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CHAPTER 1

INTRODUCTION

1.1 Background

The worldwide industrial vision market has recergkperienced considerable growth.
The international Vision 2008 Conference, held Noker 2008 in Stuttgart, Germany,
attracted 282 exhibitors, the highest ever for #maual meeting and 31% more than the
previous year (IMVE 2008a). Basler Co. reportedomtg orders have increased 20
percent compared to the same period last year eached €17.4m ($21.8m USD).
Stemmer Imaging Group, including Firstsight Visi@emmer Imaging in Germany and
Switzerland, and Imasys in France, announced w@alip revenue of approximately
€43m ($54m USD) with an overall growth of 8.8 patcérom the previous year.
Instrument Systems also reported its biggest anmwvainue growth since 1986, totaling
€9.3m ($11.7m USD), which was a 22 percent increass 2007 revenues (IMVE
2008b). Automation Tooling Systems Inc. announdsdhird quarter 2008 revenue of
$221.7m, an increase of 27 percent over the samedp@ 2007 (AIA 2009b). These
revenue increases are likely due in part to in@gas automated production processes,
which often require automated pattern recognitiord anspection of surfaces for
distortion, flaws, and/or textures. Such tasks bandifficult, especially for complex

surface shapes or variation in surface reflectamitle parts production at high rates.



The application of machine vision to automatedatefinspection can be found in many
quality control processes, including manufacturangd assembly operations, such as
those found in the pharmaceutical, semiconductwd fprocessing, and floor covering
industries. Because of its broad application baseshine vision has had some ambiguity
in terminology and lack of an all-purpose approagihen machine vision algorithms
used for pattern regconition, we find a numberedaliptive parameters from simple area
and perimeter caculations to more complex metvitsch may be used in a basis feature
vector for statistical pattern recognition (Webb02)) Surface inspection typically
employs various techniques for the automated deteadbf surface blemishes and
aberrations and extracts features from an acq@idednage of intensity data. Numerous
investigators report defect identification and sifsation techniques based on
measurements of image intensity variation and peskascription of the segmented local

irregularity (Smith 2001; Lolla 2005; Zhou 2007;5A2009a).

The study herein was motivated by operations asraroercial flight-type dishwasher in
a private 700 bed hospital in the mid-western UaBich operates 3 two-hour shifts per
day with approximately 700 trays of dishes andesikare per shift. One tray typically
consists up to six dishes of five different typgsee or four silverware pieces, and a cup
(Johnson 1993; Nagraj 2003; Yeri 2003; Lolla 208gddi 2005; Zhou 2007). Such
commercial dishwashing systems currently involvenan loading, sorting, inspecting,
and unloading dishes and silverware pieces befodeaster washing, in hot and humid
environments. In such difficult working conditiorilsading to high turn-over of low-paid
employees, automation is desirable, especiallaigd scale kitchens of hospitals, navy

ships, schools, hotels and other large dinnindifi@s. Our project is a part of developing



an integrated machine vision sorting and inspecysgem for dish pieces and silverware
exiting a flight-type commercial dishwashing ma&icoupled with automatic loading

and unloading for large automated dishwashing djpeis

Although the description of need seems straightfody designing and building an
efficient high speed and cost effective automatsteam is challenging. Inspection
difficulties are compounded by food particles (tgir of different food types varying in
color, size, shape, and position on a dish piat@ddition, glare and shadows increase
the difficulty of discerning clean from dirty disheeven for human manual inspection.
Moreover, because of the non-flat geometry of tish durface, the gray intensity of the
image drops significantly at the dish wall, espigifor a deep dish with steep sidewalls.
Even the definitions of a “clean dish” and a “didish” are subjective and ill-defined.
Identification on the other hand is an easier taggerform, since it may be solved based
only on the size and shape of a dishware or silas¥vwpiece. Therefore the accuracy of
identification will typically be higher than the @aacy of inspection, whether done
manually or automatically with a machine visionteys (Lolla 2005; Zhou 2007). For
manual labor, because of the tedious and repetitask in a difficult working
environment, efficiencies of both identification daimspection processes decrease as
production rate increases. In manual operationsuracy of inspection most likely

declines faster than that of identification as picitbn increases.



1.2 Literature Review

Johnson (1993), working on the same dish set \wi#tohe used in this project, employed
area and radius of the corner of the dish in usiaghine vision to automatically identify
dish pieces exiting commercial dishwashing machirks method required an invariant
position of a dish under the camera axis, whicluireg a pre-location mechanism for
each dish piece. Even with pre-location, he repopeor repeatability of results under
small lighting variations, such as those due tattlations in power supply voltage. He
claimed that using indirect ultra-violet (UV) lighgy, from fluorescent lamps, together
with UV band pass filters attached to camera lgmeyided better contrast between
defect spots and dish surface than incandesceminilg For inspection of dishes for
cleanliness, his algorithm used simple global tmoéding, which was found to be
insufficiently accurate for real implementation.rthermore, the smallest detectable dirt
spot size in his approach was too large compared the size of real dirt found on

dishes.

Hashimoto (1995) developed a prototype machineingusate silverware pieces and
process them for identification and inspection. Hegchanism used a vibrating feed-
hopper storing a mixed batch of silverware pietegether with a magnetic conveyer to
pull single pieces from the bottom of the hoppeswever, her constructed prototype had
limited capability, providing only 14.9% successhalignment and 41% singulation of
silverware pieces. She suggested that dividingrgeldatch of silverware pieces into
several small batches before feeding them intchtpper could improve the singulating
of the system. She also recommended that adding magnet-carrying conveyor strips

and passive-alignment channels to the conveyordcqdtentially solve the miss-
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alignment problem. Nagaraj (2003) devised a spréind orientation turntable device to
sort and orient silverware pieces. Her sorting nreectwas capable of processing a
maximum of 34 silverware pieces per minute witragarage sorting error of 1.87%. But
if her sorting and orienting device was integrateth a machine vision system for prior
identification of silverware pieces (Yeri 2003)ethbombined system production rate was
reduced to a maximum processing rate of 21 pieeemute with an increased average
sorting and orienting error of 8.4 percent. Shegssted that replacing Yeri’'s (2003)
serial process identification with a much fasteogess handling multi-threaded
programs, could improve the processing rate. P€8d05) avoided the difficulties
encountered by Nagaraj by using a set of relayaéetu fingers to selectively lift
identified silverware off a magnetic conveyor. Histotype system had capability of
sorting and orienting 55 silverware pieces per namwith 98% of accuracy. Yeri (2003)
devoloped a machine vision system, including a &a@rabber PCI card, camera, lenses,
lighting equipment, lighting setup, camera trig@acuitry using optical sensors, and
software applications, using blob analysis to getre silverware pieces and their
orientations. He set up indirect illuminaiton usiaglight tent to diminish speccular
reflections. His identification algorithm, based area of silveware piece image alone,
was insufficiently accurate for real implementatidmwlla (2005) improved on Yeri’'s
results and focused on inspection of silverwaregsewhich Yeri did not address. Both
Yeri and Lolla used NI-IMAQ Vision Software Libras (Device Drivers, Hardware &
Software Interfacing software) in a Microsoft Visi@&++ environment in their studies.
Lolla identified silveware objects by their periraet, symmetric and asymmetric

properties, and area moment of inertia measuremidetsised edge detection algorithms



together with template matching to inspect recogphigilverware pieces. His algorithm
produced 87% accurately classified clean silvervpgeees and 91% accuracy inspection
of dirty silverware pieces at average at speedopfaimately 55 pieces per minute. He
also sugguested several ways to increase the agcofdnis algorithms, such as using a
color camera, a camera with higher resolution,nopleying a thermal/Infra-red imaging
technique that he expected would eliminate spursgpecular reflections in silverware
pieces, as long as the costs of these improvemsats acceptable. Zhou (2008)
proposed an algorithm to recognize silverware [@eme&n with incomplete (truncated)
images and a fusion-based method for silverwargectson, producing very good results.
For the identification problem, he developed a CletepPattern algorithm and a Part-
Pattern algorithm, using respectively complete tatepmages and imcomplete template
images of silverware pieces. Both could be use@goonize incomplete images. A new
image registration algorithm, intended to work walim objects like silverware pieces,
was developed for image fusion purposes For ingpedhis key idea was based on the
observation that shadows will move, but dirt wiltrmove, between two images of a
silverware piece captured at two different posgiamder fixed illumination. After fusion
of two images of a single silverware piece, Zhopliad simple global thresholding to
the three color (R, G and B) channels and seartdreany difference in three channels
which indicated dirt spots. While this approach kear well for silverware, it will not
work for dish inspection, where the intensity ofligt spot on the dish floor is much

greater than the intensity of a clean portion ahn@iwall.



1.3 Objective and Problem Statement

The objective of this project is to develop fastaptable and efficient algorithms and
procedures for on-line dishware identification andpection of certain types of dish

pieces exiting a commercial dishwasher at a minimate of 30 dish pieces per minute.

The dish set used in this project was commercalbilable and used by a large, 700 bed
hospital in Oklahoma. It consisted of 5 types arablors of dishes, and was selected not
only because it was in wide commercial use, bud because the colors, shape, and size
of different types of dishes are very similar. Eatsh piece had uniform color with no
decorative markings (i.e. they were “plain”). Tldemtification and inspection algorithms
should work with dish images captured at diffengasitions and orientations under the

camera axis.



1.4 Outline of This Study

This report includes 4 additional chapters beyordpgfer 1. Chapter 2 describes the
experimential setup and perprocessing of imageaBsbf pieces. In Chapter 3 we present
several different attempts to solve the dish ideation problem, including the final
identification method using statistics of shape rigi¢ors of dish pieces. Chapter 4
decribes several attempts to solve the inspectioblem, including a proposed new
technique using partitioning and adaptive threshgld combined with global
thresholding. Conclusions and recommendations a&engin Chapter 5. Figure 1

illustrates the overall process, which we will dése in what follows.

Yy

Preprocessing
Captured Use Retrieved Dish
Image Dish Image as »|  Identification
Largest Object

Y

Dish Inspection

Y

Control Signal to Line
Operation: Sorting,
Removing Unknown,
Recycle Unclean Dishes.

User
requested
termination??

Figure 1: Processing Flow Chart



CHAPTER 2

EXPERIMENTAL SETUP AND PRE-PROCESSING

Designing a lighting setup is a critical step farilhing a machine vision system for
automated surface inspection applications. Accgrdinthe Machine Vision Association
(2000), “Lighting and optics are 80 percent of mestion applications”. In order to
detect defects on product surfaces, a machinenvesistem must be able to differentiate
the defects from the background. The ultimate psepof lighting is enhancing those
differences and/or eliminating specular reflectiansl shadows, which typically result in
incorrect processing of the image. Unfortunatelyighting setup that could minimize
specular reflection and shadow effects usually dépaipon the geometry of product
surfaces. Therefore it is problematic to designiragle lighting setup that works
effectively for a wide variety of applications. tesigning an imaging system, there is
typically a trade off between accuracy and speed.efAlarged image could provide
greater detail, but requires more time for progessA reduced image can be processed
quickly, but might not yield enough details for @t decisions. Most automated surface
inspection applications, including our study heraake advantage of prior knowledge
about the product geometry to design the mostldeitagghting setup and imaging system
(Smith 2001; Lolla 2005; Zhou 2007). Machine visgystems for those applications are

all domain-dependant and can be classified as clilgeor viewer-centered approaches.



2.1 Camera Configuration

The camera used in this project was an area sodor, digital industrial camera, Basler
Co. model Al102kc, directly connected to an imagecessing board in a personal
computer (Pentium dual core 3.0, 4GB RAM) for reale image processing. It offers
features including RS-644 programming capabilityghh signal to noise ratio,
electronically controllable sensor exposure timedividual electronically adjustable
gains and offsets for red, green, and blue chanffiefswhite balancing), electronic
trigger capability, and a maximum frame rate offf&nes/sec. The camera setting could
be configured either by the Basler CCT+ Camera @ardtion Tool in a Windows (™)
environment or by binary programming commands whoeim be included in user
application programs. The camera’s sensor, a SQ@X285 Progressive Scan CCD
Sensor, has a principal spectral response from mM0Qa 700nm, peaking at
approximately 470nm for the blue channel, 540nntliergreen channel, and 620nm for

the red channel, as shown in Figure 2.1.
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Figure 2.1 : Basler color camera model A102kc Spé&esponse (Basler Co. 2007).
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During the imaging process, the optical equipmecuses the reflected light from the
object to be imaged onto the camera sensors, whieh converts the light intensity
signals to electrical signals. Those signals age thgitalized and interpreted as an image
of the object. The criteria for selection of optieguipment includes: resolution, sensor

size, field of view, working distance and deptHield, and are illustrated in Figure 2.2.

Sensor Size

Camera

Working *
Distance ',

= IIII'-.I
fgee-
Resolution

Figure 2.2 : Fundamental Parameters of an Imagystes (EIO 2009a).

Sensor size in the camera was approximately 17 quars. Resolution was set to 1392
by 1040 pixels, which is sufficient to discern aadindirty spot of SFS (smallest feature
size) mm square. The lens was a Fuji model CF35HA8mm focus length, with
14°26'x10°46’ aperture view cone. Let sensor size SS=17mngoseesolution SR=1040
pixels, and focal length FL=35mm. Choose workingtatice WD=600mm, which is
large enough to avoid distortion when the len®@$ed to an object within the working

distance (Zhou, 2008). Then we can calculate thallest feature size, SFS, that the
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camera can detect (EIO 2009a) as:

2x FOV (2.1)
R

where FOV= 200mm is the field of view, given by

SS=

SSxWD (2.2)
FL

Subtituting FOV from (2) in (1) yields:

FOV =

_ 2XSSXWD (2.3)
SRxFL

Using the above numerical values in (3) gives SBS8mm, which is sufficiently small

SS

for detection of food particles in our project.

2.2 Lighting Design

Our experimental setup was inherited from Zhou 8p0Qolla (2005), and Yeri (2003).
They all worked on silverware pieces, which werdatlie and had complex geometric
surfaces with a shiny finish. Such smooth surfagesld produce specular reflection,
which resulted in “glare” being formed in the imagausing deterioration of the quality
of the object image. Yeri (2003) designed a ligiittto weaken specular reflections.
Yeri’s lighting setup was an adapted version of ‘fight tent” setup, shown in Fig 2.3,
and had advantages of minimizing glare and shadovisch is a well-established
lighting technique (MVA/ SME 2004). However, thedges acquired by Yeri's system
still revealed undesirable characteristics inclgdshadows and ill-lighted regions on

silverware pieces (Lolla 2005).
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Light Tent (cloudy day) : Non-directional, totally diffuse
top lighting that pro- duces illumination hike from a
cloudy day. Good for metal parts (rivets, ball bear-
ings) and electronic components.

Workpiece

B

Light Sources

Advantages Disadvantages
+ Eliminates glare. * Must surround workpiece.
+ Eliminates shadows. = Can be costly.

* Size can be a problem.

Figure 2.3: Light Tent lllumination Model (MVA/ SMEQ04).

Yeri also experienced image shape distortion, whakld be explained by the silverware
pieces vibrating as they were conveyed by slidiegdath the camera. Peddi (2005)
modified the conveying mechanism, eliminating sigdiwhich eliminated this distortion.
Lolla (2005) improved Yeri’'s imaging system by adglicurtains outside the tent, which
reduced shadows. Lolla also used DC lamps togethiera Switch Mode Power Supply
(SMPS), commonly used to power PCs, to eliminatsen@n acquired images. Zhou
(2007) attached the curtains inside the tent andentihem capable of moving with the
magnet holding the silverware pieces. With this rcation, Zhou reported that almost

all shadowing could be removed.

Although the lighting setup used by Zhou (2007) dmdla (2005) worked well for
silverware pieces, it would not work for dishwaileges because dish surfaces not only
are less shinny than those of a silverware pieag,also have unique 3D geometric

shapes. We needed stronger light sources than fosegllverware to illuminate dish

13



pieces better. For inspection purposes, we desingdrm illumination across the dish
piece, as well as minimum specular reflections simtlows. Among the well-established
lighting techniques, the “light tent” (Fig 2.3) atttk “direct front illumination” (Fig 2.4)

lighting setups appeared to offer the best compserfar the system under consideration.

DIRECTIONAL {SINGLE AND
BILATERAL)

Pros: strong, relatively even illumination
Cons: shadows, glare

Type: single {shown) and dual fiber optic
light quides

Camera

Figure 2.4: Directional Front lllumination (EIO 2019).
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Our experimental setup, inherited from Zhou (20@vith modifications in lighting is

shown in Figure 2.5.

-l ] Camera

Image
acquisition
card

Camera

4 DC halogen
lamps

Conveyor

Line direction Dish piece

Schematic Diagram

Photograph

Figure 2.5: Experimental Setup with Our Modificaitsoin Lighting.

After washing, it is anticipated that dish piecesl we automatically placed on the
conveyor. However, in this project, dried dishemaevplaced manually. A dish image
was captured by the camera when the dish was itis&dight tent in the camera field of
view. In full implementation, image taking will beiggered by appropriately placed
sensors, but in the work herein, this triggeringsvegbne manually. This image was
transmitted to a computer for image processing. fEBm¢ wall and curtains are used to

eliminate unexpected illumination from the outsidenvironment. In actual
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implementation, after processing, a signal idemtdythe type of dish piece will be sent
to a sorting mechanism to sort the dish into akstddike dishes. Unidentified objects
will be automatically sent to a bin for such obgotr if a dish is determined to be
unclean by the vision system, a signal will be gentonvey said dish into a bin for re-

washing.

The white mat finished cardboard forming the inssdefaces of our light tent provided
some diffuse lighting of our dishpieces and redusygecular reflections, while the choice
and placement of our lights reduced shadowing.rAftamsiderable experimentation, we
selected as our light sources four 12V-20W DC hatolight bulbs surrounding the dish
piece and placed as indicated in Figure 2.5, wipidvided sufficient illumination for
both identification and inspection. These lampsensowered by a Switch Mode Power
Supply (SMPS) fed by 110V 60Hz building supply. fidn@vere many ways to achieve
desireable lighting, such as changing emitted eeergf light sources by regulating the
supplied power voltage, or changing exposure timd/a the shutter speed of the
camera. To avoid the need of a voltage regulaterchose tuning the exposure time of
the camera, which could be programmed. Acceptadpeing was achieved by trial and
error. Fig 2.6 shows examples of dish images cagtunder different exposure times. By
subjectively visual assessment, we observed thratcdramic SC dish images (2.6a)
exhibited shiny surfaces and provided good detaileout excessive glare at exposure
times of 16 to 20 ms. We also observed that exjgosores of 18 to 24 ms produced the
best result for the spacer plastic SP dish imag&b), and 18 to 22 ms produced the best

results for the plastic SX dish images (2.6c).
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Figure 2.6: Dish Images Captured Under Differenp@&sure Times as Labeled.
A Ceramic SC (a), a Spacer Plastic SP Dish (b),aaRthstic SX Dish (c).
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(As will be described later, our dish set had fdriferent types of dishes, two of them

ceramic and three of them plastic).

A more objective approach for choosing a reasonehieera exposure time employed

the two following criteria:
- Width of histogram of dish image — desired to hgéato maximize dirt detection.
- Area of glare region on dish images — desired terball to minimize glare.

More illumination provided in the field of view (thiout over-exposure) produces more
detail that can be dishtinguished on the dish irmaged also produces a larger the width
of the dish images histogram. At the same time, dwan more illumination produces
more glare on the dish image. Figure 2.7 (a) andtibw color and binary images of a
dirty dish with glare, while Figure 2.7 (c) shovw tcorresponding histogram for the gray
level version of Fig 2.7 (a). We have also indidaba the histogram the correspondence
with areas of the dish image in Fig 2.7 (a). A piseconsidered to belong to the glare
region if its gray level is greater than 150 (gtayel range is 0-255). The area of glare
region on the histogram is defined by the numbgixéls belonging to glare. The width
of the dish image histogram is difined by the nuntdfegray levels belonging to the dish
image. We count only the gray levels in range 4350 for the dish image, with gray
levels below 45 corresponding to the dark backgdoand gray levels greater than 150
corresponding to glare. We also ignore gray levalues that lie below 5% of the

maximum histogram value as representing noise.
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Figure 2.7: Glare Area and Width of Histogram Ithasions
(a) A Ceramic SC Dish, (b) Binary Image Showingi®IRegion as White, (c) Histogram of the Gray
Image of (a)
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Figure 2.8a shows that both the width of histogeard the glare area of SC Dish Images,
captured under different exposure times (10 to 23, nmcreases with exposure time.
Clearly, the exposure time of 20 ms provide a reable compromise between the two
goals of having the width of histogram dish imagsgé while having the width of the

glare area small.
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Exposure Time (ms)
Figure 2.8a: Width of Dish Image and Glare Are&€efamic SC Dish Images vs. Exposure Time

Similarly, for the plastic spacer SP dish images(B&y 2.8b) and the plastic SX dish
image (see Fig 2.8c), the compromise exposure toaashe seen as 22 ms and 20 ms,
respectively. Accordingly, because we wished toaisengle exposure time, we selected
20 ms for all five dish types (The dishes LC and il be described in Section 2.3,
were made of the same materials as SC and SPctegbe such that exposure time
analysis would produce the same result for LC am). LThis result matches that

determined by subjective visual inspection, disedgzeviously.
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Figure 2.8c: Width of Histogram and Glare Area tafdfic SX Dish Images vs. Exposure Time
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2.3 Pre-processing
Dish set

Our dish set, shown in Fig 2.9, was commerciallgilable and used by a large, 700 bed
hospital in Oklahoma. It consisted of 5 types &nmblors of dishes. For easy reference,
we named each dish piece using size (large or ynaaid its material or function

(ceramic, plastic, or spacer). Then LC and LP r&gme respectively the large ceramic

dish and the large plastic dish, while SC, SP aKdré&present respectively the small

ceramic dish, the small plastic dish, and the sspkter dish.

Figure 2.9: Our Dish Set.

The reason for selecting this dish set for our ywtigl that not only it is in wide

commercial use for institutional food service, bigo the colors, shape, and size of its
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different types of dishes are very similar. Howewaach dish piece had uniform color,
with no decorative markings (i.e. they were “plain”Other commercially available

“plain” dish sets present much lower challengestif@ identification problem because
their sizes are often easily distinguishable. Feg@rl0 shows other two commercial
“plain” dish sets. Compared with our dish set, gigdres in Fig 2.10 could be recognized

by combining information from their sizes, shapas] colors.

Figure 2.10: Example of Two Other Commercial DigtsS

Pre-processing

Images acquired from the camera could include imdgen objects other than a dish
piece that might appear in the field of view. Ferthore, it was unnecessary to process
the entire image (object plus background), whichtamed only a small region of interest
around the dish. Hence pre-processing removed essary features from the image and
improved the quality of the data left in the imagassed on for inspection and

identification. We developed a pre-processing atigor for thresholding, computing
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areas, and choosing the largest object (or partinlea dish image, rejecting all other
particles. This process removed noise and reliedtlyeved a good dish image from the
camera image, which was then ready for identifocaind inspection. It also reduced the
amount of data presented for calculation in thentifieation and inspection processes,

resulting in increased processing rate. The flowtctoa our pre-processing algorithm is

shown in Figure 2.11.

Start \ 4

Select the Largest
Object and Remove
All Other Objects

Read the
Acquired RGB
Image v
Mask Binary Image
¢ to the Gray Image
Convert to Gray
Image and v
Threshold to
Binary Image Align the Largest
Object Based on Its
¢ Orientation
Smooth Objects’
boundaries and Fill A
Holes. Retrieve the Region of

Interest as the Aligned
Bounding Box of the
v Largest Object

Then Compute Areas
of All Objects

Stop

Figure 2.11: Flowchart for Pre-processing.

As illustrated in Fig 2.12, the gray scale imagg @fter being converted from the
acquired color (RGB) image, was thresholded toltimary image (b). Thresholding is

the process of segmenting an image into a binaag@that has only two possible values
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for each pixel, 0 or 1, typically represented ae twlors black and white. Traditionally,

the thresholding process simply defines a rangatehsity (or brightness) values in the
original image that any pixels within this range aet to be the foreground (or objects),
while other pixels are set to the background (R2@37, Chapter 6). While this is the
simplest method of image segmentation, it is alstossy process, in which some
information about the image is irrecoverably lostidg processing. Several thresholding

techniques, including adaptive thresholding, waldscussed further in Chapter 4.

(a) (b)
(c) (d)

Figure 2.12: Example of Thresholding, Fill-hole cgt@n and the mask.
(a) Gray-scale image; (b) After thresholding;
(c) After filling hole(s); (d) Mask of the largesbject.
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In our binary image, the black (0) region and thetev(1) region, respectively, represent
the background and the foreground. Each conneciedyfound region is considered as
an object presented in the image. Our binary dishge could contain holes, or black
regions inside dish object, as shown in Fig 2.1@doresponding to dirt spots (if present).
Such holes were filled by applying morphologicabgessing, which is a broad set of
image processing operations that process imagesdbas shapes. Morphological
operations apply a structuring element to an impatge, creating an output image of the
same size. In a morphological operation, the valueach pixel in the output image is
based on a comparison of the corresponding pix#giennput image with its neighbors.
By choosing the size and shape of the neighborhond, constructs a morphological
operation that is sensitive to specific shapeh@ihput image. The basic operations of
binary morphology are dilation, erosion, closingndaopening. A dilation operation
enlarges a region, while an erosion operation mékasaller. A closing operation can
close up internal holes in a region and eliminaagsbalong the boundary. An opening
operation can eliminate of small portions of thgi@a that jut out from the boundary into
the background region (Vincent 1993; Russ 20074QnFthe binary image, after filling
holes, we then labeled all connected componentsiffacts) and computed the area of
each object by counting all pixels belonging tat thigject. The dish image was taken as
the largest object presented in the image (Figd).IPherefore, after selecting the largest
object and removing all other objects, by maskhmgliinary image to the gray image, we
produced a gray image that retained only the intddbe dish itself, while setting other
regions as the background. For efficient computatamd the need of template matching

in the following inspection process, the dish images aligned, and then only the region
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of interest was extracted, including the boundiog around the dish object.

(b)

(d)

()

Figure 2.13: Example of Pre-processing.
(a) Original camera image (RGB); (b) Binary maskléwgest object.
(c) Gray dish image; (d) Dish retrieved image.

Figure 2.13 illustrate the main steps of the pr@epssing process. The captured image
(a) included not only a dish piece but also a pathe moving curtain (top of image) and
some small unwanted particles inside the fieldietw After masking the largest binary
object (b), the gray image (c) was reduced exceptilfe dish image portion and its
bounding box area. Then only the region of inte{@is¢ bounding box and the dish
image) was extracted as a smaller gray scale or aolage. This small image (d) was
then ready for the following identification and pestion processes, discussed in

Chapters 3 and 4, respectively.
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CHAPTER 3

DISH IDENTIFICATION

3.1 Introduction

Our task using a machine vision system to ider&ikinds of dishware pieces (including
SC, SP, SX, LC and LP as described in Chapter a)psoblem in pattern recognition.
Pattern recognition involves observing the envirentnlearning to distinguish patterns
of interest from their background, and categorizthg patterns. According to Zhou
(2008), there are four principal approaches fotgpatrecognition suitable for machine
vision applications, namely: template matching,tistiaal classification, structural
matching, and neural networks. For practical puesppghe implemented automatic
system should at least be comparable in performmeghat can be achieved manually.
Accordingly, from our observations in actual comanr dishwashing operations, our
automatic system should be able to accurately rezegnd inspect 5 types of dishes in
real time at a minimum rate of 30 dishes per minihile this task is easily
accomplished manually, it poses a significant emge for automation. We desire an
algorithm that works flawlessly under varying dgbsitions beneath the camera and with

varying illumination.

28



Zhou (2008) used a template matching method totifgesilverware. He developed a
Complete-Pattern algorithm and a Part-Pattern algor using respectively complete
template images and imcomplete template imagedvanware pieces. These could be
used to regconize both complete and incomplete esamd produce very good results
for silverware identification. Other investigatoasso studied identification of mixed
silverware pieces (Yeri 2003, Lolla 2005) or dishevaJohnson 1993) exiting a
commercial dishwashing machine. Johnson (1993) dstdimage area and radius of the
corner of the dish image, but his method couldwatk with varying dish positions and
orientations under the camera axis. Yeri (2003)tified silverware pieces based only on
area of their images. However, since this metrienidier does not provide any
information about shape of the object, Yeri's idedtion algorithm could fail in cases
where areas of two different pieces of silverwarethe same, even though their shapes
are significantly different. Lolla (2005) used taréeatures, namely, the area of the
silverware image (the largest particle), the aresment of inertia of the largest particle
about an axis perpendicular to the image plan«i&@saand the perimeter of the largest

particle. Lolla’s method worked well for silverwaidentification.

For a statistical approach, the problem is to chaset of descriptors that is both good
enough to accurately and consistently classify tingljects and simple enough for
effective computation. In this chapter, we presssteral different approaches to solve
the dish identification problem, including our sméd identification method using

statistics of shape decriptors of dish pieces.
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3.2  Trial Approaches

A human can quickly recognizes each type of disekedaon the material, corner
curvature, size, edge pattern, color, and/or a ofithose properties. In an attempt to
imitate some of these capabilities, we experimentét several approaches based on
edge detecting and statistics of shape descripfs.dish set, described in Section 2.3,

is reprinted as Figure 3.1 for convenience.

Figure 3.1: Reprint Our Dish Set.

Approach 1: Use Descriptor Set 1, having the two following nastr The dish image
must be aligned with a horizontal-vertical refeeoordinate system before processing.
We define “alignment” as the process of rotating dish image to produce alignment of

the major axes of the dish image with the horiziomrence coordinate.
1) The ratio of dish image length to width (called &E®.

2) The ratio of the dish image area to the area of-akgned minimum
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bounding box (called O_EXT)

Input: The binary image in which dish image pixate ‘1’, and all other pixels are ‘0’

(background).
Output: Dish type code (SX, SP, SC, LC, LP, or Uowkn).

The O_REC ratio can be easily calculated as the ohtthe two dimension of the axis-

aligned bounding box (AABB) of the dish image amghresents how similar the dish
shape is to a square. The O _EXT ratio presents hearly the dish image area
approaches the area of a rectangle. In our dislyesya@® EXT might be considered as
indicative of the radius of the dish corner, whieais used by Johnson (1993) for solving

the same dishware identification problem.

OBB = AABB

/Objed\ Major Axis

Figure 3.2: Axis-aligned Bounding Box (AABB) andiémted Bounding Box (OBB)
(Left) When the Object is Aligned; (Right) When tBéject is Non-aligned.

Figure 3.2 illustrates the differences between tthe common bounding boxes of an
object, named axis-aligned bounding box (AABB) amdnted bounding box (OBB-

which will be used later). Both these bounding Isxas the names infer, are the
minimum sized rectangles that enclose the objeagenThe four edges of the AABB are
always parallel with the axes of the coordinates.tii® other hand, the four edges of the

OBB, which is, in general, different from the AABRre parallel with the major axis
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orientation and the minor axis orientation (whichgerpendicular to the major axis
orientation) of the object image. (There is anothefinition of OBB (Jain 2001), which
is more general than what we define in our studycoiding to Jain’s definition, OBB is
the minimum rectangle that contains the object, issdrientation could be any direction
rather than the major orientation of the objeat).our definition, when the object is

aligned (left), the AABB and OBB are the identic@therwise, they are different (right).

The distributions of 84 dishes of 5 types in the4woperty space (O_REC and O_EXT)
are shown in Fig 3.3a and Fig 3.3b. The experimemgsults do not separate well,
especially between the two small dishes SC andr&Xlae two large dishes LC and LP.
The reason is that the rotation of a dish imageagsure alignment produced pixel
counting error when calculating the area of thenoling box, causing a reduction in

accuracy of the computed O_EXT ratio.
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Figure 3.3a: Separating Dish Pieces by DescripgprlSor the Three Small Dish Types
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Figure 3.3b: Separating Dish Pieces by DescripgbrlSor the Two Large Dish Types.

Figure 3.4 illustrates how an error of a singleebigroduced by the rotating operation

could contribute a significant error in computing EXT. In general, several artifact

pixels in the dish image after alignment are undable. The error in counting the area of

the dish object, which is typically on the orderléf pixels, is acceptable. But the error

in counting pixels to determine the area of the BAM the dish is not negligible.

The single error pixel
produced by rotation

De
Aligned
0]

S

/

sireh
=/

Error
Aligned

\ome(y

Desired AABB Error AABB

Figure 3.4: Pixel Counting Error Produced by RotaiDperation.
(Left) Flawless Rotation Results; (Right) RotatResults with Error of a Single Pixel.
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Humans can visually distinguish the slight diffezenn color between the two small dish
types, SC and SX, which were not separated wellgr3.3. However, we were unable to
consistently use color differences to discrimindiecause the color of dish images
changed significantly under varying lighting comaliis. Possible solutions for

improvement in this approach could be:

1) Use the oriented bounding box rather than axigiatigbounding box to avoid

rotating the dish image.

2) Develop algorithms to compensate for the pixel ¢mgnerror in computing the

O_EXT ratio of the dish image after rotation.

3) Consider other dish geometric parameters.

Approach 2: Use Descriptor Set 2, having the two following rostr
1) Mean of the dish image gray level distribution.
2) Variance of the dish image gray level distribution.

Input: The gray scale dish image and its boundiog bnly (produced from pre-

processing).
Output: Dish type code (SX, SP, SC, LC, LP, or Uowkn).

The idea of this approach is separating dish pibassd on their gray level distributions
(or histograms). With our assumption of unifornumination, the dish image gray level
distribution reflects mainly the dish geometry imf@tion. Therefore, with some basic

indicators of this distribution, such as the mead the variance, we speculated that the
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dish type could be recognized. The mean of the idislye histogram represents the size
of the dish (large or small), while the varianapresenting the width of the distribution,

is basically a measurement of dish shape. Fig@rest3ows examples of dish images and

their histograms.
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Figure 3.5: Example of Dish Images and Their Hisiog
(a): SX dish image; (c): LP dish image;
(b), (d): Histogram of (a) and (c), respectively.

Results of separating 600 dish images of all 5dymeder different dish positions and
varying lighting condition are shown in Fig 3.6addfig 3.6b. We note that the data from

different dish types overlap, especially for thetlarge dish types, LC and LP. One of
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the reasons for this is that the assumption ofoumfillumination was not realized.
Furthermore, methods based on color or gray levieinsity were found to be overly
sensitive to small lighting variations. Notice tliksta for the SC dish type separates very
well from data for other two small dish types, St &X. With Approach 1, the SP dish
type was distinguished easily from the others. &fuge, we can take advantages of both
approaches to completely identify the three snyaks$ of dishes. However, the two large
dish types are still unidentifiable. One possildkison for improvement in this approach

would be to employ data taken under identical ligghtonditions.
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36



150

LC

145 I 4 LP ﬁ O -

140 - jﬁ =
— & °
® 135¢ _ @ g °© .
o~ % % X &
== 130 F £ N
o
= 125 ® % & o .
o *®

120 1 O =
: J;
e 115} * % :
@© £ on,
.: 10 b -
(as] ®
> 105} ae |

5 ®
100 1 1 I 1 [ i
16 18 20 22 24 26 28 30

Mean of gray level
Figure 3.6b: Separating the Two Large Dish Type®bygcriptor Set 2

Approach 3: Employ edge detection for separating the two satiahl types, SX and SP,
and the two large dish types, LC and LP. This cdaddbne solution for the problems of
Approach 2 with data overlap between SX and SRyalksas between LC and LP dish
pieces. Among the three small dish pieces, SPdsnibst different, with the largest

number of edges, such that it can be easily rezedniFigure 3.7).

LC and LP can be separated by other edge featuel,as the curvature of edges, or the
distances between edges. However, finding thogertsais time consuming and, even
worse, is highly susceptible to noise. Edge detgatiethods using Matlab and its Image
Processing Toolbox was not only computationallyesgive and slow, but also proved

difficult in selecting appropriate threshold val{&siong, 2008).
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(c) (d)
Figure 3.7: Separating SP from SC Dish Type UsingNer of Edges
(a): SP dish image; (c): SC dish image;
(b), (d): After edge detection of (a) and (c), edjvely.

3.3  Final Approach and Identification Algorithm

From our early experiments described above, we qe®pusing statistics of shape
descriptors of dish pieces to solve the identifaatproblem. Three easily calculated

statistics of shape descriptors are:
1) The dish image area (or the number of pixelermghg to the dish image).
2) The ratio of dish image length to width (calledREC).

3) The ratio of the dish image area to the area ofaitiented bounding box

(called O_EXT).

This final approach is an improvement of Approaghdéscribed in Section 3.2. By

adding one more metric, we were able to succegsfigintify all types of dishes in our
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set. The area of the dish image, which is alreadylable from the pre-processing step, is
a fairly good indicator of dish size. Recall thiaé tO_REC ratio represents how similar
the dish image shape is to a square. The O_EX® mBsents how closely the dish
image resembles a rectangle. All three shape g¢sigiare position invariant. Also from
experiments with our pre-processing results, whootduced binary dish images as the
input of the identification phase, we found coresisly under varying light conditions.
Therefore, we postulated that our identificatiogoaithm would produce consistent

results with varying dish positions beneath the @anand with varying illumination.

In order to classify dish types, we used a trairgagof 500 images, with 100 images for
each dish type, to estimate the distributions shdmage properties. Examining the dish
image area property, we observe from Fig 3.8a agd88Bb that two groupings readily

appear: large areas representing LC and LP, anlil @reas representing, SC, SP and SX.
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Figure 3.8a: Areas Distribution of Small Dish Image
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Figure 3.8b: Areas Distribution of Large Dish Image

By considering only dish image area information,bléa 3.1 shows that it is
straightforward to identify SC, since none of theage areas of SC overlap with any

other dish piece.

Table 3.1: Areas of Dish Images.

Dish type SX SP SC LP LC
Area L ]
. 2.45-258| 2.53-2.66 2.69-2.88 4.96- 5.28 5.1615
(10* pixels)
Overlap 2.53-2.58 x 5.16- 5.28
region SX or SP? LP or LC?

However, there clearly is overlap in image areas®fand LC, and of SP and SX.
Accordingly, we employ the other metrics, the O_REio and O_EXT ratio, to
distinguish between them. Using these two metogether, as indicated in Fig 3.9a, we

can easily distinguish SP from SX. Using area@n&EC ratio, Fig 3.9b illustrates how
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LC is distinguished from LP.
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The “optimal lines” to separate SP and SX, and b@ BP are shown in Table 3.2. One

could be able to employ a simple Single-layer NeNetwork to automatically learn the
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optimal linear boundary of data points from two a@ble data groups, in the sense of
minimum square error (Hagan 2004). However, itinspée enough in our case, with a
two-dimensional space, that these “optimal linegiuld be manually determined.
Regardless of how these lines are determined, Migraraautomatically, they should be
pre-calculated in a “training phase” as we did hared then parametrically coded into

the user program for real-time use.

Table 3.2: Linear Separation of SP and SX, LC aRd L

Line to separate Line to separate
SP and SX LC and LP
Point 1 Point 2 Point 1 Point 2
Area
(104 pixels) X X 5.22 5.13
O REC 1.28 1.35 1.48 1.52
O_EXT 0.91 0.95 X X

Hence, our identification algorithm is as showable 3.3 and Figure 3.10:

Table 3.3: Main Steps of Identification Algorithm.

1. (Pre-processing): retrieve dish image as thgekrobject in camera image.

2. Step 1: Classify using dish area. Identify SC.

3. Step 2: Distinguish SP from SX using O_REC andEXT. Distinguish LC
from LP using O_REC and area.

To save time, the two properties, O_REC and O_E&€, computed only if the area
property is insufficient to make a good decisiothé&wise, the algorithm stops at Step 1

shown in Table 3.3.
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Start

(Pre-processing)
Select Area
(10* pixels) Case:

2.45< Area < 2.53 4.96< Area < 5.16

2.53< Area < 2.58 5.16< Area < 5.28

2.58< Area < 2.66

5.28< Area < 5.51

2.69< Area < 2.83 Stop:

Unknown

Object
Step 1
v Step 2
o " A 4
ompute
O_EXT and Cgmé);ée
O_REC _|

O_EXT - 135> O_REC-128

Area- 522 S O_REC-148
135-095 128-091

522-513 14€-152

StSO; : Stop:
LC

Figure 3.10: Identification Algorithm Flow Chart
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34 | dentification Results

Results were collected from 725 images of all typledish pieces, not including any of
the 500 training set images. All training and te&gtimage sets were produced from 84
dishes, of all types, clean and dirty, under déférdish positions and orientations under

the camera axis. The camera exposure time varigeba 16is and 24s.

Table 3.4: Results of Dish Identification.

Time* (sec)
Number | Correc Min | Average Max

LC 85 100% 0.18 0.22 0.57
LP 120 100% 0.18 0.33 0.59
SC 200 100% 0.17 0.18 0.23
SP 167 100% 0.17 0.20 0.49
SX 153 100% 0.16 1.24 0.48

d.A" 725 | 100%| 0.16| 021 0.59
ishes

(*) Matlabll R14, Image Processing Toolbox V5.0, Window Visliaal core 1.6GHz, 2GB RAM.
The results shown in Table 3.4 show accurate ifiesion for all images, with an
average computation time of 0.21 sec. This is deeateeptable to allow identification

and inspection of dishes at our target dish pracgsste of 30 dish pieces per minute (2

secs/dish).

In the next chapter we present automatic methodissfwect dish pieces for cleanliness,

given that they have already been identified usthg algorithm in Fig 3.10.
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CHAPTER 4

DISH INSPECTION

4.1 Introduction

Following commercial dishwashing, automated distpéction using image processing
presents some unique challenges. First, the inyemdi dish images is sensitive to
changes in lighting, power fluctuation, and cansmasitivity drift (Lolla, 2005). Second,
even with reasonable attempts to establish unifititmination of dish pieces, uneven
illumination persists in the camera field of vielhis causes non-uniformity in color and
gray intensity across a clean dish as the posdfaime dish varies in the field of view.
Third, because of the non-flat geometry of the disiface, the gray intensity of the
image drops significantly at the dish wall, espigifor a deep dish with steep sidewalls,
such as our dish pieces LC, SC and SX. Moreoverreghnd shadows increase the
difficulty of discerning clean from dirty dishesyen for human manual inspection.
Fourth, food particle images vary in gray levelpeeding on food type, size, and
location. Certain food particles, such as dried gglk, can be especially difficult to
detect against the color of our dish. Fifth, thérdigons of a “clean dish” and a “dirty
dish” are subjectively ill-defined (Zhou, 2008). i@paring with many industrial
identification tasks, automatic dish inspection da® much more interesting and

challenging.
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Zhou (2008) proposed a fusion based technique ifeer@are inspection. The most
important part of his technique was pre-processingwhich he combined relevant
information from two images of one silverware pi@aptured at different positions, to
recover information in regions obscured by lightgigre and shadows. Zhou also applied
simple global thresholding to the three color (Ra&@l B) channels, and his approach
worked well for silverware. Lolla (2005) used temaipel edge matching for silverware
inspection. This approach is not only time consgnbut also suffers from lacking the
ability to deal effectively with glare and shadowd/e investigated several new

approaches for dish inspection, as described irt foHaws.

4.2  Trial Approaches

Approach 1: Employ color segmentation with Mahalanobis distaand Cosine angular

similarity.

The idea of this approach is detecting any spatésponding to dirt) in a dish image that
is different in color from the dish surface’s imag®dor. Remember that dishes in our set
are all of uniform color, with no decorative marggn The Mahalanobis distance method
and the Cosine method were employed for measurewfenblor similarity in RGB

space.

The Mahalanobis distance (M-distance), introduceg the Indian scientist and
applied statistician Prasanta C. Mahalanobis (@l&sz2007), is a distance measure
using correlations between variables by which dgffie patterns can be identified and

analyzed. Applied to the RGB model, the M-distanBg(X) from a point

X:[XRVXG,XB]Tin the RGB color space to a group of n sample point
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)Zi = [)ZiR, )ZiG,)ZiB]T ,i=1:n, represented by a med = [,uR’,uG,,uB]T and a covariance

matrix C, is defined as follows (Gonzalez 2007).

Dy (X)=y(X-M)"C*(Xx -M) (4.1)

where (.J means the transpose of a vector or a matrix, diidrieans the inverse of a

(non-singular square) matrix. The covariance mdgris a matrix of covariances between

elements of the vect())Z -M).

AB Enclosure ‘r B

Bounding all ™|
A/_ Data Points \

v
®
v

®

Figure 4.1: Enclosures of Data in RGB Space Usingiffean (left) and Mahalanobis (right) Distances.

The M-distance differs from Euclidean distancehattit takes into account that data
points (from one object) may have their values e golor channel correlated with the
values in one or both of the other color channats ilustrated in Figure 4.1). If the
covariance matrix is the identity matrix, the Midisce reduces to the Euclidean

distance.

a7



Another method used between the two points X anthNRGB color space was the
Cosine method, with the cosine defined by Luka®{@@&s:

X™™M

cosf = ———
[X[m]

(4.2)

where the operation ||.|| means the Euclidean wbmarvector, or the Euclidean length of

the vector (in our implementation).

In our inspection process, a sample image of analésh of interest (of the same type that
was earlier identified in the identification proseswas used for sample points to
calculate vector M and matrix C in (4.1) and (4.P)en the dish image of interest was

segmented based on M-distance and/or Cosine sityilesing the following criteria:

[D,, (X)] <d, for D-distance (4.3a)
255/1-cos’ @ <d, for Cosine (4.3b)

where d is a distance threshold value, normalindtie range [0,255].

Results of the color segmentation methods, illtstran Fig 4.2 for an SX dish image,
show that the M-distance result is more sensitovedlor variations, as well as more
susceptible to noise, compared with that of Cosewmult. Notice that results of both
methods miss-classify the glare, or high intensetyion on the right of the dish image, as
a dirt spot. Even worse, the results using theggoaghes varied with varying dish

location as well as varying lighting.

48



(b)

(a): Captured RGB image
(b): Segmentation using Mahanabolis distance
(c): Segmentation using Cosine method

(Black regions inside dish image represent detected
dirt spots)

(©

Figure 4.2: Result of Approach 1 for a Dirty SX Bisnages.
(Dirt was made of BBQ sauce, egg yolk, coffeerstai
which were manually placed onto dish surfaces aiedidn place)

Approach 2: Employ a Fusion-based method for pre-processingbaeed with a Color-

based edge detection method.

This approach was motivated by the method usedhoy £2007), combining two images
of a silverware piece captured at different posgidor eliminating glare and shadows.
However, applying a simple global thresholding apien to three color RGB channels

of the fused dish image, as the second step of 'Zhehnique suggested, did not
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provide a good result. One reason is that the Biodlaof a dish image contains much
less information comparing with the other two chalarbecause: 1) the dish color itself
lacks a blue component; and 2) the CCD camera sénsidways less sensitive to blue
color (Siegwart 2002, p119). More importantly, 8xdimensional geometry of our dishes
caused significant variation in gray level of dislkages even under “ideally” uniform

illumination. Accordingly, dirt spots in the floaegion of a dish image might have
greater intensity than the clean wall region. Tfeeee a single global threshold value

could not successfully distinguish dirt from theoMhdish image.

In this approach, after the fusion process, thereodsed edge detection technique was
employed to the fused dish image to discover regigrhere the color changed
significantly. The variation of color was measuckectly by the color-gradient, defined
by Gonzalez (2004, section 6.6) as follows:

G B
Define: DR:{RX] DG:{ X}, and DB={ X}as the gradient in R, G, and B
Ry Gy By

channels, respectively. Define:

O, = R +G +B; (4.43)
9, =R} +Gy +BJ (4.4b)
Oy = &Ry +GXGy + BXBy (4.4¢)

Then the anglap and gradientl] at each point (x,y) in the RGB input image are

respectively calculated by:
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{=n
Y(x,y)=05tan"| ———— (4.5a)

x gyy
0= O.5[gXX +0,, + (9« —gw)cos2w+29wsin2wj (4.5b)

The edge is then detected at locations whose griadiegreater than some threshold
value. The results of fusion for the two sample iB@ges and of color-based edge
detection in the fused image are shown in Fig Md@&ice how the glare and shadows in
the two original images (a) and (b) was reducetthénfused image (c), which approached
more uniform color and intensity distribution. Tkdge detected image (d) contained
edges of dirt spots and edges of dish geometrywedisas edges caused by glare. This
result could be improved by employing addition mging to remove the dish geometry

edges, which are known.

However, fusion and color-based edge detecting gss®s themselves were so

computationally expensive that we did not develap approach further.
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(a): Captured RGB image of a SC dish at position A
@ | (b) (b): Captured RGB image of the same SC dish atipodB
(c) | (d) (c): After fusion of two images to position A

(d): After color-based edge detecting

Figure 4.3: Result of Approach 2 for a Dirty SC Iblmages.
(Dirt was made of BBQ sauce and potato sauce,
which were manually placed onto dish surfaces aigtidn place)

Approach 3: Use the template of a clean dish.

Similar to the fusion technique, this approach @y@il image registration technique
between a dish image for inspection (called thgeiaimage) and a known clean dish
(called reference image). Registration is the @ssmf transforming the different sets of
images into a single coordinate system to aligrdikle images. This process is necessary
in order to be able to compare or integrate theggsaobtained from different scenes or

sources. In our feature-based registration impleatiem, the centroids, or the geometric
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centers, and the orientations of the major axeéseofwo dish images were calculated and

used as the key features. And then simple lineatiaptransformations, including

rotation and translation, were applied to aligntdrget image with the reference image.

Q)

(b)

(©)

(d)

(a): Captured RGB Image of a Dirty SC (Target ImAjye

(b): Captured RGB Image of Clean SC (Reference éniggat Almost the Same
Position as Target Image A.

(c): Differences between Image A and Image B ategistration.

(d): Results after Thresholding, with White Regiémzrpreted as Dirt Spots

Figure 4.4: Results of Approach 3 for a Dirty SGIDImage.

(Dirt was made of BBQ sauce and potato sauce,

which were manually placed onto dish surfaces aigtidn place)

Conceptually, any differences between the two thséges, after registration, could be

considered as dirt spots (as shown in Figure 4.KHpwever, the result was highly

affected by noise and registration error. Even wiles reference dish image was

captured under the same lighting with nearly theesposition as the target dish image,
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the differences between their ‘backgrounds’, or ¢lean portion of dish images, were
significant. And those differences were indistirgiusble from the true dirt spots in the
target dish image. Finally, this approach (and etfwers that involved multiple images) is

quite time consuming.
Approach 4: Multi-scale edge detection.

The most difficult problem for any inspection prdoee is how to distinguish true defects
from glare or shadows in the image. Approach 4ased on the assumption that the
variation of the intensity caused by defects, at gpots in our application, is sharper
than the variation caused by glare and shadowsthHer words, dirt spots are more
inconsistent with dish background than are glai stradows. Therefore, if we examine
the detected edges of the image at different stladesdges of dirt spots should remain at

the same relative position, while those of glard ahadows change (illustrated as Fig

4.5).

(b) (c) (d) (e)
Figure 4.5: Results of Approach 4 for a Dirty B¥h Image
(a) An Original Dirty SX Image; Its Detected EdgeMaulti-scales
(b)=Full scale; (c)=50% Reduction; (d)=25% Redutti®)=12.5% Reduction
(Dirt was made of BBQ sauce, coffee stain, andtpatauce,
which were manually placed onto dish surfaces aiedidn place)
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The advantage of this approach is ease of devegopin algorithm that could
automatically determine the correct scale to exama the image. However, the
algorithm is so computationally time-consuming thatvould be not suitable for real-

time processing.

4.3  Final Approach and Inspection Algorithm

Our final approach, which leads to our inspectiathod, was inspired by observing how
humans inspect a dish piece. Human eyes always focally, and are very sensitive to
relative chances in color or intensity. The hum#&ual system also easily learns, and
appears to eliminate glare and shadows, as wedldagtively adjusts the background

intensity.

In our earlier experiments, the most difficult plerh arose from the unique 3D geometry
of the dishes which caused significant differeniceslean dish background gray level
between the floor region and the wall region. Oppraach we considered was to create
targeted illumination on the dish walls based artincline angle, and then apply global
thresholding to the entire modified image. The peobis that modifying illumination of
the wall would be expensive and time consuming,difictult to adapt to inside corners.
A more promising approach was to treat the disbrflegion and dish walls regions
differently during image processing. This is thesesse of our proposed method, in
which we investigate partitioning and adaptive shiding, which holds promise of

simplicity and efficiency.

In our inspection algorithm, a “dirty spot” is de#id as a connected component that is (1)
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dark enough, and (2) darker than the immediatefyosnding area. The algorithm first

separates the dish image into a dish floor regiwh a dish wall region. Then for each
region, we automatically locate all components the¢ both darker than the near
surrounding area (employing adaptive thresholdarg) dark enough (employing global
thresholding). Without global thresholding, regiaorext to glare in dish images could be
considered as dirt spots, because they are ddrkerrieighbors. After these steps, we
combine the floor and wall regions and carry oustgmocessing to remove “tinny”

spots, which are most likely produced by noiseamathan true dirt spots. The steps of

our inspection algorithm are as illustrated in Eadll and Figure 4.6.

Table 4.1: Main Steps of Our Inspection Algorithm.

1. Identify the dish piece using the method presemmt Chapter 3, so that we have a

template for partitioning.

2. Start from a gray image of the identified dislkecp which is the result of pre-

processing.

3. Partitioning: Detect and separate floor regind wall region of a dish image by using

the appropriate floor template image.

4. Adaptive and global thresholding: work with tfleor region and wall region
separately. Use adaptive thresholding to find gakspots; use global thresholding |to

retain only those with gray levels less than tlabgl threshold.
5. Combine the two regions.

6. If total area of all spots greater than someieathe dish will be classified as dirty.

Otherwise it will be classified as clean.
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{Pre-processing) ¥
Adaptive Thresholding.
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¥
Identified T
(1de vpe) Global Thresholding.
Read Foor Template,

Y

Partitioning into Floor
and Wall Region

Are Both
Regions Clean?

Figure 4.6: Inspection Algorithm Flow Chart

Thresholding

As defined in Chapter 2, thresholding is the sirspg®gmentation process that divides an
image’s (color or gray-scale) pixels into backgrdynixels or object pixels. According to
Sezgin (2004), thresholding methods can be categrbased on the information the
algorithm manipulates, such as: histogram shapeebamethods, entropy-based methods,

clustering-based methods, and local or adaptivéhaaist In the following section, we
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consider a commonly used automatic global threshglélgorithm and a commonly

used automatic adaptive thresholding algorithm.
Auto global thresholding

One simple way to achieve an auto global threshgldi using iterative technique, which
is a clustering-based method. The iterative algorits described in Table 4.2 (Sharpio

2002).

Table 4.2: Iterative Auto Global Thesholding Alghm (Sharpio 2002).

1. Choose an initial threshold (T), either randownyaccording to any other methods.
2. Use T to segment the image into object regipartl background region,G
G@ = {f(x,y):f(x,y)>T}, (object pixels)
G = {f(x,y):f(x,y) < T},(background pixels)
where f(X,y) is the intensity oktpixel at location (x,y).
3. Calculate M = mean(G@) and M2 = mean(G2).
4. Update new threshold value: T = 0.5%0\W.).

5. Repeat step 2 to 4 until the change of T frora beration to another is sufficiently

small.

This iterative method was shown to converge to @llminimum, meaning that a
different initial threshold might give a differerfinal result (Sezgin 2004). In our
implementation, the global thresholding value T wesually set as shown in Table 4.5,

described later.
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Adaptive thresholding

Unlike the conventional thresholding operator, whises a single global threshold value
for all image pixels, adaptive thresholding caltesathreshold values dynamically over
the image based on local information. Therefones, tiethod can accommodate changing
background in the image, caused by, for examplas;,umiform illumination or shadows.
There are two main approaches to finding the adaghreshold values: 1) the Chow
(1972) approach and 2) local thresholding (Fish@®32. Both methods assume that
smaller image regions are more likely to have apprately uniform illumination, in
which the thresholding operation could be easilpleyed. Chow divides an image into
sub-images and then employs an histogram-basedd&thfind the threshold for each
sub-image. While this method produces desirablgltsees) general, it is computationally
expensive such that it is unsuitable for real-tepelication. An alternative approach for
finding an adaptive threshold, which is simpler ars®d in our implementation, is to
statistically compare the intensity value of eabtelpwith each of its neighboring pixels.
Among commonly used statistical indicators, we ugedarithmetic mean of pixel gray
levels for comparing. In searching for dark spamta dish image, we set all pixels to the
background intensity, whose intensities are grethi@m the mean C gray levels, where C
is a constant in the range [0,1]. There are twampeters in our adaptive thresholding
function, namely the kernel (or window) size and tonstant C. A larger window yields
results that are more adversely affected by thenithation gradient. The results of using
a smaller window size are more easily corruptecdoge. Also note that as window size
is increased, more computational time is requi@uat. adaptive thresholding algorithm is

shown in Table 4.3 (Fisher 2003).
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Table 4.3: Adaptive Thresholding Algorithm (Fisl2803)

1. Set the window size w. For all image pixels, pote the

arithmetic mean of gray levels of that pixel arglneighbors (which

are inside the window with size w and centers at pixel).

2. If a pixel gray level is less than the corregping computed mean
value minus a constant C, set that pixel to thegmund (1 value).

Otherwise, that pixel belongs to the backgroundaldes).

Partitioning:

We define partitioning as a process that dividdssh image into two regions, namely the
dish floor region and the dish wall region, basedtlee dish geometry. There are two
approaches to achieve partitioning: 1) employ aensity-based method, and 2) employ
a manually-derived dish floor template image. Ting imethod automatically divides the
dish image by applying an appropriate thresholgitk out the floor region (having
higher intensity), and then fill any holes insitiattfound region. The second method use
a pre-captured or pre-calculated floor templatel{edish type has a corresponding floor
template) as a mask to pick out the floor regiore ¥ose the second approach, using
manual dish floor template, for our partitioningppess not only because it requires less
computation and is therefore faster, but also bexauproduces better results than the
intensity-based method. Fig 4.7 illustrates théedénces in results from using the two
partitioning methods. Notice the dirt spot locaiedhe lower left corner of the image on

the boundary between the dish floor region and diah region (inside the artificial red
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circle superimposed on images (c) and (e)), waslatdcted when using intensity-based
partitioning. The reason is that the zigzag offtber boundary, resulting from intensity-
based partitioning, classified the dirt spot asobging to the wall region, whose
background intensity was not very different fromttbf the dirt spot. On the other hand,

using the manually-derived floor template causeat thrt spot stand out from the dish

floor region.

(d)
Figure 4.7: Comparing Results of the Two PartitighMethods.
(Top): Using Intensity-based; (Bottom): Manual Fidemplate Partitioning
(a): A dirty SX dish image; (b) Detected floor regiand (c) Inspection results from intensity-based
partitioning; (d) Manually-derived floor templategion; (e) Inspection results of using (d).
(Dirt was made of BBQ sauce, coffee stain, andtpatauce,
which were manually placed onto dish surfaces aigtidn place)
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Manual partitioning was done by manually applyingck adhesive tape on the wall
surface of each dish type, and trimming the taperad the boundaries between the dish
walls and the dish floors. Then the images of tia@éd” dishes were captured, yielding
good contrast between the floor and wall regiontsenl by employing the same pre-
processing techniques as discussed in Sectiortiiz3|oor region was easily separated
from the entire dish image. Notice that the imagethe floor regions of each dish type
have the same sizes and orientations (alignedhaitizontal axis) with dishes images for
inspection of the same type. Therefore, the fleonglates (in binary images) could be

directly used as masks to segment out the floolonegf dish images for inspection.

Figure 4.8 illustrates the process of creating3Keloor template.

(a): Captured image of an SX dish with adhesivelbla
tape on the wall surrounding the floor region.

(b): After Pre-processing, as discussed in Se@i8n
(c): After applying global thresholding, the floor
region is detected as the white region. (The outer
boundaries of the dish are marked as the red contou

()

Figure 4.8a: Process of Creating the SX Floor Tatapl
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Figure 4.8b shows the five floor template for edidh type of our set.

(a) (b)
(©) () ©)

Figure 4.8b: Floor Templates of the Five Dish Type
(@) LC, (b) LP, (c) SC, (d) SP, and (e) SX.

Figures 4.9a and 4.9b illustrate our inspectiorcgss. Our experimental results showed

that it is unnecessary to use a color image, si@hdven though we took color images
with our camera, we employed only the correspondjrey scale image. Figure 4.9a

shows a sample result of the partitioning proces®8 on a dish floor template.
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(©) (d)
Figure 4.9a: Partitioning Process for a Dirty SGHimage
(a) Original camera image; (b) Gray scale imag#asesult of Pre-processing;
(c) and (d) Dish floor region and dish wall regioespectively, after partitioning.
(Dirt was made of BBQ sauce, coffee stain, andtpatauce,
which were manually placed onto dish surfaces aiedidn place)
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For the dish image in Figure 4.9a, results of adaghresholding combined with global

thresholding for the floor region and wall regiae ahown in Figure 4.9b.

(b)

(a) and (b) Floor Region and Wall Region,
respectively, after Adaptive Thresholding and
Global Thresholding.

(c) Inspection Result, after Combining the Two
Regions and Post-Processing

(€)
Figure 4.9b: Adaptive and Global Thresholding

For all tested images in the inspection process,vddues of parameters for adaptive
thresholding and global thresholding, found byl taiad error, are given in Tables 4.4 and

4.5 respectively.
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Table 4.4a: Adaptive Thresholding Parameters.

Dish floor region Dish wall region
Dish
Type Window | Constant C| Window size | Constant C
size (pixels) value (pixels) value
SC 60 0.03 30 0.05
SX 50 0.05 30 0.03
SP 50 0.05 12 0.03
LC 50 0.04 55 0.05
LP 20 0.04 60 0.05
Table 4.4b: Global thresholding parameters.
Dish Dish floor region Dish wall region
Type (intensity level: 0-255) (intensity level: 0-255)
SC 86 70
SX 99 66
SP 99 54
LC 94 53
LP 80 40

Robustness of Thresholding Parameter Values:

Starting with the values listed in Table 4.4a andb4 by changing (increasing or
decreasing) one parameter value by 1%, 2%, 3%,.levideiep others unchanged, until
those changes affected the inspection results xami@ed the robustness of the adaptive
thresholding and global thresholding parameteresin Table 4.4a and 4.4b. Robustness

result of global and adaptive thresholding parameatues of the SC dish are shown in
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Table 4.5. The table shows the range of variatieach parameter for which inspection
results were invariant. For the SC dish floor regithe range of allowable variance in
parameter values for both global and adaptive peters is small. Interestingly,
however, for the SC wall region, the results inthcéhat the adaptive thresholding
parameters show good tolerance to variation, waléation in the global thresholding
value is much more sensitive in producing good eaipn results. Stated another way,

tuning values of adaptive thresholding for the wadjion is much easier.

Table 4.5: Robustness of Global and Adaptive Tholeling Parameter Values
of the SC Dish Type

Dish floor region Dish wall region

. ' Global _ . Global
Window size| Constant C ~ | Window size| Constant C _
) thresholding _ thresholding
(pixels) value (pixels) value
value value
60+ 5% 0.03+ 4% 86+ 3% 30 £12% | 0.05% 10% 70+ 3%

Smallest Detected Dirt Spot Size:

Theoretically, the smallest feature size SFS thatimaging system (camera and lens)
has capacity to detect is 0.38mm (Section 2.1)s Tdistance in the field of view

corresponds to the distance between two adjaceapter sensors in the CCD (Charge
Couple Device) array. In other word, the distaneeMeen the two neighbor-pixels of a
captured image under our configuration translaigs 38 mm at our working distance the
camera field of view. A simple test was conductedse¢rify the actual smallest size of
dirt spots could be detected by our system. Aréfidirt spots, having the same color as

BBQ sauce placed and dried in the dish surfaceg wemually drawn on a clean SC dish
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image using Photoshop® software (see Fig 4.10 (a)).

(b)
Figure 4.10: Smallest Detected Dirt Spot Size
(a) An SC dish image with artificial dirt spots igs& color with the dirt made of BBQ sauce driechi@ t
place) with diameter size from 0.5 mmto 2.5 mm
(b) (Zoom in) All dirt spots with diameter greatban 1.5 mm are correctly detected

Then this image with artificial dirt was inspectading our inspection algorithm. The
results (Fig 4.10 (b)) show that all dirt spotshwiiameter greater than 1.5 mm were
correctly detected. We note that the actual smadletected size will vary depending on
the color of dirt spots, or their position on thehdimage, which determine the contrast
between the dirt and the dish. If the “dirt” wagfpetly black and the dish background
immediately surrounding the dirt was perfectly whibur calculations in Eq 2.3 show

that the smallest detectable dirt size would b8 & in diameter.
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4.4  Inspection Results

To obtain experimental results with our proposedpéttion method, we manually
applied real food particles to a variety of ourhdmeces, varying them in type of food,
and size, shape, and location. We used egg yalk, jfrice, and a variety of sauces,

including tomato-based sauces, all of which welesdd to air dry before inspection.

Figure 4.11: Original Dirty SC Dish (left) and Alirt Spots Detected (right).

Figure 4.11 shows an example of results with thgireal SC dirty dish image on the left.
Detected dirt spot boundaries (on the right) warpesmposed on the original dish
image. All dirt spots were correctly detected. Netthat the glare (specular reflection)

due to the shiny surface of the ceramic dish digoneduce spurious results.



Figure 4.12: Original Dirty SX (left) and All Di$pots Detected (right).

Figure 4.13: Original Clean SX (left) and Corredilgtected Non-dirt (right).
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Inspection results of a dirty SX dish and a clexndish are presented in Figure 4.12 and
4.13, respectively. Notice in Fig 4.12 the dirt spo the boundary of the floor region and
wall region of the dish image (near the centrehef left image). This location of a dirty

spot could be a significant challenge to detedtpye approach found this spot.

Figure 4.14: Original Dirty SP (left) and All DiSpots Detected (right).

One inspection results of a dirty SP dish are showiigure 4.14. All dirt spots, even
some that are right on the inner edges of muledsyof the dish, are correctly detected.
This type of dish with 3 shallow layers was the trifficult case to tune the parameters

of the inspection algorithm.



Figure 4.15: Original Dirty LC (left) and All Dirspots Detected (right).

Figure 4.16: Original Dirty LP (left) and All Di$pots Detected (right)
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Figure 4.15 and 4.16, respectively, show inspectesults of a sample LC dish and a

sample LP dish. All dirt spots were correctly dételc

A summary of inspection results for all five typafsdish pieces, SC, SP, SX, LC, and

LP, is given in Table 4.6.

Table 4.6: Summary of Inspection Results

Number| Correctf Miss| Failed Alarn

Clean SC 5 4 - 1
Dirty SC 5 5 0 -
Clean SP 5 4 - 1
Dirty SP 5 5 0 -
Clean SX 5 5 - 0
Dirty SX 5 5 0 -
Clean LC 5 5 - 0
Dirty LC 5 5 0 -
Clean LP 5 4 - 1
Dirty LP 5 5 0 -
All dishes 50 4 0 X

(94%) | (0%) (6%)

It is anticipated that the inspection system wibguice certain false “clean” and false
“dirty” results. A false “clean” result refers todirty dish piece that is wrongly classified

as clean, and a false “dirty” result refers toeaal dish piece that is wrongly classified as
dirty. It is assumed during the design of this egstthat a false “clean” result is less
preferable than a false “dirty” result, becausalad clean is processed through to final

clean storage, whereas a false dirty is merelyatedythrough the washing singulation,
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identification, and inspection stages of the ovesydtem.

“Failed Alarm” in Table 4.6 means an incorrect teskiat a clean dish is classified as
dirty. Such results would reduce production in @ raspection process line because the
clean dish would be sent back to be re-washed whenvas not necessary. On the other
hand, such a result is deemed superior to a distytthat is classified clean, which would

be unacceptable for hygienic and other reasons.

The dirt spot sizes (the smallest dimensions) i experiments varied from

approximately 2 mm to 6 mm. Although the resutt§ able 4.6 show that our algorithm
correctly detected dirt spots 100% of the time,ne#e that defect size is not always a
good measure of probability of detection (PoD) gsim given inspecting method.

According to George (2006), there is usually a dagap between the smallest flaw
detected and the largest flaw missed. In our problthe smallest dirt spot detected
depends heavily on the difference between theadiir and the color of dishes to be
inspected, as well as the dirt location on the distiace. Many more experiments would

be needed to adequately address the probabildgtettion issue.

For the results in Table 4.6, the average compmurtatme for the inspection process is
1.28 second per dish (using MatlaR14, Image Processing Toolbox V5.0, Window

Vista, dual core 1.6GHz, 2GB RAM) as shown in Tahlé
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Table 4.7: Summar

y of Inspection Computation Time

Total Inspection Average Time*
Number _

Time* (sec) (sec)

Small dishes
30 35.5 1.18

SC, SP, SX

Large dishes
20 27.3 1.37

LC, LP

All dishes 50 62.8 1.26

If we add this to the average identification tinepaorted earlier, the total time required
for both identification and inspection processespproximately 1.47 second, which is

acceptable for our target of processing 30 dishgager minute (2 second per piece).
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CHAPTER 5

CONCLUSIONSAND RECOMMENDATIONS

5.1 Conclusions

In this study we successfully implemented new aadeh dishware identification and
inspection algorithms. The experimental resultswshioat these algorithms work well
under lighting variations and variation of dish pios under the camera axis. The
algorithms implemented on a standardly available (@l 1.6 GHz dual core, 2GB
RAM), with Matlal’] R14 and Image Processing Toolbox V5.0, were seffity fast for

real time processing at a minimum rate 30 dishgsgeer minute. In summary:

1) We employed an experimental setup inherited fromuz{2008) and Lolla (2005),
and made modifications in lighting to provide scitnt illumination for identification

and inspection tasks.

2) For identification, in order to find the minimumtsaf descriptors to produce fast,
adaptable and efficient automatic dish recognitime, experimented with several
shape-based properties, including area, ratior@ftteto width, and ratio of the object
area to the area of minimum bounding box, togettigr some properties based on

the distribution of gray levels of dish images.
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Our identification algorithm used the selected &fetlescriptors consisting of area,
ratio of length to width, and ratio of area to acédhe oriented bounding box of dish
images. Experiments were conducted on 725 image®mimic and plastic dishes
taken under different positions of 84 separateedishf 5 different styles and shapes.
Although the light condition was kept the same ljvtite exposure time of 20 ms), the
varying of dish positions caused significant chanigedish image gray levels because
of the non-uniform illumination in the field of we The results were 100% of correct

identification with an average identification timm€0.21 sec per dish.

3) For dish inspection, we propose a new technigsiag partitioning and adaptive
thresholding, combined with global thresholdingstliieg was conducted on 50 dish
images, of 5 clean and 5 dirty dishes for each,typth variations in colors, size,
shape, and position of real food particles, inclgdBBQ sauce, egg yolk, coffee
stain, and potato sauce, which were manually placgd dish surfaces and dried in
place. The results were 100% of dirty dishes ctigraaspected and 6% of clean
dishes miss-classified as dirty (“false alarm”).etall, then, the accuracy of our
inspection algorithm was 94%. Average time for edmn was 1.26 sec per dish.
Therefore, the average time for both identificataord inspection was 1.47 sec per

dish, which is sufficient for a processing rateltfdish pieces per minute.

The partitioning and adaptive thresholding, comdineith global thresholding, as
presented here will not work for dishes that hasiered or molded patterns on the dish
surface. However, because most dish sets usedrge kcale dinning operations are

mono-colored with a uniform background, our procedshould be widely applicable.
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We also experimented with other dish sets, inclgidatain circular and oval shaped
plates, and small bowls. With small changes in feavameters, the algorithms work

equally well.

5.2 Recommendations

Recommendations for future work include finding meato automatically tune

parameters in the inspection algorithm, which nustently be established manually
using trial and error. Based on observations tmatpercent of dirty dish pieces exiting a
real dishwashing system is typically small, anatime-based algorithm might be able to

“learn” and adjust the parameters to a number nbtkn-as-clean” input dish images.

Another improvement could be finding means to awatibeally partition dish pieces using
geometric information. As shown in Section 4.3,ngsiintensity-based partitioning
methods, which resulted in zigzag boundaries, @dpnoduce good inspection results.
While we were able to overcome this problem by nadlgudefining the floor portion for
our dish image template, this manual task redulsedcportability of our algorithms. Our
suggestion for geometry-based automatic partitgns motivated by the power of
generalized Hough transforms, which was proposeddognize an arbitrary shape in an

input image (Ballard 1981).
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APPENDICES

A. Graphic User Interface

<} final_inspection Qlil@

Dish Recognition and Inspection

ChoosK

Path of
Test
Images

Original

Dish
/ Image

|C:\Documents and Seftings\TRUNG Deskt]

Open Dir
SC29 M jpg ~|
SC29_02jpg
(5C29_03 jpa
52904 jpg
SC29_05jpg

SC29_06 jog
SC29_07 jpg
SC29_08jpg

9_02jpy

Test //@Egﬁsmg

1SP29_07 jpy

| mages SP25_08 jog

SX29_01 Jog

5329702y

SX29_04 jpg

29 05 jpg
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Command~] - *
Button N
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B. Codelisting:

% * * **%
% * * **%
% Main Function.m

% Including .fig Figure

% * * **%

function  varargout = final_inspection(varargin)
% Last Modified by GUIDE v2.5 01-Apr-2009 14:09:37

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;

gui_State = struct( 'gui_Name' , mfilename,
'gui_Singleton’ , Qui_Singleton,
'gui_OpeningFcn' , @final_inspection_OpeningFcn,
'gui_OutputFcn' , @final_inspection_OutputFcn,
'gui_LayoutFcn' NIE
'gui_Callback’ s

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before final_inspection is made visible.
function final_inspection_OpeningFcn(hObject, eventdata, ha ndles,
varargin)

% This function has no output args, see OutputFcn.
% hObject handle to figure

% eventdata reserved - to be defined in a future v ersion of MATLAB

% handles structure with handles and user data ( see GUIDATA)

% varargin command line arguments to final_inspec tion (see VARARGIN)
% Choose default command line output for final_insp ection

handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

initial_dir = '‘C:\Documents and
Settings\TRUNG\Desktop\work\dishes\Sep29\' ;
set(handles.textl, 'String’ Jinitial_dir);

% Populate the listbox

load_listbox(initial_dir,handles);

% Show preview

list = get(handles.listbox1, 'String'  );

item_selected = list{get(handles.listbox1, Value' )}

84



axes(handles.axesl);
imshow(item_selected);
axes(handles.axes?2);

bw = ones(519,696, uint8" ) >0;
imshow(bw);

% UIWAIT makes final_inspection wait for user respo
% uiwait(handles.figurel);

% --- Outputs from this function are returned to th

function  varargout = final_inspection_OutputFcn(hObiject, ev
handles)

varargout{1} = handles.output;

function  textl Callback(hObject, eventdata, handles)

function  textl CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, 'BackgroundColor’ ),

get(0, ‘'defaultUicontrolBackgroundColor' )
set(hObiject, '‘BackgroundColor’ , 'white' );

end

function  ed_type_Callback(hObject, eventdata, handles)

% --- Executes during object creation, after settin
function  ed_type_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, '‘BackgroundColor’ ),

get(0, ‘'defaultUicontrolBackgroundColor' )
set(hObiject, 'BackgroundColor’ , 'white' );

end

% --- Executes during object creation, after settin
function listbox1_ CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, '‘BackgroundColor’ ),

get(0, ‘'defaultUicontrolBackgroundColor' )
set(hObiject, '‘BackgroundColor’ , 'white' );

end

function  ed_clean_Callback(hObiject, eventdata, handles)

% --- Executes during object creation, after settin
function  ed_clean_CreateFcn(hObject, eventdata, handles)

if ispc && isequal(get(hObject, '‘BackgroundColor’ ),

get(0, ‘'defaultUicontrolBackgroundColor' )
set(hObiject, 'BackgroundColor’ , 'white' );

end

% --- Executes on button press in pb_open.
function  pb_open_Callback(hObiject, eventdata, handles)
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% --- Executes on button press in pb_exit.
function  pb_exit_Callback(hObject, eventdata, handles)

close(gcf);

% --- Executes on selection change in listbox1.
function listbox1_Callback(hObject, eventdata, handles)

index_selected = get(hObject, 'Value' );
list = get(hObject, 'String'  );
item_selected = list{index_selected}; % Convert from cell array

%disp(item_selected)
axes(handles.axesl);
imshow(item_selected);
axes(handles.axes?2);

bw = ones(519,696, uint8" ) >0;

imshow(bw);

set(handles.ed_type, 'String' )
set(handles.axes2, 'Visible' , 'Off );
set(handles.ed_clean, 'String' )

% --- Executes on button press in pb_run.
function  pb_run_Callback(hObject, eventdata, handles)

%set(handles.text_wait,'Visible','On");

%===== Code at home

index_selected = get(handles.listbox1, 'Value' );

list = get(handles.listbox1, 'String'  );

item_selected = list{index_selected}; % Convert from cell array

| = imread(item_selected);
%Pre-processing and ldentification
dish_type = Which_dish_final(l);

set(handles.ed_type, 'String' ,dish_type);

%lInspection process:

isclean = dish_inpection(item_selected,dish_type,ha ndles)
set(handles.ed_clean, 'String' Jisclean);

% load listbox: from MATLAB-help

function  load_listbox(dir_path, handles)

cd(dir_path)

%(dir_struct = dir(dir_path);

dir_struct = dir([dir_path *jpg);
[sorted_names,sorted_index] = sortrows({dir_struct. name}");
handles.file_names = sorted_names;

handles.is_dir = [dir_struct.isdir];

handles.sorted_index = sorted_index;

guidata(handles.figurel,handles)

set(handles.listbox1, 'String' ,handles.file_names, ‘Value' 1)
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IR IR Sk kk ok
% %

% *kkkkkkkkk *kkkkkkkkk *kkkkkkkkk 0/0
% Dish_inspection.m
% %

function isclean = dish_inpection(fname,dtype,handles)

switch dtype
case ‘SC’
M = imread( 'bmaskSC.jpg’  );
thl = [50,105,60,.03,20,86];
th2 = [15,90,30,0.05,20,70];
dd =1;
case ‘SP’
M = imread( '‘bomaskSP.jpg"  );
thl =[50,99,50,.05,20,99];
th2 = [40,75,12,0.03,20,54];
dd = 2;
case ‘SX
M = imread( '‘bmaskSX.jpg"  );
thl =[50,99,50,.05,20,99];
th2 =[0,255,30,0.03,20,66];
dd = 3;
case ‘LC
M = imread( '‘omaskLC.jpg" );
thl =[0,95,50,.04,20,94];
th2 = [30,53,50,0.05,25,53];
dd = 4;
case ‘LP’
M = imread( '‘omaskLP.jpg"  );
thl =[0,70,20,.04,6,80];
th2 = [20,53,60,0.05,6,40];
dd =5;
end

M = im2bw(M);

L = bwlabel(M);

STATS = regionprops(L, '‘Orientation’ , 'Centroid’
orien = STATS.Orientation;

mc = STATS.Centroid;

ground_level = 10;

| = imread(fname);

if dd>3
| = imresize(l,1/2);
ground_level = 30;
end

[lg,Stats] = maxOhbij(l,.18);
Ig = imrotate(lg,-Stats.theta + orien);
%I = imrotate(l,-Stats.theta + orien);

bw = Ig > ground_level;
% Center of dish:
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[xx,yy] = find(bw);
Cx = round(mean(xx));
Cy = round(mean(yy));

%Full and bigger:
haftx = 336;
hafty = 426;
if dd>3
haftx = 197;
hafty = 291,

end
%J = |(Cx-haftx:Cx+haftx,Cy-hafty:Cy+hafty,:);
Il = Ig(Cx-haftx:Cx+haftx,Cy-hafty:Cy+hafty);

bw =1l > 10;

% Center of dish:
[xx,yy] = find(bw);

Cx = round(mean(xx));
Cy = round(mean(yy));

dxy = [Cx-mc(2), Cy-mc(1)];

%make the transform matrix
T=[100;01 0;dxy(1) dxy(2) 1];

tform = maketform( ‘affine’ T);
%Transform BB

[afx afy] = size(ll);

M = imtransform(M,tform, 'XData' ,[1 afy], '"YData'

% Floor detection

tmp =11,
%tmp(tmp==0) = th1(1);
tmp(tmp>105) = th1(2);

bw3 = adaptivethreshold(tmp,th1(3),th1(4),0);

%post process: using global thresholding
13 =11;

I13(M==0) = 0;

hl = (13<th1(5))|(13>th1(6));

bw = bw3 | hl;

% Treat wall and outer dish the same

tmp =11,

%tmp(tmp<15) = 15;

tmp(tmp>90) = 90;

bwA = adaptivethreshold(tmp,th2(3),th2(4),0);
%post process: remove highlight

A =11-I3;
hl = (A<th2(5))|(A>th2(6));
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bwAA = bwA | hl;

%figure, imshow((bw==1)&(bwAA==1))
% Remove small spot

bwall = ~((bw==1)&(bwAA==1));

bwall = bwareaopen(bwall,60);

bwall = imclearborder(bwall, 4);

bwall = ~imfill(bwall, 'holes' );

axes(handles.axes?2)

imshow(bwall)

% hold on

% B = bwboundaries(11>40,'noholes");

% bd2 = B{1};

% plot(bd2(:,2),bd2(:,1),'r",'LineWidth’, 2);
if sum(find(bwall==0))>50

isclean = 'Dirty’ ;
else isclean = 'Clean' ;
end

%*********************************************%
%*********************************************%

% Dish Identification.m

function
[dish_code,descriptors]=Which_dish_final(l,areaRang

LCPline,threshold,down_scale)

%Recognition 5 type of dishes

%Base on shape descriptors:

% 1. Area

% 2. 0REC = Length/Width

% 3. oEXT = Areal/Area of aligned bounding box
%INPUTS:

% I: matrix of image of dish

% areaRanges: Ranges of area of each type of dish

% = [LCmax LCmin LPmax LPmin SCmax SCmin SPm
SXmin]

% = 1le4*[5.51,5.25,... %LCmax, LCsafe

% 5.14,4.96,... %LPsafe, LPmin

% 2.83,2.65,... %SCmax, SCmin

% 2.642,2.555,...%SPmax, SPsafe

% 2.52,2.45]; %SXsafe, SXmin

% SPXline: The line to saperate SP,SX on oREC-0EX
% default =[1.25 0.925, ...% point_1

% 1.41 0.96] % point_2

% LCPline: The line to saperate LC,LP on oREC-0EX
% default = [1.5 0.935, ...% point_1

% 1.505 0.955] % point_2

% threshold: gray threshold, default = 0.1

% down_scale: down size the image, default = 1/4
%

%

%
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%OUTPUT:

% dish_code = LC: Large Ceramic ,= SC: Small Ce
% = LP: Large Platic ,= SP: Small PI
% ,= SX: Small

% descriptors: Area, oREC, oEXT
%Feb 09,08

if nargin < 6, down_scale = 1/4; end
if nargin <5, threshold = .1; end
if nargin < 4,
LCPline =[1.500, 0.935, ... % point_1
1.505, 0.955]; % point_2
end
if nargin < 3,
SPXline = [1.295, 0.915, .. % point_1
1.342, 0.950]; % point_2
end
if nargin < 2,
areaRanges = 1e4*[5.51,5.25, ... %LCmax, LCsafe
5.14,4.96, ..  %lLPsafe, LPmin
2.83,2.65, .. %SCmax, SCmin
2.642,2.555, ... %SPmax, SPsafe
2.52,2.45]; %SXsafe, SXmin
end

%Adjust areaRanges if down_scale ~= 4:
areaRanges = areaRanges*4*down_scale;

dishtypes = [ ‘LC' ;'LP" ;'SC' ;'SP' ;'SX" ;'UN' ],

| = imresize(l,down_scale);

| = rgb2gray(l);

bw = im2bw(l,threshold);

bw = bwareaopen(bw,50);

bw = imfill(bw, 'holes' );

L = bwlabel(bw);
STATS = regionprops(L, '‘Area’ );

%Find the max obj
[maxAreaObj,kmax] = max([STATS.Area));

descriptors = [maxAreaObj; 0; 0];
pos = find(areaRanges < maxAreaObj);

if isempty(pos),
dish_code = dishtypes(6,:);
return ;
else pos = pos(1);
end

if (mod(pos,2)==1)&(pos ~= 9)&(pos ~= 3),
dish_code = dishtypes(6,:);
return
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elseif  (pos ~=9)& (pos ~= 3)
dish_code = dishtypes(pos/2,:);
return
else %now pos == 9 -> SP-SX overlap
% or pos == 3 -> LC_LP overlap

%Need other descriptors: oREC & 0EXT
STATS = regionprops(L, 'Orientation’ , 'Image’ , 'Centroid’ );
OBJ = STATS(kmax).Image;

centroid = STATS(kmax).Centroid;

dx = -round(centroid(1));

dy = -round(centroid(2));

orien = pi/180*(STATS(kmax).Orientation);

T=[100;010;dxdy 1];

Tin =[1 0 0;0 1 0;-dx -dy 1];

R = [cos(orien) sin(orien) 0;-sin(orien) cos(or ien) 0;0 0 1];
tform = maketform( ‘affine’ , T*R*Tin);

OBJ = imtransform(OBJ,tform);

L = bwlabel(OBJ);

ST = regionprops(L, 'BoundingBox'  );
box = ST.BoundingBox;

OREC = box(3)/box(4);

OEXT = maxAreaObj/(box(3)*box(4));

descriptors(2:3) = [OREC, oEXT];
if pos==9
%CASE area in the overlap of SP-SX
% if o_REC,0_EXT fall on the SP region:
x1 = SPXline(1); y1 = SPXline(2);

nx = SPXline(3) - x1; ny = SPXline(4) - y1;
if ((0EXT-yl)*nx - (OREC-x1)*ny > 0)
dish_code = dishtypes(4,:); %'SP";
else
dish_code = dishtypes(5,:); %'SX";

end %of SP region
end %of case SP-SX

if pos==

%CASE area in the overlap of LC-LP

% if o_REC,0_EXT fall on the LP region:
x1 = LCPline(1); y1 = LCPline(2);

nx = LCPIline(3) - x1; ny = LCPline(4) - y1;
if ((0EXT-yl)*nx - (OREC-x1)*ny > 0)
dish_code = dishtypes(2,:); %'LP";
else
dish_code = dishtypes(1,:); %'LC";

end %of SP region
end %of case SP-SX

end
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% * * **0fp
% * * **0fp
% Pre-processing
g@*********************************************g@
function  [F,Stats] = maxObj(f_name,threshold)
% MAXOBJ: Retrieve the max Object of the image
%INPUT: file name, or matrix representation of imag
if ischar(f_name),

| = imread(f_name);
else |=f _name;
end

%I = imresize(l,1/4);
if size(l,3)>1,
| = rgb2gray(l);
end
%threshold = .18;
bw = im2bw(l,threshold);
bw = bwareaopen(bw,30);

% se = strel('disk’,2);

% bw =imclose(bw,se);
%figure, imshow(bw)

bw = imfill(bw, '‘holes' );
%figure, imshow(bw)

L = bwlabel(bw);

%Find the max obj

STATS = regionprops(L, '‘Area’ );
%Find the max obj

[maxArea,kmax] = max([STATS.Area));
% Diride the max obj

F = uint8(l);

F(L~=kmax) = 0;

Stats.Area = maxArea;
%Find Center Gravity and major-Orientation

L(L~=kmax) = 0;
L(L==kmax) = 1;
STATS = regionprops(L, 'Centroid’ , 'Orientation’

%save to output
Stats.xy = STATS.Centroid,;
Stats.theta = STATS.Orientation;

% * * **%

% * * **%

% Adaptive thresholding
g@*********************************************g@

function  bw=adaptivethreshold(IM,ws,C,tm)
%ADAPTIVETHRESHOLD

% Based on information from

% http://homepages.inf.ed.ac.uk/rbf/HIPR2/adpthrsh
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if (nargin==3)
tm=0; % default: using mean
% tm =1, using median
elseif  (tm~=0 && tm~=1)
error( 'tm must be 0 or 1. );
end

IM=mat2gray(IM);

if tm==
miIM=imfilter(IM,fspecial( ‘average' ,ws), 'replicate' );
else
miIM=medfilt2(IM,[ws ws]);
end
sIM=mIM-IM-C,;
bw=im2bw(sIM,0);
bw=imcomplement(bwy);

%*********************************************%

% %
% Color Segmentation

% %
function | = colorseg(varargin)

% S = COLORSEG('Euclidean',F,T,M), F: input image,

% T is threshold, M 1x3 is average color

% S = COLORSEG('Mahalanobis',F,T,M,C), C is 3x3 cov ariant matrix
% F: input RGB image

f = varargin{2};

M = size(f,1); N = size(f,2);

%convert f to stack vector

[f,L] = imstack2vectors(f);

f = double(f);

%Initial | as vector, reshape later

| = zeros(M*N,1);

T = varargin{3};

m = varargin{4};

m=m()" % make sure row vector

if length(varargin) ==

method = 'E' ; %Euclidean
elseif  length(varargin) ==
method = 'M' ; % Mabhalanobis
else
error( 'Wrong number of inputs' );
end
switch method
case 'E'
p = length(f);
D = sgrt(sum(abs(f - repmat(m,p,1)).72,2));
case 'M'

C = varargin{5};

D = M_distance(f,m,C);

otherwise

error( ‘Unknown method' );
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end

I(find(D <=T)) = 1;
| = reshape(l,M,N);

% Sub: Mahalanobis distance:
function  d = M_distance(Y,mx,Cx)
% mx: mean, row vector
% Cx: covariance matrix
ny = size(Y,1);
mx = mx(:)";
Yc =Y - mx(ones(ny,1),:);
d = real(sum(Yc/Cx.*conj(Yc), 2));
96*********************************************g@
% * * **%
% Color_segmentation based on Cosine angular
96*********************************************g@
function | = cos_seg(f,cmean,d)
%page 121 Color Image Processing
%Method and Application, Rastislav Lukac
% cos(theta) = dot(cl,cmean)/(|cl||cmean])
% c = {R,G,B}
%Criteria: 255*sqrt(1 - cos(theta)*2) <=d
% cosT"2 >=1 - d/255
if (ndims(f) ~= 3) | (size(f,3) ~= 3)

error( 'Input image must be RGB' );
end
M = size(f,1); N = size(f,2);
f = double(reshape(f,M*N,3));
%Initial | as vector, reshape later
| = zeros(M*N,1);
cmean = cmean(:)’; %make sure a row

cosT_2 = dot(f,repmat(cmean,M*N,1),2).72./(sum(f.*f
/sum(cmean

I(cosT_2 >= 1-d/255) = 1;

| = reshape(l,M,N);

% * * **%
% * * **%
% Edge detecting based on Color Gradient
96*********************************************g@
function  [VG, A, PPG] = colorgrad(f,T)

% F: color image,

% T: threshold, 0.0->1.0

%OUTPUT:

% VG: vector gradient

% A : angle (radian)

% PPG: composite gradient

sh = fspecial( 'sobel' );

sv = sh’;

Rx = imfilter(double(f(:,:,1)),sh, 'replicate’
Ry = imfilter(double(f(:,:,1)),sv, 'replicate’
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Gx = imfilter(double(f(:,:,2)),sh, 'replicate’ );
Gy = imfilter(double(f(:,:,2)),sv, 'replicate’ );
Bx = imfilter(double(f(:,:,3)),sh, 'replicate’ );
By = imfilter(double(f(:,:,3)),sv, 'replicate’ );

% vector gradient

gxx = Rx."2 + Gx.*2 + Bx."2;

gyy = Ry."2 + Gy."2 + By."2;

gxy = Rx.*Ry + Gx.*Gy + Bx.*By;

A = 0.5%atan(2*gxy./(gxx - gyy + eps));

G1 = 0.5%(gxx + gyy + (gxx-gyy).*cos(2*A) + 2*gxy.*
%Repeat for angle+pi/2

A=A+ pil2;

G2 = 0.5%(gxx + gyy + (gxx-gyy).*cos(2*A) + 2*gxy.*
G1=G1.10.5;

G2 =G2.10.5;

%Form VG, pick maximum at each (x,y), scale to [0,1
VG = mat2gray(max(G1,G2));

% gradient per plane

RG = sgrt(Rx."2 + Ry."2);

GG = sgrt(Gx."2 + Gy."2);

BG = sqrt(Bx."2 + By."2);

%composite, scale to [0,1]

PPG = mat2gray(RG + GG + BG);

if nargin==2

VG = (VG >T); %.*VG;

PPG = (PPG > T).*PPG;
end
% %
% %
% Find Mean and Covariance of a matrix
% (group of sample points)

% *% *% *% *kkk *% *% *kkk *% *% %
function  [C,m] = covmatrix(X)
%lInput: X Kxn
%OUTPUT:
% m : mean vector, nx1l
% C: covariance matrix, nxn
[K,n] = size(X);
X = double(X);
if n==
c=0;
m=X;
else
m = sum(X,1)/K;
X =X - m(ones(K,1),:);
C = (X*X)/(K-1);
m=m' %to colummn vector
end

95

sin(2*A));

sin(2*A));



VITA
Trung Huy Duong
Candidate for the Degree of

Master of Science

Thesis: DISHWARE IDENTIFICATION AND INSPECTION®R AUTOMATIC
DISHWASHING OPERATIONS

Major Field: Mechanical Engineering
Biographical:

Personal Data: Born in Amthuong, Phutho Provingetnam, on December
10th, 1981, the second son of Duong Huy Lung and TVu Luc.
Married to Doan Huong Ly on November 2005.

Education: Graduated from Vinhphuc Talented Highdst, Vinhphuc, Vietnam,
in 1999. Received a Bachelor degree in Mechatronidéschanical
Engineering from Talented Engineers Training Progr&enter for
Talent Training, Hanoi University of Technology,e#iam, in Jun 2004.
Completed the requirements for the Master of Se@encMechanical
Engineering at Oklahoma State University, Stillwat®klahoma in
May, 2009.

Experience: Piping Design Engineer (in trial), @Bl Co., Vietnam, summer
2004. Lecture Assistant, Department of Mechanicalgigeering,
University of Communication and Transports, Vietnagnom 2004 to
2007. Graduate Research Assistant, Department athdfecal and
Aerospace Engineering, Oklahoma State Universaynfdanuary 2008
to May 2009.



Name: Trung Huy Duong Date of Degree: May, 2009
Institution: Oklahoma State University Ldoat OKC or Stillwater, Oklahoma

Title of Study: DISHWARE IDENTIFICATION AND INSPECION FOR
AUTOMATIC DISHWASHING OPERATIONS

Pages in Study: 95 Candidatehe Degree of Master of Science
Major Field: Mechanical Engineering

Scope and Method of Study: Commercial dishwashysgesns currently involve human
loading, sorting, inspecting, and unloading dished silverware pieces before
and after washing, in hot and humid environmentatofation is desirable,
especially in large scale kitchens, to improve tyaéad efficiency. We propose
automatically identifying dishes in mixed batches using statistics of shape
descriptors of dish pieces. Experiments were caeduon 1225 images of
ceramic and plastic dishes taken in different ligghtconditions using different
positions of 84 separate dishes of 5 differenest@nd shapes. In order to find the
minimum set of descriptors to produce fast, addptabd efficient automatic dish
recognition, we employed several shape-based preperincluding area,
perimeter, ratio of length to width, extension, amihimum bounding box,
together with some properties based on gray lemdl @lor of dish images.
Selected set of descriptors were area, ratio aftketo width, and ratio of area to
area of the oriented bounding box of dish images.dish inspection, we propose
a new technique using partitioning and adaptivedholding, combined with
global thresholding. Matldb R14 and Image Processing Toolbox V5.0 were
used.

Findings and Conclusions: The machine vision dligors, developed in this study, are

fast, simple, and produce results invariant witghting conditions and dish
rotation about the camera-dish axis.

ADVISER’'S APPROVAL: Dr. Lawrence L. Hoberock




