

SIMULATION OF THE FLOW OF A SINGLE

STRANDED DNA IN A CHANNEL USING

DISSIPATIVE PARTICLE DYNAMICS

 By

 SAUMYA SUSAN SIMON

 Bachelor of Science in Mechanical and Aerospace

Engineering

 Oklahoma State University

 Stillwater, Oklahoma

 2009

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 MASTER OF SCIENCE

 December, 2011

ii

 SIMULATION OF THE FLOW OF A SINGLE

STRANDED DNA IN A CHANNEL USING

DISSIPATIVE PARTICLE DYNAMICS

 Thesis Approved:

 Dr. Khaled A. Sallam

Thesis Adviser

Dr. Frank W. Chambers

Dr. Wei Yin

Dr. Sheryl A. Tucker

 Dean of the Graduate College

iii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION .. 1

1.1 General Statement of the Problem ... 1

1.1.1 Background ... 1

1.1.2 Problem Statement .. 3

1.2 Previous Studies ... 3

1.2.1 Molecular Dynamics (MD) ... 4

1.2.2 Monte Carlo (MC) .. 5

1.2.3 Brownian Dynamics.. 7

1.2.4 Lattice Boltzmann ... 8

1.2.5 Dissipative Particle Dynamics .. 9

1.2.6 Simulation of a Single Strand DNA.. 10

1.3 Specific Objectives ... 13

1.4 Organization of the Thesis ... 13

2. COMPUTATIONAL METHODS .. 16

2.1 Dissipative Particle Simulation Theory ... 16

2.2 DPD Integration Methods .. 20

2.2.1 Euler’s Method.. 21

2.2.2 Verlet-type Algorithm ... 21

2.2.3 Velocity-Verlet Algorithm .. 22

2.2.4 Modified Velocity-Verlet for DPD ... 22

2.3 Initial Conditions .. 24

2.3.1 Initial Positions ... 24

2.3.2 Initial Velocities .. 26

2.4 Boundary conditions .. 26

2.5 Computational Efficiency .. 33

iv

2.5.1 Verlet or Neighbor List ... 34

2.5.2 Cell List ... 34

2.5.3 Cutoff Radius .. 35

2.6 DNA Modeling ... 36

2.6.1 Polymer Modeling Techniques ... 37

2.7 Simulation Approach and Requirements.. 40

2.7.1 Approach to Programming .. 40

2.7.2 Requirements .. 41

2.7.3 Parallel Computing ... 41

3. RESULTS AND DISCUSSION ... 43

3.1 Initialization of the Simulation ... 43

3.1.1 Initializations... 44

3.1.2 Modified Boundary Conditions .. 45

3.1.3 Particle Forces ... 47

3.1.4 Integration ... 48

3.2 Simulation Parameters.. 49

3.3 DPD Fluid Flow in a Channel .. 51

3.3.1 Simulating Channel Flow using Standard DPD ... 52

3.3.2 The Effect of the ‘s’ Parameter ... 53

3.3.3 The Effect of the Channel Size ... 55

3.3.4 The Effect of the Number Density .. 58

3.4 Simulating a Single DNA Strand in DPD Flow ... 59

3.4.1 DNA Migration in a Channel Flow .. 59

3.4.2 Effect of the Number of Beads on DNA Migration 61

3.4.3 Extension with Respect to Time ... 67

3.5 Remarks and Discussion .. 71

4. CONCLUSIONS AND RECOMMENDATIONS ... 73

4.1 Summary and Conclusions ... 73

4.2 Recommendations For Future Work .. 75

v

REFERENCES ... 77

APPENDICES .. 80

APPENDIX A ... 81

APPENDIX B ... 83

APPENDIX C ... 85

vi

LIST OF TABLES

Table Page

Table 1 DPD Fluid Parameters. .. 49

Table 2 DPD DNA Parameters. .. 50

Table 3 Algorithm Parameters. ... 50

Table 4 Relation between Weighting Function and Migration Distance. 83

Table 5 Properties of DPD System (Fan et al., 2006) ... 84

vii

LIST OF FIGURES

Figure Page

Figure 1 Lattice Boltzmann 2-D Lattice Model (D2Q9) (Satoh, 2011). 8

Figure 2 Worm-like-chain DNA Strands (Underhill & Doyle, 2004) 15

Figure 3 Simulation grid ... 15

Figure 4 Configuration of Initial Condition of 2-D simulations (Satoh, 2011). 25

Figure 5 Periodic Boundary Condition in x- and y- directions (Satoh, 2011). 28

Figure 6 Simple Shear Flow in Couette Flow (Satoh, 2011). ... 29

Figure 7 Lees- Edwards Boundary Condition for Shear Flow (Satoh, 2011). 31

Figure 8 Lattice Wall (Arya, Chang, & Maginn, 2003). ... 32

Figure 9 Cell List Method to Group Neighboring Particles (Satoh, 2011). 35

Figure 10 Polymer particles in DPD Solvent Particles (Pivkin et al., 2010). 37

Figure 11 Initial Setup of Fluid, Wall and DNA Particles. ... 44

Figure 12 No-Slip Region near the Top Wall. .. 47

Figure 13 Average velocities per Bin with the Modified Parameter s. 52

Figure 14 Poiseuille Flow using Standard DPD Fluid. ... 53

Figure 15 Poiseuille flow with Modified DPD Parameter 's'. ... 55

Figure 16 Poiseuille Flow with Larger Simulation Region. ... 56

Figure 17 Simulation of System with LY=3. .. 57

viii

Figure 18 Simulation of System with LY=6. .. 57

Figure 19 Poiseuille Flow with Number Density =20. ... 58

Figure 20 Migration of DNA Strands from Different Positions at s=2. 60

Figure 21 Migration of DNA Strands with Different Number of Beads at s=2. 62

Figure 22 Migration of DNA Strands with Different Number of Beads at s=1.5. 63

Figure 23 Migration of DNA Strands with Different Number of Beads at s=1. 63

Figure 24 Migration of DNA Strands with Different Number of Beads at s=0.5. 64

Figure 25 Migration of Strand with Nbead = 5 for Varying s. ... 65

Figure 26 Migration of Strands with Nbead = 10 with Varying s. 66

Figure 27 Migration of Strand with Nbead = 20 for Varying s. 66

Figure 28 DNA Folding at y=0. .. 67

Figure 29 DNA Stretching at y= -10. ... 68

Figure 30 Fractional Extension with Respect to Time (Chun Cheng et al., 2008). 69

Figure 31 Fractional Extension vs. DPD Time and Exponential Decay........................... 69

Figure 32 Fractional Extension at External Force, g=0.1. .. 70

Figure 33 Fractional Extension with External Force, g=10. ... 71

1

CHAPTER I

1. INTRODUCTION

1.1 General Statement of the Problem

1.1.1 Background

This study is concerned with simulating dispersed systems and solvent molecules

simultaneously for mesoscopic flow systems with single stranded Deoxyribonucleic acid

(DNA) molecules with potential application to DNA separation. Separation of DNA has

significant importance in understanding the genome of an organism for genetic

engineering and DNA profiling for forensics. The most common method for separation is

gel electrophoresis but it limits the separation for DNA strands up to 40kbp (Pan, Ng, Li,

& Moeendarbary, 2010). It may also take up to several days or weeks for longer strands.

Many researches have proposed ideas that involve micro and nano systems.

Hydrodynamic forces, electric fields and magnetic fields are most commonly used for

separation of DNA from its medium in microchannels (Huber, Markel, Pennathur, &

Patel, 2009), (Jellema, Mey, Koster, & Verpoorte, 2009), (Kang et al., 2009), (Perkins,

Smith, Larson, & Chu, 1995) and (Smith, Babcock, & Chu, 1999).

2

Some of these systems separate DNA using entropic trappings where the flow

separates DNA strands based on its length (Pan et al., 2010). Huber et al. (2009) and

Jellema et al. (2009) used electrokinetic separation of DNA in a nanochannel.

Electrokinetic separation includes capillary electrophoresis, gel electrophoresis and

electrodes arrays and the flows are created by ionized medium or ionized particles

inserted in the flow. Jellema et al. (2009) also used hydrodynamic forces created by the

converging channels to provide pressure-driven flow along with electrokinetic flow.

Kang et al. (2009) investigated a method of mixing magnetic particles that is controlled

by magnetic field to separate DNA of a specific size.

Many methods have been created to simulate the flow of dispersed systems such

as colloidal suspension in micro-systems and macro-systems. These molecular simulation

methods simulate micro scale flows and translate them into their macroscopic

counterparts. Dissipative Particle Dynamics (DPD) can provide an accurate simulation of

a colloidal suspension at a mesoscopic scale with lesser computational cost and time

steps (Symeonidis, Karniadakis, & Caswell, 2005) than other micro scale methods.

Mesoscopic scale is an intermediate length scale which is gernerally considered to be

between a few hundred nanometers and a micrometer. It consists of a large number of

atoms but takes quantum effects into account. Hoogerbrugge and Koelman (1992)

initiated DPD to simulate such an experiment with lesser computational cost and time

steps. . Even though DPD does not replicate the correct molecular motion at the atomic

level, it does provide accurate hydrodynamic properties for dispersed systems for long

lengths and large time steps (Frenkel & Smit, 2002). Mesoscopic scales, long time steps

and colloidal suspension should be taken into account when one tries to understand the

3

flow dynamics of a single strand DNA molecule through microchannels (Fan, Phan-

Thien, Chen, Wu, & Ng, 2006).

1.1.2 Problem Statement

Simulation of DNA can provide insight into its physical properties without costly

and demanding experimentation. This research is concerned with the flow of DNA

molecules suspended in a solvent through a pressure-driven microchannel using

Dissipative Particle Dynamics. The goal is to understand the changes in the mechanical

properties of these flows, including DNA stretching and migration. In the present study,

DNA would be replicated as worm-like chain polymers. This study is of interest due to its

applicability to the development of lab-on-a-chip for disease testing kits. Lab-on-a chip is

a biomicroelectromechanical device (BioMEMS) which can be used for drug delivery

and DNA testing for diseases. The computational methods employed in this study can

also be used to simulate other colloidal suspensions such as liposome suspension,

polymer interaction etc.

1.2 Previous Studies

When it comes to particle simulation, all forces acting on a particle including

particle-particle interaction and particle-boundary interaction must be taken into

consideration. There are different computational methods that can be used for such

simulations (Satoh, 2011). Some of the most commonly used methods are Molecular

Dynamics (MD), Brownian Dynamics simulation (BDS), lattice Boltzmann (LB), lattice

4

gas automata (LGA), and Dissipative Particle Dynamics (DPD) (Fan et al., 2006). Many

of these methods are restricted to certain test conditions. Certain methods can only be

used to simulate simple fluids, where others can be used only for simulating macro-scale

systems. A brief discussion of these methods is presented first to explain why Dissipative

Particle Dynamics was chosen to simulate a system of DNA strands suspensions. The

related studies of DNA flow dynamics are reviewed next.

1.2.1 Molecular Dynamics (MD)

Molecular Dynamics (MD) has existed since the beginning of digitalization. It

was created to simulate large celestial bodies to the minutest particle with the same

Newton’s Law. The equations may have been modified to accommodate newer

discoveries in terms of physical properties, but it is nevertheless, a tried-and-true process

that will be utilized for a long time to come.

MD is governed by the basic Newton’s second law of motion. Consider a particle

i with mi as the mass, ri as the position and fi as the sum of the interactive forces between

the particle and its environment, then the motion of particle is controlled by

 m� ����
��� � f� 1

To numerically solve the equations for N particles, a scheme called the Verlet method

can be used. Such schemes can be used to find both positions and velocities of all N

particles at different time-steps. These methods will be discussed in detail later.

5

MD simulations have been used for an assortment of studies. These may range

from fundamental physics to phase changes to different molecular structures. A list of a

few related studies was listed in The Art of Molecular Dynamics Simulation by Rapaport

(2004). He showed that MD can be utilized for various purposes especially at different

scales, phases, complex or simple structures, long or short ranged and so forth (Rapaport,

2004). MD can also bind the atoms together in case of solid or liquids if the atoms travel

over a certain distance. Lennard-Jones potential can be used to create this interaction

within MD simulations.

MD, however, cannot be used to correctly simulate systems that concerns

quantum fluctuations at the atomic level. The softer interactions between particles lead to

smaller time-step and higher internal motion. Small systems also increase fluctuations

and limit the accuracy and the shape of the simulation region and the atomic trajectories

may be unstable (Rapaport, 2004). Due to the higher computational cost, simulation is

limited to simple fluids in two-dimensional system. MD can be used to model a simple

flow in microscopic level and then translate it into macroscopic levels (Hoogerbrugge &

Koelman, 1992). Therefore, MD may have a lot of potential but it cannot be utilized fully

unless there are more computational advancements. Also, classical theories such as

quantum mechanics are still in theoretical state when it comes to simulation (Frenkel &

Smit, 2002).

1.2.2 Monte Carlo (MC)

Monte Carlo (MC) is similar to Molecular Dynamics as it can be used for

simulations at a microscopic level and then the results are used to provide information on

6

properties at the macroscopic scale. MC operates under a stochastic law and generates

different microscopic states. Since it does not follow the equations of motion, it does not

follow the changes with respect to time. This limits this method to applications with

systems at thermodynamic equilibrium and thus, it is unsuitable for dynamics systems as

time cannot be conceived.

Consider state 1 where two particles are overlapping; this will create a repulsion

force between the particles and an interactive energy will rise. In state 2, two particles are

at a close proximity where the repulsion has decreased and attraction forces have started

on the particles. State 3 has two particles at a distance where their interaction is negligible

and the energy is very low. In actual systems, microscopic states with high energy such

as state 1 rarely exist; instead, state 2 with low energy and weaker interaction forces are

more applicable. These states give rise to a minimum free energy of the system. This can

be seen from a system with temperature T, volume V, and number of particles N where

the Helmholtz free energy F becomes a minimum (Satoh, 2011).

F � E � TS 2

where E is the potential energy and S is the entropy of the system. For example, if

oxygen and nitrogen were to fill a room, the entropy will keep the energy in check of the

minimum free energy of the system. To numerically evaluate this theory, one can use

probability density function for N number of particles to find new positions at a set

interval provided that N, V, and T are given. The probability functions depend on the

interaction energies of the different states. The step by step algorithm to process MC is

given in Introduction to Practice of Molecular Simulation by Satoh (2011).

7

1.2.3 Brownian Dynamics

Brownian Dynamics is used when a system contains dispersed particles in a liquid

base. These systems cannot be modeled using MD or MC as they will generate the

motion for the solvent particles based on their characteristic time and the dispersed

particles will not be accounted. Also, the solvent molecules must be simulated as a

continuum as compared to being computed individually. The motion of the solvent

molecules will be reflected as a random force in the dispersed particles’ equation of

motion. BD simulates the random walk of the dispersed particles induced by the solvent

particles. The particles moving due to the random force is called “Brownian particles”

(Satoh, 2011).

Consider a dispersed solution that is generously diluted that the particles can be

regarded as moving independently. Their motion can be analyzed using the Langevin

equation (Satoh, 2011) as follows:

m ��
�� � f � ξv � f � 3

where m is the mass of a spherical particle, v is the velocity vector and ξ is a coefficient

given by ξ = 3πηd (d is the particle diameter and η is the viscosity of the solvent), f is the

external force and fB is the random force vector of the solvent. The random force has a

zero mean and variance of 2ξkTδ(t-t’) where δ is the Dirac delta function. The random

force is proportional to the system temperature and thus the particles act vigorously in

high temperature. Satoh (2011) explains random displacements and the procedure for BD

simulation in detail.

8

1.2.4 Lattice Boltzmann

Lattice Boltzmann can be used for dispersed particle systems. The simulation

region is a lattice network that contains virtual fluid particles that interact with each

other. Fluid particles are assumed to be clusters of solvent particles that are allowed to

move to its neighboring sites only.

Figure 1 Lattice Boltzmann 2-D Lattice Model (D2Q9) (Satoh, 2011).

For example, the particle at point 0 can move to sites 1, 2, 3, 4, 5, 6, 7, and 8. If the

particle is moving to 1, 2, 3, or 4, it will have a velocity c = Δx/Δt. If the particle is

moving to sites 5, 6, 7, or 8, the velocity is �√2. Δx is the distance between two sites and

Δt is the time interval. In a two-dimensional lattice with nine possible sites for the particle

to move, including the original position, the model is called D2Q9 (Satoh, 2011).

9

 The Boltzmann equation describes the temporal evolution of the velocity

distribution function at all points. A digitized distribution, fa(r,t) is tracked in LBM where

a is the direction, r is the position, and t is the time. The density at a location r at time t is

ρ�r, t� � ∑ f��r, t� �!" 4

Similarly, the velocity is given by

ρ�r, t�u�r, t� � ∑ f��r, t�c� �!" 5

The velocity vector, ca, is the velocity of particle moving to the neighboring sites in the

direction a, where a=0, 1, 2…8. The collision term in Boltzmann equation is difficult to

evaluate and models such as Bharatnagar-Gross-Krook (BGK) are used to simplify the

expression enough to be solved (Satoh, 2011).

1.2.5 Dissipative Particle Dynamics

DPD has been used to simulate many mesoscopic systems, including liposome

formation, colloidal suspension, red blood cell flow, concrete and other non-Newtonian

substances, among others. The advantages of DPD are that it considers hydrodynamic

behavior without additional formulation and it emulates the Brownian motion the

particles follow. Moreover, unlike MD or MC, computational cost is cheaper.

Dissipative Particle Dynamics can simulate dispersed and solvent particles

simultaneously, similar to BD, but with a different approach to the solvent particles. A set

of solvent molecules is considered as one virtual fluid particle. Similar to the dispersed

particles, the virtual particles have a corresponding characteristic time of the motion

(Satoh, 2011). In this manner, one can simultaneously simulate the motion of both the

10

dispersed and fluid particles without having a secondary time-step for the fluid particles.

These virtual particles will exhibit a similar random walk to that of the dispersed particles

due to change in momentum and particle-particle interaction and potential changes. These

virtual particles were then dubbed as dissipative particles.

DPD can simulate colloid suspensions such as polymer suspensions including all

hydrodynamics forces. The equations of motion for DPD include these forces which can

be used for spherical and non-spherical colloidal particles. DPD simulate mesoscopic

systems as compared to macroscopic or microscopic systems. To simulate a fluid flow

that follows Navier-Stokes equation, the total momentum should be conserved.

Therefore, for a particle i, the total force acting on the particle consist of conservative or

repulsive force, dissipative force and random force that provides the interparticle

repulsive and attractive forces.

f��%� � ∑ F�&&'� � ∑ F�&(� F�&) � F�&*&'� 6

This study deals with the simulation of dispersed particle such as DNA or

polymers within a solvent or liquid base. Based on the present literature review, DPD is a

suitable simulation method for the system in question. The forces, parameters and other

equations required for DPD simulation is described in the next chapter.

1.2.6 Simulation of a Single Strand DNA

Perkins et al. (1995) measured the extension of tethered DNA strands in uniform

pressure-driven flows. Smith et al. (1999) studied similar extension in a steady shear-

flow. Extension of DNA has been studied using optical tweezers to restrain the DNA

11

strand at one end to understand its extension effects by (Perkins et al., 1995) and (Larson,

Perkins, Smith, & Chu, 1997), among others. The studies of single strand DNA

performed by these authors explained its dynamics and rheological properties and how it

is closely related to the properties of polymer particles (Larson et al., 1997). This

similarity allows the simulation of DNA strands as beaded polymers through different

models such as worm-like chains, FENE and Hookean-Fraenkel. The bead forces include

Lennard-Jones repulsion potential, FENE springs and worm-like chains (WLC) forces

(Symeonidis, Karniadakis, & Caswell, 2006).

Fan et al. (2006) studied the flow of a single stranded DNA through a pressure-

driven microchannel using Dissipative Particle Dynamics computational method. Using

Hoogerbrugge and Koelman’s (1992) proposed idea, Fan et al. (2006) studied DNA flow

dynamics through a microchannel, made the appropriate modifications to improve the

characteristics of the DPD method and the worm-like chain modeling of DPD particles.

Fan et al. (2006) illustrated how low Schmidt number and inadequate viscosity can be

corrected by increasing the cutoff radius or by reducing the exponent parameter s. The

modifications to the weighting number were shown to provide the best result along with

the least computational cost. Fan et al. (2006) suggested that changing the cutoff radius

enhances Schmidt’s number adequately, but it tends to increase computational cost by 2.6

times. Worm-like chain was modeled with a large number of beads and a weak repulsive

force of DPD illustrated in Figure 2.

(Fan et al., 2006) study simulated the physics of DNA folding, unfolding,

entanglements and extension of the strands to understand molecular structural changes as

external forces are exerted on strands with varying number of beads. Their computational

12

results of the extension of the beads agreed well with the experimental data provided by

Perkins et al. (1995). They investigated the DNA extension in a uniform flow which was

generated by not employing any numerical means to slow down the flow of the near-wall

particles. However, the DNA extension in a microchannel with pressure-driven Poiseuille

flow is more practical and needs further attention. This is applicable in many biological

devices that can be used for DNA delivery. Devices such as microneedles and array of

hollow microcapillaries were used by Chun et al. (1999) for controlled injection of DNA

into cells. Understanding the effect of DNA migration and extension in microchannels

will increase the efficiency of such devices.

To acquire accurate results, the boundary conditions need to be implemented to

sustain a long channel and solid wall replications. Studies have been performed to

understand the different types of boundary conditions and the methods to apply them

(Revenga, Zúñiga, & Español, 1999); (Revenga, Zúñiga, Español, & Pagonabarraga,

1998); and (Pivkin & Karniadakis, 2005). Many of these authors suggests the reflection

of the particles from the walls by reversing the normal velocity vectors, assigning random

velocity and injecting the particles towards the flow, or reversing both tangential and

normal velocity vector of the particles at the wall. The wall must be in tight lattice with

layering and higher density. However, using just these measures may not prevent

particles from penetrating the wall. A no-slip boundary condition has been proposed

where a layer of DPD fluid layer is inserted next to the frozen particle wall. This is a

practical method but further modifications to the boundary condition are still necessary as

the soft repulsion of DPD particles may not prevent the penetration of the walls.

13

1.3 Specific Objectives

The present study investigates numerically the dynamics of a single strand DNA

in a pressure-driven channel flow. A program was developed using Matlab (a Mathworks

product) to conduct the present simulation. The computational methods are first validated

by simulating Poiseuille flow through a microchannel. The DNA flow is then simulated

for various test conditions. The list of specific objectives is as follows:

1. Develop a computer program to conduct a DPD simulation of a Poiseuille

flow. Validate the present computational methods using previous results

from Fan et al. (2006, 2003) and Symeonidis et al. (2005).

2. Investigate the effect of the number density and the weighing function on

Poiseuille flow simulation.

3. Modify the boundary conditions for the DPD method to enforce a no-slip

boundary condition while maintaining a simple solid wall construction.

4. Simulate DNA particle flow through a pressure-driven channel and

replicate its stretching and folding properties under different conditions

such as the strand placement and the number density.

1.4 Organization of the Thesis

The thesis is organized into four chapters and appendices. The first chapter

highlights the differences among the different simulation methods available and the

reason that Dissipative Particle Dynamics have been chosen in the present work. The

system considered is a colloidal suspension with polymers as the dispersed particles and

14

it is suspended in fluid particles or solvent molecules in reality. The first chapter also

includes the statement of the problem and the specific objectives. The second chapter

illustrates the formulation of DPD and describes the effect of each parameter on the

output of the modeling. The results and discussions of the simulation are in the third

chapter. This chapter compares the modified DPD flow to the theoretical values and

provides the trajectories and extension properties of DNA or polymer suspension in fluid

particles at different conditions. The last chapter of the thesis summarizes the results and

conclusions and also provides recommendation for the betterment of the present

computational methods. The appendices include the code and additional information used

to help generate the algorithm.

15

Figure 2 Worm-like-chain DNA Strands (Underhill & D oyle, 2004)

Figure 3 Simulation grid

LY

LX

16

CHAPTER II

2. COMPUTATIONAL METHODS

2.1 Dissipative Particle Simulation Theory

Dissipative Particle Dynamics follows the basic principle of Navier-Stokes equations

with certain alterations. The simulated fluid systems are isotropic and Galilean invariant.

The computational cost and time is much smaller than other simulation practices such as

MD or Monte Carlo.

The original formulation was created by Hoogerbrugge and Koelman (1992)

when they first introduced DPD in their study, Simulating Microscopic Hydrodynamic

phenomena with Dissipative Particle Dynamics. The following stochastic differential

equation was created to maintain the Brownian motion of the colloidal and polymer

particles (Hoogerbrugge & Koelman, 1992) :

+,- � +, � ./
01 2,- 7

2,- � 2, � ∑ 3,45,44 8

3,4 � 67|+, � +4|9:;,4 � <72, � 249 · 5,4> 9

17

where Ωij is the weighted function that would balance the system from over-fluctuation

and over-relaxation. The first part of the weighted equation corrects the pressure effects

whereas the damping part introduces the viscosity effects (Hoogerbrugge & Koelman,

1992). This is taken as a coarse-grained system and it follows the Navier-Stokes

equations of continuum flow.

Consider a system with N colloidal particles having equal mass, where mi =m=1,

with positions ri and velocities vi. Fan et al. (2003) found that the simple DPD fluid

behaves as a Newtonian one. The changes of positions and velocities as time evolves are

determined by basic Newton’s laws:

?@1
?/ � A, 10

?B1
?/ � C, � C,,D/ � C,EF/

 11

The total force, fi, includes internal, f int, and external forces, f ext. The internal forces

consist of all inter-particle forces between fluid-fluid, fluid-wall, fluid-polymer, polymer-

polymer and polymer-wall. The external force could be a gravitational, an electrical, or a

magnetic force. In this study, we have chosen a gravitational force as the external force

similar to (Liu, Meakin, & Huang, 2007). There are three internal forces exerted on

particle i by surrounding particles j. These forces, discussed below, are the conservative

repulsive force, FC, the dissipative force, FD, and the random force, FR.

C,,D/ � ∑ G,44', � ∑ G,4H � G,4I � G,4J4', 12

18

The conservative repulsive force, FC, given by:

G,4H � KL,471 � +,4 +N⁄ 9+̂,4 , +,4 Q 1,
0, +,4 S 1,T 13

provides adequate repulsion to both fluid and polymer particles. DPD is a soft core

system. A soft core system has weak repulsive forces between the particles and as a result

the particles may overlap with each other. The parameter aij is the maximum repulsion

factor between particles i and j. This parameter enables us to set repulsion strength

between fluid-fluid, fluid-polymer and polymer-polymer interactions. UVW � UV � UW,
 +,4 � | UVW | , and +̂,4 � UVW +,4⁄ is a unit vector that determines the direction from j to i.

The conservative force depends on the ratio between +,4 and a cutoff radius, rc, which is

the length unit in this study. The length of the channel and the distance travelled by the

fluid particle are given in terms of this cutoff radius.

The dissipative and random forces are given by:

G,4I � �XYI�+,4��+̂,4 · A,4�+̂,4 14

G,4J � ZYJ�+,4�[,4+̂,4 15

where γ and σ are characteristic strength of each force respectively. Their relation is

given by:

X � \�
]^_` 16

where kB is the Boltzmann’s constant and T is the temperature of the system. For

simplicity, kBT is taken as a unit value. These parameters provide a stable standard DPD

19

simulation and relax any unusual fluctuations. The factors wD and wR are r-dependent

weighting functions which are computed according to the neighboring j particles,

aVW � aV � aW and [,4 is white noise function given by (Fan et al., 2006):

b[,4�c�d � 0; b[,4�c�[^f�c-�d � �g,^g4f � g,fg4^�g�c � c-� 17

For simulation purposes [,4 is also a random number from a Gaussian distribution which

has zero mean and unit variance (Willemsen, Hoefsloot, & Iedema, 2000). In this study,

we have used the Maxwell-Boltzmann distribution, given below, to generate random

numbers as [,4.

f�vhi� � jk
lmn/] eqk��

 18

All three forces are dependent on distance and FD and FR are functions of velocities as

well. The forces conserve the linear and angular momentum and they act along the line

between two particles. The weighting functions are given as:

YI7+,49 � rYJ�+,4�s] � K�1 � +,4 +N⁄ �t, +,4 Q +N
0, +,4 S +N

T 19

The weighting functions, wD and wR, are zero when rij ≥ rc, thus calculating only forces

for particles j within the radius rc around the particle i with an exponent s. When rc = 1

and s= 2, the basic DPD quadratic weighting function, (1-r)2, is acquired. However, the

cutoff radius and exponent can be changed, rc ≥ 1 and s ≤ 2, to modify particle interaction.

20

s can be decreased or rc can be increased to increase particle interactions. Modifications

to exponent s are considered more applicable as increasing the cutoff radius increases

computational cost. As the cutoff radius is increased, the number of neighboring particles

rises, and the simulation time increments. In this study we explore the effects of varying

the exponent s.

The viscocity of DPD fluids includes contribution from the diffusion motion of

the particles and the dissipative forces (Groot & Warren, 1997).

η � v)
] �]lwv��xy

z{ j z
|}z � ~

|}] � �
|}n � ~

|}~ � z
|}{m 20

The Schmidt number is the ratio between dynamic viscosity and diffusion rate of the

fluid, �� � � ��⁄ . The viscosity and diffusion correlations for s=2 and s=0.5 is given in

Table 5. The parameters of the DPD fluid can be adjusted to match the pgysical

properties of the solvent fluid. Table 5 in Appendix illustrates the relationship between

the DPD parameters and the viscosity, diffusitivity and the Schmidt number of the

solvent. Similar to Fan et al. (2003) the unit of length [rc] = 1.608 µm, the unit of velocity

is [V]= 0.345 cm/s and the unit of time, t = [rc]/[V] is 4.661 x 10-4s. We used a time step

of 0.02 or in dimenaional unit of 0.93 x 10-5s.

2.2 DPD Integration Methods

As time evolves, the new particle trajectories and velocities have to be determined

by Newton’s laws. There are many methods that have proved to be efficient and yield

accurate values of the new positions and velocities. Some of the methods are given next.

21

2.2.1 Euler’s Method

The simplest method is the Euler’s method where the new particle positions and

velocities at time, t+Δt, are derived from the previous position and velocity at time t.

+,�c � ∆c� � +,�c� � ∆cA,�c� 21

A,�c � ∆c� � A,�c� � ∆cG,�c� 22

The force is calculated, following the above equations, using the new position and

velocity.

G,�c � ∆c� � G,�+,�c � ∆c�, A,�c � ∆c�� 23

However, this method causes an energy drift and yields particle trajectory that is not time

reversible. Energy drift is the gradual increase of the total energy of the system due to

numerical inaccuracies and energy fluctuations. However, total energy of the system is

theorectically constant according to the laws of physics. DPD can resolve the energy drift

problem (Pivkin, Caswell, & Karniadakis, 2011).

2.2.2 Verlet-type Algorithm

Another method is the Verlet-type. It uses only the new positions to calculate the

inter-particle forces at different time steps. This method uses positions at t and (t-Δt)

(Pivkin et al., 2011) as follows:

22

+,�c � ∆c� � 2+,�c� � +,�c � ∆c� � z
� �∆c�]G,�c� 24

G,�c � ∆c� � G,�+,�c � ∆c�� 25

where M = m = 1, is a unit mass of the particles. The velocity is not calculated for this

scheme and the force is position dependent only. Due to this reason, this method is not a

good fit for this study as DPD forces need instantaneous velocity values for their

calculations.

2.2.3 Velocity-Verlet Algorithm

The Velocity-Verlet method is an extension of the Verlet-type algorithm to

predict the velocity of the particle at the new position using velocity at (t) and the force

calculated using the new position. The force only uses the instantaneous positions for its

calculations.

+,�c � ∆c� � +,�c� � �cA,�c� � z
] �∆c�] z

� G,�c� 26

G,�c � ∆c� � G,�+,�c � ∆c�� 27

A,�c � ∆c� � A,�c� � z
] �c z

� �G,�c� � G,�c � �c�� 28

2.2.4 Modified Velocity-Verlet for DPD

The changes in the Velocity-Verlet algorithm made by Groot and Warren (1997)

take the new position and predictive velocity into consideration while determining the

23

new force acting on the particle. With this force, the actual velocity is computed to

determine the next trajectory of the particle. The changes are as follows.

+,�c � ∆c� � +,�c� � �cA,�c� � z
] �∆c�] z

� G,�c� 29

A�,�c � ∆c� � A,�c� � � z
� G,�c� 30

G,�c � ∆c� � G,�+,�c � ∆c�, A�,�c � ∆c�� 31

A,�c � ∆c� � A,�c� � z
] �c z

� �G,�c� � G,�c � �c�� 32

where λ is the variable that will utilize the effects of the stochastic processes (Pivkin et

al., 2010). According to Groot and Warren (1997) when λ=1/2, the system should relax to

the Velocity-Verlet algorithm. Since the DPD forces uses velocity in its calculation, the

predictive velocity,A�,, can be used to do so.

 Due to the change in modified velocity-Verlet algorithm, the random velocity is

also modified to be effected by the varying time step. According to Groot and Warren

(1997), the change in random force should be independent of the time-step as diffusion

relies upon this force greatly. Diffusion needs to be independent of the time-step and thus

random force is accurately computed when divided by √Δc (Groot & Warren, 1997).

However, Fan et al. (2006) and other authors have ignored this modification. In this

study, we have conducted simulation with the modification to the random force.

G,4J � ZYJ7+,49[,4�cq�
�+̂,4 33

The random force is divided by the time step so that the velocity calculation will

not have to be modified. The velocity is initially as follows:

24

A,�c � ∆c� � A,�c� � z
] �c z

� rGH,I�c� � GH,I�c � �c�s � z
] √�c z

� �GJ�c� � GJ�c � �c�� 34

If the random force is modified while the forces are computed, the velocity-Verlet need

not be changed later. In this manner, the diffusion is corrected in the simulation.

2.3 Initial Conditions

2.3.1 Initial Positions

The particles are initially allocated equidistantly. Randomly assigning positions

for particles tend to increase overlap of particles. The allocations are either simple cubic

lattice, face-centered cubic lattice or body-centered cubic lattice. Similar formation can

be utilized for two-dimensional as well as three-dimensional configuration (Satoh, 2011).

The configuration in Figure 4-A is the basic cubic lattice which can be used for

gaseous particles. The particles are separated by a distance of ‘a’ which is usually equal

to the particle diameter. This is inappropriate for liquid or solid particles as there is only

one particle in a unit cell. For a system with N particles, where N = Q2, a square unit cell

with sides (Q-1) × (Q-1) can be generated with side length, L = Qa. Thus, the number of

particles, N, should be a square of a natural number such as 1, 4, 9, etc. the number

density, n, is given by N/L2. For a simulation, the N and n is initially set from which Q, L

and packing distance, a, can be determined.

Figure 4-B has a higher packing density and therefore can be used for gaseous and

liquid particles and limited solid systems. This lattice contains 2 particles per unit cell

25

and where L = Qa and the square cell is built with (Q-1) × (Q-1) sides. N can only be of

size 2, 8, 18, etc., and the density is n = N/L2.

Figure 4-C has the most compact lattice for a 2-D system and can be used for

solid systems as well. Each unit cell has 4 particles and thus N=4Q2 with N = 4, 16, 36,

etc. Each unit lattice can be replicated (Q-1) times each side to create the whole lattice

with side lengths Lx = 31/2Qa and Ly = 2Qa and density n = N/ Lx Ly.

For the simulation conducted in this study, we use the lattice constructed with 2

particles in each unit since the simulation will contain mainly fluid particles and nano-

sized polymers.

Figure 4 Configuration of Initial Condition of 2-D simulations (Satoh, 2011).

26

2.3.2 Initial Velocities

The initial velocities of the DPD particles, fluid or polymer, are assigned

randomly with the Maxwell-Boltzmann’s distribution. This distribution is selected so as

to provide velocities with a zero mean. Considering a system with thermodynamic

equilibrium with constant temperature T, the following Maxwellian distribution is

employed to determine the particle velocities (Satoh, 2011).

C�A,� � j 0
]�^_`mn/] 5�2 �� 0

]^_` 7A,F] � A,�] � A,�] 9� 35

where kB is the Boltzmann’s constant, T is the temperature, m is the equal mass of the

particles, and A, � �A,F, A,�, A,�� are the velocity vectors of particle i.

In order to create random placements of particles in DPD simulations, it is

required to create random velocities according to a particular probability distribution. We

need to use a uniform random number generator from zero to unity. The following

equation with the random numbers is called the Box-Muller method (Satoh, 2011).

TB1�!�q]�^` 0⁄ � fD J��� N�t�]�J��
B1�!�q]�^` 0⁄ � fD J��� N�t�]�J��� 36

where R1, R2, R3 and R4 are random numbers from a uniform sequence.

2.4 Boundary conditions

Based on the type of system, different methods can be constructed so that the

particle stays within the simulated region and observes its physical properties. DPD is

27

used for mesoscopic systems and a few different methods can be used to set the boundary

conditions.

1. Periodic Boundary Conditions

Figure 5 illustrates the periodic boundary condition for a two-dimensional system

(Satoh, 2011) where this boundary condition is assigned in both the x- and y- axis. The

original simulation region is marked by the length of the system by Lx and Ly. The

schematic shows how the particles moving across the boundary surfaces appear in the

opposite side of the region. Periodic boundary not only displaces the position in a

continuous flow but also transfers the energy and velocity to the next region.

For a simulation region with the (0, 0) coordinate in the middle of the system, the

periodic boundary condition can be administered as follows:

 if r(x,i)>= LX/2

 r(x,i)= r(x,i)-LX;

 elseif r(x,i)<= (-LX/2)

 r(x,i)= r(x,i)+LX;

 end

where i denotes the particle under consideration and r(x,i) is the position of the particle

in the x-direction. This can be performed in x-, y- and z- axis.

The periodic boundary condition should also be applied when the interaction

between particles i and j is calculated for the DPD forces. It must accommodate other

treatments such as cutoff radius to provide accurate computation of forces and other

values across the boundaries.

 if diffr(x,i) > LX/2

28

 diffr(x,i)=diffr(x,i)-LX;

 elseif diffr(x,i) < (-LX/2)

 diffr(x,i)=LX - abs(diffr(x,i));

 end

where diffr(x,i) is the center to center distance between particles i and j whom the forces

will act upon.

Figure 5 Periodic Boundary Condition in x- and y- directions (Satoh, 2011).

29

2. Lees-Edwards Boundary Conditions

Lees-Edwards method is used when non-equilibrium systems needs to be

simulated. One of the simplest examples is the simple shear flow found in Couette

systems. Couette flows have moving walls with constant velocities, U and –U, which

provides uniform shear flow across the channel.

Figure 6 Simple Shear Flow in Couette Flow (Satoh, 2011).

To accommodate this system, the replicated boundary regions are shifted slightly in

opposite directions by a distance ΔX with respect to the movement of each wall. This is

depicted in figure 4. When the new positions and velocities are calculated, the change

shifted distance, ΔX, and wall velocity, U, has to be considered. The particles moving out

of the region in the x-direction will be shifted from x to (x - ΔX) and vx to (vx - U). The y

direction will follow the same procedure as the periodic boundary condition. For

example, the loop that can be used to set the boundary condition is as follows:

 if r(x,i)>= LX/2

 r(x,i)= r(x,i)-LX-delX;

30

 v(x,i)= v(x,i)-U;

 elseif r(x,i)<= (-LX/2)

 r(x,i)= r(x,i)+LX+delX;

 v(x,i)= v(x,i)+U;

 end

where delX is the shift of the boundary region, ΔX and v(x,i) is the velocity of the

particle i in the x-direction. For calculating the inter-particle forces between particles i

and j, a similar loop with the same treatment is used as follows:

 if diffr(x,i) > LX/2

 diffr(x,i)=diffr(x,i)-LX -delX;

 elseif diffr(x,i) < (-LX/2)

 diffr(x,i)=LX - abs(diffr(x,i))+ delX;

 end

31

Figure 7 Lees- Edwards Boundary Condition for Shear Flow (Satoh, 2011).

3. Wall Boundaries

Solid boundaries tend to affect the density fluctuations, the loss of temperature,

and unlike MD simulations soft repulsion in DPD particles does not prevent particles

from crossing solid boundaries. Frozen particles acting as solid wall as well as multi-

layered solid and fluid DPD wall particles can create boundary conditions that can be

used for a Navier-Stokes continuum flow.

The first method is to group and create frozen DPD particles modeling a solid

wall boundary for region under simulation. The particles could simply be a subset of the

original lattice cell created for fluid particles as shown in Figure 8. The velocities for

these particles are zero so that they are constrained at a set position. However, due to soft

repulsion, fluid particles can still penetrate these walls. Therefore a higher density

packing is recommended increasing the repulsive force of the wall. Since the density of

the wall is greater than the fluid particles, a no

authors recommend a density ratio of one to nine between fluid and wall. However, as

density increases repulsion grows which in turn causes density fluctuations at the wall

(Willemsen et al., 2000).

Figure

The second method is

of fluid particles near the wall

crossing the wall fluid particles are

wall. Revenga et al. (1999) describe three different possibilitie

fluid particles as follows:

32

these particles are zero so that they are constrained at a set position. However, due to soft

fluid particles can still penetrate these walls. Therefore a higher density

packing is recommended increasing the repulsive force of the wall. Since the density of

the wall is greater than the fluid particles, a no-slip condition is observed. Previous

ors recommend a density ratio of one to nine between fluid and wall. However, as

density increases repulsion grows which in turn causes density fluctuations at the wall

Figure 8 Lattice Wall (Arya, Chang, & Maginn, 2003).

The second method is to use frozen particles as a solid wall and

of fluid particles near the wall (i.e., wall fluid particles). The channel fluid particles

crossing the wall fluid particles are reflected so that they would not penetrate the solid

(1999) describe three different possibilities for reflecting

fluid particles as follows:

these particles are zero so that they are constrained at a set position. However, due to soft

fluid particles can still penetrate these walls. Therefore a higher density

packing is recommended increasing the repulsive force of the wall. Since the density of

slip condition is observed. Previous

ors recommend a density ratio of one to nine between fluid and wall. However, as

density increases repulsion grows which in turn causes density fluctuations at the wall

particles as a solid wall and to create a layer

. The channel fluid particles

so that they would not penetrate the solid

reflecting these wall

33

(1) A reflection of particles where its tangential velocity vector is conserved and

the normal velocity vector is reversed, i.e. a specular reflection.

(2) Maxwellian reflections where the particles are assigned random velocity

according to the Maxwellian distribution and send back into the flow i.e.

diffuse reflection.

(3) Reflection of particles when both the tangential and normal velocity vector are

reversed. This is called bounce-back reflection.

In this study, we have selected the Maxwellian reflection. No-slip Boundary

conditions are created using random velocity vectors that shoot the particles back into the

flow as they approach the wall. A no-slip boundary layer with thickness (from the wall)

was set equal to 0.5% of the channel height. If the height of the wall is large such that

0.5% of the height is greater than the cutoff radius, the boundary layer thickness will be

the cutoff radius. The purpose of this thickness is to prevent the cool down of fluid

particles reaching the wall. The newly assigned velocity of the particle entering this layer

will be as follows (Fan et al., 2006):

A, � AJ � �j��� · AJ�] � � · AJm 37

where AJ is the random velocity with a zero mean and uniform distribution and n is the

unit vector normal to the wall and pointing into the fluid channel.

2.5 Computational Efficiency

The force calculations take the most computational time within the DPD

calculation. This cost limits the simulation to be of a small region or a two-dimensional

34

system. The force script runs N2 times for each time frame. To reduce the CPU time and

cost, the N2 computation needs to be reduced. The methods provided below will reduce

the N2 loop considerably, thus reducing cost. This is mainly performed by limiting the

interaction between every single particle within the systems to just the neighboring

particles. Among other things, certain factors such as the increase in cutoff radius will

substantially increase the cost as well.

2.5.1 Verlet or Neighbor List

In this method, a secondary cutoff radius, rv, is used where rv > rc . A list is created

for each particle which includes all the nearby particles positioned within the radius rv.

The CPU time will be reduced when the force acting on each particle is calculated only

using those particles within the particle’s list. When the particle is moved further than rv -

rc, the Verlet or neighbor list is re-calculated. This method can be used for Molecular

Dynamics and Dissipative Particle Dynamics methods.

2.5.2 Cell List

The simulation region is divided into QX × QY cells with each individual cell

having a size (LX/ QX) × (LY/ QY). For example, in Figure 9 if QX = QY = 6 and LX = LY =

12, each individual cell would be of 2 x 2 units. At the beginning of the process, the

particles are grouped into each cell where each cell size is less than the cutoff radius

square. Each cell needs to be named and stored along with its particles name and

position. During the inter-particle DPD force calculations, a particle i will be calculated

35

with other j particles within the same cell and the neighboring cells. For example, a

particle within cell 22 will be computed with other particles in 22 as well as 15, 16, 17,

21, 23, 27, 28, and 29. This method is very useful for large values of QX and QY.

Figure 9 Cell List Method to Group Neighboring Particles (Satoh, 2011).

2.5.3 Cutoff Radius

The computational time is reduced when the number of particles used to calculate

the forces are reduced. For a spherical particle, the Lennard-Jones potential, ULJ, gives

the interaction between two particles depending on the distance between them, as

follows:

��� � 4 ¡j\
@mz] � j\

@m�¢ 38

where σ is the characteristic length scale proportional to the particle diameter, r is the

distance between the particles and � £¤¥. The ratio between σ and r determines the

repulsive or the attractive behavior between the two particles. The interaction between

particles can be negligible when r is greater than 3σ. The distance after which the

36

interactions between the two particles are too weak to be considered is called the cutoff

radius.

 In the simulation, an area with the cutoff radius, rC, is created around each particle

and forces are determined only between that particle and those particles located within

that area. In this study we have chosen the cutoff radius as a primary method to reduce

the computational cost. The value of rC will be unity to acquire standard DPD properties.

All the lengths within the simulation region will be given in terms of rC.

2.6 DNA Modeling

Physical properties of DNA have been studied by Smith et al. (1992) and Perkins

et al. (1995), among others. In these experiments the DNA had to be tethered to the wall

or optical tweezers had to be used to gain knowledge of properties such as effect of shear

on the fractional extension of DNA strands, and the effect of drag. These strands were

also modeled using molecular simulation. DNA can be modeled within DPD as polymers.

Figure 10 illustrates a model of DNA particles (tethered bead-chain particles) in DPD

solvent particles (dots).

37

Figure 10 Polymer particles in DPD Solvent Particles (Pivkin et al., 2010).

2.6.1 Polymer Modeling Techniques

Polymers can be modeled using DPD equations where the polymer beads are

subjected to conservative or repulsive, dissipative and random forces like their solvent

counterparts. Along with polymer-fluid interaction, intra-polymer bead forces need to be

taken into account. The repulsive force between polymer beads needs to be adjusted

according to their properties. Other intra-polymer forces arise from the combination of

the following (Symeonidis et al., 2005):

1. Lennard-Jones Potential

The Lennard-Jones potential provides a shifted potential to each polymer beads to

avoid numerical instability. The potential is applicable to all pair particles within the

38

cutoff radius, rij < rC. Lennard-Jones is used to prevent over-lapping. This is used instead

of the soft-repulsive forces of DPD.

2. Hookean and Fraenkel

This force is a result of pairwise potential with an equilibrium distance between

the beads, rEQ (Symeonidis et al., 2005). The forces are calculated such that an attractive

bond is created when | ri – ri-1 | > rEQ and repulsive bond when | ri – ri-1 | < rEQ.

3. FENE

The FENE spring force is a nonlinear elastic force which keeps the bead within an

equilibrium or maximum distance, rmax. When the distance is greater than rmax, the beads

are pulled closer to each other along the line between the beads. Κ is the spring constant.

�¦§¨§ � � ©
] +0ªF] «¬­ ®1 � |@1q@1¯�|�

@°±�� ² 39

4. Marko-Siggia Worm-Like Chains (WLC)

Experimental and theoretical studies showed similarities between worm-like chain

(WLC) forces and DNA molecules (Perkins et al., 1995). WLC models can be used to

mimic DNA movement within a flow. Similar to the FENE spring, the Marko-Siggia

force expression creates a spring force that will pull the beads back closer together when

the maximum length of the segment between the beads is reached. The WLC force is as

follows (Fan et al., 2006):

39

F�&³ � � ´µ¶
~·¹̧ºº »j1 � ��¼

½ mq] � ~��¼
½ � 1¾ U¿�& 40

where l is the maximum length of the segment between the beads and �ÀEÁÁ is the

effective persistence length of the polymer spring chain. The persistence length is the

maximum length when the chain will be elastic. The length of the segment is established

to be greater than the persistence length such that the chain will be semi-elastic or stiff. If

the number of beads is Npb and L is the total length of the DNA strand, then « �
 L/�Npb – 1� (Fan et al., 2006). (Bustamante, Marko, Siggia, & Smith, 1994) stated that

the persistence length of a DNA is �À~0.053ËÌ. When the beads are modeled with this

length, there was an increase in the molecular flexibility since there was no bending

momentum. This flexibility was resolved by increasing the persistence length to

�ÀEÁÁ~0.061ËÌ for 40 beads or �ÀEÁÁ~0.07ËÌ for 80 beads in a strand with L=67.2 μm

(Larson et al., 1997). In this study we have used worm-like chains to model the DNA

strands.

The stress tensors are given by the Irving-Kirkwood model (Fan et al., 2006) as:

� !q�
Ïj∑ 0Ð1Ð11 }�

� ∑ ∑ @1ÑÁ1ÑÑÒ11 m
!qDb0Ð1Ð1}�

� ∑ @1ÑÁ1ÑÑÒ1 d 41

where Ó, � A, � aÔ��� is a velocity difference between the bead velocity and stream

velocity, aÔ���, at position x. The ensemble average is calculated between <…>. The

force fij is the result of the sum of DPD forces and the WLC spring force. The

40

constitutive pressure can be determined from the stress tensor, 2 � �1/3c+� (Fan et al.,

2006).

The modified velocity-Verlet algorithm is also used to show polymeric interaction

between particles in terms of beads joined by strings. This includes the soft repulsive

force as well as hard forces.

2.7 Simulation Approach and Requirements

To carry out the present simulation, a code was programmed in Matlab including

the DPD force equations and its parameters. Matlab is a high-level programming tool

from Mathworks that is both interactive and versatile. The language has a multitude of in-

built functions that would save time as compared to programming in C or FORTRAN.

Coding in Matlab provides the ability to see the simulation results in real time when the

program was being run. This was very handy at the beginning of the code production.

2.7.1 Approach to Programming

Initial positions, initial velocity and the forces for different types of particles;

fluid, wall, and polymer, were initialized in separate functions within Matlab. The final

Verlet algorithm was written in a script file that would call these functions when the

positions, velocities and forces needed to be computed. The functions can be called

within other functions as well, for example, initial position and velocity can be called

within the force function to run tests.

41

The variables can be administered at the beginning of the script file but should be

declared as a global variable when functions need the same variables as well. The

variables must be unchanging to be declared globally. If a parameter is constantly

changed, for instance within a script, the function would be called along with the

changing variable. Each file is saved as .m file which can be read and written as a .txt file

as well. The workspace which stores all the output variables can be saved as a .mat file.

This file can be exported into an Excel sheet for further plotting and recording. Data

stored in Excel sheets can also be imported into Matlab as .mat files.

2.7.2 Requirements

Apart from the software Matlab, one would also require a relatively high powered

computer that can perform the simulation as well as other tasks simultaneously. The

computer that was used for the coding had the Intel i7, which is a quad-core processor,

and 4 GB of RAM. About 2GB of RAM and one of the processors will be used

constantly while running Matlab. The version of Matlab that was installed is Matlab

Student version R2011a. If parallel computing needs to be used, the additional processors

will be employed. Parallel computing that was performed for this simulation will be

discussed next.

2.7.3 Parallel Computing

42

The main parallel computing was performed in the Linux cluster located at

Oklahoma State University and it is called Pistol Pete high performance computing. This

cluster contained about 1024GB RAM and 512 cores of processors. Parallel computing

can also be performed on our local machine using functions such as matlabpool, parfor

and so on. Matlabpool opens workers that can perform independent jobs simultaneously.

The number of workers corresponds to the number of cores in a processor, for example, a

quad core processor can open an additional 4 workers along with the main Matlab

program. This can only be done if the jobs are independent of each other and does not

share its output.

43

CHAPTER III

3. RESULTS AND DISCUSSION

3.1 Initialization of the Simulation

The two-dimensional simulation region is setup on a rectangular lattice with LX =

12 and LY = 30 (the unit length is rc). The fluid, wall and DNA particles are containined

within this region. The origin of the axis is located at the middle of the region. Matlab

was used to write the code and to perform the DPD simulation. The following properties

were used to conduct the simulation:

a) Initial particle arrangement in face centered cubic (fcc) lattice with N=2Q2

particles.

b) Maxwell-Boltzmann’s distribution for initial velocity.

c) Modified Velocity-Verlet algorithm.

d) Periodic boundary condition in the x-direction.

e) Frozen solid wall particles at y = - LY/2, LY/2 with a layer of no-slip

condition where the particles are given a random velocity and shot back

into the fluid system.

f) Cutoff radius method was used to reduce the computational cost.

g) Worm-like chains to model DNA particles.

44

3.1.1 Initializations

Consider N fluid particles assigned on an fcc lattice with two particles in each Q ×

Q unit cell where N=2Q2. The density of the particles is 4 per area square. Therefore for

an area of 12 × 30 or 360 unit sq., N = 1440. To have a natural number, we have chosen

N = 1458. Wall particles, Nwall, are arranged at a higher packing density to create more

repulsion at y = - LY/2, LY/2. If there are 400 wall particles divided into 200 particles for

each wall, the density is at approximately 16.67 units at each wall. The DNA particles are

initially assigned at y = 0, and the first bead is at x = - 4.5. The beads are apart from each

other by a length lseg = 0.7, which is larger than the persistence length of 0.053 μm and

lesser than the maximum segment length, l, of 0.8075μm. Fan et al. (2006) encountered

numerical inaccuracy when the maximum length exceeded l.

Figure 11 Initial Setup of Fluid, Wall and DNA Particles.

45

The computational grid is shown in Fig. 9 where the yellow is the fluid particles, the blue

is the wall particles and the red is the DNA particles. The unit of length, rc, is set to 1µm

with the system dimensions as -6 ≤ x ≤ 6 and -15 ≤ y ≤15 similar to Fan et al. (2006).

 The initial velocity is generated randomly by the Maxwell-Boltzmann’s

distribution with zero mean. This applied to the fluid and DNA particles whereas the wall

particles were assigned a zero velocity. The velocity is curbed to be less than the

maximum velocity allowed by the system. The maximum velocity is determined follows:

z
] ÌAÕ�Ö] � 2 ^_`

] 42

or

 A0ªF � ×]^_`
0 43

The total momentum of the system is set to zero.

3.1.2 Modified Boundary Conditions

There are two different boundary conditions used in this system with new

modifications. The periodic boundary condition is used along the x-direction which is

treated to accommodate the cutoff radius and force calculations. The periodic condition is

inputted while the difference between the particles is determined. This is to define if the

particles passing through the simulation region will be included in the force calculation.

If a particle i is located at x = +5.5, then a particle j located at x = -5.8 will be within the

cutoff radius of unity. The modifications are shown within the code in the appendix. The

periodic boundary condition is used when the new position is computed at a new time

46

step in the main algorithm. The periodic boundary condition also allows the external

force to flow through the inlet and the outlet of the channel to create a constant

continuous pressure driven flow.

The second boundary condition used is the solid or frozen DPD particles at y = -

LY/2, LY/2. Wall particles have a higher density creating more repulsive force against the

fluid particle in the system. However, the soft repulsion of DPD particles would not

prevent the fluid particles from penetrating through the solid wall particles, which is

physically improbable. Unfortunately, higher density of the wall would create unrealistic

density fluctuations in the simulation.

Therefore we have introduced the Maxwellian reflection of particles within a no-

slip boundary region next to the wall. The reflection condition is administered to the

particles entering into the region which has a thickness of 0.5% of the height of the

channel as shown in Fig. 10. For this simulation LY = 30 and the no-slip boundary region

thickness is 0.15 unit. Therefore, the no-slip region was enforced between 14.85 to 15

units and between −14.85 to −15 units. The new velocity assigned to the particles

entering the region is v� � v* � nj��n · v*�] � n · v*m where vR is the random velocity

generated by the Maxwell-Boltzmann’s distribution, n is the normal vector from the wall

pointing towards the fluid system where n=−1 for the top wall and n=+1 for the bottom

wall. A few modifications were added along with the new velocity. New positions were

also assigned to the particles for the next time step. The particles will be moved to the

boundary of the no-slip region at y = 14.85 or −14.85 depending on the top or bottom

wall, respectively, with a velocity vector pointing towards the center of the channel.

47

Forces were set to zero as the velocity was already pre-determined. This guaranteed

bounce-back particles for those that reached the wall which was not penetrated.

Figure 12 No-Slip Region near the Top Wall.

 This method removed the need for multiple layers of wall particles to prevent the

penetration of the wall by the fluid particles. The no-slip region also guarantees zero-

velocity at the walls when simulating a Poiseuille flow in a channel. The particles by the

wall region would not linger by the wall, creating a more practical application of the

flow’s physical properties.

3.1.3 Particle Forces

The force functions are needed to update the new position and new velocity of a

particle at the next time step. The forces are called as each particle i is being computed.

The force calculations are stored in three different functions. The functions are set

separately as the repulsion strength for the conservation DPD force is different depending

48

on the type of particle interaction. When the fluid particles are in consideration, the fluid

force function contains the interactive forces between fluid-fluid, fluid-wall, and fluid-

polymer. When the polymer particle position and velocity is determined, the forces that

contain the polymer-fluid, polymer-wall and polymer-polymer interactions are called.

The spring force is also added along with the polymer DPD forces as the bead-bead

interaction changes in a sheared flow.

 For the spring forces, the interactions of the beads on either side of the polymer

particle in question are considered. The first and the last beads will only have one bead-

bead interaction, with beads i+1 and i-1, respectively.

As the force is being calculated for a fluid particle, i, the force function first

calculates the relative position of the particle with respect to all the other particles, in the

order of fluid, wall and polymer. If the other particle, j, is within the cutoff radius, the

force is calculated. Similarly, the polymer particles go through the process.

3.1.4 Integration

The main code contains Newton’s laws for time evolving position and velocity in

terms of the modified velocity-Verlet algorithm. The initial position and velocity is called

into the script along with the initial force calculations. Each particle, i, from 1 to N, is

assigned to the new trajectory after the forces are called. The positions are corrected

according to the periodic boundary condition as well as the no-slip condition at the walls.

The no-slip condition is enforced at the beginning of the script where the new position

and predicted velocity is calculated. This would prevent the particles from bouncing back

towards the wall. The no-slip is also inputted into the main particle loop to bounce-back

49

particles near the wall into the fluid. If the particle enters into the no-slip region with a

higher velocity compared to the randomly assigned velocity, then the random velocity is

used. If the original velocity is lesser than the random velocity, then the original velocity

is kept while reversing the particle towards the center of the channel. This modified

boundary condition is applied to both fluid and DNA particles.

3.2 Simulation Parameters

The DPD fluid and DNA parameters are the physical properties of the particles.

They are listed in Table 1 and Table 2, respectively. The algorithm parameters are used to

create the simulation in the mesoscopic scale and are listed in Table 3.

Table 1 DPD Fluid Parameters.

DPD Fluid Particle Parameters

Name Nomenclature Value

Mass M 1

cutoff radius rc 1

Exponent S 2

Fluid-fluid repulsive strength aff 18.75

Wall-wall repulsive strength aww 5

Fluid-wall repulsive strength afw 9.682

Density Ρ 4

Verlet parameter Λ 0.65

Random force parameter Σ 3

Dissipative force parameter Γ 4.5

Field force G 0.02

Energy conservation kBT 1

Maximum Velocity Velmxd 1.414

50

Table 2 DPD DNA Parameters.

DPD DNA Particle Parameters

Name Nomenclature Value Unit

Effective persistence length Λeff 0.053 μm

Energy conservation kBTp 1

Total DNA strand Length L 67.2 μm

Maximum DNA segment Length Lseg 0.808

Mass Density Mp 0.25 g/cm3

Viscosity Viscp 2.588 kg/μms

Fluid-polymer repulsive strengthafp 16.5

Polymer-polymer repulsive strength |i-j|>4 App 2

Polymer-polymer repulsive strength |i-j|<4 App 0

Fluid-wall repulsive strength Apw 3.162

Table 3 Algorithm Parameters.

Algorithm Parameters

Name Nomenclature Value

Fluid particles N 1458

Length of channel LX 12

Height of channel LY 30

No-slip Region Rcw 0.15

Time step Delt 0.02

Initial time Ti 0

Final Time Tf 120

Number of cells (x,y) Q 27

Length of unit cell x direction Nx 0.444

Length of unit cell y direction Ny 1.111

Wall particles Nwall 400

Wall density Nwall 16.667

DNA particles Np 1

DNA beads Npb 10

Total DNA beads Nptot 10

Total DPD particles Ntot 1868

No-slip Region Top boundary BC1 14.85

No-slip Region Bottom BC2 -14.85

Bins Tbins 35

51

3.3 DPD Fluid Flow in a Channel

A pressure driven flow is simulated through a two-dimensional channel with

lengths, LX=12 and LY=30 (in rc units). The channel has two solid boundary walls at y=

LY/2 and -LY/2 with the modified boundary conditions. The expected flow through the

channel is Poiseuille flow as DPD follows Navier Stokes equations. The channel flow is

investigated at different test conditions.

As the simulations were conducted, the particles velocities were averaged in

spatial bins and the computed velocity profile was compared to the theoretical velocity

profile of a Poiseuille flow between parallel plates, given by:

Ù
ÙÚ � n

] »1 � jÛ
Üm]¾ 44

where ÝÔ is the average velocity, y is the spatial coordinate in the vertical direction and h

is the half-height of the channel (in the y direction). In this present study, the height of

the channel was divided into several bins, including two bins for the lower and upper no-

slip boundary regions. The rest of the bins were equally divided. The velocities of

particles are accumulated in each bin according to their y-position for every 1000

timestep. They are summed in each bin and divided by the number of particles collected

as shown in Figure 13. The average velocities did not include the ones calculated during

the first few timestep since the velocity fluctuates due to the randomly assigned velocity.

Once the channel flow starts forming, the velocity is collected.

52

Figure 13 Average velocities per Bin with the Modified Parameter s.

3.3.1 Simulating Channel Flow using Standard DPD

The first test performed was simulating the two-dimensional flow through a

channel (Poiseuille flow) using standard DPD parameters, where rc=1 and s=2, for a

number density n= 4. With these parameters, the viscosity of the simulated fluid is very

low. For such a low viscous fluid, one can expect a flat velocity profile. Initially a

random velocity distribution is assigned to the flow field. A fully developed flow is

acquired at t=180. Due to the changes in the forces (the change in velocity is determined

by forces as shown before) the velocity field develops an almost top hat velocity profile

with an average value of 1.2 approximately.

53

Figure 14 Poiseuille Flow using Standard DPD Fluid.

3.3.2 The Effect of the ‘s’ Parameter

The parameter s is the exponent of the weighing function used to determine the

dissipative and random forces for DPD. Modifying the s parameter changes the

interaction between the fluid particles. It would be then possible to adhere to the physical

property of a true fluid. Due to the soft repulsive force between the particles, DPD

simulations are usually associated with a low viscous fluid and low Schmidt number

flow.

The dimensionless number can be increased by enhancing particle interaction

which is done by increasing the cutoff radius. Unfortunately, increasing the cutoff radius

escalates the computational cost drastically. Alternatively, the exponent s can be

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

-20 -15 -10 -5 0 5 10 15 20

u
/U

m
a

x

Channel Width (y)

Theory

t=300

t=180

t=120

t= 60

54

modified with a minimal rise in the computational cost. Schmidt number increases 10%

when s is modified and viscosity increases by 36%.

The simulation of Poiseuille flow with the modified parameter s is shown in

Figure 15. The Poiseuille flow is attained by plotting the ratio of velocity over the

maximum velocity against the y axis or the channel width. The maximum velocity is a

function of viscosity. This can be illustrated by Figure 14 and Figure 15 where the non-

dimensional velocity profiles change with varying parameter s and, thus, they are a

function of viscosity. The standard DPD has s=2. When s=0.5, the computational

velocity profile agrees qualitatively with the theoretical Poiseuille flow equation for flow

between two parallel plates. The agreement is not complete, however. This could be due

to the altered no-slip boundary conditions with the randomly assigned velocity and the

displacement of the particles at the boundary. However, the flow shows symmetry, as

expected, and the no-slip conditions are clearly enforced at the wall boundaries. The fully

developed velocity profile is acquired at t=180 and remains the same till t=300. The

average velocity of the channel is 0.8645. The approximate length it would take to reach

a fully developed flow will be 155.61rc.

55

Figure 15 Poiseuille flow with Modified DPD Parameter 's'.

3.3.3 The Effect of the Channel Size

To check whether the simulation is grid-independent, a larger region was used in

the simulation with LX=60, LY=30 and N=7200 to keep the number density at 4. The flow

profile is flat similar to the previous grid with LX=12 and LY=30. The velocity profile

tends to reach an average of approximately 1.2 fairly quickly, i.e. at t=60. The simulation

is grid independent and will provide the same results for different sized grids.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-20 -15 -10 -5 0 5 10 15 20

u
/U

m
a

x

Vertical Location (y)

Theory

t = 300

t = 180

t = 120

Figure 16

 When channel flows with smaller channel heights (e.g.

were investigated, the fluid particles segregated into

cutoff radius as shown in

lines was reduced as the cutoff ra

understood and it needs further

modifications to simulate

56

16 Poiseuille Flow with Larger Simulation Region.

channel flows with smaller channel heights (e.g. LX=12 and L

, the fluid particles segregated into lines with spacing dependent on the

in Figure 17 and Figure 18. The separation distance

reduced as the cutoff radius was decreased. This phenomenon

needs further study. It may indicate that the DPD

modifications to simulate nanoscale systems.

.

=12 and LY=3 or 6)

dependent on the

distance between the

his phenomenon is not fully

the DPD equations need

57

Figure 17 Simulation of System with LY=3.

Figure 18 Simulation of System with LY=6.

3.3.4 The Effect of the N

A simulation with number

tends to get closer to the theoretical

increased. The increase in

property of the flow; the system may not contain fluid particles

instead act as solid particles. The particles may also be incompress

number density limit. These effects

compressibility of the flow deserves a detailed study

Figure

58

Number Density

A simulation with number density of 20 is shown in Fig. 17. The velocity profile

closer to the theoretical Poiseuille flow as the number density of

The increase in the density beyond a certain limit will change

he system may not contain fluid particles at that limit

act as solid particles. The particles may also be incompressible after a certain

These effects of increasing number density within

compressibility of the flow deserves a detailed study.

Figure 19 Poiseuille Flow with Number Density =20.

of 20 is shown in Fig. 17. The velocity profile

the number density of the system is

beyond a certain limit will change the physical

at that limit and may

ible after a certain

within DPD and the

59

3.4 Simulating a Single DNA Strand in DPD Flow

DNA strands were placed at different locations in the channel where they

experienced different values of shear stress gradients to observe their migration and

physical properties as they travel through the pressure-driven channel. DNA chains tend

to stretch, fold and tumble as they move through the channel. These properties are

relevant to understanding the flow of DNA in lab-on-a-chip devices. The present tests

were conducted with one strand at a time but with different number of beads and at

different channel locations.

The DNA strand tends to extend or fold at different positions within the channel.

These extensions relax after a time period and remain in a constant state after the flow

profile is developed. The time it takes for the strand to reach a particular extension is

related to the strand relaxation time. The relaxation time, τ, can be computed from

observing the extension of the strand, x, as function of time, t, and plotting

x � x" � x�exp ��t τ⁄ � 45

where x0 is the extension at equilibrium and xi is the maximum extension of the strand.

3.4.1 DNA Migration in a Channel Flow

Initially there are 10 DNA beads on a strand placed at different y positions along

the height of the channel. The positions are -13, -10 and -5. This test was conducted to

see if the DNA strand would migrate to the centerline of the microchannel. The

simulation is performed using the standard DPD parameters and the viscosity of the fluid

60

particles is not corrected. Therefore, the velocity profile is almost a flat profile. Due to

the no-slip boundary conditions at the wall the flow field possesses larger shear stress

gradient near the wall compared to the region near the centerline. The migration of a

DNA strand with 10 beads from different vertical locations along the channel height (Y=

−13, −10 and −5) is plotted Fig. 18.

Figure 20 Migration of DNA Strands from Different Positions at s=2.

The strand inserted initially at position y = −13 experiences larger shear stress gradient

compared to the two other strands. As a result, the strand migrates towards the centerline

of the channel faster than the two strands starting their journey from y= −10, −5. The

strand at y = -10 moves closer to the centerline but at a much slower pace, due to the

0 0.5 1 1.5

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

-15

-14

-13

-12

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

0 20 40 60 80 100 120 140 160 180 200

V
e

rt
ic

a
l

lo
ca

ti
o

n

(y
)

Time (t)

FLOW PROFILE

y = -5

y = -10

y = -13

61

smaller level of the local shear stress gradient in this region. This can be seen from Figure

20 and Figure 21 where the strand has only moved from y=-10 to y=-8 in t=200 units, but

moves till y=0 at t=984 units. This is because the velocity profile is flatter towards the

center of the channel and the strands need more time (i.e. longer channel) to migrate to

the centerline.

3.4.2 Effect of the Number of Beads on DNA Migration

Three strands with different number of beads are inserted into a pressure-driven

flow at y = -10, near the bottom wall of the channel. The strands have 5, 10 and 20 beads

respectively. Similar to the previous test, the flow has a flat profile due to the low

viscosity and less particle interactions for s=2. Figure 21 shows the migration of the

simulated strand for s=2. The migration is more prominent for the strand with 10 and 20

beads. The strand with 5 beads seems to oscillate along the initial position of y = -10 and

then slowly reaches y = -8 at t=1200. The 20 beaded strand appears to have migrated

much faster than the other two strands and reaches the centerline by an approximate time,

t = 899. The strand with 10 beads reaches the centerline later at t=984. The strands tend

to migrate towards the centerline due to the presence of a varying shear stress gradient. If

the length of the channel is long enough the strand finishes its journey at the centerline.

Longer channels (i.e. longer times) are needed for strands with less number of beads to

reach the channel centerline.

62

Figure 21 Migration of DNA Strands with Different Number of Beads at s=2.

 Figure 22 on the other hand shows a flow with a modified s=1.5. This increases the

viscosity and particle interaction. The strands tends to oscillate along the initial position

of y=-10 between y=-9 and -12. Figure 23 illustrates the DNA migration at s=1. The

strand with 5 beads reached the centerline as compared to the strands with 10 and 20

beads that finished closer to their original positions on the y axis. Figure 24 illustrates the

travel of the strands which uses the modified parameter s=0.5. The velocity profile in this

case is more like a theoretical Poiseuille flow. The strands tends to linger at their original

positions, perhaps due to a constant shear stress gradient compared to the varying shear

stress gradient in the case of s=2. The strands with 5, 10 and 20 beads oscillates at its

original position y=-10.

63

Figure 22 Migration of DNA Strands with Different Number of Beads at s=1.5.

Figure 23 Migration of DNA Strands with Different Number of Beads at s=1.

64

Figure 24 Migration of DNA Strands with Different Number of Beads at s=0.5.

As the plots vary from s=2 to s=0.5, we can clearly see the velocity profile

approaching the shape of the velocity profile of the Poiseuille flow. The DNA particles

seems to move towards the centerline when s =1 and 2 as compared to the steady

oscillation along the initial inserting location when s=0.5 and 1.5. The effect of

modifying the parameter s on the physical properties the DNA or polymer particles is not

clear. To maintain accurate viscous behavior for DNA particles one may need other

values of s or different cutoff radius rc.

 Figure 25, Figure 26 and Figure 27 compares the migration of the beads for

different values of the parameter s. As mentioned before, longer beads tend to travel more

towards the centerline as s=2; the value for a standard DPD fluid. A strand with 20 beads

65

tends to migrate faster than the shorter strands. This is observed in Figure 23 where the

20-beaded strand attempts to move towards the centerline at s=1. Longer strands must be

utilized to understand the relation between the weighting functions and the DNA

particles. Further analyses are necessary to understand if the weighting function can be

changed to attain accurate Schmidt number and the physical properties of DNA strands.

The simulation would need a longer channel or more computational time to average the

migration patterns of these long strands.

Figure 25 Migration of Strand with Nbead = 5 for Varying s.

66

Figure 26 Migration of Strands with Nbead = 10 with Varying s.

Figure 27 Migration of Strand with Nbead = 20 for Varying s.

67

3.4.3 Extension with Respect to Time

As the DNA strand migrates through the channel, it stretches and folds due to the

shear stress produced by the velocity profile. Figure 28 and Figure 29 shows such a

behavior for a strand at two different locations, y = 0 and y = -10, respectively. The

velocity profile is flat due to the low viscosity and Schmidt number. There the strand at

y=0 does not have a high shear stress acting on it compared to the strand at y=-10. Due to

the difference of shear, the DNA strand at y=0 folds and tumbles as it flows through the

channel. The strand at y=-10 stretches out as it moves across the channel. The extension

rate can be measured with respect to time to compute the relaxation time.

Figure 28 DNA Folding at y=0.

68

Figure 29 DNA Stretching at y= -10.

Next we are simulating a strand with 40 beads in a channel. The simulation is

conducted with both zero external force and a high external force. The results are then

compared to the simulation data provided by Chun Cheng et al. (2008). The extension

rate of the DNA strand is measured by finding the distance between two beads of the

strand located at either end of the strand at time t. This may not necessarily be the first

and last bead of the chain as the beads tend to fold and tumble. The present code goes

through the position of each bead at every timestep and finds the position of the

downstream-end and upstream-end of the chain. The fractional extension is computed as

the ratio between the extension length, lext, and the total length of the DNA strand, L

(Chun Cheng, Feng, Qian Qian, & Xiang Dong, 2008) as follows:

69

C+L�cà¬�L« 5�c5�áà¬�, lfract � lext/L 46

The fractional extension is then plotted against the time and the relaxation time is

computed by fitting an exponential curve to the plot.

Figure 30 Fractional Extension with Respect to Time (Chun Cheng et al., 2008).

Figure 31 Fractional Extension vs. DPD Time and Exponential Decay.

70

Figure 28 shows the results of Chun Cheng et al. (2008) for low external force

and the extension averages at 20%. In this study, we compute the extension with zero

external force and the fraction extension averages over 10%.

extension, x � 0.1 � exp j� �
".]m 47

The relaxation time is calculated to be 0.2 DPD time units at zero external force for a

DNA strand with 40 beads. Figure 32 shows the extension averaging at 0.1 and then

oscillates about 0.05 after t=7.5. The extension is simulated at g=0.1.

Figure 32 Fractional Extension at External Force, g=0.1.

71

Figure 33 is the fractional extension with an external force, g=10. The plot illustrates how

the DNA strands reached its equilibrium extension at 5% of its original length much

quicker with a higher external force. The peaks in the plot are due to the DNA leaving the

periodic boundary condition at x=6 and continues at x=-6. However, this shows that the

DNA strand would reach equilibrium much faster at a higher external force.

Figure 33 Fractional Extension with External Force, g=10.

3.5 Remarks and Discussion

In order to have a more realistic simulation, one shouldpay more attention to (1)

matching the solvent and (2) physical properties of the DNA strands especially the charge

of the strands. Fan et al. (2006) simulated and compared his findings to Perkins et al

(1994) experiments. The solvent used in the experiment was buffer solution of tris-HCL,

72

EDTA, Tween-20 and NaCl (Perkins, Smith, & Chu, 1994). He formed a single DNA by

attaching multiple λ-phage DNA molecules to create a DNA strand upto 100 µm. Fan et

al. (2006) simulated that extension and was able to compare the data to Perkins et al

(1994) findings.

73

CHAPTER IV

4. CONCLUSIONS AND RECOMMENDATIONS

4.1 Summary and Conclusions

In this research, we present DPD simulation of Poiseuille flow with new

modifications to the DPD formulation and the boundary conditions. The viscosity and

particle interactions issues for standard DPD can be corrected by modifying the weighing

function of the dissipative and random force. This increases the viscosity of the DPD

fluid particle to relate to the true fluid and keeps the computational cost to a minimum.

The boundary conditions are altered such that the no-slip region prevents the fluid

particles from penetrating through the solid or the ‘frozen’ wall particles. This also

reduces multiple layering for the wall particle to increase its density. The no-slip region

prevents drastic density fluctuations at the wall. The modifications have provided a valid

Poiseuille flow profile for a two-dimensional system. The disagreement between the

simulated flow profile and the theoretical Poiseuille flow may be due to the modified

boundary condition or the changed parameter s. This should be tested by changing the

parameter s further or by varying the cutoff radius instead. Table 5 shows that the

Schmidt number is proportional to rC
8 and therefore the interactions can be increased

faster than the parameter s.

74

DNA or polymer migration is tested through the microchannel using worm-like

chain. The spring forces along with the DPD forces simulate DNA strands. We do not

have experimental data to compare the DNA migration through a Poiseuile flow, but

since worm-like chains are assumed to be able to replicate DNA strands, we have

attempted to gather physical characteristics of DNA movement through a microchannel.

Longer DNA strands appear to migrate towards the centerline for both standard DPD

weighting functions and modified parameter. However, more experimental data is

required to gather the interaction coefficients between the DNA and solvent particles.

With such data, DPD can be modified to increase the particle interaction without a rise in

computational cost. The DNA strands influences the velocity profile such that there is a

dip where the DNA strand is originally placed. However, the flow profile is less affected

within DNA with a decreased parameter s. This may be due to the viscous effect of the

DNA strands on the fluid particles.

The worm-like chains illustrates the conformation of DNA strands as it travels

through the microchannel. One can observe the folding, coiling, tumbling and

entanglements of the strand with varying external forces. The DNA strand would tumble

and coil if the external force was minimal and the interactions between the particles were

reduced. The strand stretches and remains relatively extended if the external force and the

interaction was larger. The extension relaxes quickly with a stronger external force. As

longer strands entangles, strong internal forces are created which may cause more

molecular deformation. With zero external force, the strand relaxes to a set extension

slowly and oscillates about 0.1% of it original length. As the external force is increased to

75

g=0.1, the DNA strand relaxes much faster from 0.1% to 0.5% of its maximum length.

When g=10, the strand relaxes to 0.05% of its maximum length much faster.

4.2 Recommendations For Future Work

Dissipative particle dynamics has a lot of room for improvement and there has

been continuous changes and additions made to this scheme. For example, Smoothed

Dissipative Particle Dynamics is a modification of DPD with additional hydrodynamic

forces added to the original method. Also, there is a need to understand the interaction

between polymer and different types of solvent particles and experimental data for such

interactions are still sought after especially for channel flow. Most of the data available

are for Couette flows with tethered DNA particles. The weighing functions can be

adjusted for the solvent particles, but when the DNA particles are added, the weighing

function parameter needs to be altered separately. DNA simulation using DPD with

modified weighting functions, both parameter s and the cutoff radius, can be improved

further with the availability of computational resources and experimental data.

The computational cost of this code was relatively high. When the number of

particles is increased to over 7200 for 10000 time step, it would take about 45 hours. For

this system, with 1458 particles, it took 2.2 hours for 10000 time step. The only

computational efficieny method used was the cutoff radius. If the neighbor list or cell list

method is added to the algorithm, the code would be much faster. Also, Matlab is a useful

tool to visualize the flow phenomena as the code was applied. However, programming

76

languages such as C or Fortran would reduce the bottlenecks and limitations of Matlab

programming.

DPD is a powerful tool that can be used for a variety of computational simulation.

It is less expensive that MD or MC in terms of computational cost. However, it can be

improved if parallel computing is utilized. Unlike MD, DPD has lesser distributed

computation as each calculation is depended on the other. If DPD is modified to compute

forces separately, the cost would be reduced drastically. Also, the equation for DPD

seems to be limited for microscopic to mesoscopic flows. If the system is too small, the

flow field tends to segregate into sections within the system which requires further

studies. Modifications for DPD forces in a nano-structure can be improved with further

study and the availability of experimental data.

Finally, the morphology of the actual DNA molecule is more complicated to be

simulated with Worm-like-Chain method as presented in the present work. More realisitic

models would be necessary to duplicate the physical properties of DNA.

77

REFERENCES

Arya, G., Chang, H. C., & Maginn, E. J. (2003). Molecular simulations of Knudsen wall-
slip: Effect of wall morphology. [Proceedings Paper]. Molecular Simulation,
29(10-11), 697-709. doi: 10.1080/0892702031000103257

Bustamante, C., Marko, J. F., Siggia, E. D., & Smith, S. (1994). Entropic elasticity of
lambda-phage DNA. Science (New York, N.Y.), 265(5178), 1599-1600.

Chun, Kyoseok, et al. "Fabrication of Array of Hollow Microcapillaries Used for
Injection of Genetic Materials into Animal/Plant Cells." Japanese Journal of
Applied Physics 38.2-3A (1999): 279-81. Print.

Chun Cheng, Z., Feng, J., Qian Qian, C., & Xiang Dong, S. (2008, 6-9 Jan. 2008).
Simulating stretching dynamics of DNA with dissipative particle dynamics. Paper
presented at the Nano/Micro Engineered and Molecular Systems, 2008. NEMS
2008. 3rd IEEE International Conference on.

Fan, X., Phan-Thien, N., Chen, S., Wu, X., & Ng, T. Y. (2006). Simulating flow of DNA
suspension using dissipative particle dynamics. Physics of Fluids, 18(6), 063102.

Fan, X., Phan-Thien, N., Yong, N. T., Wu, X., & Xu, D. (2003). Microchannel flow of a
macromolecular suspension. Physics of Fluids, 15(1), 11-21. doi:
10.1063/1.1522750

Frenkel, D., & Smit, B. (2002). Understanding Molecular Simulation: From Algorithms
to Applications (2nd ed.). Orlando: Academic Press.

Groot, R., & Warren, P. (1997). Dissipative particle dynamics: Bridging the gap between
atomistic and mesoscopic simulation. The Journal of Chemical Physics, 107(11),
4423-4435. doi: citeulike-article-id:2316331

Hoogerbrugge, P. J., & Koelman, J. M. V. A. (1992). Simulating Microscopic
Hydrodynamic Phenomena with Dissipative Particle Dynamics. EPL
(Europhysics Letters), 19(3), 155.

Huber, D. E., Markel, M. L., Pennathur, S., & Patel, K. D. (2009). Oligonucleotide
hybridization and free-solution electrokinetic separation in a nanofluidic device.
Lab on a Chip, 9(20), 2933-2940.

78

Jellema, L. C., Mey, T., Koster, S., & Verpoorte, E. (2009). Charge-based particle
separation in microfluidic devices using combined hydrodynamic and
electrokinetic effects. Lab on a Chip, 9(13), 1914-1925.

Kang, K., Choi, J., Nam, J. H., Lee, S. C., Kim, K. J., Lee, S.-W., & Chang, J. H. (2009).
Preparation and characterization of chemically functionalized silica-coated
magnetic nanoparticles as a DNA separator. Journal of Physical Chemistry B,
113(2), 536-543.

Larson, R. G., Perkins, T. T., Smith, D. E., & Chu, S. (1997). Hydrodynamics of a DNA
molecule in a flow field. [Article]. Physical Review E, 55(2), 1794-1797. doi:
10.1103/PhysRevE.55.1794

Liu, M., Meakin, P., & Huang, H. (2007). Dissipative particle dynamics simulation of
multiphase fluid flow in microchannels and microchannel networks. Physics of
Fluids, 19(3), 033302.

Pan, H., Ng, T. Y., Li, H., & Moeendarbary, E. (2010). Dissipative particle dynamics
simulation of entropic trapping for DNA separation. Sensors and Actuators A:
Physical, 157(2), 328-335. doi: DOI: 10.1016/j.sna.2009.11.027

Perkins, T., Smith, D., & Chu, S. (1994). Direct observation of tube-like motion of a
single polymer chain. Science, 264(5160), 819-822. doi: 10.1126/science.8171335

Perkins, T., Smith, D., Larson, R., & Chu, S. (1995). Stretching of a single tethered
polymer in a uniform flow. Science, 268(5207), 83-87. doi:
10.1126/science.7701345

Pivkin, I. V., Caswell, B., & Karniadakis, G. E. (2011). Dissipative Particle Dynamics:
John Wiley & Sons, Inc.

Pivkin, I. V., & Karniadakis, G. E. (2005). A new method to impose no-slip boundary
conditions in dissipative particle dynamics. Journal of Computational Physics,
207(1), 114-128. doi: DOI: 10.1016/j.jcp.2005.01.006

Rapaport, D. C. (2004). The Art of Molecular Dynamics Simulation (2 ed.). Cambridge:
Cambridge University Press.

Revenga, M., Zúñiga, I., & Español, P. (1999). Boundary conditions in dissipative
particle dynamics. Computer Physics Communications, 121-122, 309-311. doi:
10.1016/S0010-4655(99)00341-0

Revenga, M., Zúñiga, I., Español, P., & Pagonabarraga, I. (1998). Boundary Models in
DPD. International Journal of Modern Physics C, 9(8), 1319-1328. doi:
10.1142/S0129183198001199

79

Satoh, A. (2011). Introduction to practice of molecular simulation: Molecular dynamics,
Monte Carlo, Brownian dynamics, Lattice Boltzmann, dissipative particle
dynamics (1st ed.). Amsterdam ; Boston: Elsevier.

Smith, D. E., Babcock, H. P., & Chu, S. (1999). Single-Polymer Dynamics in Steady
Shear Flow. [Article]. Science, 283(5408), 1724.

Symeonidis, V., Karniadakis, G., & Caswell, B. (2005). Dissipative Particle Dynamics
Simulations of Polymer Chains: Scaling Laws and Shearing Response Compared
to DNA Experiments. Physical Review Letters, 95(7), 076001.

Symeonidis, V., Karniadakis, G. E., & Caswell, B. (2006). Schmidt number effects in
dissipative particle dynamics simulation of polymers. [Article]. Journal of
Chemical Physics, 125(18), 184902. doi: 10.1063/1.2360274

Underhill, P. T., & Doyle, P. S. (2004). On the coarse-graining of polymers into bead-
spring chains. Journal of Non-Newtonian Fluid Mechanics, 122(1-3), 3-31. doi:
10.1016/j.jnnfm.2003.10.006

Willemsen, S. M., Hoefsloot, H. C. J., & Iedema, P. D. (2000). No-slip boundary
condition in dissipative particle dynamics. [Article]. International Journal of
Modern Physics C, 11(5), 881-890.

80

APPENDICES

81

APPENDIX A

Matlab Functions and Usage

Matlab Usage

For the initial conditions, the initial position and initial velocity are both created

as two separate functions. These two files contain positions and velocity for all fluid, wall

and DNA particles. These functions are then called into the main script which contains

the algorithm. The forces are written in three separate function files. Each force is called

depending on which particle is being computed. When the fluid particles, i =1 to N, is

being calculated, the force that contains the fluid-fluid, fluid-wall and fluid-polymer

particle interactions are called. Similarly, when the polymer particles, i =Ndtot+1 to Ntot,

is being calculated, the force that contains the polymer-fluid, polymer-wall and polymer-

polymer particle interactions are called along with the force function that contains the

polymer spring forces. Finally, the script file is created which contains the main

algorithm which is the modified velocity-Verlet. The modified boundary condition with

no-slip and modified periodic boundary condition is coded in the script as well.

The script and the function files are saved as *.m files. The command window and

workspace can be saved as *.mat file where the values calculated through the simulation

can be retrieved. These values can also be transferred for the *.mat file to Excel if

needed.

82

Each vector that is calculated as a matrix is computed in both x and y direction.

For example, the velocity vectors v(1,i) and v(2,1) are in the x- and y- directions

respectively.

Matlab Functions

Matlab has a lot of functions in-built into the software, but these are some of the

few ones that are used in the code. The function global makes the variables public which

can be used through each function called. Also different copies of the script can be

created to do multiple simulations at the same with different parameters and same force

and initial condition *.m function files. The second function used is called rand(n) which

generated a uniformly distributed random numbers in a n x n matrix. The random

numbers are between the open interval (0,1). This function is used to generate random

numbers for the Maxwell-Boltzmann velocity distribution for the boundary conditions,

initial velocity and θij, parameter for the random force.

83

APPENDIX B

Relation of parameter s and DNA migration

Table 4 Relation between Weighting Function and Migration Distance.

Beads

s 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00 0.50 1.00 1.50 2.00

Time, t

0 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99 -9.99

25 -8.80 -7.87 -11.08 -8.55 -8.12 -10.26 -9.83 -9.15 -10.28 -11.22 -9.22 -10.65

50 -11.65 -8.52 -9.44 -8.37 -8.07 -10.22 -8.42 -8.88 -10.90 -11.07 -9.09 -8.40

75 -11.72 -10.23 -8.82 -10.73 -8.34 -7.74 -7.90 -7.64 -11.18 -8.29 -11.80 -6.24

100 -11.66 -11.90 -9.90 -11.03 -6.95 -8.30 -6.62 -9.12 -9.85 -7.65 -12.02 -8.39

125 -9.10 -12.91 -10.07 -9.47 -8.53 -6.18 -5.57 -8.91 -7.42 -6.96 -13.97 -9.46

150 -9.24 -12.99 -11.32 -10.02 -9.08 -5.32 -4.62 -8.46 -7.11 -9.17 -11.52 -11.21

175 -10.68 -13.31 -10.38 -11.18 -7.90 -5.75 -4.71 -8.79 -8.57 -7.63 -11.87 -11.74

200 -10.83 -13.28 -10.13 -10.09 -7.16 -5.07 -4.61 -8.12 -9.58 -8.06 -11.76 -10.47

225 -12.51 -11.37 -8.92 -14.04 -7.67 -7.14 -5.14 -9.17 -9.61 -6.14 -10.19 -10.09

250 -12.47 -7.39 -9.05 -13.36 -7.83 -8.36 -4.86 -5.59 -12.39 -4.79 -9.26 -10.05

275 -13.36 -8.64 -8.08 -11.21 -7.69 -8.55 -3.35 -5.44 -11.35 -1.59 -10.34 -8.13

300 -13.76 -8.68 -8.44 -10.39 -9.17 -8.53 -4.72 -6.64 -11.79 -0.94 -11.51 -10.02

325 -13.21 -7.26 -8.84 -8.48 -9.17 -8.45 -5.38 -4.78 -10.95 -1.97 -11.37 -10.30

350 -13.60 -6.97 -8.95 -10.60 -9.82 -8.48 -6.07 -6.45 -10.03 -3.78 -11.60 -11.10

375 -12.59 -6.18 -10.81 -8.84 -7.59 -8.87 -7.79 -6.30 -10.64 -2.77 -11.59 -12.65

400 -12.68 -5.84 -11.33 -8.62 -6.54 -10.25 -10.27 -6.18 -11.67 -2.81 -10.43 -12.22

425 -10.92 -4.82 -12.51 -9.85 -6.18 -11.42 -10.58 -6.77 -11.74 -3.65 -11.63 -14.11

450 -11.47 -4.11 -12.11 -11.27 -6.51 -12.60 -10.46 -7.79 -10.37 -4.36 -9.01 -13.39

475 -12.61 -3.32 -11.13 -11.44 -7.33 -13.64 -10.27 -7.49 -9.93 -4.43 -9.23 -11.56

500 -12.14 -4.21 -10.84 -10.70 -7.05 -13.58 -11.23 -9.11 -8.67 -5.69 -9.18 -9.10

5.00 10.00 20.00

84

Viscosity and Schmidt Number

Table 5 Properties of DPD System (Fan et al., 2006)

85

APPENDIX C

Matlab Code

%%%%%%%%%%%%%%%%%%
% Main Algorithm script
%%%%%%%%%%%%%%%%%%

tic
clc
clear all

global kBT aff aww afw rc rc2 rcw s delt
global LX LY LX1 LX2 LY1 LY2
global Nwall Nwall2 Q Qwall Ndtot Nptot Ntot
global velmxd
global A Qm1 nx ny nwallx nwally
global sigma gamma rho md g lambda
global afp apw Np Npb lseg nyp leff L lp kBTp

% PARAMETERS
%DPD constants

dm=2; %Dimensions
kBT=1; %=kB*Temp
sigma=3;
gamma=4.5;
lambda=0.65;
rho=4;
aff=(75*kBT)/rho; % =18.75
aww=5.0; % =5
afw=sqrt(aff*aww); % =9.682
rc=1;
rc2=rc^2;
s=2;
rl=1.5; % Verlet Neighbour List Method r<rc<=rl
delt=0.02; %time step
tf=300; %Number of time steps (t>1350)
ti=0.; %inital time
g=0.05; %Driving force in x direction
M=1; % Mass density of DPD particles
md=1;
velmxd=sqrt(2*kBT/md); % Maximum velocity of particles

%-- -----------
% Initial Conditions

86

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DPD Fluid Particles
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N=1458; % Number of particles
LX=12;
LY=30;
rcw=0.005*LY;
ndensdn=1; % Non-dimensional Number density of DPD
dc=0.4; % Diameter of Particle
ndensd=N/(LX*LY); % Number density of dpd particles
vdensd=ndensdn*pi/4; % Volumetric Fraction
Q=2*sqrt(N/2);
A=sqrt(1/ndensd); % Number density
Qm1=(Q-1);
nx=(LX)/Q;
ny=(LY)/Q;
LX1=LX/2;
LX2=-(LX/2);
LY1=LY/2;
LY2=(-LY/2);
bc1=(LY1)-rcw;
bc2=(LY2)+rcw;
bins=5;
tbins=bins+2; %Total Bins
nybins=(LY-(2*rcw))/bins;
nymat=[(LY2+rcw/2) (LY2+rcw+(nybins/2):nybins:LY1-r cw) (LY1-rcw/2)];
bnbtm=rcw-(LY1); %Bottom bin near wall ny=0.005*LY
bntp=(LY1)-rcw; %Top bin near wall ny=0.005*LY

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Wall Setup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Nwall=400; %Number of Wall particles
Nwall2=Nwall/2;
Qwall=sqrt(Nwall);
nwallx=LX/Nwall2;
nwally=LY/Nwall2;
Ndtot=Nwall+N;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DNA Particles
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Np=1; % Number of strands
Npb=10; %Number of beads in the strand=81
leff=0.053; %effective length;
kBTp=1; %uJ kBTp=4.115*10^(-14)erg Erg=1*10^-7 J
L=67.2; %total length of the DNA strand 67.2 um
lp=0.81; % for Npb=81 and lp=L/(Npb-1);
lseg=0.4; % Initial distance between beads
mp=0.25; % g/cm3

87

viscp=2.588;
nvp=1.235; %cP um/s
Nptot=Np*Npb; % Total number of beads in all strands
Ntot=Ndtot+Nptot;
afp=2; % repulsion force between fluid and polymer
apw=sqrt(2*aww);
nyp=LY/Np;

%Initiate Arrays
newv=zeros(2,Ntot);
newF=zeros(2,Ntot); predv=zeros(2,Ntot);
vavgd2=zeros(1,tbins); vavgd=zeros(1,tbins);
vnum=zeros(1,tbins);
diffrpl=zeros(2,Nptot);
absrpl=zeros(1,Nptot);
constl=zeros(1,Nptot);
vecl=zeros(2,Nptot);

%Initiate Conditions
r=initposd(N,Nwall);
newr=initposd(N,Nwall);
v=initveld(N,Nwall,Np,Npb);
vnum(1,1:tbins)=0;
vavgd(1,1:tbins)=0;
F=0; Fp=0; Fps=0;

%Initial Force
for i=1:1:N
 F=F+force(r,v,i,N,Nwall);
end

for i=Ndtot+1:1:Ndtot+Nptot
 Fp=Fp+forcefp(r,v,i,N,Nwall);
 Fps=Fps+forcepp(r,i,N,Nwall);

end
F=F+Fp+Fps;

%Modified Velocity Verlet

for t=ti:delt:tf
 t
 for i=1:1:N
 for k=1:2
 if abs(r(2,i))<bc1
 newr(k,i)=r(k,i)+delt*v(k,i)+(1/2)*delt ^2*(1/M)*F(k,i);
 predv(k,i)=v(k,i)+ lambda*delt*(1/M)*F(k,i);
 else
 newr(k,i)=r(k,i)+delt*v(k,i);
 predv(k,i)=v(k,i);
 end
 end

 %Setting Periodic Boundary Conditions

88

 if newr(1,i)>= LX1
 newr(1,i)=newr(1,i)-LX;
 elseif newr(1,i)<= LX2
 newr(1,i)=newr(1,i)+LX;
 end

 end

% When particles are close to the wall particles

 for i=1:1:N

 if newr(2,i)>=bc1 % Top wall
 n=-1;
 vRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);
 vRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);
 if abs(v(1,i))>=abs(vRx)
 newv(1,i)=vRx;
 else
 newv(1,i)=v(1,i);
 end
 if abs(v(2,i))>=abs(vRy)
 newv(2,i)=vRy+n*(sqrt((n*vRy)^2)-(n*vRy));
 if newv(2,i)>0
 disp('positive at upper wall')
 newv(2,i)=newv(2,i)*(-1);
 end
 else
 newv(2,i)=n*abs(v(2,i));
 end

 newF=zeros(2,Ntot);
 newr(2,i)=bc1;

 elseif newr(2,i)<=bc2 % Bottom wall
 n=1;
 vRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);
 vRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);
 if abs(v(1,i))>=abs(vRx)
 newv(1,i)=vRx;
 else
 newv(1,i)=v(1,i);
 end
 if abs(v(2,i))>=abs(vRy)
 newv(2,i)=vRy+n*(sqrt((n*vRy)^2)-(n*vRy));
 if newv(2,i)<0
 disp('negative at lower wall')
 newv(2,i)=newv(2,i)*(-1);
 end
 else
 newv(2,i)=n*abs(v(2,i));
 end
 newF=zeros(2,Ntot);
 newr(2,i)=bc2;

89

 else
 newF=force(newr,predv,i,N,Nwall);
 newv(1,i)=v(1,i)+(1/2)*delt*(1/M)*(F(1,i)+n ewF(1,i));
 newv(2,i)=v(2,i)+(1/2)*delt*(1/M)*(F(2,i)+n ewF(2,i));
 end

% Velocity check to ensure velocity does not exceed
% maximum velocity velmxd

 vavg=(newv(1,i))^2+(newv(2,i))^2;
 if vavg > velmxd^2
 vavg2=sqrt(velmxd^2/vavg);
 newv(1,i)=newv(1,i)*vavg2;
 newv(2,i)=newv(2,i)*vavg2;
 end

 r(1,i)=newr(1,i);
 r(2,i)=newr(2,i);
 v(1,i)=newv(1,i);
 v(2,i)=newv(2,i);
 F(1,i)=newF(1,i);
 F(2,i)=newF(2,i);

 end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DNA Particle interaction
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 for i=Ndtot+1:1:Ndtot+Nptot
 for k=1:2

 if abs(r(2,i))<bc1
 newr(k,i)=r(k,i)+delt*v(k,i)+(1/2)*delt ^2*(1/M)*F(k,i);
 predv(k,i)=v(k,i)+ lambda*delt*(1/M)*F(k,i);
 else
 newr(k,i)=r(k,i)+delt*v(k,i);
 predv(k,i)=v(k,i);
 end
 end

% Left beads are recorded and the right beads are a djusted with
% length less than or equal to 0.01

diffrpl(1,i)=newr(1,i)-newr(1,i-1);
 if diffrpl(1,i) > LX1
 diffrpl(1,i)=diffrpl(1,i)-LX;
 elseif diffrpl(1,i) < LX2
 diffrpl(1,i)=LX - abs(diffrpl(1,i));
 end

diffrpl(2,i)=newr(2,i)-newr(2,i-1);
absrpl(i)=sqrt((diffrpl(1,i)).^2+(diffrpl(2,i)).^2) ;
constl(i)=absrpl(i)/lp;
vecl(1,i)=diffrpl(1,i)./absrpl(i);

90

vecl(2,i)=diffrpl(2,i)./absrpl(i);

% Constraint to prevent length of segments near fix ed end exceeding lp
if i~=Ndtot+1
 if abs(constl(i)) > 0.95
 newr(1,i)=newr(1,i-1)+lp*vecl(1,i);
 newr(2,i)=newr(2,i-1)+lp*vecl(2,i);
 end
end

 %Setting Periodic Boundary Conditions
 if newr(1,i)>= LX1
 newr(1,i)=newr(1,i)-LX;
 elseif newr(1,i)<= LX2
 newr(1,i)=newr(1,i)+LX;
 end

 end

 for i=Ndtot+1:1:Ndtot+Nptot

 if newr(2,i)>=bc1 % Top wall
 n=-1;
 vRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);
 vRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);
 newv(1,i)=vRx;
 newv(2,i)=vRy+n*(sqrt((n*vRy)^2)-(n*vRy));
 if newv(2,i)>0
 disp('positive at upper wall')
 newv(2,i)=newv(2,i)*(-1);
 end

 newF=zeros(2,Ntot); %function Force
 newr(2,i)=0;

 elseif newr(2,i)<=bc2 % Bottom wall
 n=1;
 vRx=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);
 vRy=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi* rand);
 newv(1,i)=vRx;
 newv(2,i)=vRy+n*(sqrt((n*vRy)^2)-(n*vRy));
 if newv(2,i)<0
 disp('negative at lower wall')
 newv(2,i)=newv(2,i)*(-1);
 end

 newF=zeros(2,Ntot); %function Force
 newr(2,i)=0;

 else
 newF=forcefp(newr,predv,i,N,Nwall)+forcepp(newr,i,N,Nwall);
 newv(1,i)=v(1,i)+(1/2)*delt*(1/M)*(F(1,i)+n ewF(1,i));
 newv(2,i)=v(2,i)+(1/2)*delt*(1/M)*(F(2,i)+n ewF(2,i));
 end

91

 vavg=(newv(1,i))^2+(newv(2,i))^2;
 if vavg > velmxd^2
 vavg2=sqrt(velmxd^2/vavg);
 newv(1,i)=newv(1,i)*vavg2;
 newv(2,i)=newv(2,i)*vavg2;
 end

 r(1,i)=newr(1,i);
 r(2,i)=newr(2,i);
 v(1,i)=newv(1,i);
 v(2,i)=newv(2,i);
 F(1,i)=newF(1,i);
 F(2,i)=newF(2,i);

 End

leastx=r(1,Ndtot+1);
for j=0:1:Npb-2
 if leastx<=r(1,Ndtot+2+j)
 leastx=leastx;
 else
 leastx=r(1,Ndtot+2+j);
 end
end

mostx=r(1,Ndtot+1);
for k=0:1:Npb-2
 if mostx>=r(1,Ndtot+2+k)
 mostx=mostx;
 else
 mostx=r(1,Ndtot+2+k);
 end
end

extx=mostx-leastx;
 if abs(extx)>LX1
 extx=mostx+leastx;
 end

 fid = fopen('ext.txt' , 'a'); % Opening output file
 fprintf(fid, '%-07.4f %-07.4f\r\n' ,t, extx); %writing value file
 fclose(fid); %Closing output file

ry=r(2,Ndtot+1:Ntot);
 fid = fopen('tvsrneg13.txt' , 'a');
 fprintf(fid, '%-4.2f\r\n' ,t);
 fprintf(fid, '%-07.4f\r\n' ,ry);
 fclose(fid);

%%%%%%%%%%%%%%%%%%%%%%%
% PLOTS
%%%%%%%%%%%%%%%%%%%%%%%

92

% Plotting the particle movement through the channe ls
figure(1)
plot(r(1,N+1:N+Nwall),r(2,N+1:N+Nwall), 'o' , 'LineWidth' ,0.2, ...
 'MarkerSize' ,5, 'MarkerEdgeColor' , 'k' , 'MarkerFaceColor' , 'b')
hold on
% whitebg('white')
% set(gcf,'Color',[0.5,1,0.6])
plot(r(1,1:N),r(2,1:N), 'o' , 'MarkerSize' ,6, ...
 'MarkerEdgeColor' , 'k' , 'MarkerFaceColor' , 'y')
% plot(r(1,200),r(2,200),'>','MarkerSize',6, ...
% 'MarkerEdgeColor','k','MarkerFaceColor','r')
plot(r(1,Ndtot+1:Ntot),r(2,Ndtot+1:Ntot), '-ok' , 'MarkerSize' ,5, ...
 'MarkerEdgeColor' , 'k' , 'MarkerFaceColor' , 'r')
text(r(1,Ndtot+1),r(2,Ndtot+1),num2str(Ndtot+1))
text(r(1,Ndtot+2),r(2,Ndtot+2),num2str(Ndtot+2))
text(r(1,Ndtot+3),r(2,Ndtot+3),num2str(Ndtot+3))
text(r(1,Ndtot+4),r(2,Ndtot+4),num2str(Ndtot+4))
text(r(1,Ndtot+5),r(2,Ndtot+5),num2str(Ndtot+5))
% axis tight
axis([-LX/2 LX/2 -LY/2 LY/2])
drawnow
hold off

% Plotting the averaged velocity in each bin over a set time step
for i=1:1:N
 if r(2,i)<=bnbtm %&& r(2,i)>=(LY2)
 vnum(1)=vnum(1)+1;
 vavgd(1)=vavgd(1)+v(1,i);
 elseif r(2,i)>=bntp %&& r(2,i)<=(LY1)
 vnum(tbins)=vnum(tbins)+1;
 vavgd(tbins)=vavgd(tbins)+v(1,i);
 end
end
for p=1:1:bins
sect=((p)*nybins)-(LY1)+rcw;
sect2=((p-1)*nybins)-(LY1)+rcw;
 for i=1:1:N
 if r(2,i)<=sect && r(2,i)>sect2
 vnum(p+1)=vnum(p+1)+1;
 vavgd(p+1)=vavgd(p+1)+v(1,i);
 end
 end

end

for tm=1:1:10
 if t==(tf/10)*tm
 vavgd2(:)=vavgd(:)./vnum(:);
 vavgd2(isnan(vavgd2))=0;
 vtot=sum(vavgd2,2);
 vnorm=vtot/tbins;
 vovnrm(1,:)=vavgd2(:)/vnorm;

figure(4);

93

plot(nymat(:),vovnrm(1,:), 'o' , 'MarkerSize' ,6, ...
 'MarkerEdgeColor' , 'k' , 'MarkerFaceColor' , 'k')
xlabel('BINS')
ylabel('VELOCITY /AVERAGE VELOCITY')
axis tight
% axis([-15 15 -1 3])
set(gca, 'XMinorTick' , 'on' , 'YMinorTick' , 'on')
drawnow

vnormtxt=[nymat; vovnrm];
% open the file with write permission
fid = fopen('posnorm1.txt', 'a'); % Opening output file
fprintf(fid,' \r\n');
fprintf(fid,'%-4.2f\r\n',t);
fprintf(fid,'%-07.4f %-07.4f\r\n',vnormtxt); %writing to output file
fclose(fid); %Closing output file

 else
 continue
 end
end

if t<=10
 vnum(1,1:tbins)=0;
 vavgd(1,1:tbins)=0;
end

end

figure(3);
plot(nymat(:),vavgd2(:), ':k' , 'LineWidth' ,2)
xlabel('BINS')
ylabel('AVERAGE VELOCITY')
axis tight
% axis([-1.5 1.5 -1.5 1.5])
set(gca, 'XMinorTick' , 'on' , 'YMinorTick' , 'on')

toc

%%%%%%%%%%%%%%%%%%
% Initial Positions
%%%%%%%%%%%%%%%%%%

function [r] = initposd(N,Nwall)

global LX LY Np Npb Ntot
global Q Qm1 nx ny nwallx Nwall2
global LX2 LY2 lseg nyp

%Initiate Arrays
ri=zeros(2,Q); r=zeros(2,Ntot);

94

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fluid Particle Setup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i=0;

for s=0:2:Qm1-1
 ri(1,s+1)=(s*nx)-(LX/2)+0.05;

 if ri(1,s+1)>(LX/2)
 break
 end

 for p=0:2:Qm1-1
 ri(2,p+1)=(p*ny)-(LY/2)+0.05;

 if ri(2,p+1)>(LY/2)
 break
 end

 i=i+1;
 r(1,i)=ri(1,s+1); % X-Position of the particles
 r(2,i)=ri(2,p+1); % Y-Position of the particles
 end
end

for s=1:2:Qm1
 ri(1,s+1)=(s*nx)-(LX/2)+0.05+(nx/20);

 if ri(1,s+1)>(LX/2)
 break
 end

 for p=1:2:Qm1
 ri(2,p+1)=(p*ny)-(LY/2)+0.05+(ny/8);

 if ri(2,p+1)>(LY/2)
 break
 end

 i=i+1;
 r(1,i)=ri(1,s+1); % X-Position of the particles
 r(2,i)=ri(2,p+1); % Y-Position of the particles
 end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Wall Setup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

95

for i=N+1:1:(N+Nwall2)
 r(1,i)= (i*nwallx)-(LX/2)+0.001-((N+1)*nwallx);
 if r(1,i)>(LX/2)
 break
 end
 r(2,i)=-(LY/2);
 if r(2,i)>(LY/2)
 break
 end
end

for i=N+1:1:(N+Nwall2)
 r(1,Nwall2+i)= (i*nwallx)-(LX/2)+0.001-((N+1)*n wallx);
 if r(1,Nwall2+i)>(LX/2)
 break
 end
 r(2,Nwall2+i)=(LY/2);
 if r(2,Nwall2+i)>(LY/2)
 break
 end
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% DNA Setup
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

i=N+Nwall;
rpi(1,1)=LX2;

for p=1:1:Np
 rpi(2,p+1)=LY2+((p-1)*nyp)+(nyp/2);

 for s=1:1:Npb
 rpi(1,s+1)=rpi(1,s)+lseg;

 if rpi(1,s+1)>(LX/2)
 break
 end

 i=i+1;
 r(1,i)=rpi(1,s+1); % X-Position of the particles
 r(2,i)=rpi(2,p+1); % Y-Position of the particles
 end
end

end

%%%%%%%%%%%%%%%%%%
% Initial Velocity
%%%%%%%%%%%%%%%%%%

function [v] = initveld(N,Nwall,Np,Npb)

96

global kBT md Nptot Ndtot Ntot
global velmxd

%Initiate Arrays
v=zeros(2,Ntot);

for i=1:1:N
 v(1,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r and);
 v(2,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r and);

% Velocity check to ensure velocity does not exceed max velocity velmxd
vavg=(v(1,i))^2+(v(2,i))^2;
 if vavg > velmxd
 vavg=sqrt(velmxd/vavg);
 v(1,i)=v(1,i)*vavg;
 v(2,i)=v(2,i)*vavg;
 end
end

% To set Total Momentum equals Zero
momxd=0;
momyd=0;

for i=1:1:N
 momxd=momxd+v(1,i);
 momyd=momyd+v(2,i);
end

momxd=momxd/N;
momyd=momyd/N;

for i=1:1:N
 v(1,i)=v(1,i)-momxd;
 v(2,i)=v(2,i)-momyd;
end

%%%%%%%%%%%%%%%%%%%
% Wall Velocity
%%%%%%%%%%%%%%%%%%%
for i=N+1:1:Ndtot

 v(1,i)=0;
 v(2,i)=0;
end

%%%%%%%%%%%%%%%%%%%
% DNA Velocity
%%%%%%%%%%%%%%%%%%%
for i=Ndtot+1:1:Ndtot+Nptot

 v(1,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r and);
 v(2,i)=sqrt((-2)*(kBT/md)*log(rand))*cos(2*pi*r and);

97

% Velocity check to ensure velocity does not exceed max velocity velmxd
vavg=(v(1,i))^2+(v(2,i))^2;
 if vavg > velmxd
 vavg=sqrt(velmxd/vavg);
 v(1,i)=v(1,i)*vavg;
 v(2,i)=v(2,i)*vavg;
 end
end

%%%%%%%%%%%%%%%%%%
% DPD Fluid Forces
%%%%%%%%%%%%%%%%%%

function [F] = force(r,v,i,N,Nwall)

global kBT aff afw afp rc rc2 s delt
global LX LX1 LX2
global Ndtot Nptot Ntot
global sigma gamma g

%Initiate Arrays
diffr=zeros(2,N); diffv=zeros(2,N);
absr=zeros(1,N); absr2=zeros(1,N); absv=zeros(1,N);
diffrvec=zeros(2,N); diffvvec=zeros(2,N);
FCon=zeros(2,N); FDis=zeros(2,N);
FRan=zeros(2,N);
F=zeros(2,Ntot);
dotrv=zeros(2,N);
Fint=zeros(2,N); Fintw=zeros(2,N); Fintp=zeros(2,N) ;
Fext(1,1:N)=g;
Fext(2,1:N)=0;

Fint(1,i)=0;
Fint(2,i)=0;
Fintw(1,i)=0;
Fintw(2,i)=0;
Fintp(1,i)=0;
Fintp(2,i)=0;

for j=1:1:N

 if j==i
 continue
 end

 %Distance between two particles with x and v compon ents
 diffr(1,i)=r(1,i)-r(1,j);
 if diffr(1,i) > LX1 % Periodic Boundary Conditions
 diffr(1,i)=diffr(1,i)-LX;
 elseif diffr(1,i) < LX2
 diffr(1,i)=LX - abs(diffr(1,i));
 end

98

 diffr(2,i)=r(2,i)-r(2,j);
 if abs(diffr(1,i))>rc
 continue
 end
 if abs(diffr(2,i))>rc
 continue
 end
 absr(i)=sqrt((diffr(1,i)).^2+(diffr(2,i)).^2);
 absr2(i)=(absr(i)).^2;
 if absr2(i)>rc2
 continue
 end

 diffrvec(1,i)=diffr(1,i)./absr(i);
 diffrvec(2,i)=diffr(2,i)./absr(i);

 %Velocity between two particles with x and v compon ents
 diffv(1,i)=v(1,i)-v(1,j);
 diffv(2,i)=v(2,i)-v(2,j);
 absv(i)=sqrt((diffv(1,i)).^2+(diffv(2,i)).^2);
 diffvvec(1,i)=diffv(1,i)./absv(i);
 diffvvec(2,i)=diffv(2,i)./absv(i);

 %Conservative Force- Repulsive Force
 FCon(1,i)=aff*(1-absr(i)).*diffrvec(1,i);
 FCon(2,i)=aff*(1-absr(i)).*diffrvec(2,i);

 if abs(absr(i))<=rc
 wD=(1-absr(i)/rc)^s;
 else
 wD=0;
 end

 wR=sqrt(wD);
 theta= sqrt((-2)*log(rand))*cos(2*pi*rand);

 if theta > 6
 theta=sign(theta)*6;
 end

 %Dissipative Force
 dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec(2,i).*diffv(2,i));
 FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);
 FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);

 %Random Force
 FRan(1,i)=sigma*wR*theta*diffrvec(1,i);
 FRan(2,i)=sigma*wR*theta*diffrvec(2,i);

 %Internal Forces
 Fint(1,i)=Fint(1,i)+(FCon(1,i)+FDis(1,i)+FRan(1 ,i));
 Fint(2,i)=Fint(2,i)+(FCon(2,i)+FDis(2,i)+FRan(2 ,i));
end

99

%%%%%%%%%%%%%%%%%%%%%%%
% Wall Particles
%%%%%%%%%%%%%%%%%%%%%%%

for j=N+1:1:N+Nwall

 %Distance between two particles with x and v compon ents
 diffr(1,i)=r(1,i)-r(1,j);
 if diffr(1,i) > LX1 % Periodic Boundary Conditions
 diffr(1,i)=diffr(1,i)-LX;
 elseif diffr(1,i) < LX2
 diffr(1,i)=LX - abs(diffr(1,i));
 end

 diffr(2,i)=r(2,i)-r(2,j);
 if abs(diffr(1,i))>rc
 continue

 end

 if abs(diffr(2,i))>rc
 continue
 end

 absr(i)=sqrt((diffr(1,i)).^2+(diffr(2,i)).^2);
 absr2(i)=(absr(i)).^2;
 if absr2(i)>rc2
 continue
 end

 diffrvec(1,i)=diffr(1,i)./absr(i);
 diffrvec(2,i)=diffr(2,i)./absr(i);

 %Velocity between two particles with x and v compon ents
 diffv(1,i)=v(1,i)-v(1,j);
 diffv(2,i)=v(2,i)-v(2,j);
 absv(i)=sqrt((diffv(1,i)).^2+(diffv(2,i)).^2);
 diffvvec(1,i)=diffv(1,i)./absv(i);
 diffvvec(2,i)=diffv(2,i)./absv(i);

 %Conservative Force- Repulsive Force
 FCon(1,i)=afw*(1-absr(i)).*diffrvec(1,i);
 FCon(2,i)=afw*(1-absr(i)).*diffrvec(2,i);

 if abs(absr(i))<=rc
 wD=(1-absr(i)/rc)^s;
 else
 wD=0;
 end

 %Weight Functions and Coefficients of FD and FR
 wR=sqrt(wD);
 theta= sqrt((-2)*log(rand))*cos(2*pi*rand);

100

 if theta > 6
 theta=sign(theta)*6;
 end

 %Dissipative Force
 dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec(2,i).*diffv(2,i));
 FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);
 FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);

 %Random Force
 FRan(1,i)=sigma*wR*theta*diffrvec(1,i);
 FRan(2,i)=sigma*wR*theta*diffrvec(2,i);

 %Internal Forces
 Fintw(1,i)=Fintw(1,i)+(FCon(1,i)+FDis(1,i)+FRan (1,i));
 Fintw(2,i)=Fintw(2,i)+(FCon(2,i)+FDis(2,i)+FRan (2,i));

end

%%%%%%%%%%%%%%%%%%%%%%
% DNA Particles
%%%%%%%%%%%%%%%%%%%%%%

for j=Ndtot+1:1:Ndtot+Nptot

 diffr(1,i)=r(1,i)-r(1,j);

 if diffr(1,i) > LX1 % Periodic Boundary Conditions
 diffr(1,i)=diffr(1,i)-LX;
 elseif diffr(1,i) < LX2
 diffr(1,i)=LX - abs(diffr(1,i));
 end
 diffr(2,i)=r(2,i)-r(2,j);
 if abs(diffr(1,i))>rc % Setting neighboring particles
 continue
 end
 if abs(diffr(2,i))>rc
 continue
 end
 absr(i)=sqrt((diffr(1,i)).^2+(diffr(2,i)).^2);
 absr2(i)=(absr(i)).^2;
 if absr2(i)>rc2
 continue
 end
 diffrvec(1,i)=diffr(1,i)./absr(i);
 diffrvec(2,i)=diffr(2,i)./absr(i);

 %Velocity between two particles with x and v compon ents
 diffv(1,i)=v(1,i)-v(1,j);
 diffv(2,i)=v(2,i)-v(2,j);
 absv(i)=sqrt((diffv(1,i)).^2+(diffv(2,i)).^2);
 diffvvec(1,i)=diffv(1,i)./absv(i);
 diffvvec(2,i)=diffv(2,i)./absv(i);

101

 %Conservative Force- Repulsive Force
 FCon(1,i)=afp*(1-absr(i)).*diffrvec(1,i);
 FCon(2,i)=afp*(1-absr(i)).*diffrvec(2,i);

 if abs(absr(i))<=rc
 wD=(1-absr(i)/rc)^s;
 else
 wD=0;
 end

 wR=sqrt(wD);
 gamma=(sigma^2)/(2*kBT);
 theta= sqrt((-2)*log(rand))*cos(2*pi*rand);

 if theta > 6
 theta=sign(theta)*6;
 end

 %Dissipative Force
 dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec(2,i).*diffv(2,i));
 FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);
 FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);

 %Random Force
 FRan(1,i)=sigma*wR*theta*diffrvec(1,i);
 FRan(2,i)=sigma*wR*theta*diffrvec(2,i);

 %Internal Polymer Forces
 Fintp(1,i)=Fintp(1,i)+FCon(1,i)+FDis(1,i)+FRan(1,i)*delt^(-0.5);
 Fintp(2,i)=Fintp(2,i)+FCon(2,i)+FDis(2,i)+FRan(2,i)*delt^(-0.5);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Total Forces on Particles
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
F(1,i)=Fint(1,i)+Fext(1,i)+Fintw(1,i)+Fintp(1,i);
F(2,i)=Fint(2,i)+Fext(2,i)+Fintw(2,i)+Fintp(2,i);

end

%%%%%%%%%%%%%%%%%%
% DPD DNA or Polymer Forces
%%%%%%%%%%%%%%%%%%

function [Fp] = forcefp(r,v,i,N,Nwall)

global LX LX1 LX2
global kBT rc rc2 s
global Ndtot Nptot Ntot
global sigma gamma g delt
global afp apw

102

%Initiate Arrays
diffr=zeros(2,Ntot); diffv=zeros(2,Ntot);
absr=zeros(1,Ntot); absr2=zeros(1,Ntot); absv=zeros (1,Ntot);
diffrvec=zeros(2,Ntot); diffvvec=zeros(2,Ntot);
FCon=zeros(2,Ntot); FDis=zeros(2,Ntot);
FRan=zeros(2,Ntot);
Fp=zeros(2,Ntot);
dotrv=zeros(2,Ntot);

Fint(1,i)=0;
Fint(2,i)=0;
Fintw(1,i)=0;
Fintw(2,i)=0;
Fintp(1,i)=0;
Fintp(2,i)=0;

%%%%%%%%%%%%%%%%%%%%
% Fluid Particles
%%%%%%%%%%%%%%%%%%%%

for j=1:1:N

 %Distance between two particles with x and v compon ents
 diffr(1,i)=r(1,i)-r(1,j);
 if diffr(1,i) > LX1
 diffr(1,i)=diffr(1,i)-LX;
 elseif diffr(1,i) < LX2
 diffr(1,i)=LX - abs(diffr(1,i));
 end

 diffr(2,i)=r(2,i)-r(2,j);
 if abs(diffr(1,i))>rc
 continue
 end

 if abs(diffr(2,i))>rc
 continue
 end

 absr(i)=sqrt((diffr(1,i)).^2+(diffr(2,i)).^2);
 absr2(i)=(absr(i)).^2;
 if absr2(i)>rc2
 continue
 end

 diffrvec(1,i)=diffr(1,i)./absr(i);
 diffrvec(2,i)=diffr(2,i)./absr(i);

 %Velocity between two particles with x and v compon ents
 diffv(1,i)=v(1,i)-v(1,j);
 diffv(2,i)=v(2,i)-v(2,j);
 absv(i)=sqrt((diffv(1,i)).^2+(diffv(2,i)).^2);
 diffvvec(1,i)=diffv(1,i)./absv(i);
 diffvvec(2,i)=diffv(2,i)./absv(i);

103

 FCon(1,i)=afp*(1-absr(i)).*diffrvec(1,i);
 FCon(2,i)=afp*(1-absr(i)).*diffrvec(2,i);

 if abs(absr(i))<=rc
 wD=(1-absr(i)/rc)^s;
 else
 wD=0;
 end

 wR=sqrt(wD);
 theta= sqrt((-2)*log(rand))*cos(2*pi*rand);
 if theta > 6
 theta=sign(theta)*6;
 end

 dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec(2,i).*diffv(2,i));
 FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);
 FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);

 FRan(1,i)=sigma*wR*theta*diffrvec(1,i);
 FRan(2,i)=sigma*wR*theta*diffrvec(2,i);
 Fint(1,i)=Fint(1,i)+(FCon(1,i)+FDis(1,i)+FRan(1 ,i));
 Fint(2,i)=Fint(2,i)+(FCon(2,i)+FDis(2,i)+FRan(2 ,i));

end

%%%%%%%%%%%%%%%%%%%%%%%
% Wall Particles
%%%%%%%%%%%%%%%%%%%%%%%

for j=N+1:1:N+Nwall

 %Distance between two particles with x and v compon ents
 diffr(1,i)=r(1,i)-r(1,j);
 if diffr(1,i) > LX1
 diffr(1,i)= diffr(1,i)-LX;
 elseif diffr(1,i) < LX2
 diffr(1,i)=LX - abs(diffr(1,i));
 end

 diffr(2,i)=r(2,i)-r(2,j);
 if abs(diffr(1,i))>rc
 continue
 end

 if abs(diffr(2,i))>rc
 continue
 end

 absr(i)=sqrt((diffr(1,i)).^2+(diffr(2,i)).^2);
 absr2(i)=(absr(i)).^2;
 if absr2(i)>rc2

104

 continue
 end

 diffrvec(1,i)=diffr(1,i)./absr(i);
 diffrvec(2,i)=diffr(2,i)./absr(i);

 %Velocity between two particles with x and v compon ents
 diffv(1,i)=v(1,i)-v(1,j);
 diffv(2,i)=v(2,i)-v(2,j);
 absv(i)=sqrt((diffv(1,i)).^2+(diffv(2,i)).^2);
 diffvvec(1,i)=diffv(1,i)./absv(i);
 diffvvec(2,i)=diffv(2,i)./absv(i);

 FCon(1,i)=apw*(1-absr(i)).*diffrvec(1,i);
 FCon(2,i)=apw*(1-absr(i)).*diffrvec(2,i);
 if abs(absr(i))<=rc
 wD=(1-absr(i)/rc)^s;
 else
 wD=0;
 end

 wR=sqrt(wD);
 theta= sqrt((-2)*log(rand))*cos(2*pi*rand);
 if theta > 6
 theta=sign(theta)*6;
 end

 dotrv(i)=(diffrvec(1,i).*diffv(1,i))+(diffrvec(2,i).*diffv(2,i));
 FDis(1,i)=-gamma*wD*dotrv(i).*diffrvec(1,i);
 FDis(2,i)=-gamma*wD*dotrv(i).*diffrvec(2,i);
 FRan(1,i)=sigma*wR*theta*diffrvec(1,i);
 FRan(2,i)=sigma*wR*theta*diffrvec(2,i);
 Fintw(1,i)=Fintw(1,i)+(FCon(1,i)+FDis(1,i)+FRan (1,i));
 Fintw(2,i)=Fintw(2,i)+(FCon(2,i)+FDis(2,i)+FRan (2,i));

end

%%%%%%%%%%%%%%%%%%%%%%
% DNA Particles
%%%%%%%%%%%%%%%%%%%%%%

for j=Ndtot+1:1:Ndtot+Nptot

 if j==i
 continue
 end

 %Distance between two particles with x and v compon ents
 diffr(1,i)=r(1,i)-r(1,j);
 if diffr(1,i) > LX1
 diffr(1,i)=diffr(1,i)-LX;
 elseif diffr(1,i) < LX2
 diffr(1,i)=LX - abs(diffr(1,i));
 end

105

 diffr(2,i)=r(2,i)-r(2,j);
 if abs(diffr(1,i))>rc
 continue
 end
 if abs(diffr(2,i))>rc
 continue
 end

 absr(i)=sqrt((diffr(1,i))^2+(diffr(2,i))^2);
 diffrvec(1,i)=diffr(1,i)./absr(i);
 diffrvec(2,i)=diffr(2,i)./absr(i);

 %Velocity between two particles with x and v compon ents
 diffv(1,i)=v(1,i)-v(1,j);
 diffv(2,i)=v(2,i)-v(2,j);
 absv(i)=sqrt((diffv(1,i))^2+(diffv(2,i))^2);
 diffvvec(1,i)=diffv(1,i)./absv(i);
 diffvvec(2,i)=diffv(2,i)./absv(i);

 %Conservative Force- Repulsive Force
 if abs(i-j)>4
 app=2;
 else
 app=0;
 end

 FCon(1,i)=app*(1-absr(i))*diffrvec(1,i);
 FCon(2,i)=app*(1-absr(i))*diffrvec(2,i);

 if abs(absr(i))<=rc
 wD=(1-absr(i)/rc)^s;
 else
 wD=0;
 end

 wR=sqrt(wD);
 theta= sqrt((-2)*log(rand))*cos(2*pi*rand);
 if theta > 6
 theta=sign(theta)*6;
 end

 FDis(1,i)=-gamma*wD*dot(diffrvec(1,i),diffv(1,i))*diffrvec(1,i);
 FDis(2,i)=-gamma*wD*dot(diffrvec(2,i),diffv(2,i))*diffrvec(2,i);
 FRan(1,i)=sigma*wR*theta*diffrvec(1,i);
 FRan(2,i)=sigma*wR*theta*diffrvec(2,i);
 Fintp(1,i)=Fintp(1,i)+FCon(1,i)+FDis(1,i)+FRan(1,i)*delt^(-0.5);
 Fintp(2,i)=Fintp(2,i)+FCon(2,i)+FDis(2,i)+FRan(2,i)*delt^(-0.5);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Total Forces on Particles
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Fext(1,i)=g;

106

Fext(2,i)=0;
Fp(1,i)=Fint(1,i)+Fext(1,i)+Fintw(1,i)+Fintp(1,i);
Fp(2,i)=Fint(2,i)+Fext(2,i)+Fintw(2,i)+Fintp(2,i);
end

%%%%%%%%%%%%%%%%%%
% DNA or Polymer Spring Forces
%%%%%%%%%%%%%%%%%%

function [Fps] = forcepp(r,i,N,Nwall)

global LX LX1 LX2 Ndtot Ntot
global Nptot leff lp kBTp

%Initializing Array setup
FS=zeros(2,Ntot);
Fps=zeros(2,Ntot);
Fpint=zeros(2,Ntot);
diffrp=zeros(2,Ntot);
absrp=zeros(1,Ntot);
diffrvecp=zeros(2,Ntot);

Fpint(1,i)=0;
Fpint(2,i)=0;

for j=i-1:2:i+1

if i==Ndtot+1
 j=i+1;
elseif i==Ndtot+Nptot
 j=i-1;
end

diffrp(1,i)=r(1,i)-r(1,j);
if diffrp(1,i) > LX1
 diffrp(1,i)=LX - diffrp(1,i);
elseif diffrp(1,i) < LX2
 diffrp(1,i)=abs(diffrp(1,i))-LX;
end

diffrp(2,i)=r(2,i)-r(2,j);
absrp(i)=sqrt((diffrp(1,i))^2+(diffrp(2,i))^2);
diffrvecp(1,i)=diffrp(1,i)./absrp(i);
diffrvecp(2,i)=diffrp(2,i)./absrp(i);

%Spring Force between beads in a strand
FS(1,i)=((-kBTp)/(4*leff))*(1-(absrp(i)/lp)^(-2)+(4 *absrp(i)/lp)-
1)*diffrvecp(1,i);
FS(2,i)=((-kBTp)/(4*leff))*(1-(absrp(i)/lp)^(-2)+(4 *absrp(i)/lp)-
1)*diffrvecp(2,i);

Fpint(1,i)=FS(1,i)+Fpint(1,i);
Fpint(2,i)=FS(2,i)+Fpint(2,i);

107

if j==i+1
 break
elseif i==Ndtot+Nptot
 break
end

end

Fps(1,i)=Fpint(1,i);
Fps(2,i)=Fpint(2,i);
end

VITA

Saumya Susan Simon

Candidate for the Degree of

Master of Science

Thesis: SIMULATION OF THE FLOW OF A SINGLE STRANDED DNA IN A

CHANNEL USING DISSIPATIVE PARTICLE DYNAMICS

Major Field: Mechanical Engineering

Biographical:

Education:

Completed the requirements for the Master of Science in Mechanical
Engineering at Oklahoma State University, Stillwater, Oklahoma in December,
2011.

Completed the requirements for the Bachelor of Science in Mechanical and
Aerospace Engineering at Oklahoma State University, Stillwater, Oklahoma in
December, 2009.

Professional Memberships:

American Institute of Aeronautics and Astronautics

ADVISER’S APPROVAL: Dr. Khaled Sallam

Name: Saumya Susan Simon Date of Degree: December, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: SIMULATION OF THE FLOW OF A SINGLE STRANDED DNA IN A

CHANNEL USING DISSIPATIVE PARTICLE DYNAMICS

Pages in Study: 107 Candidate for the Degree of Master of Science

Major Field: Mechanical Engineering

Scope and Method of Study: Separation of DNA has significant importance in
understanding the genome of an organism for genetic engineering and DNA profiling for
forensics. The purpose of the study was to simulate a system containing solvent and DNA
particles through a pressure-driven two-dimensional microchannel using Dissipative
Particle Dynamics. This computational fluid method is simulated in Matlab using the
modified velocity-Verlet algorithm. The computational method DPD was modified and
the simulated channel flow was compared to the theoretical flow between two-
dimensional parallel plates. The boundary conditions include both solid ‘frozen’ particle
walls and periodic boundary conditions. The DNA particles are then inserted into the
channel to understand their physical properties as they migrate through a pressure-driven
channel. Their extension due to stretching and folding is studied to understand the
relaxation time of the DNA strand in the channel for a set of varied conditions.

Findings and Conclusions: A no-slip boundary region was constructed to enforce the
wall boundary conditions and to prevent the wall penetration by DPD fluid particles. The
modified DPD weighting functions resolve the low Schmidt number and low viscosity
typical of DPD and increase particle interaction between DPD fluid particles. However,
this modification cannot be performed when simulating DNA particles as worm-like
chain models as they do not generate accurate physical properties of DNA particles. The
extensions of the DNA strands are simulated under the influence of different external
forces and the relaxation time was reported.

