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CHAPTER |

1. INTRODUCTION

1.1 General Statement of the Problem

1.1.1 Background

This study is concerned with simulating dispersed systemsodwehs molecules
simultaneously for mesoscopic flow systems with single stchibd®xyribonucleic acid
(DNA) molecules with potential application to DNA separation. &span of DNA has
significant importance in understanding the genome of an orgafismgenetic
engineering and DNA profiling for forensics. The most common methiosiefparation is
gel electrophoresis but it limits the separation for DNA stramd® 40kbp (Pan, Ng, Li,
& Moeendarbary, 2010). It may also take up to several days eksafer longer strands.
Many researches have proposed ideas that involve micro and nano ssystem
Hydrodynamic forces, electric fields and magnetic fieldsrmaost commonly used for
separation of DNA from its medium in microchannels (Huber, MafRennathur, &
Patel, 2009), (Jellema, Mey, Koster, & Verpoorte, 2009), (Kand.,e2@09), (Perkins,

Smith, Larson, & Chu, 1995) and (Smith, Babcock, & Chu, 1999).



Some of these systems separate DNA using entropic trappimg® whe flow
separates DNA strands based on its length (Pan et al., 2010). Hudle(2009) and
Jellema et al. (2009) used electrokinetic separation of DNA imaaochannel.
Electrokinetic separation includes capillary electrophoresis, etgttrophoresis and
electrodes arrays and the flows are created by ionized meatiuimnized particles
inserted in the flow. Jellema et al. (2009) also used hydrodyrfancies created by the
converging channels to provide pressure-driven flow along withrekagetic flow.
Kang et al. (2009) investigated a method of mixing magnetic pegttbiat is controlled
by magnetic field to separate DNA of a specific size.

Many methods have been created to simulate the flow of dispsistedns such
as colloidal suspension in micro-systems and macro-systense wecular simulation
methods simulate micro scale flows and translate them inta tm@icroscopic
counterparts. Dissipative Particle Dynamics (DPD) can provideeamrate simulation of
a colloidal suspension at a mesoscopic scale with lesser coropatatost and time
steps (Symeonidis, Karniadakis, & Caswell, 2005) than other mial® suethods.
Mesoscopic scale is an intermediate length scale whichrigergdly considered to be
between a few hundred nanometers and a micrometer. It consisiargkanumber of
atoms but takes quantum effects into account. Hoogerbrugge and &to€1892)
initiated DPD to simulate such an experiment with lesser cortnogh cost and time
steps. . Even though DPD does not replicate the correct moleculannabtine atomic
level, it does provide accurate hydrodynamic properties for desgpesgstems for long
lengths and large time steps (Frenkel & Smit, 2002). Mesoscaogliessdong time steps

and colloidal suspension should be taken into account when one tries to undirstand



flow dynamics of a single strand DNA molecule through microchan(fean, Phan-

Thien, Chen, Wu, & Ng, 2006).

1.1.2 Problem Statement

Simulation of DNA can provide insight into its physical propentighout costly
and demanding experimentation. This research is concerned withotheofl DNA
molecules suspended in a solvent through a pressure-driven microchamgel us
Dissipative Particle Dynamics. The goal is to understand thegelan the mechanical
properties of these flows, including DNA stretching and migratiorihé present study,
DNA would be replicated as worm-like chain polymers. This study is ofesttelue to its
applicability to the development of lab-on-a-chip for diseasentgkits. Lab-on-a chip is
a biomicroelectromechanical device (BioMEMS) which can be usedirug delivery
and DNA testing for diseases. The computational methods employéds istiidy can
also be used to simulate other colloidal suspensions such as liposopesssus,

polymer interaction etc.

1.2 Previous Studies

When it comes to particle simulation, all forces acting on &éigearncluding
particle-particle interaction and particle-boundary interactionst be taken into
consideration. There are different computational methods that can defarseuch
simulations (Satoh, 2011). Some of the most commonly used methods arulstole

Dynamics (MD), Brownian Dynamics simulation (BDS), lattBeltzmann (LB), lattice



gas automata (LGA), and Dissipative Particle Dynamics (DfF@n et al., 2006). Many
of these methods are restricted to certain test conditiontilCenethods can only be
used to simulate simple fluids, where others can be used onlyrfolating macro-scale
systems. A brief discussion of these methods is presentetbfesplain why Dissipative
Particle Dynamics was chosen to simulate a system of Bisds suspensions. The

related studies of DNA flow dynamics are reviewed next.

1.2.1 Molecular Dynamics (MD)

Molecular Dynamics (MD) has existed since the beginning of adizgttion. It
was created to simulate large celestial bodies to the msinpseticle with the same
Newton’s Law. The equations may have been modified to accommodater new
discoveries in terms of physical properties, but it is nevegbgebetried-and-true process
that will be utilized for a long time to come.

MD is governed by the basic Newton’s second law of motion. Consiplartiale
I with m; as the mass, as the position ang &s the sum of the interactive forces between
the particle and its environment, then the motion of particle is controlled by

dzri
I ge2

:fi 1

To numerically solve the equations for N particles, a schaatiedcthe Verlet method
can be used. Such schemes can be used to find both positions andesetdcail N

particles at different time-steps. These methods will be discussed inlatetail



MD simulations have been used for an assortment of studies. Thesamgay
from fundamental physics to phase changes to different moleculatuses. A list of a
few related studies was listed Tine Art of Molecular Dynamics Simulatitly Rapaport
(2004). He showed that MD can be utilized for various purposes aBpexti different
scales, phases, complex or simple structures, long or short ramjed #orth (Rapaport,
2004). MD can also bind the atoms together in case of solid or lidultks atoms travel
over a certain distance. Lennard-Jones potential can be usedate this interaction
within MD simulations.

MD, however, cannot be used to correctly simulate systems thatresnce
guantum fluctuations at the atomic level. The softer interactiomgebatparticles lead to
smaller time-step and higher internal motion. Small systest iatrease fluctuations
and limit the accuracy and the shape of the simulation region aradatiméc trajectories
may be unstable (Rapaport, 2004). Due to the higher computationakicogkation is
limited to simple fluids in two-dimensional system. MD can bedu® model a simple
flow in microscopic level and then translate it into macroscomeld$e(Hoogerbrugge &
Koelman, 1992). Therefore, MD may have a lot of potential but it cdvenatilized fully
unless there are more computational advancements. Also, clab&oales such as
guantum mechanics are still in theoretical state when it ceongsnulation (Frenkel &

Smit, 2002).

1.2.2 Monte Carlo (MC)

Monte Carlo (MC) is similar to Molecular Dynamics as inche used for
simulations at a microscopic level and then the results are apedvide information on

5



properties at the macroscopic scale. MC operates under a $siothasand generates
different microscopic states. Since it does not follow the equatiometion, it does not

follow the changes with respect to time. This limits thishuodtto applications with

systems at thermodynamic equilibrium and thus, it is unsuitablgyf@amics systems as
time cannot be conceived.

Consider state 1 where two patrticles are overlapping; thisrgihite a repulsion
force between the particles and an interactive energy sall m state 2, two particles are
at a close proximity where the repulsion has decreased wactiah forces have started
on the particles. State 3 has two particles at a distance where thettioteimnegligible
and the energy is very low. In actual systems, microscopicsstatie high energy such
as state 1 rarely exist; instead, state 2 with low enangyweaker interaction forces are
more applicable. These states give rise to a minimum frergef the system. This can
be seen from a system with temperature T, volume V, and numbartmigs N where

the Helmholtz free energy F becomes a minimum (Satoh, 2011).
F=E-—-TS 2

where E is the potential energy and S is the entropy of thensy$or example, if
oxygen and nitrogen were to fill a room, the entropy will keepethergy in check of the
minimum free energy of the system. To numerically evaluate ligisry, one can use
probability density function for N number of particles to find new posst at a set
interval provided that N, V, and T are given. The probability functions depentie

interaction energies of the different states. The step byasgepithm to process MC is

given inintroduction to Practice of Molecular Simulatidry Satoh (2011).



1.2.3 Brownian Dynamics

Brownian Dynamics is used when a system contains dispersedgsairi a liquid
base. These systems cannot be modeled using MD or MC as theyemdrate the
motion for the solvent particles based on their characteristie &inmd the dispersed
particles will not be accounted. Also, the solvent molecules musiniidased as a
continuum as compared to being computed individually. The motion of the solvent
molecules will be reflected as a random force in the disperseitigsl equation of
motion. BD simulates the random walk of the dispersed particles iddycthe solvent
particles. The particles moving due to the random force iscc&aBrownian particles”
(Satoh, 2011).

Consider a dispersed solution that is generously diluted that thelgsadan be
regarded as moving independently. Their motion can be analyzed thsirigangevin
eqguation (Satoh, 2011) as follows:

v _ o B
mdt—f v+ f 3

where m is the mass of a spherical particle, v is the velgeitior and; is a coefficient
given by¢ = 3tnd (d is the particle diameter ands the viscosity of the solvent), f is the
external force andPfis the random force vector of the solvent. The random force has a
zero mean and variance 2fkTs(t-t") where § is the Dirac delta function. The random
force is proportional to the system temperature and thus the @aréict vigorously in
high temperature. Satoh (2011) explains random displacements andabeéupeofor BD

simulation in detail.



1.2.4 Lattice Boltzmann

Lattice Boltzmann can be used for dispersed particle syst€hes simulation
region is a lattice network that contains virtual fluid partidiest interact with each
other. Fluid particles are assumed to be clusters of solventlgariat are allowed to

move to its neighboring sites only.

T‘f’ Ax
8 3 5
2 0 1—
6 a 7

Figure 1 Lattice Boltzmann 2-D Lattice Model (D2Q9)(Satoh, 2011).

For example, the particle at point 0 can move to sites 1, 2, 3, 4, 5, 6, &, Hnihe
particle is moving to 1, 2, 3, or 4, it will have a velocity @x/At. If the particle is
moving to sites 5, 6, 7, or 8, the velocityi2. Ax is the distance between two sites and
At is the time interval. In a two-dimensional lattice with nine possible &itethe particle

to move, including the original position, the model is called D2Q9 (Satoh, 2011).



The Boltzmann equation describes the temporal evolution of the welocit
distribution function at all points. A digitized distributidg(r,t) is tracked in LBM where

a is the direction, r is the position, and t is the time. The density at a locatidmet is

p(r, ) = Xi-ofa(r, 1) 4

Similarly, the velocity is given by

p(r, Du(r, t) = X3-o fa(r e, 5
The velocity vector, £ is the velocity of particle moving to the neighboring sites in the
direction a, where a=0, 1, 2...8. The collision term in Boltzmann equtidifficult to
evaluate and models such as Bharatnagar-Gross-Krook (BGK) ar¢ousieaplify the

expression enough to be solved (Satoh, 2011).

1.2.5 Dissipative Particle Dynamics

DPD has been used to simulate many mesoscopic systems, indipdsgme
formation, colloidal suspension, red blood cell flow, concrete and other noteilaw
substances, among others. The advantages of DPD are that it cohguatesynamic
behavior without additional formulation and it emulates the Brownian madten
particles follow. Moreover, unlike MD or MC, computational cost is cheaper.

Dissipative Particle Dynamics can simulate dispersed and rgolvarticles
simultaneously, similar to BD, but with a different approach to the solventlpartfcset
of solvent molecules is considered as wimtual fluid particle. Similar to the dispersed
particles, the virtual particles have a corresponding chardwetime of the motion

(Satoh, 2011). In this manner, one can simultaneously simulate thennodtboth the



dispersed and fluid particles without having a secondary time-stepefdluid particles.
These virtual particles will exhibit a similar random walk to that of tepatised particles
due to change in momentum and particle-particle interaction and potential changes. These
virtual particles were then dubbed as dissipative patrticles.

DPD can simulate colloid suspensions such as polymer suspensiansngdcill
hydrodynamics forces. The equations of motion for DPD includsetfe@rces which can
be used for spherical and non-spherical colloidal particles. DPDIaeEnmesoscopic
systems as compared to macroscopic or microscopic systensgmtilate a fluid flow
that follows Navier-Stokes equation, the total momentum should be cothserve
Therefore, for a particle the total force acting on the particle consist of conservative or
repulsive force, dissipative force and random force that provides tkeparticle

repulsive and attractive forces.
int _ Z F.. = Z FC FD FR

This study deals with the simulation of dispersed particle sgciDMA or
polymers within a solvent or liquid base. Based on the presamtiite review, DPD is a
suitable simulation method for the system in question. The forcemnpters and other

equations required for DPD simulation is described in the next chapter.

1.2.6 Simulation of a Single Strand DNA

Perkins et al. (1995) measured the extension of tethered DNA sinandgorm
pressure-driven flows. Smith et al. (1999) studied similar extensi@n steady shear-

flow. Extension of DNA has been studied using optical tweezergdtrain the DNA

10



strand at one end to understand its extension effects by (Perkinsl®95) and (Larson,
Perkins, Smith, & Chu, 1997), among others. The studies of single striidd D
performed by these authors explained its dynamics and rheallpgaperties and how it
is closely related to the properties of polymer particleargon et al., 1997). This
similarity allows the simulation of DNA strands as beagetymers through different
models such as worm-like chains, FENE and Hookean-FraenkeheHueforces include
Lennard-Jones repulsion potential, FENE springs and worm-like chAlb€)(forces

(Symeonidis, Karniadakis, & Caswell, 2006).

Fan et al. (2006) studied the flow of a single stranded DNA thraugtessure-
driven microchannel using Dissipative Particle Dynamics computdtmethod. Using
Hoogerbrugge and Koelman'’s (1992) proposed idea, Fan et al. (2006) sththeitioly
dynamics through a microchannel, made the appropriate modificatoingprove the
characteristics of the DPD method and the worm-like chain modefilPD particles.
Fan et al. (2006) illustrated how low Schmidt number and inadequstesity can be
corrected by increasing the cutoff radius or by reducing tiperent parametes. The
modifications to the weighting number were shown to provide theréssit along with
the least computational cost. Fan et al. (2006) suggested thagirghéime cutoff radius
enhances Schmidt’'s number adequately, but it tends to increase coomalitaist by 2.6
times. Worm-like chain was modeled with a large number of beada am@k repulsive

force of DPD illustrated in Figure 2.

(Fan et al.,, 2006) study simulated the physics of DNA folding, unfolding,
entanglements and extension of the strands to understand moleadturatrchanges as

external forces are exerted on strands with varying number d§ b€heir computational

11



results of the extension of the beads agreed well with the engrgal data provided by
Perkins et al. (1995). They investigated the DNA extension in a omitowv which was
generated by not employing any numerical means to slow dowtothefthe near-wall
particles. However, the DNA extension in a microchannel withspresdriven Poiseuille
flow is more practical and needs further attention. This is agigécin many biological
devices that can be used for DNA delivery. Devices such asmeedles and array of
hollow microcapillaries were used by Chun et al. (1999) for controtiedtion of DNA
into cells. Understanding the effect of DNA migration and msiten in microchannels

will increase the efficiency of such devices.

To acquire accurate results, the boundary conditions need to be imfdente
sustain a long channel and solid wall replications. Studies have beenmeaer to
understand the different types of boundary conditions and the methods totlaply
(Revenga, Zuhiga, & Esparol, 1999); (Revenga, Zuiiga, Espafol, & Pagogabarra
1998); and (Pivkin & Karniadakis, 2005). Many of these authors suggestsflgation
of the particles from the walls by reversing the normal velo@ttors, assigning random
velocity and injecting the particles towards the flow, or rewgrdioth tangential and
normal velocity vector of the particles at the wall. The walist be in tight lattice with
layering and higher density. However, using just these measusy not prevent
particles from penetrating the wall. A no-slip boundary condition besen proposed
where a layer of DPD fluid layer is inserted next to ttozdn particle wall. This is a
practical method but further modifications to the boundary conditionifineestessary as

the soft repulsion of DPD particles may not prevent the penetration of the walls.

12



1.3  Specific Objectives

The present study investigates numerically the dynamicssofghe strand DNA
in a pressure-driven channel flow. A program was developed usatighiM(a Mathworks
product) to conduct the present simulation. The computational methodisavalidated
by simulating Poiseuille flow through a microchannel. The DNA flevthen simulated
for various test conditions. The list of specific objectives is as follows:
1. Develop a computer program to conduct a DPD simulation of a Pogseuill
flow. Validate the present computational methods using previous results
from Fan et al. (2006, 2003) and Symeonidis et al. (2005).
2. Investigate the effect of the number density and the weighing dmnoti
Poiseuille flow simulation.
3. Modify the boundary conditions for the DPD method to enforce a no-slip
boundary condition while maintaining a simple solid wall construction.
4. Simulate DNA particle flow through a pressure-driven channel and
replicate its stretching and folding properties under different tiondi

such as the strand placement and the number density.

1.4  Organization of the Thesis

The thesis is organized into four chapters and appendices. Thehapter
highlights the differences among the different simulation methodgabla and the
reason that Dissipative Particle Dynamics have been chosen preabent work. The

system considered is a colloidal suspension with polymers as pe¥s#id particles and

13



it is suspended in fluid particles or solvent molecules in redlite first chapter also
includes the statement of the problem and the specific objectivessetload chapter
illustrates the formulation of DPD and describes the effeatamh parameter on the
output of the modeling. The results and discussions of the simulagom dhe third
chapter. This chapter compares the modified DPD flow to the tihedrealues and
provides the trajectories and extension properties of DNA or polgusgrension in fluid
particles at different conditions. The last chapter of the tlsesisnarizes the results and
conclusions and also provides recommendation for the betterment opreésent
computational methods. The appendices include the code and additional ildloasad

to help generate the algorithm.

14



solvent (temperature bath)
o,

{2}

Figure 2 Worm-like-chain DNA Strands (Underhill & D oyle, 2004)

Figure 3 Simulation grid
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CHAPTER Il

2. COMPUTATIONAL METHODS

2.1 Dissipative Particle Simulation Theory

Dissipative Particle Dynamics follows the basic principleNzvier-Stokes equations
with certain alterations. The simulated fluid systems aredpic and Galilean invariant.
The computational cost and time is much smaller than other sionufatactices such as
MD or Monte Carlo.

The original formulation was created by Hoogerbrugge and Koelman (1992)
when they first introduced DPD in their studyimulating Microscopic Hydrodynamic
phenomena with Dissipative Particle Dynamid$e following stochastic differential
equation was created to maintain the Brownian motion of the collaitiglpolymer

particles (Hoogerbrugge & Koelman, 1992) :

n=n+ %Pf 7
pi =D+ Xj e 8
Qi =W(Ir — )iy — o(pi — b)) - eij} 9

16



whereQ; is the weighted function that would balance the system from fluauation
and over-relaxation. The first part of the weighted equation cortieetpressure effects
whereas the damping part introduces the viscosity effects @rdoagge & Koelman,
1992). This is taken as a coarse-grained system and it follows dkerdbtokes
equations of continuum flow.

Consider a system with N colloidal particles having equal m#ssie m=m=1,
with positions r and velocities v Fan et al. (2003) found that the simple DPD fluid
behaves as a Newtonian one. The changes of positions and velodiiiee agolves are

determined by basic Newton’s laws:

ar;
— =V; 10
dt

dv; _ _ int t

dtl — f'L — f‘iln +f'l€x 11

The total forcef;, includes internalf ™, and external forces,. The internal forces
consist of all inter-particle forces between fluid-fluid, flwigdl, fluid-polymer, polymer-
polymer and polymer-wall. The external force could be a gravitdfianeaelectrical, or a
magnetic force. In this study, we have chosen a gravitationa &wdhe external force
similar to (Liu, Meakin, & Huang, 2007). There are three intefoates exerted on
particlei by surrounding particlels These forces, discussed below, are the conservative

repulsive force, & the dissipative force,"Fand the random forceRF
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The conservative repulsive force’, given by:

R {aij(l — rl-j/rc)ﬁ-j, 1 <1, 13
Y 0, T'ij = 1,

provides adequate repulsion to both fluid and polymer particles. DPDs@dt acore
system. A soft core system has weak repulsive forces between tbhiepamnd as a result
the particles may overlap with each other. The paranagtes the maximum repulsion
factor between particles i and j. This parameter enables ust teepulsion strength
between fluid-fluid, fluid-polymer and polymer-polymer interactiong.= r; — rj,
rij = |1y |, and#;; = r;/ ry; is a unit vector that determines the direction fiota i.
The conservative force depends on the ratio betwgeand a cutoff radius,,rwhich is
the length unit in this study. The length of the channel and thendésteavelled by the
fluid particle are given in terms of this cutoff radius.

The dissipative and random forces are given by:

D __ ~ A
F; = —ywP? (i) (i - vij)Ty; 14
R A
Fj; = ow"(1;j)0;;7;; 15

wherey andc are characteristic strength of each force respectivelyir Télation is
given by:

= o 16
Y= 2kgT

where kg is the Boltzmann’s constant and T is the temperature of thensyd-or

simplicity, ksT is taken as a unit value. These parameters provide a dafiaisi DPD
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simulation and relax any unusual fluctuations. The facidtsand w® are r-dependent
weighting functions which are computed according to the neighbgripgrticles,

vij = v; — vjandg;; is white noise function given by (Fan et al., 2006):
(0;;(@) =0; (0;;()0r(t)) = (Ginbji + 610 )6(t —t") 17

For simulation purposef; is also a random number from a Gaussian distribution which
has zero mean and unit variance (Willemsen, Hoefsloot, & ledema,.20G8)s study,

we have used the Maxwell-Boltzmann distribution, given bel@wvgdnerate random
numbers a$;;.

f(V) = (9)3/2 e BV’ 18

g1
All three forces are dependent on distance dhdnl F are functions of velocities as

well. The forces conserve the linear and angular momentum an@dhejong the line

between two particles. The weighting functions are given as:

wP(r;;) = [WR(rij)]Z _ {(;’— VAR TR .

rij = Te

The weighting functionsw® andw?, are zero when;rz r¢, thus calculating only forces
for particlesj within the radius 4 around the particle with an exponens. When ¢ = 1
and s= 2, the basic DPD quadratic weighting function, {lig)acquired. However, the

cutoff radius and exponent can be changesllrand « 2, to modify particle interaction.
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s can be decreased qraan be increased to increase particle interactions. Moduficati
to exponents are considered more applicable as increasing the cutoff raditesases
computational cost. As the cutoff radius is increased, the numbergbiboeing particles
rises, and the simulation time increments. In this study we exghereffects of varying

the exponens.

The viscocity of DPD fluids includes contribution from the diffusion iorotof

the particles and the dissipative forces (Groot & Warren, 1997).

D  2myp?r2/ 1 4 6 4 1
n =22 4 2me c( _ L6 )
2 15 s+1 S+2 s+3 s+4 s+5

20

The Schmidt number is the ratio between dynamic viscosity and idiffuate of the
fluid, Sc = n/pD. The viscosity and diffusion correlations for s=2 and s=0.5 is dgiven
Table 5. The parameters of the DPD fluid can be adjusted to ntfadclpgysical
properties of the solvent fluid. Table 5 in Appendix illustratesrét@tionship between
the DPD parameters and the viscosity, diffusitivity and the Stthmimber of the
solvent. Similar to Fan et al. (2003) the unit of leng¢h4r1.608um, the unit of velocity
is [V]= 0.345 cm/s and the unit of time, t gJ[fV] is 4.661 x 10%. We used a time step

of 0.02 or in dimenaional unit of 0.93 x99

2.2  DPD Integration Methods

As time evolves, the new particle trajectories and velodiée® to be determined
by Newton’s laws. There are many methods that have proved tditientfand yield

accurate values of the new positions and velocities. Some of the methods are given next
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2.2.1 Euler's Method

The simplest method is the Euler's method where the new pasbsiéons and

velocities at time, tAt, are derived from the previous position and velocity at time t.

Ti (t + At) =T (t) + At'l)i (t) 21

V; (t + At) =V; (t) + AtF; (t) 22

The force is calculated, following the above equations, using the position and

velocity.

Fi(t + At) = FL'(T'L'(t + At), Ui(t + At)) 23

However, this method causes an energy drift and yields paragbetory that is not time
reversible. Energy drift is the gradual increase of the wtalgy of the system due to
numerical inaccuracies and energy fluctuations. However, totad\eé the system is
theorectically constant according to the laws of physics. DPDeasolve the energy drift

problem (Pivkin, Caswell, & Karniadakis, 2011).

2.2.2 Verlet-type Algorithm

Another method is the Verlet-type. It uses only the new positionaltolate the
inter-particle forces at different time steps. This method ymmsitions at t and (it)

(Pivkin et al., 2011) as follows:
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ri(t + At) = 21;(t) — 1:(t — Ab) + % (AD)2F,(t) 24

Fi(t + At) = FL'(T'L'(t + At)) 25

where M = m = 1, is a unit mass of the particles. The vglagihot calculated for this
scheme and the force is position dependent only. Due to this reasomethiod is not a
good fit for this study as DPD forces need instantaneous velgaityes for their

calculations.

2.2.3 Velocity-Verlet Algorithm

The Velocity-Verlet method is an extension of the Verlgetyalgorithm to
predict the velocity of the particle at the new position using uglat (t) and the force

calculated using the new position. The force only uses the instaotapesitions for its

calculations.

ri(t + At) = 13(8) + Atvy(£) + 5 (At)? = Fy(£) 26
Fi(t + At) = Fy(r;(t + At)) 27
v;(t + At) = vy(t) +%At%[Fi(t) + Fi(t + 4¢)] 28

2.2.4 Modified Velocity-Verlet for DPD

The changes in the Velocity-Verlet algorithm made by Geomt Warren (1997)

take the new position and predictive velocity into consideration vadatermining the
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new force acting on the particle. With this force, the actuldcity is computed to

determine the next trajectory of the particle. The changes are as follows.

ri(t + At) = 13(8) + Atvy(£) + 5 (At)? = Fy(£) 29
Bt + At) = vy(t) + A—-F;(t) 30
F;(t + At) = F;(r;(t + At), 7;(t + At)) 31
vi(t + At) = vy(t) + 5 At [F(£) + Fy(t + At)] 32

whereA is the variable that will utilize the effects of the stoticagrocesses (Pivkin et
al., 2010). According to Groot and Warren (1997) whkety2, the system should relax to
the Velocity-Verlet algorithm. Since the DPD forces uses Wglac its calculation, the
predictive velocity;, can be used to do so.

Due to the change in modified velocity-Verlet algorithm, the rangelocity is
also modified to be effected by the varying time step. AccgrtiinGroot and Warren
(1997), the change in random force should be independent of the timesstdfusion
relies upon this force greatly. Diffusion needs to be independé¢né dime-step and thus
random force is accurately computed when divided/By (Groot & Warren, 1997).
However, Fan et al. (2006) and other authors have ignored this maadlificht this

study, we have conducted simulation with the modification to the random force.

1
FiI} = O'WR(T'L']')QijAt_ETI’\'L’j 33

The random force is divided by the time step so that the velaitylation will

not have to be modified. The velocity is initially as follows:
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vi(t + At) = v;(8) + 5 At [Fe p(8) + Fep(t + AD] + S VAL [Fo (£) + Fr(t + At)] 34

If the random force is modified while the forces are computedyedlueity-Verlet need

not be changed later. In this manner, the diffusion is corrected in the ttimula

2.3 Initial Conditions

2.3.1 Initial Positions

The particles are initially allocated equidistantly. Randoasgigning positions
for particles tend to increase overlap of particles. The altotatre either simple cubic
lattice, face-centered cubic lattice or body-centered culicdaSimilar formation can
be utilized for two-dimensional as well as three-dimensional configuratainl{S2011).

The configuration in Figure 4-A is the basic cubic lattice whiah lva used for
gaseous particles. The particles are separated by a disihfe which is usually equal
to the particle diameter. This is inappropriate for liquid or spdidicles as there is only
one particle in a unit cell. For a system with N particldseneN = Q% a square unit cell
with sides (Q-1) x (Q-1) can be generated with side lehgthQa. Thus, the number of
particles, N, should be a square of a natural number such as 1,td, theenumber
density,n, is given byN/L?. For a simulation, th8l andn is initially set from whichQ, L
and packing distanca, can be determined.

Figure 4-B has a higher packing density and therefore can be used for gaskous a

liquid particles and limited solid systems. This lattice cont&inzarticles per unit cell
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and wherd. = Qa and the square cell is built with (Q-1) x (Q-1) sides. N cawn balof
size 2, 8, 18, etc., and the density is N/L>.

Figure 4-C has the most compact lattice for a 2-D systedhcan be used for
solid systems as well. Each unit cell has 4 particles and\thd€’ with N = 4, 16, 36,
etc. Each unit lattice can be replicated (Q-1) times eafghtsi create the whole lattice
with side lengths, = 3"“Qa andL, = 2Qaand density = N/ Ly L.

For the simulation conducted in this study, we use the lattice ootedrwith 2
particles in each unit since the simulation will contain maihlidfparticles and nano-

sized polymers.

Figure 4 Configuration of Initial Condition of 2-D simulations (Satoh, 2011).
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2.3.2 Initial Velocities

The initial velocities of the DPD particles, fluid or polymere aassigned
randomly with the Maxwell-Boltzmann’s distribution. This distributignselected so as
to provide velocities with a zero mean. Considering a system wéhmbdynamic
equilibrium with constant temperature T, the following Maxwelliastrdution is

employed to determine the particle velocities (Satoh, 2011).

m_\3/2 m o 2 2
flvi) = (anBT) €xp {_ 2kgT (vix + Viy t Viz } 3

where k is the Boltzmann’s constant, T is the temperature, m is thd swss of the
particles, andy; = (v, v;y, v;;) are the velocity vectors of partidle

In order to create random placements of particles in DPDulaimons, it is
required to create random velocities according to a partipubdability distribution. We
need to use a uniform random number generator from zero to unity. Theirigllow
equation with the random numbers is called the Box-Muller method (Satoh, 2011).

Vi ={~2(KT/m) In R1}? cos(ZﬂRz)} 36

viy={—2(KkT/m) In R3}? cos(2mR,)

where R, R;, Rz and R, are random numbers from a uniform sequence.

2.4  Boundary conditions

Based on the type of system, different methods can be constsatiétt the

particle stays within the simulated region and observes itsgathysroperties. DPD is
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used for mesoscopic systems and a few different methods canda® g&¢ the boundary

conditions.

1. Periodic Boundary Conditions

Figure 5 illustrates the periodic boundary condition for a two-dimaaksystem
(Satoh, 2011) where this boundary condition is assigned in both the x- ar.yThe
original simulation region is marked by the length of the sydtent, andL,. The
schematic shows how the particles moving across the boundaryesudppear in the
opposite side of the region. Periodic boundary not only displaces theopositia
continuous flow but also transfers the energy and velocity to the next region.

For a simulation region with the (0, 0) coordinate in the middibe&ystem, the

periodic boundary condition can be administered as follows:
if  r(x,i)>=LX/2
r(x,i)=r(x,i)-LX;
elseif  r(x,i)<= (-LX/2)
r(x,i)=r(x,i)+LX;
end
wherei denotes the particle under considerationrangl  is the position of the particle
in the x-direction. This can be performed in x-, y- and z- axis.

The periodic boundary condition should also be applied when the interaction
between particles andj is calculated for the DPD forces. It must accommodate other
treatments such as cutoff radius to provide accurate computationces fand other
values across the boundaries.

i diffr(x,i) > LX/2
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diffr(x,i)=diffr(x,i)-LX;
elseif  diffr(x,i) < (-LX/2)
diffr(x,i)=LX - abs(diffr(x,i));
end

where diffr(x,i) is the center to center distance between partialedj whom the forces

will act upon.

Figure 5 Periodic Boundary Condition in x- and y- directions (Satoh, 2011).
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2. Lees-Edwards Boundary Conditions

Lees-Edwards method is used when non-equilibrium systems needs to be
simulated. One of the simplest examples is the simple shear flow found in Couette
systems. Couette flows have moving walls with constant velocities, U and —UW, whic

provides uniform shear flow across the channel.
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Figure 6 Simple Shear Flow in Couette Flow (Satoh, 2011).

To accommodate this system, the replicated boundary regions &esl siightly in
opposite directions by a distana¥ with respect to the movement of each wall. This is
depicted in figure 4. When the new positions and velocities are daldukhe change
shifted distancedX, and wall velocity, U, has to be considered. The partitieging out

of the region in the x-direction will be shifted from x to (8X) and \ to (%- U). The y
direction will follow the same procedure as the periodic boundary conditror

example, the loop that can be used to set the boundary condition is as follows:

if  r(x,i)>=LX/2

r(x,i)= r(x,i)-LX-delX;
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V(%)= v(x,i)-U;

elseif  r(x,ij<= (-LX/2)
r(x,i)= r(x,i)+LX+delX;
V(%,))= V(x,i)+U:

end
where delX is the shift of the boundary regi&X andv(x,) is the velocity of the
particlei in the x-direction. For calculating the inter-particle forcesvben particles
andj, a similar loop with the same treatment is used as follows:
if  diffr(x,i) > LX/2
diffr(x,i)=diffr(x,i)-LX -delX;
elseif  diffr(x,i) < (-LX/2)

diffr(x,i)=LX - abs(diffr(x,i))+ delX;

end
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Figure 7 Lees- Edwards Boundary Condition for Shear Flow (Satoh, 2011).

3. Wall Boundaries

Solid boundaries tend to affect the density fluctuations, theolbssmperature,
and unlike MD simulations soft repulsion in DPD particles does notepteparticles
from crossing solid boundaries. Frozen particles acting as salidag well as multi-
layered solid and fluid DPD wall particles can create boundangitions that can be
used for a Navier-Stokes continuum flow.

The first method is to group and create frozen DPD particles mgdalisolid
wall boundary for region under simulation. The particles could sitglg subset of the

original lattice cell created for fluid particles as showrFigure 8. The velocities for
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these particles are zero so that they are consttaha set position. However, due to
repulsion, fluid particles can still penetrate these walls.efdiore a higher densi
packing is recommended increasing the repulsiveeforf the wall. Since the density
the wall is greater than the fluid particles, &-slip condition is observed. Previo
authors recommend a density ratio of one to nine batwked and wall. However, &
density increases repulsion grows which in turnseaudensity fluctuations at the w

(Willemsen et al., 2000).

flow direction -

WA WM W WYY

SRS

At

i

channel simulation system lattice structure

Figure 8 Lattice Wall (Arya, Chang, & Maginn, 2003).

The second method to use frozerparticles as a solid wall arto create a layer
of fluid particles near the wi (i.e., wall fluid particles) The channel fluid particle
crossing the wall fluid particles areflectedso that they would not penetrate the s
wall. Revenga et a(1999) describe three different possibis for reflectingthese wall

fluid particles as follow:
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(1) A reflection of particles where its tangential velocity vector is careskeand
the normal velocity vector is reversed, i.e. a specular reflection.

(2) Maxwellian reflections where the particles are assigraiom velocity
according to the Maxwellian distribution and send back into the flow i.e
diffuse reflection.

(3) Reflection of particles when both the tangential and normatigheector are
reversed. This is called bounce-back reflection.

In this study, we have selected the Maxwellian reflection.sifp-Boundary
conditions are created using random velocity vectors that shoot tieesdnack into the
flow as they approach the wall. A no-slip boundary layer with thgkrfEom the wall)
was set equal to 0.5% of the channel height. If the height of tHdaswalge such that
0.5% of the height is greater than the cutoff radius, the boundaytlaigkness will be
the cutoff radius. The purpose of this thickness is to prevent thedooah of fluid
particles reaching the wall. The newly assigned velodith® particle entering this layer

will be as follows (Fan et al., 2006):

v; =vg + n(w/(n ‘vg)2—n- vR) 37

where vy is the random velocity with a zero mean and uniform distribution asdhei

unit vector normal to the wall and pointing into the fluid channel.

2.5 Computational Efficiency

The force calculations take the most computational time withen B#PD

calculation. This cost limits the simulation to be of a smajiare or a two-dimensional
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system. The force script rung Nmes for each time frame. To reduce the CPU time and
cost, the N computation needs to be reduced. The methods provided below will reduce
the N’ loop considerably, thus reducing cost. This is mainly performelihtiing the
interaction between every single particle within the systémngust the neighboring
particles. Among other things, certain factors such as theasena cutoff radius will

substantially increase the cost as well.

2.5.1 Verlet or Neighbor List

In this method, a secondary cutoff radiysjg used wherg, > 1.. A list is created
for each particle which includes all the nearby particlestipogid within the radius,r
The CPU time will be reduced when the force acting on eaclctlpad calculated only
using those particles within the particle’s list. When theigdaris moved further than r
r., the Verlet or neighbor list is re-calculated. This methad lm&a used for Molecular

Dynamics and Dissipative Particle Dynamics methods.

2.5.2 Cell List

The simulation region is divided intoxQx Qy cells with each individual cell
having a size (J/ Qx) x (Ly/ Qvy). For example, in Figure 9 ifyQ= Qy=6 and Ilx = Ly =
12, each individual cell would be of 2 x 2 units. At the beginning of theegs the
particles are grouped into each cell where each cell sikess than the cutoff radius
square. Each cell needs to be named and stored along with titdepaname and

position. During the inter-particle DPD force calculations, aigart will be calculated
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with otherj particles within the same cell and the neighboring cells.example, a
particle within cell 22 will be computed with other particleihas well as 15, 16, 17,

21, 23, 27, 28, and 29. This method is very useful for large valu@saidQy.

31|32/33 34|35 |36
252627 |28 29 |30 |
19]20| 21|22 |23 |24 |
13[14[15 |16 [17 |18
7189 [10]11]12

Figure 9 Cell List Method to Group Neighboring Partcles (Satoh, 2011).

2.5.3 Cutoff Radius

The computational time is reduced when the number of particledausattulate
the forces are reduced. For a spherical particle, the Lenoaes-potential, U, gives
the interaction between two particles depending on the distarteeedre them, as

follows:

g =4e{(?) - ()} .

whereo is the characteristic length scale proportional to the padiceter, r is the
distance between the particles anek kzT. The ratio between and r determines the
repulsive or the attractive behavior between the two particles.ifiteraction between

particles can be negligible when r is greater than The distance after which the
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interactions between the two particles are too weak to be corbidetalled the cutoff
radius.

In the simulation, an area with the cutoff radigsjs created around each patrticle
and forces are determined only between that particle and thogdepaicated within
that area. In this study we have chosen the cutoff radius amarpnmethod to reduce
the computational cost. The value gfwill be unity to acquire standard DPD properties.

All the lengths within the simulation region will be given in termscof r

2.6 DNA Modeling

Physical properties of DNA have been studied by Smith et al. (1982perkins
et al. (1995), among others. In these experiments the DNA hadtéthieeed to the wall
or optical tweezers had to be used to gain knowledge of propertieasetiiect of shear
on the fractional extension of DNA strands, and the effect of dfdmpse strands were
also modeled using molecular simulation. DNA can be modeled within DPD as pglymer
Figure 10 illustrates a model of DNA particles (tethereddbehain particles) in DPD

solvent particles (dots).
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Figure 10 Polymer particles in DPD Solvent Particle (Pivkin et al., 2010).

2.6.1 Polymer Modeling Techniques

Polymers can be modeled using DPD equations where the polymer dreads
subjected to conservative or repulsive, dissipative and random fdteethdir solvent
counterparts. Along with polymer-fluid interaction, intra-polymesid#&rces need to be
taken into account. The repulsive force between polymer beads needsdusted
according to their properties. Other intra-polymer forces drtsa the combination of

the following (Symeonidis et al., 2005):

1. Lennard-Jones Potential

The Lennard-Jones potential provides a shifted potential to eachgrdbgads to

avoid numerical instability. The potential is applicable to all particles within the
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cutoff radius, if < rc. Lennard-Jones is used to prevent over-lapping. This is used instead

of the soft-repulsive forces of DPD.

2. Hookean and Fraenkel

This force is a result of pairwise potential with an equilibridistance between
the beads,e, (Symeonidis et al., 2005). The forces are calculated suchrifatractive

bond is created when;H 1.1 | > g and repulsive bond when HTi.1 | < feo.

3. FENE

The FENE spring force is a nonlinear elastic force which keeps the lbad an
equilibrium or maximum distanceyd. When the distance is greater thar,rthe beads

are pulled closer to each other along the line between the l¥gadke spring constant.

— _k_»2 lri—Ti—1|?
UFENE - _Ermaxlog [1 - 2 ] 39

Ymax

4. Marko-Siggia Worm-Like Chains (WLC)

Experimental and theoretical studies showed similarities between hkarichain
(WLC) forces and DNA molecules (Perkins et al., 1995). WLC nsdah be used to
mimic DNA movement within a flow. Similar to the FENE sprinlge Marko-Siggia
force expression creates a spring force that will pull the bleacls closer together when
the maximum length of the segment between the beads is reacked/LThforce is as

follows (Fan et al., 2006):
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s _ _XeT [(q T il B Y

where | is the maximum length of the segment between the beadﬁ;;gnds the
effective persistence length of the polymer spring chain. Thespmise length is the
maximum length when the chain will be elastic. The length of¢lgenent is established
to be greater than the persistence length such that the chalre w#éimi-elastic or stiff. If
the number of beads ispNand L is the total length of the DNA strand, thes
L/(Npb - 1) (Fan et al., 2006). (Bustamante, Marko, Siggia, & Smith, 1994) staéd t
the persistence length of a DNAJAs~0.053um. When the beads are modeled with this
length, there was an increase in the molecular flexibilitgesithere was no bending

momentum. This flexibility was resolved by increasing the ipnsce length to
Af,ff~0.061um for 40 beads olfff~0.07ym for 80 beads in a strand with L=67.n
(Larson et al., 1997). In this study we have used worm-like chaimsot®l the DNA
strands.

The stress tensors are given by the Irving-Kirkwood model (Fan et al., 2006)

1 1
=—;(Zimuiui+52i2j¢irijfij)

1
=—n(muiui+; Y =i 7ijfij)

S 41

whereu; = v; — V(x) is a velocity difference between the bead velocity and stream
velocity, v(x), at position x. The ensemble average is calculated between ¥he>

force fj is the result of the sum of DPD forces and the WLC springefoiihe
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constitutive pressure can be determined from the stress tgnsor,1/3trS (Fan et al.,
2006).

The modified velocity-Verlet algorithm is also used to show pofieriateraction
between patrticles in terms of beads joined by strings. Thiades the soft repulsive

force as well as hard forces.

2.7  Simulation Approach and Requirements

To carry out the present simulation, a code was programmed iatMatluding
the DPD force equations and its parameters. Matlab is a éwgh-+rogramming tool
from Mathworks that is both interactive and versatile. The language hakitade of in-
built functions that would save time as compared to programming in ©RBTRAN.
Coding in Matlab provides the ability to see the simulation resultsal time when the

program was being run. This was very handy at the beginning of the code praduction

2.7.1 Approach to Programming

Initial positions, initial velocity and the forces for differenpég of particles;
fluid, wall, and polymer, were initialized in separate functiaithin Matlab. The final
Verlet algorithm was written in a script file that would Iclese functions when the
positions, velocities and forces needed to be computed. The functionse ozaillddl
within other functions as well, for example, initial position and Jglocan be called

within the force function to run tests.
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The variables can be administered at the beginning of the skiptuf should be
declared as a global variable when functions need the same \@rableell. The
variables must be unchanging to be declared globally. If a panmamsetnstantly
changed, for instance within a script, the function would be calledgalvith the
changing variable. Each file is saved as .m file which caeddd and written as a .txt file
as well. The workspace which stores all the output variables caavied as a .mat file.
This file can be exported into an Excel sheet for further plotimg) recording. Data

stored in Excel sheets can also be imported into Matlab as .mat files.

2.7.2 Requirements

Apart from the software Matlab, one would also require a relgthigh powered
computer that can perform the simulation as well as other sskdtaneously. The
computer that was used for the coding had the Intel i7, which is acguagrocessor,
and 4 GB of RAM. About 2GB of RAM and one of the processors will bal use
constantly while running Matlab. The version of Matlab that wasaliest is Matlab
Student version R2011a. If parallel computing needs to be used, the ad¢itcosassors
will be employed. Parallel computing that was performed for simsulation will be

discussed next.

2.7.3 Parallel Computing
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The main parallel computing was performed in the Linux clusteatéd at
Oklahoma State University and it is called Pistol Pete higloqmeance computing. This
cluster contained about 1024GB RAM and 512 cores of processors. Ravaijalting
can also be performed on our local machine using functions suchtedbpool, parfor
and so on. Matlabpool opens workers that can perform independent jobs sioudtane
The number of workers corresponds to the number of cores in a pmedesgxample, a
guad core processor can open an additional 4 workers along with theMatab
program. This can only be done if the jobs are independent of each wthdoes not

share its output.
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CHAPTER Il

3. RESULTS AND DISCUSSION

3.1 Initialization of the Simulation

The two-dimensional simulation region is setup on a rectangti@elsvith Ly =
12 and ly = 30 (the unit length is). The fluid, wall and DNA particles are containined
within this region. The origin of the axis is located at the neiddlthe region. Matlab
was used to write the code and to perform the DPD simul&ttmnfollowing properties
were used to conduct the simulation:

a) Initial particle arrangement in face centered cubic (fcc) lattite M=2Q?
particles.

b) Maxwell-Boltzmann’s distribution for initial velocity.

c) Modified Velocity-Verlet algorithm.

d) Periodic boundary condition in the x-direction.

e) Frozen solid wall particles at y = vI2, Ly/2 with a layer of no-slip
condition where the particles are given a random velocity and shot back
into the fluid system.

f) Cutoff radius method was used to reduce the computational cost.

g) Worm-like chains to model DNA patrticles.
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3.1.1 Init

Co

Q unit cell whereN=2Q?. The density of the particles is 4 per area square. Theffefore
an area of 12 x 30 or 360 unit s§.= 1440. To have a natural number, we have chosen

N = 1458.
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Figure 11 Initial Setup of Fluid, Wall and DNA Particles.
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Wall particlesNya, are arranged at a higher packing density to create more

the density is at approximately 16.67 units at ea¢chTwal DNA particles are



The computational grid is shown in Fig. 9 where the yellow is the farticles, the blue
is the wall particles and the red is the DNA particldge Tnit of length, 4 is set to um
with the system dimensions as<& < 6 and -15 y <15 similar to Fan et al. (2006).
The initial velocity is generated randomly by the MaxwelltBolann’s
distribution with zero mean. This applied to the fluid and DNA partislesreas the wall
particles were assigned a zero velocity. The velocity ibedurto be less than the

maximum velocity allowed by the system. The maximum velocity is datedrfollows:

1 5 kgT
or
_ [2kpT

The total momentum of the system is set to zero.

3.1.2 Modified Boundary Conditions

There are two different boundary conditions used in this system wath
modifications. The periodic boundary condition is used along the x-direeftiich is
treated to accommodate the cutoff radius and force calculationpefibdic condition is
inputted while the difference between the particles is determiresl.is to define if the
particles passing through the simulation region will be includettié force calculation.
If a particlei is located at x = +5.5, then a partigllecated at x = -5.8 will be within the
cutoff radius of unity. The modifications are shown within the codaerappendix. The

periodic boundary condition is used when the new position is computed at @mew
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step in the main algorithm. The periodic boundary condition also allbevexternal
force to flow through the inlet and the outlet of the channel to creat®nstant
continuous pressure driven flow.

The second boundary condition used is the solid or frozen DPD padigles -
Lv/2, Ly/2. Wall particles have a higher density creating more repulsige fagainst the
fluid particle in the system. However, the soft repulsion of DPDRighes would not
prevent the fluid particles from penetrating through the solid petticles, which is
physically improbable. Unfortunately, higher density of the wall wanéhte unrealistic
density fluctuations in the simulation.

Therefore we have introduced the Maxwellian reflection of gagtiwithin a no-
slip boundary region next to the wall. The reflection conditiondisinistered to the
particles entering into the region which has a thickness of 0.5%eoheight of the
channel as shown in Fig. 10. For this simulatign=L30 and the no-slip boundary region
thickness is 0.15 unit. Therefore, the no-slip region was enforcecdret®4.85 to 15

units and between -14.85 to —15 units. The new velocity assigned tpattieles
entering the region ig = vy + n(,/(n “VR)?—n- VR) where ¥ is the random velocity

generated by the Maxwell-Boltzmann’s distribution, n is the noxeetior from the wall
pointing towards the fluid system where n=-1 for the top wadl m=+1 for the bottom
wall. A few modifications were added along with the new veyjodilew positions were

also assigned to the particles for the next time step. Titieles will be moved to the

boundary of the no-slip region at y = 14.85 or —14.85 depending on the top or bottom

wall, respectively, with a velocity vector pointing towards the eref the channel.
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Forces were set to zero as the velocity was already peesdeed. This guaranteed

bounce-back particles for those that reached the wall which was not penetrated.

ey Wall

Mo-SlipRegion
0.005*LY

Figure 12 No-Slip Region near the Top Wall.

This method removed the need for multiple layers of wall pestitd prevent the
penetration of the wall by the fluid particles. The no-slip regitso guarantees zero-
velocity at the walls when simulating a Poiseuille flow irharmel. The particles by the
wall region would not linger by the wall, creating a more peattapplication of the

flow’s physical properties.

3.1.3 Particle Forces

The force functions are needed to update the new position and new vefazity
particle at the next time step. The forces are called @s rticlei is being computed.
The force calculations are stored in three different functions. flihetions are set

separately as the repulsion strength for the conservation DPDidatdterent depending
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on the type of particle interaction. When the fluid particlesramnsideration, the fluid
force function contains the interactive forces between fluid-fldiddfwvall, and fluid-
polymer. When the polymer particle position and velocity is deteth the forces that
contain the polymer-fluid, polymer-wall and polymer-polymer inteoast are called.
The spring force is also added along with the polymer DPPefoas the bead-bead
interaction changes in a sheared flow.

For the spring forces, the interactions of the beads on eitteeiokithe polymer
particle in question are considered. The first and the last bekhasly have one bead-
bead interaction, with beadsl andi-1, respectively.

As the force is being calculated for a fluid particle,hie force function first
calculates the relative position of the particle with respeell the other particles, in the
order of fluid, wall and polymer. If the other particjejs within the cutoff radius, the

force is calculated. Similarly, the polymer particles go through the @oces

3.1.4 Integration

The main code contains Newton'’s laws for time evolving position aloditsein
terms of the modified velocity-Verlet algorithm. The initial gimsi and velocity is called
into the script along with the initial force calculations. Eachigari, from 1 to N, is
assigned to the new trajectory after the forces are cdllegl.positions are corrected
according to the periodic boundary condition as well as the no-slip mmditthe walls.
The no-slip condition is enforced at the beginning of the scrigrevkthe new position
and predicted velocity is calculated. This would prevent the parfrdesbouncing back

towards the wall. The no-slip is also inputted into the main patbop to bounce-back
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particles near the wall into the fluid. If the particle esteto the no-slip region with a
higher velocity compared to the randomly assigned velocity, theratittom velocity is
used. If the original velocity is lesser than the random velditign the original velocity
is kept while reversing the particle towards the center of Hamreel. This modified

boundary condition is applied to both fluid and DNA patrticles.

3.2 Simulation Parameters

The DPD fluid and DNA parameters are the physical propesfieése particles.
They are listed in Table 1 and Table 2, respectively. The algorithm pararaetarsed to

create the simulation in the mesoscopic scale and are listed in Table 3.

Table 1 DPD Fluid Parameters.

DPD Fluid Particle Parameters
Name Nomenclature Value
Mass M 1
cutoff radius rc 1
Exponent S 2
Fluid-fluid repulsive strength  aff 18.75
Wall-wall repulsive strength aww 5
Fluid-wall repulsive strength  afw 9.682
Density P 4
Verlet parameter A 0.65
Random force parameter p2 3
Dissipative force parameter r 4.5
Field force G 0.02
Energy conservation kBT 1
Maximum Velocity Velmxd 1.414
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Table 2 DPD DNA Parameters.

DPD DNA Particle Parameters

Name Nomenclature Value Unit
Effective persistence length Neff 0.053 pum
Energy conservation kBTp 1
Total DNA strand Length L 67.2 pum
Maximum DNA segment Length Lseg 0.808
Mass Density Mp 0.25 g/cm3
Viscosity Viscp 2.588 kg/ums
Fluid-polymer repulsive strengthafp 16.5
Polymer-polymer repulsive strength |i-j|>4 App 2
Polymer-polymer repulsive strength |i-j|<4 App 0
Fluid-wall repulsive strength Apw 3.162
Table 3 Algorithm Parameters.
Algorithm Parameters

Name Nomenclature Value

Fluid particles N 1458

Length of channel LX 12

Height of channel LY 30

No-slip Region Rcw 0.15

Time step Delt 0.02

Initial time Ti 0

Final Time Tf 120

Number of cells (x,y) Q 27

Length of unit cell x direction Nx 0.444

Length of unit cell y direction Ny 1.111

Wall particles Nwall 400

Wall density Nwall 16.667

DNA particles Np 1

DNA beads Npb 10

Total DNA beads Nptot 10

Total DPD particles Ntot 1868

No-slip Region Top boundary BC1 14.85

No-slip Region Bottom BC2 -14.85

Bins Thins 35




3.3 DPD Fluid Flow in a Channel

A pressure driven flow is simulated through a two-dimensional @ianith
lengths, k=12 and k=30 (in ¢ units). The channel has two solid boundary walls at y=
Ly/2 and -L/2 with the modified boundary conditions. The expected flow through the
channel is Poiseuille flow as DPD follows Navier Stokes equatibms channel flow is

investigated at different test conditions.

As the simulations were conducted, the particles velocities aeeeaged in
spatial bins and the computed velocity profile was compared to theeticab velocity

profile of a Poiseuille flow between parallel plates, given by:

=il-@] -

whereti is the average velocity, y is the spatial coordinate in thecaédirection and h

clle

is the half-height of the channel (in the y direction). In thisgmestudy, the height of
the channel was divided into several bins, including two bins for the lmeupper no-
slip boundary regions. The rest of the bins were equally divided. Tloeities of
particles are accumulated in each bin according to their y-positr every 1000
timestep. They are summed in each bin and divided by the numbaettiolegacollected

as shown irFigure 13 The average velocities did not include the ones calculatedgdurin
the first few timestep since the velocity fluctuates duthnéorandomly assigned velocity.

Once the channel flow starts forming, the velocity is collected.
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Figure 13 Average velocities per Bin with the Modified Parareter s.

3.3.1 Simulating Channel Flow using Standard DPD

The first test performed was simulating the two-dimensional ftomough a
channel (Poiseuille flow) using standard DPD parameters, wketeand s=2, for a
number density n= 4. With these parameters, the viscosity ofrthéased fluid is very
low. For such a low viscous fluid, one can expect a flat velocity profiitially a
random velocity distribution is assigned to the flow field. A fullgveloped flow is
acquired at t=180. Due to the changes in the forces (the chang®aity is determined
by forces as shown before) the velocity field developsl@ost top hat velocity profile

with an average value of 1.2 approximately.
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Figure 14 Poiseuille Flow using Standard DPD Fluid.

3.3.2 The Effect of the ‘s’ Parameter

The parametes is the exponent of the weighing function used to determine the
dissipative and random forces for DPD. Modifying the s parame@nges the
interaction between the fluid particles. It would be then possilddhere to the physical
property of a true fluid. Due to the soft repulsive force betweenp#rtcles, DPD
simulations are usually associated with a low viscous fluid andSolamidt number

flow.

The dimensionless number can be increased by enhancing panrteraciion
which is done by increasing the cutoff radius. Unfortunately, isangahe cutoff radius

escalates the computational cost drastically. Alternatively, ekgonents can be
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modified with a minimal rise in the computational cost. Schmidt nunmoeeases 10%

whensis modified and viscosity increases by 36%.

The simulation of Poiseuille flow with the modified parametes shown in
Figure 15 The Poiseuille flow is attained by plotting the ratio of veipa@ver the
maximum velocity against the y axis or the channel width. Thaman velocity is a
function of viscosity. This can be illustrated Bigure 14andFigure 15where the non-
dimensional velocity profiles change with varying paramsetend, thus, they are a
function of viscosity. The standard DPD has s=2. When s=0.5, the coropatati
velocity profile agrees qualitatively with the theoretiPaliseuille flow equation for flow
between two parallel plates. The agreement is not complete, howéigicould be due
to the altered no-slip boundary conditions with the randomly assignedityehnd the
displacement of the particles at the boundary. However, the flow stywsetry, as
expected, and the no-slip conditions are clearly enforced atathéoundaries. The fully
developed velocity profile is acquired at t=180 and remains the shnre300. The
average velocity of the channel is 0.8645. The approximate lengtiuit iake to reach

a fully developed flow will be 155.64r
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Figure 15 Poiseuille flow with Modified DPD Parameter 's

3.3.3 The Effect of the Channel Size

To check whether the simulation is grid-independent, a largesrrevas used in
the simulation with k=60, Ly=30 and N=7200 to keep the number density at 4. The flow
profile is flat similar to the previous grid withyE12 and =30. The velocity profile
tends to reach an average of approximately 1.2 fairly quicklhyatite60. The simulation

is grid independent and will provide the same results for different sized grids.
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Figure 16 Poiseuille Flow with Larger Simulation Region

When channel flows with smaller channel heights (eLx=12 and k=3 or 6)
were investigatedthe fluid particles segregated irlines with spacinglependent on th
cutoff radius as showim Figure 17 and Figure 18. The separatiistancebetween the
lines wasreduced as the cutoff dius was decreasedhiB phenomenolis not fully

understood and iheeds furthe study. It may indicate thahe DPD equations need
modifications to simulatnanoscale systems.
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3.3.4 The Effect of theNumber Density

A simulation with numbedensityof 20 is shown in Fig. 17. The velocity prof
tends to getloser to the theoreticPoiseuille flow ashe number density ¢he system is
increased.The increase irthe densitybeyond a certain limit will changthe physical
property of the flow; e system may not contain fluid particlat that limitand may
insteadact as solid particles. The particles may alsonm®mpresible after a certail
number density limitThese effec of increasing number densityithin DPD and the

compressibility of the flow deserves a detailedly.
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Figure 19 Poiseuille Flow with Number Density =20.
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3.4  Simulating a Single DNA Strand in DPD Flow

DNA strands were placed at different locations in the chanredrevthey
experienced different values of shear stress gradients to olibeivemigration and
physical properties as they travel through the pressure-drivemeh®NA chains tend
to stretch, fold and tumble as they move through the channel. Thesetipoopee
relevant to understanding the flow of DNA in lab-on-a-chip devicég. gresent tests
were conducted with one strand at a time but with different numbéeads and at

different channel locations.

The DNA strand tends to extend or fold at different positions mwite channel.
These extensions relax after a time period and remain in sanobssate after the flow
profile is developed. The time it takes for the strand to reaggartécular extension is
related to the strand relaxation time. The relaxation tipesan be computed from

observing the extension of the strand, x, as function of time, t, and plotting
X = X + x;exp (—t/1) 45

where % is the extension at equilibrium andikthe maximum extension of the strand.

3.4.1 DNA Migration in a Channel Flow

Initially there are 10 DNA beads on a strand placed at diffey positions along
the height of the channel. The positions are -13, -10 and -5. This tesonaiscted to
see if the DNA strand would migrate to the centerline of theraohannel. The

simulation is performed using the standard DPD parameters anddosity of the fluid
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particles is not corrected. Therefore, the velocity proil@alimost a flat profile. Due to
the no-slip boundary conditions at the wall the flow field possessger|shear stress
gradient near the wall compared to the region near the centérlisemigration of a

DNA strand with 10 beads from different vertical locations altnegchannel height (Y=

-13, -10 and -5) is plotted Fig. 18.
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Figure 20 Migration of DNA Strands from Different Positions at s=2.

The strand inserted initially at position y = =13 experiencegetashear stress gradient
compared to the two other strands. As a result, the stramdtesgowards the centerline
of the channel faster than the two strands starting their jodroay y= =10, -5. The

strand at y = -10 moves closer to the centerline but at a muclkrspage, due to the
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smaller level of the local shear stress gradient in this region. This caebdrom Figure
20 and Figure 21 where the strand has only moved from y=-10 to y=800 units, but
moves till y=0 at t=984 units. This is because the velocitfilprs flatter towards the
center of the channel and the strands need more time (i.e. ldmayamel) to migrate to

the centerline.

3.4.2 Effect of the Number of Beads on DNA Migration

Three strands with different number of beads are inserted intcssupeedriven
flow at y = -10, near the bottom wall of the channel. The straads &, 10 and 20 beads
respectively. Similar to the previous test, the flow has aptafile due to the low
viscosity and less particle interactions for sERure 21shows the migration of the
simulated strand for s=2. The migration is more prominent fostila@d with 10 and 20
beads. The strand with 5 beads seems to oscillate along thepagiabn of y = -10 and
then slowly reaches y = -8 at t=1200. The 20 beaded strand appdasget migrated
much faster than the other two strands and reaches the cerligrineapproximate time,
t = 899. The strand with 10 beads reaches the centerline lat&84t The strands tend
to migrate towards the centerline due to the presence of mgatyear stress gradient. If
the length of the channel is long enough the strand finish@suitsey at the centerline.
Longer channels (i.e. longer times) are needed for strantidess number of beads to

reach the channel centerline.
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Figure 21 Migration of DNA Strands with Different Number of Beads at s=2.

Figure 220n the other hand shows a flow with a modified s=1.5. This increases the

viscosity and particle interaction. The strands tends to atcifllong the initial position

of y=-10 between y=-9 and -1Eigure 23illustrates the DNA migration at s=1. The
strand with 5 beads reached the centerline as compared tagahdsstvith 10 and 20
beads that finished closer to their original positions on thasy &igure 24illustrates the
travel of the strands which uses the modified parameter s=0.5. Tugtyw@rofile in this

case is more like a theoretical Poiseuille flow. Thensisaends to linger at their original
positions, perhaps due to a constant shear stress gradient cotoptred/arying shear
stress gradient in the case of s=2. The strands with 5, 10 and 200sedid¢es at its

original position y=-10.
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Figure 22 Migration of DNA Strands with Different Number of Beads at s=1.5.
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Figure 24 Migration of DNA Strands with Different Number of Beads at s=0.5.

As the plots vary from s=2 to s=0.5, we can clearly see the telpmfile
approaching the shape of the velocity profile of the Poiseldie. fThe DNA particles
seems to move towards the centerline when s =1 and 2 as compates dteady
oscillation along the initial inserting location when s=0.5 and 1.5. difiect of
modifying the parametexon the physical properties the DNA or polymer particles is not
clear. To maintain accurate viscous behavior for DNA pasticlee may need other

values ofs or different cutoff radius,.

Figure 25 Figure 26 and Figure 27 compares the migration of the beads for
different values of the parameterAs mentioned before, longer beads tend to travel more

towards the centerline as s=2; the value for a standard DRDA strand with 20 beads
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tends to migrate faster than the shorter strands. This is obser#egire 23where the
20-beaded strand attempts to move towards the centerline at s=1r Evagds must be
utilized to understand the relation between the weighting functiows the DNA
particles. Further analyses are necessary to understandweileting function can be
changed to attain accurate Schmidt number and the physical tsmdrDNA strands.
The simulation would need a longer channel or more computationatdienerage the

migration patterns of these long strands.
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Figure 25 Migration of Strand with Nbead = 5 for Varying s.
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Figure 27 Migration of Strand with Nbead = 20 for Varying s.
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3.4.3 Extension with Respect to Time

As the DNA strand migrates through the channel, it stretahdgolds due to the
shear stress produced by the velocity profilgure 28 and Figure 29 shows such a
behavior for a strand at two different locations, y = 0 and y = d€pectively. The
velocity profile is flat due to the low viscosity and Schmidt bem There the strand at
y=0 does not have a high shear stress acting on it comparedsteatig at y=-10. Due to
the difference of shear, the DNA strand at y=0 folds and tunaslésflows through the
channel. The strand at y=-10 stretches out as it moves acrosstivel The extension

rate can be measured with respect to time to compute the relaxation time.

o

SE0

Figure 28 DNA Folding at y=0.
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Figure 29 DNA Stretching at y= -10.

Next we are simulating a strand with 40 beads in a channelsiithdation is
conducted with both zero external force and a high external foreereBults are then
compared to the simulation data provided by Chun Cheng et al. (2008)x{Eimsien
rate of the DNA strand is measured by finding the distanceeleetwwo beads of the
strand located at either end of the strand at time t. Thisnotagecessarily be the first
and last bead of the chain as the beads tend to fold and tumble.eBeatprode goes
through the position of each bead at every timestep and finds tligompas the
downstream-end and upstream-end of the chain. The fractional extesnstonputed as
the ratio between the extension lendth, and the total length of the DNA strand,

(Chun Cheng, Feng, Qian Qian, & Xiang Dong, 2008) as follows:
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fractional extension, lgyr = lext/L 46

The fractional extension is then plotted against the time andelbgation time is

computed by fitting an exponential curve to the plot.

fraction extension

Figure 30 Fractional Extension with Respect to Time (Chun Cheg et al., 2008).
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Figure 31 Fractional Extension vs. DPD Time and Exponential €cay.
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Figure 28 shows the results of Chun Cheng et al. (2008) for lownekterce
and the extension averages at 20%. In this study, we compute #émsiewtwith zero

external force and the fraction extension averages over 10%.
. t
extension,x = 0.1 + exp (— E) 47

The relaxation time is calculated to be 0.2 DPD time unite@dd external force for a
DNA strand with 40 beadgstigure 32shows the extension averaging at 0.1 and then

oscillates about 0.05 after t=7.5. The extension is simulated at g=0.1.
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Figure 32 Fractional Extension at External Force, g=0.1.
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Figure 33is the fractional extension with an external force, g=10. Thellplstrates how
the DNA strands reached its equilibrium extension at 5% of itgnati length much
quicker with a higher external force. The peaks in the plot are due to the DNiAgl¢ae
periodic boundary condition at x=6 and continues at x=-6. However, this shaihé

DNA strand would reach equilibrium much faster at a higher external force.

12

o
1]

=r=Fractional Extension

= Eyponential decay

Fractional Extension
(= (=)
= o

8] 5 10 15 20 25 30
Time (t)

Figure 33 Fractional Extension with External Force, g=10.

3.5 Remarks and Discussion

In order to have a more realistic simulation, one shouldpay miemtiah to (1)
matching the solvent and (2) physical properties of the DNA strands espd®atharge
of the strands. Fan et al. (2006) simulated and compared hisgnthnPerkins et al

(1994) experiments. The solvent used in the experiment was buffeosabftiris-HCL,
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EDTA, Tween-20 and NaCl (Perkins, Smith, & Chu, 1994). He formed $&digA by
attaching multiplé.-phage DNA molecules to create a DNA strand upto 100 pm. Fan et

al. (2006) simulated that extension and was able to compare théodae&kins et al

(1994) findings.
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CHAPTER IV

4. CONCLUSIONS AND RECOMMENDATIONS

4.1  Summary and Conclusions

In this research, we present DPD simulation of Poiseuille floih new
modifications to the DPD formulation and the boundary conditions. The vigasit
particle interactions issues for standard DPD can be corregtetbdifying the weighing
function of the dissipative and random force. This increases thesitisof the DPD
fluid particle to relate to the true fluid and keeps the computatmstlto a minimum.
The boundary conditions are altered such that the no-slip region EetWentluid
particles from penetrating through the solid or the ‘frozen’ vpaliticles. This also
reduces multiple layering for the wall particle to incregsealensity. The no-slip region
prevents drastic density fluctuations at the wall. The modificatiane provided a valid
Poiseuille flow profile for a two-dimensional system. The disament between the
simulated flow profile and the theoretical Poiseuille flow maydbe to the modified
boundary condition or the changed paramstérhis should be tested by changing the
parameter s further or by varying the cutoff radius insteatleTd shows that the
Schmidt number is proportional te®rand therefore the interactions can be increased

faster than the parameter
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DNA or polymer migration is tested through the microchannel usingnvwite
chain. The spring forces along with the DPD forces simulate Bi¥#nds. We do not
have experimental data to compare the DNA migration through @Weidlow, but
since worm-like chains are assumed to be able to replicate EiN#ds, we have
attempted to gather physical characteristics of DNA movemheotigh a microchannel.
Longer DNA strands appear to migrate towards the centedinédth standard DPD
weighting functions and modified parameter. However, more expermelata is
required to gather the interaction coefficients between th& Bhd solvent particles.
With such data, DPD can be modified to increase the particladti@n without a rise in
computational cost. The DNA strands influences the velocity preditd that there is a
dip where the DNA strand is originally placed. However, the flowfileris less affected
within DNA with a decreased parame®iThis may be due to the viscous effect of the

DNA strands on the fluid particles.

The worme-like chains illustrates the conformation of DNA straasist travels
through the microchannel. One can observe the folding, coiling, tumiaimd
entanglements of the strand with varying external forces. Th& €rand would tumble
and coil if the external force was minimal and the interactimt®&een the particles were
reduced. The strand stretches and remains relatively exterttleceiternal force and the
interaction was larger. The extension relaxes quickly watranger external force. As
longer strands entangles, strong internal forces are crediath \inay cause more
molecular deformation. With zero external force, the stranckesl#o a set extension

slowly and oscillates about 0.1% of it original length. As the external fslicereased to
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0g=0.1, the DNA strand relaxes much faster from 0.1% to 0.5% of k&mom length.

When g=10, the strand relaxes to 0.05% of its maximum length much faster.

4.2 Recommendations For Future Work

Dissipative particle dynamics has a lot of room for improvenaglt there has
been continuous changes and additions made to this scheme. For exangu#)ef
Dissipative Particle Dynamics is a modification of DPDhwatdditional hydrodynamic
forces added to the original method. Also, there is a need to undetistaimderaction
between polymer and different types of solvent particles and exgatal data for such
interactions are still sought after especially for channel.fldwst of the data available
are for Couette flows with tethered DNA particles. The Wweig functions can be
adjusted for the solvent particles, but when the DNA particlesadded, the weighing
function parameter needs to be altered separately. DNA sionulaging DPD with
modified weighting functions, both parameter s and the cutoff radiushyeamproved

further with the availability of computational resources and experimeatal

The computational cost of this code was relatively high. When théewof
particles is increased to over 7200 for 10000 time step, it woulchtaka 45 hours. For
this system, with 1458 particles, it took 2.2 hours for 10000 time step. Tle onl
computational efficieny method used was the cutoff radius. If tlghber list or cell list
method is added to the algorithm, the code would be much faster. Also, Matlab isla usef

tool to visualize the flow phenomena as the code was applied. Howeegramming
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languages such as C or Fortran would reduce the bottlenecksratiatidns of Matlab

programming.

DPD is a powerful tool that can be used for a variety of computtsimulation.
It is less expensive that MD or MC in terms of computati@est. However, it can be
improved if parallel computing is utilized. Unlike MD, DPD hassks distributed
computation as each calculation is depended on the other. If DPD iseddditompute
forces separately, the cost would be reduced drastically. Alsogquation for DPD
seems to be limited for microscopic to mesoscopic flows. IEystem is too small, the
flow field tends to segregate into sections within the systdnith requires further
studies. Modifications for DPD forces in a nano-structure camipeoved with further

study and the availability of experimental data.

Finally, the morphology of the actual DNA molecule is more caapd to be
simulated with Worm-like-Chain method as presented in the present work. dédisitic

models would be necessary to duplicate the physical properties of DNA.
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APPENDIX A

Matlab Functions and Usage

Matlab Usage

For the initial conditions, the initial position and initial velocitg doth created
as two separate functions. These two files contain positions and velocitlffoidalvall
and DNA particles. These functions are then called into the ngdjt svhich contains
the algorithm. The forces are written in three separtatetibn files. Each force is called
depending on which particle is being computed. When the fluid partickdsto N, is
being calculated, the force that contains the fluid-fluid, fluid-vead fluid-polymer
particle interactions are called. Similarly, when the polypaeticles,; =Ndtot+1 to Ntot,
is being calculated, the force that contains the polymer-fluid, potywat and polymer-
polymer particle interactions are called along with the fduretion that contains the
polymer spring forces. Finally, the script file is createtich contains the main
algorithm which is the modified velocity-Verlet. The modified boundargdition with

no-slip and modified periodic boundary condition is coded in the script as well.

The script and the function files are saved as *.m files. The command window and
workspace can be saved as *.mat file where the values calctiladvedh the simulation
can be retrieved. These values can also be transferred for the fitantd Excel if

needed.
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Each vector that is calculated as a matrix is computed in batidx direction.
For example, the velocity vectors v(1,i) and v(2,1) are in the x-jandirections

respectively.

Matlab Functions

Matlab has a lot of functions in-built into the software, but thesesame of the
few ones that are used in the code. The fundlobal makes the variables public which
can be used through each function called. Also different copies déctifg can be
created to do multiple simulations at the same with differersnpaters and same force
and initial condition *.m function files. The second function used ied¢&nd(n) which
generated a uniformly distributed random numbers in a n x n matn&. rkndom
numbers are between the open interval (0,1). This function is usezhéoate random
numbers for the Maxwell-Boltzmann velocity distribution for the boundanyditions,

initial velocity andg;;, parameter for the random force.
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APPENDIX B

Relation of parameter s and DNA migration

Table 4 Relation between Weighting Function and Migation Distance.

Beads 5.00 10.00 20.00
S 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00] 0.50 1.00 1.50 2.00
Time, t
0 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99
25 -8.80 -7.87 -11.08 -8.55) -8.12 -10.26 -9.83 -9.15 -10.28 -11.22 -9.22 -10.65]
50, -11.65 -8.52 -9.44 -8.37, -8.07 -10.22 -8.42 -8.88, -10.90 -11.07 -9.09 -8.40
75 -11.72 -10.23 -8.82 -10.73 -8.34 -7.74 -7.90 -7.64 -11.18 -8.29 -11.80 -6.24
100 -11.66 -11.90 -9.90 -11.03] -6.95 -8.30 -6.62 -9.12 -9.85 -7.65 -12.02 -8.39
125 -9.10 -12.91 -10.07 -9.47, -8.53 -6.18 -5.57 -8.91] -7.42 -6.96  -13.97 -9.46|
150 -9.24 -12.99 -11.32 -10.02 -9.08 -5.32 -4.62 -8.46) -7.11 -9.17 -11.52 -11.21
175 -10.68 -13.31 -10.38 -11.18 -7.90 -5.75 -4.71 -8.79 -8.57 -7.63 -11.87 -11.74
200 -10.83 -13.28 -10.13 -10.09 -7.16 -5.07 -4.61 -8.12 -9.58 -8.06 -11.76  -10.47
225 -12.51 -11.37 -8.92 -14.04] -7.67 -7.14 -5.14 -9.17| -9.61 -6.14 -10.19 -10.09
250 -12.47 -7.39 -9.05 -13.36 -7.83 -8.36 -4.86 -5.59 -12.39 -4.79 -9.26 -10.05
275 -13.36 -8.64 -8.08 -11.21] -7.69 -8.55 -3.35 -5.44 -11.35 -1.59 -10.34 -8.13
300 -13.76 -8.68 -8.44 -10.39 -9.17 -8.53 -4.72 -6.64] -11.79 -0.94 -11.51 -10.02
325 -13.21 -7.26 -8.84 -8.48 -9.17 -8.45 -5.38 -4.78| -10.95 -1.97 -11.37 -10.30
350 -13.60 -6.97 -8.95 -10.60 -9.82 -8.48 -6.07 -6.45 -10.03 -3.78 -11.60 -11.10
375 -12.59 -6.18 -10.81 -8.84 -7.59 -8.87 -7.79 -6.30 -10.64 -2.77 -11.59 -12.65
400 -12.68 -5.84 -11.33 -8.62, -6.54  -10.25 -10.27 -6.18] -11.67 -2.81 -10.43 -12.22
425 -10.92 -4.82 -12.51 -9.85] -6.18 -11.42 -10.58 -6.77| -11.74 -3.65 -11.63 -14.11
450 -11.47 -4.11 -12.11 -11.27 -6.51 -12.60 -10.46 -7.79 -10.37 -4.36 -9.01 -13.39
475 -12.61 -3.32 -11.13 -11.44 -7.33 -13.64 -10.27 -7.49 -9.93 -4.43 -9.23 -11.56
500 -12.14 -4.21 -10.84 -10.70 -7.05 -13.58 -11.23 -9.11] -8.67 -5.69 -9.18 -9.10
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Viscosity and Schmidt Number

Table 5 Properties of DPD System (Fan et al., 2006)

Properties Conventional (s=2) Modified (s=1/2)
Diffusivity, D 45*‘%2 3|:aﬁ.::
gt o
Viscosity ph | Imwr ph  S12mypr
e 71 a5n 3 T 751975
. 12 2
Schmidt number, Sc iy (Qmrypre) O (2mypr?)
2 T0B75KgT 27 1999K T
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APPENDIX C

Matlab Code

%%%0%%%%% %% %% %% %% %%

% Main Algorithm script

%%%0%%%%% %% %% %% %% %%

tic
clc
clear all

global kBT aff aww afw rc rc2 rcw s delt
global LXLYLX1LX2LY1LY2
global Nwall Nwall2 Q Qwall Ndtot Nptot Ntot

global velmxd

global A Qm1 nx ny nwallx nwally
global sigma gamma rho md g lambda
global afp apw Np Npb Iseg nyp leff L Ip kBTp

% PARAMETERS
%DPD constants

dm=2;

kBT=1;

sigma=3;
gamma=4.5;
lambda=0.65;
rho=4;
aff=(75*kBT)/rho;
aww=5.0;
afw=sqgrt(aff*aww);
rc=1;

rc2=rc’"2;

s=2;

ri=1.5;

delt=0.02;

tf=300;

ti=0.;

g=0.05;

M=1,

md=1;
velmxd=sqrt(2*kBT/md);

%

%Dimensions
%=kB*Temp

% =18.75
% =5
% =9.682

% Verlet Neighbour List Method r<rc<=rl

%time step
%Number of time steps (t>1350)
%inital time
%Driving force in x direction
% Mass density of DPD particles

% Maximum velocity of particles

% Initial Conditions
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%9%%0%%% %% % %% % %% % %% % %% % %% %% %% %% %
% DPD Fluid Particles
%%%0%%% %% % %% % %% % %% % %% % %% % %% %% % %

N=1458; % Number of particles

LX=12;

LY=30;

rcw=0.005*LY;

ndensdn=1; % Non-dimensional Number density of DPD
dc=0.4; % Diameter of Particle
ndensd=N/(LX*LY); % Number density of dpd particles
vdensd=ndensdn*pi/4; % Volumetric Fraction
Q=2*sqrt(N/2);

A=sgrt(1/ndensd); % Number density

Qm1=(Q-1);

nx=(LX)/Q;

ny=(LY)/Q;

LX1=LX/2;

LX2=-(LX/2);

LY1=LY/2;

LY2=(-LY/2),

bcl=(LY1)-rcw;

bc2=(LY2)+rcw;

bins=5;

tbins=bins+2; %Total Bins

nybins=(LY-(2*rcw))/bins;

nymat=[(LY2+rcw/2) (LY2+rcw+(nybins/2):nybins:LY1-r cw) (LYZ1-rew/2)];
bnbtm=rcw-(LY1); %Bottom bin near wall ny=0.005*LY

bntp=(LY1)-rcw; %Top bin near wall ny=0.005*LY

%9%%%%% %% %% %% %% %% %% % % %% %% %% %% %%
% Wall Setup
%9%6%6%%%%%%% %% %% %% % % % %% %% %% %% %% %0

Nwall=400; %Number of Wall particles
Nwall2=Nwall/2;

Qwall=sqgrt(Nwall);

nwallx=LX/Nwall2;

nwally=LY/Nwall2;

Ndtot=Nwall+N;

%0%%% %% %% % %% %% %% %% % %% %% % % %% %% % %
% DNA Particles
%0%%% %% %% % %% %% %% %% %% %% %% % %% %% % %

Np=1; % Number of strands

Npb=10; %Number of beads in the strand=81
leff=0.053; %effective length;

kBTp=1, %uJ kBTp=4.115*10"(-14)erg Erg=1*10"-7 J
L=67.2; %total length of the DNA strand 67.2 um
Ip=0.81,; % for Npb=81 and Ip=L/(Npb-1);

Iseg=0.4; % Initial distance between beads

mp=0.25; % g/cm3
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viscp=2.588;
nvp=1.235; %cP um/s

Nptot=Np*Npb; % Total number of beads in all strands

Ntot=Ndtot+Nptot;

afp=2; % repulsion force between fluid and polymer

apw=sqrt(2*aww);
nyp=LY/Np;

%lnitiate Arrays

newv=zeros(2,Ntot);

newF=zeros(2,Ntot); predv=zeros(2,Ntot);
vavgd2=zeros(1,tbins); vavgd=zeros(1,tbins);
vnum=zeros(1,tbins);

diffrpl=zeros(2,Nptot);

absrpl=zeros(1,Nptot);
constl=zeros(1,Nptot);

vecl=zeros(2,Nptot);

%Initiate Conditions
r=initposd(N,Nwall);
newr=initposd(N,Nwall);
v=initveld(N,Nwall,Np,Npb);
vnum(1,1:tbins)=0;
vavgd(1,1:tbins)=0;

F=0; Fp=0; Fps=0;

%lnitial Force

for i=1:1:N
F=F+force(r,v,i,N,Nwall);

end

for i=Ndtot+1:1:Ndtot+Nptot
Fp=Fp+forcefp(r,v,i,N,Nwall);
Fps=Fps+forcepp(r,i,N,Nwall);

end
F=F+Fp+Fps;

%Modified Velocity Verlet

for t=ti:delt:tf
t
for i=1:1:N
for k=1:2
if abs(r(2,i))<bcl
newr(k,i)=r(k,i)+delt*v(k,i)+(1/2)*delt
predv(k,i)=v(k,i)+ lambda*delt*(1/M)*F(
else
newr(k,i)=r(k,i)+delt*v(k,i);
predv(k,i)=v(k,i);
end
end

%Setting Periodic Boundary Conditions
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if newr(1,i)>=LX1
newr(1,i)=newr(1,i)-LX;
elseif  newr(1,i)<=LX2
newr(1,i)=newr(1,i)+LX;
end

end

% When particles are close to the wall particles
for i=1:1:N

if newr(2,i)>=bcl % Top wall
n=-1,
VRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*
vRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*
if abs(v(1,i))>=abs(vRx)
newv(1,i)=vRx;
else
newv(1,i)=v(1,i);
end
if abs(v(2,i))>=abs(vRy)
newv(2,i)=vRy+n*(sgrt((n*vRy)"2)-(n*vRy
if newv(2,i)>0
disp( 'positive at upper wall'
newv(2,i)=newv(2,i)*(-1);
end
else
newv(2,i)=n*abs(v(2,i));
end

newF=zeros(2,Ntot);
newr(2,i)=bcl;

elseif  newr(2,i)<=bc2 % Bottom wall

n=1;
vRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*
vRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*
if abs(v(1,i))>=abs(vVRx)
newv(1,i)=vRx;
else
newv(1,i)=v(1,i);
end
if abs(v(2,i))>=abs(vRy)
newv(2,i)=vRy+n*(sgrt((n*vRy)"2)-(n*vRy
if newv(2,i)<0
disp( 'negative at lower wall'
newv(2,i)=newv(2,i)*(-1);
end
else
newv(2,i)=n*abs(v(2,i));
end
newF=zeros(2,Ntot);
newr(2,i)=bc2;
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else
newF=force(newr,predv,i,N,Nwall);

newv(1,i)=v(1,i)+(1/2)*delt*(1/M)*(F(1,i)+n ewF(1,i));
newv(2,i)=v(2,i)+(1/2)*delt*(1/M)*(F(2,i)+n ewF(2,i));
end

% Velocity check to ensure velocity does not exceed
% maximum velocity velmxd

vavg=(newv(1,i))"2+(newv(2,i))"2;
if vavg > velmxd”2
vavg2=sqrt(velmxd~2/vavg);
newv(1,i)=newv(l,i)*vavg2;
newv(2,i)=newv(2,i)*vavg2;
end

r(1,i)=newr(1,i);
r(2,i)=newr(2,i);
v(1,))=newv(1,i);
v(2,))=newv(2,i);
F(1,i)=newF(1,i);
F(2,i))=newF(2,i);

end

%9%%%%% %% %% %% %% %% %% % % %% %% %% %% %%

% DNA Particle interaction

%9%%6%%%%%%% %% %% %% % % % %% %% %% %% %% %0
for i=Ndtot+1:1:Ndtot+Nptot

for k=1:2
if abs(r(2,i))<bcl
newr(k,i)=r(k,i)+delt*v(k,i)+(1/2)*delt A2*(LIM)*F(k,1);
predv(k,i)=v(k,i)+ lambda*delt*(1/M)*F( k,i);
else

newr(k,i)=r(k,i)+delt*v(k,i);
predv(k,i)=v(k,i);
end
end

% Left beads are recorded and the right beads are a djusted with
% length less than or equal to 0.01

diffrpl(1,)=newr(1,i)-newr(1,i-1);
if diffrpl(1,i) > LX1
diffrpl(1,i)=diffrpl(1,i)-LX;
elseif  diffrpl(1,i) < LX2
diffrpl(1,i)=LX - abs(diffrpl(1,i));
end

diffrpl(2,i)=newr(2,i)-newr(2,i-1);

absrpl(i)=sqrt((diffrpl(1,i)). 2+(diffrpl(2,i)).”2) ;
constl(i)=absrpl(i)/Ip;

vecl(1,)=diffrpl(1,i)./absrpl(i);
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vecl(2,i)=diffrpl(2,i)./absrpl(i);

% Constraint to prevent length of segments near fix
if i~=Ndtot+1
if abs(constl(i)) > 0.95
newr(1,i)=newr(1,i-1)+lp*vecl(1,i);
newr(2,i)=newr(2,i-1)+lp*vecl(2,i);
end
end

%Setting Periodic Boundary Conditions

if newr(1,i)>=LX1
newr(1,i)=newr(1,i)-LX;

elseif  newr(l,i)<=LX2
newr(1,i)=newr(1,i)+LX;

end

end

for i=Ndtot+1:1:Ndtot+Nptot

if newr(2,i)>=bcl % Top wall
n=-1,
VRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*
vRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*
newv(1,i)=vRx;
newv(2,i)=vRy+n*(sqgrt((n*vRy)"2)-(n*vRy));

if newv(2,i)>0

disp( 'positive at upper wall' )
newv(2,i)=newv(2,i)*(-1);
end
newF=zeros(2,Ntot); %function Force
newr(2,i)=0;
elseif  newr(2,i)<=bc2 % Bottom wall
n=1,

vRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*

VRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*

newv(1,i)=vRx;

newv(2,i)=vRy+n*(sgrt((n*vRy)"2)-(n*vRy));
if newv(2,i)<0

disp( 'negative at lower wall' )
newv(2,i)=newv(2,i)*(-1);
end
newF=zeros(2,Ntot); %function Force
newr(2,i)=0;
else

newF=forcefp(newr,predv,i,N,Nwall)+forcepp(
newv(1,i)=v(1,i)+(1/2)*delt*(1L/M)*(F(1,i)+n
newv(2,i)=v(2,i)+(1/2)*delt*(1/M)*(F(2,i)+n
end
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vavg=(newv(1,i))"2+(newv(2,i))"2;
if vavg > velmxd”2
vavg2=sqrt(velmxd~2/vavg);
newv(1,i)=newv(l,i)*vavg2;
newv(2,i)=newv(2,i)*vavg2;
end

r(1,i)=newr(1,i);
r(2,i)=newr(2,i);
v(1,))=newv(1,i);
v(2,))=newv(2,i);
F(1,i)=newF(1,i);
F(2,i))=newF(2,i);

End

leastx=r(1,Ndtot+1);

for j=0:1:Npb-2
if leastx<=r(1,Ndtot+2+j)
leastx=leastx;
else
leastx=r(1,Ndtot+2+j);
end

end

mostx=r(1,Ndtot+1);

for k=0:1:Npb-2
if mostx>=r(1,Ndtot+2+k)
mostx=mostx;
else
mostx=r(1,Ndtot+2+k);
end

end

extx=mostx-leastx;
if abs(extx)>LX1
extx=mostx+leastx;

%writing value file

end

fid = fopen( ‘'ext.txt' , 'a ); % Opening output file
fprintf(fid, '%-07.4f %-07.4\r\n'

fclose(fid); %Closing output file

ry=r(2,Ndtot+1:Ntot);

fid = fopen( 'tvsrneg13.txt' , a )
fprintf(fid, '%-4.2\r\n’ 1)
fprintf(fid, '%-07.4\r\n’ y);
fclose(fid);

%%%%% %% %% %% %% % %% %% %% %% %
% PLOTS
%%%%% %% %% %% %% %% % %% %% %% %
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% Plotting the particle movement through the channe Is
figure(1)

plot(r(1,N+1:N+Nwall),r(2,N+1:N+Nwall), '0' , 'LineWidth' 0.2, ..
'‘MarkerSize' ,5, 'MarkerEdgeColor’ , 'k' , 'MarkerFaceColor' , b )
hold on

% whitebg(‘white")

%  set(gcf,'Color',[0.5,1,0.6])

plot(r(1,1:N),r(2,1:N), '0' , 'MarkerSize' 6, ..
'MarkerEdgeColor' , 'k' , 'MarkerFaceColor' YY)

% plot(r(1,200),r(2,200),>",'MarkerSize',6, ...

% 'MarkerEdgeColor','k','MarkerFaceColor’,'r")

plot(r(1,Ndtot+1:Ntot),r(2,Ndtot+1:Ntot), -ok' , 'MarkerSize' 5,
'‘MarkerEdgeColor' , 'k' , 'MarkerFaceColor' )

text(r(1,Ndtot+1),r(2,Ndtot+1),num2str(Ndtot+1))

text(r(1,Ndtot+2),r(2,Ndtot+2),num2str(Ndtot+2))

text(r(1,Ndtot+3),r(2,Ndtot+3),num2str(Ndtot+3))

text(r(1,Ndtot+4),r(2,Ndtot+4),num2str(Ndtot+4))

text(r(1,Ndtot+5),r(2,Ndtot+5),num2str(Ndtot+5))

% axis tight

axis([-LX/2 LX/2 -LY/2 LY/2])

drawnow

hold off

% Plotting the averaged velocity in each bin over a set time step
for i=1:1:N
if r(2,i))<=bnbtm %&& r(2,i)>=(LY2)
vhum(1l)=vnum(1)+1,;
vavgd(1)=vavgd(1)+v(1,i);
elseif  r(2,i)>=bntp %&& r(2,)<=(LY1)
vhum(tbins)=vnum(tbins)+1;
vavgd(tbins)=vavgd(tbins)+v(1,i);
end
end
for p=1:1:bins
sect=((p)*nybins)-(LY1)+rcw;
sect2=((p-1)*nybins)-(LY1)+rcw;
for i=1:1:N
if r(2,i)<=sect && r(2,i)>sect2
vhum(p+1)=vnum(p+1)+1;
vavgd(p+1)=vavgd(p+1)+v(1,i);
end
end

end

for tm=1:1:10
if t==(tf/10)*tm
vavgd2(:)=vavgd(:)./vnum(:);
vavgd2(isnan(vavgd2))=0;
vtot=sum(vavgd2,2);
vnorm=vtot/tbins;
vovnrm(1,:)=vavgd2(:)/vnorm;

figure(4);
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plot(nymat(:),vovnrm(1,:), o' , 'MarkerSize' 6, ..
'MarkerEdgeColor’ , 'k' , 'MarkerFaceColor' k)

xlabel( 'BINS' )

ylabel( 'VELOCITY /AVERAGE VELOCITY" )

axis tight

% axis([-15 15 -1 3])

set(gca, 'XMinorTick' ,'on" , "YMinorTick' ,'on' )

drawnow

vnormtxt=[nymat; vovnrm];

% open the file with write permission

fid = fopen('posnorml.txt', ‘a’); % Opening output file

fprintf(fid,' \r\n");

fprintf(fid,'%-4.2f\r\n",t);

fprintf(fid,'%-07.4f %-07.4f\r\n',vnormtxt); %writing to output file
fclose(fid); %Closing output file

else
continue
end
end

if t<=10
vnum(1,1:tbins)=0;
vavgd(1,1:tbins)=0;
end

end

figure(3);

plot(nymat(:),vavgd2(:), "k' , 'LineWidth' ,2)
xlabel( 'BINS'

ylabel( 'AVERAGE VELOCITY")

axis tight

% axis([-1.5 1.5 -1.5 1.5])

set(gca, 'XMinorTick' ,'on" , "YMinorTick' ,'on' )

toc

%%%%%%0%0%%%%%%%%% %%
% Initial Positions
%%%%%%0%%%%%%%%%% %%
function [ r]=initposd( N,Nwall )

global LXLY Np Npb Ntot
global Q Qm1 nx ny nwallx Nwall2
global LX2LY2 Iseg nyp

%lnitiate Arrays
ri=zeros(2,Q); r=zeros(2,Ntot);
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%69%6%%%%%%%%6%%%% % %% % % % % %% %% %% %% %
% Fluid Particle Setup
%9%%6%6%6%6%%%%% %% %% % % % % %% %% %% %% %% %

i=0;

for s=0:2:Qm1l-1
ri(1,s+1)=(s*nx)-(LX/2)+0.05;

if ri(1,5+1)>(LX/2)
break
end

for p=0:2:Q0m1-1
ri(2,p+1)=(p*ny)-(LY/2)+0.05;

it ri(2,p+1)>(LY/2)

break
end

i=i+1;

r(1,i)=ri(1,s+1); % X-Position of the particles

r(2,i)=ri(2,p+1); % Y-Position of the particles

end

end
for s=1:2:Qml

ri(1,s+1)=(s*nx)-(LX/2)+0.05+(nx/20);
if ri(1,5+1)>(LX/2)
break
end

for p=1:2:0m1
ri(2,p+1)=(p*ny)-(LY/2)+0.05+(ny/8);

it ri(2,p+1)>(LY/2)

break
end
i=i+1;
r(1,i)=ri(1,s+1); % X-Position of the particles
r(2,i)=ri(2,p+1); % Y-Position of the particles
end

end

%9%%%%% %% %% %% %% %% %% % % %% %% %% %% %%
% Wall Setup
%9%6%6%%%%%%% %% %% %% % % % %% %% %% %% %% %0
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for i=N+1:1:(N+Nwall2)
r(1,i)= (i*nwallx)-(LX/2)+0.001-((N+1)*nwallx);
if  r(1,i)>(LX/2)
break
end
r(2,i)=-(LY/2);
if  r(2,))>(LY/2)
break
end
end

for i=N+1:1:(N+Nwall2)
r(1,Nwall2+i)= (i*nwallx)-(LX/2)+0.001-((N+1)*n wallx);
if r(1,Nwall2+i)>(LX/2)
break
end
r(2,Nwall2+i)=(LY/2);
if r(2,Nwall2+i)>(LY/2)
break
end
end

%%%%% %% %% %% %% % %% %% %% %% % %% %% %% %
% DNA Setup
%%% %% %% %% %% %% % %% %% %% %% % %% %% %% %

i=N+Nwall;
rpi(1,1)=LX2;

for p=1:1:Np
rpi(2,p+1)=LY2+((p-1)*nyp)+(nyp/2);

for s=1:1:Npb
rpi(1,s+1)=rpi(1,s)+lseg;

if rpi(1,s+1)>(LX/2)

break
end
i=i+1;
r(1,i)=rpi(1,s+1); % X-Position of the particles
r(2,i)=rpi(2,p+1); % Y-Position of the particles
end
end
end

%%%% %% %% %% %% %% %% %%
% Initial Velocity
%%%% %% %% %% %% %% %% %%

function [ v]=initveld( N,Nwall,Np,Npb)
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global kBT md Nptot Ndtot Ntot
global velmxd

%lnitiate Arrays
v=zeros(2,Ntot);

for i=1:1:N
v(1,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r
v(2,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r

% Velocity check to ensure velocity does not exceed
vavg=(v(1,))"2+(v(2,))"2;

if vavg > velmxd

vavg=sqrt(velmxd/vavg);

v(1,i)=v(1,i)*vavg;

v(2,i)=v(2,i)*vavg;

end
end

% To set Total Momentum equals Zero
momxd=0;
momyd=0;

for i=1:1:N
momxd=momxd+v(1,i);
momyd=momyd+v(2,i);
end

momxd=momxd/N;
momyd=momyd/N;

for i=1:1:N
v(1,i)=v(1,i)-momxd;
v(2,i)=v(2,i)-momyd;
end

%0%%%%%0%%% %% %% %% %% %%
% Wall Velocity

%0%%% %% %% %% % %% %% %% %%
for i=N+1:1:Ndtot

v(1,i)=0;
v(2,i)=0;
end

%9%%6%%%%%%%%% %% %% %% %
% DNA Velocity
%%%%%%% %% %% %% %% %% %%
for i=Ndtot+1:1:Ndtot+Nptot

v(1,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r
v(2,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r
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% Velocity check to ensure velocity does not exceed
vavg=(v(1,))"2+(v(2,))"2;

if vavg > velmxd

vavg=sqrt(velmxd/vavg);

v(1,i)=v(1,i)*vavg;

v(2,i)=v(2,i)*vavg;

end
end

%0%%0%%0%% %% %% %% %% %% %
% DPD Fluid Forces
20%%0%%0%% %% %% %% %% %% %

function [ F]=force(r,v,i,N,Nwall)

global kBT aff afw afp rc rc2 s delt
global LX LX1LX2

global Ndtot Nptot Ntot

global sigma gamma g

%lnitiate Arrays
diffr=zeros(2,N); diffv=zeros(2,N);

absr=zeros(1,N); absr2=zeros(1,N); absv=zeros(1,N);

diffrvec=zeros(2,N); diffvvec=zeros(2,N);
FCon=zeros(2,N); FDis=zeros(2,N);
FRan=zeros(2,N);

F=zeros(2,Ntot);

dotrv=zeros(2,N);

Fint=zeros(2,N); Fintw=zeros(2,N); Fintp=zeros(2,N)
Fext(1,1:N)=g;

Fext(2,1:N)=0;

Fint(1,i)=0;
Fint(2,i)=0;
Fintw(1,i)=0;
Fintw(2,i)=0;
Fintp(1,i)=0;
Fintp(2,i)=0;

for j=1:1:N
if j==i

continue
end

%Distance between two particles with x and v compon

diffr(1,i)=r(1,i)-r(1,j);

max velocity velmxd

ents

if diffr(1,i) > LX1 % Periodic Boundary Conditions

diffr(1,i)=diffr(1,i)-LX;
elseif  diffr(1,i) < LX2

diffr(1,i)=LX - abs(diffr(1,i));
end
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diffr(2,i)=r(2,i)-r(2,j);
if abs(diffr(1,i))>rc

continue
end
if abs(diffr(2,i))>rc
continue
end

absr(i)=sqrt((diffr(1,i)).~2+(diffr(2,i))."2);
absr2(i)=(absr(i))."2;
if absr2(i)>rc2
continue
end

diffrvec(1,i)=diffr(1,i)./absr(i);
diffrvec(2,i)=diffr(2,i)./absr(i);

%Velocity between two particles with x and v compon ents
diffv(1,i)=v(1,i)-v(1,));
diffv(2,i)=v(2,i)-v(2,));
absv(i)=sqrt((diffv(1,i)).A2+(diffv(2,i))."2);
diffvvec(l,i)=diffv(1,i)./absv(i);
diffvvec(2,i)=diffv(2,i)./absv(i);

%Conservative Force- Repulsive Force
FCon(1,i)=aff*(1-absr(i)).*diffrvec(1,i);
FCon(2,i)=aff*(1-absr(i)).*diffrvec(2,i);

if abs(absr(i))<=rc
wD=(1-absr(i)/rc)"s;
else

wD=0;

end

wR=sqrt(wD);
theta= sqrt((-2)*log(rand))*cos(2*pi*rand);

if theta>6
theta=sign(theta)*6;
end

%Dissipative Force
dotrv(i)=(diffrvec(,i).*diffv(1,i))+(diffrvec( 2,i).xdiffv(2,1));
FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);
FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);

%Random Force
FRan(1,i)=sigma*wR*theta*diffrvec(1,i);
FRan(2,i)=sigma*wR*theta*diffrvec(2,i);

%Internal Forces

Fint(1,i)=Fint(1,i)+(FCon(1,i)+FDis(1,i)+FRan(1 D);
Fint(2,i)=Fint(2,i)+(FCon(2,i)+FDis(2,i)+FRan(2 A);
end
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%0%%%%%%0%% %% %% %% %% %% %% % %
% Wall Particles
%%%%%%0%%% %% %% %% % %% %% %% %

for j=N+1:1:N+Nwall

%Distance between two particles with x and v compon ents
diffr(1,i)=r(1,i)-r(1,));
if diffr(1,i) > LX1 % Periodic Boundary Conditions

diffr(1,i)=diffr(1,i)-LX;

elseif  diffr(1,i) < LX2
diffr(1,i)=LX - abs(diffr(1,i));
end

diffr(2,i)=r(2,i)-r(2,j);
if abs(diffr(1,i))>rc
continue

end

if abs(diffr(2,i))>rc
continue
end

absr(i)=sqrt((diffr(1,i)).2+(diffr(2,i))."2);
absr2(i)=(absr(i))."2;
if absr2(i)>rc2
continue
end

diffrvec(1,i)=diffr(1,i)./absr(i);
diffrvec(2,i)=diffr(2,i)./absr(i);

%Velocity between two particles with x and v compon ents
diffv(1,i)=v(1,)-v(1,));
diffv(2,i)=v(2,i)-v(2,));
absv(i)=sqrt((diffv(1,i)).A2+(diffv(2,i))."2);
diffvvec(1,i)=diffv(1,i)./absv(i);
diffvvec(2,i)=diffv(2,i)./absv(i);

%Conservative Force- Repulsive Force
FCon(1,i)=afw*(1-absr(i)).*diffrvec(1,i);
FCon(2,i)=afw*(1-absr(i)).*diffrvec(2,i);

if abs(absr(i))<=rc
wD=(1-absr(i)/rc)"s;
else

wD=0;

end

%Weight Functions and Coefficients of FD and FR

wR=sqrt(wD);
theta= sqrt((-2)*log(rand))*cos(2*pi*rand);
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if theta>6
theta=sign(theta)*6;
end

%Dissipative Force
dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec( 2,i).*diffv(2,i));
FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);
FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);

%Random Force
FRan(1,i)=sigma*wR*theta*diffrvec(1,i);
FRan(2,i)=sigma*wR*theta*diffrvec(2,i);

%Internal Forces

Fintw(1,i)=Fintw(1,i)+(FCon(1,i)+FDis(1,i)+FRan a.,n);
Fintw(2,i)=Fintw(2,i)+(FCon(2,i)+FDis(2,i)+FRan (2,0);
end

%0%%%%%0%% %% %% %% %% %% %% % %
% DNA Particles
%0%%%%%0%% %% %% %% %% % %% %% %

for j=Ndtot+1:1:Ndtot+Nptot
diffr(1,i)=r(1,i)-r(1,));

if diffr(1,i) > LX1 % Periodic Boundary Conditions
diffr(1,i)=diffr(1,i)-LX;
elseif  diffr(1,i) < LX2
diffr(1,i)=LX - abs(diffr(1,i));
end
diffr(2,i)=r(2,i)-r(2,j);
if abs(diffr(1,i))>rc % Setting neighboring particles
continue
end
if abs(diffr(2,i))>rc
continue
end
absr(i)=sqrt((diffr(1,i)).~2+(diffr(2,i))."2);
absr2(i)=(absr(i))."2;
if absr2(i)>rc2
continue
end
diffrvec(1,i)=diffr(1,i)./absr(i);
diffrvec(2,i)=diffr(2,i)./absr(i);

%Velocity between two particles with x and v compon ents
diffv(1,i)=v(1,i)-v(1,));
diffv(2,)=v(2,i)-v(2,));
absv(i)=sqrt((diffv(1,i)).~2+(diffv(2,i))."2);
diffvvec(1,i)=diffv(1,i)./absv(i);
diffvvec(2,i)=diffv(2,i)./absv(i);
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%Conservative Force- Repulsive Force
FCon(1,i)=afp*(1-absr(i)).*diffrvec(1,i);
FCon(2,i)=afp*(1-absr(i)).*diffrvec(2,i);

if abs(absr(i))<=rc
wD=(1-absr(i)/rc)"s;
else

wD=0;

end

wR=sqrt(wD);
gamma=(sigma”2)/(2*kBT);
theta= sqrt((-2)*log(rand))*cos(2*pi*rand);

if theta>6
theta=sign(theta)*6;
end

%Dissipative Force
dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec( 2,i).xdiffv(2,1));
FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);
FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);

%Random Force
FRan(1,i)=sigma*wR*theta*diffrvec(1,);
FRan(2,i)=sigma*wR*theta*diffrvec(2,i);

%lInternal Polymer Forces

Fintp(1,i)=Fintp(1,i)+FCon(1,i)+FDis(1,i)+FRan( 1,i)*delt”(-0.5);
Fintp(2,i)=Fintp(2,i)+FCon(2,i)+FDis(2,i)+FRan( 2,i)*delt*(-0.5);
end

%%%%% %% %% %% % % %% % %% %% %% %% %% %% %%
% Total Forces on Particles

%%%% %% %% % %% % %% %% %% % % %% %% %% %% %%
F(1,i)=Fint(1,i)+Fext(1,i)+Fintw(1,i)+Fintp(1,i);
F(2,i)=Fint(2,i)+Fext(2,i)+Fintw(2,))+Fintp(2,i);

end

%%%% %% %% % %% % %% %% %%
% DPD DNA or Polymer Forces
%%%% %% %% % %% % %% %% %%

function  [Fp ] = forcefp(r,v,i,N,Nwall)

global LXLX1LX2

global kBTrcrc2s

global Ndtot Nptot Ntot
global sigma gamma g delt
global afp apw
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%lnitiate Arrays

diffr=zeros(2,Ntot); diffv=zeros(2,Ntot);
absr=zeros(1,Ntot); absr2=zeros(1,Ntot); absv=zeros
diffrvec=zeros(2,Ntot); diffvvec=zeros(2,Ntot);
FCon=zeros(2,Ntot); FDis=zeros(2,Ntot);
FRan=zeros(2,Ntot);

Fp=zeros(2,Ntot);

dotrv=zeros(2,Ntot);

Fint(1,i)=0;
Fint(2,i)=0;
Fintw(1,i)=0;
Fintw(2,i)=0;
Fintp(1,i)=0;
Fintp(2,i)=0;

%0%%% %% %% %% %% %% %% %% %%
% Fluid Particles
%0%%%%%0%% %% %% %% %% %% %%

for j=1:.1:N

%Distance between two particles with x and v compon

diffr(1,i)=r(1,i)-r(1,j);
if diffr(1,i) > LX1
diffr(1,i)=diffr(1,i)-LX;
elseif  diffr(1,i) < LX2
diffr(1,i)=LX - abs(diffr(1,i));
end

diffr(2,i)=r(2,)-r(2,));
if abs(diffr(1,i))>rc
continue
end

if abs(diffr(2,i))>rc
continue
end

absr(i)=sqrt((diffr(1,i)).~2+(diffr(2,i))."2);
absr2(i)=(absr(i))."2;
if absr2(i)>rc2
continue
end

diffrvec(1,i)=diffr(1,i)./absr(i);
diffrvec(2,i)=diffr(2,i)./absr(i);

%Velocity between two particles with x and v compon

diffv(L,i)=v(L,i)-v(L,)):
diffv(2,i)=v(2,1)-v(2,)):
absv(i)=sqrt((diffv(L,i)) A2+(diffv(2,i).72);
diffvvec(L,i)=diffv(L,i)./absv(i);
diffvvec(2,i)=diffv(2,i)./absv(i);
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FCon(1,i)=afp*(1-absr(i)).*diffrvec(1,i);
FCon(2,i)=afp*(1-absr(i)).*diffrvec(2,i);

if abs(absr(i))<=rc
wD=(1-absr(i)/rc)"s;
else

wD=0;

end

wR=sqrt(wD);
theta= sqrt((-2)*log(rand))*cos(2*pi*rand);
if theta>6
theta=sign(theta)*6;
end

dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec( 2,i).*diffv(2,));
FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);
FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);

FRan(1,i)=sigma*wR*theta*diffrvec(1,i);
FRan(2,i)=sigma*wR*theta*diffrvec(2,i);

Fint(1,i)=Fint(1,i)+(FCon(1,i)+FDis(1,i)+FRan(1 D);
Fint(2,i)=Fint(2,i)+(FCon(2,i)+FDis(2,i)+FRan(2 A);
end

%0%%%%%% %% %% %% %% %% %% %% % %
% Wall Particles
%%%%%%0%% %% %% %% %% %% %% %% %

for j=N+1:1:N+Nwall

%Distance between two particles with x and v compon ents
diffr(1,i)=r(1,i)-r(1,));

if diffr(1,i) > LX1

diffr(1,i)= diffr(1,i)-LX;

elseif  diffr(1,i) < LX2

diffr(1,i)=LX - abs(diffr(1,i));

end

diffr(2,i)=r(2,i)-r(2,));
if abs(diffr(1,i))>rc
continue
end

if abs(diffr(2,i))>rc
continue
end

absr(i)=sqrt((diffr(1,i)).~2+(diffr(2,i)).~2);
absr2(i)=(absr(i))."2;
if absr2(i)>rc2
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continue
end

diffrvec(1,i)=diffr(1,i)./absr(i);
diffrvec(2,i)=diffr(2,i)./absr(i);

%Velocity between two particles with x and v compon ents
diffv(1,i)=v(1,i)-v(1,));
diffv(2,i)=v(2,i)-v(2,));
absv(i)=sqrt((diffv(1,i)).A2+(diffv(2,i))."2);
diffvvec(1,i)=diffv(1,i)./absv(i);
diffvvec(2,i)=diffv(2,i)./absv(i);

FCon(1,i)=apw*(1-absr(i)).*diffrvec(1,i);
FCon(2,i)=apw*(1-absr(i)).*diffrvec(2,i);
if abs(absr(i))<=rc
wD=(1-absr(i)/rc)"s;
else
wD=0;
end

wR=sqrt(wD);
theta= sqrt((-2)*log(rand))*cos(2*pi*rand);
if theta>6
theta=sign(theta)*6;
end

dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec( 2,i).*diffv(2,i));
FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);
FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);
FRan(1,i)=sigma*wR*theta*diffrvec(1,i);

FRan(2,i)=sigma*wR*theta*diffrvec(2,i);

Fintw(1,i)=Fintw(1,i)+(FCon(1,i)+FDis(1,i)+FRan a.,n);
Fintw(2,i)=Fintw(2,i)+(FCon(2,i)+FDis(2,i)+FRan (2,0);
end

%0%%%%%0%% %% %% %% %% %% %% % %
% DNA Particles
%0%%%% %% % %% %% %% %% % %% %% %

for j=Ndtot+1:1:Ndtot+Nptot

if j==i
continue
end

%Distance between two particles with x and v compon ents
diffr(1,i)=r(1,i)-r(1,j);

if diffr(1,i) > LX1

diffr(1,i)=diffr(1,i)-LX;

elseif  diffr(1,i) < LX2

diffr(1,i)=LX - abs(diffr(1,i));

end
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diffr(2,i)=r(2,i)-r(2,j);
if abs(diffr(1,i))>rc
continue
end
if abs(diffr(2,i))>rc
continue
end

absr(i)=sqrt((diffr(1,i))*2+(diffr(2,i))*2);
diffrvec(1,i)=diffr(1,i)./absr(i);
diffrvec(2,i)=diffr(2,i)./absr(i);

%Velocity between two particles with x and v compon
diffv(1,i)=v(1,i)-v(1,));
diffv(2,i)=v(2,i)-v(2,));
absv(i)=sgrt((diffv(1,i))*2+(diffv(2,i))"2);
diffvvec(1,i)=diffv(1,i)./absv(i);
diffvvec(2,i)=diffv(2,i)./absv(i);

%Conservative Force- Repulsive Force
if abs(i-)>4

app=2;

else

app=0;

end

FCon(1,i)=app*(1-absr(i))*diffrvec(1,i);
FCon(2,i)=app*(1-absr(i))*diffrvec(2,i);

if abs(absr(i))<=rc
wD=(1-absr(i)/rc)"s;
else

wD=0;

end

wR=sqrt(wD);
theta= sqrt((-2)*log(rand))*cos(2*pi*rand);
if theta>6
theta=sign(theta)*6;
end

FDis(1,i)=-gamma*wD*dot(diffrvec(1,i),diffv(1,i
FDis(2,i)=-gamma*wD*dot(diffrvec(2,i),diffv(2,i
FRan(1,i)=sigma*wR*theta*diffrvec(1,i);
FRan(2,i)=sigma*wR*theta*diffrvec(2,i);
Fintp(1,i)=Fintp(1,i)+FCon(1,i)+FDis(1,i)+FRan(
Fintp(2,i)=Fintp(2,i)+FCon(2,i)+FDis(2,i)+FRan(

end

%0%%%% %% %% %% %% %% %% % %% %% % % %% %% % %
% Total Forces on Patrticles
%%%%% %% %% %% %% %% % %% %% %% %% % %% %% %
Fext(1,i)=g;
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Fext(2,i)=0;
Fp(1,)=Fint(1,i)+Fext(1,)+Fintw(1,)+Fintp(1,i);
Fp(2,i)=Fint(2,i)+Fext(2,i)+Fintw(2,i)+Fintp(2,i);
end

%%%% %% %% % %% % %% %% %%
% DNA or Polymer Spring Forces
%%%% %% %% % %% % %% %% %%

function [ Fps] = forcepp( r,i,N,Nwall )

global LX LX1 LX2 Ndtot Ntot
global Nptot leff Ip kBTp

%lnitializing Array setup
FS=zeros(2,Ntot);
Fps=zeros(2,Ntot);
Fpint=zeros(2,Ntot);
diffrp=zeros(2,Ntot);
absrp=zeros(1,Ntot);
diffrvecp=zeros(2,Ntot);

Fpint(1,i)=0;
Fpint(2,i)=0;

for j=i-1:2:i+1

if i==Ndtot+1
=i+l

elseif  i==Ndtot+Nptot
j=i-1;

end

diffrp(1,i)=r(1,i)-r(1.j);

if diffrp(1,i) > LX1
diffrp(1,i)=LX - diffrp(1,i);

elseif  diffrp(1,i) < LX2
diffrp(1,i)=abs(diffrp(1,i))-LX;

end

diffrp(2,i)=r(2,i)-r(2,));
absrp(i)=sqrt((diffrp(1,i))*2+(diffrp(2,i))*2);
diffrvecp(1,i)=diffrp(1,i)./absrp(i);
diffrvecp(2,i)=diffrp(2,i)./absrp(i);

%Spring Force between beads in a strand
FS(1,i)=((-kBTp)/(4*leff))*(1-(absrp(i)/Ip)*(-2)+(4
1)*diffrvecp(1,i);
FS(2,i)=((-kBTp)/(4*leff))*(1-(absrp(i)/Ip) (-2)+(4
1)*diffrvecp(2,i);

Fpint(1,i))=FS(1,i)+Fpint(1,i);
Fpint(2,i)=FS(2,i)+Fpint(2,i);
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if j==i+l
break

elseif  i==Ndtot+Nptot
break

end

end
Fps(1,i)=Fpint(1,i);

Fps(2,i)=Fpint(2,i);
end
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