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CHAPTER I 

INTRODUCTION 

1.1 General Statement of the Problem 

1.1.1 Background 

Breakup processes along the free surface of round turbulent liquid jets in uniform 

air crossflow were studied experimentally due to its importance in various industrial and 

natural processes, e.g., spray breakup in aircraft propulsion systems, liquid rocket 

engines, diesel engines, spark ignition engines and agricultural sprays, among others. 

Liquid jet primary breakup in crossflow is a simple classical flow that is 

influenced by aerodynamic effects and must be understood in order to provide a 

background for other more complex spray atomization processes. Initial studies of liquid 

jet in crossflow have been mainly focused on trajectories and penetration of liquid jets. 

Additional details about the properties of round nonturbulent liquid jets in gaseous 

crossflow were recently obtained by Wu et al. (1997), Mazallon et al. (1999), and Sallam 

et al. (2004) and references cited therein. 

Past work on turbulent liquid jets in still gases showed considerable aerodynamic 

effects on turbulent primary breakup (Wu and Faeth, 1993) for liquid/gas density ratios 

less than 500. Moreover, Wu et al. (1995) concluded that for nonturbulent slug flow with 

boundary layer removal at the inlet to the constant diameter section involving L/d > 4 – 6 

and jet exit Reynolds numbers > 1.4 x 104, the turbulent primary breakup regime was 

independent of the aerodynamic effects for density ratios in the range 104 – 7240. 

  1 



Recently, Aalburg et al. (2005) investigated the breakup of turbulent liquid jets in 

uniform gaseous crossflow, and provided measurements of the surface properties 

including properties at  the onset of breakup, ligament and drop sizes, drop velocities 

after breakup and the rates of breakup, but the liquid turbulence was considered at the 

limit of fully developed turbulent pipe flow. However, most practical injectors, e.g., jet 

engine afterburners, introduce partial level of liquid turbulence whose effects on breakup 

must be understood. 

In contrast to liquid jets in crossflow, gas jets in crossflow have been studied 

extensively and the internal and external flow fields have been detailed by (Andreopoulos 

and Rodi, 1984), Chu (1985) and (Sherif and  Pletcher, 1989) through the use of hot-wire 

probes and hot wire anemometers. Measurements involved turbulence characteristics 

including mean and fluctuating velocity components, Reynolds stresses, correlation 

coefficients, and turbulent kinetic energy.   

 

1.1.2 Problem Statement 

The objectives of the current investigation were to perform experimental 

investigation of primary breakup of partially and fully turbulent round liquid jets in 

uniform gaseous crossflow, to confirm the recent results of Aalburg et al. (2005) for the 

breakup of fully developed turbulent liquid jets in uniform crossflow, and to interpret and 

correlate new measurements using phenomenological analyses. Present experiments 

involved the use of round nozzles having smooth rounded entrances and length to 

diameter ratios greater than 40:1 to help insure fully developed pipe flow at the jet exit 

(Wu et al., 1995). Instrumentation involved use of pulsed shadowgraphy, photography 
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and high speed imaging. Present experimental methods were similar to past studies of 

nonturbulent primary liquid jet in crossflow (Sallam et al., 2004). 

 

1.2 Previous Related Studies 

1.2.1 Turbulent Liquid Jets in Still Gases 

The breakup of turbulent liquid jets in still gases, termed primary breakup, have 

been studied extensively, see Wu et al. (1992) and references cited therein. The onset of 

turbulent primary breakup occurred at a distance from the jet exit but approached the exit 

at large liquid Weber numbers and the scales of liquid surface distortions increased with 

increasing distance from the jet exit. Ligament-like structures protruding  from the liquid 

surface experienced little effect of drag from the gas phase implying weak aerodynamic 

effects on turbulent primary breakup. Investigation on the aerodynamic effects on the 

primary breakup of turbulent liquid jets (Wu and Faeth, 1993) showed aerodynamic 

enhancement on onset of breakup, and effects on drop sizes and velocities, when the 

liquid/gas density ratio was less than 500. It was further found that initial flow conditions 

affected the breakup of liquid jets (Wu et al. 1995). The removal of the boundary layer 

from the flow contraction regions lead to nonturbulent jets with no initiation of 

atomization. Transition from nonturbulent jets to turbulent jets occurred by increasing the 

nozzle L/d ratios. 

Recent studies of plane and round turbulent liquid jets in still gases at large 

liquid/gas density ratios (Sallam et al., 1999, 2002) provided surface breakup properties 

including flow visualizations, liquid surface velocities, onset of breakup, drop and 

ligament size distributions, drop and ligament velocities, and the rates of drop formation. 
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It was concluded that the formation of ligaments and irregularities on the surface are due 

to turbulence developed in the injector passage and not due to the aerodynamic effects. 

Another area of interest is the breakup of the liquid column as a whole. The liquid 

column breakup length [Chen and Davis (1964) & Grant and Middleman (1966)] is 

important because it defines the start of fully dispersed multiphase flow region. Breakup 

regimes of turbulent liquid jets in still gases were defined by Wu and Faeth (1995) as 

column breakup (1st wind induced breakup) and surface breakup (2nd wind induced 

breakup). Recently, Sallam et al. (2002) defined three different breakup modes, within 

the column and surface breakup regimes, namely Rayleigh-type breakup, turbulent 

breakup and the turbulent bag/shear type breakup. 

 

1.2.2 Non-Turbulent Liquid Jets in Crossflow 

Initial studies focused on liquid column penetration and breakup length, (Geary 

and Margettes, 1969; Reichenbach and Horn (1971); Schetz and Padhye, 1977;) of liquid 

jets in subsonic air streams and indicated that the drag coefficient remained a constant for 

a given freestream conditions and injector geometry. Experimental results for the spray 

penetration (defined as the largest transverse distance attained by a given spray plume) by 

Wu et al. (1998) showed an increase in the spray penetration with increased liquid/gas 

momentum ratio and the cross stream distances. This fact was supported by (Birouk et 

al., 2002) who found out that the transverse penetration is a linear function of the square 

root of the liquid/gas momentum ratio. A later investigation of breakup of liquid jets in 

subsonic crossflow by Wu et al. (1997) classified liquid breakup into surface breakup 

regime and column breakup regime based on the liquid/gas momentum ratio and the 
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crossflow Weber number. Moreover, when the liquid/gas momentum ratio was large, the 

liquid jet undergoes surface breakup before the development of large scale surface waves. 

Also for more viscous liquids these waves were more prominent. A correlation for the 

drag coefficient based on the phenomenological analyses for the liquid jet trajectories 

was also developed. Though no measurements regarding the surface breakup properties 

or the drop and ligament sizes were made, this work provided a foundation for the 

investigation of liquid core breakup for future works. Mazallon et al. (1999) conducted 

experimental investigation of primary breakup of nonturbulent liquid jets in gaseous 

crossflow. The measurements included jet primary breakup regime transitions, jet 

deformation properties, time at the onset of primary breakup, and liquid and column 

surface waves. For small Ohnesorge number (OhLd < 0.1), the breakup regime transitions 

were entirely controlled by the crossflow Weber number. It was found that primary 

breakup of round nonturbulent liquid jets in crossflow is analogous to the secondary 

breakup of the individual drops. Liquid column deformation before the onset of breakup 

was observed for various breakup regimes with the liquid column attaining the frontal 

diameter roughly twice the jet exit diameter. This result was later revisited by Sallam et 

al. (2004) where it was shown that the liquid jet deformation was limited to the bag 

breakup regime whereas in the shear breakup regime, there was no such deformation 

associated with the onset of breakup. Moreover, the crossover of the deformation to the 

no-deformation region occurred at the multimode breakup regime. Experimental work of 

Sallam et al. (2004) also investigated drop and ligament properties and showed that drop 

formation follows the Rayleigh breakup mechanism. The ligament formation was 

categorized into (1) a transient regime where the thickness of the viscous shear layer 
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within the liquid jet is growing as a function of time and (2) a quasi-steady regime where 

the growth of viscous shear layer within the liquid jet becomes limited by the liquid jet 

diameter. Experimental study of liquid jets in crossflow (Birouk et al., 2003) with 

lubricating oil as the test liquid with different range of liquid viscosities observed two 

major breakup regimes for low range of liquid jet Reynolds number, namely arcade 

(column) breakup and bag breakup. Their main conclusions were that liquid jet 

viscosities had no effects on the breakup mechanisms of liquid jets in crossflow, but 

plays an important role on the regime transition boundaries. 

 

1.2.3 Turbulent Liquid Jets in Crossflow 

Fuller et al. (2000) employed pulsed photography to ascertain column trajectories 

and the turbulent liquid column fracture locations, column waves and near spray 

characteristics for various injection angles. Their results showed two major breakup 

regimes for the column breakup processes known as the aerodynamic breakup regime and 

the non-aerodynamic breakup regime based on a breakup regime parameter (Tb). Their 

results showed that a reduction in the injection angle for a constant value of subsonic 

crossflow Mach number and liquid/gas momentum ratio caused a decrease in the overall 

penetration causing the inhibition of atomization process and thereby making the spray 

less uniform. The analysis of liquid column trajectories were performed in the same 

manner as Wu et al. (1997) and the results showed a much higher value of the drag co-

efficient which were also much larger than that for a flow over a solid cylinder. Though 

no specific reasoning could explain such a difference, the results were attributed to the 

thinning of the boundary layer, which may be due to the nozzle design. Results for 
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column fracture revealed different correlations for both aerodynamic breakup and non-

aerodynamic breakup. The crossover between aerodynamic and non-aerodynamic 

breakup was found to occur at a value of the breakup regime parameter equal to unity. 

Experimental studies by Aalburg et al. (2005) employed round injectors with L/d 

ratios greater than 100 to provide fully developed turbulent pipe flow at the jet exit. Test 

conditions were limited to liquid/gas density ratios greater than 500 and provided various 

surface breakup properties and measurements. The results for the onset of turbulent 

primary breakup and the drop size measurements for jets in still air and crossflow agreed 

with the results for turbulent jets in still air by Wu et al. (1992). These results confirm the 

dominance of turbulent primary breakup over the aerodynamic effects. Measurements of 

ligament sizes along the streamwise distances, drop velocities after primary breakup, and 

liquid breakup rates were also included. 

 

1.2.4  Breakup Outcomes 

In addition to the primary breakup of liquid jets, the secondary breakup of drops 

could affect the breakup outcomes. Shock wave disturbances (Hsiang and Faeth 1992, 

1993, 1995) were considered to provide a step change in the ambient environment of the 

drop simulating the conditions experienced by drops at the end of primary breakup. 

Experimental and analytical results of (Ranger and Nicholls, 1969) for the problem of 

liquid drop shattering indicated that breakup was observed to occur as a result of the 

interaction between drop and convective flow field established by the passage of shock 

over it. The collision of the incident shock on the drop has insignificant effect on the 

breakup of the drop and thus the problem reduces to a droplet in high speed flow. 
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Experimental results of Schetz and Padhye, (1977); who employed streak photography 

and spark shadowgraphy; on penetration and breakup of liquids in subsonic flows showed 

that for a given injector and freestream condition the droplet size was not affected greatly 

by the mass flow rate but was greatly affected by the injector geometry. Hsiang and Faeth 

(1992, 1993, 1995) found the conditions required for the initiation of deformation and 

breakup regimes, the times required for the onset and end of breakup, the drag properties 

of deformed drops, and the drop size and velocity distributions at the end of breakup 

process. 

The size distributions of drops produced by breakup of both turbulent liquid jets 

in still air (Wu et al., 1992, Wu and Faeth, 1993, 1995) and nonturbulent slug flow (Wu 

et al., 1991) satisfied Simmons’ (1977) universal root normal distribution function at each 

instance of time. Drop size distribution after primary breakup implied that most drops are 

subjected to secondary breakup (Wu et al., 1991). For nonturbulent liquid jets in 

crossflow the drop sizes after primary breakup tended to vary with increasing distance 

from the jet exit and then approached a constant value. The drop sizes for fully turbulent 

liquid jet  breakup in crossflow (Aalburg et al., 2005) correlated well with the viscous 

layer thickness generated by the crossflow. The drop sizes increased with increasing 

streamwise distances similar to the results obtained for fully turbulent jets in still air.  

 

From the above literature review, it is evident that there is little information on the 

effects of partial level of liquid turbulence on the breakup properties. The missing 

information includes conditions for onset of breakup, ligament and drop properties along 

the liquid surface, drop sizes after breakup, liquid column breakup lengths and column 
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trajectories. This is unfortunate because the missing informations are important to 

understand the effects of crossflow on primary breakup of turbulent jets and to provide a 

basis for modeling multiphase flows in most practical fuel injectors. 

 

1.3 Specific Objectives 

In view of the current status of  understanding of breakup of round turbulent 

liquid jets in gaseous crossflow, the specific objectives of the present study are as 

follows: 

1. Undertake an experimental investigation of breakup of partially and fully 

turbulent round liquid jets in uniform crossflow. This includes developing a 

breakup regime map, identifying conditions at the onset of breakup, measuring 

drop properties at onset of breakup and along the liquid surface. 

2. Study the properties of ligaments along the liquid surface jets and investigate 

earlier theories of Rayleigh breakup mechanism (Wu et al., 1992) in the formation 

of drops from the ligaments. 

3. Study the breakup lengths of turbulent round liquid jets in crossflow, within 

column, bag, multimode and shear breakup regimes. 

4. Study liquid column trajectories for bag, multimode and shear breakup regimes. 

5. Use phenomenological analyses to interpret and correlate new measurements, and 

to provide more understanding of the interaction of the liquid turbulence and the 

gaseous crossflow. 
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1.4 Organization of the thesis 

The thesis is organized into four chapters and two appendices. The statement of 

the problem and specific objectives of the present investigation have been presented in 

this chapter. The second chapter describes the experimental methods used during the 

present study. The results concerning liquid surface breakup are discussed in the third 

chapter. The summary and main conclusions of the present investigation, including 

recommendations for future study, are presented in the fourth and final chapter. The 

appendices provides tabulations of experimental data and experimental uncertainties. 
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CHAPTER II 

EXPERIMENTAL METHODS 

2.1 Test Apparatus 

The test apparatus employed during the present study was a round jet apparatus. It 

was designed to investigate the properties of primary breakup of turbulent liquid jets. 

This test apparatus will be described in the next two sections. 

 

2.1.1 Liquid Jet Apparatus 

A sketch of the round jet apparatus installed over the wind tunnel test section is 

shown in Fig. 2.1. The test liquids were fed from the cylindrical storage test chamber 

using pressurized air, into a round nozzle vertically downward into the air crossflow 

flowing from left to right, generated by a wind tunnel. 

The storage chamber (shown in Fig. 2.2) had an inside diameter and length of 

76.2 and 165.1 mm, respectively. The top part of the storage chamber was fitted with a 

top flange (shown in Fig. 2.3) that was secured with 8 screws to the cylindrical storage 

chamber. The lower part of top flange was connected with a baffle. The top flange had 

two ports for the air lines and one port for the liquid fill line. The liquid fill line was 

connected to a ball valve that could be opened or closed after filling in the test liquid into 

the cylindrical chamber. The bottom part of the cylindrical chamber was fitted with a 

flange that contained the nozzle. The nozzle (shown in Fig. 2.4) had a smooth rounded 
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entrance (radius of curvature equal to the nozzle passage diameter) followed by round 

constant area passage having length-to-diameter ratio greater than 40:1 to help insure 

fully-developed pipe flow at the jet exit. 

The nozzle used in the present investigation was a 2 mm round nozzle made of 

304 Stainless Steel. The nozzle was calibrated in order to find a relationship between the 

liquid jet exit velocity and the operating pressure. This was important because to achieve 

a particular liquid jet Reynolds number, the liquid jet velocity had to be known and for 

this the air tank had to be pressurized accordingly using the air compressor. To calibrate 

the nozzle the air tank was pressurized to a certain value of pressure that could be read 

from the dial gage (Heise, Model CM), connected to the air tank. The liquid jet was 

injected by opening the solenoid valve using a pulse generator to admit high pressure air 

into the test chamber. The volumetric flow rate was measured using a stop watch and a 

laboratory grade graduated cylinder made of polypropylene of capacity 1000 ml with a 

subdivision of 1 ml. The nozzle jet exit velocity was found as follows:  

 

 x tA
V(m/s) v

j
j

∆
=      (2.1) 

 
where, ∆V = volume of the fluid collected (m3) 

 Aj = exit area of the nozzle (m2) 

 t = time taken for collecting the fluid (s) 

The calibration was completed by repeating the same procedure for different 

settings of air tank pressure and a plot as shown in Fig. 2.5 is obtained. Also shown in the 

plot is the fit for the theoretical velocity (ignoring any losses) determined using the 

following: 
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L
j ρ

P2(m/s) v ∆
=      (2.2) 

 
where, ∆P = the pressure of injection of the liquid (psi) 

 ρL = the density of the injecting liquid (kg/m3) 

Using this calibration plot for any value of the air tank pressure, the jet exit velocity 

could be determined and therefore the jet exit Reynolds number (ReLd) can be calculated. 

 

2.1.2 Crossflow Generation 

The crossflow was generated using a subsonic wind tunnel manufactured by 

Engineering Laboratory Design Inc. The wind tunnel had a 16:1 contraction ratio and a 

test section cross sectional area of 0.3 x 0.3 m2. The test section velocity at normal 

temperature and pressure ranged from 3 m/s to 62.5 m/s with less than + 1% variation 

from the mean free stream velocity, and the turbulence level in the test section was 

estimated to be less than 0.25%. Variation in the test section velocity is responsible for 

achieving the wide range of crossflow Weber number mentioned later under test 

conditions. Test section side-walls and floor were removable and made of float glass for 

optical accessibility. The ceiling had a provision for mounting the test chamber and 

nozzle assembly supported by unistrut frames built around the test section. The side 

elevation of the wind tunnel is shown in Fig. 2.6. A pitot static tube (United Sensors 

Model PDC-18-G-16-KL) was fitted to the end of the test section at the centerline. The 

pitot static tube was connected to an inclined tube 0 – 10” H2O manometer (Dwyer 

Model No. 400-10-Kit) though two clear plastic tubes. 
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The 12” x 12” subsonic wind tunnel used in the present study was calibrated in 

order to confirm the factory calibration in terms of a relationship between the operating 

frequency and the mean test section velocity (u∞). The calibration was performed using 

the pitot static tube  and the inclined tube manometer. The wind tunnel was turned on and 

the frequency was set on the control panel. The pitot static tube was positioned in the 

center of the test section facing the flow direction. The deflection on the manometer was 

recorded in terms of inches of water (∆hw) and then using the Eqn. (2.3) the mean 

velocity in the test section was calculated.   

 

     
∞

∞ =
ρ

g) ρ h (∆ x 2u ww      (2.3) 

 
where, ρw = density of water (kg/m3) 

 ρ∞ = density of air (kg/m3) 

 g = acceleration due to gravity (9.81 m/s2) 

 
The mean test section velocity was used to find the crossflow Weber number, 

We∞. The same procedure was repeated for different settings of wind tunnel frequencies 

and the calibration was completed. The velocity was found to range between 3 m/s – 65 

m/s for an operating frequency range of 3.1 Hz to 61 Hz. The relationship between the 

wind tunnel operating frequency and the mean test section velocity is shown in Fig. 2.7. 

For any specific value of the test section velocity, the corresponding frequency can be 

determined by the following: 

 
Frequency  = 0.67 + 0.80 u∞ - 6.69 x 10-5 u∞2   (2.4) 

14 



 
The above calibration procedure was carried out at a room temperature of 19.5 °C 

and an atmospheric pressure of 29.9 inches of mercury. A temperature variation of ± 5 °C 

and a pressure variation of ± 0.2 inches of mercury would result in the air density 

variation of < 1% from the present test conditions. 

 

2.2 Instrumentation 

Instrumentation consisted of performing single-pulse and double-pulse 

shadowgraphy, photography, digital shadowgraphy and high speed imaging. Table 2.1 

summarizes the shadowgraphic recording/instrumentations. The light sources for these 

optical techniques were two frequency-doubled Nd:YAG lasers (Spectra Physics model 

LAB SERIES 150-10, 532 nm wavelength, 8-10 ns pulse width, and up to 300 mJ per 

pulse) that could be controlled to provide pulse separations as small as 100 ns. The lasers, 

camera, the timing of the firing of the liquid jet and the firing of the optical system were 

controlled by a 8-channel pulse generator (Quantum Composers, Model 9518) that has a 

10 ns resolution and a control of delay ranging from 0 – 5000 sec. The capture of 

shadowgraph images were done with an open shutter camera under complete darkroom 

conditions so that the laser pulse width controlled the exposure time of the camera and 

was short enough to freeze the liquid surface and drop motion. These techniques are 

discussed in the following sections. 

 

2.2.1 Single-Pulse and Double-Pulse Shadowgraphy 

Pulsed shadowgraphy technique was used to visualize the flow regimes, find the 

locations of the onset breakup, measure ligament and drop sizes, mean liquid column 
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breakup lengths, and mean streamwise liquid surface velocities among others. The 

arrangement for single and double-pulse shadowgraphy is shown in Fig. 2.8. The laser 

beams after passing through a series of mirrors were expanded and passed through a 

pinhole to provide beam diameters equal to that of the diameter of the collimating lens, 

that passed through the region being observed. This collimated beam after passing 

through the relay lens forms a real and inverted image of the object lying in the region of 

observation. The region of observation in the present study was the jet exit plane.  The 

shadowgraphs were recorded using a Polaroid black and white film (Type-55) of 

dimensions 100 mm x 125 mm at magnifications up to 3:1. A typical single-pulse 

shadowgraph is shown in Fig. 2.9 (a). 

For a double-pulse shadowgraphy, two laser light sources having different pulse 

strengths were used to resolve the directional ambiguity. The laser output beam strength 

was controlled using a quarter wave plate. An image taken from a double pulse 

shadowgraphy technique is shown in Fig. 2.9 (b). Data obtained from the shadowgraphs 

were digitally scanned and analyzed using the Sigmascan software developed by Systat 

software Inc. and the Tracker software developed by NASA. This software allowed drops 

as small as 8 µm diameter to be observed and as small as 35 µm diameter to be measured 

with 10% accuracy. 

The measurements involved averaging of several pulsed shadowgraph images in 

order to minimize the uncertainties in measurements. Measurements of onset of breakup 

involved identifying the first ligament formed at the liquid surface along the streamwise 

direction that has at least a length to diameter ratio equal to two. Measurements of drop 

sizes at onset were based on locating the first drop being formed and then calculating the 
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diameter assuming that the drop being formed is spherical. Ligament sizes were 

measured by averaging the diameters at 4 different points on a ligament and then 

averaging over same test conditions. In all test cases, sampling limitations dominated the 

experimental uncertainties. 

 

2.2.2 Photography 

To measure the large breakup lengths, the laser beam was expanded into a large 

volume and by employing suitable technique, the beam was scattered immediately before 

lighting the portion of the jet being observed. The portion of the jet was captured using a 

pco.2000 CCD camera manufactured by Cooke corporation, having a resolution of 2048 

x 2048 pixel array and running at 15 fps at full resolution to obtain a conventional 

photograph. These photographs were then digitally scanned for further measurements. 

Again the imaging was done in a completely dark room so that the laser pulse duration 

controlled the exposure time and was short enough to freeze the liquid surface motion. 

High speed imaging was performed using a CMOS camera (IDT’s XS-4) at a 

maximum frame rate of 5180 fps at a 512 x 512 pixels resolution. A halogen lamp was 

used as a light source to illuminate the target while recording the images. 

 

2.2.3 Digital Shadowgraphy 

Digital shadowgraphy is very similar to the aforementioned pulse-shadowgraphy 

technique, the difference lies in the image capturing unit. Unlike in conventional pulsed 

shadowgraphy technique where the image is captured on a Polaroid film, in digital 

shadowgraphy a CCD camera is used to focus on the plane of image formation and 
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capture the image formed therein. The CCD camera is synchronized with the laser firing 

and the pressurized liquid jet injection using a pulse generator. As in the aforementioned 

imaging techniques, digital shadowgraphy is also performed in a completely dark room 

so that the laser pulse duration controls the exposure time of the CCD camera thereby 

freezing the liquid surface motion. 

 

2.3 Experimental Procedure 

The experimental procedure consisted of the following steps: filling the storage 

chamber with the test liquid, generating the crossflow, injecting the test liquid, and firing 

the optical system. The test liquid was filled in the storage chamber through the liquid fill 

line valve. Crossflow was generated by turning on the wind tunnel and setting the 

frequency on the control panel to achieve the desired test section velocity. The liquid was 

injected through the nozzle by admitting high-pressure air actuated by a solenoid valve 

(ASCO Red Hat, 3/4”, 25-750 psig), through the two air line ports as mentioned earlier. 

The baffle positioned close to the air inlet prevented undesirable mixing between the air 

and the test liquid. The high-pressure air was stored in a horizontal cylindrical air tank 

(Niles Steel tank) made of carbon steel having a volume of 0.18 m3 and placed on the 

upstream side of the solenoid valve with provision for the tank air pressure up to 10 MPa. 

Air is filled in the air tank using an oil-free breathing air compressor (RIX Industries, 

Model SA-3E) with a rating of 3300 psig. 

The nozzle assembly was mounted on the top of the wind tunnel test section in 

such a way that it is flush mounted with the ceiling of the test section. 
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The test liquid was injected for 100-1500 ms, that were long compared to flow 

development times of 2-10 ms. Present optical measurements required less than 0.1 ms 

for triggering and data acquisition and were comparatively smaller than the flow 

development times. 

 

2.4 Test Conditions 

Present experimental study involved measurements of properties for round 

partially- and fully-developed turbulent jets in uniform gaseous crossflow. Present 

investigations employed water, ethyl alcohol (190 proof) and glycerol (44% glycerin by 

mass) injected into still air and crossflow. 

Past studies have shown that any effect of variations of liquid and gas properties 

on the test results can be represented by the dimensionless parameters (Wu et al., 1992; 

Wu and Faeth, 1993, 1995; Sallam et al., 2004). 

Table 2.2. gives the summary of test conditions for round jet. The test liquids as 

mentioned before were used with jet exit diameters of dj = 2.01 mm, jet exit velocities of 

vj = 8 – 60 m/s and cross stream Weber numbers of We∞ = 0 – 180. Liquid properties 

were measured as follows: liquid densities using a set of precision hygrometers (Fisher 

Model 11-582, 0.1% accuracy), liquid viscosity using a Cannon-Fenske viscometer 

(Fisher Model 13-617, 1% accuracy), and surface tension using a ring tensiometer (Fisher 

Model 20, 1% accuracy). Denoting liquid and gas properties with subscripts L and ∞, the 

liquid/gas density ratios were ρL/ρ∞ = 820, 665 and 938 for water, ethyl alcohol and 

glycerol respectively. Other physical properties, e.g., absolute viscosity (µL) and surface 

tension (σ), are also summarized in Table 2.2 for air, water, ethyl alcohol and glycerol. 
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The jet exit dimensionless parameters, defined in Table 2.2, are as follows: 

Reynolds numbers, ReLd = 2,200 – 140,000; Weber numbers, WeLd = 1000 – 105,000; 

and Ohnesorge numbers, OhLd = 0.0020 – 0.014. The jet exit Reynolds number range 

covers partially and fully turbulent primary breakup regimes and also the transitional 

range. The small jet exit Ohnesorge numbers, which is defined as the ratio of viscous 

forces to the surface tension forces, imply that effects of viscous forces on liquid breakup 

were small (see Hsiang and Faeth (1992, 1995), Faeth (1996)). Present investigations of 

round turbulent liquid jets were compared with the results of nonturbulent liquid jets in 

crossflow by Sallam et al. (2004). Experimental methods and measurement techniques 

used in them were similar to those used in the present investigations. 

 

2.5 Repeatability of Experiments 

To validate the present instrumentation and measurement techniques, the liquid 

jet surface velocities were measured and compared with the experimental results 

available in the literature for liquid jets injected in still air as well as in crossflow (Sallam 

et al., 2004, Aalburg et al., 2005). Double pulse shadowgraphy technique was employed 

to capture two images with very short time interval (t = 12 µs – 15 µs). Measurements of 

liquid surface velocities were based on motion of particular points on the base of the 

ligaments formed on the liquid jet surface. The variation of mean liquid surface 

streamwise velocities is plotted against streamwise distance from the jet exit as shown in 

Fig. 2.10. The measured velocities shown in the plot are time averaged streamwise liquid 

surface velocities normalized by the jet exit mean velocity. It was found that for present 
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test conditions, the ratio of jsurf /vv  was independent of the streamwise distances from the 

jet exit and was found to be: 

 
    jsurf /vv  = 1.0          (2.5) 

 
Thus, the mean streamwise liquid surface velocity is equal to the mean liquid streamwise 

jet velocity at the jet exit. Within experimental uncertainties, this result is in good 

agreement with the results for nonturbulent liquid jets in crossflow (Sallam et al., 2004) 

and fully turbulent liquid jets in crossflow (Aalburg et al., 2005). 
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Table 2.1     Shadowgraphic Recording Equipment/Instrumentation 

 

Component Manufacturer/Seller Model Description 

Nd-YAG laser Spectra Physics LAB 150-10 532 nm wavelength 

Polarized Cube 
beam splitter 

Newport Corp 10BC16PC.3 532 nm, 25.4 mm 

Objective lens Newport Corp M-20x 20x beam expander 
Pin hole Newport Corp 910PH-25 25 micron, high 

energy pinhole 
Object beam 
collimating lens 

Newport Corp 
 
Edmund Optics 

KPX226 AR.14 
 
NT32-973 

76.2 mm dia, 150 
mm focal length 
50.8 mm dia, 100 
mm focal length 

Object beam 
relay lens 

Newport Corp 
 
Edmund Optics 

KPX232 AR.14 
 
NT32-975 

76.2 mm dia, 300 
mm focal length 
50.8 mm dia, 50 
mm focal length 

Polaroid Camera 
Bellows  

Henrys.com  

 

For 100 mm x 125 
mm Polaroid film 
holders. 

Polaroid sheet 
film holder 

Polaroid 545 Pro 100 mm x 125 mm 
Black 

Film Polaroid  Type-55 Black & White, 100 
mm x 120 mm sheet 
film 

Camera lens Nikon NI501 4DAF 
NI1052 8DMAF 

50 mm f/1.4D 
105 mm f/2.8D 

Bellows Nikon NIPB6 PB-6 48-208 mm 
extension range 

CCD Camera 
 
 

Cooke Corp PCO.2000 2048 x 2048 pixels, 
15 fps, double shot 
with 400 ns 
interframe time 

CMOS Camera IDT Inc. XS – 4  512 x 512 pixels, 
5180 fps 

Optical Table 
 

Newport Corp RS 2000  

Computer Intel  Pentium 4 3.6 GHz, 3.25 GB 
RAM 

Image processing 
software 

Systat Inc Sigmascan Pro 5  
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Table 2.2     Summary of Test Conditionsa  

 

 

Liquid 

 

Water 

 

Ethyl Alcohol 

 

Glycerol (44%)b

ρL (kg/m3) 997 806 1140 

ρL/ρ∞ 820 690 938 

µL x 104(kg/ms) 8.94 12.3 57.5 

σ x 103(N/m) 70.8 27.0 67 

dj (mm) 2.01 2.01 2.01 

vj (m/s) 5-60 8-29 5-15 

ReLd x 10-3 11-140 11-40 2-6 

WeLd x 10-2 6-1050 38-532 10-74 

OhLd x 104 23 57 143 

We∞ 0-180 0-161 0-161 

aPressurized injection of round liquid jets vertically downward in horizontal crossflow 

at 99±0.5 kPa and 297±1 K (ρg = 1.215 kg/m3 and νg = 15.2 mm2/s). Round injector 

with a rounded entry and a length-to-diameter ratio of greater than 40:1. 

bPercentage of glycerin by mass in parenthesis. 
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Fgure 2.1 Sketch of the turbulent liquid jet in crossflow. 
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Figure 2.2 Sketch of the cylindrical storage test chamber. 
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Figure 2.3 Sketch of the top flange and baffle. 
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Figure 2.4 Sketch of the 2 mm nozzle. 
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Figure 2.5 Round jet nozzle calibration. Plot showing the variation of the jet exit 
velocity, vj with the corresponding injection pressure. 
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Figure 2.7 Wind Tunnel calibration. Plot showing the variation of the mean test 
section velocity, u∞, with the corresponding operating frequency. 
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Figure 2.8 Pulsed-shadowgraphy technique arrangement. 
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Figure 2.9 (a) Single-pulse shadowgraph along the surface of a round turbulent jet. 
, v

 

(a) (b) 

 

(dj = 2.0 mm j = 29.0 m/s, ReLd = 40,200, We∞ = 0) (b) Double-pulse shadowgraph 
along the liquid surface of a round turbulent jet. (dj = 2.0 mm, vj = 29.93 m/s, ReLd = 
70,400, u∞ = 20.36 m/s, We∞ = 15). 
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Figure 2.10 Mean liquid surface velocities as a function of streamwise distance from 
the jet exit. 
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CHAPTER III 

RESULTS AND DISCUSSION 

3.1 Introduction 

Pulsed shadowgraphy and photography are used in this chapter to measure the 

surface breakup properties of round turbulent liquid jets in uniform gaseous crossflow. 

The properties of interest are flow visualization, breakup regime transitions, location of 

onset of primary breakup, drop and ligament sizes along the liquid surface, mean liquid 

surface velocities, liquid column trajectories and the breakup of liquid column as a 

whole.  

 

3.2 Flow visualization 

3.2.1 Effect of Crossflow Weber Number on Breakup Processes 

A sketch showing the different breakup processes for partially turbulent round 

liquid jets in uniform gaseous crossflow is shown in Fig. 3.1. Visualizations of a 

turbulent liquid jet at various crossflow Weber number, We∞ are illustrated in  Fig. 3.2. 

Image (a) is a CCD camera photography and images (b) – (d) are pulsed shadowgraphy. 

Images (a) – (c) are for a water jet with a diameter of 2 mm and image (d) is for ethanol 

jet with a diameter of 2 mm. The corresponding jet velocities are 8.2 m/s and 13.9 m/s for 

water and ethanol respectively. The corresponding crossflow velocities for images (a) – 

(d) are 10.1 m/s, 21.5 m/s, 44.1 m/s and 41.3 m/s, respectively. The direction of motion 
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of liquid jets in all the cases is from top to bottom (the nozzle exit is visible at the top of 

image (a)). The crossflow direction is from left to right. The effect of gravity on present 

results is negligible. 

Image 3.2 (a) shows a typical column breakup for a crossflow Weber number, 

We∞, of 3, where the liquid jet undergoes a fracture in the liquid column without 

undergoing any surface breakup. This behavior is very similar to  the column breakup of 

nonturbulent liquid jets in gaseous crossflow (Sallam et al., 2004). Image 3.2 (b) shows 

the bag breakup process for a crossflow Weber number of 16. During the bag breakup, 

nodes are formed with the spacing between them comparable to the liquid jet diameter. 

Between these nodes the liquid jet tends to flatten itself forming bag-like structures 

between the nodes. These bags grow bigger and break up into drops. This behavior is 

similar to the bag breakup of nonturbulent liquid jets in gaseous crossflow (Sallam et al., 

2004). As the crossflow Weber number is further increased, the ligaments are stripped 

from the liquid jet sides as seen in image 3.2 (d). This is a typical shear breakup, 

occurring at a crossflow Weber number, We∞, > 110. Intermediate to the bag and the 

shear breakup is the multimode breakup as shown in image 3.2 (c) that has characteristics 

of both bag and shear breakup processes. Multimode breakup occurs at a crossflow 

Weber number range of 30 – 110. 

From the above description of different breakup processes, it can be concluded 

that partially turbulent jets in crossflow undergo similar breakup mechanisms as 

nonturbulent jets in crossflow. 
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3.2.2 Effect of Liquid Jet Reynolds Number on the Breakup Processes 

The effect of liquid jet turbulence on the breakup regimes is illustrated in Fig. 3.3. 

The images (a) – (e) are for turbulent liquid jets at a crossflow Weber number of 16 and a 

jet Reynolds number of 3,420, 19,000, 40,000, 90,000 and 140,000 respectively. Test 

liquid in image (a) is glycerol (44 % glycerin by mass). Test liquid in images (b), (d), and 

(e) is water and the test liquid in image (c) is ethanol. The liquid jet velocities for images 

(a) – (e) are 8.2 m/s, 8.2 m/s, 29.0 m/s, 38.4 m/s and 59.5 m/s respectively. The crossflow 

velocities are 21.5 m/s for water, 20.9 m/s for glycerol and 13.3 m/s for ethanol. 

As seen in the images (a) and (b), bags are formed at crossflow Weber number of 

16 and the liquid jet Reynolds number ranges from 3420 to 19200. This is typical of 

partially turbulent liquid jets, that exhibit similar breakup regimes as nonturbulent liquid 

jets in crossflow. In images (c), (d) and (e) the liquid jet Reynolds number is increased 

whereas the crossflow Weber number is kept a constant. These images show no bag 

formation but rather the liquid jet surface becomes irregular and these irregularities 

increase with increasing distance from the jet exit and finally form ligaments. This is 

typical of turbulent primary breakup mechanism. Another difference is that in images (a) 

and (b), the liquid column diameter starts to decrease slightly with increasing distance 

from the jet exit whereas in images (c), (d), and (e) the liquid jet spreads radially causing 

an increase in the jet column diameter, typical of turbulent jets at high Reynolds number 

(Wu et al., 1992). Another important feature is that no ligaments are formed on the 

upwind side for the turbulent jets in images (a) and (b), unlike the turbulent liquid jets in 

images (c), (d) and (e). These features are attributed to the interaction of the turbulent 

eddies within the free surface of the liquid jet. At high liquid jet Reynolds numbers, these 
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turbulent eddies would have enough kinetic energy to cause surface breakup not only at 

the downwind side, but also at the upwind side, despite the presence of the gaseous 

crossflow. In the following section, the liquid jet breakup mechanism will be classified 

based on the presence of surface breakup at the upwind side.  

 

3.3 Primary Breakup Regimes 

It is shown that turbulent liquid jets in crossflow undergo upwind surface breakup 

(refer to Fig. 3.3), when the energy of the turbulent eddies in the liquid jet is large enough 

to overcome the liquid surface tension forces. The eddies form protrusions on the liquid 

surface, which are seen as ligaments. This breakup regime will be termed as turbulent 

breakup. An increase in the crossflow velocity, however, expressed as a decrease in the 

liquid/gas momentum ratio, would suppress the upwind surface breakup. This occurs 

because the energy of turbulent eddies in the liquid jet is not large enough to overcome 

the combination of liquid surface tension forces and the pressure forces exerted by the 

gaseous crossflow. This type of breakup, where drops are formed only on the downwind 

side will be termed as aerodynamic breakup. The breakup regime map for turbulent jets 

in crossflow is shown in Fig. 3.4. In this map, liquid jet Weber number, WeLΛ is plotted 

on the x-axis and the dimensionless quantity WeLΛq1/3 is plotted  on the y-axis.  

For a fixed WeLΛ, the momentum ratio q controls the breakup regime transition 

from an aerodynamic breakup to a turbulent breakup. At lower values of q, the crossflow 

velocity is high and so even when the turbulence in the liquid jet is high, the high 

crossflow velocity would suppress the formation of ligaments on the upwind side. The 

upwind surface, however, will be deformed due to column and surface waves associated 
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with column, bag, multimode or shear breakup similar to the breakup of nonturbulent 

liquid jets in crossflow. These types of breakup are termed collectively as aerodynamic 

breakup on the present breakup regime map. As q is increased, the crossflow velocity 

decreases, and the turbulence in the liquid jet dominates the surface breakup on the 

upwind side forming ligaments. 

The correlation that best describes the transition from aerodynamic breakup to 

turbulent breakup is as follows: 

 
WeLΛq1/3= 17,000     (3.1) 

 
Also shown in Fig. 3.4, is the correlation by Wu and Faeth, 1995, for turbulent jet 

in still gases. Present results for breakup regime transition of turbulent liquid jets in 

crossflow at large liquid/gas momentum ratios agree well with the results of Wu & Faeth, 

(1995) for the surface breakup of turbulent jets in still gases. 

The breakup regime map where WeLΛq1/3 on the y-axis is plotted against the 

liquid jet Reynolds number, ReLd on the x-axis is shown in Fig. 3.5. It is observed that 

both turbulent and aerodynamic breakup occurs for the range of Reynolds numbers, ReLd 

= 6,000 – 60,000, with the transition controlled mainly by WeLΛq1/3. 

 

3.4 Onset of Breakup 

The properties at the onset of primary breakup for turbulent liquid jets in gaseous 

crossflow were analyzed in the same manner as earlier studies of nonturbulent liquid jets 

in crossflow (Sallam et al., 2004). Onset of breakup refers to the first appearance of 

ligaments along the streamwise distance from the jet exit. The properties of interest are: 
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time of the onset of breakup, locations of the onset of breakup, and ligaments and drop 

sizes at the onset. These will be described in detail in the following sections. 

 

3.4.1 Time of Onset of Breakup – Multimode and Shear Breakup Regime 

The time of the onset of breakup refers to the time taken for the first ligament to 

appear along the liquid surface. Within the shear and multimode breakup regimes, the 

appearance of drops was always preceded by the appearance of ligaments protruding 

downstream from the region near the sides of the liquid jet toward the wake of the jet.  

Analogous to earlier findings for the onset of ligament and drop formation during 

turbulent primary breakup of round liquid jets in still gases (Sallam et al., 2002), ligament 

diameters at the onset of ligament formation were found by equating the momentum 

(relative to bulk liquid in the jet) of a ligament of given size, dl, to the maximum surface 

tension force required to form a drop of the same size.  Treatment of the momentum of 

the present liquid jet in crossflow, however, had to be modified from its treatment for a 

turbulent liquid in still gases (Sallam et al., 2002). In the present case, it was assumed that 

liquid motion required to form a ligament originated from the viscous shear layer 

growing at the periphery of the liquid jet due to the motion of the gaseous crossflow. This 

approach was similar to the approach taken for the nonturbulent liquid jets in crossflow 

(Sallam et al., 2004). The characteristic liquid phase velocity of this shear layer, due to 

viscous effects, is: 

 
uL  ~  u∞/[1+(µLρL/(µ∞ρ∞))1/2]    (3.2) 
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Equating the momentum of the liquid shear layer near the surface, to the surface 

tension force required by the hemispherical distortion of the liquid surface that must be 

overcome to form a ligament having a diameter, dl, there results: 

 

ρLuL
2dl

2 ~ σ dl      (3.3) 

 
Combining Eqns. (3.2) and (3.3) and substituting for uL

2 and noting that ρ∞/ρL << µL/µ∞, 

there results: 

      dl/dj  =  C (µL/µ∞)/We∞     (3.4) 

  
where C is an empirical constant on the order of unity. Sallam et al. (2004) reported the 

following for nonturbulent liquid jet in uniform crossflow: 

 
dl/dj  =  0.07 [(µL/µ∞)/We∞]1/2     (3.5) 

 
The reduction of the power in Eqn. (3.4) from 1 to 1/2 in Eqn. (3.5) is statistically 

significant. This discrepancy appears to be due to the limitations that the finite diameter 

of the liquid layer places on the growth of the shear layer, noting that the shear layer is 

eventually limited to a fixed fraction of the liquid jet diameter at conditions where this 

power must become zero. 

Motion along the liquid jet is given as a function of time by the liquid jet 

convection velocity, based on present observations: 

 
y   =  vj t     (3.6) 
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then the diameter of the ligament at onset should be proportional to the thickness of the 

liquid shear layer, which is assumed to grow according to the well known viscous shear 

layer growth rate (Schlichting H., 1960) expression (νLt)1/2. This implies that 

 
dl  ~ (νL ti ) 1/2     (3.7) 

 
Substituting for dl  from Eqn. (3.4) and rearranging then yields: 

 
ti / tν*  =  Ct C2 (µL/µ∞)/We∞    (3.8) 

 
where 

tν*  =  dj
2/νL         (3.9) 

 
and Ct is an empirical constant on the order of unity. 

Values of ti were found from present measurements of yi using Eqn. (3.8).  These 

measurements were plotted as a function of (µL/µ∞)/We∞, as suggested by Eqn. (3.8) in 

Fig. 3.6. The plot also shows the results for nonturbulent liquid jets in uniform crossflow 

(Sallam et al., 2004). For present measurements, low liquid jet Reynolds number (ReLd < 

20,000) correlate quite well according to the relationship of Eqn. (3.8) as follows:  

 
ti / tν*  =  0.0004 [(µL/µ∞)/We∞]    (3.10) 

 
The average uncertainty of the present measurements for the time of onset of breakup is 

56% with respect to the mean measured value at 95% confidence level. This value is 

dominated by sampling limitations.  
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The time for the onset of breakup becomes independent of the crossflow at higher 

liquid jet Reynolds number suggesting that the turbulence in the jet dominates the surface 

breakup. For ReLd > 40,000 the onset of breakup data correlate well with those of 

turbulent round liquid jet in still air by Wu et al. (1992) suggesting weak aerodynamic 

effects. 

The time of onset of breakup for turbulent liquid jets in uniform gaseous 

crossflow as a function of the dimensionless parameter WeLΛq1/3 is illustrated in Fig. 3.7. 

This dimensionless parameter was used to define the two breakup regimes namely the 

aerodynamic breakup regime and the turbulent breakup regime. From Fig. 3.7, the time 

of onset of ligament formation for turbulent liquid jets exhibiting aerodynamic breakup 

follows a correlation given by: 

 
  ti / tν* = 1.09 (WeLΛq1/3)2.1 ; WeLΛq1/3 < 17,000  (3.11) 

 
For turbulent liquid jets exhibiting turbulent breakup, time of the onset of 

ligament formation is a constant value suggesting that turbulence in liquid jet dominates 

the surface breakup. Moreover, as the liquid jet Reynolds number increases from 40,000 

to 140,000, the time of onset of breakup, ti / tν*, decreases from approximately 4 x 10-5 to 

4 x 10-6. This shows that higher liquid jet Reynolds number causes faster development of 

surface irregularities and therefore quicker onset of ligaments. 

Also included in the plot is the correlation, fitted to the transitional range at 

WeLΛq1/3 = 17,000. This agrees with the earlier results developed for classification of 

breakup regimes into aerodynamic breakup and turbulent breakup. 
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3.4.2 Time of Onset of Breakup – Bag Breakup Regime 

Turbulent liquid jets with low Reynolds numbers exhibit bag breakup similar to 

nonturbulent liquid jets in crossflow. As mentioned earlier the mechanism of formation of 

bags for turbulent liquid jets is similar to that of nonturbulent liquid jets. But unlike the 

bags formed from nonturbulent jets, the bags of turbulent jets are formed with ligaments 

and drops appearing on the upwind side of the liquid jet. A series of images showing the 

illustrating bag formation, bag breakup, the ligament formation on upwind side and the 

drop pinching off from the ligament on upwind side are shown in Fig. 3.8. The test 

conditions included a water liquid jet with Reynolds number of ReLd = 19,200, a 

crossflow Weber number of We∞ = 10, and a liquid jet diameter of dj = 2.0 mm. 

Time of onset of bag formation, tbi, as a function of crossflow Weber number is 

shown in Fig. 3.9. The plot also includes the data for the time of onset of breakup for 

nonturbulent liquid jets in crossflow (Sallam et al., 2004). It is seen that the time taken for 

the onset of bag formation, tbi follows the same correlation as Eqn. (3.11) for turbulent 

liquid jets with low Reynolds number ReLd < 20,000. Bags were also observed at a liquid 

jet Reynolds number of 40,000.  

The average uncertainties of the present measurements for the time of onset of 

bag formation is 58% with respect to the mean measured value at 95% confidence level. 

The high value of uncertainty is dominated by sampling limitations. 

 

3.4.3 Location of Onset of Breakup 

To determine the streamwise locations for the onset of breakup for turbulent jets 

in crossflow, the breakup time was converted into the location of onset of breakup based 
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on the assumption that ligaments are convected along the liquid surface with the velocity 

of liquid jet. For the present investigation, phenomenological analyses developed by 

Aalburg et al. (2005) were employed, that was originally based on the idea developed by 

Wu and Faeth, (1993). Based on this theory the location of the onset of turbulent primary 

breakup along the liquid surface is given by: 

 
(yi/Λ)[1+Cp(yi/Λ)-4/9WeLΛ

2/9(ρ∞/ρL)(u∞/vj')2]9/10 = Cxi WeLΛ
-n (3.12) 

 
where, n = 4/10. 

The plot for the streamwise location of onset of breakup as a function of the liquid 

jet Weber number, WeLΛ is shown in Fig. 3.10. In completing this plot, the values, Cp = 

0.3, Cxi = 26,190 and n = 0.85 are selected as the best fit values. Also in this plot the ratio 

of vj'/vj = 0.03 was used for fully developed turbulent pipe flow (Hinze, 1959). The best 

fit correlation for the present results is given as follows: 

 
   (yi/Λ)[1+0.3(yi/Λ)-4/9WeLΛ

2/9(ρ∞/ρL)(u∞/vj')2]9/10 = 26,190 WeLΛ
-0.85 (3.13) 

 
The average uncertainties of the present measurements for the location of onset of 

breakup is found to be 54% with respect to the mean measured value at 95% confidence 

level. This is dominated by sampling limitations. 

Also shown in the plot are the results for Aalburg et al. (2005). It can be 

concluded that present correlation for turbulent jets in still air and crossflow are in good 

agreement with the results for Aalburg et al. (2005).  
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3.4.4 Ligament and Drop Sizes at the Onset of Breakup 

Similar to past investigations of round and annular turbulent jets in still air 

(Sallam and Faeth, 2003), present investigation showed two types of ligament breakup 

mechanisms. The ligaments can undergo breakup forming drops by either tip breakup 

process where the ligaments themselves act as liquid jets in the Rayleigh breakup regime 

and form drops of comparable size, or by ligament base breakup where the whole 

ligament pinches off from the liquid surface and undergo a secondary breakup forming 

drops. A typical ligament tip breakup and a ligament base breakup is shown in Figs. 3.11 

(a) and (b) respectively. Ligament base breakup was rare, however, and the 

phenomenological analyses for drop and ligament sizes will be based on the ligament tip 

breakup mechanism process.  

The diameter of ligaments at the onset is given as follows (refer Eqn. (3.5)): 

 

dli/dj  =  Cl [(µL/µ∞)/We∞]1/2    (3.14) 

 
where Cl is an empirical constant of the order of unity. For Rayleigh type breakup 

mechanism, the drop to ligament diameter ratio should be a constant value equal to 1.91 

as proposed by Tyler in 1933. (see Teng et al., (1995) and references cited). Therefore the 

ratio of drop diameter to ligament diameter at onset is given as follows: 

 dpi/dli  =  Ci     (3.15) 

 
where Ci  is an empirical constant associated with the onset of drop formation. 

Drop diameters and the ligament diameters at onset at the downwind side of the 

turbulent liquid jets is plotted in Fig. 3.12 as suggested by Eqns. (3.14) and (3.15). The 

45 



plot also includes the results for the nonturbulent liquid jets in crossflow (Sallam et al., 

2004). 

Downwind ligament diameters for the turbulent jet at onset  are similar to those of 

nonturbulent liquid jets within experimental uncertainty. Drop diameters at onset for 

turbulent jets is lower than those for nonturbulent jets (Sallam et al., 2004). This is not 

surprising, however, because the presence of turbulent eddies in the liquid phase 

accelerate the onset of breakup, resulting in smaller drops from the same ligament sizes.  

For the present measurements, the best fit correlation for the downwind drop sizes 

at onset is given as follows: 

  dpi/dli  =  0.8     (3.16) 

 
The average uncertainty for the present measurements for the drop diameters and 

ligament diameters at onset on the downwind side was found to be 30% and 32% with 

respect to the mean measured values at 95% confidence level, dominated by sampling 

limitations.  

An important result for the drop diameters and the ligament diameters at the onset 

of turbulent liquid jets is that, drops and ligaments exist even on the upwind side of the 

liquid jet for WeLΛq1/3 > 17,000, unlike the case of nonturbulent liquid jets. The existence 

of drops and ligaments on the upwind side of the liquid jet confirms that turbulent 

primary breakup is the dominating mechanism and the effect of crossflow is negligible 

within the turbulent breakup regime (WeLΛq1/3 > 17,000) of turbulent round liquid jets in 

gaseous crossflow. 
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The drop diameters and ligament diameters at onset at the upwind side is plotted 

in Fig. 3.13. The best fit correlation for the drop diameters and the ligament diameters are 

given as follows: 

 
 dpi/dli  =  1.00     (3.17) 

 

 dli/dj  =  0.07     (3.18) 

 
The average uncertainty for the present measurements for the drop diameters and 

ligament diameters at onset on the upwind side was found to be 32% and 20% with 

respect to the mean measured values at 95% confidence level.  

Drop sizes at onset for turbulent liquid jets in crossflow were compared with 

those of turbulent liquid jets in still gases in Fig. 3.14. Sallam and Faeth (2003) correlated 

the drop sizes at onset for turbulent round liquid jets by equating the kinetic energy of a 

characteristic eddy to the surface energy required to form a droplet of a corresponding 

size. Using the relationship between the eddy size and its velocity in the inertial range 

(Tennekes and Lumley, 1972), and associating the SMD resulting from the turbulent 

primary breakup with the characteristic eddy size the following expression for SMD at 

the onset was developed: 

 

 3/5
LΛ

6/5

j
i

i We
v
v

C
Λ

SMD −

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

′
=    (3.19) 

 
where, v′  is the average cross stream velocity fluctuation at the jet exit, and Ci is an 

empirical constant on the order of unity. Using the fact that v′ / vj is a constant for fully 

developed turbulent pipe flow, SMDi/Λ must be only a function of WeLΛ. Past work of 
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Wu et al. (1992), Wu and Faeth (1993, 1995), have shown good agreement between the 

universal root normal distribution function of Simmons (1977) and measured drop size 

distribution functions for a variety of primary breakup processes. The universal root 

normal distribution function is defined by MMD/SMD = 1.2, where MMD is the mass 

median drop diameter of the spray and SMD is the Sauter mean diameter of the spray, 

defined as the diameter of a drop having the same surface area/volume ratio as the spray 

as a whole. Therefore knowing one of these two parameters completely describes the 

drop size distributions. 

Present measurements of SMDi are plotted as suggested by Eqn. (3.19) in Fig. 

3.14. As expected from the previous results plotted in Figs. 3.12 and 3.13, the SMDi is a 

constant and is independent of the liquid jet Weber number unlike turbulent jets in still 

gases. The best-fit correlation for the current measurements for still air and in crossflow  

is given as follows: 

 

 0.36
Λ

SMDi =       (3.20) 

 
The average uncertainty for the present measurements for the SMD at the onset was 

found to be 40% with respect to the mean measured value at 95% confidence level. The  

reason for the difference between the results of turbulent jets in crossflow and in still 

gases is an indication of the effect of the crossflow .  

 

3.5 Drop Sizes along the Liquid Surface 

Expressions for variation of SMD along the streamwise distance from the jet exit 

were developed using similar theories used for round turbulent liquid jets in still gases by 
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Wu et al. (1992). It was assumed that SMD was dominated by the largest drop that can be 

formed at a particular location and that the turbulent eddies in the jet will form drops of 

the same size as these eddies. An expression for variation of SMD with streamwise 

distance from the jet exit was developed (Wu et al., 1992) as follows: 

 

  
2/3

1/2
LΛ

y ΛWe
yC

Λ
SMD

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=    (3.21) 

 
 

where Cy is a constant on the order of unity. Present measurements of SMD are plotted as 

suggested by Eqn. (3.19) in Fig. 3.15. Also shown in the plot are the correlation by 

Aalburg et al. (2005) for fully developed turbulent jets in crossflow and the correlation 

for turbulent jets in still air by Wu et al. (1995) for round jets. The best-fit correlation of 

the present measurements for turbulent liquid jets in crossflow is as follows: 

 

 
0.32

1/2
LΛΛWe

y0.45
Λ

SMD
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=    (3.22) 

 
The power for the normalized streamwise distance is not equal to 0.67, as predicted by 

theory for turbulent jets in still air. This behavior indicates the effect of the crossflow. 

 

3.6 Liquid Core Breakup 

Liquid core breakup is important because it defines the start of fully dispersed 

multiphase flow region. For the current experimental investigations, locations of 

completion of the primary breakup processes for column, bag multimode and shear 

breakup regimes were analyzed similar to earlier treatment for nonturbulent liquid jets in 

crossflow by Wu et al. 1997. Using this approach, the time required for the breakup, tb, is 
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given similar to the secondary breakup of drops subjected to shockwave disturbances by 

Hsiang and Faeth, 1995: 

  tb/t* = Cyb          (3.23)  

 
where, t* is the characteristic liquid phase time from Ranger and Nicholls (1969) and is 

given by: 

 
    t* = (ρL/ρ∞)1/2dj/u∞     (3.24) 

 
and Cyb is an empirical constant associated with the time of breakup of liquid column on 

the order of unity. Since the liquid jet moves with a velocity vj in the streamwise 

direction, the expression for tb becomes: 

 
            tb = yb/vj                             (3.25) 

 
Substituting for tb and t* into Eqn. (3.23) the streamwise location for the end of liquid 

column is given by: 

 
         yb/dj ~ [ρLvj

2/(ρ∞u∞2)]1/2 ~ q1/2    (3.26) 

 
Finally, considering the conservation of cross stream momentum, the cross stream 

location for the end of liquid column is given by (Wu et al., 1997): 

 
                                                       xb/dj = Cxb            (3.27) 

 
where, Cxb is an empirical constant associated with the cross stream penetration of liquid 

column on the order of unity. 
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Photographs of the location of liquid core breakup for column and bag breakup 

regimes are shown in Fig. 3.16. The liquid jet is injected vertically downward and the 

crossflow is from left to right in images (a) and (b). 

Measurements of tb and xb for the present investigation of turbulent jets in 

crossflow for column, bag, multimode and shear breakup regime, (i.e. within 

aerodynamic breakup regime) as a function of the crossflow Weber number is shown in 

Fig. 3.17. Also shown in Fig. 3.17 are the results for the nonturbulent liquid jets (Sallam 

et al., 2004). The crossflow Weber number for breakup regime transitions are also plotted 

as dashed lines. The value of tb/t* for the present investigations correlate well with the 

previous results for nonturbulent jets in crossflow and yield a value of Cyb equal to 2.5. 

The average uncertainty for the present measurements for time of breakup of liquid core 

was found to be 9% with respect to the mean measured value at 95% confidence level.  

The results for xb/dj for the present measurements agree well with the correlation 

for nonturbulent liquid jets in crossflow (Wu et al., 1997 and Sallam et al., 2004), and 

yield a of Cxb equal to 8. The average uncertainty for the present measurements for cross 

stream location of breakup of liquid core was found to be 20% with respect to the mean 

measured value at 95% confidence level. From the above results, it can be concluded that 

for turbulent and nonturbulent liquid jets in uniform crossflow, the time for the end of 

liquid core in streamwise direction and the location of the end of liquid core in cross 

stream directions remains the same. 
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3.7 Liquid Column Trajectories 

Liquid column trajectories are important in consideration of modeling sprays and 

atomization processes because drops formed at the liquid jet surface emerge from 

locations in the x, y plane. Study of liquid column trajectories gives information about the 

amount of liquid jet penetration and defines the location of dispersion of drops formed 

due to atomization.  

For present investigations, simplified analyses following Wu et al. (1997) were 

used for bag, multimode and shear breakup regimes (i.e. aerodynamic breakup regimes). 

Liquid column trajectories were analyzed by balancing liquid acceleration with the 

aerodynamic drag forces in the air crossflow direction. The change in the liquid velocities 

in the streamwise direction was due to aerodynamic drag forces. For modeling, the liquid 

column was assumed to be a cylindrical liquid element with a constant diameter equal to 

the liquid jet exit diameter dj and having a length l. Assumptions made during this 

derivation included neglecting the mass losses caused by the evaporation and droplet 

removal along the liquid column. The force diagram for the liquid jet in crossflow is 

shown in Fig. 3.18. The origin of the x and y co-ordinates was defined as the centre of the 

nozzle exit with the x direction pointing in the air cross stream direction and y direction 

pointing in the jet streamwise direction. The gravity force was small in comparison with 

the aerodynamic forces. It was also assumed that the transverse velocity of liquid jet 

remains a constant up to the column fracture location. Wu et al. (1997) introduced an 

average drag coefficient Cd and the x-momentum equation was given by: 

 

      j
1/22

Lg
2

LgLggd
L

2
jL d])v(v)u)[(uuu(ρC5.0

dt
du

4
πdρ

l
l

−+−−=                  (3.28) 
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where, u and v are the velocities in the x and the y directions respectively and the 

subscripts L and g denote liquid and the gas phase. 

The average drag co-efficient, Cd included the effects of liquid column 

deformation, flattening, droplet stripping and disintegration. Using the x-momentum 

equation, the fluid velocity in the cross stream direction was given by: 

 
        (3.29) )]td)/(ρu[(ρ  ) / π2C (u jL

2
dL ∞∞=

 
The axial location of the liquid column was found out from Eqn. (3.30) using uL = dx/dt 

and yielded: 

 
2

jL
2

d )]td)/(ρu[(ρ  ) / π2C (x ∞∞=                            (3.30) 

 
Since the transverse velocity of the liquid jet was assumed to be a constant and equal to 

the value of injection velocity vj, the  trajectory was obtained from Eqn. (3.31) (using  y = 

vj t): 

 
   q)(x/d) /C(πqy/d jdj =       (3.31) 

 
The present results for the liquid column trajectories are shown in Fig. 3.19. The y 

location of the liquid column trajectory is plotted against the x location of the liquid 

column trajectory. The average uncertainty for the present measurements for liquid 

column trajectories was found to be 26% with respect to the mean measured value at 95% 

confidence level. The plot shows the data for the shear, multimode and bag breakup. A 

best fit correlation yielded the value of drag coefficient Cd to be 1.56, 1.95, and 2.51 for 

shear, multimode and bag breakup, respectively. Recalling the fact that Cd accounts for 
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the deformation of the liquid jet column, present values of the drag coefficient lie in 

between the corresponding values for a solid cylinder and a flat plate. 
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Figure 3.4 Breakup regime map showing transition between non-turbulent breakup 

 

 
 

and turbulent breakup. Plot shows the plot of the newly discovered number WeLΛq1/3 as a 
function of the WeLΛ.  
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Figure 3.5 Breakup regime map showing transition between non-turbulent breakup 
and turbulent breakup. Plot shows the plot of the dimensionless number WeLΛq1/3 as a 
function of the liquid jet Reynolds number ReLd.  
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Figure 3.6 Time of onset of breakup showing the time of the onset of ligament 

 

 

 
 

formation as a function of (µL/µ∞)/We∞.  
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Figure 3.7 Time of onset of breakup showing the time of the onset of ligament 
formation as a function of the dimensionless parameter WeLΛq1/3. 
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Figure 3.9 Time of onset of bag breakup showing the time of the onset of bag 
formation as a function of (µL/µ∞)/We∞.  
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Figure 3.10 Streamwise location of onset of breakup normalized by the radial integral 
length scale as a function of the liquid jet Weber number based on the radial integral 
length scale. Also shown are the results of turbulent round liquid jets in still air and 
crossflow by Aalburg et al. (2005). 
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(a) Ligament tip breakup (a) Ligament base breakup  
 
 
 
 

Figure 3.11 Pulsed shadowgraphs of (a) ligament tip (Rayleigh) breakup (dj =2.0 mm 
,We∞ = 3.71 , ReLd = 140,000, vj = 59.5 m/s, u∞ = 10.1 m/s, ρL/ρ∞ = 820) and (b) 
ligament base breakup (dj =2.0 mm ,We∞ = 16.8 , ReLd = 40,000, vj = 29.0 m/s, u∞ = 13.3 
m/s, ρL/ρ∞ = 665)at the surface of turbulent liquid jets. 
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Figure 3.12 Plot showing the drop diameters and ligament diameters on the downwind 
side of the liquid jet. Also shown on the plot is the correlation of Sallam et al. (2004) for 
the nonturbulent liquid jets in crossflow. 
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Figure 3.13 Plot showing the drop diameters and ligament diameters on the upwind 
side of the liquid jet. Absence of results for nonturbulent liquid jets in crossflow indicate 
turbulent primary breakup is the dominating mechanism for the surface breakup. 
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Figure 3.14 The SMD at the onset of turbulent primary breakup as a function of Weber 
number for turbulent jets in still air and crossflow. Also shown is the correlation for 
turbulent jets in still air by Sallam and Faeth, 2003. 
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Figure 3.15 The SMD along the streamwise distance of turbulent primary breakup as a 
function of Weber number based on the radial integral length scale. Also shown are 
correlations for round jets in still air by Wu et al. (1992) and  turbulent jets in crossflow 
by Aalburg et al. (2005). 
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(b) Bag breakup (a) Column breakup 

 
 

igure 3.16 Photographs of locations of breakup of liquid core for: (a) Column 
reakup regime, Liquid: Water, ReLd = 19,200, We∞ = 3, dj = 2 mm, vj = 8.15 m/s, u∞ = 
0.13 m/s; (b) Bag breakup regime, Liquid: Water, ReLd = 19,200, We∞ = 10, dj = 2 mm, 
j = 8.15 m/s, u∞ = 16.63 m/s. 
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Figure 3.17 Plot showing the breakup time tb for the end of liquid core in the jet 
streamwise direction and the location of the end of liquid core xb in cross stream direction 
as a function of crossflow Weber number We∞. 
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Figure 3.18 Sketch of the force diagram for phenomenological analyses of the liquid 
column trajectories taken from Wu et al. (1997). 
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Figure 3.19 Liquid column trajectories for turbulent liquid jets in gaseous crossflow 
for shear, multimode and bag breakup regimes. 
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CHAPTER  IV 

SUMMARY AND CONCLUSIONS 

4.1 Summary 

Experimental investigation was performed for partially and fully turbulent round 

liquid jets in uniform gaseous crossflow. Measurements involved breakup regime 

transitions, properties of onset of breakup, properties of ligaments and drops along the 

liquid surface, breakup of liquid column as a whole, and liquid column trajectories. The 

liquid jets were injected into uniform gaseous crossflow generated by a subsonic wind 

tunnel at normal temperature and pressure, through round nozzles having smooth rounded 

entries and length/diameter ratios greater than 40:1 to ensure fully developed pipe flow at 

the jet exit. Test conditions included three liquids, water, ethyl alcohol (190 proof) and 

glycerol (44% glycerin by mass), jet exit Reynolds number, ReLd = 2,200 – 140,000, jet 

exit Weber numbers, WeLd = 1000 – 105,000, jet exit Ohnesorge numbers, OhLd = 0.002 

– 0.014, liquid/gas density ratios of 820, 665 and 938 respectively, and crossflow Weber 

number, We∞ = 0 – 180. Small values of Ohnesorge numbers (OhLd <0.1) implied that 

viscous effects were negligible. 

 

4.2 Conclusions 

The major conclusions of the present investigation of partially and fully turbulent 

round liquid jets in uniform gaseous crossflow are as follows: 
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1. Breakup of turbulent liquid jets in crossflow falls into two major regimes known 

as aerodynamic breakup regime and turbulent breakup regime, separated by the 

dimensionless parameter WeLΛq1/3 = 17,000. Aerodynamic breakup regimes of 

turbulent liquid jets (WeLΛq1/3 < 17,000) included column, bag, multimode and 

shear, similar to the non turbulent liquid jets in gaseous crossflow. 

2. Time for the onset of aerodynamic breakup of turbulent liquid jets in crossflow 

resembles that of the nonturbulent liquid jets in crossflow within experimental 

uncertainties of 56%. However, the time of onset of turbulent breakup is 

independent of the crossflow Weber number indicating dominance of turbulent 

primary breakup over the aerodynamic effects. 

3. Surprisingly, bag breakup (We∞ = 4 – 30) of turbulent round liquid jets exhibits 

ligament and drop formation on the upwind side. Moreover, the liquid column 

during bag formation does not undergo considerable deformation. 

4. Within the turbulent breakup regime, drop to ligament size ratios support a 

Rayleigh-like breakup mechanism for the ligaments. 

5. Ligament diameters at the onset for the upwind side are similar to those at the 

downwind side (within uncertainty of 30%) indicating weak crossflow effects. 

6. For multimode, shear and turbulent breakup, drop size increases in streamwise 

distances from the jet exit which is typical of the breakup of turbulent jets in still 

gases. Drop size at the onset, however, is constant regardless of the liquid jet 

Weber number, WeLΛ. 

7. Breakup of liquid column as a whole for turbulent liquid jets in the column, bag, 

multimode and shear breakup regime approximated the total times of breakup of 
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the nonturbulent liquid jets in the column, bag, multimode and shear breakup 

regime yielding tb/t* = 2.5 and xb/dj = 8.0. 

8. Trajectories of turbulent liquid jets in crossflow resemble that of the nonturbulent 

liquid jets in crossflow and are unaffected by the presence of the turbulence in the 

shear breakup regime. In the bag and multimode breakup regimes, however, the 

turbulent liquid jet penetrated higher in the crossflow due to the fact that 

nonturbulent liquid jets in crossflow deform more in comparison with turbulent 

liquid jets causing them to have larger frontal area and therefore they experience 

higher drag forces than that of the turbulent liquid jets in crossflow. 

 

4.3 Recommendations for Future Study 

The following recommendations are made concerning future study of turbulent 

round liquid jets in gaseous crossflow, based on the results of the present study: 

1. Present study was limited to liquids with moderate viscous effects (OhLd < 

0.1) and liquid/gas density ratios greater than 500. Test conditions with 

high values of Ohnesorge number and lower liquid/gas density ratios 

(<500) should be employed to find out the effects of liquid jet Ohnesorge 

number and aerodynamic effects on the breakup mechanism of turbulent 

liquid jets in crossflow. 

2. Present study employed a nozzle with length to diameter ratio of 40:1 that 

would result in a fully developed pipe flow at the jet exit. The effects of 

length to diameter ratio of the injection nozzle should be investigated. 
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3. Present study was performed in a uniform gaseous crossflow. Effects of 

different levels of turbulence in the crossflow on the breakup of turbulent 

liquid jets should be investigated. 
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APPENDIX A 

EXPERIMENTAL DATA 

Table A.1 (a)   Turbulent Breakup Regime Data: 

 
Liquid We∞ ReLd q WeLd WeLΛq1/3 WeLΛ 

Ethanol 70.43 27300 347 24402 20349 3050 
 161.52 40200 330 53243 43682 6655 
 70.43 40200 756 53243 57162 6655 
 16.76 40200 3180 53243 91103 6655 
 3.71 40200 14300 53243 148377 6655 
 1.2 20000 13149 13146 35652 1643 
 0.5 20000 26300 13146 44644 1643 
 13.5 19300 903 12198 13873 1525 
 6 20000 2190 13146 19930 1643 
 9.5 20000 1380 13146 17157 1643 

Glycerol 0.5 6040 15000 7490 21199 936 
 0.8 6040 9370 7490 18198 936 

Water 16.76 140000 6280 105207 224493 13151 
 3.71 140000 28400 105207 366298 13151 
 161.52 140000 651 105207 107602 13151 
 70.43 140000 1490 105207 140765 13151 
 161.52 90200 271 43708 33639 5463 
 70.43 90200 621 43708 44024 5463 
 16.76 90200 2610 43708 70145 5463 
 3.71 90200 11800 43708 114443 5463 
 70.43 99500 755 53195 57086 6649 
 16.76 99500 3170 53195 90928 6649 
 70.43 99500 755 53195 57086 6649 
 3.71 90000 11700 43526 113652 5441 
 16.76 90000 2600 43526 69766 5441 
 70.43 90000 618 43526 43771 5441 
 161.52 90000 269 43526 33419 5441 
 16.76 88500 2500 42038 66529 5255 
 3.71 145000 32000 112797 408230 14100 
 16.76 145000 7090 112797 250352 14100 
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Liquid We∞ ReLd q WeLd WeLΛq1/3 WeLΛ 

 70.43 145000 1690 112797 157216 14100 
 161.52 145000 735 112797 119999 14100 
 3.71 90300 12500 43776 116785 5472 
 16.76 90300 2760 43776 71540 5472 
 70.43 90300 656 43776 44884 5472 
 161.52 90300 286 43776 34286 5472 
 4.8 77296 6685 32095 69888 4012 
 20.8 77296 1543 32095 43430 4012 
 86 77296 373 32095 27402 4012 
 0.2 31800 27100 5419 18581 677 
 0.1 31800 54200 5419 23267 677 
 23 67400 10600 24402 61709 3050 
 45 67400 542 24402 23517 3050 

 

Table A.1 (b)     Aerodynamic Breakup Regime Data: 

 
Liquid We∞ ReLd q WeLd WeLΛq1/3 WeLΛ 

Ethanol 3.71 19300 3290 12198 21104 1525 
 16.76 19300 727 12198 12931 1525 
 70.43 19300 173 12198 8116 1525 
 161.52 19300 75.5 12198 6202 1525 
 0.5 10800 1270 3802 4830 475 

Glycerol 16.76 3420 144 2406 1508 301 
 161.52 3420 14.9 2383 715 298 
 70.43 3420 34.2 2383 937 298 
 3.71 3420 649 2383 2434 298 
 0.5 2210 2010 1004 1480 125 
 1 2210 1000 1004 1180 125 
 2.5 2210 401 1004 877 125 
 10 2210 100 1004 559 125 
 1.25 6040 5990 7490 15739 936 
 3.7 6040 2020 7490 11061 936 
 12.5 6040 599 7490 7456 936 
 37 6040 202 7490 5240 936 
 125 6040 59.9 7490 3532 936 

Water 16.76 27400 240 4029 2981 504 
 16.76 34700 386 6468 5583 808 
 11.35 40000 756 8580 9211 1072 
 2.7 40000 3180 8580 14681 1072 
 3.71 40000 756 8580 9211 1072 
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Liquid We∞ ReLd q WeLd WeLΛq1/3 WeLΛ 

 16.76 40000 512 8580 8117 1072 
 16.76 17400 98 1634 903 204 
 3.71 19200 532 1972 1889 246 
 16.76 19200 118 1972 1159 246 
 70.43 19200 28 1972 727 246 
 161.52 19200 12 1972 555 246 
 3.71 20200 623 2191 2208 274 
 16.76 20200 138 2191 1354 274 
 70.43 20200 33 2191 850 274 
 161.52 20200 14 2191 649 274 
 4.8 17445 341 1634 1355 204 
 20.8 17445 79 1634 842 204 
 86 17445 19 1634 531 204 
 20.8 35624 328 6814 5578 852 
 0.5 10900 1270 636 808 80 
 1.25 10900 509 636 601 80 
 6 10900 106 636 361 80 
 18 10900 35 636 253 80 
 0.21 10900 3030 636 1072 80 
 80 40000 107 8580 4884 1072 
 0.2 20000 10700 2140 5428 267 
 2 20000 1070 2140 2571 267 
 170 40000 51 8580 3828 1072 
 5 20000 428 2140 1910 267 
 0.5 31800 10800 5419 13786 677 
 0.9 31800 6020 5419 11405 677 
 2.2 31800 2460 5419 8531 677 
 100 67400 244 24402 18152 3050 
 180 67400 136 24402 15016 3050 

 

Table A.2     Time at the Onset of Breakup: 

 
Liquid ReLd We∞ q ti/t*

ν (µL/µg)/We∞

Ethanol 19300 3 3290 5.79E-04 1.79E+01 
  16 727 4.56E-04 3.97E+00 
  70 173 4.88E-04 9.44E-01 
  161 76 8.48E-05 4.12E-01 
 40200 3 14300 3.17E-05 1.79E+01 
  16 3180 4.80E-05 3.97E+00 
  70 756 2.33E-05 9.44E-01 
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Liquid ReLd We∞ q ti/t*
ν (µL/µg)/We∞

  161 330 3.49E-05 4.12E-01 
Water 19700 3 532 4.08E-04 1.30E+01 

  16 118 6.08E-04 2.88E+00 
  70 33 1.44E-04 6.86E-01 
  161 14 5.50E-05 2.99E-01 
 90000 3 11800 5.30E-06 1.30E+01 
  16 2610 6.48E-06 2.88E+00 
  70 621 1.40E-05 6.86E-01 
  161 271 6.48E-06 2.99E-01 
 145000 3 28400 5.86E-06 1.30E+01 
  16 6280 2.68E-06 2.88E+00 
  70 1490 4.31E-06 6.86E-01 
  161 651 3.64E-06 2.99E-01 

Glycerol 3420 16 144 6.58E-04 3.97E+00 
  70 34 3.78E-04 9.44E-01 
  161 15 5.18E-05 4.12E-01 

 
 

Table A.3     Time of Onset of Bag Formation: 

 
Liquid ReLd We∞ q tbi/t*

ν (µL/µg)/We∞

Glycerol 3400   16 144 1.17E-03 3.97E+00 
  70 34 4.05E-04 9.44E-01 

Water 19200 16 118 6.83E-04 2.88E+00 
  70 28 1.61E-04 6.86E-01 

Ethanol 19300 3 3290 1.26E-04 1.79E+01 
  70 173 4.49E-04 9.44E-01 
 40200 16 3180 1.03E-04 3.97E+00 
  70 756 3.85E-05 9.44E-01 

 

Table A.4     Streamwise Location of Onset of Breakup (Refer to Fig. 3.9): 

 
Liquid WeLΛ vj (m/s) u∞ (m/s) y-axis

Water 808 14.8 21.5 1.25E+02
 504 11.7 21.5 1.55E+02 
 242 8.2 44.1 1.88E+02 
 5441 38.3 10.1 8.94E+00 
 13624 60.6 10.1 6.92E+00 
 242 8.2 21.5 1.94E+02 
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Liquid WeLΛ vj (m/s) u∞ (m/s) y-axis

 242 8.2 10.1 8.11E+01
 5441 38.3 21.5 1.38E+01 
 5441 38.3 44.1 2.54E+01 
 13624 60.6 21.5 3.68E+00 
 13624 60.6 44.1 8.53E+00 
 242 8.2 66.8 2.13E+02 
 5441 38.3 66.8 2.27E+01 
 13624 60.6 66.8 1.15E+01 
 5406 38.3 0 7.88E+00 
 13624 59.5 0 6.22E+00 

Ethanol 1525 13.9 6.3 7.94E+01
 6655 29.0 27.3 1.33E+01 
 6655 29.0 13.3 1.50E+01 
 6655 29.0 6.3 1.06E+01 
 6655 29.0 0 4.88E+00 
 1525 13.9 13.3 9.21E+01 
 1525 13.9 27.3 1.65E+02 
 3050 19.7 27.3 8.10E+01 
 6655 29.0 41.3 3.17E+01 
 1525 13.9 41.3 8.47E+01 

Glycerol 301 8.2 42.9 2.85E+02
 301 8.2 20.9 1.51E+02 
 301 8.2 65 1.62E+02 

 
 

Table A.5     Drop Sizes Measured by SMD along the Streamwise Distance: 

 
Liquid We∞ ReLd WeLΛ SMD/Λ y/(Λ WeLΛ

0.5) 

Water 0 90000 5441 6.31E-01 1.65E+00 
    5.24E-01 1.48E+00 
    4.98E-01 1.20E+00 
    5.61E-01 9.75E-01 
    3.68E-01 7.46E-01 
 0 90200 5464 5.76E-01 1.42E+00 
    5.62E-01 1.20E+00 
    3.95E-01 7.34E-01 
    3.86E-01 5.03E-01 
 0 140000 13149 5.37E-01 4.88E-01 
    7.08E-01 6.29E-01 
    5.24E-01 7.69E-01 
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Liquid We∞ ReLd WeLΛ SMD/Λ y/(Λ WeLΛ
0.5) 

    7.11E-01 9.02E-01 
    6.66E-01 1.05E+00 

Ethanol 0 40200 6654 6.08E-01 1.56E+00 
    6.29E-01 1.35E+00 
    5.67E-01 1.13E+00 
    4.72E-01 9.12E-01 
    4.34E-01 6.98E-01 
    3.92E-01 5.16E-01 
    2.85E-01 3.02E-01 

Water 3 90000 5441 6.30E-01 1.65E+00 
    7.14E-01 1.48E+00 
    6.70E-01 1.20E+00 
    6.53E-01 9.75E-01 
    4.58E-01 7.46E-01 
 3 90200 5464 6.20E-01 1.66E+00 
    6.61E-01 1.42E+00 
    6.52E-01 1.20E+00 
    6.86E-01 9.65E-01 
    5.04E-01 7.34E-01 
    4.01E-01 5.03E-01 
    2.36E-01 2.72E-01 
 3 140000 13149 4.14E-01 2.07E-01 
    4.10E-01 3.44E-01 
    3.68E-01 4.88E-01 
    4.45E-01 6.29E-01 
    4.67E-01 7.69E-01 
    4.96E-01 9.02E-01 
    5.54E-01 1.05E+00 

Ethanol 3 19300 1524 1.05E+00 3.17E+00 
    1.13E+00 2.75E+00 
    9.26E-01 9.48E-01 
    9.23E-01 3.26E+00 
 3 40200 6654 5.23E-01 1.56E+00 
    5.39E-01 1.35E+00 
    5.00E-01 1.13E+00 
    4.47E-01 9.12E-01 
    3.92E-01 6.98E-01 
    3.21E-01 5.16E-01 
    3.46E-01 3.02E-01 
    2.99E-01 1.49E-01 

Water 16 17400 204 1.13E+00 1.19E+01 
    8.89E-01 1.03E+01 
    4.65E-01 8.69E+00 
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Liquid We∞ ReLd WeLΛ SMD/Λ y/(Λ WeLΛ
0.5) 

    6.04E-01 7.04E+00 
    6.65E-01 5.44E+00 
 16 27400 503 6.65E-01 5.75E+00 
    6.30E-01 4.99E+00 
 16 34700 808 5.98E-01 4.57E+00 
 16 88500 5256 7.76E-01 2.34E+00 
    7.69E-01 2.03E+00 
    7.12E-01 1.71E+00 
    6.62E-01 1.39E+00 
    5.01E-01 1.07E+00 
    3.94E-01 4.45E-01 
 16 90000 5441 5.76E-01 1.65E+00 
    5.59E-01 1.48E+00 
    6.16E-01 1.20E+00 
    6.26E-01 9.75E-01 
    4.14E-01 7.46E-01 
 16 90200 5464 5.27E-01 1.66E+00 
    5.35E-01 1.42E+00 
    5.94E-01 1.20E+00 
    4.35E-01 9.65E-01 
    3.97E-01 7.34E-01 
    2.99E-01 5.03E-01 
    2.39E-01 2.72E-01 
 16 99500 6649 5.21E-01 1.62E+00 
    4.53E-01 1.41E+00 
    5.64E-01 1.21E+00 
    5.65E-01 1.01E+00 
    4.91E-01 7.91E-01 
    3.44E-01 5.86E-01 
    3.34E-01 3.72E-01 
    5.30E-01 1.49E+00 
    4.89E-01 1.30E+00 
    4.66E-01 1.10E+00 
    4.62E-01 9.07E-01 
    2.88E-01 6.93E-01 
    3.25E-01 4.93E-01 
    2.03E-01 2.98E-01 
 16 140000 13149 3.79E-01 2.07E-01 
    3.64E-01 3.44E-01 
    3.57E-01 4.88E-01 
    3.84E-01 6.29E-01 
    4.28E-01 7.69E-01 
    4.35E-01 9.02E-01 
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Liquid We∞ ReLd WeLΛ SMD/Λ y/(Λ WeLΛ
0.5) 

    4.83E-01 1.05E+00 
    4.68E-01 1.13E+00 
    4.29E-01 9.93E-01 
    4.62E-01 8.40E-01 
    4.01E-01 6.95E-01 
    3.95E-01 5.49E-01 
    3.32E-01 4.00E-01 
    3.45E-01 2.51E-01 
    2.83E-01 1.24E-01 

Ethanol 16 19300 1524 7.74E-01 3.15E+00 
 16 40200 6654 5.84E-01 1.49E+00 
    4.96E-01 1.30E+00 
    5.29E-01 1.10E+00 
    4.92E-01 9.07E-01 
    4.82E-01 6.93E-01 
    4.52E-01 4.93E-01 
    3.13E-01 2.98E-01 
    5.55E-01 1.56E+00 
    5.42E-01 1.35E+00 
    5.21E-01 1.13E+00 
    4.43E-01 9.12E-01 
    4.21E-01 6.98E-01 
    2.88E-01 5.16E-01 
    2.64E-01 3.02E-01 

Glycerol 16 3420 301 4.94E-01 9.79E+00 
    4.18E-01 8.48E+00 

Water 70 90000 5441 5.50E-01 1.65E+00 
    4.29E-01 1.48E+00 
    4.70E-01 1.20E+00 
    4.31E-01 9.75E-01 
    3.62E-01 7.46E-01 
    3.25E-01 5.20E-01 
 70 90200 5464 3.80E-01 1.66E+00 
    3.86E-01 1.42E+00 
    3.88E-01 1.20E+00 
    3.38E-01 9.65E-01 
    3.72E-01 7.34E-01 
    3.19E-01 5.03E-01 
    2.38E-01 2.72E-01 
 70 99500 6649 5.28E-01 1.62E+00 
    5.09E-01 1.41E+00 
    3.43E-01 1.21E+00 
    3.52E-01 1.01E+00 
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Liquid We∞ ReLd WeLΛ SMD/Λ y/(Λ WeLΛ
0.5) 

    3.74E-01 7.91E-01 
    4.90E-01 5.86E-01 
    3.86E-01 3.72E-01 
    4.67E-01 2.28E-01 
 70 140000 13149 4.33E-01 1.13E+00 
    3.86E-01 9.93E-01 
    3.58E-01 8.40E-01 
    3.18E-01 6.95E-01 
    2.98E-01 5.49E-01 
    2.86E-01 4.00E-01 
    2.88E-01 2.51E-01 
    2.70E-01 1.24E-01 

Ethanol 70 19300 1524 5.46E-01 3.15E+00 
    4.56E-01 2.70E+00 
    4.77E-01 2.27E+00 
 70 27300 3051 6.55E-01 2.35E+00 
    5.67E-01 2.03E+00 
    4.26E-01 1.63E+00 
    6.11E-01 1.31E+00 
    4.13E-01 9.62E-01 
    2.74E-01 2.92E-01 
    3.40E-01 7.73E-01 
    3.39E-01 1.08E+00 
    3.63E-01 1.41E+00 
    4.98E-01 1.72E+00 
    5.44E-01 2.04E+00 
    4.64E-01 2.37E+00 
    4.33E-01 1.12E+00 
    5.00E-01 1.46E+00 
    4.47E-01 1.79E+00 
 70 40200 6654 4.30E-01 1.56E+00 
    4.09E-01 1.35E+00 
    3.54E-01 1.13E+00 
    3.03E-01 9.12E-01 
    3.47E-01 6.98E-01 
    2.69E-01 5.16E-01 
    2.57E-01 3.02E-01 
    2.40E-01 1.49E-01 

Water 161 90200 5464 4.75E-01 1.66E+00 
    3.21E-01 9.65E-01 
    2.77E-01 7.34E-01 
    2.91E-01 5.03E-01 
    3.16E-01 2.72E-01 
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Liquid We∞ ReLd WeLΛ SMD/Λ y/(Λ WeLΛ
0.5) 

    1.67E-01 1.08E-01 
 161 140000 13149 3.41E-01 8.40E-01 
    3.22E-01 6.95E-01 
    2.78E-01 5.49E-01 
    2.93E-01 4.00E-01 
    2.98E-01 2.51E-01 
    2.60E-01 1.24E-01 

Ethanol 161 19300 1524 5.21E-01 3.15E+00 
    5.48E-01 2.70E+00 
    4.84E-01 2.27E+00 
    3.96E-01 1.83E+00 
    3.64E-01 1.39E+00 
    3.62E-01 9.52E-01 
    3.94E-01 5.15E-01 
    3.00E-01 2.04E-01 
 161 40200 6654 4.92E-01 1.56E+00 
    4.44E-01 1.35E+00 
    3.40E-01 1.13E+00 
    3.13E-01 9.12E-01 
    3.10E-01 6.98E-01 
    2.58E-01 5.16E-01 
    2.39E-01 3.02E-01 
    2.42E-01 1.49E-01 

 

Table A.6     Drop Sizes at the Onset Measured by SMD: 

 
Liquid WeLΛ vj (m/s) u∞ (m/s) SMDi/Λ

Water 504 11.7 21.5 4.40E-01 
 808 14.8 21.5 2.70E-01 
 13151 59.5 21.5 3.08E-01 
 1072 17.0 21.5 4.20E-01 
 6649 42.3 44.1 3.44E-01 
 6649 42.3 21.5 3.39E-01 
 204 7.4 21.5 4.84E-01 
 5255 37.6 21.5 2.77E-01 
 246 8.2 21.5 3.56E-01 
 14100 61.6 10.1 3.97E-01 
 13151 59.5 10.1 4.07E-01 
 5460 38.4 44.1 3.59E-01 
 5460 38.4 10.1 4.94E-01 
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Liquid WeLΛ vj (m/s) u∞ (m/s) SMDi/Λ

 246 8.2 44.1 1.97E-01 
 14100 61.6 21.5 2.97E-01 
 5460 38.4 21.5 3.14E-01 
 14100 61.6 44.1 4.34E-01 
 13151 59.5 44.1 2.87E-01 
 5460 38.4 10.1 2.34E-01 
 5460 38.4 66.8 3.29E-01 
 13151 59.5 66.8 2.55E-01 
 246 8.2 66.8 2.31E-01 
 14100 61.6 66.8 4.81E-01 
 13151 59.5 0 4.01E-01 
 5452 38.4 0 3.68E-01 

Ethanol 3050 19.7 27.3 2.72E-01 
 1525 13.9 6.3 9.92E-01 
 1525 13.9 13.3 3.26E-01 
 1525 13.9 27.3 2.79E-01 
 6655 29.0 27.3 2.96E-01 
 6655 29.0 13.3 2.87E-01 
 6655 29.0 6.3 3.00E-01 
 6655 29.0 41.3 3.57E-01 
 1525 13.9 41.3 4.28E-01 
 6655 29.0 0 3.15E-01 

Glycerol 301 8.2 42.9 1.40E-01 
 301 8.2 65 4.67E-01 

 

Table A.7     Drop and Ligament Diameters at Onset on Downwind Side: 

 
Liquid ReLd vj (m/s) u∞ (m/s) dpi/dli dli/dj (µL/µ∞)/We∞ 

Water 19200 8.2 21.5 6.36E-01 1.20E-01 2.88E+00 
 19200 8.2 44.1 9.68E-01 6.06E-02 6.86E-01 
 19200 8.2 66.7 1.10E+00 4.80E-02 2.99E-01 
 27400 11.7 21.5 5.72E-01 1.40E-01 2.88E+00 
 34700 14.8 21.5 2.29E-01 1.87E-01 2.88E+00 
 90200 38.4 66.7 1.23E+00 5.71E-02 2.99E-01 
 90200 38.4 44.1 6.76E-01 8.43E-02 6.86E-01 
 90200 38.4 21.5 6.76E-01 8.05E-02 2.88E+00 
 90200   9.12E-01 7.33E-02 1.30E+01 
 99500   6.89E-01 6.67E-02 6.86E-01 
 99500   1.00E+00 4.17E-02 2.88E+00 
 140000   7.36E-01 1.02E-01 2.88E+00 
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Liquid ReLd vj (m/s) u∞ (m/s) dpi/dli dli/dj (µL/µ∞)/We∞ 

 140000   1.18E+00 5.67E-02 1.30E+01 
 140000 59.5 66.7 4.26E-01 1.16E-01 2.99E-01 
 140000 59.5 44.1 4.96E-01 1.58E-01 6.86E-01 

Ethanol 19300 13.9 6.3 1.11E+00 1.12E-01 1.79E+01 
 19300 13.9 13.3 4.89E-01 1.41E-01 3.97E+00 
 19300 13.9 27.3 5.15E-01 9.67E-02 9.44E-01 
 19300 13.9 41.3 7.55E-01 8.52E-02 4.12E-01 
 27300 19.7 27.3 7.98E-01 6.71E-02 9.44E-01 
 40200 29.0 41.3 1.09E+00 4.70E-02 4.12E-01 
 40200 29.0 27.3 1.01E+00 5.05E-02 9.44E-01 
 40200 29.0 13.3 9.55E-01 5.19E-02 3.97E+00 
 40200 29.0 6.3 9.45E-01 5.22E-02 1.79E+01 

Glycerol 3420 8.2 20.9 1.05E+00 7.06E-02 1.85E+01 
 3420 8.2 65.0 1.00E+00 1.26E-01 1.92E+00 
 3420 8.2 42.9 6.52E-01 9.13E-02 4.41E+00 

 

Table A.8     Drop and Ligament Diameters at Onset on Upwind Side: 

 
Liquid ReLd vj (m/s) u∞ (m/s) dpi/dli dli/dj (µL/µ∞)/We∞ 

Water 19200 8.2 44.1 1.80E+00 3.45E-02 6.86E-01 
 19200 8.2 66.7 9.29E-01 5.66E-02 2.99E-01 
 90200 38.4 66.7 8.51E-01 7.92E-02 2.99E-01 
 90200 38.4 44.1 1.16E+00 7.06E-02 6.86E-01 
 90200 38.4 21.5 1.05E+00 7.15E-02 2.88E+00 
 90200 38.4 10.1 7.42E-01 8.62E-02 1.30E+01 
 99500 42.3 44.1 1.40E+00 5.45E-02 6.86E-01 
 99500 42.3 21.5 1.01E+00 6.48E-02 2.88E+00 
 140000 59.5 21.5 9.08E-01 9.07E-02 2.88E+00 
 140000 59.5 10.1 1.17E+00 6.49E-02 1.30E+01 
 140000 59.5 66.7 5.75E-01 9.06E-02 2.99E-01 
 140000 59.5 44.1 5.93E-01 1.09E-01 6.86E-01 

Ethanol 19300 13.9 6.3 7.89E-01 1.38E-01 1.79E+01 
 19300 13.9 41.3 3.91E-01 1.29E-01 4.12E-01 
 27300 19.7 27.3 1.03E+00 4.73E-02 9.44E-01 
 40200 29.0 41.3 1.04E+00 4.61E-02 4.12E-01 
 40200 29.0 27.3 9.80E-01 5.08E-02 9.44E-01 
 40200 29.0 13.3 1.48E+00 4.21E-02 3.97E+00 
 40200 29.0 6.3 1.22E+00 5.27E-02 1.79E+01 

Glycerol 3400 8.2 65.0 6.77E-01 4.96E-02 1.92E+00 
 3400 8.2 42.9 1.11E+00 4.83E-02 4.41E+00 
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Table A.9     Time of Breakup of Liquid Core and Location of End of Liquid Core: 

 
Liquid We∞ ReLd q xb/dj tb/t*

Water 3 19200 532 9.19E+00 3.78E+00 
 10 19200 197 9.93E+00 3.33E+00 
 16 19200 118 1.03E+01 3.42E+00 
 50 24900 67 7.00E+00 2.40E+00 
 89 33300 67 9.45E+00 2.95E+00 
 130 40000 66 9.78E+00 2.87E+00 
 170 45700 66 9.84E+00 2.90E+00 

Glycerol 3 3420 649 8.86E+00 3.49E+00 
 16 3420 144 1.10E+01 3.12E+00 

 

 

Table A.10     Liquid Column Trajectories: 

 
Liquid We∞ ReLd q x/(dj q) y/(dj q) 

Water 161 19200 12 7.41E-03 9.51E-02 
    1.96E-02 1.90E-01 
    3.41E-02 2.85E-01 
    5.01E-02 3.80E-01 
    7.65E-02 4.75E-01 
    1.17E-01 5.70E-01 
    1.70E-01 6.65E-01 
    2.31E-01 7.60E-01 
    3.23E-01 8.56E-01 
    5.02E-01 9.51E-01 
 161 90200 272 2.12E-03 8.02E-02 
    3.86E-03 9.09E-02 
    5.79E-03 1.02E-01 
    8.55E-03 1.12E-01 
    9.99E-03 1.23E-01 
    1.10E-02 1.34E-01 
    1.44E-02 1.44E-01 
    1.73E-02 1.55E-01 
    1.37E-02 1.66E-01 
    1.02E-02 1.77E-01 
 161 140000 653 3.27E-04 3.07E-02 
    3.47E-04 3.63E-02 
    6.72E-04 4.18E-02 
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Liquid We∞ ReLd q x/(dj q) y/(dj q) 

    1.06E-03 4.74E-02 
    1.63E-03 5.30E-02 
    1.91E-03 5.86E-02 
    2.62E-03 6.42E-02 
    3.10E-03 6.97E-02 
    4.43E-03 7.53E-02 
    5.49E-0 8.09E-02 

Ethanol 161 40200 330 4.75E-04 3.85E-02 
    1.18E-03 4.95E-02 
    1.84E-03 6.05E-02 
    2.76E-03 7.15E-02 
    3.77E-03 8.25E-02 
    5.44E-03 9.36E-02 
    6.89E-03 1.05E-01 
    6.89E-03 1.16E-01 
    1.14E-02 1.27E-01 
    1.41E-02 1.38E-01 

Glycerol 161 3420 15 5.42E-03 5.42E-02 
    1.25E-02 1.08E-01 
    2.06E-02 1.63E-01 
    2.98E-02 2.17E-01 
    4.34E-02 2.71E-01 
    5.97E-02 3.25E-01 
    7.76E-02 3.80E-01 
    9.98E-02 4.34E-01 
    1.32E-01 4.88E-01 
    1.78E-01 5.42E-01 

Water 70 19200 28 3.81E-03 6.21E-02 
    8.24E-03 1.24E-01 
    1.66E-02 1.86E-01 
    2.79E-02 2.49E-01 
    4.43E-02 3.11E-01 
    5.81E-02 3.73E-01 
    8.49E-02 4.35E-01 
    1.23E-01 4.97E-01 
    1.61E-01 5.59E-01 
    1.56E-01 4.97E-01 
 70 90200 621 4.82E-04 3.50E-02 
    7.78E-04 3.97E-02 
    8.78E-04 4.44E-02 
    1.40E-03 4.90E-02 
    1.91E-03 5.37E-02 
    2.19E-03 5.84E-02 
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Liquid We∞ ReLd q x/(dj q) y/(dj q) 

    2.90E-03 6.30E-02 
    3.55E-03 6.77E-02 
    4.45E-03 7.24E-02 
    5.33E-03 7.70E-02 
 70 140000 1490 2.02E-04 2.56E-02 
    4.54E-04 2.93E-02 
    5.60E-04 3.29E-02 
    7.92E-04 3.66E-02 
    9.66E-04 4.02E-02 
    1.45E-03 4.39E-02 
    1.55E-03 4.75E-02 
    2.14E-03 5.12E-02 
    2.54E-03 5.48E-02 
    3.25E-03 5.85E-02 

Ethanol 70 40200 756 4.62E-04 2.64E-02 
    9.46E-04 3.51E-02 
    1.38E-03 4.37E-02 
    2.03E-03 5.24E-02 
    2.78E-03 6.10E-02 
    3.95E-03 6.97E-02 
    4.15E-03 7.83E-02 
    5.59E-03 8.70E-02 
    7.28E-03 9.56E-02 
    9.27E-03 1.04E-01 

Glycerol 70 3420 34 5.67E-03 5.32E-02 
    1.09E-02 1.06E-01 
    1.91E-02 1.59E-01 
    3.02E-02 2.13E-01 
    4.61E-02 2.66E-01 
    6.95E-02 3.19E-01 
    9.36E-02 3.72E-01 
    1.29E-01 4.25E-01 
    1.73E-01 4.78E-01 
    2.32E-01 5.32E-01 

Water 16 19200 118 2.62E-03 3.93E-02 
    4.61E-03 7.86E-02 
    8.07E-03 1.18E-01 
    1.39E-02 1.57E-01 
    2.26E-02 1.97E-01 
    3.58E-02 2.36E-01 
    4.74E-02 2.75E-01 
    6.73E-02 3.15E-01 
    7.59E-02 3.32E-01 
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Liquid We∞ ReLd q x/(dj q) y/(dj q) 

    2.61E-02 7.86E-02 
 16 90200  1.01E-04 2.05E-02 
    1.23E-04 2.26E-02 
    1.68E-04 2.47E-02 
    2.18E-04 2.68E-02 
    4.44E-04 2.89E-02 
    4.09E-04 3.10E-02 
    6.24E-04 3.32E-02 
    8.21E-04 3.53E-02 
    1.00E-03 3.74E-02 
    1.52E-03 3.95E-02 
 16 140000 6280 5.33E-05 1.24E-02 
    9.85E-05 1.33E-02 
    8.51E-05 1.42E-02 
    2.32E-04 1.50E-02 
    1.46E-04 1.59E-02 
    1.78E-04 1.68E-02 
    3.25E-04 1.76E-02 
    3.64E-04 1.85E-02 
    3.78E-04 1.94E-02 
    6.00E-04 2.02E-02 

Ethanol 16 40200 3180 2.05E-04 1.60E-02 
    2.95E-04 1.83E-02 
    3.23E-04 2.06E-02 
    3.30E-04 2.28E-02 
    6.10E-04 2.51E-02 
    8.46E-04 2.74E-02 
    7.57E-04 2.97E-02 
    8.94E-04 3.20E-02 
    1.13E-03 3.43E-02 
    1.44E-03 3.65E-02 

Glycerol 16 3420 144 1.29E-03 2.53E-02 
    2.97E-03 5.05E-02 
    5.16E-03 7.58E-02 
    8.47E-03 1.01E-01 
    1.23E-02 1.26E-01 
    1.74E-02 1.52E-01 
    2.51E-02 1.77E-01 
    3.42E-02 2.02E-01 
    5.08E-02 2.27E-01 
    6.53E-02 2.53E-01 
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APPENDIX B 

UNCERTAINTY ANALYSIS 

B.1 General Formulation 

In the present study, estimates of overall uncertainties based on t distribution were 

obtained following the analysis of Crow et al. (1960). In this analysis, the variable X, 

which is the measured quantity, is considered for the uncertainty analysis. This method 

assumed that the sample is a random one with the measurements following a normal 

distribution. The mean value X  obtained from the measurements is given as follows: 

 

n

x
X

n

1i
i∑

==         (B.1)  

 

where, xi’s are the variables in the measurements and n is the number of samples of data. 

Then, the uncertainty of the result is then given by the following expression: 

 

 
n
stu 1nα/2, −±=  (B.2) 

 

where, (1 – α) = the confidence level 

 s  = the standard deviation 

 n = the number of samples of data 

 t denotes the t-distribution (Refer to Crow et al., 1960) 

97 



The standard deviation of n samples of data (refer to Crow et al., 1960) is given as 

follows: 

 

1n

)X(x
s

n

1i

2
i

−

−
=
∑
=  (B.3)  

 
For present measurements, all the uncertainties reported are taken to be those for the 95% 

confidence level, i.e. 

 
           (1 – α) = 0.95        (B.4) 

 

B.2 Uncertainties of the Measured Quantities 

For the present study, all measurements obtained using the imaging system were 

made initially in pixel dimensions and then converted to a length scale. Therefore, the 

uncertainty of the calibration measurement affects the uncertainty of all other 

measurements. The lowest magnification used during the present study was 1.9x and that 

yielded a maximum uncertainty value of 3.3% when converting the pixel dimensions to 

length scale. The following section details the uncertainties in various measurements for 

the present study. 

 

B.2.1 Uncertainties for Location of Onset of Breakup 

The location of onset of breakup was measured by measuring the distance from 

the jet exit to the location of appearance of first ligament. Measurements from different 

images were averaged using Eqn. (B.1) and the uncertainty was determined using Eqns. 

(B.2) and (B.3). The minimum and maximum uncertainty values for the location of onset 

98 



of breakup were found to be 6% and 74% at 95% confidence level. The average 

uncertainty was found to be 54%. 

Time of onset of breakup was found by using the assumption that ligaments 

convect along the liquid jet surface with the liquid jet velocity, vj. The minimum and 

maximum uncertainty values for the location of onset of breakup were found to be 30% 

and 84% at 95% confidence level. The average uncertainty was found to be 56%. 

 

B.2.2 Uncertainties for Ligament and Drop sizes 

Ligament diameters for downwind and upwind side at onset were measured at 

four different locations along the ligament length and then averaged them to find the 

average ligament diameter. The mean of the averaged ligament diameter were determined 

using Eqn. (B.1) and the uncertainty was determined using Eqns. (B.2) and (B.3). The 

minimum and maximum uncertainty values for the ligament diameter at the onset on 

downwind side were found to be 12% and 86% at 95% confidence level. The average 

uncertainty was found to be 32%. For the upwind side, the minimum and maximum 

uncertainty values for the ligament diameter at the onset were found to be 6% and 44% at 

95% confidence level and the average uncertainty was found to be 20%. 

Drop diameters for downwind and upwind side at onset were determined based on 

the assumption drops are perfectly spherical and that the surface area of the actual 

ellipsoidal drop is equal to the surface area of the spherical drop. Then, the major and 

minor diameters of the 2-D ellipse were measured and then the average drop diameter 

was found using: 

 
     dp = minmax d x d         (B.5) 
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where, dmax = the maximum diameter measured for a drop 

dmin = the minimum diameter measured for the drop 

 
The mean value of the measured drop diameter was determined using Eqn. (B.1) and the 

uncertainty was determined using Eqns. (B.2) and (B.3). The minimum and maximum 

uncertainty values for the drop diameter at the onset on downwind side were found to be 

11% and 75% at 95% confidence level. The average uncertainty was found to be 30%. 

For the upwind side, the minimum and maximum uncertainty values for the drop 

diameter at the onset were found to be 18% and 62% at 95% confidence level and the 

average uncertainty was found to be 32%. 

Sauter mean diameter (SMD) was defined by the following equation: 

 

                   (B.6) ∑∑
==

≡
n

1i

2
pi

n

1i

3
pi d/dSMD

 

Measurements for drop diameters for finding out the SMD was performed in the same 

manner as previously discussed for drop size measurements at onset. The minimum and 

maximum uncertainty values for the SMD measurements at the onset were found to be 

1% and 81% at 95% confidence level and the average uncertainty was found to be 40%. 

 

B.2.3 Uncertainties for Liquid Core Breakup Length 

Measurements for the location of the liquid core breakup involved locating the 

point where the complete fracture of the liquid core occurred. The streamwise location of 

the end of liquid core was measured from the jet exit was converted into breakup time 

based on the assumption that the surface of the jet convets with the jet velocity. 
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Crosswise location was measured as a length scale from the jet exit. The mean value of 

the measured breakup times and locations were determined using Eqn. (B.1) and the 

uncertainty was determined using Eqns. (B.2) and (B.3). The minimum and maximum 

uncertainty values for the time of breakup of liquid core in streamwise direction were 

found to be 0.3% and 24% at 95% confidence level. The average uncertainty was found 

to be 9%. Measurements of crosswise distances from the jet exit yielded minimum and 

maximum uncertainty values to be 5% and 32% and the average uncertainty value of 

20%. 

 

B.2.4 Uncertainties for Liquid Column Trajectories 

Measurements for liquid column trajectories were performed by measuring the x- 

and the y-location along the liquid jet for ten different locations along the liquid jet. The 

measured values fore the same test conditions were averaged and the mean value and the 

uncertainties were found using Eqns. (B.1), (B.2) and (B.3) respectively. The minimum 

and maximum uncertainty values for the liquid column trajectories were found to be 3% 

and 88% at 95% confidence level and the average uncertainty was found to be 26%. 
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