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CHAPTER 1 
 

INTRODUCTION 

 

1.1 BACKGROUND 

 

 Currently in the U.S. the precast-concrete market dominates in the short to 

medium span range bridges (span length < 150 feet).  The material and labor savings 

associated with the use of precast-concrete is the biggest incentive for practicing 

engineers in choosing this material.  Due to the rising material cost of steel and greater 

erection cost, fewer short and medium span steel bridges are being constructed 

(Azizinamini, Lampe, Yakel 2003).   

 In 1995 the American Iron and Steel Institute developed design aids for short span 

bridges with the objective of improving simplicity, cost effectiveness, and fatigue 

resistance.  The design aids included a set of plans for pre-designed bridges with varying 

types of girders and computer software that allows the user to customize the design for 

different projects (Rubiez 1996).  The design aids employed many of the cost effective 

refinements in steel bridge design. 

 Some of the refinements in steel bridge design include the use of unpainted 

weathering steel, which has long-term maintenance cost savings.  Using simplified 

diaphragm and cross frame details also helps to lower fabrication costs.  Wider girder 
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spacing can be utilized through the use of stay-in-place metal deck forms ultimately 

decreasing the total steel weight.  Another advance is the use of jointless and integral 

abutments providing a jointless bridge.  Jointless bridges eliminate leaky joints and offer 

long-term maintenance cost savings.  According to Weaver (1996) the development of 

the Load Resistance Factor Design (LRFD) yields a more cost effective design compared 

with the previous design method, Allowable Stress Design (ASD) due to material 

savings.  Elastomeric bearing pads are being used at supports because of the low initial 

cost and low maintenance costs (Weaver 1996, Mistry 1994, Rubiez 1996).  A summary 

of these refinements can be found in Table 1.1 below.  Even with all of these new 

practices, the precast concrete bridges are still heavily favored in the short to medium 

span range bridges. 

Table 1.1: Advances in Steel Bridge Design 
 

Old Practice New Practice 

Lead-Based Paint Weathering Steel 

Close Girder Spacing Wide Girder Spacing 

Removable Deck Forms Permanent Metal Deck Forms 

Expansion Joints Integral & Jointless Abutments 

Pin, Roller, Rocker Elastomeric Bearing Pad 

Complex Framing Details Simple Framing Details 

Non-Composite Design Composite Design 

Allowable Stress Design Load Factor Design 

 
 

 Another approach to the problem was developed by Dr. Atorod Azizinamini at the 

University of Lincoln Nebraska utilizing sponsorship of the Nebraska Department of 
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Roads.  The solution is called the continuous for live load method (CLL).  The method 

employs a simple span configuration that handles the non-composite dead loads and a 

continuous span configuration for composite dead and live loads.  A concrete diaphragm 

at the pier connects the two simply supported spans thus making them structurally 

continuous.  The CLL method is very similar to the method in which many prestressed 

concrete bridges are constructed.  

 

1.2 BASIC CONCEPTS BEHIND CLL 

 

The purpose of the CLL method is to provide a more cost effective design method 

for short to medium span steel bridges.  This is accomplished through the simplification 

of the details used in steel bridges, which in turn yields a decrease in the erection and 

fabrication costs of a bridge.  A continuous span steel bridge utilizes bolted field splices 

located approximately at the dead load inflection points (away from the piers) to connect 

two steel girders.  Refer to Figure 1.1 below. 

 

                  Figure 1.1: Bolted Steel Splice 
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Normally this procedure requires two cranes to hold up each girder to properly align each 

girder to be connected with the field splice as illustrated in Figure 1.2. 

 

 
Figure 1.2: Traditional Bolted Steel Splicing 

 
 
Employing the continuity detail eliminates the need for two cranes in that the steel girders 

rest on the pier to be connected later at that location by the concrete diaphragm.  Refer to 

Figure 1.3 for a traditional continuous steel bridge and Figure 1.4 for a simply supported 

steel bridge. 

 

Figure 1.3: Traditional Continuous Steel Bridge 

Field Splice
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Figure 1.4: Simply Supported Steel Bridge 
 

Please refer to figure 1.5 for the CLL detail. 

 

 

Figure 1.5: CLL Detail @ Pier 
 

Separation of 
Steel Girders 
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Traffic disruption is reduced due to quicker erection time.  The elimination of a splice 

away from the pier cuts fabrication costs and the use of one less crane cuts erection costs.  

One big advantage to the CLL method is what is referred to as the equalization of 

the moment requirements in the girder.  For a distributed load in a continuous system, the 

maximum negative moment at the pier is twice the maximum positive moment located 

between supports.  In a CLL configuration, the dead load is supported by a simply 

supported system, and then the system is converted to a continuous one by connecting the 

two members at the pier.  With the live load superimposed on a continuous system, the 

maximum positive and negative moments are closer in magnitude than using a fully 

continuous system from the beginning.  This equalization may allow for one type of 

girder cross section along an entire span length.  Combining the moment diagram of a 

simply supported span with that of a continuous span configuration equalizes the 

moment.  The dead load of the structure is placed in a simply supported fashion, and the 

live load is placed in a continuous fashion.  Looking at the moment diagram of a 

continuous span one notes that the negative moment is largest at the interior supports 

while the positive moment at midspan locations is significantly lower.  For simply 

supported spans only positive moments occur with the maximum moment located at 

midspan.  The combination of these two configurations yields a lower negative moment 

requirement at the interior supports while increasing the positive moment requirement the 

midspan.  Figure 1.6 illustrates this concept. 

 

 



 7

 

 

Figure 1.6: CLL Basic Concepts 

 

 Structurally speaking, the CLL method can allow for one type of steel girder for 

the entire length of a span in a bridge.  Many times in steel bridge construction the cross 

section of the steel girders fluctuates along the length of the bridge.  Field splices connect 

two different girders in order to satisfy the positive and negative flexure requirements 

imposed by the loadings.  The CLL method reduces the maximum negative moment 

located at the interior supports that is associated with a continuous span configuration, 

and helps make the positive and negative moments more equal.     

 There are many other advantages to using the CLL method.  For example, the 

girders acting in a simply supported fashion for the non-composite loads only require 

single curvature camber.  (Non-composite loads implies any loading that occurs before 

the concrete slab has hardened, while composite loading implies any loading that occurs 

~ + M ~ + M 

~ - 2 M 
~ + 2M 

~ -2 M 

~ +2 M 

~ + M ~ + M 
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after the concrete slab has hardened.)  Continuous girders would require a double 

curvature camber.  A greater portion of the deck will be in compression due to the 

equalization of moment.  This helps to reduce tension cracking in the slab.   

   

1.3 PROJECT OBJECTIVES AND SCOPE 

 

 This thesis involves the investigation into the feasibility of the continuous for live 

load (CLL) concept of steel bridge construction from an engineering and economical 

standpoint.  One of the main objectives in this study will also be to determine if the CLL 

concept devised actually performed as designed in-situ, as opposed to laboratory and 

computer simulation only.  The tasks below were used to accomplish these objectives. 

 

1) Literature review  

2) Solicite opinions and recommendations from the State Departments of    

Transportation (DOT) concerning current practices and experiences with 

construction of a CLL bridge 

3) Examination of the economic feasibility of CLL  

4) Perform a computer analysis of a CLL bridge using linear finite element analysis 

5) Perform load test on CLL bridge 

6) Analyze results of the load test and computer model to determine the degree of 

continuity achieved by the CLL concept  
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 The literature survey constitutes reviews of journal articles and theses pertaining 

to the CLL concept.  The articles and theses all describe either the structural concept of 

CLL or give an account of the experiences with construction of a CLL bridge.  A 

questionnaire sent to all of the DOTs was utilized to gauge the current practices of steel 

bridge construction and inquire about any CLL bridges previously constructed. 

A CLL bridge located in Las Cruces, New Mexico was chosen for one of the load 

tests.  It is a twin three-span composite concrete slab on steel girder bridge.  Another 

bridge located in Hatch, New Mexico was also chosen to load test.  STAAD Pro 2004 

was used to conduct a linear Finite Element Analysis of both bridges under live loading.  

The bridge will be modeled in both a continuous and simple span configuration in 

STAAD.  Finally, the load test results and the finite element analysis results will be 

compared to show which configuration the bridge models the closest.   
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CHAPTER 2 
 

LITERATURE REVIEW & SURVEY 

 

2.1 INTRODUCTION 

 

 This chapter will outline the supplementary information gathered concerning the 

CLL method.  Due to the fact that the continuous for live load concept is still a relatively 

new concept, not a lot of research has been conducted.  However, conducting a 

nationwide survey of DOT’s helped to uncover articles about the CLL concept written by 

engineers.  The other main source of information used is the original thesis written 

concerning CLL titled, Toward Development of a Steel Bridge System – Simple for Dead 

Load and Continuous for Live Load, written by N. Lampe, et al.   

 

2.2 LITERATURE REVIEW 

  

 Henkle (2001) reviewed a CLL bridge in Las Cruces, New Mexico that was 

constructed in 2001 on U.S. Highway 70.  According to Henkle, the bridge was designed 

with the objective in mind to reduce fabrication costs.  Henkle notes many design 

advantages associated with the CLL concept.  Full penetration welds and field splices are 

eliminated except for the continuity plate (which will be discussed in Chapter 3).  
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Another advantage discussed is that more of the deck is put in compression, which helps 

to complement concrete’s compressive strength capabilities and reduce tension cracking.  

The more equal positive and negative moment also helps to keep constant the thickness 

of the web plate in a steel girder.   

 Engel, Miller, and Swanson helped to design and construct a CLL bridge (PIC-22) 

in Ohio.  The authors note that the bridge was built specifically to ensure quick and fast 

construction to reduce traffic to the public.  The bridge was part of a research project 

involving the Ohio Department of Transportation, University of Cincinnati, and several 

engineering firms with the purpose to identify quick and easy construction methods.  To 

reduce construction time ODOT engineers employed the CLL concept for this bridge. 

 The new bridge consists of a six span continuous composite slab on steel girder 

bridge.  Five steel girders support a concrete deck that is 44’-2” wide.  Engineers 

designed the steel girders as simply supported, which were later made continuous through 

the use of concrete integral diaphragms at the piers.  This particular bridge became 

Ohio’s longest jointless bridge due to the use of integral abutments. 

 

Figure 2.1: View of Integral Abutment 
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Despite some unexpected delays the bridge was still completed 10 days earlier than 

expected.  The project was deemed a success in terms of quick construction speed. 

 As part of a research project, Lin (2004) load tested the PIC-22 bridge in Ohio to 

analyze the level of continuity that the concrete diaphragm provides.  Strain data 

collected in the test was converted to moments at specific locations, and this was plotted 

vs. the location of the load vehicle.  The measured converted moments were compared 

with two computer models.  One computer model was a one-dimension, six span, simply 

supported beam with fixed ends representing the abutments.  Another model was a one-

dimension, six span, fully continuous beam with fixed ends representing the abutments.   

 By plotting the test data with the two computer models, Lin (2004) concluded that 

the bridge behaved much more like a continuous structure than a simply supported 

structure.  These were only qualitative observations and no quantitative conclusions were 

made.  However, Lin (2004) concluded that the pier diaphragms provided an adequate 

level of continuity. 

 Two other bridges located in Tennessee also utilize the CLL concept.  Wasserman 

(2004) aided in the design of these two bridges.  According to Wasserman, two distinct 

methods of construction were used.  The first method employs a simple span for the dead 

loads (which include the weight of the steel girders and wet concrete slab) and a 

continuous span for the live loads.  The other method employs a simple span for only the 

dead load of beams and continuous span for the dead load of the concrete slab and all of 

the live loads.   

 Wasserman notes that the first method involves designing the steel girders to 

carry their self-weight and the weight of the slab in a non-composite condition with 
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simply supported end restraints.  Once the concrete deck is poured and hardens, the 

bridge is now considered composite and behaves in a continuous manner for all of the 

dead and live loads.  The only dead loads that would be considered once the bridge 

becomes composite are concrete bridge barriers.  A bridge on State Route 35 over Brown 

Creek and Harper Avenue in Maryville, Tennessee utilized this method of construction. 

 Wasserman indicates that the second method involves designing a beam with the 

same cross sectional properties the full length of the bridge, which meets the maximum 

positive moment requirements.  The girders are placed in a simply supported fashion and 

then connected by bolting a cover plate to the top flanges of adjoining stringers.  The gap 

between the bottom flanges is filled with two trapezoidal plates, which are welded to the 

flanges.  Once the girders are locked into place the slab and diaphragm is poured.  A 

bridge on the DuPont Access Road over State Route 1 in New Johnsonville, Tennessee 

utilized this method.  Figure 2.2 below illustrates the connection. 

 

Figure 2.2: Detail of CLL Connection @ DuPont Access Road New Johnsonville, Tennessee (Talbot 
2005) 

 
 
 According to Wasserman, the simple span for dead load of the beams and 

continuous for all other loads proved to be more favorable in terms of economy and 
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structural efficiency.  Overall both methods save on material and shipping costs.  Girder 

erection is also less expensive because of the smaller cranes that are required.  The 

economic feasibility of this method compared with utilizing prestressed concrete girders 

for both bridges is discussed in Chapter 3.  

 Research was conducted by Azizinamini, Lampe, and Yakel (2003) at the 

University of Lincoln Nebraska in association with the Nebraska Department of Roads to 

develop an economical steel bridge system for short to medium span bridges.  Data from 

the National Bridge Inventory (NBI) that was compiled by the Federal Highway 

Administration (FHWA) was utilized to perform a market analysis.  The analysis showed 

that the amount of short to medium span steel bridges has declined.  The authors note that 

several reasons were attributed to the decline: 

 

- Intricate and expensive details 

- High costs of bolts used for bolted connections 

- Over design of steel bridges  

- Complexity of steel bridge design compared to that of prestressed concrete bridge 

design 

 

 The CLL concept was theorized in order to develop a more economical steel 

bridge system for short span lengths.  Several different configurations for continuity 

transfer of loads were analyzed with varying span lengths to determine the most efficient 

load carrying system in terms of moment capacity.  Span lengths of 100ft, 120ft, and 

150ft were used with four different configurations of load distribution.  Case 1 utilized 
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two girders acting as simple spans for dead loads and continuous for live loads with non-

integral piers.  Case 2 utilized girders acting continuous for all loads with non-integral 

piers.  Case 3 utilized girders acting as simple spans for dead loads and continuous for 

live loads with integral piers.  Case 4 utilized girders acting continuous for all loads with 

integral piers.  For an integral pier the concrete diaphragm is cast directly on top of the 

pier allowing for interaction between the diaphragm and pier.  A thin layer of foam is 

placed on top of the pier before the concrete diaphragm is cast to form a non-integral 

pier.   

Using finite element analysis software, it was determined that integral piers gave 

negligible effects in terms of moment capacity for the shorter spans of 100ft and 120ft.  

Of the two configurations utilizing non-integral piers, Case 1 had several benefits such as 

increasing the maximum positive moment while decreasing the maximum negative 

moment.  This configuration thus allows for the same cross section of the steel girder for 

the entire span length.  The simple for non-composite loads and continuous for composite 

load design was used for further investigation (Azizinamini, Lampe, Yakel 2003). 

 The Military Road Bridge in Omaha, Nebraska was reconstructed utilizing the 

CLL concept.  The designs of this bridge were in accordance with American Association 

of State Highway and Transportation Officials (AASHTO) and Load and Resistance 

Factor Design (LRFD).  A cost comparison between the original construction and new 

construction showed savings of 4% to 8% in material and fabrication costs (Azizinamini, 

Lampe, Yakel 2003). 

 The authors also constructed a full-scale model of the connection of a two span 

CLL bridge.  The model was subjected to a fatigue test of 2,000,000 cycles of loads 
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simulating 75 years of truck traffic loading.  The model suffered no deterioration of 

stiffness or strength.  It was also determined that for a two span bridge with 100 foot 

spans, the negative moment could be reduced by 35% with an increase of 17% in positive 

moment.  An increase of 5% in girder weight was required for this adjustment.  It was 

concluded by the authors that the intensive lab testing and the cost comparison indicated 

the CLL method was a successful alternative to fully continuous construction. 

 

2.3  DOT SURVEY 

 

 A survey written by Daniel Morales (found in Appendix C) was sent to the fifty 

DOT’s across the nation in order to gain their thoughts and opinions concerning the 

economics of steel bridge design and those economics as compared to pre-stressed 

concrete bridges.  The survey also helped to determine where any CLL bridges may have 

been constructed.  Out of the 50 states, almost half (24) states returned the survey.   

 Of the many statements made by the DOT bridge engineers, several comments 

emerged many times.  Some conclusions that were made from the surveys are: 

 

1.) Pre-stressed concrete bridges are generally more economical than steel 

bridges in the short span range (spans < 110 ft) 

2.) Simplifying the steel design details saves costs in fabrication and erection 

3.) Erection time of steel bridges is considerably longer than most pre-

stressed concrete bridges 
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4.) Optimizing the amount of bolts and splices helps to significantly lower 

costs 

     
 

 The CLL method in theory would help to improve these negative qualities 

associated with steel bridges.  The CLL method would help to simplify the fabrication 

and reduce the erection time of steel bridge construction.  The next chapter will explore 

whether there truly are any economic savings.  
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CHAPTER 3 

 
CONTINUITY DETAIL 

 

3.1 INTRODUCTION 

 

 This chapter will outline the development of the CLL detail and investigate the 

economic feasibility of the method.  The continuity detail is the mechanism in which the 

two simply supported spans are connected to, in theory, create a continuous span.  Any 

cost or time savings will be investigated and quantified for several bridges where CLL 

has been used.  Since the development of the first continuity detail at the University of 

Nebraska-Lincoln, the CLL method has been used on steel bridges in several states.  The 

details have changed slightly from bridge to bridge but the overall concepts have stayed 

in tact.  This chapter will also highlight and explore the differences between connections.     

  

3.2 CONTINUITY DETAIL 

 

 The continuity detail is the connection of steel girders at the interior supports, 

which helps to enable a continuous moment transfer for the live load.  The continuity 

detail was first proposed by Dr. Atorod Azizinamini at the University of Lincoln – 

Nebraska.  From this first continuity detail many other DOT’s around the country have 
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used the same concepts of CLL to create their own detail of the continuity connection.  

Although the details have not changed much from state to state, it is important to note 

differences or similarities in order to determine what is needed for the detail to function 

properly. 

 The first detail designed by Dr. Azizinamini was very basic in nature in order to 

provide the simplest connection detail to cut fabrication costs.  The detail is shown below 

in Figure 3.1. 

 

 

 

 
Figure 3.1: Original Continuity Detail 

 

The two girders rest on top of an elastomeric bearing pad, which extends the entire width 

of the concrete diaphragm.  The diaphragm is a concrete block that is formed at the 

intersection of the two steel girders.  The bottom flanges are extended further than the top 

flanges to close the gap between girder ends.  The bottom flanges are then connected by 

partial penetration welds.  The reasoning behind this extension is to avoid the crushing of 
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concrete between girder ends bottoms as the continuity detail induces negative moment 

(and hence compression in the bottom flange).    

 A bearing stiffener plate is welded to both girder ends to ensure that the concrete 

poured between the girders does not fail due to the large compressive stresses.  The 

bearing plates were stiffened through the use of stiffener plates attached near to the 

compression zone.  Several holes are drilled into the girder web cross section to allow for 

transverse reinforcement in the concrete diaphragm.  This transverse reinforcement runs 

the entire length of the concrete diaphragm to resist the tensile bending stresses in the 

concrete.  Instead of using anchor bolts, several reinforcement bars extend up from the 

pier into the concrete diaphragm to connect the two.  The reinforcement in the concrete 

deck above the top flanges extends into the concrete diaphragm to help ensure live load 

continuity.  The concrete diaphragm was first poured to about two-thirds full to make the 

girders partially continuous.  Next the concrete deck along with the rest of the diaphragm 

is poured allowing the girders to handle the rest of the non-composite system dead loads.  

Once the concrete cures, the system handles any superimposed dead loads or live loads in 

a continuous and composite fashion. 

 A variation to the original connection proposed by Dr. Azizinamini was 

implemented on a bridge in Omaha Nebraska.  It carries Sprague Street over I-680.  The 

variation includes a 2 in. thick plate that is welded to the bottom of each end plate.  The 

bottom flanges are no longer extended beyond the top flanges as with the first detail.  The 

detail is shown below in Figure 3.2 below.   
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Figure 3.2: Alternative to Original Continuity Detail 

The logic behind the thick plate at the bottom is to avoid any concrete crushing between 

the bottom flanges by preventing the longitudinal movement that the bottom flanges 

experience under loading.  Finite element analysis research conducted by Dr. 

Azizinamini indicated a possibility for concrete crushing due to the large compressive 

stresses.  It was thought this method would reduce the risk of concrete crushing as 

compared to the previous design.  Dr. Azizinamini performed extensive lab testing on 

several prototypes to develop this final detail. 

The state of Ohio utilized the CLL concept in the reconstruction of a bridge on 

state route 22 in Circleville, OH.  The continuity detail used for this bridge is very similar 

to the detail developed by Dr. Azizinamini.  The continuity detail used on the bridge in 

Circleville Ohio is shown in Figure 3.3 below.  

 

Steel Plate 
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Figure 3.3: Continuity Detail of PIC-22 Bridge  
 
 
Both girders rest on elastomeric bearing pads and both girder ends have bearing 

stiffeners, which also act as transverse shear stiffeners.  There are also horizontal stiffener 

plates located near at the bottom of the flanges to stiffen the bearing stiffeners against the 

compressive concrete forces associated with negative flexure.   

 The major difference between this connection and the University of Lincoln 

Nebraska’s connection is that the Circleville bridge leaves a gap between the 

bottom flanges.  This small difference makes this type of connection a little simpler due 

to the fact that any type of welding is eliminated.  It was thought by the designers that the 

bearing stiffeners would be enough to prevent the concrete between the girders from 

crushing.  The slab was poured concurrently with the concrete diaphragms, which can be 

different depending on different state’s own DOT regulations.  It is required by some 

DOT regulations that the deck in the positive moment regions be poured before the deck 
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in the negative moment regions.  The reasoning behind this procedure is to avoid 

cracking over the piers in continuous bridges (Engel 2004).   

The Tennessee DOT utilized two different types of continuity details on two 

different bridges.  The first detail is much like the ones used in Ohio and Nebraska.  A 

bridge in Maryville, Tennessee on state route 35 was constructed using the first detail.  

The girders rest on neoprene bearing pads however, and anchor bolts are utilized in this 

connection to lock the girders into the piers.  Two steel plates were welded to both girder 

ends to act as bearing stiffeners.  The girder ends were locked into place first by means of 

an initial pour in the concrete diaphragm.  Then the rest of the diaphragm was poured 

concurrently with the slab.  Figure 3.4 illustrates the detail at the bridge in Maryville 

Tennessee. 

 

Figure 3.4: Continuity Detail of State Route 35 Bridge in Maryville Tennessee (Wesserman 2004) 
 

 A bridge in New Johnsonville, Tennessee over state route 1 used another type of 

continuity detail that was different from the one previously described.  The major 

Live Load Continuity Bar 
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difference between details is the inclusion of a bolted connection plate, which joins the 

top tension flanges of each girder.  The connection was bolted before pouring the 

concrete in the diaphragm or the slab.  This action results in only the dead load of the 

steel girders to be put in a simply supported configuration while all other loads are 

handled in a continuous fashion.  The compression flanges were joined by two 

trapezoidal plates that were wedged in between the girders and later welded.  Figure 3.5 

contains the continuity detail of this bridge in New Johnsonville Tennessee highlighting 

the wedge kicker plates and cover plate. (Note: The figure which was taken directly from 

Wasserman’s article mistakenly does not show bolts connecting the top cover plate) 

 

Figure 3.5: DuPont Access Road Bridge in New Johnsonville Tennessee (Wesserman 2004) 
 

 The two bridges used for case studies in this report have a similar continuity detail 

to that of the bridge in New Johnsonville, TN.  The Las Cruces and Hatch bridges both 

have what is called a continuity plate that joins the tension flanges at the diaphragms.  
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The major difference with the continuity plate is that unlike the Tennessee bridge, the 

bolts on the plate are not tightened until after the concrete is poured in the positive 

moment region of the deck.  The positive moment region of the deck constitutes a 

majority of the deck, which puts the dead load of the girders and concrete slab in a simply 

supported fashion.  After this portion of the slab is poured, the bolts on the plate are 

tightened and the negative moment region and concrete diaphragm is poured.  The 

reasoning behind this is to reduce any potential cracking of the slab at the negative 

moment regions and to allow for the use of the bolted connection.  The continuity plate 

provides a level of redundancy in case of failure of the longitudinal steel in the slab in the 

negative moment region.  Figures 3.6 & 3.7 illustrate the continuity detail and plate. 

 

Figure 3.6: Las Cruces Bridge Continuity Detail (Wade 2000) 
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Figure 3.7: Las Cruces Bridge Continuity Plate Detail (Wade 2000) 
 

Figure 3.8 shows the continuity detail for the bridge in Hatch New Mexico. 

 As before, the bearing stiffeners help to reduce concrete crushing between girder 

ends.  The braced bearing stiffener is used in order to avoid using a much thicker stiffener 

plate.  The holes for transverse reinforcement also carry the tensile bending stresses that 

the concrete diaphragm experiences in flexure. 

 

 

Figure 3.8: Hatch Bridge Continuity Detail 

Continuity Plate 

Elastomeric Bearing Pad 
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3.3  ECONOMIC FEASIBILITY 

 

 One of the main factors in determining the success or failure of the CLL method 

is economic feasibility.  As mentioned previously, concrete bridges have increased in 

numbers in the short span bridge range due to economy.  The CLL method theoretically 

has cost and time savings, which make steel bridges more competitive in the short span 

bridge range.  The best way to determine the validity of this comment is to examine the 

bridges that have been constructed for any cost or time savings. 

 

3.3.1 Cost savings 

A critical component determining the success or failure of the continuous for live 

load concept is whether it can save money or not.  Some of the bridges mentioned earlier 

were examined to identify cost savings earned or lost using the CLL method.  The cost 

savings were identified by examining the bids of a project or through testimonials 

provided by the engineers and contractors who helped build the bridges.  The CLL 

method was predicted to have cost savings in terms of material, fabrication, and labor.  

The material savings come in the form of a single steel cross section that is 

needed for the entire length of the bridge.  The shift of the moment between the positive 

and negative regions in a CLL design allows for one type of cross section, which can help 

with decreasing the total material costs.  The fabrication costs are reduced by eliminating 

or simplifying the splice detail (ex. Las Cruces Bridge & Hatch Bridge).  Some labor 

savings are also predicted for the ease of construction as compared with standard steel 
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continuous bridges.  This is because with the CLL method, the girders rest on piers which 

are later connected by concrete diaphragms.  A steel splice between piers requires the use 

of two cranes perfectly aligning the girders in mid-air while a steel worker bolts the 

splice on. 

The bridge in Las Cruces New Mexico had reported cost savings in all of the 

aforementioned areas.  Interviews with the engineer, contractor, and fabricator conducted 

by John Stouffer at New Mexico State University proved useful in determining the cost 

savings.  Fabrication costs were reduced by $0.20/lb compared with traditional steel 

design.  This correlates to an 18% to 28% savings in fabrication compared with 

traditional continuous steel bridges.  The reduction of intermediate stiffeners and the 

simplicity of the continuity detail helped to drastically lower fabrication costs.  The 

fabricator noted that the simplicity of the steel components helped to reduce labor costs. 

The Las Cruces Bridge was double bid with the CLL option and a prestressed 

concrete girder option.  This allowed the designers to determine which method would be 

the most cost effective.  Table 3.1 on the next page contains the bids of two contractors 

alongside the engineer’s estimate.  It matches the bids of two contractors with the 

engineer’s estimate.  The CLL Bridge is more competitive with the prestressed concrete 

bridge as compared with a traditional continuous steel bridge. 

Table 3.1: Las Cruces Bridge Bid Information 
 

  CLL Bridge   
Engineer's Estimate Contractor A Contractor B 

$2,802,912.15  $2,991,280.74  $2,573,201.60  
     
  Concrete Girders   

Engineer's Estimate Contractor A Contractor B 
$2,981,890.30  $2,865,279.23  $2,595,285.50  
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The CLL bridge is more economical than the concrete girder bridge for the Engineer’s 

Estimate and Contractor B’s bid.  Only Contractor A’s bid for the CLL bridge was more 

expensive than the concrete girder bridge.  However, the CLL bridge is within 5% 

difference of the concrete girder option for Contractor A’s bid.  The differences are small, 

but show CLL is competitive with pre-cast concrete.  

 Other bridges utilizing CLL have also seen cost savings.  The Military Road 

Bridge in Nebraska was constructed after the CLL method was proposed by Dr. Atorod 

Azizinamini.  The bridge was part of a rehabilitation project replacing an older 

structurally deficient bridge.  The bridge proved to yield a 4 to 8% savings in material 

and girder fabrication costs as compared to conventional continuous steel girder bridges 

(Azizinamini 2003).  Another CLL bridge was constructed in Omaha, Nebraska over I-

680 having span lengths of 97ft. each.  Conventional continuous steel bridges in that area 

at the time were estimated at $0.75/lb.  The I-680 bridge was constructed at $0.52/lb 

(Azizinamini 2004).  This correlates with a 31% reduction in material costs. 

 Several CLL bridges constructed in Tennessee were also investigated to note any 

cost savings.  As mentioned previously two types of CLL bridges were constructed in 

Tennessee: simple span for dead loads and continuous for live loads and simple span for 

dead load of beam only and continuous for the dead load of the slab and all live loads.  

The first type of CLL bridge was constructed in Maryville carrying State Route 55 over 

Brown Creek.  The second type of CLL bridge was constructed in New Johnsonville 

carrying the DuPont Access Road over State Route 1.  The TDOT experienced improved 
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cost savings utilizing the second type of CLL method.  A cost comparison between the 

CLL bridges and precast concrete girder option can be seen in the Table 3.2 on the 

following page.  State averages of concrete girder prices were used in the comparison. 

 
 

Table 3.2: Cost Comparisons of Tennessee CLL Bridges 
 

State Route 55 Bridge 

Steel Girders (CLL Method) 
Prestressed I-Beam Concrete 

Girders (Type III)  
$290,475.46  $257,880.11  

    
% Difference 12.6% 

    
DuPont Access Road 

Steel Girders (CLL Method) 
Prestressed I-Beam Concrete 

Girders (Type III) 
$137,650.24  $124,411.38  

    
% Difference 10.6% 

 
 
 
The first bridge was bid at $0.72/lb while the second bridge had a lowest bidder of 

$0.56/lb.  The cost savings show that steel bridges are not as competitive with concrete 

bridges as the bridge in Las Cruces.  This can be due many factors.  Of the many factors 

the most notable difference might be due to the fact that the pre-cast concrete girder 

market is more developed in Tennessee.  However, the purpose of developing the 

continuous for live load steel bridge systems in Tennessee was to make steel bridge 

systems more competitive.  In terms of this objective Tennessee DOT engineers feel as 

though they have accomplished this. 

 Another possible reason for the noticeable difference between prices can be 

attributed to the fact that the average for that year did not reflect many constructed 

bridges.  It was noted through communication with Tennessee DOT engineers that the 
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average price did not reflect many bridges utilizing the Type III prestressed concrete 

beams.  Therefore the concrete girder estimate is only an estimate and does not constitute 

an exact cost as the steel girder cost does.  

 

3.3.2 Time Savings 

 Time savings on a project can relate to money saved, especially in the users’ 

costs.  Just like the cost savings portion, the information gathered for the time savings 

was provided by testimonials of engineers and contractors working on the various jobs.  

The predicted time savings of using the CLL method come from the simplicity of the 

continuity detail itself.  Only one crane is needed instead of two, and it is much easier to 

connect two steel stringers when they are resting on a pier beforehand.  Using one crane 

decreases the erection time and cost and also reduces traffic disruption.  User cost (cost of 

having the bridge out for the bridge users) is increasingly a strong consideration for state 

DOT’s when considering a project.   

 The bridge in Las Cruces experienced some of the benefits of a CLL system.  As 

previously noted, only one crane was needed to erect the steel girders.  Time was saved 

resting the girders on the piers and later connecting them by a concrete diaphragm in lieu 

of field splicing.  For this particular bridge traffic was detoured completely away from 

the bridge therefore the contractor did not experience the time savings from using only 

one crane.  Overall, the contractor saved eight days on the duration of the project, as 

compared to traditional continuous bridge construction.  However, some difficulty was 

experienced in placing the continuity plate that was bolted onto the top of the girder 

flanges.  The contractor felt as though the plate was “excessive”, and that the rebar in the 
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deck was sufficient to provide live load continuity.  The contractor noted however that 

the plate was still easier to install compared with a regular splice because the worker can 

actually have safe ground to stand on instead of being suspended by a lift in the air.  

There were still time savings even with the relatively minor issues concerning the 

installation of the continuity plate. 

 The Fast Track PIC-22 bridge in Circleville Ohio had a considerable amount of 

time savings when using the CLL method.  The bridge carried Route 22 over the Scioto 

River and was a major route for the farming business in Circleville.  The road is a high 

traffic area and is vital to the economy of the town.  The bridge reconstruction needed to 

be accomplished very quickly in order to keep traffic disruption down.  The engineers 

and contractors felt as though making the steel girders simple for dead and continuous for 

live load would greatly decrease construction time.  The bridge was constructed in just 48 

days as opposed to the predicted 60 days.  Hence, a total of eleven days were saved using 

this method.  The contractor noted that setting the girders on top of the pier caps allowed 

to the girders to be placed quickly and effectively. 

 Several bridges in Tennessee experienced improved construction speed with using 

the CLL method.  Smaller less capacity cranes were used in placing the steel beams 

compared with precast/prestressed concrete beams of similar span length.  There was 

reduced traffic disruption in both of the bridges constructed continuous for live load.  The 

use of only one crane helps to allow more traffic flow.  Although no actual days were cut 

off from the total construction time, time was saved in the erection of the beams.  Both 

projects were finished on schedule however with no delays.   
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3.4  SUMMARY 

 

 This chapter focused the logic behind constructing bridges using the CLL method.  

The continuity detail that facilitates the method was also outlined.  The economic 

feasibility of the method is also investigated by studying several bridges constructed 

across the U.S.  Any cost and time savings were noted where they appeared.  The 

predicted savings came in the form of reduced material and fabrication costs and reduced 

erection times. 

 Bridges in Nebraska, Ohio, Tennessee, and New Mexico were heavily researched.  

A summary of the economic feasibility study results from each bridge is listed below. 

 

Nebraska  

 Military Road Bridge 

- 4% to 8% savings in material and fabrication costs compared w/ conventional 

continuous steel bridges 

Sprague Street & I-680 Bridge 

- Steel cost $0.52/lb compared w/ conventional continuous steel bridges costing 

$0.75/lb 

Ohio 

 PIC-22 Bridge 

- CLL was used to help reduce total construction time by 11 days 

Tennessee 

 State Route 55 Bridge 
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- CLL steel girders were within 13% of the cost of concrete precast/prestressed 

girders 

DuPont Access Road Bridge 

- CLL steel girders were within 11% of the cost of concrete precast/prestressed 

girders 

New Mexico 

 Las Cruces Bridge 

- Fabrication costs were reduced by $0.20/lb compared with traditional steel 

design 

- Correlates to an 18% to 28% savings in fabrication compared with traditional 

continuous steel bridges 

- Bridge was double-bid w/ concrete girder option and CLL steel option was 

competitive within 5% 

- Saved 8 days with using CLL compared w/ traditional continuous steel 

bridges 
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CHAPTER 4 
 

LAS CRUCES CASE STUDY 

 

4.1  INTRODUCTION 

 

 The previous chapter identified the continuity detail and how it works to resist the 

live load in a continuous fashion.  This chapter will focus on if indeed the continuity 

detail functions as designed.  Specifically, this chapter investigates if the continuity detail 

actually allows for the transfer of moment across the joint to essentially make the system 

continuous.  To address this question, in-situ load testing was performed on two CLL 

bridges in New Mexico.  These load tests provide the experimental data necessary to help 

determine if the detail works in an in-situ application.  This chapter will focus on the first 

of the bridge tests, a structure located in Las Cruces, New Mexico. 

 

4.2  BRIDGE DESCRIPTION 

 

The first case study conducted was on the Las Cruces Bridge.  The bridge is 

located along U.S. Highway 70 at the Sonoma Ranch Boulevard intersection.  The Las 

Cruces Bridge consists of twin bridges, one bridge is eastbound and the other is 

westbound.  Figure 4.1 gives an elevation view of the bridge. 



 36

 

           Figure 4.1: Las Cruces Bridge 
 

 

For this particular study, the westbound bridge was load tested.  The Las Cruces Bridge is 

a three span composite slab on girder bridge.  Four plate girders spaced at approximately 

10’2” support a 38’4” road width.  A cross-sectional view of the girders, concrete deck, 

and concrete diaphragm can be found in Figure 4.2. The three span lengths are 78’10”, 

119’10”, and 78’10”.  The plate girders for the shorter spans are slightly smaller than 

those of the longer span.  The steel cross sections can be found in Figure 4.3. 

R.C PIERR.C PIERR.C PIER

R.C BEAM

R.C PIER

STEEL GIRDER STEEL GIRDERSTEEL GIRDER STEEL GIRDER

REINFORCED CONCRETE DECK

 

Figure 4.2: Cross Sectional View of Girders 
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Figure 4.3: Steel Cross Section  
 

 
The 8.5” concrete slab is made composite with the plate girders through the use of 

shear studs.  Three shear 1” diameter studs, 6” long are spaced evenly transversely across 

the top of the plate girders.  The stud spacing varies longitudinally along each plate girder 

depending on the amount of composite action required. 

The bottom girder flanges are welded to a sole plate at all of the abutments and 

piers.  Elastomeric bearing pads rest beneath the sole plates, which are attached to anchor 

bolts coming up from the concrete pier.  Figure 4.4 gives a view of the bearing detail.  
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Anchor Bolt
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Sole Plate

 

Figure 4.4: Bearing Detail @ Pier  
 

 
After the concrete diaphragms are poured on top of these bearings, bituminous joint filler 

is applied between the concrete diaphragm and the concrete pier below.  

The top flanges of each girder end are connected by using a bolted steel plate.  

Because the bridge has different girder heights a filler was placed between the top of the 

short girder and the continuity plate.  For this particular bridge the bolts were not 

tightened until after the positive moment region of the deck had been poured.  Then the 

concrete diaphragm and negative moment region were poured.  As mentioned previously 

the purpose is to avoid cracking of the deck in the negative moment region.  

 

4.3  LAS CRUCES LOAD TEST 

 

The research team utilized a load test to help determine the amount of continuity 

that the concrete diaphragms actually provide.  In this test, strain gages were placed at 

strategic locations on the bridge.  The strains obtained can be converted to stress (all 

linear-elastic behavior) and either the moments or stresses at a particular location of the 
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bridge can be plotted against the location of the truck on the bridge.  The plots show the 

type of flexure that a member is exhibiting, which can be used as a preliminary check as 

to whether the girders are behaving continuously.  Therefore if there is any indication of 

negative flexure near the piers, some degree of continuity is present.  If no negative 

flexure is exhibited near the supports then this would indicate simply supported spans.    

The Las Cruces Bridge was load tested on December 18, 2005.  The bridge was 

instrumented the day before due to the large number of strain gages applied.  The test 

consisted of pseudo-static and dynamic loading conditions.  Pseudo-static is defined as 

the truck slowly crossing the bridge at a relatively slow speed, approximately 4-5 mph.  

Several loading paths were utilized in order to examine the behavior of the structure 

under various loading conditions, and to ensure that the continuity (if present) was 

repeatable for various loads. 

 

4.3.1 Truck and Strain Gages 

A dump truck was provided by the New Mexico Department of Transportation for 

the load test.  The truck (filled with gravel) had a gross weight of 55,600 lbs and axle 

spacings of 15’5” and 4’3”.  The dump truck is pictured in Figure 4.5.  
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Figure 4.5: Dump Truck  
 

 
 The same truck was utilized for the Hatch Bridge Test as well.  The truck traveled in a 

westbound direction for the test.  The axle weights and spacings are illustrated in the 

Figure 4.6. 

 

Figure 4.6: Axle Weights  
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Testing equipment (Structural Testing System II) developed by BDI (Bridge 

Diagnostics Inc.) was used for the load test.  The system transmitted the strain data 

recorded from the strain gages to a laptop the computer where it was stored.  Sampling 

rates vary from 1 Hz to 100 Hz.  The BDI-STS-II system is pictured in Figure 4.7 on the 

following page.  The system can be run on standard 110-220VAC power coming from a 

generator or 12VDC coming from a car battery that is run through a power inverter. 

 

Figure 4.7: BDI STS-II Data Retrieval System 
 

A laptop was used to store the gage data, and the program WinSTS was installed on the 

computer to control the testing system and gages.  WinSTS runs with the operating 

system Windows 2000 & XP.   

Aluminum strain gages were used for the load testing.  The strain gage consists of 

a full wheatstone bridge with 4 active 350Ω foil gages with a 4-wire hookup and is 

approximately three inches in length.  The gage has a strain range of + 4000 με, a 

sensitivity of 500 με/mV/V, and an accuracy of + 2%.  The strain gage can be attached to 

steel, prestressed concrete, reinforced concrete, or timber.  Two methods of attaching the 

gages to the steel members were employed.  One method consists of using C-clamps to 

lock the gages onto the steel.  This method was used for the bottom flange locations.  The 
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second method consisted of using quick drying adhesive to glue the gages to the steel.  A 

view of gages attached utilizing both methods can be found in Figure 4.8.  

 

Figure 4.8: Installed Strain Gages 
 

The gage location was first grinded to obtain a smooth surface and a thin layer of the 

adhesive (brand name, Loctite 410) was applied to the tabs on the bottom of the gage.  

Then an adhesive accelerator (brand name, Loctite Tak Pak 7452) was applied to the 

adhesive.  This method was utilized for gages at the top flange and mid-web locations. 

 

4.3.2 Instrumentation Plan 

The main purpose of the load test was to determine whether the concrete 

diaphragms provide continuity or not.  With this objective in mind, the gage locations 

were chosen based on the type of flexure that the beam should exhibit when fully 

continuous.  A continuous beam with multiple supports exhibits negative flexure close to 

the interior supports.  Hence, if the bridge girders are truly behaving in a continuous 

manner, then the girders should experience negative flexure around the interior pier 
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supports.  Therefore gages were placed on both sides of one of the interior piers to 

examine the flexure present at that location.  Gages were also placed at mid span 

locations to view the maximum positive bending stresses in the beam.  Lastly, gages were 

placed near the abutment to determine if the supports supplied rotational constraint.  

As a joint venture, New Mexico State University helped to conduct the load tests.  

The NMSU Team also used BDI testing equipment for the load test.  During the test, two 

BDI-STS systems recorded the data onto two separate laptops.  The NMSU Team had a 

capacity of 20 gages while the OSU Team had a capacity of 40 gages.  The total of 60 

gages allowed more gages to be placed at each test location. 

At each gage location it was decided that at least two gages would be placed.  At 

least two gages are needed to draw the stress and strain profile (the research team 

assumed plane sections remain plane, and hence a linear stress/strain over the depth of 

the cross section).  Because the bridge was composite, having two gage locations can also 

help determine the amount of composite action in the bridge.  Three gages were placed at 

most locations in order to provide a more accurate strain profile.  A gage was placed at 

the top of the bottom flange, mid-web, and the bottom of the top flange.  Due to the 

limited number of strain gages the locations close to the abutment received only two 

gages.  Gages at that location were placed at the top of the bottom flange and mid-web.  

Gage locations started at the abutment and ended at the midspan of the second span.  

Refer to Figure 4.9 for the instrumentation plan. 
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Figure 4.9: Instrumentation Plan 
 

4.3.3 Load Test 

 Two types of load tests were performed on the Las Cruces Bridge: pseudo-static 

and dynamic testing.  Although only the pseudo-static load test results were used directly 

for this research project, dynamic testing can give help to determine the effects of impact 

loading.  A sampling rate of 40Hz was chosen for the pseudo-static load tests which 

provided enough data for the slow speed of the truck.  A greater sampling rate of 66Hz 
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was chosen for the dynamic load tests.  The increased sampling rate is necessary in order 

to obtain more data corresponding to the relatively short interval of loading. 

 Eight loading paths were used in the test, spanning the entire width (transversely) 

of the road.  The load paths are shown in Figure 4.10. 

 

Figure 4.10: Loading Paths 
 

Truck Positions 
 

Y1: Driver side wheel on northern solid line 
Y2: Centered about northern solid line located 8’ away from northern barrier 

 Y3: Passenger side wheel on northern solid line 
 Y4: Driver side wheel on the striped center line 
 Y5: Centered about the striped center line 
 Y6: Passenger side wheel on striped center line 
 Y7: Driver side wheel on southern solid line 
 Y8: Centered about southern line located 4’ away from southern barrier 
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The load test started at 10 feet before the first abutment and ended at the abutment on the 

other side of the bridge.  The northern span of the twin bridge was used for the load test 

with the truck traveling in a westerly direction.  Two runs were completed on each load 

path to determine repeatability of the testing data obtained. 

 An auto-clicker was used to track the location of the truck throughout the testing.  

The auto-clicker, shown in the figure below, consists of camera that is connected to a box 

housing a radio. 

 

 

Figure 4.11: BDI Auto Clicker 
 
The device rests on top the wheel well through adjustable straps that are hooked onto 

hooks.  A reflective wheel clamp is attached to the wheel which returns the light emitted 

from the camera marking each tire revolution.  The device then triggers the radio which 

equates to a “click” or full wheel revolution on the program.  A radio that is attached to 

the STS system receives the click, and the system records the revolution.  The revolution 

was determined through averaging five revolutions.  Alternately the circumference of the 

wheel can be found to determine one full wheel revolution. 
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4.3.4 Test Results 

 The results of the test were expressed in terms of stress at a particular point versus 

truck location (longitudinally on the bridge) plots.  Essentially, it is a plot of a stress 

influence line.  Influence lines are a plot of a specific structural quantity as a function of 

position of load.  Influence lines can help illustrate the type of flexure a specific location 

will experience under a moving load.  Please refer to Figure 4.12 for a sample plot. 
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Figure 4.12: Sample Plot Run 3 S8 @ Midspan 
 
The recorded microstrains were converted into units of stress by multiplying by the 

modulus of elasticity of steel (29 E3 ksi).  Please refer to Appendix A for all of the stress 

plots created from the test.  Each plotted line has text next to it to denote the gage 

location on the particular cross section.  Stress plots for both runs of each loading path 
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were created and examined for repeatability.  Examining these multiple plots revealed 

that each run was very similar indicating repeatability of the data.  Figures 4.13 & 4.14 

illustrate the repeatability of the data. 

 

 

 

Figure 4.13: First Trial Run 2 S8 @ Midspan 
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Figure 4.14: Second Trial Run 2 S8 @ Midspan 
 
 
 The stress plots revealed several unusual results.  The unusual behavior 

particularly pertained to the mid-web stresses.  The three unusual cases were:  

1. Stresses at mid-web were EQUAL or LARGER than the bottom flange stress 

2. Stresses at mid-web were SMALLER than the bottom flange stress but with 

the opposite sign 

3. Stresses at mid-web were very small 

 

Figure 4.15 displays how many unexpected results were found and at what locations.  

One possible explanation for the first two cases is the occurrence of biaxial bending.  The  
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Figure 4.15: Unusual Test Results Diagram Las Cruces Bridge Test 
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strain gages are only able to read pure axial stresses of tension or compression.  Biaxial 

bending would cause the gage to record unusual stresses.  To determine if biaxial bending 

was occurring gages would need to be attached on both sides of the cross section.  When 

talking with BDI technical specialists it was determined that the third case could be due 

to gage slipping.  If the gage slipped then the brittle bond created between the tabs and 

steel surface through the use of glue would be broken.  Once the bond is broken the gage 

records little to no stress at all. 

 Because of the anomalies and possible biaxial influence, only the flange gages 

were used for the analysis.  Only one gage is needed per location to show if the member 

is exhibiting positive or negative flexure.  Due to this the mid-web stresses were ignored 

and the bottom flange stresses were used.   

The main objective of the testing is to verify continuity transfer.  The two main 

locations of concern to verify continuity as mentioned previously are at the midspan and 

near the interior supports.  The influence lines for a midspan and support location can be 

found in Figure 4.16.   

IN FLU E N C E  L IN E  O F  M O M E N T @  S U P P O R T

IN FLU E N C E  L IN E  O F  M O M E N T @  M ID S P A N

 

Figure 4.16: Influence Lines of Moment 
 
 Influence lines of moment indicate the type of flexure at a fixed particular point 

whether it be positive or negative as the position of loading is variant.  If the influence 
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line indicates a positive value (above the original undeflected shape) then this 

corresponds with positive flexure.  If the influence line indicates a negative value (below 

the undeflected shape) then this corresponds with negative flexure.   

 Once the influence lines are drawn, they can be compared to the load test results.  

In essence, the theoretical moment influence lines are being compared with the 

experimental stress influence lines.  When examining a midspan location it can be seen 

that the beam exhibits positive flexure when the truck is located near midspan.  When the 

truck is on an adjoining span the beam exhibits negative flexure at the previous midspan.  

A connection providing no continuity would correlate with little stresses at the gage 

location when the truck is loaded on another span.  Refer to Figure 4.17 for a midspan 

stress plot. 
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Figure 4.17: Stress Plot @ Midspan Location w/ Influence Line 
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The interior support gage locations exhibit negative flexure when the truck is loaded on 

either span that is joined at that interior support.  The beam exhibits positive flexure at an 

interior pier location when the truck is on a span not joined by that interior support.  

Figure 4.18 shows a stress plot at an interior support location. 
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Figure 4.18: Stress Plot @ Support Location w/ Influence Line 
 
 
 The influence lines can indicate how continuity affects the moment or flexure 

from one span to the next.  This is a qualitative evaluation of whether continuity is 

transferred.  A computer analysis of the bridge also helps to verify the continuity transfer.  

However, by inspection the data would indicate that moment is transferred across the 

interior supports, as would be expected in a continuous structure.  If the continuity detail 
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was not functioning, the structure would respond closer to simple supports at interior pier 

locations   

 

4.4 FINITE ELEMENT ANALYSIS 

  

 A finite element analysis was performed on the Las Cruces Bridge to qualitatively 

verify the field test results and continuity detail enabling a moment transfer across the 

pier.  STAAD Pro 2004 was chosen for the analysis due to the simplicity and flexibility 

of the program.  The program has non-linear capabilities, however, a linear analysis was 

used for the purposes of this research.   

 

4.4.1 Model Description 

 In modeling this structure, it was necessary to capture the composite nature of the 

structure in a reliable, yet simple manner.  Previous research has shown that the use of 

rigid links to represent shear connectors is effective in modeling a composite beam model 

in computer finite element analysis (Tedesco et al 1995, Liang et al 2005, Mabsout et al 

1997, Chung et al 2005).  The composite beam model used for the Las Cruces Bridge 

consisted of beam and shell elements.  The entire steel cross section consists of shell 

elements, while the shear connectors or rigid links are represented as beam elements.  

The beam elements are then rigidly connected to the concrete deck which consists of a 

series of shell elements.  Figure 4.19 shows the typical composite cross section.   
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Figure 4.19: Composite Beam Model (Dang 2006) 
 
 The shell thicknesses were assigned to the model according to cross sectional 

dimensions found in the plan drawings.  The material properties were also assigned such 

as the concrete compressive strength and modulus of elasticity.  The modulus of elasticity 

used for the steel was 29,000 ksi while the modulus of elasticity used for the concrete 

was 3,600 ksi.  The modulus of concrete was calculated according to ACI (American 

Concrete Institute) 318-02 specifications utilizing the compressive strength that was 

given on the as-built drawings.  The shear stud spacing was set at 9.5” to ensure a fully 

composite model. 

 In considering the boundary conditions it was decided to utilize pinned 

connections at the abutment and interior pier locations.  In actuality the abutment behaves 

somewhere in between a fixed and pinned connection.  This was determined by observing 

negative flexure in the beams near the abutments.  Simple spans would have no moments 
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at the beam ends.  Please refer to Figure 4.20 for plot illustrating the negative flexure 

experienced at the abutment. 
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Figure 4.20: Appearance of Negative Flexure for S4 @ 2 ft from abutment 
 
 

The beam end is encased in concrete which provides some rotational constraint.  Figure 

4.21 illustrates the abutment detail. 

Negative Flexure When 
Truck is on First Span  



 57

STEEL GIRDER

REINFORCED CONCRETE DECK

0.75" PREFORMED BITUMINOUS

JOINT FILLER

SHEAR KEY

STEEL BARS

ABUTMENT

PILE CAP

SHEAR STUDS

 

Figure 4.21: Abutment Detail (Dang 2006) 
 
A more detailed report covering the finite element portion of this research was written by 

Chi Dang (Oklahoma State University, unpublished).  The report compares several 

different models with different types of boundary conditions.  Rotational springs are 

utilized to more closely match the true behavior of the bridge.  Only models with pinned 

supports were studied for this thesis.  The logic behind using pinned supports only was to 

keep the boundary conditions basic and uniform throughout the model.  The two models 

utilized were: a fully continuous model and a simply supported span model.  These two 

models represent the extremes in terms of continuity transfer from one span to the next. 

   

4.4.2 Loading 

The dump truck used in the field test was modeled as six point loads.  The axle 

weights were used to determine the weight that each tire carries.  For simplicity two 

longitudinal truck locations were utilized for each load path.  The stress plots were 

examined to determine the truck positions that produced the maximum response.  The 
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maximum response correlates with a peak on the stress plot.  For this field test, placing 

the front wheel of the truck at roughly 56’ and 140’ from the abutment produced the 

maximum response.  Please refer to Figure 4.22 below for the loading locations. 

 

Figure 4.22: Las Cruces Load Locations 
 
 

Hence, for the computer modeling to compare maximum stresses, the loads were 

placed at these two locations.    

 
 
4.4.3 Finite Element Analysis Results 

 Two models were analyzed using STAAD Pro 2004.  The first model (Model 1) 

represents a fully continuous pinned end connection bridge, while the second model 

(Model 2) represents a simply supported pinned end connection bridge.  In order to 

compare the stresses from the field results to the stresses from the computer model the 

calculated moments obtained were converted into stress at the locations of the applied 

gages.  With this conversion, the bottom flange stresses were examined in comparing the 

field results with the analysis results.  Only the load paths which directly loaded each 

First Position 

 

Second Position 

First Position 
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stringer were considered in the comparison in order to compare substantial amounts of 

stresses.  Table 4.1 contains the bottom flange stresses of the field results compared with 

the bottom flange stresses from the finite element analysis.  

Table 4.1: STAAD & Field Results (Las Cruces Bridge) 
 

Bottom Flange Stresses (ksi) 
Run Member Gage 

Location 
Field 

Model 
1 

% 
Difference 

Model 
2 

% 
Difference 

Abutment -1.8 0.18 -110% 0.24 -113% 
Midspan 3.7 5.01 35% 5.96 61% S1 
Support -2.9 -2.93 1% 0.09 -103% 
Support -2 -1.6 -20% 0.04 -102% 

8 

S5 
Midspan 3 3.3 10% 4.22 41% 
Abutment -0.8 0.08 -110% 0.11 -114% 
Midspan 2.3 2.28 -1% 2.7 17% S2 
Support -2.2 -1.47 -33% 0.05 -102% 
Support -1.3 -0.77 -41% 0.01 -101% 

6 

S6 
Midspan 2.25 1.79 -20% 2.25 0% 
Abutment -1 0.07 -107% 0.1 -110% 
Midspan 3.1 2.14 -31% 2.54 -18% S3 
Support -1.8 -1.35 -25% 0.04 -102% 
Support -1.15 -0.7 -39% 0.01 -101% 

4 

S7 
Midspan 2 1.63 -19% 2.05 2% 
Abutment -1 0.19 -119% 0.25 -125% 
Midspan 3.4 5.13 51% 6.1 79% S4 
Support -1.8 -3.05 69% 0.09 -105% 
Support -1.9 -1.66 -13% 0.04 -102% 

1 

S8 
Midspan 2.85 3.43 20% 4.38 54% 

 
 

Please refer to Figure 4.23 and 4.24 for graphical representations of these results.  Each 

of these figures represent a plot of maximum stresses from the field test results and one 

finite element analysis model along a single longitudinal line of girders.  Therefore, if one 

desires to visually examine the accuracy of the computer model against the field results at 

a particular testing location along the beam (ex. abutment, midspan, or near a pier) then it 

can be done easily.  
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Figure 4.23: Las Cruces Load Test Results vs. FEA Results of Bottom Flange Stresses of S1 & S5 
(Model 1) 
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Figure 4.24: Las Cruces Load Test Results vs. FEA Results of Bottom Flange Stresses of S1 & S5 
(Model 2) 

 
Refer to Appendix A for a complete set of the finite element results compared to the field 

load tests.  In most cases the first model is more representative of the actual field test 

results.  To determine which model more accurately captures the in-situ response, first, 

the midspan stresses were compared.  The midspan stresses of model 2 are in most cases 
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significantly greater (From -18% to 79% higher) than the midspan field test results.  This 

increase in stress is to be expected because there is greater moment at the midspan of a 

simply supported case compared with a continuous case.  Because pinned connections 

were used at the abutments, the stresses at midspan were much greater for model 1 than 

the field results.   

 Another location to compare is near the interior supports.  The bottom flange 

stresses near the interior supports should be negative due to negative flexure.  The bottom 

flange stresses in model 1 more closely match the field test results in most locations.  As 

expected, model 2 exhibits little to no stress near the interior supports.  This is another 

indication that the field results show (at least qualitatively) a moment transfer across the 

piers.    

 

4.5 SUMMARY 

 

 This chapter focused on a case study of a bridge located in Las Cruces New 

Mexico.  A field load test was conducted on the bridge to verify the continuity transfer 

supplied by the concrete diaphragm.   

Several abnormalities were discovered in examining the test data.  Mid-web 

stresses at several locations on the bridge were found to have either too great of a value 

or the opposite sign.  It was theorized that the abnormal mid-web stresses could be due to 

biaxial bending.  However, due to the nature of the research the exact cause was not 

determined to have an effect on the determining the continuity.  When examining 
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influence lines, it was determined that the bridge is maintaining a certain degree of 

continuity. 

 Comparing the field results with the finite element analysis results showed that 

the bridge exhibited some degree of continuity.  Model 1 (continuous model) was on 

average 6% greater than the field results at all midspan locations, while model 2 (simply 

supported model) was on average 30% greater than the field results at all midspan 

locations.  Model 1 (continuous model) was on average 13% less than the field results at 

all pier locations, while model 2 (simply supported model) was on average 102% less 

than the field results at all pier locations.   

 The continuous behavior of the bridge can be quantified by calculating ratios.  If 

the midspan stresses of the continuous case are divided by the midspan stresses of the 

simply supported case then this ratio can be compared with the ratio of the actual field 

results divided by the simply supported case.  Comparing ratios shows that the average 

midspan stress ratio for the continuous case is 0.82 while the field results also had an 

average ratio of 0.82.  Therefore, the bridge showed that it maintained a degree of 

continuity that agrees with the computer model analysis.        
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CHAPTER 5 
 

HATCH CASE STUDY 
 

5.1  INTRODUCTION 

 

 The previous chapter concentrated on the results of a load test conducted on a 

bridge in Las Cruces New Mexico.  This chapter focuses on another CLL bridge which is 

located in Hatch, New Mexico.  Essentially, the Hatch field load test will seek to verify 

the results of the Las Cruces test, and provide repeatability of the data and conclusions 

reached.  Most prominently, to investigate if the continuity detail performed as designed.   

 

5.2  BRIDGE DESCRIPTION 

 

 The second case study was conducted on the Hatch Bridge.  The bridge is on NM 

187 crossing east-west over the Rio Grande River.  The bridge is a five span composite 

slab on steel girder bridge.  The spans are 104’2”, 105’, 105’, 105’, and 104’2” in length.  

A picture of the Hatch Bridge is shown in Figure 5.1. 
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Figure 5.1: Hatch Bridge 
 
 
Four plate girders spaced at 8’7” support a 31’6” road width.  The same cross section is 

utilized for all of the plate girders. 
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STEEL GIRDERSTEEL GIRDERSTEEL GIRDERSTEEL GIRDER

REINFORCED CONCRETE DECK

 

Figure 5.2: Cross Section View of Bridge 
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The cross sectional dimensions are shown in the figure below. 

 

Figure 5.3: Steel Cross Section  
 
 The Hatch Bridge has a 9” concrete slab that is made composite through the use 

of shear studs that are 1.25” in diameter.  Each row of shear studs consists of three evenly 

spaced studs which are machine welded to the top flange.  Each shear stud is 

approximately 6” in height. 

 All of the girder ends rest on a sole plate atop an elastomeric bearing pad.  The 

plate and pad are attached to the concrete below via anchor bolts.  The top flanges of the 

girder ends are joined at the interior supports through the use of a continuity plate detail.  

Please refer to Figure 5.4 for the continuity detail of Hatch Bridge. 
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Figure 5.4: Hatch Bridge Continuity Detail 
 
The plate is connected to the top flanges by bolts which are tightened after the deck is 

poured.  The bolts are staggered along the length of the plate in between the shear studs.  

Please refer to Figure 5.5. 

 

Figure 5.5: Top View of Slotted Bolt Holes 
 

Unlike the Las Cruces bridge, the entire bridge deck was poured before tightening the 

bolts. 
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5.3  HATCH LOAD TEST 

 

 The Hatch Bridge was load tested on December 19, 2005.  The Hatch Bridge was 

load tested in a similar fashion and purpose as the Las Cruces Bridge; to determine if the 

concrete diaphragm is providing continuity across the piers.  Pseudo-static and dynamic 

load tests were performed on the bridge, however only the pseudo-static results are 

presented here.     

 

5.3.1 Instrumentation Plan 

 To examine the continuity provided by the concrete diaphragm, gage locations 

were chosen to measure either negative or positive strain to be compared to the strain 

expected in a fully continuous configuration.  Gages were placed 3 feet from each side of 

the interior supports to determine if the continuity detail provided enough rotational 

restraint to cause negative flexure.  Gages were also placed at midspan to measure the 

strain as compared to what would be expected with a fully continuous structure. 

 A single gage at each location was sufficient to study the continuous behavior of 

the bridge.  However, at least two gages are needed at each location to draw the strain 

profile (over the depth of the cross section) so gages were placed at the bottom flange and 

mid-web.  Two gages were placed at every location except for one location close to an 

interior support.  At each location gages were placed at the bottom flange and mid-web.  

The location near the interior support had three gages which were placed at the bottom of 

the top flange, at mid-web, and at the top of the bottom flange.  Due to the increased 

number of spans in comparison with the Las Cruces Bridge, gages were placed on only 
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three of the five spans.  Gage locations started at the midspan of the first span to the 

midspan of the third span.  The gaging plan can be found in Figure 5.6. 

2-a 2-b 2-a 2-b

2-b2-a2-b2-a
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Figure 5.6: Instrumentation Plan of Hatch Bridge 
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5.3.2 Load Test 

 Two types of tests were conducted as on the Las Cruces Bridge.  The sampling 

rate employed for the pseudo static test was 40 Hz.  A sampling rate of 66 Hz was used 

for the dynamic testing to capture enough data due to the increased speed of the truck. 

 The truck traveled east on the bridge in five different loading positions.  Five 

loading paths covered the width of the road starting at 2 feet from the barrier.  Each 

loading path was run two times.  The loading paths are outlined in Figure 5.7.  As 

previously discussed, the system starts recording data at the first click sent by the auto 

clicker.  This occurs at half of a wheel revolution behind the starting line.  The starting 

line for the Hatch Bridge was 10 feet before the first abutment while the ending was at 

the second abutment.  The auto-clicker measuring each wheel revolution contained a 

radio which was set to the same channel as the radios utilized by the Oklahoma State 

University system and the New Mexico State University system. 

 

5.3.3 Test Results 

 Strain was recorded and then converted to stress assuming elastic behavior.  Plots 

were created showing the stress recorded at each location versus the location of the truck.  

Essentially an influence stress plot was created for each gage location.  Since the gages 

were mounted on the inside of the flanges (web side) the strain was adjusted linearly out 

to the extreme fibers.  The two runs for each path were checked against each other for 

repeatability.  Figures 5.8 & 5.9 illustrate the repeatability of the data. 
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Figure 5.7: Loading Paths 
 

Truck Positions 
 

Y1: Passenger side wheel is 2’ away from southern barrier   
Y2: Driver side wheel on striped center line 
Y3: Passenger side wheel on striped center line 
Y4: Driver side wheel is 2’ away from northern barrier 
Y5: Centered about striped center line 
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Figure 5.8: First Trial Run 1 S8 @ Support 
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Figure 5.9: Second Trial Run 1 S8 @ Support 
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The unusual results obtained from the Las Cruces Test also occurred in the Hatch 

Load Test.  The three anomalies are: 

 

1. stresses at mid-web were EQUAL or LARGER than the bottom flange stress 

2. stresses at mid-web were SMALLER than the bottom flange stress but with 

the opposite sign 

3. stresses at mid-web were very small 

 

The most likely cause for the unusual midweb stresses is bi-axial bending.  However, it 

was felt only one gage was needed per location to determine if the bridge exhibited 

continuity.  For this particular bridge, most gage locations recorded strains at the midweb 

and bottom flange.   Figure 5.10 displays the number of unusual results that were found 

and at what locations.  The three unusual results are marked each time they occur and at 

what locations on the bridge.  Any results that do not display the unusual qualities are 

marked as “Usual” and are identified at different locations on the bridge. 
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Figure 5.10: Unusual Test Results Diagram Hatch Bridge Test  

 



 74

Influence lines were drawn for each testing location.  Refer to Figure 5.11 below. 

INFLUENCE LINE OF MOMENT @ SUPPORT

INFLUENCE LINE OF MOMENT @ MIDSPAN
1

 

Figure 5.11: Influence Lines of Moment 
 

Each influence line represents a single location longitudinally.  Negative values on the 

influence line indicate a negative moment at the selected point, and positive values 

indicate a positive moment at the selected point as the load crosses the span.  Influence 

lines were created for midspan and near support locations.   

 The influence lines were examined along with the stress versus truck location 

plots for analysis purposes.  A midspan examination revealed that when the truck is 

loaded directly on the gage location the beam exhibits positive bending.  This correlates 

with a tensile axial strain reading from the gage at the bottom flange and a compressive 

axial strain reading from the gage at the top flange.  When the truck is loaded on spans 

that are next to the original span the location exhibits negative flexure.  This correlates 

with a compressive axial strain reading from the gage at the bottom flange.  Figure 5.12 is 

a stress plot of a midspan location with the corresponding influence line.  
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Figure 5.12: Stress Plot @ Midspan Location w/ Influence Line 
 
 
 
The bottom flange gages near the interior supports exhibited negative strain when the 

truck is loaded on the two closest spans (thus correlating with negative flexure).  The 

bottom flange gage reads positive strain when the truck is on a span on either side of the 

two closest spans (thus correlating with positive flexure).  As with the midspan location, 

influence lines and tests results were compared.    Figure 5.13 is a stress plot near a 

support location with the corresponding influence line. 
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Figure 5.13: Stress Plot @ Support Location w/ Influence Line 

 
 

 Since the influence lines and the data compared favorably in a qualitative fashion, 

the conclusion was that the concrete diaphragm does provide continuity in the Hatch 

Bridge.  Utilizing computer models will help to demonstrate to what degree the girders 

behave continuously. 

 

5.4 FINITE ELEMENT ANALYSIS 

  

 STAAD Pro 2004 was again used to perform a finite element analysis on Hatch 

Bridge.  Due to the fact that the Hatch Bridge was designed in a similar fashion to the Las 

Cruces Bridge many of the same modeling techniques were used.  The Hatch Bridge was 

also a slab-on-girder composite bridge, therefore a composite cross section was needed 

for the analysis.  As before the rigid link system was utilized to simulate composite action 
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between the concrete slab and steel girder.  Pinned connections were also used for the 

boundary conditions.   

 

5.4.1 Model Description 

 The same type of composite cross section model from the Las Cruces Bridge was 

used for the Hatch Bridge.  The steel stringer and concrete deck consisted of a series of 

shell elements.  Beam elements were used to represent the shear connectors.  These beam 

elements served as rigid links connecting the steel stringer to the concrete deck.  The 

shell element thicknesses and material properties were assigned according to the design 

drawings.  Again the modulus of elasticity of steel used was 29,000 ksi while the 

modulus of elasticity of concrete used was 3,600 ksi.  These material properties were 

taken from the as-built drawings.  The rigid links were spaced at 10” in order to ensure 

full composite action. 

 Pinned connections were used to represent the boundary conditions.  The 

abutment and interior support details are very similar in design to the Las Cruces Bridge, 

therefore the same boundary conditions were utilized.  A continuous pinned end model 

and a simply supported pinned end model were created to determine which model more 

closely represents the bridge behavior as compared to the field tests. 

 

5.4.2 Loading 

 Six concentrated point loads represented the six wheels of the test truck.  Three 

longitudinal truck positions were used for each load path.  The stress plots were 

examined to determine the truck location that produced the maximum response.  The 
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stress plots peaked when the front wheel of the truck was roughly at 79’ 4”, 179’ 4”, and 

279’ 4” from the abutment.  Please refer to Figure 5.14 for relative loading positions. 

 

Figure 5.14: Hatch Loading Locations 
 

 

5.4.3 Finite Element Analysis Results 

 The two aforementioned models were analyzed in STAAD Pro 2004.  One load 

path was considered for each stringer that almost directly loaded it.  Table 5.1 gives a 

side by side comparison of the bottom flange stresses recorded from the field test and the 

bottom flange stresses from the analysis.  Model 1 is representative of the continuous 

case while model 2 is the simply supported case.   
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Table 5.1: STAAD & Field Results (Hatch Bridge) 
 

Bottom Flange Stresses (ksi) 

Run Member 
Gage 

Location Field
Model 

1 
% 

Difference 
Model 

2 
% 

Difference 
Midspan 3.8 5.04 33% 5.96 57% S1 
Support 1 -2.7 -2.41 -11% 0 -100% 
Support 1 -2.2 -1.79 -19% 0 -100% 
Midspan 3.6 4.27 19% 5.59 55% S5 
Support 2 -2.6 -1.94 -25% 0 -100% 
Support 2 -2 -1.97 -2% 0 -100% 

4 

S9 
Midspan 3.4 3.89 14% 5.23 54% 
Midspan 2.6 3.27 26% 3.79 46% S2 
Support 1 -1.5 -1.48 -1% 0 -100% 
Support 1 -1.3 -1.11 -15% 0 -100% 
Midspan 2.2 2.79 27% 3.51 60% S6 
Support 2 -1.6 -1.2 -25% 0 -100% 
Support 2 -1.3 -1.24 -5% 0 -100% 

3 

S10 
Midspan 2.5 2.44 -2% 3.17 27% 
Midspan 2.7 3.28 21% 3.79 40% S3 
Support 1 -1.8 -1.48 -18% 0 -100% 
Support 1 -1.1 -1.11 1% 0 -100% 
Midspan 2.7 2.79 3% 3.51 30% S7 
Support 2 -1.1 -1.2 9% 0 -100% 
Support 2 -0.9 -1.24 38% 0 -100% 

2 

S11 
Midspan 2.5 2.44 -2% 3.17 27% 
Midspan 3.8 5.04 33% 5.96 57% S4 
Support 1 -2.8 -2.41 -14% 0 -100% 
Support 1 -2.6 -1.79 -31% 0 -100% 
Midspan 4.2 4.27 2% 5.59 33% S8 
Support 2 -2.2 -1.94 -12% 0 -100% 
Support 2 -2.4 -1.97 -18% 0 -100% 

1 

S12 
Midspan 3.9 3.89 0% 5.23 34% 

  

Refer to Figures 5.15 and 5.16 for graphical representations of these results.  As before 

these plots display the maximum stresses from the field results compared with the finite 

element analysis results for a single longitudinal line of girders.  Recall from the 

instrumentation plan that the maximum stress can be visually examined for the midspan 

or close to pier locations on up to three spans.  
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Figure 5.15: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of S4, S8, & S12 
(Model 1) 
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Figure 5.16: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of S4, S8, & S12 

(Model 2) 
 
 
 When examining the table it can be seen that the first model is closer to the actual 

field test results in most cases.  Examining both the midspan and near pier stresses can 
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help to determine whether the bridge behaves more like model 1 or model 2.  The 

midspan stresses of model 2 are significantly greater than the midspan field test results.  

This increase in stress is to be expected because there is greater moment at the midspan 

of a simply supported case compared with a continuous case therefore resulting in an 

increased stress.  Because pinned connections were used at the abutments, the stresses at 

midspan were much greater for model 1 than the field results.  Observing the interior 

supports can also help to determine the continuous behavior of the bridge.  If the bridge 

behaves in a continuous fashion then the bottom flange stresses near the interior supports 

should be negative due to negative flexure that would be expected.  If the structure acted 

in a simply supported fashion (as modeled by model 2), it would be expected the field 

test results would have little or no stress.  As expected, the bottom flanges near the 

interior supports in model 2 exhibits little to no stress, while the stresses in model 1 show 

a considerable amount of stress.  This would indicate that the continuity detail does 

indeed function to transfer moment from span to span.      

 

5.5 SUMMARY 

 

 This chapter focused on a case study of a bridge located near Hatch New Mexico.  

A field load test was conducted on the bridge to verify the continuity transfer supplied by 

the concrete diaphragm.  The same unusual results discovered in the Las Cruces Bridge 

were also found in the Hatch Bridge.  Mid-web stresses at several locations on the bridge 

were found to have either an unusually high value or the opposite sign.  It was again 

theorized that the abnormal mid-web stresses could be due to biaxial bending.  However, 
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it was concluded that this abnormality did not have an effect on determining if the 

concrete diaphragm supplied continuity across the support.  The comparisons of the 

influence lines for moment with the stress plots show qualitatively that continuity is 

being transferred across the concrete diaphragm.   

 A comparison between the field results and the finite element analysis showed 

that the bridge behaves much more like model 1 (continuous model) than model 2 

(simply supported model).  Model 1 was on average 15% greater than the field results at 

all midspan locations, while model 2 was on average 43% greater than the field results at 

all midspan locations.  Model 1 was on average 9% less than the field results at all pier 

locations, while model 2 was on average 100% less than the field results at all pier 

locations.  The individual percent differences between the field results and model 1 are 

rather close with the greatest difference being 38%.   

 The continuous behavior of the bridge can be quantified by calculating ratios.  

Dividing the results of the finite element analysis midspan stresses of the continuous case 

by the midspan stresses of the simply supported case can be compared with the ratio of 

actual field results divided by the midspan stresses of the simply supported case.  

Comparing ratios shows that the average midspan stress ratio for the finite element 

continuous case was 0.80 while the field results had an average ratio of 0.70.  Therefore, 

it was concluded that this indicated the bridge demonstrated a degree of continuity that 

reasonably agrees with the computer model analysis.        
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

6.1  OVERVIEW OF PROJECT SCOPE 

  

 In an attempt to make steel bridges more economical in the short to medium span 

range the Continuous for Live Load (CLL) method was developed by Dr. Atorod 

Azizinamini at the University of Nebraska Lincoln.  The method consists of placing the 

steel girders of a bridge in a simply supported configuration for the dead load and a 

continuous configuration for the live loads.  The bridge is then retrofitted into a 

continuous structure by use  of a concrete diaphragm at the interior supports.  Pre-cast 

concrete girder bridges utilize this same technology in making the bridge CLL.  

However, due to this method being relatively new for steel bridges little research has 

been conducted into the use of CLL. 

 The objective of this research was to examine the economic feasibility of using 

CLL as a viable alternative/economically competitive to pre-stressed concrete bridges in 

the short to medium span lengths.  Also the CLL method was tested to verify if it did 

indeed provide continuity as designed. Two in-situ bridge field load tests were conducted 

to examine this portion of the project.  A literature review was conducted to gather any 
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current information, while a DOT survey was written in order to gather information on 

economical steel bridge design.   

 Two bridges in New Mexico were chosen to load test as a joint venture between 

Oklahoma State University and New Mexico State University.  The first bridge is located 

near Las Cruces and the second bridge is located near Hatch.  Each steel bridge was 

constructed continuous for live load with the addition of a steel continuity plate joining 

the top flanges of the girders.   

 

6.2  PROJECT RESULTS 

  

 There are two other methods that the CLL method for steel bridges was compared 

against in terms of cost and time savings: traditional steel bridge design and pre-cast pre-

stressed concrete girder bridges.  In all cases the CLL method was cost and time effective 

compared with traditional continuous steel bridges.  The CLL steel bridges proved to be 

competitive in terms of cost and time savings as compared with pre-cast pre-stressed 

concrete girder bridges.  However, the difficulty in comparing these two types of bridges 

lies in the fact that the material costs of steel and concrete are always in constant flux.  

Whenever cost drives the project, a DOT will choose that type of material simply because 

it is more cost effective to do so at the time.  Another difficulty in comparing these two 

types of bridges is that the fabrication market for one material in a particular state can be 

much more developed than the other material.  Therefore any cost and time savings 

coming from the CLL method do not necessarily prove to make steel as or more 

competitive with concrete in the short to medium span range of bridges. 
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 The other major area of interest addressed in this project was whether or not CLL  

performs as designed in field applications.  Two CLL bridges were load tested and the 

results were compared with finite element computer analysis model results.  The results 

showed that both bridges behaved much more like a fully continuous bridge than a 

simply supported span bridge. 

 The level of continuity transfer was quantified for both bridges.  The continuity 

transfer was quantified through a ratio of the finite element analysis midspan stresses of 

the continuous case divided by the finite element analysis midspan stresses of the simply 

supported case.  This ratio theoretically represents the greatest amount of continuity 

transfer.  That ratio was compared with the midspan stresses of the field results divided 

by the finite element analysis midspan stresses of the simply supported case.  This ratio 

represents the amount of continuity transfer that the bridge is exhibiting.  The Las Cruces 

Bridge had a ratio of 0.82 for the continuous case and 0.82 for the field results.  The 

Hatch Bridge had a ratio of 0.80 for the continuous case and 0.70 for the field results.  

Both bridges exhibited a significant amount of continuity transfer.   

 Although the bridges proved to be continuous it might be necessary to check these 

bridges again in the future.  The bridge in Las Cruces was built in 2001 while the bridge 

in Hatch was built in 2004.  These bridges are fairly new and there is some concern how 

the concrete diaphragm will fair with time.  Future load testing would help to prove that 

continuity is or is not maintained.  Specifically, the continuity connection with the steel 

reinforcement providing the live load continuity is of concern.  As mentioned previously, 

the concrete deck on bridges has been known to fail due to the corrosion of the steel.   
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6.3 CONCLUSIONS 

 

 Using the CLL method on steel bridges proved to be economical in comparison to 

traditional continuous steel bridges.  CLL bridges proved to be relatively economical 

compared with pre-cast pre-stressed concrete girders.  One case in New Mexico proved 

that a CLL bridge can be real competitive with pre-cast concrete girder bridges.  

However, another case in Tennessee proved that a CLL bridge was only slightly 

competitive to a pre-cast concrete girder bridge.  The constant fluctuation of the steel and 

concrete material costs based on the economy and local markets make it difficult to give 

any long term conclusions.  However, it was proven that the CLL method for steel girder 

bridges is an economical advance improving several facets of steel bridge construction. 

 The load testing of two steel CLL bridges showed that the concrete diaphragm 

maintained continuity across interior supports.  Examining influence lines proved that the 

girders were behaving continuously.  STAAD computer analysis models also showed that 

the bridge behaved more like a continuous configuration than a simply supported 

configuration.  Thus, the CLL method for steel girder bridges is a success based on the 

original intent of providing continuity.  

 

 

 

 

 

 



 87

 

 

 

REFERENCES 
 

Azizinamini, A., Lampe, N., Yakel, A.  (2003).  Toward development of a steel bridge 
system – Simple for dead load and continuous for live load (Thesis, University of 
Nebraska – Lincoln, 2003). 

 
Azizinamini, A., Veen, L. V.  (2004).  Bridges made easy.  Roads and Bridges, 42(11), 

42-43. 
 
Chung, W., Sotelino, E.D.  (2005).  Nonlinear finite-element analysis of composite steel 

girder bridges.  Journal of Structural Engineering, 131(2), 304-313. 
 
Dang, C.  (2006).  (Master’s Report, Oklahoma State University, 2006). 
 
Engel, R., Miller, R., Swanson, J.  (2004).  A summary of the PIC-22 fast-track bridge 

reconstruction project. 
 
Engel, R., Weeks, M.  (2001).  PIC-22-16.96.  (Drawings, Apr. 2001). 
 
Henkle, D.  (2001).  Competitive edge.  Civil Engineering, July 2001, 64-67. 
 
Liang, Q. Q., Uy, B., Bradford, M. A., Ronagh, H. R.  (2005).  Strength analysis of steel-

concrete composite beams in combined bending and shear.  Journal of Structural 
Engineering, 131(10), 1593-1600. 

 
Lin, M., Swanson, J.  (2004).  Verification of AASHTO-LRFD specifications live load 

distribution factor formulas for HPS bridges (Thesis, University of Cincinnati, 
2004).    

 
Mabsout, M. E., Tarhini, K. M., Frederick, G. R., Tayar, C.  (1997).  Finite-element 

analysis of steel girder highway bridges.  Journal of Bridge Engineering, 2(3), 83-
87. 

 
Mistry, V.  (1994).  Economical steel bridge design.  Modern Steel Construction, 34(3), 

42-47. 
 
Rubiez, C.  (1996).  Design aids for efficient short span steel bridges.  Modern Steel 

Construction, 36(12), 20-21. 
 



 88

Stouffer, J.  (2004).  Simplified economical bridge design feasibility report (Master’s 
Report, University of New Mexico, 2004). 

 
Talbot, J.  (2005).  Simple made continuous.  NSBA Steel Bridge News, 6(4), 1, 4-5. 
 
Tedesco, J. W., Stallings, J. M., Tow, D.R.  (1995).  Finite element method analysis of 

bridge girder-diaphragm interaction.  Computers & Structures, 56(2), 461-473. 
 
Wade, D.  (2000).  Sonoma Ranch Blvd. Bridge.  (Drawings, Dec. 2000). 
 
Wasserman, E.  (2004).  Simplified continuity details for short and medium span 

composite steel girder bridges. 
 
Weaver, D. L.  (1996).  Steel girder bridges.  The Construction Specifier, 49(5), 109-117. 
 
 
 
 
 

  

    

            

  

  

     

  

 

 

 

 

 

 



 89

 

 

 

APPENDIX A 

 

 

 

 

 

 

 

 The following appendix contains stress versus truck position plots of the Las 

Cruces Bridge Test conducted on December 18, 2005.  The stress is measured in units of 

ksi and the position of the truck is measured in units of ft.  Please note that the strain gage 

locations close to the abutments and interior supports are measured 2 ft from the concrete 

diaphragm face.  This appendix also contains plots of STAAD analysis results of the 

bottom flange stresses versus the field results taken from Chi Dang’s report.  Please note 

that FEA Model 1 is the continuous model while FEA Model 2 is the simply supported 

model. 
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Figure A1: Las Cruces Bridge Test Run 1 S1 @ 2 ft from abutment 
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Figure A2: Las Cruces Bridge Test Run 1 S1 @ Midspan 

 



 95

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

Front wheel position (ft)

St
re

ss
 (k

si
)

Top Flange
Mid-Web

Bottom Flange

 
Figure A3: Las Cruces Bridge Test Run 1 S1 @ 2 ft from interior support 
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Figure A4: Las Cruces Bridge Test Run 1 S2 @ 2 ft from abutment 
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Figure A5: Las Cruces Bridge Test Run 1 S2 @ Midspan 
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Figure A6: Las Cruces Bridge Test Run 1 S2 @ 2 ft from interior support 
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Figure A7: Las Cruces Bridge Test Run 1 S3 @ 2 ft from abutment 
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Figure A8: Las Cruces Bridge Test Run 1 S3 @ Midspan 
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Figure A9: Las Cruces Bridge Test Run 1 S3 @ 2 ft from interior support 
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Figure A10: Las Cruces Bridge Test Run 1 S4 @ 2 ft from abutment 
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Figure A11: Las Cruces Bridge Test Run 1 S4 @ Midspan 

 

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

0 50 100 150 200 250 300 350 400

Front wheel position (ft)

St
re

ss
 (k

si
)

Top Flange

Mid-Web

Bottom 
Flange

 
Figure A12: Las Cruces Bridge Test Run 1 S4 @ 2 ft from interior support 
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Figure A13: Las Cruces Bridge Test Run 1 S5 @ 2 ft from interior support 
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Figure A14: Las Cruces Bridge Test Run 1 S5 @ Midspan 
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Figure A15: Las Cruces Bridge Test Run 1 S6 @ 2 ft from interior support 
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Figure A16: Las Cruces Bridge Test Run 1 S6 @ Midspan 
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Figure A17: Las Cruces Bridge Test Run 1 S7 @ 2 ft from interior support 
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Figure A18: Las Cruces Bridge Test Run 1 S7 @ Midspan 
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Figure A19: Las Cruces Bridge Test Run 1 S8 @ 2 ft from interior support 
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Figure A20: Las Cruces Bridge Test Run 1 S8 @ Midspan 
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Figure A21: Las Cruces Bridge Test Run 2 S1 @ 2 ft from abutment 
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Figure A22: Las Cruces Bridge Test Run 2 S1 @ Midspan 
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Figure A23: Las Cruces Bridge Test Run 2 S1 @ 2 ft from interior support 
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Figure A24: Las Cruces Bridge Test Run 2 S2 @ 2 ft from abutment 
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Figure A25: Las Cruces Bridge Test Run 2 S2 @ Midspan 
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Figure A26: Las Cruces Bridge Test Run 2 S2 @ 2 ft from interior support 
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Figure A27: Las Cruces Bridge Test Run 2 S3 @ 2 ft from abutment 
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Figure A28: Las Cruces Bridge Test Run 2 S3 @ Midspan 
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Figure A29: Las Cruces Bridge Test Run 2 S3 @ 2 ft from interior support 
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Figure A30: Las Cruces Bridge Test Run 2 S4 @ 2 ft from abutment 
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Figure A31: Las Cruces Bridge Test Run 2 S4 @ Midspan 
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Figure A32: Las Cruces Bridge Test Run 2 S4 @ 2 ft from interior support 
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Figure A33: Las Cruces Bridge Test Run 2 S5 @ 2 ft from interior support 
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Figure A34: Las Cruces Bridge Test Run 2 S5 @ Midspan 
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Figure A35: Las Cruces Bridge Test Run 2 S6 @ 2 ft from interior support 
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Figure A36: Las Cruces Bridge Test Run 2 S6 @ Midspan 
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Figure A37: Las Cruces Bridge Test Run 2 S7 @ 2 ft from interior support 
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Figure A38: Las Cruces Bridge Test Run 2 S7 @ Midspan 
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Figure A39: Las Cruces Bridge Test Run 2 S8 @ 2 ft from interior support 
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Figure A40: Las Cruces Bridge Test Run 2 S8 @ Midspan 
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Figure A41: Las Cruces Bridge Test Run 3 S1 @ 2 ft from abutment 
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Figure A42: Las Cruces Bridge Test Run 3 S1 @ Midspan 

 
 



 115

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0 50 100 150 200 250 300 350 400

Front wheel position (ft)

St
re

ss
 (k

si
)

Top Flange

Mid-Web

Bottom Flange

 
Figure A43: Las Cruces Bridge Test Run 3 S1 @ 2 ft from interior support 
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Figure A44: Las Cruces Bridge Test Run 3 S2 @ 2 ft from abutment 
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Figure A45: Las Cruces Bridge Test Run 3 S2 @ Midspan 
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Figure A46: Las Cruces Bridge Test Run 3 S2 @ 2 ft from interior support 
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Figure A47: Las Cruces Bridge Test Run 3 S3 @ 2 ft from abutment 
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Figure A48: Las Cruces Bridge Test Run 3 S3 @ Midspan 
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Figure A49: Las Cruces Bridge Test Run 3 S3 @ 2 ft from interior support 
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Figure A50: Las Cruces Bridge Test Run 3 S4 @ 2 ft from abutment 
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Figure A51: Las Cruces Bridge Test Run 3 S4 @ Midspan 
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Figure A52: Las Cruces Bridge Test Run 3 S4 @ 2 ft from interior support 
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Figure A52: Las Cruces Bridge Test Run 3 S5 @ 2 ft from interior support 
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Figure A53: Las Cruces Bridge Test Run 3 S5 @ Midspan 
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Figure A54: Las Cruces Bridge Test Run 3 S6 @ 2 ft from interior support 
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Figure A55: Las Cruces Bridge Test Run 3 S6 @ Midspan 
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Figure A56: Las Cruces Bridge Test Run 3 S7 @ 2 ft from interior support 
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Figure A57: Las Cruces Bridge Test Run 3 S7 @ Midspan 
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Figure A58: Las Cruces Bridge Test Run 3 S8 @ 2 ft from interior support 
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Figure A59: Las Cruces Bridge Test Run 3 S8 @ Midspan 
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Figure A60: Las Cruces Bridge Test Run 4 S1 @ 2 ft from abutment 
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Figure A61: Las Cruces Bridge Test Run 4 S1 @ Midspan 
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Figure A62: Las Cruces Bridge Test Run 4 S1 @ 2 ft from interior support 
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Figure A63: Las Cruces Bridge Test Run 4 S2 @ 2 ft from abutment 
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Figure A64: Las Cruces Bridge Test Run 4 S2 @ Midspan 
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Figure A65: Las Cruces Bridge Test Run 4 S2 @ 2 ft from interior support 
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Figure A66: Las Cruces Bridge Test Run 4 S3 @ 2 ft from abutment 
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Figure A67: Las Cruces Bridge Test Run 4 S3 @ Midspan 
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Figure A68: Las Cruces Bridge Test Run 4 S3 @ 2 ft from interior support 
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Figure A69: Las Cruces Bridge Test Run 4 S4 @ 2 ft from abutment 
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Figure A70: Las Cruces Bridge Test Run 4 S4 @ Midspan 
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Figure A71: Las Cruces Bridge Test Run 4 S4 @ 2 ft from interior support 
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Figure A72: Las Cruces Bridge Test Run 4 S5 @ 2 ft from interior support 
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Figure A73: Las Cruces Bridge Test Run 4 S5 @ Midspan 
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Figure A74: Las Cruces Bridge Test Run 4 S6 @ 2 ft from interior support 
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Figure A75: Las Cruces Bridge Test Run 4 S6 @ Midspan 
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Figure A76: Las Cruces Bridge Test Run 4 S7 @ 2 ft from interior support 
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Figure A77: Las Cruces Bridge Test Run 4 S7 @ Midspan 
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Figure A78: Las Cruces Bridge Test Run 4 S8 @ 2 ft from interior support 

 

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 50 100 150 200 250 300 350 400

Front wheel position (ft)

St
re

ss
 (k

si
)

Top 
Flange

Mid-Web

Bottom Flange

 
Figure A79: Las Cruces Bridge Test Run 4 S8 @ Midspan 
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Figure A80: Las Cruces Bridge Test Run 5 S1 @ 2 ft from abutment 
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Figure A81: Las Cruces Bridge Test Run 5 S1 @ Midspan 
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Figure A82: Las Cruces Bridge Test Run 5 S1 @ 2 ft from interior support 
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Figure A83: Las Cruces Bridge Test Run 5 S2 @ 2 ft from abutment 
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Figure A84: Las Cruces Bridge Test Run 5 S2 @ Midspan 
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Figure A85: Las Cruces Bridge Test Run 5 S2 @ 2 ft from interior support 
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Figure A86: Las Cruces Bridge Test Run 5 S3 @ 2 ft from abutment 
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Figure A87: Las Cruces Bridge Test Run 5 S3 @ Midspan 
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Figure A88: Las Cruces Bridge Test Run 5 S3 @ 2 ft from interior support 
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Figure A89: Las Cruces Bridge Test Run 5 S4 @ 2 ft from abutment 
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Figure A90: Las Cruces Bridge Test Run 5 S4 @ Midspan 
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Figure A91: Las Cruces Bridge Test Run 5 S4 @ 2 ft from interior support 
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Figure A92: Las Cruces Bridge Test Run 5 S5 @ 2 ft from interior support 
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Figure A93: Las Cruces Bridge Test Run 5 S5 @ Midspan 
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Figure A94: Las Cruces Bridge Test Run 5 S6 @ 2 ft from interior support 
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Figure A95: Las Cruces Bridge Test Run 5 S6 @ Midspan 
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Figure A96: Las Cruces Bridge Test Run 5 S7 @ 2 ft from interior support 
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Figure A97: Las Cruces Bridge Test Run 5 S7 @ Midspan 
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Figure A98: Las Cruces Bridge Test Run 5 S8 @ 2 ft from interior support 
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Figure A99: Las Cruces Bridge Test Run 5 S8 @ Midspan 
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Figure A100: Las Cruces Bridge Test Run 6 S1 @ 2 ft from abutment 
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Figure A101: Las Cruces Bridge Test Run 6 S1 @ Midspan 
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Figure A102: Las Cruces Bridge Test Run 6 S1 @ 2 ft from interior support 
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Figure A103: Las Cruces Bridge Test Run 6 S2 @ 2 ft from abutment 
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Figure A104: Las Cruces Bridge Test Run 6 S2 @ Midspan 
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Figure A105: Las Cruces Bridge Test Run 6 S2 @ 2 ft from interior support 
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Figure A106: Las Cruces Bridge Test Run 6 S3 @ 2 ft from abutment 
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Figure A107: Las Cruces Bridge Test Run 6 S3 @ Midspan 
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Figure A108: Las Cruces Bridge Test Run 6 S3 @ 2 ft from interior support 
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Figure A109: Las Cruces Bridge Test Run 6 S4 @ 2 ft from abutment 
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Figure A110: Las Cruces Bridge Test Run 6 S4 @ Midspan 
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Figure A111: Las Cruces Bridge Test Run 6 S4 @ 2 ft from interior support 
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Figure A112: Las Cruces Bridge Test Run 6 S5 @ 2 ft from interior support 
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Figure A113: Las Cruces Bridge Test Run 6 S5 @ Midspan 
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Figure A114: Las Cruces Bridge Test Run 6 S6 @ 2 ft from interior support 
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Figure A115: Las Cruces Bridge Test Run 6 S6 @ Midspan 
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Figure A116: Las Cruces Bridge Test Run 6 S7 @ 2 ft from interior support 
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Figure A117: Las Cruces Bridge Test Run 6 S7 @ Midspan 
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Figure A118: Las Cruces Bridge Test Run 6 S8 @ 2 ft from interior support 
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Figure A119: Las Cruces Bridge Test Run 6 S8 @ Midspan 
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Figure A120: Las Cruces Bridge Test Run 7 S1 @ 2 ft from abutment 

 

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200 250 300 350 400

Front wheel position (ft)

St
re

ss
 (k

si
)

Top Flange

Mid-Web

Bottom Flange

 
Figure A121: Las Cruces Bridge Test Run 7 S1 @ Midspan 
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Figure A122: Las Cruces Bridge Test Run 7 S1 @ 2 ft from interior support 
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Figure A123: Las Cruces Bridge Test Run 7 S2 @ 2 ft from abutment 
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Figure A124: Las Cruces Bridge Test Run 7 S2 @ Midspan 
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Figure A125: Las Cruces Bridge Test Run 7 S2 @ 2 ft from interior support 
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Figure A126: Las Cruces Bridge Test Run 7 S3 @ 2 ft from abutment 
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Figure A127: Las Cruces Bridge Test Run 7 S3 @ Midspan 
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Figure A128: Las Cruces Bridge Test Run 7 S3 @ 2 ft from interior support 
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Figure A129: Las Cruces Bridge Test Run 7 S4 @ 2 ft from abutment 
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Figure A130: Las Cruces Bridge Test Run 7 S4 @ Midspan 
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Figure A131: Las Cruces Bridge Test Run 7 S4 @ 2 ft from interior support 
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Figure A132: Las Cruces Bridge Test Run 7 S5 @ 2 ft from interior support 
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Figure A133: Las Cruces Bridge Test Run 7 S5 @ Midspan 
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Figure A134: Las Cruces Bridge Test Run 7 S6 @ 2 ft from interior support 
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Figure A135: Las Cruces Bridge Test Run 7 S6 @ Midspan 
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Figure A136: Las Cruces Bridge Test Run 7 S7 @ 2 ft from interior support 
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Figure A137: Las Cruces Bridge Test Run 7 S7 @ Midspan 
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Figure A138: Las Cruces Bridge Test Run 7 S8 @ 2 ft from interior support 
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Figure A139: Las Cruces Bridge Test Run 7 S8 @ Midspan 
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Figure A140: Las Cruces Bridge Test Run 8 S1 @ 2 ft from abutment 
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Figure A141: Las Cruces Bridge Test Run 8 S1 @ Midspan 
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Figure A142: Las Cruces Bridge Test Run 8 S1 @ 2 ft from interior support 
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Figure A143: Las Cruces Bridge Test Run 8 S2 @ 2 ft from abutment 
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Figure A144: Las Cruces Bridge Test Run 8 S2 @ Midspan 
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Figure A145: Las Cruces Bridge Test Run 8 S2 @ 2 ft from interior support 
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Figure A146: Las Cruces Bridge Test Run 8 S3 @ 2 ft from abutment 
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Figure A147: Las Cruces Bridge Test Run 8 S3 @ Midspan 
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Figure A148: Las Cruces Bridge Test Run 8 S3 @ 2 ft from interior support 
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Figure A149: Las Cruces Bridge Test Run 8 S4 @ 2 ft from abutment 
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Figure A150: Las Cruces Bridge Test Run 8 S4 @ Midspan 
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Figure A151: Las Cruces Bridge Test Run 8 S4 @ 2 ft from interior support 
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Figure A152: Las Cruces Bridge Test Run 8 S5 @ 2 ft from interior support 
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Figure A153: Las Cruces Bridge Test Run 8 S5 @ Midspan 

 
 



 171

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 50 100 150 200 250 300 350 400

Front wheel position (ft)

St
re

ss
 (k

si
)

Top Flange

Mid-Web

Bottom Flange

 
Figure A154: Las Cruces Bridge Test Run 8 S6 @ 2 ft from interior support 
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Figure A155: Las Cruces Bridge Test Run 8 S6 @ Midspan 
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Figure A156: Las Cruces Bridge Test Run 8 S7 @ 2 ft from interior support 
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Figure A157: Las Cruces Bridge Test Run 8 S7 @ Midspan 
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Figure A158: Las Cruces Bridge Test Run 8 S8 @ 2 ft from interior support 
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Figure A159: Las Cruces Bridge Test Run 8 S8 @ Midspan 



 174

36' 1" 35' 5"
3'4"

4' 4' 55' 11"

78' 10" 59' 11"

 

Figure A160: Las Cruces Load Test Results vs. FEA Results of Bottom Flange Stresses of S1 & S5 
(Dang 2006) 
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Figure A161: Las Cruces Load Test Results vs. FEA Results of Bottom Flange Stresses of S2 & S6 
(Dang 2006) 
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Figure A162: Las Cruces Load Test Results vs. FEA Results of Bottom Flange Stresses of S3 & S7 

(Dang 2006) 
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Figure A163: Las Cruces Load Test Results vs. FEA Results of Bottom Flange Stresses of S4 & S8 
(Dang 2006) 
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Figure A164: Las Cruces Load Test Results vs. FEA Results of Bottom Flange Stresses of S1 & S5 

(Dang 2006) 
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Figure A165: Las Cruces Load Test Results vs. FEA Results of Bottom Flange Stresses of S2 & S6 
(Dang 2006) 
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Figure A166: Las Cruces Load Test Results vs. FEA Results of Bottom Flange Stresses of S3 & S7 

(Dang 2006) 
 

36' 1" 35' 5"

3' 4"

4' 4' 55' 11"

78' 10" 59' 11"
 

Figure A167: Las Cruces Load Test Results vs. FEA Results of Bottom Flange Stresses of S4 & S8 
(Dang 2006) 
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APPENDIX B 

 

 

 

 

 

 

 

 The following appendix contains stress versus truck position plots of the Hatch 

Bridge Test conducted on December 19, 2005.  The stress is measured in units of ksi and 

the position of the truck is measured in units of ft.  Please note that the strain gage 

locations close to the interior supports are measured 3 ft from the concrete diaphragm 

face.  This appendix also contains plots of STAAD analysis results of the bottom flange 

stresses versus the field results taken from Chi Dang’s report.  Please note that FEA 

Model 1 is the continuous model while FEA Model 2 is the simply supported model. 

 

 

 

 

 



 179

 
 
 
 
 

TABLE OF FIGURES 
 
Figure B1: Hatch Bridge Test Run 1 S1 @ Midspan ................................................ 183 
Figure B2: Hatch Bridge Test Run 1 S1 @ 3 ft west of interior support................. 183 
Figure B3: Hatch Bridge Test Run 1 S5 @ 3 ft east of interior support ................. 184 
Figure B4: Hatch Bridge Test Run 1 S5 @ Midspan ................................................ 184 
Figure B5: Hatch Bridge Test Run 1 S5 @ 3 ft west of interior support................. 185 
Figure B6: Hatch Bridge Test Run 1 S9 @ 3 ft east of interior support ................. 185 
Figure B7: Hatch Bridge Test Run 1 S9 @ Midspan ................................................ 186 
Figure B8: Hatch Bridge Test Run 1 S2 @ Midspan ................................................ 186 
Figure B9: Hatch Bridge Test Run 1 S2 @ 3 ft west of interior support................. 187 
Figure B10: Hatch Bridge Test Run 1 S6 @ 3 ft east of interior support ............... 187 
Figure B11: Hatch Bridge Test Run 1 S6 @ Midspan .............................................. 188 
Figure B12: Hatch Bridge Test Run 1 S6 @ 3 ft west of interior support............... 188 
Figure B13: Hatch Bridge Test Run 1 S10 @ 3 ft east of interior support ............. 189 
Figure B14: Hatch Bridge Test Run 1 S10 @ Midspan ............................................ 189 
Figure B15: Hatch Bridge Test Run 1 S3 @ Midspan .............................................. 190 
Figure B16: Hatch Bridge Test Run 1 S3 @ 3 ft west of interior support............... 190 
Figure B17: Hatch Bridge Test Run 1 S7 @ 3 ft east of interior support ............... 191 
Figure B18: Hatch Bridge Test Run 1 S7 @ Midspan .............................................. 191 
Figure B19: Hatch Bridge Test Run 1 S7 @ 3 ft west of interior support............... 192 
Figure B20: Hatch Bridge Test Run 1 S11 @ 3 ft east of interior support ............. 192 
Figure B21: Hatch Bridge Test Run 1 S11 @ Midspan ............................................ 193 
Figure B22: Hatch Bridge Test Run 1 S4 @ Midspan .............................................. 193 
Figure B23: Hatch Bridge Test Run 1 S4 @ 3 ft west of interior support............... 194 
Figure B24: Hatch Bridge Test Run 1 S8 @ 3 ft east of interior support ............... 194 
Figure B25: Hatch Bridge Test Run 1 S8 @ Midspan .............................................. 195 
Figure B26: Hatch Bridge Test Run 1 S8 @ 3 ft west of interior support............... 195 
Figure B27: Hatch Bridge Test Run 1 S12 @ 3 ft east of interior support ............. 196 
Figure B28: Hatch Bridge Test Run 1 S12 @ Midspan ............................................ 196 
Figure B29: Hatch Bridge Test Run 2 S1 @ Midspan .............................................. 197 
Figure B30: Hatch Bridge Test Run 2 S1 @ 3 ft west of interior support............... 197 
Figure B31: Hatch Bridge Test Run 2 S5 @ 3 ft east of interior support ............... 198 
Figure B32: Hatch Bridge Test Run 2 S5 @ Midspan .............................................. 198 
Figure B33: Hatch Bridge Test Run 2 S5 @ 3 ft west of interior support............... 199 
Figure B34: Hatch Bridge Test Run 2 S9 @ 3 ft east of interior support ............... 199 
Figure B35: Hatch Bridge Test Run 2 S9 @ Midspan .............................................. 200 
Figure B36: Hatch Bridge Test Run 2 S2 @ Midspan .............................................. 200 
Figure B37: Hatch Bridge Test Run 2 S2 @ 3 ft west of interior support............... 201 
Figure B38: Hatch Bridge Test Run 2 S6 @ 3 ft east of interior support ............... 201 
Figure B39: Hatch Bridge Test Run 2 S6 @ Midspan .............................................. 202 



 180

Figure B40: Hatch Bridge Test Run 2 S6 @ 3 ft west of interior support............... 202 
Figure B41: Hatch Bridge Test Run 2 S10 @ 3 ft east of interior support ............. 203 
Figure B42: Hatch Bridge Test Run 2 S10 @ Midspan ............................................ 203 
Figure B43: Hatch Bridge Test Run 2 S3 @ Midspan .............................................. 204 
Figure B44: Hatch Bridge Test Run 2 S3 @ 3 ft west of interior support............... 204 
Figure B45: Hatch Bridge Test Run 2 S7 @ 3 ft west of interior support............... 205 
Figure B46: Hatch Bridge Test Run 2 S7 @ Midspan .............................................. 205 
Figure B47: Hatch Bridge Test Run 2 S7 @ 3 ft west of interior support............... 206 
Figure B48: Hatch Bridge Test Run 2 S11 @ 3 ft east of interior support ............. 206 
Figure B49: Hatch Bridge Test Run 2 S11 @ Midspan ............................................ 207 
Figure B50: Hatch Bridge Test Run 2 S4 @ Midspan .............................................. 207 
Figure B51: Hatch Bridge Test Run 2 S4 @ 3 ft west of interior support............... 208 
Figure B52: Hatch Bridge Test Run 2 S8 @ 3 ft east of interior support ............... 208 
Figure B53: Hatch Bridge Test Run 2 S8 @ Midspan .............................................. 209 
Figure B54: Hatch Bridge Test Run 2 S8 @ 3 ft west of interior support............... 209 
Figure B55: Hatch Bridge Test Run 2 S12 @ 3 ft east of interior support ............. 210 
Figure B56: Hatch Bridge Test Run 2 S12 @ Midspan ............................................ 210 
Figure B57: Hatch Bridge Test Run 3 S1 @ Midspan .............................................. 211 
Figure B58: Hatch Bridge Test Run 3 S1 @ 3 ft west of interior support............... 211 
Figure B59: Hatch Bridge Test Run 3 S5 @ 3 ft east of interior support ............... 212 
Figure B60: Hatch Bridge Test Run 3 S5 @ Midspan .............................................. 212 
Figure B61: Hatch Bridge Test Run 3 S5 @ 3 ft west of interior support............... 213 
Figure B62: Hatch Bridge Test Run 3 S9 @ 3 ft east of interior support ............... 213 
Figure B63: Hatch Bridge Test Run 3 S9 @ Midspan .............................................. 214 
Figure B64: Hatch Bridge Test Run 3 S2 @ Midspan .............................................. 214 
Figure B65: Hatch Bridge Test Run 3 S2 @ 3 ft west of interior support............... 215 
Figure B66: Hatch Bridge Test Run 3 S6 @ 3 ft east of interior support ............... 215 
Figure B67: Hatch Bridge Test Run 3 S6 @ Midspan .............................................. 216 
Figure B68: Hatch Bridge Test Run 3 S6 @ 3 ft west of interior support............... 216 
Figure B69: Hatch Bridge Test Run 3 S10 @ 3 ft east of interior support ............. 217 
Figure B70: Hatch Bridge Test Run 3 S10 @ Midspan ............................................ 217 
Figure B71: Hatch Bridge Test Run 3 S3 @ Midspan .............................................. 218 
Figure B72: Hatch Bridge Test Run 3 S3 @ 3 ft west of interior support............... 218 
Figure B73: Hatch Bridge Test Run 3 S7 @ 3 ft east of interior support ............... 219 
Figure B74: Hatch Bridge Test Run 3 S7 @ Midspan .............................................. 219 
Figure B75: Hatch Bridge Test Run 3 S7 @ 3 ft west of interior support............... 220 
Figure B76: Hatch Bridge Test Run 3 S11 @ 3 ft east of interior support ............. 220 
Figure B77: Hatch Bridge Test Run 3 S11 @ Midspan ............................................ 221 
Figure B78: Hatch Bridge Test Run 3 S4 @ Midspan .............................................. 221 
Figure B79: Hatch Bridge Test Run 3 S4 @ 3 ft west of interior support............... 222 
Figure B80: Hatch Bridge Test Run 3 S8 @ 3 ft east of interior support ............... 222 
Figure B81: Hatch Bridge Test Run 3 S8 @ Midspan .............................................. 223 
Figure B82: Hatch Bridge Test Run 3 S8 @ 3 ft west of interior support............... 223 
Figure B83: Hatch Bridge Test Run 3 S12 @ 3 ft east of interior support ............. 224 
Figure B84: Hatch Bridge Test Run 3 S12 @ Midspan ............................................ 224 
Figure B85: Hatch Bridge Test Run 4 S1 @ Midspan .............................................. 225 



 181

Figure B86: Hatch Bridge Test Run 4 S1 @ 3 ft west of interior support............... 225 
Figure B87: Hatch Bridge Test Run 4 S5 @ 3 ft east of interior support ............... 226 
Figure B88: Hatch Bridge Test Run 4 S5 @ Midspan .............................................. 226 
Figure B89: Hatch Bridge Test Run 4 S5 @ 3 ft west of interior support............... 227 
Figure B90: Hatch Bridge Test Run 4 S9 @ 3 ft east of interior support ............... 227 
Figure B91: Hatch Bridge Test Run 4 S9 @ Midspan .............................................. 228 
Figure B92: Hatch Bridge Test Run 4 S2 @ Midspan .............................................. 228 
Figure B93: Hatch Bridge Test Run 4 S2 @ 3 ft west of interior support............... 229 
Figure B94: Hatch Bridge Test Run 4 S6 @ 3 ft east of interior support ............... 229 
Figure B95: Hatch Bridge Test Run 4 S6 @ Midspan .............................................. 230 
Figure B96: Hatch Bridge Test Run 4 S6 @ 3 ft west of interior support............... 230 
Figure B97: Hatch Bridge Test Run 4 S10 @ 3 ft east of interior support ............. 231 
Figure B98: Hatch Bridge Test Run 4 S10 @ Midspan ............................................ 231 
Figure B99: Hatch Bridge Test Run 4 S3 @ Midspan .............................................. 232 
Figure B100: Hatch Bridge Test Run 4 S3 @ 3 ft west of interior support............. 232 
Figure B101: Hatch Bridge Test Run 4 S7 @ 3 ft east of interior support ............. 233 
Figure B102: Hatch Bridge Test Run 4 S7 @ Midspan ............................................ 233 
Figure B103: Hatch Bridge Test Run 4 S7 @ 3 ft west of interior support............. 234 
Figure B104: Hatch Bridge Test Run 4 S11 @ 3 ft east of interior support ........... 234 
Figure B105: Hatch Bridge Test Run 4 S11 @ Midspan .......................................... 235 
Figure B106: Hatch Bridge Test Run 4 S4 @ Midspan ............................................ 235 
Figure B107: Hatch Bridge Test Run 4 S4 @ 3 ft west of interior support............. 236 
Figure B108: Hatch Bridge Test Run 4 S8 @ 3 ft east of interior support ............. 236 
Figure B109: Hatch Bridge Test Run 4 S8 @ Midspan ............................................ 237 
Figure B110: Hatch Bridge Test Run 4 S8 @ 3 ft west of interior support............. 237 
Figure B111: Hatch Bridge Test Run 4 S12 @ 3 ft east of interior support ........... 238 
Figure B112: Hatch Bridge Test Run 4 S12 @ Midspan .......................................... 238 
Figure B113: Hatch Bridge Test Run 5 S1 @ Midspan ............................................ 239 
Figure B114: Hatch Bridge Test Run 5 S1 @ 3 ft west of interior support............. 239 
Figure B115: Hatch Bridge Test Run 5 S5 @ 3 ft east of interior support ............. 240 
Figure B116: Hatch Bridge Test Run 5 S5 @ Midspan ............................................ 240 
Figure B117: Hatch Bridge Test Run 5 S5 @ 3 ft west of interior support............. 241 
Figure B118: Hatch Bridge Test Run 5 S9 @ 3 ft east of interior support ............. 241 
Figure B119: Hatch Bridge Test Run 5 S9 @ Midspan ............................................ 242 
Figure B120: Hatch Bridge Test Run 5 S2 @ Midspan ............................................ 242 
Figure B121: Hatch Bridge Test Run 5 S2 @ 3 ft west of interior support............. 243 
Figure B122: Hatch Bridge Test Run 5 S6 @ 3 ft east of interior support ............. 243 
Figure B123: Hatch Bridge Test Run 5 S6 @ Midspan ............................................ 244 
Figure B124: Hatch Bridge Test Run 5 S6 @ 3 ft west of interior support............. 244 
Figure B125: Hatch Bridge Test Run 5 S10 @ 3 ft east of interior support ........... 245 
Figure B126: Hatch Bridge Test Run 5 S10 @ Midspan .......................................... 245 
Figure B127: Hatch Bridge Test Run 5 S3 @ Midspan ............................................ 246 
Figure B128: Hatch Bridge Test Run 5 S3 @ 3 ft west of interior support............. 246 
Figure B129: Hatch Bridge Test Run 5 S7 @ 3 ft east of interior support ............. 247 
Figure B130: Hatch Bridge Test Run 5 S7 @ Midspan ............................................ 247 
Figure B131: Hatch Bridge Test Run 5 S7 @ 3 ft west of interior support............. 248 



 182

Figure B132: Hatch Bridge Test Run 5 S11 @ 3 ft east of interior support ........... 248 
Figure B133: Hatch Bridge Test Run 5 S11 @ Midspan .......................................... 249 
Figure B134: Hatch Bridge Test Run 5 S4 @ Midspan ............................................ 249 
Figure B135: Hatch Bridge Test Run 5 S4 @ 3 ft west of interior support............. 250 
Figure B136: Hatch Bridge Test Run 5 S8 @ 3 ft east of interior support ............. 250 
Figure B137: Hatch Bridge Test Run 5 S8 @ Midspan ............................................ 251 
Figure B138: Hatch Bridge Test Run 5 S8 @ 3 ft west of interior support............. 251 
Figure B139: Hatch Bridge Test Run 5 S12 @ 3 ft east of interior support ........... 252 
Figure B140: Hatch Bridge Test Run 5 S12 @ Midspan .......................................... 252 
Figure B141: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of 

S1, S5, & S9 (Dang 2006)...................................................................................... 253 
Figure B142: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of 

S2, S6, & S10 (Dang 2006).................................................................................... 253 
Figure B143: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of 

S3, S7, & S11 (Dang 2006).................................................................................... 254 
Figure B144: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of 

S4, S8, & S12 (Dang 2006).................................................................................... 254 
Figure B145: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of 

S1, S5, & S9 (Dang 2006)...................................................................................... 255 
Figure B146: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of 

S2, S6, & S10 (Dang 2006).................................................................................... 255 
Figure B147: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of 

S3, S7, & S11 (Dang 2006).................................................................................... 256 
Figure B148: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of 

S4, S8, & S12 (Dang 2006).................................................................................... 256 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 183

-0.3

-0.2

-0.2

-0.1

-0.1

0.0

0.1

0.1

0 50 100 150 200 250 300 350 400 450

Front wheel position (ft)

St
re

ss
 (k

si
)

Bottom Flange

Mid web

 
Figure B1: Hatch Bridge Test Run 1 S1 @ Midspan 
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Figure B2: Hatch Bridge Test Run 1 S1 @ 3 ft west of interior support 
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Figure B3: Hatch Bridge Test Run 1 S5 @ 3 ft east of interior support 
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Figure B4: Hatch Bridge Test Run 1 S5 @ Midspan 
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Figure B5: Hatch Bridge Test Run 1 S5 @ 3 ft west of interior support 

 

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150 200 250 300 350 400 450

Front wheel position (ft)

St
re

ss
 (k

si
)

Bottom Flange

Mid web

 
Figure B6: Hatch Bridge Test Run 1 S9 @ 3 ft east of interior support 
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Figure B7: Hatch Bridge Test Run 1 S9 @ Midspan 
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Figure B8: Hatch Bridge Test Run 1 S2 @ Midspan 
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Figure B9: Hatch Bridge Test Run 1 S2 @ 3 ft west of interior support 
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Figure B10: Hatch Bridge Test Run 1 S6 @ 3 ft east of interior support 
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Figure B11: Hatch Bridge Test Run 1 S6 @ Midspan 
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Figure B12: Hatch Bridge Test Run 1 S6 @ 3 ft west of interior support 
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Figure B13: Hatch Bridge Test Run 1 S10 @ 3 ft east of interior support 
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Figure B14: Hatch Bridge Test Run 1 S10 @ Midspan 
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Figure B15: Hatch Bridge Test Run 1 S3 @ Midspan 
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Figure B16: Hatch Bridge Test Run 1 S3 @ 3 ft west of interior support 
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Figure B17: Hatch Bridge Test Run 1 S7 @ 3 ft east of interior support 
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Figure B18: Hatch Bridge Test Run 1 S7 @ Midspan 
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Figure B19: Hatch Bridge Test Run 1 S7 @ 3 ft west of interior support 
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Figure B20: Hatch Bridge Test Run 1 S11 @ 3 ft east of interior support 
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Figure B21: Hatch Bridge Test Run 1 S11 @ Midspan 
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Figure B22: Hatch Bridge Test Run 1 S4 @ Midspan 
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Figure B23: Hatch Bridge Test Run 1 S4 @ 3 ft west of interior support 
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Figure B24: Hatch Bridge Test Run 1 S8 @ 3 ft east of interior support 

 
 



 195

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

0 50 100 150 200 250 300 350 400 450

Front wheel position (ft)

St
re

ss
 (k

si
)

Bottom Flange

Mid web

 
Figure B25: Hatch Bridge Test Run 1 S8 @ Midspan 
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Figure B26: Hatch Bridge Test Run 1 S8 @ 3 ft west of interior support 
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Figure B27: Hatch Bridge Test Run 1 S12 @ 3 ft east of interior support 
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Figure B28: Hatch Bridge Test Run 1 S12 @ Midspan 
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Figure B29: Hatch Bridge Test Run 2 S1 @ Midspan 
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Figure B30: Hatch Bridge Test Run 2 S1 @ 3 ft west of interior support 
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Figure B31: Hatch Bridge Test Run 2 S5 @ 3 ft east of interior support 
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Figure B32: Hatch Bridge Test Run 2 S5 @ Midspan 
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Figure B33: Hatch Bridge Test Run 2 S5 @ 3 ft west of interior support 
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Figure B34: Hatch Bridge Test Run 2 S9 @ 3 ft east of interior support 
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Figure B35: Hatch Bridge Test Run 2 S9 @ Midspan 
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Figure B36: Hatch Bridge Test Run 2 S2 @ Midspan 
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Figure B37: Hatch Bridge Test Run 2 S2 @ 3 ft west of interior support 
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Figure B38: Hatch Bridge Test Run 2 S6 @ 3 ft east of interior support 
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Figure B39: Hatch Bridge Test Run 2 S6 @ Midspan 
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Figure B40: Hatch Bridge Test Run 2 S6 @ 3 ft west of interior support 
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Figure B41: Hatch Bridge Test Run 2 S10 @ 3 ft east of interior support 
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Figure B42: Hatch Bridge Test Run 2 S10 @ Midspan 
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Figure B43: Hatch Bridge Test Run 2 S3 @ Midspan 
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Figure B44: Hatch Bridge Test Run 2 S3 @ 3 ft west of interior support 
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Figure B45: Hatch Bridge Test Run 2 S7 @ 3 ft west of interior support 
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Figure B46: Hatch Bridge Test Run 2 S7 @ Midspan 
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Figure B47: Hatch Bridge Test Run 2 S7 @ 3 ft west of interior support 
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Figure B48: Hatch Bridge Test Run 2 S11 @ 3 ft east of interior support 
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Figure B49: Hatch Bridge Test Run 2 S11 @ Midspan 

 

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 50 100 150 200 250 300 350 400 450

Front wheel position (ft)

St
re

ss
 (k

si
)

Bottom Flange

Mid web

 
Figure B50: Hatch Bridge Test Run 2 S4 @ Midspan 
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Figure B51: Hatch Bridge Test Run 2 S4 @ 3 ft west of interior support 
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Figure B52: Hatch Bridge Test Run 2 S8 @ 3 ft east of interior support 
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Figure B53: Hatch Bridge Test Run 2 S8 @ Midspan 
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Figure B54: Hatch Bridge Test Run 2 S8 @ 3 ft west of interior support 
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Figure B55: Hatch Bridge Test Run 2 S12 @ 3 ft east of interior support 
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Figure B56: Hatch Bridge Test Run 2 S12 @ Midspan 
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Figure B57: Hatch Bridge Test Run 3 S1 @ Midspan 
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Figure B58: Hatch Bridge Test Run 3 S1 @ 3 ft west of interior support 
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Figure B59: Hatch Bridge Test Run 3 S5 @ 3 ft east of interior support 
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Figure B60: Hatch Bridge Test Run 3 S5 @ Midspan 
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Figure B61: Hatch Bridge Test Run 3 S5 @ 3 ft west of interior support 
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Figure B62: Hatch Bridge Test Run 3 S9 @ 3 ft east of interior support 
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Figure B63: Hatch Bridge Test Run 3 S9 @ Midspan 
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Figure B64: Hatch Bridge Test Run 3 S2 @ Midspan 
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Figure B65: Hatch Bridge Test Run 3 S2 @ 3 ft west of interior support 
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Figure B66: Hatch Bridge Test Run 3 S6 @ 3 ft east of interior support 
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Figure B67: Hatch Bridge Test Run 3 S6 @ Midspan 
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Figure B68: Hatch Bridge Test Run 3 S6 @ 3 ft west of interior support 
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Figure B69: Hatch Bridge Test Run 3 S10 @ 3 ft east of interior support 
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Figure B70: Hatch Bridge Test Run 3 S10 @ Midspan 
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Figure B71: Hatch Bridge Test Run 3 S3 @ Midspan 
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Figure B72: Hatch Bridge Test Run 3 S3 @ 3 ft west of interior support 
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Figure B73: Hatch Bridge Test Run 3 S7 @ 3 ft east of interior support 
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Figure B74: Hatch Bridge Test Run 3 S7 @ Midspan 
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Figure B75: Hatch Bridge Test Run 3 S7 @ 3 ft west of interior support 
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Figure B76: Hatch Bridge Test Run 3 S11 @ 3 ft east of interior support 
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Figure B77: Hatch Bridge Test Run 3 S11 @ Midspan 
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Figure B78: Hatch Bridge Test Run 3 S4 @ Midspan 
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Figure B79: Hatch Bridge Test Run 3 S4 @ 3 ft west of interior support 
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Figure B80: Hatch Bridge Test Run 3 S8 @ 3 ft east of interior support 
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Figure B81: Hatch Bridge Test Run 3 S8 @ Midspan 
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Figure B82: Hatch Bridge Test Run 3 S8 @ 3 ft west of interior support 
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Figure B83: Hatch Bridge Test Run 3 S12 @ 3 ft east of interior support 
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Figure B84: Hatch Bridge Test Run 3 S12 @ Midspan 
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Figure B85: Hatch Bridge Test Run 4 S1 @ Midspan 
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Figure B86: Hatch Bridge Test Run 4 S1 @ 3 ft west of interior support 
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Figure B87: Hatch Bridge Test Run 4 S5 @ 3 ft east of interior support 
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Figure B88: Hatch Bridge Test Run 4 S5 @ Midspan 
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Figure B89: Hatch Bridge Test Run 4 S5 @ 3 ft west of interior support 
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Figure B90: Hatch Bridge Test Run 4 S9 @ 3 ft east of interior support 
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Figure B91: Hatch Bridge Test Run 4 S9 @ Midspan 
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Figure B92: Hatch Bridge Test Run 4 S2 @ Midspan 
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Figure B93: Hatch Bridge Test Run 4 S2 @ 3 ft west of interior support 
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Figure B94: Hatch Bridge Test Run 4 S6 @ 3 ft east of interior support 
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Figure B95: Hatch Bridge Test Run 4 S6 @ Midspan 
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Figure B96: Hatch Bridge Test Run 4 S6 @ 3 ft west of interior support 
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Figure B97: Hatch Bridge Test Run 4 S10 @ 3 ft east of interior support 
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Figure B98: Hatch Bridge Test Run 4 S10 @ Midspan 
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Figure B99: Hatch Bridge Test Run 4 S3 @ Midspan 
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Figure B100: Hatch Bridge Test Run 4 S3 @ 3 ft west of interior support 
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Figure B101: Hatch Bridge Test Run 4 S7 @ 3 ft east of interior support 
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Figure B102: Hatch Bridge Test Run 4 S7 @ Midspan 
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Figure B103: Hatch Bridge Test Run 4 S7 @ 3 ft west of interior support 
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Figure B104: Hatch Bridge Test Run 4 S11 @ 3 ft east of interior support 
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Figure B105: Hatch Bridge Test Run 4 S11 @ Midspan 

 

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0 50 100 150 200 250 300 350 400 450

Front wheel position (ft)

St
re

ss
 (k

si
)

Bottom Flange

Mid web

 
Figure B106: Hatch Bridge Test Run 4 S4 @ Midspan 
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Figure B107: Hatch Bridge Test Run 4 S4 @ 3 ft west of interior support 
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Figure B108: Hatch Bridge Test Run 4 S8 @ 3 ft east of interior support 
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Figure B109: Hatch Bridge Test Run 4 S8 @ Midspan 
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Figure B110: Hatch Bridge Test Run 4 S8 @ 3 ft west of interior support 
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Figure B111: Hatch Bridge Test Run 4 S12 @ 3 ft east of interior support 
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Figure B112: Hatch Bridge Test Run 4 S12 @ Midspan 
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Figure B113: Hatch Bridge Test Run 5 S1 @ Midspan 
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Figure B114: Hatch Bridge Test Run 5 S1 @ 3 ft west of interior support 
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Figure B115: Hatch Bridge Test Run 5 S5 @ 3 ft east of interior support 
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Figure B116: Hatch Bridge Test Run 5 S5 @ Midspan 
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Figure B117: Hatch Bridge Test Run 5 S5 @ 3 ft west of interior support 
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Figure B118: Hatch Bridge Test Run 5 S9 @ 3 ft east of interior support 
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Figure B119: Hatch Bridge Test Run 5 S9 @ Midspan 
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Figure B120: Hatch Bridge Test Run 5 S2 @ Midspan 
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Figure B121: Hatch Bridge Test Run 5 S2 @ 3 ft west of interior support 
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Figure B122: Hatch Bridge Test Run 5 S6 @ 3 ft east of interior support 
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Figure B123: Hatch Bridge Test Run 5 S6 @ Midspan 
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Figure B124: Hatch Bridge Test Run 5 S6 @ 3 ft west of interior support 
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Figure B125: Hatch Bridge Test Run 5 S10 @ 3 ft east of interior support 
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Figure B126: Hatch Bridge Test Run 5 S10 @ Midspan 
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Figure B127: Hatch Bridge Test Run 5 S3 @ Midspan 
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Figure B128: Hatch Bridge Test Run 5 S3 @ 3 ft west of interior support 
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Figure B129: Hatch Bridge Test Run 5 S7 @ 3 ft east of interior support 
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Figure B130: Hatch Bridge Test Run 5 S7 @ Midspan 
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Figure B131: Hatch Bridge Test Run 5 S7 @ 3 ft west of interior support 
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Figure B132: Hatch Bridge Test Run 5 S11 @ 3 ft east of interior support 
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Figure B133: Hatch Bridge Test Run 5 S11 @ Midspan 
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Figure B134: Hatch Bridge Test Run 5 S4 @ Midspan 
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Figure B135: Hatch Bridge Test Run 5 S4 @ 3 ft west of interior support 
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Figure B136: Hatch Bridge Test Run 5 S8 @ 3 ft east of interior support 
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Figure B137: Hatch Bridge Test Run 5 S8 @ Midspan 
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Figure B138: Hatch Bridge Test Run 5 S8 @ 3 ft west of interior support 
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Figure B139: Hatch Bridge Test Run 5 S12 @ 3 ft east of interior support 
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Figure B140: Hatch Bridge Test Run 5 S12 @ Midspan 
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Figure B141: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of S1, S5, & S9 

(Dang 2006) 
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Figure B142: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of S2, S6, & S10 

(Dang 2006) 
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Figure B143: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of S3, S7, & S11 

(Dang 2006)  
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Figure B144: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of S4, S8, & S12 

(Dang 2006) 
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Figure B145: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of S1, S5, & S9 

(Dang 2006) 
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Figure B146: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of S2, S6, & S10 

(Dang 2006) 
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Figure B147: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of S3, S7, & S11 

(Dang 2006) 
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Figure B148: Hatch Load Test Results vs. FEA Results of Bottom Flange Stresses of S4, S8, & S12 

(Dang 2006) 
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Steel Bridge Design and Construction Questionnaire 
 
 
 
 
 
 

Charles M. Bowen, PhD 
Assistant Professor of Civil Engineering 

(405) 744-5257 
 
 

Daniel E. Morales 
Graduate Research Assistant 

(405) 744-5222 
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1. Do you have any experience with the design or construction of steel bridges?  If 
so, list any projects you have been involved with. 
 
 
 
 

 
2. Have you worked on any bridge projects using a different structural material 

besides steel?  If so, please answer the following set of questions. 
 

Compare/contrast the two types of bridges based on: 
 

Cost: 
 
 
 
  

   Erection:  
 
 
 
 
Fabrication:   
 
 
 
 
Maintenance:  
 
 
 
 
Design Simplicity:  
 
 
 
 
 
 

3. Do you feel as though the design method of minimizing the weight of steel in 
bridges is a sufficient method to compete with other bridges (E.I. Prestressed 
Concrete Bridges) in terms of cost effectiveness? 
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4. Do you have any knowledge or experience concerning field splicing?  List any 

projects you have worked on with field splices.  
 
 
 
 
 

5. If knowledge is known about field splicing please answer the following questions. 
 

 How does field splicing affect the design/construction of steel bridges in 
terms of: 

 
 Cost:  

  
 
 
 

 
 Erection:  

  
 
 
 

 
 Fabrication:  

  
 
 
 

 
 
 Design Simplicity:  

  
 
 

 
 
  
 
 

6. In your professional opinion, would research into the possible elimination of field 
splices be beneficial to the steel bridge industry? 
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7. Have you heard of the simplified economical bridge design developed by Atorod 
Azizinamini in coordination with the National Bridge Research Organization 
(NaBRO) and the Nebraska Department of Roads (NDOR)?  
 
 
 
 
 
 

8. Do you have any concerns about this new method of construction? 
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Currently in the United States, the precast, pre-stressed concrete design method 
dominates the new construction market in the short to medium span range bridges.   

One approach to help make steel bridges more competitive with pre-stressed 
concrete bridges is the continuous for live load method (CLL).  The method employs a 
simply supported interior end restraint configuration for dead loads and a subsequent 
modification to a continuous span configuration for live loads by way of a concrete 
diaphragm at interior supports.    

To determine the feasibility and effectiveness of this method, a cost analysis, an 
in-situ field load test, and finite element analysis were performed on two CLL bridges in 
service in New Mexico, USA.  The continuous for live load method was found to be 
more cost and time effective as compared with traditional continuous steel bridge 
construction.  Additionally, it was determined that both case study bridges maintained 
continuity across the interior supports.   
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