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CHAPTER I 
 

 

INTRODUCTION 

Background 

 

The design of urban stormwater channels involves applying the appropriate 

hydraulic tools to the problem parameters.  These tools range from hand-written 

equations to complex computer algorithms.  With today’s advances in computer 

technology, it is expected that engineers will chose its speed and proven computational 

abilities over the cumbersome, time-consuming pen and paper methods. 

To properly design a stormwater runoff system, the design engineer must use 

quality engineering judgment as well as the appropriate set of tools.  The first judgment 

often made is identifying the appropriate technology for the problem set.  For small and 

medium sized communities whose engineering staff performs limited design projects, this 

decision can include software that, although not the most technologically advanced, is 

known to provide acceptable results and is familiar to the engineer. 

The Rolling Acres Subdivision is located in Enid, Oklahoma and was developed 

outside the city limits in 1962.  There were no storm water regulations to consider and, as 

with many developments, the developer’s objective probably conflicted with that of the 
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engineer.  The developer is trying to utilize as much property as possible from a 

profitability perspective.  He hopes to minimize any improvement that will reduce the 

size or number of sellable lots.  Two primary parameters that shape this conflict from a 

storm water channel perspective include width and surface type.  These are also 

important factors to the design engineer.  With a truly unbiased opinion, the engineer 

must evaluate all parameters using his best judgment and the appropriate hydraulic tools.  

However, both the developer and the engineer understand that the local reviewing agency 

will review the computations for appropriateness.  It is, therefore, imperative that the 

design engineer uses the appropriate hydraulic tools so that an acceptable solution can be 

presented.  When this approach is applied to this study, it will result in a channel and 

culvert design that will meet the criteria required by the local governing body. 

As people decide to trade their compacted city lifestyle for larger, yet low-density, 

living spaces on the urban fringe, a development concept known as urban sprawl can 

become the unintentional default plan for local governing bodies (Daniels, 1999).  This 

concept facilitates large developments that include commercial districts as well as 

residential subdivisions.  Local planners are pressured into approving these site plans as 

the realization of an increase in revenue, or the loss thereof for not doing so, becomes 

closer to fruition.  As these new developments begin, they can be located in what seems 

to be a significant distance from existing, nearby developments that may be considered 

rural.  However, city limits expand and urban sprawl is allowed to advance. 

Even if review policies advance, there is the natural tendency to apply past 

regulations to proposed development.  Such is the case for stormwater runoff (Haase and 

Nuissl, 2007).  During the early years of urban sprawl, the impacts of these developments 
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are not far reaching.  The nearby, once rural residents are only thinking about their life 

being more efficient with retail businesses getting closer.  Review committees 

concentrate on the local controversies associated with the current development submittal, 

unintentionally ignoring the issue that only becomes a problem miles downstream. 

 Eventually, a storm event occurs that forces runoff to escape the now-too-small 

channel and enters the garage or patio door of the nearest home.  This quickly prompts a 

telephone call to the local government and the mitigation process is set into motion.  This 

process involves formulating the scope of work, deciding the priority, appropriating the 

funding, designing the solution, and constructing the improvement. 

At this point, the more fiduciary responsible design involves sizing a channel that 

will offset the current development runoff while planning for how future development 

will compensate for its own impact.  The local government has to weigh such options as 

adjacent-stream property purchase (often located in known flood-prone areas) versus on-

site detention regulations imposed on future development.  On-site detention facilities are 

constructed by the developer on his property that will offset the amount of increased 

runoff created by his development.  Conversely, regional detention is constructed by the 

local government in a few strategic locations throughout the city using funds collected by 

developers at the time of their development.  The design for the municipality that is 

governed by regional instead of on-site detention must compensate for fully developed 

upstream conditions (McLaughlin, 1997). 

 

Objective of the Study 

 The objective of this study is to test the appropriate technology to design a storm 
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water channel and culverts in the Rolling Acres Subdivision that will properly convey the 

fully developed conditions of the basin.  Although technology will continue to improve 

the speed, user friendliness, and output options of computer software, it is less likely that 

they will result in much more accurate results.  The principles of Manning’s equation as 

well as gradually varied flow and culvert hydraulics have been proven over many years 

and will continue to function as the basic theory of future software.  The technology that 

can provide results that properly convey these conditions will be the technology that is 

capable of sizing channels and culverts that protect adjacent houses from flooding.
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CHAPTER II 
 

 

REVIEW OF LITERATURE 

Urban Runoff 

 

An urban drainage system is an ensemble of structural elements whose purpose is 

to provide a defined pathway for efficient stormwater runoff collection and conveyance.  

These structural elements typically include open channels, detention ponds, culverts, and 

street inlets.  As development occurs, the footprint of permeable ground surface 

decreases, resulting in greater amounts of stormwater runoff.  Parking lots, streets, and 

rooftops are all contributors to this increase in impervious surface.  They bring about a 

dramatic increase in flow volumes, peak flow, and flooding, often overwhelming the 

natural channels.  The urban drainage system must be designed to reduce the negative 

impacts of this runoff while providing access to business and home properties during 

minor storm events (Merritt, 1983). 

Open Channel Flow Tools 

The open channel element provides more flow capacity than a closed pipe system.  

Although it is more difficult to analyze than the closed pipe, this also makes the open 

channel design more interesting (Bentley, 2007).  There are many variables that must be 
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determined as part of the solution.  Its cross-sectional area is often large and inconsistent.  

While it may be prismatic just after construction, erosion, deposition, and other factors 

can slowly alter the channel geometry.  Because this process can take many years, 

constructed channels may be considered prismatic for analysis purposes (Bentley, 2007).  

Another variable is the material that is used for the channel surface.  The chosen material 

can make a significant impact on the flow capacity of the channel.  The roughness of this 

surface varies from a smooth concrete surface to a channel overgrown with tall weeds, 

brush, and trees. 

Many formulas have been developed and published for solving open channel flow 

conditions.  Perhaps the first formula proposed was developed by Antoine Chezy, a 

French engineer, in 1769.  This formula uses two primary assumptions for its derivation.  

The first assumption is that the force resisting the flow is proportional to the square of the 

velocity (Chow, 1959).  The second assumption is based on the basic principle of uniform 

flow.  The component of the gravity force that is parallel to the channel bottom must be 

equal and opposite of the total resistive force. 

The Irish engineer Robert Manning developed another popular formula, first 

proposed in 1889, the Manning formula for open channel flow.  With no formal 

engineering education, the practicing engineer simply calculated the average velocity for 

several conditions using the seven most popular formulas of that time.  It has been 

suggested that the formula be known as the Gauckler-Manning formula, giving 

recognition to another engineer of that time, Philippe-Gaspard Gauckler, who separately 

developed a similar formula (Anderson, 2002). 
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 The Manning formula holds its indisputable top position in the field of practical 

applications despite many new theoretical developments (Chow, 1959).  Its simple form 

and ability to produce results similar to the other uniform flow formulas have made it the 

formula of choice for practicing engineers.  The scientific community has recommended 

this formula for international use since 1933.  Such organizations as the United States 

Department of Agriculture, United States Army Corp of Engineers, National Resources 

Conservation Service (NRCS, Open Channel, Code 582), and the Federal Emergency 

Management Agency have adopted technical bulletins requiring the use of this formula.  

Numerous local and state agencies also require the use of this formula in predicting 

channel flow and velocity. 

Drainage Culvert Tools 

 Culverts can be evaluated based on their performance curve.  This curve describes 

how headwater changes with respect to discharge.  Curves are usually prepared 

separately for submerged and unsubmerged inlet conditions, which can result in curves 

that do not overlap, creating uncertainty in the transition zone.  Charbeneau (2006) 

developed a simple, two-parameter model that provides a smooth, clearly defined 

transition zone between the submerged and unsubmerged flow conditions when the 

culvert is influenced by inlet control.  Using this model, additional equations can be 

developed that can calculate the culvert span for multiple-barrel, low-headwater box 

culverts.  The developed equations indicate a 17% smaller span than predicted using the 

Federal Highway Administration equations and coefficients.  Charbeneau (2006) 

considers this a substantial difference due to the non-uniform flow distribution between 
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culvert barrels as wells as the increased tendency of sediment deposition in the outer 

barrels due to lower discharge velocity. 

 The head loss associated with the culvert exit can be the largest single system 

energy loss component of a short culvert (Tullis, 2008).  According to manuals of the 

Federal Highway Administration’s Hydraulic Design of Highway Culverts HDS-5 (HDS-

5) (Normann, Houghtalen, and Johnston, 2001) as well as that of HEC-RAS, this exit loss 

is defined by the difference in velocity heads at the culvert exit and downstream channel 

or by multiplying the culvert velocity head by a loss coefficient.  Both HDS-5 and HEC-

RAS software are used to determine water surface elevations in channels and culverts.  

Because of the significant impact of the exit configuration under outlet control 

conditions, a prototype culvert with varying end treatments was studied under laboratory 

conditions.  This experiment determined exit losses that were compared with losses 

calculated using traditional exit loss equations and the Borda-Carnot minor loss 

expression, traditionally used to determine energy loss at sudden expansions in 

pressurized pipe flow.  The Borda-Carnot expression proved to be more accurate than 

traditional methods for the conditions tested (Tullis, 2008). 

 The review of literature indicates that the evaluation of hydraulic tools for 

stormwater management is missing for small and medium sized communities.  Based on 

the results of this literature review, these tools should include FlowMaster and 

CulvertMaster.
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CHAPTER III 
 

 

HYDROLOGIC SETTING 

Location 

 

 The study area is located in the north-central Oklahoma town of Enid.  The region 

is primarily rural with many small towns with populations of 2,500 or less.  The 2000 

census indicates the population of Enid at 47,045 while Garfield County’s population is 

57,813.  The predominant industries include farming, livestock, and oil and gas. 

Specifically, the study area is located in the northernmost developed section of 

Enid in the Rolling Acres Subdivision, as shown in Figure 3-1.  This subdivision was 

developed while outside the then-current city limits.  Surrounding land use includes 

wheat cultivation and pasture to the north, residential to the west and south, and a mixture 

of parks, residential, and commercial to the east. 

Basin Characteristics 

The study basin is referred to as the Crosslin Park Basin because the discharge 

point is located in the city-owned park of the same name.  It consists of approximately 

1.0 square miles and is outlined in the aerial photograph of Figure 3-1.  The headwaters 

are generated one-half mile north of the intersection of Oakwood Road and Purdue 

Avenue.  The runoff is collected in the 35-acre Crosslin Lake and sent downstream into 
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North Boggy Creek, one of three main channels within city limits.  This runoff from this 

basin ultimately reaches the Arkansas River via North Boggy Creek, Boggy Creek, 

Skeleton Creek and the Cimarron River.  As with most small channels in this region, the 

study channel is commonly dry for brief periods as a result of seasonal variations in 

precipitation (Bingham, 1980). 

The topography is considered gently rolling with an elevation range of 1280 to 

1330 above mean sea level.  The predominant soil groups in this basin are the Pratt (PtC) 

and Shellabarger (SrB) series (Garfield County Soil Survey, 1980).  These soils have a 

brown, brittle loamy fine sand top layer that is about 14-inches thick.  It is classified as 

highly permeable and highly susceptible to water and wind erosion.  While this soil type 

mitigates much of the runoff, it lacks the important nutrients needed to support plant life, 

the absence of which only contributes to the erosion. 

Study Channel Characteristics 

A detailed location map of the study channel can be seen in Figure 3-2.  The 

short, dashed line represents the existing channel and arrows indicate the flow direction.  

The existing channel is grass-lined with a 10-foot flat bottom and 3:1 side slopes.  Two of 

its three culverts are a single barrel 10’W x 3’H reinforced concrete box (the existing 

Grant Street culvert is not shown).  The third culvert, located at Crosslin Park Road, is 

comprised of two 36-inch reinforced concrete pipes.  The proposed channel is shown as 

long, dashed lines, representing grass-lined sections, and continuous lines, representing 

concrete-lined sections.  The proposed culverts are labeled C1 (Grant Street), C2 (Lincoln 

Street), and C3 (Crosslin Park Road) and graphically represented as green 3D rectangles.  
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This channel has been divided into sections A, B, C, D, and E based on flow 

characteristics and proximity to adjacent homes.  The proposed channel intercepts the 

existing channel at the end of channel section B.  The homes are labeled a1, a2, b1, b2, 

etc. and correspond to the adjacent channel section.  The proposed channel sections and 

culverts are the elements that were modeled in this study. 

Climate 

The climate within the study area is continental (Arndt, 2003).  Warm, moist air is 

brought in from the Gulf of Mexico along with the prevailing south winds.  The strongest 

winds can be expected in March and April while the calmest are July, August, and 

September.  The mean annual temperature is 58.3 degrees Fahrenheit (Oklahoma 

Climatological Survey, 2010).  The mean annual precipitation is 34.3 inches.  The mean 

annual snowfall is six to nine inches.  Typical weather statistics can be seen in Table 3-1.  

The seasons are well defined with spring characterized by frequent precipitation, severe 

storms, and tornados (Swafford, 1967). 
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Table 3-1 Weather Statistics 

Season Month Monthly Average Monthly Average
December 36.1 1.4

Winter January 33.1 35.9 1.1 1.4
February 38.6 1.6

March 47.2 2.5
Spring April 57.3 57.4 3.2 3.5

May 67.8 4.9

June 77.1 4.4
Summer July 82.6 80.2 2.8 3.5

August 80.8 3.4

September 72.6 3.2
Fall October 60.5 59.7 3.4 3.0

November 46.1 2.3

Temperature (oF) Precipitation (in.)
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Surface Water Flows 

 The surface water flows for this basin were developed in 2009 by Envirotech 

Engineering and Consulting (Envirotech, 2009).  The unnamed channel and its tributaries 

were modeled using HEC-HMS software.  The section of channel in this study receives 

flow from two tributaries.  The north tributary is located in a primarily undeveloped 

region and, for example, contributes 338 cfs during the 100-year storm event.  The south 

tributary is located in a heavily developed region containing both existing and proposed 

residential subdivisions with 1/4-acre lots.  Table 3-2 shows the flows that occur 

throughout the study channel for the given storm recurrence intervals. 

 

 

 

 

 

 

 

 

 

 



 
 

16

Table 3-2 Flowrates at Drainage Elements (Envirotech, 2009) 
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CHAPTER IV 
 

 

HYDRAULIC MODELS 

FlowMaster 

 

 The principle use of Bentley’s FlowMaster software is modeling steady, uniform 

flow in a prismatic channel.  Recently, however, Bentley included the calculations for the 

gradually varied flow condition.  Although the calculations necessary for this type of 

flow are more complex, they can be simplified with the assumption that the water 

pressures can be modeled as hydrostatic.  One reason this is substantiated is because the 

differences in water surface profiles for gradually varied flow and uniform flow are small 

(Bentley, 2007). 

Flow in a channel is considered steady when characteristics such as depth do not 

change at a specific point over a specified time interval (Chow, 1959).  The depth and 

slope computed by the uniform flow formula is known as the normal depth and normal 

slope, respectively.  It is also acceptable to assume a constant depth flow for applications 

in which the change in depth is small compared to the actual depth.  Steady flow can be 

further differentiated into uniform flow or varied flow.  Uniform flow occurs when those 

same characteristics (depth, velocity, discharge, area, etc.) do not change along the 
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channel with respect to time.  The general uniform flow equation can be described as 

follows (Bentley, 2007): 

    V = CRxSy      (4-1)  
 

where 

V = velocity (fps) 

C = Flow resistance factor 

R = Hydraulic radius (ft) 

S = Energy slope (ft/ft) 

x,y = Exponents 

The flow resistance factor, C, is primarily a function of the roughness of the 

channel lining material.  Other factors influencing this factor include channel shape, 

depth, and velocity.  The hydraulic radius can be determined for any channel geometry by 

dividing the cross-sectional area by the wetted perimeter.  For uniform flow condition, 

the energy slope can be assumed to equal that of the channel bottom. 

In a practical sense, uniform flow can only exist when the channel cross sectional 

area does not change along the length of channel being analyzed.  This type of channel is 

referred to as a prismatic channel.  Varied flow occurs when the depth or velocity do 

change along the channel length.  When these characteristics change slowly, the flow is 

described as gradually varied.  Conversely, the flow is described as rapidly varied when 

depth and velocity change abruptly as in a hydraulic jump or flow over a weir. 
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Unsteady flow takes place when the depth or velocity does change at a point with 

respect to time.  Wave action is an example of unsteady flow conditions.  Most open 

channel problems do not exhibit unsteady flow behavior. 

Uniform Flow 

Because the uniform flow is comprised of steady flow conditions and discharge, 

equation 4.1 can be combined with the continuity equation 

VAQ =       (4-2) 

resulting in the equation 

 yx SACRQ =  

where 

Q = Discharge (cfs) 

A = Cross Sectional Area (sq. ft.) 

 There are many formulas used to solve the general uniform flow equation for 

open channel flow.  These formulas differ from each other by the calculation of the flow 

resistance factor, C, and the values assigned to x and y.  FlowMaster provides solutions 

based on formulas developed by Manning, Kutter, Hazen-Williams, and Darcy-

Weisbach. 

The formula chosen for this study is the Manning formula.  Its calculation is 

simple and its results are considered satisfactory for practical applications (Chow, 1959).  

Its form is presented as 
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5.13/249.1
SR

n
V =       (4-3) 

where 

 V = Velocity (fps) 

n = Manning’s Coefficient of Roughness 

R = Hydraulic Radius (ft) 

S = Friction Slope (ft/ft) 

Today’s computers are capable of computing even the most complex wetted 

perimeter for calculation of the hydraulic radius.  As mentioned earlier, the friction slope 

is equal to the channel slope for uniform flow conditions.  The most complicated factor in 

this equation is the determination of the roughness coefficient n (Chow, 1959).  Because 

there is no exact method to select a value for n, the engineer must use sound engineering 

judgment to estimate the channel’s resistance to flow.  In practical applications, the value 

assigned to n can be better estimated by understanding the conditions that the flow will 

experience throughout the life of the channel.  One factor to consider is the condition of 

the material that comprises the surface of the channel.  For instance, material such as 

sand, silt, and clay are relatively small in diameter, allowing them to fit close together 

and form a relatively smooth surface.  On the other hand, material such as gravel and 

boulders create a much more rough surface, whose turbulent conditions disrupt velocity 

streamlines.  The channel surface in this study is comprised primarily of sandy material. 

Another factor to consider is the type and condition of the vegetation that extends 

from the channel surface.  Dense turf grass such as Bermuda will flatten during flow 

events, which causes less flow interference and, thus, a lower n value.  Alternatively, 

channels with taller stalks and wider leaves, usually weeds, will result in higher n values.  
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Similarly, vegetation containing shrubs and bushes, numerous small trees, logs, and 

fallen trees will also cause high n values and lower the flow velocity.  The condition of 

the vegetation varies highly with maintenance schedules and season.  Regular mowing 

schedules keep grass short, causing less impact during periods of low flow and stage.  In 

addition, mowing will prevent trees and shrubs from achieving substantial growth.  

Herbicide applications will eliminate troublesome weeds and other unwanted growth. 

Lower n values can be observed during the fall and winter seasons due to 

negligible growth patterns.  The proposed channel in this study will receive solid slab 

Bermuda grass sod placed on the flat bottom as well as the bottom three feet of the side 

slopes.  Because of the channel’s accessibility and proximity to Crosslin Park, this 

channel is expected to be mowed three times during the mowing season and receive one 

application of herbicide.  Although there are other factors that affect n values, such as 

channel irregularity, alignment, size, and shape, they will not appreciably alter the value 

of n. 

 

Gradually Varied Flow 

 As mentioned earlier, this type of flow occurs when the depth and velocity change 

along the length of a channel.  This takes place when a flow control causes the depth to 

be different than the normal depth (Bentley, 2007).  A flow control usually takes the form 

of a culvert, a change in channel slope, and channel intersections.  Because a culvert does 

not usually convey an equal amount of flow as the influent channel, for example, the 

water surface elevation will increase on the upstream side of the culvert.  The upstream 

distance needed for this higher water surface elevation to dissipate and resume normal 
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depth characteristics is the section of channel referred to as being under the influence of 

gradually varied flow. 

 To develop the equation needed to describe the water surface profile during 

gradually varied flow conditions, one must recall that the total energy head H at any 

channel cross section equals the sum of the channel flowline elevation Z, depth of flow y, 

and the velocity head gV 2/2 , which can be seen as follows: 

 









++=

g

V
yZH

2

2α
     (4-4) 

Noting that AQV /=  and that the energy changes along the length of the channel x, 

Equation 4-4 can be written in its derivative form as 









++=

2

2

2gA

Q

dx

d

dx

dy

dx

dZ

dx

dH α
    (4-5) 

where H = total energy head at a cross section (ft) 

 x = distance along channel (ft) 

 Z = channel flowline elevation (ft) 

 y = vertical flow depth (ft) 

 α = velocity distribution coefficient 

 Q = discharge (ft3/s) 

 g = gravitational constant (32.2 ft2/s) 

 A =  cross sectional area (ft2) 

By using the calculus chain rule and because (1) the cross sectional area A depends on 

the depth of flow y, (2) fSdxdH −=/ is the slope of the energy grade line, and (3) 
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OSdxdZ −=/ is the slope of the channel flowline, Equation 4-5 can be further simplified 

as (Bentley, 2007) 

21 Fr

SS

dx

dy fO

−

−
=       (4-6) 

where 

 So = channel flowline slope (ft/ft) 

 Sf = friction slope or energy grade line (ft/ft) 

 Fr = Froude number (dimensionless) 

     = 
gD

V
 

where 

 D = Hydraulic depth (ft) 

 

Equation 4-6 is the governing equation for gradually varied flow.  It demonstrates that the 

channel area and discharge are directly proportional to the change in depth along the 

channel. 

 This change in depth along the channel results in flow profiles.  Flow profiles are 

first classified according to the relationship between the normal slope and critical slope.  

The critical slope, as defined by (Chow, 1959), is the slope that sustains a given discharge 

at a uniform and critical depth.  When the normal slope is greater than the critical slope, 

the channel is said to have a hydraulically mild (M) slope.  When the two slopes are 

equal, the channel is said to have a hydraulically critical (C) slope.  If the normal slope is 

less than the critical slope, the channel is said to have a hydraulically steep (S) slope.  In 

the rare case when the channel slope is zero, a normal slope does not exist and the 
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channel is said to have a hydraulically horizontal (H) slope.  In the most rare case when 

the channel flowline elevation increases in the downstream direction, the channel is said 

to have a hydraulically adverse (A) slope. 

The second classification involves the relationship between the actual depth and 

the normal and critical depth.  For actual depths greater than both of these, the depth 

corresponds to Zone 1.  For actual depths less than both of these, the depth corresponds to 

Zone 3.  Zone 2 involves actual depths between the normal and critical depth.  Therefore, 

an M1 flow profile implies that for a specific channel cross section the actual depth is 

greater than the normal depth that itself is greater than the critical depth.  Figure 4-1 and 

Figure 4-2 illustrate several examples of flow profiles that may exist in a prismatic 

channel along with their water surface profiles in terms of curvature (Bentley, 2007). 
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Figure 4-1 Flow Profiles for Zone 1 (Bentley, 2007) 
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Figure 4-2 Flow Profiles for Zone 2 and Zone 3 (Bentley, 2007) 

 

 

 



 
 

27

CulvertMaster 

  The principle use of Bentley’s CulvertMaster software is designing and analyzing 

roadway culverts.  It solves for headwater elevation, discharge, or size.  Standard pipe 

shapes include ellipse, circular, and arch while the materials include aluminum, 

corrugated metal, concrete, and high-density polyethylene.  Standard reinforced concrete 

box sizes range from 2-ft x 2-ft to 12-ft x 12-ft.  It should be noted that the default setting 

for the flow area of the reinforced concrete box is calculated using the full height and 

width.  Manufacturers of prefabricated reinforced concrete boxes, on the other hand, 

construct their sections with a chamfer in all four corners, resulting in flow area 

reductions of up to 2.5%. 

 The software analyzes the performance of the culverts using culvert hydraulics 

(Bentley, 2007).  Culverts can create considerable restrictions in open channel flow 

conditions.  These restrictions alter flow characteristics and can result in complicated 

solutions containing both gradually varied and rapidly varied flow conditions.  Culverts 

are generally not long enough to achieve uniform flow.  Bentley (2007) discusses the two 

generally accepted methods for predicting the hydraulic performance of a culvert.  The 

first method utilizes a nomograph created specifically for different pipe materials, shapes, 

and entrance types.  Figure 4-3 (Bentley, 2007) illustrates an example of a nomograph for 

a circular concrete pipe with entrance types of square edge with headwall, groove end 

with headwall, and groove end projecting.   
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Figure 4-3 Nomograph to Compute Headwater Depth for Circular Concrete Culverts with 
Inlet Control (Bentley, 2007) 
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This method is easier to use and produces results acceptable for most designs.  Using a 

trial and error procedure, a trial diameter is selected and a line drawn from it to the design 

discharge.  This line is then projected to the first column in the HEADWATER DEPTH 

IN DIAMETERS (HW/D) scale.  Then a line is lastly drawn horizontal through the other 

two scales.  The three scale readings indicate the ratio of headwater depth to pipe 

diameter.  Assuming the trial pipe diameter, the headwater depth can be calculated and 

checked against design parameters.  The second method involves computing the flow 

profiles using gradually varied flow procedures.  Although this method is very labor 

intensive, it produces much more accurate culvert performance.  CulvertMaster uses this 

method to achieve results much faster than hand calculations. 

CulvertMaster simplifies the flow conditions using two different assumptions 

developed in part through research by the National Bureau of Standards (NBS) and the 

Federal Highway Administration (Bentley, 2007).  These assumptions are organized 

according to where the flow control section occurs within the culvert:  inlet control and 

outlet control.  The headwater depth is computed for both control conditions with the 

controlling headwater depth being the greater of the two.  CulvertMaster uses procedures 

recommended in Hydraulic Design Series No. 5, Hydraulic Design of Highway Culverts 

(2001) as prepared for the U.S. Federal Highway Administration to calculate the 

headwater depths automatically. 

 

Inlet Control 

 Under inlet control conditions, the culvert capacity is reduced due to parameters 

located at the entrance of the culvert.  This control section is just inside the culvert barrel 
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and it is here where the water surface drops below the critical depth and enters the 

supercritical region forming an S2 water surface profile like that shown in Figure 4-2.  

This control section is a result of available opening area, physical opening shape, and the 

inlet configuration.  Figure 4-4 (Bentley, 2007) shows how the physical opening shape 

affect the flow streamlines enhances the culvert hydraulics.   

Specifically, it demonstrates that square-edged inlets compress the streamlines 

effectively reducing the cross sectional area of the culvert.  Inlet control can usually be 

found in applications where the culvert is installed at a steep slope and/or the downstream 

flow is relatively shallow.  For this condition, the downstream parameters, such as pipe 

friction, tailwater, and other minor losses, have no effect on the culvert capacity.  Figure 

4-5 (Bentley, 2007) below provides four examples of a culvert operating under inlet 

control. 
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Figure 4-4 Square-Edge and Curved-Edge Culvert Entrances (Bentley, 2007) 
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Figure 4-5 Inlet Control Flow Conditions (Bentley, 2007) 
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 These examples illustrate the three types of culvert hydraulics in effect during 

inlet control conditions.  The three types are unsubmerged, submerged, and transitional 

(Bentley, 2007).  The unsubmerged effect occurs primarily in low flow events and is 

modeled using weir flow theory.  CulvertMaster uses the following equation for this 

condition. 

S
AD

Q
K

D

H

D

HW
M

.
ci 5.0

50
−





+≡     (4-7) 

where 

 HWi  = Headwater depth above inlet control section invert (ft) 

 D  = Interior height of culvert barrel (ft) 

 Hc  = Specific head at critical depth (dc + Vc
2/2g)(ft) 

 Q  = Discharge (ft3/s) 

 A  = Full cross-sectional area of culvert barrel (ft2) 

 S  = Culvert barrel slope (ft/ft) 

 K, M  = Constants from Table 4-1 (M is unitless) 

 

Although not as theoretically correct as Equation 4-7, Equation 4-8 below is better suited 

for practical application (Bentley, 2007). 

M

.
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AD

Q
K

D

HW
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



≡

50
      (4-8) 

 

The submerged effect occurs primarily during high flow events and is modeled using 

orifice flow theory.  The equation used by CulvertMaster for this condition is as follows: 
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SY
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
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
≡     (4-9) 

where 

  c, Y = Constants from Table 4-1 (Y is unitless) 

 

Equation 4-7 should be used for cases of Q/AD0.5 = 3.5 and smaller.  Equation 4-9 should 

be used when Q/AD0.5 = 4.0 and larger.  The transition effect occurs in between these 

unsubmerged and submerged zones near the crown of the culvert entrance.  The 

headwater value for this zone must be interpolated using Figure 4-6. 
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Table 4-1 Constants for Inlet Control Equations (Bentley, 2007) 

 

 

 



 
 

36

 

Figure 4-6 Transition from Weir to Orifice Control in Culvert (Bentley, 2007) 
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 While each of the cases shown in Figure 4-5 follow the reasoning of inlet control 

conditions, case D may appear nonconforming.  It would seem logical to assume that 

because both the inlet and outlet are submerged the entire culvert length must be 

submerged.  The explanation is the S2 water surface profile that forms as a result of the 

steep grade of the culvert.  At the downstream end of the culvert, the pressure flow 

conditions force the hydraulic jump.  A structure such as a median drain should be 

installed to relieve the sub-atmospheric pressure before it can cause hydraulic and even 

structural problems.  

 

Outlet Control 

 Under outlet control conditions, the culvert inlet is capable of passing a larger 

flow than the barrel.  Its control section is located near the outlet with a flow level at 

critical, subcritical, or full condition.  This condition frequently experiences full flow, or 

pressure flow, because the tailwater is sufficiently high and the channel topography is 

generally mild.  Several examples of outlet-controlled conditions can be seen in Figure 4-

7.  When full flow conditions do exist, the headwater depth is affected by discharge, 

upstream and downstream velocity, cross-sectional area, shape, length, roughness, slope, 

inlet and outlet edge configuration, and tailwater depth (Bentley, 2007).  Consequently, 

the losses associated with these parameters have to be computed.  CulvertMaster uses the 

following equation to calculate the headwater for outlet control conditions. 

L
du

o H
g

V
TW

g

V
HW ++=+

22

22

    (4-10) 

where 

 HWo = Headwater depth above outlet invert (ft) 
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 Vu = Upstream velocity (ft/s) 

 TW = Tailwater depth above the outlet invert (ft) 

 Vd = Downstream velocity (ft/s) 

HL = Sum of all losses including entrance (He), friction loss (Hf), exit loss 

(Ho), and other losses 

 g = Gravitational acceleration constant (ft/s2) 

 

The minor loss associated with the entrance of the culvert can be expressed as 

follows: 









=

g

V
kH ee 2

2

       (4-11) 

where 

 He = Entrance loss (ft) 

 ke = Entrance loss coefficient (unitless) 

 V = Velocity inside of barrel entrance (ft/s) 

 g = Gravitational acceleration constant (ft/s2) 

The entrance loss coefficient, ke, is a function of inlet arrangement.  Table 4-2 provides 

several values for different pipe materials and entrances. 
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Table 4-2 Entrance Loss Coefficients for Outlet Control Conditions 
(Bentley, 2007) 
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The minor loss associated with the exit of the culvert is a function of the 

difference between the velocity just inside the culvert exit and the velocity in the outfall 

channel.  It can be expressed as follows: 














−=

g

V

g

V
H d

o 22
0.1

22

      (4-12) 

where 

 Ho = Exit loss (ft) 

 V = Velocity inside of barrel exit (ft/s) 

Vd = Velocity in channel outfall (ft/s) 

 g = Gravitational acceleration constant (ft/s2) 

 

 The minor losses associated with friction are calculated using a gradually varied 

flow analysis.  The analysis usually starts at the tailwater elevation and proceeds 

upstream.  Within the culvert, the water surface elevation will move above and below the 

crown of the culvert and CulvertMaster will automatically move in and out of pressure 

mode.  For the section of culvert that is submerged, the friction loss will be computed 

using the full flow friction slope. 

 CulvertMaster automatically determines whether the culvert is operating under 

inlet or outlet control conditions and performs the appropriate gradually varied flow 

(frontwater or backwater profile) analysis. 

 Gradually varied flow profiles denote the water surface depth curve along the 

length of the culvert and are developed in an upstream or downstream direction 

depending on the slope of the culvert and the controlling water surface elevation 

(Bentley, 2007).  For culverts installed on a slope less than critical slope, this mild slope 
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causes the depth of flow to increase gradually if the downstream water surface is less 

than the normal depth, resulting in an M2 drawdown curve.  An M1 drawdown curve will 

result when the downstream water surface is greater than the normal depth and the depth 

of flow gradually decreases.  Both of these water surface profiles indicate flow is 

operating in the subcritical region. 

 For culverts installed on a slope greater than critical slope, this steep slope causes 

the gradually varied flow profile to develop in the upstream direction when the 

controlling tailwater elevation is well above critical depth and subcritical flow exists at 

the culvert exit.  These pipes usually will experience a hydraulic jump somewhere within 

the culvert length when the tailwater depth is greater than the critical depth. 
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Figure 4-7 Outlet Control Flow Conditions (Bentley, 2007) 
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CHAPTER V 
 

 

METHODOLOGY 

 

 The general steps utilized for solving typical channel hydraulics problems involve 

the following series of actions: 

1. Problem Definition 

2. Data Acquisition 

3. Channel Modeling 

4. Culvert Modeling 

Therefore, these steps were used to solve the problems related to this study. 

Problem Definition 

The first step of problem definition actually involves two components.  The first 

is investigating the location of the problem by observing physical evidence and 

discussing conditions with local residents.  The primary physical evidence includes high 

water marks and house elevations with respect to waterway banks.  After numerous site 

visits, it became clear that the local, intermittent stream was flowing out of its banks 

more often during 10-year or less rain events and threatening to inundate houses in the
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 subdivision.  This waterway, locally known as Rolling Acres Channel, was constructed 

in 1959 when the subdivision was platted.  It is a dry waterway that only flows during 

rain events and is shown but unnamed on United States Geological Survey (USGS) 

quadrangle maps.  The second component is to identify the cause of the problem.  

Upstream waterways were inspected for dam breaches and non-permitted diversion 

channels.  Upon finding none of these, it was concluded that the large, upstream 

development had finally began to produce an amount of runoff that exceeded the capacity 

of the existing channel. Although the developer would share in the cost of an 

improvement, it would be the responsibility of the local government to acquire property 

and/or easement, design, construct, and maintain a solution that would prevent further 

damage to life and property. 

Data Acquisition 

This step involves collecting the data necessary for the design of an improved 

channel and roadway culverts.  The type of data to be collected included topographic 

surveys, aerial photographs, and a geotechnical investigation.  Because the focus of this 

study was hydraulic modeling, the associated hydrologic data was also needed.  The 

topographic surveys are valuable and provide land contours and such features as 

buildings, fences, trees, driveways, roadways, existing waterway details, and utilities.  

Accurate land contours are critical in determining earthwork volumes and excavation 

daylight lines.  A representative sample of the topographic survey, including trees, roads, 

culverts, houses, and surface contours, can be seen in Figure 5-1.  The type of data 

collected for a building consists of its outline, relationship to other buildings, and finished 

floor elevation.  This data is needed to show the proximity of proposed improvements to 
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adjacent homes, which can prove helpful when discussing construction plans with 

adjacent homeowners.  Probably most important is the accurate measurement of the 

finished floor elevation.  These elevations are compared to the model output to verify 

their relationship to the proposed water surface elevations.  Another key factor is the 

location of all existing utilities because they can financially impact the proposed 

improvement if they have to be relocated.  Although the topographic survey can locate 

the cables and pipes horizontally, the utility owner must provide the depths.  It is these 

depths that can conflict with proposed excavation daylight lines as well as flow line 

slope.  When the utility is located in a private easement, the cost for relocation will be 

borne by the local governing body. 

Aerial photographs can be used to track the progression of development as well as 

provide a wide-angle view of the basin and its characteristics.  They often contain ground 

contours that can be compared with topographic surveys and known waterways.  The 

primary purpose of the geotechnical investigation is to establish soil characteristics and 

ground water table depth. 

Channel Modeling 

 The third step involves using FlowMaster to model design parameters in a 

channel.  To begin, a worksheet must be opened as shown in Figure 5-2.  Both the 

Uniform Flow tab and the Gradually Varied Flow (GVF) tab will be used for this study.  

Although the channel reaches will be prismatic, depth and velocity will change with 

respect to time upstream of the culverts and at changes in liner material.  The Manning 

friction method was chosen for uniform flow modeling because of its simplicity and 
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widespread industry usage.  In addition, the software allows the user to select from a list 

the desired unknowns for which to solve.  These parameters can be seen in Figure 5-3 

and include discharge, normal depth, side slopes, bottom width, channel slope, and 

roughness.   

The next operation in this step is to determine which of these parameters is 

unknown.  As discussed in Chapter III, the discharge rates for this study were taken from 

a previous hydrologic analysis (Envirotech, 2009).  Side slopes are also known as they 

are typically set to a minimum of 3:1 to facilitate safe maintenance operations.  During 

the data acquisition phase of this study, it was discovered that sanitary sewer pipelines 

were located perpendicular to the channel and adjacent to both Grant Street and Lincoln 

Street.  Because these pipelines are gravity systems, they cannot be relocated.  Therefore, 

these pipelines, as well as the spillway elevation in Crosslin Park Lake, set the channel 

flowline elevations and slope for this study. 

After conducting site visits, it was clear that the channel would encounter very 

sandy soils and narrow easements.  The sandy soil conditions can result in severe 

sediment transport and erosion during even small storm events.  Therefore, any grass 

channel sections would require a material that would hold the soil in place such as solid 

slab sod with a tight wood staple pattern.  The narrow easements were caused by the 

close proximity of existing residential structures such as houses and sheds.  To minimize 

the impact to these structures, these channel sections would require a concrete slab to 

minimize cross sectional area.  In addition, the local municipality requires a 10-foot wide 

concrete trickle channel in the center of all grass-lined channels.  Using this information, 

the channel roughness could be eliminated as an unknown.  It was obvious that the 
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channel’s bottom width would need to be adjusted to provide a water surface elevation 

that was below the finished floor elevations of the nearby residential houses.  Thus, the 

normal depth was chosen as the unknown parameter for which to solve. 
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Figure 5-2. FlowMaster Worksheet Layout 
 
 

 
 

Figure 5-3. Available Parameters for Unknowns - FlowMaster 
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 The calculation of the channel roughness would be the final operation necessary 

before solving for the chosen unknown.  For standard channel sections, FlowMaster 

provides a materials list with associated roughness coefficients from which to choose.  

This list was used to select the roughness coefficient for the section of channel with a 

concrete surface (Figure 5-4).   Because the grass-lined channel sections would also 

contain a concrete trickle channel, a composite roughness coefficient would have to be 

calculated.  Table 5-1 shows the calculation for this composite coefficient.   

Now that all of the input variables have been determined, FlowMaster can solve 

for the unknown parameter.  An example calculation can be seen in Figure 5-5 while the 

entire study calculations are shown in Appendix A. 

Figure 5-5 illustrates how conveniently FlowMaster displays several 

characteristics related to the channel hydraulics on the right side of the worksheet.  Two 

of these characteristics are worth reviewing immediately after calculation:  velocity and 

Froude number.  It is very desirable to develop a velocity greater than the cleansing 

velocity of the industry standard 3 feet per second to keep particles in suspension and 

minimize sediment deposition.  There is also a benefit to achieving subcritical flow, 

especially for grass-lined channels.  A Froude number less than one will reduce the risk 

of channel scour and other risks associated with turbulent conditions. 
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Figure 5-4. Material List for Roughness Coefficient Selection 
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Table 5-1. Composite Roughness Coefficient Calculation 
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Figure 5-5. FlowMaster Example Input/Output Results 
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Culvert Modeling 

The last step involves using CulvertMaster to model design parameters for 

drainage culverts that will serve as roadway channel crossings.  The waterway in this 

study includes three roadway crossings that must be sized to adequately convey the 

runoff while also considering the relationship between the generated headwater and the 

adjacent house’s finished floor.  To begin, a worksheet must be opened as shown in 

Figure 5-6. 

Similar to the worksheet in FlowMaster, this worksheet offers a list of properties 

for which to solve.  The list is shown in Figure 5-7 and includes headwater elevation, 

discharge, and size. 

As in FlowMaster, the first decision involves selecting the property to be used as 

the unknown.  As mentioned previously, the discharge has been determined from a 

previous research (Envirotech, 2009).  Keeping the study objective in perspective, the 

headwater elevation was chosen as the unknown for this study.  Therefore, the size of 

culvert would be varied until a headwater elevation was found to meet the criteria of the 

objective. 

Figure 5-6 shows that there are four components that require data input.  The 

Culvert component requires the known discharge, a maximum allowable headwater 

elevation, and a tailwater elevation.  The maximum allowable headwater was chosen as 

the lowest, adjacent, finished floor elevation so that a direct comparison between this and 

the computed headwater elevation could be made.  If the computed headwater elevation 

is less than the finished floor elevation, the adjacent houses are protected from flooding.  

The tailwater elevation was chosen based on the uniform depth calculations for the 
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downstream channel as well as the detention characteristics of Crosslin Lake.  The 

Inverts component calculates the culvert slope after inputting the proposed inlet and 

outlet flowlines of the culvert.  The Section component requires data input relative to the 

type of culvert proposed.  CulvertMaster offers many shapes of culvert including arch, 

box, circular, and ellipse.  Based on the large flows in this study, a reinforced concrete 

box would be the most practical culvert shape.  A Manning’s n value of 0.013 was 

selected as the roughness coefficient to represent a standard concrete surface.  The size 

and number of barrels for the reinforced concrete box are the actual properties that would 

be adjusted until the computed headwater was lower than adjacent finished floor 

elevations.  The Inlet component would identify the type of entrance geometry for the 

barrels.  As mentioned in a previous chapter, this geometry can greatly affect the flow 

capacity of the culvert.  The culverts for this study would be perpendicular to channel 

flow and the standard construction practice of using ¾-inch chamfers would be required.  

The typical input parameters for a culvert can be seen in Figure 5-8.  A typical reinforced 

concrete box (RCB) culvert is shown in Figure 5-9. 
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Figure 5-6. CulvertMaster Worksheet Layout 

 

 

 

 

 

Figure 5-7. Available Properties for Unknowns - CulvertMaster 
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Figure 5-8. CulvertMaster Example Input/Output Results 
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CHAPTER VI 
 

 

RESULTS 

 

 Computed water surface elevations for the Q10, Q25, Q50, and Q100 rainfall events 

are shown in Table 6-1 through Table 6-4.  These elevations, as well as the proposed 

channel flowline, were computed at the channel station adjacent to the houses.  To 

determine these water surface elevations, both the normal depth and the depth due to 

gradually varied flow conditions were computed.  The depths due to gradually varied 

flow were a result of the headwater created by the three culverts that were necessary to 

provide safe vehicular and pedestrian traffic flow over the channel.  Once these depths 

were known, the larger depth was added to the channel flowline to obtain the water 

surface elevation at that channel station.  The point of these tables is to show the direct 

comparison between those water surface elevations (WSEL) and the finished floor (FF) 

elevations of the adjacent houses. 

 The results of the channel sizing calculated by FlowMaster are provided in 

Appendix A and shown in Figure 6-1.  Typical cross sections for the concrete lined 

channel and the grass-lined channel can be seen in Figure 6-2 and Figure 6-3, 

respectively.  These figures also show the elevation of the studied rainfall events in 

relation to the top and bottom of the channel.  Because the flows in the concrete lined 
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channel fall within the supercritical region, they are all contained within the channel.  The 

flows in the grass-lined channel, on the other hand, fall within the subcritical region.  As 

expected, the water surface elevations in this channel are higher than those in the 

concrete lined channel.  Figure 6-3 shows that all of the rain events are confined within 

the channel except for the 100-year event.  The requirement of the local government is 

that the water surface elevation associated with the 50-year event be held within the 

channel and that of the 100-year event be lower than adjacent houses.  Both of these 

requirements are met. 

 As Figures 6-2 and 6-3 indicate, the proposed channel will have a considerably 

larger flow capacity than the existing 10-foot flat bottom channel with 3:1 side slopes.  

This existing channel will remain in-place and parallel to proposed channel sections A 

and B.  The remaining length of the existing channel will be modified to meet the 

proposed model conditions. 

 The results of the culvert sizing calculated by CulvertMaster are provided in 

Appendix B and shown in Figure 6-4.  A typical cross section of the proposed culvert 

was shown in Figure 5-9.  Given the large flow rates and the presence of existing 3-ft 

high x 10-ft wide reinforced concrete boxes at culvert locations C1 and C2, it was 

obvious that the proposed culverts would need to be larger in both size and number of 

cells.  Although the same reason would apply to C3, this proposed culvert would replace 

two 36-in. reinforced concrete pipes. 
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Figure 6-1. Summary of Channel Design Results 
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Figure 6-4. Summary of Culvert Design Results 
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Discussion of Results 

Tables 6-1 through 6-4 indicate that the finished floor of every house is above the 

corresponding water surface elevation.  This translates to the houses being protected from 

every rainfall event in the study.  Notably, this was accomplished without the need to 

move or purchase adjacent houses.  This fact was unexpected for two reasons.  The first 

reason is that these houses were originally built in a subdivision outside of the city limits 

and thus not subject to any stormwater policies or regulations.  This meant that houses 

would not be elevated above future runoff elevations.  The second reason is that both 

Grant Street and Lincoln Street contain a sanitary sewer pipeline that could not be 

lowered without a significant capital improvement cost.  This limited how low the 

channel flowline could be excavated. 

The final geometry of the channel and culverts was determined using a random 

procedure.  The bottom width of the channel was varied in FlowMaster until a water 

surface elevation was found that did not flood adjacent houses.  Upon inputting a bottom 

width, the model immediately calculated the depth corresponding to uniform flow 

conditions.  This depth was added to the channel flowline elevation and compared to the 

finished floor elevation of the adjacent house.  For the culvert modeling, the size and 

number of concrete boxes were varied in CulvertMaster until the computed headwater 

resulted in the same outcome as above except using the gradually varied flow model in 

FlowMaster.  This process was considered optimized when the corresponding water 

surface elevation fell just below the adjacent house’s finished floor elevation for the 100-

year rainfall event.   

Another observation to make of the above tables is which depth is used in the 
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calculation of the water surface elevation.  First, the governing depth varies between the 

uniform flow condition and gradually varied flow condition.  When the depth is governed 

by the gradually varied flow condition, it is a result of a downstream culvert and its 

corresponding flow profile.  CulvertMaster allows the user to determine the distance, by 

trial and error, from the culvert for which these flow profiles are operational.  Secondly, it 

can be seen that the governing depth is not always the lower depth.  This is a result of the 

flow profile associated with the gradually varied flow condition extending from the 

downstream culvert.  When this flow profile extends beyond an adjacent house, the 

governing depth is that associated with the gradually varied flow condition. 

The houses along this channel are also in close proximity to the roadway culverts.  

Therefore, the headwater produced by these culverts must also be compared to the 

finished floor elevations of the immediate downstream houses.  If the adjacent roadway is 

not located at an elevation higher than this headwater, the house may still experience 

flooding.  This is the case for the houses located at 3715 N. Grand and 3719 N. Lincoln.  

During the 100-year storm event, the headwater produced by the adjacent, upstream 

culverts will be higher than the house.  A check of survey data shows that the roadway is 

higher than the finished floor elevation. 

 A review of Figure 6-2 and Figure 6-3 shows the channel geometry needed to 

adequately convey the 100-year storm event without flooding any houses.  One 

abnormality is that downstream Channel E is more narrow than the upstream Channels A 

and B.  This is due to Channel E not having adjacent houses and the fact it is located in a 

park, which is allowed to flood.  

A review of the CulvertMaster output in Appendix B shows that Crosslin Park 



 
 

71

Road will experience overtopping.  During the 100-year rainfall event, the headwater for 

this culvert is 18-inches higher than the top of curb.  According to local government 

officials, this is acceptable since the park should not be in use during such large storm 

events.  This smaller culvert size also represents a decrease of approximately 50% in 

construction cost. 

 A last remark is that both FlowMaster and CulvertMaster hydraulic models sized 

the proposed channels and culverts using flow rates that were established for fully 

developed basin conditions.  This translates to these drainage elements being well 

oversized for current as well as short- to medium-term development conditions while 

providing the necessary capacity for the basin’s maximum development plan. 
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CHAPTER VII 
 

 

CONCLUSIONS 

 

The following conclusions can be made based on the results of this study. 

1. Both FlowMaster and CulvertMaster software can successfully be applied in 

solving urban stormwater problems for small and medium sized communities. 

2. The results of this hydraulic analysis are reasonable.  Channels with 50-foot wide 

flat bottoms are not common in small and medium sized communities unless 

constructed in post-developed conditions.  In addition, the culverts sized in this 

study are only slightly larger than the existing, downstream culverts.  However, 

there is detention between these culverts in the form of Crosslin Lake. 

3. Both FlowMaster and CulvertMaster software are easily manipulated, user 

friendly, and involve a small learning curve.  They allow the user to obtain 

acceptable results while maintaining constraints such as minimum backwater 

effects that do not flood adjacent houses. 
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APPPENDIX A 
 

FLOWMASTER RESULTS 
10-, 25-, 50-, AND 100-YEAR DESIGN FLOWS 
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APPENDIX B 
 

CULVERTMASTER RESULTS 
10-, 25-, 50-, AND 100-YEAR DESIGN FLOWS 
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Culvert Calculator Report 
Grant Street Culvert – Q10 

 
Solve For: Headwater Elevation 
 

Culvert Summary      

Allowable HW Elevation 1,290.00 ft Headwater Depth/Height 0.66  
Computed Headwater 

Elevation 
1,288.36 ft Discharge 463.00 cfs 

Inlet Control HW Elev. 1,288.36 ft Tailwater Elevation 1,287.69 ft 
Outlet Control HW Elev. 1,288.33 ft Control Type Inlet 

Control 
 

      

 
Grades      

Upstream Invert 1,285.72 ft Downstream Invert 1,285.60 ft 
Length 36.00 ft Constructed Slope 0.003333 ft/ft 

      

 
Hydraulic Profile      

Profile S1  Depth, Downstream 1.56 Ft 
Slope Type Steep  Normal Depth 1.56 Ft 

Flow Regime Subcritica
l 

 Critical Depth 1.61 Ft 

Velocity Downstream 7.40 ft/s Critical Slope 0.003049 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 10.00 Ft 

Section Size 10 x 4 ft  Rise 4.00 Ft 
Number Sections 4     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,288.33 ft Upstream Velocity Head 0.80 Ft 
Ke 0.20  Entrance Loss 0.11 Ft 

      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,288.36 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 160.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Grant Street Culvert – Q10 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 cfs 
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Culvert Calculator Report 
Grant Street Culvert – Q25 

 
Solve For: Headwater Elevation 
 
Culvert Summary      

Allowable HW Elevation 1,290.00 ft Headwater Depth/Height 0.81  
Computed Headwater 
Elevation 

1,288.96 ft Discharge 631.00 cfs 

Inlet Control HW Elev. 1,288.96 ft Tailwater Elevation 1,288.15 ft 
Outlet Control HW Elev. 1,288.93 ft Control Type Inlet 

Control 
 

      

 
Grades      

Upstream Invert 1,285.72 ft Downstream Invert 1,285.60 ft 
Length 36.00 ft Constructed Slope 0.003333 ft/ft 
      

 
Hydraulic Profile      

Profile S1  Depth, Downstream 1.92 ft 
Slope Type Steep  Normal Depth 1.92 ft 
Flow Regime Subcritica

l 
 Critical Depth 1.98 ft 

Velocity Downstream 8.20 ft/s Critical Slope 0.003060 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 10.00 ft 
Section Size 10 x 4 ft  Rise 4.00 ft 
Number Sections 4     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,288.93 ft Upstream Velocity Head 0.99 ft 
Ke 0.20  Entrance Loss 0.13 ft 
      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,288.96 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 160.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Grant Street Culvert – Q25 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 cfs 

 
Performance Curves
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Culvert Calculator Report 
Grant Street Culvert – Q50 

 
Solve For: Headwater Elevation 
 
Culvert Summary      

Allowable HW Elevation 1,290.00 ft Headwater Depth/Height 0.92  
Computed Headwater 
Elevation 

1,289.41 ft Discharge 768.00 cfs 

Inlet Control HW Elev. 1,289.41 ft Tailwater Elevation 1,288.49 ft 
Outlet Control HW Elev. 1,289.38 ft Control Type Inlet 

Control 
 

      

 
Grades      

Upstream Invert 1,285.72 ft Downstream Invert 1,285.60 ft 
Length 36.00 ft Constructed Slope 0.003333 ft/ft 
      

 
Hydraulic Profile      

Profile S1  Depth, Downstream 2.20 ft 
Slope Type Steep  Normal Depth 2.20 ft 
Flow Regime Subcritica

l 
 Critical Depth 2.25 ft 

Velocity Downstream 8.73 ft/s Critical Slope 0.003085 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 10.00 ft 
Section Size 10 x 4 ft  Rise 4.00 ft 
Number Sections 4     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,289.38 ft Upstream Velocity Head 1.13 ft 
Ke 0.20  Entrance Loss 0.15 ft 
      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,289.41 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 160.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Grant Street Culvert – Q50 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 Cfs 

 
Performance Curves
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Culvert Calculator Report 
Grant Street Culvert – Q100 

 
Solve For: Headwater Elevation 
 
Culvert Summary      

Allowable HW Elevation 1,290.00 ft Headwater Depth/Height 1.04  
Computed Headwater 
Elevation 

1,289.90 ft Discharge 923.00 cfs 

Inlet Control HW Elev. 1,289.90 ft Tailwater Elevation 1,288.86 ft 
Outlet Control HW Elev. 1,289.87 ft Control Type Inlet 

Control 
 

      

 
Grades      

Upstream Invert 1,285.72 ft Downstream Invert 1,285.60 ft 
Length 36.00 ft Constructed Slope 0.003333 ft/ft 
      

 
Hydraulic Profile      

Profile S1  Depth, Downstream 2.49 ft 
Slope Type Steep  Normal Depth 2.49 ft 
Flow Regime Subcritica

l 
 Critical Depth 2.55 ft 

Velocity Downstream 9.25 ft/s Critical Slope 0.003122 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 10.00 ft 
Section Size 10 x 4 ft  Rise 4.00 ft 
Number Sections 4     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,289.87 ft Upstream Velocity Head 1.27 ft 
Ke 0.20  Entrance Loss 0.17 ft 
      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,289.90 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 160.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Grant Street Culvert – Q100 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 cfs 

 
Performance Curves
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Culvert Calculator Report 
Lincoln Street Culvert – Q10 

 
Solve For: Headwater Elevation 
 
Culvert Summary      

Allowable HW Elevation 1,287.07 ft Headwater Depth/Height 0.66  
Computed Headwater 
Elevation 

1,285.38 ft Discharge 556.00 cfs 

Inlet Control HW Elev. 1,285.38 ft Tailwater Elevation 1,284.26 ft 
Outlet Control HW Elev. 1,285.31 ft Control Type Inlet 

Control 
 

      

 
Grades      

Upstream Invert 1,282.74 ft Downstream Invert 1,282.68 ft 
Length 32.00 ft Constructed Slope 0.001875 ft/ft 
      

 
Hydraulic Profile      

Profile M2  Depth, Downstream 1.61 ft 
Slope Type Mild  Normal Depth 1.86 ft 
Flow Regime Subcritica

l 
 Critical Depth 1.61 ft 

Velocity Downstream 7.20 ft/s Critical Slope 0.002885 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 12.00 ft 
Section Size 12 x 4 ft  Rise 4.00 ft 
Number Sections 4     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,285.31 ft Upstream Velocity Head 0.68 ft 
Ke 0.20  Entrance Loss 0.14 ft 
      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,285.38 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 192.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Lincoln Street Culvert – Q10 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 Cfs 

 
Performance Curves
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Culvert Calculator Report 
Lincoln Street Culvert – Q25 

 
Solve For: Headwater Elevation 
 
Culvert Summary      

Allowable HW Elevation 1,287.07 ft Headwater Depth/Height 0.89  
Computed Headwater 
Elevation 

1,286.30 ft Discharge 835.00 cfs 

Inlet Control HW Elev. 1,286.20 ft Tailwater Elevation 1,285.60 ft 
Outlet Control HW Elev. 1,286.30 ft Control Type Outlet 

Control 
 

      

 
Grades      

Upstream Invert 1,282.74 ft Downstream Invert 1,282.68 ft 
Length 32.00 ft Constructed Slope 0.001875 ft/ft 
      

 
Hydraulic Profile      

Profile M1  Depth, Downstream 2.92 ft 
Slope Type Mild  Normal Depth 2.44 ft 
Flow Regime Subcritica

l 
 Critical Depth 2.11 ft 

Velocity Downstream 5.96 ft/s Critical Slope 0.002869 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 12.00 ft 
Section Size 12 x 4 ft  Rise 4.00 ft 
Number Sections 4     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,286.30 ft Upstream Velocity Head 0.57 ft 
Ke 0.20  Entrance Loss 0.11 ft 
      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,286.20 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 192.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Lincoln Street Culvert – Q25 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 cfs 

 
Performance Curves

Discharge
(cfs)

(f
t)

H
ea

dw
at

er
 E

le
va

tio
n

1285.5

1286.0

1286.5

1287.0

1287.5

1288.0

1288.5

500.0 600.0 700.0 800.0 900.0 1000.0 1100.0 1200.0 1300.0 1400.0 1500.0

HW Elev.

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Title: Rolling Acres II  Project Engineer: COE 
h:\...\culvertmaster - rolling acres iii.cvm City of Enid CulvertMaster v3.1 [03.01.010.00] 
7/12/2010 7:02 PM  
 c Bentley Systems, Inc.    Haestad Methods Solution Center    Watertown, CT 06795 USA    +1-203-755-1666 

109

Culvert Calculator Report 
Lincoln Street Culvert – Q50 

 
Solve For: Headwater Elevation 
 
Culvert Summary      

Allowable HW Elevation 1,287.07 ft Headwater Depth/Height 1.03  
Computed Headwater 
Elevation 

1,286.86 ft Discharge 1,042.00 cfs 

Inlet Control HW Elev. 1,286.75 ft Tailwater Elevation 1,286.04 ft 
Outlet Control HW Elev. 1,286.86 ft Control Type Outlet 

Control 
 

      

 
Grades      

Upstream Invert 1,282.74 ft Downstream Invert 1,282.68 ft 
Length 32.00 ft Constructed Slope 0.001875 ft/ft 
      

 
Hydraulic Profile      

Profile M1  Depth, Downstream 3.36 ft 
Slope Type Mild  Normal Depth 2.83 ft 
Flow Regime Subcritica

l 
 Critical Depth 2.45 ft 

Velocity Downstream 6.46 ft/s Critical Slope 0.002884 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 12.00 ft 
Section Size 12 x 4 ft  Rise 4.00 ft 
Number Sections 4     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,286.86 ft Upstream Velocity Head 0.66 ft 
Ke 0.20  Entrance Loss 0.13 ft 
      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,286.75 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 192.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Lincoln Street Culvert – Q50 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 cfs 

 
Performance Curves
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Culvert Calculator Report 
Lincoln Street Culvert – Q100 

 
Solve For: Headwater Elevation 
 
Culvert Summary      

Allowable HW Elevation 1,287.07 ft Headwater Depth/Height 1.18  
Computed Headwater 
Elevation 

1,287.45 ft Discharge 1,261.00 cfs 

Inlet Control HW Elev. 1,287.29 ft Tailwater Elevation 1,286.48 ft 
Outlet Control HW Elev. 1,287.45 ft Control Type Outlet 

Control 
 

      

 
Grades      

Upstream Invert 1,282.74 ft Downstream Invert 1,282.68 ft 
Length 32.00 ft Constructed Slope 0.001875 ft/ft 
      

 
Hydraulic Profile      

Profile M2  Depth, Downstream 3.80 ft 
Slope Type Mild  Normal Depth N/A ft 
Flow Regime Subcritica

l 
 Critical Depth 2.78 ft 

Velocity Downstream 6.91 ft/s Critical Slope 0.002910 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 12.00 ft 
Section Size 12 x 4 ft  Rise 4.00 ft 
Number Sections 4     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,287.45 ft Upstream Velocity Head 0.73 ft 
Ke 0.20  Entrance Loss 0.15 ft 
      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,287.29 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 192.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Lincoln Street Culvert – Q100 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 cfs 

 
Performance Curves

Discharge
(cfs)

(f
t)

H
ea

dw
at

er
 E

le
va

tio
n

1286.6

1286.8

1287.0

1287.2

1287.4

1287.6

1287.8

1288.0

1288.2

500.0 600.0 700.0 800.0 900.0 1000.0 1100.0 1200.0 1300.0 1400.0 1500.0

HW Elev.

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Title: Rolling Acres II  Project Engineer: COE 
h:\...\culvertmaster - rolling acres iii.cvm City of Enid CulvertMaster v3.1 [03.01.010.00] 
7/12/2010 7:02 PM  
 c Bentley Systems, Inc.    Haestad Methods Solution Center    Watertown, CT 06795 USA    +1-203-755-1666 

113

Culvert Calculator Report 
Crosslin Park Road Culvert – Q10 

 
Solve For: Headwater Elevation 
 
Culvert Summary      

Allowable HW Elevation 1,282.64 ft Headwater Depth/Height 1.06  
Computed Headwater 
Elevation 

1,278.52 ft Discharge 566.00 cfs 

Inlet Control HW Elev. 1,278.52 ft Tailwater Elevation 1,275.72 ft 
Outlet Control HW Elev. 1,278.42 ft Control Type Inlet 

Control 
 

      

 
Grades      

Upstream Invert 1,274.28 ft Downstream Invert 1,274.00 ft 
Length 55.00 ft Constructed Slope 0.005091 ft/ft 
      

 
Hydraulic Profile      

Profile S2  Depth, Downstream 2.27 ft 
Slope Type Steep  Normal Depth 2.14 ft 
Flow Regime Supercriti

cal 
 Critical Depth 2.59 ft 

Velocity Downstream 10.39 ft/s Critical Slope 0.002893 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 12.00 ft 
Section Size 12 x 4 ft  Rise 4.00 ft 
Number Sections 2     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,278.42 ft Upstream Velocity Head 1.29 ft 
Ke 0.20  Entrance Loss 0.26 ft 
      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,278.52 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 96.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Crosslin Park Road Culvert – Q10 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 cfs 

 
Performance Curves
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Culvert Calculator Report 
Crosslin Park Road Culvert – Q25 

 
Solve For: Headwater Elevation 
 
Culvert Summary      

Allowable HW Elevation 1,282.64 ft Headwater Depth/Height 1.52  
Computed Headwater 
Elevation 

1,280.36 ft Discharge 848.00 cfs 

Inlet Control HW Elev. 1,280.36 ft Tailwater Elevation 1,275.75 ft 
Outlet Control HW Elev. 1,279.70 ft Control Type Inlet 

Control 
 

      

 
Grades      

Upstream Invert 1,274.28 ft Downstream Invert 1,274.00 ft 
Length 55.00 ft Constructed Slope 0.005091 ft/ft 
      

 
Hydraulic Profile      

Profile S2  Depth, Downstream 3.01 ft 
Slope Type Steep  Normal Depth 2.81 ft 
Flow Regime Supercriti

cal 
 Critical Depth 3.39 ft 

Velocity Downstream 11.72 ft/s Critical Slope 0.002978 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 12.00 ft 
Section Size 12 x 4 ft  Rise 4.00 ft 
Number Sections 2     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,279.70 ft Upstream Velocity Head 1.69 ft 
Ke 0.20  Entrance Loss 0.34 ft 
      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,280.36 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 96.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Crosslin Park Road Culvert – Q25 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 cfs 

 
Performance Curves
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Culvert Calculator Report 
Crosslin Park Road Culvert – Q50 

 
Solve For: Headwater Elevation 
 
Culvert Summary      

Allowable HW Elevation 1,282.64 ft Headwater Depth/Height 1.94  
Computed Headwater 
Elevation 

1,282.04 ft Discharge 1,064.00 cfs 

Inlet Control HW Elev. 1,282.04 ft Tailwater Elevation 1,276.26 ft 
Outlet Control HW Elev. 1,280.58 ft Control Type Inlet 

Control 
 

      

 
Grades      

Upstream Invert 1,274.28 ft Downstream Invert 1,274.00 ft 
Length 55.00 ft Constructed Slope 0.005091 ft/ft 
      

 
Hydraulic Profile      

Profile S2  Depth, Downstream 4.00 ft 
Slope Type Steep  Normal Depth N/A ft 
Flow Regime Supercriti

cal 
 Critical Depth 3.94 ft 

Velocity Downstream 11.08 ft/s Critical Slope 0.003056 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 12.00 ft 
Section Size 12 x 4 ft  Rise 4.00 ft 
Number Sections 2     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,280.58 ft Upstream Velocity Head 1.97 ft 
Ke 0.20  Entrance Loss 0.39 ft 
      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,282.04 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 96.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Crosslin Park Road Culvert – Q50 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 cfs 

 
Performance Curves
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Culvert Calculator Report 
Crosslin Park Road Culvert – Q100 

 
Solve For: Headwater Elevation 
 
Culvert Summary      

Allowable HW Elevation 1,282.64 ft Headwater Depth/Height 2.48  
Computed Headwater 
Elevation 

1,284.20 ft Discharge 1,290.00 cfs 

Inlet Control HW Elev. 1,284.20 ft Tailwater Elevation 1,276.78 ft 
Outlet Control HW Elev. 1,281.81 ft Control Type Inlet 

Control 
 

      

 
Grades      

Upstream Invert 1,274.28 ft Downstream Invert 1,274.00 ft 
Length 55.00 ft Constructed Slope 0.005091 ft/ft 
      

 
Hydraulic Profile      

Profile Pressure
Profile 

 Depth, Downstream 4.00 ft 

Slope Type N/A  Normal Depth N/A ft 
Flow Regime N/A  Critical Depth 4.00 ft 
Velocity Downstream 13.44 ft/s Critical Slope 0.008049 ft/ft 
      

 
Section      

Section Shape Box  Mannings Coefficient 0.013  
Section Material Concrete  Span 12.00 ft 
Section Size 12 x 4 ft  Rise 4.00 ft 
Number Sections 2     

 
Outlet Control Properties      

Outlet Control HW Elev. 1,281.81 ft Upstream Velocity Head 2.81 ft 
Ke 0.20  Entrance Loss 0.56 ft 
      

 
Inlet Control Properties      

Inlet Control HW Elev. 1,284.20 ft Flow Control N/A  
Inlet Type 90° 

headwall 
w 3/4 inch 
chamfers 

 Area Full 96.0 ft2 

K 0.51500  HDS 5 Chart 10  
M 0.66700  HDS 5 Scale 1  
C 0.03750  Equation Form 2  
Y 0.79000     
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Performance Curves Report 
Crosslin Park Road Culvert – Q100 

 

Range Data:     

 Minimum Maximum Increment  
Discharge 500.00 1,500.00 100.00 cfs 

 
Performance Curves
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