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CHAPTER |

INTRODUCTION

1.1Background and Problem Definition

Finite element analysis (FEA) is one of the most common metisets for numerical
solution of field problems. The field problem is often described @iffexential equation
or an integral expression. The finite element solution helps in solvasg tcomplex field
problems into an easier ordinary differential equation that can lleemumerically

solved.

Finite element analysis can be used in any field problem sschheat transfer,
stress/strain analysis of structural or mechanical systantsflow, and magnetic fields.
It can use any type of geometrical shape avoiding any testisdn geometry. Boundary
conditions, loading and material properties can vary from elemenemoert. It can
incorporate more than one type of element which closely resemblesubelaxty or the

region which is to be analyzed.

At present many commercial types of software have been devetopedlyze structures

using finite elements. Software titles such as Staad.Pro, Amy#\baqus are some of



the commercial programs available for research and design psirjd®se programs are
usually advantageous in checking the element shapes, elemdmsnagsl connections.
In the present study, however, Matlab is used in the developmergaftware program

for finite element analysis.

Each element is connected at points known as nodes. In a two-dimérsialyais of
displacements, each node has two degrees of freedom. The partiangement of the
nodes is known as the finite element mesh. A finite element neeskpresented
numerically by a system of algebraic equations to be solvedhtorunknown field
guantities at the nodes. These unknowns are the values of the fieldyqgaadtdepend
on the element type. The field quantity over the entire strutdtwapproximated element

by element.

Different types of elements are used in this present studgnaédyze the beam for
deflections. Subsequently, stresses and strains may alstebmided. The stresses and
strains, however, are not the focus of this study. As such, onlctiefie will be of

interest herein. The different types of elements considered in this sady a

1. Constant Strain Triangular elements (CST),

N

Linear Strain Triangular elements (LST),

3. Four-Node Rectangular elements (Q4), and

»

Eight-Node Rectangular elements (Q8).



CST and LST elements are advantageous in determining the heat camdawtl
modeling pure bending of beams. Whereas, the Q8 elements helminaghg shear
locking in beam analysis that is experienced when using Q4 elent&adl of these
elements can also be further used in formulating frames andegruBsie to their
flexibility, they can also be used to analyze structural ayos due to earthquake ground
motion as well as heat transfer and temperature degradationodseuttural fire

conditions.

In the present study, however, only two-dimensional (2-D) structurallysis of simple
beams was considered. The finite element analysis program cthesisted of 2-D
elements to derive the structural equations. With known boundary condittons (
supports) and known loading conditions, the unknown field quantity (deflectiers)
then solved. The accuracy of the finite element solution depends oy faetors.
However, the primary focus of this study is not concerned withmthigidual accuracy of

any single problem.

1.2 Objectives

This study incorporates the use of basic and advanced finitemiems a tool to solve
complex engineering problems. The use of commercial softwaa¢sdsan important
aspect in the present day research scenario to analyzetienp with limited difficulty.

The primary objective of this study is the development of aefieiément analysis (FEA)

program, incorporating each of the four elements as previoushyede written in the



Matlab programming language. This program is capable of fotmgldahe element
stiffness matrix for all four types of elements. This prograses static and dynamic
loading to solve for deflections, stress and strains. This proggaalso capable of

generating graphical outputs for the results.

This study also helps in getting a better understanding of theugadomputational
software being used for research and commercial purposes. Inietdeof Civil

Engineering, finite element analysis has played an enormousnraelving complex
analytical problems. It has drastically improved the economicdl gfathis field by

reducing the cost of laboratory tests for practical field problems.

1.3 Overview

The next several chapters present the methodology behind this stusiyrdasy of each

chapter is provided to give a brief overview of the remaining sections of this study

e Chapter Il — Literature Review:
Studies conducted on various disciplines using finite element anadysis
presented and a brief overview of these studies is provided. Thpteclaso
discusses the usefulness of software for research purposes aedsetsin
determining or extracting specific and relevant data to the gmobbeing

considered.



e Chapter lll — Finite Element Theoretical Derivations:
Detailed theoretical development of the finite element analysi€edure is
presented and discussed. The development of the structural equaticms
structural system using finite elements is first presentgaplication of boundary
and loading conditions as well as solution techniques to determine khewum
deflections are presented. Finally, advanced finite element fdionda
considering the four element types considered in this studyesenied. Each of

these formulations are used in determining the structural equations forttéma.sys

e Chapter IV — Case Studies:
The capabilities of the Matlab FEA program developed as a consegaéthis
study are demonstrated. Each of the four element types consialehes study
are utilized to demonstrate the difference in accuracy betteealements. All
the results that are needed for this study are provided in thpgech& his chapter
also compares the results that are found from hand calculations dogethes

procedure of FE.

e Chapter V — Conclusion:
A summary of the results and conclusions of the study are provided.
Recommendations are provided for potential future research wikateto the

development of the FEA program as developed in this study.



CHAPTER Il

LITERATURE REVIEW

2.1 Finite Element Method

The finite element method can be used to solve complex linear anthaanproblems.
There are thousands of studies that have been conducted in the pastrsetigt could
be considered. All of these studies together, demonstrateethbility for which the

finite element method can be used. Several specific examplggaiided herein that

demonstrate this flexibility as it pertains to structural analysis asdewed in this study.

A finite element code was developed for the curing simulation ok thamposite
structures by Park et al. (2000). This model was capable of modetimposite
structures with arbitrary shapes. The proposed degeneration methottttheuhermal
conductivity matrix for two-dimensional cure simulation yieldedséattory results. It
also provided accurate temperature distributions during the curitigiolf composite

structures.

A finite element analysis was conducted on steel fiber-reirdocoacrete beams by D.

Mehmet et al. (2008). This beam was modeled by using nonlineariahgteperties



adopted from experimental study. Eight-node solid brick elements wse to model
the concrete. The deflection and stress data were compdites éaperimental study at
failure and yielded the desired results. They found the initialprogressive cracking
due to deflections and stress obtained from the finite element madgared well to the
experimental data. They also found that the failure mechanism dfetra is modeled
quiet well using the finite element method and the failure loadigiezl was very close

to the failure load measured during experimental testing.

Finite element method can also be used in frame structures. MatBagt al. (2006)
analyzed the response sensitivity analysis using three-fielddnriormulations for frame
structures. The methodology was based on direct differentiatidmodsetand produced
the response sensitivities consistent with the numerical felément response. This
methodology is also related to the developed steel-concrete coenfrasite element.
Particular attention was given to steel-concrete composite frarteediriments for which
the three-field mixed formulation was found to be beneficial imseof numerical
accuracy. Furthermore, finite element response sensitivitysasalas found to give an
adequate insight into the structural response behavior and its sgnsitiimodeling

parameters.

2.2 Advanced Elements

Advanced finite elements have also been used in thousands of studiespastten

years. These elements go beyond the basic axial/lbar and beamentslethat are



commonly used in structural analysis (e.g., direct stiffnestiodgt Incorporation of
advanced elements allows the user to consider localized charggsmetry or material
that may change the characteristics of the structusgorese. As such, the use of
advanced elements provides superior flexibility with respectdetailed analysis of the
performance of the structural system. As before, a fewtsdladies are discussed herein

that pertain to the use of advanced elements in a finite element analysis.

Salem et al. (2001) developed a robust element distortion metad basthe concept of
mid-node admissible spaces for two-dimensional (2-D) quadratiagtdar finite
elements with one edge curved. The concept implies that for anmpadal of a 2-D
quadratic triangular element there is a specific area miiliiich it can be placed such
that element quality is maintained. This metric is based onJdlcebian matrix and
requires computation of the linear element only. This process rethe&3PU time as

calculated from the Jacobian values at gauss integration points.

Glaucio et al (2007) proposed a Q4/Q4M element having design vanabdks and
displacement nodes which are not coincidental. They implementee@lément using
different approaches, including continuous approximation of mateséidition and
nodal approaches. In both the cases, it was found that the method usedorgas
advantageous in generating higher resolution for topological resh#g.also applied an
integral averaging technique to suppress the instabilitiesedadse to layering and

islanding.



Li et al. (2001) presented a quadratic finite element and quadaitie strip with
generalized degrees of freedom based on the fact that theliggalcement fields of the
elements should be compatible with the global displacement belthé corresponding
system. Though quadratic elements and strips were used, they foultd weth good
accuracy and desirable convergence. Compared to the traditional dlaments and
strips this method yielded similar results with less degredeefiom. They also found
that, when compared to the linear element, this method can yieldsregth better

accuracy.

Kikuchi et al. (1999) presented a modification of an 8-node quadrilaie@ent which
is widely used in finite element analysis. They proposed tbmmatt which can represent
any Cartesian and isoparametric quadratic polynomials whenot bilinear isotropic
shape. They found that the results were in good agreement wiblagteeformulation of
an 8-node element. Moreover, this element gave good results for higleeretements

and for three-dimensional (3-D) elements.

Finally, Long et al. (2004) investigated the effect of modified reduced quasiratas on
the presence of spurious modes in the stiffness matrices @&hserendipity and Q9
Lagrange membrane finite element. The alternative five- and-paght schemes were
proposed for Q8 and Q9 elements, respectively, that allowed for ithenatlon of
spurious modes while element accuracy was maintained. They fourtletl@8 element
yielded more economical results using the five-point rule when amdpto the eight-

point rule. The Q9 element, however, produced inadequate results usifigetpeint



rule whereas the eight-point rule gave accurate results. &fathese results was

compared to the fully integrated counterpart.

2.3 Software Advantages

The use of software to obtain finite element solutions has also wek documented
through the literature. Commercial software packages are yeadiilable that provide
adequate flexibility for most research and practical purposes.evwthe development
of a FEA program through the use of computer programming providesaupexibility
with respect to user manipulation. User-written FEA prograene always been at the
heart of research and have been utilized for many yearsadémae institutions. The
programming language Matlab has become increasingly popular duse dapabilities
with respect to matrix manipulation. A few examples are provideslthat demonstrate

the use of Matlab as the programming language for the development of a FE&nprogr

Alberty et al. (2002) presented a short Matlab implementationPfoand Q finite
elements for the numerical solution of 2-D and 3-D problems inrliakssticity with
mixed boundary conditions. They provided a Matlab code incorporating the simple model
examples as well as more complex problems. Element stiffnasges were assembled

by Dirichlet and Newmann methods for quadrilateral and tetraheteaents. The
authors provided the numerical examples with postprocessing and simeaiteon via an

average stress field illustrating the new Matlab tool and its flexibilit

10



Barlets et al. (2004) implemented a short Matlab program to inagpar flexible
isoparametric finite element method. Two-dimensional domains auitted boundaries
of elastic problems having quadratic order were considered. mhegporated triangular
and quadrilateral elements equipped with varying quadrature rules alieied for
mesh refinement. They provided numerical examples for the Laplaceioequath

mixed boundary conditions to indicate the flexibility of the isopatam@nite elements.

11



CHAPTER Ill

FINITE ELEMENT THEORETICAL DERIVATIONS

3.1 Introduction

The primary objective of this study is to develop a finite elenasrdlysis program
utilizing advanced finite elements. These different elemgast however, influence the
response of a beam in varying fashions. This effect depends on various factors kach as t
number of nodes per elements, the degrees of freedom associat¢cltvdlement, the
displacement field and the material properties. As such, onesleis not always
superior to another with respect to any given analysis. Oftenthe experience of the
finite element analyst that determines the appropriate eléeméetused. The purpose of
this study is not to determine the appropriate element to be ns@d analysis. The
purpose of this study is only to develop the capabilities for the sinelychoose the

appropriate element.

To develop the finite element analysis program, an understanding dhebeetical
development of finite elements is necessary. Finite elemeatdiscrete pieces of the
system that are interconnected at nodal points. In a strudensle, each element

contributes to the stiffness of the system. The stiffness, imectipn with the boundary

12



(or support) conditions as well as prescribed loadings, determindsftirenations of the
system. Numerical procedures are utilized to determine iffireess for each element.
Furthermore, algorithms for combining each element into an &$g@infinite elements
is needed to determine the structural stiffness. Finally, soltgedmiques are needed to

solve the structural equations from a numerical perspective.

3.2 Interpolation and Shape Functions

Interpolation is to form a continuous function that satisfies ptesgrconditions at a
finite number of points. The points are the nodes of the elementshangrdscribed
conditions are the nodal values of the field quantity. The interpgldtinction is
typically a polynomial that provides a single-valued and continuous flélerefore, the
generalized degree-of-freedom (DQOdr)can be interpolated with dependent varigBle
and independent varialskgthat can be written in the form
g= Y, axt or @ = |X|{a} (3-1)
where
IX]=11 x x* .. x| and {a} = lag a; a, .. a,|” (3-2)
wheren = 1 for linear interpolationn = 2 for quadratic interpolation, and so on. The
relationship between nodal val{@.} anda is given by
0.} = [Al{a} (3-3)
where each row offd] is evaluated at the appropriate locationX |n Solving equations
3-1, 3-2 and 3-3 gives

3= |N|{@,} where |N|= |X|[A]"1= I[N, N, ..]| (3-4)

13



where|N| is a vector containing each shape functipnFor each\;, the shape function
is unity at its own node and zeros at all other nodes. Here indiWglua matrix |N]| is

called the shape function.

Lagrange’s interpolation formula provides a general form of shaptibns which can

be used in a variety of different types of elements. The formula is given as

(x1=x2)(x3=x)... [x=x]... (xn—2x) _
Nie = (x1—xp) ez =xp) . [ —Xpe]. (o —xg) (3-5)
For linear interpolation, shape functions and the coordinates do not bbseripts

greater than 2, whereas for quadratic interpolation the subscripts are net traat3.

3.3 Formulation of Element Stiffness Matrices

Different mathematical procedures can be used to determine eéheerdl stiffness
matrices. Virtual work, slope deflection, moment distribution, ancewfft integration
rules are some of the methods used to find these matrices. fimiteiglement program,
integration using Gauss-Quadrature (see Section 3.5) points is useternminke the
element stiffness matrices. This method is a type of noalaritegration scheme that

approximates the integral expression through the use of algebraic expressions
Displacementgu} are interpolated over an element in the same way as done falthe

quantity@ as

{u} = [N]{d} where {u}= [uv w|’ (3-6)

14



The vector{d} is the nodal displacements of the DOF for the element. Frontrdie-s

displacement relations we have

Jdu __ov __0u av

&= 5% &= Y= 5t (3-7)
Therefore, in general form, strain displacement relations can berwaist
{e} = [0]{u} (3-8)
Substituting equation 3-6 in 3-8 we get
{e} = [B]{d} where [B]= [0][N] (3-9)

The matrix[B] is called the strain-displacement matrix.

For a 2-D plain stress element having isotropic material pieperthe constitutive
matrix is a symmetrical 3x3 matrix given by

0

0 ]
2 (3-10)

2

(=

1
__E v
[E] - (1—1}2) O

whereE is the Modulus of Elasticity of the material am@és Poisson’s ratio.

Finally the element stiffness matrix can be formulated as
(k1= [IBI"[E][B]dV (3-11)
where[B] and[E] are obtained from equations 3.9 and 3.10, respectively. In the case of
2-D analysis this equation can be written as
(K] = [J[BI"[E][B] t dx dy (3-12)
wheret is the thickness of the element usually assumed to be constanthibubtige

element and taken as unity.

15



3.4 Element Boundary and Loading Conditions

Before the solution of the structural equations, both boundary conditionkahdg
conditions must be prescribed for the system. Without boundary conditiostsiitieiral
equations will not produce a single unique solution for the prescribdoh¢gpaonditions.
As such, the structural system will have rigid body motions.hd\it loading conditions
the structural equations will produce no displacements of thegtalisyystem. Thus, it
is necessary that both boundary and loading conditions be prescribed &rutttaral

system. These conditions are prescribed at particular DOF of the strggsieah.

Boundary conditions, or support conditions, include prescriptions of displaceoretiie
sides or surfaces of a structural system. The boundary condiiotie global element
are set by stiffening the DOF for the corresponding local eleoreforcing the structural
equations to be equal to a unique displacement at that DOF. Thesergaiomdhtions
can be translational or rotational depending on the DOF that needs to be anoldifilkis
finite element program, only translational DOF are consider#akifinite elements (i.e.,
there are no rotational DOF) and therefore only translationaladisplents are restricted
with respect to particular support conditions such as a fixed-suppangedsupport, or

roller-support.

Loading conditions are prescribed in a fashion similar to boundary/suppuittions.

Depending on the location of the prescribed load, the DOF correspdodimag location

and direction are modified. In general, a distributed load can act ihpongangentially

16



to a boundary of the element. These loads can be expressed as sadaons, which
are forces per unit of surface area, directed parallel toadbalinate axis. Concentrated

forces are prescribed directly to the DOF of the structural system.

3.5 Solution Techniques

Each element contributes to the overall stiffness of the strustgsem. These elements
must be assembled to construct the structural system. This priecksown as the
assembly process. DOF for each element are assigned globavdélues. The stiffness
corresponding to each DOF are then assembled or “fed” into thel gldbzess of the
system. It is at this point that the boundary conditions and loadingtiomsdare truly
applied to the system. After application of the boundary and loadmdjtmns, solution

of the structural equations may commence.

There are a variety of techniques to solve the system of simealia equations that are
assembled in the assembly process. In this finite elementsengrogram, the back-
substitution method of Gauss-elimination is utilized to solve thetatalequations. In

Gauss-elimination, the structural equatiokd{P} = {R} are solved for the system
displacements @} by reducing the system stiffnesK][to upper triangular form. The

system displacements are then determined in reverse order through backtgubstit

17



3.6 Advanced Finite Element Formulations

As stated previously, the primary objective of this study im¢orporate advanced finite
elements into a finite element analysis program. Sections BréLgh 3.6.5 provide the
theoretical details pertaining to these elements. The advareredrds used herein are
the Constant Strain Triangular element (CST), the LinearnSifaangular element
(LST), the Quadratic Four-Node element (Q4), and the Quadtgitt-Node element
(Q8). The following sections also provide the shape functions, stralacksnent
matrices and the formulation of the element stiffness matrix for dectest. In addition,
the procedure for these elements in natural coordinates as rsepacaelements is also

discussed.

3.6.1 Isoparametric Elements

Isoparametric elements are used as a versatile formatitins finite element analysis
program which helps in easier numerical integration of the elsmasing Gauss
guadrature. Shape functions are based on the natural coordinates athéetbriginal
coordinates. In this section, the shape functions and element stiffim&ssx are

illustrated for a Q4 element.

To explain the concept of isoparametric elements, considerangetar Q4 element as

shown in Figure 3-1. Isoparametric elements use auxiliarydocwies or reference

coordinates termed a8 and  referred to as the natural coordinates. During the

18



formulation of the element stiffness, the coordinate transformatiom the natural
coordinates to the actual or physicabfidy) coordinates is taken care of through the use
of a transformation function that maps the two coordinate systémsthese elements,
shape functions are used to interpolate both the displacement fiedteameht geometry.
For the Q4 isoparametric element, the individual shape functions are
Ni=(1-91-1)
Ny= 21+ —n)

Ny= 21+ +n)
Ny= (1= +m)

(3-13)

These shape functions may also be obtained by considering the shamm$ufur the
physical coordinate system given in a Section 3.6.4 (see equation $&ttihga=1,b

=1,x =¢ andy =5 the shape functions in equation 3-13 are again obtained.

19



Figure 3-1: Four Node Isoparametric Element

The mapping from the natural coordinate system to the physicallioate system is
accomplished through the use of a transformation function as previbestyibed. To
accomplish the mapping, the Jacobian is utilized which is simplyake $actor that
multiplies dédy to produce the physical area incremexdy The Jacobian matrix for the

Q4 isoparametric element is given by

X1 N
_1-Q=-m A-m) @+n) -Q@+m|(*2 Y2f _ [Ju1 J12]5
U= -1=-8) -1+ A+ A-=-9 f’ i‘?’ 21 ]22](3 )

20



The strain-displacement matrixB][ is determined according to equation 3-9. However,
derivatives are now made with respect to the natural coordeyatem rather than the
physical coordinate system. Finally, the element stiffneagixnis determined in a
fashion similar to equation 3-12. Thus, for an isoparametric element thenelifieess

matrix is determined as

[K]= [f[BI"IE][B] t dx dy = [, [*,[BI"[E][B] ¢ ] d¢ dn (3-15)
where J is the determinant of the Jacobian determined by equdtin Be accomplish
the integration as given in equation 3-15, from a numerical pergpedtaussian-

Quadrature is used. The Gauss product rule is obtained by suecapplication of a
one-dimensional Gauss rule. For the functlor @(&, ), the Quadrature rule is given as

1= [ [ 8EndEdn = 3,3 WiW8(En) (3-16)

whereW andW are scalar weight functions corresponding to the gauss p@intj.

3.6.2 Constant Strain Triangular Elements (CST)

Linear triangles are plane triangles whose field quanéties linearly with coordinates
andy. The linear triangular element is called a constant strain trian@®&ar) element as

the displacement fields produce a constant strain field.

As shown in Figure 3-2, the coordinates of node 1 axe=af = 0 and side 1-2 is along
the localx-axis. From the principles of interpolation, the field quanditis interpolated
over the element by the polynomial in terms of generalized ROR theu andv

directions as
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a,
u=|1x yJ<a2} (3-17)
as

Ay
v=|1xy] as} (3-18)
Qe

Applying the coordinates from Figure 3-2 for each of the nodes toiequatl7 and 3-

18, then equation 3-3 produces

4 a 1 0 O
@, = [A]jaz; where [A]l= (1 x, O (3-19)
D a3 11 x3 V3
Dy Ay 1 0 07
@s = [A]ljas; where [A]l= (1 x, O (3-20)
D6 a6 11 X3 Vsl

Using these relationships, the shape functions in the physical cderdiysiem can be

determined from equation 3-4 as

X2 X2Y3

_ 1 _ X3 _
N, = o X Tty (3-21)
1
Na =5y

The strain-displacement matiig] is calculated from equation 3-9 as

-1 1
[+ 0~ 0 0 0]
[B]=| 0 =2 0o = 0 — (3-22)
X37x 1o x 110
X2Y3 X2 X2Y¥3 X2 V3
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Figure 3-2: Three Node CST Element

As the strain-displacement matrix, element thickness (asstonée unity), and the
constitutive matrix[E] are constants (independent>ofandy), equation 3-12 used in
determining the 6x6 element stiffness matrix for the CST element siestidfi

[K] = [B]"[E][B]A (3-23)

whereA is the area of the triangle.

The constant strain triangular element was the first elemewvised for plane stress
analysis. It does not work very well. In bending, a mesh of theseests is undesirably
stiff. Correct results can be approaches with the refinemerthefmesh, but the
convergence is slow. In plane strain conditions, a mesh can lock sbdaabot deform

at all.
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The CST model predicts y direction displacement apndtresses that are only one-
quarter the correct value. The inability of the CST to reptdsearly varying stress and
strain is partly to blame for this poor result. The CST eleratat displays a spurious
shear stress. It also displays a transverse shear stragt sfould not be present. The
spurious shear strain absorbs energy, so that if a given deformati@sdsibed, the load
needed to produce it is larger than the correct value. This is dsernravhy there is

excessive stiffness in bending of the CST element.

The CST element can also be represented in an isoparantetnene form. The shape

functions for the CST isoparametric element are given as

Ni=1-¢—17
N, = ¢ (3-24)
N3 =17

In the development of the FEA program written using Matlab, thyarmmetric shape
functions are used in the element formulation. Verification of tHesaulations is

provided in Appendix B of this study.

3.6.3 Linear Strain Triangular Elements (LST)

Similar to the CST element, the linear strain triangulamelg (LST) are quadratic

triangles whose field quantity varies quadratically with cootésmia andy. The

quadratic triangular element is called a linear straimguéar (LST) element as the

displacements fields produce a linear variation in the strain field.
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As shown in Figure 3-3, the triangular element has mid-side nadaddition to the
vertex nodes. For displacement-based analysis, the nodal DQFaady; for each node
i =1, 2,...,6 for a total of 12 DOF per element. For the genedal(®F a;, the element

displacement is interpolated by the polynomial as

1
u=11 x y x* xy yzjizz} (3-25)

ag
v=1[1 x y x? xy yzji L (3-26)

3x 3y , 2x 2xy | 2y
N=1—-————4+—+4+—
1 a b + a? + ab + b2
—-x  2x% | 2xy
N, = X428 4 2%
2 a? a? ab
y , 2y?
N; = ;-}-?
i (3-27)
N dx _ 4x®
4 a a?
2x
Ny = =
ab
-4y 2xy | 4y?
Ng = 5
b ab b
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Figure 3-3: Six Node LST Element

The strain-displacement matrix is determined from equation 348 resulting 12x12
element stiffness matrix for the LST element is deterchinem equation 3-12 without
any simplifications as was done for the CST element. As #ushadvantageous to use
the isoparametric form of the LST element in a numerical iategn scheme to
determine the element stiffness matrix. The shape functiorthddcST isoparametric

element are given as

No=20-§-mG—§—n)

Ny = 28(§—2)

Ny = 2n(n—3) (3-28)
Ny= 41 —&-n)

N5 = 4¢n

Neg = 4n(1—-¢ —n)
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In the development of the FEA program written using Matlab, thyearmmetric shape
functions are used in the element formulation. Verification of tHesaulations is

provided in Appendix B of this study.
3.6.4 Bilinear Rectangular Elements (Q4)

A bilinear rectangular element (Q4), similar to the CSmelats, has a field quantity that
also varies linearly with coordinatgsandy. As shown in Figure 3-4, the Q4 element has
eight total DOF with two DOF at each of the four nodes. The atisphents are also
interpolated over the element by the polynomial in terms of géredldDOFg; in theu

andyv directions as

u=11 x y xy|{7? (3-29)

v=1]1 x y xy| a, (3-30)

In a similar fashion to the CST element, the shape functions are found as

Ny = —(1-x)(1-y)
Ny = —(1+20)(1-y)
Ny = —(1+20)(1+Y)
Ny= —(1-2)(1+)

(3-31)
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Figure 3-4: Four Node Q4 Element

Using the shape functions from equation 3-31 and substituting thegati@n 3-9 gives
the strain displacement matrix as

1 [~®=» 0 (b-y) 0 (b+y) 0 —(b+y) 0
[B] =— 0 —(a—x) 0 —(a+x) 0 (a+x) 0 (a—x)
Yl @-x) ~b-y -@+x) G-y @+x b+y) @-x G+

(3-32)
Similar to equation 3-12, the 8x8 element stiffness matrix is determinegl thei strain-

displacement matrix as

(K1= ", [ [BI"[E1[B]t dx dy (3-33)

28



Like the CST, the Q4 element cannot exhibit pure bending. When bdisplays shear
strain as well as the expected bending strain. The parasitic abeorbs strain energy, so
that if a given bending deformation is prescribed, the bending mameded to produce
it is larger than the correct value. In other words, Q4 eleraehnibits shear locking

behavior.

As for the CST and LST elements, the isoparametric shape functions aragjive

Ny= (1= -n)
Ny= 21+ —n)
Ny= -1+ +n)
Ny= (1= +m)

(3-34)

In the development of the FEA program written using Matlab, sbparametric shape
functions are used in the element formulation. Verification of tHesaulations is

provided in Appendix B of this study.

3.6.5 Quadratic Rectangular Element (Q8)

The quadratic rectangular element (Q8), analogous to theeléitent as compared to
the CST element, is different from the Q4 element in that ild fjuantity varies
guadratically with coordinates x and y. A quadratic Q8 rectanglganent is shown in
Figure 3-5. The element has sixteen DOF with mid-side noet®geen the corner nodes
of the Q4 element. In terms of generalized DfYFhe displacement field of the element

is given by
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u=11 x y x* xy y? x% Xy2J<a5> (3-35)

a
v=11 x y x% xy y* x%y xy%|{ ‘*} (3-36)

Q15
\a1¢/

In a similar fashion to the CST element, the shape functions are found as

-1 x2 x 2 x2 xy?
N, = —+= XYoLy Xy Xy
4 4a?2  4ab = 4b%2  4a?b  4ab?
N, = 1 x y? xy?
27 2 2a 2b2 2ab2
-1 x2 xy y? x%y xy
Np= =4 -2 2 2 Y
3 4 ' 4a?  4ab = 4b2 ' 4a2b  4ab?
1 x2 x2
N4 = E_%_Zaz ZaZJ;)
2 2 (3-37)
N. =1 + XX _ XY
57 27 2p 222 2ab?
N = -1 x2 xy y? x%y xy?
6 4 " 4a2 4ab ' 4b2  4a2b = 4ab?
1 x y? xy?
N, ==-+————
77 2 " 2a 2p2 2ab2
-1 x? xy y? x%y xy?
Ng= =+ 4222 22
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Figure 3-5: Eight Node Q8 Element

The strain-displacement matrix is determined from equation BH® resulting element
stiffness is determined from equation 3-12 without any simplifinat As such, it is
advantageous to use the isoparametric form of the Q8 element inesicalrmtegration
scheme to determine the element stiffness matrix. The doapgons for the Q8

isoparametric element are given as
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N=-A-HA-mM(=E-n-1)
N = -A+HA-E-n—-1)
Ny = A+ +mME+n—1)
No=-A=HA+m(E+n-1)
Ns=>(1-¢H(1—-n)

Ne= A —1)(1+8)

N, = (A=) +n)
Ng=>(A—-1)(1-9)

(3-38)

In the development of the FEA program written using Matlab, thyarmmetric shape
functions are used in the element formulation. Verification of tHesaulations is

provided in Appendix B of this study.
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CHAPTER IV

CASE STUDIES

4.1 Introduction

Case studies are provided only to illustrate the capabilititiseoMatlab FEA program.
The specific accuracy of the Matlab FEA program is not of conaethis time because a
specific problem was not considered in this study. The main pnogrgprovided in
Appendix A along with the general input file for the progranub-8utines of the FEA
program have not been provided with this current study as the pragratii under

substantial development at Oklahoma State University.

The case studies are provided for each of the four elementsskscin Chapter Il of
this study. The illustrative example for each element cansistanalyzing the same
problem. This enables for direct comparisons between the four typeteraents

considered in this study. Again, these comparisons are only maueespect to the
capabilities of the Matlab FEA program and not the accuraayngfgiven analysis. The
details of the problem are presented in this first sectidovied by the results from each

element type in Sections 4.2 — 4.5.
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A cantilever beam fixed at one end and statically loaded at bez ehd, as shown in
Figure 4-1, is used to analyze the behavior of the various elen@nlg a single

concentrated load of 100 Ib is applied to the free end of the beanenidth bf the beam
is 15ft (180in) and its depth is 1ft (12in). All analyses are demsd to be a 2-D
analysis, thus the thickness (or width) of the beam is assumedutatpeThe modulus

of elasticity (E) of the beam is taken a$ IHJin? and Poisson’s Ratio as 0.3.

100 Ib

1ft

NNNNN\N

15ft
Figure 4-1: Fixed Beam Loaded at the Free End

For each analysis given in the following sections, the genaitd #lement input values
are outlined in Table 4-1. An adequate number of elements have been theseh

case listed in Table 4-1. The CST and Q4 element case sindiagde a slight

refinement of the mesh to provide the reader with an understandihg whportance of
the finite element mesh. Further refinement of the mesh coultgiemented, but the
purpose of this study was to only implement and confirm the useahputer program
written in Matlab for performing finite element analysis usadyanced finite element

formulations.
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Beam Beam Modulus of

Element ; Number of Number o Poisson's
Type Le'ngth W.'dth Elements of Nodes EIaSt'.C'ty Ratio
(in) (in) (psi)
CST 180 12 20/ 40 22 10 0.3
LST 180 12 20 63 o 0.3
Q4 180 12 10/ 20 22 fo 0.3
Q8 180 12 10 53 fo 0.3

Table 4-1: Input Values for Various Elements

4.2 CST Elements

The beam of Figure 4-1 is modeled using 20 and 40 CST elemengtse Bi2 provides
the finite element mesh generated by the Matlab program nvate result of this study.
Sub-figure (a) is provided with a series of 20 CST elementsalohg the length of the
beam. Due to the limitations of this element, this type of fieiggnent mesh will not
accurately predict the response of the beam. As such, sub-figurprovides an
alternative mesh, using twice the number of total elementsléateats), that will more
accurately model the behavior of the beam. The reason for thisaive mesh is the
inability of the CST element to model pure bending accuratelgh Bade is also labeled
in Figure 4-2. The DOF at the fixed end of the beam are reamstl to zero
displacement. The loading is applied to the DOF located at thegtdpof the mesh at

the tip of the free end of the beam. The results of the anasesishown in Figures 4-3

35



through 4-5.

Figure 4-3 shows the displacement of the CST elemdms w

concentrated load is applied at the free end of a fixed beamcortteur plots for the

deflections are shown in Figures 4-4 and 4-5 forxtaady directions, respectively. For

each figure, Figures 4-3 through 4-5, each finite element medéoisepresented similar

to Figure 4-2.

Finite Element Mesh

depth [in]

L I L L I L L I L I
0 20 40 B0 80 100 120 140 180 180

length [in]

(a): CST Element Mesh 1

depth [in]

Finite Element Mesh

] 20

40 B0 80 100 120 140 180 180
length [in]

(b): CST Element Mesh 2

Figure 4-2: CST Element Mesh

Static Displacements

depth [in]

_______________

i i I i
0 20 40 B0 80 100 120 140 160 180
length [in]

(a): CST Element Mesh 1

Static Displacements

______________________________________________

depth [in]

40 &0 ] 100 120 140 1éd 180

length [in]

(b): CST Element Mesh 2

Figure 4-3: CST Beam Deflection Profile
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(a): CST Element Mesh 1 (b): CST Element Mesh 2

Figure 4-4: Contour Plot for CST Element Displacemats in the x-Direction
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(a): CST Element Mesh 1 (b): CST Element Mesh 2

Figure 4-5: Contour Plot for CST Element Displacemats in the y-Direction

Table 4-2 shows the maximum tip deflection to be 0.2328 inches in tadivey-

direction for the first finite element mesh of 20 elementvided in sub-figures (a).
Table 4-2 also provides the results from the alternative fildenent mesh of 40
elements provided in sub-figures (b). From these results, and theagsom to an
analytical solution to be provided later, it is noted that the G&TMents are undesirably

stiff and, thus, the deflection of the beam in y-direction is minimal.
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Tip
Displacement

(in)

Finite Element
Mesh

20 Elements -0.2328

CST Element Mesh 1

40 Elements -0.3262

CST Element Mesh 2

Table 4-2: Maximum Tip Deflection for CST Elements

Due to the linear interpolation used during the formulation of the sham#idns, the
deflection of the nodes is minimal. This type of the element does not work well dee to th
lower number of DOF per element. Further refinement of thesfiglément mesh will

help in convergence to the exact value but is not considered in this study.

4.3 LST Elements

The beam of Figure 4-1 is modeled using 20 LST elements. Hgarerovides the
finite element mesh generated by the Matlab program wrétea result of this study.
Each node is also labeled in Figure 4-6. DOF 1 — 6, located at hpdesnd 3, at the
fixed end of the beam are constrained to zero displacement. Theglaadipplied to
DOF 126, located at node 63, at the tip of the free end of tha.bEze results of the
analysis are shown in Figures 4-7 through 4-9. Figure 4-7 showssfilacement of the

LST elements when a concentrated load is applied at the freef enfixed beam. The
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contour plots for the deflections are shown in Figures 4-8 and 4-Shéox andy

directions, respectively.

Finite Element Mesh

depth [in]

1 1 1 1 1 1
O 20 40 B0 &0 100 120 140 160 10
length [in]

Figure 4-6: LST Element Mesh
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Figure 4-7: LST Beam Deflection Profile
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Figure 4-8: Contour Plot for LST Element Displacemats in the x-Direction
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Static Displacements !y Direction

depth [in]
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length [in]

Figure 4-9: Contour Plot for LST Element Displacemats in the y-Direction

Figure 4-9 shows the displacement of the LST elements whencaentomted load is
applied at the free end of the beam. Figure 4-8 and 4-9 show a cplotowith a smooth
displacement of the nodes in both the@ndy directions. This is due to the quadratic
interpolation used to formulate the element stiffness matribies. displacement in x
direction is positive to negative from the top to the bottom nodes tesecTable 4-3

shows a maximum tip deflection of -1.3433in in yhdirection.

Finite Element .. Tip
Displacement
Mesh (in)

20 Elements -1.3433
LST Element Mesh

Table 4-3: Maximum Tip Deflection for LST Elements
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Due to the quadratic interpolation used to formulate the shape funchendeflections
of the nodes are well refined. In modeling this particular probleenphly shortcoming

of the LST elements is that, is represented as linear rather than quadratic in y.

4.4 Q4 Elements

The beam of Figure 4-1 is modeled using 10 and 20 Q4 elemegtis.e B-10 provides
the finite element mesh generated by the Matlab program nvagte result of this study.
Sub-figure (a) is provided with a series of 10 Q4 elements aolyg the length of the
beam. Due to the limitations of this element, this type of fieiggnent mesh will not
accurately predict the response of the beam. As such, sub-figurprovides an

alternative mesh, using twice the number of total elementslépteats), that will more

accurately model the behavior of the beam. The reason for thisaive mesh is the
inability of the Q4 element to model pure bending accuratelyh Bade is also labeled
in Figure 4-10. The DOF at the fixed end of the beam are eomstr to zero

displacement. The loading is applied to the DOF located abtheght of the mesh at
the tip of the free end of the beam. The results of the analsishown in Figures 4-11
through 4-13. Figure 4-11 shows the displacement of the Q4 elements avhe
concentrated load is applied at the free end of a fixed beamcortteur plots for the
deflections are shown in Figures 4-12 and 4-13 forxtaedy directions, respectively.
For each figure, Figures 4-11 through 4-13, each finite element isme&do represented

similar to Figure 4-10.
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Figure 4-10: Q4 Element Mesh
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Figure 4-11: Q4 Beam Deflection Profile
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Figure 4-12: Contour Plot for Q4 Element Displacemats in the x-Direction
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Figure 4-13: Contour Plot for Q4 Element Displacemats in the y-Direction

As seen in the CST elements, the deflection of the beam havirde@#nts behave in
the same way due to the linear interpolation assumed in the elstiféréss matrix.

Table 4-4 illustrates the maximum tip deflection of the be@m0.6895 inches for the
first finite element mesh of 10 elements provided in sub-figuags (Table 4-4 also
provides the results from the alternative finite element me&® @lements provided in

sub-figures (b).
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Tip
Displacement

(in)

Finite Element
Mesh

10 Elements -0.6895

Q4 Element Mesh 1

10 Elements -0.7140

Q4 Element Mesh 2

Table 4-4: Maximum Tip Deflection for Q4 Elements

Like the CST, the Q4 element cannot exhibit pure bending. As for thes@gents, the
linear interpolation used to quantify the shape functions exhibit egleroonstraint.
Refinement of the Q4 finite element mesh will help in convergemteet exact value but

is not considered in this study.

4.5 Q8 Elements

The beam of Figure 4-1 is modeled using 10 Q8 elements. Figidepdevides the
finite element mesh generated by the Matlab program wrétea result of this study.
Each node is also labeled in Figure 4-14. DOF 1 — 6, located at hodesd 3, at the
fixed end of the beam are constrained to zero displacement. Thegloadipplied to
DOF 106, located at node 53, at the tip of the free end of thma.bEze results of the
analysis are shown in Figures 4-15 through 4-17. Figure 4-15 shodsptecement of

the Q8 elements when a concentrated load is applied at the freé &fided beam. The
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contour plots for the deflections are shown in Figures 4-15 and 4¢lthdé x andy

directions, respectively.
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Figure 4-14: Q8 Element Mesh
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Static Displacements
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Figure 4-15: Q8 Beam Deflection Profile
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Figure 4-16: Contour Plot for Q8 Element Displacemats in the x-Direction
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Static Displacements !y Direction
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Figure 4-17: Contour Plot for Q8 Element Displacemats in the y-Direction

As observed for the LST elements, the deflection of the beamostsiwhen compared
to the CST and Q4 elements. This is due to the quadratic integpolati the Q8
elements. Figure 4-16 illustrates the deflection of the beaianx direction. This
deflection is from positive to negative x directions from top to Ibleétom nodes
respectively. Table 4-5 illustrates the maximum tip defbectinder the assigned load to
be -1.3436in. As for the LST elements, the Q8 elements illushatéewer elements can
be used when quadratic interpolation functions are used to formilatelément

stiffness.
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Tip
Displacement

(in)

Finite Element
Mesh

10 Elements -1.3436

Q8 Element Mesh

Table 4-5: Maximum Tip Deflection for Q8 Elements

4.6 Comparison

Table 4-6 provides a quick comparison between the case studies reseaetions 4.2
through 4.5. It is clear that the linearly interpolated elemergs séiffer than the
guadratically interpolated elements. Q4 elements show more coneerg@vards the
analytical solution than the CST elements due to the higher nohB€F per element.
While comparing the quadratic elements, it is noted that the €)8eek is more refined
than the LST element. This is due to the fact that in the él&fientsy,y, is represented
as linear rather than quadraticyinHence, as seen in Table 4-6, LST and Q8 elements

converge towards the analytical solution when compared to the CST and Q4 elements.

The analytical solution is determined from the maximum tip deédleco:,, of the fixed
beam formula given in equation 4-1. Hd?ds the load applied at the free end of the
beam.L is the length of the beam amdis modulus of elasticityl is the moment of

inertia calculated from the rectangular cross section of the beam.

pL3
tiv = 3gp
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Element Type

Tip Deflection (in)

CST
20/ 40 Elements

-0.2328 / -0.3262

LST

-1.3433
20 Elements
4
Q -0.6895/-0.7140
10/ 20 Elements
8
Q -1.3436
10 Elements
Analytical -1.3500

Table 4-6: Maximum Tip Deflection Comparison
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CHAPTER V

CONCLUSION

5.1 Summary and Conclusions

The theoretical development for incorporating advanced finite elemerdrovided in
this study. Both linear and quadratic interpolated elements2{Dr analysis are
considered. Element stiffness matrices are developed usispdpe functions which are
derived from the displacement fields for a particular node inemegit. A FEA code has
been written including all the advanced elements using the contepbparametric
elements. Gaussian quadrature is used as a tool for numericghiite and the final
displacements are calculated using the Gauss elimination techaigoke the structural

equations.

Deflections and deflected profiles are provided for a beam wlwmeentrated load is
applied at the free end. The FEA program is capable of autofhatiEmerating an
element mesh for different types of elements specified gmnelng to the dimensions
of the beam with applied boundary conditions. The deflected profiegalith the
contour plot for the beam in the andy directions are provided. The maximum tip

deflection of the beam when the same numbers of elements arshasedhat the CST
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elements are much stiffer than the other elements. Q4 elemigrtselatively better

results than the CST elements but are also stiff. LST and €8eats provide more
accurate results than the other two types. This is due tatheéhat the CST and Q4
elements use linear interpolation for their field displacemertisyeas the LST and Q8
elements use quadratic interpolation. Refinement of the mesh iesréees accuracy of

deflection of the beam for all element types but was not considered in this study.

5.2 Recommendations

In addition to the work that was outlined in this study, the FEA ceadsb capable of
analyzing thermal conductivity heat transfer through a nsteffhe work on this heat
transfer formulation is not complete at this time but it isonemended that the
formulation be completed. When completed, temperature variations throutjteout
structural system will be able to be analyzed as a fundifotime to determine the
degradation of structural properties due to such occurrences stidh ashis code can

be improved to incorporate the heat conduction through the beam elements using
dynamic heat analysis. Boundary conditions for heat transfeapgieed to the beam so

that the change in material properties of the beam can be determined paitt tegime.

It is also recommended that the FEA program be improved to &lowore complex
structures. Currently, the node input process is tedious and can bavechpior
structural systems. In doing so, coordinate transformations wikdpgred to transform

the local coordinates of the elements to the global coordinateg slyttem. The finite
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element mesh can also be automatically refined so that theaagcaf deflection
increases. Future studies can be conducted to incorporate a themsidimal (3-D) brick
elements as well as different boundary and loading conditions. Finglig, also

recommended that the calculation of stresses and strains be imptmethat they are

determined at the nodal locations of the finite element mesh.

Work done in conjunction with this study includes the incorporation of stalct

dynamic response due to dynamic loads (Saglar, 2009).
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APPENDIX A

MATLAB FEA PROGRAM

The Matlab FEA program that was developed during the coursesadttidy is provided
herein. First, the main FEA program (not containing the subresitsince the FEA
program is still under development) is provided. Second, the general iiepusdd to
setup an analysis is provided. Both of these files are Matiapt files and can be
executed in all versions of Matlab. To generate graphical outpufullheersion of

Matlab is required.

Main Program

%
% Finite Element Analysis (FEA) Program to Deterenihe Structural and Thermal Response of Struc8ystems
% Written By: Muhammet Saglar & Rameez Igbal (A@dBy: Dr. Jonathan S. Goode)

% School of Civil and Environmental Engineering

% Oklahoma State University

%

%
%
% Begin Program

% Clear Variables and Settings
clearall

% Clear Screen
clc;

% Inhibit Warning Messages
warning(off','all’);

disp( );
disp(Finite Element Analysiy'

disp(Written by: Saglar/lgbal (Goodg)'

disp(School of Civil and Environmental Engineering'
disp(Oklahoma State Universi}y'

disp( ),
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disp( 0
disp(Running Analysis ...);
disp( );

% Begin Timer
tic;

%
% Pre-Processing Section
%

disp(Pre-Processing ..);."

% Call M-File for User Input Data from fea_input.m
disp(..... Obtaining Input ...);"
fea_input;

% Call M-File for Initialization of Variables frorfea_initialize.m
disp(..... Initializing Program ...);'
fea_initialize;

%
% End Pre-Processing Section
%

%
% Processing Section
%

disp(Processing ...);'

%
% Assembly Process

disp(..... Assembly Process .);.."

% Determine Element Property Matrices (ConstitytMass, Conducitivity)

[property_matrix_k,property_matrix_m,propertyatnix_t] =
fea_property_matrix(analysis_type_material, mateEahaterial_v,material_rho,material_t);

% Determine Gauss Quadrature Sampling Points anghtge
[gauss_points,gauss_weights] = fea_gauss_2aéele type);

% Initialize Global Index of DOF
index_global = zeros(edof,nel);

% Assemble System Matrices According to Analysis
if analysis_type ==5'

% Static Analysis

disp(.... ..... Static Analysis ..);."
disp(.... cooov oo Building Stiffness ..);.'

% Loop Through All Elements to Determine Systemiidas (Stiffness, Mass, and Conductivity)
% NOTE: Depending on the Analysis Type, Some Magi/ill Not be Generated
forj = 1lnnel

% Call Sub-Routine to Extract Nodes for the j-terEént
[element_nodes,element_xcoord,elemenbryl] = fea_node_coordinates(j,nnel,node_conniegtiode_coord);

% Call Sub-Routine to Extract System DOFs for thte fElement
index = fea_index_dof(element_noded,ndef,edof);

% Save Index of DOF to Global Variable
index_global(:,j) = index;

% Call Sub-Routine to Generate Element Stiffnestrikla
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element_k =
fea_element_matrix_stiffness(element_type,gausatggauss_weights,element_xcoord,element_ycoorgedioé property_matrix_
K);

% Call Sub-Routine to Assemble System StiffnessriMat
system_k = fea_element_matrix_assemsysefm_k,element_k,index,edof);

end
elseifanalysis_type ==D'
% Dynamic Analysis

disp(.... ..... Dynamic Analysis ..);."
disp(.... cccov .. Building Stiffness and Mass'); ..

% Loop Through All Elements to Determine Systemidas (Stiffness, Mass, and Conductivity)
% NOTE: Depending on the Analysis Type, Some Magi/ill Not be Generated
forj=1nel

% Call Sub-Routine to Extract Nodes for the j-tbrEént
[element_nodes,element_xcoord,elemenbryl] = fea_node_coordinates(j,nnel,node_conniggtiode_coord);

% Call Sub-Routine to Extract System DOFs for thte fElement
index = fea_index_dof(element_noded,ndef,edof);

% Save Index of DOF to Global Variable
index_global(:,j) = index;

% Call Sub-Routine to Generate Element Stiffnestika

element_k =
fea_element_matrix_stiffness(element_type,gausatqgauss_weights,element_xcoord,element_ycoorcedoé property _matrix_
K);

% Call Sub-Routine to Assemble System Stiffnessridat
system_k = fea_element_matrix_assemsysefm_k,element_k,index,edof);

% Call Sub-Routine to Generate Element Mass Matrix
element_m =
fea_element_matrix_mass(element_type,gauss_paintsgweights,element_xcoord,element_ycoord,nnélpedperty_matrix_m);

% Call Sub-Routine to Assemble System Mass Matrix
system_m = fea_element_matrix_assesydtm_m,element_m,index,edof);

end
end

% End Assembly Process
%

%
% Boundary and Loading Conditions

disp(..... Applying Boundary and Loading Conditions’);.

% Apply Boundary and Loading Conditions Accordinginalysis
if analysis_type ==5'

% Static Analysis

% Call Sub-Routine to Apply Boundary and Loadingn@itions
[system_k,system_f] = fea_system_boundand(system_k,system_f,boundary_dof,boundary_dofoeal dof,load dof val);

elseifanalysis_type ==D'
% Dynamic Analysis

% Boundary and Loading Conditions Must Be Applie@&ach Point in Time During the Dynamic Analysis
% See the Analysis Section Below
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end

% End Boundary Conditions
%

%
% Analysis

disp(..... Solving ....);

% Based on Analysis Type
if analysis_type ==5'

% Static Analysis
disp(.... ..... Static Analysis ..);."

% Solve System Equations for Static Displacements
system_d = system_k \ system_f;

elseifanalysis_type ==D'
% Dynamic Analysis
disp(.... ..... Dynamic Analysis ..);."
% Call Sub-Routine to Solve System Equations fand@wgic Displacements
[system_d,system_d_vel,system_d_acc,sys$tgymamic_time] =
fea_dynamic_analysis(system_k,system_m,boundanbalefdary_dof_val,load_dof,load_file,dynamic_del@dynamic_beta,dyna
mic_gamma,sdof);

end

% End Analysis
%

%
% End Processing Section
%

%
% Post-Processing Section
%

disp(Post-Processing ..);."

%
% Plot Generation

% Plot Finite Element Mesh
if plot_element_mesh =¥"

disp(.... Plotting Element Mesh .);.'

% Call Sub-Routine to Plot Finite Element Mesh

plot_handle =
fea_plot_mesh(proj_name,nel,node_coord,node_canitggiot_element_mesh_numbers,plot_element_mestle mumbers);

end

% Based on Analysis Type
if analysis_type ==5'

% Static Analysis
disp(.... Static Analysis ..));'

% Plot Static Displacements
if plot_static_displacement =¥'
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disp(.... ..... Plotting Static Displacements);..."

% Call Sub-Routine to Plot Static Displacements
plot_handle = fea_plot_static_displaeatfproj_name,nel,node_coord,node_connectivityesyst,index_global);

if plot_static_contour_displacement ==

% Call Sub-Routine to Plot Displacement Contours
plot_handle = fea_plot_static_disgiment_contour(proj_name,node_coord,node_conitg&ystem_d,sdof,nel);

end

end

% Determine Static Stresses and Strains for Plots
if plot_static_stress =% || plot_static_strain ="

disp(.... ..... Determining Static Stresses and Sirain);

% Call Sub-Routine to Determine Stresses and Stfeam Displacements

[system_stress,system_strain,gausstspa@ioord] =
fea_stress_strain(nel,nnel,edof,node_connectiatiencoord,index_global,system_d,property_matrixekent_type,gauss_points);

end

% Plot Static Stresses
if plot_static_stress =¥"

disp(.... ..... Plotting Static Stresses);..."

% Call Sub-Routine to Plot Static Stresses
plot_handle = fea_plot_static_stress(prame,nel,node_coord,node_connectivity,systemssauss_points_coord);

if plot_static_contour_stress
% Call Sub-Routine to Plot Stress Contours
[plot_handle] =
fea_plot_static_stress_contour(proj_name,nel,nas&rdenode_connectivity,system_stress,gauss_poiasd;
end

end

% Plot Static Strains
if plot_static_strain =="

disp(.... ..... Plotting Static Strains .);.."

% Call Sub-Routine to Plot Static Strains
plot_handle = fea_plot_static_strain{pname,nel,node_coord,node_connectivity,systeminstiauss_points_coord);

if plot_static_contour_strain
% Call Sub-Routine to Plot Strain Contours
[plot_handle] =
fea_plot_static_strain_contour(proj_name,nel,nodera;node_connectivity,system_strain,gauss_points.dg;
end
end
elseifanalysis_type ==D'
% Dynamic Analysis

disp(.... Dynamic Analysis ..);'

% Call Sub-Routine to Plot Dynamic Displacementsyid)
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plot_handle =
fea_plot_dynamic_displacement(proj_name,nel,noderdsmode_connectivity,system_d,dynamic_time,indé&ba);

disp.... ..... Plotting Dynamic Displacements);..."

%
% End Post-Processing Section
%

disp( 0
disp(Analysis Done ...);
disp( 0

% End Timer
analysis_time = toc;

disp([Total Time of Analysis,hum2str(analysis_time}second$);
disp( 0

% End Program
%
%

Input File

%
% Finite Element Analysis (FEA) - Input File

% Written By: Muhammet Saglar & Rameez Igbal (A@dBy: Dr. Jonathan S. Goode)
% School of Civil and Environmental Engineering

% Oklahoma State University

%

%
%
% Begin Input File

%
% Project Name

% Define Project Name
% NOTE: Automatically Saved Figures and Data W@l Broceeded with the Project Name
proj_name =est,

%
% Analysis Options

% Define Analysis Type

% Analysis Type Options:

% Input 'S' = Static Analysis

% Input 'D' = Dynamic Analysis
% Input 'T' = Thermal Analysis
analysis_type =5}

%
% Input Finite Element Mesh Properties

% Input Element Type

% Input 'Q4" for Bilinear Rectangular Element

% Input 'Q8' for Quadratic Rectangular Element

% Input 'CST' for Constant Strain / Linear TriaraguElement
% Input 'LST" for Linear Strain / Quadratic TriamguElement
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element_type %4}

% Input Node Coordinates (x and y coordinates) §Ndnits => Length]
node_coord=[ 0.0 0.0 ...;
120 0.0 ..;
240 0.0 ..;
36.0 0.0 ..;
48.0 0.0 ..;
60.0 0.0 ..;
720 0.0 ..;
840 0.0 ..;
96.0 0.0 ..;
108.0 0.0 ..;
120.0 0.0 ..;
0.0 120 ..;
12.0 12.0 ..;
240 120 ..;
36.0 12.0 ..;
48.0 12.0 ..;
60.0 12.0 ..;
720 120 ..;
84.0 12.0 ..;
96.0 12.0 ..;
108.0 12.0 ...;
120.0 12.0 J;

% Input Nodal Connectivity for Each Element (CCWirr Bottom-Left)
node_connectivity=[ 1 2 13 12.;
2 3 14 13..;

4
5
6
7
8
9
1

%
% Input Boundary Conditions

% Input DOF Constrained
boundary_dof = [1 2 23 24];

% Input Constrained DOF Prescribed Values [Noteéds+ Length]
% NOTE: For Dynamic Analysis, All Prescribed ValldsIST BE Zero (0)
boundary_dof_val =[0 0 0 0];

%
% Input Material Properties

% Material Properties
% NOTE: If the property is not being used, entézero)

% Modulus of Elasticity [Note Units => Force / Leh¢2]
material_E = 1e6;

% Poisson's Ratio [Unitless]
material_v =0.3;

% Mass Density [Note Units => Mass / Length”3]
material_rho = 1;

% Define Material Analysis Type

% Material Analysis Type Options:

% Input '1' = Plane Stress Analysis (2-D)

% Input '2' = Plane Strain Analysis (2-D)

% Input '3' = Three-Dimensional Anslysis (3-D)
analysis_type_material = 1;
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%
% Input Load Properties

% Static Loading (If Applicable)
% NOTE: If Static Analysis is not being considerBi) changes are needed

if strcmp(analysis_typ&) ==

% Input DOF Statically Loaded
load_dof = [18 20];

% Input DOF Statically Loaded Prescribed ValuestfNdnits => Force]
load_dof_val = [-500 -500];

% Dynamic Loading (If Applicable)
% NOTE: If Dynamic Analysis is not being considerdi® changes are needed

elseifstrcmp(analysis_typ®') == 1
% Input DOF Dynamically Loaded
load_dof = [44];

% Input Load Time-Series File Name [Note Units orde]

% NOTE: First Number Designates the Load at Tinfeseconds
% Column 1 -> n = DOFs

% Row 1 ->n = Load at Time Increments

load_file =load.dat’

% Input Time Step of Load Time-Series [seconds]
dynamic_delta_t=0.1;

% Define Newmark-Beta Parameters [Unitless]

% Average Acceleration Method => Beta = 0.25 & GaamrD.5 (Unconditionally Stable)

% Linear Acceleration Method => Beta = 0.16667 &baa = 0.5 (Conditionally Stable -> delta_t/ Tn&551)
dynamic_beta = 0.25;

dynamic_gamma = 0.5;

end

%
% Output Options

% General Plots

% Plot Element Mesh (Y or N)
plot_element_mesh"¥;

% Plot Element Mesh Options

% Display Element Numbers on Element Mesh Plot (X
plot_element_mesh_number¥'s

% Display Element Node Numbers on Element Mesh ®latr N)
plot_element_mesh_node_numbeis ;=

% Static Analysis (If Applicable)
% NOTE: If Static Analysis is not being considerBd) changes are needed

% Plot Static Displacements (Y or N)
plot_static_displacement¥;

% Contour Plots of Displacements (Y or N)
% NOTE: Must Plot Static Displacements to Plot ©on$
plot_static_contour_displacemenyts

% Plot Static Stresses (Y or N)
plot_static_stress'K";

% Contour Plots of Stresses (Y or N)

% NOTE: Must Plot Static Stresses to Plot Contours
plot_static_contour_stressrs
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% Plot Static Strains (Y or N)
plot_static_strain #l';

% Contour Plots of Strains (Y or N)
% NOTE: Must Plot Static Strains to Plot Contours
plot_static_contour_strain&;

% Dynamic Analysis (If Applicable)
% NOTE: If Dynamic Analysis is not being considerdi® changes are needed

% Movie of Dynamic Displacements (Y or N)
movie_dynamic_displacementy=;

% End Input File

%

%
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APPENDIX B

CONFIRMATION CALCULATIONS OF ELEMENT FORMULATIONS

Appendix B provides confirmation calculations of the element stiffnessxiatreach of

the element considered in this study. These calculations werebgonand and then
compared to the resulting stiffness matrices and displacemew4oped by the Matlab
FEA program as provided in Appendix A. These calculations wer@leted to ensure
the Matlab FEA program was making calculations correctlyneoessarily for accuracy

with respect to any given problem.
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Beam Displacement Comparis

Hand Calculations

D.0.F Displacement

1

0

0

0

0

0.000770679

0.00754862

0.000719295

0.007525983

O | O |~ | O U | = |w |~

0.001054455

0.022512619

11

0.000927531

12

0.022501883

Matlab FEA Program

D.0.F Displacement

1

0

0

0

0

{0.000770679

0.00754882

0.000719295

0.007525983

)
3
4
5
b
/
8
g

0.001054455

10

0.022512619

11

0.000927531

12

0.022501883
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Linear Strain Trianqular (LST) Elements

Livean  Strain TaanauiAe  Eepent

)
1B
o)
o~
~
S
P
=
r}

/ h—'_)'f' _T'-Y'}""“_"Ti' —7 U,
i ',.f'.,__’
/, Y
e

76



FM ¥, LST e/@,mémf SJ/IQUJV\ i %ﬁ“*e I/
Ew%wmg 9{ M%M DOF ac i aés’ﬁ[acemewf'
el wd tssiahd  hai piddle

U= Q +a,x tQzy+a, X" 155y 1y

Vo= a? "'43?( +4q 7 +qf’oxz+qffx)/'; a, y*

Exz= 0+ 20, %+

éy Aq + a” X+ 205y

@3*43’) + (q5+ la;o))( s (20“6 TQH_)))

T[\e SW@ W ane %ﬁf/i”c/ %OM 7%@
CJJSMQCe mm% %é/ a4

No=1-006FX +0000 X

by

\i

fi = 00220 X - 0-3333 Y - 0000/ X+ 00019 XY

s



Ny = ~0:0056 X + 0-0833 ¥4 00001 = 000/axy

+0:- 0139 v ?
My = 00019xy- 00278y *
Ne- -00833y 4 00139y

Ny = 03333y — c0019xy

m S'&M— Q&g/é&cﬂmwf ﬁ?&z;?( (an e
fond fom [B1=[) 1) 5] 5 o B
m’m"" T W S’%tm me 4) ﬁ""“ é%

-

D= | 6] 1) (] ¢ drds

IZX3 3x%3 A% L

78



&}me& 5%@“}; )% (Oo/fc/}mf@a é‘% 7%2

e 2
Te finits b (&Wh X it
fou 6 b 10 Whaea, # ealon e ook
w7 ol dshd G A ol of K

ptonse e om0
e ol J@mwf 57%”@;5 i
s defotmine d Zlm He (ST chmed ar

79



0tzZrozz |06l9Lv- |0 0T¥952Z- |BBIvE-  |0619Lv |0 0 tZ08L61Z- (06T9LY (O 08L6TT- 4
06T9Lb- |88668LL |08L6TZ- |0 0619.F  |089L6- |0 0 06T9.v  |80ET69L- |0TFISZ- [0 11
0 08L61¢- |8SLIwIE |0 [1068601- |08L6TT  |€STLVLE |SPEYS- |0 0 0 SreYSs 01
0Tv9sz- |0 0 GI9v887 |0T¥9ST  |PST9¥BE- |EOTYI9- gES196 |0 0 E0TYS |0 b
881pE-  |06T9LF  [TTO6B60T- [OTYP9SC  |0TZZTI0ZZ (06T9LF- |TT06860T- (084617 |0 06T9Lb- |0 0 8
0619LF  |089L6- |08L6TC  |vSTO¥BE- |06T9Lt- |8B66BLL |0TH9ST  |PST9VBE- [0619Lt- |0 0 0 L
0 0 €STLpLT |tOT¥9-  |TTO68601- |OT¥IST  |6LSYST8  [EVTLSE- - [P6OLT- 08L6T1T  [PLlY ShbbS- 9
0 0 SyevS-  (BEST96  |08BL6TZ  |PST9PBE- |EVTLSE-  |SWZTZ6Z |[OT¥9SC  |OV88Y-  (E0T¥9-  |OTTLT 5
ZZ08L6TT- [06T9LF [0 0 0 06T9Ly-  |F60LT- 0T¥9ST  |0TZCT0ZZ |06T9LP- |V6OLI-  |08L6TZ 4
0619LF  |80EZ69L- |0 0 0619L%- |0 08L61C  |OVBBY-  |06T9LF- |88668BLL |0T¥9ST  |OVBBP- £
0 0T¥9SZ- |0 £01v9 0 0 vity E0TP9-  |v60LT-  |OTP9ST  |TZ8TT 0 14
08LeTZ- |0 shevs 0 0 0 SPoYS- 0Tt 08/el¢  |0v88Y- |0 0€99¢ I

4! A 01 b 8 L 9 ] 4 £ Z 1 104

XII1B| SSAUMIIS [B20]

80



SMMZ, He  ehmand M%M Madui ;4
R deand chimad s Lmived e
thymant .5/)"//4/}«555 ol foo btk A elomarts
. woffd b Ao okl lyeut Hfwr

The &‘sﬁ&zwwfg e %MJ %am #
)&M dores E%/%eﬁf Y

81



TZ0Ri6T  |06TSLF (D 08L6TT  [TOZ99¢T- (0619t |0 1] TIBETS  |06T9LF- |0 OIF9sE cl
06T9Ly CE0BLGT  |OTHO5E 0 0aT9iv-  |TEBETS |0 ] O6T9/ % |TOZS96T- |DBLGIE |0 11
0 OT#95Z  |BOEZGT 0 OTr9sE-  |OT#95Z-  |EOTE9 EOTFS 0 0 0 EOTHS- 01
OBL612 |0 0 LSPEPS  |OBLBLE-  |TO9ZEL- |SWAWS O05TEBT |0 0 SPeFS- |0 f
LOZSSPT- (06194t |OTHBSZ-  |OBLGLE-  |ZZ0BLGL  |OGL9LP  [OLp9SZ-  |OTY9SE- |0 0eT9Ly |0 0 8
OaT9iy-  |TTRETS-  |OTERSE-  |TO9EEL-  (06TSLE CEDRLET |O8L6TE-  |TO9ZEL- |OBTOLY o 0 0 L
0 0 0TS Skebs OTF55Z-  |0BL6TE-  |BSLTHL EPTLSE  |TO9ZEL-  |OTVOSEZ- |[OSTERT  |EOTHOD e,
0 0 EOTES OSTEBT  |OT#9SE-  |TO9EEL-  |EFTLSE BRLTPL  |0BLGTE-  |OTP9SZ-  |SteFS E0TFS S
LZ8I1S-  |DET94P- |0 0 o 06194k  [TOSTEL-  |OBLGTT- |TEOBLGT |06T94F  |I09CEL-  |OTH9ST ¥
D6T9Lp-  |TOTS9PT- (O 0 O6T9LY 0 OTF9sE OTF95T-  |06T9LF CE0BLED |OBLBIZ-  |DTRAST E
0 0BL6TE |0 Svets- |0 0 DSTEBL SPEPS To92gs-  |0BLBTEZ-  [TabetSs |0 [d
OTese 0 E0TES- 0 0 0 E0TES EOTFY O0Tp9se-  |OTK9sSi- |0 BOETET I
(4! It ot & B L g g t £ [ T 100

1B SSaUNIE (2307

82



90+38 |0 LO0+3T- |0BLBTE(90+3E  (SPOYS- (WROLT- (OTF9SE |B0-3T- |06T9LF-|0T-36-  |TT-38 |RLIF (EOIPS- (£1-38°9 |10-3¢°C |0T-3t |8¢D6TT | 8T
0 g0+3% [OTOST |90+3b- |£OTEI- [RESTO6 (084617 |OvERE- |06TOLE- [OT-35- |TT-39°2 |0T-32- |SE6PS-|0TZZT |TT-35'T |ZT-3T'¢ |8RO06TT |OT-3ET | 41
£043T- [S0+3E |L04+3T |S0+35- |LO+3T- |0BLGLE |0 0 BEIve- (O619Lv [0T-3LF (S0+35 |0 0 0 0 0T-35- |T1-35°T | 91
S0+37 [90+3b-|50435- |90+3F |OTFOST [90+3F- |0 0 D6TSLP |0B9LE- |06T9Lp- |OT-32 |0 0 0 0 TT-31  |OT-32- | 5T
O0+3E |EOTHD-|L0+3T- |OTPOSE |90+38  [ERTLGE-|D 0 OT-3%°% |TT-3&- [PeQLT- |OBLETE|O 0 0 0 SELIV [GPEPS- | ¥
Stbbs- [90+3T [OBLGTT |90+3b- [EWTLSE- (9043 |O 0 TT-3t- |TT-36- |OTE#95Z |OFEER- |0 0 0 0 019 |OTEIT el
PeOLT-|S0+3E |0 0 o 0 0437 |O6TOLV [L0+32- (D6T9LV |O d Fe0LT-|OTEFOST|60-IEE |06TLF- |BO-3E- [E0-3EL | 2T
S04+3t |OboEr- |0 0 0 0 O6T9Lb- |BH66ELL|06TELY [90+38- (O 0 SO+3T |OFEEE- |D6T9LF- (B0-3T'T |TT-3T  [60-3T- | IT
BO-3T- [S0+35-(BBIVE- (OGIDLP|OT-3E  [T1-3E- [L0+30- |0GT9LF |L0+3FF (LBELISH- |L0+3L-  |0BT9LP|0T-36 |D BRTPE- |06T9Lt [BO-3F  |OGTSLE- | OT
50+35- |0T-35- |06T9L4F [085946- |TT-3E- |TT-36- |D6T9/Y |90+38- |TREZSH- |£0+32  |06T9LF |90+38- |0 0 06TILV 0896 |S0+35- |RO-IET | 6
0OT-36- |TT-3E |OF-3I5  |SO+3C- |PEOLT- |OTEDSZ |O 0 L0+3Z- |OBTOLT |L0+32°2 [CO+35- |0 ] 0 0 PoDLT- |0BLGTE g
L1-3F |OT-3Z- |S0+35 (OT-32 |DBL6TC |OVEBY (O 0 06l9Liy |90+38- |06TSLt- |90+38 (O 0 0 0 O1P957 |OFPBRY- | (£
PLIV  |SPEYS (D 0 0 0 PeOLL- |OBLGIC |OT-3E6 |TI1-3E |0 0 9E+38 |S0+3f (L0437 |OTF9SE |B0+3E |EOTHS- | 9
£0Tra- |OTZZT (O 0 0 0 OIS ? |Ob@fb- |TT-36°F |OT-3F |0 0 S0+3p- |9E+3E |0BL6TE |90+3t-  |SPEFS- [SESTOE | §
ET-3L [TT-3T1 |0 0 0 0 60-3E  |DETOLv- |BETERE- |DGTSLY |0 0 L0+30-|OBLEOTE|LE+ITT |OBTHLY- |L0+3T- |OTWOST | b
T1-3¢ |ZT-3F |0 0 0 0 06T9LY-|60-3'T |D6T9LF |OB9LG- |0 0 S0-3F |90+3t- [DGTOLy- (9E+I8L |OBLETL 9043 | E
OT-3f |S0+3T |OT-358- (TT-3T |5 ELIf (EOTEO- |GO-3E- |TT-35°T |60-3T'E |O6T9Lt [PEOLT- |OTPOST(90-3E |SWEPS- |L0+3T- [0BLGTT |9E+432 |TT-3%- £
S0+3T [OT-3T |TT-3T |OT-3- |StebS- |OTEET (E1-3L |60-3T- |OGT9LY- [G0-IT |UBLGITZ |OVEBY- |EOTVO-|BESTOG|0TLOSZ [90+3t- (TT-39- [9€+36C | 1
21 LT 81 El i £l £l 11 0t 6 2 [ 3 g F E Z I 04
NUTEY S30Uyns [eqorn

83



Beam Displacement Comparic

Hand-Calculations Matlab FEA Program
DOF Displacement DOF Displacement
1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 0 5 0

6 0 6 0

7 -0.03334747 7 -0.03334747
8 -0.25289291 8 -0.25289291
9 -2.91E-05 9  -291E-05
10 -0.25255534 10 -0.25255534
11 0.033269796 11 0.033269796
12 -0.25287669 12 -0.25287669
13 -0.06588415 13 -0.06588415
14 -0.99964157 14 -0.99964157
15  -1.00E-05 15 -1.00E-05
16 -0.99933758 16 -0.99933758
17 0.065865831 17 0.065865831
18 -0.99969349 18 -0.99969349
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Bilinear Rectanqular (Q4) Element
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Local Stiffness Matrix

431929.2
13736.26
1010379

-178571.4
-937118.4
-13736.26
-505189.3

1785714

-13736.264 -505189.26

1356532.4 -178571.43

-178571.43 -937118.44

2764346.8 13736.2637
13736.264 1010378.51

-2738705.7 178571.429

17857143 431929.182

-1382173.4  -13736.264

-178571.43
-1382173.4
-13736.264
-1738705.7
178571.429
2764346.76
13736.2637
1356532.36

937118 13736.26
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-505189 1785714
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Beam Dispalcement Compari¢
Matlab FEA Program

Hand-Calculations

D.O.F  Displacement

1

0

1

D.O.F  Displacement

0

0

0

0

0

0

0

0.002232547

0.002232547

0.018654177

-0.018654177

0.002221229

0.002221229

0.018649147

0.018649147

2
3
4
5
b
]
8
9

0.002955971

2
3
4
5
b
]
8
9

-0.002955971

10

0.059561303

10

-0.059561303

11

0.002982398

11

0.002982398

12

0.059583108

12

-0.059583108
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Quadratic Rectangular (O8) Element

OUAD RATIC
0 ]’-5 3
IR 0
R4 Ju L
1 - r_)[:_ '
£ = 1
Vv - 0- 3
&

@ECTANG; L E

Iy v Vo
~
Uy, 4 it > } _.'r_ _ 5 U
l'J"‘zT /“.IJ'IJ
13— Lo,
Gk T Sus
vy Vs V.

92



For ‘hOU, Qg e,émmj SA@{,W\ in [@me /,
b Teums E{ W@w/ dof ac it J&ﬂumﬁ
Pl and asspeinlld g /gé/ av

_ 2
Uz O +a,x 4+ aayy a, x +Cfsxy+ﬁ?6>’2+ %XZML agxy*

/ﬂ’x ’ 2 4,. - -

€x= Q) 420, x4 A,y 4 205xy ¢ apy*

€y - a, + Q3 x + Zam)q,Qg}Z} 20, Xy
fey = '
Xy @73 ‘Mm) + (a;;.za,l),x + (246 + q’%)y ,g.a,”l{_ Z(GJ +0,c )Xy

*mez

Ifm _Qz\ﬂ%e /Z,w iy o 7/&_;,,\(/ %@w\ He
dﬁs ﬂg(-&mj //?g// AL

V- = 0067 X -025y +0039y*

N, - 0:3333Y — 0.00/9%xy — 00294y "

93



Noyz -0:0833 7+ 001397 "

NQ: O‘OZZZX
sz 00009 XY
Ny = ~0-0056% =000/ XY

W)

Ny = 60019 xy

Neg< -00014 XY

rﬂi‘ S%chjk;s%é(mf /méix (n Ze Zé'wnc/
fon (8= DI(A)- () is 0 3x sl
ﬂpm @L]m/mj &%[Zfﬂm; ]/)’M/éjx N ﬁ{l/w é/, 7% é/}w?;bn

boa
['C}]me 3 f f 161 [) (&) ¢ dydy
b -8

Xy Bx3 3L

94



ﬁ,@w ?Z{Z{M 2, a(mjé Con 3{ ﬁwe/ad

I
b= b \
(’uf—”b) m'é) (UE'I(J)
/ d . +
!
I(Lﬂ,a)
( P}
(-¢5:4)  (006) (4578

(.
ri

AN - ¢

Mo loced  and %M lhras? 574‘%%%(
mmfucw e ﬁm n M@Wﬁ | ﬂjm- T

(J«[S}J&ﬂfémj' /ﬂ’ﬂo} %om Z‘%Aﬂ C;ﬁ 0 mjj;)f /_'?
G‘f{ﬂ) Mmml-

95



0+3€ 0 (043T- STHOYT O §0+3€- 90+3L- §9¢6L- L0431 O 90+3,- T99€6L ( 09vLTE LO+IS'T- STHOYI-
0 L0431 SPOLLT 90+3G- 09VLTE- D G9¢6L- 90+3¢ 0 90+3¢ T'S9¢6L 90+3€- (Q9WLIE 0 SYOLLT- 90+36-
L0+3T- SYOLLT 90436 GO-3€- 90+37 STPOYT 90+3€ 8'8LSP 90+3L- G9E6L LLBS8SY 688BET- 90+3T- T'S9E6L 6LLBOYS 8'BLSY-
STPOPT 90+3G- GO+3E- 90-3€ SPOLLT 906SLS 6LSY- 896586 S9€6L 90+3€- 6888ET- YI6CTIT 99E6L 98SELO- SLBLSY LBTSEGT
0 Q0+3¢- 9043 SPOLLT 90+3L O 90+3C S0t3C 0 09vL1¢ 90+3C- T'99¢6L 90t3L- O 868(781- 99¢6L-
09pLIE- 0 GTOPT 906545 0 90+3¢ SO+3T- 90655 09pLIE O 19986 985EL9- 0 90+37- T'S9¢6L- 98SELY-
00+3(- G9E6L- 90+3€ 6LSh- 90+37 GO+3T- 90+36 C0ELEE L0+31- SO+IT- 6LL86YS SLBLSy 90+3C- GOE6L- L[L858SY 6BB8EI
GOE6L- 90+3¢- 8'8/Sb 896586 SPOLLT- 9065LS TOSLEE 90+3€ SO+3T- 90+3S- 8'BLSY- [BTSEET S9E6L- 98SEL9- 6BBBET HTI6TIIT
(03T 0 90+3L- S9¢6L 0 09vLTE L0+31- SO+3T- [0+3E O L0+31- STVOVT 0 09LTE- 9S88TEL- S9¢6L- =X
0 90+3¢ 99¢6L 90-3¢- 09YLIE O §0+3Z- 90+35- 0 L0+3T SVOLLT 90+3G- (Q9WLTE- O 1'59€6L- 90+3€-
90+3( S9E6L 90439 S0+3T- 90+3C- §9€6L 9039 6LSt- L0+31- SWOLLT YSLTLT6 TOELEE- 90+3T  SIVOVE 0085SLT SLBLSY
G9Ep. 90+3E- GO+3T- 90+37 S9e6L SO+3L- §'8LSY 90t3C STWOVT 9035~ COELEE- 8TBSYHTE SWOLLT 906SLS SLBLSY- 856586
0 09vL1€ 90+17- S9E6L 90+3L- O 90+32- S9¢64- 0 G0+i¢- 018081 SvOLLT 90+3L O 0T£808T SYOLLI-
09vLTE 0 G9¢6L S0+3L- 0 90+3¢- §9E6L- S0+3L- SO+3E- O qTv0rT 90695 0 EVEr69T STHORT- 9069LG
(0+3T- S0+3T- 90+39 8'8LSh 90+3T- §9€6L- 90+3S 6888ET 90+3L- G9¢6L- 008SSLT 8'8LSh- 90+3C  STWOVI- ¥SLILTH COELEE
GTYOPT- 90+35- 64GP- 90+37 G9E6L- SO+3L- 6888ET 90+37 G9€6L- 90+3€- SL'BLSY 856586 SWOLLT- 906SLS COELEE 8TBSKLE

96

XITE[Y SSAuRs [220]



104367 0 L0431~ STR0PT 0 09pLTE- 90+3L- SO6L- LO+AT O 90+3L- T5986L 0 09pL1€  [043GT- SIVOVT-
0 (0+3T  SYOLLT 90+3G- 09vLTE- 0 G9€6L- 90+3¢- 0 90+35 T'99¢6L 90+3E- 09vLIE 0 SVOLLT- 90436
L0+3T- SPOLLT 90+36 GO+3€- 90+37 SIVOYT 90+3€ SLBLSY 90+3[- S9E6L LL89BSY 688BET- 90+3T- T'G9E6L 6LL86VS 8'8LSH-
QTvOpT 90435~ GO+3€- 90+3€ SPOLLT 906SLG 8'8LSt- 8G6G86 G9e6L 90+3c- 6888E1- $16TT9T G9E6L 98GEL9- SSL'BLSY L8TSE6T
0 09pLTE- 90+3C SWOLLT 90+3L O 90+3¢  SWOLLT- 0 09pL1E 90+3¢- T99E6L 90tiL- 0 868CV81- 99t6L-
09pLT¢- 0 STPOVT 9065LS 0 90+3¢  STPOVI- 9065LS 09pLIE 0 1'59¢6. 989€L9- 0 90+3¢-  1'G9E6L- 98SELY-
90+3[- G9E6L- 90+3E  6LS- 90+3C SIVOPT- 90+36  COELEE LO+3T- SO+IT- 6LLBGYS SL'8LSY 90+3T- G9E6L- L[8SBSY 6888E]
q9¢6.-  90t3€- 8'8LSY 896586 SPOLLT- 906SLS TOELEE BTBSHTE SO+3T- 90+3S- 8'BLSP- [BTGE6T SIE6L- 98GEL9- 6'8888ET HI6ITIT
(0+3ST 0 90t3L- 99E6L 0 09vLTE L0431 STHOPT- LO+3E O L0+31- STYOPT O 09VLTE- 9988TEL- S9E6L-
0 9799609 99€6L 90+3E- 09LIE O SY0LLT- 90435 0 (0t30  SYOLLT 90+3S- Q9pLIE- O 1'99€6/- 90t1¢-
903, T'S9E6L 90439 GO+3T- 90+3C- S9e6L 90+3S B'BLGy- LO+3T- SHOLLT YSLTLT6 C0ELEE- 90+3C GTWOVT 008SSLT SL'BLS
TG96L 90t3¢- SO0+3T- 90+3C S9E6L 98SELY- §'8LSY (BTSE6T STVOPT 90+35- TOELEE- 8TBSYIE SYOLLT 90695 SL'BLSH- 896586
( 09vLT€ 90+3¢- S9E6L 90+3L- 0 90+3¢- 99¢6L- 0 G0+3t- OTLBOST SYOLLT 90t3L O 0TL808T SWOLLT-
09vlit 0 99geL S0t3L 0 90+3C- 9986 989EL9- S0t3E- 0 SIPOVT 906545 0 EVEVOIT STVOVT-  9063LS
(031 SYOLLT- 90+35 8BLGY 90+3C- G9E6L- 90+3S 6BBBET S0+3[- S9E6L- 008SSLT §8LSY- 90+3T  STWOVI- $SLTLI6 TOELES
GTvOPT- 90+3S- 6L5h- 90+37 G9E6L- 9BGELY- 688BET pT6ZTOT S9E6L- 90+3t- SL'8.SY 896586 SHOLLT- 906GLS 9TOELEE BTRSKIE

XI1JB|N $SaULIIIS |eqo|D

97



Beam Displacement Comparis

Hand-Calculations

Matlab FEA Program
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