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CHAPTER I 
 

 
1. INTRODUCTION 

 

 
1.1 General Statement of the Problem 

 
 

1.1.1 Background 

This study is concerned with simulating dispersed systems and solvent molecules 

simultaneously for mesoscopic flow systems with single stranded Deoxyribonucleic acid 

(DNA) molecules with potential application to DNA separation. Separation of DNA has 

significant importance in understanding the genome of an organism for genetic 

engineering and DNA profiling for forensics. The most common method for separation is 

gel electrophoresis but it limits the separation for DNA strands up to 40kbp (Pan, Ng, Li, 

& Moeendarbary, 2010). It may also take up to several days or weeks for longer strands. 

Many researches have proposed ideas that involve micro and nano systems. 

Hydrodynamic forces, electric fields and magnetic fields are most commonly used for 

separation of DNA from its medium in microchannels (Huber, Markel, Pennathur, & 

Patel, 2009), (Jellema, Mey, Koster, & Verpoorte, 2009), (Kang et al., 2009), (Perkins, 

Smith, Larson, & Chu, 1995) and (Smith, Babcock, & Chu, 1999). 
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Some of these systems separate DNA using entropic trappings where the flow 

separates DNA strands based on its length (Pan et al., 2010). Huber et al. (2009) and 

Jellema et al. (2009) used electrokinetic separation of DNA in a nanochannel.  

Electrokinetic separation includes capillary electrophoresis, gel electrophoresis and 

electrodes arrays and the flows are created by ionized medium or ionized particles 

inserted in the flow. Jellema et al. (2009) also used hydrodynamic forces created by the 

converging channels to provide pressure-driven flow along with electrokinetic flow. 

Kang et al. (2009) investigated a method of mixing magnetic particles that is controlled 

by magnetic field to separate DNA of a specific size.  

Many methods have been created to simulate the flow of dispersed systems such 

as colloidal suspension in micro-systems and macro-systems. These molecular simulation 

methods simulate micro scale flows and translate them into their macroscopic 

counterparts. Dissipative Particle Dynamics (DPD) can provide an accurate simulation of 

a colloidal suspension at a mesoscopic scale with lesser computational cost and time 

steps (Symeonidis, Karniadakis, & Caswell, 2005) than other micro scale methods.  

Mesoscopic scale is an intermediate length scale which is gernerally considered to be 

between a few hundred nanometers and a micrometer. It consists of a large number of 

atoms but takes quantum effects into account.  Hoogerbrugge and Koelman (1992) 

initiated DPD to simulate such an experiment with lesser computational cost and time 

steps. . Even though DPD does not replicate the correct molecular motion at the atomic 

level, it does provide accurate hydrodynamic properties for dispersed systems for long 

lengths and large time steps (Frenkel & Smit, 2002). Mesoscopic scales, long time steps 

and colloidal suspension should be taken into account when one tries to understand the 
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flow dynamics of a single strand DNA molecule through microchannels (Fan, Phan-

Thien, Chen, Wu, & Ng, 2006).   

 

1.1.2 Problem Statement 

Simulation of DNA can provide insight into its physical properties without costly 

and demanding experimentation. This research is concerned with the flow of DNA 

molecules suspended in a solvent through a pressure-driven microchannel using 

Dissipative Particle Dynamics. The goal is to understand the changes in the mechanical 

properties of these flows, including DNA stretching and migration. In the present study, 

DNA would be replicated as worm-like chain polymers. This study is of interest due to its 

applicability to the development of lab-on-a-chip for disease testing kits. Lab-on-a chip is 

a biomicroelectromechanical device (BioMEMS) which can be used for drug delivery 

and DNA testing for diseases. The computational methods employed in this study can 

also be used to simulate other colloidal suspensions such as liposome suspension, 

polymer interaction etc.  

 

1.2 Previous Studies 

When it comes to particle simulation, all forces acting on a particle including 

particle-particle interaction and particle-boundary interaction must be taken into 

consideration. There are different computational methods that can be used for such 

simulations (Satoh, 2011). Some of the most commonly used methods are Molecular 

Dynamics (MD), Brownian Dynamics simulation (BDS), lattice Boltzmann (LB), lattice 
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gas automata (LGA), and Dissipative Particle Dynamics (DPD) (Fan et al., 2006). Many 

of these methods are restricted to certain test conditions. Certain methods can only be 

used to simulate simple fluids, where others can be used only for simulating macro-scale 

systems. A brief discussion of these methods is presented first to explain why Dissipative 

Particle Dynamics was chosen to simulate a system of DNA strands suspensions. The 

related studies of DNA flow dynamics are reviewed next. 

 

 

1.2.1 Molecular Dynamics (MD) 

Molecular Dynamics (MD) has existed since the beginning of digitalization. It 

was created to simulate large celestial bodies to the minutest particle with the same 

Newton’s Law. The equations may have been modified to accommodate newer 

discoveries in terms of physical properties, but it is nevertheless, a tried-and-true process 

that will be utilized for a long time to come.  

MD is governed by the basic Newton’s second law of motion. Consider a particle 

i with mi as the mass, ri as the position and fi as the sum of the interactive forces between 

the particle and its environment, then the motion of particle is controlled by 

                       m� ����
��� � f�                                                                 1 

To numerically solve the equations for N particles, a scheme called the Verlet method 

can be used. Such schemes can be used to find both positions and velocities of all N 

particles at different time-steps. These methods will be discussed in detail later.   
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MD simulations have been used for an assortment of studies. These may range 

from fundamental physics to phase changes to different molecular structures.  A list of a 

few related studies was listed in The Art of Molecular Dynamics Simulation by Rapaport 

(2004). He showed that MD can be utilized for various purposes especially at different 

scales, phases, complex or simple structures, long or short ranged and so forth (Rapaport, 

2004). MD can also bind the atoms together in case of solid or liquids if the atoms travel 

over a certain distance. Lennard-Jones potential can be used to create this interaction 

within MD simulations.  

MD, however, cannot be used to correctly simulate systems that concerns 

quantum fluctuations at the atomic level. The softer interactions between particles lead to 

smaller time-step and higher internal motion. Small systems also increase fluctuations 

and limit the accuracy and the shape of the simulation region and the atomic trajectories 

may be unstable (Rapaport, 2004). Due to the higher computational cost, simulation is 

limited to simple fluids in two-dimensional system. MD can be used to model a simple 

flow in microscopic level and then translate it into macroscopic levels (Hoogerbrugge & 

Koelman, 1992). Therefore, MD may have a lot of potential but it cannot be utilized fully 

unless there are more computational advancements. Also, classical theories such as 

quantum mechanics are still in theoretical state when it comes to simulation (Frenkel & 

Smit, 2002).  

 

1.2.2 Monte Carlo (MC) 

Monte Carlo (MC) is similar to Molecular Dynamics as it can be used for 

simulations at a microscopic level and then the results are used to provide information on 
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properties at the macroscopic scale.  MC operates under a stochastic law and generates 

different microscopic states. Since it does not follow the equations of motion, it does not 

follow the changes with respect to time. This limits this method to applications with 

systems at thermodynamic equilibrium and thus, it is unsuitable for dynamics systems as 

time cannot be conceived. 

Consider state 1 where two particles are overlapping; this will create a repulsion 

force between the particles and an interactive energy will rise. In state 2, two particles are 

at a close proximity where the repulsion has decreased and attraction forces have started 

on the particles. State 3 has two particles at a distance where their interaction is negligible 

and the energy is very low. In actual systems, microscopic states with high energy such 

as state 1 rarely exist; instead, state 2 with low energy and weaker interaction forces are 

more applicable. These states give rise to a minimum free energy of the system. This can 

be seen from a system with temperature T, volume V, and number of particles N where 

the Helmholtz free energy F becomes a minimum (Satoh, 2011). 

F � E � TS                                                                 2 

where E is the potential energy and S is the entropy of the system. For example, if 

oxygen and nitrogen were to fill a room, the entropy will keep the energy in check of the 

minimum free energy of the system.  To numerically evaluate this theory, one can use 

probability density function for N number of particles to find new positions at a set 

interval provided that N, V, and T are given. The probability functions depend on the 

interaction energies of the different states. The step by step algorithm to process MC is 

given in Introduction to Practice of Molecular Simulation by Satoh (2011). 
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1.2.3 Brownian Dynamics 

Brownian Dynamics is used when a system contains dispersed particles in a liquid 

base. These systems cannot be modeled using MD or MC as they will generate the 

motion for the solvent particles based on their characteristic time and the dispersed 

particles will not be accounted. Also, the solvent molecules must be simulated as a 

continuum as compared to being computed individually. The motion of the solvent 

molecules will be reflected as a random force in the dispersed particles’ equation of 

motion. BD simulates the random walk of the dispersed particles induced by the solvent 

particles. The particles moving due to the random force is called “Brownian particles” 

(Satoh, 2011).  

Consider a dispersed solution that is generously diluted that the particles can be 

regarded as moving independently. Their motion can be analyzed using the Langevin 

equation (Satoh, 2011) as follows: 

m ��
�� � f � ξv � f �                                                    3 

where m is the mass of a spherical particle, v is the velocity vector and ξ is a coefficient 

given by ξ = 3πηd (d is the particle diameter and η is the viscosity of the solvent), f is the 

external force and fB is the random force vector of the solvent. The random force has a 

zero mean and variance of 2ξkTδ(t-t’) where δ is the Dirac delta function. The random 

force is proportional to the system temperature and thus the particles act vigorously in 

high temperature. Satoh (2011) explains random displacements and the procedure for BD 

simulation in detail.  
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1.2.4 Lattice Boltzmann  

Lattice Boltzmann can be used for dispersed particle systems. The simulation 

region is a lattice network that contains virtual fluid particles that interact with each 

other. Fluid particles are assumed to be clusters of solvent particles that are allowed to 

move to its neighboring sites only.  

 

Figure 1 Lattice Boltzmann 2-D Lattice Model (D2Q9) (Satoh, 2011). 

  

For example, the particle at point 0 can move to sites 1, 2, 3, 4, 5, 6, 7, and 8. If the 

particle is moving to 1, 2, 3, or 4, it will have a velocity c = Δx/Δt. If the particle is 

moving to sites 5, 6, 7, or 8, the velocity is �√2. Δx is the distance between two sites and 

Δt is the time interval. In a two-dimensional lattice with nine possible sites for the particle 

to move, including the original position, the model is called D2Q9 (Satoh, 2011).  
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 The Boltzmann equation describes the temporal evolution of the velocity 

distribution function at all points. A digitized distribution, fa(r,t) is tracked in LBM where 

a is the direction, r is the position, and t is the time. The density at a location r at time t is 

ρ�r, t� � ∑ f��r, t� �!"                                                    4 

Similarly, the velocity is given by 

ρ�r, t�u�r, t� � ∑ f��r, t�c� �!"                             5 

The velocity vector, ca, is the velocity of particle moving to the neighboring sites in the 

direction a, where a=0, 1, 2…8. The collision term in Boltzmann equation is difficult to 

evaluate and models such as Bharatnagar-Gross-Krook (BGK) are used to simplify the 

expression enough to be solved (Satoh, 2011).  

 

1.2.5 Dissipative Particle Dynamics 

DPD has been used to simulate many mesoscopic systems, including liposome 

formation, colloidal suspension, red blood cell flow, concrete and other non-Newtonian 

substances, among others. The advantages of DPD are that it considers hydrodynamic 

behavior without additional formulation and it emulates the Brownian motion the 

particles follow. Moreover, unlike MD or MC, computational cost is cheaper.  

Dissipative Particle Dynamics can simulate dispersed and solvent particles 

simultaneously, similar to BD, but with a different approach to the solvent particles. A set 

of solvent molecules is considered as one virtual fluid particle. Similar to the dispersed 

particles, the virtual particles have a corresponding characteristic time of the motion 

(Satoh, 2011). In this manner, one can simultaneously simulate the motion of both the 
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dispersed and fluid particles without having a secondary time-step for the fluid particles. 

These virtual particles will exhibit a similar random walk to that of the dispersed particles 

due to change in momentum and particle-particle interaction and potential changes. These 

virtual particles were then dubbed as dissipative particles.  

DPD can simulate colloid suspensions such as polymer suspensions including all 

hydrodynamics forces. The equations of motion for DPD include these forces which can 

be used for spherical and non-spherical colloidal particles. DPD simulate mesoscopic 

systems as compared to macroscopic or microscopic systems. To simulate a fluid flow 

that follows Navier-Stokes equation, the total momentum should be conserved. 

Therefore, for a particle i, the total force acting on the particle consist of conservative or 

repulsive force, dissipative force and random force that provides the interparticle 

repulsive and attractive forces.  

f��%� � ∑ F�&&'� � ∑ F�&( � F�&) � F�&*&'�                          6 

This study deals with the simulation of dispersed particle such as DNA or 

polymers within a solvent or liquid base. Based on the present literature review, DPD is a 

suitable simulation method for the system in question. The forces, parameters and other 

equations required for DPD simulation is described in the next chapter.  

 

1.2.6 Simulation of a Single Strand DNA  

Perkins et al. (1995) measured the extension of tethered DNA strands in uniform 

pressure-driven flows. Smith et al. (1999) studied similar extension in a steady shear-

flow. Extension of DNA has been studied using optical tweezers to restrain the DNA 
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strand at one end to understand its extension effects by (Perkins et al., 1995) and (Larson, 

Perkins, Smith, & Chu, 1997), among others. The studies of single strand DNA 

performed by these authors explained its dynamics and rheological properties and how it 

is closely related to the properties of polymer particles (Larson et al., 1997). This 

similarity allows the simulation of DNA strands as beaded polymers through different 

models such as worm-like chains, FENE and Hookean-Fraenkel. The bead forces include 

Lennard-Jones repulsion potential, FENE springs and worm-like chains (WLC) forces 

(Symeonidis, Karniadakis, & Caswell, 2006).  

Fan et al. (2006) studied the flow of a single stranded DNA through a pressure-

driven microchannel using Dissipative Particle Dynamics computational method. Using 

Hoogerbrugge and Koelman’s (1992) proposed idea, Fan et al. (2006) studied DNA flow 

dynamics through a microchannel, made the appropriate modifications to improve the 

characteristics of the DPD method and the worm-like chain modeling of DPD particles. 

Fan et al. (2006) illustrated how low Schmidt number and inadequate viscosity can be 

corrected by increasing the cutoff radius or by reducing the exponent parameter s. The 

modifications to the weighting number were shown to provide the best result along with 

the least computational cost. Fan et al. (2006) suggested that changing the cutoff radius 

enhances Schmidt’s number adequately, but it tends to increase computational cost by 2.6 

times. Worm-like chain was modeled with a large number of beads and a weak repulsive 

force of DPD illustrated in Figure 2. 

(Fan et al., 2006) study simulated the physics of DNA folding, unfolding, 

entanglements and extension of the strands to understand molecular structural changes as 

external forces are exerted on strands with varying number of beads. Their computational 
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results of the extension of the beads agreed well with the experimental data provided by 

Perkins et al. (1995). They investigated the DNA extension in a uniform flow which was 

generated by not employing any numerical means to slow down the flow of the near-wall 

particles. However, the DNA extension in a microchannel with pressure-driven Poiseuille 

flow is more practical and needs further attention. This is applicable in many biological 

devices that can be used for DNA delivery. Devices such as microneedles and array of 

hollow microcapillaries were used by Chun et al. (1999) for controlled injection of DNA 

into cells. Understanding the effect of DNA migration and extension in microchannels 

will increase the efficiency of such devices.    

To acquire accurate results, the boundary conditions need to be implemented to 

sustain a long channel and solid wall replications. Studies have been performed to 

understand the different types of boundary conditions and the methods to apply them 

(Revenga, Zúñiga, & Español, 1999); (Revenga, Zúñiga, Español, & Pagonabarraga, 

1998); and (Pivkin & Karniadakis, 2005). Many of these authors suggests the reflection 

of the particles from the walls by reversing the normal velocity vectors, assigning random 

velocity and injecting the particles towards the flow, or reversing both tangential and 

normal velocity vector of the particles at the wall. The wall must be in tight lattice with 

layering and higher density. However, using just these measures may not prevent 

particles from penetrating the wall. A no-slip boundary condition has been proposed 

where a layer of DPD fluid layer is inserted next to the frozen particle wall. This is a 

practical method but further modifications to the boundary condition are still necessary as 

the soft repulsion of DPD particles may not prevent the penetration of the walls.  
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1.3 Specific Objectives 

The present study investigates numerically the dynamics of a single strand DNA 

in a pressure-driven channel flow. A program was developed using Matlab (a Mathworks 

product) to conduct the present simulation. The computational methods are first validated 

by simulating Poiseuille flow through a microchannel. The DNA flow is then simulated 

for various test conditions.  The list of specific objectives is as follows: 

1. Develop a computer program to conduct a DPD simulation of a Poiseuille 

flow. Validate the present computational methods using previous results 

from Fan et al. (2006, 2003) and Symeonidis et al. (2005). 

2. Investigate the effect of the number density and the weighing function on 

Poiseuille flow simulation. 

3. Modify the boundary conditions for the DPD method to enforce a no-slip 

boundary condition while maintaining a simple solid wall construction.  

4. Simulate DNA particle flow through a pressure-driven channel and 

replicate its stretching and folding properties under different conditions 

such as the strand placement and the number density. 

 

1.4 Organization of the Thesis 

The thesis is organized into four chapters and appendices. The first chapter 

highlights the differences among the different simulation methods available and the 

reason that Dissipative Particle Dynamics have been chosen in the present work. The 

system considered is a colloidal suspension with polymers as the dispersed particles and 
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it is suspended in fluid particles or solvent molecules in reality. The first chapter also 

includes the statement of the problem and the specific objectives. The second chapter 

illustrates the formulation of DPD and describes the effect of each parameter on the 

output of the modeling. The results and discussions of the simulation are in the third 

chapter. This chapter compares the modified DPD flow to the theoretical values and 

provides the trajectories and extension properties of DNA or polymer suspension in fluid 

particles at different conditions. The last chapter of the thesis summarizes the results and 

conclusions and also provides recommendation for the betterment of the present 

computational methods. The appendices include the code and additional information used 

to help generate the algorithm. 
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Figure 2 Worm-like-chain DNA Strands (Underhill & D oyle, 2004) 

 

Figure 3 Simulation grid

LY 
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CHAPTER II 
 

2. COMPUTATIONAL METHODS 

 

2.1 Dissipative Particle Simulation Theory 

Dissipative Particle Dynamics follows the basic principle of Navier-Stokes equations 

with certain alterations. The simulated fluid systems are isotropic and Galilean invariant. 

The computational cost and time is much smaller than other simulation practices such as 

MD or Monte Carlo.  

The original formulation was created by Hoogerbrugge and Koelman (1992) 

when they first introduced DPD in their study, Simulating Microscopic Hydrodynamic 

phenomena with Dissipative Particle Dynamics. The following stochastic differential 

equation was created to maintain the Brownian motion of the colloidal and polymer 

particles (Hoogerbrugge & Koelman, 1992) : 

+,- � +, � ./
01 2,-                                                                 7 

2,- � 2, � ∑ 3,45,44                                                                8 

3,4 � 67|+, � +4|9:;,4 � <72, � 249 · 5,4>                               9 



17 
 

where Ωij is the weighted function that would balance the system from over-fluctuation 

and over-relaxation. The first part of the weighted equation corrects the pressure effects 

whereas the damping part introduces the viscosity effects (Hoogerbrugge & Koelman, 

1992). This is taken as a coarse-grained system and it follows the Navier-Stokes 

equations of continuum flow.  

Consider a system with N colloidal particles having equal mass, where mi =m=1, 

with positions ri and velocities vi. Fan et al. (2003) found that the simple DPD fluid 

behaves as a Newtonian one. The changes of positions and velocities as time evolves are 

determined by basic Newton’s laws:  

?@1
?/ � A,                                                                   10 

?B1
?/ � C, � C,,D/ � C,EF/

                                                             11 

The total force, fi, includes internal, f int, and external forces, f ext. The internal forces 

consist of all inter-particle forces between fluid-fluid, fluid-wall, fluid-polymer, polymer-

polymer and polymer-wall. The external force could be a gravitational, an electrical, or a 

magnetic force. In this study, we have chosen a gravitational force as the external force 

similar to (Liu, Meakin, & Huang, 2007). There are three internal forces exerted on 

particle i by surrounding particles j. These forces, discussed below, are the conservative 

repulsive force, FC, the dissipative force, FD, and the random force, FR. 

C,,D/ � ∑ G,44', � ∑ G,4H � G,4I � G,4J4',                                     12 
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The conservative repulsive force, FC, given by: 

G,4H � KL,471 � +,4 +N⁄ 9+̂,4 ,        +,4 Q 1,
0,                                      +,4 S 1,T                             13 

provides adequate repulsion to both fluid and polymer particles. DPD is a soft core 

system. A soft core system has weak repulsive forces between the particles and as a result 

the particles may overlap with each other. The parameter aij is the maximum repulsion 

factor between particles i and j. This parameter enables us to set repulsion strength 

between fluid-fluid, fluid-polymer and polymer-polymer interactions. UVW �  UV  �  UW, 
 +,4  �  | UVW | , and +̂,4 � UVW  +,4⁄  is a unit vector that determines the direction from j to i. 

The conservative force depends on the ratio between  +,4   and a cutoff radius, rc, which is 

the length unit in this study. The length of the channel and the distance travelled by the 

fluid particle are given in terms of this cutoff radius.  

The dissipative and random forces are given by: 

 

G,4I � �XYI�+,4��+̂,4 · A,4�+̂,4                                             14 

G,4J � ZYJ�+,4�[,4+̂,4                                                        15 

where γ and σ are characteristic strength of each force respectively. Their relation is 

given by: 

X � \�
]^_`                                                 16 

where kB is the Boltzmann’s constant and T is the temperature of the system. For 

simplicity, kBT is taken as a unit value. These parameters provide a stable standard DPD 
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simulation and relax any unusual fluctuations. The factors wD and wR are r-dependent 

weighting functions which are computed according to the neighboring j particles, 

aVW �  aV  �  aW and [,4 is  white noise function given by (Fan et al., 2006): 

 

b[,4�c�d � 0;    b[,4�c�[^f�c-�d   � �g,^g4f � g,fg4^�g�c � c-�       17 

  

For simulation purposes [,4 is also a random number from a Gaussian distribution which 

has zero mean and unit variance (Willemsen, Hoefsloot, & Iedema, 2000). In this study, 

we have used the Maxwell-Boltzmann distribution, given below, to generate random 

numbers as [,4.  

f�vhi� � jk
lmn/] eqk��

                                          18 

All three forces are dependent on distance and FD and FR are functions of velocities as 

well. The forces conserve the linear and angular momentum and they act along the line 

between two particles. The weighting functions are given as: 

 

YI7+,49 � rYJ�+,4�s] � K�1 � +,4 +N⁄ �t,      +,4 Q +N 
0,                          +,4 S +N

T                     19 

The weighting functions, wD and wR, are zero when rij ≥ rc, thus calculating only forces 

for particles j within the radius rc around the particle i with an exponent s. When rc = 1 

and s= 2, the basic DPD quadratic weighting function, (1-r)2, is acquired. However, the 

cutoff radius and exponent can be changed, rc ≥ 1 and s ≤ 2, to modify particle interaction. 
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s can be decreased or rc can be increased to increase particle interactions. Modifications 

to exponent s are considered more applicable as increasing the cutoff radius increases 

computational cost. As the cutoff radius is increased, the number of neighboring particles 

rises, and the simulation time increments. In this study we explore the effects of varying 

the exponent s. 

The viscocity of DPD fluids includes contribution from the diffusion motion of 

the particles and the dissipative forces (Groot & Warren, 1997). 

η � v)
] � ]lwv��xy

z{ j z
|}z � ~

|}] � �
|}n � ~

|}~ � z
|}{m          20 

The Schmidt number is the ratio between dynamic viscosity and diffusion rate of the 

fluid, �� � � ��⁄ . The viscosity and diffusion correlations for s=2 and s=0.5 is given in 

Table 5. The parameters of the DPD fluid can be adjusted to match the pgysical 

properties of the solvent fluid. Table 5 in Appendix illustrates the relationship between 

the DPD parameters and the viscosity, diffusitivity and the Schmidt number of the 

solvent. Similar to Fan et al. (2003) the unit of length [rc] = 1.608 µm, the unit of velocity 

is [V]= 0.345 cm/s and the unit of time, t = [rc]/[V] is 4.661 x 10-4s. We used a time step 

of 0.02 or in dimenaional unit of 0.93 x 10-5s. 

 

2.2 DPD Integration Methods 

As time evolves, the new particle trajectories and velocities have to be determined 

by Newton’s laws. There are many methods that have proved to be efficient and yield 

accurate values of the new positions and velocities. Some of the methods are given next. 
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2.2.1 Euler’s Method 

The simplest method is the Euler’s method where the new particle positions and 

velocities at time, t+Δt, are derived from the previous position and velocity at time t.  

+,�c � ∆c� � +,�c� � ∆cA,�c�                                                                             21 

A,�c � ∆c� � A,�c� � ∆cG,�c�                                                                            22 

The force is calculated, following the above equations, using the new position and 

velocity.  

G,�c � ∆c� � G,�+,�c � ∆c�, A,�c � ∆c��                                                      23 

 

However, this method causes an energy drift and yields particle trajectory that is not time 

reversible. Energy drift is the gradual increase of the total energy of the system due to 

numerical inaccuracies and energy fluctuations. However, total energy of the system is 

theorectically constant according to the laws of physics. DPD can resolve the energy drift 

problem (Pivkin, Caswell, & Karniadakis, 2011). 

 

2.2.2 Verlet-type Algorithm 

Another method is the Verlet-type. It uses only the new positions to calculate the 

inter-particle forces at different time steps. This method uses positions at t and (t-Δt) 

(Pivkin et al., 2011) as follows: 
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+,�c � ∆c� � 2+,�c� � +,�c � ∆c� � z
� �∆c�]G,�c�                                   24 

G,�c � ∆c� � G,�+,�c � ∆c��                                                                              25 

where M = m = 1, is a unit mass of the particles. The velocity is not calculated for this 

scheme and the force is position dependent only. Due to this reason, this method is not a 

good fit for this study as DPD forces need instantaneous velocity values for their 

calculations. 

 

2.2.3 Velocity-Verlet Algorithm  

The Velocity-Verlet method is an extension of the Verlet-type algorithm to 

predict the velocity of the particle at the new position using velocity at (t) and the force 

calculated using the new position. The force only uses the instantaneous positions for its 

calculations. 

+,�c � ∆c� � +,�c� � �cA,�c� � z
] �∆c�] z

� G,�c�                                       26 

G,�c � ∆c� � G,�+,�c � ∆c��                                                                              27 

A,�c � ∆c� � A,�c� � z
] �c z

� �G,�c� � G,�c � �c��                                  28 

 

2.2.4 Modified Velocity-Verlet for DPD 

The changes in the Velocity-Verlet algorithm made by Groot and Warren (1997) 

take the new position and predictive velocity into consideration while determining the 
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new force acting on the particle. With this force, the actual velocity is computed to 

determine the next trajectory of the particle. The changes are as follows. 

+,�c � ∆c� � +,�c� � �cA,�c� � z
] �∆c�] z

� G,�c�                                       29 

A�,�c � ∆c� � A,�c� � � z
� G,�c�                                                       30 

G,�c � ∆c� � G,�+,�c � ∆c�, A�,�c � ∆c��                                                      31 

A,�c � ∆c� � A,�c� � z
] �c z

� �G,�c� � G,�c � �c��                                  32 

where λ is the variable that will utilize the effects of the stochastic processes (Pivkin et 

al., 2010). According to Groot and Warren (1997) when λ=1/2, the system should relax to 

the Velocity-Verlet algorithm. Since the DPD forces uses velocity in its calculation, the 

predictive velocity,A�,, can be used to do so. 

 Due to the change in modified velocity-Verlet algorithm, the random velocity is 

also modified to be effected by the varying time step. According to Groot and Warren 

(1997), the change in random force should be independent of the time-step as diffusion 

relies upon this force greatly. Diffusion needs to be independent of the time-step and thus 

random force is accurately computed when divided by √Δc (Groot & Warren, 1997). 

However, Fan et al. (2006) and other authors have ignored this modification. In this 

study, we have conducted simulation with the modification to the random force. 

G,4J � ZYJ7+,49[,4�cq�
�+̂,4                                 33 

The random force is divided by the time step so that the velocity calculation will 

not have to be modified. The velocity is initially as follows: 
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A,�c � ∆c� � A,�c� � z
] �c z

� rGH,I�c� � GH,I�c � �c�s � z
] √�c z

� �GJ�c� � GJ�c � �c�� 34 

If the random force is modified while the forces are computed, the velocity-Verlet need 

not be changed later. In this manner, the diffusion is corrected in the simulation.   

 

2.3 Initial Conditions 

 

2.3.1 Initial Positions 

The particles are initially allocated equidistantly. Randomly assigning positions 

for particles tend to increase overlap of particles. The allocations are either simple cubic 

lattice, face-centered cubic lattice or body-centered cubic lattice. Similar formation can 

be utilized for two-dimensional as well as three-dimensional configuration (Satoh, 2011).   

The configuration in Figure 4-A is the basic cubic lattice which can be used for 

gaseous particles. The particles are separated by a distance of ‘a’ which is usually equal 

to the particle diameter. This is inappropriate for liquid or solid particles as there is only 

one particle in a unit cell. For a system with N particles, where N = Q2, a square unit cell 

with sides (Q-1) × (Q-1) can be generated with side length, L = Qa. Thus, the number of 

particles, N, should be a square of a natural number such as 1, 4, 9, etc. the number 

density, n, is given by N/L2. For a simulation, the N and n is initially set from which Q, L 

and packing distance, a, can be determined.  

Figure 4-B has a higher packing density and therefore can be used for gaseous and 

liquid particles and limited solid systems. This lattice contains 2 particles per unit cell 
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and where L = Qa and the square cell is built with (Q-1) × (Q-1) sides. N can only be of 

size 2, 8, 18, etc., and the density is n = N/L2.  

Figure 4-C has the most compact lattice for a 2-D system and can be used for 

solid systems as well. Each unit cell has 4 particles and thus N=4Q2 with N = 4, 16, 36, 

etc. Each unit lattice can be replicated (Q-1) times each side to create the whole lattice 

with side lengths Lx = 31/2Qa and Ly = 2Qa and density n = N/ Lx Ly.  

For the simulation conducted in this study, we use the lattice constructed with 2 

particles in each unit since the simulation will contain mainly fluid particles and nano-

sized polymers.  

 

 

Figure 4 Configuration of Initial Condition of 2-D simulations (Satoh, 2011). 
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2.3.2 Initial Velocities  

The initial velocities of the DPD particles, fluid or polymer, are assigned 

randomly with the Maxwell-Boltzmann’s distribution. This distribution is selected so as 

to provide velocities with a zero mean. Considering a system with thermodynamic 

equilibrium with constant temperature T, the following Maxwellian distribution is 

employed to determine the particle velocities (Satoh, 2011). 

 

C�A,� � j 0
]�^_`mn/] 5�2 �� 0

]^_` 7A,F] � A,�] � A,�] 9�              35 

where kB is the Boltzmann’s constant, T is the temperature, m is the equal mass of the 

particles, and A, � �A,F, A,�, A,�� are the velocity vectors of particle i.  

In order to create random placements of particles in DPD simulations, it is 

required to create random velocities according to a particular probability distribution. We 

need to use a uniform random number generator from zero to unity. The following 

equation with the random numbers is called the Box-Muller method (Satoh, 2011). 

TB1�!�q]�^` 0⁄ � fD J��� N�t�]�J��
B1�!�q]�^` 0⁄ � fD J��� N�t�]�J���                                           36 

where R1, R2, R3 and R4 are random numbers from a uniform sequence.  

  

2.4 Boundary conditions 

Based on the type of system, different methods can be constructed so that the 

particle stays within the simulated region and observes its physical properties. DPD is 
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used for mesoscopic systems and a few different methods can be used to set the boundary 

conditions. 

 

1. Periodic Boundary Conditions 

Figure 5 illustrates the periodic boundary condition for a two-dimensional system 

(Satoh, 2011) where this boundary condition is assigned in both the x- and y- axis. The 

original simulation region is marked by the length of the system by Lx and Ly. The 

schematic shows how the particles moving across the boundary surfaces appear in the 

opposite side of the region. Periodic boundary not only displaces the position in a 

continuous flow but also transfers the energy and velocity to the next region.  

For a simulation region with the (0, 0) coordinate in the middle of the system, the 

periodic boundary condition can be administered as follows: 

        if  r(x,i)>= LX/2  

            r(x,i)= r(x,i)-LX;  

        elseif  r(x,i)<= (-LX/2)  

            r(x,i)= r(x,i)+LX;  

        end  

where i denotes the particle under consideration and r(x,i)  is the position of the particle 

in the x-direction. This can be performed in x-, y- and z- axis.  

The periodic boundary condition should also be applied when the interaction 

between particles i and j is calculated for the DPD forces. It must accommodate other 

treatments such as cutoff radius to provide accurate computation of forces and other 

values across the boundaries. 

  if  diffr(x,i) > LX/2  
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      diffr(x,i)=diffr(x,i)-LX;  

  elseif  diffr(x,i) < (-LX/2)  

      diffr(x,i)=LX - abs(diffr(x,i));  

  end  

where diffr(x,i) is the center to center distance between particles i and j whom the forces 

will act upon.  

 

 

 

Figure 5 Periodic Boundary Condition in x- and y- directions (Satoh, 2011). 
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2. Lees-Edwards Boundary Conditions 

Lees-Edwards method is used when non-equilibrium systems needs to be 

simulated. One of the simplest examples is the simple shear flow found in Couette 

systems. Couette flows have moving walls with constant velocities, U and –U, which 

provides uniform shear flow across the channel.  

 

Figure 6 Simple Shear Flow in Couette Flow (Satoh, 2011). 

 

To accommodate this system, the replicated boundary regions are shifted slightly in 

opposite directions by a distance ΔX with respect to the movement of each wall. This is 

depicted in figure 4. When the new positions and velocities are calculated, the change 

shifted distance, ΔX, and wall velocity, U, has to be considered. The particles moving out 

of the region in the x-direction will be shifted from x to (x - ΔX) and vx to (vx - U). The y 

direction will follow the same procedure as the periodic boundary condition. For 

example, the loop that can be used to set the boundary condition is as follows: 

        if  r(x,i)>= LX/2  

            r(x,i)= r(x,i)-LX-delX; 
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            v(x,i)= v(x,i)-U;  

        elseif  r(x,i)<= (-LX/2)  

            r(x,i)= r(x,i)+LX+delX; 

            v(x,i)= v(x,i)+U;  

        end  

where delX is the shift of the boundary region, ΔX and v(x,i)  is the velocity of the 

particle i  in the x-direction. For calculating the inter-particle forces between particles i 

and j, a similar loop with the same treatment is used as follows:  

  if  diffr(x,i) > LX/2  

      diffr(x,i)=diffr(x,i)-LX -delX;  

  elseif  diffr(x,i) < (-LX/2)  

      diffr(x,i)=LX - abs(diffr(x,i))+ delX;  

  end 
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Figure 7 Lees- Edwards Boundary Condition for Shear Flow (Satoh, 2011). 

 

3. Wall Boundaries 

Solid boundaries tend to affect the density fluctuations, the loss of temperature, 

and unlike MD simulations soft repulsion in DPD particles does not prevent particles 

from crossing solid boundaries. Frozen particles acting as solid wall as well as multi-

layered solid and fluid DPD wall particles can create boundary conditions that can be 

used for a Navier-Stokes continuum flow. 

The first method is to group and create frozen DPD particles modeling a solid 

wall boundary for region under simulation. The particles could simply be a subset of the 

original lattice cell created for fluid particles as shown in Figure 8. The velocities for 



 

these particles are zero so that they are constrained at a set position. However, due to soft 

repulsion, fluid particles can still penetrate these walls. Therefore a higher density 

packing is recommended increasing the repulsive force of the wall. Since the density of 

the wall is greater than the fluid particles, a no

authors recommend a density ratio of one to nine between fluid and wall. However, as 

density increases repulsion grows which in turn causes density fluctuations at the wall 

(Willemsen et al., 2000). 

Figure 

 

The second method is 

of fluid particles near the wall

crossing the wall fluid particles are 

wall. Revenga et al. (1999) describe three different possibilitie

fluid particles as follows:
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these particles are zero so that they are constrained at a set position. However, due to soft 

fluid particles can still penetrate these walls. Therefore a higher density 

packing is recommended increasing the repulsive force of the wall. Since the density of 

the wall is greater than the fluid particles, a no-slip condition is observed. Previous 

ors recommend a density ratio of one to nine between fluid and wall. However, as 

density increases repulsion grows which in turn causes density fluctuations at the wall 

 

Figure 8 Lattice Wall (Arya, Chang, & Maginn, 2003). 

The second method is to use frozen particles as a solid wall and 

of fluid particles near the wall (i.e., wall fluid particles). The channel fluid particles 

crossing the wall fluid particles are reflected so that they would not penetrate the solid 

(1999) describe three different possibilities for reflecting 

fluid particles as follows: 

these particles are zero so that they are constrained at a set position. However, due to soft 

fluid particles can still penetrate these walls. Therefore a higher density 

packing is recommended increasing the repulsive force of the wall. Since the density of 

slip condition is observed. Previous 

ors recommend a density ratio of one to nine between fluid and wall. However, as 

density increases repulsion grows which in turn causes density fluctuations at the wall 

 

particles as a solid wall and to create a layer 

. The channel fluid particles 

so that they would not penetrate the solid 

reflecting these wall 
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(1)  A reflection of particles where its tangential velocity vector is conserved and 

the normal velocity vector is reversed, i.e. a specular reflection. 

(2) Maxwellian reflections where the particles are assigned random velocity 

according to the Maxwellian distribution and send back into the flow i.e. 

diffuse reflection.  

(3) Reflection of particles when both the tangential and normal velocity vector are 

reversed. This is called bounce-back reflection. 

In this study, we have selected the Maxwellian reflection. No-slip Boundary 

conditions are created using random velocity vectors that shoot the particles back into the 

flow as they approach the wall. A no-slip boundary layer with thickness (from the wall) 

was set equal to 0.5% of the channel height. If the height of the wall is large such that 

0.5% of the height is greater than the cutoff radius, the boundary layer thickness will be 

the cutoff radius. The purpose of this thickness is to prevent the cool down of fluid 

particles reaching the wall. The newly assigned velocity of the particle entering this layer 

will be as follows (Fan et al., 2006): 

A, � AJ � �j��� · AJ�] � � · AJm                                   37 

where  AJ is the random velocity with a zero mean and uniform distribution and n is the 

unit vector normal to the wall and pointing into the fluid channel.   

 

2.5 Computational Efficiency 

The force calculations take the most computational time within the DPD 

calculation. This cost limits the simulation to be of a small region or a two-dimensional 
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system. The force script runs N2 times for each time frame. To reduce the CPU time and 

cost, the N2 computation needs to be reduced. The methods provided below will reduce 

the N2 loop considerably, thus reducing cost. This is mainly performed by limiting the 

interaction between every single particle within the systems to just the neighboring 

particles. Among other things, certain factors such as the increase in cutoff radius will 

substantially increase the cost as well.  

 

2.5.1 Verlet or Neighbor List 

In this method, a secondary cutoff radius, rv, is used where rv > rc . A list is created 

for each particle which includes all the nearby particles positioned within the radius rv. 

The CPU time will be reduced when the force acting on each particle is calculated only 

using those particles within the particle’s list. When the particle is moved further than rv - 

rc, the Verlet or neighbor list is re-calculated. This method can be used for Molecular 

Dynamics and Dissipative Particle Dynamics methods.  

 

2.5.2 Cell List 

The simulation region is divided into QX × QY cells with each individual cell 

having a size (LX/ QX) × (LY/ QY). For example, in Figure 9 if QX = QY = 6 and LX = LY = 

12, each individual cell would be of 2 x 2 units. At the beginning of the process, the 

particles are grouped into each cell where each cell size is less than the cutoff radius 

square. Each cell needs to be named and stored along with its particles name and 

position. During the inter-particle DPD force calculations, a particle i will be calculated 
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with other j particles within the same cell and the neighboring cells. For example, a 

particle within cell 22 will be computed with other particles in 22 as well as 15, 16, 17, 

21, 23, 27, 28, and 29. This method is very useful for large values of QX and QY. 

 

 

Figure 9 Cell List Method to Group Neighboring Particles (Satoh, 2011). 

 

2.5.3 Cutoff Radius 

The computational time is reduced when the number of particles used to calculate 

the forces are reduced. For a spherical particle, the Lennard-Jones potential, ULJ, gives 

the interaction between two particles depending on the distance between them, as 

follows: 

��� � 4  ¡j\
@mz] � j\

@m�¢                                                38 

where σ is the characteristic length scale proportional to the particle diameter, r is the 

distance between the particles and   �  £¤¥. The ratio between σ and r determines the 

repulsive or the attractive behavior between the two particles. The interaction between 

particles can be negligible when r is greater than 3σ. The distance after which the 
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interactions between the two particles are too weak to be considered is called the cutoff 

radius.  

 In the simulation, an area with the cutoff radius, rC, is created around each particle 

and forces are determined only between that particle and those particles located within 

that area. In this study we have chosen the cutoff radius as a primary method to reduce 

the computational cost. The value of rC will be unity to acquire standard DPD properties. 

All the lengths within the simulation region will be given in terms of rC.  

 

2.6 DNA Modeling  

Physical properties of DNA have been studied by Smith et al. (1992) and Perkins 

et al. (1995), among others. In these experiments the DNA had to be tethered to the wall 

or optical tweezers had to be used to gain knowledge of properties such as effect of shear 

on the fractional extension of DNA strands, and the effect of drag.  These strands were 

also modeled using molecular simulation. DNA can be modeled within DPD as polymers. 

Figure 10 illustrates a model of DNA particles (tethered bead-chain particles) in DPD 

solvent particles (dots). 
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Figure 10 Polymer particles in DPD Solvent Particles (Pivkin et al., 2010). 

 

2.6.1 Polymer Modeling Techniques 

Polymers can be modeled using DPD equations where the polymer beads are 

subjected to conservative or repulsive, dissipative and random forces like their solvent 

counterparts. Along with polymer-fluid interaction, intra-polymer bead forces need to be 

taken into account. The repulsive force between polymer beads needs to be adjusted 

according to their properties. Other intra-polymer forces arise from the combination of 

the following (Symeonidis et al., 2005): 

 

1. Lennard-Jones Potential 

The Lennard-Jones potential provides a shifted potential to each polymer beads to 

avoid numerical instability. The potential is applicable to all pair particles within the 
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cutoff radius, rij < rC. Lennard-Jones is used to prevent over-lapping. This is used instead 

of the soft-repulsive forces of DPD. 

 

2. Hookean and Fraenkel 

This force is a result of pairwise potential with an equilibrium distance between 

the beads, rEQ (Symeonidis et al., 2005).  The forces are calculated such that an attractive 

bond is created when | ri – ri-1 | > rEQ and repulsive bond when | ri – ri-1 | < rEQ. 

 

3. FENE 

The FENE spring force is a nonlinear elastic force which keeps the bead within an 

equilibrium or maximum distance, rmax. When the distance is greater than rmax, the beads 

are pulled closer to each other along the line between the beads. Κ is the spring constant. 

�¦§¨§ � � ©
] +0ªF] «¬­ ®1 � |@1q@1¯�|�

@°±�� ²                               39 

 

4. Marko-Siggia Worm-Like Chains (WLC) 

Experimental and theoretical studies showed similarities between worm-like chain 

(WLC) forces and DNA molecules (Perkins et al., 1995). WLC models can be used to 

mimic DNA movement within a flow. Similar to the FENE spring, the Marko-Siggia 

force expression creates a spring force that will pull the beads back closer together when 

the maximum length of the segment between the beads is reached. The WLC force is as 

follows (Fan et al., 2006): 
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where l is the maximum length of the segment between the beads and �ÀEÁÁ  is the 

effective persistence length of the polymer spring chain. The persistence length is the 

maximum length when the chain will be elastic. The length of the segment is established 

to be greater than the persistence length such that the chain will be semi-elastic or stiff. If 

the number of beads is Npb and L is the total length of the DNA strand, then « �
 L/�Npb –  1� (Fan et al., 2006). (Bustamante, Marko, Siggia, & Smith, 1994) stated that 

the persistence length of a DNA is �À~0.053ËÌ. When the beads are modeled with this 

length, there was an increase in the molecular flexibility since there was no bending 

momentum. This flexibility was resolved by increasing the persistence length to 

�ÀEÁÁ~0.061ËÌ for 40 beads or �ÀEÁÁ~0.07ËÌ for 80 beads in a strand with L=67.2 μm 

(Larson et al., 1997). In this study we have used worm-like chains to model the DNA 

strands. 

The stress tensors are given by the Irving-Kirkwood model (Fan et al., 2006) as:  

�    !q�
Ïj∑ 0Ð1Ð11 }�

� ∑ ∑ @1ÑÁ1ÑÑÒ11 m
!qDb0Ð1Ð1}�

� ∑ @1ÑÁ1ÑÑÒ1 d                                                   41 

 

where Ó, � A, � aÔ���  is a velocity difference between the bead velocity and stream 

velocity, aÔ���, at position x. The ensemble average is calculated between <…>. The 

force fij is the result of the sum of DPD forces and the WLC spring force. The 
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constitutive pressure can be determined from the stress tensor, 2 � �1/3c+�  (Fan et al., 

2006). 

The modified velocity-Verlet algorithm is also used to show polymeric interaction 

between particles in terms of beads joined by strings. This includes the soft repulsive 

force as well as hard forces. 

 

2.7 Simulation Approach and Requirements  

To carry out the present simulation, a code was programmed in Matlab including 

the DPD force equations and its parameters. Matlab is a high-level programming tool 

from Mathworks that is both interactive and versatile. The language has a multitude of in-

built functions that would save time as compared to programming in C or FORTRAN. 

Coding in Matlab provides the ability to see the simulation results in real time when the 

program was being run. This was very handy at the beginning of the code production.  

 

2.7.1 Approach to Programming 

Initial positions, initial velocity and the forces for different types of particles; 

fluid, wall, and polymer, were initialized in separate functions within Matlab. The final 

Verlet algorithm was written in a script file that would call these functions when the 

positions, velocities and forces needed to be computed. The functions can be called 

within other functions as well, for example, initial position and velocity can be called 

within the force function to run tests.  



41 
 

The variables can be administered at the beginning of the script file but should be 

declared as a global variable when functions need the same variables as well. The 

variables must be unchanging to be declared globally. If a parameter is constantly 

changed, for instance within a script, the function would be called along with the 

changing variable. Each file is saved as .m file which can be read and written as a .txt file 

as well. The workspace which stores all the output variables can be saved as a .mat file. 

This file can be exported into an Excel sheet for further plotting and recording. Data 

stored in Excel sheets can also be imported into Matlab as .mat files. 

 

 

2.7.2 Requirements 

Apart from the software Matlab, one would also require a relatively high powered 

computer that can perform the simulation as well as other tasks simultaneously. The 

computer that was used for the coding had the Intel i7, which is a quad-core processor, 

and 4 GB of RAM. About 2GB of RAM and one of the processors will be used 

constantly while running Matlab. The version of Matlab that was installed is Matlab 

Student version R2011a. If parallel computing needs to be used, the additional processors 

will be employed. Parallel computing that was performed for this simulation will be 

discussed next. 

 

2.7.3 Parallel Computing 
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The main parallel computing was performed in the Linux cluster located at 

Oklahoma State University and it is called Pistol Pete high performance computing. This 

cluster contained about 1024GB RAM and 512 cores of processors. Parallel computing 

can also be performed on our local machine using functions such as matlabpool, parfor 

and so on. Matlabpool opens workers that can perform independent jobs simultaneously. 

The number of workers corresponds to the number of cores in a processor, for example, a 

quad core processor can open an additional 4 workers along with the main Matlab 

program. This can only be done if the jobs are independent of each other and does not 

share its output.  
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CHAPTER III 
 

 
3. RESULTS AND DISCUSSION 

 

3.1 Initialization of the Simulation 

The two-dimensional simulation region is setup on a rectangular lattice with LX = 

12 and LY = 30 (the unit length is rc). The fluid, wall and DNA particles are containined 

within this region. The origin of the axis is located at the middle of the region. Matlab 

was used to write the code and to perform the DPD simulation. The following properties 

were used to conduct the simulation: 

a) Initial particle arrangement in face centered cubic (fcc) lattice with N=2Q2 

particles. 

b) Maxwell-Boltzmann’s distribution for initial velocity. 

c) Modified Velocity-Verlet algorithm. 

d) Periodic boundary condition in the x-direction. 

e) Frozen solid wall particles at y = - LY/2, LY/2 with a layer of no-slip 

condition where the particles are given a random velocity and shot back 

into the fluid system. 

f) Cutoff radius method was used to reduce the computational cost. 

g) Worm-like chains to model DNA particles.
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3.1.1 Initializations 

Consider N fluid particles assigned on an fcc lattice with two particles in each Q × 

Q unit cell where N=2Q2.  The density of the particles is 4 per area square. Therefore for 

an area of 12 × 30 or 360 unit sq., N = 1440. To have a natural number, we have chosen 

N = 1458. Wall particles, Nwall, are arranged at a higher packing density to create more 

repulsion at y = - LY/2, LY/2. If there are 400 wall particles divided into 200 particles for 

each wall, the density is at approximately 16.67 units at each wall. The DNA particles are 

initially assigned at y = 0, and the first bead is at x = - 4.5. The beads are apart from each 

other by a length lseg = 0.7, which is larger than the persistence length of 0.053 μm and 

lesser than the maximum segment length, l, of 0.8075μm. Fan et al. (2006) encountered 

numerical inaccuracy when the maximum length exceeded l. 

 

Figure 11 Initial Setup of Fluid, Wall and DNA Particles. 
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The computational grid is shown in Fig. 9 where the yellow is the fluid particles, the blue 

is the wall particles and the red is the DNA particles. The unit of length, rc, is set to 1µm 

with the system dimensions as -6 ≤ x ≤ 6 and -15 ≤ y ≤15 similar to Fan et al. (2006). 

 The initial velocity is generated randomly by the Maxwell-Boltzmann’s 

distribution with zero mean. This applied to the fluid and DNA particles whereas the wall 

particles were assigned a zero velocity. The velocity is curbed to be less than the 

maximum velocity allowed by the system. The maximum velocity is determined follows:  

z
] ÌAÕ�Ö] � 2 ^_`
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or 

 A0ªF � ×]^_`
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The total momentum of the system is set to zero.  

 

3.1.2 Modified Boundary Conditions 

There are two different boundary conditions used in this system with new 

modifications. The periodic boundary condition is used along the x-direction which is 

treated to accommodate the cutoff radius and force calculations. The periodic condition is 

inputted while the difference between the particles is determined. This is to define if the 

particles passing through the simulation region will be included in the force calculation. 

If a particle i is located at x = +5.5, then a particle j located at x = -5.8 will be within the 

cutoff radius of unity. The modifications are shown within the code in the appendix. The 

periodic boundary condition is used when the new position is computed at a new time 
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step in the main algorithm. The periodic boundary condition also allows the external 

force to flow through the inlet and the outlet of the channel to create a constant 

continuous pressure driven flow. 

The second boundary condition used is the solid or frozen DPD particles at y = - 

LY/2, LY/2. Wall particles have a higher density creating more repulsive force against the 

fluid particle in the system. However, the soft repulsion of DPD particles would not 

prevent the fluid particles from penetrating through the solid wall particles, which is 

physically improbable. Unfortunately, higher density of the wall would create unrealistic 

density fluctuations in the simulation.  

Therefore we have introduced the Maxwellian reflection of particles within a no-

slip boundary region next to the wall. The reflection condition is administered to the 

particles entering into the region which has a thickness of 0.5% of the height of the 

channel as shown in Fig. 10. For this simulation LY = 30 and the no-slip boundary region 

thickness is 0.15 unit. Therefore, the no-slip region was enforced between 14.85 to 15 

units and between −14.85 to −15 units. The new velocity assigned to the particles 

entering the region is v� � v* � nj��n · v*�] � n · v*m where vR is the random velocity 

generated by the Maxwell-Boltzmann’s distribution, n is the normal vector from the wall 

pointing towards the fluid system where n=−1 for the top wall and n=+1 for the bottom 

wall. A few modifications were added along with the new velocity. New positions were 

also assigned to the particles for the next time step. The particles will be moved to the 

boundary of the no-slip region at y = 14.85 or −14.85 depending on the top or bottom 

wall, respectively, with a velocity vector pointing towards the center of the channel.  
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Forces were set to zero as the velocity was already pre-determined. This guaranteed 

bounce-back particles for those that reached the wall which was not penetrated.  

 

 

Figure 12 No-Slip Region near the Top Wall. 

 This method removed the need for multiple layers of wall particles to prevent the 

penetration of the wall by the fluid particles. The no-slip region also guarantees zero-

velocity at the walls when simulating a Poiseuille flow in a channel. The particles by the 

wall region would not linger by the wall, creating a more practical application of the 

flow’s physical properties.  

 

3.1.3 Particle Forces 

The force functions are needed to update the new position and new velocity of a 

particle at the next time step. The forces are called as each particle i is being computed. 

The force calculations are stored in three different functions. The functions are set 

separately as the repulsion strength for the conservation DPD force is different depending 
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on the type of particle interaction. When the fluid particles are in consideration, the fluid 

force function contains the interactive forces between fluid-fluid, fluid-wall, and fluid-

polymer. When the polymer particle position and velocity is determined, the forces that 

contain the polymer-fluid, polymer-wall and polymer-polymer interactions are called. 

The spring force is also added along with the polymer DPD forces as the bead-bead 

interaction changes in a sheared flow.  

 For the spring forces, the interactions of the beads on either side of the polymer 

particle in question are considered. The first and the last beads will only have one bead-

bead interaction, with beads i+1  and i-1, respectively. 

As the force is being calculated for a fluid particle, i, the force function first 

calculates the relative position of the particle with respect to all the other particles, in the 

order of fluid, wall and polymer. If the other particle, j, is within the cutoff radius, the 

force is calculated. Similarly, the polymer particles go through the process.  

 

3.1.4 Integration 

The main code contains Newton’s laws for time evolving position and velocity in 

terms of the modified velocity-Verlet algorithm. The initial position and velocity is called 

into the script along with the initial force calculations. Each particle, i, from 1 to N, is 

assigned to the new trajectory after the forces are called. The positions are corrected 

according to the periodic boundary condition as well as the no-slip condition at the walls. 

The no-slip condition is enforced at the beginning of the script where the new position 

and predicted velocity is calculated. This would prevent the particles from bouncing back 

towards the wall. The no-slip is also inputted into the main particle loop to bounce-back 
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particles near the wall into the fluid. If the particle enters into the no-slip region with a 

higher velocity compared to the randomly assigned velocity, then the random velocity is 

used. If the original velocity is lesser than the random velocity, then the original velocity 

is kept while reversing the particle towards the center of the channel. This modified 

boundary condition is applied to both fluid and DNA particles.  

 

3.2 Simulation Parameters 

The DPD fluid and DNA parameters are the physical properties of the particles. 

They are listed in Table 1 and Table 2, respectively. The algorithm parameters are used to 

create the simulation in the mesoscopic scale and are listed in Table 3.  

 

Table 1 DPD Fluid Parameters. 

DPD Fluid Particle Parameters 

Name Nomenclature Value 

Mass M 1 

cutoff radius rc 1 

Exponent S 2 

Fluid-fluid repulsive strength aff 18.75 

Wall-wall repulsive strength aww 5 

Fluid-wall repulsive strength afw 9.682 

Density Ρ 4 

Verlet parameter Λ 0.65 

Random force parameter Σ 3 

Dissipative force parameter Γ 4.5 

Field force G 0.02 

Energy conservation kBT 1 

Maximum Velocity Velmxd 1.414 
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Table 2 DPD DNA Parameters. 

DPD DNA  Particle Parameters 

Name Nomenclature Value Unit 

Effective persistence length Λeff 0.053 μm 

Energy conservation kBTp 1   

Total DNA strand Length L 67.2 μm 

Maximum DNA segment Length Lseg 0.808   

Mass Density Mp 0.25 g/cm3 

Viscosity Viscp 2.588 kg/μms  

Fluid-polymer repulsive strengthafp   16.5   

Polymer-polymer repulsive strength |i-j|>4 App 2   

Polymer-polymer repulsive strength |i-j|<4 App 0   

Fluid-wall repulsive strength Apw 3.162   

 

Table 3 Algorithm Parameters. 

Algorithm Parameters 

Name Nomenclature Value 

      

Fluid particles N 1458 

Length of channel LX 12 

Height of channel LY 30 

No-slip Region Rcw 0.15 

Time step Delt 0.02 

Initial time Ti 0 

Final Time Tf 120 

Number of cells (x,y) Q 27 

Length of unit cell x direction Nx 0.444 

Length of unit cell y direction Ny 1.111 

Wall particles Nwall 400 

Wall density Nwall 16.667 

DNA particles Np 1 

DNA beads Npb 10 

Total DNA beads Nptot 10 

Total DPD particles Ntot 1868 

No-slip Region Top boundary BC1 14.85 

No-slip Region Bottom BC2 -14.85 

Bins Tbins 35 
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3.3 DPD Fluid Flow in a Channel 

A pressure driven flow is simulated through a two-dimensional channel with 

lengths, LX=12 and LY=30 (in rc units). The channel has two solid boundary walls at y= 

LY/2 and -LY/2 with the modified boundary conditions. The expected flow through the 

channel is Poiseuille flow as DPD follows Navier Stokes equations. The channel flow is 

investigated at different test conditions.  

As the simulations were conducted, the particles velocities were averaged in 

spatial bins and the computed velocity profile was compared to the theoretical velocity 

profile of a Poiseuille flow between parallel plates, given by:  

Ù
ÙÚ � n

] »1 � jÛ
Üm]¾                                                 44 

where ÝÔ is the average velocity, y is the spatial coordinate in the vertical direction and h 

is the half-height of the channel (in the y direction). In this present study, the height of 

the channel was divided into several bins, including two bins for the lower and upper no-

slip boundary regions. The rest of the bins were equally divided. The velocities of 

particles are accumulated in each bin according to their y-position for every 1000 

timestep. They are summed in each bin and divided by the number of particles collected 

as shown in Figure 13. The average velocities did not include the ones calculated during 

the first few timestep since the velocity fluctuates due to the randomly assigned velocity. 

Once the channel flow starts forming, the velocity is collected.  
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Figure 13 Average velocities per Bin with the Modified Parameter s. 

 

3.3.1 Simulating Channel Flow using Standard DPD 

The first test performed was simulating the two-dimensional flow through a 

channel (Poiseuille flow) using standard DPD parameters, where rc=1 and s=2, for a 

number density n= 4. With these parameters, the viscosity of the simulated fluid is very 

low. For such a low viscous fluid, one can expect a flat velocity profile. Initially a 

random velocity distribution is assigned to the flow field. A fully developed flow is 

acquired at t=180. Due to the changes in the forces (the change in velocity is determined 

by forces as shown before) the velocity field develops an almost top hat velocity profile 

with an average value of 1.2 approximately.  
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Figure 14 Poiseuille Flow using Standard DPD Fluid. 

 

3.3.2 The Effect of the ‘s’ Parameter 

The parameter s is the exponent of the weighing function used to determine the 

dissipative and random forces for DPD. Modifying the s parameter changes the 

interaction between the fluid particles. It would be then possible to adhere to the physical 

property of a true fluid. Due to the soft repulsive force between the particles, DPD 

simulations are usually associated with a low viscous fluid and low Schmidt number 

flow.  

The dimensionless number can be increased by enhancing particle interaction 

which is done by increasing the cutoff radius. Unfortunately, increasing the cutoff radius 

escalates the computational cost drastically. Alternatively, the exponent s can be 
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modified with a minimal rise in the computational cost. Schmidt number increases 10% 

when s is modified and viscosity increases by 36%. 

The simulation of Poiseuille flow with the modified parameter s is shown in 

Figure 15. The Poiseuille flow is attained by plotting the ratio of velocity over the 

maximum velocity against the y axis or the channel width. The maximum velocity is a 

function of viscosity. This can be illustrated by Figure 14 and Figure 15 where the non-

dimensional velocity profiles change with varying parameter s and, thus, they are a 

function of viscosity.  The standard DPD has s=2. When s=0.5, the computational 

velocity profile agrees qualitatively with the theoretical Poiseuille flow equation for flow 

between two parallel plates. The agreement is not complete, however. This could be due 

to the altered no-slip boundary conditions with the randomly assigned velocity and the 

displacement of the particles at the boundary. However, the flow shows symmetry, as 

expected, and the no-slip conditions are clearly enforced at the wall boundaries. The fully 

developed velocity profile is acquired at t=180 and remains the same till t=300. The 

average velocity of the channel is 0.8645. The approximate length it would take to reach 

a fully developed flow will be 155.61rc.  
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Figure 15 Poiseuille flow with Modified DPD Parameter 's'. 

 

3.3.3 The Effect of the Channel Size 

To check whether the simulation is grid-independent, a larger region was used in 

the simulation with LX=60, LY=30 and N=7200 to keep the number density at 4. The flow 

profile is flat similar to the previous grid with LX=12 and LY=30.  The velocity profile 

tends to reach an average of approximately 1.2 fairly quickly, i.e. at t=60. The simulation 

is grid independent and will provide the same results for different sized grids.  
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Figure 16

 When channel flows with smaller channel heights (e.g. 

were investigated, the fluid particles segregated into 

cutoff radius as shown in

lines was reduced as the cutoff ra

understood and it needs further

modifications to simulate 
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16 Poiseuille Flow with Larger Simulation Region.

 

channel flows with smaller channel heights (e.g. LX=12 and L

, the fluid particles segregated into lines with spacing dependent on the 

in Figure 17 and Figure 18. The separation distance 

reduced as the cutoff radius was decreased. This phenomenon 

needs further study. It may indicate that the DPD 

modifications to simulate nanoscale systems.  
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Figure 17 Simulation of System with LY=3. 

 

Figure 18 Simulation of System with LY=6. 



 

3.3.4 The Effect of the N

A simulation with number 

tends to get closer to the theoretical 

increased. The increase in 

property of the flow; the system may not contain fluid particles 

instead act as solid particles. The particles may also be incompress

number density limit. These effects

compressibility of the flow deserves a detailed study

Figure 
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Number Density 

A simulation with number density of 20 is shown in Fig. 17. The velocity profile 

closer to the theoretical Poiseuille flow as the number density of 

The increase in the density beyond a certain limit will change 

he system may not contain fluid particles at that limit 

act as solid particles. The particles may also be incompressible after a certain 

These effects of increasing number density within

compressibility of the flow deserves a detailed study. 

Figure 19 Poiseuille Flow with Number Density =20. 

 

of 20 is shown in Fig. 17. The velocity profile 

the number density of the system is 

beyond a certain limit will change the physical 

at that limit and may 

ible after a certain 

within DPD and the 
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3.4 Simulating a Single DNA Strand in DPD Flow 

DNA strands were placed at different locations in the channel where they 

experienced different values of shear stress gradients to observe their migration and 

physical properties as they travel through the pressure-driven channel. DNA chains tend 

to stretch, fold and tumble as they move through the channel. These properties are 

relevant to understanding the flow of DNA in lab-on-a-chip devices. The present tests 

were conducted with one strand at a time but with different number of beads and at 

different channel locations.  

The DNA strand tends to extend or fold at different positions within the channel. 

These extensions relax after a time period and remain in a constant state after the flow 

profile is developed. The time it takes for the strand to reach a particular extension is 

related to the strand relaxation time. The relaxation time, τ, can be computed from 

observing the extension of the strand, x, as function of time, t, and plotting  

x �  x" � x�exp ��t τ⁄ �                                           45 

where x0 is the extension at equilibrium and xi is the maximum extension of the strand. 

 

3.4.1 DNA Migration in a Channel Flow 

Initially there are 10 DNA beads on a strand placed at different y positions along 

the height of the channel. The positions are -13, -10 and -5. This test was conducted to 

see if the DNA strand would migrate to the centerline of the microchannel. The 

simulation is performed using the standard DPD parameters and the viscosity of the fluid 
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particles is not corrected. Therefore, the velocity profile is almost a flat profile. Due to 

the no-slip boundary conditions at the wall the flow field possesses larger shear stress 

gradient near the wall compared to the region near the centerline. The migration of a 

DNA strand with 10 beads from different vertical locations along the channel height (Y= 

−13, −10 and −5) is plotted Fig. 18. 

 

Figure 20 Migration of DNA Strands from Different Positions at s=2. 

 

The strand inserted initially at position y = −13 experiences larger shear stress gradient 

compared to the two other strands. As a result, the strand migrates towards the centerline 

of the channel faster than the two strands starting their journey from y= −10, −5. The 

strand at y = -10 moves closer to the centerline but at a much slower pace, due to the 
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smaller level of the local shear stress gradient in this region. This can be seen from Figure 

20 and Figure 21 where the strand has only moved from y=-10 to y=-8 in t=200 units, but 

moves till y=0 at t=984 units. This is because the velocity profile is flatter towards the 

center of the channel and the strands need more time (i.e. longer channel) to migrate to 

the centerline.  

 

3.4.2 Effect of the Number of Beads on DNA Migration  

Three strands with different number of beads are inserted into a pressure-driven 

flow at y = -10, near the bottom wall of the channel. The strands have 5, 10 and 20 beads 

respectively. Similar to the previous test, the flow has a flat profile due to the low 

viscosity and less particle interactions for s=2. Figure 21 shows the migration of the 

simulated strand for s=2. The migration is more prominent for the strand with 10 and 20 

beads. The strand with 5 beads seems to oscillate along the initial position of y = -10 and 

then slowly reaches y = -8 at t=1200. The 20 beaded strand appears to have migrated 

much faster than the other two strands and reaches the centerline by an approximate time, 

t = 899. The strand with 10 beads reaches the centerline later at t=984. The strands tend 

to migrate towards the centerline due to the presence of a varying shear stress gradient. If 

the length of the channel is long enough the strand finishes its journey at the centerline. 

Longer channels (i.e. longer times) are needed for strands with less number of beads to 

reach the channel centerline. 



62 
 

 

Figure 21 Migration of DNA Strands with Different Number of Beads at s=2. 

  

 Figure 22 on the other hand shows a flow with a modified s=1.5. This increases the 

viscosity and particle interaction. The strands tends to oscillate along the initial position 

of y=-10 between y=-9 and -12. Figure 23 illustrates the DNA migration at s=1. The 

strand with 5 beads reached the centerline as compared to the strands with 10 and 20 

beads that finished closer to their original positions on the y axis.  Figure 24 illustrates the 

travel of the strands which uses the modified parameter s=0.5. The velocity profile in this 

case is more like a theoretical Poiseuille flow. The strands tends to linger at their original 

positions, perhaps due to a constant shear stress gradient compared to the varying shear 

stress gradient in the case of s=2. The strands with 5, 10 and 20 beads oscillates at its 

original position y=-10. 
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Figure 22 Migration of DNA Strands with Different Number of Beads at s=1.5. 

 

Figure 23 Migration of DNA Strands with Different Number of Beads at s=1. 
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Figure 24 Migration of DNA Strands with Different Number of Beads at s=0.5. 

 

As the plots vary from s=2 to s=0.5, we can clearly see the velocity profile 

approaching the shape of the velocity profile of the Poiseuille flow. The DNA particles 

seems to move towards the centerline when s =1 and 2 as compared to the steady 

oscillation along the initial inserting location when s=0.5 and 1.5. The effect of 

modifying the parameter s on the physical properties the DNA or polymer particles is not 

clear. To maintain accurate viscous behavior for DNA particles one may need other 

values of s or different cutoff radius rc.  

 Figure 25, Figure 26 and Figure 27 compares the migration of the beads for 

different values of the parameter s. As mentioned before, longer beads tend to travel more 

towards the centerline as s=2; the value for a standard DPD fluid. A strand with 20 beads 
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tends to migrate faster than the shorter strands. This is observed in Figure 23 where the 

20-beaded strand attempts to move towards the centerline at s=1. Longer strands must be 

utilized to understand the relation between the weighting functions and the DNA 

particles. Further analyses are necessary to understand if the weighting function can be 

changed to attain accurate Schmidt number and the physical properties of DNA strands. 

The simulation would need a longer channel or more computational time to average the 

migration patterns of these long strands.  

 

 

Figure 25 Migration of Strand with Nbead = 5 for Varying s. 
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Figure 26 Migration of Strands with Nbead = 10 with Varying s. 

 

Figure 27 Migration of Strand with Nbead = 20 for Varying s. 
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3.4.3 Extension with Respect to Time 

As the DNA strand migrates through the channel, it stretches and folds due to the 

shear stress produced by the velocity profile. Figure 28 and Figure 29 shows such a 

behavior for a strand at two different locations, y = 0 and y = -10, respectively. The 

velocity profile is flat due to the low viscosity and Schmidt number. There the strand at 

y=0 does not have a high shear stress acting on it compared to the strand at y=-10. Due to 

the difference of shear, the DNA strand at y=0 folds and tumbles as it flows through the 

channel. The strand at y=-10 stretches out as it moves across the channel. The extension 

rate can be measured with respect to time to compute the relaxation time.  

 

Figure 28 DNA Folding at y=0. 
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Figure 29 DNA Stretching at y= -10. 

 

Next we are simulating a strand with 40 beads in a channel. The simulation is 

conducted with both zero external force and a high external force. The results are then 

compared to the simulation data provided by Chun Cheng et al. (2008). The extension 

rate of the DNA strand is measured by finding the distance between two beads of the 

strand located at either end of the strand at time t. This may not necessarily be the first 

and last bead of the chain as the beads tend to fold and tumble. The present code goes 

through the position of each bead at every timestep and finds the position of the 

downstream-end and upstream-end of the chain.  The fractional extension is computed as 

the ratio between the extension length, lext, and the total length of the DNA strand, L 

(Chun Cheng, Feng, Qian Qian, & Xiang Dong, 2008) as follows: 
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C+L�cà¬�L« 5�c5�áà¬�, lfract � lext/L                                   46 

The fractional extension is then plotted against the time and the relaxation time is 

computed by fitting an exponential curve to the plot.   

 

Figure 30 Fractional Extension with Respect to Time (Chun Cheng et al., 2008). 

 

 

Figure 31 Fractional Extension vs. DPD Time and Exponential Decay. 
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Figure 28 shows the results of Chun Cheng et al. (2008) for low external force 

and the extension averages at 20%. In this study, we compute the extension with zero 

external force and the fraction extension averages over 10%.  

extension, x � 0.1 � exp j� �
".]m                              47 

The relaxation time is calculated to be 0.2 DPD time units at zero external force for a 

DNA strand with 40 beads. Figure 32 shows the extension averaging at 0.1 and then 

oscillates about 0.05 after t=7.5. The extension is simulated at g=0.1.  

 

Figure 32 Fractional Extension at External Force, g=0.1. 
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Figure 33 is the fractional extension with an external force, g=10. The plot illustrates how 

the DNA strands reached its equilibrium extension at 5% of its original length much 

quicker with a higher external force. The peaks in the plot are due to the DNA leaving the 

periodic boundary condition at x=6 and continues at x=-6. However, this shows that the 

DNA strand would reach equilibrium much faster at a higher external force.  

 

 

Figure 33 Fractional Extension with External Force, g=10. 

 

3.5 Remarks and Discussion 

In order to have a more realistic simulation, one shouldpay more attention to (1) 

matching the solvent and (2) physical properties of the DNA strands especially the charge 

of the strands. Fan et al. (2006) simulated and compared his findings to Perkins et al 

(1994) experiments. The solvent used in the experiment was buffer solution of tris-HCL, 
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EDTA, Tween-20 and NaCl (Perkins, Smith, & Chu, 1994). He formed a single DNA by 

attaching multiple λ-phage DNA molecules to create a DNA strand upto 100 µm. Fan et 

al. (2006) simulated that extension and was able to compare the data to Perkins et al 

(1994) findings.  



73 
 

CHAPTER IV 

 
4. CONCLUSIONS AND RECOMMENDATIONS 

 

4.1 Summary and Conclusions 

In this research, we present DPD simulation of Poiseuille flow with new 

modifications to the DPD formulation and the boundary conditions. The viscosity and 

particle interactions issues for standard DPD can be corrected by modifying the weighing 

function of the dissipative and random force. This increases the viscosity of the DPD 

fluid particle to relate to the true fluid and keeps the computational cost to a minimum.  

The boundary conditions are altered such that the no-slip region prevents the fluid 

particles from penetrating through the solid or the ‘frozen’ wall particles. This also 

reduces multiple layering for the wall particle to increase its density. The no-slip region 

prevents drastic density fluctuations at the wall. The modifications have provided a valid 

Poiseuille flow profile for a two-dimensional system. The disagreement between the 

simulated flow profile and the theoretical Poiseuille flow may be due to the modified 

boundary condition or the changed parameter s. This should be tested by changing the 

parameter s further or by varying the cutoff radius instead. Table 5 shows that the 

Schmidt number is proportional to rC
8 and therefore the interactions can be increased 

faster than the parameter s.  
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DNA or polymer migration is tested through the microchannel using worm-like 

chain. The spring forces along with the DPD forces simulate DNA strands. We do not 

have experimental data to compare the DNA migration through a Poiseuile flow, but 

since worm-like chains are assumed to be able to replicate DNA strands, we have 

attempted to gather physical characteristics of DNA movement through a microchannel. 

Longer DNA strands appear to migrate towards the centerline for both standard DPD 

weighting functions and modified parameter. However, more experimental data is 

required to gather the interaction coefficients between the DNA and solvent particles. 

With such data, DPD can be modified to increase the particle interaction without a rise in 

computational cost. The DNA strands influences the velocity profile such that there is a 

dip where the DNA strand is originally placed. However, the flow profile is less affected 

within DNA with a decreased parameter s. This may be due to the viscous effect of the 

DNA strands on the fluid particles.  

The worm-like chains illustrates the conformation of DNA strands as it travels 

through the microchannel. One can observe the folding, coiling, tumbling and 

entanglements of the strand with varying external forces. The DNA strand would tumble 

and coil if the external force was minimal and the interactions between the particles were 

reduced. The strand stretches and remains relatively extended if the external force and the 

interaction was larger.   The extension relaxes quickly with a stronger external force. As 

longer strands entangles, strong internal forces are created which may cause more 

molecular deformation. With zero external force, the strand relaxes to a set extension 

slowly and oscillates about 0.1% of it original length. As the external force is increased to 
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g=0.1, the DNA strand relaxes much faster from 0.1% to 0.5% of its maximum length. 

When g=10, the strand relaxes to 0.05% of its maximum length much faster.  

 

4.2 Recommendations For Future Work 

Dissipative particle dynamics has a lot of room for improvement and there has 

been continuous changes and additions made to this scheme. For example, Smoothed 

Dissipative Particle Dynamics is a modification of DPD with additional hydrodynamic 

forces added to the original method. Also, there is a need to understand the interaction 

between polymer and different types of solvent particles and experimental data for such 

interactions are still sought after especially for channel flow. Most of the data available 

are for Couette flows with tethered DNA particles. The weighing functions can be 

adjusted for the solvent particles, but when the DNA particles are added, the weighing 

function parameter needs to be altered separately. DNA simulation using DPD with 

modified weighting functions, both parameter s and the cutoff radius, can be improved 

further with the availability of computational resources and experimental data.  

The computational cost of this code was relatively high. When the number of 

particles is increased to over 7200 for 10000 time step, it would take about 45 hours. For 

this system, with 1458 particles, it took 2.2 hours for 10000 time step. The only 

computational efficieny method used was the cutoff radius. If the neighbor list or cell list 

method is added to the algorithm, the code would be much faster. Also, Matlab is a useful 

tool to visualize the flow phenomena as the code was applied. However, programming 
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languages such as C or Fortran would reduce the bottlenecks and limitations of Matlab 

programming.   

DPD is a powerful tool that can be used for a variety of computational simulation. 

It is less expensive that MD or MC in terms of computational cost. However, it can be 

improved if parallel computing is utilized. Unlike MD, DPD has lesser distributed 

computation as each calculation is depended on the other. If DPD is modified to compute 

forces separately, the cost would be reduced drastically. Also, the equation for DPD 

seems to be limited for microscopic to mesoscopic flows. If the system is too small, the 

flow field tends to segregate into sections within the system which requires further 

studies. Modifications for DPD forces in a nano-structure can be improved with further 

study and the availability of experimental data. 

Finally, the morphology of the actual DNA molecule is more complicated to be 

simulated with Worm-like-Chain method as presented in the present work. More realisitic 

models would be necessary to duplicate the physical properties of DNA.  
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APPENDIX A 

 

Matlab Functions and Usage 

 

Matlab Usage 

For the initial conditions, the initial position and initial velocity are both created 

as two separate functions. These two files contain positions and velocity for all fluid, wall 

and DNA particles. These functions are then called into the main script which contains 

the algorithm. The forces are written in three separate function files. Each force is called 

depending on which particle is being computed. When the fluid particles, i =1 to N, is 

being calculated, the force that contains the fluid-fluid, fluid-wall and fluid-polymer 

particle interactions are called. Similarly, when the polymer particles, i =Ndtot+1 to Ntot, 

is being calculated, the force that contains the polymer-fluid, polymer-wall and polymer-

polymer particle interactions are called along with the force function that contains the 

polymer spring forces. Finally, the script file is created which contains the main 

algorithm which is the modified velocity-Verlet. The modified boundary condition with 

no-slip and modified periodic boundary condition is coded in the script as well.  

The script and the function files are saved as *.m files. The command window and 

workspace can be saved as *.mat file where the values calculated through the simulation 

can be retrieved. These values can also be transferred for the *.mat file to Excel if 

needed.  
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Each vector that is calculated as a matrix is computed in both x and y direction. 

For example, the velocity vectors v(1,i) and v(2,1) are in the x- and y- directions 

respectively.  

 

Matlab Functions 

Matlab has a lot of functions in-built into the software, but these are some of the 

few ones that are used in the code. The function global makes the variables public which 

can be used through each function called. Also different copies of the script can be 

created to do multiple simulations at the same with different parameters and same force 

and initial condition *.m function files. The second function used is called rand(n) which 

generated a uniformly distributed random numbers in a n x n matrix. The random 

numbers are between the open interval (0,1). This function is used to generate random 

numbers for the Maxwell-Boltzmann velocity distribution for the boundary conditions, 

initial velocity and θij, parameter for the random force.   
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APPENDIX B 

 

Relation of parameter s and DNA migration  

 

Table 4 Relation between Weighting Function and Migration Distance. 

 

 

 

 

 

 

 

Beads

s 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00

Time, t

0 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99

25 -8.80 -7.87 -11.08 -8.55 -8.12 -10.26 -9.83 -9.15 -10.28 -11.22 -9.22 -10.65

50 -11.65 -8.52 -9.44 -8.37 -8.07 -10.22 -8.42 -8.88 -10.90 -11.07 -9.09 -8.40

75 -11.72 -10.23 -8.82 -10.73 -8.34 -7.74 -7.90 -7.64 -11.18 -8.29 -11.80 -6.24

100 -11.66 -11.90 -9.90 -11.03 -6.95 -8.30 -6.62 -9.12 -9.85 -7.65 -12.02 -8.39

125 -9.10 -12.91 -10.07 -9.47 -8.53 -6.18 -5.57 -8.91 -7.42 -6.96 -13.97 -9.46

150 -9.24 -12.99 -11.32 -10.02 -9.08 -5.32 -4.62 -8.46 -7.11 -9.17 -11.52 -11.21

175 -10.68 -13.31 -10.38 -11.18 -7.90 -5.75 -4.71 -8.79 -8.57 -7.63 -11.87 -11.74

200 -10.83 -13.28 -10.13 -10.09 -7.16 -5.07 -4.61 -8.12 -9.58 -8.06 -11.76 -10.47

225 -12.51 -11.37 -8.92 -14.04 -7.67 -7.14 -5.14 -9.17 -9.61 -6.14 -10.19 -10.09

250 -12.47 -7.39 -9.05 -13.36 -7.83 -8.36 -4.86 -5.59 -12.39 -4.79 -9.26 -10.05

275 -13.36 -8.64 -8.08 -11.21 -7.69 -8.55 -3.35 -5.44 -11.35 -1.59 -10.34 -8.13

300 -13.76 -8.68 -8.44 -10.39 -9.17 -8.53 -4.72 -6.64 -11.79 -0.94 -11.51 -10.02

325 -13.21 -7.26 -8.84 -8.48 -9.17 -8.45 -5.38 -4.78 -10.95 -1.97 -11.37 -10.30

350 -13.60 -6.97 -8.95 -10.60 -9.82 -8.48 -6.07 -6.45 -10.03 -3.78 -11.60 -11.10

375 -12.59 -6.18 -10.81 -8.84 -7.59 -8.87 -7.79 -6.30 -10.64 -2.77 -11.59 -12.65

400 -12.68 -5.84 -11.33 -8.62 -6.54 -10.25 -10.27 -6.18 -11.67 -2.81 -10.43 -12.22

425 -10.92 -4.82 -12.51 -9.85 -6.18 -11.42 -10.58 -6.77 -11.74 -3.65 -11.63 -14.11

450 -11.47 -4.11 -12.11 -11.27 -6.51 -12.60 -10.46 -7.79 -10.37 -4.36 -9.01 -13.39

475 -12.61 -3.32 -11.13 -11.44 -7.33 -13.64 -10.27 -7.49 -9.93 -4.43 -9.23 -11.56

500 -12.14 -4.21 -10.84 -10.70 -7.05 -13.58 -11.23 -9.11 -8.67 -5.69 -9.18 -9.10

5.00 10.00 20.00
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Viscosity and Schmidt Number 

         

Table 5 Properties of DPD System (Fan et al., 2006) 
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APPENDIX C 

 

Matlab Code 

 
%%%%%%%%%%%%%%%%%% 
%   Main Algorithm script 
%%%%%%%%%%%%%%%%%% 
 
 
tic  
clc  
clear all  
   
global  kBT aff aww afw rc rc2 rcw s delt  
global  LX LY LX1 LX2 LY1 LY2  
global  Nwall Nwall2 Q Qwall Ndtot Nptot Ntot  
global  velmxd  
global  A Qm1 nx ny nwallx nwally  
global  sigma gamma rho md g lambda  
global  afp apw Np Npb lseg nyp leff L lp kBTp  
  
  
% PARAMETERS 
%DPD constants  
 
dm=2;                   %Dimensions  
kBT=1;                  %=kB*Temp 
sigma=3;  
gamma=4.5;  
lambda=0.65;  
rho=4;  
aff=(75*kBT)/rho;       % =18.75  
aww=5.0;                % =5 
afw=sqrt(aff*aww);      % =9.682  
rc=1;  
rc2=rc^2;  
s=2;  
rl=1.5;                 % Verlet Neighbour List Method r<rc<=rl  
delt=0.02;              %time step  
tf=300;                  %Number of time steps (t>1350)  
ti=0.;                  %inital time  
g=0.05;                    %Driving force in x direction  
M=1;                    % Mass density of DPD particles  
md=1;  
velmxd=sqrt(2*kBT/md);  % Maximum velocity of particles  
  
  
%-------------------------------------------------- -----------  
% Initial Conditions  
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DPD Fluid Particles  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
N=1458;                    % Number of particles  
LX=12;  
LY=30;  
rcw=0.005*LY;  
ndensdn=1;               % Non-dimensional Number density of DPD  
dc=0.4;                  % Diameter of Particle  
ndensd=N/(LX*LY);        % Number density of dpd particles  
vdensd=ndensdn*pi/4;     % Volumetric Fraction  
Q=2*sqrt(N/2);  
A=sqrt(1/ndensd);       % Number density  
Qm1=(Q-1);  
nx=(LX)/Q;  
ny=(LY)/Q;  
LX1=LX/2;  
LX2=-(LX/2);  
LY1=LY/2;  
LY2=(-LY/2);  
bc1=(LY1)-rcw;  
bc2=(LY2)+rcw;  
bins=5;  
tbins=bins+2;           %Total Bins  
nybins=(LY-(2*rcw))/bins;  
nymat=[(LY2+rcw/2) (LY2+rcw+(nybins/2):nybins:LY1-r cw) (LY1-rcw/2)];  
bnbtm=rcw-(LY1);   %Bottom bin near wall ny=0.005*LY  
bntp=(LY1)-rcw;    %Top bin near wall ny=0.005*LY  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Wall Setup  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
Nwall=400;              %Number of Wall particles  
Nwall2=Nwall/2;  
Qwall=sqrt(Nwall);  
nwallx=LX/Nwall2;  
nwally=LY/Nwall2;  
Ndtot=Nwall+N;  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DNA Particles  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
Np=1;                       % Number of strands  
Npb=10;                     %Number of beads in the strand=81  
leff=0.053;                 %effective length;  
kBTp=1;                     %uJ kBTp=4.115*10^(-14)erg Erg=1*10^-7 J  
L=67.2;                     %total length of the DNA strand 67.2 um  
lp=0.81;                    % for Npb=81 and lp=L/(Npb-1);         
lseg=0.4;                 % Initial distance between beads  
mp=0.25;                    % g/cm3  
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viscp=2.588;  
nvp=1.235;                  %cP um/s  
Nptot=Np*Npb;               % Total number of beads in all strands  
Ntot=Ndtot+Nptot;  
afp=2;                      % repulsion force between fluid and polymer  
apw=sqrt(2*aww);  
nyp=LY/Np;  
 
%Initiate Arrays  
newv=zeros(2,Ntot);   
newF=zeros(2,Ntot);   predv=zeros(2,Ntot);  
vavgd2=zeros(1,tbins); vavgd=zeros(1,tbins);  
vnum=zeros(1,tbins);  
diffrpl=zeros(2,Nptot);  
absrpl=zeros(1,Nptot);  
constl=zeros(1,Nptot);  
vecl=zeros(2,Nptot);  
  
%Initiate Conditions  
r=initposd(N,Nwall);  
newr=initposd(N,Nwall);  
v=initveld(N,Nwall,Np,Npb);  
vnum(1,1:tbins)=0;  
vavgd(1,1:tbins)=0;  
F=0; Fp=0; Fps=0;  
  
%Initial Force  
for  i=1:1:N  
    F=F+force(r,v,i,N,Nwall);  
end  
  
for  i=Ndtot+1:1:Ndtot+Nptot  
    Fp=Fp+forcefp(r,v,i,N,Nwall);  
    Fps=Fps+forcepp(r,i,N,Nwall);  
     
end  
F=F+Fp+Fps;  
  

 
%Modified Velocity Verlet  
 
for  t=ti:delt:tf  
    t  
    for  i=1:1:N  
        for  k=1:2  
            if  abs(r(2,i))<bc1  
            newr(k,i)=r(k,i)+delt*v(k,i)+(1/2)*delt ^2*(1/M)*F(k,i);  
            predv(k,i)=v(k,i)+ lambda*delt*(1/M)*F( k,i);  
            else  
            newr(k,i)=r(k,i)+delt*v(k,i);  
            predv(k,i)=v(k,i);  
            end  
        end  
         
        %Setting Periodic Boundary Conditions  
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        if  newr(1,i)>= LX1  
            newr(1,i)=newr(1,i)-LX;  
        elseif  newr(1,i)<= LX2  
            newr(1,i)=newr(1,i)+LX;  
        end  
         
    end  
         
% When particles are close to the wall particles  
 
    for  i=1:1:N     
  
    if  newr(2,i)>=bc1        % Top wall     
        n=-1;  
        vRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);  
        vRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);  
        if  abs(v(1,i))>=abs(vRx)  
            newv(1,i)=vRx;  
        else  
            newv(1,i)=v(1,i);  
        end  
        if  abs(v(2,i))>=abs(vRy)  
            newv(2,i)=vRy+n*(sqrt((n*vRy)^2)-(n*vRy ));  
            if  newv(2,i)>0  
                disp( 'positive at upper wall' )  
                newv(2,i)=newv(2,i)*(-1);  
            end  
        else  
            newv(2,i)=n*abs(v(2,i));  
        end  
  
        newF=zeros(2,Ntot);    
        newr(2,i)=bc1;  
  
    elseif  newr(2,i)<=bc2     % Bottom wall  
        n=1;  
        vRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);  
        vRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);  
        if  abs(v(1,i))>=abs(vRx)  
            newv(1,i)=vRx;  
        else  
            newv(1,i)=v(1,i);  
        end  
        if  abs(v(2,i))>=abs(vRy)  
            newv(2,i)=vRy+n*(sqrt((n*vRy)^2)-(n*vRy ));  
            if  newv(2,i)<0  
                disp( 'negative at lower wall' )  
                newv(2,i)=newv(2,i)*(-1);  
            end  
        else  
            newv(2,i)=n*abs(v(2,i));  
        end  
        newF=zeros(2,Ntot);    
        newr(2,i)=bc2;  
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    else  
        newF=force(newr,predv,i,N,Nwall);  
        newv(1,i)=v(1,i)+(1/2)*delt*(1/M)*(F(1,i)+n ewF(1,i));  
        newv(2,i)=v(2,i)+(1/2)*delt*(1/M)*(F(2,i)+n ewF(2,i));  
    end   
  
% Velocity check to ensure velocity does not exceed  
%  maximum velocity velmxd  
  
        vavg=(newv(1,i))^2+(newv(2,i))^2;  
        if  vavg > velmxd^2  
            vavg2=sqrt(velmxd^2/vavg);  
            newv(1,i)=newv(1,i)*vavg2;  
            newv(2,i)=newv(2,i)*vavg2;  
        end  
  
        r(1,i)=newr(1,i);  
        r(2,i)=newr(2,i);  
        v(1,i)=newv(1,i);  
        v(2,i)=newv(2,i);  
        F(1,i)=newF(1,i);  
        F(2,i)=newF(2,i);  
        
    end  
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DNA Particle interaction  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
    for  i=Ndtot+1:1:Ndtot+Nptot  
        for  k=1:2  
             
            if  abs(r(2,i))<bc1  
            newr(k,i)=r(k,i)+delt*v(k,i)+(1/2)*delt ^2*(1/M)*F(k,i);  
            predv(k,i)=v(k,i)+ lambda*delt*(1/M)*F( k,i);  
            else  
            newr(k,i)=r(k,i)+delt*v(k,i);  
            predv(k,i)=v(k,i);  
            end  
        end  
  
% Left beads are recorded and the right beads are a djusted with  
%   length less than or equal to 0.01  
  
diffrpl(1,i)=newr(1,i)-newr(1,i-1);  
    if  diffrpl(1,i) > LX1  
        diffrpl(1,i)=diffrpl(1,i)-LX;  
    elseif  diffrpl(1,i) < LX2  
        diffrpl(1,i)=LX - abs(diffrpl(1,i));  
    end  
  
diffrpl(2,i)=newr(2,i)-newr(2,i-1);  
absrpl(i)=sqrt((diffrpl(1,i)).^2+(diffrpl(2,i)).^2) ;  
constl(i)=absrpl(i)/lp;  
vecl(1,i)=diffrpl(1,i)./absrpl(i);  
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vecl(2,i)=diffrpl(2,i)./absrpl(i);  
  
% Constraint to prevent length of segments near fix ed end exceeding lp  
if  i~=Ndtot+1  
    if  abs(constl(i)) > 0.95    
        newr(1,i)=newr(1,i-1)+lp*vecl(1,i);  
        newr(2,i)=newr(2,i-1)+lp*vecl(2,i);  
    end  
end  
  
        %Setting Periodic Boundary Conditions  
        if  newr(1,i)>= LX1  
            newr(1,i)=newr(1,i)-LX;  
        elseif  newr(1,i)<= LX2  
            newr(1,i)=newr(1,i)+LX;  
        end  
  
    end  
  
         
    for  i=Ndtot+1:1:Ndtot+Nptot  
         
    if  newr(2,i)>=bc1              % Top wall     
        n=-1;  
        vRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);  
        vRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);  
        newv(1,i)=vRx;  
        newv(2,i)=vRy+n*(sqrt((n*vRy)^2)-(n*vRy));  
            if  newv(2,i)>0  
                disp( 'positive at upper wall' )  
                newv(2,i)=newv(2,i)*(-1);  
            end  
         
        newF=zeros(2,Ntot);   %function Force  
        newr(2,i)=0;  
  
    elseif  newr(2,i)<=bc2          % Bottom wall  
        n=1;  
        vRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);  
        vRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);  
        newv(1,i)=vRx;  
        newv(2,i)=vRy+n*(sqrt((n*vRy)^2)-(n*vRy));  
        if  newv(2,i)<0  
            disp( 'negative at lower wall' )  
            newv(2,i)=newv(2,i)*(-1);  
        end  
  
        newF=zeros(2,Ntot);   %function Force  
        newr(2,i)=0;  
  
    else  
        newF=forcefp(newr,predv,i,N,Nwall)+forcepp( newr,i,N,Nwall);    
        newv(1,i)=v(1,i)+(1/2)*delt*(1/M)*(F(1,i)+n ewF(1,i));  
        newv(2,i)=v(2,i)+(1/2)*delt*(1/M)*(F(2,i)+n ewF(2,i));  
    end   
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        vavg=(newv(1,i))^2+(newv(2,i))^2;  
        if  vavg > velmxd^2  
            vavg2=sqrt(velmxd^2/vavg);  
            newv(1,i)=newv(1,i)*vavg2;  
            newv(2,i)=newv(2,i)*vavg2;  
        end  
  
        r(1,i)=newr(1,i);  
        r(2,i)=newr(2,i);  
        v(1,i)=newv(1,i);  
        v(2,i)=newv(2,i);  
        F(1,i)=newF(1,i);  
        F(2,i)=newF(2,i);  
         
    End 
 
leastx=r(1,Ndtot+1);  
for  j=0:1:Npb-2  
    if  leastx<=r(1,Ndtot+2+j)  
        leastx=leastx;  
    else  
        leastx=r(1,Ndtot+2+j);  
    end  
end  
  
mostx=r(1,Ndtot+1);  
for  k=0:1:Npb-2  
    if  mostx>=r(1,Ndtot+2+k)  
        mostx=mostx;  
    else  
        mostx=r(1,Ndtot+2+k);  
    end  
end  
  
extx=mostx-leastx;  
    if  abs(extx)>LX1  
         extx=mostx+leastx;  
    end  
  
        fid = fopen( 'ext.txt' , 'a' ); % Opening output file  
        fprintf(fid, '%-07.4f %-07.4f\r\n' ,t, extx); %writing value file  
        fclose(fid);    %Closing output file  
 
 
ry=r(2,Ndtot+1:Ntot);  
        fid = fopen( 'tvsrneg13.txt' , 'a' );  
        fprintf(fid, '%-4.2f\r\n' ,t);  
        fprintf(fid, '%-07.4f\r\n' ,ry);   
        fclose(fid);     
  
%%%%%%%%%%%%%%%%%%%%%%% 
% PLOTS  
%%%%%%%%%%%%%%%%%%%%%%% 
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% Plotting the particle movement through the channe ls  
figure(1)  
plot(r(1,N+1:N+Nwall),r(2,N+1:N+Nwall), 'o' , 'LineWidth' ,0.2, ...  
    'MarkerSize' ,5, 'MarkerEdgeColor' , 'k' , 'MarkerFaceColor' , 'b' )  
hold on 
% whitebg('white')  
%     set(gcf,'Color',[0.5,1,0.6])  
plot(r(1,1:N),r(2,1:N), 'o' , 'MarkerSize' ,6, ...  
     'MarkerEdgeColor' , 'k' , 'MarkerFaceColor' , 'y' )  
% plot(r(1,200),r(2,200),'>','MarkerSize',6, ...  
%     'MarkerEdgeColor','k','MarkerFaceColor','r')  
plot(r(1,Ndtot+1:Ntot),r(2,Ndtot+1:Ntot), '-ok' , 'MarkerSize' ,5, ...  
     'MarkerEdgeColor' , 'k' , 'MarkerFaceColor' , 'r' )  
text(r(1,Ndtot+1),r(2,Ndtot+1),num2str(Ndtot+1))  
text(r(1,Ndtot+2),r(2,Ndtot+2),num2str(Ndtot+2))  
text(r(1,Ndtot+3),r(2,Ndtot+3),num2str(Ndtot+3))  
text(r(1,Ndtot+4),r(2,Ndtot+4),num2str(Ndtot+4))  
text(r(1,Ndtot+5),r(2,Ndtot+5),num2str(Ndtot+5))  
% axis tight  
axis([-LX/2 LX/2 -LY/2 LY/2])  
drawnow  
hold off  
  
 
% Plotting the averaged velocity in each bin over a  set time step  
for  i=1:1:N  
        if  r(2,i)<=bnbtm   %&& r(2,i)>=(LY2)  
            vnum(1)=vnum(1)+1;  
            vavgd(1)=vavgd(1)+v(1,i);  
        elseif  r(2,i)>=bntp %&& r(2,i)<=(LY1)   
            vnum(tbins)=vnum(tbins)+1;  
            vavgd(tbins)=vavgd(tbins)+v(1,i);  
        end   
end  
for  p=1:1:bins  
sect=((p)*nybins)-(LY1)+rcw;  
sect2=((p-1)*nybins)-(LY1)+rcw;  
    for  i=1:1:N  
        if  r(2,i)<=sect && r(2,i)>sect2  
            vnum(p+1)=vnum(p+1)+1;  
            vavgd(p+1)=vavgd(p+1)+v(1,i);  
        end  
    end  
     
end  
  
  
for  tm=1:1:10  
    if  t==(tf/10)*tm  
        vavgd2(:)=vavgd(:)./vnum(:);  
        vavgd2(isnan(vavgd2))=0;  
        vtot=sum(vavgd2,2);  
        vnorm=vtot/tbins;  
        vovnrm(1,:)=vavgd2(:)/vnorm;  
         
figure(4);  



93 
 

plot(nymat(:),vovnrm(1,:), 'o' , 'MarkerSize' ,6, ...  
     'MarkerEdgeColor' , 'k' , 'MarkerFaceColor' , 'k' )  
xlabel( 'BINS' )  
ylabel( 'VELOCITY /AVERAGE VELOCITY' )  
axis tight  
% axis([-15 15 -1 3])  
set(gca, 'XMinorTick' , 'on' , 'YMinorTick' , 'on' )  
drawnow  
  
 
vnormtxt=[nymat; vovnrm];  
% open the file with write permission  
fid = fopen('posnorm1.txt', 'a'); % Opening output file  
fprintf(fid,' \r\n');  
fprintf(fid,'%-4.2f\r\n',t);  
fprintf(fid,'%-07.4f %-07.4f\r\n',vnormtxt);  %writing to output file  
fclose(fid);    %Closing output file  
          
    else   
        continue  
    end  
end  
  

if  t<=10  
        vnum(1,1:tbins)=0;  
        vavgd(1,1:tbins)=0;  
end   
  

end  
  
  
figure(3);  
plot(nymat(:),vavgd2(:), ':k' , 'LineWidth' ,2)  
xlabel( 'BINS' )  
ylabel( 'AVERAGE VELOCITY' )  
axis tight  
% axis([-1.5 1.5 -1.5 1.5])  
set(gca, 'XMinorTick' , 'on' , 'YMinorTick' , 'on' )  
 
toc  
  
 
%%%%%%%%%%%%%%%%%% 
%   Initial Positions 
%%%%%%%%%%%%%%%%%% 
  
function  [ r ] = initposd( N,Nwall )  
  
global  LX LY Np Npb Ntot  
global  Q Qm1 nx ny nwallx Nwall2  
global  LX2 LY2 lseg nyp  
  
%Initiate Arrays  
ri=zeros(2,Q);  r=zeros(2,Ntot);  



94 
 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Fluid Particle Setup  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
i=0;  
  
for  s=0:2:Qm1-1  
    ri(1,s+1)=(s*nx)-(LX/2)+0.05;  
  
    if  ri(1,s+1)>(LX/2)  
       break  
    end       
  
    for  p=0:2:Qm1-1  
        ri(2,p+1)=(p*ny)-(LY/2)+0.05;  
  
        if  ri(2,p+1)>(LY/2)  
           break  
        end  
  
            i=i+1;      
            r(1,i)=ri(1,s+1);       % X-Position of the particles  
            r(2,i)=ri(2,p+1);       % Y-Position of the particles  
    end  
end  
     
  
for  s=1:2:Qm1  
    ri(1,s+1)=(s*nx)-(LX/2)+0.05+(nx/20);  
  
    if  ri(1,s+1)>(LX/2)  
       break  
    end       
  
    for  p=1:2:Qm1  
        ri(2,p+1)=(p*ny)-(LY/2)+0.05+(ny/8);  
  
        if  ri(2,p+1)>(LY/2)  
           break  
        end  
  
        i=i+1;      
        r(1,i)=ri(1,s+1);       % X-Position of the particles  
        r(2,i)=ri(2,p+1);       % Y-Position of the particles          
    end  
end  
     
 
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Wall Setup  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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for  i=N+1:1:(N+Nwall2)  
    r(1,i)= (i*nwallx)-(LX/2)+0.001-((N+1)*nwallx);    
        if  r(1,i)>(LX/2)  
            break  
        end  
    r(2,i)=-(LY/2);  
        if  r(2,i)>(LY/2)  
            break  
        end  
end  
  
for  i=N+1:1:(N+Nwall2)  
    r(1,Nwall2+i)= (i*nwallx)-(LX/2)+0.001-((N+1)*n wallx);  
        if  r(1,Nwall2+i)>(LX/2)  
            break  
        end   
    r(2,Nwall2+i)=(LY/2);  
        if  r(2,Nwall2+i)>(LY/2)  
            break  
        end  
end  
   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DNA Setup  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
i=N+Nwall;  
rpi(1,1)=LX2;  
  
for  p=1:1:Np  
    rpi(2,p+1)=LY2+((p-1)*nyp)+(nyp/2);  
         
    for  s=1:1:Npb  
    rpi(1,s+1)=rpi(1,s)+lseg;  
  
    if  rpi(1,s+1)>(LX/2)  
       break  
    end       
     
        i=i+1;      
        r(1,i)=rpi(1,s+1);      % X-Position of the particles  
        r(2,i)=rpi(2,p+1);      % Y-Position of the particles  
    end  
end  
  
end  
  
   
%%%%%%%%%%%%%%%%%% 
%   Initial Velocity 
%%%%%%%%%%%%%%%%%% 
 
function  [ v ] = initveld( N,Nwall,Np,Npb )  
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global  kBT md Nptot Ndtot Ntot  
global  velmxd  
  
%Initiate Arrays  
v=zeros(2,Ntot);  
  
for  i=1:1:N  
    v(1,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r and);  
    v(2,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r and);  
  
% Velocity check to ensure velocity does not exceed  max velocity velmxd  
vavg=(v(1,i))^2+(v(2,i))^2;  
    if  vavg > velmxd  
        vavg=sqrt(velmxd/vavg);  
        v(1,i)=v(1,i)*vavg;  
        v(2,i)=v(2,i)*vavg;  
    end  
end  
  
% To set Total Momentum equals Zero  
momxd=0;  
momyd=0;  
  
for  i=1:1:N  
    momxd=momxd+v(1,i);  
    momyd=momyd+v(2,i);  
end  
  
momxd=momxd/N; 
momyd=momyd/N; 
  
for  i=1:1:N  
    v(1,i)=v(1,i)-momxd;  
    v(2,i)=v(2,i)-momyd;  
end  
  
  
%%%%%%%%%%%%%%%%%%% 
% Wall Velocity  
%%%%%%%%%%%%%%%%%%% 
for  i=N+1:1:Ndtot  
     
    v(1,i)=0;  
    v(2,i)=0;     
end  
  
%%%%%%%%%%%%%%%%%%% 
% DNA Velocity  
%%%%%%%%%%%%%%%%%%% 
for  i=Ndtot+1:1:Ndtot+Nptot  
     
    v(1,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r and);  
    v(2,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r and);     
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% Velocity check to ensure velocity does not exceed  max velocity velmxd  
vavg=(v(1,i))^2+(v(2,i))^2;  
    if  vavg > velmxd  
        vavg=sqrt(velmxd/vavg);  
        v(1,i)=v(1,i)*vavg;  
        v(2,i)=v(2,i)*vavg;  
    end  
end  
  
  
%%%%%%%%%%%%%%%%%% 
%   DPD Fluid Forces 
%%%%%%%%%%%%%%%%%% 
  
function  [ F ] = force( r,v,i,N,Nwall )  
  
global  kBT aff afw afp rc rc2 s delt  
global  LX LX1 LX2  
global  Ndtot Nptot Ntot  
global  sigma gamma g  
  
%Initiate Arrays  
diffr=zeros(2,N); diffv=zeros(2,N);  
absr=zeros(1,N); absr2=zeros(1,N); absv=zeros(1,N);  
diffrvec=zeros(2,N); diffvvec=zeros(2,N);  
FCon=zeros(2,N); FDis=zeros(2,N);  
FRan=zeros(2,N);  
F=zeros(2,Ntot);  
dotrv=zeros(2,N);  
Fint=zeros(2,N); Fintw=zeros(2,N); Fintp=zeros(2,N) ;  
Fext(1,1:N)=g;  
Fext(2,1:N)=0;  
  
Fint(1,i)=0;  
Fint(2,i)=0;  
Fintw(1,i)=0;  
Fintw(2,i)=0;  
Fintp(1,i)=0;  
Fintp(2,i)=0;  
  
for  j=1:1:N  
  
    if  j==i  
        continue          
    end    
  
    %Distance between two particles with x and v compon ents  
    diffr(1,i)=r(1,i)-r(1,j);  
     if  diffr(1,i) > LX1       % Periodic Boundary Conditions  
       diffr(1,i)=diffr(1,i)-LX;  
     elseif  diffr(1,i) < LX2  
        diffr(1,i)=LX - abs(diffr(1,i));  
    end  
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    diffr(2,i)=r(2,i)-r(2,j);  
     if  abs(diffr(1,i))>rc  
       continue  
     end  
     if  abs(diffr(2,i))>rc  
         continue  
     end  
    absr(i)=sqrt((diffr(1,i)).^2+(diffr(2,i)).^2);  
    absr2(i)=(absr(i)).^2;  
     if  absr2(i)>rc2  
         continue  
     end  
     
    diffrvec(1,i)=diffr(1,i)./absr(i);  
    diffrvec(2,i)=diffr(2,i)./absr(i);  
   
    %Velocity between two particles with x and v compon ents  
    diffv(1,i)=v(1,i)-v(1,j);  
    diffv(2,i)=v(2,i)-v(2,j);  
    absv(i)=sqrt((diffv(1,i)).^2+(diffv(2,i)).^2);  
    diffvvec(1,i)=diffv(1,i)./absv(i);  
    diffvvec(2,i)=diffv(2,i)./absv(i);  
  
  
    %Conservative Force- Repulsive Force  
    FCon(1,i)=aff*(1-absr(i)).*diffrvec(1,i);  
    FCon(2,i)=aff*(1-absr(i)).*diffrvec(2,i);  
   
    if  abs(absr(i))<=rc  
        wD=(1-absr(i)/rc)^s;  
    else  
        wD=0;  
    end  
  
    wR=sqrt(wD);  
    theta= sqrt((-2)*log(rand))*cos(2*pi*rand);  
  
        if  theta > 6  
            theta=sign(theta)*6;  
        end  
  
    %Dissipative Force  
    dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec( 2,i).*diffv(2,i));  
    FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);  
    FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);  
  
    %Random Force  
    FRan(1,i)=sigma*wR*theta*diffrvec(1,i);  
    FRan(2,i)=sigma*wR*theta*diffrvec(2,i);  
  
    %Internal Forces  
    Fint(1,i)=Fint(1,i)+(FCon(1,i)+FDis(1,i)+FRan(1 ,i));  
    Fint(2,i)=Fint(2,i)+(FCon(2,i)+FDis(2,i)+FRan(2 ,i));  
end  
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%%%%%%%%%%%%%%%%%%%%%%% 
%  Wall Particles  
%%%%%%%%%%%%%%%%%%%%%%% 
  
for  j=N+1:1:N+Nwall  
  
    %Distance between two particles with x and v compon ents  
    diffr(1,i)=r(1,i)-r(1,j);  
    if  diffr(1,i) > LX1     % Periodic Boundary Conditions  
        diffr(1,i)=diffr(1,i)-LX;  
    elseif  diffr(1,i) < LX2  
        diffr(1,i)=LX - abs(diffr(1,i));  
    end  
  
    diffr(2,i)=r(2,i)-r(2,j);  
    if  abs(diffr(1,i))>rc  
        continue  
            
    end  
  
    if  abs(diffr(2,i))>rc  
        continue  
    end  
    
    absr(i)=sqrt((diffr(1,i)).^2+(diffr(2,i)).^2);  
    absr2(i)=(absr(i)).^2;  
    if  absr2(i)>rc2  
        continue  
    end  
     
    diffrvec(1,i)=diffr(1,i)./absr(i);  
    diffrvec(2,i)=diffr(2,i)./absr(i);  
   
    %Velocity between two particles with x and v compon ents  
    diffv(1,i)=v(1,i)-v(1,j);  
    diffv(2,i)=v(2,i)-v(2,j);  
    absv(i)=sqrt((diffv(1,i)).^2+(diffv(2,i)).^2);  
    diffvvec(1,i)=diffv(1,i)./absv(i);  
    diffvvec(2,i)=diffv(2,i)./absv(i);  
  
    %Conservative Force- Repulsive Force  
    FCon(1,i)=afw*(1-absr(i)).*diffrvec(1,i);  
    FCon(2,i)=afw*(1-absr(i)).*diffrvec(2,i);  
   
    if  abs(absr(i))<=rc  
        wD=(1-absr(i)/rc)^s;  
    else  
        wD=0;  
    end  
  
    %Weight Functions and Coefficients of FD and FR  
    wR=sqrt(wD);  
    theta= sqrt((-2)*log(rand))*cos(2*pi*rand);  
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        if  theta > 6  
            theta=sign(theta)*6;  
        end  
  
    %Dissipative Force  
    dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec( 2,i).*diffv(2,i));  
    FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);  
    FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);  
  
    %Random Force  
    FRan(1,i)=sigma*wR*theta*diffrvec(1,i);  
    FRan(2,i)=sigma*wR*theta*diffrvec(2,i);  
  
    %Internal Forces   
    Fintw(1,i)=Fintw(1,i)+(FCon(1,i)+FDis(1,i)+FRan (1,i));  
    Fintw(2,i)=Fintw(2,i)+(FCon(2,i)+FDis(2,i)+FRan (2,i));  
  
end  
  
%%%%%%%%%%%%%%%%%%%%%% 
% DNA Particles  
%%%%%%%%%%%%%%%%%%%%%% 
  
for  j=Ndtot+1:1:Ndtot+Nptot  
   
      diffr(1,i)=r(1,i)-r(1,j);  
             
     if  diffr(1,i) > LX1          % Periodic Boundary Conditions  
       diffr(1,i)=diffr(1,i)-LX;  
     elseif  diffr(1,i) < LX2  
         diffr(1,i)=LX - abs(diffr(1,i));  
     end  
    diffr(2,i)=r(2,i)-r(2,j);  
      if  abs(diffr(1,i))>rc     % Setting neighboring particles  
         continue  
     end  
      if  abs(diffr(2,i))>rc  
         continue  
     end  
    absr(i)=sqrt((diffr(1,i)).^2+(diffr(2,i)).^2);  
    absr2(i)=(absr(i)).^2;  
     if  absr2(i)>rc2  
         continue  
     end  
    diffrvec(1,i)=diffr(1,i)./absr(i);  
    diffrvec(2,i)=diffr(2,i)./absr(i);  
   
    %Velocity between two particles with x and v compon ents  
    diffv(1,i)=v(1,i)-v(1,j);  
    diffv(2,i)=v(2,i)-v(2,j);  
    absv(i)=sqrt((diffv(1,i)).^2+(diffv(2,i)).^2);  
    diffvvec(1,i)=diffv(1,i)./absv(i);  
    diffvvec(2,i)=diffv(2,i)./absv(i);  
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    %Conservative Force- Repulsive Force  
    FCon(1,i)=afp*(1-absr(i)).*diffrvec(1,i);  
    FCon(2,i)=afp*(1-absr(i)).*diffrvec(2,i);  
   
    if  abs(absr(i))<=rc  
        wD=(1-absr(i)/rc)^s;  
    else  
        wD=0;  
    end  
  
    wR=sqrt(wD);  
    gamma=(sigma^2)/(2*kBT);  
    theta= sqrt((-2)*log(rand))*cos(2*pi*rand);  
  
        if  theta > 6  
            theta=sign(theta)*6;  
        end  
  
    %Dissipative Force  
    dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec( 2,i).*diffv(2,i));  
    FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);  
    FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);  
  
    %Random Force  
    FRan(1,i)=sigma*wR*theta*diffrvec(1,i);  
    FRan(2,i)=sigma*wR*theta*diffrvec(2,i);  
  
    %Internal Polymer Forces  
    Fintp(1,i)=Fintp(1,i)+FCon(1,i)+FDis(1,i)+FRan( 1,i)*delt^(-0.5);  
    Fintp(2,i)=Fintp(2,i)+FCon(2,i)+FDis(2,i)+FRan( 2,i)*delt^(-0.5);  
  
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Total Forces on Particles  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
F(1,i)=Fint(1,i)+Fext(1,i)+Fintw(1,i)+Fintp(1,i);  
F(2,i)=Fint(2,i)+Fext(2,i)+Fintw(2,i)+Fintp(2,i);  
  
end  
 
 

%%%%%%%%%%%%%%%%%% 
%   DPD DNA or Polymer Forces 
%%%%%%%%%%%%%%%%%% 
 
 
function  [Fp ] = forcefp(r,v,i,N,Nwall)  
 
global  LX LX1 LX2  
global  kBT rc rc2 s  
global  Ndtot Nptot Ntot  
global  sigma gamma g delt  
global  afp apw  
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%Initiate Arrays   
diffr=zeros(2,Ntot); diffv=zeros(2,Ntot);  
absr=zeros(1,Ntot); absr2=zeros(1,Ntot); absv=zeros (1,Ntot);  
diffrvec=zeros(2,Ntot); diffvvec=zeros(2,Ntot);  
FCon=zeros(2,Ntot); FDis=zeros(2,Ntot);  
FRan=zeros(2,Ntot);  
Fp=zeros(2,Ntot);  
dotrv=zeros(2,Ntot);  
  
Fint(1,i)=0;  
Fint(2,i)=0;  
Fintw(1,i)=0;  
Fintw(2,i)=0;  
Fintp(1,i)=0;  
Fintp(2,i)=0;  
   
%%%%%%%%%%%%%%%%%%%% 
% Fluid Particles  
%%%%%%%%%%%%%%%%%%%% 
  
for  j=1:1:N  
  
    %Distance between two particles with x and v compon ents  
    diffr(1,i)=r(1,i)-r(1,j);  
    if  diffr(1,i) > LX1  
        diffr(1,i)=diffr(1,i)-LX;  
    elseif  diffr(1,i) < LX2  
        diffr(1,i)=LX - abs(diffr(1,i));  
    end  
  
    diffr(2,i)=r(2,i)-r(2,j);  
    if  abs(diffr(1,i))>rc  
        continue  
    end  
  
    if  abs(diffr(2,i))>rc  
        continue  
    end  
         
    absr(i)=sqrt((diffr(1,i)).^2+(diffr(2,i)).^2);  
    absr2(i)=(absr(i)).^2;  
    if  absr2(i)>rc2  
        continue  
    end  
     
    diffrvec(1,i)=diffr(1,i)./absr(i);  
    diffrvec(2,i)=diffr(2,i)./absr(i);  
   
    %Velocity between two particles with x and v compon ents  
    diffv(1,i)=v(1,i)-v(1,j);  
    diffv(2,i)=v(2,i)-v(2,j);  
    absv(i)=sqrt((diffv(1,i)).^2+(diffv(2,i)).^2);  
    diffvvec(1,i)=diffv(1,i)./absv(i);  
    diffvvec(2,i)=diffv(2,i)./absv(i);  
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    FCon(1,i)=afp*(1-absr(i)).*diffrvec(1,i);  
    FCon(2,i)=afp*(1-absr(i)).*diffrvec(2,i);  
   
    if  abs(absr(i))<=rc  
        wD=(1-absr(i)/rc)^s;  
    else  
        wD=0;  
    end  
  
    wR=sqrt(wD);  
    theta= sqrt((-2)*log(rand))*cos(2*pi*rand);  
         if  theta > 6  
            theta=sign(theta)*6;  
        end  
 
    dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec( 2,i).*diffv(2,i));  
    FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);  
    FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);  
  
    FRan(1,i)=sigma*wR*theta*diffrvec(1,i);  
    FRan(2,i)=sigma*wR*theta*diffrvec(2,i);  
    Fint(1,i)=Fint(1,i)+(FCon(1,i)+FDis(1,i)+FRan(1 ,i));  
    Fint(2,i)=Fint(2,i)+(FCon(2,i)+FDis(2,i)+FRan(2 ,i));  
  
end  
   
%%%%%%%%%%%%%%%%%%%%%%% 
%  Wall Particles  
%%%%%%%%%%%%%%%%%%%%%%% 
  
for  j=N+1:1:N+Nwall  
     
    %Distance between two particles with x and v compon ents  
    diffr(1,i)=r(1,i)-r(1,j);  
    if  diffr(1,i) > LX1  
        diffr(1,i)= diffr(1,i)-LX;  
    elseif  diffr(1,i) < LX2  
        diffr(1,i)=LX - abs(diffr(1,i));  
    end  
  
    diffr(2,i)=r(2,i)-r(2,j);  
    if  abs(diffr(1,i))>rc  
        continue  
    end  
  
    if  abs(diffr(2,i))>rc  
        continue  
    end  
  
    
    absr(i)=sqrt((diffr(1,i)).^2+(diffr(2,i)).^2);  
    absr2(i)=(absr(i)).^2;  
    if  absr2(i)>rc2  
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        continue  
    end  
     
    diffrvec(1,i)=diffr(1,i)./absr(i);  
    diffrvec(2,i)=diffr(2,i)./absr(i);  
  
  
    %Velocity between two particles with x and v compon ents  
    diffv(1,i)=v(1,i)-v(1,j);  
    diffv(2,i)=v(2,i)-v(2,j);  
    absv(i)=sqrt((diffv(1,i)).^2+(diffv(2,i)).^2);  
    diffvvec(1,i)=diffv(1,i)./absv(i);  
    diffvvec(2,i)=diffv(2,i)./absv(i);  
  
    FCon(1,i)=apw*(1-absr(i)).*diffrvec(1,i);  
    FCon(2,i)=apw*(1-absr(i)).*diffrvec(2,i);  
    if  abs(absr(i))<=rc  
        wD=(1-absr(i)/rc)^s;  
    else  
        wD=0;  
    end  
  
    wR=sqrt(wD);  
    theta= sqrt((-2)*log(rand))*cos(2*pi*rand);  
        if  theta > 6  
            theta=sign(theta)*6;  
        end  
 
    dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec( 2,i).*diffv(2,i));  
    FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);  
    FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);  
    FRan(1,i)=sigma*wR*theta*diffrvec(1,i);  
    FRan(2,i)=sigma*wR*theta*diffrvec(2,i);  
    Fintw(1,i)=Fintw(1,i)+(FCon(1,i)+FDis(1,i)+FRan (1,i));  
    Fintw(2,i)=Fintw(2,i)+(FCon(2,i)+FDis(2,i)+FRan (2,i));  
   
end  
  
%%%%%%%%%%%%%%%%%%%%%% 
% DNA Particles  
%%%%%%%%%%%%%%%%%%%%%% 
   
for  j=Ndtot+1:1:Ndtot+Nptot  
   
        if  j==i  
            continue  
        end   
     
    %Distance between two particles with x and v compon ents  
    diffr(1,i)=r(1,i)-r(1,j);  
    if  diffr(1,i) > LX1  
        diffr(1,i)=diffr(1,i)-LX;  
    elseif  diffr(1,i) < LX2  
        diffr(1,i)=LX - abs(diffr(1,i));  
    end  
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    diffr(2,i)=r(2,i)-r(2,j);  
    if  abs(diffr(1,i))>rc  
          continue          
    end  
    if  abs(diffr(2,i))>rc  
        continue  
    end  
   
    absr(i)=sqrt((diffr(1,i))^2+(diffr(2,i))^2);  
    diffrvec(1,i)=diffr(1,i)./absr(i);  
    diffrvec(2,i)=diffr(2,i)./absr(i);  
   
    %Velocity between two particles with x and v compon ents  
    diffv(1,i)=v(1,i)-v(1,j);  
    diffv(2,i)=v(2,i)-v(2,j);  
    absv(i)=sqrt((diffv(1,i))^2+(diffv(2,i))^2);  
    diffvvec(1,i)=diffv(1,i)./absv(i);  
    diffvvec(2,i)=diffv(2,i)./absv(i);  
  
    %Conservative Force- Repulsive Force  
    if  abs(i-j)>4  
        app=2;  
    else  
        app=0;  
    end  
     
    FCon(1,i)=app*(1-absr(i))*diffrvec(1,i);  
    FCon(2,i)=app*(1-absr(i))*diffrvec(2,i);  
   
    if  abs(absr(i))<=rc  
        wD=(1-absr(i)/rc)^s;  
    else  
        wD=0;  
    end  
  
    wR=sqrt(wD);  
    theta= sqrt((-2)*log(rand))*cos(2*pi*rand);  
        if  theta > 6  
            theta=sign(theta)*6;  
        end 

 
    FDis(1,i)=-gamma*wD*dot(diffrvec(1,i),diffv(1,i ))*diffrvec(1,i);  
    FDis(2,i)=-gamma*wD*dot(diffrvec(2,i),diffv(2,i ))*diffrvec(2,i);  
    FRan(1,i)=sigma*wR*theta*diffrvec(1,i);  
    FRan(2,i)=sigma*wR*theta*diffrvec(2,i);  
    Fintp(1,i)=Fintp(1,i)+FCon(1,i)+FDis(1,i)+FRan( 1,i)*delt^(-0.5);  
    Fintp(2,i)=Fintp(2,i)+FCon(2,i)+FDis(2,i)+FRan( 2,i)*delt^(-0.5);  
   
end  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Total Forces on Particles  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
Fext(1,i)=g;  
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Fext(2,i)=0;  
Fp(1,i)=Fint(1,i)+Fext(1,i)+Fintw(1,i)+Fintp(1,i);  
Fp(2,i)=Fint(2,i)+Fext(2,i)+Fintw(2,i)+Fintp(2,i);  
end  
  
 
%%%%%%%%%%%%%%%%%% 
%   DNA or Polymer Spring Forces 
%%%%%%%%%%%%%%%%%% 
 
function  [ Fps ] = forcepp( r,i,N,Nwall )  
  
global  LX LX1 LX2 Ndtot Ntot  
global  Nptot leff lp kBTp  
 
%Initializing Array setup  
FS=zeros(2,Ntot);  
Fps=zeros(2,Ntot);  
Fpint=zeros(2,Ntot);  
diffrp=zeros(2,Ntot);  
absrp=zeros(1,Ntot);  
diffrvecp=zeros(2,Ntot);  
 
Fpint(1,i)=0;  
Fpint(2,i)=0;  
  
for  j=i-1:2:i+1     
  
if  i==Ndtot+1  
   j=i+1;  
elseif  i==Ndtot+Nptot  
    j=i-1;  
end  
  
diffrp(1,i)=r(1,i)-r(1,j);  
if  diffrp(1,i) > LX1  
    diffrp(1,i)=LX - diffrp(1,i);  
elseif  diffrp(1,i) < LX2  
    diffrp(1,i)=abs(diffrp(1,i))-LX;  
end  
  
diffrp(2,i)=r(2,i)-r(2,j);  
absrp(i)=sqrt((diffrp(1,i))^2+(diffrp(2,i))^2);  
diffrvecp(1,i)=diffrp(1,i)./absrp(i);  
diffrvecp(2,i)=diffrp(2,i)./absrp(i);  
  
%Spring Force between beads in a strand  
FS(1,i)=((-kBTp)/(4*leff))*(1-(absrp(i)/lp)^(-2)+(4 *absrp(i)/lp)-
1)*diffrvecp(1,i);  
FS(2,i)=((-kBTp)/(4*leff))*(1-(absrp(i)/lp)^(-2)+(4 *absrp(i)/lp)-
1)*diffrvecp(2,i);  
  
Fpint(1,i)=FS(1,i)+Fpint(1,i);  
Fpint(2,i)=FS(2,i)+Fpint(2,i);  
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if  j==i+1  
    break  
elseif  i==Ndtot+Nptot  
    break  
end  
  
end  
  
Fps(1,i)=Fpint(1,i);  
Fps(2,i)=Fpint(2,i);  
end  
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