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CHAPTER I 
 
 

INTRODUCTION 

 

Coronary arteries are the blood vessels that supply blood to the heart muscles 

(myocardium). They are tethered to the surface of heart itself.  The cardiac muscles need 

an uninterrupted supply of oxygen and nutrients. Any degenerative changes in coronary 

circulation will affect the cardiac blood supply and lead to reduced cardiac performance. 

Such chronic coronary condition is referred to as coronary heart disease (CHD). The 

reduced cardiac blood supply known as coronary ischemia usually results from the 

localization of atherosclerosis in coronary arteries. Atherosclerosis is a common vascular 

disease characterized by changes in the endothelial lining. The improper functioning of 

the endothelium leads to migration of lipids and leukocytes to the sub-endothelial layer. 

The continuous deposition of lipids and leukocytes at the sub-endothelial layer causes the 

plaque formation. The atherosclerotic plaque can induce the narrowing of blood vessel 

diameter and alters blood flow to the downstream region. The partial or complete 

blocking of coronary vessel leads to lack of oxygen supply to downstream region. The 

death of cardiac muscle in those regions due to insufficient oxygen refers to myocardial 

infarction (MI). 

Atherosclerotic lesions are often localized to the left coronary arteries. The main 

branch of the left coronary artery (LCA) is the left main (LM) coronary artery. 
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LM bifurcates into the left anterior descending (LAD) artery and the left circumflex 

(LCX) artery. These arteries supply blood to both the left anterior region (LAD) and the 

left posterior region (LCX) of the myocardium (Figure 1.1), irrigating more than 50% of 

heart muscles (Kalbfleisch and Hort, 1977). CHD is the No.1 killer disease in the US 

(16.8 million deaths in 2006), accounting for more than 50% of cardiovascular disease 

(CVD) deaths (Figure 1.2, following page) (Lloyd-Jones et al., 2009).   

 

Figure 1.1 – A model of heart showing coronary circulation. The left anterior region is 
irrigated by the LAD and the posterior region is irrigated by circumflex branch (Martini, 
1992). 

2 
 



The localization of atherosclerosis is generally governed by the action of 

hemodynamic forces on the endothelial cells. Hemodynamic shear stress (tangential force 

exerted by blood flow on vessel wall) and inflammation play very important roles in the 

initiation and propagation of atherosclerosis in coronary arteries. As the disease condition 

progresses, local shear stress conditions may change significantly, resulting in vascular 

wall endothelial cell damage (Fry, 1968), platelet activation and thromboembolism 

 (Hellum, 1994). If a thrombus forms in coronary artery and blocks the blood supply to 

local cardiac muscles, the resultant ischemia (insufficient oxygen) can lead to MI 

(Willerson, 1995).  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 1.2 – Percentage breakdown of deaths due to CVD (United States, 2006) (Lloyd-
Jones et al., 2009) 
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Endothelial cells (EC) form the innermost layer of blood vessels and are directly 

in contact with blood stream. Activation and dysfunction of EC may lead to many 

vascular diseases, which are closely related to hemodynamic shear stress induced by 

blood flow (Ridger et al., 2008). Therefore, it is essential to understand the response of 

EC to various shear stresses under physiological and pathological conditions.  

It is well established that EC activation by shear stress and localization of 

atherosclerotic lesion are closely related. The lesions tend to localize to regions of 

disturbed blood flow with low and oscillating wall shear stress (WSS) patterns. These 

disturbed flow patterns are commonly found near an arterial bifurcation (Malek et al., 

1999) and regions with complex vascular geometries such as those seen in coronary 

arteries. 

 This underlines the importance of studying the WSS magnitude and distribution 

in coronary arteries. A lot of numerical and in vitro models have been built to study the 

shear stress distribution in coronary arteries; however, most of them are limited by the 

use of simplistic geometrical models and flow assumptions, neglecting the realistic 

complexity in coronary arteries. 

The aim of this study was to 1) develop a numerical model to estimate the shear 

stress distribution in the left coronary artery; 2) to apply estimated shear stress to EC to 

investigate their activities under physiological and pathological flow conditions. The 

results obtained from this study will improve our understanding of coronary blood flow 

and the activation and response of endothelial cells. 
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1.1 Objectives 

The goal of this study was to present a clear picture of variation in shear stress 

distribution in the LAD close to the bifurcation. We also wanted to evaluate wall shear 

stress distribution in the left coronary artery and investigate its role on endothelial cell 

(EC) functions. 

Global Hypothesis: Disturbed wall shear stress near the stenosis throat can activate 

endothelial cells and lead to inflammatory responses. 

Specific Aim 1: To develop 2D and 3D models of the left coronary artery model with 

realistic geometries, under normal and stenosis conditions (30%, 60% 

and 80% severity). Flow field, velocity profiles and shear stress 

distribution will be computed using CFD.  

Specific Aim 2: To apply the estimated wall shear stress to endothelial cells in vitro in a 

dynamic cone and plate shearing device to investigate the effect of 

altered WSS on EC activation and inflammatory responses.  

This present project was a unique combination of computational and experimental 

work. The computational part of this work concentrated on developing coronary artery 

models (2D and 3D) with realistic geometries. The computational fluid dynamic analysis 

was carried out in these models with assumptions close to physiological conditions and 

the WSS distribution was compared between normal and disease conditions. Also, the 

results from CFD simulations were compared to establish the variation in WSS computed 

from 2D and 3D geometries. The shear stress history calculated from CFD was used in 

the cone and plate shearing device to mechanically stimulate EC. The goal of this study 

was to improve our present understanding of the role of shear stress in the pathogenesis 
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of atherosclerosis. The significance of this study would be to reveal the shear activation-

response of EC, which may lead to better characterization of CHD and to improve 

clinical treatment.  



CHAPTER II 
 
 

BACKGROUND 

2.1 Pathogenesis of atherosclerosis 

The complex arterial geometries (curvatures and bifurcations) of the vascular 

system create regions of unique blood flow patterns. The pulsatile nature of the blood 

flow further adds to these complexities and produces regions of disturbed flow. Disturbed 

flow may promote reparative changes in the innermost layer of the artery wall – the 

intima. Endothelial cells (EC) present in this layer are sensitive to shear stresses induced 

by disturbed blood flow. Alternations in the wall shear stress (WSS) distribution may 

lead to endothelial activation and dysfunction. The low and oscillating flow affects the 

orientation of EC and leads to increased arterial wall permeability and modified surface 

protein expression (Sakamoto et al., 2006). Macromolecules, such as low density 

lipoprotein (LDL) can migrate through the endothelium and reach the sub-intimal space. 

The presence of LDL in the sub-endothelial layer can stimulate ECs to release increased 

amount of growth factors and adhesion molecules such as intercellular adhesion molecule 

- 1, vascular cell adhesion molecule - 1 and platelet endothelial cell adhesion molecule – 

1 (Huo and Ley, 2001). This increased expression of adhesion molecules favors the 

adherence and migration of leukocytes (Springer, 1994). Thus, this localized sub-intimal 

accumulation promotes further recruitment of lipids and leukocytes at the same location 

and lead to the growth of atherosclerotic lesion.  
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2.1.1 Endothelial cells 

Endothelial cells (EC) form the lining of the intimal layer. EC are sensate to shear 

stress variation. EC are found to be activated by certain disturbed WSS patterns and they 

respond through various biochemical pathways. One of the unique and earliest studies on 

EC behavior by shear stress revealed damage of EC when exposed to elevated shear for 

short period of time (Fry, 1968). The earliest response in the multistep process of 

atherosclerosis is the modulation in surface protein expression of EC (Davies et al., 

1988). An injured endothelium amplifies the permeability to macromolecules compared 

to that of an intact layer (Huo and Ley, 2001; Penn et al., 1997).  

 Some in vitro studies have revealed the activation of EC at genetic levels. 

Investigations have shown either an increase or decrease in gene expression when EC are 

activated by varying shear stress (Ohura et al., 2003). This alters the normal cytokine 

release and protein expression on EC. Among all EC responses, increased surface 

adhesion molecule expression is of primary concern due to its role in leukocyte migration 

(Campbell et al., 1998). 

An intact endothelium inhibits coagulation and thrombosis. On the other hand a 

damaged endothelium may actively promote coagulation and thrombosis due to the 

increased expression of tissue factor (TF) (Grabowski et al., 1993). An activated EC 

express both tissue factor (TF) and tissue factor pathway inhibitor (TFPI). EC under 

normal arterial levels of shear stress down regulate the surface TF expression (Grabowski 

et al., 2001). The major inflammatory response of EC to disturbed shear flow is an 

increase in TF expression (Lin et al., 1997). TF can initiate the coagulation cascade and 

lead to thrombus formation while TFPI inhibits coagulation. During the later stages of 
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atherosclerosis, TF expression governs the formation of clots. Certain in vivo studies have 

revealed an increased localization of TF in atherosclerotic plaque compared to that of 

normal vasculature (Wilcox et al., 1989). As the relationship between shear stress and 

atherosclerosis is well established, it is important to understand the surface expression of 

TF on EC under altered (disease) hemodynamic conditions.  

2.1.2 Adhesion molecules 

The important stage in the inflammatory response of EC is the leukocyte adhesion 

and infiltration mediated by adhesion molecules. These include selectins (P, E and L – 

Selectins) and immunoglobulins. Some of the important immunoglobulins include 

intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-

1) and platelet endothelial cell adhesion molecule (PECAM-1). The selectins majorly 

assist in initial capture, roll and loose attachment of leukocytes to the EC layer at the 

disturbed flow regions (Huo and Ley, 2001). The firm adherence and trans-endothelial 

migration of leukocyte are facilitated by ICAM-1 and VCAM-1.  

2.2 Intercellular adhesion molecule 1 (ICAM-1) 

ICAM-1 is a transmembrane glycoprotein, present on the surface of EC. ICAM-1 

is made up of (extracellular) immunoglobulin G (IgG) like domains (five) and a short 

cytoplasmic tail. Normal intact endothelium express low levels of ICAM-1 compared to 

that of injured endothelium (athero-prone sites) (Matthias et al., 1997).  Examination of 

coronary arteries has revealed an increase in ICAM-1 expression near the lesions (Davies 

et al., 1993). In general, EC express higher levels of ICAM-1 when they are activated. 

In the pathogenesis of atherosclerosis, ICAM-1 plays a major role in trans-

endothelial migration of leukocytes (Yang et al., 2005). ICAM-1 on EC surface acts as a 
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ligand for leukocyte function associated antigen-1 (LFA-1) (commonly found in 

leukocytes) (Rothlein et al., 1986). Blocking experiments using monoclonal antibodies 

for both ICAM-1 and LFA-1 have revealed a significant variation in leukocyte adhesion. 

Also, activated EC with increased ICAM-1 expression revealed an increase in leukocyte 

migration compared to resting cells (Dustin and Springer, 1988; Roos and Roossien, 

1987). Leukocyte adhesion to EC is one of the earliest cellular responses in 

atherosclerosis.  

The two major factors that affect ICAM-1 expression are activation of EC by 

cytokines and shear stress. Some of these cytokines are released by macrophages that 

infiltrate the endothelium. In general, the plasma level of cytokines is significantly higher 

in patients with coronary artery disease (Tentolouris et al., 2004). When treated with 

cytokines including Tumor Necrosis Factor –α (TNF-α), Interferon-γ (IFN-γ) and 

Interleukin-1 (IL-1), EC become activated (Pober et al., 1986). These activated EC have 

shown a time dependent upregulation of ICAM-1 (Bevilacqua et al., 1994).  

Apart from cytokine stimulation, mechanical shear stress is also found to induce 

ICAM-1 expression. The study conducted by Nagel et al., shows an upregulation of 

ICAM-1 surface expression when EC are exposed to a constant shear of 1Pa for 48hrs 

(Nagel et al., 1994). Similar patterns of ICAM-1 distribution was found when the cells 

are exposed to low constant shear of 0.3Pa and a varying shear pattern between 0.25 and 

4.5Pa over a period of 24hrs (Nagel et al., 1994). Frattini et al., reported that both laminar 

(0.4 or 1.1Pa) and turbulent flows (orbital shaker, 210 rpm; center, 0.4Pa; periphery, 

1.1Pa) induced similar amount of ICAM-1 on the EC surface (Frattini et al., 2004).  This 

suggests that the EC activates similarly to various shear stress levels or that different 
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activation pathways converge down to similar responses. The study conducted by 

Sucosky et al., revealed an upregulation of ICAM-1 when aortic EC were exposed to 

unidirectional pulsatile flow (Sucosky et al., 2009).  Chappel et al., treated EC with 

oscillatory shear stress (between +0.5 and -0.5 Pa) for a period of 24 hrs. The oscillatory 

shear stress was found to have increased ICAM-1 expression (11 fold) (Chappell et al., 

1998). In a study by Nagel et al., EC exposed to laminar shear stress (0.25 – 40.6Pa) for 

48hrs, revealed a time dependent but force independent increase in surface ICAM-1 

(Nagel et al., 1994). The study conducted by Morigi et al., revealed a significant time 

dependent increase in surface expression of ICAM-1 on human umbilical vein 

endothelial cells (HUVEC) when exposed to a laminar constant shear of 0.8Pa (for 6 hrs)  

(Morigi et al., 1995). Meanwhile, the ICAM-1 expression remained unchanged when EC 

were exposed to a turbulent shear stress (average shear of 0.86Pa). Furthermore, the study 

by Tsuboi et al. indicated that when HUVEC were exposed to a constant shear of 1.5Pa 

(4 hrs), surface ICAM-1 expression increased to 1.27 times that of control (no shear) 

(Tsuboi et al., 1995). The mRNA quantification through PCR analysis showed a similar 

upregulation with parallel time course to that of surface expression. 

In terms of shear stress activation, most of the in vitro studies have shown an 

upregulation of ICAM-1 when EC are exposed to constant laminar shear stress (mostly 

between 1-2Pa). However, this ICAM-1 observation contradicts the result from in vivo 

studies on ApoE-deficient mouse conducted by Nakashima et al. In their study, ICAM-1 

was upregulated on EC surface at lesion prone sites bearing disturbed flow (Nakashima et 

al., 1998).  
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Besides these variations between in vitro and in vivo observations, most of in vitro 

studies used constant shear stresses which were not physiological. In vitro studies with 

more realistic physiological shear stress waveforms are urgently needed to investigate the 

effect of shear stress on ICAM-1 expression.  

2.3 Tissue Factor 

Tissue factor (TF) is a membrane bound glycoprotein synthesized by EC and 

leukocytes. TF serves as a cofactor for Factor VII/VIIa in initiation of coagulation 

cascade. The major function of TF is to maintain the blood hemostasis during vessel 

injury. EC releases soluble TF and expresses surface TF when activated or injured. 

During inflammation (atherosclerosis) there has been an over production of TF near 

regions of plaque, which plays a significant role in thrombosis associated plaque rupture 

(Wilcox et al., 1989). The TF expression is generally measured by the production of 

factor Xa.  

The EC exposed to a constant laminar shear stress of 1.5Pa showed a time 

dependent increase in TF gene expression (5 fold increase) (Houston et al., 1999). In the 

study conducted by Grabowski et al., EC expressed a down regulation of TF at the 

mRNA level when the cells are sheared at 0.068 or 1.32Pa compared to cells that are not 

sheared (Grabowski et al., 2001). The common underlying reason behind the modulation 

in TF expression was found to be the amount of TFPI released by EC which is also 

governed by hemodynamic shear stress. This was confirmed in a study by Grabowski et 

al., EC expressed an increased amount of TF expression in the presence of an inhibitor of 

TFPI (Grabowski et al., 1993).  The study by M C Lin et al., reported a transient increase 

in TF procoagulant activity in HUVEC exposed to constant shear of 1.2Pa. There was an 
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increase in both factor Xa formation and also mRNA levels of TF. The TF expression 

was very high after 6 hrs of shearing and went back to basal levels after 12 hrs of 

shearing (Lin et al., 1997).  

Together, the expression of TF on activated endothelial cells is a sign of 

inflammation. The results from these studies indicate the dependence of TF expression on 

WSS. Again, most of these studies used a constant shear stress to activate EC. It is our 

interest to study EC surface TF expression when they are activated by physiologically 

relevant shear stresses. 

2.4 In vitro activation of endothelial cells 

A number of studies have been performed to characterize the functions of EC in 

normal and activated state. Some of them observed EC response when activated by 

mechanical stimulation (majorly shear stress) and chemical agonists (such as TNF-α, 

IFN-β, IFN-γ, etc). Endothelial surface ICAM-1, VCAM-1 and PECAM-1  expression 

are usually measured to determine EC activation level Soluble protein released from 

endothelial cells (like soluble tissue factor, soluble ICAM-1) and selectins (P-selectin, E-

selectin) can also be used as a measure of endothelial activation. Immunofluorescence 

microscopy, western blotting and ELISA are common techniques that are used for 

endothelial activation measurement.  

A cone and plate viscometer can be used to apply precisely controlled shear stress 

to endothelial cells. In the present study, we used a cone and plate shearing device to 

generate physiologically relevant shear stress to mimic in vivo shear loading conditions 

for EC (based on Brett Blackman’s original design (Blackman et al., 2000)). The cone 

and plate hemodynamic cell shearing device is comprised of a cone which rotates over a 
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stationary base plate (holds the cultured monolayer of cells). This device helps in 

replicating an accurate arterial shear stress pattern based on the input parameters 

(Buschmann et al., 2005). By adjusting the cone angle and the rotating speed of cone, a 

variety of range of shear stress can be generated (Bussolari et al., 1982). This device was 

used in previous studies to produce a physiological laminar shear stress pattern found in 

arteries under normal conditions (Bussolari et al., 1982; Dewey, Jr. et al., 1981).   

Initial in vitro experiments conducted with cone and plate devices confirmed the 

shear stress associated morphological changes in EC, changes in cell stiffness, 

proliferation and migration. In 1985 Frangos et al. found a two fold increase in 

prostacyclin released by EC exposed to pulsatile shear stress compared to that of EC 

activated by normal steady shear stress (Frangos et al., 1985). Subsequent analysis by 

many researchers revealed regulation of several effector molecules, coagulation factors, 

cytokines, and vasoactive substances released by EC governed by the activation of shear 

stress. The endothelial cells were later found to increase the release of transcription 

factors like nuclear factor (NF-κB), early growth response-1 (Egr1) and activator protein-

1 (Ap-1) when exposed to disturbed shear stress than the normal shear stress (Nagel et 

al., 1999). These results satisfactorily reproduce the in vivo inflammatory response of EC 

to shear stress. This substantiates the use of cone and plate devices to study the shear 

stress activation-response of EC, which was investigated in this study. The surface 

protein expression (ICAM-1) was quantified based on an immunofluorescence technique 

and was used as a measure of EC activation. Using a similar technique, the inflammatory 

response of EC was measured based on the amount of surface TF expression when 

exposed to physiologically relevant shear levels. 
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2.5 Hemodynamics of atherosclerosis 

Mechanical stresses can alter the internal cell signaling in EC and lead to their 

activation. The responses include chemokines and protein release leading to lipid and 

leukocyte accumulation and formation of lesion. These lesions anchor to regions which 

share a particular hemodynamic similarity. Based on these similarities, certain regions in 

vasculature were defined as athero-prone regions. These include the coronary artery, 

carotid artery, terminal abdominal aorta and their major branches. The lesions tend to 

form near the entrance of branch or the bifurcation of a parent vessel into daughter 

vessels. These regions of vasculature share a complex disturbed blood flow behavior.  

Some of the important fluid dynamic characteristics that have been suggested to 

play a role in atherogenesis include flow separation, formation of recirculation zone, 

vortex formation and separation, spatial and temporal gradients of shear stress (Asakura 

and Karino, 1990). Most of these factors are commonly found near the bifurcation and 

downstream the stenosis throat region. The flow separation near the bifurcation creates 

region of disturbed flow downstream the bifurcation with high velocity gradient. 

Downstream of the stenosis throat the flow separates and forms recirculation zones. 

Platelets in the blood stream that get trapped within this zone are expected to be in 

contact with the endothelium for longer than normal durations. These cells when exposed 

to the disturbed hemodynamic region may get activated and cause further complications. 

The fluid dynamics of coronary artery has received much attention because of the 

disturbed coronary flow patterns and the flow induced inflammatory response in 

endothelial cells. The major hemodynamic property that has been extensively studied is 

15 
 



the wall shear stress (WSS). The variation in WSS has a direct impact on the activation 

and the response of endothelial cells and plays a key role in the localization of lesions. 

In the case of Newtonian fluids, the shear stress is proportional to strain rate with 

viscosity being the constant of proportionality.  

߬ ן  
ݑ݀
 ݕ݀

Where τ is the shear stress and ௗ௨
ௗ௬

 is the strain rate (2D). 

Similarly, in the case of Newtonian fluids, the wall shear stress is the product of viscosity 

times the velocity gradient at the artery wall.  

߬௪ ൌ ௘௙௙ߤ
ݑ݀
 ݕ݀

Where ߬௪ is wall shear stress, ߤ௘௙௙ is the effective viscosity (in case of laminar flow it is 

the molecular viscosity and in case of turbulent flow it is the sum of turbulent and 

laminar viscosity) and ௗ௨
ௗ௬

 is the velocity gradient at y = R (R is the radius of the blood 

vessel) in a direction tangential to the direction of blood flow. 

Blood behaves as a continuous fluid medium, despite its formulation of blood 

cells and proteins, in large arteries. Hence it is valid to assume blood as a continuous 

fluid (single phase) when the arteries under consideration are large (around 4mm or more 

in diameter).  

There are two very contradicting hypotheses relating shear stress to the 

localization of atherosclerotic lesions. The first implicated that high shear stress caused 

endothelial damage/erosion which eventually leads to the exposure of sub-endothelial 

layer to the blood stream (Fry, 1969). The sub-endothelial layer is sticky and blood 

components like leukocytes and platelets directly stick to this layer. The other hypothesis 
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indicated that the activation of EC occurs at low shear stress and that leads to the lesion 

growth (Caro et al., 1971). Several studies that have been conducted in the past 3 decades 

have confirmed the low shear hypothesis. The WSS in the predisposed places of 

atherosclerotic importance is significantly lower in magnitude and exhibit directional 

changes (Asakura and Karino, 1990; He and Ku, 1996; Jeremias et al., 2000).  

WSS is a vector which acts in a direction parallel to the local velocity vector near 

the wall. The levels of vascular WSS are normally in the range between 0.5 and 2Pa and 

can instantaneously rise to 4Pa during increased cardiac output in large arteries (such as 

coronary artery, carotid artery, and iliac artery) near the bifurcations. In the locations of 

unique geometrical features including the bifurcation, curvature and branches the flow 

separates from the wall, creating a highly disturbed flow pattern with formation of eddies 

and vortices. Some of the in vitro studies have revealed that the shear stress 

instantaneously changes direction (opposite to the direction of flow). The magnitude can 

vary largely in areas of flow separation, reaching a peak value of 4Pa near the point of 

separation and just after the flow reattachment. This trend has been observed in carotid 

artery bifurcation (Motomiya and Karino, 1984; Zarins et al., 1983), coronary artery 

bifurcation (Asakura and Karino, 1990), infrarenal and femoral artery vasculatures 

(Pedersen et al., 1997).  

2.6 Coronary artery 

Tethered to the surface of heart the coronary arteries undergo the same movement 

of the heart and perform the major function of supplying oxygen to the cardiac muscles. 

These arteries originate from the base of aorta and the principle branches are the left 

(LCA) and the right coronary artery (RCA). The LCA originates from the left aortic sinus 
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and it irrigates nearly 68.8% of cardiac muscle mass and 79% of left ventricle muscle 

mass (Kalbfleisch and Hort, 1977). The primary constituents of LCA are left main (LM) 

artery which bifurcates into left anterior descending (LAD) and left circumflex (LCX) 

coronary arteries. The average diameter of LCA is around 4mm (Figure 2.1, Following 

page).  

The rate of blood flow inside coronary arteries is highly variable and it depends 

on the oxygen requirement of the myocardium. The cardiac pulsatile flow inside the 

coronary artery is exactly opposite to the rest of the circulatory system. During systole, 

when the heart muscles contract and pump blood through the aorta, the flow reverses in 

the coronary artery (due to the high pressure gradient near the base of aorta). During 

diastole, the heart muscles are relaxed and the majority of coronary flow occurs with the 

peak average inlet velocity of about 15cm/sec (Chandran et al., 2007a). 

The coronary artery shares one of the most complex vasculature involving twists, 

bends, taper and bifurcation. These geometrical factors are known to produce disturbance 

in flow and can affect the shear stress distribution, thereby governing the localization of 

lesions (Iwami et al., 1998).  The study conducted by Asakura et.al., using flow 

visualization and high speed cinemicrographic techniques, revealed the complex flow 

patterns in the left and right coronary arteries with distinct regions of disturbed flow 

(Asakura and Karino, 1990). Among all other branches of coronary artery, the left 

coronary artery bifurcation is complicated by several important features (Bargeron et al., 

1988). The length of LM artery is very small compared to that of other branches.   
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Figure 2.1 – The coronary artery on the myocardium with LM, LAD and LCX originating 
from the base of aorta. 
 

 The bifurcation in the left main artery does not lie in a single plane but replicates the 

curvature of the heart while branching. This might induce secondary flow formation 

during part of cardiac cycle. Moreover, the oscillation in shear stress in LCA has a strong 

correlation with the probability of plaque and focal location of atheroma (He and Ku, 

1996).    

Thus the composite environment of intricate geometry and flow behavior provides 

a combination of atherogenic and atheroprotective stimuli assisting the heterogeneous 

distribution of lesions independent of systemic risk factors. The analysis of 

hemodynamics in this set of arteries will provide a better understanding of fluid dynamics 

of blood under physiological and pathological conditions.  
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2.7 Computational Fluid Dynamics 

The numerical analysis of blood flow is critical in understanding the role 

biomechanical stress plays in the pathophysiology of atherosclerosis. The notable 

variation in anatomy and very little information of the flow behavior in coronary arteries 

make hemodynamic studies on the coronary arteries challenging. The systems like Laser 

Doppler Anemometer (LDA), pulsed Doppler ultrasound and hot film anemometer have 

been used before to study the velocity distribution in vivo. These instruments can predict 

important flow characteristics but cannot directly measure the shear stress distribution. 

Despite their direct measurements, these are performed only at limited sites and the shear 

rates are difficult to estimate from near wall velocity measurements. Also, these 

techniques are very time consuming, which limits the ability to explore effects of 

variation in anatomy and flow waveform.  

Computational Fluid Dynamics (CFD) is a unique and effective tool to model and 

predict blood flow conditions inside coronary arteries. CFD has the flexibility of 

accommodating changes in arterial geometry and pulsatile flow conditions. It can provide 

accurate results with very high spatial and temporal resolutions. The velocity of all the 

fluid cell elements within the artery can be calculated. A highly accurate shear rates both 

in magnitude and distribution at all surfaces can also be calculated. CFD provides a 

reliable platform for a time varying 3D flow patterns in a complex geometrical model, 

which can help to provide important information in investigating the effects of 

mechanical stress on coronary heart diseases. 
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2.8 CFD of coronary flow 

A number of studies have been conducted to investigate blood flow in coronary 

arteries. The major hemodynamic properties that have been under consideration are 

velocity profile, pressure gradient and shear stress magnitude and distribution. Some of 

the common fluid dynamic similarities found in most of these studies are listed below.  

The velocity profile near the bifurcation is skewed towards the flow divider 

(inner) wall. This created regions of high wall shear stress at these sites compared to 

surrounding locations. Also, the intensity of skewness varies during one cardiac cycle. 

During the deceleration phase, the flow separates with low retrograde velocities formed 

at the outer walls of branching region. This creates a complex shear stress distribution in 

both branches. The flow inside the branches after several diameters downstream 

relaminarizes and attains a fully developed flow. 

Most of the CFD analysis of coronary flow use simple geometries. These 

geometries generally neglect the taper of arteries, the complex bends and the myocardial 

curvature of LCA. The result from the study conducted by He et al., revealed a time 

averaged WSS variation from about 0.3 to 9.8Pa inside the LCA(He and Ku, 1996). The 

model used in this study was a simplified 3D LCA with a monoplane bifurcation in 

physiological dimensions; also the LAD and LCX were of constant diameter and exactly 

perpendicular to the plane of bifurcation. The spatially averaged shear stress near the inlet 

of LCA was computed to be around 3.5Pa and dropped to 2Pa before the flow reached 

the bifurcation. Downstream the bifurcation the flow in LAD reached the value around 

2.3Pa and in LCX 1.73Pa.  The distribution of WSS on both the inner and outer wall was 

similar to that of other studies. 
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A similar study conducted by Perktold et al., used a more realistic coronary artery 

model rebuilt based on dimensions of an artery acquired from autopsies (Perktold et al., 

1998). This model replicated the LAD only to the first diagonal branch and not the entire 

artery. A pulsatile inlet waveform obtained from Laser Doppler was used. They showed 

that the average shear stress before the bifurcation was around 0.42Pa and as the flow 

developed downstream the average WSS on LAD was 1.14Pa and that in the LCX was 

1.12Pa. Besides these studies that have calculated the shear stress under normal 

conditions, there are considerable amount of work into hemodynamics under disease 

conditions. These studies aim at characterizing the flow and shear stress distribution 

around the stenosis throat region. The most famous model of stenosis geometry was that 

of Giddens et al. (Ahmed and Giddens, 1984). Varghese et al. used this stenosis geometry 

to study the pulsatile turbulent flow across the throat region (Varghese and Frankel, 

2003). The maximum WSS just before the throat region went as high as 120Pa and 

dropped immediately to normal levels of around 2Pa just downstream the throat.  

The CFD analysis from simple curved stenosis geometry showed a similar 

skewing of velocity towards the outer wall of curvature (Yao et al., 2000a). This study by 

Yao et al., compared the variation in peak shear stress calculated from coronary artery 

models with varying bend and stenosis severity (throat center at the center point of bend). 

The results showed that the WSS value was more dependent on the stenosis severity than 

the variation in bend angle. The peak WSS at the stenosis throat reached 300Pa in models 

with 60˚ and 120˚ bend. 

The study conducted by Nosovitsky et al. compared the shear stress distribution in 

a simplified curved coronary artery model with and without stenosis (Nosovitsky et al., 
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1997a). Under steady conditions, the maximum WSS peaked at 70Pa, whereas in 

unsteady simulations the maximum WSS varied between low (opposite direction) and 

125Pa within a cardiac cycle at the stenosis throat. The disturbed WSS distribution was 

similar in all stenosis conditions, except that the magnitude increased with increasing 

stenosis severity.  

Giannoglou et al. used a more realistic model based on the intrathoracic spatial 

measurement of coronary artery of a normal heart (Giannoglou et al., 2005). Locally low 

wall pressure and shear stress gradient was computed at the anatomic sites close to the 

bifurcation downstream in the LAD. This study revealed higher shear stress gradient at 

bifurcation and branching locations with the formation of vortices and secondary flow.  

The study conducted by Farmakis et al. used the same model from Giannoglou et 

al. (Farmakis et al., 2004). The contours of WSS gradient  showed regions of high and 

low shear occurring in a short axial distance near the wall of bifurcation and branching, 

creating a region of highly dynamic shear stress variation. These two studies were based 

on steady flow assumption which neglected the prediction of time dependent variation in 

shear stress distribution. 

The results from all the above mentioned studies indicated a large variation in the 

shear stress estimation using CFD. These differences arise due to the various geometries 

used in these studies. Despite the resemblance in the distribution of WSS predicted by all 

these studies, they vary significantly in magnitude. Also, most of these studies assumed a 

steady flow condition despite the fact that the actual blood flow is pulsatile. This steady 

flow assumption rules out the possibility of estimating the shear stress history within one 

cardiac cycle that a particular region of endothelium is exposed to. The shear stress 
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history is one of the key parameters for in vitro studies to understand the mechanical 

force activation of EC. In this study we used both a simple 2D model and a complex 

realistic 3D model to compute the shear stress history based on physiological 

assumptions.  



CHAPTER III 
 
 

MATERIALS & METHODS 

 

3.1 Numerical Simulation 

3.1.1 Modeling of Coronary artery 

The model of the left coronary artery (LCA) was developed using the computer 

aided designing (CAD) software Pro-E Wildfire 3.0 (PTC). In this study we developed 

both 2D and 3D models of LCA to study blood flow dynamics under normal and disease 

conditions (stenosis). For stenosis models, we induced a 30%, 60% and 80% reduction in 

vessel diameter.  

The dimensions and the geometrical information of the arteries used in our 

models were obtained from Dodge’s report (Dodge, Jr. et al., 1988a; Dodge, Jr. et al., 

1992a). In their study, the intrathoracic spatial location of specific coronary artery 

segments was measured on a normal human heart based on angiographic imaging. Dodge 

et al., presented an accurate measurement of the centerline trajectory of LM, LAD, LCX 

and their branches using spherical coordinates and the diameters of each vessel at 

different cross sections along the trajectory. This provided a way to replicate the 

myocardial curvature of the coronary artery in a realistic manner, which accounts for 

bifurcation, curves and taper. 
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 These spherical coordinates (Appendix A) were used to model the centerline trajectory 

of the LCA. The various cross sectional diameters were then used to extrude the artery 

model in Pro-E. The LCA branches in the 2D and 3D model shared approximately 

similar length, bifurcation angle and degree of taper except for the complex curvature 

present in the 3D model. The geometrical details of both the 2D and 3D model are 

presented in Table 1. Figure 3.1 depicts both the 2D and 3D LCA model developed and 

used for the CFD analysis in this study.  

The disease conditions were modeled in LAD by adding a stenosis throat in the 

flow domain. The lumen narrowing (center point of stenosis throat) occurred downstream 

of the bifurcation in the LAD branch, 8mm from the center point of bifurcation with the 

length of the throat varying between 4 to 9mm. The throat diameters and the geometrical 

locations of stenosis throat of all disease models were presented in Table 2. 
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Table 1 – Geometrical parameters of 2D and 3D LCA model used in this study 

  

 
Parameters  2D (mm)  3D (mm) 

LM 
Inlet Diameter  4.5  4.5 

Length  11  11 

LAD 

Inlet Diameter  3.8  3.8 

Length  120  118 

Outlet Diameter  1.9  1.9 

LCX 

Inlet Diameter  3.7  3.7 

Length  80  76.8 

Outlet Diameter  1.7  1.7 

Bifurcation Angle  75˚  74.83˚ 
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A 

(A) – 2D model of LCA with three main branches similar to that of 3D model (circled 
portion – region of interest, location of stenosis) 

B 

 
 
(B) –3D model of left coronary artery under normal condition. Inset picture shows the 
three main branches LM, LAD and LCX. The circled portion is the region of interest. 
 
Figure 3.1 - 2D and 3D models of LCA (normal geometry) generated in Pro-E 
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Table 2 – Diameter of lumen at the center of stenosis throat at various disease conditions.  
Location information of stenosis throat (beginning, center and end point from the center 
point of bifurcation) in LAD under different stenosis severity conditions.  
 
 
 
 
  

 
Diameter (mm) 

Throat location from bifurcation (mm) 

 
beginning  center  end 

30% Stenosis  2.59  6  8  10 

60% Stenosis  1.492  5.5  8  10.7 

80% Stenosis  0.74  3.5  8  12.8 
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3.1.2 Meshing 

The models were discretized into small computational grids using Gambit v2.4.6 

(ANSYS), the preprocessor program for CFD solvers. An unstructured mesh containing 

both quadrilateral and triangular elements was used in the 2D models. Since a 

quadrilateral mapping scheme would have resulted in a bad distorted mesh due to the 

presence of throat and bifurcation, the main region of interest (downstream the 

bifurcation in LAD branch near the stenosis region) was isolated from the rest of the 

model. An unstructured mesh with triangular elements (using pave scheme) was used to 

obtain a higher local resolution inside this region. The 2D models with mesh are shown in 

Figure 3.2.  

Similarly the 3D models were meshed (Figure 3.3) with a hybrid mesh scheme 

using both hexahedral and tetrahedral elements. Regions of interest (bifurcation and 

stenosis throat region) were finely meshed with hexahedral or wedge elements using 

cooper volume mesh scheme. The numbers of elements used in all the models are listed 

in Table 3. For 3D models with 60% and 80% stenosis, fewer elements were used to 

compensate for the deficiency in computational memory, while using turbulent solvers. 

However, the cell density in the region of interest  maintained the same. Boundary layers 

were attached to the wall in all models near the bifurcation region (region of interest 

where high velocity gradients develop) to provide more spatial and temporal resolution 

near the wall. All results from this study were checked and found to be independent of 

mesh density. 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B

C D
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Figure 3.2 – 2D coronary artery model meshed with hybrid mesh scheme with both quadrilateral and triangular mesh elements.  
A – Normal condition, B – 30% stenosis condition, C – 60% stenosis condition, D – 80% stenosis condition 
 
 

 
 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.3 – 3D coronary artery model meshed using a hybrid scheme containing tetrahedral and hexahedral elements.  

D

B

A – Normal Condition, B – 30% stenosis condition, C – 60% stenosis condition, D – 80% stenosis condition 

A

C
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Table 3 – Total number of cells present in each model used in this study. 
 
 

 
2D  3D 

Normal  14,674  412,237 

30% Stenosis  25,732  694,946 

60% Stenosis  30,189  331,066 

80% Stenosis  30,285  353,232 
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3.1.3 Computational Fluid Dynamics 

3.1.3.1 Basic Technique 

The governing continuity and Navier-Stokes equations for incompressible 

Newtonian fluid were solved by the CFD solver derived from the conservation of mass 

and momentum equations: 
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Where u, v and w are the three components of velocity on x, y, z directions in a Cartesian 

coordinate system, ρ is the density and µ is the dynamic viscosity of the fluid. P is 

pressure and t is time. Equations 3.1 and 3.2 (a, b, c) are for Newtonian incompressible 

fluids.  

The basic technique involved in CFD is to subdivide the flow domain into many 

small regions or elements (meshing) and apply these governing equations to each of 

them. Solutions are obtained locally at specific locations or nodes, which are updated at 

subsequent time intervals over the entire domain until the required accuracy is achieved 

by convergence of certain variables (Chandran et al., 2007b). 

3.1.3.2 Need for Turbulence solvers 

A cardiac cycle (total time period of 0.9sec) generally consists of two different 

phases – systolic phase and diastolic phase. Figure 3.4 compares the cardiac output 

velocity waveform in aorta with the left coronary artery inlet velocity waveform of a 
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normal functioning heart with 80 beats per minute. During the systolic phase (0.3sec) the 

ventricular muscles contract and the blood velocity increases in arteries and during the 

diastolic phase (0.6sec) the muscles relax and the flow decelerates. The coronary 

circulation is the inverse of systemic circulation wherein maximum blood flow occurs 

during the diastolic phase. This is attributed to the tethering of coronary arteries to the 

cardiac muscles. These muscles relax during the diastolic phase thus opening up the 

arteries.  

Winter et. al., in their study on pulsatile flow in pipes identified the conditionally 

turbulent flow at low critical Reynolds numbers (between 400 - 550) (Winter and Nerem, 

1984). In this flow the turbulent disturbances exist during the deceleration phase but were 

damped by the subsequent acceleration phase. Similarly, the coronary blood flow 

temporarily becomes turbulent (under disease conditions) when the flow decelerates 

during the later part of systole (Varghese and Frankel, 2003). In a healthy artery, the 

effect of turbulence is usually unnoticeable. This is because the fluctuations exist for a 

short period of time towards the mid-to-end of systole (~ 200ms) which is followed by 

diastolic high velocity flow. Then the flow restabilizes and dampens the turbulence 

fluctuations during the succeeding systolic phase.  

Apart from this, the complex flow patterns near the bifurcation region and near 

the stenosis region (under disease conditions) are found to create random turbulence in 

between cardiac cycles (Khalifa and Giddens, 1981). This underlines the need for the use 

of turbulent solvers to model the coronary flow.  
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Figure 3.4 – Blood flow velocity waveform comparison between cardiac output velocity 
waveform in aorta (bottom curve) and in left coronary artery (upper curve). The coronary 
flow is the inverse of systemic flow (maximum coronary flow in diastole). (Berne et al., 
1977) 
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3.1.3.3 Turbulent Models 

The computational modeling of turbulent flow is very challenging as it exhibits 

unsteady and random variation. Turbulent flows are often characterized by eddies with 

various length and time scales. Large eddies are responsible for transport of momentum, 

mass, energy and other scalar quantities and they are more dependent on the geometry 

and the boundary conditions. Small eddies are less dependent on the geometry and are 

more universal.  

The most popular method for analyzing turbulent flow is the Reynolds Averaged 

Navier Stokes (RANS) approach. The RANS equations are based on Reynolds 

decomposition according to which the flow variables are decomposed into mean quantity 

and a fluctuating quantity,  

             ݂ሺݔ, ሻݐ ሻൌݐ ݂ሺݔ,തതതതതതതതത ൅ ݂ᇱሺݔ,  ሻ               (3.3)ݐ

where ݂ሺݔ, ,ݔሻ is the flow variable, ݂ሺݐ  -ሻതതതതതതതതത is the mean component of flow variable (timeݐ

averaged) and ݂ᇱሺݔ,  ሻ is the fluctuation of flow variable from the mean value. Byݐ

applying the Reynolds decomposition to ordinary Navier-Stokes equation and taking a 

time average results in RANS equations (Equation 3.4): 
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In RANS approach the transport equation for the mean flow quantities are 

numerically solved and the scales of turbulence would be modeled. This is the major 

advantage of RANS approach as it reduces the computation involved in modeling 

complex turbulent flows. In equation 3.4 the excess term on the right hand side ݑߩపᇱݑఫᇱതതതതതത is 



called the Reynolds stress term. This is the turbulence scale term that needs to be 

modeled while using RANS approach. This approach is fairly efficient under transient 

conditions, as the fluctuations in flow variables are governed by time step (global 

unsteadiness) rather than by the characteristics of turbulence.  

3.1.3.4 Turbulent solvers in Fluent 

In Reynolds averaged approach the most commonly used model is the two-

equation model. In this model the turbulent velocity and the length scales are 

independently calculated by solving two separate transport equations. K-ε model and K-ω 

model are often used to solve turbulent flow field. In these models, the first variable K 

(turbulent kinetic energy) determines the energy in turbulence. The second variable ε 

(turbulent kinetic energy dissipation) or ω (specific dissipation) determines the scale of 

turbulence (length/time). The standard equations for both these models were given in the 

following section. 

The continuity equation remains the same in both the models while the 

momentum equation differs. Apart from this, the laminar viscosity is replaced with 

effective viscosity in both the models,  

௘௙௙ߤ ൌ ௟௔௠ߤ  ൅  ௧ߤ

Where µeff is the effective viscosity, µlam is the laminar viscosity and µt is the turbulent 

viscosity. The K-ε model is not suitable for low Reynolds number turbulent flows, flows 

with adverse pressure gradient and flow inside the viscous sub layer (close to the wall 

where viscous effects are more effective than the turbulence effects). On the other hand 

the K-ω model is suitable for low Reynolds number turbulent flows. This model is also 
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efficient in solving different features of turbulence closer to the wall, in particular for 

flows with separation and reattachment (Wilcox, 1993).  

Standard k-ε Model:  

The transport equation for the K and ε derived from Navier-Stokes equations:                                      
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Where Gk is the generation of turbulence kinetic energy due to mean velocity gradients, 

Gb is the generation of turbulence due buoyancy, YM represents the contribution of 

fluctuating dilatation in compressible turbulence to the overall dissipation rate, σK and σε 

are turbulent prandtl numbers for K and ε, SK and Sε are user defined source terms.   

The turbulent viscosity term fined as:  (µt) is de

µ୲ ൌ ρCµ
Kమ

க
    (3.7) 

The default values for the model constants are, C1ε = 1.44, C2ε = 1.92, Cµ = 0.09, σK = 1.0 

and σε=1.3. 

Standard k-ω Model: 

The transport equations for the turbulent kinetic energy and the specific dissipation rate 

in k-ω model d d rom - oke uatierive  f  Navier St s eq ons: 
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In these equations GK and Gω represents the Generation of turbulence kinetic energy and 

the generation of dissipation rate due to mean velocity gradients. YK and Yω represent the 

dissipation of K and ω due to turbulence. SK and Sω are user defined source terms. The 

effective diffusivity of K and  are defined as follows: ω

Γ ൌ  µ ൅ µ౪
K ஢K

  (3.10a) 

Γன ൌ  µ ൅ µ౪
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  (3.10b) 

The turbulent viscosity µt is defined by:      ߤ௧ ൌ ߙ ఘ௄
ఠ

    (3.11) 

Input turbulence parameters 

The input values for turbulent solvers in Fluent include the turbulent kinetic energy and 

the length scale. In general, turbulent length scale for a fully developed pipe flows is the 

hydraulic diameter at the inlet. The turbulent kinetic energy in both these models was 

related to turbulent intensity based on the following equation 3.12:  

ܭ                          ൌ  ଶ                               (3.12)ܫଶݑ 1.5

The turbulent intensity is the ratio of root mean square (RMS) turbulent fluctuations to 

mean velocity. The turbulent intensity is basically used as an estimate for turbulent flows 

based on the flow Reynolds n mu ber: 

                         I ൌ 0.16ሺReD୦ሻିଵ/଼                           (3.13) 

This equation is used to make an estimate of turbulent intensity of a fully developed core 

flow from which the turbulent kinetic energy can be calculated.  
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3.1.4 Coronary blood flow analysis 

The meshed geometry of the LCA model from Gambit was imported to the CFD 

solver Fluent v6.3.26 (ANSYS). Every mesh was checked for presence of negative cell 

volumes in the grid (improper connectivity in grid) before running simulation. A 

segregated pressure based solver (SIMPLE algorithm) was used in all the simulations 

where in the continuity and momentum equations were solved simultaneously. The blood 

flow was solved both under steady and unsteady conditions.   

Assumptions: 

To solve the flow field in our models, the following assumptions were used: 

• Fluid Medium: The blood was assumed to be incompressible Newtonian fluid 

(laminar conditions). The continuous fluid medium was modeled as blood with 

viscosity of 3.5cP and density 1050Kg/m3.  

• Inlet flow: The flow was modeled to be fully developed before it enters the LCA. A 

sufficient length of flow domain was added in front of the LCA model to ensure that 

the flow becomes fully developed.  

• Walls: The walls of the arteries were assumed to be rigid despite the fact that the 

arteries are viscoelastic with the properties of flexibility, elasticity and distensibility. 

The convergence criteria for all the solution variables were listed in Table 4. A minimum 

of 600-800 iteration was required to obtain the convergence.   

Boundary Conditions: 

The boundary conditions were similar for both 2D and 3D models. The boundary 

conditions were basically modeled in Gambit and were defined in Fluent. The boundaries 

were defined as follows: 
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• Inlet: The inlet face/edge was modeled as a velocity inlet. The velocity waveform 

replicating the in vivo cardiac pulsatile flow pattern (normal heart rate at 72bpm) as 

shown in Figure 3.5 was used under unsteady conditions. The unsteady velocity inlet 

was defined using a User Defined Function (UDF Appendix B).  

• Outlet: The outlet face/edge (far downstream the flow) was modeled as pressure 

outlet. The flow at the outlet was set at atmospheric pressure so as to avoid any outlet 

effects on the results. 

• Walls: The outer faces/edges were modeled as rigid non-porous walls.  

• Turbulent Parameters: A uniform turbulent intensity of 3% (for fully developed 

internal flow) was assumed at inlet and the dissipation terms were calculated based on 

the length scale proportional to that of arterial diameter.   

• Unsteady Condition: These simulations were run for 9 time steps with an increment 

of 0.1sec and the flow variables were let to converge at each time step requiring 400-

600 iterations per time step.  
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Table 4 – Convergence criteria for solution variables used in CFD simulations. 

  

Solution variable  Convergence 

velocity components (x, y, z)  1.00E‐06 

Continuity  1.00E‐06 

K  1.00E‐03 

Omega  1.00E‐03 

Epsilon  1.00E‐03 
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Figure 3.5 – Coronary artery inlet velocity waveform from one peak systole to other peak 
systole (3 cycles) of a normal human heart at 72 BPM used in CFD simulation of blood 
flow in coronary artery (produced based on inlet velocity waveform used in Bluestein et 
al. (Bluestein et al., 2002) ) 
 

44 
 



 3.1.5 Data Analysis: 

The fluent case and data files were saved after every time step once the solutions 

were converged. The post processing involved plotting the velocity vectors at every time 

step. The other major flow variables that were processed include the strain rate and 

effective viscosity (to calculate the shear stress). Besides, the wall shear stress (WSS) 

calculated by Fluent based on the velocity gradient was also processed.  

These required flow variables from the converged case files were exported from 

Fluent in ASCII format at every time step. These ASCII files were read into Microsoft 

Excel to perform further analysis. For 3D iso-surface data VBA macro codes were used 

to convert them into matrix format. The surface plots of shear stress distribution and the 

wall shear stress distribution were obtained using Matlab.       
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3.2 In Vitro Studies 

3.2.1 Cell Culture 

 Human bone marrow microvascular endothelial cells (BMEC) were obtained 

from Dr. Barbette Weksler (Department of Hematology and Oncology, Weill Medical 

College of Cornell University (New York, NY)) and were used in all in vitro 

experiments. The cells were grown on 6-well plates coated with 0.2% gelatin and used 

between passages 14 and 28. BMEC was cultured in Dulbecco’s minimal essential media 

(DMEM) with 5% fetal bovine serum (FBS), 10mM HEPES, and 1:100 

Penicillin/Streptomycin (10,000 unit/ml Penicillin, Final concentration is 100µg/ml and 

10,000 µg/ml Streptomycin) (Invitrogen Corp.).  

3.2.2 Hemodynamic Shearing Device 

 A hemodynamic cell shearing device based on a cone and plate viscometer was 

used in this study (Blackman et al., 2000). The device was custom built to use 6-well 

plates made of polyester and the cone was made of ultra-high molecular weight 

polyethylene (UHMW) material as shown in (Figure 3.6). This device is equipped with a 

precise microstepper motor and a motor controller system. This provides the ability to 

produce required shear stress uniformly to monolayers of EC grown to confluence on 6-

well plates. This device was used to investigate the activation and response of EC to 

various shear stress conditions computed from numerical simulations.  

The magnitude of shear stress generated by this device is proportional to the 

rotating speed of the cone. Various shear levels are obtained by adjusting the angular 

velocity of the cone (adjusting the microstepper motor).  The cone angle used in this 

study is 0.5˚ and its radius is 1.733cm. The cone attached to the microstepper motor is 
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controlled by a BASIC computer program interfaced by a control system. The required 

shear stress values were first converted into angular velocity which would be 

programmed to the stepper motors to drive the cone. This provides the capability to 

create an accurate constant shear stress and a variable shear stress as regulated by the 

program. The entire cone and plate assembly was kept on a hot plate to maintain a 

temperature of 37˚ C. The microstepper motors were air cooled to avoid over heating of 

motors. Thus, this system provides an advantage of creating a transient shear exposure on 

EC similar to the shear stress history calculated from the numerical simulations.  
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Figure 3.6 – The modified Cone and Plate hemodynamic cell shearing device showing 
the arrangement of cones attached to motors inside a 6-well plate used in this study. 
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3.2.3 Shearing Experiment 

 Confluent BMEC were treated overnight with normal medium containing 0.5% 

FBS before the shearing experiment. Constant and transient wall shear stress calculated 

from CFD simulation was used to stimulate BMEC. BMEC activation was measured by 

quantifying the amount of protein (ICAM-1 and Tissue factor) expression by cells treated 

at various shear levels.  

3.2.3.1 Constant shear stress 

A normal constant shear stress of 0.9Pa commonly found in healthy arteries (from 

steady CFD simulation) and a low shear stress of 0.24Pa found in recirculation zone were 

considered. These shear stress data from 2D stenosis condition simulation were used to 

activate BMEC. The two different sets of motors would apply these two different shear 

stress levels to the same batch of cells at the same time. A total of three sets of samples 

would be obtained in each experiment (four wells sheared, two as static control). One 

well of all three samples would be kept as control (not treated with primary antibody). 

The basic program used in the cone and plate controller for replicating this constant shear 

waveform is attached in Appendix C.  

3.2.3.2 Transient shear stress 

Transient wall shear stress calculated from the CFD simulations were used to 

activate the monolayer EC. The WSS waveforms for normal shear (healthy artery), high 

shear (80% stenosis throat) and low shear (recirculation zone) were programmed into the 

cone and plate shearing device. Similar to the constant shear experiments, three different 

samples including control, normal shear and high or low shear waveform were available. 

The waveform showed in Figure 3.7 replicates the WSS history waveform from the CFD 
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simulations that were programmed to the cone and plate device. These waveforms 

replicate the wall shear stress variation on LAD wall during normal and disease 

conditions assuming heart at 72 beats per minute.  

The normal shear waveform varies within a shear stress range of 0.3 - 1Pa for one 

cardiac cycle. The low shear period within one cardiac cycle is around 0.25sec and the 

rest 0.65sec is the high shear period. For stenosis high shear waveform the shear range is 

0.3 - 6.5Pa with the low shear period of 0.3sec and that of high shear is 0.6sec. Similarly, 

recirculation shear waveform has a shear range of 0.062 – 0.4Pa with the high shear 

period of 0.2sec and a low shear period of 0.7sec. The BASIC programs for these 

waveforms are attached in Appendix C. 
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Figure 3.7 – The shear stress waveform used to replicate the real time shear stress history 
from CFD simulations. Normal shear was chosen from a healthy arterial location. 
Stenosis high shear was the WSS variation at the center point of throat. The recirculation 
shear was taken from a point inside the recirculation zone.  
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3.2.4 Protein quantification 

3.2.4.1 Materials used  

• 0.5% glutaraldehyde (Sigma-Aldrich) 

• 100mM glycine with 0.1% BSA 

• HEPES Buffered Modified Tyrode’s (HBMT) 

The stock 1 contains 137mM NaCl, 2.7mM KCl, 0.36mM NaH2PO4*H2O and the 

final volume is brought to 500mLwith distilled water. The stock 2 contains 12mM 

NaHCO3 in 500mL distilled water. The 500mL of stock 3 contains 2mM 

MgCl2*6H2O and distilled water. The final HBMT solution contains 10mL stock1, 

10mL stock2, 10mL stock3, 10mL of 0.2% BSA, 5.5mM of 2% dextrose and 0.01mL 

of HEPES Buffer (0.01M – pH 7) in 200mL of solution (pH – 7.4).  

• Tris-Buffered Saline (TBS) 

TBS is made up of 19.97mM Tris and 0.15M of NaCl and in 1L of distilled water 

with a pH of 7.4 

3.2.4.2 Sample Preparation 

 After shearing, the supernatant was removed and the cells were washed (2X) with 

TBS. EC monolayer was then fixed with 0.5% glutaraldehyde (500µl per well) for 

15mins at 37˚ C. After washing (2X with TBS), cells were neutralized with 100mM 

glycine – 0.1% BSA (2ml per well for 30mins, 37°C). After washing (2X) with TBS, EC 

was then treated with the primary antibody to measure EC surface activation and 

inflammatory responses (37°C, 1hr).  The murine monoclonal anti-human ICAM-1 

antibody (1µg/ml in HBMT, Ancell Corporation, San Diego, CA) was used to measure 

EC activation by quantifying the amount of ICAM-1 present on the cell surface.  Murine 
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monoclonal anti-human TF antibody (10µg/ml in HBMT, Abcam) was used to measure 

EC surface tissue factor expression. The primary antibody binding was detected by 

treating the cells with Alexa Fluor 488nm conjugated goat anti mouse secondary antibody 

(1:100 in HBMT) for 30min at RT.  

3.2.4.3 Fluorescence Microscopy 

 After washing, the stained cells were examined for protein surface distribution 

under an optical microscope (Nikon TE 2000U). The image locations inside each well 

were first found using transmitted light. Then without changing the focus and stage 

location, the cells were imaged using fluorescent light. The images were recorded using a 

Coolsnap fast cooled (ES2) digital camera interfacing with NIS Elements Software under 

10X magnification (Nikon, Plan Fluor DL, NA 03).  

3.2.4.4 Data Analysis 

The image analysis of the steady shear experiment was carried out using an image 

processing and analyzing software Image J (v1.4, NIH). The cell images were imported 

into Image J. In a particular image, three different regions of interest were selected 

randomly and their gray scale intensity was calculated. The intensity data was normalized 

by dividing the gray intensity with the area of selected region of interest and were 

averaged. Similar averaged data was obtained from three different locations in a 

particular well and were again averaged to calculate the mean normalized gray intensity. 

In the constant shear stress experiment, the ratio of high/low shear gray intensity to that 

of control (no shear) (samples from same experiment were only considered) was 

calculated. This was used to compare the amount of ICAM-1 and TF expressed by 

BMEC under different shear treatment conditions.  

53 
 



54 
 

A Matlab (R2008a) program was used to calculate the gray scale intensity of the 

images from transient shear conditions. The RGB images were first converted to gray 

scale. Then the mean gray intensity of the entire image was calculated. The fluorescent 

images were then converted into black and white images based on the gray threshold 

intensity. The area occupied by cells in every image was calculated from this black and 

white image.  The mean gray intensity of the image was then normalized by dividing the 

intensity value with the area occupied by the cells in a particular image. Similarly, data 

from three different locations in a particular well were averaged to obtain the normalized 

mean gray intensity for every shear condition. The ratio of mean gray intensity of 

stenosis/recirculation shear to normal shear (ratio data from same experiment) was 

calculated. This ratio was used to compare the amount of protein expression when BMEC 

were treated with shear stress levels of stenosis throat location and recirculation zone.  

Similar method was used for both ICAM-1 and TF quantification. All the 

intensity ratio data presented in this study from both constant shear and transient shear 

were analyzed for statistical significance. Student’s t-test was used and the data were 

considered to be significant if P < 0.05. 



CHAPTER IV 
 
 

RESULTS 

 

4.1 Numerical Results 

The computational fluid dynamic analysis was conducted on both  2D and 3D 

models of coronary artery under normal, 30%, 60% and 80% stenosis conditions. From 

this numerical simulation velocity field and the hemodynamic shear stress distribution 

inside the left anterior descending (LAD) branch were computed. These results were 

compared to analyze the hemodynamic variation between normal and disease conditions 

in LAD. Due to the complexity in the data set to be analyzed, iso-surfaces (diametrical 

cross sections perpendicular to the flow direction) were created. These surfaces were 

located at the regions of interest including upstream, near bifurcation and close to 

stenosis throat. In all the models, a steady simulation was first conducted. A maximum 

inlet centerline velocity of 0.3m/s was used as input condition. The results from steady 

simulation were analyzed to check the quality of the mesh and its spatial resolution. After 

checking the mesh, unsteady simulations were conducted for one cardiac cycle (duration 

- 0.9 sec, time step size – 0.1 sec).  
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The transient results revealed a huge gradient in magnitude and direction of 

velocity and shear stress at 800ms after systole (t=0.8 sec). This could be due to the 

sudden change in inlet velocity (0.01 to 0.3 cm/s). So the majority of results reported here 

are velocity and shear stress during 800ms after systole (8th time step).  

4.1.1 Velocity 

The velocity vector distribution from the 2D and 3D models at t = 0.8sec are 

shown in Figure 4.1. The 3D vector plot is a composite picture containing vectors on all 

nodes inside the artery (center of picture), velocity distribution on a plane through the 

center of the artery (parallel to Y-axis) (bottom of the picture) and velocity profile on 

diametrical cross sections (perpendicular to Z axis) (top of the picture). The 2D plot 

contains vectors on all nodes and the velocity profile at certain cross sections (bottom of 

picture). The velocity profile inside the LAD (in Figure 4.1) varies significantly as 

disease progresses. The blood flow was fully developed (with a parabolic velocity profile 

- not shown) before it reached the bifurcation. This upstream parabolic flow profile (iso-

surface at 5mm from inlet) was similar under both normal and stenosis conditions and 

also in both 2D and 3D models. The maximum centerline velocity in this cross section 

reached 24.5cm/sec in 3D model and 20.8cm/sec in 2D model (at t=0.8s) irrespective of 

normal or disease condition.  

The parabolic profile became distorted as the flow approached bifurcation (iso-

surface 12mm from inlet). When the flow reached the bifurcation, velocity vectors started 

to skew towards the inner wall with small separation zones developing near the outer 

walls of bifurcation (Figure 4.1). Although the velocity profile was consistently skewed 

towards the flow divider, the intensity and extent of skewing varied over the pulsatile 
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cycle. The skewed velocity profile continued into LAD for a few diameters downstream, 

before it became fully developed. The maximum entrance flow velocity (iso-surface 4mm 

from bifurcation) in LAD reached 19.65 cm/sec under normal conditions (3D model). 

Under stenosis conditions this value decreased as the stenosis severity increased (19.5, 

18.6 and 12.6 cm/sec for 30%, 60% and 80% conditions respectively). But the entrance 

flow velocity in the LAD calculated from the 2D model were 14.4, 12.17, 11.51 and 

11.18cm/sec under normal, 30%, 60% and 80% stenosis conditions. Despite this variation 

in magnitude of velocity, their distribution was  similar.  

To characterize the flow behavior near stenosis throat region two iso-surfaces 

were created. One at the center of throat (7-9mm from bifurcation) and the other within 

the recirculation zone (9-11mm from bifurcation). Under normal conditions with healthy 

artery the 2D and 3D models predicted fairly similar velocity magnitude at these 

locations (25.42cm/s in 2D and 24.52cm/s in 3D model). But under disease conditions 

these values varied significantly. The velocity vectors of all disease models revealed the 

flow separation near the center of throat and formation of recirculation zone just after the 

throat. The flow further reattached at a downstream location. However, the length and 

size of the recirculation zone and the point of reattachment varied based on the 

percentage of constriction and inlet velocity. This created a highly disturbed velocity 

distribution within the throat region. The flow reached a local maximum velocity at the 

throat and dropped to a local minimum inside the recirculation zone. The magnitude was 

related to the severity of stenosis throat and the time step.  

In order to characterize the transient velocity variation at the throat, the time 

averaged flow velocity (Vav - average velocity over one cardiac cycle) was calculated. 
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The Vav from both the 2D and 3D models under all conditions are listed in Table 5. The 

2D model predicted a 2 fold increase in velocity at the throat region (80% stenosis) while 

the 3D model predicted a 3 fold increase. Also the Vav at recirculation zone is listed in 

Table 5. The velocity inside the recirculation zone of 80% stenosis dropped 3 folds as 

that under normal conditions.  
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Figure 4.1 – Velocity vector distribution in LAD in 2D and 3D model during normal 
condition (A,B), 30% stenosis (C,D), 60% stenosis (E,F) and 80% stenosis (G,H). 
Vectors on all nodes (center of picture), Plane parallel to Y-axis (bottom of the picture) 
and velocity profile perpendicular to Z axis (top of the picture). 
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Table 5 – List of centerline velocity (in cm/sec) at the throat and recirculation zone 
during 800ms after systole (t=0.8sec). (Normal and disease conditions predicted by 2D 
and 3D models) 
 

   

Normal  30% Stenosis  60% Stenosis  80% Stenosis 

Throat 

2D  14.40  16.31  26.06  38.81 

3D  19.65  23.96  35.16  62.93 

Recirculation 

2D  14.25  14.67  20.97  23.51 

3D  21.94  23.71  34.39  22.62 
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Apart from these velocity variations, the flow was predominantly laminar under 

most conditions. The velocity results discussed above were estimated using both laminar 

and turbulent (K-Omega) solvers. The comparison of velocity magnitude estimation 

revealed that the laminar model was sufficient to estimate the flow field parameters in 

LAD under normal, 30% and 60% stenosis conditions. The maximum Reynolds number 

at the throat region in the above conditions was between 400 and 680. But as the stenosis 

severity increased (80%) the results from both the solvers significantly diverged. This 

could be due to the instantaneous turbulence produced near the throat at certain time step 

within cardiac cycle. This created a huge difference in computed velocity values, which 

affected other estimated parameters including wall shear stress distribution. However, the 

flow becomes laminar far downstream the throat region (around 15 mm from the throat 

center) and both the solvers computed fairly similar estimates. 

4.1.2 Shear Stress 

Shear stress delineates the role of hemodynamics in localization of lesions. The 

main objective of CFD simulation was to characterize the variation in shear stress under 

normal and disease conditions. The wall shear stress (WSS) on the LAD wall was 

calculated based on the velocity gradients in Fluent. The shear stress (SS) inside the flow 

field was computed based on the strain rate and local effective viscosity. Due to the huge 

set of data points, the iso-surfaces at specific cross sections (similar to that used in 

velocity estimation) were used. In transient simulations, the shear stress at different time 

steps was combined to illustrate the shear stress history of the flow field.  

The SS distribution computed by both 2D and 3D models was fairly similar in the 

upstream locations. The WSS upstream the bifurcation in the LM branch remained 
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around 1Pa (commonly found in healthy arteries) in both the models under normal and 

disease conditions. Figure 4.2 is the plot of SS 10 mm before the bifurcation (at 800ms 

after systole) against the geometrical coordinates of diametrical cross section (Y-axis in 

2D model and X-Y plane in 3D model). The SS (Figure 4.2) was symmetrically 

distributed with high shear on the wall gradually decreasing towards the center of lumen. 

The WSS on the wall at this upstream cross section varies between 0.1 and 1Pa within a 

cardiac cycle. As the flow reached bifurcation, the symmetrical distribution of SS was 

altered. The SS value calculated from 2D and 3D model started to diverge at this location 

(5mm before bifurcation). The time averaged SS (τt-av – average SS over one cardiac 

cycle in 2D; average of spatially averaged SS at a particular location over one cardiac 

cycle in 3D) at this location was found to be 0.32Pa from 3D model and 0.25Pa from 2D 

model. The shear stress pattern still remained fairly similar under normal and disease 

conditions. Around the bifurcation, all the outer walls experienced low WSS (τt-av 

between 0.1 – 0.5 Pa), while the flow divider experienced a high WSS of 3Pa (t = 0.8sec 

at the point of bifurcation).  

The LAD wall near the bifurcation experienced a higher WSS compared to that 

on the other wall due to the skewed flow distribution. Figure 4.3 is the shear stress history 

from 2D model on the LAD wall for a length of 15mm from bifurcation. This illustrates 

WSS (Z axis) as a function of time (X axis) at various locations on the LAD wall (Y axis) 

from normal and disease condition models. Under normal condition, in both 2D and 3D 

models the WSS on LAD wall remained under normal levels (0.1-1Pa) downstream the 

bifurcation. But under disease conditions, the disturbed WSS distribution was 

characterized by the formation of peaks near the throat region. The stenosis throat was 
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modeled with its center point located approximately 8mm from the point of bifurcation. 

Near this location the peak WSS value (2D model) increased as the stenosis severity 

increased (2.4, 4.85 and 9.45Pa for 30%, 60% and 80% stenosis severity). The peak WSS 

value estimated by 3D model slightly varied at the throat location from the 2D model. 

Downstream from the throat the flow separated and a region of low WSS was formed 

inside the recirculation zone.  

Apart from the WSS on the LAD wall near the stenosis region, the SS on the iso-

surfaces (center of throat and recirculation zone) was computed. Figure 4.4 shows the SS 

distribution at the cross section 8mm from the LAD-LCX bifurcation (center of throat) at 

t=0.8sec. This figure compares the SS in both 2D and 3D models under normal and 

disease conditions. In general, the shear stress at the throat increased as the stenosis 

severity increased due to the reduction in throat diameter and increase in velocity 

gradient. From the 2D simulation at the throat the SS increased from 0.9Pa (normal 

condition) to 3.11, 6.41 and 10.5Pa under 30%, 60% and 80% stenosis respectively. The 

3D model predicts similar shear distribution but the magnitude varies from 1.48Pa 

(normal) to 2.56, 3.23 and 14.21Pa respectively.  

As we move further downstream the throat, there was a sudden change in SS 

distribution inside the recirculation zone. Figure 4.5 shows the SS distribution on the iso-

surface located inside the recirculation zone (13mm from bifurcation) at t=0.8sec. This 

compares the SS distribution between 2D and 3D models. The SS on the side of 

recirculation zone dropped as the percentage of stenosis increased. The SS from the 2D 

model near the upper wall dropped from 1Pa (normal condition) to 0.1Pa (80% stenosis). 

The 3D model predicted a fairly similar shear levels as that of 2D model. However, the 
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2D model calculated a constant shear (1Pa) on the other wall while the 3D model 

estimated an increase as the stenosis condition increased.  
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A 

B 

Figure 4.2 – Shear stress distribution at diametrical cross section (5mm from inlet) in the 
LM branch. A – Upstream cross section in 2D model; B – upstream cross section in 3D 
model 
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Figure 4.3 – WSS distribution on the LAD wall over three cardiac cycles. A – Normal condition; B – 30% stenosis condition; C – 60% 
Stenosis condition; D – 80% stenosis condition.

 
 



 
 
 

 
Figure 4.4 – Shear stress distribution in the throat cross section in 2D and 3D models. 
The upper and lower walls are marked as X and X’ respectively. A, B – Normal 
condition; C, D – 30% Stenosis; E, F – 60% Stenosis; G, H – 80% Stenosis 
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Figure 4.5 – Shear stress distribution in the recirculation cross section in 2D and 3D 
models. The upper and lower walls are marked as X and X’ respectively. X is the location 
of recirculation zone. A, B – Normal condition, C, D – 30% Stenosis, E, F – 60% 
Stenosis, G, H – 80% Stenosis 
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The WSS distribution on the wall inside and outside the recirculation zone was 

compared. Figure 4.6 is the plot of WSS (Z axis) of various models (normal to disease 

conditions in Y axis) as a function of time (one cardiac cycle in X axis). This plot is 

based on the location maximum (τmax) WSS on the recirculation wall (upper and lower) at 

5mm from throat. At the location inside recirculation zone, WSS decreased from 1.1Pa 

under normal conditions to 0.1Pa under disease (80% stenosis) conditions. Meanwhile, 

the WSS on the lower wall increased from 1Pa to 3.5Pa under similar conditions. This 

reveals the fluctuation in shear exposure on the endothelial cells in the presence of 

stenosis throat.   
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B  

Figure 4.6 – WSS on the LAD wall at the diametrical cross section inside the 
recirculation zone. The plot is the variation of WSS (one cardiac waveform) at a 
particular location on LAD wall under normal and disease conditions. A – Upper Wall; B 
– Lower Wall   
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In order to understand the transient variation of shear exposure on the artery wall 

within a particular cardiac cycle, the time integral of shear stress was computed. This 

integral is based on the area under the shear stress – time plot. This parameter provided 

the estimate of shear exposure at a particular location on the LAD wall over one cardiac 

cycle. The shear-time integral values of all conditions are listed in Table 6.  

The recirculation zone formation was characterized based on the point of flow 

separation and reattachment. These points varied depending on the inlet velocity and was 

calculated based on the change in direction of WSS distribution. Table 7 lists the length 

of recirculation zone in all time steps under normal and disease conditions. The length of 

recirculation zone reached a maximum of 1cm in 80% stenosis condition (t = 0.4 sec). At 

all time steps the point of flow separation remained almost the same. But the point of 

reattachment varied with the stenosis severity.  

 Also, the shear stress history (WSS waveform at a particular location) at three 

different locations was plotted separately (Figure 3.7). The normal arterial shear history 

was chosen from a normal healthy artery location. The shear variation at the center point 

of the throat was plotted for stenosis high shear waveform. To replicate the shear 

exposure to EC inside recirculation zone, the WSS variation at a particular location inside 

recirculation zone was plotted. These waveforms were used in the in vitro studies to 

replicate the in vivo shear conditions.  
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Table 6 – The shear stress-time integral values (Pa-s) under normal, 30%, 60% and 80% 
stenosis conditions in the upstream (10mm before bifurcation), before throat (4mm before 
throat), at throat (8mm from bifurcation) and recirculation zone (4mm from throat 
center).   

 

 
Normal  30% Stenosis 

60% 

Stenosis 

80% 

Stenosis 

 

Upstream 

 

0.495 

 

0.4663 

 

0.4968 

 

0.4758 

 

Before throat 

 

0.4506 

 

0.3211 

 

0.135 

 

0.5191 

 

At throat 

 

0.4321 

 

0.8698 

 

2.0636 

 

4.0025 

 

Recirculation zone 

 

0.4147 

 

0.1741 

 

0.0443 

 

0.0942 
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Table 7 - The length of recirculation zone (in mm) downstream the stenosis throat under 
30, 60 and 80% stenosis conditions at every time step with in a cardiac cycle.  
 
 
 
 
  

Time 
30% 
stenosis 

60% 
stenosis 

80% 
stenosis 

0.1 0 4 6 
0.2 2 6 8 
0.3 5 7 9 
0.4 7 8 10 
0.5 0 5 7 
0.6 0 0 0 
0.7 0 0 0 
0.8 0 4 6 
0.9 3 7 8 
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4.2 Experimental Results 

4.2.1 Constant shear experiments 

The confluent monolayers of BMEC were stimulated by a constant shear stress of 

0.9Pa (normal shear stress level) and 0.24Pa (low shear stress level) for 15mins. These 

are most commonly found in a healthy artery and inside recirculation zones computed 

from CFD simulation. The sheared cells were fixed and stained against ICAM-1. Figure 

4.7 shows the fluorescence microscopy images of EC activated by shear stress at 0.9Pa 

and 0.24Pa (10X magnification). The cells stimulated at 0.24Pa look brighter than those 

activated by 0.9Pa (normal shear). The morphology of cell remained elongated when 

exposed to low shear stress levels (0.24Pa - Figure 4.7-A). The activation of BMEC due 

to shear stimulation was studied based on the ICAM-1 expression on the cell surface. The 

surface expression of ICAM-1 distribution was quantified by estimation of the mean gray 

intensity of the images. The ratio of intensity of sheared to control images was used to 

compare the EC activation and ICAM-1 expression. The intensity ratio calculated by both 

the Matlab program and that of Image J are similar. Figure 4.8 shows the mean gray 

intensity ratio of all conditions. There was no significant increase in the amount of 

ICAM-1 on the cell surface when EC were sheared at 0.9Pa. Instead the cells sheared at 

0.24Pa revealed a significant increase (20% increase) in ICAM-1 expression (P < 0.05). 

This reveals that the low shear stress found in recirculation zone activated the cells and 

increased the ICAM-1 expression compared to that of normal shear.  

  

74 
 



 
 A 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.7 – Fluorescence microscopic image (10X magnification) of bone marrow 
micro-vascular endothelial cell (BMEC). A – Cells sheared at 0.24Pa; B – Cells sheared 
at 0.9Pa. The EC sheared at low shear levels (image A) are more activated compared 
those exposed to normal shear (image B). (Scale:100µm)  
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*

 
 
Figure 4.8 – Mean gray intensity ratio (±SEM) of control (no shear), sheared at 0.24Pa 
and 0.9Pa. Cells sheared at low shear stress (0.24Pa) shows significant EC activation and 
ICAM-1 expression compared to control and cells at normal shear stress. 
 * - data from 0.24Pa compared with 0.9Pa found to be significant using student t-test 
with (P < 0.05)  
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4.2.2 Transient shear experiments 

The confluent monolayer of BMEC was activated by transient shear stress 

waveform obtained from CFD simulations (Figure in methods section). Three different 

WSS waveforms were used which represented the WSS distribution on LAD wall under 

normal shear, high shear (found in 80% stenosis throat region), low shear stress (found 

inside recirculation zone downstream the 80% stenosis throat). The cells were treated 

similar to that of the steady shear experiment and were stained for ICAM-1 and TF.  

Figure 4.9 shows fluorescence microscopy images of cells stained for ICAM-1 under 

normal shear, control (no shear), high shear and low shear (10X magnification) 

conditions. Cells activated by normal shear stress waveform (4.9-A) were elongated, did 

not align to any particular direction but made healthy connections. The cells activated by 

recirculation shear waveform (4.9-B) were aligned in the direction of flow along with 

some connections between the cells. EC exposed to high shear waveform (4.9-C) had a 

slightly different morphology and a preferential alignment towards the direction of flow. 

Similarly figure 4.10 shows images of cells stained for TF.  

Based on the intensity of the ICAM-1 images (4.9), the control is (not shown) 

brighter than the normal shear condition. This indicates that the EC preferred normal 

shear and hence expressed reduced levels of ICAM-1. The stenosis high shear reduced 

the levels of ICAM-1 while the recirculation shear enhanced ICAM-1 expression. Based 

on the TF images (4.10), EC treated with stenosis high shear revealed increased TF 

expression compared to other images. Meanwhile, the low recirculation shear stress 

reduced the TF expression. 
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A  
 
 
 
 
 
 
 
 
 
 
 
 
 

B Figure 4.9 – Fluorescence 
microscopy images (10X 
magnification) of cells exposed to 
realistic shear stress waveform and 
stained for ICAM-1. A – Normal; B 
– stenosis throat high shear 
waveform and C – Recirculation 
zone shear waveform. The image of 
cells in figure C is brighter than the 
other images revealing that low 
shear enhances ICAM-1 expression.      
(Scale:100µm) 

C
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A  

 
 
 
 
 
 
 
 
 
 
 
Figure 4.10 - Fluorescence 
microscopic images (10X 
magnification) of cells exposed to 
realistic shear stress waveform and 
stained for TF. A – Normal; B – 
stenosis throat high shear waveform 
and C – Recirculation zone shear 
waveform. B actually looks the 
brightest. (Scale:100µm) 

B

C
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The activation of EC was quantified based on immunofluorescence (for ICAM-1 

and TF) similar to steady shear experiment. In this experiment, the mean gray intensity 

ratio was calculated based on the ratio of high shear (stenosis throat) to normal shear and 

low shear (recirculation zone) to normal shear. The intensity ratio calculated by both the 

Matlab program and that of Image J are similar. The intensity ratio of ICAM-1 in EC 

induced by recirculation shear stress (1.453 ± 0.322) is higher than the stenosis high shear 

(1.00 ± 0.123). Similarly, the intensity ratio of TF in EC induced by stenosis high shear 

(1.28 ± 0.317) is higher than that of recirculation low shear (1.035 ± 0.124). However, 

there was no statistical significance in stenosis high shear increased TF expression or 

recirculation low shear decreased TF expression.  

  



CHAPTER V 
 
 

DISCUSSION 

 

Wall shear stress regulates vascular inflammatory responses and plays an 

important role in localization and pathogenesis of atherosclerosis. The irregular geometry 

of LCA creates a highly complex blood flow and the presence of stenosis intensifies the 

flow disturbances. The present study was intended to estimate the variation in shear stress 

distribution on the endothelium of a particular arterial branch (LAD) under normal and 

disease conditions. This study also aimed to investigate endothelial cell activation and 

their inflammatory responses under these shear conditions. This was achieved by a 

combination of numerical and experimental approaches. 

5.1 Numerical Simulations 

CFD is an effective tool to model arterial blood flow in complex geometries such 

as the left coronary artery. But the results from these numerical studies greatly depend on 

the geometrical and model assumptions. Ideally, a 3D model of realistic geometry 

discretized with a fine mesh and boundary conditions similar to that of in vivo will 

generate accurate flow field information. However, a complex computation, a highly 

demanding hardware and software and elongated computation time would be required.
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Practically, simplified 2D models of coronary artery involving only the required 

geometrical features were used under many circumstances. It is challenging to determine 

which numerical model to use when we want to estimate the complex flow conditions in 

the left coronary artery, fast and accurately.   

In this study a comprehensive CFD simulation of transient and turbulent blood 

flow inside a physiologically realistic 3D and a simple 2D LCA model was performed. 

The geometrical features of the 3D model were adapted from an experimental study 

which presented the geometrical information (averaged data) of human LCA based on 

arteriography (Dodge, Jr. et al., 1988b; Dodge, Jr. et al., 1992b). The 2D model was 

developed based on the 3D model. Both 2D and 3D models shared similar artery length 

(LM, LAD and LCX), bifurcation angle, diametrical taper (LAD and LCX) and similar 

inlet and outlet diameters. The main variation between these models was the pericardial 

curvature (present in multiple datum planes) which was replicated only in the 3D model.  

Apart from this comparison, the blood flow in LCA was analyzed under normal 

and three different disease conditions (30%, 60% and 80% stenosis severity). The 

numerical analysis on these models provided a complete map of complex flow patterns 

inside the LAD and the ensuing shear stress distribution near the atheroprone sites. The 

flow was fully developed with a parabolic profile before bifurcation. The centerline flow 

velocity upstream the bifurcation was fairly similar among various conditions of 2D (20.8 

cm/sec) and 3D (24.5cm/sec) models. 

In the 2D model, at the bifurcation the flow skewed towards the inner divider 

wall. Also, in the 3D model the flow was skewed towards the outer wall of curvature. 

The presence of bifurcation also caused the flow in the LAD and LCX to skew towards 
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the inner wall (wall closer to bifurcation) for several diameters downstream the branches. 

This flow distribution was consistent with results from previous studies (He and Ku, 

1996). The 2D and 3D models predicted slightly different LAD entrance velocity 

magnitude as we moved from normal to complex stenosis conditions. This could be 

attributed to single plane bifurcation in the 2D model compared to a multi-planar 

bifurcation in the 3D model. Despite this variation in magnitude the distribution was 

fairly similar.  

Downstream the LAD, the flow velocity predicted by 2D and 3D models under 

normal conditions was similar. But for 30% stenosis severity, the 2D model under 

estimated the velocity magnitude at the throat region (time averaged - 9.2cm/sec) 

compared to that calculated from the 3D model (12.8cm/sec). This variation in velocity 

estimation enlarged as the stenosis severity increased (refer to Table 4.1). This difference 

may result from the pericardial curvature present in the 3D model, which changed the 

flow domain near the throat region. All disease condition models, predicted flow 

separation and formation of recirculation zone downstream the throat region. The flow 

velocity dropped inside the recirculation. A similar variation between the 2D and 3D 

model was observed in the velocity magnitude estimation inside the recirculation zone.  

Apart from the variation between 2D and 3D models, the results from laminar and 

turbulent (low Reynolds number K-ω model) solvers were also compared. The velocity 

magnitude by both these solvers under unsteady flow was in resonance in most of the 

cases except the 80% stenosis condition. In 3D model downstream the stenosis (80%) 

throat, the laminar solver over estimated the maximum velocity (time averaged - 

32.15cm/sec) compared to that of a turbulent solver (time averaged - 10.69cm/sec). This 
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may indicate the presence of instantaneous turbulence close to the wall, which was not 

captured by the laminar solver during transient conditions. The velocity vectors revealed 

the relaminarization of flow in a downstream location under all conditions.  

A number of previous studies have established the immediate influence of WSS 

on the endothelial cell functions. In this study, both the WSS on LAD wall and the shear 

stress (SS) inside the flow domain was compared in all the models. The WSS in healthy 

arteries is generally around 1Pa. Similar to the velocity distribution, the WSS and SS in 

the upstream locations were fairly similar in all conditions of 2D and 3D models. The 

WSS on the artery wall before the bifurcation remained around 1Pa (maximum WSS 

under transient condition) in both models. In one cardiac cycle the WSS varied between 

0.1 – 1Pa. At the bifurcation, regions of high and low shear stress were formed due to the 

skewness of the flow. The peak shear stress was found at the center point of bifurcation 

reaching as high as 3Pa. The outer walls of bifurcation received a low wall shear stress 

between 0.1 – 0.5Pa (in one cardiac cycle). This pattern of high and low WSS near the 

bifurcation was commonly found in previous studies (He and Ku, 1996; Perktold et al., 

1998). The WSS values predicted by 2D and 3D models were fairly similar under all 

conditions.  

The flow inside the LAD branch was skewed towards the upper wall due to the 

presence of bifurcation upstream. This created regions of disturbed WSS on the LAD 

wall. Also, the SS distribution was not symmetrical with formation of high shear regions 

towards the upper wall. Under normal conditions (both 2D and 3D models), the WSS on 

the upper LAD wall (wall close to bifurcation) remained under normal levels (between 
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0.1 – 1 Pa). The study conducted by Perktold et al., calculated a similar shear stress 

magnitude and distribution on the LAD wall (Perktold et al., 1998).  

As the disease condition progresses on the LAD wall, regions of disturbed WSS 

were formed on the LAD wall. A high WSS peak was formed at the center point of the 

throat, immediately followed by a region of low and oscillating WSS (inside recirculation 

zone). The WSS increased from 1Pa during normal condition to 9.45Pa during 80% 

stenosis condition. This WSS data is more physiologically relevant compared to most of 

the previous studies on WSS distribution in LAD under disease conditions. 

  The results of Nosovitsky et al., using a simple 3D curved stenosis model in a 

phasic flow simulation, calculated a peak WSS value of about 125Pa near the throat (75% 

stenosis) region towards the end of systole (Nosovitsky et al., 1997b). The study 

conducted by M.X. Li et al used a simplified 2D geometry under different stenosis 

conditions. They presented a maximum WSS of 200Pa towards the end of diastole at the 

throat region of 70% stenosis condition (Li et al., 2007). The other study conducted by H. 

Yao et al., showed a peak WSS (80% stenosis and 120˚ bend) of around 900Pa near the 

throat on the LAD wall (Yao et al., 2000b). The major drawback of both of these studies 

is that they assumed LAD as a separate artery with fully developed inlet flow neglecting 

the effect from the presence of bifurcation upstream. 

The maximum WSS estimated in our present study was 9.45Pa (2D model) and 

14.21Pa (3D model) which is found on the LAD wall near the stenosis throat (80% 

stenosis severity). This confirms the dependence of WSS estimation on the geometry 

being considered, when compared to the WSS levels from the above mentioned studies.  
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In one of the earliest experimental work by Fry, the effect of shear stress on 

endothelial cells was studied (Fry, 1968). The endothelial cell layer was damaged at a 

shear stress level of 40Pa. In a similar study conducted by Ramstack et al., WSS levels of 

100Pa would strip the endothelial cells and enhance the process of thrombogenesis 

(Ramstack et al., 1979). These studies reveal that the WSS levels on the LAD wall 

predicted by the above discussed numerical studies were physiologically irrelevant. On 

the other hand, these studies support the physiological relevance of estimated shear stress 

levels from the present study. 

Apart from the variation in SS inside LAD caused by the global unsteadiness of 

the flow, the presence of stenosis throat further induced the disturbances. The SS at the 

throat region increased as the degree of stenosis increased. The location maximum (at 

800ms after systole) SS increased from 1.48 during normal condition to 14.21Pa during 

80% stenosis condition (3D model). Besides this variation caused by the disease 

condition, the SS magnitude demonstrated a variation in results computed by 2D and 3D 

models. The location maximum of SS at the throat region was under estimated by 2D 

model (10.5Pa) compared to that of the 3D model (14.21Pa).  

The flow separated downstream the throat region and formed recirculation zones. 

This produced a low and oscillating WSS on the LAD wall. The WSS magnitude at this 

location was around 0.01 – 0.5Pa (within a cardiac cycle) depending on the severity of 

the stenosis. The recirculation zone downstream the throat further altered the SS 

distribution inside LAD (low SS near upper wall and high SS near the lower wall). The 

2D model predicted a constant normal shear distribution near the lower wall as the 

stenosis severity increased. But the 3D model predicted an increase in SS with increasing 
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stenosis severity. This could be attributed to the secondary flow towards the lower wall 

due to the presence of additional curvature in the 3D model.  

 5.2 Experimental studies 

The bone marrow microvascular endothelial cells (BMEC) were subjected to 

various shear stress conditions based on the numerical simulation results. In this study we 

used a cone and plate hemodynamic cell shearing device to activate endothelial cells. 

This device was very effective and suitable for replicating the required WSS waveform. 

The EC activation was measured based on the amount of inter cellular adhesion molecule 

– 1 (ICAM-1) present on the cell surface. ICAM-1 is known to play a key role in 

adherence of mononuclear leukocytes to EC during initial stages of atherosclerosis.  

ICAM-1 expression was analyzed in many previous studies (Nagel et al., 1994; 

Frattini et al., 2004; Sucosky et al., 2009; Chappell et al., 1998). But there was a huge 

variation in their results. Frattini et.al., reported a similar ICAM-1 distribution under both 

laminar and turbulent condition (Frattini et al., 2004). While Nagel et.al., reported that 

the laminar shear stress increased surface ICAM-1 expression on force independent 

manner (Nagel et al., 1994). The disturbed low and oscillating shear stress was found to 

have increased the ICAM-1 expression (Sucosky et al., 2009; Chappell et al., 1998). 

However, the major drawback of these results is that the shear stress waveform was not 

physiologically relevant.  

In this study, EC were treated with both constant and transient shear stresses. EC 

expressed varying amount of ICAM-1 on the cell surface when activated by different 

physiological shear stress (found in stenosis throat, recirculation zone, etc.). This 
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provides evidence for the fact that EC activation varied based on the type and magnitude 

of exposed SS.  

BMEC expressed a significant (n= 8, P < 0.05) increase in ICAM-1 expression 

when treated with constant low shear stress (0.24Pa - normally found in recirculation 

zone) for 15min. The normal shear stress (0.9Pa – found in healthy arteries) did not 

significantly increase the ICAM-1 expression. This indicates that wall shear stress at 

physiological level keep vascular wall EC from getting activated.  These results also 

indicate that atherosclerotic lesions may tend to progress towards the downstream 

direction which posses the recirculation zone.  

Transient shear stresses on the LAD wall under normal, high shear (stenosis) and 

low shear (recirculation zone) conditions were used to stimulate BMEC. In this 

experiment, the cone and plate shearing device replicated the CFD waveforms. EC 

treated with stenosis high shear waveform expressed reduced levels of surface ICAM-1 

compared to normal shear. But the recirculation low shear waveform increased the 

ICAM-1 expression. This supports the steady low shear experiment and confirms the 

activation of BMEC in the recirculation zone. However, with the image analysis of 

transient sheared EC, no statistical significance was detected.  

Apart from ICAM-1, in the transient shear experiment, the surface expression of 

tissue factor (TF) was also measured. TF is expressed in large quantities by an injured EC 

as an inflammatory response. TF plays a key role in initiating the coagulation cascade 

during vessel injury. Previous studies have revealed a decrease in TF expression when 

exposed to steady low or normal shear stress (Grabowski et al., 2001; Matsumoto et al., 

1998). Also, another study by Fry et al., revealed a damage to EC when exposed to high 
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shear stress (Fry, 1968). This reveals that an increase in TF expression by EC would 

mean that the EC is activated or damaged and signs of inflammatory response.  

EC treated with stenosis high shear revealed an increase in TF expression 

compared to other samples. Meanwhile the TF expression went down when EC were 

treated with low recirculation shear stress. This indicates that the EC present at the throat 

region of the lesion exposed to high shear express increased levels of TF. However, no 

statistical significance was detected.  

    

 
  



CHAPTER VI 
 
 

CONCLUSION 

 

6.1 Conclusion 

A computational fluid dynamic analysis (CFD) of blood flow in human left 

coronary artery was conducted. A detailed map of velocity and shear stress distribution 

inside the left anterior descending branch was reported. The artery was studied under 

normal and disease conditions (three different severities – 30%, 60% and 80% stenosis). 

This provided a comparison of hemodynamic properties during initiation and progression 

and atherosclerosis in LAD. The results indicated a disturbed shear stress distribution 

inside LAD under disease conditions. Also, as the disease severity increased the 

disturbances further enhanced and created a hemodynamically active environment. 

Besides, the shear stress and velocity estimation was compared between 2D and 3D 

models. This was conducted to establish the variation in shear stress estimation arising 

from the geometry of LAD considered. The 2D model was sufficient to estimate a 

physiologically relevant shear distribution under normal conditions. But under disease 

conditions, the 2D models either over estimate or under estimate the flow variables 

(especially shear stress). This was due to the absence of pericardial curvature in the 2D 

model, which is normally found in coronary arteries.  
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A hemodynamic cone and plate cell shearing device was used to activate the bone 

marrow microvascular endothelial cells (BMEC) by shear stress computed from 

numerical simulations. These experimental results confirmed the activation of BMEC 

exposed to various shear levels. The cell activation was measured based on the amount of 

surface protein (ICAM-1, TF) expressed by EC when exposed to shear stress. In the 

steady shear experiments, EC exposed to low recirculation shear stress (0.24Pa) revealed 

a significant increase in ICAM-1 expression when compared to normal shear stress 

(0.9Pa). Though the transient shear supported the steady low shear EC activation results 

they are not statistically significant.  

These results suggest that the EC present downstream the stenosis throat (inside 

the recirculation zone) have a higher potential to get activated. Also, increased levels of 

ICAM -1 would directly increase the amount of leukocyte adhesion and trans-endothelial 

migration. This may lead to the atherosclerotic lesion growth towards the downstream 

direction. Thus the combined numerical and experimental results support our hypothesis 

that the disturbed wall shear stress near the stenosis throat activates endothelial cells and 

leads to inflammatory responses.  

6.2 Recommendations 

Future studies will investigate the hemodynamics of blood flow in the left 

coronary artery (LCA) by modeling viscoelastic, porous walls and considering the wall 

motion due to the pericardial presence of the artery. This will be accomplished by 

analyzing a combination of pressure driven flow inside these arteries and the pressure 

gradient induced wall motion using fluid solid interaction (FSI) solvers. This will 

increase the physiological relevance of the results. Also, FSI would provide information 
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on the circumferential strain (CS) experienced by the endothelial cells (EC) due to 

arterial motion. This work would aim to build a complete numerical model of coronary 

flow which can provide an estimate of both fluid (blood) and solid (vessel wall) dynamics 

during the pathogenesis of coronary heart disease. The next step would investigate the 

behavior of EC due to the combined effect of CS and WSS. 

In addition to this, particles similar to platelets will be introduced to the 

continuous fluid medium using discrete phase modeling. This will provide the shear 

exposure information on the individual platelets under disease conditions. Further, this 

shear stress information will be used in cone and plate shearing device to investigate the 

shear induced platelet activation.   
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APPENDIX A 

GEOMETRICAL INFORMATION OF LCA MODEL 

 

Left main coronary artery 

 
Spherical Location 

Cross sectional 
Diameter (cm) 

r (cm)  theta  phi 

0.46  0.3  83  7 

0.46  0.7  80  4 

0.45  1.1  79  0 

 

 
 
 
 
 
 

Left anterior descending artery 
   

Spherical Location 

Cross sectional 
Diameter (cm) 

r (cm)  theta  phi 

0.38  1.6  70  ‐3 

0.37  2.3  63  ‐5 

0.35  3  59  ‐8 

0.31  4  51  ‐9 

0.28  5.3  44  ‐12 

0.26  6.5  39  ‐17 

0.24  8  33  ‐23 

0.2  10.1  30  ‐32 

0.19  11.8  31  ‐40 

0.17  12.2  32  ‐46 

0.15  11.8  33  ‐49 

0.11  11.4  34  ‐52 
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Left circumflex artery 

Spherical Location 

Cross sectional 
Diameter (cm) 

r (cm)  theta  phi 

0.43  1.4  86  ‐12 

0.42  1.8  94  ‐24 

0.41  2.2  102  ‐31 

0.34  2.6  107  ‐33 

0.34  3.1  116  ‐37 

0.33  3.6  120  ‐41 

0.33  4.1  126  ‐45 

0.32  4.7  135  ‐51 

0.29  5.4  141  ‐56 

0.24  5.7  156  ‐67 

0.22  5.9  166  ‐71 

0.21  6.2  118  ‐73 
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APPENDIX B 

UDF PROGRAM FOR CORONARY INLET VELOCITY  

#include "udf.h" 

#include "unsteady.h" 

DEFINE_PROFILE(transient_velocity, thread, index) 

{ 

face_t f; 

real x[ND_ND]; 

real t = CURRENT_TIME; 

real tc; 

real v [100]; 

int N; 

int j; 

real y; 

real i = N_TIME; 

begin_f_loop(f, thread) 

{ 

 y = i; 

 N=t/0.84; 

 tc=(t-0.84*N)*2.741; 

 v [j] = -29.88+24.15*cos(tc)+44.1*sin(tc)+15.47*cos(2*tc)-24.42*sin(2*tc)-

10.33*cos(3*tc)-0.3837*sin(3*tc)+0.8866*cos(4*tc)+1.568*sin(4*tc); 

       F_CENTROID(x,f,thread); 

       y = x[1]; 

       F_PROFILE(f,thread,index) = v [j]/2; 

 } 

end_f_loop(f, thread) 

} 

------------------------------------------------------------------------------------------------------------ 
Note: The velocity formula used in this UDF program is a Fourier series to represent the 
coronary inlet velocity waveform for one cardiac cycle 
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APPENDIX C 

BASIC PROGRAM USED TO OPERATE CONE  
AND PLATE SHEARING DEVICE  

 
 

Constant shear stress experiment 

Combination of high and low shear stress in each set of cone 

 

rem x motors run at 2 rps and y motors run a 1 rps 

rem x motor shear stress 2.4 dyn/cm and y motor 9 dyn/cm2 

 

joff 

sposx  0 

sposy 0 

accx 0 

accy 0 

A = 640 

B = 2500 

velx A 

vely B 

jogx 

0 

jogy  

0 

end 

$  
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Transient shear experiment 

Combination of normal and high shear stress distribution 

joff 

300 

sposx  0 

sposy 0 

accx 0 

accy 0 

 

A = 83 

B = 77 

C = 90  

 

D = 833 

E = 574 

 

velx A 

jogx 

vely D 

jogy 

wait 250 

 

100 

A = A + B 

D = D + E 

 

velx A 

vely D 

wait 10 

if A > 2777 then goto 200 

goto 100 
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200 

A = A - C 

D = D - E 

 

velx A 

vely D 

wait 10 

if A > 85 then goto 200 

 

goto 300 

 

end 

$  

Combination of normal and recirculation shear stress 

joff 

300 

sposx  0 

sposy 0 

accx 0 

accy 0 

 

A = 83 

B = 77 

C = 90  

 

velx A 

jogx 

vely A/4 

jogy 

wait 250 
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100 

A = A + B 

 

velx A 

vely A/4 

wait 10 

if A > 2777 then goto 200 

goto 100 

 

200 

A = A - C 

 

velx A 

vely A/4 

wait 10 

if A > 85 then goto 200 

 

goto 300 

 

end 

$   
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