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           SUMMARY 
 

Carbon dimers are found to be an important growth species in the growth 

of nanocrystalline diamond (NCD) through CVD process. Events, such as 

chemisorption, reflection, and desorption occur during the deposition of carbon 

dimers on to the substrate on which the diamond films are to be grown. The 

probabilities of each of these events have a significant effect on diamond growth. 

Molecular Dynamics (MD) simulations are widely used to predict the probabilities 

of such events. Though, MD simulations give agreeable results with experimental 

values, the calculation of the effect of different input parameters on various 

events involve time consuming numerical methods and hence the process is 

cumbersome. In this study, initially MD simulations of carbon dimer deposition on 

diamond (100) surface were performed using a many body empirical potential 

and the probabilities of the aforesaid events were calculated by varying the input 

conditions. This information was used to implement Neural Networks (NN) to 

predict the probabilities of the events. The neural network was also used to 

predict the underlying relationship between various input parameters and event 

probabilities. The computational time for the prediction of the events using 

molecular dynamics is generally several days while implementation of neural 

networks reduces it to mere minutes. The functional relationship between various 

input parameters and event probabilities predicted by NN is found to agree well 

with the MD simulation results. 
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CHAPTER 1 
 

INTRODUCTION 
 
 
1.1. Chemical Vapor Deposition 
  
 Diamond is the hardest material known. Its unique mechanical, chemical, 

and electrical properties make it not only one of the most scientifically and 

technologically valuable material but also one of the most fascinating material 

known to researchers. It was in the mid-1950s that diamond was first 

successfully synthesized on a commercial scale using high pressure, high 

temperature (HP-HT) techniques [1]. Efforts were made about the same time to 

grow diamond directly from gases, but since the growth rates were extremely 

low, the vapor-phase deposition of diamond was not assigned much importance. 

In the early 1980’s, when it was shown that growth rates in the range of a few 

µm/hour can be obtained using vapor phase deposition [2-5], this technique 

became an area of general attraction and exploration among researchers. 

Chemical Vapor Deposition (CVD) is a vapor phase deposition technique 

in which the gaseous reactants undergo chemical reaction in an activated 

environment, such as plasma, leading to the formation of stable solid product, 

such as diamond powders or thin diamond films on the surface of the heated 
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substrate. In a CVD diamond film growth, some of the widely used gaseous 

species include CH3, C2H2, C2H4, and C2. The CVD process has a wide range of  

advantages over other thin-film deposition processes. A few such advantages 

are the ability to produce highly dense and uniform films with good reproducibility 

and adhesion, reasonable deposition rates and processing cost, ability to control 

surface morphology and orientation of the films obtained by controlling the CVD 

parameters, ability to adjust the deposition rates easily and flexibility of using a 

wide range of chemical precursors, such as halides, hydrides which enable the 

deposition of wide variety of films apart from the diamond films [6]. The diamond 

produced by the CVD process is comparable in purity and properties to HP-HT or 

natural diamond that makes it a potential candidate for numerous applications. 

The CVD produced diamond films are used as coatings on cutting tool inserts to 

enhance the tool life, protective windows or optical coatings with high 

transmittance in the visible and infrared region, as shadow mask supports in x-

ray lithography of electronic components [7], etc. The process of diamond film 

growth by CVD process involves a number of complex reaction mechanisms 

taking place between the surface atoms of the substrate and the gaseous 

species. There are a few elementary reactions, such as chemisorption, insertion, 

scattering, and desorption that serve as the building blocks for the complex 

reactions leading to thin-diamond film growth. Hence, the investigations of these 

preliminary reaction events, their probabilities, various parameters 
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affecting the probabilities of their occurrence have gained significant importance 

[8-11]. Molecular dynamics simulations is one of the most powerful and widely 

used tools for investigating such reaction mechanisms and reaction events 

occurring during diamond film growth in a CVD process. 

1.2. Molecular Dynamics Simulations 

Molecular dynamics (MD) simulation, as the term indicates, deals with 

simulating the behavior of a system at the atomistic level under given processing 

conditions. In MD simulations, the system is represented as an ensemble of 

atoms. In such simulations, we make use of a potential energy function which 

gives the potential energy experienced by each atom due to its position relative 

to that of its neighbors. From this potential energy, we can determine the force 

experienced by each atom as time progresses. Molecular dynamics simulation is 

a deterministic approach, where, once the current positions of the atoms as well 

as the forces acting on the atoms due to their neighbors are known then the 

positions of the atoms after a very small time increment, (usually in the orders of 

femtosecond) can be easily evolved by integrating the Newtonian equations of 

motion using suitable time integration algorithms. In spite of its high 

computational cost, today MD simulations serve as a powerful tool in the study of 

nanometric cutting [70-71], different types of fracture mechanism [72], film-growth 

mechanisms [73-74], friction and surface property studies [75], and biomaterial 

engineering [76].  

Carbon dimers are found to be an important reaction species in the growth 

of nanocrystalline diamond films using CVD process [27-30]. Therefore the 
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investigation of various reaction channels and mechanism that occur when 

carbon dimer is used as growth species is always of immense interest among 

researchers [8]. In this study, MD simulations have been used to study the 

probabilities of various elementary gas phase reactions, such as chemisorption, 

desorption, insertion and scattering occurring during diamond-film growth in a 

CVD process when carbon dimmers (C2) are used as the growth species. The 

results from the MD simulations are used to train a neural network (NN) and then 

that neural network is used to predict the probabilities of various events. 

1.3. Neural Networks 

A neural network (NN) is an artificial network of neurons that mimics or 

emulates the real network of neurons present in the human brain. Though the 

neural networks are not as sophisticated as the networks present in the human 

brain, they have the capability to predict many complex underlying functions 

between variables of any particular process or event.  

 A neural network basically consists of a number of artificial neurons or 

nodes, typically arranged in layers, interconnected through a set of links. Each 

link multiplies its input by a suitable parameter called the weight before supplying 

it to the next neuron. Each neuron sums over its input and passes the output, 

which is a weighted sum of the input and the bias, to a suitable transfer function. 

The output from this transfer function is the final output. This output can be made 

the inputs to the next layer of neurons. The network used in this study is a 

multilayered feed-forward network, which has two layers, of which the first layer 
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is called a hidden layer because its input and output are not available to the 

outside world. The hidden layer is associated with a tan sigmoid transfer function 

that gives the network the ability to learn the linear and nonlinear relations that 

exist between the input and outputs. It also makes them an ideal choice for 

generalization and event probability predictions. 

We have two stages in the implementation of a neural network. The first 

stage is the learning stage and the second stage is the testing or the production 

stage. During the learning stage, the neural network is provided with a set of 

input data as well as the corresponding output data and the network is made to 

learn by examples. The difference between the neural network output and the 

actual target output is used to determine the error which is used in strengthening 

the network so that its subsequent predictions are better. Once the error from 

neural network prediction has been sufficiently reduced, the network is assumed 

to have completed its learning phase. The network is then subjected to the next 

stage, namely, the testing stage. In this, the neural network is provided with a set 

of input data. Corresponding output data are not given to the network. The 

network is allowed to make its choice or prediction based on its previous 

experience in encountering such data during the training. If the network is able to 

predict the corresponding output data correctly, then it indicates that the network 

has been properly trained and has attained the ability.  

In this study we have used neural networks to predict the probabilities of 

various events occurring in a CVD process when a carbon dimer (C2) is used as 

the species for diamond film growth. The input parameters, namely, incidence 
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angle (θ), rotation angle (Φ), impact parameter (b), translational energy (ETrans), 

and rotational energy (ERot) form the input to the neural network. The probabilities 

of events, such as chemisorption, scattering, and desorption form the output of 

the neural network. The network is first trained by supplying the input parameters 

and the corresponding event probabilities. After the neural network has been 

trained well, the network is made to predict the event probabilities for a given set 

of input parameters. 

The conventional approach adopted so far by chemists is to use MD 

simulations for predicting the event probabilitities for a given set of input 

conditions [32-33]. But, the drawback of MD simulations is that it involves 

computationally intensive and time consuming numerical integration algorithms. 

So, the exploration of the entire range of input parameters becomes a very 

difficult task, and also the time taken increases with the number of atoms 

comprising the system. It will be shown in this investigation that using neural 

networks the computational time for determining the effect of various input 

parameters on event probabilities can been reduced from hours to mere minutes. 

Also, this procedure is independent of the number of atoms comprising the 

system, thereby giving us an opportunity to explore a wide range of input data 

values. 

 In this investigation, we initially ran MD trajectories for different sets of 

input conditions and determined the event probabilities which were then used for 

training the neural network. Chapter 2 will cover the empirical potentials used, 

the time integration algorithms, and the advantages and limitations of MD 
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simulations. Chapter 3 deals with the basic components of neural networks, their 

classifications, and stages in the implementation of neural network, different 

training algorithms used. Chapter 4 reviews the literature on various kinds of 

species employed in a CVD diamond film growth, MD simulations performed on 

various surfaces, such as diamond and silicon surfaces, time involved in such 

studies, and how neural networks have been effectively used in a CVD thin film 

growth processes. Chapter 5 discusses the drawbacks of using MD simulation 

for event probability predictions and the solution to overcome the present 

situation. Chapter 6 deals with the distributions for the five input parameters, and 

the event probabilities considered in this investigation. Chapter 7 presents the 

architecture of the network employed in this investigation and the implementation 

of the neural network. Chapter 8 deals with the neural network predictions of 

various event probabilities for different sets of input conditions and the 

comparison of neural network prediction with MD simulation results. Also this 

chapter discusses the statistical error involved in MD simulations as against the 

error in neural network predictions. Chapter 9 presents the conclusions based on 

the results of this investigation and proposes future investigations that can be 

carried over using the current neural network technique that has been 

implemented in this investigation.  
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CHAPTER 2 
 
ESSENTIALS OF MOLECULAR DYNAMICS (MD) SIMULATIONS 

 
 
2.1.  Introduction 
 
In molecular dynamics (MD) simulations, the entire workpiece is represented as 

an ensemble of atoms. Given the initial positions and forces acting on the atoms, 

the subsequent positions and forces on the atoms can be evolved over time by 

integrating Newton’s equations of motion using a suitable time integration 

algorithm [12]. This chapter mainly focuses on the basic procedures for carrying 

out the molecular dynamics simulation, the advantages and disadvantages of 

MD, the interaction potential, and the time integration algorithm used in this 

study. 

2.2.  General Procedure for conducting MD simulations 

In molecular dynamics simulations, all the atoms in the system are 

considered as point masses. The initial position of the atoms are selected based 

on the structure of the system under consideration. The detailed procedure for 

carrying out MD simulation is as follows: 

1. Based on the initial position of each atom with respect to its neighboring 

atoms, the potential energy (V ) experienced by the system at an initial 

time, say t0, is determined using an empirical potential. 
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2. The forces ( F ) acting on an atom are then determined by taking the 

derivative of the potential (V ) with respect to the position ( r ) of the atom, 

dr

dV
VF −=−∇=  .      (2.1) 

3.  Newton’s second law can be mathematically  expressed as follows 

maF =  ,       (2.2) 

where ‘ m ’ is the mass of the atom and ‘ a ’ is its acceleration. The   

acceleration of the atom can be determined from Eqns. (2.1) and (2.2). 

4. Once the acceleration of the atom at time ‘t0’ is known, the new velocity 

( )newv  and the new position ( )newr of the atom, after an infinitesimal time 

period of  δ t,  can be calculated using the following equations 

initialnew vtav += δ  ,      (2.3) 

δnewinitialnew vrr += t  ,         (2.4) 

where initialv  represents the initial velocity and initialr  the initial position of 

the atom. The infinitesimal time period used in MD simulations is usually 

on the order of a few femto seconds. 

5. Finally, the atoms are displaced to their corresponding new positions 

calculated above and again the steps stating from 1 through 5 are 

repeated to monitor the evolution of the system with time under the given 

operating conditions. 

2.3. Interatomic Potentials 

  Interaction potentials form the main ingredient of MD simulations. A 

potential is a function of relative positions of atoms with respect to each other, 
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representing the potential energy of the system for a given configuration of the 

atoms comprising the system. The interatomic potential functions are both 

rotationally and translationally invariant. These functions are usually derived 

empirically and hence, are known as empirical potentials. A number of potentials 

exist today, some to mention are the Morse potential, Stillinger-Weber potential, 

Tersoff potential, Lennard Jones potential, and Brenner Potential [13-14]. 

 The potential used in this study for short range interaction is a many-body 

potential given by Brenner et al. [13]. 

The potential, V  can be written as a sum over atomic sites i, 

 ∑=
i

iEV
2
1

,        (2.5) 

where each contribution of iE  is given by 

   iE =∑
≠

−
)(

)]()([
ij

ijAijijR rVBrV  .     (2.6) 

 In Eqn. (2.6), the summation is over the nearest neighbors j of atom i, 

excluding atom i, ijB  is the many body coupling term between the bond from 

atom i to atom j and the local environment of atom i, )(rVR  and )(rVA  

represents the pair-additive repulsive and attractive interactions. Eqn. (2.5) given 

by Abell-Tersoff [14] can realistically describe carbon-carbon single, double, and 

triple bond lengths and energies in hydrocarbons and in solid graphite and 

diamond. However, the problem with this expression is that the assumption of 

near-neighbor interactions combined with the sum over atomic sites results in 

nonphysical behavior in the case of intermediate bonding situations. Nonphysical 

behavior arises again when conjugated and nonconjugated bonds are examined. 
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 The aforesaid problems have been overcome by rewriting Eqns. (2.5) and 

(2.6) as follows  

  ∑∑
>

−=
)(

)]()([
ij

ij

A

ijij

R

i

rVbrVV   .    (2.7) 

Eqn. (2.7) represents the potential given by Brenner et al. [13] and is a modified 

form of Abell-Tersoff [14] potential function. Here, V represents the interaction 

potential, )( ij

R
rV  and )( ij

A
rV are pair-additive interactions that represent all 

interatomic repulsions (core-core) and attraction, ijr  is the distance between pairs 

of nearest-neighbor atoms i and j, and ijb  is the bond order between atoms i and j 

and  is conveniently represented as follows 

  ππσπσ
ijjiijij bbbb ++= −− ][

2
1  .     (2.8) 

Values of πσ −
ijb  and πσ −

jib  depend on the local coordination and bond angles for 

atom i and j. The term π
ijb  can be expressed as 

  DH

ij

RC

ijij bb += ππ  .     (2.9) 

The terms indicating the interatomic repulsions and attractions are given by 

rcR
AerQrfrV

α−+= )/1)(()(   ,   (2.10) 

 r

n

n
cA neBrfrV

β−

=

∑=
3,1

)()(     .    (2.11) 
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Table 2.1. Parameters for carbon-carbon pair terms used in Eqns. (2.10) and 
(2.22). 
 

B1 = 12388.79197798 eV β1 = 4.7204523127 Å−1 Q = 0.3134602960833 Å 

B2 = 17.56740646509 eV β2 = 1.4332132499 Å−1 A = 10953.54416217 eV 

B3 = 30.71493208065 eV β3 = 1.3826912506 Å−1 A = 10953.544162170 eV 

Dmin = 1.7 Dmax = 2.0  

 

The parameters used for the carbon-carbon pair terms in Eqns. (2.10), (2.11), 

and (2.22) are given in Table 2.1. 

 The first term in Eqn. (2.8) is given by 

 ∑
≠

− −++=
),(

2/1)],())(cos()(1[
jik

H
i

C
iijijkik

c
ikij NNPeGrfb ijkλπσ θ . (2.12) 

The subscripts i and j refer to the atom identity, the function P  represents a 

bicubic spline. The function )(rf C ensures that the only nearest neighbors are 

included in the interactions. It limits the range of covalent interactions. C

iN  and 

H

iN  represent the number of carbon and hydrogen atom neighbors of atom i and 

are represented as: 

 ∑
≠

=
atomscarbon 

),(

)(
jik

ik

c

ik

C

i rfN    , (2.13) 

 ∑
≠

=
atomsHydrogen 

),(

)(
jil

il

c

il

H

i rfN    . (2.14) 

The values of λ and function P  are taken to be zero for solid state carbon. An 

expression for πσ −
jib  can be obtained by interchanging the subscripts in Eqn. 

(2.12). The function ))(cos( ijkG θ  in Eqn. (2.12) controls the contribution each 
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nearest neighbor makes to the empirical bond order according to the cosine of 

the angle of the bonds between atoms i and k and atoms i and j. The parameters 

for the angular contribution to the carbon bond order are given in Table 2.2. 

Table 2.2. Parameters for the angular contribution to the carbon bond order 

θθθθ (rad) G(cos(θθθθ)) dG/d(cos(θθθθ)) d2G/d(cos(θθθθ))2 γγγγ(θθθθ) 

0 8 - - 1 

π/3 2.0014 - - 0.416335 

π/2 0.37545 - - 0.271856 

0.6082π 0.09733 0.4 1.98 - 

2π/3 0.05280 0.17 0.37 - 

π -0.001 0.104 0.00 - 

 

The term RC

ijπ  in Eqn. (2.9) represents the influence of radical energetics and π-

bond conjugation on the bond energies. This term takes care of correctly 

describing the radical structures in diamond and accounts for non-local 

conjugation effects in graphite and benzene. This term was absent in the first 

generation form of the Brenner Potential [15]. The term RC

ijπ is taken as a tricubic 

spline F

 ),,( conj

ij

t

j

t

iij

RC

ij NNNF=π    , (2.15) 

that depends on the total number of neighbors of bonded atoms i and j, as well 

as a function conj

ijN  that depends on local conjugation. 

The term t

iN  represents the coordination of atom i given by 
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H
i

C
i

t
i NNN +=    . (2.16) 

The function conj

ijN  is represented as 

 ∑∑
≠≠

++=
carboncarbon

),(

2

),(

2 )]()([)]()([1
jil

jljl
c
jl

jik

ikik
c

ik
conj
ij XFrfXFrfN  , (2.17) 

where  

 2,1)( <= ikik xxF                                         

 32,2/))]2(2cos(1[)( <<−+= ikikik xxxF        π  (2.18) 

 ikik xxF <= 3                                  ,0)(  

and  

 )( ik
c

ik
t
kik rfNx −=    . (2.19) 

The value of conj

ijN  becomes 1 if all the neighbors bonded to a pair of carbon 

atoms i and j have four or more neighbors and the bond between these atoms is 

considered to be part of a conjugated system. conj

ijN  becomes greater than 1, if 

the coordination number of the neighboring atoms decrease, indicating a 

conjugated bonding configuration. 

The term 
DH
ijb in Eqn. 2.9 is given by  

∑ ∑
≠ ≠

Θ−=
),( ),(

2 ])()())(cos1()[,,(
jik jil

jl
c
jlik

c
ikijkl

conj
ij

t
j

t
iij

DH
ij rfrfNNNTb , (2.20) 

where  

 ijljikijkl ee=Θ    . (2.21) 
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The function ),,( conj

ij

t

j

t

iij NNNT  is a tricubic spline, and the functions jike  and ijle  

are unit vectors in the direction of the cross products jiR x ikR  and ijR x jlR , 

respectively, where the R ’s are vectors connecting the subscripted atoms. Table 

2.3. gives the values needed for the carbon-carbon cubic spline T in Eqn. 2.20. 

All function values and derivatives not given in the table are equal to zero.  

Table 2.3. Parameters needed for carbon-carbon cubic spline T in Eqn. (2.20). 

i j k T( i, j, k) Fitting data/Structure 

2 2 1 -0.070280085 Ethene 

2 2 9 -0.00809675 Solid-state structure 

 
The entire parameter-fitting method discussed above was made much easier by 

assuming only nearest-neighbor interactions. However, the best way to define 

this for a continuous function is problematic. The value of )(rf
c

ij  is defined by a 

switching function of the form 

min
                                   ,1)( ijD    rr

c
ijf <=  

[ ] maxminminmaxmin
    ,  ))/()cos((1

2

1
)( ijDrijDijDijDijDrr

c
ijf <<−−+=  

max
                                   ,0)( ijD    rr

c
ijf >=  (2.22) 

where minmax
ijij DD −  defines the distance over which the function goes from one to 

zero. 
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 The Van Der Waal (VDW) interaction between the atoms comprising the 

system is taken care of by the L-J (12-6) potential. The L-J (12-6) potential has 

the following form 

 





















−








∈=

126

4)(
rr

rV
σσ

 . 

The well depth ∈ and the equilibrium separation r are the only adjustable 

parameters in the L-J (12-6) potential. In this investigation, the values of the well 

depth and equilibrium separation for the VDW interaction between two atoms are 

given in Table 2.4 

Table 2.4. L-J potential parameter values 

Atoms Type Well depth (meV) Equilibrium separation (Å) 

Carbon - Carbon 4.412 2.28 

Carbon - Hydrogen 1.806 2.54 

Hydrogen - Hydrogen 0.740 2.81 

 

2.4.   Time Integration Algorithm 

 In MD simulations we integrate the equations of motion over a given time 

period using numerical integration techniques. These time integration algorithms 

are based on finite difference methods. Here, the total time is discretized into a 

finite number of equal time intervals or time steps given by t∆ , which is 0.5 fs in 

the present investigation. If the positions and their time derivatives at time t are 

known, the integration algorithm gives the same quantities at a later time, t+ t∆ . 

The integration algorithms can show the evolution of the system with time by 
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repeating the procedure mentioned above. Currently, there exist a number of 

integration algorithms, such as the Verlet algorithm [16], Beeman algorithm [17]. 

The algorithm used in the present investigation for integrating the equations of 

motion is the “Gear Predictor-Corrector” algorithm [18]. The algorithm consist of 

two parts, namely, the predictor part and the corrector part. 

Predictor Part: 

 If we know the position r, velocity v, acceleration a, and some other time 

derivatives up to a certain degree q at a given time t, the Taylor expansion can 

be used to predict the values of these quantities at time t+ t∆ . The newly 

predicted values of the position, velocity, acceleration and the rate of change of 

acceleration after a time interval t∆  is given by: 

 rp(t+δt) = r(t) + δt v(t) + (1/2) (δt)2 a(t) + (1/6)(δt)3b(t)+…   ,  (2.23) 

 vp(t+δt) = v(t) + δt a(t) + (1/2) (δt)2 b(t) + …   ,    (2.24) 

 ap(t+δt) = a(t) + δt b(t) + …    ,      (2.25) 

 bp(t+δt) = b(t) + …   ,       (2.26) 

where rp, vp, ap, and bp represents the position, velocity, acceleration, and rate of 

change of acceleration after a time interval of t∆  from the initial time interval t. 

Force Calculation: 

 The force on the atom is calculated by taking the derivative of the potential 

with respect to the position of the atom and is given by 

 
p

p
p

i
dr

rdV
VF

)(
−=−∇=    .       (2.27) 
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From the force, we can calculate the acceleration using Eqn. (2.2). The resulting 

value of acceleration will be different from that predicted by the above Taylor’s 

expression. The difference between these two values constitutes an “error signal” 

given by 

 ∆a (t+δt)=ac(t+δt) - ap(t+δt)   .      (2.28) 

Corrector Part: 

 The “error signal” along with certain other coefficients is used to correct 

the values of the position, velocity, and acceleration predicted by the predictor 

method. The corrected values of the position, velocity, acceleration, and the rate 

of change of acceleration at time t+ t∆ are given by 

 rc(t+δt) = rp(t+δt) + c0 ∆a (t+δt)    ,      (2.29) 

 vc(t+δt) = vp(t+δt) + c1 ∆a (t+δt)   ,      (2.30) 

 ac(t+δt) = ap(t+δt) + c2 ∆a (t+δt)   ,      (2.31) 

 bc(t+δt) = bp(t+δt) + c3 ∆a (t+δt)   ,      (2.32) 

where c0, c1, c2, and  c3 are the coefficients of proportionality given by [16]: 

c0 = 1/6, c1 = 5/6, c2 = 1, and c3 = 1/3. 

2.5. Advantages and Limitations of MD simulations 

Molecular dynamics simulation is one of the powerful tool widely used in 

the study of very complex reaction mechanisms. Some of the strengths of MD 

simulation that has made it to take a leading-edge method over other techniques 

are the following [12]: 

1. Molecular dynamics simulations offer a great opportunity to explore the  

behavior of systems at atomistic and molecular levels. 
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2. MD simulations can be of immense use in simulating experiments that are 

very costly and difficult to carry in real world. For example, when MD is 

applied to experiments, such as nanometric machining, the effect of 

various parameters such as tool geometry and cutting speed can be easily 

studied at an insignificant fraction of the cost. 

3. When simulations are running, the human involvement required is almost 

not there unlike the real world experiments where utmost care has to be 

taken when the experiments are in progress. 

4. A major advantage of MD simulation is its repeatability. Any particular 

simulation can be exactly repeated any number of times with the same 

degree of accuracy. 

5. MD simulation is a very deterministic technique, providing complete 

information, such as potential energy, velocity and force experienced by 

each and every atom comprising the system at any point of time which 

can be easily and accurately evolved. 

Though MD simulation has numerous advantages as stated above, it also has its 

own limitations, a few of these limitations are given in the following: 

1.  In MD simulations, results are purely dependent on the forces acting 

between atoms based on their positions. These forces are obtained by 

taking the derivative of the empirical potential function. Therefore, the 

extent to which molecular dynamics simulation can imitate real 

experiments depends on the ability of the potential function to reproduce 

the real behavior of the system. 
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2.  MD simulations involve integration of Newton’s equations to obtain new 

velocities and positions of the atoms. The integration involves the use of 

numerical algorithms that require a very small integration timestep to give 

accurate results. Therefore, MD simulations are not preferred to simulate 

processes or reactions that take very long time periods. 

3. The computational time and costs involved in MD simulations are 

significant because Newton’s equations of motion are to be integrated for 

every atom comprising the system and for each time step. The time and 

costs increase rapidly with increase in the size of the system considered. 

4.  When the temperature of the system considered is very low, quantum 

effects become significant. In such cases MD simulation results have to be 

interpreted with utmost caution due to the possibility of errors in the 

potential used. 

 

 

 

 

 

 

 

 

 

 



 21 

CHAPTER 3 

ESSENTIALS OF NEURAL NETWORKS (NN) 

 

3.1.   Introduction 

A neural network (NN) can be considered as a computational system 

made up of a number of simple and highly interconnected processing elements 

called nodes, which processes information by its active state of response to 

external inputs [69]. The structure and working of the human brain serves as the 

basic inspiration for the invention and development of neural networks[69]. 

Neural network attempts to emulate the adaptability, intelligent decision making 

and information processing ability of the brain. The greatest strength of neural 

networks is adaptive learning. It has the capability to learn, generalize, and 

reproduce from experience and examples.  

First, the neural network is trained using a number of examples and then 

the network is tested to see whether it can interpret new data based on previous 

experience. Neural networks offer a wide range of advantages, such as adaptive 

learning, self-organization, fault tolerance, and easy implementation that allow 

them to take a lead over other approaches.  

The neural network architecture, terminologies, training algorithms, and 

methodologies followed in this investigation were adopted from the book Neural 

Network Design Hagan et al. [69]. The book presents the most useful and 
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practical NN architectures, learning rules and training algorithms in a clear and 

consistent manner. Various topics of practical importance in the application of 

neural networks and neural network operations have been well explained in this 

book [69]. 

3.2.  Evolution of neural networks: milestones and development 

Neural networks is a field of recent origin. However, this field has a long 

history tracing back to periods before the invention of computers and has 

survived at least one major setback and several decades of oblivion. McCulloch 

and Pitts [59] used formal logic to create neural network models with simple 

neurons that were considered as binary devices with fixed thresholds. Their 

network was used mainly for simple logic functions such as “OR” and “AND”. 

Farley and Clark [60] created the first computer simulations of neuronal models 

and used normalization procedures to ensure better operation of their simulation 

models. Rosenblatt [61], a psychologist, designed and developed a three-layered 

system known as Perceptron network that exhibited adaptive behavior. Though 

Rosenbaltt’s design was considered a milestone in the field of neural network, it 

had some limitations such as inefficiency in solving pattern recognition problems 

and inability to handle large inputs.  

Widrow and Hoff [62] developed the ADALINE (ADAptive LINear Element) 

and MADALINE (Many ADALINEs) networks that employed a learning procedure 

called Least-Mean-Squared (LMS) learning rule. The network operates by 

attempting to minimize the difference between the observed and desired output. 

Amari [63] published a mathematical model that served as the basis for error-
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correction methods employed in adaptive pattern classifications. Webros [64] first 

proposed the back-propagation algorithm that gave rise to back-propagation 

networks which are basically perceptrons with multiple layers with enhanced 

robustness and learning rules. Fukushima [65] developed competitive networks 

called Cognitron and Neocognitron for interpreting the handwritten characters.  

Klopf [66] developed the “drive-reinforcement learning” for artificial 

neurons. This is similar to neuronal learning called “heterostasis” that occurs in 

biological neurons. Rumelhart and McClelland popularized the back-propagation 

algorithm in their book Parallel Distributed Processing [67]. Hopfield and Tank 

[68] developed the well known auto-associative network, the Hopfield Network, 

which attracted much attention due to its stability and ease of its fabrication using 

VSLI technology. Hagan et al. [69] introduced Gaussian-Newton approximation 

to Bayesian Regularization (GNBR) algorithm that reduced the cost of 

implementing the changes in the training algorithm and also produced optimal 

results with minimum computational time. Today, neural network concepts have 

been implemented on chips and are emerging as a prime solution to various 

complex problems representing the dominance of neural network in today’s 

scientific world. 

3.3.  Neural network components and parameters 

3.3.1.  Neuron 

Biological neurons are the building blocks in the human brain. Likewise 

the artificial neuron forms the fundamental data processing unit of the neural 

network. Figure 3.1 shows a simple neuron model. 
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Fig. 3.1: Single input neuron [69] 
 

Every neuron is associated with particular inputs, weights, biases, transfer 

functions, and outputs. The input ‘p’ is first multiplied (weighted) by a suitable 

weight ‘w ‘, and is passed on to the summer, the summer adds the weighted 

input ‘wp’ with suitable bias ‘b’ and passes the net input ‘n’ to the transfer 

function ‘ f ‘, which operates on the net input ‘n’ and produces an output ‘a’. This 

output can be made to become the input to the next layer of neurons. 

3.3.2. Weights and Biases 

Every input supplied to a neuron is weighted before it is passed on to the 

summer in every neuron. Weights are a set of numbers associated with each 

interconnection between neurons in different layers. The weights indicate the 

strength of the interconnection between a neuron in one layer and another 

neuron in the next layer of the network. The initial values of the weights are set to 

zeroes or any small random number and are modified suitably during the network 

training to get the desired output from the network. Once the network has been 

completely trained, the final values of the weight matrix are stored and 

recurrently called during the testing session.  
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The bias can be considered as a threshold value added to the weighted 

inputs before they are passed on to the transfer function of the neuron. As can be 

seen from Figure 3.1, the bias has the effect of shifting the center of the transfer 

function f, while the weight changes the slope. 

3.3.3. Transfer functions 

Every artificial neuron in a neural network is characterized by its transfer 

function. Two neurons which are fed with the same inputs can produce different 

outputs depending on the transfer functions to which they are associated. A 

neuron can take many input signals, multiply by the weights, add the bias, and 

pass the resulting scalar on to the associated transfer function. The transfer 

function decides how the neuron will scale its response to the input data, and 

generates the neuron’s activation.  

Some of the transfer functions that are of frequent use in the neural 

network are the following: 

• Hard-limit transfer function 

• Linear transfer function 

• Sigmoid transfer function 

The neural network used in this study uses a tangent sigmoid (tansig) transfer 

function in the hidden layer, and a pure-linear transfer function in the output 

layer. The use of these transfer functions allow the network to understand the 

linear and non linear relationships that exist between it’s input vectors and output 

vectors. The two transfer functions employed in this investigation are described 

in the following. 
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 a. Hyperbolic tangent sigmoid transfer function (tansig) 

The hyperbolic tangent sigmoid function, also known as the tan sigmoid 

transfer function takes input values between ∞−  and ∞+ , produces an output 

signal between –1 and +1. 

 

Fig 3.2: Tan sigmoid transfer function [69] 
 

 The output is calculated using the equation 

    1
))*2exp(1(

2
−

−+
=

n
a    .     (3.1) 

b. Pure-linear transfer function (purelin)  

The pure-linear transfer function produces an output, linearly increasing with 

the input supplied to it. The pure-linear transfer function takes the following form 

   na =    .       (3.2) 

     

Fig 3.3: Purelin transfer function [69] 
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3.4.   Neural network classification 

Neural networks are classified into two major categories, namely, single–

layered and multi-layered networks based on the number of layers in the 

network. Multilayer neural networks have sub classifications, such as multilayer 

feedforward networks and multilayer cooperative networks. The single-layer 

networks can also be subdivided into single-layer laterally-connected networks 

and single-layer topologically ordered networks. 

3.4.1. Single-layer network 

The single layer neural networks have only one layer of neurons. A single- 

layer neural network can have one or more neurons in their single layer and can 

produce one or more outputs. Figure 3.4 shows a single-layer neural network, 

having R inputs and S number of neurons 

                                        

Fig 3.4: Single-layer neural network [69] 

3.4.2. Multilayer network 

Multilayer neural networks have more than one layer of neurons. In the 

multilayered feedforward network, which has been used in this study, all neural 

responses flow in a forward direction through different layers of the network. 
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Figure 3.5 below shows a multilayered feed forward network having a single  

 

               Fig 3.5: Multilayer neural network [69] 

hidden layer with a sigmoid transfer function that gives the network the ability to 

learn linear and nonlinear relations that exist between inputs and outputs and an 

output layer with pure-linear transfer function allowing the neural network to 

produce values inside the range -1 to +1. The multilayered networks are an ideal 

choices for nonlinear regression and pattern recognition. 

3.5.  Neural network learning and testing 

Basically there are two important stages in the implementation of neural 

networks for any application, namely, learning and testing. The feed forward 

network used in this study employs a supervised learning procedure. In 

supervised learning, the network is provided with a set of input vectors, ‘A’ as 

well as with corresponding desired output vectors, ‘B’. During the learning 

process, the network compares its output vector, ‘C’, with the desired output 

vectors ‘B’ to produce the error percentage. The values of the weight matrix are 

adjusted so as to decrease the error. A network is said to be trained if its output 

responses are matching well with the desired outputs with minimum percent 

error.  
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After the completion of learning, the network is supplied with a testing data 

set which was never seen by the network during training and the output of the 

network is compared with the actual output to predict the network performance.  

3.6.  Feed forward neural networks 

In the feed forward networks the flow of data always occurs in the forward 

direction from the input to the neurons in the hidden layers and thereon to the 

output layers. No information is back propagated during the operation of the 

network. Generally, the multilayered feed forward networks are associated with 

one or more hidden layers having sigmoidal functions that allow the network to 

learn both nonlinear and linear relationships between input and output vectors. 

3.6.1. Architecture of the feed forward neural network 

The multilayered feed forward network shown in Figure 3.6 has a total of 

three layers of neurons of which the first and second layers are known as the  

 

Fig 3.6: Feed forward neural network [69] 

hidden layers and the third layer which gives the final output of the entire neural 

network is called the output layer. We used the number of the layer as a 

superscript for the weights, neurons, biases, net inputs and outputs from each 

layer. As shown in Figure 3.6 there are s1 neurons in the first layer, s2 neurons in 
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the second layer, and s3 neurons in the third layer. There are R inputs to the 

network and the weight matrix for the first, second, and third layer are 

represented as w1, w2, and w3 . 

3.6.2. Working of the feed forward neural network 

The ultimate task of the neural network is accomplished in two stages, 

namely, the training mode and production or testing mode. During the training 

mode, a set of examples known as the input vectors and their corresponding 

desired outputs are given to the neural network. The network is trained to learn 

the relationship that exists between the inputs and the outputs by using a 

learning algorithm known as the back propagation algorithm. During the training 

mode, the network, especially the hidden layer neurons, learn to respond to 

features and gradually the network develops the ability to generalize. After the 

network has been trained successfully, the next step is to test the neural network 

by giving it a set of input vectors that were not included in the sets used for 

training the network. If the network has been trained properly, it should be able to 

predict the outputs correctly for the input test data set that were never used 

during the training mode. 

In the training mode, the inputs are first passed to the neurons in the first 

layer. The final output from the neural network is compared with known desired 

output and error between the actual output of the network and the desired output 

is determined. The errors are used for adjusting the connection weights 

associated with the different layers of the network so that the error is 

progressively decreased in the subsequent prediction of the network. The 
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training process is repeated until the error has been reduced to a minimum value 

indicating that the network has learned to the maximum extent possible. 

After the training session, the network is put into the testing mode. During 

testing, the neural network is supplied with a set of test data which was not used 

during the training session, the neural network would not be given the 

corresponding outputs associated with the test data inputs. The neural networks 

response or the output is monitored and compared with the known desired 

outputs. If the output predicted by the neural network agrees closely with the 

known desired output with minimum error, it indicates that the network has been 

trained properly and has attained the power to generalize. During the testing 

process, the connection weights associated with the various layers of the neural 

network remain unmodified.  

3.7.  Learning Algorithms 

3.7.1.  Least-Mean-Squared (LMS) rule  

The least-mean-squared (LMS) algorithm is a kind of supervised training 

algorithm where the neural network is provided with a set of inputs and their 

corresponding outputs during training. The algorithm works in such a manner as 

to reduce the mean square error between the actual network output and target 

output by adjusting the connection weights and biases of the neurons in different 

layers of the network. The least mean square error is calculated as follows 

F(x) = E [ ]2))()(( kakt − ,       (3.3) 

Where the target output )(kt  is the desired output, )(ka  is the network output and 

E represents least mean squared error of the output that has to be reduced. The 
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least mean squared (LMS) algorithm is also known as Windrow-Hoff algorithm or 

the delta rule. 

The mean square error F(x) can be approximated by 

)(xF
∧

= )(2 ke = 2))()(( kakt − ,     (3.4) 

where k represents the iteration number. The estimate of the gradient is given by  

)()( 2
kexF ∇≅∇ .      (3.5) 

The partial derivative of )(ke  and )(2 ke with respect to the weights for the th
k  

iteration is given by 
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and the partial derivatives of )(2 ke  with respect to the biases at th
k iteration is 

given by 
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Similarly, the derivative of )(ke with respect to the bias is given by 
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Substituting Eqns. (3.6) and (3.9) in Eqns. (3.7) and (3.8), respectively yields the 

gradient of the squared error for the th
k  iteration:  
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The steepest descent algorithm, with constant learning rate is given by 

   xkxkk xFxx =+ ∇−= |1 )(α    .     (3.11) 

Substitution of Eqn. (3.10) for )(xF∇  in the Eqn. (3.11) yields 

   )()(21 kzkexx kk α+=+    ,     (3.12) 

or  

   )()(2)()1( 11 kpkekwkw α+=+     (3.13) 

and    )(2)()1( kekbkb α+=+    .     (3.14) 

Eqns. (3.13) and (3.14) represent the least mean square algorithm for a single 

output network. For network with multiple neurons in the outer layer, the LMS 

algorithm can be written in matrix form as: 

            W (k+1) = W (k) +2α e (k) p
T

 (k)        and      (3.15)                       

                                  b (k+1) = b (k) +2α e (k)   .     (3.16) 

3.7.2.  Back-propagation algorithm 

The back-propagation algorithm is a generalization of the least mean 

square algorithm. It employs a generalized delta rule. Most of the multilayered 

feed forward networks, including the one used in this investigation employs back-

propagation algorithm. At the end of forward propagation step, the error between 

the actual network output and targeted output is calculated and based on this 

error the weights associated with each neuron in the output layer is changed. In 

back propagation, the network weights are moved along the negative of the 

gradient of the performance function. The algorithm is known as back 

propagation algorithm  because the change of weights starts from the output 

layer and then proceeds backwards until all weights associated with the first layer 
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has been changed in  such a way that the error decreases in subsequent 

predictions of the network. 

The mean squared error (MSE) in a multilayered network is given by 

)()()]()[(][)( kekeatatEeeExF TTT ≅−−==    .   (3.17)  

The error in multilayered networks is an implicit function of connection weights of 

the hidden layers. Therefore, chain rule has to be used for calculating the 

gradient for the steepest descent algorithm. 

The approximate MSE is given by 
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Using the chain rule, we get 
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The net input to any layer ‘m’ is a direct function of the weights and bias in that 

layer. So it is relatively easy to compute the second terms in the above 

equations. The net input  m

in  to the layer m is given by 
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The change in the function F  with respect to the change in the th
i  element of the 

net input at layer m is given by 
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Using Eqn. (3.21) for sensitivity in Eqn. (3.19), yields 
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Now the steepest descent algorithm can be conveniently expressed in the 

following form the using matrix notation 
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where m
W , m

b  and m
s  are the weight matrix, bias vector, and the sensitivity 

vector, respectively. 

As the term back propagation indicates, in this algorithm the sensitivity at 

layer m is computed using the sensitivity at its succeeding layer m+1. The 

Jacobian matrix is given by 
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using Eqn. (3.26), the Jacobian matrix can be rewritten as 
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Now using the chain rule again, the recurrence relation can be expressed in 

matrix form as 

  11)()( ++= mTmmmm sWnFs &    ,      (3.28) 

  131
ssss

MM →→→ −        .  
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From the above expression, we notice that the sensitivity is propagated 

backward from the last layer to the first layer in the network. The sensitivities at 

the output layer is expressed in matrix form as 

  ))((2 atnFs MMM −−= &    .      (3.29) 

3.7.3 Levenberg-Marquardt algorithm 

The basic back propagation algorithm is often the simplest and slowest 

minimization method. The Levenberg-Marquardt algorithm provides faster 

convergence and is successfully used to speed up the convergence of back 

propagation. It should be noted that Levenberg-Marquardt algorithm uses the 

backpropagation procedure in which derivatives are processed from the last layer 

of the network to the first. Hence, the Levenberg-Marquardt algorithm could be 

called a backpropagation algorithm. 

The second-order Taylor series is represented as follows 

...
2
1

)()( +∆⋅⋅∆+∆⋅+=∆+ wHwwgwFwwF
TT   , 

where w∆  is the adjustment to the weight, g is the gradient vector and H is the 

Hessian matrix. They are defined as: 
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           gHw ⋅−=∆ −1  

In quasi Newton method, Hessian matrix is estimated by some positive definite 

matrix, which ensures the convergence. The Hessian matrix is approximated as: 
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                       JJH T2≅ , 
 
where J is the Jacobian matrix that contains the first derivatives of the network 

errors with respect to the weights and biases. 

 Levenberg-Marquardt algorithm uses an approximation to the Hessian 

matrix and is given by 

 [ ] TT JIJJw
1−

+=∆ µ  , 

where J is the Jacobian matrix and µ is a scalar. 
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CHAPTER 4 

LITERATURE REVIEW 

 

Diamond has a unique combination of physical, chemical, electrical, and 

optical properties which make it a potential candidate for numerous industrial 

applications. For example, its very high hardness and wear resistance make it 

ideal for cutting tools and grinding wheels; its insulating properties, radiation 

hardness and high thermal conductivity make it an ideal member for applications 

in circuit packaging, high power, electro-optic, semiconductor devices and optical 

devices [20].  In the 80’s diamond films were grown at low pressures under 

metastable conditions using chemical vapor deposition (CVD) techniques, such 

as hot filament CVD, microwave plasma assisted CVD and DC arc plasma jet 

and flame plasma deposition [21-23]. Due to the limited growth rate (<0.1 µm/hr), 

CVD process cannot effectively compete with the HP-HT process on the basis of 

growth rate or overall cost. However, the low pressure diamond synthesis has led 

to a new era in diamond technology. (Extensive review presented by DeVries 

[24]). There are, however, some applications where LP-CVD diamond synthesis 

is preferred over HP-HT synthesis. For example, the low-pressure CVD process 

has a great potential for optical, infrared, and X-ray applications as well as for a 

number of manufacturing and tribological applications. For example, in the 

manufacturing area, diamond coatings on cutting tools by the CVD technique can 
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be used to improve wear resistance, thereby improving the tool life. The diamond 

crystals obtained through the CVD technique find applications as cutting tools in 

nanometric machining and grinding operations and as heat sinks in electronic 

applications. 

 Recently, nanocrystalline CVD diamond films have been synthesized with 

superior properties, such as, higher toughness, lower light scattering and higher 

Young’s modulus [25]. Nanocrystalline diamond (NCD) films are composed of 

diamond grains of the order of 50 nm, and display under certain conditions 

smooth morphology. They have been considered for applications in micro-

electro-mechanical systems (MEMS) and its nano variant, namely, nano-electro-

mechanical-systems (NEMS), where the mechanical, electrical, and corrosion 

properties of these fully dense films extend the range of applications of these 

novel devices [26]. Gruen et al. [27-31] have conducted extensive research on 

nanocrystalline diamond film. 

One of the key factors in the CVD diamond film growth is the nature of the 

hydrocarbon species used. Gruen et al. [27] reported successful growth of 

diamond films using fullerene precursors in an argon microwave plasma without 

the addition of hydrogen or oxygen. The average grain size of the films obtained 

is reported to be 0.05 µm. They postulated that collisional fragmentation of C60 to 

give C2 could be responsible for the high growth rate of the very-fine-grained 

diamond films. Zhou et al. [28] investigated the transition from microcrystalline to 

nanocrystalline films grown from Ar/H2/CH4 microwave plasma; the transition 

becomes pronounced at an Ar/H2 volume ratio of 4, and the microcrystalline 
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diamond films are totally transformed to nanocrystalline at an Ar/H2 volume ratio 

of 9. They suggested that the transition in the microstructure to be due to  

change in the growth mechanism from CH3 in high hydrogen content to C2 as the 

growth species in low hydrogen content plasmas. 

Goyette et al. [29] experimentally determined the density of gas phase C2 

in Ar-H2-CH4 and Ar-H2-C60 plasmas and reported C2 to be an important species 

in these growth environments.  

Gruen et al. [30] used optical spectroscopy to examine C60/Ar plasma and 

noticed the spectrum to be dominated by swan bands of C2.They proposed that 

collisionally induced dissociation of C60 in argon plasmas could be the 

mechanism for C2 production and that C2 is the principal growth species in their 

diamond film growth experiments. 

The above studies indicate that carbon dimer (C2) is an important growth 

species for nanocrystalline diamond growth and the elementary reactions of 

carbon dimer on a diamond substrate surface is of interest. 

A variety of hydrocarbon species are used in the microwave plasma CVD 

process for diamond growth. Some of the widely employed hydrocarbon species 

are C2H2, C2H, CH3, C2, C, and C2H4. The mechanism by which diamond film 

growth occurs differs from one hydrocarbon species to another and it also plays 

a vital role in the properties of the films obtained. Hence, the investigation of the 

mechanisms by which diamond film growth takes place and various reactions 

that occur between the gaseous hydrocarbon molecules and the substrate on 

which the films are grown is always of considerable interest. 
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Any complex reaction between the gaseous precursors and the atoms of 

the substrate involve basic elementary events, such as chemisorption, insertion, 

scattering, and desorption. The probability of occurrence of each of these events 

is greatly affected by factors, such as the incident translational energy, rotational 

energy of the molecules, the angle of incidence, rotation angle, temperature of 

the substrate, and impact parameter. Hence, the investigation of the effect of 

these parameters on various event probabilities in CVD and other film growth 

processes has attracted considerable attention among research community. 

  Ulloa et al. [31] investigated the adsorption of hydrocarbons, such as CH3, 

CH2, and C2H4 on the flat terraces and near step edges of diamond (100) 

surfaces using MD simulations. They found that adsorption of CH3 on the (100) 

face and subsequent abstraction of one of its hydrogen will promote β - scission 

essential for continued growth. Alfonso and Ulloa [32] studied methyl radical 

deposition on diamond (100) surfaces using MD simulations. The time step 

employed in their simulation was between 0.25 – 0.5 fs and most of their 

trajectories were monitored until elapse time of 2.5 ps. They reported that the 

adsorption probability of the CH3 radical on diamond substrate increases with the 

kinetic energy of the methyl radical and decreases with the incidence angle but 

the rise in adsorption probability becomes less pronounced as kinetic energy of 

the incident CH3 goes up. Hydrogen knock out events were reported to occur 

when the methyl radical is incident with a normal energy above 1 eV and is found 

to be more pronounced for a normal energy of 10 eV.  
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  Hu and Sinnott [33] examined the deposition of an ethylene molecular-

cluster beam at various incident angles and incident energies on a diamond 

(111) surface that was terminated at the top and bottom with hydrogen atoms 

using a reactive potential coupled to Lennard-Jones (L-J) potential. The substrate 

had 24 layers of carbon atoms and it contained 13700-13900 atoms with an 

impact plane area of 69 x 40 Å2. All simulations were carried out for 3 ps and the 

time-step used was 0.2 fs. They predicted that with an increase in the incidence 

angle, the amount of adhesion of a thin film decreases. They also reported that 

crystallographic orientation and the incidence angle have less effect on the film 

structure and formation. 

  Wang et al. [34] investigated the deposition of CH3 and CH2 radicals on 

diamond (001) surfaces at room temperature to determine the energy threshold 

(Eth) for chemisorption and reported that for CH3, the value of Eth on diamond 

(001)-(2x1) H surface is higher than that on diamond (001)-(2x1) surface and 

lower than that of C2H2 on the diamond (001)-(2x1) surface.  

  Perry and Raff [35, 36] computed rate coefficients, event probabilities, and 

desorption probabilities for many elementary chemisorption reactions on a 

diamond ledge and diamond terrace structures at 1250K. The diamond (111) 

terrace substrate they used had a total of 145 lattice atoms, a trajectory was 

carried out between 0.5 - 1.5 ps and each trajectory took an average of ~ 30 min 

of CPU time on a Digital (DEC ALPHA 3000/Model 400) workstation. The 

diamond ledge surface had a total of 147 atoms, the individual trajectory time 

varied over the range 0.1-0.87 ps, and the CPU time was the same as for the 
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terrace structure. They investigated molecules and radicals, such as C2H2, C2H, 

CH3, CH2, C, C2, C3H and found that chemisorption rate is lower for nonradical 

species, such as C2H2 and C2H4 than for radicals (1012 - 1013 cm3/mols). They 

reported that CH3 is the least reactive and atomic carbon has the largest 

chemisorption rate of all the species investigated.  

  Izumi et al. [37] investigated the reaction probability of silane molecules on 

silicon (001) surface. They considered twenty different substrate conditions to 

overcome the scattering effect due to vibration of the substrate. They carried out 

a total of 20000 trials to obtain probability on the order of 10-3. They reported that 

the reaction probability depends significantly more on the internal energy of the 

silane than on the substrate temperature. The reaction probability increased 

linearly with the translational energy; quadratically with the vibrational energy of 

the silane molecule; and depends less on its rotational energy.  

  Zhu et al. [38] studied the interaction between low energy C2H2 and 

diamond (001)-2x1 surface, 200 trajectories were considered and each trajectory 

lasts for around 3 ps. Six types of chemisorption configurations (S1 through S6) 

were noticed as shown in Figure 4.1.The S1 structure is found to be the most 

stable because of its high binding energy and S6 structure to be the least stable. 
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  Fig. 4.1: Six types of chemisorption configurations on diamond (001) –  
         (2 x 1) surface [38]. 
 

The S2 and S3 configurations are found to be most frequently occurring 

configurations during diamond film growth and thereby playing an important role 

in diamond synthesis. 

  Hansen and Hudson [39] studied interaction of oxygen molecules with 

clean and oxygen covered Ge (100) surfaces using molecular beam scattering 

techniques. They reported that sticking coefficient increased from 0.018 ± 0.002 

to 0.079 as the incident beam energy was increased from 2.1 to 7.9 kcal/mol, but 

it decreased from 0.0176 at normal incidence to a minimum value when the 

incident angle of the beam is increased to θ = 700 .  

  Belsky et al. [40] used MD simulations to study the sticking probability of 

Cu and Ta atoms on FCC Cu (111) and BCC Ta (110) crystal faces, respectively, 

for different values of incident energies ranging from 0 to 150 eV and angle of 

incidence from 00 to 900. The time step for the trajectories was on the order of 0.1 

– 1 fs and the total duration for every trajectory was on the order of 100 – 1000 
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fs. The sticking probability of both Cu and Ta atoms was found to be inversely 

proportional to the incident beam energies. The sticking probability was found to 

decrease first with the incidence angle, but at larger angles, the probability began 

to increase. This behavior was ascribed to increased interaction time of the 

incoming atom with the substrate and a low normal velocity component. Vattuone 

et al.  [41] investigated chemisorption of O2 on Ag (001) surfaces at 100 K by 

reflectivity method. The sticking probability was found to increase monotonously 

until the translational energy of the O2 molecule reached 0.7 eV and decreased 

thereafter because at high energies the collided molecules still retain sufficient 

energy to avoid being trapped on the surface and are able to escape into the gas 

phase by scattering inelastically off the repulsive part of the chemisorption 

potential.  

  Huang et al. [42] studied the interaction between low-energy CH3 and 

diamond (001)-(2x1) at room temperature using MD simulations. An energy 

threshold (Eth) of 8 eV below which no chemisorption of CH3 would occur was 

noticed. Hydrogen dissociation from CH3 was observed for incident energies 

higher than 15 eV. They also found that below 10 eV incident energy, the 

chemisorption probability of C2H2 on a clean diamond (001)-(2x1) surface was 

lower than that of CH3 on a hydrogen covered surface at the same impact 

energy. 

  Neyts et al. [43] investigated the sticking efficiencies and hydrogen 

abstraction efficiencies for hydrocarbon species, such as C2, C2H, C3H2, and C3 

on a diamond like carbon (DLC) layer at two different values of their initial kinetic 
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energies, namely, 0.1 eV and 1.0 eV using MD simulations. The DLC layer had 

830 atoms, the time step used was 0.5 fs, and the trajectory duration was 1.25 ps 

for 1 eV kinetic energy impacts and 2.5 ps for 0.1eV kinetic energy impacts. All 

species had sticking efficiencies between 0.1 and 0.4. They found that species 

with no hydrogen atom had a smaller decrease in sticking efficiency with 

decreasing energy than species that contain hydrogen. They also noted that 

C3H2 had the highest hydrogen abstraction efficiency, C2 had the lowest 

abstraction efficiency, and C3 had zero hydrogen abstraction efficiency.  

  Palithorpe [44] conducted MD simulation studies for the deposition of low-

energy carbon atoms onto a low-temperature diamond (111) surface using 

Stillinger-Weber potential. The time step for the integration was 0.13 fs, the 

energy of the incident carbon atom was in the range of 1-100 eV and the 

substrate temperature was maintained at 100 K. He reported that with 

intermediate energies (20-60 eV), the incident atom penetrates beneath the 

exposed (111) surface and significantly increases the lateral compressive stress 

in the diamond film, thereby promoting amorphous diamond formation. 

  From the above literature survey, we infer that MD simulation is a powerful 

tool for studying many complex reactions that takes place when different species 

are incident on the diamond substrate. But a main disadvantage of MD 

simulation is that it consumes huge amounts of computational time (and 

consequently higher cost), and this time increases rapidly as the number of 

atoms in the system considered increases. Even to study the effect of one 

parameter, say the effect of impact parameter on the chemisorption probability of 
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a carbon dimer on (100) diamond surface, keeping other inputs at a fixed value, 

consumes large amounts of computational time. Therefore, the exploration of the 

entire set of values become highly challenging and computationally costly when 

MD simulation has to be used. Any technique that permits the exploration of the 

wide range of input conditions will be of great benefit this area. Neural network is 

one such approach that offers such an advantage. This can be inferred from the 

following literature. 

  Natale et al. [45] employed a modular neural network approach for 

enhancing the quality of films obtained during atmospheric chemical vapor 

deposition of doped silicon dioxide films.  A neural network was used to establish 

a relationship between the equipment’s operating conditions and the 

characteristics of the resulting films. This in turn aids in finding the optimal set up 

conditions for obtaining high quality of films. Machine operating conditions are 

determined by factors, such as gas flow, chamber pressure, injector temperature, 

nitrogen flow. These factors are used as inputs to the network and film quality 

deciding factors, such as boron and phosphorus weight percent in the plasma 

and film thickness were used as outputs to the network for training and testing 

the neural network. The prediction by the network was good with an average 

error of about 1 % and a maximum error below 10 %. Erbil et al. [46] developed a 

semi-empirical model using hybrid neural networks to determine the deposition 

rates of TiO2 films in a metal-organic CVD process. Temperature, total flow rate, 

reactor chamber pressure, source pressure, and precursor flow rate were used 

as inputs to the network and the TiO2 deposition rate was used as output during 
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the learning and testing stages of the network. The neural network used was able 

to identify three critical parameters, unknown in analytically derived deposition 

rate expression, leading to more general physical expression and methodology 

for predicting deposition rate over a wide range of operating conditions. 

  Bhatikar and Mahajan [47] used a feed-forward neural network to predict 

the performance of a CVD barrel reactor widely used in silicon epitaxy. Their 

approach involved spatial variation of the deposition rate of silicon on a facet of 

the reactor. They hypothesized that this spatial variation encodes a pattern that 

reflects the state of the reactor. A feed-forward neural network with eight neurons 

in the hidden layers was used to predict and decode the pattern thereby 

predicting the state of the reactor so that it can be optimized to increase the 

production efficiency. Three different patterns or process faults were diagnosed 

and the network was able to predict and discriminate these process faults with 

100% accuracy. 

  Han and May [48] applied neural networks to predict the complex 

correlation between the deposition conditions and output parameters reflecting 

film quality in plasma enhanced CVD (PECVD) process. Deposition parameters, 

such as, substrate temperature, pressure, RF power, silane flow, and nitrous 

oxide flow were used as inputs and the corresponding deposition rate, 

permittivity, film stress, uniformity, silanol and water concentration in the films 

deposited were used as outputs for training the network. This trained network 

model was used “in reverse” to predict the necessary operating conditions to 

achieve the desired film quality. They were able to synthesize recipes to produce 
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novel film properties, such as uniformity, low permittivity, stresses, and impurity 

concentration using the optimized neural network models. 

  Geisler et al. [49] modeled chemical vapor deposition of silicon nitride 

(Si3N4) films using a five-layered feed forward network. The neural network was 

trained using both supervised and unsupervised learning techniques. The input 

vector had six variables, namely, substrate temperature, chamber pressure, RF 

power, NH3 flow, SiH4, and N2 flow and the output vector had three variables, 

namely, the film’s refractive index, the effective lifetime, and the positive charge 

density. Competitive learning algorithms were then used to determine the input-

output relationship functions and these functions are then optimally adjusted to 

enhance the silicon nitride film properties. 

  Lorenz et al. [50] used a multilayered feed-forward network and developed 

an ab-initio potential energy surface (PES). They showed the accuracy of the 

neural network developed PES using the hydrogen dissociation on the (2 x 2) 

potassium covered Pd (100) surface. The sticking probability of H2 on this 

potassium (2 x 2) covered Pd (100) surface is calculated using MD simulations 

on the neural network PES. The results were compared with the analytically 

developed potential energy surfaces and found to be in good agreement.     

  Hobday et al. [51] showed that a feed-forward network can be used to 

develop a potential energy surface to study the complex C-H problem. The 

network used had an input vector set with five elements and six hidden nodes 

with a total of 43 weights and biases. The results were compared with the 

Brenner potential formulation for C-H clusters which indicated a good agreement 
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with both structure and energetics. Numerical experiments showed that the PES 

developed using neural network though slower than Brenner potential by 60-80 

% it is still inexpensive compared to the ab initio calculations and can be 

efficiently used for still more complex systems like C-N where bonds are more 

complex as compared to C-H systems considered.   

 Raff et al. [52] interpolated ab initio potential-energy surfaces using a feed 

forward neural network and novelty sampling approach. They used various 

configurations of five-atom silicon cluster and calculated the force and potential 

associated with each configuration at the MP4(SDQ) level of accuracy using 6-

31G** basis set. They employed a novel sampling procedure and sampled the 

important regions of configuration space in iterative fashion using MD 

trajectories. A large number of new cluster configurations and corresponding 

potential and forces associated with those configurations were obtained using the 

novelty sampling technique. These cluster configurations, and the potential and 

forces associated with them were used to fit a neural network and obtain the 

potential energy surface (PES). The interpolated potential energy surface (PES) 

can be used efficiently for conducting MD and Monte Carlo studies of large 

systems involving complex reactions, nanometric cutting and nanotribology. The 

novelty sampling technique involves tight integration of MD calculations with NN 

and enables easy identification of new configurations in MD and also act as a 

good convergence test independent of MD computations. Early stopping and 

regularization techniques were used to give quick and precise results. The neural 
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network used was found to give good interpolation accuracy and easy usage of 

the obtained force fields directly for dynamic studies.  

 Sumpter and Noid [53] employed a neural network with 426 input nodes, 

one hidden layer with 7 nodes, and an output layer of 18 nodes for obtaining a 

potential energy surface for macromolecules, such as a polyethylene molecule. 

An accurate anharmonic potential energy surface was formulated. The 

parameters in this PES were suitably changed and the corresponding vibrational 

spectra of the macromolecule is monitored. The neural network is then trained for 

51 different vibrational spectra values of the macromolecules as inputs and the 

corresponding potential energy parameters outputs for 20000 cycles. Then the 

network was trained to determine the relation between the vibrational spectra 

and the corresponding parameters of the PES with a maximum error of less than 

4%. This network was later used for obtaining parameters for a multidimensional 

PES.  

 Noid et al. [54] used neural network to investigate the energy flow in 

molecular systems, such as H2O2. The neural network was made to learn the 

correlation between phase-space points along a classical trajectory and mode 

energies for stretch, bend, and torsion vibrations. The input vector to the network 

comprises of 12 cartesian atom positions (x, y, z), 12 cartesian momenta (px, py, 

pz), and four atomic masses. The output from the network comprised of six 

kinetic internal mode energies. The network employed had 28 input nodes, two 

hidden layers with 38 nodes in the first hidden layer and 12 nodes in the second 

hidden layer and an output layer of six nodes, giving a total of 84 nodes and 
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1648 connection values including bias values. The trained network was able to 

produce reasonably accurate results with an average error between 1% and 

12%. Also the network has been employed for studying the energy flow in other 

tetratomic molecules, such as H2X2, X=C, and Se. 

  From the above review of literature on neural networks, we find the 

application of neural networks to molecular dynamics can reduce the burden on 

MD simulations to a considerable extent. It can also provide an opportunity to 

explore the effect of different parameters on the probabilities of various events in 

a CVD process with less computational time and cost. 
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CHAPTER 5 

   PROBLEM STATEMENT 

 

From a review of the literature one can perceive that investigation of 

elementary reactions, such as chemisorption, scattering, insertion, and 

desorption that occur during thin-film growth of microcrystalline diamond by 

chemical vapor deposition (CVD) process or any other growth process is of 

immense importance. Though MD simulations have been used successfully to 

study these reactions, a major limitation inherent with it is that it involves 

integration of numerous equations that consume an enormous amount of 

computational time and cost.  

For example, to study the influence of one of the input parameters, say the 

effect of impact parameter (b) on the chemisorption probability for a fixed set of 

other parameters, namely, translational energy (ETrans), rotational energy (ERot), 

incidence angle (θ), and azimuthal angle (Ф) of the carbon dimer, we ran 50 

trajectories for every value of impact parameter (b), ranging from b = 0 to b = 3.5 

Å. By dividing this range into ten equal intervals, a total of 550 trajectories were 

run. We used a system of 324 atoms and time for running a single trajectory was 

~1 minute. So, it took us a total of 550 minutes (~9.2 hours) to study the 

influence of a single parameter on one of the reaction probabilities for a single 

set of other input parameters. 
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Therefore, the investigation of the entire domain consisting of the 

dependence of various reaction probabilities on different variables is a very time 

consuming and challenging job. Any technique that cut shorts the enormous 

simulation time and offers an opportunity to explore the entire domain of input 

variables will be of immense interest to researchers and deserves to be explored. 

To achieve this objective, we intend to use neural networks to determine the 

probabilities of various reaction events, namely, chemisorption, scattering, and 

desorption that occur during the deposition of carbon dimer on a diamond (100) 

surface as a function of various input parameters. 

The implementation of the neural network for predicting the probabilities of 

various events occurring during carbon dimer (C2) deposition on a diamond (100) 

surface is achieved through following stages: 

• We first employed MD simulations to compute the probabilities of 

chemisorption, scattering, and desorption as a function of input 

parameters, such as rotational energy (ERot), translational energy 

(ETrans), angle of incidence (θ), impact parameter (b), and rotation 

angle (Φ). 

• Training the neural network by feeding the values of outputs for some 

known values of input parameters over a wide range. 

• Testing the NN by supplying it with few input parameters and asking it 

to predict the output, and comparing the NN prediction with MD results. 
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CHAPTER 6  

MOLECULAR DYNAMICS (MD) SIMULATIONS OF CARBON    

DIMER (C2) DEPOSITION ON DIAMOND (100) SURFACE 

 

Diamond film growth in a chemical vapor deposition (CVD) process 

involves complex reaction mechanisms taking place between the atoms of the 

substrate and the gaseous radicals used in the process. However complex the 

reaction mechanism might be, it all starts with preliminary elementary reactions, 

such as chemisorption of the radical species, scattering and desorption. This 

chapter focuses on these elementary reactions that occur during the deposition 

of carbon dimer (C2) on to the (100) diamond surface in a CVD process. 

6.1.  Computational Model 

 In this study, a (100) diamond surface has been used. The surface was 

modeled using a slab of five layers of carbon atoms with the (100) face exposed. 

Except for one carbon atom that serves as the radical site, every carbon atom on 

the top layer is capped with one hydrogen atom. The atoms on all five faces of 
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the substrate, except the top face, are made to be non-moving atoms, while the 

remaining atoms were allowed to move. The system used in this study has a total 

of 324 atoms of which two are the atoms of the carbon dimmer and remaining 

322 atoms are of the diamond substrate and hydrogen atoms. The dimensions of 

the substrate are 17.7 x 3.54 x 17.7 Å. The two atoms of the carbon dimer are 

placed above the radical site such that the center of mass of the dimer is at a 

vertical distance of ~10 Å from the top surface of the substrate to make sure that 

the long-range interactions between the carbon dimer and the substrate atoms is 

near zero.  

An empirical many-body Brenner potential (Brenner et al. [13]), which 

realistically describes the bonding in hydrocarbon systems, is used to account for 

the short-range interactions. A Lennard – Jones 6-12 potential is used to model 

the long-range interactions. The substrate temperature was maintained at Ts=600 

K using a thermostat that employs the velocity scaling method of Berendsen [55]. 

A constant time step of 0.5 fs is used for numerical integration of the equations of 

motion and the Gear predictor corrector [18] method was used for numerical 

integration. Before the dimer deposition process, the substrate is relaxed in a 600 

K thermal bath for 30 ps allowing it to approach the thermal equilibrium state. 

The simulation model used is shown along with the carbon dimer (C2) in Figure 

6.1. The top three layers of the diamond substrate and the radical site are shown 

in Figure 6.2. 
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 Fig 6.1: Simulation model and carbon dimer (C2) 

 

 

Fig 6.2: Top three layers of atoms of diamond (100) substrate and radical site 
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6.2.  Parameters of Interest 

The mechanism of diamond-film growth has been investigated by several 

research groups using theoretical and/or experimental methods. A number of 

elementary reactions have been suggested as playing a vital role in diamond-film 

formation. The occurrence of these reactions depend not only on the surface 

structure of the substrate on which the hydrocarbon atoms are deposited but also 

on a number of parameters [31, 33, 35, 36, 38], such as  

• Incident azimuthal angle (θ) 

• Rotation angle (Ф) 

• Impact parameter (b) 

• Translational energy of the Carbon dimer (ETrans) 

• Rotational energy of the Carbon dimer (ERot). 

In the following section we will be dealing with the distribution of each of these 

input parameters as well as with the events considered in this investigation. 

6.2.1. Incident polar angle (θ): 

Incident angle of the dimer (θ) is the angle between the velocity vector of 

the center of mass of the dimer and the normal from the aimed point on the 

substrate. The polar angles were selected from the distribution function P (θ) dθ 

= C sinθ dθ over the range 0 ≤ θ ≤ θmax. This can be conveniently accomplished 

using a cumulative distribution function that leads to Eqn. (6.1) [56]. 

 Θ = cos-1{1 – ξ1 (1-cos θmax)}   ,      (6.1) 

where ξ1 is a random number selected over the range [0, 1] and θmax is 

determined as follows. In the case of an infinite lattice model, θmax = π/2. In the 
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present calculations, the size of the lattice model used requires that the value of 

θmax be limited to 23o. With this choice for θmax, normalization of the distribution 

function gives C=12.579. The incidence angle of the hydrocarbon atom is shown 

along with other input parameters in Figure 6.3 

 

Fig 6.3: Sketch showing input variables for the trajectory calculations [35] 

The distribution for the incidence angle of the dimer follows the smooth linearly 

increasing curve shown in Figure 6.4. The histogram is an example of the θ 

distribution obtained using Eqn. (6.1) 
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        Fig 6.4: Distribution of incidence angle 
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6.2.2. Rotation angle (Ф):  

The probability distribution for the rotation angle is of the function form 

P (Φ) dΦ = C dΦ and is uniform over the interval 0 ≤ Ф ≤ 2π; the initial value of Ф 

has been selected from in Eqn. (6.2) 

   Ф = 2 π ξ2   ,        (6.2)  

where ξ2 is a random number selected over the range [0, 1]. The normalization of 

the distribution function gives C= 0.1591.The theoretical distribution of the 

rotation angle is a constant straight line shown in Figure 6.5 as the line. The 

statistical result obtained from Eqn. (6.2) [56] is shown as the histogram. 
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Fig 6.5: Distribution of rotation angle 

 

6.2.3. Impact parameter (b): 

The impact parameter represents the distance between the radical site 

and the aiming point on the surface of the substrate. The impact parameters are 
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selected from the distribution bdbNdbbP π2)( = over the range 0 ≤ b ≤ bmax, where 

the upper limit, bmax, is chosen such that for impact parameters b > bmax, the 

chemisorption probability is zero. Using a cumulative distribution function, this 

selection can be made by obtaining b for each trajectory from the equation 

 b = 3ξ bmax   ,        (6.3)  

where ξ3 is a random number selected from a uniform distribution on the interval 

[0, 1]. The maximum impact parameter (bmax) is found to be 3.5 Å. With this 

choice for bmax the normalization of the distribution function gives N=0.1633. 

The impact parameter distribution obtained using Eqn. (6.3) is compared with the 

theoretical result obtained from the probability distribution function [36]. 
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               Fig 6.6: Distribution of impact parameter 

6.2.4. Translational energy of the carbon dimer (ETrans) 

The initial translational velocity of the carbon dimer was selected from a 

Boltzmann distribution at the same temperature as the lattice which is Ts = 600 K. 

The functional form of the Boltzmann distribution is given by [57] 
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        Fig 6.7: Distribution of translational energy of the dimmer 

 

  P ( E Trans) = A KTE
e

/−  ,       (6.4) 

The distribution of translational energy of the dimer is shown in Figure 6.7. 

6.2.5. Rotational energy of the carbon dimer (ERot) 

The rotational energy of the carbon dimer was calculated assuming a 

rigid-rotor type rotational energy quantization [58]: 

  JE = IJJ 2/)1( 2
h+ ,   where π2/h=h  .    (6.5) 

Here, I  represents the equilibrium moment of inertia and J  represents a 

continuous quantum number [58] given by the Eqn (6.6) 

    { }( )1/)1ln(812/1
2/12 −−−= hξIkTJ     ,    (6.6) 

where T  is the temperature and ξ  is a random number selected from a uniform 

distribution in the interval [0, 1]. The spread for the rotational energy of the dimer 

is shown in Figure 6.8. The theoretical result for the rotational energy is given by 

the distribution function [58] in Eqn (6.7). 

  )/exp()( kTECgdJJP JJ= ,     (6.7) 
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 Fig 6.8: Distribution of rotational energy of the dimer 

In Eqn (6.7) C  represents the normalization constant and Jg  represents the 

degeneracy. 

The vibrational energy of the dimer corresponds to the zero point energy ( ZPE ) 

of the dimer. 

 vEhZPE == 2/0υ    ,       (6.8) 

 2)2/1( Rv VE µ=          ,       (6.9) 

where h  is the Planck’s constant, 0υ  is frequency, µ  is the reduced mass of the 

dimer, and RV  is the relative vibrational velocity of the dimer. Eqn (6.9) assumes 

the initial vibrational phase of the dimer corresponds to the equilibrium positon. 

6.3.  Predominant events in CVD dimer deposition 

Many complex chemical reactions on a surface begin with simple 

elementary steps. These steps include adsorption on the surface, diffusion of the 

adsorbed atoms or molecules between binding sites, bond-breaking, insertion of 
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atoms or molecules and desorption of product molecules. In our present studies 

we have focused on the following events and their probabilities. 

• Chemisorption  

• Scattering/Reflection 

• Desorption 

6.3.1. Chemisorption 

The initial conditions for the substrate and the carbon dimer are selected 

as discussed above. The position and the force on each atom in the system is 

determined by solving the Newtons equations of motion. The potential energy of 

the system is monitored after every integration step. A sudden drop in the 

potential energy of the system was noticed as the dimer approaches the 

substrate indicating the bond formation between the carbon dimer and the radical 

site. The trajectory calculations are carried out for an additional time of 1 ps after 

the dimer has reached the surface. Chemisorption of the carbon dimer is said to 

have occurred if the adsorbed atom undergoes ten or more inner turning points 

with respect to motion in the surface normal direction and the distance between 

the radical site and one of the carbon atoms of the dimer is within a cut-off radius 

of 2 Å of the radical site. The chemisorption probability is determined by running 

50 trajectories keeping the input parameters, such as the incidence angle, 

rotational angle, translational energy, rotational energy and impact parameter 

constant and averaging over other factors such as the thermal vibrations of the 

lattice, vibrational phase angles of the lattice, rotational plane of the dimer and 
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initial orientation of the dimer. Figure 6.9 gives the variation of potential energy of 

the system V, the Z coordinate of the center  of mass of the dimer, and the  
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 Fig 6.9:   Variation of system’s potential energy, Z coordinate of COM of the        

dimer distance between carbon atoms of the dimer (chemisorption 
event) 
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distance between two carbon atoms of the dimer, R, as a function of time. It can 

be seen from Figure 6.9, there is a sudden drop in the potential energy of the 

system by ~ 6 eV at the instance of bond formation. 

6.3.2. Scattering 

Scattering of the dimer is said to have occurred if the dimer executes only 
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 Fig 6.10:  Variation of system’s potential energy and Z coordinate of COM 
  of the dimer (scattering event) 
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one inner turning point on the surface of the (100) lattice and then bounces back. 

The system energy is monitored over every integration time step and there is 

found to be no drop in the potential energy of the system as there is no bond 

formation between the incoming dimer atoms and the atoms of the diamond 

surface. The scattering probability is determined using the same procedure as 

used for chemisorption. Figure 6.10 gives the variation of potential energy of the 

system,V , and the Z coordinates of the center of mass of the dimer as a function 

of time. It can be seen from Figure 6.10, there is no change in the potential 

energy of the system as a result of scattering of the dimer. 

6.3.3. Desorption 

In the desorption event, the carbon dimer comes to the surface of the 

lattice, gets adsorbed without appreciable change in the potential energy and 

then desorbs back after a few oscillations. The probability of desorption is 

determined by running 50 trajectories keeping the incidence angle, rotation 

angle, translational velocity, rotational velocity and impact parameter constant 

and averaging over the thermal vibrations and vibrational phase angle of the 

lattice. Desorption is said to have occurred if the carbon dimer (C2) executes less 

than 10 inner turning points on the diamond surface and bounces back. There is 

no change in the potential energy of the system. 
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Fig 6.11: Variation of system’s potential energy and Z coordinate of COM   
of the dimer (desorption event) 

 

Figure 6.11 shows the potential energy of the system and Z coordinate of the 

dimer’s center of mass with time for the desorption event.  As can be seen from 

the plot, the dimer stays on the substrate for greater period of time as compared 

to that for a scattering event. 
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CHAPTER 7 
 

NEURAL NETWORKS (NN) FOR EVENT PROBABILITY 
PREDICTION 

 
 

The probabilities of various events, such as, chemisorption, scattering and 

desorption determined by MD simulation has been used to implement a neural 

network and subsequently use that neural network to predict the probabilities of 

these events as well as to find the effect of various input parameters on these 

probabilies. In studies described in Chapters 8, three separate networks have been 

implemented, one each, for predicting the probabilities of the three events. This 

chapter discusses the architecture of the network used, the structure of the input 

and output data set to the network, the total number of data sets used, and the 

procedure for implementation of the network, namely, training and testing of the 

network. 

7.1. Architecture and working of the neural network 

The neural network used in this investigation for predicting the probabilities 

of various events that occur during carbon dimmer (C2) deposition on a diamond 

(100) surface is a multilayered feed forward network. The network has two layers, 

the first layer is a hidden layer that has 50 hidden neurons and a tansigmoid 

transfer function associated with every hidden neuron in the layer. The second 

layer is the output layer that has one neuron and a pure-linear transfer function 
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associated with it. The output from this second layer is the probability of a 

particular event and this forms the final output of the neural network.  

The input vector to the neural network has five components, namely, the 

incidence azimuthal angle of the dimer (θ), the rotation angle (Φ), impact 

parameter (b), translational energy of the dimer (ETrans), and rotational energy of 

the dimer (ERot). The output vector of the neural network has a single component 

which forms the probability of a particular event predicted by the neural network.  

7.2. Implementation of the neural network 

The implementation of the neural network for predicting the probabilities is 

carried over in two stages, namely, the training stage and the testing stage. The 

network is trained using Levenberg-Marquardt algorithm that employs a 

procedure known as early stopping [69]. In this procedure, the training of the 

neural network was met within approximately 20 iterations or epochs. The total 

input data containing 2000 data sets to the network is divided into two subsets, of 

which 85% of the data (1700 data sets) becomes the training set, which was 

used for training the network, and the remaining 15 % (300 data sets) of the data 

becomes the validation set. Fifty different neural networks were trained by 

random selection of the 85% of the training data and the average of outputs of 

these 50 networks is computed to arrive at the predicted probabilities.  

It may be noted that during initial stage of each training, the error on the 

training and validation sets decrease. But, when the network starts overfitting, the 

error on the training set continues to decrease while that on the validation set 

starts increasing. When the error on the validation set begins to increase for a 
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specified number of iterations, it indicates the network is attempting to overfit and 

so the training is stopped. Such an early stopping procedure has been 

successfully used to prevent the network from overfitting [69].  

After the network has been trained successfully, it is tested by supplying it 

with a set of input data to predict the output. If the network has been trained 

properly, it will be able to predict an output that matches closely with the desired 

output. 
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CHAPTER 8                                                                                                                                                                                                
 

PREDICTION OF EVENT PROBABILITIES – NEURAL NETWORK 
VS MD SIMULATION 

 
 

In this chapter we report results of MD simulations for predicting the 

probabilities of various events, such as, chemisorption, scattering, and 

desorption that occur during the deposition of carbon dimer (C2) species on a 

diamond (100) surface in the CVD process. We shall use these results to train 

the neural network and determine the underlying relationships between the five 

input parameters of the dimer and each of the three event probabilities. 

8.1.  Data points generation for neural networks 

The five input parameters used in the synthesis of diamond by CVD 

process, namely, the incidence angle (θ), rotation angle (Φ), impact parameter 

(b), translational energy (ETrans), and rotational energy (ERot) of the dimer forms 

the input vector for the neural network and the corresponding event probabilities 

forms the output vector of the neural network. A total of 2000 data points are 

used for training and testing the neural network. Every point for the neural 

network is generated by running 50 MD trajectories. All the five input parameters 

were kept constant during these 50 trajectories. The probability of occurrence of 

each of the three events were estimated at the end of these 50 trajectories by 
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taking the ratio of the number of times a particular event has occurred to 

the total number of trajectories computed.  

8.2.  Training and testing of the neural network 

 As mentioned in Chapter 7, the implementation of the neural network 

involves training and testing. First, the five input parameters and the output 

probabilities were normalized to make the range to lie between -1 and +1.  

Normalizing is done using the formula 

  1
)(

)(2

minmax

min −
−

−
=

pp

pp
pn       ,     (8.1) 

where p is the variable to be scaled, minp  and max maxp  are the minimum and 

maximum values of each variable in the input or output vectors for the entire 

database consisting of all the points. pn is the normalized value corresponding to 

p. 85 % of the normalized data have been used for training and the remaining 

15% is used for the validation of the network. 50 neural networks were generated 

by a random selection of 85% of the training data, and the average of the outputs 

of these 50 networks is computed to obtain the final predicted probabilities. The 

training of the neural network was accomplished within approximately 20 

iterations or epochs. The initial weight matrices for each training were randomly 

chosen. This is done to enable the network to get trained for any randomness. 

Each neural network was trained using supervised learning mentioned in Chapter 

3. Early stopping was used to prevent the network from overfitting [69]. After 

each neural network has been trained, the network was tested with a test data 

set to see whether the network is able to predict the outputs correctly.  
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Figures 8.1 through 8.3 show the training and testing plots for the three events, 

namely, chemisorption, scattering, and desorption for one of the neural networks. 

The scatter present in the training and testing plots is because of the uncertainty 

occurring due to averaging over just 50 trajectories for calculating the probabilities 

of the events.  
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Fig 8.1: Neural network training and testing plots for the probability of  
              chemisorption for one neural network 
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The scatter in the plots can be greatly minimized by averaging over a larger 

number of MD trajectories, say 500 trajectories per data point instead of 50 

trajectories per data point. For example, if we average over 500 MD trajectories, 

and assume one chemisorption event occurred then the statistical uncertainty 

involved here is calculated using Eqn (8.2) to be 0.001999. Now, let us take the  
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Fig 8.2: Neural network training and testing plots for the probability of  
    scattering for one neural network 
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present case in which we average over 50 trajectories, and one chemisorption 

event occurred, the statistical uncertainty in this case is 0.0197. We see that the 

statistical uncertainty reduces by ten times if the number of trajectories is 

increased. 

As mentioned in Chapter 3, three individual neural networks have been used for 

predicting the probabilities of the three events, one network for each event 

probability. 
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Fig 8.3:  Neural network training and testing plots for the probability of  
 desorption for one neural network 
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The rms error in the training was found to be 0.0422 for the chemisorption 

probability network, 0.0561 for the scattering probability network and 0.0550 for the 

desorption probability network. The rms error during testing was found to be 

0.0512 for the chemisorption probability network, 0.0695 for the scattering 

probability, network and 0.0630 for the desorption probability network. 

8.3.  Effect of input parameters on event probabilities: Neural network 

Versus MD predictions 

The effect of the five input parameters, on the probabilities of chemisorption, 

scattering, and desorption has been studied using MD simulations. Subsequently, 

neural networks were used to predict the relationship existing between the input 

parameters and the event probabilities. In this section we will investigate the 

predictions made by the neural networks and compare their predictions with MD 

simulation results. 

8.3.1. Effect of incidence angle (θ) 

  The effect of incidence angle (θ) on the three probabilities was studied using 

MD simulations by running trajectories in which the other four input parameters are 

maintained constant. For every value of the incidence angle of the dimer 50 

trajectories were run in order to average over the thermal vibrations and vibrational 

phase angles of the lattice.  The probabilities of the three events were determined 

as described in Section 8.1. The input parameters for which MD trajectories were 

run are as follows: Ф = 110°, b = 1 Å, ETrans = 0.124 eV, ERot = 0.052 eV and the 

incidence angle is varied from θ = 0° to the maximum incidence angle θmax = 23° in 

steps of 2°. The neural networks that were trained (as described in Section 8.2)  
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are used to simulate the event probabilities for the same input data and the results 

are plotted in Figure 8.4 along with the MD results. It can be seen from Figure 8.4,  
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Fig 8.4:  Effect of incidence angle on chemisorption, scattering and desorption 
      probabilities - MD and Neural network predictions. The error bars 
      represent one sigma limit of statistical uncertainty in the MD results. 

 

the results predicted by MD calculations and neural network agree well with each 

other.The chemisorption probability, scattering probability, and desorption 

probability are represented as PC, PS, and PD, respectively, in the graphs. The 
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statistical error present in MD is found to be one sigma limit of uncertainty. It is 

calculated using the formula [36] 

 )(*]/)[( 2/1 PNNNN RR σ−=∇ .     (8.2) 

Here, N  represents the total number of trajectories, RN  represents the number of 

times a particular event has occurred, and )(Pσ  represents the event probability. 

For example, say that out of the 50 trajectories ran, 40 events are chemisorption, 

then the one sigma limit of uncertainty in MD using Eqn. (8.2) is 0.0565.  

8.3.2. Effect of rotation angle (Ф) 

The effect of rotation angle on the event probabilities is studied using MD 

simulations using the same procedure. In this case, all parameters except the 

rotation angle (Ф) are kept constant for all trajectories. The rotation angle is varied 

from 10° to 360° in steps of 20° for every 50 trajectories. The input parameters for 

which MD trajectories were run are given as: θ = 11°, b = 1 Å, ETrans = 0.06 eV, ERot 

= 0.052 eV. The same input data sets that were used for running the MD 

trajectories are used as the test data set for the neural networks and the average 

neural network output is plotted along with the MD results in Figure 8.5. The error 

bars in the figure corresponds to the statistical error in MD and is computed using  

 

Eqn (8.2). We notice that the MD results and the neural network results agree well 

with each other. 
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FIG 8.5:  Effect of rotation angle on chemisorption, scattering and desorption-   
    probability MD and Neural network predictions. The error bars represent    
    one sigma limit of statistical uncertainty in the MD results. 
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8.3.3. Effect of impact parameter (b) 

          The effect of impact parameter on the three event probabilities are 

determined using MD simulations using the same procedure as described in 

Section 8.3.1.  
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FIG 8.6: Effect of impact parameter on chemisorption, scattering and desorption 
probabilities MD and Neural network predictions. The error bars    
represent one sigma limit of statistical uncertainty in the MD results. 
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The impact parameter is varied from 0.25 Å to maximum impact parameter bmax = 

3.5 Å in steps of 0.25 Å for every 50 MD trajectories. The values of other input 

parameters are as follows: θ = 17°, Ф = 310°, ETrans = 0.06 eV and ERot = 0.052 eV. 

The neural networks are now used for predicting the event probabilities by using 

the same test data as used for running the MD calculations. The results are plotted 

along with MD results and uncertainty associated with MD in Figure 8.6. It can be 

seen that the output of the neural network is in accordance with that of MD. 

8.3.4. Effect of translational energy of the dimer (ETrans) 

The effect of translational energy of the dimer on each of the three event 

probabilities were determined using MD using the same procedure as described 

above for the other parameters. The values of input parameters are as follows: θ = 

11°, Ф = 110°, b = 1 Å and ERot = 0.052 eV. The same input data set is used for the 

neural networks. The average output of the networks and MD results along with 

statistical error associated with MD are shown in Figure 8.7. Here again, we note a 

good agreement between MD and NN. 

 

 

 

 

 

 

 

 



 84 

0

0.2

0.4

0.6

0.8

P

MD
Neural Network

0

0.2

0.4

0.6

0.8

P

0 0.05 0.1 0.15 0.2 0.25

Translational energy (eV)

0

0.2

0.4

0.6

0.8

P
D

S

C

 

Fig 8.7: Effect of translational energy on chemisorption, scattering and desorptio 
desorption probabilities – MD and Neural network predictions. The error 
bars  represent one sigma limit of statistical uncertainty in the MD results. 
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8.3.5. Effect of rotational energy of the dimer (ERot) 

 The effect of rotational energy of the dimer on three probabilities is 

determined using MD simulations and also using neural networks using the same  
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Fig 8.8: Effect of rotational energy on chemisorption, scattering and desorption 
    probabilities – MD and Neural network predictions. The error bars 
             represent one sigma limit of statistical uncertainty in the MD results. 
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procedure as described in section 8.3.1.The input data set for MD calculations are 

as follows: θ = 17°, Ф = 110°, b = 1 Å, ETrans = 0.06 eV. The neural networks are 

tested to predict the output for the same data set and the results of MD and neural 

network are shown in Figure 8.8. We note that the neural network and MD results 

agree well with each other. 

8.4. Statistical uncertainty: Neural network Vs MD 

The results given by molecular dynamics simulation have a statistical uncertainty 

that can be calculated using Eqn. (8.2). Figures 8.4 through 8.8 show the MD 

results with error bars to indicate the one sigma limit of statistical uncertainty in the 

MD calculations. The neural network plots are obtained by averaging over 50 sets 

of neural network matrices. Therefore, the neural network predictions also have 

statistical errors associated with them, but, the error in neural network prediction is 

very small compared to MD (See Figure 8.9). The figure shows the neural network 

predictions and MD predictions along with the error bars to show the one sigma 

limit of statistical uncertainty associated with each case. The error bars in dotted 

lines represent the statistical noise associated with neural network, and the error 

bars in solid lines represent the statistical error associated with MD. We infer from 

Figure 8.9 that the functional relationship between various input parameters and 

different event probabilities predicted by the neural network are continuous and 

have less statistical uncertainty associated with them than do the MD results. 
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Figure 8.9: Comparison of statistical uncertainty in neural network and MD 
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8.5. More results from neural networks 

In Section 8.3, we have seen that neural network is able to predict the 

underlying relationship existing between the incidence angle (θ), rotation angle (Ф), 

impact parameter (b), translational energy (ETrans) and rotational energy (ERot) of 

the dimer, and the probabilities for chemisorption, scattering and desorption. After 

training the neural network, it is easy to compute the probabilities of different 

events for arbitrary sets of input parameters. In Figures 8.10 through 8.14, we 

present additional results given by the trained neural network. The time taken by 

the neural network for predicting the relationship between each of the input 

parameters and the three event probabilities is approximately 3 minutes, whereas 

MD simulation takes 550 minutes (~9.2 hours) to study the influence of a single 

parameter on three event probabilities. So, it is easy to note that the computation 

of the Figures 8.10 through 8.14 by MD simulations would require hundreds of 

CPU hours in contrast to a few minutes by the trained neural networks. 
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       Fig 8.10: Effect of impact parameter on event probabilities for various  
               translational energies of the dimer- NN predictions 
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Fig 8.11: Effect of translational energy on event probabilities for various           

incidence angles of the dimer- NN predictions 
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    Fig 8.12:  Effect of rotation angle on event probabilities for various translational  
                    energies of the dimer – NN predictions 
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Fig 8.13: Effect of incidence angle on event probabilities for various impact p 

            parameters – NN predictions 
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Fig 8.14: Effect of rotational energy on event probabilities for various impact 

parameters – NN predictions 
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CHAPTER 9 
 

CONCLUSIONS AND FUTURE INVESTIGATION   
 
 

MD simulations were conducted to generate the initial data required for 

training the neural network. The neural networks have been successfully applied 

to study the effects of five input parameters (incidence angle (θ), rotation angle 

(Ф), impact parameter (b), translational energy (ETrans) and rotational energy 

(ERot) of the dimer), on the probabilities of three events (chemisorption, 

scattering, and desorption events), that occur during the deposition of carbon 

dimer (C2) onto the diamond (100) surface in a CVD process for thin film growth. 

The conclusions of this study and future investigations are presented in the 

following. 

9.1. Conclusions 

1. Neural networks (NN) can be used effectively to predict the underlying 

relationships between the five input parameters of the dimer, and the 

probabilities of three events outlined above. 

2. The chemisorption probability is found to decrease with increase in 

impact parameter (b). The scattering probability and desorption probability are 

found to increase with the impact parameter (b). 

3. The chemisorption probability is found to increase with increase in the 

translational energy (ETrans) of the C2 dimer but the scattering and desorption 
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probabilities are found to decrease with the increase in the translational energy 

(ETrans) of the dimer. 

4. The chemisorption probability, scattering probability, and desorption 

probability are found to be independent of the rotation angle (Ф). 

5. The chemisorption probability is found to decrease with increase in the 

incidence angle (θ) of the dimer. The scattering probability and desorption 

probability are found to increase with the incidence angle (θ) of the dimer. 

6. The chemisorption probability is found to decrease with increase in the 

rotational energy (ERot) of the C2 dimer but the scattering and desorption probability 

are found to increase with increase in the rotational energy (ERot) of the dimer. 

9.2. Future Work 
 
 1. The approach presented in this investigation can be extended to 

investigate different types of reaction channels and mechanisms that occur during 

diamond film growth.  

 2.  The neural network concept applied here can be extended to investigate 

the event probabilities of other types of growth species, such as CH3, C2H2, and 

C2H4.  

 3. With a slight modification to the neural network used in this study, the 

effects of the type of substrate used, lattice plane(s), temperature and pressure 

effects on event probabilities, reaction channels, and growth rates can be 

investigated to determine the optimum temperature and pressure conditions, and 

appropriate crystal planes for achieving high growth rates and better quality of the 

films deposited.  
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 4. By training the network with more data sets for a particular event, say for 

example, insertion or hydrogen abstraction, the network can be strengthened to 

predict the probabilities of such rarely occurring events with high accuracy and less 

time.  

 5. The neural network approach used in this study can also be successfully 

applied to investigate the reaction channels leading to the growth of other thin 

films, such as polycrystalline silicon and gallium arsenide. 
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