
DEVELOPMENT OF A FINITE ELEMENT PROGRAM 

INCORPORATING ADVANCED ELEMENT TYPES 

 

 

By 

RAMEEZ IQBAL 

Bachelor of Engineering  

Osmania University 

Hyderabad, India 

2007 

 

 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 
the requirements for 

the Degree of 
MASTER OF SCIENCE  

July, 2009



 ii

DEVELOPMENT OF A FINITE ELEMENT PROGRAM 

INCORPORATING ADVANCED ELEMENT TYPES 

 
 
 
 

   Thesis Approved: 
 

 
  Dr. Jonathan S. Goode 

   Thesis Adviser 
 

  Dr. Robert N. Emerson 

 
Dr. Bruce Russell 

 
  Dr. A. Gordon Emslie 

   Dean of the Graduate College 
 
 
 
 
 



 iii  

 
 
 
 
 

ACKNOWLEDGMENTS 
 
 
I thank God for guiding me to the right path. 

I express my deep gratitude and appreciation to Dr. Jonathan S. Goode for his confidence 

in me towards this project. His patience, guidance and constant encouragement helped me 

immensely to complete my research project. I am indebted for all the time he has 

provided for my research project. 

I thank Dr. Robert Emerson for his consistent support and assistance concerning various 

aspects of my study. His invaluable experience helped immensely in the development of 

this project. 

I also thank Dr. Bruce Russell for his encouragement and guidance rendered to me 

throughout my research. 

I am deeply grateful to my friend and colleague Muhammet A. Saglar for his constant 

support during the successful completion of this thesis. I am really grateful to him for 

accommodating the extra workload. 

I thank my family and friends for the enormous support they have shown me. 

And finally, I thank my parents for their unconditional support and encouragement I 

received during the past two years. I thank them from the bottom of my heart the values 

they instilled in me for hard work, honesty and dedication. 

 



 iv

 
 
 
 
 

TABLE OF CONTENTS 
 
 

Chapter          Page 
 
I. INTRODUCTION ......................................................................................................1 

 
 1.1 Background and Problem Definition .................................................................1 
 1.2 Objectives ..........................................................................................................3 
 1.3 Overview ............................................................................................................4 
 
II. LITERATURE REVIEW ..........................................................................................6 
  
 2.1 Finite Element Method ......................................................................................6 
 2.2 Advanced Elements ...........................................................................................7 
 2.3 Software Advantages .......................................................................................10 
 
III. FINITE ELEMENT THEORETICAL DERIVATIONS .......................................12 
 
 3.1 Introduction ......................................................................................................12 
 3.2 Interpolation and Shape Functions...................................................................13 
 3.3 Formulation of Element Stiffness Matrices .....................................................14 
 3.4 Element Boundary and Loading Conditions ....................................................16 
 3.5 Solution Techniques.........................................................................................17 
 3.6 Advanced Finite Element Formulations ..........................................................18 
       3.6.1 Isoparametric Elements ...........................................................................18 
       3.6.2 Constant Strain Triangular Elements (CST) ...........................................21 
       3.6.3 Linear Strain Triangular Elements (LST) ...............................................24 
       3.6.4 Bilinear Rectangular Elements (Q4) .......................................................27 
       3.6.5 Quadratic Rectangular Elements (Q8) ....................................................29 
 
IV. CASE STUDIES ....................................................................................................33 
 
 4.1 Introduction ......................................................................................................33 
 4.2 CST Elements ..................................................................................................35 
 4.3 LST Elements...................................................................................................38 
 4.4 Q4 Elements .....................................................................................................42 
 4.5 Q8 Elements .....................................................................................................45 
 4.6 Comparison ......................................................................................................49 
 
 



 v

Chapter          Page 
 
V.  CONCLUSION ......................................................................................................51 
 
 5.1 Summary and Conclusions ..............................................................................51 
 5.2 Recommendations ............................................................................................52 
 
REFERENCES ............................................................................................................54 
 
APPENDIX A – MATLAB FEA PROGRAM ............................................................56 
 
APPENDIX B – CONFIRMATION CALCULATIONS OF ELEMENT 

FORMULATIONS ................................................................................................65 
 



 vi

 
 
 
 
 

LIST OF TABLES 
 
 

Table           Page 
 
 4-1 Input Values for Various Elements ..................................................................35 
 4-2 Maximum Tip Deflection for CST Elements...................................................38 
 4-3 Maximum Tip Deflection for LST Elements ...................................................41 
 4-4 Maximum Tip Deflection for Q4 Elements .....................................................45 
 4-5 Maximum Tip Deflection for Q8 Elements .....................................................49 
 4-6 Maximum Tip Deflection Comparison ............................................................50 
 



 vii

 
 
 
 
 

LIST OF FIGURES 
 
 

Figure           Page 
 
 3-1 Four Node Isoparametric Element ...................................................................20 
 3-2 Three Node CST Element ................................................................................23 
 3-3 Six Node LST Element ....................................................................................26 
 3-4 Four Node Q4 Element ....................................................................................28 
 3-5 Eight Node Q8 Element ...................................................................................31 
 4-1 Fixed Beam Loaded at the Free End ................................................................34 
 4-2 CST Element Mesh ..........................................................................................36 
 4-3 CST Beam Deflection Profile ..........................................................................36 
 4-4 Contour Plot for CST Element Displacements in the x-Direction ...................37 
 4-5 Contour Plot for CST Element Displacements in the y-Direction ...................37 
 4-6 LST Element Mesh ..........................................................................................39 
 4-7 LST Beam Deflection Profile ..........................................................................40 
 4-8 Contour Plot for LST Element Displacements in the x-Direction ...................40 
 4-9 Contour Plot for LST Element Displacements in the y-Direction ...................41 
 4-10 Q4 Element Mesh ............................................................................................43 
 4-11 Q4 Beam Deflection Profile .............................................................................43 
 4-12 Contour Plot for Q4 Element Displacements in the x-Direction .....................44 
 4-13 Contour Plot for Q4 Element Displacements in the y-Direction .....................44 
 4-14 Q8 Element Mesh ............................................................................................46 
 4-15 Q8 Beam Deflection Profile .............................................................................47 
 4-16 Contour Plot for Q8 Element Displacements in the x-Direction .....................47 
 4-17 Contour Plot for Q8 Element Displacements in the y-Direction .....................48 
 



 1

 
 
 
 
 

CHAPTER I 
 
 

INTRODUCTION 

 

1.1 Background and Problem Definition 

 

Finite element analysis (FEA) is one of the most common methods used for numerical 

solution of field problems. The field problem is often described as a differential equation 

or an integral expression. The finite element solution helps in solving these complex field 

problems into an easier ordinary differential equation that can then be numerically 

solved. 

 

Finite element analysis can be used in any field problem such as heat transfer, 

stress/strain analysis of structural or mechanical systems, fluid flow, and magnetic fields. 

It can use any type of geometrical shape avoiding any restrictions in geometry. Boundary 

conditions, loading and material properties can vary from element to element. It can 

incorporate more than one type of element which closely resembles the actual body or the 

region which is to be analyzed. 

 

At present many commercial types of software have been developed to analyze structures 

using finite elements. Software titles such as Staad.Pro, Ansys and Abaqus are some of 
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the commercial programs available for research and design purposes. These programs are 

usually advantageous in checking the element shapes, element meshes and connections.  

In the present study, however, Matlab is used in the development of a software program 

for finite element analysis. 

 

Each element is connected at points known as nodes. In a two-dimensional analysis of 

displacements, each node has two degrees of freedom. The particular arrangement of the 

nodes is known as the finite element mesh. A finite element mesh is represented 

numerically by a system of algebraic equations to be solved for the unknown field 

quantities at the nodes. These unknowns are the values of the field quantity and depend 

on the element type. The field quantity over the entire structure is approximated element 

by element. 

 

Different types of elements are used in this present study to analyze the beam for 

deflections.  Subsequently, stresses and strains may also be determined.  The stresses and 

strains, however, are not the focus of this study.  As such, only deflections will be of 

interest herein. The different types of elements considered in this study are: 

 

1. Constant Strain Triangular elements (CST), 

2. Linear Strain Triangular elements (LST), 

3. Four-Node Rectangular elements (Q4), and 

4. Eight-Node Rectangular elements (Q8). 
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CST and LST elements are advantageous in determining the heat conduction and 

modeling pure bending of beams. Whereas, the Q8 elements help in eliminating shear 

locking in beam analysis that is experienced when using Q4 elements. Each of these 

elements can also be further used in formulating frames and trusses. Due to their 

flexibility, they can also be used to analyze structural dynamics due to earthquake ground 

motion as well as heat transfer and temperature degradation due to structural fire 

conditions. 

 

In the present study, however, only two-dimensional (2-D) structural analysis of simple 

beams was considered. The finite element analysis program then consisted of 2-D 

elements to derive the structural equations. With known boundary conditions (or 

supports) and known loading conditions, the unknown field quantity (deflections) were 

then solved.  The accuracy of the finite element solution depends on many factors.  

However, the primary focus of this study is not concerned with the individual accuracy of 

any single problem. 

 

1.2 Objectives 

 

This study incorporates the use of basic and advanced finite elements as a tool to solve 

complex engineering problems. The use of commercial software is also an important 

aspect in the present day research scenario to analyze the problem with limited difficulty. 

The primary objective of this study is the development of a finite element analysis (FEA) 

program, incorporating each of the four elements as previously defined, written in the 
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Matlab programming language. This program is capable of formulating the element 

stiffness matrix for all four types of elements. This program uses static and dynamic 

loading to solve for deflections, stress and strains. This program is also capable of 

generating graphical outputs for the results. 

 

This study also helps in getting a better understanding of the various computational 

software being used for research and commercial purposes. In the field of Civil 

Engineering, finite element analysis has played an enormous role in solving complex 

analytical problems. It has drastically improved the economical part of this field by 

reducing the cost of laboratory tests for practical field problems. 

 

1.3 Overview 

 

The next several chapters present the methodology behind this study. A summary of each 

chapter is provided to give a brief overview of the remaining sections of this study: 

 

• Chapter II – Literature Review: 

Studies conducted on various disciplines using finite element analysis are 

presented and a brief overview of these studies is provided.  This chapter also 

discusses the usefulness of software for research purposes and its ease in 

determining or extracting specific and relevant data to the problem being 

considered. 
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• Chapter III – Finite Element Theoretical Derivations: 

Detailed theoretical development of the finite element analysis procedure is 

presented and discussed.  The development of the structural equations for a 

structural system using finite elements is first presented.  Application of boundary 

and loading conditions as well as solution techniques to determine the unknown 

deflections are presented.  Finally, advanced finite element formulations 

considering the four element types considered in this study are presented.  Each of 

these formulations are used in determining the structural equations for the system. 

 

• Chapter IV – Case Studies: 

The capabilities of the Matlab FEA program developed as a consequence of this 

study are demonstrated.  Each of the four element types considered in this study 

are utilized to demonstrate the difference in accuracy between the elements.  All 

the results that are needed for this study are provided in this chapter.  This chapter 

also compares the results that are found from hand calculations done using the 

procedure of FE. 

 

• Chapter V – Conclusion: 

A summary of the results and conclusions of the study are provided.  

Recommendations are provided for potential future research with respect to the 

development of the FEA program as developed in this study. 
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CHAPTER II 
 
 

LITERATURE REVIEW 

 

2.1 Finite Element Method 

 

The finite element method can be used to solve complex linear and non-linear problems.  

There are thousands of studies that have been conducted in the past ten years that could 

be considered.  All of these studies together, demonstrate the flexibility for which the 

finite element method can be used.  Several specific examples are provided herein that 

demonstrate this flexibility as it pertains to structural analysis as considered in this study. 

 

A finite element code was developed for the curing simulation of thick composite 

structures by Park et al. (2000). This model was capable of modeling composite 

structures with arbitrary shapes. The proposed degeneration method to build the thermal 

conductivity matrix for two-dimensional cure simulation yielded satisfactory results. It 

also provided accurate temperature distributions during the curing of thick composite 

structures. 

 

A finite element analysis was conducted on steel fiber-reinforced concrete beams by D. 

Mehmet et al. (2008). This beam was modeled by using nonlinear material properties 
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adopted from experimental study. Eight-node solid brick elements were used to model 

the concrete.  The deflection and stress data were compared to the experimental study at 

failure and yielded the desired results. They found the initial and progressive cracking 

due to deflections and stress obtained from the finite element model compared well to the 

experimental data. They also found that the failure mechanism of the beam is modeled 

quiet well using the finite element method and the failure load predicted was very close 

to the failure load measured during experimental testing. 

 

Finite element method can also be used in frame structures. M. Barbato et al. (2006) 

analyzed the response sensitivity analysis using three-field mixed formulations for frame 

structures. The methodology was based on direct differentiation methods and produced 

the response sensitivities consistent with the numerical finite element response. This 

methodology is also related to the developed steel-concrete composite frame element. 

Particular attention was given to steel-concrete composite frame finite elements for which 

the three-field mixed formulation was found to be beneficial in terms of numerical 

accuracy. Furthermore, finite element response sensitivity analysis was found to give an 

adequate insight into the structural response behavior and its sensitivity to modeling 

parameters. 

 

2.2 Advanced Elements 

 

Advanced finite elements have also been used in thousands of studies in the past ten 

years.  These elements go beyond the basic axial/bar and beam elements that are 
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commonly used in structural analysis (e.g., direct stiffness method).  Incorporation of 

advanced elements allows the user to consider localized changes in geometry or material 

that may change the characteristics of the structural response.  As such, the use of 

advanced elements provides superior flexibility with respect to a detailed analysis of the 

performance of the structural system.  As before, a few select studies are discussed herein 

that pertain to the use of advanced elements in a finite element analysis. 

 

Salem et al. (2001) developed a robust element distortion metric based on the concept of 

mid-node admissible spaces for two-dimensional (2-D) quadratic triangular finite 

elements with one edge curved. The concept implies that for any mid-node of a 2-D 

quadratic triangular element there is a specific area within which it can be placed such 

that element quality is maintained. This metric is based on the Jacobian matrix and 

requires computation of the linear element only. This process reduces the CPU time as 

calculated from the Jacobian values at gauss integration points. 

 

Glaucio et al (2007) proposed a Q4/Q4M element having design variable nodes and 

displacement nodes which are not coincidental. They implemented this element using 

different approaches, including continuous approximation of material distribution and 

nodal approaches. In both the cases, it was found that the method used was more 

advantageous in generating higher resolution for topological results. They also applied an 

integral averaging technique to suppress the instabilities caused due to layering and 

islanding. 
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Li et al. (2001) presented a quadratic finite element and quadratic finite strip with 

generalized degrees of freedom based on the fact that the local displacement fields of the 

elements should be compatible with the global displacement field for the corresponding 

system. Though quadratic elements and strips were used, they found results with good 

accuracy and desirable convergence. Compared to the traditional finite elements and 

strips this method yielded similar results with less degrees of freedom. They also found 

that, when compared to the linear element, this method can yield results with better 

accuracy. 

 

Kikuchi et al. (1999) presented a modification of an 8-node quadrilateral element which 

is widely used in finite element analysis. They proposed this element which can represent 

any Cartesian and isoparametric quadratic polynomials when it is of bilinear isotropic 

shape. They found that the results were in good agreement with the basic formulation of 

an 8-node element. Moreover, this element gave good results for higher order elements 

and for three-dimensional (3-D) elements. 

 

Finally, Long et al. (2004) investigated the effect of modified reduced quadrature rules on 

the presence of spurious modes in the stiffness matrices of the Q8 serendipity and Q9 

Lagrange membrane finite element. The alternative five- and eight-point schemes were 

proposed for Q8 and Q9 elements, respectively, that allowed for the elimination of 

spurious modes while element accuracy was maintained. They found that the Q8 element 

yielded more economical results using the five-point rule when compared to the eight-

point rule. The Q9 element, however, produced inadequate results using the five-point 
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rule whereas the eight-point rule gave accurate results.  Each of these results was 

compared to the fully integrated counterpart. 

 

2.3 Software Advantages 

 

The use of software to obtain finite element solutions has also been well documented 

through the literature.  Commercial software packages are readily available that provide 

adequate flexibility for most research and practical purposes.  However, the development 

of a FEA program through the use of computer programming provides superior flexibility 

with respect to user manipulation.  User-written FEA programs have always been at the 

heart of research and have been utilized for many years at academic institutions.  The 

programming language Matlab has become increasingly popular due to its capabilities 

with respect to matrix manipulation.  A few examples are provided here that demonstrate 

the use of Matlab as the programming language for the development of a FEA program. 

 

Alberty et al. (2002) presented a short Matlab implementation for P1 and Q1 finite 

elements for the numerical solution of 2-D and 3-D problems in linear elasticity with 

mixed boundary conditions. They provided a Matlab code incorporating the simple model 

examples as well as more complex problems. Element stiffness matrices were assembled 

by Dirichlet and Newmann methods for quadrilateral and tetrahedral elements. The 

authors provided the numerical examples with postprocessing and error estimation via an 

average stress field illustrating the new Matlab tool and its flexibility. 
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Barlets et al. (2004) implemented a short Matlab program to incorporate a flexible 

isoparametric finite element method. Two-dimensional domains with curved boundaries 

of elastic problems having quadratic order were considered. They incorporated triangular 

and quadrilateral elements equipped with varying quadrature rules which allowed for 

mesh refinement. They provided numerical examples for the Laplace equation with 

mixed boundary conditions to indicate the flexibility of the isoparametric finite elements.
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CHAPTER III 
 
 

FINITE ELEMENT THEORETICAL DERIVATIONS 

 

3.1 Introduction 

 

The primary objective of this study is to develop a finite element analysis program 

utilizing advanced finite elements.  These different element types, however, influence the 

response of a beam in varying fashions. This effect depends on various factors such as the 

number of nodes per elements, the degrees of freedom associated with that element, the 

displacement field and the material properties.  As such, one element is not always 

superior to another with respect to any given analysis.  Often, it is the experience of the 

finite element analyst that determines the appropriate element to be used.  The purpose of 

this study is not to determine the appropriate element to be used in an analysis.  The 

purpose of this study is only to develop the capabilities for the analyst to choose the 

appropriate element. 

 

To develop the finite element analysis program, an understanding of the theoretical 

development of finite elements is necessary.  Finite elements are discrete pieces of the 

system that are interconnected at nodal points.  In a structural sense, each element 

contributes to the stiffness of the system.  The stiffness, in conjunction with the boundary 
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(or support) conditions as well as prescribed loadings, determines the deformations of the 

system.  Numerical procedures are utilized to determine the stiffness for each element.  

Furthermore, algorithms for combining each element into an assembly of finite elements 

is needed to determine the structural stiffness.  Finally, solution techniques are needed to 

solve the structural equations from a numerical perspective. 

 

3.2 Interpolation and Shape Functions 

 

Interpolation is to form a continuous function that satisfies prescribed conditions at a 

finite number of points. The points are the nodes of the elements and the prescribed 

conditions are the nodal values of the field quantity. The interpolating function is 

typically a polynomial that provides a single-valued and continuous field. Therefore, the 

generalized degree-of-freedom (DOF) ai can be interpolated with dependent variable Ø 

and independent variable x that can be written in the form 

 Ø �  ∑ ������	
           ��          Ø �  ����� (3-1) 

where 

 �� �  1    �    ��    …   �� �   ���   ��� �  �
   ��   ��    …    ���� (3-2) 

where n = 1 for linear interpolation, n = 2 for quadratic interpolation, and so on. The 

relationship between nodal value �Ø�� and ai is given by 

 �Ø�� �  ��� ��� (3-3) 

where each row of ��� is evaluated at the appropriate locations in��. Solving equations 

3-1, 3-2 and 3-3 gives 

 Ø �  ���Ø��     �� �      �� �  �����!� �  ��   ��   … � (3-4) 
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where �� is a vector containing each shape function Ni. For each Ni, the shape function 

is unity at its own node and zeros at all other nodes.  Here individual Ni in matrix �� is 

called the shape function. 

 

Lagrange’s interpolation formula provides a general form of shape functions which can 

be used in a variety of different types of elements. The formula is given as 

 �" �  #$%!$&'#$&!$'… �$(!$�… #$)!$'#$%!$('#$&!$('… �$(!$(�… #$)!$(' (3-5) 

For linear interpolation, shape functions and the coordinates do not have subscripts 

greater than 2, whereas for quadratic interpolation the subscripts are not greater than 3. 

 

3.3 Formulation of Element Stiffness Matrices 

 

Different mathematical procedures can be used to determine the element stiffness 

matrices. Virtual work, slope deflection, moment distribution, and different integration 

rules are some of the methods used to find these matrices. In this finite element program, 

integration using Gauss-Quadrature (see Section 3.5) points is used to determine the 

element stiffness matrices.  This method is a type of numerical integration scheme that 

approximates the integral expression through the use of algebraic expressions. 

 

Displacements �*� are interpolated over an element in the same way as done for the field 

quantity Ø as 

 �*� �  ������     �� �      �*� �  *  +  ���  (3-6) 
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The vector ��� is the nodal displacements of the DOF for the element. From the strain-

displacement relations we have 

 ε- �  ./.-      ε0 �  .1.0      γ-0 �  ./.0 3 .1.- (3-7) 

Therefore, in general form, strain displacement relations can be written as 

 �4� �  �5� �*� (3-8) 

Substituting equation 3-6 in 3-8 we get 

 �4� �  �6� ���     �� �      �6� �  �5���� (3-9) 

The matrix �6� is called the strain-displacement matrix. 

 

For a 2-D plain stress element having isotropic material properties, the constitutive 

matrix is a symmetrical 3x3 matrix given by  

 �7� �  8#�!9&' :1 + 0+ 1 00 0 #�!9'�
< (3-10) 

where E is the Modulus of Elasticity of the material and + is Poisson’s ratio. 

 

Finally the element stiffness matrix can be formulated as 

 �=� �  >�6���7��6��? (3-11) 

where �6� and �7� are obtained from equations 3.9 and 3.10, respectively.  In the case of 

2-D analysis this equation can be written as 

 �=� �  @�6���7��6� A �� �B (3-12) 

where t is the thickness of the element usually assumed to be constant throughout the 

element and taken as unity. 
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3.4 Element Boundary and Loading Conditions 

 

Before the solution of the structural equations, both boundary conditions and loading 

conditions must be prescribed for the system.  Without boundary conditions the structural 

equations will not produce a single unique solution for the prescribed loading conditions.  

As such, the structural system will have rigid body motions.  Without loading conditions 

the structural equations will produce no displacements of the structural system.  Thus, it 

is necessary that both boundary and loading conditions be prescribed for the structural 

system.  These conditions are prescribed at particular DOF of the structural system. 

 

Boundary conditions, or support conditions, include prescriptions of displacements on the 

sides or surfaces of a structural system.  The boundary conditions for the global element 

are set by stiffening the DOF for the corresponding local element or forcing the structural 

equations to be equal to a unique displacement at that DOF.  These boundary conditions 

can be translational or rotational depending on the DOF that needs to be modified.  In this 

finite element program, only translational DOF are considered in the finite elements (i.e., 

there are no rotational DOF) and therefore only translational displacements are restricted 

with respect to particular support conditions such as a fixed-support, pinned-support, or 

roller-support. 

 

Loading conditions are prescribed in a fashion similar to boundary/support conditions.  

Depending on the location of the prescribed load, the DOF corresponding to that location 

and direction are modified.  In general, a distributed load can act normally or tangentially 
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to a boundary of the element. These loads can be expressed as surface tractions, which 

are forces per unit of surface area, directed parallel to the coordinate axis.  Concentrated 

forces are prescribed directly to the DOF of the structural system. 

 

3.5 Solution Techniques 

 

Each element contributes to the overall stiffness of the structural system.  These elements 

must be assembled to construct the structural system.  This process is known as the 

assembly process.  DOF for each element are assigned global DOF values.  The stiffness 

corresponding to each DOF are then assembled or “fed” into the global stiffness of the 

system.  It is at this point that the boundary conditions and loading conditions are truly 

applied to the system.  After application of the boundary and loading conditions, solution 

of the structural equations may commence. 

 

There are a variety of techniques to solve the system of simultaneous equations that are 

assembled in the assembly process.  In this finite element analysis program, the back-

substitution method of Gauss-elimination is utilized to solve the structural equations.  In 

Gauss-elimination, the structural equations [K]{ D} = { R} are solved for the system 

displacements {D} by reducing the system stiffness [K] to upper triangular form.  The 

system displacements are then determined in reverse order through back substitution. 
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3.6 Advanced Finite Element Formulations 

 

As stated previously, the primary objective of this study is to incorporate advanced finite 

elements into a finite element analysis program.  Sections 3.6.1 through 3.6.5 provide the 

theoretical details pertaining to these elements.  The advanced elements used herein are 

the Constant Strain Triangular element (CST), the Linear Strain Triangular element 

(LST), the Quadratic Four-Node element (Q4), and the Quadratic Eight-Node element 

(Q8). The following sections also provide the shape functions, strain-displacement 

matrices and the formulation of the element stiffness matrix for each element. In addition, 

the procedure for these elements in natural coordinates as isoparametric elements is also 

discussed. 

 

3.6.1 Isoparametric Elements 

 

Isoparametric elements are used as a versatile formation in this finite element analysis 

program which helps in easier numerical integration of the elements using Gauss 

quadrature. Shape functions are based on the natural coordinates rather than the original 

coordinates. In this section, the shape functions and element stiffness matrix are 

illustrated for a Q4 element.   

 

To explain the concept of isoparametric elements, consider a rectangular Q4 element as 

shown in Figure 3-1.  Isoparametric elements use auxiliary coordinates or reference 

coordinates termed as ξ and η referred to as the natural coordinates.  During the 
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formulation of the element stiffness, the coordinate transformation from the natural 

coordinates to the actual or physical (x and y) coordinates is taken care of through the use 

of a transformation function that maps the two coordinate systems.  For these elements, 

shape functions are used to interpolate both the displacement field and element geometry.  

For the Q4 isoparametric element, the individual shape functions are 

 

�� �  �C #1 D E'#1 D F'�� �  �C #1 3 E'#1 D F'�G �  �C #1 3 E'#1 3 F'�C �  �C #1 D E'#1 3 F'
 (3-13) 

These shape functions may also be obtained by considering the shape functions for the 

physical coordinate system given in a Section 3.6.4 (see equation 3-31).  Setting a = 1, b 

= 1, x = ξ and y = η the shape functions in equation 3-13 are again obtained. 
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Figure 3-1: Four Node Isoparametric Element 

 

The mapping from the natural coordinate system to the physical coordinate system is 

accomplished through the use of a transformation function as previously described.  To 

accomplish the mapping, the Jacobian is utilized which is simply a scale factor that 

multiplies dξdη to produce the physical area increment dxdy. The Jacobian matrix for the 

Q4 isoparametric element is given by 

 �H� �  �C  I– #1 D F'   #1 D F' #1 3 F' – #1 3 F'– #1 D E' – #1 3 E' #1 3 E'   #1 D E' K L�� B��� B��G BG�C BC
M �  NH�� H��H�� H��O(3-14) 
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The strain-displacement matrix, [B], is determined according to equation 3-9.  However, 

derivatives are now made with respect to the natural coordinate system rather than the 

physical coordinate system.  Finally, the element stiffness matrix is determined in a 

fashion similar to equation 3-12.  Thus, for an isoparametric element the element stiffness 

matrix is determined as 

 �=� �  @�6���7��6� A �� �B �  > > �6���7��6� A H �E �F�!��!�  (3-15) 

where J is the determinant of the Jacobian determined by equation 3-14.  To accomplish 

the integration as given in equation 3-15, from a numerical perspective, Gaussian-

Quadrature is used. The Gauss product rule is obtained by successive application of a 

one-dimensional Gauss rule. For the function ø = ø (ξ, η), the Quadrature rule is given as 

 P �  > > ø#ξ, η'dξ dη�!� �  ∑ ∑ V�VWø#ξ, η'W��!�  (3-16) 

where Wi and Wj are scalar weight functions corresponding to the gauss points i and j. 

 

3.6.2 Constant Strain Triangular Elements (CST) 

 

Linear triangles are plane triangles whose field quantity varies linearly with coordinates x 

and y. The linear triangular element is called a constant strain triangular (CST) element as 

the displacement fields produce a constant strain field. 

 

As shown in Figure 3-2, the coordinates of node 1 are at x = y = 0 and side 1-2 is along 

the local x-axis. From the principles of interpolation, the field quantity Ø is interpolated 

over the element by the polynomial in terms of generalized DOF ai in the u and v 

directions as 
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 * �  1  �  B� X�����GY (3-17) 

 + �  1  �  B� X�C�Z�[Y (3-18) 

Applying the coordinates from Figure 3-2 for each of the nodes to equation 3-17 and 3-

18, then equation 3-3 produces 

 \Ø�Ø�ØG] �  �A� Xa�a�aGY      �� �      �A� �  `1 0 01 x� 01 xG yGc (3-19) 

 \ØCØZØ[] �  �A� XaCaZa[Y      �� �      �A� �  `1 0 01 x� 01 xG yGc (3-20) 

Using these relationships, the shape functions in the physical coordinate system can be 

determined from equation 3-4 as 

 

�� �  1 D �$& d � 3 #$e!$&'$&fe d B�� �  �$& d � D $e$&fe d B�G �  �fe d B  (3-21) 

The strain-displacement matrix �6� is calculated from equation 3-9 as 

 �6� �  
ghh
hi !�$& 0 �$& 0 0 00 $e!$&$&fe 0 !$e$&fe 0 �fe$e!$&$&fe !�$& !$e$&fe �$& �fe 0 jkk

kl
 (3-22) 
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Figure 3-2: Three Node CST Element 

 

As the strain-displacement matrix, element thickness (assumed to be unity), and the 

constitutive matrix �7� are constants (independent of x and y), equation 3-12 used in 

determining the 6x6 element stiffness matrix for the CST element simplifies to 

 �=� �  �6���7��6�� (3-23) 

where A is the area of the triangle. 

 

The constant strain triangular element was the first element devised for plane stress 

analysis. It does not work very well. In bending, a mesh of these elements is undesirably 

stiff. Correct results can be approaches with the refinement of the mesh, but the 

convergence is slow. In plane strain conditions, a mesh can lock so that it cannot deform 

at all. 
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The CST model predicts y direction displacement and σx stresses that are only one-

quarter the correct value. The inability of the CST to represent linearly varying stress and 

strain is partly to blame for this poor result. The CST element also displays a spurious 

shear stress. It also displays a transverse shear strain, which should not be present. The 

spurious shear strain absorbs energy, so that if a given deformation is prescribed, the load 

needed to produce it is larger than the correct value. This is the reason why there is 

excessive stiffness in bending of the CST element. 

 

The CST element can also be represented in an isoparametric element form.  The shape 

functions for the CST isoparametric element are given as 

 
�� �  1 D E D F�� �  E�G �  F  (3-24) 

 

In the development of the FEA program written using Matlab, the isoparametric shape 

functions are used in the element formulation.  Verification of these formulations is 

provided in Appendix B of this study. 

 

3.6.3 Linear Strain Triangular Elements (LST) 

 

Similar to the CST element, the linear strain triangular element (LST) are quadratic 

triangles whose field quantity varies quadratically with coordinates x and y.  The 

quadratic triangular element is called a linear strain triangular (LST) element as the 

displacements fields produce a linear variation in the strain field. 
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As shown in Figure 3-3, the triangular element has mid-side nodes in addition to the 

vertex nodes. For displacement-based analysis, the nodal DOF are ui and vi for each node 

i = 1, 2,…,6 for a total of 12 DOF per element. For the generalized DOF ai, the element 

displacement is interpolated by the polynomial as 

 * �  1 � B �� �B B��
mno
np�����G�C�Z�[qnr

ns
 (3-25) 

 + �  1 � B �� �B B��
mno
np �t�u�v��
������qnr

ns
 (3-26) 

In a similar fashion to the CST element, the shape functions are found as 

 

�� �  1 D G$w D Gfx 3 �$&w& 3 �$fwx 3 �f&x&�� �  !$w& 3 �$&w& 3 �$fwx�G �  fx 3 �f&x&�C �  C$w D C$&w&�Z �  �$fwx�[ �  !Cfx D �$fwx 3 Cf&x&

 (3-27) 
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Figure 3-3: Six Node LST Element 

 

The strain-displacement matrix is determined from equation 3-9.  The resulting 12x12 

element stiffness matrix for the LST element is determined from equation 3-12 without 

any simplifications as was done for the CST element.  As such, it is advantageous to use 

the isoparametric form of the LST element in a numerical integration scheme to 

determine the element stiffness matrix.  The shape functions for the LST isoparametric 

element are given as 

 

�� �  2#1 D E D F'#�� D E D F'�� �  2E#E D ��'�G �  2F#F D ��'�C �  4E#1 D E D F'�Z �  4EF�[ �  4F#1 D E D F'
 (3-28) 
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In the development of the FEA program written using Matlab, the isoparametric shape 

functions are used in the element formulation.  Verification of these formulations is 

provided in Appendix B of this study. 

 

3.6.4 Bilinear Rectangular Elements (Q4) 

 

A bilinear rectangular element (Q4), similar to the CST elements, has a field quantity that 

also varies linearly with coordinates x and y.  As shown in Figure 3-4, the Q4 element has 

eight total DOF with two DOF at each of the four nodes.  The displacements are also 

interpolated over the element by the polynomial in terms of generalized DOF ai in the u 

and v directions as 

 * �  1 � B �B� {�����G�C
| (3-29) 

  
 + �  1 � B �B� {�Z�[�t�u

| (3-30) 

In a similar fashion to the CST element, the shape functions are found as 

 

�� �  �Cwx #1 D �'#1 D B'�� �  �Cwx #1 3 �'#1 D B'�G �  �Cwx #1 3 �'#1 3 B'�C �  �Cwx #1 D �'#1 3 B'
 (3-31) 

 



 28

 
Figure 3-4: Four Node Q4 Element 

 

Using the shape functions from equation 3-31 and substituting them in equation 3-9 gives 

the strain displacement matrix as 

�6� � 14�} :D#} D B' 0 #} D B' 0 #} 3 B' 0 D#} 3 B' 00 D#� D �' 0 D#� 3 �' 0 #� 3 �' 0 #� D �'D#� D �' D#} D B' D#� 3 �' #} D B' #� 3 �' #} 3 B' #� D �' #} 3 B'< 

 (3-32) 

Similar to equation 3-12, the 8x8 element stiffness matrix is determined using the strain-

displacement matrix as 

  �=� �  > > �6���7��6�A �� �Bw!wx!x  (3-33) 
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Like the CST, the Q4 element cannot exhibit pure bending. When bent, it displays shear 

strain as well as the expected bending strain. The parasitic shear absorbs strain energy, so 

that if a given bending deformation is prescribed, the bending moment needed to produce 

it is larger than the correct value. In other words, Q4 element exhibits shear locking 

behavior. 

 

As for the CST and LST elements, the isoparametric shape functions are given as 

 

�� �  �C #1 D E'#1 D F'�� �  �C #1 3 E'#1 D F'�G �  �C #1 3 E'#1 3 F'�C �  �C #1 D E'#1 3 F'
 (3-34) 

 

In the development of the FEA program written using Matlab, the isoparametric shape 

functions are used in the element formulation.  Verification of these formulations is 

provided in Appendix B of this study. 

 

3.6.5 Quadratic Rectangular Element (Q8) 

 

The quadratic rectangular element (Q8), analogous to the LST element as compared to 

the CST element, is different from the Q4 element in that the field quantity varies 

quadratically with coordinates x and y.  A quadratic Q8 rectangular element is shown in 

Figure 3-5.  The element has sixteen DOF with mid-side nodes between the corner nodes 

of the Q4 element.  In terms of generalized DOF ai, the displacement field of the element 

is given by 



 30

 * �  1 � B x� xy y� x�y xy��
mnn
o
nnp

�����G�C�Z�[�t�uqnn
r
nns

 (3-35) 

  

 + �  1 � B x� xy y� x�y xy��
mnn
o
nnp

�v��
��������G��C��Z��[qnn
r
nns

 (3-36) 

In a similar fashion to the CST element, the shape functions are found as 

 

�� �  !�C 3 $&Cw& 3 $fCwx 3 f&Cx& D $&fCw&x D $f&Cwx&�� �  �� D $�w D f&�x& 3 $f&�wx&�G �  !�C 3 $&Cw& D $fCwx 3 f&Cx& 3 $&fCw&x D $f&Cwx&�C �  �� D f�x D $&�w& 3 $&f�w&x�Z �  �� 3 f�x D $&�w& D $&f�wx&�[ �  !�C 3 $&Cw& D $fCwx 3 f&Cx& D $&fCw&x 3 $f&Cwx&�t �  �� 3 $�w D f&�x& D $f&�wx&�u �  !�C 3 $&Cw& 3 $fCwx 3 f&Cx& 3 $&fCw&x 3 $f&Cwx&

 (3-37) 
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Figure 3-5: Eight Node Q8 Element 

 

The strain-displacement matrix is determined from equation 3-9.  The resulting element 

stiffness is determined from equation 3-12 without any simplifications.  As such, it is 

advantageous to use the isoparametric form of the Q8 element in a numerical integration 

scheme to determine the element stiffness matrix.  The shape functions for the Q8 

isoparametric element are given as 
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�� �  �C #1 D E'#1 D F'#DE D F D 1'�� �  �C #1 3 E'#1 D F'#E D F D 1'�G �  �C #1 3 E'#1 3 F'#E 3 F D 1'�C �  �C #1 D E'#1 3 F'#DE 3 F D 1'�Z �  �� #1 D E�'#1 D F'�[ �  �� #1 D F�'#1 3 E'�t �  �� #1 D E�'#1 3 F'�u �  �� #1 D F�'#1 D E'

 (3-38) 

 

In the development of the FEA program written using Matlab, the isoparametric shape 

functions are used in the element formulation.  Verification of these formulations is 

provided in Appendix B of this study. 
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CHAPTER IV 
 
 

CASE STUDIES 

 

4.1 Introduction 

 

Case studies are provided only to illustrate the capabilities of the Matlab FEA program.  

The specific accuracy of the Matlab FEA program is not of concern at this time because a 

specific problem was not considered in this study.  The main program is provided in 

Appendix A along with the general input file for the program.  Sub-routines of the FEA 

program have not been provided with this current study as the program is still under 

substantial development at Oklahoma State University. 

 

The case studies are provided for each of the four elements discussed in Chapter III of 

this study.  The illustrative example for each element consists of analyzing the same 

problem.  This enables for direct comparisons between the four types of elements 

considered in this study.  Again, these comparisons are only made with respect to the 

capabilities of the Matlab FEA program and not the accuracy of any given analysis.  The 

details of the problem are presented in this first section followed by the results from each 

element type in Sections 4.2 – 4.5. 
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A cantilever beam fixed at one end and statically loaded at the other end, as shown in 

Figure 4-1, is used to analyze the behavior of the various elements. Only a single 

concentrated load of 100 lb is applied to the free end of the beam. The length of the beam 

is 15ft (180in) and its depth is 1ft (12in).  All analyses are considered to be a 2-D 

analysis, thus the thickness (or width) of the beam is assumed to be unity. The modulus 

of elasticity (E) of the beam is taken as 106 lb/in2 and Poisson’s Ratio as 0.3. 

 

 
Figure 4-1: Fixed Beam Loaded at the Free End 

 

For each analysis given in the following sections, the general finite element input values 

are outlined in Table 4-1.  An adequate number of elements have been chosen in each 

case listed in Table 4-1.  The CST and Q4 element case studies include a slight 

refinement of the mesh to provide the reader with an understanding of the importance of 

the finite element mesh.  Further refinement of the mesh could be implemented, but the 

purpose of this study was to only implement and confirm the use of a computer program 

written in Matlab for performing finite element analysis using advanced finite element 

formulations. 
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Element 
Type 

Beam 
Length 

(in) 

Beam 
Width 
(in) 

Number of 
Elements 

Number 
of Nodes 

Modulus of 
Elasticity 

(psi) 

Poisson's 
Ratio 

CST 180 12 20 / 40 22 106 0.3 

LST 180 12 20 63 106 0.3 

Q4 180 12 10 / 20 22 106 0.3 

Q8 180 12 10 53 106 0.3 

Table 4-1: Input Values for Various Elements 

 

4.2 CST Elements 

 

The beam of Figure 4-1 is modeled using 20 and 40 CST elements.  Figure 4-2 provides 

the finite element mesh generated by the Matlab program written as a result of this study.  

Sub-figure (a) is provided with a series of 20 CST elements only along the length of the 

beam.  Due to the limitations of this element, this type of finite element mesh will not 

accurately predict the response of the beam.  As such, sub-figure (b) provides an 

alternative mesh, using twice the number of total elements (40 elements), that will more 

accurately model the behavior of the beam.  The reason for this alternative mesh is the 

inability of the CST element to model pure bending accurately.  Each node is also labeled 

in Figure 4-2.  The DOF at the fixed end of the beam are constrained to zero 

displacement.  The loading is applied to the DOF located at the top right of the mesh at 

the tip of the free end of the beam. The results of the analysis are shown in Figures 4-3 
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through 4-5.  Figure 4-3 shows the displacement of the CST elements when a 

concentrated load is applied at the free end of a fixed beam. The contour plots for the 

deflections are shown in Figures 4-4 and 4-5 for the x and y directions, respectively.  For 

each figure, Figures 4-3 through 4-5, each finite element mesh is also represented similar 

to Figure 4-2. 

 

 

 (a): CST Element Mesh 1 (b): CST Element Mesh 2 

Figure 4-2: CST Element Mesh 

 

 

 (a): CST Element Mesh 1 (b): CST Element Mesh 2 

Figure 4-3: CST Beam Deflection Profile 
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 (a): CST Element Mesh 1 (b): CST Element Mesh 2 

Figure 4-4: Contour Plot for CST Element Displacements in the x-Direction 

 

 

 (a): CST Element Mesh 1 (b): CST Element Mesh 2 

Figure 4-5: Contour Plot for CST Element Displacements in the y-Direction 

 

Table 4-2 shows the maximum tip deflection to be 0.2328 inches in the negative y-

direction for the first finite element mesh of 20 elements provided in sub-figures (a).  

Table 4-2 also provides the results from the alternative finite element mesh of 40 

elements provided in sub-figures (b). From these results, and the comparison to an 

analytical solution to be provided later, it is noted that the CST elements are undesirably 

stiff and, thus, the deflection of the beam in y-direction is minimal. 
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Finite Element 
Mesh 

Tip 
Displacement 

(in) 

 
20 Elements 

CST Element Mesh 1 

 

 
-0.2328 

 
40 Elements 

CST Element Mesh 2 

 

 
-0.3262 

Table 4-2: Maximum Tip Deflection for CST Elements 

 

Due to the linear interpolation used during the formulation of the shape functions, the 

deflection of the nodes is minimal. This type of the element does not work well due to the 

lower number of DOF per element. Further refinement of the finite element mesh will 

help in convergence to the exact value but is not considered in this study. 

 

4.3 LST Elements 

 

The beam of Figure 4-1 is modeled using 20 LST elements.  Figure 4-6 provides the 

finite element mesh generated by the Matlab program written as a result of this study.  

Each node is also labeled in Figure 4-6.  DOF 1 – 6, located at nodes 1, 2 and 3, at the 

fixed end of the beam are constrained to zero displacement.  The loading is applied to 

DOF 126, located at node 63, at the tip of the free end of the beam. The results of the 

analysis are shown in Figures 4-7 through 4-9.  Figure 4-7 shows the displacement of the 

LST elements when a concentrated load is applied at the free end of a fixed beam. The 
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contour plots for the deflections are shown in Figures 4-8 and 4-9 for the x and y 

directions, respectively. 

 

 

Figure 4-6: LST Element Mesh 
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Figure 4-7: LST Beam Deflection Profile 

 

 

Figure 4-8: Contour Plot for LST Element Displacements in the x-Direction 
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Figure 4-9: Contour Plot for LST Element Displacements in the y-Direction 

 

Figure 4-9 shows the displacement of the LST elements when a concentrated load is 

applied at the free end of the beam. Figure 4-8 and 4-9 show a contour plot with a smooth 

displacement of the nodes in both the x and y directions. This is due to the quadratic 

interpolation used to formulate the element stiffness matrices. The displacement in x 

direction is positive to negative from the top to the bottom nodes respectively. Table 4-3 

shows a maximum tip deflection of -1.3433in in the y-direction. 

 

Finite Element 
Mesh 

Tip 
Displacement 

(in) 

 
20 Elements 
LST Element Mesh 

 

 
-1.3433 

Table 4-3: Maximum Tip Deflection for LST Elements 
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Due to the quadratic interpolation used to formulate the shape functions, the deflections 

of the nodes are well refined. In modeling this particular problem, the only shortcoming 

of the LST elements is that γxy is represented as linear rather than quadratic in y. 

 

4.4 Q4 Elements 

 

The beam of Figure 4-1 is modeled using 10 and 20 Q4 elements.  Figure 4-10 provides 

the finite element mesh generated by the Matlab program written as a result of this study.  

Sub-figure (a) is provided with a series of 10 Q4 elements only along the length of the 

beam.  Due to the limitations of this element, this type of finite element mesh will not 

accurately predict the response of the beam.  As such, sub-figure (b) provides an 

alternative mesh, using twice the number of total elements (20 elements), that will more 

accurately model the behavior of the beam.  The reason for this alternative mesh is the 

inability of the Q4 element to model pure bending accurately.  Each node is also labeled 

in Figure 4-10.  The DOF at the fixed end of the beam are constrained to zero 

displacement.  The loading is applied to the DOF located at the top right of the mesh at 

the tip of the free end of the beam. The results of the analysis are shown in Figures 4-11 

through 4-13.  Figure 4-11 shows the displacement of the Q4 elements when a 

concentrated load is applied at the free end of a fixed beam. The contour plots for the 

deflections are shown in Figures 4-12 and 4-13 for the x and y directions, respectively.  

For each figure, Figures 4-11 through 4-13, each finite element mesh is also represented 

similar to Figure 4-10. 
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 (a): Q4 Element Mesh 1 (b): Q4 Element Mesh 2 

Figure 4-10: Q4 Element Mesh 

 

 

 (a): Q4 Element Mesh 1 (b): Q4 Element Mesh 2 

Figure 4-11: Q4 Beam Deflection Profile 
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 (a): Q4 Element Mesh 1 (b): Q4 Element Mesh 2 

Figure 4-12: Contour Plot for Q4 Element Displacements in the x-Direction 

 

  

 (a): Q4 Element Mesh 1 (b): Q4 Element Mesh 2 

Figure 4-13: Contour Plot for Q4 Element Displacements in the y-Direction 

 

As seen in the CST elements, the deflection of the beam having Q4 elements behave in 

the same way due to the linear interpolation assumed in the element stiffness matrix. 

Table 4-4 illustrates the maximum tip deflection of the beam as -0.6895 inches for the 

first finite element mesh of 10 elements provided in sub-figures (a).  Table 4-4 also 

provides the results from the alternative finite element mesh of 20 elements provided in 

sub-figures (b). 
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Finite Element 
Mesh 

Tip 
Displacement 

(in) 

 
10 Elements 
Q4 Element Mesh 1 

 

 
-0.6895 

 
10 Elements 
Q4 Element Mesh 2 

 

 
-0.7140 

Table 4-4: Maximum Tip Deflection for Q4 Elements 

 

Like the CST, the Q4 element cannot exhibit pure bending. As for the CST elements, the 

linear interpolation used to quantify the shape functions exhibit element constraint. 

Refinement of the Q4 finite element mesh will help in convergence to the exact value but 

is not considered in this study. 

 

4.5 Q8 Elements 

 

The beam of Figure 4-1 is modeled using 10 Q8 elements.  Figure 4-14 provides the 

finite element mesh generated by the Matlab program written as a result of this study.  

Each node is also labeled in Figure 4-14.  DOF 1 – 6, located at nodes 1, 2 and 3, at the 

fixed end of the beam are constrained to zero displacement.  The loading is applied to 

DOF 106, located at node 53, at the tip of the free end of the beam. The results of the 

analysis are shown in Figures 4-15 through 4-17.  Figure 4-15 shows the displacement of 

the Q8 elements when a concentrated load is applied at the free end of a fixed beam. The 
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contour plots for the deflections are shown in Figures 4-15 and 4-17 for the x and y 

directions, respectively. 

 

 

Figure 4-14: Q8 Element Mesh 
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Figure 4-15: Q8 Beam Deflection Profile 

 

 

Figure 4-16: Contour Plot for Q8 Element Displacements in the x-Direction 
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Figure 4-17: Contour Plot for Q8 Element Displacements in the y-Direction 

 

As observed for the LST elements, the deflection of the beam is smooth when compared 

to the CST and Q4 elements. This is due to the quadratic interpolation of the Q8 

elements. Figure 4-16 illustrates the deflection of the beam in the x direction. This 

deflection is from positive to negative x directions from top to the bottom nodes 

respectively. Table 4-5 illustrates the maximum tip deflection under the assigned load to 

be -1.3436in. As for the LST elements, the Q8 elements illustrate that fewer elements can 

be used when quadratic interpolation functions are used to formulate the element 

stiffness. 
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Finite Element 
Mesh 

Tip 
Displacement 

(in) 

 
10 Elements 
Q8 Element Mesh 

 

 
-1.3436 

Table 4-5: Maximum Tip Deflection for Q8 Elements 

 

4.6 Comparison 

 

Table 4-6 provides a quick comparison between the case studies presented in Sections 4.2 

through 4.5. It is clear that the linearly interpolated elements are stiffer than the 

quadratically interpolated elements. Q4 elements show more convergence towards the 

analytical solution than the CST elements due to the higher number of DOF per element. 

While comparing the quadratic elements, it is noted that the Q8 element is more refined 

than the LST element. This is due to the fact that in the LST elements, γxy is represented 

as linear rather than quadratic in y. Hence, as seen in Table 4-6, LST and Q8 elements 

converge towards the analytical solution when compared to the CST and Q4 elements. 

 

The analytical solution is determined from the maximum tip deflection, δtip, of the fixed 

beam formula given in equation 4-1. Here P is the load applied at the free end of the 

beam. L is the length of the beam and E is modulus of elasticity. I is the moment of 

inertia calculated from the rectangular cross section of the beam. 

 

  ~��� �  ��eG8�  4-1 
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Element Type Tip Deflection (in) 

CST 

20 / 40 Elements 
-0.2328 / -0.3262 

LST 

20 Elements 
-1.3433 

Q4 

10 / 20 Elements 
-0.6895 / -0.7140 

Q8 

10 Elements 
-1.3436 

Analytical -1.3500 

Table 4-6: Maximum Tip Deflection Comparison 
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CHAPTER V 
 
 

CONCLUSION 

 

5.1 Summary and Conclusions 

 

The theoretical development for incorporating advanced finite elements is provided in 

this study.  Both linear and quadratic interpolated elements for 2-D analysis are 

considered. Element stiffness matrices are developed using the shape functions which are 

derived from the displacement fields for a particular node in an element. A FEA code has 

been written including all the advanced elements using the concept of isoparametric 

elements. Gaussian quadrature is used as a tool for numerical integration and the final 

displacements are calculated using the Gauss elimination technique to solve the structural 

equations. 

 

Deflections and deflected profiles are provided for a beam when a concentrated load is 

applied at the free end. The FEA program is capable of automatically generating an 

element mesh for different types of elements specified corresponding to the dimensions 

of the beam with applied boundary conditions. The deflected profile along with the 

contour plot for the beam in the x and y directions are provided. The maximum tip 

deflection of the beam when the same numbers of elements are used show that the CST 



 52

elements are much stiffer than the other elements. Q4 elements give relatively better 

results than the CST elements but are also stiff. LST and Q8 elements provide more 

accurate results than the other two types.  This is due to the fact that the CST and Q4 

elements use linear interpolation for their field displacements, whereas the LST and Q8 

elements use quadratic interpolation. Refinement of the mesh increases the accuracy of 

deflection of the beam for all element types but was not considered in this study. 

 

5.2 Recommendations 

 

In addition to the work that was outlined in this study, the FEA code is also capable of 

analyzing thermal conductivity heat transfer through a material.  The work on this heat 

transfer formulation is not complete at this time but it is recommended that the 

formulation be completed.  When completed, temperature variations throughout the 

structural system will be able to be analyzed as a function of time to determine the 

degradation of structural properties due to such occurrences such as fire.  This code can 

be improved to incorporate the heat conduction through the beam elements using 

dynamic heat analysis. Boundary conditions for heat transfer are applied to the beam so 

that the change in material properties of the beam can be determined with respect to time.  

 

It is also recommended that the FEA program be improved to allow for more complex 

structures.  Currently, the node input process is tedious and can be improved for 

structural systems.  In doing so, coordinate transformations will be required to transform 

the local coordinates of the elements to the global coordinates of the system. The finite 
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element mesh can also be automatically refined so that the accuracy of deflection 

increases. Future studies can be conducted to incorporate a three-dimensional (3-D) brick 

elements as well as different boundary and loading conditions. Finally, it is also 

recommended that the calculation of stresses and strains be improved such that they are 

determined at the nodal locations of the finite element mesh. 

 

Work done in conjunction with this study includes the incorporation of structural 

dynamic response due to dynamic loads (Saglar, 2009). 
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APPENDIX A 
 
 

MATLAB FEA PROGRAM 
 

The Matlab FEA program that was developed during the course of this study is provided 

herein.  First, the main FEA program (not containing the sub-routines since the FEA 

program is still under development) is provided.  Second, the general input file used to 

setup an analysis is provided.  Both of these files are Matlab script files and can be 

executed in all versions of Matlab.  To generate graphical output, the full version of 

Matlab is required. 

 

Main Program 

 

% ************************************************* ************************  
% Finite Element Analysis (FEA) Program to Determine the Structural and Thermal Response of Structural Systems 
% Written By: Muhammet Saglar & Rameez Iqbal (Advised By: Dr. Jonathan S. Goode) 
% School of Civil and Environmental Engineering 
% Oklahoma State University 
% ************************************************* ************************  
  
% ************************************************* ************************  
% ************************************************* ************************  
% Begin Program 
  
    % Clear Variables and Settings 
    clear all 
     
    % Clear Screen 
    clc; 
     
    % Inhibit Warning Messages 
    warning('off','all'); 
     
    disp('************************************************** '); 
    disp('Finite Element Analysis') 
    disp('Written by: Saglar/Iqbal (Goode)'); 
    disp('School of Civil and Environmental Engineering'); 
    disp('Oklahoma State University'); 
    disp('************************************************** '); 
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    disp('************************************************** '); 
    disp('Running Analysis .....'); 
    disp('************************************************** '); 
     
    % Begin Timer 
    tic; 
  
% ************************************************* ************************  
% Pre-Processing Section 
% ************************************************* ************************  
  
    disp('Pre-Processing .....'); 
  
    % Call M-File for User Input Data from fea_input.m 
    disp('..... Obtaining Input .....'); 
    fea_input; 
     
    % Call M-File for Initialization of Variables from fea_initialize.m 
    disp('..... Initializing Program .....'); 
    fea_initialize; 
     
% ************************************************* ************************  
% End Pre-Processing Section 
% ************************************************* ************************  
  
% ************************************************* ************************  
% Processing Section 
% ************************************************* ************************  
  
disp('Processing .....'); 
  
% ------------------------------------------------------------------------- 
% Assembly Process 
  
    disp('..... Assembly Process .....'); 
     
    % Determine Element Property Matrices (Constitutive, Mass, Conducitivity) 
    [property_matrix_k,property_matrix_m,property_matrix_t] = 
fea_property_matrix(analysis_type_material,material_E,material_v,material_rho,material_t); 
     
    % Determine Gauss Quadrature Sampling Points and Weights 
    [gauss_points,gauss_weights] = fea_gauss_2d(element_type); 
     
    % Initialize Global Index of DOF 
    index_global = zeros(edof,nel); 
     
    % Assemble System Matrices According to Analysis 
    if  analysis_type == 'S' 
         
        % Static Analysis 
         
        disp('..... ..... Static Analysis .....'); 
        disp('..... ..... ..... Building Stiffness .....'); 
         
        % Loop Through All Elements to Determine System Matrices (Stiffness, Mass, and Conductivity) 
        % NOTE: Depending on the Analysis Type, Some Matrices Will Not be Generated 
        for j = 1:nel 
             
            % Call Sub-Routine to Extract Nodes for the j-th Element 
            [element_nodes,element_xcoord,element_ycoord] = fea_node_coordinates(j,nnel,node_connectivity,node_coord); 
             
            % Call Sub-Routine to Extract System DOFs for the j-th Element 
            index = fea_index_dof(element_nodes,nnel,ndof,edof); 
             
            % Save Index of DOF to Global Variable 
            index_global(:,j) = index; 
             
            % Call Sub-Routine to Generate Element Stiffness Matrix 
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            element_k = 
fea_element_matrix_stiffness(element_type,gauss_points,gauss_weights,element_xcoord,element_ycoord,nnel,edof,property_matrix_
k); 
             
            % Call Sub-Routine to Assemble System Stiffness Matrix 
            system_k = fea_element_matrix_assemble(system_k,element_k,index,edof); 
             
        end 
         
    elseif analysis_type == 'D' 
         
        % Dynamic Analysis 
         
        disp('..... ..... Dynamic Analysis .....'); 
        disp('..... ..... ..... Building Stiffness and Mass .....'); 
         
        % Loop Through All Elements to Determine System Matrices (Stiffness, Mass, and Conductivity) 
        % NOTE: Depending on the Analysis Type, Some Matrices Will Not be Generated 
        for j = 1:nel 
             
            % Call Sub-Routine to Extract Nodes for the j-th Element 
            [element_nodes,element_xcoord,element_ycoord] = fea_node_coordinates(j,nnel,node_connectivity,node_coord); 
             
            % Call Sub-Routine to Extract System DOFs for the j-th Element 
            index = fea_index_dof(element_nodes,nnel,ndof,edof); 
             
            % Save Index of DOF to Global Variable 
            index_global(:,j) = index; 
             
            % Call Sub-Routine to Generate Element Stiffness Matrix 
            element_k = 
fea_element_matrix_stiffness(element_type,gauss_points,gauss_weights,element_xcoord,element_ycoord,nnel,edof,property_matrix_
k); 
             
            % Call Sub-Routine to Assemble System Stiffness Matrix 
            system_k = fea_element_matrix_assemble(system_k,element_k,index,edof); 
             
            % Call Sub-Routine to Generate Element Mass Matrix 
            element_m = 
fea_element_matrix_mass(element_type,gauss_points,gauss_weights,element_xcoord,element_ycoord,nnel,edof,property_matrix_m); 
             
            % Call Sub-Routine to Assemble System Mass Matrix 
            system_m = fea_element_matrix_assemble(system_m,element_m,index,edof); 
             
        end 
         
    end 
  
% End Assembly Process 
% ------------------------------------------------------------------------- 
  
% ------------------------------------------------------------------------- 
% Boundary and Loading Conditions 
  
    disp('..... Applying Boundary and Loading Conditions .....'); 
  
    % Apply Boundary and Loading Conditions According to Analysis 
    if  analysis_type == 'S' 
         
        % Static Analysis 
         
        % Call Sub-Routine to Apply Boundary and Loading Conditions 
        [system_k,system_f] = fea_system_boundary_load(system_k,system_f,boundary_dof,boundary_dof_val,load_dof,load_dof_val); 
         
    elseif analysis_type == 'D' 
         
        % Dynamic Analysis 
         
        % Boundary and Loading Conditions Must Be Applied at Each Point in Time During the Dynamic Analysis 
        % See the Analysis Section Below 
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    end 
  
% End Boundary Conditions 
% ------------------------------------------------------------------------- 
  
% ------------------------------------------------------------------------- 
% Analysis 
  
    disp('..... Solving .....'); 
  
    % Based on Analysis Type 
    if  analysis_type == 'S' 
         
        % Static Analysis 
         
        disp('..... ..... Static Analysis .....'); 
         
        % Solve System Equations for Static Displacements 
        system_d = system_k \ system_f; 
         
    elseif analysis_type == 'D' 
         
        % Dynamic Analysis 
         
        disp('..... ..... Dynamic Analysis .....'); 
         
        % Call Sub-Routine to Solve System Equations for Dynamic Displacements 
        [system_d,system_d_vel,system_d_acc,system_f,dynamic_time] = 
fea_dynamic_analysis(system_k,system_m,boundary_dof,boundary_dof_val,load_dof,load_file,dynamic_delta_t,dynamic_beta,dyna
mic_gamma,sdof); 
         
    end 
  
% End Analysis 
% ------------------------------------------------------------------------- 
  
% ************************************************* ************************  
% End Processing Section 
% ************************************************* ************************  
  
% ************************************************* ************************  
% Post-Processing Section 
% ************************************************* ************************  
  
disp('Post-Processing .....'); 
  
% ------------------------------------------------------------------------- 
% Plot Generation 
  
    % Plot Finite Element Mesh 
    if  plot_element_mesh == 'Y' 
         
        disp('..... Plotting Element Mesh .....'); 
         
        % Call Sub-Routine to Plot Finite Element Mesh 
        plot_handle = 
fea_plot_mesh(proj_name,nel,node_coord,node_connectivity,plot_element_mesh_numbers,plot_element_mesh_node_numbers); 
         
    end 
     
    % Based on Analysis Type 
    if  analysis_type == 'S' 
         
        % Static Analysis 
         
        disp('..... Static Analysis .....'); 
         
        % Plot Static Displacements 
        if  plot_static_displacement == 'Y' 
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            disp('..... ..... Plotting Static Displacements .....'); 
             
            % Call Sub-Routine to Plot Static Displacements 
            plot_handle = fea_plot_static_displacement(proj_name,nel,node_coord,node_connectivity,system_d,index_global); 
             
            if  plot_static_contour_displacement == 'Y' 
                 
                % Call Sub-Routine to Plot Displacement Contours 
                plot_handle = fea_plot_static_displacement_contour(proj_name,node_coord,node_connectivity,system_d,sdof,nel); 
                 
            end 
             
             
        end 
         
        % Determine Static Stresses and Strains for Plots 
        if  plot_static_stress == 'Y' || plot_static_strain == 'Y' 
             
            disp('..... ..... Determining Static Stresses and Strains .....'); 
             
            % Call Sub-Routine to Determine Stresses and Strains from Displacements 
            [system_stress,system_strain,gauss_points_coord] = 
fea_stress_strain(nel,nnel,edof,node_connectivity,node_coord,index_global,system_d,property_matrix_k,element_type,gauss_points); 
             
        end 
         
        % Plot Static Stresses 
        if  plot_static_stress == 'Y' 
             
            disp('..... ..... Plotting Static Stresses .....'); 
             
            % Call Sub-Routine to Plot Static Stresses 
            plot_handle = fea_plot_static_stress(proj_name,nel,node_coord,node_connectivity,system_stress,gauss_points_coord); 
             
            if  plot_static_contour_stress 
                 
                % Call Sub-Routine to Plot Stress Contours 
                [plot_handle] = 
fea_plot_static_stress_contour(proj_name,nel,node_coord,node_connectivity,system_stress,gauss_points_coord); 
                 
            end 
             
        end 
         
        % Plot Static Strains 
        if  plot_static_strain == 'Y' 
             
            disp('..... ..... Plotting Static Strains .....'); 
             
            % Call Sub-Routine to Plot Static Strains 
            plot_handle = fea_plot_static_strain(proj_name,nel,node_coord,node_connectivity,system_strain,gauss_points_coord); 
             
            if  plot_static_contour_strain 
                 
                % Call Sub-Routine to Plot Strain Contours 
                [plot_handle] = 
fea_plot_static_strain_contour(proj_name,nel,node_coord,node_connectivity,system_strain,gauss_points_coord); 
                 
            end 
             
        end 
         
    elseif analysis_type == 'D' 
         
        % Dynamic Analysis 
         
        disp('..... Dynamic Analysis .....'); 
         
        % Call Sub-Routine to Plot Dynamic Displacements (Movie) 



 61

        plot_handle = 
fea_plot_dynamic_displacement(proj_name,nel,node_coord,node_connectivity,system_d,dynamic_time,index_global); 
         
        disp('..... ..... Plotting Dynamic Displacements .....'); 
         
    end 
  
% ************************************************* ************************  
% End Post-Processing Section 
% ************************************************* ************************  
  
disp('************************************************** '); 
disp('Analysis Done .....'); 
disp('************************************************** '); 
  
% End Timer 
analysis_time = toc; 
  
disp(['Total Time of Analysis: ',num2str(analysis_time),' seconds']); 
disp('************************************************** '); 
  
% End Program 
% ************************************************* ************************  
% ************************************************* ************************  

 

Input File  

 

% ************************************************* ************************  
% Finite Element Analysis (FEA) - Input File 
% Written By: Muhammet Saglar & Rameez Iqbal (Advised By: Dr. Jonathan S. Goode) 
% School of Civil and Environmental Engineering 
% Oklahoma State University 
% ************************************************* ************************  
  
% ************************************************* ************************  
% ************************************************* ************************  
% Begin Input File 
  
% ------------------------------------------------------------------------- 
% Project Name 
  
    % Define Project Name 
    % NOTE: Automatically Saved Figures and Data Will Be Proceeded with the Project Name 
    proj_name = 'test'; 
     
% ------------------------------------------------------------------------- 
% Analysis Options 
  
    % Define Analysis Type 
    % Analysis Type Options: 
    % Input 'S' = Static Analysis 
    % Input 'D' = Dynamic Analysis 
    % Input 'T' = Thermal Analysis 
    analysis_type = 'S'; 
                                     
% ------------------------------------------------------------------------- 
% Input Finite Element Mesh Properties 
  
    % Input Element Type 
    % Input 'Q4' for Bilinear Rectangular Element 
    % Input 'Q8' for Quadratic Rectangular Element 
    % Input 'CST' for Constant Strain / Linear Triangular Element 
    % Input 'LST' for Linear Strain / Quadratic Triangular Element 



 62

    element_type = 'Q4'; 
  
    % Input Node Coordinates (x and y coordinates) [Note Units => Length] 
    node_coord = [   0.0     0.0      ;... 
                    12.0     0.0      ;... 
                    24.0     0.0      ;... 
                    36.0     0.0      ;... 
                    48.0     0.0      ;... 
                    60.0     0.0      ;... 
                    72.0     0.0      ;... 
                    84.0     0.0      ;... 
                    96.0     0.0      ;... 
                   108.0     0.0      ;... 
                   120.0     0.0      ;... 
                     0.0    12.0      ;... 
                    12.0    12.0      ;... 
                    24.0    12.0      ;... 
                    36.0    12.0      ;... 
                    48.0    12.0      ;... 
                    60.0    12.0      ;... 
                    72.0    12.0      ;... 
                    84.0    12.0      ;... 
                    96.0    12.0      ;... 
                   108.0    12.0      ;... 
                   120.0    12.0      ]; 
     
    % Input Nodal Connectivity for Each Element (CCW from Bottom-Left) 
    node_connectivity = [   1   2   13  12   ;... 
                            2   3   14  13   ;... 
                            3   4   15  14   ;... 
                            4   5   16  15   ;... 
                            5   6   17  16   ;... 
                            6   7   18  17   ;... 
                            7   8   19  18   ;... 
                            8   9   20  19   ;... 
                            9   10  21  20   ;... 
                            10  11  22  21   ]; 
                             
% ------------------------------------------------------------------------- 
% Input Boundary Conditions 
  
    % Input DOF Constrained 
    boundary_dof = [1 2 23 24]; 
     
    % Input Constrained DOF Prescribed Values [Note Units => Length] 
    % NOTE: For Dynamic Analysis, All Prescribed Values MUST BE Zero (0) 
    boundary_dof_val = [0 0 0 0]; 
     
% ------------------------------------------------------------------------- 
% Input Material Properties 
  
    % Material Properties 
    % NOTE: If the property is not being used, enter 0 (zero) 
     
        % Modulus of Elasticity [Note Units => Force / Length^2] 
        material_E = 1e6; 
         
        % Poisson's Ratio [Unitless] 
        material_v = 0.3; 
         
        % Mass Density [Note Units => Mass / Length^3] 
        material_rho = 1; 
     
    % Define Material Analysis Type 
    % Material Analysis Type Options: 
    % Input '1' = Plane Stress Analysis (2-D) 
    % Input '2' = Plane Strain Analysis (2-D) 
    % Input '3' = Three-Dimensional Anslysis (3-D) 
    analysis_type_material = 1; 
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% ------------------------------------------------------------------------- 
% Input Load Properties 
  
    % Static Loading (If Applicable) 
    % NOTE: If Static Analysis is not being considered, NO changes are needed 
     
    if  strcmp(analysis_type,'S') == 1 
     
        % Input DOF Statically Loaded 
        load_dof = [18 20]; 
         
        % Input DOF Statically Loaded Prescribed Values [Note Units => Force] 
        load_dof_val = [-500 -500]; 
     
    % Dynamic Loading (If Applicable) 
    % NOTE: If Dynamic Analysis is not being considered, NO changes are needed 
     
    elseif strcmp(analysis_type,'D') == 1 
        % Input DOF Dynamically Loaded 
        load_dof = [44]; 
         
        % Input Load Time-Series File Name [Note Units => Force] 
        % NOTE: First Number Designates the Load at Time = 0 seconds 
        % Column 1 -> n = DOFs 
        % Row 1 -> n = Load at Time Increments 
        load_file = 'load.dat'; 
         
        % Input Time Step of Load Time-Series [seconds] 
        dynamic_delta_t = 0.1; 
         
        % Define Newmark-Beta Parameters [Unitless] 
        % Average Acceleration Method => Beta = 0.25 & Gamma = 0.5 (Unconditionally Stable) 
        % Linear Acceleration Method => Beta = 0.16667 & Gamma = 0.5 (Conditionally Stable -> delta_t / Tn <= 0.551) 
        dynamic_beta = 0.25; 
        dynamic_gamma = 0.5; 
         
     end 
  
% ------------------------------------------------------------------------- 
% Output Options 
  
    % General Plots 
     
        % Plot Element Mesh (Y or N) 
        plot_element_mesh = 'Y'; 
         
            % Plot Element Mesh Options 
             
            % Display Element Numbers on Element Mesh Plot (Y or N) 
            plot_element_mesh_numbers = 'Y'; 
             
            % Display Element Node Numbers on Element Mesh Plot (Y or N) 
            plot_element_mesh_node_numbers = 'Y'; 
  
    % Static Analysis (If Applicable) 
    % NOTE: If Static Analysis is not being considered, NO changes are needed 
     
        % Plot Static Displacements (Y or N) 
        plot_static_displacement = 'Y'; 
         
            % Contour Plots of Displacements (Y or N) 
            % NOTE: Must Plot Static Displacements to Plot Contours 
            plot_static_contour_displacement = 'Y'; 
         
        % Plot Static Stresses (Y or N) 
        plot_static_stress = 'N'; 
         
            % Contour Plots of Stresses (Y or N) 
            % NOTE: Must Plot Static Stresses to Plot Contours 
            plot_static_contour_stress = 'Y'; 
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        % Plot Static Strains (Y or N) 
        plot_static_strain = 'N'; 
         
            % Contour Plots of Strains (Y or N) 
            % NOTE: Must Plot Static Strains to Plot Contours 
            plot_static_contour_strain = 'Y'; 
         
    % Dynamic Analysis (If Applicable) 
    % NOTE: If Dynamic Analysis is not being considered, NO changes are needed 
     
        % Movie of Dynamic Displacements (Y or N) 
        movie_dynamic_displacement = 'Y'; 
  
% End Input File 
% ************************************************* ************************  
% ************************************************* ************************  
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APPENDIX B 
 
 

CONFIRMATION CALCULATIONS OF ELEMENT FORMULATIONS 

 

Appendix B provides confirmation calculations of the element stiffness matrix for each of 

the element considered in this study.  These calculations were done by hand and then 

compared to the resulting stiffness matrices and displacements developed by the Matlab 

FEA program as provided in Appendix A.  These calculations were completed to ensure 

the Matlab FEA program was making calculations correctly, not necessarily for accuracy 

with respect to any given problem. 
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Constant Strain Triangular (CST) Element 
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D.O.F Displacement D.O.F Displacement

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 -0.000770679 5 -0.000770679

6 -0.00754882 6 -0.00754882

7 0.000719295 7 0.000719295

8 -0.007525983 8 -0.007525983

9 -0.001054455 9 -0.001054455

10 -0.022512619 10 -0.022512619

11 0.000927531 11 0.000927531

12 -0.022501883 12 -0.022501883

Beam Displacement Comparison
Hand Calculations Matlab FEA Program
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Linear Strain Triangular (LST) Elements 
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DOF Displacement DOF Displacement

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 0 5 0

6 0 6 0

7 -0.03334747 7 -0.03334747

8 -0.25289291 8 -0.25289291

9 -2.91E-05 9 -2.91E-05

10 -0.25255534 10 -0.25255534

11 0.033269796 11 0.033269796

12 -0.25287669 12 -0.25287669

13 -0.06588415 13 -0.06588415

14 -0.99964157 14 -0.99964157

15 -1.00E-05 15 -1.00E-05

16 -0.99933758 16 -0.99933758

17 0.065865831 17 0.065865831

18 -0.99969349 18 -0.99969349

Beam Displacement Comparison
Hand-Calculations Matlab FEA Program
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Bilinear Rectangular (Q4) Element 
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D.O.F Displacement D.O.F Displacement

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 -0.002232547 5 -0.002232547

6 -0.018654177 6 -0.018654177

7 0.002221229 7 0.002221229

8 -0.018649147 8 -0.018649147

9 -0.002955971 9 -0.002955971

10 -0.059561303 10 -0.059561303

11 0.002982398 11 0.002982398

12 -0.059583108 12 -0.059583108

Beam Dispalcement Comparison
Hand-Calculations Matlab FEA Program
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Quadratic Rectangular (Q8) Element 
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D.O.F Displacement D.O.F Displacement

1 0 1 0

2 0 2 0

3 0 3 0

4 0 4 0

5 0 5 0

6 0 6 0

7 -0.046855841 7 -0.046855841

8 -0.389799562 8 -0.389799562

9 0.046811659 9 0.046811659

10 -0.389789605 10 -0.389789605

11 -0.064484258 11 -0.064484258

12 -1.263206701 12 -1.263206701

13 -2.56E-07 13 -2.56E-07

14 -1.262886667 14 -1.262886667

15 0.064485742 15 0.064485742

16 -1.263246632 16 -1.263246632

Beam Displacement Comparison
Hand-Calculations Matlab FEA Program
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