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CHAPTER 1

INTRODUCTION

Web handling is the study of transport of webs on rollers through processing ma-

chinery. Web materials are processed in a continuous, flexible strip form. Many types

of materials and products found in day-to-day life are manufactured and processed in

the form of a web. Examples include papers, textiles, plastic films, thin metals, and

composites. In order to cope up with the growing market demand for inexpensive

consumer products, manufacture of materials in rolled form has increased consider-

ably.

Web tension control plays an important role in web processing and quality of

finished web products. During web processing it is essential to maintain web tension

within a specified tolerance band to ensure smooth process operations. Web materials

pass through many consecutive processing sections during manufacturing of a product,

for example coating, printing, drying, cleaning, etc. Different processing sections

require different levels of tension specifications. Low web tension may create slackness

in webs and may affect processes like printing and coating. High web tension may

cause tears and wrinkles of web material. Severe tension variations may disrupt

the quality of the final product and result in losses like decrease in production rate,

machine hardware damage, etc. Therefore, it is essential to maintain web tension

within a prescribed band when it is transported on rollers.

Figure 1.1 shows a large experimental web platform called the Euclid Web Line

(EWL) which is available at the Web Handling Research Center (WHRC). This line

mimics many typical features of an industrial process line and consists of four sections:
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Figure 1.1: Euclid Web Processing Line (Unwind Section)

unwind, master speed, process, and rewind. Any web transport system consists of

mechanical components like idle and driven rollers, unwind and rewind rolls, driving

motors, tension sensing elements like dancers, load cells, etc. Web material proper-

ties and longitudinal dynamic characteristics influence the behavior of the web in the

transport direction (machine direction). The web behavior in lateral direction (cross

machine direction) is influenced by web material properties, web tension, and char-

acteristics of various mechanical components. Therefore, in order to minimize web

tension variations and transport the web, longitudinal and lateral behavior of webs

must be studied. Longitudinal and lateral web dynamics play an important role in

tension control and ultimately the quality of the finished product.

The focus of this research is on control of web tension in the longitudinal direction.

Extensive literature related to longitudinal tensional control and mathematical mod-

els for longitudinal control can be found. Campbell [1], King [2], Brandenburg [3],
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and Shelton [4] laid fundamental background for the study of longitudinal dynamics

of a moving web. A span is defined as the web between two adjacent rollers. The

model that considers entering web span tension was developed in [2]. Brandenburg [3]

and Shelton [4] assumed strain in the web to be very small and derived the governing

equation for web tension in a span. Non-ideal effects such as moisture change and

temperature variation on tension variation was studied in [5]. An overview of longitu-

dinal and lateral dynamic behavior and tension control can be found in [6]. Tension

control in multi span web systems was presented by Wolfermann [7] and Schroder [8].

In their research, driven roller speed control was proposed for multi span system with

optimal output feedback.

Translational Dancer

Pneumatic Cylinder

Air Reservoir

Figure 1.2: Translational Dancer

A dancer is a device consisting of a roller and a mechanical platform which facil-

itates motion of the axis of rotation of the roller. The platform for the translational

dancer shown in Figure 1.2, consists of linear guides or raceways on which the axis

3



of rotation of the roller is allowed to move based on tension variations. The motion

of the axis of the rotation is restrained by a force applied either by a pneumatic or

hydraulic cylinder and this force is equal to twice the value of the reference web ten-

sion. Any change in web tension from the reference in adjacent spans of the dancer

roller results in the motion of the axis of rotation of the roller. The platform for the

rotational dancer (often called the pendulum dancer) shown in Figure 1.3, consists

of the arm of a pivoted pendulum whose end is connected to the axis of rotation of

the dancer roller. The arm of the pendulum is restrained by a force as in the case

of the translational dancer. The axis of rotation oscillates about the pivot when the

web tension deviates from its reference.

Pendulum Dancer

Figure 1.3: Pendulum Dancer

Two strategies are mainly used for tension control, load-cell-based and dancer

based feedback control systems. In the load-cell-based scheme, web tension measured

by load cells mounted on idle rollers shown in Figure 1.4, is used as the feedback for

the tension control system. In the dancer based scheme, displacement of the dancer

4



(either linear or rotational) due to web tension variations is used as feedback for the

tension control system.

Load Cell

Load Cell

Roller

Display

Figure 1.4: Load Cell

Initial research on the evaluation of control systems using dancer and load cell

can be found in [9]-[10]. A model for unwind and translational dancer system based

on linearized tension dynamics and calculation of minimum resonant frequencies was

developed in [9]. The natural frequency of a subsystem consisting idle rollers was the-

oretically calculated in [9]. In [10], experimental verification of a model is performed

by conducting a series of experiments and relevance is proved between theoretical

frequency response data and experimental data. The dynamic behavior of an idler

system is studied in [11]. Frequency response study is done for idler system to evalu-

ate the natural frequencies of the system. Frequency response experiments conducted

in [11], show agreement between model simulated natural frequencies and experimen-

tally obtained natural frequencies.

The first part of this thesis is on investigation of frequency response of load cell and
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dancer systems. A detailed frequency response study is conducted for the pendulum

dancer which acts as an inferred tension sensing element. This frequency response

study is conducted for the unwind section of a web line between unwind roll and a

driven roller consisting of a number of idle rollers for web transport and a pendulum

dancer. A mathematical model is developed for the pendulum dancer and included

in generalized state space model. Computer simulations are performed based on the

developed linearized state space model. Experiments are conducted for the dancer

feedback system and compared with load cell feedback idler system. The ability of

dancer and load cell feedback control systems to regulate tension during acceleration

and deceleration of web line is studied. A controller normalization procedure is used

to determine the gains for the dancer feedback system based on the load cell idler

system, and this procedure is discussed. An electronic pressure regulator and air

reservoir are installed on EWL for the pendulum dancer system which improve tension

regulation. The procedure on controller normalization, which compares load cell and

dancer feedback control systems, led us to the study of dimensional analysis. The goal

of controller normalization is to match controller gains based on the relation between

dancer position and load cell tension. The normalization study initiated a general

question: Can we evaluate process parameters and controller gains for any general

web line based on the existing experimental web platform with well tuned controller

gains?

The second part of this thesis includes a study of scaling of process parameters

and controller gains based on dimensional analysis. Dimensional analysis is exten-

sively studied and developed in the science of fluid mechanics. Dimensional analysis

technique can be applied to interconnected large scale systems such as robotics, web

handling system, etc. The concept of dimensional analysis and Pi parameter eval-

uation techniques are discussed in [12]. The application of dimensional analysis to

robotics system is discussed in [13]. Dimensional analysis technique simplifies the

6



design and analysis of complex systems.

The dimensionless model and dimensional analysis applications for web transport

system are explored. The study of dimensional analysis discusses the basic concept

of dimensions. The Buckingham Pi theorem and its application to interconnected

systems are also discussed and presented in this thesis. The Buckingham Pi theorem

is a technique used to evaluate dimensionless parameters in a system. The essential

dynamic equivalence condition for dimensional analysis is explained and a method

to scale process and controller parameters is presented. Numerical examples are

provided to show the scaling of process parameters of a web system. Dimensional

analysis is also applied to primitive web handling elements such as an accumulator in

a continuous process line [14] and a pendulum dancer.

The existing PI control scheme for tension control needs extensive tuning to ob-

tain the desired performance. In many web handling systems, some of the process

parameters such as modulus of material and bearing friction are unknown. Also the

existing PI control strategy once tuned does not perform well with change in web

configuration, web flow path, and web materials. These changing parameters in a

web system requires a controller that can adapt to the changes. These current issues

with existing control systems motivates development of adaptive control techniques

for tension control. The area of focus of this study is on Model Reference Adaptive

Control (MRAC) schemes. Direct, indirect and simplified adaptive PI control schemes

are designed for the unwind section of EWL.

A Web transport system is a large scale system consisting of a number of inter-

connected subsystems. Most large scale systems are complex in nature and can be

simplified by decomposing into a number of interconnected subsystems. For large

scale systems, two control schemes are used in general: centralized control and decen-

tralized control. Centralized control is complex in design and needs to handle huge

data from all the subsystems. Also failure to any subsystem may paralyze the cen-
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tralized system and make the overall system unstable. In decentralized control, data

related to neighboring subsystems is only required to control the subsystem. Failure

of any subsystem may not affect the entire operation of the plant. Implementation

of decentralized control is easy compared to centralized control. Different types of

control schemes can be conceived for web transport systems. Adaptive control, H∞

robust control, and LQG/LTR designs are some of the techniques available for control

of tension.

Early development of decentralized controller and challenges were discussed in [15]-

[16]. The concept of augmented error is introduced and used to develop stable MRAC

schemes for plants with relative degree 1 and 2 in [17]. In [18], the theory is extended

to design and analyze MRAC schemes for plants with known relative degree of ar-

bitrary positive value. Decentralized model reference adaptive control (MRAC) was

considered in [19]-[20]. In [21], the classical centralized adaptive control theory is

extended to decentralized adaptive control. Direct decentralized adaptive controllers

are developed for interconnected systems and drifting problem of process parameters

is discussed in [21]. Indirect MRAC scheme is designed for relative degree 1 and 2

systems in [22]. Model reference adaptive system based on the gradient method is

described in [23]. The linearized dynamic model for web velocity and web tension

and decentralized control scheme were proposed in [24] and [25]. In [26] and [27], a

state space reference model is developed for a large scale system and a special model

reference adaptive control scheme was designed and applied to a web process line.

Model reference adaptive schemes for web tension control, in order to meet the

desired performance specifications given in terms of reference model are studied in

this thesis. Model reference schemes were originally known to have been introduced

in flight control; a schematic of an adaptive system is shown in Figure 1.5.

Three types of model reference adaptive control schemes, direct, indirect and

simple adaptive PI controller are considered for web tension control. The designed
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controllers are experimentally verified for tension regulation and compared with a

well tuned PI controller. An adaptive PI controller is developed and implemented for

load cell as well for dancer feedback systems. Sigma (σ) modification is used to avoid

estimated parameter drift problem. Standard deviations of steady state measured

tension signal are used as performance indices for comparison.

1.1 Contributions

The contributions of the research work involved in this thesis may be summarized

as follows:

• A mathematical model for the pendulum dancer and adjacent spans was devel-

oped. The model consists of governing equations for the motion of the dancer

roller and tension in web spans adjacent to the dancer roller. Frequency re-

sponse experiments were conducted to obtain the minimum resonance frequency

of dancer and load cell systems. The developed model was able to predict the

minimum resonant frequency identified by frequency response experiments.

• Time domain experiments were performed to compare the performance of dancer

and load cell tension feedback systems. A controller normalization procedure

9



was developed to determine the controller gains for the dancer based control

scheme based on a given well tuned load cell based control scheme.

• The pneumatic system for the pendulum dancer was improved by installing

an electronic pressure regulator and an air reservoir between the air supply and

the pneumatic cylinder. This electronic pressure regulator is also integrated into

the Rockwell Hardware Controller which facilitates precise setting of reference

tension from the Rockwell control program used to control the motors of the

Euclid Web Line. This enhancement in the pneumatic system improves tension

regulation; experimental results verify this aspect.

• Dimensional analysis was performed for web tension and roller velocity dy-

namics. Dimensional analysis helps in simplifying the governing equations by

reducing the number of variables. The dimensionless dynamics can be used to

scale process parameters and reference variables of the web line. Several nu-

merical examples were provided to investigate the dimensionless tension and

velocity dynamics for scaling of process parameters. Dimensional analysis was

also performed for two primitive elements, accumulator and dancer.

• Three types of model reference adaptive schemes, direct, indirect, and adaptive

PI were designed and implemented on the EWL. Extensive experiments were

performed to evaluate the performance of these adaptive schemes. One key

benefit of the adaptive scheme for tension control over fixed gain controllers

is that the adaptive controller can be used with different web materials, web

line configuration, and sensing systems without much tuning. One limitation is

simplifying the adaptive schemes for ease of implementation on industrial web

lines.
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CHAPTER 2

Modeling and Frequency Response of Web Tension with a Pendulum

Dancer

In web processing lines, web tension is typically regulated using an outer loop

that provides a trim to the velocity reference of the inner velocity loop. The feedback

signal for the outer tension loop is either a position signal from a dancer or a tension

signal from load cells mounted on a roller. The focus of this chapter is on modeling

a pendulum dancer system, studying the frequency response of web tension with

pendulum dancer position as feedback, and comparing dancer position feedback and

load cell tension feedback in terms of web tension regulation. The frequency response

study gives insights into the benefits and limitations of using dancer and load cell

rollers for tension control and relates the limitations to the accuracy of tension control

systems. The frequency response study also facilitates design and implementation of

efficient filters using statistical methods for better tension regulation.

This chapter describes the derivation of a dynamic model of the pendulum dancer

system which consists of the spans adjacent to the dancer roller, upstream and down-

stream idle rollers, dancer roller, and the pivoted pendulum dancer loaded by a pneu-

matic actuator. The dynamic model of the pendulum dancer differs from that of the

load cell. Due to the motion of the dancer, the span lengths adjacent to the dancer

are changing, and this should be incorporated into the modeling of web tensions in

adjacent spans. First, a nonlinear dynamic model is derived followed by a lineariza-

tion of the nonlinear model around operating values. A state space description of the

pendulum dancer system that can be used to determine the resonant frequencies of a

11



web line section between two driven rollers containing the pendulum dancer is given.

The state space model is also used to conduct model simulations.
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Figure 2.1: Euclid Web Line Sketch

The unwind section of the Euclid Web Line (EWL) shown in Figure 2.1, which

contains a pendulum dancer and several load cell (LC) rollers, is used to conduct both

time-domain and frequency-domain experiments. The time-domain study corresponds

to evaluation of the dancer and load-cell based control systems to regulate tension

in the presence of speed changes, i.e., acceleration and deceleration of the line. A

controller normalization procedure that can be used to determine the gains of the

dancer based controller from load cell based controller, and vice-versa, is discussed.

This procedure is based on the assumption that the web is elastic. The dancer and

load cell control strategies are compared based on frequency response experimental

results.

Finally, we discuss enhancements made to the pendulum dancer system by replac-

ing the mechanical pressure regulator with an Electromechanical Pressure Regulator

(EPR) that allows for setting the pressure in the pneumatic cylinder precisely. The

EPR is integrated into the Rockwell controller allowing for setting the pressure in

the pneumatic cylinder remotely. Time domain and frequency response experiments

with the EPR show that tension oscillations are reduced by precisely controlling the

pneumatic cylinder pressure.

The rest of the chapter is organized as follows. The pendulum dancer system

model including the linearization of the nonlinear model is discussed in Section 2.1.

12



In Section 2.2 dancer and load cell based control strategies are discussed, together

with a procedure for normalization of the controllers. Pendulum dancer pneumatic

system is discussed in Section 2.3. Experimental platform, procedure and results

for both time-domain and frequency-domain experiments are given in Section 2.4.

Evaluation of the new electromechanical pressure regulator is given in Section 2.5. A

summary and some concluding remarks are given in Section 2.6.

2.1 Pendulum Dancer System Model

2.1.1 Web Span Tension Dynamics
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Figure 2.2: Pendulum Dancer

Modeling of web span tension dynamics with fixed length has been described in

many studies. In this study, tension dynamics is derived in a pendulum dancer web

span with time varying length as shown in Figure 2.2. The derivation of tension

dynamic model is based on conservation of mass in a control volume: the change of

the mass of web in span is equal to difference between the amount of mass of web

span coming from previous span and the mass of web span leaving for next span. The
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law of mass conservation can be expressed as:

d

dt

∫ xi+1(t)

xi(t)

ρ(x, t)A(x, t)dx = ρiAivi − ρi+1Ai+1vi+1 (2.1)

where xi(t) and xi+1(t) are the web positions on the ith and i+1th rollers, vi is the web

velocity on the ith roller, ρ is the density of web material, and A is the cross-section

area of web .

Consider an infinite element of the web in the longitudinal direction. The length,

width, and height of the element are given by

dx = (1 + ǫx)dxu, (2.2)

w = (1 + ǫw)wu, (2.3)

h = (1 + ǫh)hu (2.4)

where ǫ denotes strain in the web material, the subscript u denotes the unstretched

state.

The mass of the infinitesimal element of the web can be expressed as

dm = ρ(x, t)A(x, t)dx = ρu(x, t)Au(x, t)dxu (2.5)

Substituting the equation (2.2) into (2.5) results in:

ρ(x, t)A(x, t)

ρu(x, t)Au(x, t)
=

dxu

dx
=

1

1 + ǫx(x, t)
(2.6)

So, mass conservation equation can be expressed as

d

dt

∫ xi+1

xi

ρu(x, t)Au(x, t)

1 + ǫx(x, t)
dx =

ρui
(xi, t)Aui

(xi, t)vi(t)

1 + ǫxi
(xi, t)

− ρui+1
(xi+1, t)Aui+1

(xi+1, t)vi+1(t)

1 + ǫxi+1
(xi+1, t)

(2.7)

Under the assumption that density of the web material and cross section area are

constants for the unstretched material, that is ρu = ρui
= ρui+1

and Au = Aui
= Aui+1

,

the equation (2.7) can be simplified to

d

dt

∫ xi+1

xi

1

1 + ǫx(x, t)
dx =

vi(t)

1 + ǫxi
(xi, t)

− vi+1(t)

1 + ǫxi+1
(xi+1, t)

(2.8)
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Considering small strain, ǫx ≪ 1, one can write

1

1 + ǫx

≈ 1 − ǫx (2.9)

So the equation (2.8) can be written as

d

dt

∫ xi+1

xi

(1 − ǫx(x, t))dx = vi(t)(1 − ǫxi
(xi, t)) − vi+1(t)(1 − ǫxi+1

(xi+1, t)) (2.10)

Assuming uniform strain along the length of the span, that is ǫx(x, t) = ǫxi
(t), the

equation (2.10) can be written as

d

dt

∫ xi+1

xi

(1 − ǫxi
(t))dx = vi(t)(1 − ǫxi

(t)) − vi+1(t)(1 − ǫxi+1
(t)) (2.11)

Applying the Leibnitz rule for differentiation of integral terms

d

dt

(

∫ ψ(t)

φ(t)

f(x, t)dx

)

=

∫ ψ(t)

φ(t)

∂f(x, t)

∂t
dx − dφ

dt
f(φ(t), t) +

dψ

dt
f(ψ(t), t), (2.12)

equation (2.11) can be expressed as
∫ xi+1

xi

dx
d

dt
(1 − ǫxi

(t)) + (1 − ǫxi
(t))

d

dt

(
∫ xi+1

xi

dx

)

= vi(t)(1 − ǫxi
(t)) − vi+1(t)(1 − ǫxi+1

(t))

(2.13)

Consider a pendulum dancer web span of time-varying length, xi = 0 and xi+1 = Li(t).

The strain dynamics (2.13) can be expressed as
∫ Li

0

dx
d

dt
(−ǫxi

(t)) + (1 − ǫxi
(t))

d

dt
(Li(t)) = vi(t)(1 − ǫxi

(t)) − vi+1(t)(1 − ǫxi+1
(t))

(2.14)

Assume the web to be elastic. Hooke’s law expresses the relation between web tension

and strain as ti−1 = ǫiAE and ti = ǫi+1AE, where E is the modulus of elasticity of

web material and ti is the web tension in the ith span (the i+ 1th span is between the

ith and the i + 1th rollers). Substitute Hooke’s law in equation (2.14) to get

Li(t)

(

− ṫi
AE

)

+

(

1 − ti
AE

)

L̇i(t) = vi(t)

(

1 − ti−1

AE

)

− vi+1(t)

(

1 − ti
AE

)

(2.15)

The web tension dynamics in the ith web span are given by the following equations:

ṫi =
AE

Li

(vi+1 − vi) +
1

Li

(viti−1 − vi+1ti) +
1

Li

(AE − ti)L̇i (2.16)
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2.1.2 Velocity Dynamics

The web velocity dynamics on the ith idle roller is

v̇i =
R2

i

Ji

(ti − ti−1) −
fi

Ji

vi (2.17)

where Ri is the radius of ith roller, Ji is the inertia of ith roller, and fi is the coefficient

of viscous friction for the ith roller.

In the case of a dancer roller, the dynamics of the oscillatory motion of the dancer

roller needs to be considered. The angular motion of the pivoted pendulum affects

web tension in spans adjacent to the dancer roller. Consider the sketch of a pendulum

dancer and its adjacent spans as shown in Figure 2.2.

The web tension dynamics for the upstream and downstream spans of the dancer

roller, respectively, are given by the following equations based on application of equa-

tion (2.16):

L1(t)ṫ1 = AE(v2 − v1) + t0v1 − t1v2 + (AE − t1)L̇1(t) (2.18)

L2(t)ṫ2 = AE(v3 − v2) + t1v2 − t2v3 + (AE − t2)L̇2(t) (2.19)

where

L1(t) =
L10 + (l + d) sin θ

cos α1

, L2(t) =
L20 + l sin θ

cos α2

The additional term in the tension dynamics is due to the time varying span lengths

adjacent to the dancer roller.

The equation that describes the dynamics of the angular motion of the pendulum

dancer around the pivot point ‘O’ is given by

Jpθ̈ + bθ̇ +Mpgz(sin θ)+Fsy−Fpy + t2l cos(θ−α2)+ t1(l +d) cos(θ−α1) = 0 (2.20)

where Jp is the pendulum dancer inertia, b is the coefficient of friction of pendulum

dancer, Mp is the mass of pendulum dancer, g is the gravitational constant, z is the
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height of mass center, l is the length of the pendulum dancer, d is the diameter of

the dancer roller, Fp = pAe is the pneumatic cylinder pressure force, Fs = Ky is the

pneumatic cylinder spring force, p is the pneumatic pressure, Ae is the cylinder cross

section area, k is the spring constant, and y is the spring displacement.

2.1.3 Linearized Dynamics

Linearization of the nonlinear dynamic model is required to facilitate analysis of

resonant frequencies in the system. Of particular importance is the minimum resonant

frequency, and how it behaves as a function of the physical parameters of the web

as well as those of the associated web handling elements. A comprehensive study

on frequency response analysis of a system of idle rollers can be found in [11]. The

focus in this chapter is on discussion related to inclusion of a pendulum dancer as

a feedback device, whose angular position variations reflect changes in web tension.

The linearized dynamics is used for this analysis. The nonlinear dynamics of the

pendulum dancer can be linearized by defining the following perturbations:

Ti = ti − tri, Vi = vi − vri

Θ = θ − θr, ∆αi = αi − αri (2.21)

where tri, vri, θr, and αri are tension reference, velocity reference, pendulum dancer

reference angle with respect to vertical axis, and web span angle, respectively. Ti, Vi,

Θ and ∆αi are variations of tension, velocity, pendulum angle and web span angle

from their reference values.

Linearized Tension Dynamics:

The tension dynamics in the span upstream of the dancer roller can be rewritten

by substituting equations (2.21) into the nonlinear pendulum dancer dynamics (2.18)
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as

L1(t)(Ṫ1 + ṫr1) = AE(V2 + vr2 − V1 − vr1) + (T0 + tr0)(V1 + vr1)

− (T1 + tr1)(V2 + vr2) + (AE − T1 − tr1)L̇1(t) (2.22)

where the span length is given by

L1(t) =
L10 + (l + d) sin(Θ + θr)

cos(∆α1 + αr1)
(2.23)

A prescribed reference web tension can be set by loading the arm of the pendulum

dancer with a pneumatic actuator, then the pressure in the pneumatic cylinder is

adjusted to obtain the required reference web tension. The pressure is adjusted such

that the forced equilibrium position of the dancer is at zero degrees. Therefore, for

this situation, the reference angle for the pendulum dancer is given by θr = αr1 =

0. Any deviations in web tension from its reference value result in oscillation of

the pendulum and the corresponding angular position of the dancer is related to

web tension variations. Since the perturbations are assumed to be small, under the

assumption that the angles are small, i.e.,

sin(Θ) ≈ Θ, cos(∆αi) ≈ 1,

the equation for the span length (2.23) may be written as

L1(t) = L10 + (l + d)Θ (2.24)

At the forced equilibrium position θ = θr = 0, ti = tri, vi = vri. Under the assumption

that reference tension is constant, i.e., ṫri = 0, the span tension dynamics is given by

(L10 + (l + d)Θ)Ṫ1 = AE(V2 − V1) + vr1T0 + V1tr0 + V1T0 − vr2T1 − V2tr1 − V2T1

+(AE − T1 − tr1)(l + d)Θ̇ (2.25)

The product of variations V1T0, ΘṪ1, T1Θ̇ and V2T1 are very small compared to the

value of AE of the web material. Therefore, neglecting the products of variations,
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the linearized web tension dynamics is

L10Ṫ1 = AE(V2 − V1) + vr1T0 + V1tr0 − vr2T1 − V2tr1 + (AE − tr1)(l + d)Θ̇ (2.26)

Note that as in the nonlinear equations, the linearized dynamics also contain terms

that are functions of length variations as a function of time.

Similarly one can derive the linearized dynamics in the web span downstream of

the dancer roller, which is given by

L20Ṫ2 = AE(V3 − V2) + vr2T1 + V2tr1 − vr3T2 − V3tr2 + (AE − tr2)lΘ̇ (2.27)

Linearized Velocity Dynamics:

The idle roller 1 velocity dynamics, neglecting bearing friction, is given by

v̇1 =
R2

1

J1

(t1 − t0) (2.28)

Since the velocity dynamics is already linear, and since t1 − t0 = T1 − T0, assuming

reference velocity is constant, i.e., v̇r = 0, the idle roller velocity dynamics is given by

V̇1 =
R2

1

J1

(T1 − T0) (2.29)

Linearized Pendulum Dancer Dynamics:

The nonlinear dynamics of the pendulum dancer given in (2.20) is linearized in this

subsection. In addition to the earlier defined variations (2.21), the perturbation in

pressure from its reference value is defined as P = p−pr and at the forced equilibrium

P=0. For small angular perturbations the following assumptions can be made:

sin(Θ) ≈ Θ, sin(∆α) ≈ ∆α, cos(Θ) = cos(∆α) ≈ 1

Therefore, in the variational variables, the pendulum dancer dynamics is given by

JpΘ̈+ bΘ̇+MpgzΘ+Ky2Θ−PAey +T2l +T2lΘ∆α2 +T1(l +d)+T1(l +d)Θ∆α1 = 0

(2.30)
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Further, simplifications can be made to this equation by making assumptions such as

the pressure variation in the pneumatic cylinder due to dancer motion is small and

the product of variation, Θ∆αi is small. The effect of pressure variation is damp-

ened by installing an air reservoir upstream of the supply to the pneumatic cylinder.

Installation of this additional reservoir of adequate capacity results in maintaining ap-

proximately constant pressure inside the pneumatic cylinder. The dancer pneumatic

system is discussed in detail in Section 2.3. Under these assumptions, the pendulum

dancer dynamics is given by

JpΘ̈ = −bΘ̇ − MpgzΘ − ky2Θ − T2l − T1(l + d) (2.31)

2.1.4 Simplified State Equations for the EWL Unwind Section with the

Pendulum Dancer
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Figure 2.3: Euclid Web Line Unwind Section

Between the unwind roll and the S-wrap driven roller, the Euclid Web Line con-

tains seven idle rollers including the dancer roller; see sketch of the EWL shown in

Figure 2.3. Since there are many variables associated with the seven idle rollers, for

presenting the state equations, we consider the simplified section as shown in Fig-

ure 2.4. The linearized equations given in the previous section can be expressed in
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Figure 2.4: Simplified Unwind Section with Pendulum Dancer

state space form by defining the state and input vectors as

X =

[

T0 V1 T1 V2 Θ Θ̇ T2 V3 T3

]T

, U =

[

Vw Vs

]T

(2.32)

The linearized state space equation representing the unwind section is given by

Ẋ = AX + BU (2.33)

where

A =





















































−P0 K0 0 0 0 0 0 0 0

− 1
m1

0 1
m1
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0 0 − 1
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0 0 0 1
m2

0 0

0 0 0 0 0 1 0 0 0
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(2.34)
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(2.35)

and

mi =
Ji

R2
i

; Pi =
Vr

Li

; Bp =
b

Jp

; Ki =
AE − ti

Li

; Sp =
ky2 + Mpgz

Jp

. (2.36)

2.2 Dancer vs. Load Cell Feedback: Control Strategies and

Normalization of Controllers

Web tension behavior in the unwind section of the EWL with dancer and load cell

feedback control strategies are studied separately. The goal is to assess the ability

of each strategy to regulate tension. Comparative experiments are conducted in

both time and frequency domain. Time domain experiments are performed with

step/ramp change in velocity while frequency domain experiments are performed

by injecting sinusoidal velocity disturbances at the S-wrap roller. An approach to

design equivalent PI tension controllers for both dancer and load-cell feedback control

strategies is considered with normalizing gains. Controller normalization is required

for a fair comparison of performance with the two strategies. In this section we discuss

the control strategies and the controller normalization procedure.
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Figure 2.5: S-wrap Control Strategy

2.2.1 S-wrap Roller Control Strategy

Figure 2.5 represents the speed control scheme for the S-wrap roller which is under

pure speed regulation. The transfer functions for the motor/load inertia J of the S-

wrap roller and the PI controller in frequency domain are given by

Gv(s) =
1

Js
, Csv(s) =

kps(s + ωld)

s
(2.37)

where kps is proportional gain, ωld is cut-off frequency.

The closed-loop dynamics for the S-wrap roller is given by

vs(s)

vsr(s)
=

krf (s + ωld)

s2 + krfs + krfωld

(2.38)

where krf is reference proportional gain and ζ is damping ratio. Equation (2.38) is

obtained by selecting kps = Jkrf with krf = 15 and ωld =
krf

4ζ2 with ζ = 1.1.

2.2.2 Unwind Roll Control Strategy

       K
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     Web/Dancer 

system dynamics-
CD(s)

-
C

uv
(s)

vr

+

+ + v

Figure 2.6: Dancer Control Strategy

The unwind roll is under a two-loop control strategy; the inner-loop provides speed

regulation and the outer-loop provides a correction to the reference speed based on

either tension feedback from a load-cell or dancer position feedback from a dancer.

The unwind roll control strategy for the dancer and load-cell are shown in Figures 2.6

23



t1
Tmax

       K
Js

Web/Load cell 

system dynamics
-

CT(s)
-

C
uv

(s)

vr

+

+ +tr

t

v
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and 2.7, respectively. In the case of the dancer, the angular position of the dancer is

sensed by a rotary variable differential transducer and the voltage signal is fed back

to the outer-loop controller. The speed controller for the unwind roll is expressed as

Cuv(s) =
Jkrf (s + ωld)

s
(2.39)

where krf = 15, ωld =
krf

4ζ2 with ζ = 1.1.

The transfer function for the outer-loop with load-cell tension feedback is given

by

CT (s) =
kp(s + ωld)

s
(2.40)

where kp is the proportional gain and ωld is the zero crossover frequency. The dancer

position feedback control strategy is selected based on the controller normalization

procedure discussed in the following section.

2.2.3 Controller Normalization

A basis for comparison of the performance of control systems with dancer and

load-cell feedback requires some form of normalization of controllers. This is done

by a way of determining the dancer controller gains based on the development of a

relationship between dancer angular position and web tension under the assumption

that the web is elastic. Figure 2.8 shows a sketch of the dancer in equilibrium state

with corresponding spring constants for the web spans. The relationship between the

dancer position and web tension is given by

∆t1 + ∆t2 = k1(l + d)∆θ + k2l∆θ =

(

EA

L1

π(l + d)

180

)

∆θ +

(

EA

L2

πl

180

)

∆θ (2.41)
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Figure 2.8: Pendulum Dancer in Equilibrium

where θ is in degrees. Assume that the downstream and upstream span lengths to

the dancer roller are equal and the tension variation in each span is the same due to

dancer motion, i.e., L1 = L2 = L, k1 = k2 = k, ∆t1 = ∆t2 = ∆t. Also assume

that l ≫ d. With this the relationship between tension variation and dancer angular

position variation is given by

∆t = k(∆θl) =

(

EA

L

)(

πl

180

)

∆θ (2.42)

Equation (2.42) represents the relationship between the dancer angular position and

web tension under static equilibria. With this equation as the basis, we can deter-

mine a controller for the dancer that is equivalent to the controller with load-cell

feedback. Figure 2.9 shows how the outer-loop controller with dancer position feed-

back is obtained. The load-cell based tension PI controller for the unwind roll that is

C
T
(s)

180L 

1 
T

max
 

C
D
(s)

v
r

v

+

-

+

Figure 2.9: Equivalent Dancer Controller

25



implemented on the EWL is given by

CT (s) =
12(s + 0.1)

s
(2.43)

Based on the above procedure, substitute the parameter values as EA = 2800 lbf,

l = 1.04 ft, L = 1.825 ft, and Tmax = 50 lbf, the equivalent dancer-based controller is

CD(s) =
4(s + 0.1)

s
(2.44)

The pendulum dancer typically has lower resonant frequencies than the load-cell. So,

the equivalent controller must be tuned to provide adequate performance. In the case

of EWL, the dancer controller given by equation (2.44) delivers very good tension

regulation.

2.3 Pendulum Dancer Pneumatic System

The pendulum dancer and its pneumatic system are shown in Figure 2.10. Fluc-

tuations in pneumatic cylinder pressure inject disturbances into the pendulum dancer

system. This affects web tension regulation with dancer position feedback. In order

to dampen pressure fluctuations in the cylinder of the pneumatic actuator, an air

reservoir is installed between the pressure regulator and the pneumatic cylinder as

shown in Figure 2.10. The capacity of the air reservoir is calculated based on Boyle’s

law.

The pneumatic cylinder is of horizontal type and holds the dancer against torque

due to pendulum inertia and web tension. The cylinder also contains a spring for

retracting the cylinder, which also provides additional stiffness to the dancer system.

The supply pressure is regulated by the mechanical regulator to the set point pressure

in the pneumatic cylinder.
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Figure 2.10: Pendulum Dancer Pneumatic System

2.4 Experimental Results

Figure 2.1 shows a sketch of the Euclid Web Line (EWL) experimental platform.

The motors, drives, and controller on the EWL are from Rockwell Automation. Three

phase, four pole, 15-HP capacity induction motors are used for the unwind and rewind

rolls. Further, three 5-HP induction motors are used for each of S-Wrap lead, follower

rollers and the pull roller.

The Euclid web line can be divided into four sections: Unwind section, S-wrap

section, Pull roll section and Rewind section. The S-wrap and pull roll section act as

master speed section. Pure speed regulation is used for both S-wrap rollers and pull

roller to maintain the reference web speed. The unwind section contains load cells
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on rollers 2 and 8 which can be used to provide tension feedback for the unwind roll

control system. For load cell based control strategy, feedback from load cells on roller

2 was used for the unwind roll as this roller is immediately upstream of the dancer

roller. There are eight idle rollers in the unwind section from the unwind roll to the

S-wrap rollers. The radius of each idle roller is 0.125 ft and inertia is 0.003 lbf ft s2.

The web span lengths are given in Table 2.1. The web path for experimentation is

L0 L1 L2 L3 L4 L5 L6 L7 L8

2.6 0.5 1.8 1.8 1.5 3.3 2.6 2.6 5.5

Table 2.1: Web Span Length (ft) of Unwind Zone

shown in Figure 2.3.

2.4.1 Time Domain Experiments
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Figure 2.11: S-wrap Speed Profile

Time domain experiments were conducted with the pendulum dancer by giving a

step/ramp speed input. The reference speed profile for the S-wrap is shown in Figure
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2.11. The line is accelerated from 150 RPM to 350 RPM and decelerated back to 100

RPM. Web tension data is collected for the two cases, i.e., with dancer position and

load cell tension controller strategies. Experiments were conducted in three different

sets for acceleration and deceleration each. In the first set, dancer feedback is used

and tension data was collected from load cells on roller 8. In the second set load

cell feedback on roller 2 is used and tension data was collected from the same load

cells on roller 2. The third set is similar to the second set except that load cells on

roller 8 are utilized as feedback to the unwind roll. Tension PI controller and dancer

position controller described by equations (2.43) and (2.44) are used. The unwind roll

diameter is kept at 14 inches at the beginning of all experiments, ensuring uniform

radius change in every set. The reference tension for tension control was set at 20 lbf

and the reference dancer angle was set to zero.

During acceleration, the S-wrap speed changes from 150 RPM to 350 RPM. The

tension data plots for both dancer and load cell feedback are shown in Figures 2.13

through 2.15. The calculated standard deviation indicates less tension variation with

dancer feedback compared to load cell feedback. The control system based on load

cell feedback is more sensitive to speed changes which results in higher tension fluc-

tuations. During deceleration, when the S-wrap speed changes from 350 RPM to 100

RPM , the tension data plots are shown in Figures 2.16 through 2.18. Similar to

the results with the acceleration of the line, it was found that the tension regulation

performance was better with dancer feedback when compared with load cell feedback.

The dancer seems to attenuate tension disturbances due to speed changes better than

the load-cell system.

2.4.2 Frequency Response Experiments

The frequency response experiments were performed to verify if the minimum

resonant frequency of the unwind section is predicted by the model. Experiments
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were performed for both the dancer position based controller and load-cell based

tension controller. The dancer feedback controller is given by (2.44). The unwind

section contains eight idle rollers, including the dancer roller, from the unwind roll to

the S-wrap driven rollers. The S-wrap reference speed Vsr is varied sinusoidally with

different frequencies to collect tension data for this frequency response study. The

S-wrap reference speed with a sinusoidal disturbance of the following form is chosen:

Vr = Vsr + M(sin 2πν1t + sin 2πν2t + . . . + sin 2πνnt) (2.45)

where Vsr = 150 FPM is the base reference velocity, M = 5 FPM is the amplitude,

and νi is the frequency. Note that all the sinusoidal components are not implemented

at once. A few frequencies are implemented at a time and the data is combined. In

each experiment, tension behavior was investigated at 21 frequency points ranging

from 0.5 Hz to 10 Hz.

Computer simulations were performed with the developed model by feeding sinu-

soidal frequency input to the model, and output tension response data is collected.

In the case of experiments, tension data was collected from both load cells on roller

8 and roller 2.

Simulation and experimental results are shown in Figures 2.19 through 2.22. The

frequencies corresponding to peaks in the tension signal FFT are resonant frequen-

cies. The resonant frequencies from model simulations agree with those from the

experiments. In the case of the load cell feedback, there was a close match (minimum

resonant frequency was 5 Hz). In the case of dancer feedback, the minimum resonant

frequency from experiments was 3.2 Hz and from model simulations was 3.5 Hz. Ex-

perimental results shown in Figures 2.23 and 2.24 reveal that the dancer system can

damp low frequency tension disturbances.
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Electromechanical Pressure Regulator 

Figure 2.12: Electromechanical Pressure Regulator

2.5 Electromechanical Pressure Regulator Evaluation

A mechanical pressure regulator was used for supplying air to the pneumatic cylin-

der with required pressure. Since the mechanical regulator is an open loop system,

it has limitations in regulating output pressure. The effects of back pressure and

air flow variation can cause inconsistencies in the performance of pneumatic systems.

Proportional regulators are used to eliminate these problems. In order to enhance the

pendulum dancer system, the traditional mechanical regulator was replaced with an

electromechanical pressure regulator (EPR). The chosen EPR is made by Wilkerson

and contains an in built proportional controller. The ability of the EPR to provide

precise pressure regulation and the flexibility to change parameters makes this unit

well suited for dancer based feedback. With mechanical type regulators, the pressure

set point is manually adjusted by a control knob. There is no mechanism to monitor

the error between the set value and actual value of the output pressure. By using the

EPR, the output pressure is continuously measured and is adjusted to the set value.

The EPR has many other advantages over the traditional mechanical type regulator
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in terms of fast response time, good linearity, high visibility LED display, flexibility

with user friendly software. The EPR’s output pressure can be set manually on the

device panel or by an external voltage signal though a real time system. The EPR is

integrated into the Rockwell controller on the EWL and the output pressure now can

be set through a program in ControlLogix. The chosen EPR has an output pressure

range of 0 to 150 psi corresponding to set value input signal of 0 to 10 V.

To evaluate the performance of the EPR, time domain and frequency domain

experiments were conducted and compared to the earlier results based on the me-

chanical type pressure regulator. The same setup was used for both experiments.

Comparison of the results show that with EPR, the tension variations are reduced by

a considerable amount. This can be observed by comparing the frequency response

results with the EPR shown in Figure 2.27 and those with the mechanical regulator as

shown in Figure 2.19. Time domain experimental results indicate similar conclusions.

Comparing the acceleration plots 2.25 with 2.13 and deceleration plots 2.26 with 2.16

show reduction in standard deviation of web span tension. Standard deviation of a

data set is the square root of its variance and it shows how data varies from the aver-

age. A low standard deviation indicates that data points tend to be very close to the

mean. The pendulum dancer torque balance variational equation (2.31) reveals that

any pressure variation in the pneumatic cylinder from the set point causes dancer

angle fluctuations which can cause oscillations in web tension. Inclusion of the EPR

did not affect the location of the resonant frequencies in the frequency range used for

testing.

2.6 Summary and Conclusion

A model is developed for a pendulum dancer system. The dynamic equations are

linearized and expressed in a state space form. The ability of the developed model to

predict resonant frequencies is verified by performing frequency response experiments.
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Time and frequency domain experiments were performed for two control strategies,

an outer-loop controller based on dancer position feedback and the other based on

tension feedback from load cells mounted on a roller. The dancer position based

feedback controller is normalized to the load cell based controller and tuned in order

to reduce dancer oscillations. There was a very close match in terms of the minimum

resonant frequency (5 Hz) between model simulations and experiments based on load-

cell feedback. For the dancer based feedback, the minimum resonant frequency was

3.5 Hz with the model and 3.2 Hz from the experiments. Further, frequency response

results also show that, in the low frequency range (0 to 3 Hz), tension variations

with the dancer are much smaller compared to the load cell. The dancer was able

to filter low frequency disturbances very well compared to the load cell. This was

also evident from time domain results where the line was accelerated and decelerated

to evaluate the performance of the two control systems. It was also shown that by

precisely regulating air pressure in the pneumatic cylinder with electromechanical

pressure regulator, the tension response is improved.
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Figure 2.13: Web Tension with Dancer Position Feedback during Line Acceleration
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Figure 2.14: Web Tension with R2 Load Cell Feedback during Line Acceleration
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Figure 2.15: Web Tension with R8 Load Cell Feedback during Line Acceleration
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Figure 2.16: Web Tension with Dancer Position Feedback during Line Deceleration
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Figure 2.17: Web Tension with R2 Load Cell Feedback during Line Deceleration
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Figure 2.18: Web Tension with R8 Load Cell Feedback during Line Deceleration
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Figure 2.19: Experimental Results: FFT of Tension with Dancer Feedback (Tension

from R8)
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Figure 2.20: Model Simulation: FFT of Tension with Dancer Feedback
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Figure 2.21: Experimental Results: FFT of Tension with Load Cell Feedback (Tension

from R2)
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Figure 2.22: Model Simulation: FFT of Tension with Load Cell Feedback
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Figure 2.23: Low Frequency Content with Dancer Based Control System
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Figure 2.24: Low Frequency Content with Load Cell Based Control System
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Figure 2.25: Web Tension with Dancer Position Feedback during Line Acceleration

with EPR
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Figure 2.26: Web Tension with Dancer Position Feedback during Line Deceleration

with EPR
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Figure 2.27: Experimental Results: FFT of Tension with EPR
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CHAPTER 3

Dimensional Analysis of Longitudinal Web Dynamics

Application of the dimensional analysis technique for web transport systems is ex-

plored in this chapter. Dimensional analysis is a technique used to reduce complexity

of variables in a system and to obtain relationships between the variables that charac-

terized the system. Dimensional analysis technique can be applied to interconnected

systems such as robotics, web handling systems, etc. This chapter contains basic

concepts of dimensional analysis, Buckingham Pi theorem and its application to in-

terconnected systems, dynamic equivalence condition and finally process parameters

evaluation in dimensionless domain.

Our study on controller normalization described in Chapter 2, which compares

load cell and dancer feedback control systems, led us to investigate dimensional anal-

ysis. Assuming that the web is elastic, the relation between dancer position and

web tension can be evaluated. The goal of controller normalization was to match

controller gains based on the relation between dancer position and tension. This con-

troller normalization study gave rise to the following problem: can we obtain process

parameters and controller gains for any general large-scale web line based on process

parameters and controller gains available for a well tuned experimental web platform.

This chapter explores this question about scaling process parameters and controller

gains using dimensional analysis.

The rest of this chapter is organized as follows. Dimensions of physical quantities

and unit schemes are discussed in Section 3.1. Dimensionless numbers and nondi-

mensional space are described in Section 3.2. Dimensional analysis techniques are
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explained in Section 3.3. Similitude, scaling laws and areas of applications of dimen-

sional analysis are also highlighted in Section 3.3. Section 3.4 discusses dimensional

analysis for web transport systems. The process parameters and the controller pa-

rameters scaling for a web system transporting different web materials is discussed

in Section 3.5. Dimensional analysis of a web handling primitive element such as an

accumulator is given in Section 3.6. Dimensional analysis technique is applied to a

dancer system in Section 3.7.

3.1 Dimensional Analysis

Any physical quantity can be expressed in two forms: dimensional and dimen-

sionless. A dimensional quantity is a number linked with dimension and unit. For

example, speed is a dimensional quantity and can be expressed as ‘30 m/s’. This

physical quantity has ‘30’ as magnitude and ‘m/s’ as unit. The same physical quan-

tity is described by a variety of units in different parts of the world. ‘Mass’ has units

such as kilogram, pound, pound-mass, hyl and slug, etc. Since fundamental quanti-

ties are related with each other by physical laws, fundamental set of units are used to

form units for all physical quantities. The known fundamental quantities are given in

Table 3.1 with ‘Standard International System’ of units.

Dimension is a collection of fundamental quantities, joined by multiplication or

division, and not by addition and subtraction, and is used to express any physical

quantity. Dimension implies measurement unit of magnitude along with measurement

method and nature of physical quantity. Dimensions are a different concept than

units. A physical quantity may have a variety of units but is always presented with

the same dimensional convention. Speed has unit ‘m/s’ and is expressed with two

fundamental quantities, length and time. A square bracket notation is used to denote

dimensions. The seven fundamental quantities given in Table 3.1 characterize any

physical quantity.
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Physical Quantity Unit Dimension

Mass kilogram [M]

Length meter [L]

Time second [T]

Current ampere [A]

Temperature kelvin [Θ]

Luminous intensity candela [cd]

Amount of substance mole [mol]

Table 3.1: Set of Fundamental Quantities

Dimension notations can be viewed as a vector space. The fundamental quantities

can be treated as a basis for this vector space and corresponding powers represent

coordinates of vector. Speed which is a combination of fundamental physical quan-

tities would be dimensionally presented by [L][T ]−1. Hence, speed is a [0, 1,−1]T

vector corresponding to a basis of MLT fundamental quantities. The speed vector

representation is shown in Figure 3.1.

[speed] =













0

1

−1













The dimension of force is given as ‘mass × acceleration’ and is represented by [M][L][T ]−2.

[force] =













1

1

−2













Most of the physical quantities are formulated with mass, length and time. This

system is known as MLT dimensional system. In some situations force, length and

time (FLT) are also used as fundamental quantities, and this usage is similar to a

change of basis.
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Figure 3.1: Representation of Speed Vector in Dimensional Space

3.2 Nondimensional Space

A nondimensional quantity is generally defined by a ratio or product of dimen-

sional quantities. A nondimensional quantity does not have any unit, but in certain

situations are expressed as ratio of units, such as ‘lb/lb’. A nondimensional ratio has

same value, independent of the system of units used for measurement. In a broad

sense one can say that the universe is not calibrated in any set of units. The standards

available around the world are created by humans for their own convenience. Most

physical phenomena in the universe operate on groups of variables which are pure

numbers, which are called as nondimensional quantities or parameters. For example,

‘Mach number’, an important phenomenon in fluid mechanics, is a nondimensional

quantity which characterizes the relative velocity of sound ‘c’ in a flow of fluid of
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velocity ‘V ’. In terms of fundamental dimensions

Mach number =
V

c
≡ [M ]0[L][T ]−1

[M ]0[L][T ]−1
≡ [M ]0[L]0[T ]0 (3.1)

where c is the speed of sound in that particular fluid.

The dimensions of speed of fluid flow and speed of sound cancel each other and

render Mach number dimensionless. The universe does not bother about the intensity

of fluid flow speed, but is interested in speed of flow relative to the speed of sound

in that fluid. Some other nondimensional parameters popularly used in engineering

are Reynolds number, Nusselt number, Prandtl number, strain, etc. We will see

later how nondimensional groups characterize and simplify governing equations for

dynamic systems.

3.3 Dimensional Analysis Techniques

There are systematic techniques to form nondimensional parameters which can be

used to characterize dynamic systems. One key requirement for performing dimen-

sional analysis is that the governing equations of the given physical system must be

dimensionally homogeneous.

3.3.1 Dimensional Homogeneity

The principle of dimensional homogeneity states that every equation meaningfully

describing a physical system should be dimensionally homogeneous. A group of pa-

rameters, variables added or subtracted to form an equation of a physical system is

dimensionally homogeneous, if every group has equivalent dimensions. Meaningful

and valid physical systems, do not allow dimensionally dissimilar quantities to add,

subtract or compare. Otherwise, such systems represent meaningless phenomena. Di-

mensionally similar quantities are also called commensurable quantities. For example,

kinetic energy expression is dimensionally homogeneous, since both sides of equation
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have equivalent units, that is,

kinetic energy(J) =
1

2
× mass(kg) × velocity2(m2/s2) (3.2)

In the case of a meaningful physical system, one type of energy can be added with

another type of energy.

Total energy of the system = Kinetic energy + Potential energy (3.3)

One cannot add force to energy to represent any physical system. For example,

Newton’s second law equation cannot be added with an equation of the first law of

thermodynamics. Though both equations are dimensionally homogeneous but rep-

resent different dimensions. Hence, these dimensionally dissimilar quantities cannot

be operated with addition or subtraction. An equation is correct if both sides are

numerically as well as dimensionally equivalent.

Dimensional homogeneity is the necessary and essential condition for dimensional

analysis techniques. Dimensional analysis techniques utilize the concept of dimen-

sional homogeneity and reduce the number of variables for representing a physical

system.

Dimensional analysis is a proven technique to scale parameters and express a

system of equations in dimensionless variables. This technique is used to reduce com-

plexity of variables in a system and to obtain relationships among the variables to form

dimensionless numbers that characterize the physical system. Dimensional analysis

appears to have added relevance in experimental work since it provides information

about characteristic parameters which influence the physical phenomenon.

Two common techniques are used for dimensional analysis: Buckingham Pi method

and Rayleigh method. These techniques require knowledge of variables which influ-

ence the physical system. The Buckingham Pi method is well known and is a widely

used technique for dimensional analysis. It is a systematic approach and ensures a

minimum number of dimensionless parameters.
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The Rayleigh method and the Buckingham method approach are easy to apply,

but sometimes knowledge of all variables influencing the system is not available. These

approaches neglect unknown nondimensional groups characterizing system behavior

from system description.

In the following subsections Rayleigh and Buckingham methods are described. But

subsequent discussions are based on the Buckingham method due to its simplicity in

application to complex interconnected systems.

3.3.2 Rayleigh Method

Rayleigh’s method consist of formulating functional relationships between vari-

ables of a physical system in the form of exponential equations. Rayleigh’s method

involves a sequence of steps to generate dimensionless form from dimensional form,

as proposed by Lord Rayleigh.

In order to apply Rayleigh’s method, the knowledge about independent and depen-

dent variables of the system is needed. A functional equation is formulated between

dependent and independent variables based on system information. Suppose Vd is a

variable that depends upon a number of independent variables Vn, then the functional

equation can be written as

Vd = f(V1, V2, .....Vn) (3.4)

The functional equation can be expressed as power equation of independent vari-

ables.

Vd = CV a
1 V b

2 ....V k
n (3.5)

where C is a nondimensional constant and a, b, . . . , k are arbitrary powers of inde-

pendent variables. Dimensions are introduced in the power equation using any unit

convention and presented in the form of fundamental units. Simultaneous equations

involved with exponent powers, are obtained by using dimensional homogeneity. The

48



simultaneous equations are solved to evaluate the values for variable powers a, b, . . . , k.

The exponent values are substituted in the power equation and variables of similar

exponent are combined to form nondimensional parameters.

For example, consider a spherical ball moving in a viscous fluid. The drag force

exerted on the ball is influenced by the system parameters such as diameter size (D)

and velocity of ball (V ). The properties of the fluid medium such as density (ρ)

and viscosity (µ) also influence the drag force. The Rayleigh’s approach relates the

variables by satisfying dimensional homogeneity. The drag force on the spherical ball

can be written in the form of a functional equation as

Fd = f(D,V, ρ, µ) (3.6)

The functional equation can be expressed as the power equation

Fd = CDaV bρcµd (3.7)

where C is dimensionless number and a, b, c, d are exponential power of independent

variables. Dimensions for the variables are substituted with the MLT convention

[M ][L]

[T ]2
= [L]a

[L]b

[T ]b
[M ]c

[L]3c

[M ]d

[L]d[T ]d
(3.8)

The dimensional homogeneity condition requires identical exponent power on both

sides of the equation. Hence, equating the exponent powers on both sides of the

equation we obtain

For L:

1 = a + b − 3c − d

For M:

1 = c + d
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For T:

−2 = −b − d

Since, we have three equations and four unknowns, solve a, b and c in terms of d

to get

a = 2 − d

b = 2 − d

c = 1 − d

Hence

Fd = CD2−dV 2−dρ1−dµd (3.9)

Grouping similar exponent variables we can write

Fd = C(ρ)(D2V 2)(
V Dρ

µ
)−d (3.10)

The nondimensional quantity formed is V Dρ

µ
and is known as Reynolds number

(R). The original functional equation (3.6) becomes

Fd = f(R)ρD2V 2 (3.11)

The term Fd

ρD2V 2 is another dimensionless parameter and there is a relationship

between the two nondimensional groups. The drag force depends on Reynolds number

and the term ρD2V 2. Nondimensional quantities formed by Rayleigh’s method are

used to characterize the system. Rayleigh’s method requires knowledge of dependent

and independent variables of a system which form the functional equation. In some

complex systems, it is difficult to find the dependent and independent variables. In

order to form dimensionless parameters, simultaneous equations are needed to solve.

While in Buckingham Pi theorem, the evaluation of dimensionless parameters depend

upon matrix calculation which is easy compared to solving simultaneous equations.

50



3.3.3 Buckingham Pi Theorem

The Buckingham Pi theorem provides a basis for dimensional analysis. This is a

more generalized and systematic approach of determining the minimum number of

dimensionless variables that characterize the system. The advantage of using this

method is that it predicts the number of dimensionless groups at the initial stage of

analysis.

The Buckingham Pi theorem states that, a dimensionally homogeneous equation

containing ‘nd’ dimensional variables/parameters, described by ‘mr’ fundamental di-

mensions, can be grouped into ‘nd−mr’ dimensionless groups. Formally, the theorem

statement is the following.

Buckingham Pi Theorem: Let f(V1, V2, .....Vn) = 0 be a set of dimensional

homogeneous equations with ‘nd’ parameters and described by ‘mr’ fundamental di-

mensions. The dimensional equation ‘f ’ can be expressed by another set of equations

‘F ’ with ‘nd−mr’ dimensionless parameters. The nondimensional groups are referred

to as ‘Π’ terms. The set of equations ‘F ’ can be written as F (Π1, Π2, .....Πn) = 0 and

the nondimensional ‘Π’ terms characterize the system.

Proof: The dimension of each variable Vi can be expressed in terms of powers of

fundamental quantities, say Qi. Therefore

Vi = [Q1]
a1i [Q2]

a2i . . . [Qm]ami (3.12)

Pi terms are formed by a combination of variables which characterize the system.

Hence, Pi terms can be expressed in the form of powers of those variables:

Πi = [V1]
b1 [V2]

b2 . . . [Vn]bn (3.13)

But Pi terms are dimensionless and can be also expressed in terms of fundamental

quantities with zero exponential powers:

Πi = [Q1]
0[Q2]

0 . . . [Qn]0 (3.14)
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By substituting equation (3.12) in (3.13), each Pi term can be expressed as

Πi = [Q1]
b1a11+b2a21+...+bnan1 . . . [Qm]b1a1m+b2a2m+...+bnanm (3.15)

Comparing the exponential terms for Pi parameters from equations (3.14) and

(3.15), results in ‘mr’ simultaneous equations

b1a11 + b2a21 + . . . + bnan1 = 0 (3.16)

b1a12 + b2a22 + . . . + bnan2 = 0 (3.17)

...

b1a1m + b2a2m + . . . + bnanm = 0 (3.18)

In many practical systems, the number of fundamental quantities is less than

the number of variables of the system. Hence, we have ‘mr’ independent solutions

and ‘nd − mr’ are free variables. The values of the free variables can be selected

arbitrarily. The arbitrary choice of variables form the different Pi groups equivalently

characterizing the system. This completes the proof for the Buckingham Pi theorem.

Procedure to be followed to evaluate Pi parameters:

Step 1: List all the parameters which characterize the system. Suppose the list

includes ‘nd’ number of parameters. Based on empirical knowledge or engineering

judgement less significant parameters can be dropped.

Step 2: Choose a set of fundamental dimensions suitable for the system. Seven

fundamental units are listed in Table 3.1. Determine the number of fundamental

parameters (say ‘mr’) required to describe the system parameters from the listed

Table 3.1.

Step 3: Express all the dimensional parameters in terms of fundamental quanti-

ties. The dimensions are written in the form of exponential powers of fundamental

quantities. For example, Force = [Mass][Length][Time]−2.
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Step 4: Separate ‘mr’ number of system parameters from the original list of

‘nd’ number of parameters. This set must contain all the fundamental units used to

describe the system. The set of ‘mr’ parameters are called ‘repeating parameters’.

Do not choose the repeating parameters which are just multiples of each other. For

example, Length (L) and area (L2).

Step 5: Write the dimensions of non repeating physical variables in column form

followed by dimensions of repeating variables. The matrix formed by nonrepeating

parameters is called the dimensional matrix and is of the size ‘mr × NV ’ where ‘mr’

is the number of fundamental dimensions needed to express the variables and ‘NV ’

is the number of non repeating variables. The dimensional matrix is denoted by ‘A’.

Another matrix formed by repeating parameters is of size ‘mr × mr’ and is denoted

by ‘B’.

step 6: Calculate the number of nondimensional group ‘nd−mr’. Put the identity

matrix ‘D’ below the dimensional matrix of size ‘nd − mr’. Compute the matrix ‘C’

using the relation

C = (−A−1B)T (3.19)

Each row elements of matrix ‘D’ and ‘C’ gives the exponential power of non re-

peating variables and repeating variables, respectively, for dimensionless parameters.

This completes the formation of dimensionless parameters.

Step 7: Verify that the formulated Pi parameters are dimensionless.

The given procedure is best illustrated by examples. Consider the drag force

Fd exerted on a sphere due to movement through a viscous liquid. The variables

involved in the process are drag force (Fd), velocity of sphere (V ), diameter of sphere

(D), density of liquid (ρ) and viscosity of liquid (µ). Units and dimensions of variables

are given in Table 3.2. The relation between system variables is not known. We will
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Variable Units Dimension

Drag Force (Fd) m kg s−2 [M][L][T ]−2

Velocity of sphere (V) m s−1 [L][T ]−1

Diameter of sphere (D) m [L]

Density of liquid (ρ) m−3 kg [M][L]−3

Viscosity of liquid (µ) m−1 kg s [M][L]−1[T]

Table 3.2: Units and Dimensions of Variables

rearrange the variables with unknown function of the form

f(Fd, µ, L, V, ρ) = 0 (3.20)

where f is the unknown function.

According to the Buckingham Pi Theorem, the ‘nd’ variables of the system can be

rearranged in ‘nd−mr’ Pi dimensionless parameters and ‘mr’ number of fundamental

quantities needed to describe the system parameters. In this example, nd = 5, mr = 3.

Hence, the system variables can be rearranged in two dimensionless parameters. The

dimension matrix can be formed as shown in Figure 3.2.

The matrices ‘C’ and ‘D’ represent exponential powers of variables which group

together to formulate dimensionless Pi parameters. The two dimensionless parameters

are

Π1 =
Fd

D2ρV 2

Π2 =
µV

D3ρ
(3.21)

Furthermore, the dimensionless functional equation can be written as

g(Π1, Π2) = 0 (3.22)

The Buckingham theorem reduces the number of variables and presents the system

equations in a simplified manner. In this example with dimensionless representation
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Figure 3.2: Dimensional Matrix

we have only two parameters to deal with. Dimensional analysis does not provide

the relation between the two Pi parameters, i.e., the coefficient or powers of the Pi

groups. The relation needs to be determined from theory or experiments.

3.3.4 Scaling Laws and Similitude

The principle of similarity relate physical systems of different sizes and are ben-

eficial for scaling up or down of physical systems. In many applications it is ad-

vantageous to perform experiments on a small prototype before building the actual

system. For example, aerodynamics, ship building, robotics, etc. Similitude ensures

similar behavior between the scaled prototype and the actual system. The principle of

similarity is a principle of nature while dimensional analysis is a technique by which

the similarity principles are applied to different systems. There are three types of

similarity: geometric similarity, kinematic similarity and dynamic similarity, which

are discussed below.
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Geometric Similarity:

Physical systems have generally three characteristics: size, shape and composi-

tion. These characteristics are independent of each other. Similarity can be stated

in two ways, by specifying ratios of different measurements in a body or similar mea-

surements in different bodies. Geometric similarity ensures identical scaling of linear

dimensions between the prototype and the actual system. Two systems are said to

be geometrically similar when every point in one system is corresponding to a point

in the other system. Geometric similarity assures application of experimental results

obtained from the prototype to the actual size system. Consider a point of one sys-

tem in cartesian coordinates x, y, z and another point of a second system x’, y’, z’ as

shown in Figure 3.3. These points are related by

x′

x
=

y′

y
=

z′

z
= L (3.23)

where L is the scale ratio which is a constant.

P(x,y,z)

P‘(x’,y’,z’)

Prototype Model

Figure 3.3: Geometric Similarity

The similarity in which scale ratios for two bodies are different in different direc-

tions is called distorted similarity. Distorted systems are described by two or more

scale ratios.
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Kinematic Similarity:

Kinematic similarity is concerned with the motion of a system. Kinematic similar-

ity has additional dimension of time compared to three space coordinates of geometric

similarity. Time is measured from arbitrary zero for every system and corresponding

time measured by time scale ratio. Kinematic similarity ensures homologous time

between the prototype and the actual system. A geometrically similar moving system

is said to be kinematically similar when corresponding particles of the system trace

geometrically similar paths in a specified interval of time. If the time scale is less

than unity, the prototype behaves more slowly than the actual model.

Prototype Model

Time    t=0 Time   t’=0

Prototype Model

Time    t=x TIme    t’=x’

Figure 3.4: Kinematic Similarity
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Dynamic Similarity:

Dynamic similarity is related to the forces acting on a system. Dynamic similarity

means geometrically similar parts of the prototype and the actual system experience

similar forces. In any system some forces cause motion while others may set static

stresses. Geometrically similar moving systems are dynamically similar when the

corresponding force ratios are equal.

F ′
1

F1

=
F ′

2

F2

= . . . =
F ′

n

Fn

= F (3.24)

Dynamic similarity between two systems requires identical nondimensional dy-

namics. This means that nondimensional Pi parameters involved in that dynamics

have equal values. Dynamic similarity does not imply geometric or kinematic simi-

larity.

Dimensional analysis applies similarity conditions between the prototype and the

actual system. The two systems are said to be dimensionally equivalent if all the

nondimensional parameters have the same values for the prototype and the actual

system.

Parameter Set 1
Parameter Set 2Process

Π
1

1,Π
2

1,....Π
j
1,..... Π

1
2,Π

2
2,....Π

j
2,.....

Dimensional equivalence Π
j
1   = Π

j
2   for all j

Figure 3.5: Dimensional Equivalence Between Two Systems
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3.3.5 Application of Dimensional Analysis

Dimensional analysis is used in many fields for the purpose of reduction of num-

ber of variables and to simplify the system representation. Dimensional analysis is

extensively used in the fields of fluid dynamics and thermodynamics. It is found to be

effective in other fields like robotics, aerodynamics, ship design, structural dynamics,

and economics.

Dimensional analysis can also be applied to web transport systems. Industrial

web transport systems are large-scale interconnected systems. Dimensional analysis

can be performed on a small-scale experimental platform and then scaled up to the

actual industrial setup. Hence, it is possible to scale process parameters and controller

parameters of the experimental platform with dimensional analysis techniques. This

minimizes the period required to design a new web transport line, and also helps in

designing controllers for industrial lines without much effort. Dimensional analysis

can be used to determine time scaling, tension scaling and velocity scaling in a web

transport system.

The remainder of this chapter describes the application of dimensional analysis

technique (Buckingham Pi theorem) to web transport systems. The analysis output

will be used in formulation of scaled process parameters and control laws for web

transport systems.

3.4 Web Line Dimensional Analysis

A simplified three tension zone web line is shown in Figure 3.6. The simplified

web line mimics many features of a general web transport system. The simplified

web line is also a representation of the Euclid Web Line (EWL), an experimental

platform available at WHRC. The web line shown in Figure 3.6 is divided into four

sections: unwind section, master speed roller, process section and rewind section. In

Figure 3.6, Mi denotes driving motors, vi represents web transport velocity on the ith
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Figure 3.6: A Web line Sketch

roller, ui represents input torque from the ith motor, and ti represents web tension

between i − 1th and ith driven rollers. The master speed roller regulates reference

speed for the web line and does not regulate tension in adjacent spans. The master

speed roller operates under a single loop speed control. Unwind/rewind roll and

pull roller is regulated by a cascaded tension and speed control system. The unwind

and rewind zones release and accumulate web material, respectively. The dynamics

of unwind/rewind contains time-varying parameters such as inertia and radii. The

pull roll section contains downstream and upstream web span and a driven roller. A

typical industrial web line is large in size and contains many pull roll sections repeated

throughout the line. For the purpose of illustrating dimensional analysis, the pull roll

section is chosen. It is also possible to perform dimensional analysis for unwind and

rewind sections using the same procedure. Dimensional and nondimensional dynamics

of the process section is presented in the following subsections.

3.4.1 Pull Roll Section Dimensional Equations

The pull roll section consists of two variables: tension in the upstream span t2 and

velocity of the pull roll v2. The governing equation for web tension is given by

ṫ2 =
EA

L2

(v2 − v1) +
t1v1

L2

− t2v2

L2

(3.25)
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The governing equation for velocity on the roller is given by

v̇2 =
R2

2

J2

(t3 − t2) +
R2

J2

n2u2 (3.26)

where ti : web tension in the ith span, vi : velocity of the ith roll, R2 : pull roll radius,

n2 : gear ratio, J2 : inertia of the pull roll, E : elastic modulus of the web material,

A : cross section area of the web, Li : length of the ith span, u2 : torque input to pull

roll.

3.4.2 Nondimensional Dynamics

The list of parameters for the pull roll system include tension in web spans

(t1, t2, t3), velocity of driven rollers (v1, v2), inertia of pull roll (J2), radius of pull

roll (R2), length of web span (L2), time (t), modulus of elasticity times area of cross

section (EA), and input torque (u2). Eleven parameters are influenced in the selected

web zone. Three fundamental dimensions, length, force and time are chosen to de-

scribe the parameters. The unit system used for the fundamental dimensions are feet

(ft), pound-force (lbf), and second (s), respectively. Using Buckingham Pi theorem

there are eight nondimensional Pi parameters which characterize the dimensionless

system.

The dimensional parameters can be expressed in terms of fundamental dimensions.

For example, the tension variable can be written as [L]0[F ]1[T ]0. So, the tension pa-
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rameter forms the column vector with exponent of dimensions as [0 1 0]T which is used

in dimensional representation. Three repeating parameters for dimensional analysis

are selected from the list of parameters as R2,
EA
L2

, and R2

J2
since these parameters

contain all the fundamental dimensions chosen to describe the system. These re-

peating parameters must be chosen such that the dimensional columns of repeating

parameters are independent. Dimensional matrix is formed by writing non-repeating

parameters in dimensional form followed by repeating parameters. For the pull roll

section dimensional matrix size is 3 × 8 and non repeating parameters matrix is of

size 3 × 3. Non repeating parameters matrix need to be non singular in nature.

Place the identity matrix ’D’ of size 8 × 8 below the dimensional matrix. Matrix

’C’ can be calculated by equation (3.19). The rows of matrix ’D’ and ’C’ represent

exponent powers of repeating and non repeating parameters which group together to

form dimensionless Pi parameters.

The Table 3.3 describes the dimensional matrix and formation of Pi groups.
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t u2 v1 t3 v2 t2 t1
1

L2
R2

EA
L2

R2

J2

ft 0 1 1 0 1 0 0 -1 1 -1 0

lbf 0 1 0 1 0 1 1 0 0 1 -1

s 1 0 -1 0 -1 0 0 0 0 0 -2

Π1 1 0 0 0 0 0 0 0 0.5 0.5 0.5

Π2 0 1 0 0 0 0 0 0 -2 -1 0

Π3 0 0 1 0 0 0 0 0 -1.5 -0.5 -0.5

Π4 0 0 0 1 0 0 0 0 -1 -1 0

Π5 0 0 0 0 1 0 0 0 -1.5 -0.5 -0.5

Π6 0 0 0 0 0 1 0 0 -1 -1 0

Π7 0 0 0 0 0 0 1 0 -1 -1 0

Π8 0 0 0 0 0 0 0 1 -1 0 0

Table 3.3: Dimensional Matrix For Web Dynamics

Referring to Table 3.3, the Pi parameters are given by

Π1 = tR2

√

EA

L2J2

= τ (3.27)

Π2 = u2
L2

R2
2EA

= u2 (3.28)

Π3 =
v1

R2
2

√

L2J2

EA
= v1 (3.29)

Π4 = t3
L2

R2EA
= t3 (3.30)

Π5 =
v2

R2
2

√

L2J2

EA
= v2 (3.31)
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Π6 = t2
L2

R2EA
= t2 (3.32)

Π7 = t1
L2

R2EA
= t1 (3.33)

Π8 =
R2

L2

= c (3.34)

A qualitative interpretation of representative Pi group to maintain dynamic equiv-

alence is given below,

Π1 = tR2

√

EA
L2J2

= τ : This Pi parameter is used to moderate time scaling of two

systems. The material parameter EA and system parameters L, R, and J make im-

plications on time scale. As EA and R are increased, t must decrease to maintain

dynamic equivalence. Similarly, increasing L and J will result in increasing the time

span.

Π2 = u2
L2

R2
2
EA

= u2 : This Pi parameter represents control input scaling to the sys-

tem. It ultimately scales the controller gains. The formed Pi group depends upon

the material property EA and system parameters L and R. With an increase in the

span length, control input needs to be decreased to maintain dynamic equivalence.

If parameters R and EA are increased, then the control input must be increased to

maintain dynamic equivalence.

Π3 = v1

R2
2

√

L2J2

EA
= v1 : This Pi parameter scales the web line speed. The speed

scaling depends upon material properties EA and system parameters R, L, and J .

With a higher modulus material, i.e., higher E value, one must increase line speed.

Π4 = t3
L2

R2EA
= t3 : This Pi parameter scales web tension and is proportional to

the span length. Tension scaling also depends upon R and EA.
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Π8 = R2

L2
= c : This Pi parameter represents a geometrical constraint on the sys-

tem. In order to maintain dynamic equivalence, the ratio of roller radius to span

length must remain the same.

The dimensionless dynamic model can be formed by substituting the above formed

Pi groups in dimensional equations (3.25) and (3.26). The dimensionless equations

are given by

ṫ2 = (v2 − v1) + c(t1v1 − t2v2) (3.35)

v̇2 = t3 − t2 + n2u2 (3.36)

Clearly, the dimensionless tension and velocity dynamics with reduced number of

variables are simple in representation compared to the dimensional model. The simple

dynamic representation helps in analysis and design of controllers. The resultant

dimensionless model given by equations (3.35) and (3.36) is also nonlinear.

The nonlinear dimensionless dynamics can be linearized in order to analyze and

design simple controllers. Define the variables: tension variation T i = ti−tri, velocity

variation V i = vi − vri, and control input variation U i = ui − uieq. tri and vri are

nondimensional tension and velocity references. Therefore, the linearized dynamics is

given by

ẋ2 =







Ṫ 2

V̇ 2






= A2x2 + B2U2 +

3
∑

j=1,j 6=2

A2jxj (3.37)

where

A2 =







−CV 2r 1

−1 0






, B2 =







0

1







A21 =







CV 2r Ct1r − 1

0 0






, A23 =







0 0

1 0
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The non dimensional speed and tension references are given by

v2r =
v2r

R2
2

√

L2J2

EA
and t1r = t1r

L2

R2EA
(3.38)

The nondimensional state matrices are in simpler form compared to the dimen-

sional case. The simplified form may help in analysis and design of advanced con-

trollers.

3.4.3 Controller Scaling

A scaling law for a PI control strategy will be determined in this section. Controller

scaling can be extended to any type of controller with its characteristic parameters

like H2, H∞ and sliding mode. The control strategy for the pull roll section is shown

in Figure 3.8. The control signal for the outer loop is based on tension feedback and

controller scaling laws are applied to the tension loop. The tension loop PI controller

Reference
Tension

Web Tension

Roller
Dynamics

Drive/
Motor

PI
controller

Web Velocity

PI
controller

Web Tension
Dynamics

Reference
Velocity

Inertia
Compensation

Computer

Figure 3.8: Pull Roll Control Strategy

can be expressed in frequency domain as:

C(s) = kp

s + ω

s
(3.39)

where kp: Proportional gain (ft), ω: Frequency (rad/sec), s: Frequency domain pa-

rameter (1/sec).

The set of parameters which characterize the PI controller is given by

Φ = {kp, ω, s} (3.40)
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Scaling of the controller will require that these gains be scaled appropriately. The

controller added three more parameters in the closed loop system and this introduced

three dimensionless parameters in addition to the ones mention above. The controller

parameters can be written in dimensional form as

kp ≡ [L]1[F ]0[T ]0 (3.41)

ω ≡ [L]0[F ]0[T ]−1 (3.42)

s ≡ [L]0[F ]0[T ]−1 (3.43)

Hence, by extending the Buckingham theorem to the closed loop system we get

the following Pi parameters

Π9 =
kp

R2

= kp (3.44)

Π10 = s
1

R2

√

L2J2

EA
= s (3.45)

Π11 = ω
1

R2

√

L2J2

EA
= ω (3.46)

The Pi parameters implicate, proportional gain is inversely proportional to ra-

dius of roller. The Pi parameter corresponding to controller frequency depends on

material properties EA and system parameters R, J , and L. Higher modulus materi-

als require increase in frequency of controller to maintain dynamic equivalence. The

nondimensional form of the controller is given by

C(s) = kp

s + ω

s
(3.47)

This completes the non-dimensionalization of the controller. The nondimensional

controller is a parametrization of the controller for a dynamically equivalent dimen-

sional system. The controller scaling may expedite the process of tuning controller

parameters for dynamically equivalent systems.
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3.4.4 Model Law

The scaling law relates the parameters in the model and the prototype. Scale factor

of particular parameter is defined as the ratio of the magnitude of that parameter

for the candidate model to its magnitude for the base model. For example, the scale

factor for length is

SL =
L1

L2

(3.48)

where L1: length of prototype, L2: length of model.

The model law is a relation or a set of relations between scale factors formed in

a particular modeling. The relation between scale factors are formed on the basis of

dimensionless Pi parameters. The model law can be formed very easily based on the

Pi parameters. For example, the time scale Pi parameter is given by equation (3.27)

and the model law for this is

St = S0.5
L2

S0.5
J2

S−1
R2

S−0.5
EA (3.49)

where St: time scale factor, SL2
: length scale factor, SJ2

: inertia scale factor, SR2
:

radius scale factor, SEA: modulus and area scale factor.

Similarly, model law applied to web dynamics Pi parameters (3.28) to (3.34) and

controller Pi parameters (3.44) to (3.46), gives the scale factor relations as

Su2
= S2

R2
SEAS−1

L2
(3.50)

Sv1
= S2

R2
S0.5

EAS−0.5
L2

S−0.5
J2

(3.51)

St3 = SR2
SEAS−1

L2
(3.52)
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Sv2
= S2

R2
S0.5

EAS−0.5
L2

S−0.5
J2

(3.53)

St2 = SR2
SEAS−1

L2
(3.54)

St1 = SR2
SEAS−1

L2
(3.55)

SR2
= SL2

(3.56)

Skp
= SR2

(3.57)

Ss = SR2
S0.5

EAS−0.5
L2

S−0.5
J2

(3.58)

Sω = SR2
S0.5

EAS−0.5
L2

S−0.5
J2

(3.59)

The model law states the dimensional equivalence conditions for system parame-

ters and variables. It restricts the application of scaling factors to any general web

handling system. The implication can be explained by changing the web material in

a web transport system. It implies change in material parameters like modulus of

elasticity (E), density (ρ) etc. Dynamic equivalence conditions given by equations

(3.51) and (3.55) show that the change in modulus results in a change in operating

velocity and tension.

Equations (3.57) to (3.59) indicate that, for the same web platform i.e. geometrical

similar systems, controller gains change only with a change in web material property

values. Hence, controller gains can be scaled based on material properties for the

same web line.

Dimensional analysis can be applied to dynamically equivalent systems with dif-
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ferent materials, different tension feedback systems and web configurations. Some

examples are given in the following sections.

3.5 Dimensional Analysis for Different Materials

The application of dimensional analysis can be illustrated by taking into account

a web transport system processing different kinds of materials. The pull roll section

of the EWL with outer tension loop and inner velocity loop is considered for this

study. Therefore, the web transport system platform processing different materials

is the same, which implies geometric similarity is maintained. The kinematic and

dynamic similarity can be achieved by requiring equal dimensionless Pi parameters.

The web materials chosen are Tyvek (EA = 2800 lbf), polyester (EA = 207 lbf),

and polyethylene (EA = 263 lbf). To illustrate the controller scaling laws given

by equations (3.57) to (3.59), a PI controller is tuned for Tyvek material and the

controller gains are scaled for polyester and polyethylene.

System with Scaled Polyester:

For the system with Tyvek material, parameter specifications are Li=2.7 ft, tr=20

lbf, Vr=150 fpm, Ri=0.125 ft, and EA = 2800 lbf. Consider the system with polyester

with Li = 2.7 ft and EA = 207 lbf. All other parameters of both web systems are

kept similar which results in unit scaled factors. The goal is to design a control system

for the polyester web material system by scaling the tuned Tyvek web system. The

model law for these two systems are given by equations (3.49) to (3.59) and the scale

factor values of both systems are shown in Table 3.4. The scaled process parameters

are, tr=1.48 lbf, Vr=40.82 fpm. The scale factor values indicate that the proportional

gain for both systems remains the same. Integral gain changes by a factor of ‘0.2721’.

Time scale factor is ‘3.6747’. The controller gains tuned for Tyvek system on EWL

are proportional gain, kp = 12 and integral gain, ki = 1.2. Hence, the scaled controller

gains for the polyester web system are proportional gain, kp = 12 and integral gain,
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Scale Factor Value Scale Factor Value

St 3.6747 Su2
0.074

Sv1
0.2721 St3 0.074

SR2
1 Skp

1

Ss 0.2721 Sω 0.2721

Table 3.4: Scaled Factors for Polyester System

ki = 0.3265. The system response is slow due to the scaled time factor.

System with Scaled Polyethylene:

In another simulation the existing Tyvek web system is replaced with polyethylene

web material. The polyethylene system has span length Li = 2.7 ft, EA = 262.8 lbf.

The geometrical parameters of both web systems are kept similar which results in unit

scaled factors. The model law for these two systems are given by equations (3.49) to

(3.59) and scale factor values are given in Table 3.5.

Scale Factor Value Scale Factor Value

St 3.2637 Su2
0.0938

Sv1
0.3064 St3 0.0938

SR2
1 Skp

1

Ss 0.3064 Sω 0.3064

Table 3.5: Scaled Factors for Polyethylene System

The scaled process parameters are, tr = 1.88 lbf, Vr = 45.96 fpm. Polyethylene

control system has similar proportional gain value compared to Tyvek system. Inte-

gral gain changes by a factor of ‘0.3064’. Time scale factor is ‘3.2637’. The scaled

controller gains for polyethylene web system are proportional gain, kp = 12 and inte-

gral gain, ki = 0.3677. The system response is slow due to the scaled time factor.
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3.6 Dimensional Analysis of an Accumulator

The accumulator is one of the important primitive elements in web transport sys-

tems and plays a key role in continuous operation of web processing lines. Capacity of

an accumulator is increased by increasing the carriage height. Dimensional analysis

of an accumulator is performed in terms of capacity scaling. A simplified dynamic

model of the accumulator is taken into consideration, that includes accumulator car-

riage dynamics, average web tension dynamics in accumulator web spans, driven roller

dynamics at entry and process sides. We consider accumulator carriage control in con-

junction with entry and process driven rollers. A schematic of accumulator is shown
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Figure 3.9: Schematic of an Entry Accumulator

in Figure 3.9 which includes carriage, web spans and rollers.

The carriage dynamics of the accumulator is given by

Mc

d2xc(t)

dt2
= uc(t) − Fd(t) − Mcg − Ntc(t) (3.60)
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where uc is the controlled force; Fd is the disturbance force due to friction in hydraulic

cylinder and rod seals, friction in carriage guides, and external forces on carriage; Mc

is the mass of carriage; tc is the average tension in the accumulator spans; and N is

the number of spans in the accumulator.

The average tension dynamics in accumulator web spans is given by

dtc
dt

=
AE

xc

1

N
(vp(t) − vu(t)) +

AE

xc

ẋc(t) (3.61)

Assuming that there is no slip between the web and the roller, roller angular velocities

and web velocities are related as: vu = Rω0 and vp = RωN , where R is the radius of

roller.

The entry and process web velocities are given by

v̇u =
1

J
(−Bfuvu(t) + R2(tc(t) − tr) + RKuuu(t) (3.62)

v̇p =
1

J
(−Bfpvp(t) + R2(tr − tc(t)) + RKpup(t) (3.63)

where Bfp and Bfu are coefficients of viscous friction, tr is reference tension in entry

and process web span i.e. tr = tu = tp, up and uu are the control inputs to driven

roller actuators, and Kp and Ku are actuators gains.

For the described system, application of Buckingham Pi theorem results in the

following dimensionless groups

Π1 = t

√

AER

J
Π2 =

up

AER

Π3 = Kp Π4 =
uu

AER

Π5 = Ku Π6 =
uc

AE
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Π7 =
Mc

J
R2 Π8 =

Fd

AE

Π9 =
gJ

AER2
Π10 =

tc
AE

(3.64)

Π11 =
xc

R
Π12 =

vu

R

√

J

AER

Π13 =
vp

R

√

J

AER
Π14 =

tu
AE

Π15 =
tp

AE
Π16 =

Bfu√
JAER

Π17 =
Bfp√
JAER

Π18 = N

The Pi groups impose geometrical and material constraints on the accumulator

system. Dimensionless equations can be formed with the derived Pi parameters for the

accumulator system. Dimensionless dynamic equations are simple in representation

and easy to analyze. The simplified form helps in controller design for a scaled accu-

mulator. A scaling law for a scaled capacity accumulator system will be determined.

In this case, the accumulator height is doubled to scale up the capacity.

Consider the accumulator with a scaled-up capacity. Scaling laws establish rela-

tions between the model and the prototype parameters. The model law applied to

the accumulator equations gives the scale factor relations as

St = S−0.5
AE S−0.5

R S0.5
J SKu

= 1

Sup
= SAESR Suc

= SAE

SKp
= 1 SMc

= SJS−2
R

Suu
= SAESR SFd

= SAE

Sg = SAES2
RS−1

J Stc = SAE (3.65)
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Sxc
= SR Svu

= S1.5
R S0.5

AES−0.5
J

Svp
= S1.5

R S0.5
AES−0.5

J Stu = SAE

Stp = SAE SBfu
= S0.5

J S0.5
AES0.5

R

SBfp
= S0.5

J S0.5
AES0.5

R SN = 1

The model law was used to evaluate the dynamic equivalence conditions. The dy-

namic equivalence can be achieved by maintaining similar Pi parameters values. The

model law helps in calculating scaled controller gains for the scaled up accumulator.

For existing accumulator the parameter values used are Mc = 7310 kgs, A =

3.27 × 10−4 m2, E = 6.9 × 1010 N/m2, N = 34, vf = 35.037 × 105 N − s/m, R =

0.1524 m, J = 2.1542 kg − m2, Bf = 0.02, tr = 5180 N . The desired process speed

is 3.3 m/s. A sinusoidal disturbance (amplitude 0.25 m/s2 and frequency 0.5 Hz)

is used as the disturbance force on the carriage. A typical scenario of entry speed

during unwind roll change is shown in Figure 3.10. The desired profile for carriage

velocity is given by

vd
c =

vd
u − vd

p

N
(3.66)

The control objective is to track the desired trajectory for the carriage position, entry

velocity, and process velocity while maintaining the average web tension. The common

industrial PI controller is used to evaluate the system. Simulations are performed with

actuator gain values Kp = Ku = 10 and driven roller proportional and integral gain

values kpu = 396, kiu = 19.2, kpp = 387, kip = 8.3. The controlled carriage position

response is shown in Figure 3.11.

For the scaled up accumulator, roller radius is increased to twice the value used

for the original system and other system parameters are kept constant. The scale
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Figure 3.10: Desired Entry Speed Trajectory

factors with the modified system are

St =
√

2 Sup
= 2

SKp
= 1 Suu

= 2

SKu
= 1 Suc

= 1

SMc
= 1 SFd

= 1

Sg = 1 Stc = 1 (3.67)

Sxc = 2 Svu
=

√
2

Stu = 1 Stc = 1

SBfu
= 2

√
2 SBfp

= 2
√

2

SN = 1 Svp
=

√
2

The model law indicates that integral gains for both systems remain the same.
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Figure 3.11: Carriage Position during Roll change

Proportional gains change by a factor of
√

2. Control effort is scaled by a factor

of 2. The new accumulator system is simulated with scaled controller gains. The

plots shown in Figures 3.12 and 3.13 show scaled desired entry speed and scaled

carriage position during unwind/rewind roll change. The scaled capacity is twice

that of the original system. The scaled control scheme achieved the desired position

by matching the original system performance. Though the scaled system is slow,

dimensional analysis gives scaled controller gains which serve the purpose for the

modified accumulator.

3.7 Dimensional Analysis of Pendulum Dancer

A schematic of the pendulum dancer is shown in Figure 2.2. The pendulum dancer

is widely used in industry as a tension sensing element and plays an important role in
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Figure 3.12: Scaled Desired Entry Speed Trajectory

many web processing lines. Dimensional analysis of a pendulum dancer is performed

in terms of scaling of geometrical parameters for a web line transporting different

web materials. A dynamic model of pendulum dancer includes span tension dynamics

with time varying length, dancer rotational dynamics, and roller dynamics. The web

velocity dynamics on the dancer roller (neglecting friction) are given by

v̇2 =
R2

2

J2

(t2 − t1) (3.68)

Web tension dynamics for the upstream and downstream spans of the dancer are

given by

L̇1(t)ṫ1 = EA(v2 − v1) + t0v1 − t1v2 + (AE − t1)L̇1 (3.69)

L̇2(t)ṫ2 = EA(v3 − v2) + t1v2 − t2v3 + (AE − t2)L̇2 (3.70)

The pendulum dancer dynamics (neglecting friction) are given by

Jpθ̈ + Mpgz(sin θ) + Fsy − Fpy + t2l cos(θ − α2) + t1(l + d) cos(θ − α1) = 0 (3.71)
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Figure 3.13: Scaled Carriage Position during Roll change

The dimensionless parameters are formed by Buckingham theorem and are defined

as

Π1 = t

√

AER

J2

Π2 =
t1

AE

Π3 =
t2

AE
Π4 =

L1

R2

Π5 =
L2

R2

Π6 =
v1

R2

√

J2

AER2

Π7 =
v2

R2

√

J2

AER2

Π8 =
t0

AE
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Π9 =
v3

R2

√

J2

AER2

Π10 =
Jp

J0

(3.72)

Π11 =
l

R2

Π12 =
Mpg

AE

Π13 =
z

R2

Π14 =
Fs

AE

Π15 =
Fp

AE
Π16 =

y

R2

Π17 =
d

R2

Dimensionless governing equations can be formed with the derived Pi parameters

for the pendulum dancer system. The Pi parameters impose geometrical and material

constraints on the pendulum dancer system. The simplified dimensional form can be

used to scale geometrical and material parameters for the pendulum dancer system.

A scaling law for the scaled pendulum dancer system is given below.

The pendulum dancer is scaled for different materials, having considerably differ-

ent values of elastic modulus. Scaling laws establish relations between base model

and candidate model parameters. Model law applied to pendulum dancer dynamics

gives the scale factor relations as

St = S−0.5
AE S−0.5

R2
S0.5

J2
St1 = SAE

St2 = SAE SL1
= SR2

SL2
= SR2

Sv1
= S1.5

R2
S0.5

AES−0.5
J2

Sv2
= S1.5

R2
S0.5

AES−0.5
J2

St0 = SAE

Sv3
= S1.5

R2
S0.5

AES−0.5
J2

SJp
= SJ0

(3.73)

Sl = SR2
SMpg = SAE

Sz = SR2
SFs

= SAE

SFp
= SAE Sy = SR2

Sd = SR2

Dynamics equivalence between the base model and the candidate model can be
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achieved by maintaining similar Pi parameters values. The model law evaluates the

dynamic equivalence conditions. The model law helps in calculating scaled geometri-

cal parameters for scaled pendulum dancer. For example, consider the base material

as Tyvek: elastic modulus constant, AE = 2800 lbf. Scaling is performed by consider-

ing aluminium as the candidate material : elastic modulus constant, AE = 5.07×106

lbf. The model law indicates that the change in modulus constant places a constraint

on mass of the pendulum dancer. For higher modulus candidate materials such as alu-

minium, mass of the pendulum needs to be increased. The increase in the pendulum

dancer mass results in increase in the pendulum inertia. The model law reveals the

relation between pendulum inertia and roller inertia. Hence, ultimately dancer roller

geometrical parameters need to be modified for the new design. The change in roller

radius affects the pendulum geometrical parameters. Dimensional analysis expedites

the process of designing a pendulum dancer for modified material parameters.
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CHAPTER 4

Model Reference Adaptive Controllers for Web Tension Control

An adaptive controller can modify closed loop system behavior by compensating

for the changes in system dynamics. An adaptive controller has adjustable parameters

against the fixed parameters in traditional controllers and a mechanism for adjusting

the system parameters. Most adaptive controllers are nonlinear due to nonlinear

parameter adjusting mechanisms. A number of adaptive schemes are used in practice

such as gain scheduling, self-tuning regulators, and model reference adaptive control,

etc.

In the gain scheduling approach, the variables causing the changes in system

dynamics are considered to evaluate the controller parameters. For example, in flight

control, altitude and Mach number are measured with air sensors and used to calculate

controller gain parameters. A schematic of the gain scheduling approach is shown in

Figure 4.1. The main problem involved in this scheme is that suitable gain scheduling

variables that characterize the system need to be found.

A self-tuning regulator (STR) is a controller that automatically tunes its param-

eters in order to achieve desired performance. The STR is composed of two loops.

The inner loop is ordinary feedback control loop. While the outer loop estimates the

process parameters and compares with the parameter specifications. Based on the

comparison, controller parameters are calculated. The performance of the controller

depends on the given parameter specifications. A schematic of the STR approach is

shown in Figure 4.2.

Model reference adaptive control (MRAC) is an important approach in adaptive
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Figure 4.2: Schematic of a Self Tuning Regulator

control. MRAC was first introduced in flight control. The reference model is chosen

to generate a desired trajectory and guide the system for ideal response with given

reference command. The MRAC method is composed of two loops similar to the

self tuning regulator. The inner loop is an ordinary feedback control loop. The

outer loop is a controller parameters adjustment loop. The controller parameters are
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adjusted based on certain variables like error between the actual system output and

the model output, control input to the system, and the actual output of the system.

The parameter adjustment mechanism can be generated in two ways: by using a

gradient method or with stability theory such as Lyapunov stability. The goal is

to find an adjustment mechanism, to obtain zero error between the reference model

output and the actual system output. A schematic of the MRAC approach is shown

in Figure 4.3.

  Reference 
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  Mechanism

   Adaptive

  Controller    Plant

   Controller 

  Parameters

   Reference  

      Signal

Figure 4.3: Schematic of Model Reference Adaptive System

The MRAC approach can be divided into direct and indirect adaptive schemes.

In most of the applications, system parameters are unknown and need to be esti-

mated in order to design effective control schemes. The estimation of parameters is

governed by the adaptive law. In direct MRAC control, the plant is parameterized

in terms of controller parameters. The controller parameters are updated directly

by an adaptive law. Whereas, indirect MRAC schemes formulate a relation between

controller parameters and online estimation of plant parameters. Plant parameters

are estimated based on an adaptive law and controller parameters are calculated in-

directly based on the relation formulated. In subsequent study of adaptive control to

a web transport system, model reference schemes are chosen. The reference model
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specifies desired performance and guides the adaptive controller such that the closed

loop system behaves as the reference model. The designed model reference adaptive

schemes are decentralized in nature.

In this chapter, direct and indirect model reference adaptive controllers are de-

signed and experimental results are presented. The designed direct and indirect con-

trollers are decentralized in nature for a class of large-scale interconnected systems.

A simple direct adaptive controller based on the gradient method is also presented.

Adaptive control schemes using MRAC is described in Section 4.1. The MRAC direct

and indirect approaches and the gradient method are studied in Sections 4.2 to 4.4.

Experimental procedure and results are presented in Sections 4.5 and 4.6, respectively.

4.1 Adaptive Control Schemes Using MRAC

Adaptive laws can be designed using the Lyapunov stability approach. The prob-

lem of adaptive gain evaluation is similar to the problem of online parameter identi-

fication. The gains can obtained by parameterization of the plant.

Consider a simple first order scalar plant:

ẋ = ax + u, x(0) = x0 (4.1)

where a is an unknown plant parameter, x is the state as well as the output, and u is

the input to the system. The goal is to estimate the unknown parameter and design

the control input u so that the state x of the plant remains bounded and converges to

zero for any given initial condition. Let am be any arbitrary positive model reference

parameter with ẋ = −amx being a stable system.

To develop a control scheme for the plant with known a is easier and the following

feedback control can be selected:

u = −kx (4.2)
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where k = a + am and the closed loop system becomes

ẋ = −amx (4.3)

Hence, the resultant system is stable with the equilibrium at zero.

But in many practical cases, system parameters are unknown. The unknown plant

and the controller parameters need to be estimated in order to implement the control

scheme. Let k̂ be the estimate of the controller parameter. Add and subtract the

desired control input given by equation (4.2) in the plant equation (4.1).

ẋ = ax − kx + kx + u (4.4)

Since a − k = −am, the plant equation (4.4) can be written as,

x(s) =
1

s + am

(u + kx(s)) (4.5)

The plant is parameterized in terms of controller parameters. The estimated

controller parameter generates estimated plant output as

x̂(s) =
1

s + am

(u + k̂x(s)) (4.6)

By substituting the estimated control input u = −k̂x in equation (4.6), the es-

timated plant output becomes zero. Define the plant output estimation error as

ǫ = x− x̂. Due to zero estimation output, the estimation error is the regulation error

i.e. ǫ = x. Define parameter error k̃ = k̂ − k and substitute estimated control input

u = −k̂x in equation (4.5) to obtain

ǫ̇ = −amǫ − k̃x (4.7)

In the frequency-domain

ǫ(s) =
1

s + am

(−k̃x(s)) (4.8)

Assume the adaptive law to be in the form

˙̃k =
˙̂
k = f(x̂, x, u) (4.9)
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Now choose the Lyapunov function as

V =
ǫ2

2
+

k̃2

2γ
(4.10)

where γ > 0 is the adaptive gain. The time derivative of the Lyapunov function is

V̇ = −amǫ2 − k̃ǫx +
k̃f

γ
(4.11)

Define the function f as

f =
˙̂
k = γǫx = γx2, k̃(0) = k̃0 (4.12)

Substitute the function f in equation (4.11) to get

V̇ = −amǫ2 ≤ 0 (4.13)

The Lyapunov approach that is used, proves the stability of the control scheme

with the selected controller parameter update law. The combination of the control

law (4.2) and the adaptive law (4.12) regulate the plant and ensure state convergence

to zero.

In parameter identification, the system parameter converges to its nominal value.

In the case of adaptive control, it is not necessary to converge controller parameters to

true values. The control objective of zero error can be achieved without convergence

of the parameter values to their true values. Larger values for the adaptive gain lead

to faster convergence of parameter value to true value. But larger gain make the

system more sensitive to measurement noise and error. So proper selection of the

adaptive gain is a trade-off.

4.1.1 Sigma (σ) switching

In large scale interconnected systems, the problem of parameter drifting occurs

due to interaction between subsystems. The issue of parameter drifting can be avoided
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by using σ switching. The σ switching can be defined as

σ =











σ0 if ‖ k̂ ‖> k̂

0 if ‖ k̂ ‖≤ k̂
(4.14)

The adaptive law described by equation (4.12) can be modified as

˙̂
k = −γǫx − σγ(1 + x2)k̂ (4.15)

4.2 Direct MRAC for Web Transport System

Consider a single input single output (SISO), linear time invariant (LTI) system:

ẋp = Apxp + Bpup, xp(0) = x0

yp = Cp
T xp (4.16)

where xp: state vector, up: input to system, Ap: state matrix, Bp: input matrix, yp:

system output.

The plant transfer function is

Gp(s) = kp

Zp(s)

Rp(s)
(4.17)

where Zp, Rp are monic polynomials and kp is the high frequency gain.

The reference model in state space representation is

ẋm = Amxm + Bmum, xm(0) = x0

ym = Cm
T xm (4.18)

where xm: state vector, um: input to model, Am: state matrix, Bm: input matrix,

ym: model output.

The reference model transfer function is

Wm(s) = km

Zm(s)

Rm(s)
(4.19)
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where Zm, Rm are monic polynomials and km is a constant.

The goal of model reference control is to evaluate system input up so that the

system output yp tracks the reference model output ym for a given command reference

input r. The general structure of the direct MRAC scheme is shown in Figure 4.4.
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Figure 4.4: Schematic of Direct Model Reference Adaptive System

In model reference control one has to impose some assumptions on plant and

reference model so that the control input is free of differentiators and depend on

measurable signals. The assumptions on plant and model are as follows:

1. ‘n’ is an upper bound on degree ‘rp’ of Rp, and is known.

2. Zp is monic Hurwitz of degree ‘zp’, that means plant should be minimum phase.

3. Relative degree of the plant np = rp − zp is known.

4. The sign of the high frequency gain kp is known.

5. Zm(s), Rm(s) are monic Hurwitz polynomials of degree zm and rm, respectively

and rm ≤ n.
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6. The relative degree of the reference model, nm is equal to the plant relative

degree np.

The important characteristics of model reference adaptive control are that the

adaptive law depends on the state estimation error, that is, regulation error, and the

designed adaptive law ensures internal stability of system.

4.2.1 Design of a Direct MRAC Scheme for Web Tension Control

A schematic of a simplified web transport system is shown in Figure 3.6. Design

of the direct MRAC for control of tension in the unwind section is presented here.

This approach can be followed for other sections.

The web tension dynamics of ith span is given by

ṫi =
EA

Li

(vi − vi−1) +
1

Li

(ti−1vi−1 − tivi) (4.20)

The governing equation for web velocity on the ith driven roller is given by

v̇i =
R2

i

Ji

(ti+1 − ti) +
Ri

Ji

niui −
bfi

Ji

vi (4.21)

The linearized web span tension dynamics in frequency domain is given by

Ti(s) =
EA/Vr

τωis + 1
(Vi(s) − Vi−1(s)) +

1

τωis + 1
Ti−1(s) (4.22)

where τωi = Li

Vr
is the span time constant. Ti and Vi are tension and velocity variations,

respectively. The web span tension Ti is the output and the roller velocity Vi is the

input. For the unwind zone, the tension variation Ti−1 in web roll is assumed to be

zero. The transfer function from the velocity input to the span tension is

Gp(s) =
EA/Vr

τωis + 1
(4.23)

The linearized equation reduces the number of estimated parameters in adaptive

control design and will be used in the following.
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Figure 4.5: Control Strategy for Unwind Section

The control strategy for the unwind roll is shown in Figure 4.5. The unwind roll

is controlled by a cascaded control strategy. The inner loop is the velocity loop which

is regulated by a well-tuned PI controller. The outer loop is the tension loop and

contains the adaptive controller.

The velocity open loop transfer function is given

Gv(s) =
kv(s + ωv)

s

1

n0J0s
(4.24)

where kv is proportional gain and ωv is cutoff frequency.

The closed loop velocity transfer function is

Gcv(s) =
krf (s + ωv)

s2 + krfs + krfωv

(4.25)

where krf = kv

n0J0
is the reference gain, ωv =

krf

4ζ2 is the cut-off frequency, ζ is the

damping ratio of the system.

The plant transfer function (4.23) in conjunction with the closed loop velocity

transfer function (4.25) gives the following combined system transfer function from

the velocity reference correction provided by the outer tension loop controller and the

tension output

W (s) = GcvGp (4.26)

The resulting transfer function has relative degree two.

In order to design a direct MRAC for the tension loop, we select a second order

system with relative degree two as the reference model. The upper bound ‘n’ for the
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combined plant is selected to be three. The reference model transfer function can be

expressed as

Wm(s) =
ω2

n

s2 + 2ζmωns + ω2
n

(4.27)

where ωn is the natural frequency and ζm is the damping ratio of the reference model.

The model output is given by

tm = Wm(s)tr (4.28)

The estimation error between model and the tension output is defined as

e1 = t1 − tm (4.29)

Let us consider the combined feedback and fedforward control law so that the

closed loop plant response matches that of the reference model. The control law is

chosen as

up = θ∗Tc1

α(s)

Λ(s)
up + θ∗Tc2

α(s)

Λ(s)
t1 + θ∗c3t1 + θ∗c4tr (4.30)

where

α(s) ≡ αn−2(s) = [sn−2, sn−3, . . . , 1]T for n ≥ 2,

Λ(s) = Λ0(s)Zm(s) is any monic Hurwitz polynomial, and

θ∗c1, θ
∗
c2 ε ℜn−1 and θ∗c3, θ

∗
c4 ε ℜ1 are constant controller parameters to be designed.

The controller parameters vector

θ∗c = [θ∗Tc1 , θ∗Tc2 , θ∗c3, θ
∗
c4]

T (4.31)

is selected in such a way that the closed loop plant transfer function asymptotically

tends to the model reference transfer function.

Control Law

For a relative degree two model, the control law is given by

ω̇1 = Fω1 + gup, ω1(0) = 0
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ω̇2 = Fω2 + gup, ω2(0) = 0

φ̇ = −p0φ + ω, φ(0) = 0 (4.32)

where ωi ε ℜn−1 are the filters, p0 is chosen such that Wm(s)(s+p0) is strictly positive

real, (F ,g) is a state space realization of the transfer function α(s)
Λ(s)

.

The control input is

up = θT
c ω + θ̇c

T
φ (4.33)

where ω is the vector of filter parameters given by

ω =

[

ωT
1 ωT

2 t1 tr

]T

(4.34)

The control input has an additional term θ̇c

T
φ compared a relative degree one design,

this is discussed in detail in the next subsection.

Adaptive Law

A state space representation of the closed loop system by combining plant (4.16)

and adaptive controller (4.32) can be presented as

Ẏc = AcYc + Bcup, Yc(0) = Y0

t1 = CT
c Yc (4.35)

where

Yc =

[

xT
p ωT

1 ωT
2

]

Ac =













Ap 0 0

0 F 0

gCp 0 F













Bc =













Bp

g

0













CT
c =

[

CT
p 0 0

]
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Define the state error e = Yc −xm and the tracking error e1 = t1 − tm. The governing

equation for error is given by

ė = Ace + Bc(up − θT
c ω) (4.36)

e1 = CT
c e = Wm(s)ρ(up − θT

c ω) (4.37)

where ρ = kp

km
is an unknown constant, θc is estimated controller parameters. With a

relative degree two system, Wm cannot be designed to be strictly positive real with

the control law up = θT
c ω. We need to rewrite the error equation as

ė = Ace + B̄c(s + p0)ρ(uf − θT
c φ)

e1 = Wm(s)(s + p0)ρ(uf − θT
c φ) (4.38)

where uf is the filtered input.

The state error can also be represented as

ē = e − Bcρθ̃c

T
φ (4.39)

where θ̃c = θc − θ∗c is the parameter estimation error.

Choose the control input as

up = (s + p0)uf = θT
c ω + θ̇c

T
φ (4.40)

Now, the Lyapunov function can be selected as

V =
ēT P ē

2
+

θ̃c

T
Γ−1θ̃cρ

2
(4.41)

where Γ ≥ 0 is any arbitrary positive constant and P > 0 satisfies the algebraic

equation

PAc + AT
c P = −QQT − νcLc (4.42)

where Q is any vector, Lc > 0 and νc > 0.
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By choosing the parameter adaptation law as

˙̃θc = θ̇c = −Γe1φsgn(ρ) = −Γe1φsgn(kp/km) (4.43)

the time derivative of the Lyapunov function is given by

V̇ = − ēT QQT ē

2
− νc

2
ēT Lcē ≤ 0 (4.44)

Lyapunov stability ensures all signals in the closed loop system to be bounded

and the model error e1 converges to zero asymptotically.

The controller implementation for direct MRAC scheme is shown in Figure 4.6.
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Figure 4.6: Implementation of Direct Model Reference Adaptive Control

4.3 MRAC Indirect Adaptive Controller for Web Tension Control

In the previous section, we designed a direct adaptive controller for web span

tension control with unknown parameters by directly estimating the controller pa-

rameters. Alternatively, one could estimate the plant parameters which can be used

to calculate the controller parameters. This approach is called the indirect MRAC

scheme since the controller parameters are calculated indirectly using plant param-

eters estimates. A schematic of the indirect MRAC scheme is shown in Figure 4.7.
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The parameter vector consists of the high frequency gain of the plant and coefficients

of plant transfer function polynomials. The adaptive law uses the filtered values of

the plant output and the control input to estimate plant parameters.

Similar to the direct MRAC control design, the plant dynamics is given by (4.20)

and (4.21). A second order model with relative degree two is selected as a reference

and described by equation (4.27). The unwind control strategy is as shown in Fig-

ure 4.5. The combined plant and velocity closed loop transfer function is given by

equation (4.26). The resultant system is of relative degree two. The upper bound ‘n’

for plant transfer function is selected as three.

Consider again the combined feedback and fedforward control law

up = θT
c1

α(s)

Λ(s)
up + θT

c2

α(s)

Λ(s)
t1 + θc3t1 + θc4tr (4.45)

where

α(s) ≡ αn−2(s) = [sn−2, sn−3, . . . , 1]T for n ≥ 2,

Λ(s) = Λ0(s)Zm(s) is any monic Hurwitz polynomial, and

θ∗c1, θ
∗
c2 ε ℜn−1 and θ∗c3, θ

∗
c4 ε ℜ1 are constant controller parameters to be designed.
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The controller parameter vector is

θc = [θT
c1, θ

T
c2, θc3, θc4]

T (4.46)

Control Law

We propose the same control law used in direct MRAC scheme for the plant of

relative degree two.

ω̇1 = Fω1 + gup, ω1(0) = 0

ω̇2 = Fω2 + gup, ω2(0) = 0

φ̇ = −p0φ + ω, φ(0) = 0 (4.47)

where ωi ε ℜn−1 are the filters, p0 is chosen such that Wm(s)(s + p0) become strictly

positive real, (F ,g) is state realization of α(s)
Λ(s)

.

The control input is

up = θT
c ω + θ̇T

c φ (4.48)

where ω is the vector of filter parameters given by

ω =

[

ωT
1 ωT

2 t1 tr

]T

(4.49)

The control input has an additional term θ̇c

T
φ compared a relative degree one design,

this is discussed in detail in the next subsection.

Adaptive Law

The plant parameter adaptation law is given by

θ̇p = −Γe1φsgn(kp/km) (4.50)

where Γ > 0 (any arbitrary positive number), e1 = t1 − tm is the model error, and

kp, km are high frequency gains of the plant and the model, respectively.
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Define Q(s) to be the quotient of Λ0Rm

Rp
, p1 = [p11, p12]

T , p2 = [p21, p22]
T , ν =

[ν1, ν2]
T , and λ = [λ1, λ2]

T . Then, we can write

Zp(s)Q(s) = sn−1 + pT
1 αn−2(s) (4.51)

Rp(s)Q(s) = sn+1 + ans
n + an−1s

n−1 + pT
2 αn−2(s) (4.52)

Λ(s) = sn−1 + λT αn−2(s) (4.53)

Λ0Rm(s) = sn+1 + rns
n + rn−1s

n−1 + νT αn−2(s) (4.54)

The plant high frequency gain is estimated using the adaptation law

˙̂
kp = −γpe1ξ1 if |k̂p| > k0 (4.55)

The coefficient of the plant transfer function are estimated as

˙̂an−1 = −γ1e1ξ2 (4.56)

˙̂p1 = Γ1e1ω1sgn(kp) (4.57)

˙̂p2 = −Γ2e1ω2 (4.58)

where

ξ1 = λT ω1 − up − p̂T
1 ω1

ξ2 = t1 − λT ω2

e1 = t1 − tm

Based on the plant parameter estimation, controller parameters are calculated as

θc11 = λ1 − p̂11 (4.59)

θc12 = λ2 − p̂12 (4.60)

θc21 =
p̂21 − ν1 − λ1(ân−1 − rn−1)

k̂p(t)
(4.61)
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θc22 =
p̂22 − ν2 − λ2(ân−1 − rn−1)

k̂p(t)
(4.62)

θc3 =
ân−1 − rn−1

k̂p(t)
(4.63)

θc4 =
km

k̂p(t)
(4.64)

The indirect MRAC scheme guarantees internal stability of the system, i.e. all

signals are bounded, and convergence of the tracking error e1 to zero asymptotically.

The controller implementation for the indirect MRAC tension control scheme is

shown in Figure 4.8.
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4.4 A Simple Adaptive PI Controller for Web Tension Control

Both Direct and indirect MRAC schemes for tension regulation require estimation

of six parameters. There is a need for a simple adaptive scheme which has fewer

parameters to be estimated. Adaptive PI scheme is developed based on directly

estimating the gains of the PI controller by gradient method. The simple adaptive PI
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requires estimation of only two parameters. The simple adaptive PI controller does

not give a guarantee of stability. Since a regular PI controller also does not assure

stability with a linearized model, the designed adaptive PI is a better option. The

simple adaptive PI controller does not require extensive tuning.

The adaptive PI controller has only two adjustable parameters i.e., the propor-

tional gain and the integral gain. The parameters can be adjusted by minimizing the

loss function corresponding to the model error e1 = t1 − tm

J(θ) =
1

2
e2
1 (4.65)

where parameter vector θ =

[

kp ki

]T

is a function of the controller, kp and ki are

the proportional and integral gain, respectively. To minimize the loss function, it

is reasonable to change the adjustable parameter in the direction of the negative

gradient of J , i.e.,

dθ

dt
= −γ

∂J

∂θ
= −γe1

∂e1

∂θ
(4.66)

where ∂e1

∂θ
is called the sensitivity of the system. Equation (4.66) is generally called

the MIT rule in adaptive control literature. The sensitivity of the system can be

further simplified as

θ̇ =
∂(t1 − tm)

∂θ
=

∂t1
∂θ

(4.67)

With the combined plant as given by equation (4.26), the closed loop transfer

function with the adaptive PI control scheme is given by

Gc(s) =
(skp + ki)W (s)

s + (skp + ki)W (s)
(4.68)

The output of the closed loop system is the actual web span tension t1 and the

input is the reference tension tr, i.e.,

t1 =
(skp + ki)W (s)

s + (skp + ki)W (s)
tr (4.69)
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where the transfer function composed of the linearized tension dynamics and velocity

loop is

W (s) =
krf (s + ωv)

s2 + krfs + krfωv

EA/Vr

τωis + 1
(4.70)

The relative degree of this transfer function is two. We can select a reference

model with relative degree two and having the same number of poles and zeros as the

transfer function (4.68), i.e.,

Wm(s) =
km(as + z1)(s + z2)

(s + p1)(s + p2)(s + p3)(s + p4)
(4.71)

where the model parameters a, zi and pi are known and can be selected to provide

the desired performance.

Applying the MIT rule, we can derive the adaptive law for controller parameters

as

skp = −γpe1

s(tr − t1)(EA/Vr)(krfs + k2
rf/4ζ

2)

s(s2 + krfs + k2
rf/4ζ

2)(τωis + 1) + (kps + ki)(EA/Vr)(krfs + k2
rf/4ζ

2)

(4.72)

ski = −γie1

(tr − t1)(EA/Vr)(krfs + k2
rf/4ζ

2)

s(s2 + krfs + k2
rf/4ζ

2)(τωis + 1) + (kps + ki)(EA/Vr)(krfs + k2
rf/4ζ

2)

(4.73)

In adaptive PI controller design, it is assumed that the system parameters are not

known. So the exact formulae that are derived using the MIT rule (4.66) cannot be

used. Comparing the closed loop adaptive control system with the reference model,

the controller parameter estimates are given by

skp = −γpe1
s(tr − t1)km(s + z2)

(s + p1)(s + p2)(s + p3)(s + p4)
(4.74)

ski = −γie1
(tr − t1)km(s + z2)

(s + p1)(s + p2)(s + p3)(s + p4)
(4.75)

The designed controller does not guarantee the stability of the closed loop system.

The designed adaptive PI controller scheme is shown in Figure 4.9. This provides a

scope to design an adaptive PI controller which ensures the stability as well.
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Figure 4.9: Implementation of Adaptive PI Model Reference Control

4.5 Experimental Procedure

The experimental platform used for implementation of a designed adaptive con-

troller was shown in Figure 2.1. The details about the experimental platform were

described in Section 2.4. The controllers were implemented for the unwind section of

the EWL. The material used for all experiments was the polymer Tyvek manufactured

by Dupont. The experiments were performed for both load cell and dancer feedback

control strategies. The tension data was collected from the load cell on roller R8,

which is shown in the experimental platform schematic Figure 2.1. The experiments

were carried out at two line speeds: 150 FPM and 200 FPM. Initially, 20 lbf tension

is maintained at zero line velocity. The line velocity is accelerated to 150 FPM or 200

FPM as shown by the velocity profile for the 150 FPM case in Figure 4.10.

The nominal values of key plant parameters are given in the Table 4.1.
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Parameter Notation Numerical Values (FPS units)

Modulus constant EA 2800 lbf

Roller inertia J 0.003 lbf - ft - s2

Pendulum dancer inertia Jp 0.4210 lbf - ft - s2

Roller radius R 0.125 ft

Web width w 0.5 ft

Web thickness w 0.007 ft

Pendulum dancer span length Li 1.825 ft

Table 4.1: Plant Parameter Nominal Values

4.6 Experimental Results

Implementation of the designed decentralized model reference adaptive controllers

on the Euclid Web Line (EWL) is presented in this section. Three types of decentral-
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ized model reference adaptive controller schemes along with a well-tuned PI controller

were implemented and their performance was evaluated through extensive experimen-

tation.

• Industrial PI Controller

• Direct Model Reference Adaptive Controller

• Indirect Model Reference Adaptive Controller

• Adaptive PI Controller

4.6.1 Experimental Results with the PI Controller

An often used PI control strategy for the unwind roll is shown in Figure 4.5.

The control strategy is a cascaded outer loop PI controller to regulate tension and

inner velocity control loop. The output of the tension controller becomes a reference

velocity error correction for the inner velocity loop. The outer loop tension controller

responds to tension variation and generates velocity correction to the inner velocity

loop. The non-ideal effects, such as out of roundness, eccentricity of unwind roll,

continuously inject disturbances into the system. This causes variations in web span

tension.

Experiments were performed for load cell and dancer feedback strategies with

well-tuned proportional and integral gains. The tuned values of the gains are given

in Table 4.2.

Load cell Dancer

kp 12 4

ωi 0.1 0.1

Table 4.2: Finely Tuned PI Controller Gains
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Web tension as measured by load cells on roller number 8 for load cell and dancer

feedback for two line speed reference values of 150 FPM and 200 FPM are shown in

Figures 4.11 through 4.14.

The standard deviation is evaluated for steady-state tension values. The standard

deviation values indicate that the web tension in the unwind section at steady state

varies between ±2.5 lbf with both load cell and dancer feedback control strategies.

4.6.2 Experimental Results with the Direct MRAC Scheme

The control strategy for direct adaptive control is as shown in Figure 4.5. The

plant given by equation (4.26) has relative degree two and the upper bound ‘n’ for

the plant denominator degree is selected as three. The direct MRAC scheme contains

six controller parameters ‘θci’ for the plant with the selection of the upper bound as

three. The filter parameters are chosen as follows:

α(s) =

[

s 1

]T

, Λ(s) = s2 + 2s + 1

where Λ(s) is a monic Hurwitz polynomial.

The state space representation of the filter gives the state matrix and input matrix

as

F =







−2 −1

1 0






, g =







1

0






(4.76)

The strict positive real condition of (s + p0)Wm(s) can be fulfilled by choosing

p0 = 1. Experiments were performed for load cell feedback at 150 FPM and 200 FPM,

and tension data was collected using the load cells on the roller 8 in the unwind section.

The initial estimates of the controller parameters were chosen to be zero. Based

on the tension performance in the transient and steady state, the initial estimates

of the controller parameters were tuned. The adaptive gain rates were chosen as

Γ = [15, 15, 15, 15, 25, 25]T and the tuned initial values of the controller parameter
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Controller Parameter θ11 θ12 θ21 θ22 θ3 θ4

Initial Value 1.6 -0.3 -0.96 -1.6 11.5 -9.0

Table 4.3: Direct MRAC Controller Parameter Initial Value Estimates

estimates were given in Table 4.4. The tension signal for load cell feedback at 150

FPM and 200 FPM are shown in Figures 4.15 and 4.16. With the direct MRAC

scheme, tension was regulated to within ±1.5 lbf.

4.6.3 Experimental Results with the Indirect MRAC Scheme

The indirect adaptive control strategy is shown in Figure 4.5. The plant described

by equation (4.26) has relative degree two and the upper bound ‘n’ is selected as three,

similar to the direct adaptive design. The indirect MRAC scheme also involves six

controller parameters ‘θci’ which can be calculated based on the estimation of plant

parameters.

The filter parameters are chosen as

α(s) =

[

s 1

]T

, Λ(s) = s2 + 2s + 1

where Λ(s) is a monic Hurwitz polynomial.

The state space representation of the filter gives the state matrix and the input

matrix as

F =







−2 −1

1 0






, g =







1

0






(4.77)

Experiments were performed for load cell feedback at 150 FPM and 200 FPM and

tension data was collected using the load cells on roller 8 in the unwind section. The

strict positive real condition of Wm(s)(s + p0) can be fulfilled by choosing p0 = 1.

The initial estimates of the plant parameter were chosen to be zero. Based on the

tension performance in the transient and steady state, the initial estimates of the

plant parameters were tuned. The tuned plant parameter coefficient values were
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selected as λ = [2, 1]T , ν = [2.092, 0.1014]T . The adaptive gain rates were Γ =

[−10, 10, 10,−10,−10,−10]T and initial estimates of plant controller parameters are

given in Table 4.4.

Plant Parameters kp an p11 p12 p21 p22

Initial Values 1900 5 -1 -0.8 -1 6

Table 4.4: Indirect MRAC Plant Parameter Initial Estimates

The tension response for load cell feedback at 150 FPM and 200 FPM are shown

in Figures 4.17 and 4.18. Indirect MRAC regulates the tension for the unwind section

within ±1.5 lbf.

4.6.4 Direct Adaptive PI Controller

The implementation of adaptive PI control is shown in Figure 4.9. The selected

reference model has relative degree two. The poles and zeros of the reference model

can be selected based on the actual model parameter nominal values. The selected

reference model can be simulated to verify the desired performance. The reference

model selected for the design is

Wm(s) =
0.25(4s + 1.6)(20s + 100)

(0.4s + 1.6)(s + 0.5)(s + 0.5)(5s + 100)
(4.78)

The adaptive PI controller is easy to implement since only two parameters need to

be estimated. This controller is simple in design compared to the direct and indirect

MRAC strategies. Experiments were performed for load cell and dancer feedback

at 150 FPM and 200 FPM. The implementation procedure for adaptive PI is given

below.

Step 1: Choose a reference model which gives desired performance, i.e., fast tran-

sient response, low percentage overshoot, etc. The selection of poles and zeros of the

reference model can be based on the nominal values of the plant parameters.

Step 2: Perform computer simulations to evaluate the selected reference model.
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Computer simulations help in adjusting the reference model parameters.

Step 3: Choose initial controller gain estimates to be zero. Choose the adaptive gain

rate to be one. The selected initial gains is a good starting point for load cell and

dancer feedback systems.

Step 4: The initial value of the proportional gain may be increased in steps until

desired response is achieved.

Step 5: In the presence of steady state error, increase the integral gain initial value.

The system with load cell feedback is stiff and requires larger initial estimates of

proportional gain. The tension data for load cell feedback at 150 FPM and 200 FPM

are shown in Figures 4.19 and 4.20.

Same adaptive PI structure is implemented for the dancer feedback system. Initial

estimates for adaptive gains are set to zero as mentioned in the above implementation

procedure. Adaptive gain rates are kept at one. With the dancer system, the adaptive

gain estimates converge close to the well-tuned PI parameters values used for dancer

feedback. The proportional gain reaches the value of 4 and integral gain reaches to

0.2. The tension data for dancer feedback at 150 FPM and 200 FPM are shown in

Figures 4.19 and 4.20. The evolution of the estimates of controller parameters are

shown in Figures 4.23 through 4.26. The adaptive PI control performs similarly to a

well-tuned PI controller in both, load cell and dancer feedback systems.

4.6.5 Comparison of PI and Model Reference Adaptive Control Schemes

with Load Cell Feedback

Compared to an existing well-tuned PI controller, the proposed adaptive schemes

show improvements in tension regulation. The standard deviation of the steady-

state tension data is used as a performance metric. The Tables 4.5 through 4.6

show the standard deviations for PI and adaptive control schemes implemented with
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load cell feedback at 150 FPM and 200 FPM. One can observe that the adaptive

control schemes perform better than a well-tuned PI controller in steady state and

the transient corresponding to acceleration and deceleration of the line seem to be

better for the adaptive schemes. The industrial PI controller requires extensive tuning

during the initial implementation phase. The tuned PI controller is not robust enough

for the changes in web transport system such as web configuration, feedback system,

web materials. Extensive tuning can be avoided at later stages by using MRAC

schemes.

Control Scheme Standard Deviation

PI 0.71

Direct Adaptive 0.57

Indirect Adaptive 0.52

Adaptive PI 0.45

Table 4.5: Standard Deviations with Load cell Feedback at 150 FPM

Control Scheme Standard Deviation

PI 1.21

Direct Adaptive 0.73

Indirect Adaptive 0.63

Adaptive PI 0.47

Table 4.6: Standard Deviations with Loadcell Feedback at 200 FPM

4.6.6 Comparison of PI and Adaptive PI Control Schemes with Dancer

Feedback

The Table 4.7 shows the standard deviation for fixed PI and adaptive PI control

schemes with dancer feedback at 150 FPM and 200 FPM. It can be seen from the

standard deviation values that adaptive PI is performing similar to a well-tuned PI

109



controller. The adaptive PI controller has an advantage over a fixed gain industrial

PI control scheme, that extensive tuning is not necessary. Adaptive PI controller has

adjustable characteristics to compensate for changes in sensing system, web configu-

rations, and web materials. The adaptive PI has only two parameters to be estimated.

It is simple in design and implementation. One limitation of the adaptive PI scheme

with gradient based adaptation scheme over Lyapunov based MRAC schemes is that

there are no stability results associated with the gradient based scheme.

Control Scheme Standard Deviation

150 FPM 200 FPM

PI 0.45 0.46

Adaptive PI 0.49 0.44

Table 4.7: Standard Deviations with Dancer Feedback
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Figure 4.11: Tension at 150 FPM with PI Controller and Load cell feedback
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Figure 4.12: Tension at 200 FPM with PI Controller and Load cell feedback
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Figure 4.13: Tension at 150 FPM with PI Controller and Dancer feedback
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Figure 4.14: Tension at 200 FPM with PI Controller and Dancer feedback
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Figure 4.15: Tension at 150 FPM with Direct MRAC Controller and Load cell feed-

back
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Figure 4.16: Tension at 200 FPM with Direct MRAC Controller and Load cell feed-

back
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Figure 4.17: Tension at 150 FPM with Indirect MRAC Controller and Load cell

feedback
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Figure 4.18: Tension at 200 FPM with Indirect MRAC Controller and Load cell

feedback
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Figure 4.19: Tension at 150 FPM with Adaptive PI Controller and Load cell feedback
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Figure 4.20: Tension at 200 FPM with Adaptive PI Controller and Load cell feedback
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Figure 4.21: Tension at 150 FPM with Adaptive PI Controller and Dancer feedback
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Figure 4.22: Tension at 200 FPM with Adaptive PI Controller and Dancer feedback
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Figure 4.23: Proportional Gain Adaptation at 150 FPM with Dancer feedback
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Figure 4.24: Integral Gain Adaptation at 150 FPM with Dancer feedback
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Figure 4.25: Proportional Gain Adaptation at 200 FPM with Dancer feedback
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Figure 4.26: Integral Gain Adaptation at 200 FPM with Dancer feedback
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CHAPTER 5

Summary and Future Work

5.1 Summary

Longitudinal dynamics of the web plays an important role in web transport sys-

tems. It is essential to maintain tension in the longitudinal direction (machine direc-

tion), since tension variations directly affect web transport and the quality of the final

product. A number of problems are involved with longitudinal dynamic behavior of a

web, such as dynamic interaction between web spans, use of dancer and load cell for

tension regulation, and tension regulation in the presence of mechanical resonances.

In this thesis, research work was conducted to understand web tension behavior and

improve tension control schemes. Frequency response and time domain experiments

were conducted to evaluate dancer and load cell performance. Controller normaliza-

tion is performed in order to obtain dancer system controller gains based on a load

cell feedback control scheme. The concept of normalization motivates the study of

dimensional analysis for the web transport system. Adaptive control strategies were

developed that give satisfactory performance for tension regulation and can be read-

ily used in situations where process and machine changes are made. A chapter by

chapter summary is given in following paragraphs:

In Chapter 2, a mathematical model is developed for a pendulum dancer system.

The ability of the developed model to predict resonant frequencies is evaluated by

performing frequency response experiments. Time and frequency domain experiments

were performed for the dancer and load cell control strategies, which reveal tension

regulation ability of both systems. The dancer position based feedback controller is
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normalized based on load cell controller. A close match in terms of the minimum

resonant frequency between model simulations and experiments is observed for load-

cell and dancer feedback systems. The dancer based system was able to filter low

frequency disturbances very well compared to the load cell. The time domain results

indicate that the dancer control scheme regulates tension better than load cell during

line acceleration and deceleration. It was observed that by precisely regulating air

pressure in the pneumatic cylinder with electromechanical pressure regulator, the

tension response can be improved. One limitation of the dancer based scheme over a

load cell based scheme is that the minimum resonant frequency is much lower, which

may excite resonances.

In Chapter 3, dimensional analysis is performed for web transport systems. Di-

mensionless tension and roller velocity dynamic equations are developed. The dimen-

sionless equations are simple, and contain fewer variables than dimensional equations.

The dimensionless equations are used to scale the process parameters. The scaling

is based on the dynamic equivalence condition applied between two systems. A nu-

merical example is provided to investigate the web system operating on a different

kind of materials for process parameter scaling. The parameter scaling depends upon

the model law developed with dimensionless Pi parameters. Dimensional analysis

is also performed for two primitive elements, accumulator and dancer. The process

parameters are evaluated for scaled-up capacity of the accumulator.

In Chapter 4, model reference adaptive control is considered for implementation

on the Euclid web line. A web system is a large scale system with many interconnec-

tions. Decentralized MRAC strategies are considered and implemented in the unwind

section of the Euclid Web Line. Three types of adaptive strategies are designed and

implemented:

• Direct model reference adaptive control

• Indirect model reference adaptive control
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• Adaptive PI control

Extensive experiments are performed to verify the tension regulation ability of the

adaptive control schemes. An adaptive PI controller is implemented for both, dancer

and load-cell control strategies. The proposed adaptive control schemes are compared

with a well-tuned traditional fixed gain PI controller on the Euclid Web Line. Stan-

dard deviations calculated for the steady state tension data show improvement in

tension regulation with the adaptive schemes.

5.2 Future Work

The frequency response study was performed for the dancer and load cell feed-

back systems. The minimum resonant frequency for the dancer and load cell system

is evaluated in this thesis. The experiments were performed for Tyvek material manu-

factured by Dupont. The developed mathematical model of a pendulum dancer must

be verified with different web materials. A detailed study is required to determine the

sources of various frequencies observed. This study should help in finding the sources

of oscillations in tension and velocity and to get remedies to eliminate oscillations.

The frequency response study can also assist in selection of better filters in the adap-

tive control design. Based on the frequency response results, systematic guidelines

for better tension control systems need to be developed.

Dimensional analysis simplifies the governing equation of a system. A model

law formulates the process of parameter scaling. The numerical example provided

in the thesis for the web lines transporting different kinds of materials should be

experimentally verified to substantiate conclusions derived from dimensional analysis.

The effectiveness of the scaled parameters need to be evaluated for the scaled system.

Similar experimental verification should be performed for dimensional analysis of

an accumulator. Further, the scope of dimensional analysis can be expanded for

many primitive web handling elements. Dimensional analysis as known currently
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cannot be applied for generalized system scaling, and constraints are imposed with

dynamic equivalence conditions. Future study on dimensional analysis should focus

on generalization of process parameters scaling and overcome the constraints applied

by dimensional equivalence. There is also potential in using dimensional analysis to

design the reference model in model reference adaptive control schemes for the scaled

systems.

The proposed adaptive strategies are experimentally evaluated for Tyvek material.

Adaptive control strategies should be investigated for (i) different types of materials;

(ii) different web configuration by changing web path, and number of rollers. The

proposed adaptive algorithms give similar or better tension regulation compared to

a well-tuned PI controller as seen from experiments on the Euclid Web Line. The

adaptive PI scheme based on the gradient method does not guarantee stability of the

system. A simple adaptive PI scheme based on Lyapunov design should be pursued

to ensure overall system stability.
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