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CHAPTER I 
 

 

INTRODUCTION 

The goal of this study is to provide a mixture design that needs a minimum amount of cement 

content for pavement concrete.  The reduction in cement content was achieved by using different 

aggregate gradations.  Maturity curves were developed for the final design mixtures as inputs for 

computer models that describe the long term performance of the materials.  This work was funded 

by a grant from the FHWA for the Highways for Life Program.  The mixture developed has been 

used on FM 1938 near Ft. Worth, TX with satisfactory performance. 

The development of concrete strength with time was the object of concrete maturity in chapter II. 

The concrete maturity chapter consists of two main subjects; first one is illustrating the relation 

between the histories of hydration temperatures of concrete with respect to gained strength when 

varying the mixture design under same curing conditions, while the second one is about the 

predicting concrete strength in means of maturity method. 

Chapter III is dealing with optimization of aggregate gradation in order to reduce the paste 

volume required to fill the cavities between aggregate particles. Methods of aggregate gradation 

were adopted to acquire good particle distributions and the nominated gradations were checked in 

regard of best particles packing. The aggregate Packing density was evaluated by aggregate dry 

unit weight.  

The mixture design is varied using different aggregate gradations in order to maintain a good 

workability, good response to the vibrator with a good reduction in cement content. Both 
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Chapters II and III are consisting of an introduction, materials and adopted methods, results, 

discussion, and conclusions. Chapter IV was a summary of the final conclusions of the previous 

chapters. 
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CHAPTER II 
 

 

CONCRETE MATURITY 

 

2.1 INTRODUCTION 

 

2.1.1 Overview 

The motivation behind maturity is the need for new methods to estimate concrete strength with 

accurate results while minimizing physical testing. The aim behind this idea was to model the 

effect of accelerated curing on concrete strength [1]. Later this led to the establishment of the 

maturity method in 1951 by Nurse and Saul [1]. 

The maturity method is widely used because of its simplicity and accuracy in prediction of 

concrete strength. 

The maturity theory has two main aspects: first is application of the maturity to estimate in place 

concrete strength, as described by ASTM C 1074[2], and  the second is projecting long term 

concrete strength by measuring the early age concrete strength which is adopted by ASTM C 918 

[3].  

The study includes the effect of material proportions on concrete maturity with the associated 

compressive strength. The study also includes the projecting of long term concrete strength by 

means of concrete maturity according to ASTM C918.
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Maturity is an approach to predict the strength of the in-place concrete under any temperature 

conditions.  ASTM C1074 defines the maturity as “a technique for estimating concrete strength 

that is based on the assumption that samples of a given concrete mixture attain equal strength if 

they attain equal values of maturity index”. 

A.G. Saul defined the maturity as, “concrete of the same mixture at the same maturity has 

approximately the same strength whatever combination of temperature and time goes to make up 

that maturity” [1]. In other words, if we have same maturity for two mixtures with the same 

mixture design, the strength of concrete will be the same whatever the combination of time and 

temperature are for these two mixtures. 

 

2.1.2 Advantages and disadvantages of maturity method 

Maturity is an accurate method to predict concrete strength. According to ASTM C1074, in the 

field this method should be accompanied with another testing method to double check the 

concrete strength. 

The Maturity method saves time and money by the accurate prediction of concrete strength to 

remove slip forms, cut and saw timing and open pavement to traffic. This method saves money by 

reducing the samples required to test. The strength of concrete estimation is also important to the 

new construction of buildings and roads. Maturity is useful for operating timing of pre-stressed 

concrete [4]. The method can estimate the strength of concrete at any age. 

The negative side of the maturity method is that a complete hydration should continue without 

ceasing otherwise predictions will be incorrect. This method will not take into account some field 

actions, like inadequate vibration and insufficient curing. Every mixture has its own unique 

maturity. So strength maturity curve should be established for every individual mixture [4]. 
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2.1.3 Maturity-index and equivalent age factor 

This method provides a procedure for estimating concrete strength by means of the maturity 

index or equivalent age factor. Maturity index is expressed in terms of the temperature-time 

factor (°C –hour or ⁰F-hour) according to the Saul –Nurse Function. Another equation is the 

equivalent age at a specified temperature (Arrhenius equation, which has been developed by 

Hansen and Pederson later in 1977) which is expressed in terms of equivalent age (days or hours). 

Maturity is a method to assess the in- place concrete strength. According to ASTM C1074, in 

order to determine the in place concrete strength, the maturity index which is the term referring to 

concrete maturity, is calculated according to Nurse-Saul or Arrhenius equation: 

1- temperature-time factor or maturity index by Nurse –Saul equation [1]: 

M (t) =∑ (T-T₀) ∆t                                                                                                                      (2-1) 

Where: 

M (t) = the temperature-time factor at age t, (°C – hours) or (⁰F – hours), 

∆t = a time interval, days or hours, 

T = average concrete temperature during time interval, °C, or ⁰F, and 

To = datum temperature, °C or ⁰F 

To; the lowest temperature at which strength gain is observed (Figure 2-1). This temperature can 

be calculated according to ASTM C1074 method. This temperature was adopted by Saul to be 

0°C, and then later adjusted to a value of -10°C [1]. Other researchers like Plowman 

recommended being -12°C [5] 
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Figure 2-1: Datum temperature 

 

The Nurse equation can be expressed in terms of equivalent age at a reference curing 

temperature: 

te= ((T- To) / (Tr- T₀)) ∆t                                                                                                           (2-2) 

Where: 

te = equivalent age at a reference curing temperature. It represents the duration of the curing 

period at the reference temperature that would result in the same maturity as the curing period at 

different temperatures. 

Tr =reference curing temperature 

 

2- Arrhenius Equivalent age at a specified temperature by Hansen-Pederson (Arrhenius) [6] [7]: 

 te = ∑  
  

 
[

 

     
   

 

      
] 

  ∆t                                                                                                       (2-3) 

Where: 
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te = equivalent age at a reference curing temperature Tr, days or hours. 

T = average temperature of concrete during time interval ∆t, °C  

Tr = reference temperature, °C  

E= activation energy, J/mol 

R= universal gas constant, 8.3144 J/ (mol K) 

∆t = time interval, days or hours. 

 

2.1.4 Maturity equations for estimating in place concrete strength 

The concept of concrete maturity has been expressed in the equation of Saul and Nurse, and then 

many equations appeared after that.  

The maturity index been evaluated in many equations. The equations for evaluating the maturity 

index are as following [1]: 

1- Nurse- Saul; is a linear equation which overestimates the maturity index for temperatures 

below 20°C, and underestimates the maturity index (age conversion factor) for temperatures 

above 20°C (early age).The maturity index is: 

tе=∑α ∆t                                                                                                                                      (2-4) 

α= (T-T₀)/ (Tr-T₀)                                                                                                                       (2-5) 

Where: 

tе =equivalent age factor 

T = average Temperature °C or ⁰F 
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To = datum temperature (-10°C or 14⁰F) 

Tr = Reference Temperature (20°C or 68⁰F) 

∆t =time interval (1/2hour-1 hour) 

α= age conversion factor. It converts the curing interval ∆t into equivalent curing temperature at 

the standard reference temperature [1]. 

N.J. Carino does not recommend using this equation, because it overestimates the maturity index 

less than 20 °C. This means for ages after 6 days this equation is giving us inaccurate results [8]. 

 

2- Rastrup equation; is an exponential equation which is based on the physical chemistry ;( 

reaction velocity is doubled if the temperature is increased by 10°C) [9]. 

te= ∑            ∆t                                                                                                                     (2-6) 

For high concrete temperatures this equation yields higher values [10]. 

3- Weaver & Sadgrove; is another nonlinear equation [11]. This equation gives a better strength 

estimation for a low maturity value than Saul & Nurse does. But for later maturities the Nurse and 

Saul equation will give more accurate results [12]. 

te= 
∑        

    
 ∆t                                                                                                                       (2-7) 

 

4- Freiesleben Hansen and Pederson (Arrhenius) [7]; is another nonlinear equation, expressed in 

terms of absolute temperature. The curve will depend on the value of the activation energy value, 

in which this value will be as following, according to Freiesleben Hansen and Pederson: 
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te = ∑  
  

 
[

 

     
   

 

      
] 

  ∆t                                                                                                        (2-8) 

For T≥20°C                        E=33500 J/mol 

For T<20°C                 E=33500+1470(20-T) J/mol 

This equation is developed from the Arrhenius equation. It gives the best estimation of strength 

among a wide range of temperatures [13]. 

 

Figure 2-2: Maturity equations 

Comparing these equations is shown in Figure 2-2 for a certain mixture design, and under 

different curing temperatures.  

 

2.1.5 Maturity equations for predicting strength  

The previous section dealt with the maturity as a means to estimate the in-place concrete strength 

depending on the hydration temperature history. Only one unique curve would represent the 
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maturity –strength relation for a certain mixture. Any changing in mixture design will lead to a 

different curve or relation [14]. The other useful side of the maturity method is the ability to 

estimate the long term concrete strength (28 days or more). In this the relation of maturity and 

concrete strength (28 or 56 days) can be established according to ASTM C1074. Based on the 

maturity-strength curve we can project the long term strength by measuring the strength of early 

age (24 hours) according to ASTM C918/C918M. 

The main strength –maturity equations can be classified as following: 

1- Exponential equation, proposed by Nykanen in 1956 [15]: 

S=S∞ (1 -    )                                                                                                                            (2-9) 

Where: 

S ∞ = limiting strength. 

S= compressive strength. 

M= maturity index. 

k= constant. 

This equation is dealing with a constant (k) whose value is depending on the initial rate of 

strength development during the hydration in the early age period. This is dependent on water-

cement ratio and the kind of cements used [15]. 

2- Logarithm equation set by Plowman [5]: 

S=a + b log (M)                                                                                                                         (2-10) 

Where: 
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a and b are constants 

Logarithm equations or linear equations adopted by the ASTM C918 to predict the long term 

strength of concrete by measuring the early age strength. Logarithm of maturity index is 

represented on the horizontal axis, while the vertical axis is the concrete strength gained from 12 

hours till 28 days or more. The constants (a) and (b) value are dependent on cement type and 

water-cement ratio used in the mixture. The negative side of this equation is the unlimited 

increasing value of strength with respect to maturity index as it considers the relation as a line 

instead of curve [16]. 

3- Lew and Reichard improved Plowman equation to the following log–exponential equation 

[17]: 

S = 
 

                   
                                                                                                              (2-11) 

In which (b) and (D) are constants depending on cement type and water-cement ratio, and (k) is 

the rate of strength also dependent on the water-cement ratio but less dependent on the cement 

type [14]. This improvement overcomes the negative side of the original logarithm equation by 

limiting the strength gain with increasing the maturity [17].  

4- Hyperbolic equation proposed by Bernhardt in 1956 and developed by Chin [18]: [19]: 

This theory was adopted by ACI, committee 229. The initial slope of the relation will control the 

shape of the hyperbolic curve [19]: 

S=M/ (1/A+M/S∞)                                                                                                                    (2-12) 

Where: 

M=maturity index. 
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S ∞ = limiting strength. 

A= initial slope of strength maturity curve. 

The equation above was modified later by some studies to account for the effect of early maturity 

on strength development in which the hyperbolic equation considered that the strength starts from 

maturity (M) =0, while real strength starts after concrete has been set [21]. Adding a shifting 

value of maturity to the previous equation solved this issue [20]: 

S = 
   ₀

 

 
   

   ₀

  

                                                                                                                                (2-13) 

Where: 

M₀ = initial maturity in which strength starts > 0 

5- Maturity-Heat of hydration equation, suggested by Freiesleben Hansen to correlate the heat of 

hydration with maturity according to the following equation [22]: 

f = fcult  
 (

 

  
)
 

                                                                                                                           (2-14) 

Where: 

fcult = limiting strength (psi) 

te= equivalent age (hour) 

τ = time constant (hour) 

β = shape parameter  

According to Carino; (This equation can model gradual strength development during the setting 

period and it is also asymptotic to a limiting strength) [8]. The time constant (τ) represents the 
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time required to acquire 0.37 of the limiting strength. (1/ τ) represents the rate constant for this 

equation. The shape parameter (β) will affect the slope of maturity curve [8].  

 

2.2 MATERIALS AND METHODS 

 

2.2.1 Materials & mixture designs 

2.2.1.1 Materials 

Material properties used in this study and standard requirements are shown in Table 2-1 

Table 2-1: Materials properties  

Material Type Sp. Gr. Requirements 

1-Cement Type l /TX. 3.15 ASTM C150 

2-Flyash 
Class F/ Martin 

Lake 
2.5 ASTM C618 

3-Corase Aggregate 1.5” G3 /TX. 2.65 ASTM C127, ASTM C33 

4-intermediate Aggregate 3/8”/ TX. 2.65 ASTM C127 

5-Sand TX. 2.65 ASTM C128, ASTM C33 

6-Water Tab water 1 ASTM C1602 

7-Water Reducer DARACEM 55 1.28 ASTM C494 

8- Air entertainer Air entertainer 
DARAVAIR 

1400 
1.02 ASTM C260 
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Maturity can be calculated by inserting temperature sensors and recording temperature over time. 

Maturity then can be calculated by Nurse-Saul equation or Arrhenius equation. An interval of 30 

minutes was chosen to acquire accurate results. 

 

2.2.1.2 Mixture designs 

The materials used; and the mixture designs are listed in Table 2-2-a. The fresh and hardened 

concrete tests results are listed in Table 2-2-b. 

Starting is with a small amount of cement binder of 423 b/cu yard (in mixture 1), with water 

cement ratio 0.45. Class F fly ash at 35% to the total cementitious materials. Coarse, medium, and 

fine aggregate sizes were used in first mixture. In the following mixtures (2, 3& 4); we increased 

the cementitious materials with 0.43 water cement ratio. The increasing of cementitious materials 

is combined with decreasing coarse aggregate used (without using 3/8” aggregate size). 

Materials and quantities are the same in mixtures (3) and (4), but with increasing the water 

reducer in mixture (4). 
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Table 2-2 Mixture designs and results: 

Mix 
# 

Cement 
(lb./cy) 

Flyash 
(lb./cy) 

Binder 
(lb./cy) 

G3 
(lb./cy) 

3/8” 
(lb./cy) 

Sand 
(lb./cy) 

Water 
(lb./cy) 

w/c 
EA (Oz/cwt.) 
DARAVAIR 

WR (Oz/cwt.) 
DARACEM 

Slump 
(in) 

Unit wt. 
(lbs./ft3) 

Air 
% 

1 275 148 423 1626.8 467 1265.6 190.35 0.45 0.45 6.1 1.5” 147.6 5 

2 290.2 156.3 446.5 1941 0 1395 192 0.43 0.32 10.2 1.5” 148.4 5.7 

3 320.8 172.7 493.5 1886 0 1355 212.2 0.43 0.62 5.2 4.4” 144.3 6.9 

4 320.8 172.7 493.5 1886 0 1355 212.2 0.43 0.50 9.2 3.4” 143.5 7.3 
a) Mixture designs and fresh concrete properties 

 

Mix 
# 

Compressive Strength& standard deviations for different ages 

0.5 day 1 day 3 days 5 days 7 days 14 days 28 days 56 days 

Comp. 
(psi) 

St. 
(psi) 

Comp. 
(psi) 

St. 
(psi) 

Comp. 
(psi) 

St. 
(psi) 

Comp. 
(psi) 

St. 
(psi) 

Comp. 
(psi) 

St. 
(psi) 

Comp. 
(psi) 

St. 
(psi) 

Comp. 
(psi) 

St. 
(psi) 

Comp. 
(psi) 

St. 
(psi) 

1 480 19 1231 40 2661 31 3301 163 3603 18 4763 140 5857 166 6947 217 

2 255 126 1776 16 3515 12 4090 51 4508 85 4704 65 6062 151 7075 93 

3 404 13 1535 43 3147 120 3671 66 3891 129 3761 100 4677 94 5609 19 

4 337 15 1613 54 3327 53 4100 147 4278 78 4754 71 5802 94 6678 131 

b) Hardened concrete tests results 
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2.2.2 Methods 

2.2.2.1 Effect of materials proportions on concrete maturity  

We prepared two mixtures with exactly the same proportions to observe any deviations that may 

occur. We prepared 15 samples from each mixture according to the limitation of ASTM C 1074. 

A best fit curve for the two mixtures has been plotted to be the main curve; this relation will be 

the guide to estimate the in-place concrete strength for a certain value of maturity. In our research 

we applied the same curing conditions and monitored temperatures for every mixture with respect 

to time to observe the effect of the materials proportions on maturity-strength curve. We followed 

the following steps according to ASTM C1074: 

1- Molding the samples according to ASTM C31 [23]. We insert sensors in two samples and 

record the temperature along the hydration age till 56 days.  

2- Curing the samples in the fog room at a controlled temperature after 24 hours of casting. 

3- Performing the compressive strength test for the specimens according to test method of ASTM 

C39/C39M [24]. The ages of testing were 12 hours, 1, 3, 5, 7, 14, 28, and 56 days respectively.  

4- After measuring the temperature during the curing life for a time interval (∆t) equals 30 

minutes, we calculated maturity index by Nurse -Saul function (temperature-time index). 

5- Now we have data for both maturity index and strength for different hydration times. We plot 

the relation between the compressive strength and the maturity index by plotting the average 

maturity values on the horizontal axes, and plot the average compressive strength that we 

obtained for the corresponding maturity index on the vertical axes. 
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Figure 2-3: Maturity-strength development of the mixtures 

 

2.2.2.2 Predicting later-age strength  

According to ASTM C918, we applied the logarithm equation on mixture (4) in order to predict 

the long term concrete strength: 

SM=Sm + b (log M – log m)                                                                                                    (2-15) 

The above equation parameters were determined according to ASTM C918 procedure as 

following: 

1- Mold and cure concrete samples according to ASTM C31/C31M.  

2- Measure the sample temperature every 30 minutes until its aged 24 hours. The history of 

hydration temperatures is shown in Figure 2-5 
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Figure 2-4: Temperature-time relation for mixture (4) 

 

3- Compute the maturity index at an age of 24 hours after casting the concrete by Saul equation. 

4- Compute the compressive strength at 24 days by running the compressive test according to 

ASTM C39/C39M on three concrete samples. 

5- Maturity index for later age (M): Establish the maturity-strength curve according to ASTM 

C1074. We can determine the maturity index for the desired age (28 days) directly from the 

graph.  

6- The line slope (b): convert the maturity index in step 3 into a log scale and determine the slope 

of the best fit line by regression analysis.  
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The logarithm equation was adopted by ASTM C918 to predict the concrete strength by maturity 

method.  

S=a + b log (M)                                                                                                                         (2-10) 

According to the specification of ASTM C918; the constant (a) represents the intersection of the 

maturity-strength line (in log scale) with the vertical axis which represents the compressive 

strength, while the constant (b) represents the slope of the mentioned line. 

 

2.2.2.3.2 Constants of maturity-heat of hydration equation 

This equation set by Freiesleben Hansen 

f = fcult  
 (

 

  
)
 

                                                                                                                           (2-14) 

According to Carino; the time constant (τ) represents the age at which the strength has reached 

0.37 of the limited strength (Su) [8]. 

First step is to establish the relation between the equivalent age and compressive strength. 

Equivalent age was determined by the Arrhenius equation. 

te = ∑  
  

 
[

 

     
   

 

      
] 

  ∆t                                                                                                        (2-3) 

For T≥20°C                        E=33500 J/mol 

For T<20°C                 E=33500+1470(20-T) J/mol 

We calculated the equivalent age factor (te) according to Arrhenius equation. We plotted the 

equivalent age-strength in log scale with the associated compressive strength. From the graph we 

can estimate the value of equivalent age that corresponding to the 0.37 of the limited strength 
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which represents the time constant (τ). The value of β (shape parameter), has expressed 

depending on the main equation: 

f = fcult  
 (

 

  
)
 

                                                                                                                           (2-14) 

Simplifying above equation into: 

 β= ln (ln fcult-ln f)/ (ln τ/te) 

β can be obtained by using excel sheet (try and error), then taking the average value of (β) for all 

ages. 

 

 

2.3 RESULTS  

2.3.1 Effect of materials proportions on concrete maturity  

The compressive strength of every mixture has been plotted with respect to the corresponding 

maturity. The following points can be shown in Figure 2-5 
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Figure 2-5: Zones of maturity-strength development  

1- Zone (0 to 10000) F-hour; in this zone, mixture (2) followed by mixture 4 achieved the highest 

compressive strength, while mixtures (1) and (3) had almost the same maturity with lower 

corresponding compressive strength. 

2- Zone (10000 to 20000) F-hour; in this zone, mixture (1) got the lowest compressive strength in 

the beginning of this zone, and then achieved the highest compressive strength in the end of this 

zone. Mixture (3) still has a low compressive strength with any maturity index. 

3- Zone (20000 to 30000) F-hour; in the end of this zone we can see that mixture (2) acquired the 

highest compressive strength. 

4- Zone (30000 to 75000) F-hour; no intersection between the mixture curves. Mixture (2) 

followed by mixture (1) recorded the highest compressive strength for any maturity index within 

this zone. 
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2.3.2 Predicting later-age strength 

Following figure is showing the maturity index in log scale with respect to the compressive 

strength for mixture (4). 

 

Figure 2-6: Maturity (log scale)-strength relation for mix (4) 

 

The obtained values of the logarithm parameters are shown in Table 2-3 

Table 2-3: Predicted strength result  

b Compressive  strength (psi) 
maturity  

(⁰F-hour) 
Compressive Strength (psi) 

 

psi/⁰F/hour Sm m projected(SM) actual 

3136.0 1272.0 1068.0 6174.0 5802.0 

 

 

2.3.3 Constants of the maturity-strength equations 

1- Constants of the logarithm equation 

y = 3136.1log(x) - 8536.3 
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The following maturity-strength relations were obtained for the four mixtures: 

 

Figure 2-7: Maturity-strength curves (log scale) 

 

2- Constants of the Hansen equation 

The following Figure is showing the (equivalent age-strength) curves for the mixtures 
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Figure 2-8: Equivalent maturity-strength curves  

 

The constants of the Logarithm and Hansen equations are shown in Table 2-4 

Table 2-4: Constants of maturity equations  

MIXTURE 
Logarithm equation Hansen equation 

a (psi) b (psi/F/hour) τ (hour) β 

1 -11223 3802 30 0.99 

2 -7936 3087 35 0.89 

3 -5899 2344 55 0.59 

4 -8536 3136 50 1.36 
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2.4 DISCUSSION 

2.4.1 Effect of materials on maturity 

The concrete maturity is a map of the strength rate during the hydration process to estimate the 

in- place concrete strength.  This rate is affected by the curing temperature. In this study we hold 

the curing environment fixed and observe the effect of the material proportions on maturity-

strength curves. Some points were observed in this section; 

• The curves follow an expected pattern. 

• All mixtures subjected to the same ambience along the hydration age. Every mixture design has 

actually two mixtures to observe any deviation during the hydration time. The curve of maturity 

was almost the same as we used the exact mixture design in both mixtures and under the same 

curing conditions. 

• Mixture (1) with the minimum cement binder (423 lbs/cy) has achieved a good compressive 

strength especially in later age. Development of strength rate is an indicator of the benefits of 

using an intermediate aggregate size in the design of the mixtures. 

 

• Increasing cement binder in from (423 lbs/cy) in mixture (1) to (446.5 lbs/cy) in mixture (2) 

combined with increasing the water reducer dosage and reducing the water cement ratio; all these 

factors had enhanced the compressive strength comparing with the other mixtures for a certain 

maturity index. Mixture (2) acquired the highest compressive strength among the other mixtures 

as it achieved the highest compressive strength in a minimum maturity. This means that this 

mixture will gain the desired compressive strength faster than other mixtures. 

• More increasing in cement binder from (446. lbs/cy) in mixture (2) to (493.5 lbs/cy) in mixture 

(3) has negatively affected on the strength gained for a certain maturity index. This can be shown 
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clearly in Figure 2-5. Actually this mixture will require more time to achieve the desired strength 

compared with the other mixtures. The reason behind that belongs to the reduction in the water 

reducer dosage from 10.2 oz/cwt in mixture (2) to 5.2 oz /cwt in mixture (3). Also the increasing 

of cement binder content in mixture (3) is accompanied by reducing the amount of coarse 

aggregate which contribute to that strength reduction. 

• The exact mixture design for mixture (3) was adopted for the following design of mixture (4), 

but with increasing the mid-range water reducer type DARACEM 55 from 5.2 oz./cwt. in mixture 

(3) to 9.2 oz./cwt. in mixture (4) has led to improvement in the strength gained for a certain 

maturity index. The DARACEM 55 is a lignosulphonate water reducer (WR) and a calcium 

nitrate accelerator. The accelerator is added to offset the retarding effect of the lignosulphonate. 

 

2.4.2 Predicting later-age strength 

Predicting later age strength by means of maturity depends on imperial equations. ASTM C918 

adopted the logarithm equation in establishment the maturity-strength relation. Results obtained 

regarding the predicting strength was close to actual strength on the main chart of maturity-

strength. The slope of the line (b) plays a big role in the value of the projected strength. The slope 

of the line depends on the maturity-strength relation that has been plotted according to the ASTM 

1074.  

 

 

 

 



27 
 

2.5 CONCLUSIONS 

In our study we were investigating the effect of material proportions on the maturity of concrete. 

The final result has shown the benefit of using a mixture design. This benefit gained in the 

mixtures with high strength that correspond with a low maturity index. A low maturity index for a 

limited strength means a short time to gain that required strength. Less time means a reduction in 

the cost. 

In our case we got good strength with relatively low maturity in mixtures (1) and (2). These 

results were obtained by using a good mixture design combined by the appropriate changing in 

material proportions that improved the maturity-strength curve.   

• Maturity of concrete is a relation that combines the temperature released during the hydration of 

the concrete at different times with the corresponding concrete compressive strength. This 

relation is unique for a certain mixture because of the variety of concrete mixture designs. The 

study showed the differences in concrete maturity in case we changed the proportions of the 

materials. Maturity of concrete is very sensitive with any change in proportions of materials even 

if we changed small amounts of one of the mixture ingredients. 

• Maturity-strength curves can be enhanced by adding water reducer, reducing water cement ratio, 

and adding intermediate aggregate size. 

• Predicting the concrete strength in terms of maturity has shown a close result of projected 

concrete compressive strength compared with the actual strength. According to ASTM C918, 

caution should be taken in the final result as the predicting strength of concrete in terms of early 

age is not adopted in design codes. 

 



28 
 

 

CHAPTER III 
 

 

AGGREGATE GRADATION OPTIMIZATION 

 

3.1 INTRODUCTION 

It is desirable to minimize the paste content in concrete mixtures. A minimum cement paste 

means less cost, and protecting the environment by minimizing the emission of CO2. In addition 

there are benefits to minimizing concrete shrinkage, improving workability, and the concrete 

strength will be enhanced. 

The gradation of aggregate is classified into; well or dense, uniform, gap, and open graded [25] 

The one that is thought to be the most desirable is the well graded. Gradation of aggregate 

according to the known aggregate methods; power 0.45, haystack, Shilstone Coarseness chart can 

help choose the appropriate gradation [26]. 

Another way to think about the gradation of the aggregates is to try and minimize the voids 

content or maximize the density of the aggregates in a mixture. One way this is done is with dry 

rod unit weight of rock and sand material as per ASTM C29/C29M.   
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Aggregates occupy between 70 to 85% by mass of concrete or 60 to 75 % by volume for typical 

concrete mixtures [27]. Aggregates affect the fresh properties of concrete such as workability, 

and unit weight. Aggregate also affect the hardened properties like compressive stress, 

permeability, electric resistance and durability [27]. 

 

3.1.1 Objectives of research 

The primary objective of the study is to reduce the cement content in a concrete mixture by 

optimizing the aggregate gradation, fly ash content, and w/cm (water to cement ratio). By 

reducing the cement and increasing the aggregate this will lead to reducing the costs of the 

mixture as the cement is often the most expensive ingredient in the mixture.  This reduction in 

cement also helps to improve the sustainability of the mixture as cement has a large carbon 

footprint.  The optimization of the mixture design will get the desired workability beside the main 

benefits like improving the strength and durability. 

In this study the mixture design followed the procedures outlined by Koehler and Fowler [28]. 

The first step in this procedure is to choose your aggregate gradation. Next we choose the paste 

content so that the mixture can meet the constructability, durability, and strength needs of the in 

place concrete.  For this work much of the effort was focused on finding mixtures with 

satisfactory constructability.  The durability of the mixture was based on past recommendations in 

building codes and the strengths of the mixtures were checked in the final step.  After the 

aggregate gradation was chosen the paste in the mixture was systematically reduced while also 

using a mid-range WR to change the paste viscosity.  A series of paste volumes and viscosities 

were investigated until satisfactory performance was found.   
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Finally we verified the results with strength testing.  It would be desirable to also investigate the 

durability of these mixtures.  However, this was not possible with the resources on this project. 

 

3.1.2 Aggregate properties 

Fresh and hardened concrete properties are affected by aggregate properties which vary by the 

source.  Some aggregate not suitable for concrete mixing. The properties of these properties, 

characteristics, and standard tests can be summarized as shown in Table 3-1 

Table 3-1: aggregate properties 

charachterstic Significance of the charachterstic Requirement 

1-Shape& Texture Affect the workability ASTM C 295 
ASTM D3398 

2- Resistance to 
abrasion 

Index of aggregate quality ASTM C 535 
ASTM C 779 

3- Grading Affect the workability of fresh concrete, 
mimimize the cement content 

ASTM C 117 
ASTM C 136 

4- Bulk density  
(dry unit weight) 

Affect the mix design calculations ASTM C 29 

5- specific gravity Affect the mix design calculations ASTM C 128 
ASTM C 127 

6- Absorption  Affect the water cement ratio ASTM C 70  
ASTM C 127 
ASTM C 128 
ASTM C 566 

7- Compressive & 
flexural of 
Strength  
 

Acceptability of fine aggregate failing other tests ASTM C 39 
ASTM C 78 

8- Aggregate 
constituents 

Affect the amount of deleterious and organic 
materials in aggregate 

ASTM C 40 
ASTM C 87 

ASTM C 117 

9- Resistance to 
alkali 

Affect the volume change ASTM C 227 
ASTM C 289 

 

3.1.3 Aggregate gradation 

Aggregate gradation can be defined as the frequency of a distribution of the particles sizes [29]. 
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Types of gradations: Arrangement of particles with the effect of shape, textures, and angularity 

will lead to a certain type of gradation depends on percentage used of different aggregate sizes. 

FHWA classified the types of gradation as following: 

1- Well graded (dense). Is the curve near line 0.45 power in which representing the maximum 

density line. Most HMA mix design tends to approach this line [25].The arrangement of particles 

as in Figure 3-1-a, which shows a grain-to-grain contact, low void content, and high density. 

2- Gap graded. It is aggregate with a little or missing intermediate size. Using this kind of 

gradation will lead to segregation [25]. Figure 3-1-b is showing the particles arrangement in this 

kind of grade that has no grain-to-grain contact, higher void content, and lower density. 

3- Open graded. It is the gradation of aggregate that contains a small amount of small particles. 

The blend has voids between big particles that are not filled with the missed small sizes [25]. 

Arrangement of this grade has grain –to-grain contact, high void content, low but variable 

density, as illustrated in Figure 3-1-c.  

4- Uniformly graded. Most of aggregate particles are in the same size in this gradation; with steep 

shape [25], as in Figure 3-1-d. The arrangement in this type has grain-to-grain contact, high void 

content, and low but variable density. 
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a) Well graded                                                b) Gap graded 

  

c) Open graded                                              d) Uniform graded 

Figure 3-1: Aggregate particles arrangement in different gradation curves 

The idea of changing the aggregate gradation in such a way that leads to best results regarding 

decreasing the void ratio is not new. Many efforts started early last century to optimize the 

aggregate gradation in order to get less void ratio which would result in less cement or 

cementitious content in the concrete mixture [26] 
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The gradation of aggregate is affecting the properties of the concrete like strength, modulus of 

elasticity, shrinkage and creep [30]. There is an optimal packing of the aggregates that would 

theoretically require less mortar. However attention should be kept to obtain a sufficient 

workability.  

Fine aggregate gradation is also important as it impacts the workability more than the coarse 

aggregate. Aggregate with fine aggregate gradation near sieve passing No 50 and 100 may suffer 

problems due to high surface area in workability and bleeding ASTM C 33[31]. The finer passing 

No 100 the bigger specific surface area that contribute to more cement paste demand [32]. 

Methods of optimizing aggregate gradation can be summarized as following: 

 

3.1.3.1 Maximum density of aggregate 

This method was first searched by Fuller and Thompson [33]. Later they found this curve won’t 

necessary give the maximum density or even the maximum strength of concrete, because of the 

interaction between aggregate particles with water and cement is not the same as the aggregate 

particles packed alone. Based on this concept, Tolbot and Richart established the maximum 

density equation [33]. 

P= (
 

 
   in which                                                                                                                         (3-1) 

P= amount finer than (d) size. 

d= particle size. 

D=Maximum particle size. 

n=exponent. Governing the distribution of the particle sizes 
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The n value was set as 0.5 by Fuller to achieve the maximum density but this value led to harsh 

mixture. This value was adjusted later by Good and Lufsey in 1965 to 0.45 for asphalt mixtures 

[34]. Power (0.45) graph is based on Fuller packing theory. The method illustrated in various 

graphs and many states adopted their own chart (Figure 3-2) 

 

 

Figure 3-2: 0.45 Power line 

 

The horizontal axis represents the sieve size raised to power 0.45, while the vertical axis 

represents the percent passing. Another example is adopted by FHWA, in this, the maximum 

density curves for 0.45 Power gradations are drawn for multiple maximum aggregate sizes. The 

maximum density line for each curve is drawn from the origin to its maximum aggregate size. 

 

3.1.3.2 Fineness modulus (FM) 
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This method was developed by Abrams in 1918. He found that there is a relation between the 

aggregate gradation and the water demands. The basic idea is to reduce water content to get 

higher concrete strength by maximizing the fineness modulus [35] [36]: 

Fineness Modulus, according to ASTM C 125, is an aggregate index computed by dividing the 

sum of percent retained on specified sieves over 100. Specified sieves for coarse aggregate size 

are; 3, 1.5, 3/4, and 3/8 in, while the specified sieves for fine size aggregate are; No. 4, 8, 16, 30, 

50, and 100 which it the minimum limit. Limits of fineness modulus are typically between 2.3 

and 3.1(ASTM C33). The higher value of FM, the bigger the average aggregate size. ACI 211 

adopted the volumetric chart to correlate fineness modulus with basic water demand.  

This method is still used today by ACI 211 for mixture design method. The method takes into 

account the volume of mixed particles. In the part of determining the aggregate proportions or 

quantities per unit volume (cubic yard), the method depends on fineness modulus of fine 

aggregate with respect to dry unit weight of coarse aggregate and the maximum size of coarse 

aggregate [35]. 

 

Table 3-2: the percent of bulk volume of coarse aggregate according to ACI 211 

Nominal Max. Size (in) 

Bulk Volume of Coarse Aggregate with respect to Fineness 

Modulus of Fine Aggregate. 

2.4 2.6 2.8 3.0 

3/8 0.5 0.48 0.46 0.44 

½ 0.59 0.57 0.55 0.53 

¾ 0.66 0.64 0.62 0.60 

1 0.71 0.69 0.67 0.65 

1.5 0.75 0.73 0.71 0.69 

2 0.78 0.76 0.74 0.72 

3 0.82 0.80 0.78 0.76 

6 0.87 0.85 0.83 0.81 
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Chart of this analysis (Table 3-2), is showing as we increase the fineness modulus of a certain 

maximum size of coarse aggregate we will need less coarse aggregate and for a certain fineness 

modulus of fine aggregate we will need more coarse aggregate as we increase the maximum size 

of coarse aggregate. 

 

3.1.3.3 Specific surface area of aggregate 

In 1918 Edward found the specific surface area of aggregate would have an impact on the water 

demand of the concrete mixture. The less specific surface area, the lower the amount of water 

required to obtain certain workability [37]. Later in 1954 Newman and Teychenné found that if 

the gradation of a combined aggregate changed so that the total specific surface area changed, 

deferent concrete properties will in turn change.  But if that change in aggregate grading kept the 

specific area constant, a mixture with similar properties will be produced [38].  

Another method based on Newman and Teychenné and developed by Ken W. Day is assuming 

the particles are spheres. Specific surface area is a good method to design the mixture. But the 

negative side of this method is about overestimating the effect of finer particles. Ken W. Day 

published a modified specific surface area table in which we can correlate every sieve size by a 

modified number. This table is according to author experiment is overcoming the problem of 

overestimation of the fine particles effect on concrete workability and other properties [39]. 
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Table 3-3: Modified specific surface area according to Day 

Sieve fraction 
Day modified 

SS values 

Approx. true specific 

Surface (cm
2
/gm.) 

Surface modulus 

20mm 2 1 1 

20-10 4 2 2 

10-4.75 8 4 4 

4.75-2.36 16 8 8 

2.36-1.18 27 16 16 

1.18-0.6 39 35 32 

0.600-0.300 58 65 64 

0.300-0.150 81 128 128 

<0.150 105 260 256 

 

The above table can be used for individual aggregate size and the obtained results can be used to 

determine the combined specific surface area directly according to the following equation [39]:  

SSca = [SSf × Sand% + SSc × % (1-Sand %)] / 100                                                                  (3-2) 

Where: 

SSca = Specific Surface Area of Combined Aggregate. 

SSf = Specific Surface Area of Sand (fine aggregate) 

SSc = Specific Surface Area of Coarse Aggregate. 

 

3.1.3.4 Shilstone method 

The traditional methods such as fineness modulus will not give a clear indicator of effect of 

aggregate gradation on workability because different gradations may have the same fineness 

modulus. According to Shilstone the gradation of the aggregates will impact the workability of 

the mixture [40]. So these methods will not give a good indicator of concrete workability. 

Shilstone recognized this and published papers about his work in Saudi Arabia. Shilstone’s ideas 
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show that one can obtain a desired workability by changing the aggregate proportions instead of 

changing the water content in the mixture [41]. 

The Shilstone method is a volumetric based method. The main two parameters in his method are 

coarseness and workability factor. Coarseness factor is the percent of cumulative retained on 

sieve size 3/8” (9.5mm) over percent retained on sieve number 8 (2.36mm). The higher the 

coarseness factor, the more coarse aggregate content is in the mixture. Zones are classified into 

five main areas according to the mixture workability and its suitability in construction type. The 

Shilstone chart is shown in Figure 3-4. 

 

 

Figure 3-3: Shilstone coarseness chart 

 

This method is currently used by many state DOTs because of its ease of use. It is also called the 

coarseness factor chart. Coarseness factor (which represent the horizontal axis) is computed 

through the equation: 
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CF=Q/I *100   (%)                                                                                                                      (3-3) 

Where: 

Q=Cumulative %retained on sieve 3/8” sieve. (Coarse size aggregate) 

I=Cumulative %retained on sieve #8.  (Intermediate size aggregate) 

In the vertical axis we plot the workability factor values. This can be determined from the 

following equation: 

WF% = W × 2.5(C-564)/94                                                                                                        (3-4) 

Where: 

C = Cementitious material content (lbs. /cy
3
) 

W=% passing #8 sieve  

Coarseness factor (horizontal axis), is the percent of retaining on sieve 3/8” over retaining on 

sieve #8. By increasing the amount of the intermediate or fine aggregate size, the blend will be 

finer and the coarseness factor will decrease in value. Also, increasing the amount of coarse 

aggregate will increase the coarseness factor.  

In the adjusted Shilstone graph, the range of coarseness factor is within 30% and 80%. Regarding 

the workability factor in which is a combination of binder content and passing the fine sieve # 8 

would locate the point up or down on graph according to workability equation (3-4) 

 

3.1.3.5 Percent retained, (8-18) graph 
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Main object of this graph is to keep gradation in a haystack shape. The percent retaining from 

sieve No 30 through a sieve less than the nominal maximum aggregate size should be within the 

range of 8% and 18% [33]. For a floor slab Holland recommended to extend the range of (8-18) 

to (6-22) when it is hard to find intermediate aggregate sizes [42]. 

8-18 charts or percent retained chart is often used to show details of the aggregate gradation, by 

showing in details of the percent of every percent retained for every sieve size. The main goal of 

this method is to limit the maximum and minimum amount of aggregate to an upper limit of 18% 

retained and minimum of 8% retained on sieve #30 [43]. According to this method the perfect 

grade would be the gradation that has grains retained by weight within the zone 8% and 18% 

especially for the intermediate size. 

 

 

Figure 3-4: Example of (8-18) chart 
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3.1.4 Aggregate bulk density 

3.1.4.1 Aggregate dry pot unit weight 

The Voids between aggregate affect the mixture design by reducing or increasing the paste 

volume required to fill the cavities between the particles. Void ratio describes how tight or loose 

is the packing of aggregate particles. Voids increased with increasing the aggregate size. Voids 

ratios are also affected by the shape, angularity and texture. All these parameters are included in 

ASTM C29 [44] to determine the dry pot unit weight of aggregate. In this test a metal mold with 

known weight and volume is filled with aggregates to one third, then this layer will compacted 

evenly by 25 strokes from a tamping rod. A second layer will fill the two third with leveling and 

compacting by tamping rod without allowing the rod to penetrate to the first layer. A final layer 

will fill the mold to overflow and same previous procedure is applied with leveling the final 

surface with a plate to make the level of the compacted aggregate same as the level of the mold 

edge. After weighting the mold with aggregate, the dry unit weight of aggregate can be calculated 

according to the equation;  

M = (G - T) / V                                                                                                                           (3-5) 

Where: 

M= bulk density of the aggregate, 

G = mass of the aggregate plus the measure, 

T = mass of the measure, and 

V = volume of the measure. 

 

3.1.4.2 Packing modulus 
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Packing is the ratio of the particles volume to the total volume or the complementary of the 

porosity (packing equal one minus porosity). Packing is another approach of aggregate 

optimization to get denser concrete with minimum amount of cementitious material which results 

in less shrinkage and creep with more strength and durability [45].In 1907, Fuller and Thompson 

studied the effect of the distribution of particles on concrete properties by changing the 

distribution of the packing of constituent materials within the concrete [46]. The packing theory 

by Furnas in 1931 stated an assumption that small particles fill out the cavities between big 

particles without disturbing the big particles arrangement. His Packing models have been 

developed based on spherical particles shape [47]. 

The basic packing model has been developed based on binary mixtures. The system has since 

been developed to multi –component mixtures [24]. The basic packing formula is: 

Packing =             
 (αi+ (1- αi) ∑              

   ∑        
                                       (3-6) 

Where 

α is the mono disperses packing (packing for equally sized particles). This value is ranged 

between 0.6 and 0.64 for spherical shape particles. And be less for non-spherical shaped.  

Ø is the volume fraction of a mono material. 

f (I,j) is the interaction function for the wall effect and the effect of case of small particles close to 

larger particle size(cannot be packed dense as in bulk). 

g (I,j) is the interaction function for the case when small particle are so large that cannot fit in 

between cavities between larger particles, without disturbing the packing of the larger particles 

[24]. 
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The size for every material is divided into fractions. While the mono disperses packing is 

obtained by experimental lab work [49]. Mono packing will be always equals or less than the 

packing of the whole material. The wider distribution size within the material, the larger packing 

density can be obtained [49]. 

 

3.2 MATERIALS AND METHODS 

3.2.1 Materials 

3.2.1.1 Materials properties 

All of the materials investigated were provided by Ed Bell Construction.  These materials were 

the materials to be used on FM 1938. 

Table 3-4: Materials properties and requirements 

Material Type& Source Sp. Gr. Requirements 

1-Cement Type l /TX. 3.1 ASTM C150 [50] 

2-Flyash Class F 2.5 ASTM C618 [51] 

3-Corase Aggregate 

1.5” 
#57 /TX. 2.65 ASTM C127[52], ASTM C33 

4-intermediate 

Aggregate 
3/8”/ TX. 2.65 ASTM C127 

5-Sand TX. 2.65 ASTM C128[53], ASTM C33 

6-Water Tab water 1 ASTM C1602[54] 

7-Water Reducer DARACEM 55 1.28 ASTM C494[55] 

8-Mid Range Water 

Reducer 
MIRA 110 1.06 ASTM C494 

9-Water Reducer WRDA 35 1.2 ASTM C494 
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3.2.1.2 Concrete tests 

The following tests run on fresh concrete: slump according to ASTM C143 [56], air content 

according to ASTM C231 [57], unit weight according to ASTM C138 [58], and the box test. 

The box test is a novel test method used to determine the workability of low slump concrete. The 

box dimensions and shape is illustrated in Figure 3-11. 

 

   

Figure 3-5: Box test; parts & dimensions 

 

Procedure of using the Box Test: 

1. Assemble the two parts of the box tightly. Using clamps as in Figure 3-5 

2. The box was filled with 9.5” of unconsolidated concrete. 

3. It was vibrated with a hand held vibrator for three seconds and the head is entered and three 

seconds as it is pulled out.  

4. Untighten the two parts of the box and separate them gently. 
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5. If the obtained shape has a good straight edge with good top and only minor unfilled voids then 

the test has been deemed to pass. If the shape has a slumped edge or significant voids on either 

the sides or the top, the sample is considered to fail the test. 

 

  

a) Pass                                                             b) Fail 

Figure 3-6: Box test conditions 

 

Concrete compressive strength was also measured according to ASTM C39 [59] on hardened 

concrete samples for ages 7 and 28 days. 

 

 

3.2.2 Methods 

3.2.2.1 Aggregate optimization 

The basic start to optimize gradation is by combining two or three aggregates with different 

proportions then investigate these proportions according to gradation methods associated with 

packing density of these combined aggregate. Obtained results will be used in pavement mixture 

design. 
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3.2.2.1.1 Sieve analysis & combined aggregate gradation 

We completed the sieve analysis for the individual aggregate sizes as per ASTM C136 [60].  

We did the following Steps: 

1- We selected suitable sieve sizes according to the aggregate sizes 

 

Table 3-5: Aggregates Sieve Sizes 

G3 3/8" Sand 

Sieve Number Sieve Number Sieve Number 

1.5" 1/2" #4 

1" 3/8" #8 

3/4" No. 4 #16 

1/2" #8 #30 

3/8" #16 #50 

No. 4 #30 #100 

Pan #50 Pan 

 

#100 

 

 

Pan 

  

1- Thoroughly sieve the aggregates 

2- Weight every sieve with the retained particles, and then subtract sieve weight from the 

obtained result to get the retaining weight for aggregate particles on every individual sieve size.  

3- Percent passing can be determined by subtracting the cumulative weight on every sieve from 

100%. 

After we determined the sieve analyses for the individual aggregate sizes, we compute the 

combined aggregate gradation according to ASTM C136 specifications for chosen gradations 

according to the following equation: 
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P = Aa + Bb + Cc                                                                                                                        (3-7) 

Where: 

P = Combined percent passing of a given sieve  

A, B, C = Percent passing for aggregate A, B, and C for each sieve. 

a, b, c = Relative percent of total aggregates A, B, and C. 

The combined aggregate gradation will be used in the gradation methods. 

 

3.2.2.1.2 Aggregate gradation by power.45 

The maximum nominal aggregate size is the one sieve size larger than the sieve that has less than 

90% passing. In our case this size is 1”, as the first top sieve less than 90%passing is sieve ¾”. 

The nominal proportions of aggregate blends were investigated according to power 0.45 to 

choose gradations close to the max density line. This is the first step towards optimizing the 

gradation.  Next the mixtures were varied systematically by 150 lbs. of each aggregate while 

holding the percentages of the other materials constant and the values were observed.  This was 

done to investigate the sensitivity of the values in the different aggregate gradation techniques.  

These are plotted in each of the graphs below. 
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Figure 3-7: Three and two aggregate blends plotted in power (0.45) chart 

 

3.2.1.1.3 Percent retained (haystack shape) charts 

The gradations of aggregate blends either (G3, 3/8”, Sand) group or (G3, Sand) group will be 

verified in percent retained chart to identify gaps in the gradation as shown in Figure 3-8 
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Figure 3-8: Percent retained chart for three and two aggregate blends 

 

3.2.1.1.4 Shilstone method  

In this method a number of gradations were plotted in Shilstone chart while holding the cement 

binder fixed to observe the effect of the gradation. Figure 3-9 is illustrating this case for the two 

groups of aggregate blends with the associated aggregate void ratio as determined by ASTM C29. 
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Figure 3-9: Aggregate void ratio in Shilstone chart 

 

3.2.1.1.5 Aggregate dry pot unit weight &void ratio 

This technique used the coarse and fine aggregates in different ratios to find the one that had the 

highest dry unit weight or lowest voids content according to ASTM C29. This technique is useful 

as it helps the user to take into account the size, shape, and angularity of the different aggregates. 

We determined the aggregate void ratio according to ASTM C29, as following: 

M = (G – T) / V                                                                                                                           (3-8) 

%Voids = 100*(S × W) - M/(S × W)        (ASTM C29) [3]. 

Where: 

M = bulk density of the aggregate, kg/m3 [lbs. /ft
3
], 

G = mass of the aggregate plus the measure, kg [lb.], 
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T = mass of the measure, kg [lb.], 

V = volume of the measure, m3 [ft
3
], and 

W=density of water, 998 kg/m3 [62.3 lbs. /ft
3
]. 

S = bulk specific gravity 

The dry unit weight is calculated for multiple aggregate gradations to show the general trend of 

the unit weights of aggregates when we change the percentage of the aggregates.  

 

3.2.2.2 Mixture design 

The main goal is to reduce the cement content and get a good concrete workability with adequate 

strength.  

The mixture design is based on the obtained results of aggregate gradations in the previous steps. 

For a selected aggregate gradation a volume of paste, w/cm was chosen. Concrete was produced 

with these materials and properties like workability, the impact of the vibrator on the mixture, air 

content, and strength were examined. If satisfactory results were found for the mixture then the 

paste volume was decreased and the mixture was investigated again. At this point lower paste 

volumes were used with WRs to change the viscosity of the mixture until they were found to 

pass. 

This process was repeated until we found a concrete mixture with satisfactory performance and 

minimized paste volume. 

 

3.3 RESULTS 
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3.3.1 Aggregate optimization 

3.3.1.1 Sieve analysis 

 

Figure 3-10: Individual Texas aggregate gradation 

 

3.3.1.2 Power 0.45 

In Power 0.45 method; the following gradations achieved the best results in approaching the 

dense line in three and two aggregate blends respectively: 

Table 3-6: best gradation in power .45  

G3 3/8” Sand 

48% 14% 38% 

58% 0% 42% 

 

Figure 3-11; is showing the two gradations on power (0.45) chart 
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Figure 3-11 Good aggregate gradations for three & two aggregate blends 

 

3.3.1.3 Percent retained graph 

The three aggregate gradations had shown acceptable result in percent retained graph with two 

separated valleys (one of them is small valley shape). The two aggregate gradations have two 

consecutive valleys. 
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Figure 3-12: Good gradations of three and two aggregate blends in (8-18) chart 

 

3.3.1.4 Shilstone chart 

The following figure is showing the mixtures 10 and 18 in Shilstone chart. 
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Figure 3-13: Mixtures 10 and 18 plotted on Shilstone chart 

 

3.3.1.5 Aggregate dry unit weight 

The aggregate dry pot unit weight and void ratio results are as per ASTM C29 are listed in Table 

3-7. 

 

 

 

 

 

Table 3-7: Aggregate dry unit weight& aggregate void ratio 
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Blend Aggregate Aggregate Percentage Unit Weight Void 

No. type & Size G3 3/8" Sand (b/ft
3
) Ratio % 

1 Grade 3 100% 0% 0% 100.85 39.0 

2 3/8" 0% 100% 0% 106.00 35.9 

3 Sand 0% 0% 100% 111.76 32.4 

4 Grade 3 & 3/8" 88% 12% 0% 104.04 37.1 

5 Grade 3 & 3/8" 86% 14% 0% 106.61 35.5 

6 Grade 3 & 3/8" 81% 19% 0% 105.45 36.2 

7 Grade 3 & 3/8" 76% 24% 0% 108.00 34.7 

8 Grade 3 & 3/8" 75% 25% 0% 108.67 34.3 

9 Grade 3 & 3/8" 74% 26% 0% 107.20 35.2 

10 Grade 3 & 3/8" 72% 28% 0% 109.07 34.0 

11 Grade 3 & 3/8" 70% 30% 0% 108.96 34.1 

12 Grade 3 & 3/8" 68% 32% 0% 110.45 33.2 

13 Grade 3 & 3/8" 67% 33% 0% 110.45 33.2 

14 Grade 3 & 3/8" 66% 34% 0% 106.39 35.7 

15 Grade 3 & 3/8" 65% 35% 0% 110.53 33.2 

16 Grade 3 & 3/8" 64% 36% 0% 108.93 34.1 

17 Grade 3 & 3/8" 62% 38% 0% 108.32 34.5 

18 Grade 3 & 3/8" 57% 43% 0% 109.60 33.7 

19 Grade 3 & 3/8" 52% 48% 0% 109.36 33.9 

20 Grade 3 & 3/8" 48% 52% 0% 111.68 32.5 

21 Grade 3, 3/8"/sand 48% 17% 35% 133.65 19.2 

22 Grade 3, 3/8"/sand 48% 20% 31% 132.03 20.2 

23 Grade 3, 3/8"/sand 48% 14% 38% 136.08 17.7 

24 Grade 3, 3/8"/sand 45% 17% 38% 131.09 20.7 

25 Grade 3, 3/8"/sand 45% 20% 35% 131.49 20.5 

26 Grade 3, 3/8"/sand 45% 14% 41% 132.48 19.9 

27 Grade 3, 3/8"/sand 42% 20% 38% 130.16 21.3 

28 Grade 3, 3/8"/sand 42% 17% 41% 135.63 18.0 

29 Grade 3, 3/8"/sand 42% 14% 44% 134.69 18.5 

30 Grade 3, 3/8"/sand 46% 16% 38% 133.00 20.1 

31 Grade 3/sand 61% 0% 39% 132.60 20.0 

32 Grade 3/sand 60% 0% 40% 134.60 20.3 

33 Grade 3/sand 58% 0% 42% 136.67 17.4 

34 Grade 3/sand 57% 0% 43% 135.23 18.2 

35 Grade 3/sand 55% 0% 45% 135.76 17.9 

36 Grade 3/sand 59% 0% 41% 135.00 20.4 
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3.3.2 Mixture design 

Table 3-8: Mixtures Designs and tests results 

Mix binder 
fly 

ash 
Percentage of 

aggregate 
w/c 

Add Mixture 
  

Slump 

(in) 

Box 

Test 

Concrete 

unit Wt. 

AIR% 

comp. (psi) 

# (sacks) % Dry U.W. (b/ft
3
) 

      G3 3/8" Sand TYPE oz/cwt (b/ft
3
) 

 
7 

day 

28 

day 

1 4.73 35% 46% 16% 38% 0.41 Daracem 55 11.9 133.0 0.25 Pass 148.6 2% 5239 6974 

2 5 35% 45% 17% 38% 0.41 Daracem 55 4.5 131.1 0 Pass 148.8 5% 4711 6560 

3 5 35% 45% 17% 38% 0.41 WRDA 35 6.2 131.1 0.5 Pass 147.2 5.5% 4187 5964 

4 5 35% 45% 17% 38% 0.41 WRDA 35 5.1 131.1 0.25 Pass 147.4 5% 4058 6021 

5 4.75 35% 45% 17% 38% 0.43 Daracem 55 1.9 131.1 .5" Fail 149.7 4.1% 4507 6378 

6 4.75 35% 45% 17% 38% 0.45 Daracem 55 6.3 131.1 1.5" Pass 148.8 4.6% 4152 5473 

7 4.75 35% 45% 17% 38% 0.45 Daracem 55 6.3 131.1 1.5" Pass 149.4 1.5% 5066 7554 

8 4.75 35% 45% 17% 38% 0.45 MIRA 110 5.6 131.1 1" Pass 148.4 4.2% 3248 4928 

9 4.73 35% 48% 14% 38% 0.45 MIRA 110 4.0 136.1 1.25" Pass 149 3.9% 3235 5052 

10 4.5 35% 48% 14% 38% 0.45 Daracem 55 6.0 136.1 .75" Pass 148.5 4.4% 3624 5299 

11 4.25 35% 48% 14% 38% 0.45 Daracem 55 10.4 136.1 .5" Fail 150.1 4.3% 4743 5785 

12 5 35% 57% 0% 43% 0.41 Daracem 55 7.5 135.2 0.25 Fail 148.4 5.0% 4814 7228 

13 5.5 35% 59% 0% 41% 0.41 Daracem 55 4.5 135.0 1 Fail 148.2 5% 4797 6553 

14 4.7 31% 60% 0% 40% 0.45 Daracem 55 3.3 134.6 4.5 Pass 148.3 4.8% 3240 4553 

15 5.2 30% 61% 0% 39% 0.45 Daracem 55 3.2 132.6 7.25 Fail 143.4 7.5% 4369 5871 

16 5 35% 58% 0% 42% 0.43 Daracem 55 7.7 136.7 1" Pass 148.2 4.5% 4157 6131 

17 4.75 35% 58% 0% 42% 0.43 Daracem 55 10.0 136.7 3/4" Pass 148.1 4.8% 4279 6083 

18 4.5 35% 58% 0% 42% 0.43 Daracem 55 13.3 136.7 1.5 Pass 142.3 8.6% 3902 5627 
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3.4 DISCUSSION 

3.4.1 Gradation methods 

1- The power .45; using this method is showing how the gradation curves close or far from the 

maximum density line. In our case the gradation curves of the three aggregate blends were 

(between the maximum and low density line). This is an indicator that these blends are dense with 

bias to be rocky.  

Same results were obtained for the two aggregate blends with tendency to the rocky zone from 

sieve #4 to sieve size 1.5”, and lean towards the sandy zone from sieve #100 to #4. The curve 

shapes are showing a good approach to the maximum density line in general. 

2- Percent Retained (8-18%); the result is showing two separate valleys in the three aggregate 

blends, one of them is very small and can be ignored while the big one is under sieve #50 

indicating a lack in that aggregate size in that aggregate blend. Under the chart roles, this blend is 

acceptable. 

The curve of the two aggregate blends is showing two consecutive valleys under sieves #50 and 

#16. The valleys denote to the lack of aggregate size of #50 and 16 respectively. Under the roles 

of this chart the curve may considered unacceptable because of the consecutive valleys. But the 

final results of the mixture properties may break the roles. 

3- Shilstone Coarseness Chart. We can see the effect of aggregate gradation on Shilstone chart as 

we hold the cement binder fixed (470 lb.) and varied the aggregate gradation in a consistent way. 

The best way to show the gradation is by plotting the void ratio associated with every gradation 

along on the chart. The void ratios for the three aggregate blends were varied. The minimum void 

ratio (17.7%) was lying in the well grade zone, close to rocky zone as a result of using the 

gradation (48%G3, 14% 3/8”, 38% Sand) in which we can observe the highest percentage of 
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coarse aggregate comparing with other three gradation blends, this percentage affected the value 

of the coarseness factor in Shilstone chart and shifted the point to the left of the points group. 

In the mixture design we insert the real value of the cement binder in Shilstone equation, and the 

effect of the cement binder was clear on the three aggregate blends as most points were shifted 

down towards the rocky zone but they still in the well graded zone. 

The points of the two aggregate blends were not affected a lot but we can see an inclination 

towards the gap zone as we decreased the cement binder and increase the aggregate content. 

 

3.4.2 Aggregate packing density 

Higher results of aggregate dry unit weight have been obtained from blends of G3 with sand and 

from blends of G3, 3/8”, and sand. The gradations of aggregate that had been obtained by the 

aggregate methods had shown highest values of the associated dry unit weight. The good particle 

distribution had led to a good packing of the aggregate particles with a minimum void ratio. 

 

3.4.3 Mixture designs 

We used the optimized gradations that we already got and varied the paste volume. We started 

with a certain amount of cement binder and check the obtained fresh concrete properties like 

workability, air content, and response to the vibrator. We increased the cement binder as we got 

harsh cement with low slump in first mixture.  

Enhancing the workability for a certain mixture was done by increasing the dosage of the water 

reducer. 
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In following steps; reducing of the cement binder was associated with increasing of the aggregate 

amount in the mixture for a certain aggregate percentage. The workability and the mixture 

viscosity were observed. The viscosity of the mixture observed by the Box test that gives us an 

indicator of the mixture response to vibrator.  

More reduction in cement binder was combined by switching to aggregate gradation with high 

aggregate packing with minimum void ratio. This also was combined by increasing the water-

cement ratio a bit. Increasing the water-cement ratio with a suitable amount of Mid-Range Water 

Reducer was necessary to provide a mixture neither harsh nor sticky.  

 

3.5 CONCLUSIONS  

Reducing the cement binder was the subject of many studies. This research used an optimization 

of the aggregate gradation to achieve this goal. Gradation curves varied according to particle 

distribution and packing. The particle distributions were improved by using the gradation 

methods while the particle packing is verified according to the packing density methods. 

• Power .45 was a good gradation tool for the aggregates and other materials investigated.   

• Percent Retained Chart. We got valleys in two aggregate blends but it works in our mixture and 

achieved good concrete properties.  

• Shilstone coarseness chart; for mixtures with three aggregate blends the points were lying in the 

well graded zone and close the rocky zone. While the points of mixtures with two aggregate 

blends were also lying in the well graded zone but close to the gap graded zone. 
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• Dry rod unit weight of aggregate is a useful method to estimate the void in a bulk volume of 

aggregate. There are assumptions made in gradation charts that can be directly measured with the 

dry rod technique.  

• Using the optimized gradations with choosing the appropriate cement content, water cement 

ratio, chemical admixture has led to good mixture design that reduced the amount of cement 

binder, acquired good compressive strength, with a suitable workability for pavement works. 

Verification of the mixture response to the vibrator has been successfully done by the Box test as 

it shows the workability and the viscosity of the concrete at the same time. 

• Good results in this chapter were achieved by using 4.5 sacks of cement binder with the 

aggregate gradation that have a minimum void ratio: 

(48% G3, 14% of 3/8”, and 38%Sand) and  

(58% G3 and 42% Sand) 
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CHAPTER IV 
 

 

CONCLUSIONS 

 

A reduction in cement binder in a concrete mixture that provides good concrete properties was 

the target in this study. The two main concrete properties that we investigated were the strength 

and workability. 

In chapter II (Concrete Maturity) we investigated the effect of concrete ingredients on the gained 

strength in terms of concrete maturity. In this regard we obtained different maturity-strength 

relation as we changed the proportions of the same materials under the same ambient conditions. 

In the same chapter we obtained a close result of the predicted strength to the actual strength by 

using the logarithm equation.  

In chapter III (optimization aggregate gradation) we investigated the mixture designs so we can 

get a desired workability for a pavement construction. The benefits of optimizing the gradations 

were noticeable as we achieved a good reduction in cement paste required to fill the aggregate 

voids.  

Optimization the aggregate gradation is not enough to attain a good mixture. Selecting the 

appropriate type and dosage of water reducer with a suitable water-cement ratio that provides the 

desired workability and strength is also important in achieving a satisfactory concrete with 

reductions in cement binder.
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