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CHAPTER1:  INTRODUCTION AND BACKGROUND 

1.1  Introduction   

According to the Federal Highway Administration, approximately one third of the 

nation’s bridges are either structurally deficient or functionally obsolete.  A factor 

contributing to the structural deficiency of steel bridge superstructures is damaged beams.  

Damage may take the form of section loss due to corrosion, or geometric distortion due to 

vehicular impact.  These damage forms may cause reduced buckling capacity, elevated 

flexural stresses, and reduced ultimate moment capacity.   

 

1.2  Background 

The National Bridge Inventory 2003 report lists over 615,000 bridges.  Approximately 

one third of these bridges are steel.  Oklahoma contains over 23,000 bridges, 34% of 

which are made of steel (2000).  Steel bridges are susceptible to damage that may result 

from corrosion and vehicular impact.  Given the number of steel bridges throughout 

Oklahoma and the nation, the number of structurally deficient bridges in the nation, and 

the vulnerability of steel bridges to corrosion and impact damage, engineers could benefit 

from a greater understanding of the effects corrosion and impact damage have on the 

capacity of bridge members.
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Corrosion is a commonly known problem with steel bridge members.  Uniform corrosion 

may reduce the cross sectional dimensions of a girder evenly, in which case the load-

carrying capacity of the girder is easily recalculated using the new dimensions of the 

reduced section.  However, localized corrosion is also common, and may be severe 

enough to completely penetrate the girder web.  Determination of girder capacity is more 

difficult with local corrosion as compared to uniform corrosion.  Localized thinning of a 

girder and/or holes in the web will leave less area to sustain flexural and shear stresses.  

Also, the geometric properties (such as moment of inertia and radius of gyration) are 

altered, so the beam may have a greater propensity to buckle. 

 

Although less common than corrosion damage, another issue affecting steel bridges is 

structural damage due to accidental impacts.  This circumstance may occur when an over-

height truck or equipment travels under an overpass.  An example of such impact damage 

is shown in Figure 1.1, in which the bottom flange of a girder has been deformed by 

vehicular impact (2006). 
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Figure 1.1:  Deformation of Flange Due to Impact, < http://www.steelstraightening.com/arizona.htm> 
 
 
 
In the case of impact damage, the cross-sectional area of the girder may essentially 

remain unchanged, which means the ultimate moment capacity should be changed only 

slightly.   However, the presence of a significant local deformation in the beam could 

adversely affect the girder’s ability to resist buckling. 

  

The Oklahoma Department of Transportation averages between 5 and 10 projects each 

year involving the repair of impacted bridges, while they average 10 to 20 projects a year 

involving the repair of corrosion damage (Allen 2004).  Damaged bridge members are 

encountered on a regular basis.  It is costly to close bridges, but if the damaged members 

retain enough capacity, closure may be unnecessary.  The structural capacity of damaged 

members must be evaluated to determine if a bridge must be closed.  Therefore, it would 

be useful to obtain a simple method for engineers to achieve a safe and acceptably 

accurate assessment of a damaged girder’s remaining capacity.  Bridge ratings may then 
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be adjusted or repairs conducted as necessary, so the public safety can be maintained 

without over-expenditure of time and money in the analysis and repair processes. 

 

1.3  Objectives and Scope 

The objectives of this research were to:  

1. Determine the effects of various damage configurations on steel bridge members.   

2. Possibly develop a simplified method (performed easily by hand or spreadsheet) 

to determine capacity of damaged members.  The intent was to develop methods 

that would provide a quick yet accurate assessment of remaining capacity without 

requiring advanced computer analysis. 

   

Damage examined includes scenarios likely caused by corrosion, such as holes of various 

sizes and locations in beam webs, and thinned sections of flanges.  Web holes were 

studied to determine how they would affect flexural and shear stress distributions, as well 

as lateral torsional buckling capacity.  Flange damage from corrosion was primarily 

examined to determine how lateral torsional buckling would be affected.  Bearing 

capacity of beams with holes in webs and/or corrosion damaged flanges was not 

examined in this research, as it has been recently addressed in other work (Lindt and 

Ahlborn 2004).  Lower flange and  web deformation, such as might be caused be over-

height vehicle impact, was also examined to determine its effect on flexural stress 

distribution and ultimate moment capacity. 
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1.4  Computer Simulation and Analysis 

The analysis performed utilized ABAQUS 6.4.2, a non-linear finite element program.    

The research required more complex analysis (non-linear geometric and constitutive 

analysis, as well as elastic and inelastic buckling analysis) than other standard finite 

element packages (SAP, STAAD, etc.) are not capable of performing.  ABAQUS also 

provides the user with more flexibility in modeling damaged members (such as a 

standard W-section with a section of web removed). 

 

Several types of elements were examined and simple test cases were performed to 

determine the most appropriate type.  The first elements utilized were linear, four-node 

constant stress tetrahedral elements, referred to by ABAQUS as C3D4 elements.  These 

types of elements are generally acceptable for standard cases if the mesh is refined 

adequately.  Test cases were run which modeled a W27x94 (discussed further in Chapter 

3).  The model was comprised of C3D4 elements approximately 2” on each side.  When a 

point load was applied at midspan, a flexural stress distribution at quarterspan had an 

average error of approximately 1% throughout when compared to the theoretical 

distribution predicted by elementary beam theory (Timoshenko beam theory).  (The 

flexural stress distribution was examined at quarterspan instead of midspan because the 

distribution may be slightly distorted immediately beneath a point load.  This is a local 

phenomenon, and would not provide an adequate gauge of the model’s overall accuracy).   

 

However, the elastic buckling capacity predicted by finite element analysis was 

approximately 264% greater (192,224 lb vs. 52,750 lb) than the capacity predicted by 
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methods commonly used in the American Institute for Steel Construction design manual.  

The AISC methods are based on commonly derived elastic buckling expressions, found 

in Salmon and Johnson, 1996, and other texts.  They calculate the critical moment, 

assuming a beam loaded with a uniformly distributed moment.  To calculate the critical 

moment for other load configurations, the critical moment is multiplied by a scalar factor 

known as Cb.  For a simply supported beam with a point load at midspan, Cb =1.32.  For 

a uniformly distributed load, Cb=1.14.  AISC methods also assume the load to be applied 

at the neutral axis of the beam.  If the load is applied at the top flange, a destabilizing 

effect occurs which reduces the buckling capacity by approximately 1.4 (Galambos 

1998).  AISC methods are discussed further in Chapter 3.  When a uniformly distributed 

load was applied to the top flange of the model, the buckling capacity predicted by finite 

element analysis was approximately 82% higher (462.1 lb/in vs. 253.1 lb/in.) than the 

capacity predicted by AISC methods. 

 

Since the tetrahedral elements produced inaccurate buckling results, another element type 

was investigated.  ABAQUS type B31 elements, which are first-order three-dimensional 

Timoshenko beams in space, were used for the next test model.  When the W27x94 with 

a uniformly distributed load modeled with the beam element, the buckling capacity 

predicted by finite element analysis was only about 6% less (236.5 lb/in vs. 253.1 lb/in) 

than the capacity predicted by accepted theoretical results.  Although the beam elements 

proved more accurate for simple buckling analyses, they were not useful for complex 

stress analyses because they do not allow localized modification of the beam geometry 

(such as the inclusion of impact damage or web holes).   
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The next element type tested was a four-node shell element referred to by ABAQUS as 

S4R.  These are standard stress/displacement shell elements with reduced integration.  

They account for finite membrane strains and arbitrarily large rotations, and are typically 

suitable for large-strain analysis (2006).  The W27x94 was modeled with square shell 

elements approximately 1.5” on each side and a point load was applied at midspan.  A 

flexural stress distribution at quarterspan had approximately 1% average error throughout 

when compared to the theoretical distribution predicted by beam theory.  For this same 

configuration, the finite element model predicted a buckling capacity about 6% less 

(49,769 lb vs. 52,750 lb) than the AISC results.  Based on these results, shell elements 

were adopted for further tests because it was felt that they would yield results with 

acceptable accuracy.  They also allowed beam models to be geometrically modified to 

simulate various forms of corrosion and impact damage.  Figure 1.2 shows an example of 

a typical mesh used, which is 1” on a side.  The beam shown is again a W27x94, 30’ in 

length.   

 

Figure 1.2:  Typical 1" Shell Element Mesh 
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1.5  Hand Calculations 

The research also examined methods which do not require advanced software.  These 

calculations were primarily flexural stress calculations based on the Vierendeel 

procedure, which is more fully described in Section 3.2.  The Vierendeel procedure is a 

means of predicting the flexural stress distributions on either side of a hole in a girder 

web.  It can be done completely by hand, or programmed into a spreadsheet.  

Comparisons are made in Chapter 3 between Vierendeel and ABAQUS results to 

determine if simple hand procedures can accurately predict flexural stress distributions in 

the presence of web holes.  In some cases, the Vierendeel procedure provides very good 

predictions for the magnitude and location of the maximum flexural stress.  However, the 

accuracy of the method seems to be affected by specific beam geometry, making it hard 

to clearly state when the method should be used.  

 

Ultimate moment capacity was also computed by hand (and in Excel spreadsheets).  

These calculations were performed for beams with web holes or thinned flanges.  No new 

techniques were used; section properties were recalculated based on modified geometries.  

These calculations demonstrated clear trends which are more fully discussed in Chapter 

5.
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CHAPTER 2:  LITERATURE REVIEW 

The first step in this research was a review of relevant literature.  Literature which 

provided means to simply calculate capacity of damaged members would be especially 

useful.  These simply calculated results could then be compared to results acquired from 

more advanced analysis using finite elements. Although there were several papers dealing 

with corroded or impact damaged beams, few of them directly related with assessing the 

remaining flexural capacity of the beams.  For example, Frangopol and Nakib’s article 

titled “Effects of Damage and Redundancy on the Safety of Existing Bridges” (Frangopol 

and Nakib 1991) initially appeared to be closely related to the problem under 

consideration.  However, the article opens with discussion of the fact that there is 

currently no method for quantifying structural redundancy levels in bridge systems, then 

an example bridge is analyzed using finite elements to demonstrate how accidental 

damage and corrosion damage would affect the redundancy of the structure.  

Unfortunately, the focus on redundancy does not translate into remaining flexural 

capacity, especially for individual bridge members.   

  

Kayser and Nowak (Kayser and Nowak 1989) present analytical information on capacity 

loss as a result of corrosion in steel bridges.  The effects of corrosion loss on bending, 

shearing, and bearing behaviors are all considered.  For example, effects of corrosion on 

bending performance are demonstrated in a graph of percent remaining ultimate moment 

capacity vs. flange loss.  However, the capacity loss is calculated based on the reduced 
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section properties which would result from uniform corrosion.  A formula is provided for 

predicting the depth of corrosion penetration over time, but no other calculations or 

predictive formulae are provided.  Conclusions focus on the fact that corrosion can lead 

to web buckling in bearing, and bearing stiffeners can create a more corrosion-tolerant 

structure.  The material discussed clearly parallels the current project.  However, uniform 

corrosion is the main focus, and localized corrosion is mentioned only briefly. 

  

Shanafelt and Horn (Shanafelt and Horn 1984) provide a subsection titled “Strength of 

Damaged Member.”  This subsection merely states that during damage assessment “a 

complete evaluation of strength should be made.”  However, no further discussion is 

offered on how to best evaluate the strength of the damaged members.  Informative 

material is also presented about when impacted members should or should not be 

straightened, yet this determination is not made on the basis of remaining capacity.  A 

main point is that by measuring the curvature of a deformed member, it can be 

determined if the member has deformed plastically.  If not, the member should not be 

straightened.  When adjacent members which have deformed plastically are straightened, 

the elastically deformed member should straighten itself.   

  

Darwin (Darwin 1990) presents information on the design of beams with web holes, such 

as might be necessary during construction for the placement ductwork or piping.  

Because the paper is written from a design standpoint, it assumes the engineer will have 

control over many details such as hole size and location, corner radius, and others.  

Though this will not be the case when analyzing beams that have web holes due to 
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corrosion, many of the items present are still adaptable to the current situation.  For 

example, equations are provided for determining the ultimate moment capacity of a beam 

with a web hole.  By using approximate dimensions so the corrosion hole is assumed 

rectangular, the given equations may be applicable.  Also, multiple beam configurations 

are addressed, including bare steel members and composite beams with varying slab 

types.   

  

Perhaps the most applicable piece of literature acquired was the report by Kulicki 

(Kulicki, Prucz et al. 1990).  This was a comprehensive report dealing with topics from 

types and mechanisms of corrosion to how it affects many different elements of several 

bridge types.  One portion discusses material loss and provides useful equations.  A 

Vierendeel analysis is employed to analyze flexural stresses around a hole in a girder 

web.  These equations allow one to compare hand calculated stresses with those 

generated by a finite element simulation, which proved to be especially valuable for the 

current project.  The equations provide predictions for a wide variety of rectangular hole 

configurations and locations.  Guidelines are given for transforming non-rectangular 

shapes into rectangles for analytical purposes, resulting in a very versatile predictive 

procedure. 

  

Some articles reviewed were more pertinent to the finite element simulation aspect of the 

current project.  Olsson conducted a study on steel channel columns used in industrial 

rack and shelving systems (Olsson, Sandberg et al. 1999).  These columns are commonly 

subjected to impact damage (such as from fork lifts or trucks).  Though the channel 
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sections have significantly different geometry from bridge members, the side impact 

damage is a similar scenario to over-height vehicle damage in bridge members.  Thin-

shell finite elements were used to model the channel geometry, simulate impact damage 

to the channels, then test the axial loading capacity.  Finite element results were then 

confirmed with laboratory results.  Although axially loaded columns are not directly 

relevant to the current research, this article provided an example of how finite elements 

could be used to handle situations such as vehicular impact damage.  Based on Olsson’s 

work, it appeared that using similar elements would allow accurate modeling of vehicular 

impact damage, and his laboratory verification helps confirm the validity of the 

procedure (especially encouraging, since the current project is not able to include 

laboratory testing). 

  

Dinno and Birkemoe performed finite element analysis on plate girder web panels with 

patches of localized corrosion damage (Dinno and Birkemoe 1997).  The panels were not 

entire girders, but were short sections.  Dimensions varied from length being equal to 

depth, to length twice the depth.  The work was primarily a parametric study to determine 

what variables cause the greatest decrease in strength (such as hole size, aspect ratio, 

vertical or diagonal shift from panel center).  Rectangular holes were the primary focus, 

because results showed that rectangular holes had a greater influence on panel strength 

than holes of other shapes with the same area.  This finding influenced the use of square 

and rectangular holes in the current research.  Results showed that the extent of web 

thinning was the most sensitive parameter in strength loss.  This fact was considered in 

the current research, when corrosion was modeled by holes in the web instead of thinned 
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sections.  The sensitivity to thinning confirms the conservatism of using web holes.  The 

ratio of corroded patch area to the entire panel area was also a significant parameter.  

General information on panel loading and model setup is provided, which makes this 

another good example of how finite element analysis software can be used to address the 

current project.  Specific information on mesh size was not provided.  Dinno and 

Birkemoe used the Ansys software and the type shell43 element, described as “a four-

noded quadrilateral element that has large out-of-plane deflection and strain capabilities.”  

This is similar to the ABAQUS S4R element used in the current research.   
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CHAPTER 3:  LATERAL TORSIONAL BUCKLING OF CORROSION 

DAMAGED MEMBERS 

 
One of the limit states analyzed during the research was elastic lateral torsional buckling.  

Beams with various forms of corrosion damage were analyzed for remaining lateral 

torsional buckling (LTB) capacity.  Damage parameters included holes in the web, 

partial-width flange thinning for the full beam length, and full-width flange thinning for 

part of the beam length.  Analyses initially focused on the capacity of the beam alone and 

later analyses included a composite slab. 

 

3.1  Setup and Test Cases 

A W27x94 was used as the standard test section.  The majority of tests were run with the 

W27x94 because the 27” depth is representative of the most commonly used rolled 

shapes in Oklahoma Turnpike Authority bridges. Some tests were also run with a 

hypothetical plate girder section, with flange dimensions 18” x 1” and web dimensions 

60” x 0.375.”  This section was created so results obtained with the W27x94 could be 

compared to a significantly different beam geometry.  The plate girder section has flanges 

approximately twice as wide and twice as thick as the W27x94, while the girder web is 

almost twice as deep and about 25% thinner than the W27x94 web.  For most tests, 

simply supported boundary conditions were applied at the bottom flange on both ends.  

Also, rotation was restrained for all nodes in the cross section at each end (see Figure 
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3.1).  This set of boundary conditions is referred to in this thesis as the “standard” 

conditions for LTB tests. These boundary conditions were believed to closely match the 

boundary conditions for which theoretical lateral torsional buckling equations were 

derived.  As shown in Table 3.1, finite element results using these boundary conditions 

closely matched accepted theoretical results.   

 

Theoretical  results were calculated with procedures used by Timoshenko (Timoshenko 

and Gere 1961).  These procedures contain expressions for the critical load specific to 

each loading condition (point load at midspan and uniformly distributed load).  The AISC 

Manual of Steel Construction (AISC 2001) results are from the commonly derived 

expression (Salmon and Johnson 1996) as well as other texts.  This expression is for the 

critical moment, and is derived for constant moment along the beam’s entire length.  A 

scalar coefficient, Cb (AISC 2001) is introduced to modify the expression for cases of 

non-constant moment.  The manual provides Cb values of 1.32 for a point load at 

midspan and 1.14 for a uniformly distributed load.  Both Timoshenko and AISC Manual 

results are included.  Although the Timoshenko procedure consistently yields slightly 

larger discrepancies from finite element results, it confirms the trends shown by the 

newer AISC methods. 
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Figure 3.1:  Standard Boundary Conditions 
 
 

 

The following test cases were used to generate the critical loads (shown as q) in Table 

3.1: 

1)  Simply supported W27x94, 30’, uniformly distributed load applied at neutral axis. 

2)  Simply supported W27x94, 30’, concentrated load at midspan, applied at neutral axis.   

 
 Uniformly Dist. Load 

(Case 1) 
Concentrated Load 

(Case 2) 
q crit, Finite Element 345.3 lb/in 70,306 lb 

qcrit, Timoshenko* 357.1 lb/in 77,243 lb 

qcrit, AISC ** 354.3 lb/in 73,850 lb 
% Error, Finite Element vs. 

Timoshenko 3.3% 9.0% 

% Error, Finite Element vs. AISC 2.5% 4.8% 
*(Timoshenko and Gere 1961) 
**(AISC 2001) 

 
Table 3.1:  Test Cases with Standard Boundary Conditions, Load at Neutral Axis 

 
 
 

1

2 

3

End 1:  Displacement restricted 1,2,3 
End 2:  Displacement restricted 1,2 

Rotation Restricted 
Along 3, Both Ends 
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However, beams in bridges are loaded along the top flange, not along the neutral axis.  

The test cases were run again with the load applied at the top flange and checked for 

agreement with theoretical results.  Results are shown in Table 3.2. 

 

 Uniformly Dist. Load 
(Case 1) 

Concentrated Load 
(Case 2) 

q crit, Finite Element 245.6 lb/in 49,769 lb 

qcrit, Timoshenko* 257.4 lb/in 51,410 lb 

qcrit, modified AISC ** 253.1 lb/in 52,750 lb 

% Error, Finite Element vs. Timoshenko 4.6% 3.2% 
% Error, Finite Element vs. modified 

AISC 3.0% 5.7% 
*(Timoshenko and Gere 1961) 
**(AISC 2001) 

 
Table 3.2:  Test Cases with Commonly Used Boundary Conditions, Load at Top Flange 

 

Table 3.2 contains modified AISC results because the Timoshenko expressions include 

coefficients to account for top flange loading versus neutral axis loading, while the AISC 

expression assumes neutral axis loading.  Another approach (Galambos 1998) modifies 

the Cb factor to compensate for loading other than the neutral axis.  For top loading, Mcr 

is reduced by a factor of 1.4.   The critical load decreases when applied at the top flange 

because it will produce a tipping effect that destabilizes the beam.  Applying the load at 

the bottom flange would produce a stabilizing effect and increase the critical load by a 

factor of 1.4.  Tables 3.1 and 3.2 show finite element results consistently within 3-5% of 

the theoretical results, which indicates a satisfactory model and boundary conditions have 

been established. 
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Although the standard boundary conditions mirror those used in Timoshenko’s 

derivations, it was theorized that beams in bridges may be subject to slightly different 

conditions.  The web may have nothing to restrain it, so it was decided to try test cases 

reflecting this.  The modified boundary conditions applied simple supported conditions to 

the bottom flanges at the beam ends.  Instead of restricting rotation throughout the cross 

section, lateral motion was restricted at the top flange/web intersection (see Figure 3.2).  

These boundary conditions were designed to model the lateral support provided by x-

bracing (with no slab present). 

 

 

Figure 3.2:  Modified Boundary Conditions 
 
 

Since most tests would be run with loads at the top flange, the modified boundary 

conditions were checked against the test cases involving loads along the top flange.  

Results are shown in Table 3.3.  As expected, the less restrictive boundary conditions 

produced slightly lower critical loads.  The difference in results between the two sets of 

boundary conditions for both cases is less than 3%.  Therefore, it was decided that the 

1

2 

3

End 1:  Displacement restricted 1,2,3 
End 2:  Displacement restricted 1,2 

Displacement 
Restricted Along 1, 
Both Ends 
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results obtained with the standard boundary conditions would provide an acceptable 

model of beam behavior, even if actual beams did not have rotational constraints at the 

supports. 

 

 Uniformly Dist. Load Concentrated Load 

qcrit, Original Bound. Cond. 245.6 lb/in 49,769 lb 

qcrit, Modified Bound. Cond. 239.1 lb/in 48,670 lb 
% Difference,  

Modified vs. Original 2.5% 2.2% 
 

Table 3.2:  Test Cases with Modified Boundary Conditions, Load at Top Flange 
 
 

3.2  Holes in Web 

The first type of beam damage analyzed was web damage due to corrosion.  Corrosion 

damage often consists of localized thinned sections in the web.  In severe cases, corrosion 

will completely penetrate the web.  Figure 3.3 shows an example of corrosion which has 

fully penetrated a girder web (Kulicki, Prucz et al. 1990).  It also appears that holes have 

been drilled to stop additional crack propagation. 

 

Figure 3.3:  Photo of Corroded Web 
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All simulations conducted incorporated holes in the web instead of thinned sections, 

because this more severe damage case should provide conservative data which can be 

safely applied to thinned sections.  Also, holes were modeled as square holes.  The heavy 

rectangle drawn on Figure 3.3 demonstrates how the actual damage could be 

conservatively modeled by a rectangular hole.  While square/rectangular holes may cause 

issues with stress concentrations at the corners, they are conservative in that corrosion 

holes will likely not have perfectly squared corners and stress concentrations will be less 

severe.  If corners were rounded to eliminate or reduce the stress concentration issue, 

inspectors or engineers would have to determine whether or not holes in the field had 

corners which were sharper than those modeled here.  Hence, it was felt square holes 

would conservatively approximate a worst-case scenario.  Corrosion is most likely to 

attack a beam web at supports, where there might be a joint in the deck.  It is also 

commonly seen just above the bottom flange, since the flange may retain moisture from 

precipitation and condensation.  Flanges may also collect moisture during wet weather as 

vehicular traffic splashes water up onto bridge members.  However, initial tests were 

conducted with holes vertically centered at midspan.  This configuration provided a good 

starting point from which the model could easily be modified, and it was believed that 

placing the hole at midspan (where the moment is highest) would have the most 

detrimental affect on LTB capacity.  Bearing-type failures such as web yielding or 

buckling were not analyzed, since those type failures were explored in other work (Lindt 

and Ahlborn 2004).  The primary focus for this research was flexural failures.  Two span 

members were not tested, because the highest flexural stresses will occur over the 

support.  If a hole were introduced above the support, there would almost certainly be a 
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shear failure (see Table 3.4).  Also, it is assumed that lateral bracing will be provided at a 

support and LTB cannot occur.  

 

3.2.1:  Hole Depth 

The first series of tests utilized a W27x94, length 30’, with standard boundary conditions.  

A concentrated load is applied at midspan, on the top flange.  These tests investigate the 

affect on LTB capacity as hole depth increases.  Several large holes were placed in the 

model, with depths from 12” (45% of total beam depth) to 22” (82% of total beam depth).  

Results are shown in Table 3.4.  The plastic moment capacity (Mp) shown represents the 

highest theoretical moment capacity.  Mp calculations were based on the modified cross-

sectional geometry resulting from the presence of a hole.  The losses in Mp and shear 

capacity are included to provide a perspective on the relative importance of LTB losses.  

It is possible that LTB capacity will never be the governing limit state.  This is especially 

true for cases in which the compression flange is fully laterally restrained, such as simple 

span composite bridges.   

Beam Hole 
Length 

Hole 
Depth 

LTB 
Capacity 

% loss 
LTB 

Capacity

% loss 
Mp 

% loss 
Shear 

Capacity 
W27x94, 30’ -- -- 49769 lb -- -- -- 
W27x94, 30’ 12” 12” 49757 lb 0.02% 6.4% 44.6% 
W27x94, 30’ 12” 18” 49748 lb 0.04% 14.4% 66.9% 
W27x94, 30’ 12” 22” 49744 lb 0.05% 21.6% 81.8% 
W27x94, 30’ 36” 12” 49669 lb 0.20% 6.4% 44.6% 
W27x94, 30’ 36” 18” 49651 lb 0.24% 14.4% 66.9% 
W27x94, 30’ 36” 22” 49644 lb 0.25% 21.6% 81.8% 

 
Table 3.3:  LTB Capacity with Increasing Hole Depth 
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As shown in Table 3.4, as the depth of the holes increases there is a non-linear decrease 

in capacity.  However, the last test in the series involves a hole with dimensions one-tenth 

the total beam length and 82% of the total beam depth, and capacity is reduced only 

0.25%.  A hole this large clearly presents other problems, such as the 21.6% loss in 

plastic moment capacity and the 82% loss in shear capacity.  Therefore, it was decided 

that developing extensive plots of LTB capacity vs. hole depth would not be of 

significant value.  It was also decided that if a vertically centered hole of 82% section 

depth did not significantly affect LTB capacity, then there was no need to investigate the 

effects of vertical hole location.  The depth of holes in the web does not have a significant 

impact on LTB capacity.   

 

3.2.2:  Hole Length 

The next series of tests investigated the affects of increasing hole length.  Again the beam 

was a W27x94, length 30’.  Boundary conditions were applied as shown in Figure 3.2.  A 

concentrated load is applied at midspan, on the top flange. Results are shown in Table 

3.5. 

Beam Hole 
Length 

Hole 
Depth 

Capacity % loss 
LTB cap. 

% loss 
Mp 

W27x94, 30’ -- -- 48670 lb -- -- 

W27x94, 30’ 12” 12” 48657 lb 0.03% 6.4% 

W27x94, 30’ 36” 12” 48569 lb 0.21% 6.4% 

W27x94, 30’ 60” 12” 48394 lb 0.57% 6.4% 

W27x94, 30’ 120” 12” 47628 lb 2.14% 6.4% 
 

Table 3.4:  LTB Capacity with Increasing Hole Length 
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As with variable hole depth, there is a non-linear decrease in capacity as hole size 

increases.  However, the LTB capacity loss is very small.  For the largest test case, the 

hole was 1/3 the entire member length, and 45% the entire member depth.  Yet the LTB 

capacity was only reduced by approximately 2%.  Plastic moment capacity reduction is 

still of greater concern than LTB capacity.   

 

The first two series of LTB tests all utilized beams with a concentrated load at midspan.  

To further investigate LTB with web deterioration under a different loading 

configuration, two more tests were run with a uniformly distributed load.  A 30’ W27x94 

with standard boundary conditions was used for the tests.  Results are shown in Table 3.6. 

 

Beam Hole 
Length 

Hole 
Depth 

Capacity % loss 
LTB cap. 

% loss 
Mp 

W27x94, 30’ -- -- 245.62 lb/in -- -- 

W27x94, 30’ 12” 6” 245.59 lb/in 0.01% 1.6% 

W27x94, 30’ 36” 6” 245.27 lb/in 0.14% 1.6% 
 

Table 3.5:  LTB Capacity Under Uniformly Distributed Load 
 

As with the concentrated loading configuration, LTB capacity is not significantly affected 

by the web holes.  With only a 6” deep hole vertically centered in the member, the plastic 

moment capacity is only reduced 1.6%.  Yet that is over 10 times higher than the loss in 

LTB capacity for the member with a 36” x 6” hole in the web.   
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Based on the results of several tests with varying hole dimensions, it was concluded that 

the presence of holes in beam webs does not significantly reduce lateral torsional 

buckling capacity. 

3.3  Flange Thinning 

Corrosion commonly affects the flanges of steel bridge members, because they retain 

moisture and debris.  This retained moisture on the surface of the steel accelerates 

corrosion.  It is not feasible to model every potential flange deterioration possibility, so to 

capture the effects of flange corrosion, tests were run with two basic configurations:  

thinning part of the flange width for the full beam length, and thinning the full width of 

the flange for part of the beam length.  It was felt these two methods would provide 

sufficient data for analysis of numerous corroded flanges encountered in the field. 

 

3.3.1:  Full Length, Partial Width Flange Thinning 

The first series of tests for flange corrosion used the standard W27x94 test section.  

Standard boundary conditions were applied, and a concentrated load was applied to the 

top flange at midspan.  Tests on a 30’ beam showed more significant losses than were 

obtained while testing web holes, so beams of 25’ and 35’ length were also tested to see 

how beam length affected sensitivity to damage.  The damage was simulated by thinning 

the bottom flange to ½ its original thickness for varying widths along the full length of 

the beam.  A typical view of the damaged cross section at the bottom flange is shown in 

Figure 3.4, and test results are given in Table 3.7. 
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Figure 3.4:  Full Length, Partial Width Flange Thinning 

 
 
 

Beam Damage 
Width 

Capacity % loss 
LTB cap. 

% loss 
Mp 

W27x94, 25’ -- 76600 lb. -- -- 
W27x94, 25’ 0.125b 75777 lb. 1.1% 2.3% 
W27x94, 25’ 0.25b 74878 lb. 2.2% 4.6% 
W27x94, 25’ 0.375b 74032 lb. 3.4% 7.0% 
W27x94, 25’ 0.5b 73168 lb. 4.5% 9.6% 
W27x94, 25’ b 69360 lb. 9.5% 20.4% 

     
W27x94, 30’ -- 49769 lb. -- -- 
W27x94, 30’ 0.125b 48973 lb. 1.6% 2.3% 
W27x94, 30’ 0.25b 48282 lb. 3.0% 4.6% 
W27x94, 30’ 0.375b 47611 lb. 4.3% 7.0% 
W27x94, 30’ 0.5b 46923 lb. 5.7% 9.6% 
W27x94, 30’ b 44059 lb. 11.5% 20.4% 

     
W27x94, 35’ -- 34838 lb. -- -- 
W27x94, 35’ 0.125b 34327 lb. 1.5% 2.3% 
W27x94, 35’ 0.25b 33759 lb. 3.1% 4.6% 
W27x94, 35’ 0.375b 33219 lb. 4.6% 7.0% 
W27x94, 35’ 0.5b 32658 lb. 6.3% 9.6% 
W27x94, 35’ b 30391 lb. 12.8% 20.4% 

 
Table 3.6:  LTB Capacity with Full Length, Partial Width Flange Thinning 

 
 

Removed 
Sections 
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These results are plotted in Figure 3.5.  Since a longer beam will have a greater 

propensity to buckle than a shorter beam if all other variables are constant, it appears 

reasonable that the results show increasing sensitivity to damage with increasing beam 

length. 
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Figure 3.5:  LTB Capacity for Three Beam Lengths, Full Length Partial Width Flange Damage 
 
 
 
Flange thinning has significantly more effect on LTB capacity than holes in the web.  As 

the damage width increases, capacity decreases linearly.  However, examination of the 

results in Table 3.7 shows that LTB capacity may still not be the limiting criteria when 

the flange is thinned.  Losses in plastic moment capacity are still higher than losses in 

LTB capacity.     
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3.3.2:  Full Width, Partial Length Flange Thinning 

The next series of flange thinning tests used a slightly different damage model.  The 

flange was again thinned to ½ its original thickness.  However, this was done for the full 

width of the flange for only a part of the beam length.  The 30’ W27x94 was used with 

standard boundary conditions.  A 30’ W18x50 with standard boundary conditions was 

also used, to see if a smaller beam would show more or less sensitivity to the flange 

damage.  Beams were loaded with a concentrated load on the top flange at midspan.  

Results are shown in Table 3.8, and plotted in Figure 3.6. 

 

Beam Damage 
Length 

Capacity % loss 
LTB 
cap. 

% loss 
Mp 

W18x50, 30’ -- 69.96 lb/in -- -- 

W18x50, 30’ 3’ 69.73 lb/in 0.33% 21.9% 

W18x50, 30’ 7.5’ 69.17 lb/in 1.1% 21.9% 

W18x50, 30’ 15’ 66.79 lb/in 4.5% 21.9% 

W18x50, 30’ 22.5’ 62.45 lb/in 10.7% 21.9% 

W18x50, 30’ Full 58.32 lb/in 16.6% 21.9% 

     

W27x94, 30’ -- 245.62 lb/in -- -- 

W27x94, 30’ 3’ 245.37 lb/in 0.10% 20.4% 

W27x94, 30’ 7.5’ 244.06 lb/in 0.64% 20.4% 

W27x94, 30’ 15’ 237.62 lb/in 3.3% 20.4% 

W27x94, 30’ 22.5’ 226.74 lb/in 7.7% 20.4% 

W27x94, 30’ Full 218.09 lb/in 11.2% 20.4% 
 

Table 3.8:  LTB Capacity with Full Width, Partial Length Flange Thinning 
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Figure 3.6:  Remaining LTB Capacity vs. Length of Full-Width Damage 

 
 
For full width damage, capacity decreases non-linearly with increasing damage length.  

The lighter beam section showed a greater sensitivity to the beam damage, both in terms 

of LTB capacity and plastic moment capacity.  The greater sensitivity exhibited by the 

W18x50 is somewhat expected, because the lower flange of the W18x50 accounts for 

about 29% of the section’s total cross sectional area.  The lower flange of a W27x94 

accounts for less cross sectional area, making up 27% of the total area.   
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3.3.3:  Web Holes and Flange Damage 

Two more tests were run on beams which were subject to holes in the web and flange 

damage.  This was done to see if the presence of both damage types would compound the 

effects.  The tests used the standard beam and boundary conditions, and a uniformly 

distributed load was applied at the top flange.  Table 3.9 gives the results, and compares 

them to results for undamaged sections and sections subjected to only one damage type. 

 
 

 
Table 3.9:  LTB Capacity When Web Holes and Flange Thinning Both Present 

 

The test incorporating a 12”x 6” hole and flange thinning seems to have produced a small 

numerical error, since it actually shows a slightly higher capacity than the beam with 

thinning only.  However, when looking at the final results for both beams, it can be seen 

that the simultaneous presence of web holes and flange thinning does not compound the 

damage effects.  Although not exact, it would be more accurate to say that the effects of 

the two damage types are approximately additive. 

Beam Flange Thinning Hole 
Dimensions

qcrit., 
lb/in 

% loss 
LTB cap. 

% loss 
Mp 

W27x94, 30’ -- -- 245.62  -- -- 

W27x94, 30’ -- 12” x 6” 245.59  0.01% 1.6% 

W27x94, 30’ ½ orig. thickness, ½ 
flange width, full length -- 238.93  2.72% 9.6% 

W27x94, 30’ ½ original thickness, ½ 
flange width, full length 12” x 6” 238.96  2.71% 11.2% 

      

W27x94, 30’ -- 36” x 6” 245.27  0.14% 1.6% 

W27x94, 30’ ½ original thickness, ½ 
flange width, full length -- 238.93  2.72% 9.6% 

W27x94, 30’ ½ original thickness, ½ 
flange width, full length 36” x 6” 238.68  2.83% 11.2% 
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3.3.4:  Two Continuous Spans:  Full Length, Partial Width Flange Thinning 

Although the majority of the bridges dealt with by the Oklahoma Turnpike Authority 

(OTA) are simple spans, some investigation was done for beams covering two continuous 

spans.  Because web holes had such little impact on simple spans, they were not 

addressed for continuous spans.  In addition to the standard section, a hypothetical plate 

girder was used for some of the tests.  The plate girder had flange dimensions 18” x 1” 

and web dimensions 60” x 0.375.”  A plate girder was tested to again see how different 

sized sections would be affected by the same type of damage, and also to see if a thinner 

web would have a significant impact on the results.  Both sections were subjected to a 

uniformly distributed load along the top flange and standard boundary conditions.  

Lengths given are for the total of both spans.  Because the girder was roughly twice as 

deep as the rolled section, it was tested over a span twice as long as the rolled section.  

Test results are provided in Table 3.10 and are plotted in Figure 3.7. 

 
Beam Damage 

Width 
Capacity % loss LTB 

cap. 
% loss 

Mp 
W27x94, 60’ -- 360.34 lb/in -- -- 

W27x94, 60’ 0.25b 347.95 lb/in 3.4% 4.6% 

W27x94, 60’ 0.5b 338.28 lb/in 6.1% 9.6% 

W27x94, 60’ b 227.71 lb/in 36.8% 20.4% 

     

Pl. Gird., 120’ -- 253.52 lb/in -- -- 

Pl. Gird., 120’ 0.25b 242.53 lb/in 4.3% 5.0% 

Pl. Gird., 120’ 0.5b 235.96 lb/in 6.9% 10.5% 

Pl. Gird., 120’ b 207.66 lb/in 18.1% 22.9% 
 

Table 3.10:  LTB Capacity for Two Continuous Spans, Full Length Partial Width Flange Thinning 
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Figure 3.7:  Remaining LTB Capacity vs. Width of Full Length Flange Thinning 
 
 
 
Figure 3.7 shows that the two beams lost capacity at nearly the same rate until over half 

the flange width had been thinned.  However, W27x94 clearly lost capacity much faster 

as damage exceeded half the flange width.  Although plate girders were not tested at 

length, it is worth noting that they will likely retain their LTB capacity better than a 

rolled section would when subjected to flange thinning.   

 

Web holes will have very little impact on lateral torsional buckling.  Flange thinning has 

a more significant impact on lateral torsional buckling capacity, but neither damage type 

is likely to make LTB the governing limit state.  Plastic moment capacity or shear 

capacity would likely be more critical.
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CHAPTER 4:  FLEXURAL STRESS DISTRIBUTION IN CORROSION- 

DAMAGED MEMBERS 

Another major subject of investigation was flexural stress distribution in the presence of 

corrosion damage.  Removing cross sectional area from a beam may affect the flexural 

stress distribution, because less material is available to resist the applied loads.  Non-

linear finite element analysis which assumed elastic perfectly-plastic behavior was used 

to model distressed members, and stress distributions were studied to determine whether 

corrosion damage could elevate stress to dangerous levels, perhaps causing yielding 

under lower loads than anticipated during the design of the member.  Topics addressed in 

chapter 4 are summarized in Table 4.1. 
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Section Analysis Set Topic 

4.1 -- Test cases, confirm finite element results match 
known theoretical results. 

4.2 -- Demonstrate application of Vierendeel method. 

4.3.1 1 Initial model, Vierendeel vs. finite element stress 
distributions at hole sides and center. 

4.3.2 2 How does varying hole size affect the accuracy of 
the Vierendeel method. 

4.3.3 3 Vierendeel applicability in no-shear locations 
(beams with multiple point loads). 

4.3.4 4 Vierendeel applicability under distributed load. 

4.3.5 5 How does beam geometry and h/tw ratio affect the 
onset of stress shift. 

4.3.6 -- 
In what circumstances will Vierendeel accurately 
predict the magnitude of the maximum flexural 
stress. 

4.3.7 6 
How does the flexural stress increase at the hole 
corner which is not the location of maximum 
stress. 

4.3.8 7 
How do the maximum stresses around vertically 
eccentric holes compare to the maximum stresses 
around vertically centered holes. 

 
Table 4.1:  Topics of Chapter 4 

4.1  Setup and Test Cases 

As with lateral torsional buckling, a W27x94 was used as the initial test section.  Some 

tests were also run with the large plate girder section, with flange dimensions 18” x 1” 

and web dimensions 60” x 0.375.”  Simply supported boundary conditions were applied 

at the bottom flange on both ends.  In order to verify the accuracy of the finite element 

model, simple test cases were run on undamaged beams and finite element results were 

compared to theoretical stress distributions.   
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4.1.1:  Case 1, Concentrated Load 

The first test case used a simply supported W27x94, 30’, with a concentrated load applied 

to the top flange at midspan.  Simply supported boundary conditions were applied at the 

bottom flange of the beam.  See Figures 4.1 for boundary conditions.  Flexural stress 

distributions over the depth of the cross section are shown in Figures 4.2 and 4.3.   

 

 

Figure 4.1:  Test Case 1, Simply Supported Conditions at Bottom Flange 
 

1 

2

3

End 1:  Displacement restricted 1,2,3 
End 2:  Displacement restricted 1,2 
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Figure 4.2:  Flexural Stress Distribution, Test Case 1, Midspan 
 
 
As shown in Figure 4.2, the stress distribution at midspan has a noticeable deviation from 

the theoretical stress distribution.  The largest errors are present at the top of the beam 

directly beneath the point load, where finite element stresses are about 32% higher than 

the theoretical stresses.  This may be the result of the point load in the finite element 

model, which places the entire load on one node, which is an infinitely small area.  The 

increased stress could also be a result of contact stresses which are not accounted for in 

the theoretical model.  For example, a stress element at the top of the beam subject to a 

vertical compressive load will try to expand horizontally as a result of Poisson’s effect.  

The element will be unable to expand due to the flexural compression already present at 

the top of the beam, causing increased horizontal (flexural) compressive stress in the 
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element.  (Much as a fully restrained steel bar would experience compressive stress if 

subjected to a temperature increase.)  To investigate whether contact stresses were 

causing the errors, the stress distribution at quarterspan was also checked (see Figure 4.3 

below).  At quarterspan, the topmost point still has 9% error.  However, almost all of the 

rest of the cross section has a 1% error.  It was felt that the small aberration at the top 

flange was not significant, and that for the point loaded simply supported case, the finite 

element model yields satisfactory results.  However, the stress distribution directly 

beneath a concentrated load will be affected by contact stresses and will not precisely 

match the theoretical stress distribution.   
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Figure 4.3:  Flexural Stress Distribution, Test Case 1, Quarterspan 
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4.1.2:  Case 2, Uniformly Distributed Load 

The second test case used a W27x94, 30’ long, with a 100 lb/in. uniformly distributed 

load applied along the top flange.  Simply supported boundary conditions were applied at 

the bottom flange.  The ABAQUS software has a “line load” loading function with units 

of force/length for beam elements, but it is not applicable for shell elements.  In order to 

simulate the distributed load, a concentrated load was applied to every node along the 

centerline of the top flange.  A 1” mesh was used, so a 100 lb. force was applied at every 

inch along the beam in order to approximate the 100lb/in distributed loading.  Results are 

shown in Figure 4.4.   
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Figure 4.4:  Flexural Stress Distribution, Test Case 2, Midspan 
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Figure 4.4 shows the flexural stress distribution at midspan.  Here, the finite element 

results differ from theoretical by 3% and 5% at the top and bottom nodes, respectively.  

The average error for the rest of the nodes is less than 1%.  It was felt this model yields 

satisfactory results for the simply supported, uniformly distributed load configuration.  

Applying many closely spaced concentrated loads is one way of approximating a 

uniformly distributed load.  Test case 2 demonstrates that a reasonable degree of accuracy 

is obtained when the loads are spaced at 1” for this span (which is 0.28% of the span 

length).  After observing the results of test cases 1 and 2, it was felt that the finite element 

results agreed with known theoretical results closely enough to validate the use of similar 

modeling techniques on future analyses. 

4.2  Basic Vierendeel Analysis 

A literature review found that an approximate hand method had been derived to predict 

the flexural stress distribution through the beam cross section when a hole is present.  

Simple “hand” calculation methods could be especially useful to engineers who might 

encounter damaged beams but do not have access to advanced analytical software.  This 

method, the Vierendeel method (Bower 1966; Kulicki, Prucz et al. 1990), was 

investigated further.  Several finite element tests were run to check the accuracy and 

applicability of the Vierendeel method. 

 

The Vierendeel method is named for the Vierendeel truss.  A Vierendeel truss consists of 

rigid upper and lower beams connected only by vertical members.  These members are 

considered to be rigidly attached as opposed to most truss analyses which used pinned 

end connections.  A beam with a hole in the web may be analyzed much like a Vierendeel 
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truss.  The sections remaining above and below the hole are considered to be the upper 

and lower chords of the truss, while the areas at either end of the hole act as vertical truss 

members.  Figure 4.5 shows the setup for a simple Vierendeel analysis with important 

parameters included.   

 

 

 
Figure 4.5:  Basic Setup for Vierendeel Method 

  

 

The principal of the Vierendeel method is a simple extension of the basic flexural stress 

equation, 
I

yM ⋅=σ .  The stress at a point above (or below) the hole is given by 

Equation 4.1: 

nt
x I

hM
I

yaV ⋅±⋅⋅±=σ  

Equation 4.1 
 
Equation 4.1 is composed of two terms; a component from the shear at the hole and a 

component from the global moment in the beam.  When the a cross section of the beam at 

the hole edge is analyzed, a cut is taken through the center of the hole as shown in Figure 

(Bower, 1966)
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4.6.  Figure 4.6 also shows the stress distributions caused by each component alone and 

the resulting stress distribution when the two components are added together. 

 

Figure 4.6:  Stress Components of Vierendeel Method 
 

 

The first component of Equation 4.1 arises from the shear at the cut, but still takes the 

basic form of My/I.  For the given beam (Figure 4.5) with a concentrated load of 

magnitude 2R at midspan, the end reaction is equal to R, and the shear anywhere between 

the end reaction and midspan is therefore R.  The free body diagram in Figure 4.6 shows 

resulting shear on each remaining tee is 0.5R.  For the point “d” shown in Figure 4.6 at 

the top left corner of the hole, the moment is equal to the resulting shear multiplied by the 

distance to point d, or V*a.  The “I” value for this component is “It,” which is the moment 

of inertia of the remaining t-section above or below the hole.  The “y” value is the 

distance from the centroid of the t-section to the point where the stress is being 

determined, as shown in Figure 4.7.     

(Bower, 1966)
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Figure 4.7:  Cross Section of Top Tee Section 
 
 

The second component of Equation 4.1 still takes the form of My/I, and it involves the 

moment on the gross beam section (for example, M=PL/4 at the center of a simply 

supported beam with a point load at midspan).  Note that “M” is drawn in Figure 4.6 at 

the center of the hole for clarity, but is actually the moment at the point where stress is 

being determined. For the point d, it is the moment at the very edge of the hole.  The “I” 

value for this component of Equation 4.1 is “In,” which is the moment of inertia for the 

net beam section (obtained from the gross cross-sectional area minus the cross-sectional 

area of the hole).  The “y” value in this component is “h,” which is the distance from the 

centroid of the gross cross section to the point where the stress is being determined.  

Therefore, the stress at point “d” shown in Figures 4.5 and 4.6 is given by 

nt
x I

hM
I

yaV ⋅−⋅⋅−=σ .  Both terms are negative because both moments (the beam 

moment and the shear-induced moment) cause point “d” to be in compression.  Figure 4.6 

shows the stress distributions resulting from each of the two components of Equation 4.1, 

as well as the final stress distribution resulting from their superposition (Bower, 1966).  

For clarification, an example calculation is provided in section 4.2.1. 

 

Centroid of tee 
section 

Point “d” 

y 
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Though the fundamental principles remain unchanged, the actual calculations become 

more complicated when the web hole is not vertically centered in the web.  This is due to 

the fact that the shear is no longer carried proportionately (for example, if 1/3 of the 

remaining cross sectional area is in the top t-section, it cannot necessarily be assumed 

that 1/3 of the resulting shear is carried in the top section).  Calculations to determine the 

shear distribution through the cross section are given in Kulicki, 1990.    

 

An advantage of the Vierendeel method is that it can be performed without advanced 

software or a major time investment.  It can be done by hand, or spreadsheets can be 

written to perform the calculations.  Several examples of Vierendeel stress predictions 

were compared with finite element analysis, and these comparisons show that the 

Vierendeel stresses are conservative at the extreme fibers of the beam, and are often 

conservative next to the hole (this is not always the case, because sometimes the stress 

concentrations naturally present at a hole corner will outweigh the conservatism of the 

Vierendeel approach).  A weakness of the procedure is that it cannot predict stress 

concentrations, which will be present at the edges and especially the corners of a hole.  

Examples of stress distributions generated by finite element analysis compared with those 

predicted by the Vierendeel analysis are given in section 4.2.1.  The Vierendeel stress 

points were generated with an Excel spreadsheet.  Note that “inside” hole edge refers to 

the edge of the hole nearest midspan, while “outside” refers to the edge of the hole 

nearest the end of the beam as illustrated in Figure 4.8. 
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Figure 4.8:  Inside Hole Edge, Outside Hole Edge, and Hole Center Notation 
 
 
beam(shell element) bending(hole moved) 

4.2.1:  Example of finite element results vs. Vierendeel Calculations 

Setup:  W27x94, length = 30’, with 12”x12” vertically centered hole in the web.  Hole 

center is 7.5’ from beam end.  Beam is simply supported with 100 lb. point load at 

midspan.  Results at the inside and outside hole edges are plotted in Figures 4.9 and 4.10. 

 

The stress distributions from this model show that the Vierendeel analysis does predict a 

similar stress distribution to that generated by finite element analysis.  There is some 

discrepancy between Vierendeel and finite element results, and in places the percentage 

error is significant.  However, the Vierendeel analysis gives conservative results at the 

locations of highest stress.  The stress distribution through the center of the hole is not 

shown.  At the center of the hole, the Vierendeel stress was not conservative next to the 

hole.  Yet it was conservative at the extreme fibers of the beam, where the stress was 

higher (the critical location).  The stress that would be predicted by elementary beam 

theory if no hole were present,
I

My=σ , is also plotted.  Note that it provides a very poor 

match to the stress distribution obtained from finite element analysis; the location of the 

maximum stress is incorrect and the value is inaccurate.   

 

Inside Edge Outside Edge 

Hole Center 
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Figure 4.9:  Example Flexural Stress Distribution, Inside Hole Edge 
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Figure 4.10:  Example Flexural Stress Distribution, Outside Hole Edge 

A
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The following calculations demonstrate how the Vierendeel stress at point “A,” indicated 

in Figure 4.10, was obtained.  It may be helpful to refer to Figures 4.5 and 4.6.   

 

4.2.2:  Example Vierendeel Stress Calculations 

Section: W27x94, 12”x12” hole, centered vertically 7.5’ from end of beam (u = 7.5’) 

Load:  Point load at midspan = 100 lb. 

 

Because of the location of Point A, the flexural normal stress will be given by the 

expression: 

 
nt

x I
hM

I
yaV ⋅+⋅⋅−=σ  

Now fill in the pieces of the equation: 

Ig = 3270 in.4 (from AISC manual) 

yb = centroid of bottom t-section = 1.513 in. up from bottom surface 

It = I for bottom t-section, = 44.28 in.4 

In = 3199.4 in.4 ( = Ig-1/12(.49)(12)3; .49 and 12 are the cross-sectional dimensions 

of a 12” hole in the web of a W27x94) 

V= 25 lb. (from statics as shown in Figure 3.7) 

a= 6”  

y = distance between yb and A.  Point A vertically located 13.06” down from beam 

centerline, = 26.9/2 -13.06 = 0.39 in. up from bottom surface.  The distance of 

13.06” is a result of the mesh generated in ABAQUS; 26.9” is the actual depth 

of a W27x94. 



 

 46

   =1.513-.39 = 1.123 in. 

M = 50lb(7’)(12”/1’)= 4200 lb-in. 

h = 13.06 in. 

13.34psi=+−=+−= 144.17804.3
4.3199

)06.13)(4200(
28.44

)123.1)(6)(25(
xσ  

 

At the bottom extreme fiber at the outside hole edge (corresponding to point A in 

Figure 4.10), finite element methods yield a stress of 14.09 psi.  The Vierendeel 

method predicts a flexural stress of 13.34 psi., which is about 5% less than the 

finite element result. 

4.3  Simple Spans with Holes in Webs 

4.3.1:  Set 1—12”x 12” Vertically Centered Hole at Quarterspan, Concentrated 
Load at Midspan 

 
The first stress analyses performed on damaged beams were done for simple spans with 

holes in the web.  The first model used was the one presented in section 4.2.1., which 

involved a 12” x 12” hole placed in the web of a 30’ W27x94 (results from this model are 

dealt with more fully here than in section 4.2).  The hole depth was limited to 12” 

because reference material suggested that the Vierendeel method was most applicable to 

holes not exceeding half the web depth (Bower 1966).  The hole center was located at the 

neutral axis, at quarterspan.  A concentrated load of 100 lbs. was applied at midspan.  

Plots of stress distributions at the inside hole edge, hole center, and outside hole edge are 

shown in Figures 4.11, 4.12, and 4.13.  The “Theoretical, no hole” plot is included to 

illustrate the distribution predicted by 
I

My=σ  if no hole is present.  Throughout this 
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work, a “no hole” distribution was calculated using the moment of inertia of the gross 

section (as if no hole were present, hence the name).   This was done as a means of 

comparing the finite element and Vierendeel methods, which attempt to compensate for 

the presence of a hole, with beam theory that does not attempt to compensate for the hole. 

 

At the inside edge, the stress distribution predicted by the Vierendeel method matches the 

distribution well (see Figure 4.11).  The Vierendeel stresses are conservative at all the 

maximum stress points.   
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Figure 4.11:  Flexural Stress Distribution at Inside Hole Edge 
 

The average error is high at -50%, but the average error is somewhat misleading.  At two 

points in the distribution, the Vierendeel and finite element stresses have opposite signs 
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(these locations are indicated by highlighted ellipses on Figure 4.11).  These stress points 

caused very high errors which inflated the average error; if these two points are excluded 

the average error throughout the distribution is -3%.  These locations also happen to be at 

the points where the magnitude of the stress is smallest.  Therefore a high percentage 

difference between finite element and Vierendeel stresses reflects a small difference in 

the actual stress values (for example, at the vertical location +6 inches the finite element 

stress is -0.90 psi and the finite element stress is 2.48 psi, a difference of 3.38 psi).  

 

At a cross section of the beam through the hole center (refer to Figure 4.8), the 

Vierendeel method again provides a close match with the finite element results (see 

Figure 4.12).   
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Figure 4.12:  Flexural Stress Distribution at Hole Center 
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It should be noted that the Vierendeel stress distribution is nearly the same as the “no 

hole” distribution.  Since the Vierendeel stress is derived from a cut taken at the center of 

the hole, the “a” term (the moment arm over which the shear force “V” acts) goes to zero.  

This eliminates the first term from the stress equation:  
nt

x I
hM

I
yaV ⋅±⋅⋅±=σ .  For a 

vertically centered hole, “h” is the same as “y” in the traditional flexural stress equation.  

The only difference is in the moments of inertia; since the net moment of inertia is 

slightly smaller than the gross moment of inertia the Vierendeel method will predict 

slightly higher stresses than if the hole had been ignored. 

 

At the outside edge of the hole, the results are somewhat similar to those at the inside 

edge (see Figure 4.13).  Although the shapes of the finite element and Vierendeel 

distributions are somewhat different, inspection of Figure 4.13 shows the Vierendeel 

method provides a better match with finite element results than would be obtained by 

ignoring the hole.  The Vierendeel stress is conservative at the points of highest stress, 

which are next to the hole and not at the extreme fiber of the beam.  At these locations, 

the Vierendeel stress is about 22% higher than the finite element stress, while the “no 

hole” theoretical stress is about 66% less than the finite element stress. 
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Figure 4.13:  Flexural Stress Distribution at Outside Hole Edge 

 
 
It should be noted that the previous analysis was run entirely within the elastic range, so 

the relatively small load used did not adversely affect results.  Stresses will simply scale 

up in proportion to the load as long as no observed stresses are outside the elastic range 

(above 50 ksi). 

 

Analysis set 1 indicated that the Vierendeel method had the potential to offer more 

accurate flexural stress distributions around web holes than beam theory could provide. 
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4.3.2:  Set 2—Preliminary Investigation of Vierendeel Applicability vs. Hole Size, 
Holes at Quarterspan, Concentrated Load at Midspan 

 
Analyses in Set 1 indicated that the Vierendeel method can provide accurate predictions 

of flexural stress distributions.  Reference material indicated that the Vierendeel method 

was best used on holes which were less than half the member depth.  Set 2 involved a 

series of models with varying hole sizes.  The deep plate girder described in section 3.1 

(flanges 18” x 1”, web 60” x 0.375”) was used, because the deeper web allowed a wide 

variety of hole depths to be modeled.  Total member length was increased to 60’, and the 

applied load was a concentrated load of 125,000 lb. applied on the top flange at midspan.  

The load and length were increased to subject the larger member to a greater moment.  

Holes were vertically centered at quarterspan, and were sized 10” x 10”, 20” x 20”, 30” x 

30”, and 40” x 40”.  The stress distributions at the inside hole edge, hole center, and 

outside hole edge are shown for all cases.   

 

 

10” x 10” Hole 

The first model used in Set 2 involved a 10” x 10” hole at quarterspan.  The flexural 

stress distribution at the inside hole edge is shown in Figure 4.14.   



 

 52

-40

-30

-20

-10

0

10

20

30

40

-15000 -10000 -5000 0 5000 10000 15000

Stress, psi.

Ve
rt

ic
al

 L
oc

at
io

n,
 in

.

Finite Element

No hole

Vierendeel

 

Figure 4.14:  Flexural Stress Distribution at Inside Hole Edge, 10” x 10” 
 

Through most of the member cross section except very near the hole, stresses predicted 

by elementary beam theory ignoring the hole provide a close match with finite element 

results.  At the top and bottom edges of the hole, the stress shows a steep increase.  This 

increase can be attributed to stress concentrations at the edge of the hole, which are not 

accounted for by the Vierendeel method or the elementary beam theory.  Although the 

Vierendeel stresses at the top and bottom edges are closer to the finite element stress, the 

plot shows that the “no hole” distribution has a better overall match with finite element 

results.  At the location of maximum stress, the beam theory stress differs from the finite 

element stress by 3.1%, while the Vierendeel stress differs from the finite element stress 

by 8.6%. 
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At the center of the hole, the finite element, Vierendeel, and “no hole” distributions are 

all nearly the same (see Figure 4.15).   
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Figure 4.15:  Flexural Stress Distribution at Hole Center, 10” x 10” 
 

At the outside hole edge, the “no hole” distribution again matches finite element results 

for most of the cross section (see Figure 4.16).   
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Figure 4.16:  Flexural Stress Distribution at Outside Hole Edge, 10” x 10” 
 

However, the deviations near the top and bottom of the hole due to stress concentrations 

are more emphasized.  For the 10” x 10” hole (16% total member depth), the flexural 

stress distribution and the maximum flexural stress value are best predicted by the 

elementary beam method, σ = My/I, with the exception of stress concentrations occurring 

near the top and bottom hole edges.  If a guideline with round numbers were to be used, it 

appears that for holes sized less than or equal to 15% of the total member depth, the 

flexural stress distribution is best calculated by ignoring the hole.  (This will provide the 

best general distribution, but it would still be prudent to note the effects of stress 

concentrations around the hole.)  
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20” x 20” Hole 

The next model used for Set 2 was identical to the first, but the hole size was increased to 

20” x 20”.  The flexural stress distribution at the inside hole edge is shown in Figure 4.17.  
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Figure 4.17:  Flexural Stress Distribution at Inside Hole Edge, 20” x 20” 
 

As demonstrated in Figure 4.17, increasing the hole size to 20” x 20” (32% total member 

depth) causes the results to deviate further from the “no hole” stress distribution, and the 

Vierendeel distribution showed a better correlation.  At this point, neither method 

produces a very accurate prediction of the finite element results, but inspection of the plot 

shows the Vierendeel distribution matches slightly better than “no hole.”  Although stress 

concentrations at the top and bottom of the hole cause higher stresses than the Vierendeel 
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method predicts, the Vierendeel method is still conservative at the top and bottom fiber of 

the beam, which is where the maximum stresses occur.   

 
 
Figure 4.18 shows that for the 20” x 20” hole model,  the stress distributions at the center 

of the hole all match quite well.   
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Figure 4.18:  Flexural Stress Distribution at Hole Center, 20” x 20” 
 

At the outside hole edge (see Figure 4.19), there is a wide variation in the distributions.   
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Figure 4.19:  Flexural Stress Distribution at Outside Hole Edge, 20” x 20” 
 

When compared to the outside edge distributions for the 10” x 10” model and the 30” x 

30” model (discussed next), it is apparent that the 20” hole depth is in “transition”—

ignoring the hole no longer provides a realistic stress distribution, but the Vierendeel 

method doesn’t predict the distribution very well either.  It is a similar situation to what is 

seen at the inside edge, but the difference between the stress distributions is more 

emphasized.  The plot does show that the stress distribution is moving toward the 

Vierendeel distribution and away from the “no hole” distribution.  For this hole depth, the 

maximum stress predicted by the Vierendeel method at the outside hole edge is about 

29% less than the finite element stress.  However, the Vierendeel method correctly 

predicts the location of the maximum stress (next to the top and bottom hole edges), 
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which would not occur with a “no hole” distribution.  It should be noted that although the 

Vierendeel distribution does not match well for this hole depth, it comes closer to 

predicting the magnitude and location of maximum stresses at all cross sections than does 

the “no hole” distribution.   

 

30” x 30” Hole 

The third model incorporated in Set 2 had a 30” x 30” hole in the web; all other details 

were the same as the previous two models.  The flexural stress distribution at the inside 

hole edge is shown in Figure 4.20.   
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Figure 4.20:  Flexural Stress Distribution at Inside Hole Edge, 30” x 30” 
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The plot in Figure 4.20 shows that for the 30” hole (48% of total member depth), the 

Vierendeel method clearly provides a better method of approximating the stress 

distribution than the “no hole” method at the inside edge.  The Vierendeel method again 

correctly identifies the locations of maximum stress, but it is not conservative at these 

points (at the top and bottom hole edges).  The Vierendeel stress at these points is 

approximately 17% lower than the finite element predicted stress.   

 

Stress distributions at the hole center continue to match very closely, as shown in Figure 

4.21.   
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Figure 4.21:  Flexural Stress Distribution at Hole Center, 30” x 30” 
 

 
At the outside hole edge, the Vierendeel method provides a much closer match with finite 

element results than it did for the outside edge of the 20” hole (see Figure 4.22). 
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Figure 4.22:  Flexural Stress Distribution at Outside Hole Edge, 30” x 30” 
 

As with the inside edge, the Vierendeel results are not conservative at the maximum 

stress locations.  The maximum Vierendeel stress is about 12% less than the maximum 

finite element stress.  For the 30” hole, the Vierendeel method provides a good 

representation of the stress distribution, but does not conservatively predict maximum 

stress at the hole edges. 

 

40” x 40” Hole 

The final model used in Set 2 incorporated a 40” x 40” hole (65% of total member depth).  

The flexural stress distribution at the inside hole edge is shown in Figure 4.23. 
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Figure 4.23:  Flexural Stress Distribution at Inside Hole Edge, 40” x 40” 
 

 

At the inside hole edge, the Vierendeel stress distribution provides a reasonable match 

with finite element results except for locations exactly at the top and bottom hole edges.  

In this case the Vierendeel method and finite element do not agree on the location of the 

maximum stress; finite element results show the maximum stress at the first node 

above/below the hole edge instead of exactly at the hole edge.  However, the Vierendeel 

method is still conservative—the maximum Vierendeel stress is 16% higher than the 

maximum finite element stress. 
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At the center of the hole, the Vierendeel and “no hole” deviate from finite element results 

more than they have in the previous models.  However, neither is significantly better than 

the other at matching finite element results; they still match each other very closely.  Both 

are still conservative at the extreme fiber of the beam (location of maximum stress), as 

shown in Figure 4.24.   
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Figure 4.24:  Flexural Stress Distribution at Hole Center, 40” x 40” 
 

At the outside hole edge, the Vierendeel method matches finite element results closely 

near the extreme fibers.  However, Figure 4.25 shows that the stresses differ near the 

hole.  Since the Vierendeel stresses near the hole are near 50 ksi, it appears that the 

section is yielding near the hole.  For this beam geometry and loading condition, a hole 

through 65% of the member depth creates stresses beyond the elastic range.  The 
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Vierendeel method does not have any inherent stress limit; it is up to one performing the 

calculations to recognize when the method is predicting stresses beyond the yield stess. 
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Figure 4.25:  Flexural Stress Distribution at Outside Hole Edge, 40” x 40” 

 
 

 

Reference material suggested the Vierendeel method was best employed for holes less 

than half the total member depth, and the final model of Set 2 confirms that.  However, 

Figures 4.23 and 4.25 indicate that for a hole at 65% of member depth, the Vierendeel 

method will accurately predict the stress distribution until stresses approach the yield 

point.  If stresses were reduced by application of a smaller load, it is likely that the 
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Vierendeel method would provide accurate results around a hole as deep as 65% of 

member depth.  

 

Analysis set 2 shows that for small holes, flexural stress distributions are best predicted 

by beam theory.  As holes get larger, the maximum flexural stress will be found next to 

the hole instead of at the extreme fiber of the beam.  At this point, the magnitude and 

location of the maximum flexural stress appear to be better predicted by the Vierendeel 

method.  This will be dealt with more in sections 4.3.5 and 4.3.6. 

 

4.3.3:  Set 3—Four-Point Loading, Hole in No-Shear Region 

Sets 1 and 2 focused on simply supported beams with a single concentrated load.  Set 3 

was another configuration designed to address the possibility of multiple concentrated 

loads.   Figure 4.26 shows such a configuration.  The response at A would be analyzed as 

previously done, however notice point B is an area of no shear.  This precludes the use of 

the Vierendeel method, as shear is the parameter which alters the flexural stress response.   

 

Figure 4.26:  Four-Point Loading 
 
 

Set 3 used the standard 30’ W27x94, simply supported with concentrated loads at the 

third points.  A 6” x 6” hole was vertically centered at midspan.  Since there is no shear 

A B
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force present, the Vierendeel procedure would match elementary beam theory for a 

section with no hole, i.e. σ = My/I.  The stress distribution obtained at the hole edges is 

provided in Figure 4.27 (the stress distributions at both hole edges are the same because 

the center of the hole was at midspan and the beam was symmetrically loaded).  The 

finite element distribution in the presence of the hole appears to match almost perfectly 

with the elementary beam theory distribution with no hole present.  This is due to the 

extremely small change in moment of inertia.  A 6” hole vertically centered in a W27x94 

will reduce the moment of inertia by about 0.3%. 
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Figure 4.27:  Flexural Stress Distribution at Hole Edge, 4 pt. Loading 
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Figure 4.28 is a plot of the stress distribution through the center of the hole at midspan. 

Finite element results and elementary beam theory match well, except for a small 

deviation next to the hole.  The Vierendeel stress is about 22% lower than the finite 

element stress.  However, this is at the lowest stress location, so the actual stress 

difference is not extremely large. 

 

Figure 4.28:  Flexural Stress Distribution at Midspan (Hole Center), 4 pt. Loading 
 

Figure 4.29 is a plot of the stress distribution two feet from the hole edge.  This location 

is beyond the hole, but still in the no-shear region. 
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Figure 4.29:  Flexural Stress Distribution 2’ From Hole Edge, 4 pt. Loading 
 
 

The stress distributions for Set 3 show that elementary beam theory matches the 

prediction of the flexural stress distribution given by finite element analysis anywhere in 

the no-shear region, except for slight deviations next to the hole shown in Figure 4.28.  

These deviations may still be a result of stress concentrations.  Set 3 only modeled a hole 

at midspan, but the results did not suggest a reason to model a hole at any other location 

in the no-shear region.  Results indicated that elementary beam theory will adequately 

predict the stress at various locations at and around the hole in the no-shear region.  

Moving the hole within the region will not create any shear force, so this pattern should 

continue regardless of hole location within the region. 
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4.3.4:  Set 4— Partial Length Uniformly Distributed Load, Hole at Midspan 

The Vierendeel method was derived for a case with constant shear over the length of the 

hole.  Set 4 was run to investigate the accuracy of the Vierendeel method if a distributed 

load is placed over the hole in the web, thus causing a variable shear over the length of 

the hole.  The test beam was the standard W27x94, 30’, simply supported.  A uniformly 

distributed load of 10,000 lb/ft. was applied to the center 7.5’ of the beam (1/4 of the total 

beam length).  The flexural stress distribution at the hole edges is shown in Figure 4.30 

(again, the beam and hole are symmetrical, so the stress distribution at both sides of the 

hole is the same).   

-15

-10

-5

0

5

10

15

-30000 -20000 -10000 0 10000 20000 30000

Flexural Normal Stress, psi.

Ve
rt

ic
al

 L
oc

at
io

n,
 in

.

Finite Element

Vierendeel

No hole

  

Figure 4.30:  Flexural Stress Distribution at Hole Edge, Partial Uniformly Distributed Loading 
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The Vierendeel method in its original form is not applicable to a distributed load with 

variable shear across the hole.  In an attempt to extend the application of the Vierendeel 

method, Vierendeel calculations were conducted by replacing the distributed load with an 

equivalent point load.  As Figure 4.30 shows, this results in an extremely inaccurate 

stress distribution.  The “no hole” distribution does provides an accurate prediction of the 

stress distribution.  Closer examination of the scenario reveals that the results make 

sense.  The balanced nature of the distributed load and end reaction leave no shear to act 

on the remaining tee sections when the beam is cut for analysis.  Therefore, the “no-

shear” conditions of Set 3 were effectively re-created.  
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4.3.5:  Investigation of Stress Shift 

In many practical situations, the magnitude and location of the maximum stress will be 

more important than predicting the entire stress distribution.  Previous analyses for holes 

of varying sizes indicate that the maximum flexural stress will either occur at the inside 

hole edge at the extreme fiber (point A in Figure 4.31), or at the outside hole edge at the 

hole corner (point B in Figure 4.31).  The maximum stress will be found at point A for 

smaller holes, then as the hole size is increased the maximum stress shifts to point B.   

 

Figure 4.31:  Stress Shift 
 

For a simply supported beam with a point load at midspan, elementary beam theory states 

that the maximum flexural stress will occur at the extreme fiber of the beam at midspan.   

If a hole is present and beam cross sections at the inside and outside hole edges are 

considered, elementary beam theory would still predict the maximum stress occurs at the 

extreme fiber where the moment is highest (point A in Figure 4.31).  As the hole size 

increases, the shear induced moments (see Figure 4.32) become more and more 

significant, and eventually the location of the maximum normal stress shifts to point B.   
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Figure 4. 32:  Global and Shear-Induced Moments 
 

 
 
The increased significance of the shear induced moments can be more clearly understood 

if the Vierendeel stress equation and a sample beam are examined.  If the statics 

presented in Figure 4.32 are considered, the stress at both points A and B (Figure 4.31) is 

given by the expression 
nt

x I
Mh

I
Vay −−=σ .  The reason for the shift comes from the “y” 

term corresponding to the shear-induced moment, as illustrated in Figure 4.33.   

 

Figure 4.33:  “y” Term for Shear-Induced Moment 

Centroid of tee 
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yB 
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yA 
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This term is the distance between the neutral axis of the tee section and the point in 

question.  For the top tee where points A and B are found, the neutral axis will be very 

near the flange, if not in the flange, depending on beam geometry.  Therefore, the “y” 

term for point B will be larger than that for point A.   

 

For small holes, this is offset by the fact that the global moment at point A is higher.  

However, as the hole size increases, the value of “y” at point A decreases faster than it 

does at point B.  This is effectively an increase in the value of “y” at point B as hole size 

increases.  For example, see Table 4.2.  In this table, “y” values are calculated at points A 

and B for increasing hole sizes in a beam with 18” x 1” flanges and a 60” x 0.375” web.  

When the relative size of the “y” values at points A and B are considered, it is apparent 

that the shear-induced moment is going to play a larger role as hole size increases. 

 

Hole Size Point A Point B 
Relative Size of “y” 

(Point B “y”/Point A “y”) 

10”x10” 4.45 21.05 4.73 

20”x20” 3.09 17.41 5.64 

40”x40” 0.95 9.55 10.08 
 

Table 4.2:  “y” Values for Shear-Induced Moment in Sample Beam 
 

 

In an effort to determine when stress shift occurs, analysis set 5 modeled several beams 

with finite element analysis.  Preliminary tests which compared a W27x94 to a built-up 

plate girder suggested that the h/tw ratio (web depth: web thickness) of a beam might 

affect the hole size at which stress shift occurs, so analyses focused on the effects of 
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varying the h/tw ratio.  The first series of beams analyzed is described in Table 4.3 (this 

beam series is referenced at other times, and will be referred to from this point on as 

beam Set A).  The h/tw ratios were varied by holding the web thickness constant and 

changing the web depth.   

 

h/tw ratio Flanges Web Length Length/Depth 
ratio Load (lb) 

76 14” x 1” 0.375” x 28.5” 408” 13.38 75,963 

107 14” x 1” 0.375” x 40” 552” 13.14 82,350 

144 14” x 1” 0.375” x 54” 744” 13.29 86,853 

155 14” x 1” 0.375” x 58” 804” 13.40 87,570 

160 14” x 1” 0.375” x 60” 828” 13.35 88,589 

165 14” x 1” 0.375” x 62” 852” 13.31 89,592 

176 14” x 1” 0.375” x 66” 888” 13.06 92,790 

211 14” x 1” 0.375” x 79” 1080” 13.33 95,433 

213 14” x 1” 0.375” x 80” 1080” 13.17 96,961 
 

Table 4.3:  First Series of Beams Tested for Stress Shift (Set A) 
 

The beam lengths were varied in order to maintain a roughly constant length-to-depth 

ratio.  (Whole foot increments were easiest to use in the Vierendeel spreadsheet, so there 

is some slight variation in the length-to-depth ratio.  However, the largest ratio is only 

2.6% larger than the smallest ratio.)  This ratio is important because it dictates how much 

of the flexural stress is caused by shear-induced (Vierendeel) moments and how much is 

caused by the global moment.  For example, one might consider a cross section at 

quarterspan in a simply supported beam with a point load at midspan.  The global 

moment at that cross section will be given by M = PL/8, so if the length of the beam is 
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doubled but P is held constant, the global moment will double.  However, the shear-

induced moment is unaffected by beam length (again, see Figures 4.5 and 4.6).   

 

Loads were also varied for the sake of consistency; all of the given loads will yield the 

same maximum flexural stress in their respective beams when no hole is present.  All 

beams were simply supported with point loads at midspan.   

 

Vertically centered square holes of varying sizes were placed at quarterspan on the 

beams.  The hole size required to cause the stress shift was not determined exactly, but 

was bracketed in a 2% window.  Because of the variation in beam geometry, hole size 

was dealt with as a percentage of total member depth (a 15” hole in a 30” deep beam is 

considered the same size as a 20” hole in a 40” deep beam).   

 

Figure 4.34 is a plot of the hole sizes (as a percentage of beam depth) required to cause 

stress shift as determined by finite element analysis and predicted by the Vierendeel 

method.   
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Figure 4.34:  Hole Size Required to Cause Stress Shift vs. h/tw Ratio 
 
 
Although there is a 10-20% discrepancy between the finite element and Vierendeel 

results, both trends are approximately linear.  The fact that hole sizes weren’t determined 

exactly but were bracketed to within ±2% probably accounts for the deviation from the 

linear trend line.  This bracketing procedure also explains how there can be a deviation 

between points plotted very close together, such as those for h/tw ratios of 211 and 213.  

For example, the beam with an h/tw ratio of 211 showed stress shift at a hole depth of 

36”, or 44.4%, according to the Vierendeel method.  The previous hole size checked was 

35”, or 43.2%.  Since the difference was less than 2%, the shift was considered to be 

bracketed and the result was plotted as 44.4%.  For the beam with an h/tw ratio of 213, 

the Vierendeel method showed stress shift at a hole depth of 36”, or 43.9%, while the 
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previous hole checked was 35”, or 42.7%.  The true stress shift points could lie anywhere 

in the bracketed windows.  The true stress shift for h/tw=211 could be anywhere between 

43.2% and 44.4%, while the true stress shift for h/tw=213 could be anywhere between 

42.7% and 43.9%.  This means it is possible for the shift point of h/tw=213 to be slightly 

higher than that for h/tw=211, even though the current plot shows it slightly lower.   

  

To investigate whether the initially observed trends held true for other beam geometries, 

a second and third series of beams were modeled.  In these two series, beams having 

approximately the same h/tw ratios as those of the first series were tested.  However, the 

flange geometry and web geometry were altered.  The second series of beams, listed in 

Table 4.4 and referred to from this point on as Set B, still had 0.375” thick webs but had 

wider flanges.  The third series of beams, listed in Table 4.5, had the same 14” x 1” 

flanges as Set A.  It is referred to from here on as Set C.  In Set C, the webs were thinned 

and the overall section depths were reduced.   

 

h/tw ratio Flanges Web Length Length/Depth 
ratio Load (lb) 

76 18” x 1” 0.375” x 28.5” 408” 13.38 95,364 

101 18” x 1” 0.375” x 38” 540” 13.50 98,900 

128 18” x 1” 0.375” x 48” 672” 13.44 103,447 

156 18” x 1” 0.375” x 58” 804” 13.40 107,583 

181 18” x 1” 0.375” x 68” 936” 13.37 111,479 

208 18” x 1” 0.375” x 78” 1068” 13.35 115,225 
 

Table 4.4:  Second Series of Beams Tested for Stress Shift (Set B) 
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h/tw ratio Flanges Web Length Length/Depth 
ratio Load (lb) 

76 14” x 1” 0.25” x 19” 280” 13.33 69,451 

100 14” x 1” 0.25” x 25” 360” 13.33 72,179 

128 14” x 1” 0.25” x 32” 454” 13.35 74,628 

156 14” x 1” 0.25” x 39” 546” 13.32 77,040 

180 14” x 1” 0.25” x 45” 627” 13.34 78,636 

208 14” x 1” 0.25” x 52” 720” 13.33 80,547 
 

Table 4.5:  Third Series of Beams Tested for Stress Shift (Set C) 
 
 

As with Set A, hole size was not determined exactly but was bracketed to within ±2%.  

The finite element results for all three beam sets are plotted in Figure 4.35.  Appendix A 

contains similar to 4.34 for beam sets B and C, comparing Vierendeel and finite element 

predictions for stress shift. 
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  Figure 4.35:  Hole Size Required to Cause Stress Shift in Three Sets of Beams 
 

Figure 4.35 shows that altering beam geometry does impact the point of stress shift.  The 

top line plotted in Figure 4.35 corresponds to the beam Set A.  The lower two lines show 

consistently lower points of stress shift for all h/tw ratios in the modified beam 

geometries.  Also, the plots for all three beam series demonstrate a trend to level out 

around h/tw=155.  Plots for Vierendeel predictions do not do this; as shown in Figure 4.34 

they remain linear throughout the h/tw range.  Since the main thing the Vierendeel cannot 

account for is stress concentrations, it appears that stress concentrations become 

especially significant around h/tw=155.  After this point, stress concentrations may 

govern the stress shift (instead of the shear-induced moment).   
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Figure 4.36 addresses the question of how well Vierendeel predictions for stress shift 

match finite element results.  The differences between Vierendeel and finite element 

results for all three beam sets are plotted in Figure 4.36.   
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Figure 4.36:  Differences Between Finite Element and Vierendeel Hole Sizes to Cause Stress Shift 
 

Note that the percent difference is still expressed in terms of hole size.  For example, if 

Vierendeel predicted stress shift at a hole depth of 30%, and finite element results 

indicated shift at a hole depth of 12%, then the difference is plotted as 18%.  Figure 4.36 

demonstrates that altering flange geometry has little to do with how well Vierendeel and 

finite element results match.  However, the section with the thinner web showed 

consistently less difference between Vierendeel and finite element predictions for stress 

shift.   
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Two main trends were illustrated in Section 4.3.5.  The first is that the hole size required 

to cause stress shift tends to increase with h/tw ratio, until a point at which stress 

concentrations govern over the shear-induced moment.  For the three beam geometries 

examined, this was around h/tw=155.    The second trend is that the difference between 

finite element and Vierendeel predictions for stress shift tends to increase linearly over 

the h/tw range observed.  The differences were similar for all three beam geometries 

studied, with the thinned flange geometry (Set C) showing slightly less discrepancy 

between Vierendeel and finite element predictions for stress shift. 

 

The difference between Vierendeel and finite element predictions appears to increase 

linearly with h/tw ratio regardless of beam geometry.   

 

It should also be noted that besides the beams modeled in Sets A, B, and C, the W27x94 

was also modeled.  This section has an h/tw ratio of only 49.5.  Finite element analysis 

predicted stress shift at a hole size of 35%, while Vierendeel predicted stress shift at a 

hole size of 41%.  This 6% difference is in keeping with results shown in Figure 4.36, 

which demonstrate that there is less discrepancy between finite element and Vierendeel 

predictions at lower h/tw ratios. 

 

4.3.6:  Vierendeel Method Applicability 

Section 4.3.2 examined the Vierendeel technique in approximating flexural stress 

distributions.  Results showed that the stress distribution varies with hole size, and for 

some configurations the stress distribution is still best predicted by beam theory (σ = 

My/I).  However, since the maximum stress in a cross section (and the location of that 
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stress) is usually more important, efforts were made to establish ranges for which the 

Vierendeel method could be used to determine the magnitude and location of the 

maximum stress around the hole.   

 

Before Stress Shift—As discussed in section 4.3.5, the maximum flexural stress will be 

found at the extreme fiber of the inside hole edge until the hole is large enough to induce 

stress shift (see point A, Figure 4.37).  This is because the global beam moment 

dominates the shear-induced moments for small holes.   

 

Figure 4.37:  Maximum Stress Locations Before and After Stress Shift 
 

Figure 4.38 examines the difference between maximum stresses predicted by the 

Vierendeel method and finite element analysis.  The hole sizes plotted were too small to 

have induced stress shift, so the maximum stresses are all at the inside hole edge.  Beam 

Set A (14”x1” flanges, 0.375” webs) was used to generate Figure 4.38.   
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Figure 4.38:  Discrepancy Between Finite Element and Vierendeel Max Stresses (Before Stress Shift) 
 

 

In Figure 4.38, few data points are plotted for each beam because data were obtained 

while attempting to determine hole size required for stress shift.  Analysis was begun 

with hole sizes estimated to be near the stress shift size.  The last hole size plotted is the 

size at which stress shift occurred.  Figure 4.38 demonstrates that as hole sizes increase, 

the discrepancy between Vierendeel and finite element maximum stresses increases.  

However, the maximum discrepancy for all beam geometries plotted remained around 

8% and the Vierendeel stresses were always conservative when compared to finite 

element stresses.  Similar plots for the beam Sets B and C are included in Appendix B, 

with similar results. 
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Figure 4.39 plots the difference between maximum stresses predicted by beam theory and 

the finite element method at the inside hole edge (before stress shift) for the beams of Set 

A.  The largest hole size plotted for each beam was the largest hole modeled before finite 

element analysis predicted stress shift to occur.  Errors for hole sizes between 5% and 

30% of member depth are less than 4%.  When compared with Figure 4.38, which often 

shows discrepancies in the 8-9% range, it is apparent that before stress shift occurs beam 

theory does an adequate job of predicting the maximum flexural stress. 
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Figure 4.39:  Difference Between Beam Theory and Finite Element Maximum Stresses 
Before Stress Shift 

 



 

 84

After Stress Shift—For holes large enough to have caused stress shift, the maximum 

flexural stress will be located next to the hole at the outside hole edge (point B in Figure 

4.37).  In this case, beam theory will never predict the correct location for the maximum 

stress, because it always yields highest stresses at the extreme fibers.  The Vierendeel 

method is better able to predict the correct location of maximum stress after stress shift 

has occurred.  Figure 4.40 plots the discrepancy between maximum stresses predicted by 

the Vierendeel method and finite element analysis after stress shift has occurred.  The 

beams modeled were those from Set A. 
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Figure 4.40:  Discrepancy Between Finite Element and Vierendeel Max Stress (After Stress Shift) 
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The discrepancy between Vierendeel and finite element maximum stresses tends to 

decrease as hole size increases.  In some cases, the discrepancy is positive, meaning the 

Vierendeel stress is conservative. 

 

Figure 4.41 brackets the ranges of Vierendeel applicability for beam sets A, B, and  

C (three series of beams are included to illustrate the effects of varying beam geometry).  

Applicability was defined as predicting a stress which was no more than 5% less than the 

finite element stress.   
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Figure 4.41: Upper and Lower Bounds on Vierendeel Applicability 
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Two lines are plotted for each beam geometry.  The uppermost line is the upper bound of 

applicability; for hole sizes above this line the Vierendeel procedure should yield 

maximum flexural stresses within 5% of finite element maximums.  For example, a beam 

might fit the geometry of the Set C (0.25” thick web) and have an h/tw ratio of 105 and a 

square hole depth of 50%.  This point would fall above the upper bound line for that 

beam geometry (the upper red line), so the Vierendeel method and finite element analysis 

should agree within 5% on the maximum flexural stress. Likewise, the lower line is the 

lower bound of applicability; for hole sizes below this line the Vierendeel procedure 

should yield maximum flexural stresses within 5% of finite element maximums.  The 

lower bounds are not particularly useful, because they are typically below the hole size 

required for stress shift, and maximum stresses can be adequately predicted by beam 

theory.  The heavy dashed lines in Figure 4.41 are the linear trend lines for each bound.  

Changing the flange geometry had little affect on the upper bound, but thinning the web 

significantly lowered the upper bound line (meaning the Vierendeel method has a wider 

range of application for beams with thinner webs).   

 

Although all three beam sets included members with h/tw ratios into the lower 200’s, 

Figure 4.41 only includes a few data points.  This is because the hole size is becoming 

quite large for the upper bounds of the last h/tw points plotted.  As hole size continues to 

increase, yielding is occurring next to the hole edge.  If the error is not less than 5% when 

yielding begins to occur, it will never be less than 5%—finite element stress will remain 

at yield stress, while Vierendeel stresses will continue to increase.  For the higher h/tw 

ratios, Vierendeel stresses were never applicable (within 5% of finite element values). 
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4.3.7:  Stress Increase at Hole Corner, Inside Hole Edge  

As discussed in previous sections, the maximum stress around a hole will be at the 

extreme fiber of the inside hole edge before stress shift occurs.  After the shift occurs, the 

maximum stress is located next to the hole on the outside hole edge.  At no point is the 

maximum stress located at the inside hole edge next to the hole.  However, that does not 

necessarily mean that there are not significant stress increases at that location (marked as 

point “x” in Figure 4.42).   

 

Figure 4.42:  Inside Hole Edge, Next to Hole 
 
 
Although yielding will not be a concern, elevated stress levels could be high enough to 

exceed threshold levels for fatigue.  Figure 4.43 plots the results of analysis set 6, which 

utilized the beams from Set A to investigate the difference between stresses yielded by 

finite element analysis and those predicted by beam theory. 
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Figure 4.43:  Difference Between Beam Theory and Finite Element Stresses,  
Inside Edge Next to Hole 

 
It is important to note that the finite element stress was higher than the beam theory stress 

in all cases.  The minimum discrepancy between beam theory and finite element stresses 

typically occurred at hole sizes around 30% of member depth.  For small holes, the 

location in question (shown in Figure 4.42) is near the neutral axis.   Because of the low 

flexural stresses near the neutral axis, the large discrepancies encountered for hole sizes 

below 30% of member depth may or may not be significant.  However, the increased 

stresses for holes larger than 30% are likely more significant since the hole edge is 

further from the neutral axis.  Similar plots were created for beam sets B and C to 

confirm similar trends in members with varied geometries.  These plots are attached as 

Appendix C.  Although the maximum flexural stress is not at the inside edge next to the 
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hole, stresses at that location may elevate significantly, necessitating inspection for small 

cracks/tears in the web that could initiate a fatigue failure.   

 

4.3.8:  Vertically Shifted Holes 

Previous sections have all focused on holes which are vertically centered on the web.  

This was a simple place to begin analysis, but it is possible that holes encountered in the 

field would not be vertically centered in the web.  The trends developed for vertically 

centered webs required several dozen tests to be run with finite element analysis, and 

time constraints did not allow as many tests to be run again for members with vertically 

shifted holes.  Analysis set 7 employed finite element analysis to make some basic 

comparisons between maximum stresses in vertically centered and vertically eccentric 

holes.  Beam set A was employed. 

 

Before Stress Shift:  It has been established that while holes are smaller than a certain 

size, the maximum flexural stress around the hole is still found at the extreme fiber of the 

cross section on the inside hole edge.  Figure 4.44 demonstrates the trend in the 

maximum flexural stress at the inside hole edge as vertical eccentricity increases.   
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Figure 4.44:  Maximum Stress at Inside Hole Edge with Increasing Vertical Eccentricity 
 

Three widely varied h/tw ratios were used, and each case employed a hole depth about 

17% of total member depth (this hole was smaller than the stress shift size in each case).  

Vertical eccentricity is increasing from left to right across the x-axis; eccentricity is 

defined here as a ratio of the web area below the hole divided by the total remaining web 

area, a/(a+b).  See Figure 4.45 for “a” and “b.”  Note that 50% will be vertically centered, 

and decreasing percentages correspond to downward shifting of the hole.   

 

Figure 4.45:  "a" and "b" in Eccentricity Definition 
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Figure 4.44 demonstrates that depending on h/tw ratio, the hole can be shifted down until 

only 1/3 to 1/4 of the remaining web area is below the hole without causing significantly 

higher stresses than those caused by vertically centered holes.  For greater amounts of 

eccentricity, the maximum stresses begin to increase at roughly 2% for each additional 

1% eccentricity. 

 

After Stress Shift:  After stress shift has occurred, the maximum flexural stress will 

occur next to the hole at the cross section on the outside hole edge.  Figure 4.46 is similar 

to Figure 4.44; it utilizes the same three beams and displays the maximum stresses at the 

outside hole edge as vertical eccentricity increases.   
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Figure 4.46:  Maximum Flexural Stress at Outside Hole Edge with Increasing Vertical Eccentricity 
 

The holes used in Figure 4.46 are all about 39% of total member depth, and were large 

enough that stress shift has already occurred.  At the outside hole edge after stress shift, 

eccentricity immediately causes an increase in maximum flexural stress.  The stress 

increases at a rate of approximately 1% for each 1% of vertical eccentricity (0.84%/1% 

for h/tw=76, 1.08%/1% for h/tw=144, and 1.23%/1% for h/tw=211).  This may continue 

until 1/3 to 1/5 of the remaining web area is below the hole (depending on h/tw ratio), at 

which point the maximum stresses begin to decrease again. 

 
 
Chapter 4 dealt with several issues regarding flexural stress distributions around web 

holes.  Analysis set 2 showed that for small holes, flexural stress distributions are best 

predicted by beam theory.  As holes get larger, the maximum flexural stress will be found 
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next to the hole instead of at the extreme fiber of the beam.  At this point, the magnitude 

and location of the maximum flexural stress appear to be better predicted by the 

Vierendeel method.  Analysis set 5 demonstrated that the hole size required to cause 

stress shift tends to increase with h/tw ratio, until a point at which stress concentrations 

govern over the shear-induced moment.  Also, the difference between finite element and 

Vierendeel predictions for stress shift tends to increase linearly over the h/tw range 

observed.  Analysis sets 3 and 4 showed that for holes in no-shear regions of beams, 

beam theory adequately predicts the location and magnitude of the maximum flexural 

stress.  Analysis set 6 revealed that even at hole corners where flexural stress is not at a 

maximum level, stresses can be significantly elevated from beam theory predictions.  

This stress elevation is pertinent because it could lead to fatigue failures.  Finally, 

analysis set 7 dealt with maximum flexural stresses around vertically eccentric holes.  

Before stress shift, holes can be shifted so that only 1/3 to 1/4 of the remaining cross 

section is below the hole before maximum stress is significantly higher than for a 

vertically centered hole.  After stress shift, maximum stress begins to elevate immediately 

with vertical eccentricity.  For the three geometries studied, stress increases at a rate of 

approximately 1% for each 1% of eccentricity, until a maximum stress is reached and 

maximum stresses begin to decline again. 
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CHAPTER 5:  PLASTIC MOMENT CAPACITY 

Bridge design often utilizes the plastic capacity of members as a limit state.  The plastic 

capacity (or the plastic moment) is defined as the moment which causes (theoretically) 

every fiber in the member to yield.  This requires a member with elements compact 

enough to fully yield before buckling.  Chapter 2 demonstrated that for many members 

with thinned flanges or holes in the web, the loss in lateral torsional buckling capacity 

was overshadowed by the loss in plastic moment capacity.  Chapter 3 focused largely on 

the location of maximum flexural stresses, which can be a concern for first yielding and 

fatigue.  Chapter 5 considers the plastic moment capacity of sections with web holes in 

greater depth.  For a beam with a hole in the web, the plastic moment (Mp) can easily be 

calculated without the help of the finite element method.  A spreadsheet was used to 

calculate Mp by simply performing a force balance to determine the location of the 

plastic neutral axis (PNA), then summing moments about the PNA to determine capacity. 

5.1  Vertically Centered Holes 

Figure 5.1 demonstrates the loss in plastic moment capacity versus hole size for beam Set 

A (14”x1” flanges, 0.375” thick variable height webs).  In addition to the beams from Set 

A, a W27x94 is plotted.  Holes are vertically centered.  For all beams, the loss in plastic 

capacity increased non-linearly with increasing hole size.  This is to be expected; if the 

moment capacity were simply affected by the loss of area, a linear increase would occur.  

However, for increasing hole sizes, more area is being removed further and further away 
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from the neutral axis.  Since a moment is the product of a stress over an area times the 

distance to the neutral axis, the location of the area removed affects the plastic moment as 

well as the amount of area removed. Thus, the two factors affecting Mp yield second 

degree curves.   
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Figure 5.1:  Mp Loss vs. Hole Size 
 
 
Figure 5.1 also first appears to demonstrate that the loss in plastic moment capacity 

occurs more rapidly for beams with higher h/tw ratios.  However, the W27x94 has an h/tw 

ratio of only 49.5, and it lies on almost the same curve as the Set A beam with an h/tw of 

176.  This indicates that sensitivity to hole size is actually dictated by how much of a 

beam’s cross-sectional area is found in the web.  The Set A beam with h/tw=176 has 

46.9% of its cross sectional area in the web, while a W27x94 has about 45.3% of its area 
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in the web.  The plot immediately above these, which is even more sensitive to web hole 

size, corresponds to the Set A beam with h/tw=211.   The plot below, which is less 

sensitive to web hole size, corresponds to Set A beam with h/tw=160.  These beams have 

51.4% and 44.6% of their areas in their webs, respectively.  This confirms that sensitivity 

to web holes is directly linked to the percentage of a beam’s total area found in the web.   

 

Similar plots were generated for beam Set B (18”x1” flanges, 0.375” variable height 

webs) and beam Set C (14”x1” flanges, 0.25” variable height webs), and are included in 

Appendix D.  These plots confirm that for the other two geometries, the trend is the same. 

Differences in the individual plots are the result of a difference in web areas.  Again, the 

more of a beam’s area is contained in the web, the more sensitive it will be to the loss of 

web area.   

 

Figure 5.1 demonstrates that vertically centered web holes need to be relatively large to 

affect most beams.  For a beam with an h/tw ratio of 76 (27.6% of area in the web), a hole 

of approximately 65% of total member depth only reduces plastic moment capacity about 

8%.  For a beam with an h/tw ratio of 211 (51.4% of area in web), a  hole of 

approximately 65% of total member depth reduces plastic capacity about 15%. 

5.2  Vertically Eccentric Holes 

As shown previously, vertical hole eccentricity affected maximum flexural stress. In a 

similar fashion, shifting the hole vertically will also affect the extent of Mp loss.  To 

examine the effects of vertical eccentricity, beam Set A was again studied.  Three beams 

were picked out of the set, and similar sized holes were placed in all three beams (all 
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holes sizes were approximately 17% of member depth).  Figure 5.2 demonstrates the 

results.  Note that eccentricity is denoted by the percent of the remaining cross section 

located in the bottom tee, as it was in section 4.3.8.  Fifty percent on the x-axis 

corresponds to a vertically centered hole.  As can be seen, plastic capacity decreases 

linearly with increasing eccentricity.  Shifting the hole away from the neutral axis means 

more area remains near the neutral axis and less area remains at the extreme regions of 

the web.  However, merely shifting the hole does not decrease the total amount of steel 

present.  Thus, there is one parameter affecting plastic capacity loss, yielding a first 

degree curve.  As with vertically centered holes, the beams with higher h/tw ratios show 

steeper slopes when plastic capacity loss is plotted.  This is again explained by the fact 

that for the beams with higher h/tw ratios, more of the cross-sectional area is in the web.  
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Figure 5.2:  Mp Loss vs. Hole Eccentricity 
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Figure 5.3 provides an upper bound for the problem; for the three different beam 

geometries which have been used, the webs were removed entirely and the loss in 

capacity plotted against varying h/tw ratios.  As can be seen, the rate of Mp loss gradually 

slows as h/tw ratio increases.  For these beams, increasing h/tw ratios were achieved by 

increasing web depth.  The increase in lost web area is more than offset by the increasing 

distance between the flanges and the plastic neutral axis.  Clearly, beams with more 

cross-sectional area in the web are more sensitive to the loss of the web, so compact 

sections such as the W27x94 previously mentioned will suffer even greater loss.  The 

plastic moment capacity of the W27x94 is reduced by 28.7% when the entire web is 

removed.  Note that this is a hypothetical situation.  Full web removal would likely lead 

to other failure modes, such as shear failure or vertical compression flange buckling. 
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Figure 5.3:  Mp Loss with Entire Web Removed 

 
 

Because decreased plastic capacity is directly affected by variations in beam geometry, it 

is difficult to make specific statements about plastic moment capacity.  In general, 

calculating plastic capacity for the specific situation at hand is probably the most 

effective means of determining capacity loss.  However, Table 5.1 provides a snapshot of 

capacity loss for beams with a 4” hole at the bottom of the web.  (Four inches was chosen 

arbitrarily; and it is assumed that corrosion may frequently cause holes at the bottom of 

the web.  This is a very damaging location for the hole as well, since the missing area is 

far from the neutral axis.)  The bottom edge of the hole is assumed to rest on the top 

surface of the bottom flange.  The beams used are rolled sections provided in the 
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Oklahoma Department of Transportation Bridge Standards for spans from 30’ to 50’.  A 

4” hole is large for these beams, even for the deepest section it is 12% of the member 

depth.  For the smallest section, the hole is 15% of the member depth.  However, Table 

5.1 shows that plastic capacity losses range between 7% and 9%.  It is not likely that a 4” 

hole would be allowed to go unrepaired, and for commonly used beam sizes this hole 

would still result in plastic capacity losses less than 10%.  In general, beams with large 

percentages of their total cross sectional area in the web will be more susceptible to 

plastic capacity loss in the presence of web holes.  However, it takes large holes to cause 

significant capacity loss. 

 

Beam Mp Loss 

W27x84 9.0% 

W30x90 8.9% 

W30x99 8.9% 

W30x116 8.0% 

W33x130 7.4% 
 

Table 5.1:  Mp Loss For Common Rolled Sections, 4” Hole Bottom of Web 
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CHAPTER 6:  IMPACT DAMAGE 

The objectives discussed in section 1.3 included an examination of vehicular impact 

damage.  An extensive study of impacted members was not performed, but several basic 

tests were run to demonstrate some general trends present in impacted members. 

 

Tests utilized the standard test section (W27x94).  The beam consisted of two continuous 

30’ spans, with a total length of 60’.  The beam was simply supported, but the entire top 

flange was restricted from lateral translation and rotation about the longitudinal axis.  

These conditions were implemented to model full composite action with a concrete deck.  

A rigid cube 6’ wide (to simulate the width of a truck) impacted the bottom of the beam 

at three different velocities.  Figure 6.1 shows an ABAQUS screen shot of the cube and 

beam before impact. 

 

 

Figure 6.1:  Block and Beam Before Impact
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The top edge of the block extended just above the bottom flange, reaching approximately 

5/8” into the web.  The center of the block impacted the beam 11.25’ from one end (3/8 

of one span), which coincides with the point of maximum positive moment under a 

uniformly distributed load.  The three different impact velocities were 100 in/s, 200 in/s, 

and 400 in/s.  These convert to 5.7 mph, 11.4 mph, and 22.7 mph, respectively.  These 

velocities were somewhat arbitrarily chosen to provide different degrees of damage.  

Although these are not typical highway speeds, note that the impacting block is modeled 

as a perfectly rigid body.  Actual impacts will likely be at higher speeds, but the 

impacting bodies will never be perfectly rigid. The purpose of the impacts was not 

necessarily to match the mechanics of an accident, but rather to generate reasonable 

initially deformed shapes.  (Initial attempts utilized an impact speed of 1,232 in/s, or 70 

mph, but the finite element simulation aborted and no damaged shape was generated.  

Since generating a damaged shape was more important than using a specific speed, lower 

speeds were adopted.)   Figures 6.2, 6.3, and 6.4 demonstrate the web and flange 

distortion caused by the three different impact velocities.   

  

Figure 6.2:  Impact Damage at 100 in/s  
Figure 6.3:  Impact Damage at 200 in/s 
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Figure 6.4:  Impact Damage 400 in/s 
 
At first glance, the damaged shape for 200 in/s does not appear to be much more distorted 

than the shape for 100 in/s.  However, the difference is apparent if the web curvature at 

the center of the damage is examined (see arrows in figures).  Figure 6.3 (on the right) 

shows that the 200 in/s impact has left the web more curved, while the 100 in/s impact 

pushed the web out in more of a straight line.  The 400 in/s impact has clearly created a 

severe distortion.   

 

To examine the effect of impact damage on beam behavior, a uniformly distributed load 

was applied to the top flange of the damaged beams.  As the load was applied, the 

vertical displacement at midspan (of the damaged span) was recorded.  Midspan was 

actually 3.75 feet from the center of impact.  This location was chosen because it is still 

near the maximum moment location, but not directly over the impact site.  Displacements 

at this location should be more indicative of global beam behavior, instead of simply 

reflecting local behavior at the damage site.  Load vs. displacement plots for an 

undamaged beam and for all three impact velocities are shown in Figure 6.5. 
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Figure 6.5:  Load vs. Displacement Plots for Impact Damaged Beams 
 
 
The undamaged section does not show a well-defined upper limit.  For purposes of 

comparison, the load values at a displacement of approximately 0.26” are examined (at 

0.26”, the 200 in/s and 400 in/s impacted beams have a more clearly defined upper limit.  

The load values at 1” of vertical deflection are compared to examine post-buckling 

strength.  Results are shown in Table 6.1.  

Impact Velocity (in/s) 
Load (k/ft) at 0.26 in. 

Vertical Deflection 

Load (k/ft) at 1.0 in. 

Vertical Deflection 

0 7.80 8.58 

100 6.36 6.24 

200 6.50 5.70 

400 6.50 5.52 

 
Table 6.1:  Load and Displacement Values for Impacted Beams 

 

impact speed 100 in/s 
impact speed 200 in/s 
impact speed 400 in/s 
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At 0.26” deflection, the load capacity of the undamaged section is 18.2% higher than that 

of the 200 and 400 in/s damaged beams (22.6% higher than the 100 in/s beam).  At 1.00” 

deflection, the capacity losses are 27.3%, 33.6%, and 35.7% for the 100 in/s, 200 in/s, 

and 400 in/s damaged beams, respectively.  These numbers indicate that there is a 

significant decrease in yield capacity (up to approximately 35%).  Post-buckling capacity 

losses are even more significant, as indicated by Figure 6.6.  Figure 6.6 also demonstrates 

the fact that the loss in post-buckling strength is not linear; doubling the impact velocity 

does not double the loss in post-buckling strength. 
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Figure 6.6:  Post-Buckling Capacity Loss for Different Impact Velocities 
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CHAPTER 7:  STRESS ANALYSIS WITH MISSING BEAM 

Previous analyses have examined the effects of damage on a single member.  However, 

beams in bridges are part of a structural system consisting of multiple beams and a deck.  

If a single beam sustained severe enough damage, engineers may decide it has little to no 

effective capacity remaining.  In this case, it may be of interest to examine the remaining 

structural capacity of the system, i.e. the entire bridge.  The question is if enough capacity 

remains for the bridge to carry limited traffic (closing the lane over the damaged member, 

restricting the traffic to emergency vehicles only, etc.)  To examine this, a very 

preliminary analysis with a simple four-beam bridge was studied to determine how 

stresses were redistributed if one beam were completely removed. 

 

7.1  Bridge Model 

After discussion with the Oklahoma Turnpike Authority, a basic bridge model was 

developed.  Figure 7.1 shows a sketch of the bridge cross section.   

 

 

Figure 7.1:  Cross Section of Bridge Model
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The cross section was derived from Oklahoma Department of Transportation standards 

B-263 and B-346.  An F-shaped parapet was also added, (standard B-004) which affected 

the overhang widths.  However, this parapet was later removed from the finite element 

model, but the deck dimensions were left the same.  (Including an integral parapet created 

an extremely stiff deck.  The parapet was excluded to ensure conservatism of the model.) 

Beams are W27x84, 50 ksi steel.  The deck is 8” thick, 4000 psi concrete, and is assumed 

to be fully composite with the beams.  For simplicity, the bridge is one 30’ simple span, 

with no additional lateral support. 

 

7.2  Loading Conditions 

The bridge was loaded as shown in Figure 7.2.  The black rectangles labeled 1-6 are 10” 

x 20” tire contact areas.  Areas 1 and 2 carry a total weight of 4000 lbs. each, while areas 

3-6 each carry 16000 lbs.  These weights correspond to those of the standard HS20 truck.  

The second axle (areas 3 and 4) is centered directly over midspan of the bridge.   
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Figure 7.2:  Load Positioning on Bridge 

 

The dashed lines in Figure 7.2 indicate the position of the beams beneath the bridge deck.  

Beams are numbered 1-4 from left to right.  The truck is not centered directly over a 

beam because the clear span of the deck was originally divided into four lanes of 10’ 

width (indicated by the red lines in Figure 7.2).  The truck has been centered in the 10’ 

lane, not over the beam.  As this was only a preliminary examination, tests were only run 

with the truck in the lane indicated in Figure 7.2.   

 

7.3  Flexural Stresses in Beams 

After loads were applied as shown in Figure 7.2, finite element analysis was used to 

analyze the flexural stress distributions through midspan of the beams.  Stress 
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distributions were first obtained for the undamaged condition when all beams were 

present.  Two more conditions were also analyzed, one for each outside beam being 

completely removed.   These two conditions were chosen because the outside beams are 

most exposed to vehicular impact; thus it is most likely that these beams would be taken 

out of service. 

7.3.1:  All Beams Present 

Stress analysis was first performed with all beams present.  A snapshot of the finite 

element model used is shown in Figure 7.3. 

 
 

Figure 7.3:  Finite Element Model, All Beams Present 
 
 

Note that the parapets have been removed, and the loads are applied by point loads acting 

through rigid blocks.  Results from the stress analysis with all beams present are plotted 

below in Figure 7.4.  The top of the beam has been used as the reference point for vertical 

positioning, giving all points in the beam cross section negative location values.   
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As shown, the highest stress occurs in the beam beneath the truck and the lowest stress is 

in the beam farthest from the truck.  The beams adjacent to the truck (beams 2 and 4) 

have nearly equal maximum stresses, but the stress in beam 2 is slightly higher.  This is 

due to the fact that the truck is not centered over beam 3 but is shifted toward beam 2.  

Note the beams are entirely in tension due to the composite nature of the system.   
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Figure 7.4:  Flexural Stress Distributions, All Beams Present 

 
 

7.3.2:  Beam 1 Removed 

The next test was run with Beam 1 (farthest from the truck) removed.  The results are 

plotted in Figure 7.5.  The dashed lines are present for comparison; they represent the 

stress distributions obtained when all beams were present.  Figure 7.4 demonstrated that 

Beam 1 was carrying a small portion of the load, so its removal did not have a large 
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effect on the remaining beams.  The maximum flexural stress in Beam 2 increased by 

7.4%, while the maximum flexural stress in Beam 3 increased by 5.7%.  The maximum 

flexural stress in Beam 4 actually decreased by 9.3%.  It is suspected that this is a result 

of the unsupported deck area where Beam 1 used to be.  The weight of the deck is now 

unbalanced and tries to pivot about Beams 2 and 3, causing an upward force on Beam 4 

which counteracts part of the truck loading. 
( , )
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Figure 7.5:  Flexural Stress Distributions, Beam 1 Removed 

 
 

7.3.3:  Beam 4 Removed 

The next test was run with Beam 4 removed.  Results are plotted in Figure 7.6.  Because 

Beam 4 was next to the load, its removal had a larger impact than the removal of Beam 1.  
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The maximum flexural stress in Beam 2 increased 21.4%, and the maximum flexural 

stress in Beam 3 increased 37.6%.  The maximum flexural stress in Beam 1 went from 

0.315 ksi (tensile) to -0.222 ksi (compressive).  It is again theorized that this is a result of 

uplift from the slab due to the unbalanced deck support. 
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Figure 7.6:  Flexural Stress Distributions, Beam 4 Removed 

 

The three test cases examined do not provide comprehensive results as they do not 

address all load cases and conditions, nor do they look at all failure modes in the bridge.  

However, they do seem to indicate that if an outside beam of a standard four-beam bridge 

is removed, it may be possible for some traffic to be allowed without causing unsafe 

flexural stresses in the remaining beams.  In a case such as Section 7.3.2 (Beam 1 

removed, trucks passing over Beam 3), truck traffic will cause less than a 10% increase in 
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flexural stress.  Hence, in examining flexural stress in the beams, removing an outside 

beam may still allow at least one lane of traffic to pass safely.  Further testing would be 

necessary to determine whether two narrow lanes of traffic could be safely permitted in 

the absence of an outside beam, and the best position for a single lane. 
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CHAPTER 8:  CONCLUSIONS  

8.1  Introduction 

The affects of three main damage types on bridge girders have been considered:  flange 

thinning, square or rectangular web holes, and vehicular impact.  Non-linear finite 

element analysis was used to model beams with flanges which had been thinned to 

varying extents, and the buckling capacity was analyzed.  In some cases the bottom 

flange had been thinned for the full length of the beam and only part of the flange width, 

and in other cases the full width of the flange was thinned for only part of the beam 

length.  Beams were also modeled with holes of various sizes and locations in the web, 

and the buckling capacity examined.   

 

Flexural stress distributions at the edges of vertically centered web holes were also 

examined with finite element analysis, and were compared to flexural stress distributions 

predicted by a technique known as the Vierendeel method.  Holes of widely varying sizes 

were examined with both the Vierendeel method and finite element analysis, and finite 

element analysis was also used to briefly examine the effect of vertical eccentricity on the 

stress distributions around web holes.  Also, calculations were performed in spreadsheets 

to examine the effects of web holes on plastic moment capacity.  Finite element analysis 

was used in a preliminary study of the ultimate and buckling capacity of a beam 
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subjected to impact damage, as well as a preliminary study of the effects of removing a 

beam from a four-beam bridge system.   

8.2:  Flange Thinning  

If a portion of the bottom flange width is thinned for the entire length of the beam, 

buckling capacity decreases linearly with the increase in damage width.  If the full width 

of the flange is thinned for part of the beam length, there is a non-linear decrease in 

buckling capacity.  However, as with web holes, the buckling capacity loss is 

overshadowed by the loss in ultimate moment capacity.  Thinned flanges will affect the 

flexural stress distribution because they will change the location of the neutral axis.  With 

a new neutral axis calculated, the flexural stress distribution can still be determined using 

simple beam theory, σ = My/I. 

 

8.3:  Web Holes 

8.3.1:  Buckling Capacity 

Web holes have relatively small impact on the buckling capacity of beams, typically 

causing less than 1% capacity loss.  If web holes become large enough, they may cause a 

buckling capacity loss of a few percent.  For example, a 30’ long W27x94 with a 

vertically and horizontally centered web hole of dimensions 120” x 12” (33% of member 

length and 45% of member depth) caused approximately 2% loss in lateral torsional 

buckling capacity.  Extensive parameter testing was not done on web holes and buckling 

capacity, because it became apparent that by the time web holes were large enough to 

cause significant buckling capacity losses, other failure modes would govern. 
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8.3.2:  Web Holes and Flexural Stress Distribution 

The presence of a web hole affects the magnitude and location of the maximum flexural 

stress.  For small holes, the maximum flexural stress is still found at the extreme fiber of 

the beam, and the magnitude can still be reasonably (within 5%) predicted with the 

elementary beam formula, σ = My/I.  As the hole becomes larger, the maximum stress 

will be shifted away from the extreme fiber.  However, the hole size required to initiate 

this shift is dependent on beam geometry.  Three sets of beams were modeled, with 

varying h/tw ratios, flange widths, and web thicknesses. For these beam sets, the finite 

element method indicated stress shift would occur at hole sizes ranging from about 12% 

to 24% of member depth (for the W27x94, finite element predicted shift at 35%).  A 

simple hand method, (the Vierendeel procedure discussed in section 4.2) predicts the shift 

in location of maximum stress.  However, the Vierendeel method consistently predicts a 

larger hole is required to induce stress shift than the finite element method predicts 

(Vierendeel predictions for hole size tended to range from 20% to 45% of member 

depth).  This is due to the fact that the Vierendeel method does not account for stress 

concentrations at the hole corners.  The difference between the hole size predicted by the 

finite element method and the Vierendeel method to cause stress shift will increase 

linearly with an increasing h/tw ratio for a given beam geometry.  For a W27x94, which 

has a relatively low h/tw ratio and is similar to commonly used rolled shapes, finite 

element predicts a hole 6% smaller than that predicted by the Vierendeel method.  After 

the maximum stress location has shifted, the Vierendeel procedure will predict the 

magnitude of the stress better than simple beam theory, but underestimates the stress as 

compared to finite element analysis by as much as 40%.  After hole sizes become quite 
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large (square hole dimensions approximately 50-65% of member depth), Vierendeel 

predictions of maximum stress are again within 5% of those predicted by finite element 

analysis.   

8.3.3:  Web Holes and Plastic Moment Capacity (Mp) 

The presence of a web hole will reduce the ultimate moment capacity of the beam.  How 

sensitive capacity loss is to web loss is reflected by how much of the beam’s cross 

sectional area is located in the web versus how much area is in the flanges; the higher the 

percentage of total area located in the web, the greater the impact of web area loss.  Beam 

Set A utilized throughout chapter 4 showed Mp loss varying from about 5-11% with a 

vertically centered square hole, side dimensions equal to about 55% of member depth.  

Hole eccentricity (vertical shift) also increases the impact of a web hole.  For a given hole 

size, the loss in Mp increases linearly as eccentricity increases.  Again, the sensitivity to 

eccentricity is affected by the web area ratio.  For example, holes sized at about 17% of 

member depth were placed in the beams of Set A.  As the holes are shifted down until 

only about 5% of the remaining web area is below the hole, capacity loss goes from about 

1% to between 4% and 10%.  

 

8.4:  Impact Damage 

Although the analysis was not extensive, it appears that impact to the lower flange/web 

area can reduce yield capacity of a beam in a composite bridge by about 20%.  However, 

post buckling strength may decrease even more; basic tests showed severe web distortion 

decreasing post-buckling capacity as much as 36%. 
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8.5:  Bridge Deck Capacity Loss Due to an Incapacitated Member 

On the basis of increased flexural stress, it appears that an entire outside beam from a 

four-beam bridge deck may be removed from service and still allow some traffic on the 

bridge.  This is a preliminary result, and specific bridge configurations would require 

further testing.  However, for a 30’ simple span with an outside beam removed, an HS20 

truck placed over an interior beam will result in approximately an 8% increase in the 

maximum flexural stress beneath the loaded beam.  This indicates that at least one lane 

could remain open for emergency traffic.  Further testing would be required to determine 

whether two traffic lanes could be allowed, or if other failure modes would govern 

(prohibiting even one lane of traffic). 

 

8.6  Future Research 

 The research conducted by the investigators was of limited scope due to the time 

constraints of the project.  Various items could be addressed in the future to expand upon 

the previous research. 

 

1.  Stress Concentrations:  One of the main reasons that Vierendeel stress predictions did 

not match finite element stress predictions was the apparent presence of stress 

concentrations at the hole edges.  Current literature does not appear to address stress 

concentrations around square holes in flexural members.  However, there is information 

available for round and elliptical holes (Pilkey 1997).  The formulae for round and 

elliptical holes could be adapted to provide accurate approximations of the stress 

concentration factors for square holes.  These could then be used in conjunction with the 
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Vierendeel method to provide an accurate prediction of the full flexural stress 

distribution, regardless of hole size, using simple hand calculation procedures. 

 

2.  Beam Geometry:  Geometric parameters could be increased to encompass a greater 

number of sections.  Current research primarily used the three girder series presented in 

section 4.3.5.  An original series was modeled, then one series modified flange width 

while the other modified web thickness.  These three basic beam geometries were enough 

to point out various trends, such as the fact that thinning the web results in less error 

between finite element and Vierendeel predictions for stress shift.  However, if more 

beam geometries were studied, it might be possible to develop comprehensive design 

charts in which the trends illustrated here were quantified.   

 

3.  Loading Configurations:  Loading configurations could also be further explored.  The 

theory behind the Vierendeel procedure basically requires that the shear over a hole be 

constant, which means it applies to point loaded beams.  However, if a hole were present 

in a uniformly loaded beam, the shear would not be constant over the length of the hole 

and the statics as originally presented in Chapter 4 would have to be slightly modified.  

This scenario could be investigated to see if the Vierendeel formula, or a modified 

version, could still provide useful information on the flexural stress distribution. 

 
4.  Impact Damage and Full Beam Removal:  Two other areas to further investigate 

include impact damage and removal of one beam.  Both of these areas were examined 

briefly for very specific circumstances.  Impact could be examined with different beam 

geometries, support conditions, impact location, impact speed, and impacting object.  
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Similarly, bridge serviceability after removal of one beam could be examined with 

differing span lengths, loading conditions, and failure modes in order to obtain more 

broadly applicable data.  Further literature review on this topic would be warranted, since 

the original literature review focused on local impact and corrosion damage. 



 

 121

BIBLIOGRAPHY 

 
(2000). "National Bridge Inventory."   Retrieved March 12, 2005, from 
http://www.nationalbridgeinventory.com/. 
  

(2006). ABAQUS Analysis User's Manual, ABAQUS, Inc. 
  

(2006). "International Straightening, Inc."   Retrieved January 28, 2006, from 
http://www.steelstraightening.com/index.htm. 
  

AISC (2001). Manual of Steel Construction:  Load and Resistance Factor Design, 
American Institute of Steel Construction. 
  

Allen, G. (2004). A. Finley. Stillwater, Oklahoma: personal electronic mail from 
Assistant Bridge Engineer--Design, Oklahoma Department of Transportation. 
  

Bower, J. E. (1966). "Experimental Stresses in Wide-Flange Beams with Holes." Journal 
of the Structural Division, American Society of Civil Engineers 92(ST5): 167-186. 
  

Bower, J. E. (1966). "Experimental Stresses in Wide-Flange Beams with Holes." J. 
Structural Division, American Society of Civil Engineers 92(ST5): 167-186. 
  

Darwin, D. (1990). "Steel and Composite Beams with Web Openings." Steel Design 
Guide Series 2. 
  

Dinno, D. K. and P. C. Birkemoe (1997). Loss of Strength Associated with Corrosion of 
Plate Girder Webs. Annual Conference of the Canadian Society for Civil Engineering, 
Sherbrooke, Quebec. 
  

Frangopol, D. M. and R. Nakib (1991). "Redundancy in Highway Bridges." Engineering 
Journal, American Institute of Steel Construction. 
 



 

 122

Galambos, T. V. (1998). Guide to Stability Design Criteria for Metal Structures. New 
York, John Wiley & Sons, Inc. 
  

Kayser, J. R. and A. S. Nowak (1989). "Capacity Loss Due to Corrosion in Steel-Girder 
Bridges." Journal of Structural Engineering 115: 1525-1537. 
  

Kulicki, J. M., Z. Prucz, et al. (1990). "Guidelines for Evaluating Corrosion Effects in 
Existing Steel Bridges." National Cooperateve Highway Research Program Report 333. 
  

Lindt, J. W. v. d. and T. M. Ahlborn (2004). Development of Steel Beam End 
Deterioration Guidelines. Houghton, MI, Michigan Technological University: 62. 
  

Olsson, A. M. J., G. E. Sandberg, et al. (1999). "Load-Carrying Capacity of Damaged 
Steel Columns with Channel Sections." Journal of Structural Engineering: 338-343. 
  

Pilkey, W. D. (1997). Peterson's Stress Concentration Factors, John Wiley & Sons, Inc. 
  

Salmon, C. G. and J. E. Johnson (1996). Steel Structures:  Design and Behavior. Upper 
Saddle River, New Jersey, Prentice-Hall. 
  

Shanafelt, G. O. and W. B. Horn (1984). "Guidelines for Evaluation and Repair of 
Damaged Steel Bridge Members." National Cooperateve Highway Research Program 
Report 271. 
  

Timoshenko, S. P. and J. M. Gere (1961). Theory of Elastic Stability. New York, 
McGraw-Hill Book Company. 
  
 
 



 

 123

APPENDIX A:  FINITE ELEMENT VS. VIERENDEEL PREDICTIONS FOR 
STRESS SHIFT, BEAM SETS B AND C (SECTION 4.3.5) 

 
Figure A1:  Beam Set B 
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Figure A2:  Beam Set C 
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APPENDIX B:  DIFFERENCE BETWEEN VIERENDEEL AND FINITE 
ELEMENT, BEAM THEORY AND FINITE ELEMENT MAXIMUM STRESSES 

AT INSIDE HOLE EDGE (SECTION 3.3.6) 
 
Figure B1:  Discrepancy Between Max Stress Predicted by Vierendeel and Finite 
Element, Inside Hole Edge, Second Girder Series (18”x1” flanges, 0.375” web) 
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Figure B2:  Discrepancy Between Max Stress Predicted by Beam Theory and Finite 
Element, Inside Hole Edge, Second Girder Series (18”x1” flanges, 0.375” web) 
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Figure B3:  Discrepancy Between Max Stress Predicted by Vierendeel and Finite 
Element, Inside Hole Edge, Third Girder Series (14”x1” flanges, 0.25” web) 
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Figure B4:  Discrepancy Between Max Stress Predicted by Beam Theory and Finite 
Element, Inside Hole Edge, Third Girder Series (14”x1” flanges, 0.25” web) 
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APPENDIX C:  DIFFERENCE BETWEEN ABAQUS AND BEAM THEORY 
FLEXURAL STRESS PREDICTIONS AT INSIDE HOLE EDGE, NEXT TO 

HOLE 
 
 
Figure C1:  Difference Between Beam Theory and Finite Element Stresses, Second 
Girder Series (18”x1” Flanges, 0.375” Webs) 
 

0%

100%

200%

300%

400%

500%

600%

700%

0% 10% 20% 30% 40% 50% 60% 70%

Hole Depth (as Percentage of Total Member Depth)

Pe
rc

en
t D

iff
er

en
ce

 B
et

w
ee

n 
St

re
ss

es

30.5" Girder, h/tw = 76
40" Girder, h/tw = 101
50" Girder, h/tw = 128
60" Girder, h/tw = 156
70" Girder, h/tw = 181
80" Girder, h/tw = 208

 



 

 130

Figure C2:  Difference Between Beam Theory and Finite Element Stresses, Third 
Girder Series (14”x1” Flanges, 0.25” Webs) 
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APPENDIX D:  MP LOSS VS. HOLE SIZE, BEAM SETS B AND C 
 
 
Figure D1:  Mp Loss for Beam Set B 
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Figure D2:  Mp Loss for Beam Set C 
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