9.88 TEST 

D2 23 69 8.2 10.06 TEST 

 1 26  4.73 TEST 

 2 26  5.07 TEST 

 2 27  5.05 TEST 

 2 126  3.51 TEST 

 15 170  0.56 TEST 

 15 175  0.26 TEST 

 15 176  0.20 TEST 

 16 4  11.28 TEST 

 16 5  11.25 TEST 

 

The predicted nitrate concentrations are presented in the output column. Each 

value represents the nitrate concentrations in the grids represented by (X,Y) coordinates 

in column 2 and 3, respectively. The predicted concentrations were then linked to a GIS 

to develop the groundwater nitrate concentration map for the entire Cimarron Terrace 

Aquifer. The predicted nitrate concentrations were first categorized as low, moderate, and 

high according to the concentrations were below 4.0 mg/L, 4.1 to 10.0 mg/L, and above 

10.1 mg/L, respectively, and presented in Figure 5-2.  



 
 

Figure 5-2. Neural kriging estimation of groundwater nitrate distribution for the year 2003 in Cimarron Terrace Aquifer 

8
0
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 The model was able to expand the point data into block data identifying the 

general distribution pattern of nitrate concentrations in the entire aquifer. The map shows 

that the groundwater nitrate concentration gradually increases from northwest to 

southeast in the aquifer. The 2001 NLCD previously presented in Figure 2-3 shows that 

grasslands were predominant in the northwest and as aquifer progresses towards south 

east cultivated land were increased. The model predicted the low nitrate concentrations in 

grassland dominated areas and high concentrations in cultivated areas, which are evident.  

Table 5-3 presents the areas of aquifer in three ranges of predicted nitrate concentrations. 

 

Table 5-3. Areas of nitrate concentrations in three different ranges 

 

Concentration x (mg/L) Area (square miles) 

Percent of total area 

considered in overall 

aquifer model 

x ≤ 4 230.65 22.73 

4 < x ≤ 10 588.59 58.01 

 x>10 195.34 19.25 

 

 

 The predicted nitrate concentrations shows that more then 50 percent of the  

Cimarron Terrace Aquifer has nitrate concentrations in the range of 4-10 mg/L. Nitrate 

concentrations of ≤ 4 mg/L were predicted in 22.73 percent of the total area and 19.25 

percent of the Cimarron Terrace Aquifer was contaminated above the MCL.  

 Table 5-4 presents the calculated mean absolute percentage error (MAPE) for the 

predicted nitrate concentrations. The error criteria suggest that nitrate concentrations 

were best predicted with this model configuration in moderate concentration range. High 

errors were associated with the low concentrations since the model tended to over predict 

the low values in comparison to the measured concentrations. Similarly, the mean 
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absolute percentage error of 41.18 percent for high concentrations, suggest that the model 

did not predicted the high concentrations adequately.  

 

Table 5-4.  Calculated mean absolute percentage error (MAPE) for comparisons 

between observed and predicted nitrate concentrations by overall aquifer model 

 

Concentrations (x 

mg/L) Evaluated 

Mean Concentration 

(mg/L) 

Calculated Error* 

(mg/L) 

Percent of 

Mean 

All 8.30 3.42 41.36 

Low (x ≤ 4) 2.30 4.14 176.74 

Moderate (4 < x ≤ 10) 7.32 1.59 21.72 

High (10 < x) 15.06 6.20 41.18 
N

i=1

*Error=1/N M-P∑                

N = Number of samples 

M = Measured concentration 

P = Predicted concentration 

  

 The results showed that at the central part of the aquifer the predicted nitrate 

concentrations were in the range of 8.78 to10.20 mg/L. The observed nitrate 

concentrations in the Ames wellfield, which is located in the central part of the aquifer 

showed that nitrate concentration at this location were higher than this predicted range. A 

geostatistical study conducted by KC (2007) also showed that nitrate concentration in the 

central part of the aquifer was higher then that predicted by this model. This deficiency of 

the model may have been due to use of large amount of data in this model. Therefore, a 

model focusing only in the central part of the aquifer was developed.  

 

5.1.2 Central area model 

 Table 5-5 lists the performance of nine neural network model architectures. The 

results obtained in terms of number of layers, neurons per layers, training tolerance, 

percentage of “Right” scores, and numbers of training epochs required in this modeling 
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approach are also listed. These models differed from the overall aquifer model in that 

they focused on that portion of the aquifer where the large model under-predicted nitrate 

concentrations. Initially a simple model with default parameters settings and small 

numbers of neurons in the hidden layer was developed. Subsequently the number of 

neurons in the hidden layers and training tolerance limit were increased in order to train 

the model in the least time and predict the results more accurately.    

 

Table 5-5. Alternatives for central area model 

 

Network 

no. 

No. of 

layers 

Neurons 

per layer* 

Training 

tolerance 

% Right Epochs 

1 3 2-10-1 0.1 73 10133 

2 3 2-14-1 0.1 73 92134 

3 3 2-19-1 0.1 73 19919 

4 3 2-10-1 0.2 73 10235 

5 3 2-14-1 0.2 73 8742 

6 3 2-16-1 0.2 73 12076 

7 3 2-10-1 0.25 73 10465 

8 3 2-14-1 0.25 73 11635 

9 3 2-61-1 0.27 73 9023 
* each value corresponds to number of neurons in input layer, hidden layer, and output layer respectively. 

Other parameters: Learning Rate = 1.0; Momentum = 0.9; Input Noise = 0; Testing Tolerance = 0.3, Error 

Limit = 0.01 (All the other parameters have default values except Error Limit) 

 

 

As before the percentage of “Right” scores was measured by the number of 

predictions within default tolerance limit (0.3) of the testing data. The testing data 

tolerance limit was same as that in overall aquifer model. All of the three layer back 

propagation network models had consistent predictions of 73% “Right”. Changes in 

number of hidden neurons and training tolerance had no effect on this percentage. 

However, they had effect on epochs required to train the model and root-mean-square 

(RMS) error. Since, percentage “Right” in all the cases was same, the best model 

configuration was decided on the basis of time required for training i.e. epochs required 
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for training and RMS error plot. Network number 5 required the least training epochs, 

and the RMS error plot of network number 5 was a constant straight line after the 

maximum training was achieved. Figure 5-3 presents the RMS error plot of network no. 

5.   This network was selected as a best model among the alternatives evaluated and was 

used to predict groundwater nitrate concentrations at the locations of the central part of 

the aquifer where it was not measured. Figure 5-4 presents the predicted nitrate 

concentrations map at the central part of the Cimarron Terrace Aquifer.  
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Figure 5-3. RMS error plots of network no. 5 



 
 

 Figure 5-4. Neural kriging estimation of groundwater nitrate distribution for the year 2003 in central area of Cimarron 

Terrace Aquifer

8
5
 



 

 86 

 The predicted concentrations showed that 115.87 sq. mile area at the core central 

part of the aquifer had nitrate concentration in the range of 10.59 mg/L to 15.65 mg/L. 

The predicted concentration was consistent with the results of kriging analysis conducted 

by KC (2007), which had estimated the nitrate concentration of 12.79 to 16.00 mg/L in 

the central area. Additionally, the highest measured nitrate concentrations of 15.3 mg/L 

in the Ames wellfield, which is at the central part of the aquifer, also verified the 

predicted concentrations.  

 Table 5-6 presents the mean absolute percentage error (MAPE) calculated to 

compare the observed and predicted concentrations. 

 

Table 5-6. Calculated mean absolute percentage error (MAPE) for comparisons 

between observed and predicted nitrate concentrations by central area model 

 

Concentrations (x 

mg/L) Evaluated 

Mean Concentration 

(mg/L) 

Calculated Error* 

(mg/L) 

Percent of 

Mean 

All 7.62 2.21 29.01 

Low (x ≤ 4) 2.41 4.63 192.04 

Moderate (4 < x ≤ 10) 7.18 1.45 20.17 

High (10 < x) 13.37 2.46 18.36 
N

i=1

*Error=1/N M-P∑                

N = Number of samples 

M = Measured concentration 

P = Predicted concentration 

 

 

 The calculated error shows that the central area model predicted the high 

concentrations more accurately. The error for high values was 41.18 percent in the 

overall aquifer model which was reduced to 18.36 percent in this model. In this case the 

error for all data was also decreased to 29.01 percent from the previously calculated 

41.36 percent for the overall aquifer model. The reductions in relative error indicated that 

the model could produce more accurate results when used for small areas. Therefore, 

separate models for the four individual wellfields were also developed.   



 

 87 

5.1.3 Individual wellfield spatial model 

Four City of Enid wellfields were modeled individually focusing on the small area 

of each wellfield in this effort. As the central aquifer model predicted better local results 

then the overall aquifer model, these models were expected to improve the plume 

predictions for each individual wellfield. Further, the grid size was also reduced to 

200m×200m for these models, which would also increase the resolution.  

 

5.1.3.1 Cleospring wellfield spatial model 
 
 Table 5-7 lists the performance of an eight neural network model architecture. 

The table also presents the results obtained in terms of number of layers, neurons per 

layers, training tolerance, percentage of “Right” scores, and training epochs required in 

Cleosping wellfield model. These models differed from the previously explained overall 

aquifer model and central area model since they focused only on the Cleospring wellfield 

area. Also, in these models a smaller grid size and different architectures were used. The 

grid size was reduced to identify the spatial nitrate distributions more accurately and the 

different model architectures were evaluated to increase the accuracy as far as possible.  

 

Table 5-7. Alternatives for Cleospring wellfield spatial model 

 

Network 

no. 

No. of 

layers 

Neurons 

per layer* 

Training 

tolerance 

% Right Epochs 

1 3 2-13-1 0.1 100 2057 

2 3 2-15-1 0.1 100 2067 

3 3 2-18-1 0.1 100 4389 

4 3 2-22-1 0.1 100 4358 

5 3 2-25-1 0.1 100 5057 

6 3 2-28-1 0.1 100 1859 

7 3 2-32-1 0.1 100 1735 

8 3 2-36-1 0.1 100 1891 
* each value corresponds to number of neurons in input layer, hidden layer, and output layer respectively.  

Other parameters: Learning Rate = 1.0; Momentum = 0.9; Input Noise = 0; Testing Tolerance = 0.3, Error 

Limit = 0.01 (All the other parameters have default values except Error Limit) 
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 In this effort the model development was initiated with a simple network using 

the default parameters settings; and a small number of neurons in the hidden layer. The 

first model executed predicted 100 % testing data “Right” with the default parameters 

settings therefore model alternatives were not required. Only the numbers of neurons in 

the hidden layer was changed to evaluate the effect on the training epochs required for 

the RMS error plot. A change in the number of neurons in the hidden layers had 

considerable effect on the epochs required to train the network. A best model 

configuration was determined based upon the least epochs required to train the model 

while achieving consistency in RMS error plot. Network no. 7 was determined to be the 

best model among the alternatives evaluated. Figure 5-5 shows the RMS error plot for 

this model. The plot show that both the testing and training data initially decreased 

rapidly and then slowed down and remained constant after maximum training was 

achieved. 

RMS Error Over Last 1735 Epochs

Training Data

Testing Data

0

0.05

0.1

0.15

0.2

0.25

0.3

1

Epochs

R
M

S
 E

rr
o

r

 

Figure 5-5. RMS error plots of network no. 7 
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 This best network was used to predict the nitrate concentrations at the locations 

within the Cleospring wellfield where it was not measured. Figure 5-6 presents the map 

of these predicted nitrate concentrations. From the map two nitrate plumes were 

identified. The predicted values showed that 0.61 square mile of area in Cleospring 

wellfield was polluted by plume 1 with a contamination range of 10.01 to 19.91 mg/L. 

This plume occupied is 3.5 percent of total area considered in the model. Measured 

nitrate concentrations in wells C18, C13, and C21 had concentration level above 10 

mg/L. These three wells are within the 0.61 square mile area of plume 1. This verifies 

that the plume was predicted in a reasonable location. The second plume identified was 

larger than plume 1. The predicted values showed that plume 2 had a highest 

concentration range of 6.97 to 9.69 mg/L over 1.07 square miles. None of the Enid 

sampling wells were located within this modeled area of area of plume 2. There were 

however, fourteen nearby wells of this wellfield with nitrate the contamination levels of 

less than 10 mg/L. 



 
 

Figure 5-6. Neural kriging estimation of groundwater nitrate distribution in Cleospring wellfield

9
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5.1.3.2 Ringwood wellfield spatial model 

 Table 5-8 presents the structure and performance of six neural networks models 

attempted in this effort. The results obtained in terms of number of layers, neurons per 

layers, training tolerance, percentage of “Right” scores, and training epochs required in 

this modeling approach are also included in this table. The grid size used in these 

networks was same as that of the previously explained Cleospring wellfield model. As 

before, accurate results with a relatively simple model were achieved. These models were 

focused to predict nitrate concentrations in the Ringwood wellfield area. 

 

Table 5-8. Alternatives for Ringwood wellfield spatial model 

 

Network 

no. 

No. of 

layers 

Neurons 

per layer* 

Training 

tolerance 

% Right Epochs 

1 3 2-7-1 0.1 100 5562 

2 3 2-11-1 0.1 100 19052 

3 3 2-16-1 0.1 100 16053 

4 3 2-20-1 0.1 100 5191 

5 3 2-21-1 0.1 100 2899 

6 3 2-23-1 0.1 100 16368 
* each value corresponds to number of neurons in input layer, hidden layer, and output layer respectively.  

Other parameters: Learning Rate = 1.0; Momentum = 0.9; Input Noise = 0; Testing Tolerance = 0.3, Error 

Limit = 0.01 (All the other parameters have default values except Error Limit) 

 

 

 The modeling was started with a network using the default parameters setting and 

less number of neurons in the hidden layer. The first attempted network predicted 100% 

testing data “Right”. Alternative architectures were not required to increase the prediction 

accuracy. However, the number of neurons in the hidden layers were changed to see the 

effect on the training time required for the model. Also, in this case, a change in number 

of neurons in the hidden layers had considerable effect on the epochs required to train the 

network. A best model configuration was again determined based upon the least epochs 

required to train the model and consistency of the RMS error plot. Figure 5-7 shows the 
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training and testing RMS error plot for network no. 5 which was determined to be the 

best model among the alternatives evaluated. The plot shows that initially the RMS errors 

of both training and testing data were gradually decreasing and after maximum training 

had achieved they remained constant and attaining straight lines in the plot.   
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Figure 5-7. RMS error plots of network no. 7 

 

 Figure 5-8 shows the map of the predicted nitrate concentrations in the Ringwood 

wellfield. One plume was identified in this wellfield from the map. The plume is large, 

with 5.8 square miles of polluted area. This is 7.38 percent of total area considered in this 

model. Three wells: R28, R26, and R21 were identified in this high concentration range 

of the plume. Contamination levels in these three wells were measured above the MCL 

which verifies that the model was able to predict the correct position of plume and nitrate 

concentrations in it.



 
 

Figure 5-8. Neural kriging estimation of groundwater nitrate distribution in Ringwood wellfield
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5.1.3.3 Ames wellfield spatial model 

 Table 5-9 lists the structure of the five neural network models as well as the 

results obtained in terms of number of layers, neurons per layers, training tolerance, 

percentage of “Right” scores, and training epochs required in Ames wellfield model. The 

models were same as the previously explained Cleospring wellfield models and 

Ringwood wellfield models except in the area of focus. These models were developed to 

predict nitrate concentrations in the Ames wellfield which is located near the center of the 

aquifer.  

Table 5-9. Alternatives for Ames wellfield spatial model 

 

Network 

no. 

No. of 

layers 

Neurons 

per layer* 

Training 

tolerance 

% Right Epochs 

1 3 2-9-1 0.1 100 4142 

2 3 2-12-1 0.1 100 6010 

3 3 2-13-1 0.1 100 4230 

4 3 2-15-1 0.1 100 4608 

5 3 2-19-1 0.1 100 3288 
* each value corresponds to number of neurons in input layer, hidden layer, and output layer respectively.  

Other parameters: Learning Rate = 1.0; Momentum = 0.9; Input Noise = 0; Testing Tolerance = 0.3, Error 

Limit = 0.01 (All the other parameters have default values except Error Limit) 

 

 

 As before, the modeling was started with a simple network structure using default 

parameters and few neurons in the hidden layer. In this wellfield all alternatives tried 

predicted testing data 100% “Right with the default parameters settings. As with the other 

individual wellfield models, a change in number of neurons in the hidden layers had 

considerable effect on the epochs required to train the network. A best model 

configuration was determined based upon the highest percentage “Right” and least 

epochs required training the model, and consistency in RMS error plot. Figure 5-9 shows 

the training and testing RMS error plot for network no. 5. With these criteria, network no. 
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5 was determined the best model and was used to predict the nitrate concentrations at the 

locations within the Ames wellfield where it was not measured.  
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Figure 5-9. RMS error plots of network no. 6 

 

 

 

 The predicted nitrate concentrations in Ames wellfield, presented in Figure 5-10, 

showed that a 18.98 square mile area in the Ames wellfield was contaminated above the 

MCL. This is 58.57 percent of total area considered in this model. Out of twenty nine 

wells in this wellfield, eight wells: A13, A14, A16, A17, A18, A19, A25, and A29 were 

in the predicted area of concentration above the MCL. Nitrate concentrations in all of 

these wells except A29 were measured above 10 mg/L. This shows the Ames wellfield is 

highly contaminated by nitrate and the neural network model was able to identify its 

distribution pattern accurately.   

 In the Ames wellfield, two plumes connected with each other were identified. 

Both plumes have polluted 6.1 square mile area in the wellfield above 15 mg/L. 
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However, none of the wells were in this highest concentration location of the plumes. The 

lowest nitrate concentrations in the range of 2.28 to 4.14 mg/L were predicted towards 

the east side of the wellfield. Nitrate concentration gradually decreased on the left and 

right side of the plumes, while the central portion the wellfield had predicted nitrate 

concentration in the range of 4.15 to 6.09mg/L. Nine wells: A3, A4, A6, A7, A8, A9, 

A20, A21, and A33 are in the area of this concentration range.  

 



 
 

Figure 5-10. Neural kriging estimation of groundwater nitrate distribution in Ames wellfield
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5.1.3.4 Drummond wellfield spatial model 

 Table 5-10 lists the structure of six neural network model and their performance 

in terms of number of layers, neurons per layers, training tolerance, percentage of “Right” 

scores, and training epochs required. These networks were similar to previously 

explained three individual wellfield models but this model focused on the Drummond 

wellfield area.  

 

Table 5-10. Alternatives for Drummond wellfield spatial model 

 

Network 

no. 

No. of 

layers 

Neurons 

per layer* 

Training 

tolerance 

% Right Epochs 

1 3 2-6-1 0.1 100 4021 

2 3 2-10-1 0.1 100 6281 

3 3 2-14-1 0.1 100 4444 

4 3 2-18-1 0.1 100 3720 

5 3 2-19-1 0.1 100 3820 

6 3 2-23-1 0.1 100 4911 
* each value corresponds to number of neurons in input layer, hidden layer, and output layer respectively.  

Other parameters: Learning Rate = 1.0; Momentum = 0.9; Input Noise = 0; Testing Tolerance = 0.3, Error 

Limit = 0.01 (All the other parameters have default values except Error Limit) 

 

 

The first network was executed using default parameters setting and less number 

of neurons in the hidden layer.  Subsequently, the numbers of neurons in the hidden 

layers were increased. While all of the neural network alternatives predicted testing data 

100% “Right” with default parameters settings, changes in number of neurons in the 

hidden layers had considerable effect on the epochs required to train the network. A best 

model configuration was determined based upon the least epochs required to train the 

model and consistency in RMS error plot. Network no. 4 was determined the best model 

among the alternatives tried with above mentioned two criteria. Figure 5-11 shows the 

training and testing RMS error plot for network no. 4, which shows that the error plot for 

both sets of data were consistent, decreased rapidly first and remained fairly constant 
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after that without any peaks and plateaus. The best network was then used to predict the 

nitrate concentrations at the locations where it not measured in Drummond wellfield.  
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Figure 5-11. RMS error plots of network no. 6 

 

 

Figure 5-12 shows the map of the predicted nitrate concentration in the 

Drummond wellfield. In this wellfield nitrate concentration was high at the south west 

end of the wellfield and increased towards the edge of the aquifer. In this wellfield one 

plume was identified towards the south west end of the wellfield. The plume had 

contaminated 1.14 square mile area of this wellfield above the MCL. One well, D23, is in 

the plume’s highest concentration area and the highest measured concentration in this 

well was 11.1 mg/L. The highest predicted nitrate concentration in this wellfield was 

13.29 mg/L which is less in comparison to the predicted nitrate concentrations in other 

three wellfields. The measured and predicted nitrate concentrations reveals that, this 

wellfield is less vulnerable in comparison to other three and that may have been due to 

the high percent of clay in this area of the aquifer and depth to water and partial confining 

layer. 



 
 

Figure 5-12. Neural kriging estimation of groundwater nitrate distribution in Drummond wellfield
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5.2 Constituent Relationship Models 

The spatial modeling approach projected nitrate concentrations throughout the 

overall aquifer, in the central region, and finally, in association with specific wellfields. 

In this constituent relationship modeling approach, nitrate concentrations in each well of 

the four wellfields were predicted as a function of surface nitrogen application rates.  

 

5.2.1 Cleospring constituent relationship model 

Table 5-11 presents the six alternative architectures attempted for the Cleospring 

wellfield constituent relationship model. The results obtained in terms of number of 

layers, neurons per layers, training tolerance, percentage of “Right” scores, and training 

epochs required are also presented. 

 

Table 5-11. Alternatives for Cleospirng wellfield constituent relationship model 

 

Network 

no. 

No. of 

layers 

Neurons 

per layer* 

Training 

tolerance 

% Right Epochs 

1 3 1-6-1 0.1 83 10342 

2 3 1-11-1 0.1 83 15618 

3 3 1-15-1 0.1 83 13250 

4 3 1-19-1 0.1 83 14818 

5 3 1-6-1 0.2 83 13520 

6 3 1-15-1 0.2 83 16607 
* each value corresponds to number of neurons in input layer, hidden layer, and output layer respectively.  

Other parameters: Learning Rate = 1.0; Momentum = 0.9; Input Noise = 0; Testing Tolerance = 0.3, Error 

Limit = 0.01 (All the other parameters have default values except Error Limit) 

 

 

All of the attempted networks predicted nitrate concentration testing data at an 

83% “Right” level with the default parameter settings. Changes in training tolerance did 

not affect the prediction precision and training time required in this model. The network 

no. 3 was decided as the best model among the alternatives since it required the fewest 

epochs to train the model. Figure 5-13 presents the training and testing data RMS error 
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plot of network no. 3 which shows the gradual stabilization of training and testing data 

RMS error. The curves became straight lines after the initial variation.   
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Figure 5-13. RMS error plots of network no. 6 

 

 

          Figure 5-14 presents the observed and predicted nitrate concentrations by this 

model in each well of the Cleospring wellfield. The plot shows that the model predicted 

all nitrate concentrations in wells below 8.0 mg/L. The predicted values were more 

accurate in wells C5, C6, and C9, while others showed some over-as well as under-

prediction. The model could not match the highest concentrations. The surface nitrogen 

application rate within 1000m radius of wells C8 and C14 were calculated to be 38.63 

kg/sq. mile and 39.47 kg/sq. mile, which were the highest rates in this wellfield, but the 

measured nitrate concentrations in these wells were 4.6 mg/L and 4.8 mg/L. On the other 

hand, surface nitrogen application rate at well C18 was 34.81 kg/sq. mile and the 

measured nitrate concentration in this well was 16.0 mg/L. A probable reason that the 

model was unable to establish the good relationship between the surface nitrogen 

application rates and measured high nitrate concentrations due to discrepancy in the input 

data. According to KC (2007) the percent clay and depth of groundwater are other two 
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significant variables besides surface nitrogen application rate for nitrate concentration 

level above 10 mg/L. The percent clay in 1000m radial distance of wells C8 and C14 

were among the high values in this wellfield.  
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Figure 5-14. Observed and predicted nitrate concentration by Cleospring 

constituent relationship model 

 

 

Table 5-12 presents the calculated mean absolute percentage error (MAPE) for 

the nitrate concentrations predicted by this model. The lowest mean absolute percentage 

error associated with moderate concentration range suggests that the model was best in 

predicting the moderate concentration range. The mean absolute percentage error for low 

range values was calculated highest, since most of the low range values were over-

predicted. The mean absolute percentage error was calculated 47.82 for high range since 

all all the high range values were under-predicted. The under prediction of high values 

strongly suggests to development of a separate model for this range.  
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Table 5-12. Calculated mean absolute percentage error (MAPE) for comparisons 

between observed and predicted nitrate concentrations by Cleospring wellfield 

constituent relationship model 

 
Concentrations (x 
mg/L) Evaluated 

Mean Concentration 
(mg/L) 

Calculated Error* 
(mg/L) 

Percent of 
Mean 

All 5.65 2.36 41.94 

Low (x ≤ 4) 2.36 2.04 86.64 

Moderate (4 < x ≤ 10) 6.05 1.66 27.50 

High (10 < x) 14.63 6.99 47.82 

 
N

i=1

*Error=1/N M-P∑               

N = Number of samples 

M = Measured concentration 

P = Predicted concentration 

  

5.2.2 Ringwood constituent relationship model 

The modeling approach of the Ringwood constituent relationship model was the 

same as that of Cleospring. The model related surface applied nitrogen loading, with 

measured nitrate concentrations in each well of the Ringwood wellfield.  

Table 5-13 presents the four alternative architectures for this wellfield constituent 

relationship model. The results obtained in terms of number of layers, neurons per layers, 

training tolerance, percentage of “Right” scores, and training epochs required in 

Ringwood wellfield model are illustrated.  

 

Table 5-13. Alternatives for Ringwood wellfield constituent relationship model 

 

Network 

no. 

No. of 

layers 

Neurons 

per layer* 

Training 

tolerance 

% Right Epochs 

1 3 1-5-1 0.1 100 18410 

2 3 1-9-1 0.1 100 24077 

3 3 1-14-1 0.1 100 17216 

4 3 1-18-1 0.1 100 19415 
* each value corresponds to number of neurons in input layer, hidden layer, and output layer respectively.  

Other parameters: Learning Rate = 1.0; Momentum = 0.9; Input Noise = 0; Testing Tolerance = 0.3, Error 

Limit = 0.01 (All the other parameters have default values except Error Limit) 
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 All of the alternatives attempted in this modeling effort predicted testing data 

100% “Right” with default parameters settings. Since, the predictions were 100% 

“Right”, the best model among the alternatives attempted was decided on epochs required 

to train the model and stable in RMS error plot. Network no. 3 was decided best with 

these criteria. Figure 5-15 shows the RMS error plot of network number 3.  
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Figure 5-15. RMS error plots of network no. 3 

 

 

 

In this wellfield the highest nitrate concentration of 15.33 mg/L in well R28 and 

lowest concentration of 6.57 mg/L in well R24 were predicted. The high nitrate 

concentrations were predicted at the wells where surface nitrogen application rates were 

also high. This indicates that high nitrate concentrations in this wellfield were due to the 

application of surface nitrogen. Figure 5-16 shows the plot of the observed and predicted 

nitrate concentrations in this wellfield. In most of the wells, predicted nitrate 

concentrations resembled the observed concentrations. The model was able to establish a 

good relationship between nitrate concentrations and surface nitrogen application rate 
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since most of the measured nitrate concentrations were consistent with the surface 

nitrogen application rate in this wellfield.   
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Figure 5-16. Observed and predicted nitrate concentration by Ringwood constituent 

relationship model 

 

 

 Table 5-14 presents the mean absolute percentage error associated with the 

various ranges of predictions. The high nitrate concentrations were accurately predicted 

by this model. Mean absolute percentage error of 7.76 for high values verifies the 

accuracy of the prediction of. Also, the model predicted moderate concentrations 

adequately with mean absolute percentage error of 17.24. The mean absolute percentage 

error for low concentration range was 85.71 since most of these concentrations were 

overestimated. The nitrogen application rate in wells R1, R2, and R5 were minimum in 

this wellfield but the measured nitrate concentration were 7.40 mg/L, 7.25 mg/L, and 
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7.30 mg/L respectively. The measured high concentrations in the low nitrogen 

application areas suggest the presence of some other sources too such as private septic 

tank system or high influence of geophysical setting.  

 

Table 5-14. Calculated mean absolute percentage error (MAPE) for comparisons 

between observed and predicted nitrate concentrations by Ringwood wellfield 

constituent relationship model 

 
Concentrations (x 
mg/L) Evaluated 

Mean Concentration 
(mg/L) 

Calculated Error* 
(mg/L) 

Percent of 
Mean 

All 7.76 1.3 16.73 

Low (x ≤ 4) 3.58 3.06 85.71 

Moderate (4 < x ≤ 10) 6.98 1.2 17.24 

High (10 < x) 12.59 0.98 7.76 

 
N

i=1

*Error=1/N M-P∑               

N = Number of samples 

M = Measured concentration 

P = Predicted concentration 

 

5.2.3 Ames constituent relationship model 

The Ames wellfield constituent relationship modeling approach was the same as 

that of previously described two constituent relationship models. Table 5-15 presents five 

alternatives attempted for the Ames wellfield constituent relationship model. The results 

obtained in terms of number of layers, neurons per layers, training tolerance, percentage 

of “Right” scores, and training epochs required are also presented. 
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Table 5-15. Alternatives for Ames wellfield constituent relationship model 

 

Network 

no. 

No. of 

layers 

Neurons 

per layer* 

Training 

tolerance 

% Right Epochs 

1 3 1-10-1 0.1 100 31597 

2 3 1-14-1 0.1 80 36278 

3 3 1-20-1 0.1 80 38779 

4 3 1-24-1 0.1 100 29760 

5 3 1-27-1 0.1 100 30306 
* each value corresponds to number of neurons in input layer, hidden layer, and output layer respectively.  

Other parameters: Learning Rate = 1.0; Momentum = 0.9; Input Noise = 0; Testing Tolerance = 0.3, Error 

Limit = 0.01 (All the other parameters have default values except Error Limit) 

 

 

 Among the networks used in this modeling effort, network number 1, 4, and 5 

predicted the testing data 100% “Right” and network number 2, and 3 predicted 80% 

“Right”. Default parameters were used for these model runs.  In these models, precision 

of testing data prediction and epochs required to train the model were sensitive towards 

the number of neurons in the hidden layers. Among the alternatives evaluated, network 

number 4 required the fewest epochs and gave the 100% testing data “Right” with the 

default parameters settings. Figure 5-17 shows the RMS error plot of network number 4, 

which is consistent throughout the training and testing. Therefore, network number 4 was 

determined as a best among the alternatives evaluated.   
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Figure 5-17. RMS error plots of network no. 4 

 

 

 Figure 5-18 shows the plot of observed and predicted nitrate concentrations in 

Ames wellfield constituent relationship model. The model predicted the highest nitrate 

concentration of 13.11 mg/L in well A19 where the measured concentration was 14.0 

mg/L. Nitrate concentration of 12.66 mg/L was predicted in well A16 where nitrogen 

application was maximum and measured nitrate concentration was predicted 12.4 mg/L. 

Nitrogen application rates in this wellfield was highest among the four wellfields and the 

model predicted nitrate concentrations in 35 percent of wells in this wellfield above the 

MCL. This shows that the model had established the good association between the 

surface nitrogen application rate and groundwater nitrate concentrations. Table 5-16 

presents the mean absolute percentage error associated with the various ranges of 

predicted nitrate concentrations. The mean absolute percentage error for the moderate 

range concentrations and high range concentrations were 9.35 and 15.61, which suggest 

that the model had predicted nitrate concentrations satisfactorily for these ranges. The 



 

 110 

high error associated with the low range data suggests that the measured low range nitrate 

concentrations in this wellfield were not only the function of surface nitrogen application 

rate. Nitrate concentrations of 9.4 mg/L in well A29 where the surface nitrogen 

application rate was least, 8.59 kg/sq. mile, indicates the presence of other sources of 

nitrate around this well. In contradictory, nitrate concentrations were measured 2.47 

mg/L, 3.4 mg/L, and 4.0 mg/L in the wells A6, A3, and A7 respectively where nitrogen 

application rate was in the range of 45 to 65 kg/ sq. mile. In these wells the model 

predicted nitrate concentrations above 5 mg/L.  These discrepancies in the measured 

nitrate concentrations led the model to over predict the low range nitrate concentrations 

and signify the role of other geophysical variables.   
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Figure 5-18. Observed and predicted nitrate concentration by Ames constituent 

relationship model 
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Table 5-16. Calculated mean absolute percentage error (MAPE) for comparisons 

between observed and predicted nitrate concentrations by Ames wellfield 

constituent relationship model 

 
Concentrations (x 
mg/L) Evaluated 

Mean Concentration 
(mg/L) 

Calculated Error* 
(mg/L) 

Percent of 
Mean 

All 8.93 2.06 23.12 

Low (x ≤ 4) 3.05 3.57 116.77 

Moderate (4 < x ≤ 10) 7.87 0.74 9.35 

High (10 < x) 13.25 2.07 15.61 

 
N

i=1

*Error=1/N M-P∑               

N = Number of samples 

M = Measured concentration 

P = Predicted concentration 

 

5.2.4 Drummond constituent relationship model 

The Drummond wellfield constituent relationship modeling approach was the 

same as that of other constituent relationship models. Table 5-17 presents four 

alternatives attempted for the Drummond wellfield constituent relationship model with 

model architecture, and results obtained in terms of number of layers, neurons per layers, 

training tolerance, percentage of “Right” scores, and training epochs required. 

 

Table 5-17. Alternatives for Drummond wellfield constituent relationship model 

 

Network 

no. 

No. of 

layers 

Neurons 

per layer* 

Training 

tolerance 

% Right Epochs 

1 3 1-7-1 0.1 100 19509 

2 3 1-10-1 0.1 100 22345 

3 3 1-16-1 0.1 100 35567 

4 3 1-21-1 0.1 100 25852 
* each value corresponds to number of neurons in input layer, hidden layer, and output layer respectively.  

Other parameters: Learning Rate = 1.0; Momentum = 0.9; Input Noise = 0; Testing Tolerance = 0.3, Error 

Limit = 0.01 (All the other parameters have default values except Error Limit) 

  

All the networks attempted in this modeling effort predicted the testing data 100% 

“Right” with the default parameters setting. Therefore, change in other parameters was 

not attempted. Among the alternatives evaluated, network number 1 required the fewest 
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epochs to train the model. Figure 5-19 shows the RMS error plot of network number 1, 

which shows that the error for training and testing data attained constant value when 

maximum training was achieved. The plot was stabilized after some initial undulations. 

Therefore, network number 1 was determined as the best model for this wellfield.   
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Figure 5-19. RMS error plots of network no. 1 

  

 Figure 5-20 shows the plot of observed nitrate concentrations and predicted 

nitrate concentrations by network number 1. In this wellfield the model predicted highest 

nitrate concentration of 9.16 mg/L in well D8 where measured concentration was 10.45 

mg/L and nitrogen application rate was 125.69 kg/sq. mile, maximum in this wellfield. 

The model had predicted the concentrations in wells according to the surface nitrogen 

application rate. The model under-predicted the high nitrate concentrations measured in 

wells D7, D8, and D23, since these high nitrate concentrations were observed in wells 

where relatively less nitrogen were applied. The measured high concentration in wells 

with relatively less nitrogen application rates indicates the presence of other nitrate 

sources nearby and also the significant role of other geophysical variables. The mean 



 

 113 

absolute percentage error of 16.13 for moderate concentration range presented in Table 5-

18 verifies that the moderate nitrate concentrations were predicted more accurately. In 

comparison to the previously discussed three constituent relationship models, this model 

had best predicted the low range nitrate concentrations. However, this model also slightly 

over-predicted the low concentrations.  
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Figure 5-20. Observed and predicted nitrate concentration by Drummond wellfield 

constituent relationship model 
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Table 5-18. Calculated mean absolute percentage error (MAPE) for comparisons 

between observed and predicted nitrate concentrations by Drummond wellfield 

constituent relationship model 

 
Concentrations (x 
mg/L) Evaluated 

Mean Concentration 
(mg/L) 

Calculated Error* 
(mg/L) 

Percent of 
Mean 

All 7.72 1.41 18.25 

Low (x ≤ 4) 3.34 1.02 30.58 

Moderate (4 < x ≤ 10) 7.63 1.23 16.13 

High (10 < x) 11.06 2.55 23.08 

 
N

i=1

*Error=1/N M-P∑               

N = Number of samples 

M = Measured concentration 

P = Predicted concentration 

 

 

5.3 Management models 

 

 Management models were intended to identify the options to reduce the nitrate 

concentration below the MCL in the Cimarron Terrace Aquifer. Reduction of surface 

nitrogen application rate was identified as a feasible management option in reducing 

nitrate concentrations in the aquifer. The results of constituent relationship models 

showed that some wells in the Ames wellfield were contaminated beyond the limit of the 

drinking water standard due to excessive use of fertilizer nitrogen. The Ames wellfield 

constituent relationship model was used to developed management models. In this 

modeling effort, the land surface nitrogen application rate was reduced and the 

corresponding effect on the groundwater nitrate concentration in this wellfield was 

estimated. The nitrate concentration was reduced 10% each time and the model was 

employed to predict the corresponding nitrate concentration in the groundwater. Figure 5-

21 shows the predicted nitrate concentrations with 10%, 20%, 30%, and 40% reduction of 

on ground application. 
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Figure 5-21. Nitrate concentrations in all wells of Ames wellfield with varying on 

ground nitrogen application reduction  

 

 The plot shows that the model with 40% reduction of surface nitrogen application 

predicted the nitrate concentration below the MCL in all wells in Ames wellfield. The 

model predicted the decreased nitrate concentrations corresponding to the decreased 

surface nitrogen application rate in the wells where contamination level was above 10 

mg/L. As shown in the plot, in most of the wells where nitrate concentrations were below 

10 mg/L, the model predicted increased concentrations with the decreased in the surface 

nitrogen application which was neither logically consistent nor acceptable. The results of 

this model suggested that separate models for the nitrate concentrations at different levels 

were needed.   

 Before simulating the management alternatives, a constituent relationship model 

for the high concentrations in the Ames wellfield was developed. Table 5-19 presents the 
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alternatives evaluated to determine the best network to predict the nitrate concentrations 

as a function of surface nitrogen application rate.  Performances of the networks with 

different architectures are also presented in terms of percentage “Right” score and the 

epochs required to train the model.  

 

Table 5-19. Alternatives for Ames wellfield high concentrations constituent 

relationship model 

 

Network 

no. 

No. of 

layers 

Neurons 

per layer* 

Training 

tolerance 

% Right Epochs 

1 3 1-6-1 0.1 100 3082 

2 3 1-10-1 0.1 100 2920 

3 3 1-14-1 0.1 100 2517 

4 3 1-19-1 0.1 100 6330 
 

* each value corresponds to number of neurons in input layer, hidden layer, and output layer respectively.  

Other parameters: Learning Rate = 1.0; Momentum = 0.9; Input Noise = 0; Testing Tolerance = 0.3, Error 

Limit = 0.01 (All the other parameters have default values except Error Limit) 

 

 

 The modeling was started with the simple model with default parameters settings 

and a lower number of neurons in the hidden layer. The model predicted 100 % testing 

data “Right” at the first attempt. The number of neurons in the hidden layers were 

increased to see the effect on the training time required to train the model. The best 

model was again determined on the basis of highest percentage testing data “Right” 

score, fewest epochs required to train the model, and nature of RMS error plot. The 

percentage “Right” score of testing data were 100% in all the cases but the training 

epochs required was least for the network number 3. Figure 5-22 presents the RMS error 

plot for the network number 3. The plot of training and testing data attained straight lines 

after some initial undulations showing the model was trained adequately. Therefore, 

network number 3 was determined as a best model among the alternatives evaluated and 

was used to simulate with reduced nitrogen application rate.  
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Figure 5-22. RMS error plots of network no. 3 

 

 Figure 5-23 presents the predicted nitrate concentrations in the wells of Ames 

wellfield where contamination leves were above 10 mg/L, corresponding to the 

subsequent 10% reduction of surface nitrogen application rate in the current land use 

conditions. The plot shows that with the decrease in nitrogen application rate, nitrate 

concentrations were decreased in all the considered wells. From the neural network 

model it was determined that, in order to reduce nitrate contamination level below 

10mg/L, surface nitrogen application rate should be reduced by 80 percent of the current 

application rate.   
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Figure 5-23. Nitrate concentrations in wells of Ames wellfield having measured 

nitrate concentrations above 40 mg/L with varying on ground nitrogen application 

reduction  

 

 

5.4 Stochastic model 

As described in the methodology chapter, the Ames constitutive relationship 

model was used for a neural conditional simulation. This analysis was conducted to 

determine the probabilities associated with the nitrate concentration predictions in the 

wells of Ames wellfield corresponding to the surface nitrogen application. Figure 5-24 

and 5-25 presents the plots of running means and standard deviation of predicted nitrate 

concentrations in well A1 of Ames wellfield.  When consecutive simulations predicted 

relatively constant values of nitrate concentrations, the stochastic modeling was 

considered finished, i.e. no additional information would be available for the subsequent 
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simulations. The running mean and standard deviation plots for other 22 wells of this 

wellfield are presented in appendix D.  
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Figure 5-24. Well A1: Mean versus number of simulations 
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Figure 5-25. Well A1: Standard deviation versus number of simulations 

 

 

              These plots show that 90 individual simulations were adequate to achieve 

consistency in the mean and standard deviation of predicted nitrate concentrations. The 

predictions of these 90 simulations were then imported into probability and cumulative 
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density (pdf and cdf) plots using the program @Risk. Best fit curves were determined and 

ranked by the A-D (Anderson-Darling) method (Palisades Crop., 2002). Figure 5-26 and 

5-27 shows the best fit curve for well A1.  
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Figure 5-26. Well A1: Best fit curve probability density 
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Figure 5-27. Well A1: Best fit curve for cumulative density  

 

The plots show the nitrate concentrations expected for each well given the level of 

allowable uncertainty. For example, the 95
th

 percentile concentration presents the nitrate 

concentration which is expected to be greater than or equal to 95% of all of the possible 

simulations which could occur for that well. Table 5-20 presents the 50
th

 percentile and 

95
th

 percentile values of nitrate concentrations from best fit curves for all well of Ames 

wellfield. 
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Table 5-20. Summary of results of best fit curves 

 

Well_ID NO3_2003(mg/L) 50
th

 percentile 95
th 

percentile Distribution 

A1 11.73 0.17 12.43 
Inverse 

Gaussian 

A2 9.30 0.68 13.14 Beta General 

A3 3.40 2.23 6.07 Beta General 

A4 6.80 54.67 6.31 Beta General 

A5 5.20 0.67 10.46 Pearson 

A6 2.47 41.46 7.68 Beta General 

A7 4.00 0.68 6.00 Beta General 

A8 3.60 7.42 7.88 Logistic 

A9 1.80 41.46 7.68 Beta General 

A11 13.60 12.37 12.73 Triangular 

A14 13.00 0.70 13.14 Beta General 

A16 12.40 34.71 13.48 Pareto 

A17 15.60 12.71 12.94 Triangular 

A18 14.80 11.93 12.53 Log Logistic 

A19 14.00 0.88 13.18 Beta General 

A20 6.80 0.44 7.77 Beta General 

A21 10.70 6.68 7.50 Normal 

A22 7.60 0.49 8.08 Beta General 

A23 9.35 0.44 7.71 Beta General 

A24 8.60 7.65 8.59 Normal 

A25 13.40 0.50 8.05 Beta General 

A27 7.80 4.99 8.50 Beta General 

A29 9.40 8.43 9.40 Logistic 
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CHAPTER 6 

 

 

DISCUSSION  

 

 

 

This chapter discusses the results of the study with respect to the statement of 

problems explained in Chapter 1. Results of spatial models, constitutive relationship 

models, management models, and stochastic model are discussed in this chapter. The 

spatial analysis included an overall or entire aquifer model, a central area model, and 

individual wellfield models. The constituent relationship models for each wellfield were 

developed to predict nitrate concentration in groundwater as a function of surface 

nitrogen application rate. The management models were developed to identify the 

management options needed to reduce the nitrate contamination below the MCL in Ames 

wellfield. The neural conditional simulation was performed in Ames constituent 

relationship model to define the probability of occurrence of the predicted nitrate 

concentrations.  

 

6.1 Discussion on results of spatial models 

 Spatial models were developed to expand the sampled point data to the area of 

aquifer in order to identify the nitrate distribution pattern in the Cimarron Terrace 

Aquifer. 
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6.2.1 Discussion on results of overall aquifer spatial model 

In the attempt to identify the pattern of nitrate distribution in the entire Cimarron 

Terrace Aquifer, an overall aquifer model was initially developed and analyzed. Nitrate 

concentration data from the city of Enid and from the USGS were used in this effort. 

Neural kriging method was used to expand the point data of nitrate concentrations taken 

at well locations over the entire space of the aquifer. The method adequately predicted 

the nitrate concentrations over the entire aquifer, identifying the pattern of its distribution. 

A map of predicted nitrate concentration in the entire aquifer (Figure 5-2) showed that 

nitrate concentration was at a minimum in the northwest section of the aquifer and was 

increasing towards the southeast. As shown in Figure 2-2 of the 2001 NLCD, grassland is 

a predominant land cover in the northwest of aquifer. In the south east portion of the 

study area the percentage of cultivated land increases. The predictions were consistent 

with earlier studies by Masoner and Mashburn (2004).  Masoner and Mashburn studied 

the nitrogen isotopes in 45 well of Cimarron Terrace Aquifer. Among 45 samples, 28 

were sampled in agricultural areas, 18 were in the mixed sources category (combination 

of synthetic fertilizer, septic or manure waste sources), one was in the septic source 

category, 17 were in grassland areas, and 4 were in the mixed category. According to 

them, the results of statistical analysis of the samples indicated that nitrate concentrations 

in agricultural areas were significantly greater than that in grassland areas.  Hence, the 

model identified the evident trend of low concentrations in the grasslands and high 

concentrations in cultivated land. Additionally, the identified trend was consistent with 

the direction of the groundwater movement. In a study conducted by Adams and 

Bergman (1996), potentiometric surface of groundwater indicated that groundwater is 
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discharging to the intercepting tributaries and the Cimarron River. They also found that in 

several areas along the northwest boundary of the aquifer, groundwater is flowing away 

from the Cimarron River and its perennial tributaries.  

 The output of the neural kiging analysis identified the low, moderate, and high 

concentrations areas in the aquifer. The analysis showed that more then 50 percent area 

of the Cimarron Terrace Aquifer had nitrate concentrations in the range of 4-10 mg/L. 

The analysis also showed that 19.25 sq. mile areas in the north east and south corners of 

the aquifer are contaminated with nitrate above the MCL. This information and the 

predicted concentrations map can be very useful for the water managers to plan the 

groundwater protection programs in the Cimarron Terrace Aquifer.  

Though the overall aquifer model acceptably produced the general picture of 

nitrate distribution in the Cimarron Terrace Aquifer, it under-predicted the nitrate 

concentrations in particular locations, especially at the central part of the aquifer. The 

measured nitrate concentrations in the Ames wellfield, which is near the center of the 

aquifer, and results of the kriging analysis conducted by KC (2007), showed that the 

central part of the aquifer was highly contaminated, which was not fully expressed in the 

overall aquifer model. Changes in the model architecture had no significant effect on the 

output of this model. Therefore, while the overall aquifer model provided the general 

picture of nitrate distribution throughout entire aquifer, additional resolution was needed 

in those areas of high nitrate concentrations.  
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6.2.2 Discussion on results of central area spatial model 

In order to predict the nitrate concentrations more accurately in the central area of 

the Cimarron Terrace Aquifer where the concentrations were not fully expressed in the 

overall aquifer model, a central area model was subsequently developed. The model 

predicted that central 155.87 sq. mile area of the aquifer had nitrate concentrations above 

10 mg/L.  A map of predicted concentrations was shown in Figure. 5-4. Thirty nine 

percent of measured samples in the Ames wellfield which is towards the central area of 

the aquifer had nitrate concentrations above 10 mg/L. The predicted values closely 

resembled the observed nitrate concentrations and even the results of kriging analysis 

conducted by KC (2007). KC had determined the nitrate concentrations in the range of 

12.79 to 16.0 mg/L in this area. Cultivated and developed lands were the principal land 

use types in the central area of the Cimarron Terrace Aquifer and the high nitrate 

concentrations in this area may have been due to the intensive application of fertilizer 

nitrogen in residential and agricultural lands.  

 

6.2.3 Discussion on results of individual wellfield spatial model 

The results of the overall aquifer model and the central area model concluded that 

the neural kriging method would be more accurate if it could be used in smaller area.  

This led to the development of individual wellfield models for the city of Enid’s four 

wellfields.  

 The individual wellfield models addressed the areas in each wellfield. The grid 

size in this case was made smaller in order to identify nitrate distribution in detail. These 

models provided logical results by identifying the plumes which were reasonable in shape 
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and location. Besides, the predicted concentrations were higher than those used for 

training and testing the models. This indicates that the neural kriging method were able to 

adequately extrapolate the nitrate concentrations from training and testing data to areas 

where it was not measured. The maps of these outputs are illustrated in Figure 5-6, 5-8, 

5-10, and 5-12. These maps can be useful in finding the less vulnerable well locations for 

new installation. They are also helpful for water managers to plan wellhead protection 

programs.  

 

6.3 Discussion on results of constituent relationship models 

After the identification of the spatial pattern of nitrate distribution, nitrate 

concentrations in each well of the four well fields were determined as a function of the 

surface nitrogen application rate. Nitrogen applied in the 1000m radius of each well was 

determined and used as input to predict nitrate concentration in the corresponding well.  

Grassland is a principal land use type in the Cleospring wellfield.  In this 

Cleospring wellfield, nitrate concentration was predicted in the range of 2.11 to 8.0 mg/L. 

The predicted concentration range was less then the measured concentration range which 

was in the range of 0.9 to 16.0 mg/L. In some of the wells of Cleospring wellfield, high 

concentrations were measured where surface nitrogen application rate were low. This 

indicates that surface nitrogen application is not only the source of groundwater nitrate in 

this wellfield. Wells in this wellfield can be contaminated from additional sources 

including septic systems, and the natural sources.  

Nitrate concentration was predicted in the range of 6.57 to15.33 mg/L in the 

Ringwood wellfield. The high concentrations were predicted in the wells with high 

nitrogen application rate. Ringwood wellfield is one of the high residential areas with 
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relatively less cultivated land. Nitrogen fertilizers applied in the residential areas were the 

potential major sources of high nitrate concentrations in the wells of this wellfield.  

Nitrate concentrations in the Ames wellfield were predicted in the range of 5.44 to 

13.11 mg/L. The predicted concentration showed that about 35 percent of wells in the 

Ames wellfield were contaminated beyond the limit of drinking water standard. The 

Ames wellfield is in the area of high residential density and intensive agricultural 

activities. Thus the predicted high concentrations showed a strong association with the 

surface nitrogen application rate.  

Cultivated lands are the major land use type in the Drummond wellfield area and 

hence surface nitrogen application rate was also high. However, nitrate concentrations 

were predicted in the range of 4.09 to 9.16 mg/L in this wellfield. The measured nitrate 

concentration was in the range of 3.07 to 12.0 which was relatively low with respect to 

the nitrogen application rate. Figure 6-1 percents the percentage clay map in the 

Cimarron Terrace Aquifer determined from the STATGO soil database. The map shows 

relatively high percentage of clay in the Drummond wellfield area compared to the other 

wellfields. Besides, depth of groundwater is also high in this wellfield. Though the nitrate 

application rates were high, high percentage of clay impeded the nitrate leaching into the 

deep groundwater. 



 

Figure 6-1. Average soil profile clay content derived from STATSGO database  

1
2
9
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 Figure 6-2 presents the box plot of measured and predicted nitrate concentrations 

by Cleospring, Ringwood, Ames, and Drummond wellfield constitutive relationship 

models.  
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Figure 6-2. Statistical summary (box plots) of observed and predicted nitrate 

concentrations in four wellfields 

 

The plot shows that the mean values of observed and predicted nitrate 

concentrations are almost equal in each wellfield. The ranges of predicted nitrate 

concentrations were decreased in all wellfields indicating that models over-predicted the 

low values and under-predicted the high values.  

The Ringwood wellfield constituent relationship model best predicted the nitrate 

concentration corresponding to the measured values. The model predicted 100 percent of 

testing data “Right” with default testing tolerance 0.3 and the model had mean absolute 

percentage error (MAPE) of 16.73 for all data. High concentration values were accurately 
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predicted by this model. Mean absolute percentage error of 7.76 for values greater then 

10 mg/L also verifies the prediction precision. Drummond, Ames, and Cleospring 

constituent relationship models also have predicted satisfactory results. Hundred percent 

testing data were “Right” in Drummond, 80 percent were “Right” in Ames, and 83 

percent were “Right” in Drummond with default testing tolerance of 0.3. Mean absolute 

percentage error for all data was calculated 18.25, 23.12, and 43.56 in Drummond, Ames, 

Cleospring models, respectively. The inaccuracy that occurred in the Cleospring wellfield 

constituent relationship model may have been due to the fact that high nitrate 

concentrations were measured in areas of low nitrogen application rates. The Ames 

wellfield constituent relationship model had also predicted high values satisfactorily, with 

a mean absolute percentage error for high values of 15.61. The mean absolute percentage 

error of four wellfields suggested that the models were best in predicting moderate 

concentrations. All the models overestimated the low values. Lowest mean absolute 

percentage error for low values was 30.58 for Drummond wellfield constituent model 

relationship model. The error for low values for all other three models was more then 85 

percent. The mean absolute percentage error calculated for three ranges of nitrate 

concentrations for all the constituent relationship models suggested the development of 

separate models for different ranges.  

 

6.4 Discussion on results of management model 

Among the four wellfields, percentage of measured and predicted nitrate 

concentrations were highest in the wells of Ames wellfield. Measured and predicted 

concentrations showed that about 39 percent of wells in this wellfield had nitrate 
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concentration above the MCL.  Results of the constituent relationship model showed that 

high nitrate concentrations in this wellfield were due to the high surface nitrogen 

application rates. Thus the Ames wellfield constituent relationship model was used to 

determine the management options to reduce nitrate concentration below the MCL. The 

accessible management option for groundwater nitrate reduction was reduction of surface 

nitrogen application rate in this area. Therefore, the Ames wellfield constituent 

relationship model was simulated each time with subsequent 10% reduction in surface 

nitrogen application rate. The effect in groundwater nitrate concentration due to reduction 

in surface nitrogen application rate is shown in Figure 5-21. The model predicted that a 

40% reduction in surface nitrogen application rate nitrate concentrations in wells which 

had concentration level above 10 mg/L would decrease the projected concentrations to 

below the MCL. The model also predicted that subsequent reductions in surface nitrogen 

application rate would result in increased nitrate concentrations in wells where they were 

below 10mg/L. Management models using the four most significant variables of surface 

nitrogen application rate, developed land, groundwater depth, and percentage clay were 

also developed but these models also predicted similar results as the bivariant model for 

concentrations below 10 mg/L. Thus, the results of these models were deemed not 

realistic. It was determined that significant differences in nitrate concentrations at 

threshold levels of 4.0 mg/L and 10.0 mg/L required condition-specific models. Similar 

observations were noticed by Nolan (2001), and KC (2007). This led to the development 

of separate models for concentrations above 10 mg/L.  

The management model for the threshold level of 10mg/L suggested that surface 

nitrogen application rate should be reduced by 80 percent to decrease the nitrate 
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contamination below the MCL. Wheat, corn, and oats are the major agricultural products 

for the Cimarron Terrace Aquifer area (USDA, 1996).  A study conducted by Edwards, 

Raun, Godsey, and Tyalor (2006) showed that around 70 to 80 kg/ha of nitrogen is 

generally enough to produce ample forage. Sustainable nutrient management approaches 

in nitrogen application method, fertilizer type, and timing of application can be adapted 

to reduce the surface nitrogen application.  

 

6.5 Discussion on results of stochastic model 

In order to determine the probability of occurrence of predicted nitrate 

concentrations by the Ames wellfield constituent relationship model, a set of stochastic 

tests were run. A total of 90 individual tests were needed to address the inherent variation 

in the model prediction. Each model was different from the others by the values of the 

initial random weights assigned by the code. After each model was completed, initial 

random weights of the neural network were reset. The cumulative density function (cdf) 

and probability density function (pdf) were also determined for the results of 90 

simulations. The 50
th

 and 95
th

 percentile nitrate concentrations for each of wells in Ames 

wellfield were determined from the best fit curves and presented in Table 5-25. With the 

50
th

 percentile probability, 26% of wells in Ames wellfield were predicted nitrate to have 

concentrations above the MCL, whereas with the 95
th

 percentile probability, 39% of 

wells were predicted to have nitrate concentrations above the MCL. 
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CHAPTER 7 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

This chapter summarizes the techniques and results of spatial modeling, constituent 

relationship modeling, management modeling, and stochastic conditional modeling with 

respect to the problem statement. Some recommendations have also been suggested in the 

latter section of this chapter. 

 

7.1 Conclusions 

 Identification of nitrate distribution pattern in groundwater is the most important 

feature for successful contaminant source control and groundwater remediation efforts. 

The deterministic neural network models provided an advanced technique for assessing 

the current state of groundwater quality, evaluating nitrate reduction goals below the 

MCL, and defining probability of occurrence of nitrate concentration in wells of the 

Cimarron Terrace Aquifer. The main features of the neural network models were: 

• economical and simple due to less data and parameter requirements, 

• easy to simulate multiple scenarios, and 

• adaptive learning capability which captured subtle relationship in the data 

provided. 
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The critical issue in this study was model construction. Though the adaptive 

learning capability of the neural networks helps in modeling disaggregated data, the 

election of best model based on number of iterations required and optimal parameter 

specification was difficult. The best model was selected based on the percentage “Right” 

score of the testing data, number of epochs required to train the model, and the 

consistency exhibited in the learning process. The consistency in the learning process was 

evaluated by RMS error plot with the gradual dip. Sudden dips in the plot indicated 

inconsistent learning which lead to inaccurate predictions. The results of the best model 

led to the following conclusions: 

1. Results of overall aquifer model was mapped and presented in Figure 5-2. The map 

showed that nitrate concentration in the Cimarron Terrace Aquifer was gradually 

increasing from northwest to south east. The predicted concentrations showed that 

groundwater in about 20 percent of the area of the Cimarron Terrace Aquifer were 

contaminated beyond the limit of EPA’s drinking water criteria. Also, more then 50 

percent of the area of the Cimarron Terrace Aquifer had nitrate concentrations in the 

range of 4 to 10 mg/L. 

2. The central area model was developed in order to more precisely predict the nitrate 

concentration in the central area of the aquifer. Figure 5-4 presents the map of output 

concentrations. The predicted concentrations showed that 115.87 sq. mile area in the 

central part of the Cimarron Terrace Aquifer were contaminated above the MCL. 

3. Four individual spatial models for Cleospring, Ringwood, Ames, and Drummond 

wellfields were developed and the outputs were mapped and shown in Figure 5-6, 5-

8, 5-10, and 5-11. Figure 5-6 shows two nitrate plumes were identified in the 
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Cleospring wellfield. Plume 1 had contaminated 0.61 sq. mile area of this wellfield 

above the MCL. Three wells C13, C18, and C21 of this wellfield were within the high 

concentration area of the plume and they were contaminated above the maximum 

contamination level (MCL). One plume was identified in Ringwood wellfield from 

Figure 5-8. In this wellfield 5.8 sq. mile area was contaminated above 10 mg/L. 

Measured nitrate concentrations in wells: R21, R26, and R28 were above 10 mg/L 

and these wells were identified in the area of concentration range 9.44 to 19.23 mg/L 

of the plume. More then 50 percent area of the Ames wellfield had contamination 

levels beyond the drinking water standard. Two joined plumes were identified in this 

wellfield as shown in Figure 5-9. Seven wells A1, A13, A14, A16, A17, A18, and 

A19 were identified in the vicinity of the plumes and the measured nitrate 

concentrations showed they were contaminated beyond the MCL. One plume was 

identified in Drummond wellfield which had contaminated 1.14 sq. mile area of this 

wellfield above the MCL. One well D23, was identified in the plume’s high 

concentration area. All the wellfield spatial models were able to extrapolate the 

patterns of locations and concentrations from training and testing data in excess of 

those measured.  

4. Four constituent relationship models for each wellfield were determined to determine 

groundwater nitrate concentrations as a function of surface nitrogen application rates. 

Figure 5-13, 5-14, 5-15, and 5-16 presents the observed and predicted nitrate 

concentrations by Cleospring, Ringwood, Ames, and Drummond constituent 

relationship models, respectively. In all wellfields predicted nitrate concentrations 

showed strong association with the surface nitrogen application rate and groundwater 
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nitrate concentrations. The models predicted low concentrations in the Cleospring 

wellfield and high concentrations in Ames wellfield as grassland and residential land 

use is predominant in Cleospring wellfield and Ames wellfield respectively. The 

models were best in predicting moderate values of nitrate concentrations. They had 

satisfactorily predicted high concentrations but low concentrations were 

overestimated in all the cases.  

5. Ames wellfield constituent relationship models were further developed as 

management models. The management option of reduced nitrogen application rates 

were simulated in this effort and the results of the management model for nitrate 

concentration threshold level 10 mg/L revealed that nitrogen application rate must be 

reduced by 80% to decrease nitrate concentration below 10 mg/L it in this wellfield.  

6. In order to address the probability of occurrence of predicted nitrate concentrations by 

Ames wellfield constituent relationship model, a set of stochastic tests were run. A 

total of 90 individual tests were needed to address the inherent variation in this 

prediction. Cumulative density functions (cdf) and probability density functions (pdf) 

were determined for nitrate concentrations predicted in each well of Ames wellfield 

during 90 individual simulations. From the best fit curves of the data, 50
th

 and 95
th

 

percentile concentrations for each well of the Ames wellfield were determined and 

presented in Table 5-15. With the 50
th

 percentile probability 26% of wells in Ames 

wellfield had nitrate concentrations above the MCL where as with the 95
th

 percentile 

probability 39% of wells had nitrate concentrations above the MCL.  
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7.2 Recommendations 

The following recommendations are made from this research: 

1. City of Enid sampling wells were closely cluster in central part of aquifer. In order to 

represent the entire aquifer, data from two agencies were used. Therefore, consistent 

sampling throughout the aquifer is recommended.  

2.   The neural kriging (NK) maps of nitrate concentrations of this research provide a 

general picture of nitrate concentrations in the entire aquifer and a more accurate one 

at the individual wellfield level. The maps can be utilized in delineating areas of high 

priority for further action and also in identifying potential vulnerable locations for 

new well installation.  

3.   The all data management model showed different results for nitrate concentrations 

above 4.0 mg/L and 10.0 mg/L. Therefore it is recommended to develope separate 

models for nitrate threshold level 4.0 mg/L, and 10.0 mg/L.  

4.  Ames wellfield is in the developed area with intensive agricultural activities. The 

management model suggested reducing 80 percent surface nitrogen application rate to 

decrease nitrate concentration below the MCL in this wellfield. Thus, research to 

optimize agricultural and residential nitrogen application in the Cimarron Terrace 

Aquifer area is recommended.   

5.  The results from this study showed that ANN is a promising tool for analyzing the 

complex physical systems with relatively simple approach. ANN system can be 

updated by including more subsurface-specific parameters. Therefore, detail 

investigations of subsurface-specific parameters are also recommended.  

 



 

 139 

 

 

REFERENCES 

 

 

Adams, P. G., and Bergman, L. D., 1996. Geohydrology of alluvium and terrace deposits 

 of the Cimarroan River from Freedom to Guthrie, Oklahoma: USGS Water 

 Resources Investigations Reports 95-4066. 

Aggarwal, R., and Song, Y., 1997. Artificial neural networks in power systems. Part 1 

 general introduction to neural computing: Power Engineering, v. 11, no. 3, p. 129-

 134. 

Almasri, N. M., and Kaluarachchi, J. J., 2005. Modular neural networks to predict the 

 nitrate distribution in ground water using the on-ground nitrogen loading and 

 recharge data: Environmental Modeling and Software, v. 20, no. 7, p. 851-871. 

Aral, M. M., Guan, J., and Maslia, L. M., 2001. Identification of contaminant source 

 location and release history in aquifers: Journal of Hydrologic Engineering, v. 6, 

 no. 3, p. 225-234. 

Avery, A. A., 1999. Infantile methemoglobinemia: reexaming the role of drinking water 

 nitrates: Environmental health perpectives, v. 107, no. 7, p. 583-586.      

Basheer, I. A., Reddi, L. N., and Najjar, Y. M., 1996. Site characterization by neuronets: 

 an application to the landfill sitting problem: Ground Water, v. 34, no. 4, p. 610-

 617. 



 

 140 

Becker, C. J., 1994. Distribution and variability of nitrogen and phosphorus in the 

 alluvial, high plains, rush springs, and Blaine aquifers in western Oklahoma: U.S. 

 Geological Survey Open-File Report 97-41. 

Bergsrud, F., Seelig, B., and Drickson, R., 1992. Treatment systems for household water 

  supplies chlorination: AE-1046 

  <http://www.ag.ndsu.edu/pubs/h2oqual/watsys/ae1046w.htm>. 

Bingham, R. H., and Bergman, D. L., 1980. Reconnaissance of the water resources of the 

 Enid quadrangle, north central Oklahoma: Oklahoma Geological Survey 

 Hydrologic Atlas 7, scale 1: 250,000, 4 sheets. 

Bingham, R. H., and Moore, R. L., 1975. Reconnaissance of the water resources of the 

 Oklahoma city quadrangle, central Oklahoma: Oklahoma Geological Survey 

 Hydrologic Atlas 4, scale 1: 250, 000, 4 sheets. 

Burkart, M. R. and J. D. Stoner, 2002. Nitrate in Aquifer beneath Agricultural Systems 

Water Science and Technology, v. 45, no.9, p.19-29. 

Carr, J. E., and Bergman, D. L., 1976, Reconnaissance of the water resources of the 

 Clinton quadrangle, west-central Oklahoma: Oklahoma Geological Survey  

 Hydrologic Atlas 5, scale 1: 250, 000, 4 sheets.  

Cheshire Engineering Corporation, 1994. Neuralyst User’s Guide. Pasadena, California. 

Chim, W. K., 1996. A neural-network-based local-field-effect correction scheme 

for quantitative voltage contrast measurements in the scanning electron 

microscope: Measurement Science and Technology, v. 7, no. 6., p. 882-887. 

Edwards J., Raun, B., Godsey, C., and Taylor, G. C., 2006. Fall N requirement for wheat: 

OSU Wheat Production Newsletter, v. 3, no. 4, p. 2-3. 



 

 141 

Faris, B., Nuttall, E., Spalding, R., Erhman, D., Roberts, K., Williams, A., and Hill, S.,  

 2000: Emerging technologies for enhanced in situ biodenitrification (EISBD) of  

 nitrate-contaminated ground water: Interstate Technology and Regulatory  

 Cooperation Work Group Team Report,  

 <http://www.itrcweb.org/Documents/EISBD-1.pdf>. 

Hagen, M. T., Demuth, H. B., and Beale, M., 1996. Neural network design: PWS 

 Publishing Company, Boston, MA. 

KC, M., 2007. GIS-based statistical, geostatistical, and stochastic analyses of nitrate 

 contamination in the Cimarron Terrace Aquifer in Oklahoma, M.S. Thesis, 

 Oklahoma State University, Stillwater, Oklahoma. 

Koike, K., Matsuda, S., Suzuki, T., and Ohmi, M., 2002. Neural Network-Based 

 Estimation of Principal Metal Contents in the Hokuroku District, Northern Japan, 

 for Exploring Kuroko-Type Deposits: Natural Resources Research, v. 11, no. 2, p. 

 135-156. 

Kumar, A., 2000. Neural network solution for assessment of eutrophication in lake 

 tenkiller: M. S. Thesis, Oklahoma State University, Stillwater, Oklahoma.  

Kumar, A., DebRoy, T. 2006. Neural network model of heat and fluid flow in gas metal 

 arc fillet welding based on genetic algorithm and conjugate gradient optimization: 

 Science and Technology of Welding and Joining, v. 11, no. 1, p. 106-119.Li, Z.,  

Li, Z., Rizzob, D., and Haydenc, N., 2006. Utilizing artificial neural networks to 

 backtrack source location: University of Vermont 

 <http://www.iemss.org/summit/papers/s2/175_Li_2.pdf> 



 

 142 

Ling, G., and El-Kadi, A., 1998. A lumped parameter model for N transformation in the 

 unsaturated zone: Water Resources Research, v. 34, no.2, p. 203-212. 

Liu, L., Zechman, M. E., Brill, D. E., Maninthakumar, G., Ranjithan, S., Uber, J., 2006. 

 Adaptive contamination source identification in water distribution systems using 

 an evolutionary algorithm-based dynamic optimization procedure: 8
th

 Annual 

 Water Distribution Systems Analysis Symposium, Cincinnatti, OH.  

Lui, C., and Ball, W. P., 1999. Application of inverse methods to contaminant source 

 identification from aquitard diffusion profiles at dover AFB, DE: Water 

 Resources Research, v. 35, no. 7, p. 1975. 

Mahinthakumar, G., and Sayeed, M., 2005. Hybrid genetic algorithm-local search 

 methods for solving groundwater source identification inverse problems: Water 

 Resources Publications, v. 131, no. 1, pp. 45–57.  

Makowski, A., 2006. Modeling nitrate transportation in Spanish Springs Valley, Washoe 

 County, Neveda, M.S. Thesis, University of Nevada, Reno, Nevada.  

Masoner, J. R., and Mashburn, S. L., 2004. Water quality and possible sources of nitrate 

in the Cimarron Terrace Aquifer, Oklahoma, 2003: U.S. Geological Survey 

Scientific Investigation Report 04-5221. 

McGrail, B.P., 2001. Inverse reactive transport simulator (INVERTS): An inverse model 

 for contaminant transport with nonlinear adsorption and source terms. 

 Environmental Modelling & Software, v. 16, no. 8, p. 711-723. 

McTernan, W. F. and B. V. Bonnett, 2002. Using Artificial Neural Network models to 

determine contaminant sources: Oklahoma State University, Report EA TIET 02-

003. 



 

 143 

Mendil, B., and Benmahammed, K., 1999. Simple activation functions for neural and 

 fuzzy neural networks: Circuits and Systems, v. 5, p. 347-350.  

Morshed, J., Kaluarachchi, J. J., 1998. Parameter estimation using artificial neural 

 network and genetic algorithm for free-product migration and recovery: Water  

 Resources Research v. 34 no. 5, p. 1101-1113. 

Morton, R.B., 1992. Simulation of Ground-Water Flow in the Antlers Aquifer in 

Southeastern Oklahoma and Northeastern Texas: U.S. Geological Survey Water 

Resources Investigations Report 88-4208, 22 p. 

Mueller, D. K., Ruddy, B. C., and Battaglin, W. A., 1993. Relation of nitrate 

 concentrations in surface water to landuse in the upper midwestern United  States, 

 1989-90: Water Resources Investigations Report 94-4015. 

Murphy, P. A., 1991. Chemical process for denitrification of nitrates: PatentStrom LLC 

<http://www.patentstorm.us/patents/5616252-description.html> 

Nolan, B. T., 2001. Relating nitrogen sources and aquifer susceptibility to nitrate in 

 shallow ground waters of the United States: Ground Water, v. 39, no.2, p.290-

 299. 

Nolan, B. T., B. C. Ruddy, K. J. Hitt, and D. R. Helsel, 1997. Risk of nitrate in ground 

waters of the United States- a national perspective: Environmental Science and 

Technology, v. 31, no. 8, p. 2229-2236. 

Palisades Corporation, 2002. @Risk. http://www.palisade.com. Newfield, New York. 

Postma, D., Boesen, C., Kristiansen, H. and Larsen, F., 1991. Nitrate reduction in an 

 unconfined sandy aquifer: Water chemistry, reduction processes, and geochemical 

 modeling: Water Resources Research v. 27, no.8, p. 2027–2045. 



 

 144 

Reely, B. T., 1992. A linked optimization-simulation aquifer management model: Ph.D. 

Desertation, Oklahoma State University, Stillwater, Oklahoma. 

Rizzo, M. D., and Dougherty, E. D., 1994. Characterization of aquifer properties using 

 artificial neural networks: Neural kriging: Water Resources Research, v. 30, no. 2,  

 p. 483-498. 

Rogers, L. L., Dowla, F. U., and Johnson, V. M., 1995. Optimal field scale groundwater 

 remediation using neural networks and the genetic algorithm: Environmental 

 Science and Technology, v. 29, no. 5, p. 1145-1155. 

Ryker, J. S. and Jones, L. J., 1995. Nitrate concentrations in ground water of the central 

 Columbia Plateau:  USGS Open-File Report 95-445. 

Shrestha, R. K., and Ladha, J. K., 2002. Nitrate pollution in groundwater and strategies to 

 reduce pollution: Water Science Technology v. 45, no. 9, p. 29-35. 

Singh, M. R., and Datta, B., 2006. Artificial neural network modeling for identification of 

 unknown pollution sources in groundwater with partially missing concentration 

 observation data: Water Resources Management, v. 21., no. 3, p. 557-572. 

Singh, R. M., Datta, B., and Jain, A., 2004. Identification of unknown groundwater 

 pollution sources using artificial neural networks: Water Resources Planning and 

 Management, v. 130, no. 6, p. 506-514.  

Skaggs, T. H., and Kabala, Z. J., 1994. Recovering the release history of a groundwater 

 contaminant: Water Resources Research, v. 30, no. 1, p. 71-80. 

Solley, W.B., Pierce, R.R. and Perlman, H.A., 1998. Estimated use of water in the United 

 States in 1995: United States Geological Survey Circular 1200, p. 1–71. 

Spichak, V. V., 2006. Estimating temperature distributions in geothermal areas using a n

 euronet approach: Geothermics, v. 35, p. 181-197. 



 

 145 

Tesoriero, A.J., and Voss, F.D., 1997. Predicting the probability of elevated nitrate 

 concentrations in the Puget Sound Basin: Implications for aquifer  susceptibility 

 and vulnerability. Ground Water v. 35, no. 6, p.1029-1039. 

U.S. Census Bureau, 1993. 1990 Census of Population. Characteristics of the Population, 

v. 1. Washington, DC:U.S. Government Printing Office.  

U.S. Department of Agriculture, 1996. Extension toxicology network, pesticide 

information profiles: In Masoner, J. R. and S. L.Mashburn, 2004, Water quality 

and possible sources of nitrate in the Cimarron Terrace Aquifer, Oklahoma: 

USGS, Scientific Investigative Reports 2004-5221. 

U.S. EPA, 1996. Drinking water regulations and health advisories, Washington, D.C., 

U.S. EPA, Office of water: US Government printing office. 

United States: Environmental Science and technology, v. 34, no.7, p.1156-1165. 

William, H., 2007. Remediation of drinking water for rural populations: USDA,  

 <http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115= 

 191344>. 

Weyer, P., 2001. Nitrate in drinking water and human health. Center for Health Effects of 

 Environmental Contamination (2001) University of Iowa Center for Health 

 Effects of Environmental Contamination, 

 <http://www.cheec.uiowa.edu/health.html> 

Zurada, J.M., 1997. Introduction to Artificial Neural Systems. Jaico Publishing House, 

 Delhi, p. 2226–2229.



 

 146 

APPENDIX A 

NITRATE DATA 

 
 

Table A-1. Annual average nitrate concentrations in wells of (mg/L) in 

Cleospring wellfield 

Well_ID 1997 1998 1999 2000 2001 2002 2003 2004 2005 

CS1 4.52 4.47 3.80 2.74 3.92 3.24 2.95 2.00 1.80 

CS2 0.90 1.00  0.63 1.36 1.40 1.25 1.00 1.10 

CS3 4.85 6.38 4.30 3.30 5.24 4.40 3.90 3.92 4.08 

CS4 3.08 3.63 4.40 5.16 5.40 4.64 4.70 4.23 3.56 

CS5  8.30  7.87 7.90 7.90 7.35 7.07 6.92 

CS6 7.70 9.53 8.12 7.34 7.88 7.65 6.75 6.43 6.00 

CS8 4.88 5.27 4.90 4.60 4.76 4.80 4.60 5.28 4.36 

CS9  8.12 8.60 6.84 7.30 7.68 7.45 7.40  

CS10 6.10 8.02 8.40 7.66 7.72 8.08 8.70 9.13 9.80 

CS11 4.06 4.82 4.45 4.28 4.68 4.92 5.00 4.93 4.80 

CS12  4.74 5.60 4.34 4.56 4.88 4.75 4.53 4.36 

CS13 4.02 4.57 4.64 4.41 4.68 4.68 4.70 4.30 4.32 

CS14 3.80 4.47 4.83 4.70 4.88 5.00 4.80 4.73 4.76 

CS15 4.78 6.86 7.42 7.26 7.86 7.88 8.35 8.33 7.32 

CS16 4.03 5.40 5.90 5.43 5.70 5.75 6.05 5.57 5.28 

CS17 4.70 6.80 6.20 5.87 6.84 6.64 8.40 8.73 9.56 

CS18 11.26 19.23 18.50 16.94 16.44 15.96 16.00 15.37 14.88 

CS19 2.63 2.80 3.20 2.74 3.00 3.36 3.20 3.27 3.40 

CS20 11.37 15.63 16.90 11.93 13.50 14.48 13.95 13.40 13.04 

CS21 12.20 15.52 15.03 14.66 14.36 14.20 13.95 13.67 12.88 

CS22 2.70 3.06 3.02 3.96 3.27 4.05 4.05 4.07 3.96 

CS23 2.65 3.90 3.66 3.13 3.10 3.70 3.90 4.00 3.40 

CS24  2.70  0.87 0.88 0.40   4.00 

CS25 2.24 3.42 3.08 2.46 3.04 2.55 3.00 2.60 2.55 

CS26 1.00 0.65  1.04 0.70 1.80 1.65 1.37 1.10 

CS27 1.45 1.38 1.42 1.10 1.52 1.96 1.80 1.47 1.45 

CS28  0.07 0.37 0.44 0.40  1.00 0.70  

CS29 0.38 0.12 0.34 0.48 0.30 0.80 0.90 0.47 0.93 

CS30 3.28 3.60 4.08 3.99 4.24 4.76 5.10 4.37 4.30 

CS31 3.35 4.30 4.52 4.03 4.36 4.80 4.80 4.53 4.45 
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Table A-2. Annual average nitrate concentrations (mg/L) in wells of Ringwood 

wellfield 

Well_ID 1997 1998 1999 2000 2001 2002 2003 2004 2005 

R1 5.64 8.22 8.52 7.80 7.87 7.52 7.40 7.53 6.80 

R2 4.28 7.34 7.73 7.40 7.63 7.28 7.25 7.60 7.07 

R3  7.40 7.60 7.73 9.10 9.00 9.15 9.03 9.20 

R4 4.52  8.26 7.77 8.13 8.10 8.35 8.60 8.37 

R5 5.70 7.87 7.85 7.23 7.27 7.28 7.30 7.27 6.83 

R6 4.46 6.87 6.93 6.80 7.00 6.76 6.80 7.00  

R7  6.10 8.80 7.10 7.52 7.52 7.30 7.65 7.27 

R8 5.56 9.20 9.88 8.71 9.87 9.30 8.95 9.13 8.93 

R9 5.22 8.28 9.55 8.69 9.27 9.37 9.60 10.20 9.32 

R10 3.38 6.56 6.73 6.56 6.93 7.32 7.00 7.35 6.73 

R11 3.70 6.30 6.60 6.76 6.80 7.00 6.45 6.55 6.53 

R12 3.54 5.70 6.02 5.74 5.90 6.17 6.45 6.65 6.53 

R13 3.95 7.00 7.66 7.30 8.07 7.77 7.70 7.80 7.87 

R14 4.66 7.33 10.48 9.37 12.17 11.63 12.10 13.60 13.63 

R15 4.10 4.84 5.58 4.99 5.43 5.30 5.25 5.00  

R16 3.32 5.24 6.05 6.57 7.40 7.50 8.40   

R17  3.60 3.80 3.33 4.57 4.50 4.70 4.65 4.93 

R18 3.25 4.48 4.20 4.18 4.60 4.87 5.10 5.47 5.47 

R19 3.32 4.34 4.17 4.10 4.80 5.47 5.10 5.40 5.10 

R20 5.04 8.48 9.62 8.85 10.83 10.47 10.80 12.00 11.70 

R21  9.20 12.00 10.25 12.87 13.50 13.25 13.65 13.33 

R22 3.35 3.87 3.60 3.57 3.85 4.20 4.20   

R24 3.30 3.25 2.80 2.50 3.53 3.27 3.45 3.55 3.80 

R25 2.50 3.03 2.80 2.65 2.75 3.47 3.70 3.40 3.33 

R26 4.67 9.60 10.60 8.98 10.27 10.84 11.20 11.90 12.17 

R27 2.83 4.70 4.97 5.31 5.40 6.32 7.05 8.00 7.80 

R28 10.00 15.82 18.80 17.03 16.00 15.60 15.60 16.15 15.73 
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Table A-3. Annual average nitrate concentrations (mg/L) in wells of  Ames 

wellfield 

Well_ID 1997 1998 1999 2000 2001 2002 2003 2004 2005 

A1 11.35 12.93 13.00 10.40 10.00 11.50 11.73 11.80 11.67 

A2 7.03 10.33 10.73 10.76 9.64 9.89 9.30 9.36 9.24 

A3 3.67 4.07 4.10 3.80  3.80 3.40   

A4 5.40 7.03 7.00  7.60 6.60 6.80  8.30 

A5 3.35 3.55 3.65  8.60 5.80 5.20   

A6 1.50 1.73 1.72 1.64 1.80 2.40 2.47 2.50 2.00 

A7 3.23 2.90 2.86 5.10 2.80 5.60 4.00   

A8  3.45 2.67 2.65 3.80 3.00 3.60  3.50 

A9  1.00 1.00 1.00 1.20 1.80 1.80   

A11 8.65 11.80 12.20   14.80 13.60  11.20 

A12 7.08 10.08  6.80      

A13 12.60 14.87    14.00    

A14 10.90 14.27 14.20   12.90 13.00  11.00 

A15  4.30 4.37  4.40     

A16 12.23 17.33 16.30   13.60 12.40  11.20 

A17 12.29 16.80  11.68 14.50 16.00 15.60   

A18 18.30 20.33 18.60   15.30 14.80  12.80 

A19  8.45 13.00   12.80 14.00  11.70 

A20  6.67 6.70 6.23 6.60 6.60 6.80 6.80 6.10 

A21 8.85 11.10 10.50   8.70 10.70   

A22 5.80 7.90 8.00 6.25 7.80 6.40 7.60   

A23  10.25  9.10  9.30 9.35 9.60  

A24 7.20 8.90 9.37 8.40 10.00 8.70 8.60  9.20 

A25 11.25 12.00 15.00 12.05 14.00 14.07 13.40 13.40  

A27       7.80 8.60 7.80 

A29 8.33 10.25 9.80 9.08 9.90 9.40 9.40 9.80 9.20 

A30        7.60 7.60 

A32        7.40 7.90 

A33        5.90 5.93 
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Table A-4. Annual average nitrate concentrations (mg/L) in wells of Drummond 

wellfield 

Well_ID 1997 1998 1999 2000 2001 2002 2003 2004 2005 

D1  8.20    7.00 3.60  4.00 

D2   7.30 8.00  9.20 8.20   

D3 8.04 9.45 9.48 8.10 9.00 9.13 8.85 9.00  

D5 6.06 9.38 9.66 8.70 9.00 9.33 9.80 10.12 10.00 

D6 5.40 6.86 6.95 6.39 6.88 7.07 6.80 6.96 7.25 

D7 8.87 13.23 14.40 12.64 13.07 11.66 12.00 11.84 11.60 

D8 10.43 12.90 12.40 11.40 10.70 10.80 10.45 10.53  

D9 1.55 1.60 1.53 1.51 2.87 3.30 3.07 2.73 2.85 

D10 3.72 5.26 5.34 4.70 5.50 5.80 4.87 4.92 4.73 

D12 4.83 5.54 5.51 5.33 5.70 5.51 5.43 5.60 5.80 

D18 6.52 9.08 9.36 8.46 9.63 8.50 8.93 9.05 8.80 

D19 3.67 4.52 4.84 4.94 5.40 6.40 6.00   

D20 6.94 8.50 8.43 7.69 8.60 8.44 8.53 8.80 8.70 

D21 5.73 7.09 7.09 6.81 7.28 7.65 7.60 7.40 7.40 

D23 8.50 12.45 11.73 10.67 10.75 10.60 10.73 11.28 11.05 

D25 6.75 8.70 8.23 6.66 8.00 7.53 7.68 7.60 7.24 

D26  3.60 6.95 3.10      

D27 5.50 8.84 8.65 8.07  7.07 6.90 6.76 7.10 

D28  8.60 7.80 7.80  10.00 9.60   

D29 6.84 9.43 9.41 7.97 9.23 9.11 9.30 9.48 9.40 

D31 5.40 3.93 6.20 6.10      

D32 3.40 4.40 4.38 4.16 4.73     

D33 3.99 5.58 5.98 5.90 7.30 5.97 6.00 5.56 5.85 
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Table A-5. Nitrate concentrations (mg/L) in USGS 

study wells 

Well ID 2003 Well ID 2003 

W1 9.37 W31 0.13 

W2 12.3 W32 6.03 

W3 2.19 W33 3.63 

W4 14.8 W34 15.6 

W5 16.8 W35 1.24 

W6 6.14 W36 0.37 

W7 10.1 W37 3.68 

W8 6.93 W38 20.4 

W9 0.06 W39 2.2 

W10 5.83 W40 8.48 

W11 15.3 W41 2.53 

W12 9.01 W42 11.9 

W13 1.11 W43 5.99 

W14 4.21 W44 3.3 

W15 15.4 W45 17.9 

W16 8.36   

W17 21.3   

W18 20.5   

W19 2.27   

W20 14.4   

W21 4.11   

W22 16.4   

W23 31.8   

W24 8.03   

W25 11.2   

W26 4.38   

W27 8.35   

W28 2.48   

W29 0.95   

W30 14.9   
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APPENDIX B 

OUTPUTES OF FOUR INDIVIDUAL WELLFIELDS CONSTITUENT 

RELATIONSHIP MODELS 

 

 

Table B-1.  Outputs of Cleospring wellfield constituent relationship model 
  

Well 

ID 

N Applications 

(kg/ sq. mile) NO3 (mg/L) Output MF 

CS29 5.987 0.90 2.84 TEST 

CS28 3.014 1.00 2.41 TRAIN 

CS2 5.592 1.25 2.67 TRAIN 

CS26 3.482 1.65 2.37 TRAIN 

CS27 3.466 1.80 2.37 TRAIN 

CS1 6.179 2.95 2.94 TRAIN 

CS25 3.877 3.00 2.36 TRAIN 

CS19 17.099 3.20 8.86 TEST 

CS3 23.952 3.90 7.51 TRAIN 

CS23 14.578 3.90 9.31 TRAIN 

CS22 2.871 4.05 2.43 TRAIN 

CS8 38.636 4.60 6.76 TRAIN 

CS13 31.334 4.70 6.94 TRAIN 

CS4 14.713 4.70 9.30 TEST 

CS12 21.270 4.75 7.93 TRAIN 

CS14 39.480 4.80 6.75 TRAIN 

CS11 12.863 5.00 9.20 TEST 

CS30 5.075 5.10 2.51 TRAIN 

CS16 22.739 6.05 7.68 TRAIN 

CS6 32.113 6.75 6.91 TEST 

CS5 27.513 7.35 7.15 TRAIN 

CS9 26.156 7.45 7.27 TRAIN 

CS15 21.258 8.35 7.93 TRAIN 

CS17 29.845 8.40 7.01 TRAIN 

CS10 27.049 8.70 7.19 TEST 

CS20 18.154 13.95 8.61 TRAIN 

CS21 14.623 13.95 9.30 TRAIN 

CS18 34.815 16.00 6.83 TRAIN 
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Table B-2. Outputs of Ringwood wellfield constituent relationship model 
  

Well_ID 

N Applications 

(kg/ sq. mile) NO3 (mg/L) Output MF 

R24 9.83 3.45 6.57 TEST 

R25 4.17 3.70 6.71 TRAIN 

R22 11.38 4.20 6.97 TRAIN 

R17 11.35 4.70 6.96 TRAIN 

R18 9.91 5.10 6.58 TRAIN 

R19 8.98 5.10 6.44 TRAIN 

R15 8.82 5.25 6.43 TRAIN 

R11 8.75 6.45 6.42 TEST 

R12 8.82 6.45 6.43 TEST 

R6 6.20 6.80 6.44 TEST 

R10 8.28 7.00 6.39 TRAIN 

R27 7.49 7.05 6.37 TRAIN 

R2 3.68 7.25 6.81 TRAIN 

R5 3.33 7.30 6.88 TRAIN 

R7 8.73 7.30 6.42 TRAIN 

R1 3.57 7.40 6.83 TRAIN 

R13 9.37 7.70 6.49 TRAIN 

R4 16.09 8.35 9.31 TRAIN 

R16 9.39 8.40 6.49 TRAIN 

R8 8.01 8.95 6.38 TEST 

R3 9.82 9.15 6.57 TRAIN 

R9 24.78 9.60 11.37 TRAIN 

R20 20.77 10.80 10.90 TRAIN 

R26 15.58 11.20 9.05 TRAIN 

R14 20.77 12.10 10.90 TRAIN 

R21 48.62 13.25 14.42 TEST 

R28 56.43 15.60 15.33 TRAIN 
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Table B-3. Outputs of Ames wellfield constituent relationship model 
  

Well_ID 

N Applications 

(kg/ sq. mile) NO3 (mg/L) Output MF 

A7 52.75 4.00 5.44 TRAIN 

A3 47.99 3.40 5.72 TRAIN 

A4 45.10 6.80 5.97 TEST 

A21 40.56 10.70 6.37 TRAIN 

A5 38.31 5.20 6.57 TRAIN 

A22 32.69 7.60 7.03 TRAIN 

A25 32.48 13.40 7.05 TRAIN 

A6 62.20 2.47 7.05 TEST 

A20 31.17 6.80 7.15 TRAIN 

A23 30.72 9.35 7.19 TRAIN 

A9 27.25 1.80 7.44 TRAIN 

A8 27.08 3.60 7.45 TRAIN 

A24 20.36 8.60 7.89 TEST 

A27 13.64 7.80 8.27 TRAIN 

A29 8.59 9.40 8.54 TRAIN 

A18 70.36 14.80 12.04 TEST 

A1 70.54 11.73 12.10 TRAIN 

A16 104.10 12.40 12.66 TRAIN 

A11 72.99 13.60 12.73 TRAIN 

A17 90.64 15.60 12.85 TRAIN 

A2 84.32 9.30 13.01 TRAIN 

A14 84.05 13.00 13.02 TRAIN 

A19 78.41 14.00 13.11 TEST 
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Table B-4. Outputs of Drummond wellfield constituent relationship model 
  

Well_ID 

N Applications 

(kg/ sq. mile) NO3 (mg/L) Output MF 
D19 59.48 6.00 4.09 TRAIN 

D9 54.30 3.07 4.24 TRAIN 

D1 70.10 3.60 4.47 TRAIN 

D10 75.09 4.87 6.21 TEST 

D29 125.69 9.30 7.62 TEST 

D28 123.27 9.60 7.65 TRAIN 

D12 118.35 5.43 7.73 TRAIN 

D21 117.35 7.60 7.74 TRAIN 

D27 117.19 6.90 7.75 TRAIN 

D5 78.27 9.80 7.79 TEST 

D23 107.21 10.73 8.04 TRAIN 

D33 105.44 6.00 8.12 TRAIN 

D25 103.90 7.68 8.20 TRAIN 

D18 79.28 8.93 8.20 TRAIN 

D6 102.59 6.80 8.26 TRAIN 

D7 101.76 12.00 8.31 TRAIN 

D2 94.90 8.20 8.77 TRAIN 

D3 83.51 8.85 9.13 TRAIN 

D20 83.66 8.53 9.14 TRAIN 

D8 89.00 10.45 9.16 TEST 
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APPENDIX D 

RUNNING MEAN AND STANDARD DEVATION PLOT OF NITRATE 

CONCENTRATIONS PREDICTED BY NEUARL CONDITIONAL SIMULATIONS 
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Figure D-1. Well A2: (a) Mean versus number of simulations; (b) standard deviation 

versus number of simulations 
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Figure D-2. Well A3: (a) Mean versus number of simulations; (b) standard deviation 

versus number of simulations 
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Figure D-3. Well A4: (a) Mean versus number of simulations; (b) standard deviation 

versus number of simulations 
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Figure D-4. Well A5: (a) Mean versus number of simulations; (b) standard deviation 

versus number of simulations 
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Figure D-5. Well A6: (a) Mean versus number of simulations; (b) standard deviation 

versus number of simulations 
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Figure D-6. Well A7: (a) Mean versus number of simulations; (b) standard deviation 

versus number of simulations 
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Figure D-7. Well A8: (a) Mean versus number of simulations; (b) standard deviation 

versus number of simulations 
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Figure D-8. Well A9: (a) Mean versus number of simulations; (b) standard deviation 

versus number of simulations 
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Figure D-9. Well A11: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-10. Well A14: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-11. Well A16: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-12. Well A17: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-13. Well 18: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-14. Well A19: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-15. Well A20: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-16. Well A21: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-17. Well A22: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-18. Well A23: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-19. Well A24: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-20. Well A25: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-21. Well A27: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations 
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Figure D-22. Well A29: (a) Mean versus number of simulations; (b) standard 

deviation versus number of simulations
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APPENDIX E 

BEST FIT CURVES FOR THE RESULTS OF NEURAL CONDITIONAL 

SIMULATIONS 
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BetaGeneral(0.68438, 0.48205, 12.65807, 13.14310)
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(b) 

Figure D-1. Well A2: Best fit curves (a) probability density; (b) cumulative density 
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BetaGeneral(2.2353, 0.51475, 3.3158, 6.0733)
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(b) 

Figure D-2. Well A3: Best fit curves (a) probability density; (b) cumulative density 
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BetaGeneral(54.676, 27.288, 3.8830, 7.1248)
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(b) 

Figure D-3. Well A4: Best fit curves (a) probability density; (b) cumulative density 
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Pearson5(0.67969, 0.042099) Shift=+6.484762
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(a) 

Pearson5(0.67969, 0.042099) Shift=+6.484762
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(b) 

Figure D-4. Well A5: Best fit curves (a) probability density; (b) cumulative density 
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BetaGeneral(41.466, 0.64337, -12.249, 7.6836)
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(b) 

Figure D-5.  Well A6: Best fit curves (a) probability density; (b) cumulative density 
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BetaGeneral(0.68241, 0.38490, 3.1534, 6.0062)
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(b) 

Figure D-6. Well A7: Best fit curves (a) probability density; (b) cumulative density 
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Logistic(7.42394, 0.15618)
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(b) 

Figure D-7. Well A8: Best fit curves (a) probability density; (b) cumulative density 
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(b) 

Figure D-8. Well A9: Best fit curves (a) probability density; (b) cumulative density 
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Triang(12.37588, 12.69744, 12.77424)
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(b) 

Figure D-10. Well A11: Best fit curves (a) probability density; (b) cumulative 

density 
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BetaGeneral(0.70275, 0.48612, 12.65065, 13.14958)
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(b) 

Figure D-11.  Well A14: Best fit curves (a) probability density; (b) cumulative 

density 
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Pareto(34.714, 12.372)
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(b) 

Figure D-12. Well A16: Best fit curves (a) probability density; (b) cumulative 

density 
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Triang(12.71136, 12.94019, 12.95723)
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(b) 

Figure D-13. Well A17: Best fit curves (a) probability density; (b) cumulative 

density 
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BetaGeneral(0.88937, 0.54045, 12.55105, 13.18942)
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(b) 

Figure D-14. Well A19: Best fit curves (a) probability density; (b) cumulative 

density 
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BetaGeneral(0.44718, 0.83465, 6.95445, 7.83510)
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(b) 

Figure D-15. Well A20: Best fit curves (a) probability density; (b) cumulative 

density 
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Normal(6.68982, 0.49364)
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(b) 

Figure D-16. Well A21: Best fit curves (a) probability density; (b) cumulative 

density 
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BetaGeneral(0.49992, 2.7518, 6.8535, 9.1598)
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BetaGeneral(0.49992, 2.7518, 6.8535, 9.1598)
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(b) 

Figure D-17. Well A22: Best fit curves (a) probability density; (b) cumulative 

density 
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BetaGeneral(0.44735, 0.72909, 6.98456, 7.74801)
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BetaGeneral(0.44735, 0.72909, 6.98456, 7.74801)

 

0.0

0.2

0.4

0.6

0.8

1.0

6
.9

7
.0

7
.1

7
.2

7
.3

7
.4

7
.5

7
.6

7
.7

7
.8

90.0%

6.9860 7.7169
 

(b) 

Figure D-18. Well A23: Best fit curves (a) probability density; (b) cumulative 

density 
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Normal(7.65014, 0.57494)
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(b) 

Figure D-19. Well A24: Best fit curves (a) probability density; (b) cumulative 

density 
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BetaGeneral(0.50085, 2.4990, 6.8674, 8.9467)
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(b) 

Figure D-20. Well A25: Best fit curves (a) probability density; (b) cumulative 

density 
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BetaGeneral(4.9974, 1.1297, 5.8473, 8.5444)
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(b) 

Figure D-21. Well A27: Best fit curves (a) probability density; (b) cumulative 

density 
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Logistic(8.43424, 0.32889)
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(a) 
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(b) 

Figure D-22. Well A29: Best fit curves (a) probability density; (b) cumulative 

density 
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