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CHAPTER I 

 

 

INTRODUCTION 

 

1.1 Overview of Computational Fluid Dynamics (CFD) 

Fluid (gas and liquid) flows are governed by partial differential equations which represent 

conservation laws for mass, momentum, and energy. Computational fluid dynamics 

(CFD) is the method of replacing these partial differential equations system by a set of 

algebraic equations which can be solved by a digital computer. 

CFD has been used in many areas of science including aerodynamics of aircraft and cars, 

hydrodynamics of ships, pumps and turbines, and combustion and heat transfer in 

chemical engineering. It also has a diverse application in civil engineering such as wind 

loading on structures, wind and wave power, ventilation, fire and explosion hazards, 

dispersion of pollutants and effluent, wave loading on coastal and offshore structures, 

hydraulic structures, sediment transport, and hydrology. Other applications include 

weather forecasting, plasma physics, blood flow, and heat dissipation from electronic 

circuitry. 

CFD gives an insight into flow patterns that are difficult or impossible to study using 

traditional (experimental) techniques. It has the advantages over experimental simulations 

in such a way that it is cheaper, faster, and multipurpose. Also, CFD software is portable 

and easy to use and modify. However, the results of CFD simulation are rarely 100% 

reliable because the input data may involve overly simplified assumptions such that the 

mathematical model at hand may be inadequate. Furthermore, the accuracy of the result 

is also limited by the available computing power. 

All CFD codes, or software, have three main elements: (i) a Pre-Processor (ii) a Solver 

and (iii) a Post-Processor. 

Pre-Processor 

Pre-Processing involves the input of the flow problem into a CFD program by a means of 

a user-friendly interface and subsequent transformation of this input into a form suitable 

for use by the solver. The Pre-Processing stage includes: 

 Definition of the computational domain or the geometry of the region of interest, 

 Generation of mesh or sub-dividing the computational domain into smaller pieces, 
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 Selection of the chemical and physical phenomena that needs to be modeled, 

 Assigning fluid properties, and 

 Defining the boundary conditions. 

Predominately, the accuracy of a CFD solution depends on the number of cells in the 

grid. In general, the larger the number of cells (fine mesh), the better the accuracy of the 

solution. But using a fine mesh can be computationally expensive because it requires a 

large capacity computer and can take substantial time for an analysis. An optimal mesh is 

recommended to solve any particular problem. An optimal mesh is often non-uniform, 

finer in areas where large variations occur from point to point and coarser in regions with 

relatively little change. 

Solver 

The Solver involves discretization or conversion of the governing partial differential 

equations of fluid flow into a system of algebraic equations and then solving them 

iteratively to get the flow variables (pressure, velocity, temperature, etc.). 

Post-Processor 

The Post-Processing stage involves visualization of analysis result. The Post-Processor in 

CFD software has the capacity of generating graphics for: 

 Line and shaded contour plots of pressure, 

 Vector plots, 

 2D and 3D surface plots, 

 Surface streamlines, and 

 Animation, among others. 

 

1.2 Sign Support Structures 

Sign support structures are found on many major highways around the world. They help 

the highway user in giving the proper directions and important information. The signage 

consists of either aluminum signs or variable message signs (VMS). The complexity of 

sign support structures range from a single pole cantilever to four chord truss structures 

that span several lanes of traffic. 

The cantilever sign support structure is made from horizontal and vertical components. 

The horizontal component is known as the mast arm (usually in reference to a monotube, 

i.e. single tube without joints), the truss (for other than the monotube), or the cantilever. 

The vertical column is known as upright posts or poles. 

In the fourth edition of the Standard Specifications for Structural Supports for Highway 

Signs, Luminaries, and Traffic Signals (AASHTO, 2001), structures supported on both 

sides of the roadway are referred to as bridge supports. Bridge supports are also called 
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span-type structures, sign bridges, or overhead structures, although this latter term is 

sometimes used to describe both cantilever and bridge supports (Dexter and Ricker, 

2002). The vertical members that support the mast can be a single pole, box-truss 

structure, etc. 

According to NCHRP (National Cooperative Highway Research Program) Report 469 

(2002), cantilevered support structures are a good choice because the cost is typically less 

than 40 percent of the cost of bridge supports. Also, the single upright increases motorist 

safety by reducing the probability of vehicle collision. But, the single support has a greater 

tendency of increasing the flexibility of the cantilevered structure.  Figure 1-1 illustrates a 

typical cantilever sign support structure. 

 

Figure 1-1: Cantilever sign support structure 

The length of the horizontal mast arm of the cantilever sign support structure has 

increased in the past years which results in an increase in flexibility. States Departments 

of Transportation (DOT) have increased the span for two reasons. First, the set back 

distance of the column from the roadway is increased. Second, DOTs have to increase the 

length as these structures are being used on roads with many more lanes. 

The increase in flexibility as well as low mass results in a very low resonant frequency of 

about 1Hz for these structures. The critical damping is extremely low with a value 
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usually less than 1%. These result in conditions that make cantilever support structures 

vulnerable to large amplitude vibrations and fatigue cracking caused by wind-loading. 

An example failure of a cantilevered supported structure is one that happened on July 7, 

2008 on I-65 in Tennessee. As it is seen in Figure 1-2, the sign support fell on to the 

highway because of the failure at the base of the pole. Early investigation by the 

Tennessee DOT showed that prolonged exposure to wind created by tractor trailer gusts 

may have contributed to the problem (WSMV, 2008). 

  

Figure 1-2: Failure of cantilever sign support structure along I-65 in Tennessee 

To prevent large amplitude vibration and development of fatigue cracks in cantilever and 

non-cantilevered structures, the American Association of State Highway and 

Transportation Officials (AASHTO) lists four types of wind fatigue design loads in the 

2001 Standard Specifications for Structural Supports for Highway Signs, Luminaries and 

Traffic Signals. These loads are galloping, vortex shedding, natural wind gusts, and truck 

induced gusts. 

 

1.3 Research Objective 

The research has three main objectives. The first objective is to develop the theoretical 

background of CFD. The second objective  is to compare the result of wind fatigue 

design load on cantilever sign support structure specifically for natural wind gust using 

computational fluid dynamics (CFD) with the result from the AASHTO provision which 
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is derived by considering the yearly mean wind speed.  The final objective is to show the 

application of CFD in civil engineering. This is done by: 

1. Developing the theoretical background for CFD, 

2. Analyzing the sign support structure by using a CFD software, ANSYS-CFX, to get 

the pressure, 

3. Calculate the pressure on the sign support by using the AASHTO provision for 

natural wind gust, 

4. Analyze the structure using finite element software, STAAD, to calculate the stresses 

due to the pressure from CFD analysis and AASHTO provision, and 

5. Compare the stresses from the CFD analysis and AASHTO provision. 

 

1.4 Thesis Organization 

The thesis is organized into 5 chapters. Chapter 2 presents the theoretical background of 

CFD. This includes the governing differential equations of fluid flow, numerical 

discretization, solution algorithm for the Navier-Stokes equation in both steady and 

unsteady flow, types of grids and convergence. It also gives background information 

about the ANSYS-CFX CFD software. Chapter 3 outlines the specifications of AASHTO 

in relation to sign support structures. Chapter 4 presents the pressure and stress analysis 

for both the AASHTO provision and ANSYS-CFX CFD analysis. Lastly, Chapter 5 

summarizes the results from Chapter 4 and presents conclusions and recommendations. 
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CHAPTER II 

 

 

MATHEMATICAL FORMULATION 

                                            

2.1 Governing Differential Equations 

The equations governing the fluid motion are derived based on the three fundamental 

principles of mass, momentum and energy conservation. These equations are continuity, 

momentum and energy. 

A continuity equation describes the conservative transport of some kind of quantity. The 

general form of the continuity equation is: 

 𝜕𝜙

𝜕𝑡
 + ∇. 𝑓 = 𝑠  (2.1) 

where 𝝓 is some quantity, f is the function describing the flux of 𝝓 and s describes the 

generation or removal rate of 𝝓. 

In fluid dynamics, the continuity equation is a mathematical statement that states the rate 

at which a mass enters the system is equal to the rate at which the mass leaves the system. 

The differential form of the continuity equation for fluids is given by: 

 
𝜕𝜌

𝜕𝑡
 +  ∇ 𝜌𝑢 =0 (2.2) 

𝜌 is the fluid density, t is the time, and u is the fluid velocity. If the density is constant, as 

in the case of an incompressible flow, the mass continuity equation simplifies to a 

volume continuity equation as: 

∇. 𝑈 = 0 (2.3) 

The second type of equation that is used to describe fluid flow is the momentum 

equation. It is derived based on Newton‟s second law of motion which is given by: 

𝜌
𝐷𝑉

𝐷𝑡
=  ∇ζ

ij  
− ∇p +  ρ𝐹 (2.4) 

where V is the fluid velocity vector, ζ
ij  

is the viscous stress, P is the pressure, and F is the 

body force. If the fluid is incompressible and the coefficient of viscosity, μ, is constant 

then the momentum equation simplifies to: 
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𝜌
𝐷𝑉

𝐷𝑡
=  μ∇2V − ∇p +  ρ𝐹 (2.5) 

In situations where the fluid may be treated as incompressible and temperature 

differences are small, the continuity and momentum equations are sufficient to specify 

the velocity and pressure. But if heat flux occurs (temperature is not constant), at least 

one additional equation is required. In such a case, the energy equation is used. The 

energy equation is derived based on the first law of thermodynamics. The first law of 

thermodynamics states that energy can be transformed (changed from one form to 

another) but it can neither be created nor destroyed. In other words, the total energy of the 

system is conserved. The energy equation can be expressed mathematically as: 

𝜌
𝐷𝑒

𝐷𝑡
+  𝜌 ∇. 𝑉 =

𝜕𝑄

𝜕𝑡
− ∇. 𝑞 + Φ (2.6) 

where Q is the heat source term, Φ is the dissipation term, ∇. 𝑞 is the heat loss by 

conduction, and e is the internal energy. q can be expressed as: 

𝑞 = −𝑘∇𝑇 (2.7) 

where k is the coefficient of thermal conductivity, and T is the temperature. If the fluid is 

incompressible and the coefficient of viscosity of the fluid, μ, and the coefficient of 

thermal conductivity, k, are constant, the equation reduces to: 

𝜌
𝐷𝑒

𝐷𝑡
=

𝜕𝑄

𝜕𝑡
+  𝑘∇2𝑇 +  Φ (2.8) 

For this study it is assumed that fluids are incompressible and the temperature difference 

is very small. As a result, the momentum and the continuity equation suffice to solve for 

the pressure and velocity (i.e., the energy equation is not needed). 

 

2.2 Navier–Stokes Equations 

The momentum equation together with the continuity equation makes up the Navier-

Stokes equations to describe the flow of incompressible Newtonian fluids. It is used to 

describe the motion or flow of either liquids or gases. 

The momentum equation in the Cartesian coordinate system can be expressed as: 

X direction: 

𝜌( 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
 ) =−

𝜕𝑝  

𝜕𝑥
+  𝜇( 

𝜕2𝑢

𝜕𝑥 2 +
𝜕2𝑢

𝜕𝑦 2 +  
𝜕2𝑢

𝜕𝑧 2  ) + s𝑢  (2.9) 

Y direction: 

 𝜌( 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
 ) =−

𝜕𝑝  

𝜕𝑦
+  𝜇( 

𝜕2𝑣

𝜕𝑥 2
+

𝜕2𝑣

𝜕𝑦 2
+  

𝜕2𝑣

𝜕𝑧 2
 ) + 𝑠𝑣 (2.10) 
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Z direction: 

𝜌( 
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
 ) =−

𝜕𝑝  

𝜕𝑧
+ 𝜇( 

𝜕2𝑤

𝜕𝑥 2 +
𝜕2𝑤

𝜕𝑦 2 +  
𝜕2𝑤

𝜕𝑧 2  ) + 𝑠𝑤  (2.11) 

The continuity equation for incompressible fluid in Cartesian coordinate system can also 

be expressed as:  

𝜕𝑢

 𝜕𝑥
+  

𝜕𝑣

𝜕𝑦
+  

𝜕𝑤

𝜕𝑧
= 0 (2.12) 

Unlike algebraic equations, the Navier-Stokes equations are differential equations that do 

not explicitly establish relationships among the variables of interest (e.g. pressure and 

velocity). Rather they establish relationships among the rates of change. 

The three momentum equations combined with the continuity equation provide a 

complete mathematical description of the flow of an incompressible Newtonian fluid. 

The Navier-Stokes equations provide four equations and where there are four unknown 

(u, v, w and p). This implies that the problem can be solved by manipulating 

simultaneous solution of the equations. However, they are not amenable to exact 

mathematical solution except in a few cases because they are non-linear, second order 

partial differential equations.  

In order to solve the Navier-Stokes equations the partial differential equations should be 

replaced by a set of algebraic equations. To do this their numerical analogue must be 

generated by a process called discretization. There are various techniques of numerical 

discretization:   

A) Finite element  

B) Finite difference  

C) Finite volume   

D) Spectral methods.  

For this study only the finite difference and finite volume methods will be discussed in 

detail. 

 

2.3 The Finite Difference Method 

The finite difference method (FDM) is the oldest method for numerical solution of partial 

differential equations, which is believed to have been introduced by Euler in the 18
th

 

century. 

In the FDM the solution domain is covered with a grid as shown in Figure 2-1 as an 

illustrative one-dimensional example. At each grid point, the differential equation is 

approximated by replacing the partial derivatives by approximations in terms of the nodal 

values of the function. The result is one algebraic equation per grid node in which the 

variable value at that and a certain number of neighbor nodes appear as unknowns. 
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i-1i-2 ii-3 i+1 i+2 i+3

 
Figure 2-1: 1D Cartesian grid for FD method 

Taylor series expansion is used to write the derivative of the variables at various points in 

space or time. As an example consider the discretization of dependent variable velocity u 

with respect to independent variable spatial coordinate x. Consider the curve in Figure 2-

2 which represents the variation of u with respect to x, i.e., u(x). 

 

  

                                      u 
 

                               
                               𝑢𝑖 + 1 
                       

 

                                    𝑢𝑖  
   

                               𝑢𝑖 − 1                     
                               

 

 

                                                𝑥𝑖 − ∆𝑥                𝑥𝑖      𝑥𝑖 + ∆𝑥                     x 
 

Figure 2-2: Points for Taylor series expansion 

 

A set of discrete points, ui‟s represent the curve u(x) after discretization. Taylor series 

expansion can be used to relate each discretized point. Thus the velocity ui can be 

expressed in terms of Taylor series expansion about point i as: 

𝑢𝑖+1= 𝑢𝑖 +   
𝜕𝑢

𝜕𝑥
 ∆𝑥 +  

𝜕2𝑢

𝜕𝑥2
 

 ∆𝑥 2

2
 +  

𝜕3𝑢

𝜕𝑥3
 

 ∆𝑥 3

6
+ ⋯ (2.13) 

𝑢𝑖−1= 𝑢𝑖 −  
𝜕𝑢

𝜕𝑥
 ∆𝑥 +  

𝜕2𝑢

𝜕𝑥2
 

 ∆𝑥 2

2
 −  

𝜕3𝑢

𝜕𝑥3
 

 ∆𝑥 3

6
+ ⋯ (2.14) 

The mathematical solution will be exact, if ∆𝑥 is small and the number of terms are 

infinite. Ignoring terms leads to an error called truncation error. For the second order 

expression, the truncation error is: 
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𝜕𝑛 𝑢

𝜕𝑥𝑛 
 ∆𝑥 𝑛−1

𝑛!
 

∞

𝑛=3
 (2.15) 

By subtracting or adding Equations (2.13) and (2.14), a new equation can be found for 

the first and second derivatives at central position i. These derivatives are: 

  
𝜕𝑢

𝜕𝑥
 

𝑖
=  

𝑢𝑖+1−𝑢𝑖−1

2∆𝑥
−  

𝜕3𝑢

𝜕𝑥3
 

 ∆𝑥 2

6
 (2.16) 

  
𝜕2𝑢

𝜕𝑥2 
𝑖

=  
𝑢𝑖+1 −2𝑢 𝑖 + 𝑢 𝑖+1

2∆𝑥
 + 𝑂(∆𝑥2) (2.17) 

Equations (2.16) and (2.17) are known as central difference equations to the first and 

second derivative, respectively. Alternatively, these can be found in a separate manner by 

considering Equations (2.13) or (2.14) in isolation. Looking at Equation (2.13), the first 

derivative can be formed as: 

  
𝜕𝑢

𝜕𝑥
 

𝑖
=  

𝑢𝑖+1−𝑢𝑖−1

∆𝑥
−  

𝜕2𝑢

𝜕𝑥2 
∆𝑥

2
 (2.18) 

This is known as a forward difference approximation. Similarly, another first order 

derivative can be formed by considering Equation (2.14): 

  
𝜕𝑢

𝜕𝑥
 

𝑖
=  

𝑢𝑖−𝑢 𝑖−1

∆𝑥
−  

𝜕2𝑢

𝜕𝑥2 
∆𝑥

2
 (2.19) 

This is known as a backward difference approximation. Considering the above 

expressions, the different formulas are classified by either considering the geometrical 

relationship of points (central, backward and forward difference) or by the accuracy of 

the expression (for instance central difference is second order accurate as higher terms 

are neglected).  

It is also possible to obtain higher order approximations by applying Taylor series 

expansion for different numbers of points. For instance, if a 3 point cluster is considered 

it would result in a second order approximation for the forward difference (Equation 

2.20) and backward difference (Equation 2.21), rather than a first order approximation.  

 
𝜕𝑢

𝜕𝑥
 

𝑖
=  

1

2∆𝑥
  −3𝑢𝑖 +  4𝑢𝑖+1 +  𝑢𝑖+2  +  𝑂(∆𝑥)2 (2.20) 

 
𝜕𝑢

𝜕𝑥
 

𝑖
=  

1

2∆𝑥
  𝑢𝑖−2 −  4𝑢𝑖−1 +  3𝑢𝑖   +  𝑂(∆𝑥)2 (2.21) 

Using the above expressions a numerical analogue of the partial differential can be 

created. In order to apply FDM of discretization to the whole flow field: 

1. Many points (nodes) are placed in the domain to be simulated. 
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2. The derivatives of the flow variables are written in the difference form at each of 

these points by relating the values of the variables at each point to its neighboring 

points. 

3. The above process is applied at all points in the domain, a set of equations are 

obtained which are solved numerically to give the values of the variables 

(pressure and velocity). 

Even though FDM is the easiest method to use for simple geometries it has the following 

limitations: 

1. Conservation (mass, momentum, energy etc) is not enforced unless special care is 

taken. 

2. It is used for simple geometries and cannot be used for complex geometries. 

Because of these limitations, FDM is not used in CFD codes. Rather a finite volume 

method which overcomes these limitations is used in most of the CFD codes. 
 

2.4 The Finite Volume Method 

The finite volume method (FVM) uses the integral form of the conservation equations as 

its starting point. The solution domain is subdivided into a finite number of contiguous 

control volumes (CVs) as shown in Figure 2-3 and the conservation equations are applied 

to each CV. The values of the variables are calculated in computational nodes which are 

located at the centroid of each CV. Interpolation is used to express variable values at the 

CV surface in terms of the nodal (CV-center) values. Appropriate quadrature formulae 

are used to approximate surface and volume integrals. As a result, one obtains an 

algebraic equation for each CV, in which a number of nodal values appear. 

 

W P E

w e

Figure 2-3: Finite volume in one dimension 

 

Consider a finite volume or cell shown in Figure 2-3. The partial differential equation is 

discretized about a reference point P (centroid of the control volume). The neighboring 
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volumes are denoted as W, volume to the west side of P, and E, volume to the east side of 

P.  w and e are the boundary faces of the volume with centroid P. The second derivative 

of the variable at P can be written as: 

 
𝜕2𝑢

𝜕𝑥2 =
[(

𝜕𝑢

𝜕𝑥
)𝑒−(

𝜕𝑢

𝜕𝑥
)𝑤 ]

𝑥𝑒−𝑥𝑤
 (2.22) 

The first derivative at volume faces can be written as to be the difference in the value of 

the variables at the neighboring volume centroids: 

[
𝜕𝑢

𝜕𝑥
]𝑒 =

𝑢𝐸− 𝑢𝑃

𝑥𝐸−𝑥𝑝

 (2.23) 

 

[
𝜕𝑢

𝜕𝑥
]𝑤 =

𝑢𝑃− 𝑢𝑊

𝑥𝑃−𝑥𝑊

 (2.24) 

The finite volume method has the following advantages: 

A) The most compelling feature of the FVM is that the resulting solution satisfies the 

conservation of quantities such as mass, momentum, and energy. This is exactly 

satisfied for any control volume as well as for the whole computational domain 

and for any number of control volumes. 

B) The finite volume method can accommodate any type of grid, so it is suitable for 

complex geometries. 

C) The finite volume method is simple to understand and program.  

 

2.5 Solution Algorithm for Navier-Stokes Equation in Steady Flow 

2.5.1 Introduction 

The momentum and continuity equations for 2D steady (the velocity doesn‟t change with 

respect to time) and incompressible (density of the fluid doesn‟t change with respect to 

time) flow is given by: 

 

X-momentum equation: 
𝜕

𝜕𝑥
 𝜌𝑢𝑢 +

𝜕

𝜕𝑦
 𝜌𝑣𝑢 =

𝜕

𝜕𝑥
 𝜇

𝜕𝑢

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝜇

𝜕𝑢

𝜕𝑦
 −

𝜕𝑝

𝜕𝑥
+ 𝑆𝑢  (2.25) 

 

Y-momentum equation: 
𝜕

𝜕𝑥
 𝜌𝑢𝑣 +

𝜕

𝜕𝑦
 𝜌𝑣𝑣 =

𝜕

𝜕𝑥
 𝜇

𝜕𝑣

𝜕𝑥
 +

𝜕

𝜕𝑦
 𝜇

𝜕𝑣

𝜕𝑦
 −

𝜕𝑝

𝜕𝑦
+ 𝑆𝑣 (2.26) 

 

Continuity equation: 
𝜕

𝜕𝑥
 𝜌𝑢 +

𝜕

𝜕𝑦
 𝜌𝑣 = 0 (2.27) 
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 The solution of Equations (2.25)-(2.27) presents two problems: 

 

 The momentum equation contains non-linear quantities. For example, the first     

term of Equation (2.25) is the x-derivative of𝜌𝑢2. 

 All three equations are intricately coupled because every velocity component 

appears in each momentum equation and in the continuity equation. 

To solve the above equations, an iterative solution strategy is employed. There are 

several different methods: 

A) Semi-Implicit Method for Pressure Linked Equations (SIMPLE) 

B) SIMPLE Revised (SIMPLER) 

C) SIMPLE-Consistent (SIMPLEC) 

D) Pressure Implicit with Splitting of Operators (PISO) 

This study only considers the SIMPLE algorithm in detail for two reasons. First, it is 

relatively straightforward and has been successfully implemented in numerous CFD 

procedures. Second, it can produce savings in computational effort due to improved 

convergence. 

 

2.5.2 Types of Grids 

The finite volume method starts with the discretization of the flow domain and the 

Navier-Stokes equation. Depending on where the flow variables (velocity and pressure) 

are located, there are two types of grids. These are: 

A) Collocated Grid Arrangement 

B) Staggered Grid Arrangement  

 

Collocated Grid Arrangement 

In collocated grid arrangement the velocities are defined at the same location as the scalar 

variables such as pressure, temperature, etc. This arrangement seems logical. However, if 

velocities and pressures are both defined at the nodes of an ordinary control volume a 

highly non- uniform pressure field can act like a uniform field in the discretized 

equations. To demonstrate this, consider the two dimensional situation shown in Figure 

2-4 where a uniform grid is used for simplicity. 
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                            Figure 2-4: Checker-board pressure field  

 

 

If pressures at e and w are obtained by linear interpolation, the pressure gradient term 
𝜕𝑝

𝜕𝑥
  in the x-momentum equation is given by 

𝜕𝑝

𝜕𝑥
=

𝑝𝑒 − 𝑝𝑤

𝛿𝑥
=

 
𝑝𝐸 + 𝑝𝑃

2  −  
𝑝𝑃 + 𝑝𝑤

2  

𝛿𝑥
=  

𝑝𝐸 − 𝑝𝑊

2𝛿𝑥
=

100 − 100

2𝛿𝑥
= 0   

Similarly, the pressure gradient 
𝜕𝑝

𝜕𝑦  for the y-momentum equation is: 

𝜕𝑝

𝜕𝑦
=

𝑝𝑛 − 𝑝𝑠

𝛿𝑦
=

 
𝑝𝑁 + 𝑝𝑃

2  −  
𝑝𝑃 − 𝑝𝑆

2  

𝛿𝑦
=  

𝑝𝑁 − 𝑝𝑆

2𝛿𝑦
=

100 − 100

2𝛿𝑦
= 0   

As it is seen in the above expressions the pressure at the nodal point P is zero which is 

unrealistic and non-physical. It is clear that, if the velocities are defined at the scalar grid 

nodes, the influence of pressure is not properly represented in the discretized momentum 

equations. 

E

S

N

w e

n

s

PW

u CV

v CV

Scalar
Cv

J-1

j

J

j+1

J+1

J-2

j-1

I i+1 I+1iI-1i-1I-2
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Staggered Grid Arrangement 

A remedy to solve the problem associated with collocated grid arrangement is to use a 

staggered grid for velocity components. The idea is to evaluate scalar variables, such as 

pressure, density, temperature etc., at ordinary nodal points but to calculate velocity 

components on staggered grids centered around the cell faces. Consider the use of a 

staggered grid arrangement as shown in Figure 2-5. The scalar variables, including 

pressure, are stored at the nodes marked (●). The velocities are defined at the (scalar) cell 

faces in between the nodes and are indicated by arrows. 

 

 
      

Figure 2-5: 2D staggered grid arrangement 

Horizontal (→) arrows indicate the locations for the u-velocities and vertical (↑) arrows 

denote those for the v-velocities. u-velocities are stored at scalar cell faces e and w and 

the v-velocities at faces n and s. 

In staggered grid arrangement the pressure gradients are evaluated at a location where the 

velocities are located i.e. at CV boundary points.  

E

S

N

w e

n

s

PW

u CV
v CV

Scalar
Cv

J-1

j

J

j+1

J+1

J-2

j-1

I i+1 I+1iI-1i-1I-2
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Consider the checker board pressure field shown in Figure 2-6. The pressure gradient 

term 
𝜕𝑝

𝜕𝑥
  is given by: 

 𝜕𝑝

𝜕𝑥
 
𝑤

=
𝑝𝑝 −𝑝𝑊

∆𝑥𝑢
 =

50−100

∆𝑥𝑢
≠ 0 (2.28) 

Similarly,  
𝜕𝑝

𝜕𝑦   for the y-control volume is given by: 

 𝜕𝑝

𝜕𝑦
 
𝑠

=
𝑝𝑝 −𝑝𝑠

∆𝑦𝑣
 =

50−100

∆𝑦𝑣
≠ 0 (2.29) 

                                                                                                   

 
Figure 2-6: Checker board of pressure field 

 

Substituting the values of pressures (as shown in Figure 2-6) into Equations 2.28 and 2.29 

yields non-zero pressure gradient terms. The staggering of the velocity avoids the 

unrealistic behavior of the discretized momentum equation for spatially oscillating 

pressures like the „checker-board‟ field. A further advantage of staggered grid 

arrangement is that it is computationally efficient in such a way that it has low memory 

requirement.  
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2.5.3 Discretization of Momentum Equations 

Before discussing the discretization of the momentum equations, first the numbering of 

the staggered grid arrangement must be explored. Consider the staggered grid 

arrangement as shown in Figure 2-7. 

 

 

Figure 2-7: Staggered grid arrangements 

 

In Figure 2-7 the unbroken grid lines are numbered using capital letters. In the x-direction 

the numbering is I-1, I, I+1, etc. and in the y-direction J-1, J, J+1, etc. The dashed lines 

that construct the cell faces are denoted by lower case letters i-1, i, i+1 and j-1, j, j+1 in 

the x-and y-directions, respectively. 

A subscript system based on this numbering allows the locations of grid nodes and cell 

faces to be defined with precision. Scalar nodes, located at the intersection of two grid 

lines, are identified by two capital letters: e.g., point P in Figure 2-7 is denoted by (I, J). 
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The u-velocities are stored at the e- and w-cell faces of a scalar control volume. These are 

located at the intersection of a line defining a cell boundary and a grid line and are, 

therefore, defined by a combination of a lower case letter and a capital letter, e.g., the w-

face of the cell point P is identified by (i, J). For the same reasons the storage locations 

for the v-velocities are combinations of a capital and a lower case letter: e.g., the s-face is 

given by (I, j). 

 

Discretization of the x-momentum equation 

Figure 2-8 shows a u control volume and neighboring velocity components which is used 

for the discretzation of the x-momentum equation. 

 

Figure 2-8: u-control volume and its neighboring velocity components 
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Integrating the x-momentum equation given by Equation (2.25) over the control volume 

shown in figure 2-8: 

 
𝑑

𝑑𝑥
 𝜌𝑢𝑢 𝑑𝑉

𝐶𝑉
+  

𝑑

𝑑𝑦
 𝜌𝑣𝑢 𝑑𝑉

𝐶𝑉
  

=  
𝑑

𝑑𝑥
 𝜇

𝑑𝑢

𝑑𝑥
 𝑑𝑉 +

𝐶𝑉
 

𝑑

𝑑𝑦
(𝜇

𝐶𝑉

𝑑𝑢

𝑑𝑦
)𝑑𝑉 +   −

𝜕𝑝

𝜕𝑥𝐶𝑉
𝑑𝑉 +  𝑠𝑢𝑐𝑣

                                                                              

Assuming constant area, constant viscosity and constant density the above integral yields: 

 𝜌𝑢𝑢 𝑒 −  𝜌𝑢𝑢 𝑤 +  𝜌𝑣𝑢 𝑛 −  𝜌𝑣𝑢 𝑠   

 = 𝜇  
𝜕𝑢

𝜕𝑥
 

𝑒
− 𝜇  

𝜕𝑢

𝜕𝑥
 

𝑤
+ 𝜇  

𝜕𝑢

𝜕𝑦
 

𝑛
− 𝜇(

𝜕𝑢

𝜕𝑦
)𝑠 − ∆𝑉

𝑝𝑒−𝑝𝑤

∆𝑥
+ ∆𝑉𝑠𝑢  

   

Assume the convective fluxes are known: 

                𝐹𝑛 = (𝜌𝑣)𝑛                             𝐹𝑠 = (𝜌𝑣)𝑠 

               𝐹𝑒 =  𝜌𝑢 𝑒                               𝐹𝑤 =  𝜌𝑢 𝑤  
 

A central difference scheme (CDS) is used for the viscous term and upwind difference 

scheme (UDS) is used for convective term: 

𝐹𝑒𝑢𝑃 − 𝐹𝑤𝑢𝑊 +
𝐹𝑛

2
 𝑢𝑁 + 𝑢𝑃 −

𝐹𝑠

2
 𝑢𝑃 + 𝑢𝑆  

=  
𝜇

∆𝑥
  𝑢𝐸 − 𝑢𝑃 −  

𝜇

∆𝑥
  𝑢𝑃 − 𝑢𝑊 +

𝜇

∆𝑦
 𝑢𝑁 − 𝑢𝑃 −

𝜇

∆𝑦
 𝑢𝑃 − 𝑢𝑆 − ∆𝑉

𝑝𝑒−𝑝𝑤

∆𝑥
+ ∆𝑉𝑠𝑢  

Rewriting the convective fluxes: 

 𝐹𝑒 =  𝜌𝑢 𝑒    = 𝜌
(𝑢𝑖,𝐽  + 𝑢𝑖+1,𝐽 )

2
                      𝐹𝑤 =  𝜌𝑢 𝑤 =  𝜌

(𝑢𝑖−1,𝐽  + 𝑢𝑖,𝐽 )

2
 

 𝐹𝑛 =  𝜌𝑣 𝑛  = 𝜌
(𝑉𝐼−1,𝑗+1+ 𝑉𝐼,𝑗+1)

2
                 𝐹𝑠 = (𝜌𝑣)𝑠    = 𝜌

(𝑉𝐼−1,𝑗 + 𝑉𝐼,𝑗 )

2
 

Substituting the convective fluxes and rearranging the terms: 

𝑎𝑖,𝐽𝑢𝑖,𝐽 = 𝑎𝑖−1,𝐽𝑢𝑖−1,𝐽 + 𝑎𝑖+1,𝐽𝑢𝑖+1,𝐽 + 𝑎𝑖,𝐽−1𝑢𝑖,𝐽−1 + (2.30) 

                  𝑎𝑖,𝐽+1𝑢𝑖,𝐽+1 + 𝑠𝑢∆𝑉 −
𝑝𝐼,𝐽 −𝑝𝐼−1,𝐽

∆𝑥
∆𝑉                         

where: 

𝑎𝑖,𝐽 = 𝐹𝑒 +
1

2
𝐹𝑛 −

1

2
𝐹𝑠 + 𝐷𝑒 + 𝐷𝑤 + 𝐷𝑛 + 𝐷𝑠 

𝑎𝑖−1,𝐽=𝐹𝑤 + 𝐷𝑤                                 

𝑎𝑖+1,𝐽=𝐷𝑒  
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𝑎𝑖,𝐽−1= 1

 2
𝐹𝑠 + 𝐷𝑠                             

𝑎𝑖,𝐽+1=−1

 2
𝐹𝑛 + 𝐷𝑛  

𝐷𝑒 =
𝜇

∆𝑥
                𝐷𝑤 =

𝜇

∆𝑥
                 𝐷𝑛 =

𝜇

∆𝑦
           𝐷𝑠  =

𝜇

∆𝑦
       

Equation (2.30) can be re-written as: 

𝑎𝑖,𝐽𝑢𝑖,𝐽 =  𝑎𝑛𝑏 𝑢𝑛𝑏 + 𝑏𝑖,𝐽𝑛𝑏 − (𝑝𝐼,𝐽 − 𝑝𝐼−1,𝐽 )𝐴𝑖,𝐽  (2.31) 

Where: 

𝑎𝑛𝑏 𝑢𝑛𝑏 = 𝑎𝑖−1,𝐽𝑢𝑖−1,𝐽 + 𝑎𝑖+1,𝐽𝑢𝑖+1,𝐽 + 𝑎𝑖,𝐽−1𝑢𝑖,𝐽−1 + 𝑎𝑖,𝐽+1𝑢𝑖,𝐽+1 

𝑏𝑖,𝐽 = 𝑠𝑢∆𝑉                          𝐴𝑖,𝐽  =∆𝑉
∆𝑥  

 

Discretization of the y-momentum equation 

Figure 2-9 shows a v control volume and neighboring velocity components which is used 

for the discretzation of the y-momentum equation. 

`  

Figure 2-9: v-control volume and its neighboring velocity components 
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Similarly, integrating the momentum equation (Equation 2.26) in the y-direction over the 

control volume and rearranging all the terms: 

𝑎𝐼,𝑗𝑣𝐼,𝑗 = 𝑎𝐼,𝑗−1𝑣𝐼,𝑗−1 + 𝑎𝐼+1,𝑗𝑣𝐼+1,𝑗 + 𝑎𝐼,𝑗+1𝑣𝐼,𝑗 +1 + (2.32) 

                   𝑎𝐼−1,𝑗𝑣𝐼−1,𝑗 + 𝑠𝑢∆𝑉 −
𝑝𝐼,𝐽 −𝑝𝐼,𝐽−1

∆𝑦
∆𝑉                                                                     

where: 

𝑎𝐼,𝑗 = 𝐹𝑛 +
1

2
𝐹𝑒 −

1

2
𝐹𝑤 + 𝐷𝑒 + 𝐷𝑤 + 𝐷𝑛 + 𝐷𝑠 

𝑎𝐼,𝑗−1=𝐹𝑠 + 𝐷𝑠                                            𝑎𝐼,𝑗 +1=𝐷𝑛  

𝑎𝐼+1,𝑗 =− 1

 2
𝐹𝑒 + 𝐷𝑒                                      𝑎𝐼−1,𝑗 =1

 2
𝐹𝑤 + 𝐷𝑤  

𝐹𝑒 =  𝜌𝑢 𝑒= 𝜌
(𝑢𝑖+1,𝐽 −1  + 𝑢𝑖+1,𝐽 )

2
                  𝐹𝑛 = (𝜌𝑣)𝑛 = 𝜌

(𝑉𝐼,𝑗 + 𝑉𝐼,𝑗+1)

2
 

 𝐹𝑤 =  𝜌𝑢 𝑤 =  𝜌
(𝑢𝑖,𝐽  + 𝑢𝑖,𝐽−1)

2
                   𝐹𝑠 = (𝜌𝑣)𝑠= 𝜌

(𝑉𝐼,𝑗 + 𝑉𝐼,𝑗−1)

2
 

𝐷𝑒 =
𝜇

∆𝑥
                                                           𝐷𝑤 =

𝜇

∆𝑥
                              

𝐷𝑛 =
𝜇

∆𝑦
                                                          𝐷𝑠  =

𝜇

∆𝑦
       

Equation 2.32 can be rewritten as: 

𝑎𝐼,𝑗𝑣𝐼,𝑗 =  𝑎𝑛𝑏 𝑣𝑛𝑏 + 𝑏𝐼,𝑗𝑛𝑏 − (𝑝𝐼,𝐽 − 𝑝𝐼,𝐽−1)𝐴𝐼,𝑗  (2.33) 

where: 

𝑎𝑛𝑏 𝑣𝑛𝑏 = 𝑎𝐼,𝑗−1𝑣𝐼,𝑗−1 + 𝑎𝐼+1,𝑗𝑣𝐼+1,𝑗 + 𝑎𝐼,𝑗+1𝑣𝐼,𝑗+1 +  𝑎𝐼−1,𝑗𝑣𝐼−1,𝑗  

                    
𝑏𝐼,𝑗 = 𝑠𝑢∆𝑉 

𝐴𝐼,𝑗  =∆𝑉
∆𝑦  

 

2.5.4 The SIMPLE Algorithm 

The acronym SIMPLE stands for Semi-Implicit Method for Pressure Linked Equations. It 

is a guess-and-correct (iterative), procedure for the calculation of pressure on the 

staggered grid arrangement.  The SIMPLE algorithm is briefly outlined in Figure 2-10. 
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Solve the discretized momentum equation
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Solve pressure correction equation

Correct pressure and velocity
𝑝𝐼,𝐽 = 𝑝𝐼,𝐽
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∗ + (𝑝𝐼−1,𝐽

′ − 𝑝𝐼,𝐽
∗ )𝑑𝑖,𝐽  

𝑣𝐼,𝑗 = 𝑣𝐼,𝑗
∗ +(𝑝𝐼−1,𝐽

∗ − 𝑝𝐼,𝐽
∗ )𝑑𝑖,𝐽  
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Figure 2-10: Flow chart for SIMPLE algorithm in steady flow 

 

The calculations in the SIMPLE algorithm start by initially guessing pressure 𝑝∗. The 

discretized momentum equations given in Equation 2.31 and 2.33 are solved to give 

velocity components, 𝑢∗ 𝑎𝑛𝑑 𝑣∗ as follows: 

𝑎𝑖,𝐽𝑢𝑖,𝐽
∗ =  𝑎𝑛𝑏 𝑢𝑛𝑏

∗ + 𝑏𝑖,𝐽𝑛𝑏 − (𝑝𝐼,𝐽
∗ − 𝑝𝐼−1,𝐽

∗ )𝐴𝑖,𝐽  (2.34) 

 𝑎𝐼,𝑗𝑣𝐼,𝑗
∗ =  𝑎𝑛𝑏 𝑣𝑛𝑏

∗ + 𝑏𝐼,𝑗𝑛𝑏 − (𝑝𝐼,𝐽
∗ − 𝑝𝐼,𝐽−1

∗ )𝐴𝐼,𝑗  (2.35) 
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Calculating 𝑢∗ 𝑎𝑛𝑑 𝑣∗ and having 𝑝∗ from initial guess, a correction is applied before 

proceeding to the next iteration. The new pressure p and the new velocities u and v after a 

correction is applied are given by: 

 𝑝 = 𝑝∗ + 𝑝′ (2.36) 

 𝑢 = 𝑢∗ + 𝑢′ (2.37) 

 𝑣 = 𝑣∗ + 𝑣 ′ (2.38) 

where 𝑝′ , 𝑢′  𝑎𝑛𝑑 𝑣 ′  are corrections for pressure and velocities, respectively. 

The momentum equations can be re-written using the corrected pressure p and velocities 

u and v as: 

𝑎𝑖,𝐽𝑢𝑖,𝐽 =  𝑎𝑛𝑏 𝑢𝑛𝑏 + 𝑏𝑖,𝐽𝑛𝑏 − (𝑝𝐼,𝐽 − 𝑝𝐼−1,𝐽 )𝐴𝑖,𝐽  (2.39) 

𝑎𝐼,𝑗𝑣𝐼,𝑗 =  𝑎𝑛𝑏 𝑣𝑛𝑏 + 𝑏𝐼,𝑗𝑛𝑏 − (𝑝𝐼,𝐽 − 𝑝𝐼,𝐽−1)𝐴𝐼,𝑗  (2.40) 

Subtracting Equation (2.39) from (2.34) yields: 

𝑎𝑖,𝐽 𝑢𝑖,𝐽 − 𝑢𝑖,𝐽
∗  =  𝑎𝑛𝑏 (𝑢𝑛𝑏 − 𝑢𝑛𝑏

∗ ) +𝑛𝑏 ( 𝑝𝐼−1,𝐽 − 𝑝𝐼−1,𝐽
∗  − (𝑝𝐼,𝐽 − 𝑝𝐼,𝐽

∗ )) 𝐴𝑖,𝐽  (2.41) 

Rearranging Equations (2.36) and (2.37) and substituting into equation (2.44) gives: 

 𝑎𝑖,𝐽𝑢𝑖,𝐽
′ =  𝑎𝑛𝑏 𝑢𝑛𝑏

′
𝑛𝑏 + (𝑝𝐼−1,𝐽

′ − 𝑝𝐼,𝐽
∗ )𝐴𝑖,𝐽  (2.42) 

Similarly, subtracting Equations (2.35) from (2.40) and equating Equations (2.36) and 

(2.38) results in: 

𝑎𝐼,𝑗𝑣𝐼,𝑗
′ =  𝑎𝑛𝑏 𝑣𝑛𝑏

′ +𝑛𝑏 (𝑝𝐼−1,𝐽
∗ − 𝑝𝐼,𝐽

∗ )𝐴𝑖,𝐽  (2.43) 

To simplify Equations (2.42) and (2.43),  𝑎𝑛𝑏 𝑢𝑛𝑏
′

𝑛𝑏  and  𝑎𝑛𝑏 𝑣𝑛𝑏
′

𝑛𝑏  terms are dropped. 

Leaving out these terms is the main approximation of the SIMPLE algorithm. The 

equations then simplify to: 

 𝑢𝑖,𝐽
′ = (𝑝𝐼−1,𝐽

′ − 𝑝𝐼,𝐽
∗ )𝑑𝑖,𝐽  (2.44) 

𝑣𝐼,𝑗
′ = (𝑝𝐼−1,𝐽

∗ − 𝑝𝐼,𝐽
∗ )𝑑𝐼,𝑗  (2.45) 

where:  

  𝑑𝑖,𝐽 =
𝐴𝑖,𝐽

𝑎𝑖,𝐽
                 𝑑𝐼,𝑗 =

𝐴𝐼,𝑗

𝑎𝐼,𝑗
      

Substituting Equations (2.44) and (2.45) into Equations (2.37) and (2.38), respectively, 

yields: 
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𝑢𝑖,𝐽 = 𝑢𝑖,𝐽
∗ + (𝑝𝐼−1,𝐽

′ − 𝑝𝐼,𝐽
∗ )𝑑𝑖,𝐽  (2.46) 

𝑣𝐼,𝑗 = 𝑣𝐼,𝑗
∗ +(𝑝𝐼−1,𝐽

∗ − 𝑝𝐼,𝐽
∗ )𝑑𝑖,𝐽  (2.47) 

Up to now, only the momentum equations have been considered but the velocity fields 

should also satisfy the continuity equation. Integrating the continuity equation (Equation 

2.27) over the scalar control volume shown in Figure 2-11: 

 
Figure 2-11: Scalar control volume for the discretization of the continuity equation 

 (𝜌𝑢𝐴)𝑖+1,𝐽 − (𝜌𝑢𝐴)𝑖,𝐽  +  (𝜌𝑣𝐴)𝐼,𝑗+1 − (𝜌𝑣𝐴)𝐼,𝑗  =0 (2.48) 

Substitution of the corrected velocities of Equations (2.46) and (2.47) into the discretized 

continuity Equation (2.48) and rearranging all terms gives: 

𝑎𝐼,𝐽𝑝𝐼,𝐽
′ = 𝑎𝐼+1,𝐽𝑝𝐼+1,𝐽

′ + 𝑎𝐼−1,𝐽𝑝𝐼−1,𝐽
′ + 𝑎𝐼,𝐽+1𝑝𝐼,𝐽+1

′ + 𝑎𝐼,𝐽−1𝑝𝐼,𝐽−
′ 𝑏𝐼,𝐽

′  (2.49) 

                  
where: 

𝑎𝐼,𝐽 = 𝑎𝐼+1,𝐽 + 𝑎𝐼−1,𝐽 + 𝑎𝐼,𝐽+1 + 𝑎𝐼,𝐽−1 

𝑎𝐼+1,𝐽 = (𝜌𝑑𝐴)𝑖+1,𝐽  

𝑎𝐼−1,𝐽 = (𝜌𝑑𝐴)𝑖,𝐽  

E

S

N

w e

n

s

PW
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j
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𝑎𝐼,𝐽+1 = (𝜌𝑑𝐴)𝐼,𝑗 +1 

𝑎𝐼,𝐽−1 = (𝜌𝑑𝐴)𝐼,𝑗  

𝑏𝐼,𝐽
′ = (𝜌𝑢∗𝐴)𝑖,𝐽 − (𝜌𝑢∗𝐴)𝑖+1,𝐽 + (𝜌𝑣∗𝐴)𝐼,𝑗 − (𝜌𝑣∗𝐴)𝐼,𝐽+1 

 

Equation (2.49) represents the discretized continuity equation which is used to apply the 

pressure correction 𝑝′. 

 

2.5.5 Under-Relaxation 

When applying the pressure correction it may cause divergence. To avoid this, only a 

fraction of the pressure correction is used or under-relaxation is applied.  

Under-relaxation is used for the pressure correction equation during the iterative process 

to yield a new and improved pressure 𝑝𝑛𝑒𝑤  because it is susceptible to divergence. The 

new pressure 𝑝𝑛𝑒𝑤  is given by: 

𝑝𝑛𝑒𝑤 = 𝑝∗ + 𝛼𝑝𝑝′ (2.50) 

where 𝛼𝑝  is the pressure under-relaxation factor. 𝛼𝑝  is taken between 0 and 1. A correct 

choice of under-relaxation factor  𝛼 is essential for cost-effective simulations. Too large 

of a value of 𝛼 may lead to oscillatory or even divergent iterative solutions, and a value 

which is too small will cause extremely slow convergence. 

The velocities are also under-relaxed. The iteratively improved velocity components 

𝑢𝑛𝑒𝑤  and 𝑣𝑛𝑒𝑤  are obtained from 

𝑢𝑛𝑒𝑤 = 𝛼𝑢𝑢 + (1 − 𝛼𝑢)𝑢𝑛−1 (2.51) 

𝑣𝑛𝑒𝑤 = 𝛼𝑣𝑣 + (1 − 𝛼𝑣)𝑣𝑛−1 (2.52) 

where 𝛼𝑢  and 𝛼𝑣 are the u-and v-velocity under-relaxation factors, u and v are the 

corrected velocity components without relaxation, and 𝑢𝑛−1 and 𝑣𝑛−1 represents their 

values obtained in the previous iteration. 

 

2.6 Solution Algorithm for Navier-Stokes Equation in Unsteady Flow 

Unsteady flow involves the change in velocity with respect to time. The momentum 

equation for 2D unsteady flow is given by: 

x–direction: 

𝜌( 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
 ) =−

𝜕𝑝  

𝜕𝑥
+  𝜇( 

𝜕2𝑢

𝜕𝑥 2 +
𝜕2𝑢

𝜕𝑦 2 +  
𝜕2𝑢

𝜕𝑧 2  ) + 𝑠𝑢  (2.53) 
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y–direction: 

 𝜌( 
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
 ) =−

𝜕𝑝  

𝜕𝑦
+  𝜇( 

𝜕2𝑣

𝜕𝑥 2 +
𝜕2𝑣

𝜕𝑦 2 +  
𝜕2𝑣

𝜕𝑧 2  ) + 𝑆𝑣 (2.54) 

An iterative solution strategy is also employed to solve the equations similar to the case 

of steady flow. In order to employ the solution technique, the x and y momentum 

equations are discretized over their respective control volume. 

 

Discretization of the x-momentum equation 

Integrating Equation 2.53 over the control volume shown in Figure 2-8 produces: 

 
𝑑

𝑑𝑡
 𝜌𝑢 𝑑𝑉

𝐶𝑉
+ 

𝑑

𝑑𝑥
 𝜌𝑢𝑢 𝑑𝑉

𝐶𝑉
+  

𝑑

𝑑𝑦
 𝜌𝑣𝑢 𝑑𝑉

𝐶𝑉
 

 =  
𝑑

𝑑𝑥
 𝜇

𝑑𝑢

𝑑𝑥
 𝑑𝑉 +

𝐶𝑉
 

𝑑

𝑑𝑦
(𝜇

𝐶𝑉

𝑑𝑢

𝑑𝑦
)𝑑𝑉 +  −

𝜕𝑝

𝜕𝑥𝐶𝑉
𝑑𝑉 +  𝑠𝑢∆𝑉

𝑑𝑉       

Applying the fully implicit scheme, taking the values of pressure and velocity at the new 

time step, the above integral yields: 

𝜌(𝑢−𝑢𝑜 )

∆𝑡
∆𝑉 +  𝜌𝑢𝑢 𝑒 −  𝜌𝑢𝑢 𝑤 +  𝜌𝑣𝑢 𝑛 −  𝜌𝑣𝑢 𝑠 = 𝜇(

𝜕𝑢

𝜕𝑥
)𝑒 − 𝜇(

𝜕𝑢

𝜕𝑥
)𝑤 + 𝜇(

𝜕𝑢

𝜕𝑦
)𝑛 −

                                                                                                       𝜇(
𝜕𝑢

𝜕𝑦
)𝑠 − ∆𝑉

𝑝𝑒−𝑝𝑤

∆𝑥
+ ∆𝑉𝑠𝑢  

where 𝑢𝑜  is the velocity at the old time step. 

 

Assuming the convective fluxes are known: 

𝐹𝑒 =  𝜌𝑢 𝑒                               𝐹𝑤 =  𝜌𝑢 𝑤  

              𝐹𝑛 = (𝜌𝑣)𝑛                             𝐹𝑠 = (𝜌𝑣)𝑠 

Then, substituting the convective fluxes into the results of the integral yields: 

𝜌 𝑢 − 𝑢𝑜 

∆𝑡
∆𝑉 + 𝐹𝑒𝑢𝑃 − 𝐹𝑤𝑢𝑊 +

𝐹𝑛

2
 𝑢𝑁 + 𝑢𝑃 −

𝐹𝑠

2
 𝑢𝑃 + 𝑢𝑆  

= 
𝜇

∆𝑥
  𝑢𝐸 − 𝑢𝑃 −  

𝜇

∆𝑥
  𝑢𝑃 − 𝑢𝑊 +  

𝜇

∆𝑦
 𝑢𝑁 − 𝑢𝑃 −

𝜇

∆𝑦
 𝑢𝑃 − 𝑢𝑆 − ∆𝑉

𝑝𝑒−𝑝𝑤

∆𝑥
+ ∆𝑉𝑠𝑢  

 

where the convective fluxes are given by: 

 𝐹𝑒 =  𝜌𝑢 𝑒= 𝜌
(𝑢𝑖,𝐽  + 𝑢𝑖+1,𝐽 )

2
                                 𝐹𝑛 = (𝜌𝑣)𝑛 = 𝜌

(𝑉𝐼−1,𝑗+1+ 𝑉𝐼,𝑗+1)

2
 

 𝐹𝑤 =  𝜌𝑢 𝑤 =  𝜌
(𝑢𝑖−1,𝐽  + 𝑢𝑖,𝐽 )

2
                              𝐹𝑠 = (𝜌𝑣)𝑠= 𝜌

(𝑉𝐼−1,𝑗 + 𝑉𝐼,𝑗 )

2
 

Rearranging the terms of the discretized momentum equation in the x direction yields: 
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 𝑎𝑖,𝐽 +
𝜌∆𝑉

∆𝑡
 𝑢𝑖,𝐽 = 𝑎𝑖−1,𝐽𝑢𝑖−1,𝐽 + 𝑎𝑖+1,𝐽𝑢𝑖+1,𝐽 + 𝑎𝑖,𝐽−1𝑢𝑖,𝐽−1 +  𝑎𝑖,𝐽+1𝑢𝑖,𝐽+1 + (2.55) 

                                            𝑠𝑢∆𝑉 −  
𝑝𝐼,𝐽 −𝑝𝐼−1,𝐽

∆𝑥
∆𝑉+

𝜌∆𝑉

∆𝑡
𝑢𝑖,𝐽

𝑜  

The expressions for the coefficients of Equation 2.55 are similar to Equation 2.30. 

Equation 2.55 can be rewritten as: 

𝑎 𝑖,𝐽𝑢𝑖,𝐽 =  𝑎𝑛𝑏 𝑢𝑛𝑏 + 𝑏𝑖,𝐽𝑛𝑏 − (𝑝𝐼,𝐽 − 𝑝𝐼−1,𝐽 )𝐴𝑖,𝐽  (2.56) 

where: 

𝑎𝑛𝑏 𝑢𝑛𝑏 = 𝑎𝑖−1,𝐽𝑢𝑖−1,𝐽 + 𝑎𝑖+1,𝐽𝑢𝑖+1,𝐽 + 𝑎𝑖,𝐽−1𝑢𝑖,𝐽−1 + 𝑎𝑖,𝐽+1𝑢𝑖,𝐽+1  

𝑎 𝑖,𝐽 = 𝑎𝑖,𝐽 +
𝜌∆𝑉

∆𝑡
 

𝑏𝑖,𝐽 = 𝑠𝑢∆𝑉+
𝜌∆𝑉

∆𝑡
𝑢𝑖,𝐽

𝑜  

𝐴𝑖,𝐽  =∆𝑉
∆𝑥  

 

Discretization of the y-momentum equation 

Similarly, integrating Equation 2.54 over the control volume shown in Figure 2-9 and 

rearranging all the terms yields: 

(𝑎𝐼,𝑗 +
𝜌∆𝑉

∆𝑡
)𝑣𝐼,𝑗 = 𝑎𝐼,𝑗−1𝑣𝐼,𝑗−1 + 𝑎𝐼+1,𝑗𝑣𝐼+1,𝑗 + 𝑎𝐼,𝑗+1𝑣𝐼,𝑗+1 +  𝑎𝐼−1,𝑗𝑣𝐼−1,𝑗  (2.57) 

                                                 𝑠𝑢∆𝑉 − 
𝑝𝐼,𝐽 −𝑝𝐼,𝐽−1

∆𝑦
∆𝑉+

𝜌∆𝑉

∆𝑡
𝑣𝑖,𝐽

𝑜  

The expressions for the coefficients of Equation 2.57 are similar to Equation 2.32. 

Equation 2.57 can be rewritten as:     

𝑎 𝐼,𝑗𝑣𝐼,𝑗 =  𝑎𝑛𝑏 𝑣𝑛𝑏 + 𝑏𝐼,𝑗𝑛𝑏 − (𝑝𝐼,𝐽 − 𝑝𝐼,𝐽−1)𝐴𝐼,𝑗  (2.58) 

where: 

𝑎 𝐼,𝑗 = 𝑎𝐼,𝑗 +
𝜌∆𝑉

∆𝑡
         𝑏𝐼,𝑗 = 𝑠𝑢∆𝑉+

𝜌∆𝑉

∆𝑡
𝑣𝑖,𝐽

𝑜        𝐴𝐼,𝑗  =∆𝑉
∆𝑦  

𝑎𝑛𝑏 𝑣𝑛𝑏 = 𝑎𝐼,𝑗−1𝑣𝐼,𝑗−1 + 𝑎𝐼+1,𝑗𝑣𝐼+1,𝑗 + 𝑎𝐼,𝑗+1𝑣𝐼,𝑗+1 +  𝑎𝐼−1,𝑗𝑣𝐼−1,𝑗  

Similar to the case of steady flow, the Navier-Stokes equation for unsteady flow can be 

solved using iterative techniques like SIMPLE, SIMPLEC, SIMPLER, and PISO. For the 

current study the SIMPLE algorithm is considered as shown in Figure 2-12. 
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Solve the discretized momentum equation

Initialize u, v 

Solve pressure correction equation

Correct pressure and velocity
𝑝𝐼,𝐽 = 𝑝𝐼,𝐽

∗ + 𝑝𝐼,𝐽
′  

𝑢𝑖,𝐽 = 𝑢𝑖,𝐽
∗ + (𝑝𝐼−1,𝐽

′ − 𝑝𝐼,𝐽
∗ )𝑑𝑖,𝐽  

𝑣𝐼,𝑗 = 𝑣𝐼,𝑗
∗ +(𝑝𝐼−1,𝐽

∗ − 𝑝𝐼,𝐽
∗ )𝑑𝑖,𝐽  

 

Convergence

Stop

Under-relax p, 

u and v

Set

Set time step 
∆t 

`  t=t+∆t 

U
o
=u, v

o
=v,p

o
=p 

 

`

t > tmax

Yes

Yes

No

u, v, and p

No

 

Figure 2-12: Flow chart for SIMPLE algorithm in unsteady flow 

The SIMPLE algorithm for unsteady flow starts by initializing pressure and velocity at 

time t=0. The next step is to solve momentum and pressure correction equations until 

convergence is reached for each time step. 
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The velocity correction equations, which can be derived by following a similar procedure 

for the case of steady flow, are given by: 

𝑢𝑖,𝐽
′ = (𝑝𝐼−1,𝐽

′ − 𝑝𝐼,𝐽
∗ )𝑑 𝑖,𝐽  (2.59) 

𝑣𝐼,𝑗
′ = (𝑝𝐼−1,𝐽

∗ − 𝑝𝐼,𝐽
∗ )𝑑 𝐼,𝑗  (2.60) 

where: 

𝑑 𝑖,𝐽 =
𝐴𝑖,𝐽

𝑎 𝑖,𝐽
                                                 𝑑 𝐼,𝑗 =

𝐴𝐼,𝑗

𝑎 𝐼,𝑗
      

The corrected velocity is then given by: 

  𝑢𝑖,𝐽 = 𝑢𝑖,𝐽
∗ + (𝑝𝐼−1,𝐽

′ − 𝑝𝐼,𝐽
∗ )𝑑 𝑖,𝐽  (2.61) 

   𝑣𝐼,𝑗 = 𝑣𝐼,𝑗
∗ +(𝑝𝐼−1,𝐽

∗ − 𝑝𝐼,𝐽
∗ )𝑑 𝐼,𝑗  (2.62) 

 

The pressure correction equation is derived from the continuity equation. Even though 

incompressible flow is being considered, the same pressure correction equation that was 

used for steady flow is again applied, namely Equation 2.52. 

 

2.7 Iterative Convergence and Residual 

Flow problems, in general, require iteration like the case of SIMPLE algorithm. The final 

solution exactly satisfies the discretized flow equation in the interior of the domain and 

specified conditions on its boundaries. If the iteration sequence is convergent the 

difference between the final solution of the coupled set of discretized flow equations and 

the current solution after k iterations reduces as the number of iterations increases. 

Because of the limited computational effort and time the iteration sequence is truncated 

when the solution is close to the final solution, the truncation generates a contribution to 

the numerical errors. 

To determine whether it is worth making additional effort to get closer to the final 

solution we would ideally like a truncation criterion in the form of single number that can 

be tested against a pre-set tolerance. There are different ways of constructing a practically 

useful truncation criterion in CFD, but by far the most common is based on residuals. 

The discretization of the x and y momentum equation is given by Equation 2.31 and 2.33. 

The final values of the variable of interest  (pressure and velocity) exactly satisfies these 

equations at all cells in the mesh but after a certain number of (k iterations ) iterations 

there will be a difference between the left and the right hand side. The absolute value of 

this difference at mesh cell і is termed as the local residual𝑅𝑖 . The local residual for x and 

y momentum equation is given by: 

 (𝑅𝑖
𝑢)(k)=  (𝑎𝑖,𝐽𝑢𝑖,𝐽 )𝑖

(𝑘)
− ( 𝑎𝑛𝑏 𝑢𝑛𝑏𝑛𝑏 )𝑖

(𝑘)
− (𝑏𝑖,𝐽 )𝑖

(𝑘)
+ [(𝑝𝐼,𝐽 − 𝑝𝐼−1,𝐽 )𝐴𝑖,𝐽 ]𝑖

(𝑘)
  

(2.63) 
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(𝑅𝑖
𝑣)(k)=  (𝑎𝐼,𝑗𝑣𝐼,𝑗 )𝑖

(𝑘)
− ( 𝑎𝑛𝑏 𝑣𝑛𝑏𝑛𝑏 )𝑖

(𝑘)
− (𝑏𝐼,𝑗 )𝑖

(𝑘)
+ [(𝑝𝐼,𝐽 − 𝑝𝐼,𝐽−1)𝐴𝑖,𝐽 ]𝑖

(𝑘)
  

(2.64) 

where the superscript k indicates the current iteration count. 

To determine the convergence behavior across the whole flow field, a global residual 𝑅  is 

defined. Global residual 𝑅  is simply the sum of local residual over all the control volume 

within the computational domain. After k iterations the global residual for the x and y 

momentum equation is given by: 

 ( 𝑅 𝑢)(k) =  ( 𝑅 𝑢)𝑀
𝑖=1

(k)  

             =   (𝑎𝑖,𝐽𝑢𝑖,𝐽 )𝑖
(𝑘)

− ( 𝑎𝑛𝑏 𝑢𝑛𝑏𝑛𝑏 )𝑖
(𝑘)

− (𝑏𝑖,𝐽 )𝑖
(𝑘)

+ [(𝑝𝐼,𝐽 − 𝑝𝐼−1,𝐽 )𝐴𝑖,𝐽 ]𝑖
(𝑘)

  𝑀
𝑖=1

 
(2.65) 

( 𝑅 𝑣)(k) =  ( 𝑅 𝑣)𝑀
𝑖=1

(k)   

         =   (𝑎𝐼,𝑗 𝑣𝐼,𝑗 )𝑖
(𝑘)

− ( 𝑎𝑛𝑏 𝑣𝑛𝑏𝑛𝑏 )𝑖
(𝑘)

− (𝑏𝐼,𝑗 )𝑖
(𝑘)

+ [(𝑝𝐼,𝐽 − 𝑝𝐼,𝐽−1)𝐴𝑖,𝐽 ]𝑖
(𝑘)

  𝑀
𝑖=1  (2.66) 

The absolute value used in the expression of the local residual helps to prevent the 

cancellation of positive and negative values, which results in zero global residual while 

some or all of the local residuals are non-zero. 

Observing Equations 2.65 and 2.66 the magnitude of the global residual 𝑅 𝑢  and 𝑅 𝑣 

should decrease as we get to the final solution since the magnitude of the local residual 

also decreases in convergence sequence. As a result it might seem 𝑅 𝑢  and 𝑅 𝑣  be 

satisfactory numbers that indicate convergence, However that is not always the case. For 

instance the global residual will be larger in a simulation when the velocities have a large 

magnitude, for such a case we need to specify different truncation values for 𝑅 𝑢  and 𝑅 𝑣. 

To solve this problem we need to normalize the global residual 𝑅 𝑢  and 𝑅 𝑣 of the flow 

variables after k iterations as follows: 

( 𝑅 𝑢
𝑁

)(k) =  (𝑅 
𝑢 )(𝑘)

𝐹 𝑅𝑢

 
(2.67) 

( 𝑅 𝑣
𝑁

)(k) =  (𝑅 
𝑣)(𝑘)

𝐹 𝑅𝑣

 
(2.68) 

The normalization factor 𝐹 𝑅𝑢  and
  𝐹 𝑅𝑣  are reference values of residual for flow variables u 

and v. 

There are two common types of normalization techniques. The first method involves 

normalizing the global residual by its own size at ko iteration, where ko≠1 but usually 10. 

The normalized residual for the x and y momentum equations are given by: 

𝐹 𝑅𝑢 = (𝑅 𝑢)𝑘𝑜                         
     ( 𝑅 𝑢

𝑁
)(k) =  (𝑅 

𝑢 )(𝑘)

𝐹 𝑅𝑢

 
(2.69) 
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𝐹 𝑅𝑣 = (𝑅 𝑣)𝑘𝑜                          
     ( 𝑅 𝑣

𝑁
)(k) =  (𝑅 

𝑣)(𝑘)

𝐹 𝑅𝑣

 
(2.70) 

The second method involves normalizing the global residual of the x and y momentum 

equations by the sum of the absolute value of the left hand side of Equation 2.31 and 

2.33.  The normalized residual for this method is then given by: 

𝐹 𝑅𝑢 =   (𝑎𝑖,𝐽𝑢𝑖,𝐽 )𝑖
(𝑘)

 𝑀
𝑖=1                 ( 𝑅 𝑢

𝑁
)(k)=

(𝑅 𝑢 )(𝑘)

𝐹 𝑅𝑢

 
(2.71) 

𝐹 𝑅𝑣 =   (𝑎𝐼,𝑗𝑣𝐼,𝑗 )𝑖
(𝑘)

 𝑀
𝑖=1                 ( 𝑅 𝑣

𝑁
)(k)=

(𝑅 𝑣)(𝑘)

𝐹 𝑅𝑣

 
(2.72) 

 

2.8 ANSYS-CFX CFD Software 

Computational fluid dynamics (CFD) can be applied using commercially available 

software or using computer codes which are written in MATLAB, FORTRAN, etc. For 

this study ANSYS-CFX 11.0 was used to study the interaction of the sign support 

structure with a simulated natural wind gust.  

ANSYS-CFX is capable of modeling steady state and transient flows, laminar and 

turbulent flow, heat transfer and thermal radiation etc. Like any other CFD software, 

ANSYS-CFX has three main elements: pre-processor, solver, and post-processor. Figure 

2-13 shows these elements and what they do. 
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ANSYS-CFX Solver

Pre-Processor

Post-Processor

CFX-MESH

Generate surface and volume mesh

ANSYS WORKBENCH

Used to create geometry

CFX-Solver

Solve the governing differential 

equations to get pressure, velocity and 

other variables of interest

CFX-Pre

Fluid properties, boundary conditions, 

initial conditions, solver parameters, etc 

are defined 

CFX-Post

Visualization of results including plots 

of pressure contour, streamlines, vector 

plots, Animations, etc.

 

                                               Figure 2-13: Elements of ANSYS 

The pre-processing uses ANSYS WORKBENCH, CFX-Mesh, and CFX-Pre to execute 

different tasks. Creation of geometry is the first task which is done on ANSYS 

WORKBENCH. The geometry is then taken to CFX-Mesh to generate a surface and 

volume mesh. The final task of the pre-processing section is performed on CFX-Pre 

involves defining boundary conditions, assigning fluid properties, and defining solver 

parameters. Once the pre-processing is done, CFX-Solver starts solving the governing 

differential equation to get the variable of interest i.e. pressure and velocity. The results 

are then processed in CFX-Post to get visualization of the results including plots of 

pressure contours, vector plots, animations, etc.  
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CHAPTER III 

 

 

LOADING ON SIGN SUPPORT STRUCTURES  

 

3.1 Introduction 

Cantilever sign support structures are susceptible to fatigue cracks caused by numerous 

cycles of wind and other loads. As these structures are usually placed on major highways 

and roadways there is a widespread concern regarding their reliability. In rare cases, 

cantilever sign support structures have failed, crashing into the roadway and presenting a 

hazard to the travelling public (Kaczinski et al, 1998). 

According to the fourth edition of the Standard Specifications for Structural Supports for 

Highway Signs, Luminaries, and Traffic Signals (AASHTO, 2001), “in order to avoid 

large-amplitude vibrations and to preclude the development of fatigue cracks in various 

connection details and at other critical locations”, cantilever and non-cantilever structures 

should be designed to resist four different limit states of loading. These are: 

1. Galloping, 

2. Vortex shedding, 

3. Truck-induced gust, and 

4. Natural wind gust. 

 

3.2 Galloping 

Galloping is characterized by large amplitude, resonant oscillations in a plane normal to 

the direction of wind flow. Sign support structures with horizontal attachments are most 

susceptible to galloping induced loading. The sign support structure member itself is not 

the cause of galloping, but rather it is the attachment to the horizontal cantilever arm such 

as signs and traffic signals. The susceptibility of cantilevered support structures to 

galloping depends on the geometry of the attachment, orientation of the attachments, and 

wind direction. Galloping-induced oscillations mainly occur in flexible, lightly damped 

structures with non-symmetrical cross sections. For instance, sign supports which are 

circular cylinders are not susceptible to galloping-induced vibration as they have 

symmetrical cross sections. 
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AASHTO requires overhead cantilevered sign and traffic signal support structure to be 

designed for galloping-induced cyclic loads by applying an equivalent static shear 

pressure vertically to the frontal area of the sign and traffic signal attachment. The 

magnitude of this vertical shear pressure is determined by: 

𝑃𝐺 = 1000. 𝐼𝐹        (Pa)                                                                                                   (3.1) 

𝑃𝐺 = 21. 𝐼𝐹           (Psf)                                                                                                   (3.2) 

 

3.3 Vortex Shedding 

A structural element that is exposed to a steady and uniform flow will shed vortices in a 

wake behind the element in a pattern commonly known as Von Karman vortex shedding. 

Resonant (large amplitude vibration) oscillation is produced when the vortex shedding 

frequency approaches the natural frequency of the structure, in most cases the first mode. 

Vortex shedding is prevalent in non-tapered cross sections which are exposed to critical 

wind velocity less than 20m/s (65 fps; 45 mph). Sign support structures that are 

composed of tapered members are not susceptible for vortex induced vibration when 

tapered at least 0.0117m/m (0.14in/ft). The critical wind velocity, Vc can be calculated as: 

𝑉𝑐 =
𝑓𝑛 𝑑

𝑠𝑛
     (For circular sections)                                                                                   (3.3)    

𝑉𝑐 =
𝑓𝑛 𝑏

𝑠𝑛
     (For multisided sections)                                                                              (3.4)    

Where fn is the first natural frequency of the structure; d and b are the diameter and flat-

to-flat width of the horizontal mast armor pole shaft for circular and multi-sided cross 

sections respectively; and sn is the Strouhal number. The Strouhal number shall be taken 

as 0.18 for circular sections, 0.15 for multisided sections, and 0.11 for square or 

rectangular sections. 

The first mode natural frequency for simple pole structure, without mast arms, can be 

calculated using the following equations: 

𝑓𝑛1 =
1.75

𝜋
  

𝐸𝐼𝑔

𝑊𝐿4
                                                                                                              (3.5)       

(Without luminaries mass)            

𝑓𝑛1 =
1.73

2𝜋
  

𝐸𝐼𝑔

𝑊𝐿4+0.236𝑤𝐿4
                                                                                               (3.6)                                                                                                                

(With luminaries mass)            
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Where W is the weight of the luminaries, w is the weight of the pole per unit length, g is 

the acceleration of gravity, L is the length of the pole, and I is the moment of inertia of 

the pole. For tapered pole, Iavg is replaced for I, where: 

𝐼𝑎𝑣𝑔 =
𝐼𝑡𝑜𝑝 +𝐼𝑏𝑜𝑡𝑡𝑜𝑚

2
                                                                                                          (3.7) 

The first modal frequency of poles with mast arm (cantilever sign support structure) is 

determined by using finite element based modal analysis. 

The equivalent static pressure for the design of vortex shedding induced loads shall be: 

𝑃𝑣𝑠 =
0.613𝑉𝑐

2𝐶𝑑 𝐼𝐹

2𝛽
    (Pa)                                                                                                 (3.8) 

𝑃𝑣𝑠 =
0.613𝑉𝑐

2𝐶𝑑 𝐼𝐹

2𝛽
     (Psf)                                                                                               (3.9) 

Where Cd is the drag coefficient; IF is the importance factor; and β is the damping ratio, 

which is conservatively taken as 0.005. 

The pressure calculated in Equations (3.8) and (3.9) are applied transversely to the poles 

(i.e., horizontal direction) and horizontal mast arms (i.e., vertical direction). 

 

3.4 Truck-Induced Gust 

A truck passing under a sign support structure may induce gust loads on the attachment 

mounted to the horizontal support of these structures. The equivalent static truck gust 

pressure for overhead sign and traffic signal support structures are given by: 

𝑃𝑇𝐺 = 1760𝐶𝑑𝐼𝐹      (Pa)                                                                                              (3.10) 

𝑃𝑇𝐺 = 36.6𝐶𝑑𝐼𝐹        (Psf)                                                                                             (3.11) 

The pressure is applied in the vertical direction to the cantilevered horizontal support as 

well as the area of all signs, attachments, walk ways, and/or lighting fixtures projected on 

a horizontal plane. 

For locations where the truck speed is less than 30m/s (65mph) the equivalent static 

pressure can be calculated as: 

𝑃𝑇𝐺 = 1760𝐶𝑑(
𝑉

30𝑚/𝑠
)2𝐼𝐹      (Pa)                                                                                (3.12) 

𝑃𝑇𝐺 = 36.6𝐶𝑑(
𝑉

65𝑚𝑝 𝑕
)2𝐼𝐹      (Psf)                                                                               (3.13) 

where, V is the truck speed in m/s (mph). 
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The elevation of the horizontal support and the height of the attachment above the truck 

affect the value of truck induced wind gust. However, the above equations for truck 

induced gust don‟t take into consideration these factors. 

 

3.5 Natural Wind Gust 

Turbulence is the inherent characteristics of natural wind gusts that cause fluctuations in 

wind velocity. The fluctuations in flow velocity induce fluctuation of pressure on the sign 

support structure which may finally induce vibration in the structure. 

Analytical study of the response of cantilevered support structures subjected to random 

gust loads is used to develop the expression to calculate the equivalent static natural wind 

gust pressure. The equivalent static natural wind gust pressure is given by: 

𝑃𝑁𝑊 = 250𝐶𝑑𝐼𝐹         (Pa)                                                                                             (3.14) 

𝑃𝑁𝑊 = 5.2𝐶𝑑𝐼𝐹         (Psf)                                                                                             (3.15) 

Equations (3.14) and (3.15) are used for locations with a yearly mean wind speed of 5m/s 

(11.2mph). For locations with higher yearly mean wind speed, Vmean, the equivalent static 

natural wind gust pressure is given by: 

𝑃𝑁𝑊 = 250𝐶𝑑(
𝑉𝑚𝑒𝑎𝑛

2

25
)𝐼𝐹         (Pa)                                                                                (3.16) 

𝑃𝑁𝑊 = 5.2𝐶𝑑(
𝑉𝑚𝑒𝑎𝑛

2

125
)𝐼𝐹          (Psf)                                                                               (3.17) 

The pressure is applied to the exposed surface areas seen in an elevation view oriented 

perpendicular to the assumed wind gust direction. 
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CHAPTER IV 

 

  NATURAL WIND GUST PRESSURE 

 

This chapter compares the equivalent static natural wind gust pressure which is calculated 

using AASHTO provision to the result of CFD analysis using ANSYS-CFX by 

considering the sign support structure discussed in Section 4.1. The analysis using 

ANSYS-CFX considers steady-laminar flow, transient-laminar flow and turbulent flow. 

 

4.1 Description of the Sign Support Structure 

The sign support structure under investigation shown in Figure 4-1 has horizontal and 

vertical members as well as a plate (i.e., sign) attached to it. All members are made from 

steel with modulus of elasticity 29*10^6 psi. The vertical and the horizontal members 

have a hollow circular cross section with thickness of 0.015 ft. 

 

 
Figure 4-1: Cantilever sign support structure 

   1ft

19ft

   22.33ft    6.67ft

   2ft

0.968ft

0.774ft

0.688ft 0.35ft



 38 

 

The vertical member is 20 ft long. It tappers from a diameter of 0.9683ft to 0.774ft over a 

length of 19ft and then has a constant diameter of 0.774ft for the remaining 1 ft length. 

The horizontal member spans 29 ft. It tappers from a diameter of 0.688ft to 0.35ft over a 

length of 22.33ft and then has a constant diameter of 0.35ft for the remaining 6.67ft. The 

attached plate has a length of 6.67ft, width of 2ft, and thickness of 1in.  The plate (or 

sign) is unimportant with respect to its structural stiffness and is only used to transfer the 

resulting wind load imparted onto the sign to the supporting structure. 

 

4.2 Equivalent Static Natural Wind Gust Pressure Using AASHTO Provision 

The provision of AASHTO for calculating the equivalent static natural wind gust 

pressure is derived based on a yearly mean wind speed. Equations 3.14 and 3.15, for 

instance, are used for areas with a yearly mean wind speed of 11.2mph. In these areas, the 

wind speed in some time of the year may be very low (lower than 11.2mph) and at some 

other time of the year may be higher (higher than 11.2mph). The fluctuation in velocity 

of the wind velocity also causes a fluctuation in the equivalent static pressure on the sign 

support. The bottom line is the provision of AASHTO for calculating the pressure is not 

based on a certain exact value of wind velocity (exactly 11.2mph for this case) rather it 

uses the yearly average value. 

Calculating the equivalent static pressure for yearly mean wind speed of 5m/s (11.2mph) 

on the horizontal attachment of the cantilever sign support structure shown in Figure 4-1 

using Equation (3.15) is provided as: 

 

       𝑃𝑁𝑊 = 5.2𝐶𝑑𝐼𝐹            (Psf) 

 𝐶𝑑  is a function of the ratio of length to width of the attachment of the sign 

support.  
𝐿

𝑊
=

6.67𝑓𝑡

2𝑓𝑡
= 3.33, Interpolating the value of 𝐶𝑑  from Table 3-6 of 

Standard Specifications for Structural Supports for Highway Signs, 

Luminaries, and Traffic Signals (AASHTO, 2001) gives 1.194. 

 𝐼𝐹  depends on where the sign supports are installed and the degree of 

hazard they cause in the event of failure. For the case of the sign support 

under investigation it is more likely to be Category II and therefore 𝐼𝐹=0.85 

is used from Table 11-1 of Standard Specifications for Structural Supports 

for Highway Signs, Luminaries, and Traffic Signals (AASHTO, 2001). 

                 = 5.2*1.194*0.85 psf 

                 = 5.28 psf 

The force on the sign support 𝐹𝑁𝑊  can be calculated by multiplying the pressure with the 

area of the attachment (5.28 psf*2ft*6.67ft) providing 70.43lb. The force is then applied 

at the centroid of the horizontal attachment as provided in Section 4.3 of this study. 



 39 

 

4.3  Equivalent Static Natural Wind Gust Pressure Using ANSYS-CFX 

Time dependent and time independent laminar flow as well as time independent turbulent 

flows are considered for the analysis of the sign support on ANSYS-CFX. 

The analysis begins by creating the geometry of the sign support structure and the 

computational domain on ANSYS WORKBENCH. Figures 4-2 and 4-3 show the model 

of the sign support structure and the computational domain which are created on ANSYS 

WORKBENCH. A full scale model is employed where both the computational domain 

and the sign support structure aren‟t scaled. The dimension of the computational domain 

is shown in Figure 4-4. Its size is limited because of the limited computational power of 

the computer. 

 

 

Figure 4-2: Model of the Sign Support Structure 
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Figure 4-3: Model of the Sign Support Structure and the Computational Domain 

 

 
 

Figure 4-4: Dimension of the computational domain 
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After the creation of geometry, the mesh is generated by using ANSYS-CFX. An optimal 

mesh is utilized such that a fine mesh is generated around the sign support structure since 

it is expected to show variation while a coarser mesh is used in other locations. 

The mesh is then taken to CFX-Pre to perform the following tasks: 

 Defining material properties. Air ideal gas is used for the simulation because at 

standard temperature and pressure most real gases behave like ideal gases. Ideal gas 

deviates from real gases at lower temperatures and higher pressures as real gases 

undergo a transition of phase to either liquid or solid. 

 Modeling the fluid flow as laminar, turbulent or transient. 

 Defining as well as assigning the value of the boundary condition. A velocity of 5m/s 

(16.4ft/s) is assigned at the inlet (for all the cases considered). The top and the sides 

of the computational domain are defined as a free-slip boundary condition. In free-

slip boundary conditions the velocity parallel to the wall is non-zero as there is no 

surface which creates shear stress to retard the flow. However, the sign support 

structure and the boundary condition on the lowest Z-axis is assigned a non-slip 

boundary condition. 

 Initialize the flow by assigning a guessed value of velocity. 

 Assigning of the number of iterations and the residual limit. For all the cases 

considered, 100 iterations and a residual limit of 10
-5

 are assigned. 

 For transient flow, the total time for the simulation and time step are defined. For the 

current investigation a total time of 30 second is used. The time steps are 0, 1, 2, 3, 4, 

8, 12, 16, 20, 24, 28, and 30 seconds. 

The model is then analyzed using the CFX-Solver to solve for the variables of interest 

such as pressure and velocity. Finally, the results from CFX-Solver are processed in 

CFX-Post to generate graphics showing pressure contour, velocity vector, and 

streamlines, etc. 

Analysis Results for Steady-Laminar Flow 

Figures 4-5 to 4-8 show the output for the analysis of the sign support structure for 

steady-laminar flow. The pressure contour on the windward and leeward sides are shown 

in Figure 4-5 and 4-6, respectively. The velocity vectors on the free walls and around the 

sign support structure are shown in Figure 4-7 and 4-8, respectively. 
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Figure 4-5: Pressure Contour on the Windward Side for Steady-Laminar Flow 

 

Figure 4-6: Pressure Contour on the Leeward Side for Steady-Laminar Flow 
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Figure 4-7: Velocity Vectors on the Free Walls 

 

Figure 4-8: Velocity Vectors around the Sign Support 
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Analysis Results for Transient-Laminar Flow 

To see the variation of pressure over time a graph is plotted for a point at the centroid of 

the horizontal attachment as shown in Figure 4-9. The pressures at different time steps 

are approximately equal. It can be observed that the pressure up to 12sec (within the first 

few time steps) is 0.326761psf.  After a number of time steps have been determined, the 

laminar flow “smoothes” into a uniform flow and the pressure attains a constant value of 

0.326763psf. 

 

Figure 4-9: Pressure vs. time for a point at the centroid of the horizontal attachment 

Figures 4-10 and 4-11 show the pressure contour on the windward and leeward side of 

sign support structure for transient-laminar flow. The pressure contour didn‟t show big 

variation for different time steps. Hence, the result at the beginning of the time steps is 

shown in the following figures. 
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Figure 4-10: Pressure Contour on the Windward Side for Transient-Laminar Flow 

 

Figure 4-11: Pressure Contour on the Leeward Side for Transient-Laminar Flow 
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Analysis Results for Steady State Turbulent Flow 

 

Figures 4-12 and 4-13 show the pressure contour on the windward and leeward side of 

sign support structure for turbulent flow. 

 

 

Figure 4-12: Pressure Contour on the Windward Side for Turbulent Flow 

 

Figure 4-13: Pressure Contour on the Leeward Side for Turbulent Flow 
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The pressure on the attachment of the sign support structure isn‟t uniformly distributed. 

In order to perform static analysis to calculate the stress, the area is subdivided 

approximately (each division of the areas have approximately the same values of 

pressure) and then the force on each division is found by multiplying their area with their 

respective pressure. Summing up the force both on the windward and leeward side gives 

the resultant force. The resultant force is then applied at the centroid to get the stress. The 

following table shows the resultant force on the attachment of the sign support structure 

for different scenario of flow cases: 

Flow Condition Resultant Force 

Steady-Laminar flow 4.22 lb 

Transient-Laminar flow 3.53 lb 

Steady-Turbulent flow 3.80 lb 

Table 4-1: Resultant Forces 

 

4.4 Equivalent Static Analysis  

The static analysis is determined using a structural analysis program, STAAD Pro 2007. 

The resultant forces which are determined using AASHTO provision as well CFD 

analysis are applied at the centroid of the horizontal attachment of the sign support 

structure to get the bending moment due to each load.  Figures 4-14 to 4-17 show the 

result of the equivalent static analysis for the different scenarios of CFD analysis as well 

as for the load from AASHTO provision. 

 

 
 

Figure 4-14: Bending moment on sign support from AASHTO provision 
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Figure 4-15: Bending moment on the sign support for steady-laminar flow 

 

Figure 4-16: Bending moment on the sign support for transient-laminar flow 
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Figure 4-17: Bending moment on the sign support for steady-turbulent flow 

 

4.5 Summary 

The highest stress concentration, which is mainly bending, is observed at the base as well 

as at the connection between the horizontal and vertical member of the sign support 

structure. Table 4-2 shows the comparison of bending stress at the two locations from 

CFD analysis and AASHTO provision. 

Type of flow/provision 
Moment at the base 

(lb.in) 

Moment at the connection 

(lb.in) 

Steady-laminar flow 
962.16 1,300 

Steady-Turbulent flow 
866.4 1,170 

Transient-laminar flow 
804.84 1,090 

AASHTO provision 
16,100 21,700 

Table 4-2 Comparison of bending moment at the critical locations 
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As seen from Table 4-2, the bending stress from the AASHTO provision is much greater 

than the bending stress from the CFD analysis. As it is explained in Section 4.2, 

AASHTO considers a yearly mean wind speed where as the CFD analysis takes into 

consideration a one-time natural wind gust. After running the model for different wind 

velocities, it is found that the pressure on the structure for 22.35m/s (50mph) wind gust in 

ANSYS-CFX gives approximately an equal value of stress with the value of the wind 

gust pressure calculated using AASHTO provision for a yearly mean wind speed of 5m/s 

(11.2mph). Figures 4-18 and 4-19 show the pressure on the windward and leeward side 

for a wind gust velocity of 22.35m/s (50mph). 

 

 
 

Figure 4-18: Pressure Contour on the Windward Side for 50 mph wind gust 

(Steady-Laminar Flow) 
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Figure 4-19: Pressure Contour on the Leeward Side for 50 mph wind gust 

(Steady-Laminar Flow) 

Calculating the resultant force on the horizontal attachment for a 50mph wind gust gives 

71.5 lb. It can be observed from Figure 4-20 the bending stress due to a 22.35m/s 

(50mph) wind gust is approximately equal to the bending stress calculated using 

AASHTO provision (Figure 4-14) for 5m/s (11.2mph). 
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Figure 4-20: Bending moment on the sign support for 50mph wind gust 

The second observation from the result is that the bending stress of steady laminar flow is 

greater than that of turbulent (steady) flow. This is because, in the case of laminar flow 

the blowing wind acts at all points at the same time where as in turbulent flow all parts of 

the structure will not be under the effect of the blowing wind at the same time. 

The final observation from the result is the bending stress of transient-laminar flow is less 

than that of steady-laminar flow. This is because in transient-laminar flow the sign 

support is analyzed for limited time (30sec). If the flow is analyzed for infinite time and 

if the computational power of the computer is unlimited the result of transient-laminar 

flow will be equal to the value of steady-laminar flow. 
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CHAPTER V 

 

CONCLUSION AND RECOMMENDATIONS 

 

Computational fluid dynamics (CFD) has been used in different disciplines of science 

and engineering including civil engineering. The current research demonstrates its 

practical application in structural engineering. The study achieved the entire stated goal 

in Chapter One. First it is able to develop the theoretical background of CFD. Second, it 

compares the stress on the cantilever sign support structure which is determined from 

AASHTO provision to that of CFD analysis. Finally it is able to show the application of 

CFD to civil engineering infrastructure. 

The theoretical background that included the governing equation of fluid flow, methods 

of discretization, discretization of the Navier-Stokes equation, solution algorithms for 

steady and unsteady flows as well as iterative convergence and residual are explained in 

Chapter 2. Chapter 3 presented the provision of AASHTO for design of sign support 

structure. The four limit states of loading (galloping, vortex shedding, truck induced gust 

and natural wind gust) were discussed. 

Chapter 4 made comparisons of bending stress from the AASHTO provisions to that of 

CFD analysis using ANSYS-CFX for a wind speed of 5m/s (11.2mph). The comparison 

of stress is performed at locations where high stress concentrations are expected such as 

at the base and at the connection between the horizontal and vertical member of the sign 

support structure. The result showed that the bending stress from AASHTO provision is 

much greater than bending stress from CFD analysis. The reason behind this result is that 

AASHTO considers a yearly mean wind speed where as the CFD analysis takes into 

consideration only a one time wind gust. Further analysis is done to find out the value of 

a wind gust that corresponds for a yearly mean wind speed of 5m/s (11.2mph). It is found 

that the pressure on the structure for 22.35m/s (50mph) wind gust in ANSYS-CFX gives 

approximately the same value of stress with the value of the wind gust pressure 

calculated using AASHTO provision for a yearly mean wind speed of 5m/s (11.2mph). 

However, the analysis on ANSYS-CFX has the following limitations: 

 Wind from only one direction is considered at the inlet of the computational domain.  

 The velocity of wind is assigned as a constant value of 5 m/s at all heights in the inlet.  
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However, the velocity of wind varies with height. To take this into account the 

logarithmic or power law can be used to define the variation of wind velocity with 

height for a fully-developed wind flow describing its mean wind velocity with respect 

to height. 

 The size of the computational domain considered for analysis is small. This is due to 

limited computational power of the computer. 

 The force on the sign support structure is calculated by approximately dividing the 

area of the attachment. 

Based on the work done here, future studies may be able to validate the provision of 

AASHTO for calculating the equivalent static natural wind gust pressure by 

incorporating the following points: 

 Taking into consideration records of wind velocity data for many years. 

 Larger size computational domain that takes into account the interference from 

adjoining structures. 

 Wind velocity from different directions. 

 Assigning velocity which accurately describes the variation of wind velocity with 

respect to height. 

 Using a more accurate method to calculate the force on the sign support. 
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