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CHAPTER I 

INTRODUCTION 

 Heat exchangers are employed to transfer thermal energy between two fluids and the two 

fluids may or may not come in contact with each other. Some common applications of heat 

exchangers are heating and cooling of milk in the dairy industry, as condensers and evaporators 

in the refrigeration and power industries, as economizers in boilers in the power industry. The 

best example of a heat exchanger used in common practice would be the radiator of a car. 

Different types of heat exchangers available are tubular, plate and extended surface. The plate 

heat exchanger consists of a collection of flat thin plates sandwiched together through which the 

fluids pass through without making contact with each other. This thesis deals in depth with plate 

heat exchangers and two common kinds of plate heat exchangers available are the gasket plate 

heat exchangers and brazed plate heat exchangers. Enhanced heat transfer surfaces used in these 

types of heat exchangers provide higher heat transfer coefficients than conventional plain tubes.  

  

1. Gasket plate heat exchangers 

 These heat exchangers consist of a number of thin flat plates sandwiched together. The 

plates are arranged in such a way the two fluids never come into contact with each other. The 

plates are bolted together at the ends with gaskets in between preventing leakage of fluid to the 

outside and preventing the two fluids from coming in contact with each other. 

 The plates have corrugations on them which help enhance the heat transfer. They are 

extremely compact and have a high heat transfer rate per unit volume of the heat exchanger. The 

limit of these heat exchangers is that they cannot operate at high temperatures and pressures as 

the gaskets may break.  
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Figure 1-1. Brazed plate heat exchanger 

 

2. Brazed plate heat exchangers  

 These are similar to gasket plate heat exchangers except that there are no gaskets between 

the plates but the plates are brazed to each other. This allows operation at high temperatures and 

pressures. The disadvantage of these over gasket plate heat exchangers is that they cannot be 

dismantled and reassembled so cleaning or changing the number of plates is not possible. Figure 

1-1 shows a brazed plate heat exchanger. 

 

1.1 Working of plate heat exchangers 

 As mentioned in the previous section plate heat exchangers consist of a number of plates 

sandwiched together between which the two fluids pass through. Figure 1-2 (a) shows an actual 

picture of an individual plate, the plate is usually made of stainless steel and has corrugations or 

grooves on it to promote turbulence which enhances the heat transfer. 
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Figure 1-2. Individual Plate  

 Figure 1-2 shows the schematic of an individual plate, the angle between the grooves (is 

called the chevron angle, measured from the flow direction (chevron angle = 90- ), and the ratio 

of length to width of the heat exchanger (L/W) is termed as the aspect ratio. 

 In a plate heat exchanger one fluid enters at the top and exits at the bottom while the 

other enters at the bottom and exits at the top. There are holes on the top and bottom ends of the 

plates which form a passage for the fluids to flow through them. The hot fluid flows in between 

every other channel created by two plates from the top to the bottom while the cold fluid is 

circulated in the alternate channel and in the opposite direction. Gaskets on each plate determine 

which fluid is allowed to flow in the channel. 

 The advantages of using brazed plate heat exchangers when compared to other types of 

heat exchangers are a greater thermal efficiency, higher overall heat transfer coefficient, more 

suitable for high temperatures and pressures. Brazed plate heat exchangers are also able to 

achieve smaller approach temperatures with respect to the gasket type (Ayub [2003]). The 

corrugations on the plates create significant turbulence and mixing that further increases the heat 

transfer. The more even distribution of flow across these types of heat exchangers enables the 

entire area of the heat exchanger to be used for effective heat transfer. 
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1.2 Cooling towers 

 Cooling towers are basically heat rejection devices used to remove process heat by 

rejecting it to the atmosphere. This is achieved by evaporation of the circulating water or by 

using air to cool the circulating water or both. They are commonly used in power plants, oil 

refineries and buildings. Based on the cooling capacity required the size of the cooling tower 

varies. Figure 1-3 shows a 5 ton capacity evaporative cooling tower used for research purpose at 

the hybrid ground source heat pump laboratory at Oklahoma State University. 

 A typical schematic of a cooling tower installed in an evaporative cooling system is 

shown in Figure 1-4. The actual system is quite complex but the main components of the system 

are heat exchanger, cooling tower, and circulating pump along with a makeup water source. A 

make-up water source is needed because around 10% of water passing through the spray nozzles 

in the cooling tower evaporates and mixes with the air stream that is discharged to the 

environment.  

 

 

Figure 1-3. Cooling Tower [Gentry, 2007] 
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Figure 1-4. Schematic of cooling tower loop 

 The most significant problem encountered in systems employing evaporative cooling 

towers is the fouling of the heat exchanger due to the cooling water being contaminated. 

Circulating cooling tower water typically contains an excess of amount of mineral ions, such as 

calcium and magnesium, due to the evaporation of water, thus making the water hard. When the 

hard water is heated inside compact plate heat exchangers (PHEs), the calcium and bicarbonate 

ions precipitate because a drop in solubility occurs. The extent of the fouling problem depends 

upon the water quality, operating conditions, monitoring system, and maintenance practice. 

Users of this type of equipment have typically applied the same fouling factors that are 

recommended for tube-type heat exchangers, which are summarized in the AHRI guideline E 

[1997]. Guidance to the industry has also been provided by AHRI standard 450 [2007] and from 

recommendations by the Tubular Exchanger Manufacturers‟ Association (TEMA). It has also 

been determined that significant precipitation and particulate fouling occurs for internally 

enhanced tubes [Li and Web, 2000] but, unfortunately, fouling characteristics cannot be easily 

generalized for all applications. 

 Enhanced heat transfer surfaces used in PHEs provide higher heat transfer coefficients 

than conventional plain tubes but they are usually more sensitive to fouling [Li and Web, 2002].  

Brazed PHEs performances under clean conditions are well known but their long-term thermal 

and hydraulic performances under fouling conditions have not been systematically investigated.  
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In spite of their long use, few calculation methods have been proposed for predicting the heat 

transfer and pressure drops during fouling conditions and actual operating service conditions 

 

1.3 Fouling 

 Fouling is defined as the accumulation of deposits on the heat transfer surface which 

provide a resistance to the heat transfer, thereby decreasing the heat transfer capacity of the 

surface. The deposits are usually present in the fluid and adhere to the heat transfer surface 

causing fouling. The accumulation of deposits on the heat transfer surface decreases the area 

available for fluid flow thereby causing an increase in pressure drop across the surface which 

results in an increase in pumping power. Fouling usually occurs in heat exchangers when water 

is being heated, in most cases the water is used for cooling purpose. Fouling depends on the 

geometry, surface temperature and material of the heat transfer surface along with the velocity of 

fluid flow and the chemical nature of the fluid that is causing the fouling.  

 

1.3.1 Categories of Fouling 

 In order to better understand the process of fouling it is necessary to review the different 

aspects of fouling, some of the most common types of fouling encountered in daily use are listed 

below. 

a. Particulate fouling 

It is basically the deposition of solid particles suspended in the fluid stream onto the heat 

transfer surface. Particulate fouling consists of three major processes, the transport of 

particles from the fluid to the heat transfer surface, the attachment of these particles to the 

heat transfer surface and finally the re-entrainment of previously deposited particles back into 

the fluid. The other processes that are likely to occur that influence particulate fouling are the 

growth of deposited particles, loosely bound particles becoming tightly bound, agglomeration 

of suspended particles, etc. Particulate fouling will be discussed in detail in chapter 2. 
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b. Precipitation fouling 

This type of fouling is common in condensers and cooling tower applications which is the 

focus of this thesis. The water used on cooling systems has salts that include sulfates, 

carbonates, phosphates, etc of calcium and magnesium. These salts are inversely soluble in 

the water, i.e. they precipitate on the heat transfer surface when the temperature of the water 

increases. In cooling towers there is a continuous evaporation of water, this causes the 

concentration of these salts to increase which result in precipitation. The precipitation is 

likely to occur on the hottest part of the fluid path which is the heat transfer surface. This 

type of fouling will also be discussed in detail in chapter 2.  

 

c. Corrosion fouling 

It is a well-known fact that almost all surfaces subject to a fluid flow on them are susceptible 

to corrosion. Corrosion fouling refers to the removal of material from parts on the flow path 

and heat transfer surface due to corrosion. This largely depends on the properties of the 

material used to constitute the pipes, heat exchangers, etc on the flow path and the chemical 

properties of the process fluid. Use of corrosion resistant materials like alloys of copper, 

brass and stainless steel minimize the effects of corrosion fouling, also the use of certain 

additives with the process fluid will reduce the fouling. Corrosion products from the rest of 

the system add to the particulate fouling, but the more serious problem is the corrosion of the 

heat transfer surface itself which can lead to breakdown.  

 

d. Biological fouling 

It is defined as the accumulation of living matter on the heat transfer surface; this not only 

causes a decrease in heat transfer but also has the potential to infect humans that work in the 

same environment. The living matter usually refers to bacteria, algae, molds, etc that are 

likely to be found on the heat transfer surface which involve cooling towers, marine and 

power plant condensers using untreated sea or freshwater. One of the most common and 

dangerous bacteria that can be found in systems using cooling towers is legionella. It is 

responsible for legionnaires disease in humans when they inhale the mist from cooling 

towers, it can prove to fatal at times. All cooling tower manufacturers and industries 



8 

 

employing cooling towers have enforced standards regarding the use of biocides to control 

the growth of legionella.  

 

1.3.2 Costs of fouling  

 It is well known that fouling causes a decrease in heat transfer, hence the heat exchangers 

must be oversized in order to compensate this loss, this leads to an increase in capital cost of the 

heat exchangers. Severe fouling causes a large pressure drop leading to high velocities of fluid 

which could lead to stress on joints and fittings on other parts of the system causing a break 

down and an increase in pumping power which increases the operating cost.  

 The air conditioning industry has been under pressure to improve the efficiency of 

systems by adopting enhanced heat exchangers. Several plate heat exchanger used in today 

applications now have leaving temperature difference of 2F (1.1C) instead of 5 to 6F (2.7 to 

3.3C). With these small leaving temperature differences the field fouling allowance of 2.5  10
-4

 

hr-ft
2
-F/Btu (4.4  10

-5
 m

2
-C/W) is now more of the total heat transfer resistance than it was 

when designs were based on 5 to 6F (2.7 to 3.3C) leaving temperature difference (AHRI 

guideline E [1997]. Thus, the selected equipment might not work efficiently in the field because 

the fouling allowances are based on higher leaving temperature difference than the one in the 

actual service conditions. 

 The manufacturers for brazed-plate heat exchangers that are in the process of fully 

adopting this technology have a market for more than $350M worldwide and about $30M in 

North America only. Therefore, it appears a critical need to quantify the fouling rates and field 

allowances of brazed plate heat exchangers (PHEs) used in today cooling towers. 

 

1.4 Objective 

The current thesis aims to experimentally measure the thermal and hydraulic performances of 

brazed plate heat exchangers (PHEs) under controlled fouling conditions. The specific objectives 

of my thesis are as follows:  

 To design and construct a test facility for studying brazed plate heat exchangers 

functioning as condensers at pressures up to 200 psi. 
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 To demonstrate the feasibility of conducting accelerated-type fouling experiments on 

PHEs under controlled operating conditions and water quality that are similar of the 

ones in cooling tower applications.  

 To design, construct and run a small scale cooling tower cycle that concentrates water 

directly on line with the PHE and maintains the water saturated in minerals at all 

time. 

 To conduct fouling tests on three different heat exchangers, two having the same 

chevron angle but different aspect ratios, while two have same aspect ratios but 

different chevron angles and identify the differences or similarities in fouling 

resistance. 

 To compare similarities and differences, if any, between the fouling behaviors of 

PHEs with the one of tube-and-tube heat exchangers and verify or upgrade the semi-

empirical correlations used to predict the fouling resistance and pressure drop. 

 

1.5 Overview of thesis 

The thesis is organized as follows: 

 Chapter one deals with the introduction to the three main components of this project, heat 

exchangers, cooling towers and the fouling process. 

 Chapter two provides a literature review which consists of three parts: 

a. Plate heat exchanger theory and operation along with their thermal and hydraulic 

performance and the parameters affecting them. 

b. Understanding the theory of the fouling process, the different types of fouling and 

their causes. 

c. Review of previous work done on the fouling of heat transfer surfaces. 

 Chapter three deals with the design and construction of the test facility and description of 

all components used. 

 Chapter four describes the calibration of the test facility, data acquisition system, 

measurement instrumentation, uncertainty analysis, testing methodology and the control 

of the facility. 

 Chapter five includes the data analysis of all the fouling tests conducted. 

 Chapter six comprises of the conclusion and recommendations for future work. 
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CHAPTER II 

REVIEW OF LITERATURE 

 

2.1 Review of plate heat exchanger design 

 The first part of this literature review deal with the previous work done on plate heat 

exchangers. In order to have a better understanding of the thermal (heat transfer) and hydraulic 

(frictional pressure drop) performance of plate heat exchangers it is necessary to identify the 

parameters that influence them.  

 

Figure 2-1. Plate Geometry as described by Ayub [2003] 

 The key geometric parameters listed by Ayub [2003] are shown in Figure 2-1. 

Chevron Angle (90 - β): It is the angle of inclination of the grooves or corrugations measured 

from the direction of the flow, present on the heat transfer surface to increase the turbulence of 

the fluid thereby aiding the heat transfer; it usually varies between 20
0
- 65

0
.  

Enlargement Factor (φ): It is defined as the ratio of developed length to the protracted length. In 

mathematical form φ = Ld/Lp. 
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Mean Flow Channel Gap (b): This is the actual gap available for the flow as shown in Figure 2-

1. 

                 (2.1) 

Channel Flow area (Ax): This is the actual flow area, it is defined as 

                  (2.2) 

Where w is the width of the heat exchanger and b is the mean flow channel gap shown in figure 

2-1. 

Channel equivalent diameter (de): This diameter is used in calculation of Reynolds number, it is 

defined as  

   
   

 
            (2.3) 

Where, 

P = 2 * (b + φw) = 2φw          (2.4) 

Since b <<w 

Hence, 

   
  

 
            (2.5) 

 There are no general correlations available to determine the thermal and hydraulic 

characteristics of plate heat exchangers, but a few correlations are available for heat exchangers 

of specific geometry and operating ranges in terms of the Reynolds number (Re) and Prandtl 

number (Pr). The heat transfer characteristics are usually represented by the Nusselt number (Nu) 

and the hydraulic characteristics are represented by the frictional pressure drop (f) across the heat 

exchanger.  

 Troupe et al. [1960] proposed the following correlation for Nusselt number: 

               
  

                      (2.6) 

Equation 1 is valid when the working fluid is water and the Reynolds number (Re) is greater than 

the critical Reynolds number (Recr) which lies between 10 and 400 depending on the heat 

exchanger. 

 Muley and Manglik [1999] provide the following correlations of Nusselt number and 

pressure drop: 
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    (2.7) 

 

                                                                  

                                
       

  
       

      (2.8)  

 

Where,  

μ is the dynamic viscosity of the fluid (determined from bulk mean temperature) 

μw is the dynamic viscosity of the fluid at the wall(determined from the wall temperature). 

Equations 2 and 3 are valid for Reynolds numbers (Re) greater than 1000, chevron angles (β) 

between 30
0
 and 60

0
 and enlargement ratios (φ) between 1 and 1.5. 

 Wanniarachchi et al. [1995] suggest a correlation to calculate the friction factor (f) and 

the heat transfer group (jNU) which can be used for flows in the laminar, transition and turbulent 

regions since for plate heat exchangers the ranges of laminar and turbulent flows is not well 

defined. 

 

     
     

               (2.9) 

 

          
        

  
   

         (2.10)  

 

                             (2.11) 

 

   
    

                                  (2.12) 

      
    

                     (2.13) 

      
    

       
                       (2.14) 
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                   (2.15) 

Where, 

j is the colburn factor 

Suffix l and t indicate laminar and turbulent regions respectively. 

 Focke et al. [1995] performed flow visualization as well as evaluating the thermal and 

hydraulic performance of plate heat exchangers having different chevron angles (90 - β) 

measured from the direction of flow. Heat exchangers with chevron angles of 0º, 30º, 45º, 60 º, 

72 º, 80 º and 90 º were tested. The heat transfer and pressure drop were found to increase with β 

up to 60 º at an increasing rate then increase at a decreasing rate from 60 º to 80 º with a 

maximum at 80 º and at 90 º was found to be considerably lower approximately the same 

magnitude as at 60 º. The flow visualization process showed different types of flows, at 0 º a two 

dimensional channel flow was observed, between 30 º and 60 º sets of criss-crossing streams 

flowing along the furrows on either side of the flow passage were observed on either side of the 

flow passage inducing secondary flow motions that determine the heat transfer enhancement 

process, furrows are the channels formed in between the corrugations on the plate.  At 80 º the 

flow consisted of parallel zigzag patterns and at   90 º separated flow regions across the flow 

passage were observed.  

 Dovic and Svaic [2007] studied the effect of chevron angle (90 - β) measured from the 

direction of the flow and aspect ratio (W/L) on plate heat exchangers along with performing a 

flow visualization on two plate heat exchangers with identical aspect ratio but chevron angles of 

28º and 61 º. Two flow components were found to exist simultaneously a longitudinal flow and a 

criss-crossing furrow flow. The longitudinal component refers to the part of the fluid flowing 

alternatively along adjacent plate through respective furrows and the furrow component denotes 

the fluid flowing through the furrow on one plate without change of direction until it reaches the 

edge of the plate or the center line where the furrows change direction.  The longitudinal flow 

was found to be dominating the heat exchanger with a chevron angle of 61 º and the furrow flow 

dominates the other one. In general it was found that plates with larger chevron angles and aspect 

ratios were characterized by more intense heat transfer and pressure drop, probably due to more 

mixing of the flow streams and longer flow paths. These conclusions seem to be in accordance 

with the work of Focke et al. [1995]. 
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 All of the work mentioned previously focused predominantly only on heat exchangers 

using liquids and involving no phase change and do not hold good for condensers and 

evaporators. Little research has been done on evaporators but not reviewed here as condensers 

are the subject of interest in this project. The information available on condensers is sparse and 

most of it is held confidential by the companies that manufacture the heat exchangers. 

Yan et al. [1998] conducted experiments to determine the condensation heat transfer 

coefficient and pressure drop of refrigerant R134a in a brazed plate heat exchanger. The heat 

exchanger consisted of 3 stainless steel plates 500 mm long and 120 mm wide with a chevron 

angle of 60 º. Tests were conducted at mass fluxes ranging from 60 – 120 kg/m
2
s and inlet vapor 

qualities ranging from 0.08 to 0.86 at 3 different system pressures of 0.7, 0.8 and 0.9 MPa. It was 

found that at a given mass flux the condensation heat transfer coefficient (CHTC) increased 

linearly with vapor quality, for example at a constant mass flux of 60 kg/m
2
s the CHTC was 70 

% larger at a quality of 0.8 than at 0.1. At the same time a rise in the refrigerant mass flux did not 

produce a comparable rise in the CHTC. The effect of system pressure is not significant on the 

CHTC, the CHTC at 0.9 MPa is about 5-10% smaller than at 0.7 Mpa. The frictional pressure 

drop of the refrigerant across the heat exchanger was found to vary similar to the CHTC but the 

variation is much larger. Investigations into the effect of vapor super heating on the CHTC were 

not reported in this paper. 

The objectives of this research is to determine the fouling potential of R134a brazed plate 

condensers at one saturation temperature and a vapor superheat of 65 
0
F. It is helpful to 

understand the sensitivity of the CHTC on the refrigerant side with respect to the degree of 

superheat and refrigerant flow rate or mass flux since they do not factor in the expression used to 

calculate the overall heat transfer coefficient of the heat exchanger (see Table 4-1). The effects of 

vapor superheating and saturation temperature on the CHTC and the pressure drop in R134a 

brazed plate condensers were experimentally analyzed by Longo [2008]. A brazed plate heat 

exchanger consisting of 10 plates, 72 mm long and 310 mm wide with a chevron angle of 65 º. 

Tests were carried out at 4 different saturations temperatures. Two distinct sets of tests were 

carried out, the first set had a refrigerant inlet vapor quality of 0.96-1 while the second set had a 

vapor super heat of 10K. It was found that the refrigerant side CHTC had a weak sensitivity to 

the saturation temperature which is in accordance with the results of Yan el al. [1998], the CHTC 

of superheated vapor was found to be 8-10% larger than that of saturated or near saturated vapor. 
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Two types of condensation processes were found to occur in the brazed plate condenser for 

R134a based on the refrigerant mass flux. Gravity controlled condensation was found to occur 

for low refrigerant mass fluxes and the CHTC was not dependent on the mass flux but at high 

mass fluxes forced convection condensation occurs, in this type of condensation the mass flux is 

a significant factor affecting the CHTC, doubling of mass flux leads to a 30% increase in CHTC.  

 

2.2 The fouling process 

 The second part of the literature review deals with the fouling process and the previous 

work done on fouling of heat transfer surfaces. Only the work done on precipitation and 

particulate fouling is reviewed here as biological and corrosion types of fouling are not the 

subject of this work. Addition of bleach to the cooling tower water eliminated the growth of 

microorganisms leading to biological fouling. The corrosion fouling was kept to a minimum by 

mixing small quantities azole, which acts as a corrosion inhibitor with the water. For every 100 

gallons (378.5 liters) of water about 2.4 ounces (71.4 milliliters) of azole were mixed. The 

amount of azole to be mixed was estimated form personal communications with NALCO water 

treatment company. About 2.4 ounces significantly reduces the corrosion fouling and small 

changes in this volume do not have a significant impact.  By eliminating the biological and 

corrosion fouling, the remaining fouling phenomena is mainly reduce to scaling effects, which 

could be then isolated and possibly quantified. 

 Though there are many types of fouling and a large number of variables that affect it, 

Kakac [2002] states that the fundamental process of fouling can be divided into 5 stages which 

are initiation, transport, attachment, removal and aging. According to the author during the 

initiation state the heat transfer surface is conditioned for the fouling that will occur later, the 

temperature of the surface starts to increase which decreases the super saturation of salts in the 

process fluid causing fouling in the case of precipitation fouling. During the transport phase the 

fouling substances from the fluid are brought to the heat transfer surface due to the process of 

diffusion, sedimentation (movement of particles in the fluid to a horizontal or inclined surface 

due to gravity) and thermophoresis (movement of small particles in a fluid stream when a 

temperature gradient is present). In the attachment stage the fouling particles transported attach 

to the surface, this depends on the forces acting on the particles, temperature of surface and the 

properties of the material of the surface. The removal phase involves the removal of some of the 
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particles deposited on the heat transfer surface due to shear forces between the fluid and the 

particles deposited on the heat transfer surface depending on the fluid velocity and roughness of 

the surface. The final stage is that of ageing that occurs once the fouling particles or deposits 

settle on the heat transfer surface, the mechanical properties of these fouling deposits changes 

due to change in crystal or chemical structure.  

The basic fouling model is that given by Kern and Seaton [1959] which defines the 

fouling rate as: 

Fouling rate = deposition rate – removal rate      (2.16) 

Sommerscales [1979] stated that the deposition rate is affected by process in the body of 

the fluid, transport of particles to the heat transfer surface and the attachment/formation of the 

deposit while the removal rate depends on dissolution where material leaves in molecular or 

ionic form, erosion or re-entrainment where material leaves in particulate form and spalling or 

sloughing where material leaves as a large mass. 

Based on the deposition and removal rate on the fouling resistance, 3 kinds of fouling curves 

are possible as shown in Fig 2-2. 

a. Linear – it is obtained when the removal rate is small in comparison to the deposition 

rate. 

b. Falling – it is obtained when after a period of time the removal rate exceeds the 

deposition rate 

c. Asymptotic – it is observed when after a period of time the deposition and removal rates 

are equal.  

The fouling process does not start immediately there is an initiation period or delay time 

where it is possible to have a negative fouling resistance. 
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Figure 2-2. Typical trends of resistance curves 

A few of the terminologies commonly associated with precipitation fouling or scaling are listed 

below. 

 

Langalier Stability Index (LSI): 

 It is used to determine if certain water will tend to precipitate or dissolve calcium 

carbonate. If the water dissolves calcium carbonate it is corrosive in nature and if it precipitates 

then scaling will occur. The LSI is defined as the difference between the actual PH of water and 

the calculated PH of water saturated in calcium carbonate. If the LSI is positive then the water is 

expected to be noncorrosive but scale forming, if it is negative then it will dissolve calcium 

carbonate and no scale formation will occur, if it is zero then the water is said to be stable but 

sudden changes in temperature or evaporation rate can change the index. The LSI is calculated 

using the following equations: 

 

                       (2.17) 

Where 

pHa = pH of water sample measured 

pHs = pH of water saturated in calcium carbonate defined as : 
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                            (2.18) 

Where 

A = (Log10[TDS] – 1)/10 

B = -13.12 x Log10 (
o
C + 273) + 34.55 

C = Log10 [Ca
2+

 as CaCO3] - 0.4 

D = Log10 [alkalinity as CaCO3] 

All units are in parts per million (ppm); TDS – total dissolved solids 

 

Supersaturation 

A supersaturated solution is one which contains more of the dissolved substance than 

what can be dissolved by the solution at the present conditions. In fouling or scaling experiments 

the term bulk concentration (cb) refers to the concentration of calcium salt present in the solution 

at room temperature and saturation solution concentration (cs) refers to the saturation 

concentration at the temperature of the heat transfer surface. For example consider a solution of 

calcium sulfate at 20 
0
C (68 

0
F) which has a concentration of 900 mg/kg referred to as the bulk 

concentration (cb), at 20 
0
C (68 

0
F)  the solubility if calcium is of 997 mg/kg, hence it is not 

saturated, now when the same solution comes in contact with the heat transfer surface at 80 
0
C 

(176 
0
F) the solubility of calcium is 280 mg/kg termed as saturation solution concentration (cs) 

which is less than the bulk concentration causing the fluid to be supersaturated resulting in 

precipitation. Hence it can be concluded that precipitation (scaling) will occur when cb > cs 

indicating the fluid is supersaturated.  

An important aspect of the fouling process is the re-entrainment of the particles in the 

heat transfer fluid. Cleaver and Yates [1974, 1975] analyzed the effect of re-entrainment on 

particle deposition. In practical applications not all particles present in the fluid adhere to the 

heat transfer surface, some of them are still re-entrained in the fluid itself. It is assumed that all 

particles are convected into a sub layer by a cohesive down sweep or subsequent down or are 

transported back into the flow by an outward burst. The position of down sweep and bursts are 

said to vary in a stochastic manner so deposited particles may experience a burst at a later stage 

causing it to be detached and re-entrained in the flow. It was found that the wall shear stress is a 

key factor in determining detachment; there is a certain critical wall of wall shear stress below 
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which detachment will not occur. Two kinds of mechanisms were said to exist for deposition of 

particles, for small particles it is diffusion controlled and large particles it is inertia controlled. 

In order to have a better understanding of the fouling process it is necessary to study the 

different forces involved in adhesion or detachment of particles to the heat transfer surface.  

Oliviera [1997] states that particles of colloidal size (dimension < 1μm) absorb on to the surface 

whereas larger particles do not adhere as gravitational and hydrodynamic forces remove them. 

The principle attractive force between colloidal particles is due to Wan der waal‟s interactions 

which depend upon the geometry of the surface along with the physical and chemical properties 

of the liquid. Electro static double layer forces are the other predominant forces acting on the 

particles, when solid bodies are immersed in a liquid medium like water they tend to acquire an 

electrical charge due to preferential absorption of ions; at neutral PH most of the particles tend to 

acquire a negative charge. The surface immersed in the liquid also tends to acquire a charge 

which promotes a redistribution of ions in the solution; ions of opposite charge are attracted to 

the surface while those with the same charge are repelled. Usually the Wan der waal‟s forces are 

attractive while the electrostatic double layer forces are repulsive in nature.  

The concentration effect caused due to cooling towers on the fouling of heat exchangers 

was studied by Hasson [1979].  It is found that the potential for precipitation fouling in cooling 

water systems is magnified due to the concentration effect. The major parameters involved can 

be analyzed by taking the specific heat of water as unity and latent heat of water vapor as 1000 

btu/lb, then the makeup water M, expressed in lb/hr required to discharge 1000 btu/hr to the 

surroundings is: 

  
  

    
           (2.19) 

 Where the concentration factor or cycles of concentration CF represents the ratio of 

dissolved solids concentration in the bleed of stream to the dissolved solids in the makeup.  The 

significance of the expression for makeup water (M) is that it reduces rapidly as CF increases but 

the heat transfer surface is exposed to a more concentrated solution of potentially precipitating 

species, this helps in determining a trade of between the rate of evaporation and the heat transfer, 

since a larger evaporation rate will not only increase the heat transfer but also the potential for 

fouling.  

 The effect of PH, ionic strength and the electrical charge of particles on the heat transfer 

surface were analyzed by Oliveira [1997]. Tests were conducted to determine the thickness of 
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deposits on copper surfaces using Kaolin particles as a function of PH, the deposit was found to 

be thicker when the PH was kept constant using sodium carbonate than using sodium hydroxide 

because sodium carbonate is a weaker base and a larger quantity is needed to maintain the PH.  

The deposit thickness was found to decrease as the PH was raised. Hematite particles [Fe2O3] or 

hydrous Alumina when mixed in the fluid were found to adhere to the heat transfer surface at 

neutral PH since they carry a positive charge, forming a positively charged coating on the surface 

ready to attract negatively charged particles and are difficult to remove due to electrostatic 

interactions.  

 

2.3 Fouling on heat transfer surfaces 

 One of the first investigations into the fouling of plate heat exchangers was done by 

Cooper et al. [1980]. Each plate used had a length of 1.14m and width of 0.45m, a total of 7 

plates comprised the heat exchanger. The fouling tests were conducted at a petrochemical plant 

in Houston, TX, where hot steam condensate was cooled, the cooling water used came from 

different sources and was treated to prevent corrosion and biological fouling. It was found that 

fouling resistances establish a stable asymptotic value after about 600-900 ( 25 – 38 days) hours 

of operation. The asymptotic fouling resistance at a flow velocity of 0.85 m/s was found to be 

half of that at a velocity of 0.45 m/s. On dismantling of the heat exchanger after the tests it was 

found that fouling occurred only on the upper third of the plates where the hot condensate 

entered, based on the water chemistry it was determined that precipitation is expected only at 

wall temperatures greater than 346 K (163F)  and it corresponds closely to the fouled region. 

In a similar test conducted by Kho and Muller-Steinhagen [1999] the same distribution of fouling 

deposits on the plates was observed.  

Karabelas et al. [1997] analyzed the effect of chevron angle of plate heat exchangers and 

flow velocity had on the fouling resistance. Two heat exchangers with identical geometries and 

number of plates but with chevron angles of 30
0
 and 60

0
 were tested. The fouling fluid was 

prepared by adding calcium carbonate particles to de-mineralized water, the mean particles size 

was around 5μm and each test lasted between 100 and 300 ( 4 – 13 days) hours till the 

asymptotic fouling resistance was reached. At high velocities (1.35 m/s) the fouling resistance of 

the PHE with 60
0
 chevron angle was found to be negligible, at a lower velocity (0.35m/s) the 

asymptotic fouling resistance was 7 times higher. The plate heat exchanger with a 30
0
 chevron 
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angle was found to have a much higher value of fouling resistance that that with 60
0
.  It was 

concluded that the zigzag flow pattern associated with the 60
0
 chevron plate led to better heat 

transfer performance and lower fouling resistance than the furrow flow pattern associated with 

the 30
0
 chevron plate. 

Grandgeorge et al. [1998] experimentally studied the effect of chevron angle and flow 

velocity on particulate fouling of plate heat exchangers. The fouling fluid used for tests was 

obtained by mixing anatase Ti02 particles (4-5 μm size) in deionized water. The plate heat 

exchangers used were identical expect for the chevron angles of 30
0
 and 60

0
. The tests were runs 

for periods up to 440 hours ( 18 days); the asymptotic fouling resistance at a low velocity of 0.3 

m/s was found to about 6 times higher than that at 1m/s. Also the plate with 30
0
 chevron angle 

showed a higher fouling resistance than the plate with 60
0
 chevron angle which is in accordance 

with that of Karabelas et al. [1997]. If the deposit thermal conductivity and density are constant 

the following equation is said to give the time evolution of the fouling thermal resistance: 

 

         
           )         (2.20) 

The constant tc was taken as the duration of the experiment which was 800 hours and the 

asymptotic fouling resistance   
  was determined by minimizing the quadratic error between the 

measured and calculated fouling thermal resistance. At a fluid velocity of 0.16 m/s (0.52 ft/s) the 

asymptotic fouling resistance for the 30
0
 and 60

0
 chevron plates was found to be 0.00057 m

2
K/W 

( 0.0032 hr-ft
2
-
0
F/Btu) and 0.001 m

2
K/W  (0.00058 hr-ft

2
-
0
F/Btu ). The corrugation angle is the 

angle of inclination of the grooves or corrugations measured from the direction of the flow (90 – 

β), present on the heat transfer surface to increase the turbulence of the fluid thereby aiding the 

heat transfer. The relationship between asymptotic fouling resistance and fluid velocity was 

found to be: 

300 of corrugation angle: Rf*= (1.481 ×10-5 / um2)      (2.21) 

600 of corrugation angle: Rf*= (2.626 ×10-6 / um2)      (2.22) 

Where, 

Um – fluid velocity (m/s); 0.02 < Um <1.4  

Kim et al [2001] used an experimental method to visualize the process of scale formation 

on a min-channel heat exchanger system using a copper plate as the heat transfer surface. The 

water used for the tests was artificially hardened by mixing sodium bicarbonate and calcium 
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chloride solutions to have equivalent hardness of750 ppm of calcium carbonate. Duration of the 

fouling tests was between 6 and 11 hours, the hot water used to heat the copper plate had 

constant inlet and exit temperature of 94
0
C and 90

0
C respectively. The effect of inlet temperature 

and velocity of the cooling water on scale formation were analyzed. Tests were conducted at 

water velocities of 1.2 and 3.5 m/s and cooling water inlet temperature varying from 30 – 55 
0
C. 

It was found that initially in the first half hour small crystals of sizes about 90 μm were already 

present and begin to grow rapidly up 160 μm and covered the entire surface at 2 hours. It is 

suggested that the crystal present initially were due to roughness or imperfections on the heat 

transfer surface. It was found that at half hour the number of crystals present at a cooling water 

inlet temperature of 55
0
C was 2.5 times more than what was present at 30

0
C. It was found that 

the induction period of scale formation was greater when the velocity was higher but decreased 

with an increase in cooling water inlet temperature, the fouling resistance to follows the same 

trend.  

Andritsos and Karabelas [2003] investigated scale formation in a plate heat exchanger in 

the presence of various types of added particles along with the effects of flow velocity, particle 

concentration and direction of flow inside the heat exchanger. A plate heat exchanger with 8 

plates each had a flow area of 186 cm
2
 and a chevron angle of 60

0
.  Tap water was used for all 

tests and sodium hydroxide was added to it to modify the PH. Scale formation was examined in 

the presence of 3 different kinds of particles, large calcite particles having a size of 15 μm, 

smaller aragonite particles having a size of 5.3 μm, both are forms of calcium carbonate and 

lastly extremely small anatase TiO2 particles of 0.8 μm size are used. Tests were conducted at 

two different water temperatures of 25
0
C and 40

0
C. An increase in the concentration of aragonite 

particles tends to increase the scale formation and cause a greater pressure drop across the heat 

exchanger compared to the smaller calcite and Tio2 particles. Flow direction seemed to have no 

effect on the scale formation though it would seem that particle detachment was more likely to 

occur when the flow is in the downward direction. The deposit enhancement was found to be 

larger at low velocities due to an increased detachment rate at higher flow velocities. 

Bansal et al. [2000, 2007] investigated performances of plate heat exchangers during 

calcium sulfate fouling. The calcium sulfate solution used as the fouling fluid was prepared by 

calcium nitrate tetrahydrate and sodium sulfate solutions as it was not possible to prepare a 

solution by simply dissolving calcium sulfate reagent in water due to its low solubility, which led 
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to undissolved calcium sulfate particles being present in the fouling fluid which would lead to 

particulate fouling. Supersaturated calcium sulfate solutions with concentrations ranging between 

2.8 to 3.2 kg/m
3
 at room temperature, were used to foul the heat exchanger. The saturation 

concentration at the operating temperatures of the heat exchanger was found to vary between 1.8 

and 2.2 kg/m
3
. The deposition of calcium sulfate was found to be a second order reaction and the 

deposition rate (md) is given by: 

             
      

 
 

           
        (2.23) 

Where, 

Kr is the reaction rate constant     [m
3
/kg.s] 

Cb is the bulk solution concentration     [kg/m
3
] 

Cs is the saturation solution concentration    [kg/m
3
] 

E is the activation energy      [J/mol] 

A0 is the Arrhenius constant       [m
3
/kg.s] 

R is the gas constant       [J/mol.K] 

T is the temperature at which crystals occur (wall temperature) [K]  

During the tests a 1μm filter was installed before the heat exchanger to minimize the 

particulate fouling. It was found that initially the fouling resistance fluctuated between 0 and a 

negative value for some time after which it picked up, this period was said to be the roughness 

delay time. The fouling curve was found to increase with a falling rate, this is due to the lower 

deposit rates caused due to the lowering of the temperature of the deposit/solution interface with 

time. If the filter was removed the fouling resistance was found to increase significantly which is 

due to increase in particulate fouling. When the plates were removed and examined after each 

test most of the deposit was found to occur in the corner where the hot fluid entered, i.e. the 

hottest part of the plate which is in accordance with previous works reviewed.  The pressure drop 

across the heat exchanger was found to be significantly larger when the solution concentration 

was increased since deposits formed near the exit ports of the heat exchanger and the deposition 

being a second order reaction the fouling resistance was found to be proportional to the square of 

the difference between the bulk and saturation concentrations.  

The effect fluid velocity, water hardness, and alkalinity, solution and wall temperatures 

on the fouling process was experimentally analyzed by Zhenhua et al. [2008]. A coaxial heat 

exchanger was used for these tests with the hot fluid flowing in the inner tube and cooling water 
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in the outer tube, hence fouling occurs on the outer surface of the inner tube. The cooling liquid 

used for this experiment was obtained by mixing sodium bicarbonate and calcium chloride in 

pure water. The hot water used had a constant inlet temperature of 70
0
C and the average wall 

temperature was between 51
0
C and 60

0
C and was found to increase slightly with fouling. In this 

experiment it was found that fouling crystals formed not only on the heat transfer surface but 

also inside the fluid solution, and the particles present in the solution took part in the fouling 

process on the heat transfer surface, hence particulate and precipitations fouling were to occur 

simultaneously. The fouling tests were conducted for a time of 32 hours or till the fouling 

resistance curve was found to be asymptotic, in almost all cases the asymptotic fouling curve was 

obtained within a time of 15 hours. The asymptotic fouling resistance was found to increase with 

increasing harness, alkalinity, solution temperature and heat transfer surface temperature; 

however an increase in the fluid velocity resulted in a decrease in the value of asymptotic fouling 

resistance. 

The previously reviewed literature deals with fouling in heat exchangers in which a phase 

change does not occur. The effect of water side fouling inside smooth and augmented copper 

alloy condenser tubes was studied by Chamra [2006]. The effect of tube geometry on the fouling 

resistance at a water velocity of 2 ft/s (0.6 m/s) was investigated.  Nine different tubes each 10 

feet long with the same outside fin geometry and diameter but different inside fin geometry 

(helix angle, fin height and number of starts) connected in parallel were used to condense R134a 

entering with a saturation temperature around 105 
0
F (40.6 

0
C) inside a shell. Initially for a 

period of two days clean water was run through the tubes and the heat transfer characteristics of 

the tubes were determined. The fouling tests were conducted using simulated water determined 

to have a low fouling potential, the chemical properties of the simulated water are listed in Table 

2-1. The duration of the fouling tests was conducted was 58 days, it was found that the plain tube 

(without fins on the inside) fouled the least while the tubes with larger helix angle and number of 

starts fouled the most. The tubes with 45 starts and helix angles of 35
0 

and 48
0
 had reached an 

asymptotic fouling resistance close to 0.000001 hr-ft
2
-
0
F/Btu (1.76E

-7
 
0
C- m

2
/W). 

 

 

 

 



25 

 

Table 2-1. Water properties, Chamra [2006] 

 

 

Webb and Li [1999a] conducted long term fouling tests for cooling water flowing inside 

enhanced tubes  used to condense refrigerant R-11 in a 235 ton (880 KW) centrifugal 

refrigeration unit. Eight tubes of equal length but different geometries connected in parallel were 

used; the geometries vary the number of starts, helix angle and fin height. The tests were 

conducted for a period of 2400 hours (100 days)  using water having approximately 800 ppm 

total calcium hardness, 1600-1800 µΩ electrical resistance and 8.5 PH and the water velocity 

was kept constant at 3.5 ft/s (1.07 m/s). Tubes with greater number of starts and larger helix 

angles were found foul significantly more than those with lesser number of starts and smaller 

helix angles. The tube containing 45 starts and having a helix angle of 45
0
 was found to have an 

asymptotic fouling resistance of 0.000144 m
2
K/W (0.000817 hr-ft

2
-
0
F/Btu) while a tube with 18 

starts and 25
0
 helix angle had an asymptotic fouling resistance of 0.000035 m

2
K/W (0.0001987 

hr-ft
2
-
0
F/Btu). The analysis of the deposits on the tube was done at the end of the experiment 

(Webb and Li [1999b]), the deposit was found to contain 57% calcium carbonate, 2% calcium 

phosphate, 14% non-carbonate and 26% particulates, it was concluded that the 59% calcium 

deposits were due to precipitation fouling and the remaining 40% are due to particulate fouling 

and fouling process occurring is a combination of particulate and precipitation fouling.  

Haider et al. [1992] conducted tests to study the tube- side fouling resistance in water-

chiller-flooded evaporators. It was found that the fouling resistance was evenly distributed and 

was about zero irrespective of the water quality or flow velocities. Hence it can be concluded 

that fouling occurs only when the water is used for cooling purposes. 

 

The extent of the fouling (scaling) problem depends upon the water quality, operating 

conditions, monitoring system, and maintenance practice. Guidance to the industry has been 

provided by AHRI standard 450 [2007] and from recommendations by the Tubular Exchanger 

Manufacturers‟ Association (TEMA). A large part of this work was to identify the current 
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methodologies used to measure the fouling performance in condensers. An extensive review of 

the most recent work on fouling measurement techniques was conducted and, to date, it was 

found that there is not a consistent and standardized method.  The range of the refrigerant and 

water operating conditions that must be maintained during the laboratory tests are often not well 

defined. Water quality and its fouling potential were also found to be somehow linked to local 

water sources and most of past experiments were conducted using from local wells, rivers, or 

created in ad-hoc laboratory. In this work, a general methodology to obtain cooling tower water 

with specified fouling potential is given and details of this methodology can be found in a 

complementary thesis in the School of Mechanical and Aerospace Engineering at Oklahoma 

State University [Lim 2010]. In order to better understand the characteristics of the test apparatus 

used in this thesis, a summary of the previous techniques for measuring the fouling resistance is 

given next.  

 

2.4 Review of test facilities used to study fouling  

 Figure 2-3 shows the schematic of the test facility used by Bansal et al. [2000] to 

determine the fouling of a plate heat exchanger subject to precipitation fouling. The test plate 

heat exchanger is connected to a fouling water loop and a hot water loop. The fouling water 

(CaSO4 solution) is circulated between the solution tank (50 liters capacity)  and test plate heat 

exchanger through a filter which removes particles above a size of 1µm to minimize particulate 

fouling and an orifice meter which is used to measure the flow rate. The fouling water is heated 

in the test plate heat exchanger using hot water that is preheated in another heat exchanger using 

steam as shown in Figure 2-3, the fouling water that is heated in the plate heat exchanger is 

cooled back to its initial temperature in the solution tank by passing cooling water through a pipe 

immersed in it.  
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Figure 2-3. Test facility used by Bansal et al. [2000] 

 

An experimental facility used by Grandgeorge et al. [1998] to measure the particulate 

fouling of heat exchangers is shown in Figure 2-4. There are two independent flow networks 

connected to the test plate heat exchanger termed as the foulant circuit and coolant circuit. The 

foulant is a mixture of anatase TiO2 particles in deionized water is circulated between a 500 liters 

tank and the test plate heat exchanger. The tank is provided with a 9 kW heater capable of 

reaching foulant temperatures of 50 
0
C (122 

0
F) and a stirrer which is used to homogenize the 

solution. The foulant is cooled in the test heat exchanger using cooling water, it should be noted 

that in this case the fouling fluid is being cooled and hence precipitation fouling is not likely to 

occur and the fouling is 100% particulate. Temperature, pressure and flow measurement devices 

are installed in the set up as shown in Figure 2-4. 
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Figure 2-4. Test facility used by Grandgeorge et al. [1998] 

 

 The experimental facility used by Chamra [2006] to study the effect of water side fouling 

inside smooth and augmented copper alloy condenser tubes is shown in figure 2-5. There are two 

independent loops, the water loop and the refrigerant loop; the water loop consists of a mixing 

tank and water cooling heat exchangers (not seen in Figure 2-5), the mixing tank contains the 

cooling tower water and the water cooling heat exchangers using city water to cool the cooling 

tower water after it is heated by the refrigerant in the test section. The test section is basically a 

shell and tube heat exchanger with refrigerant flowing through the shell and water flowing 

through the tubes. The refrigerant loop consists of refrigerant tanks containing R134a at boiling 

conditions; all the tanks had rupture disks which are supposed to burst if the pressure exceeds 

200 psi. All the refrigerant tanks were provided with two ring heaters each with a capacity of 

2.25 kW and a tape heater is wrapped around the pipe of the refrigerant before it enters the test 

section to superheat the refrigerant which is at a saturation temperature of 105 
0
F (~ 40.5 

0
C), a 

chilled water heat exchanger using chilled water at a temperature of 45-50 
0
F (~ 7-10 

0
C) is used 

to cool the refrigerant after it exits the test section. It is to be noted that the refrigerant loop did 

not incorporate any refrigerant pumps; the flow of refrigerant (vapor) into the test section was by 

means of buoyance and the return to the tank (liquid) was die to gravity. 
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Figure 2-5. Test facility to determine water side fouling in condenser tubes (Chamra [2000]) 

 

All though the test facility used by Chamra [2000] involves using of refrigerant to heat 

the cooling tower water, it does not have the capabilities to accurately control parameters such as 

the degree of superheat, saturation temperature and flow rate of the refrigerant entering the test 

section. The refrigerant loop of the test facility constructed by Longo [2008] is shown in Figure 

2-6 is capable of achieving better control of the previously mentioned parameters. A variable 

speed refrigerant pump is used to achieve better control of refrigerant flow rate. The refrigerant 

is first pumped into a heat exchanger which serves as an evaporator; using hot water the 

refrigerant is evaporated and eventually super-heated before it enters the condenser. The 

refrigerant exiting the condenser is then passed through a post condenser and a sub-cooler where 

it is sub-cooled before it enters the pump inlet thereby eliminating the chance of vapor bubbles. 

The pressure of the refrigerant is controlled using a bladder accumulator connected to a nitrogen 

bottle. 
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Figure 2-6. Test facility used by Longo [2008] 

 

2.5 Conclusion from the literature review 

 Even though some work on fouling of plate heat exchangers is available in the literature, 

no data are available on fouling of plate heat exchangers operating as condensers. In the previous 

work the fouling water is used from specific water sources and though its chemical properties 

might be maintained throughout, the previous tests did not involve the use of an actual cooling 

tower. Hence whether the water was saturated in minerals or not was difficult to say. The effect 

of water degree of supersaturation on the fouling resistance of PHE was not studied 

systematically and the fouling tests were generally not repeatable due to the variation of multiple 

operating conditions. It is concluded that there is a need for a better understanding of the 

precipitation and particulate fouling mechanisms in PHEs and for developing an experimental 

methodology that is able to measure the fouling resistance and pressure drop in these types of 

exchangers. The methodology should be accurate, repeatable, and independent from the 

geographic location of the water source. This thesis summarizes such test methodology and 

focuses on the propensity for fouling in PHEs used in cooling tower applications. Since fouling 

is a very slow process accelerated-type tests are developed in laboratory. The accelerated tests 

progressively concentrate the water while running the water through the PHE and through a 
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small cooling tower at the same time. The water is maintained saturated in minerals and becomes 

supersaturated within the PHEs, thus promoting mineral precipitation and deposition in the 

vicinities of the test PHE. A complete and thorough uncertainty analysis of the experimental 

methodology is presented. The uncertainty analysis aimed to identify the main sources of 

inaccuracy for heat transfer and pressure drop and how to operate the experimental facilities in a 

way that the inaccuracy are kept to the minimum. This thesis also reports the fouling 

performances of the first two brazed plate heat exchanger geometries tested in the facility. Two 

PHEs have same chevron angle and different aspect ratio while the third brazed PHE consists of 

same aspect ratio of one of the first three plate exchangers but with a different chevron pattern 

that yields a low pressure drop. The preliminary results from this thesis allow quantifying the 

impact of plate geometry and water velocity on the fouling performance of brazed plate heat 

exchangers. It should be emphasized that the work in this thesis deals with mineral fouling only, 

sometimes referred as scaling. The effects from biological fouling and corrosion were reduced by 

treating the cooling tower water with a sufficient amount of bleach and azole, which is a 

chemical additive that prevents corrosion.  
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CHAPTER III 

 

DESIGN AND CONSTUCTION OF TEST FACILITY 

The basic layout of the facility along with all the components used is described in this 

chapter. The original design of the facility was modified and upgraded several times based on 

lessons learnt during calibration and preliminary tests. The final version of the water fouling test 

facility is shown in Figure 3-1.  

 

 

Figure 3-1. Schematic of test facility for the fouling experiments
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There are 5 different loops or main piping layouts termed as the cooling tower water 

loop, refrigerant loop, evaporator loop, superheater loop and the chilled water loop. Typical 

thermodynamic state points of the refrigerant in the loop are shown in the p-h diagram of Figure 

3-2 and in the T-s diagram of Figure 3-3. 
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Figure 3-2. R134a P-H Diagram 

Subcooled liquid refrigerant enters a pump at about 145 psi. It is pushed at higher 

pressure toward the evaporator. Referring to the p-h and T-s diagrams of figures 3-2 and 3-3, the 

refrigerant is at state 1 and 2 before and after the pump, respectively. The pump operates entirely 

in the subcooled region. The refrigerant then passes through the evaporator from state 2 and exits 

at state 3 where it is completely dry or slightly superheated. Then it flows through the 

superheater, process 3-5 where the vapor is superheated to a temperature of 170 
0
F before 

entering the condenser at state 4. The refrigerant exits the condenser at state 5 where is close to 

the liquid region; in practice the refrigerant may be slightly subcooled or still within the 2 phase 

region depending on the heat transfer characteristics of the condenser. Finally the refrigerant is 

passed through a subcooler where it is subcooled about 10 – 15 
0
F (process 5-1) before it enters 
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the pump. It should be noted that in the T-s diagram points 1 and 2 are almost is identical since 

there is no temperature rise across the pump and the difference in entropy is extremely small. 
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Figure 3-3. R134a T-s Diagram 

The first four loops can be seen in figure 3.1 while the chilled water loop is shown 

separately in Figure 3-8. All the heat exchangers used are of the brazed plate type and are termed 

as condenser, evaporator, super heater, etc, based on their functioning; details on the heat 

exchangers are available in Tables 3-1 and 3-2. The entire setup is constructed on a steel stand of 

about 10 feet length , 3.5 feet wide and 10 feet tall shown in Figure 3-4(a), large amounts of 

piping, heat exchangers, tanks and pumps were mounted in this stand quickly congesting the 

available as shown in Figure 3-4(b).  
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Figure 3-4. Test facility 

 

3.1 Evaporator Loop 

Unlike the test facility used by Longo [2008] seen in Figure 2-6, this facility does not 

have a bladder accumulator connected to a nitrogen tank to control the pressure of refrigerant in 

the system. The pressure of the refrigerant is controlled by the saturation temperature of 

condensation and evaporation and by the refrigerant charge. 

According to the ideal gas equation: 

       

The pressure of the vapor refrigerant in the system depends on the following three factors: 

1. Mass of vapor refrigerant in the system (m) 

2. Average Temperature of system (T) 

3. Volume of system available for the refrigerant vapor (V) 

The following parameters affect the average temperature of the system: 

1. Temperature of hot water entering the super heater. 

2. Temperature of cooling tower water entering the condenser. 

3. Temperature of cooling water entering the refrigerant sub-cooler. 

The temperature of hot water entering the super heater is used to control the degree of super heat 

of the refrigerant while the temperature of cooling tower water entering the condenser is set 

constant at 85 
0
F (29.4 

0
C) and the temperature of cooling water entering the sub-cooler depends 

on the lab chilled water supply and it was in the range of 56 to 62F. 
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Figure 3-5 zooms the schematic of the evaporator loop isolated from rest of the facility.  

 

 

Figure 3-5. Schematic of evaporator loop 

 

Water circulates from the pump, tank, immersion heater and a plate heat exchanger used 

to evaporate the refrigerant. The pump used is a model 6K582A manufactured by Dayton 

operating on 115 V single phase at 60 Hz frequency and at 3450 rpm. Since this pump is 

obsolete the pump curve is not available, based on the temperature differences and heat transfer 

it is estimated that the flow rate lies between 1 to 2 gpm. The heater used is a model KTLS-33A-

036 manufactured by Chromalox which required 480 V, 3 phase power supply and has a 3 kW 

capacity and was controlled using a Chromalox Minimax SCR proportional controller.  
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Figure 3-6. Heater 

The heater as seen in Figure 3-6 has three stainless steel sheath elements capable of 

generating 40 W/in
2
 heating, a riser which is also made of stainless steel and a moisture resistant 

thermal enclosure; it can be used for mildly corrosive fluids. Figure 3-7 shows the different 

components of the evaporator loop as installed in the setup. The piping for this loop is entirely of 

1” copper tubing.  

 

Figure 3-7. Components of evaporator Loop 

The plate heat exchanger functioning as the evaporator is a model GB400H-44 

manufactured by GEA more details of which are available in Table 3-1. A large heat exchanger 
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is used here because the refrigerant undergoes a phase change in the heat exchanger and a large 

amount of heating capacity is required due to the latent heat of vaporization. Lastly the tank used 

has a capacity of 35 gallons and can handle water temperatures up to 120 
0
F. 

Passing the refrigerant through an additional heat exchanger (evaporator) where it is 

heated by warm water the temperature of which can be accurately controlled is necessary to have 

a good control of the refrigerant pressure in the system. Also when there are small leaks in the 

system the mass of the refrigerant decreases causing a decrease in refrigerant pressure, this can 

be compensated by increasing the temperature of warm water entering the evaporator which 

leads to an increase in the average temperature of the system thereby increasing the pressure of 

refrigerant. 

 

3.2 Superheater Loop 
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Figure 3-8. Schematic of superheater loop 

The function of the super-heater is to accurately control the degree of superheat of the 

refrigerant entering the condenser. Figure 3-8 shows the schematic of the superheater loop 

isolated from the rest of the system. The super heater loop consists of a pump, inline heater, 

expansion tank and plate heat exchanger. This is a closed system and there is no open tank. The 

higher water temperatures close to the boiling point generate quite a lot of steam in an open tank 

and the superheated steam might melt the plastic walls of the water tank. While steel tanks can 
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overcome the latter issue, large amount of steam is not advisable in a laboratory for safety and 

humidity conditions. Steams will condensate on the cold surfaces providing a humid, wet, and 

dangerous environment to work in. For these reason a close loop was chosen for the superheater 

loop. A 1/6 Hp Grundfos – UP – 26 – 99F inline pump is used and it is powered by 115 V single 

phase. The plate heat exchanger used is a model GB400L-14 manufactured by GEA more details 

of which are available in Table 3-1. The heater used is a circulation heater manufactured by 

Chromalox and is a model NWHSRG 06-024P -E1 VersaTherm with a heating capacity of 24 

KW, the ports on the heater are provided with 1” female NPT connections and the net weight is 

45 lbs. This being a closed loop requires an expansion tank; a Bell and Gosset HFT- 15 

expansion tank is used, it has a total volume of 3 gallons and an acceptance volume of 1 gallon, 

the shell and diaphragm are made up of carbon steel and heavy duty butyl rubber respectively. It 

is pre charged to 12 psi and can handle pressures up to 100 psi and temperatures up to 240 
0
F and 

has an approximate weight of 5 lbs. The different components of the superheater loop are shown 

in Figure 3-9. 

 

Figure 3-9. Components of superheater loop 

 

3.3 Chilled water loop 

The chilled water loop is a close system consisting of 3 plate heat exchangers, a pump, 

expansion tank and metering valves. A schematic of the chilled water loop is shown in Fig 3-10, 

the three plate heat exchangers are termed as subcooler, post cooler and chiller. The subcooler is 

used to cool the liquid refrigerant from the brazed plate condenser below its saturated 

temperature before entering the refrigeant pump. The degree of subcooling is maintained to 10 to 

20F. This would reduce vapor refrigerant being circulated through the pump. The post cooler is 

used to cool the cooling tower water exiting the other side of the brazed plate condenser before 

water is circulated back to the batch tank, which is used as constant temperature water reservoir. 
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The chiller is connected to the campus chilled water supply, with chilled water entering at 50 
0
F 

and it is used to provide the cooling to the subcooler and the post cooler. 

 The subcooler and post cooler might be directly connected to the campus chilled water 

supply eliminating the need for an additional pump and expansion tank; however this is avoided 

because any leak on the piping will result in a loss of campus chilled water and damage to the 

building hydronic system.  The expansion tank used is a Bell and Gosset HFT-15 similar to the 

expansion tank used in the super-heater loop. Metering valves are used to control the flow of 

cooling water into the subcooler and the post cooler. The large number of metering valves in the 

circuit helps in keeping precise control and making fine adjustments of the cooling water 

supplied to the post cooler and sub cooler. The pump used is a Dayton 6K818A with a ¾ HP 

rating operating at 3450 rpm; since this pump is obsolete the pump curves are not available, but 

based on temperature differences and heat transfer calculations it is estimated the flow rate is 

between 1.5 to 3 gpm. Figure 3-11 shows the different components of the chilled water loop. 

 

 

Figure 3-10. Schematic of chilled water loop 
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Figure 3-11. Components of chilled water loop 

 

3.4 Refrigerant loop 

The refrigerant loop consists of a pump, flow meter and four plate heat exchangers as 

seen in Figure 3-12. While centrifugal pumps are used in the water loops, a gear pump is used for 

the refrigerant loop. The pump is a model GC-M32-JV5E manufactured by micropump and it is 

coupled with a Baldor VS1SP variable frequency drive (VFD), more details of the VFD drive are 

provided in the next chapter. The subcooler is a model GB200H-10 more details about it are 

provided in Table 3-1. The plate heat exchanger which is to be tested for fouling is used as the 

condenser; a description of the different test plate heat exchangers is given section 3.6. A model 

DS025 micromotion coriolis flow meter manufactured by Emerson process management is used 

to measure the refrigerant flow rate, the flow meter should always be placed close to the exit of 

the subcooler since it has to have only liquid flowing through it.  
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Figure 3-12. Schematic of refrigerant loop 

A side glass was installed on the suction line of the refrigerant pump (pump 2) shown in 

Figure 3-13, to observe the flow of refrigerant and the appearance of vapor bubbles in the flow. 

If two phase refrigerant is formed by any flashing process due to the pressure drop of the flow 

meter for example, vapor bubbles can be viewed through the side glass. Excess bubbles will 

cause cavitation of the pump and they can be avoided by increasing the degree of subcooling in 

the liquid refrigerant.  
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Figure 3-13. Refrigerant Pump 

3.4.1 Selection of a suitable pump for the refrigerant loop 

A centrifugal pump consists of an impeller rotating inside the pump casing, liquid is 

directed into the center and picked up by the rotating vanes and accelerated to a high velocity. A 

gear pump consists of two or more rotating gears that mesh together. One of the gears is 

connected to the power source and it drives the other gears. . During the rotation the volume 

between the gear teeth diminished and fluid is pumped from the inlet to the exit. 

 

Figure 3-14. Comparison of pump curves 

Gear pumps are more suited to systems with high pressure drops operating with fluids having 

greater viscosity. Figure 3-14 shows the pump curves for both centrifugal and gear pumps. It can 

be seen that with an increase in pressure the gear pump offers much more stable flow than the 
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centrifugal pump, this is essential to maintain a constant flow rate as slight changes in refrigerant 

pressure are likely to occur throughout the running of the facility. 

Another feature associated with the selected pump is the magnetic coupling of the pump head to 

the motor shaft. Most pumps use a dynamic (mechanical) seal on the pump shafts which rely on 

fine clearances to minimize pump leakage; however these types of seal require cooling and 

lubrication since they convert friction to heat which can lead to cavitation within the pump 

resulting in need for over sizing of motor and shorter life. In magnetic coupling there are two 

magnets, a drive magnet that is attached to the motor shaft and a driven magnet that is 

completely sealed within the pump head and is connected to the driving gear, the two magnets 

couple automatically such that the drive magnet turns the driven magnet and gears without 

physical contact. Also when the load on the pump exceeds the coupling torque decoupling occurs 

between the two magnets, which acts as a safety feature.  

 

3.5 Cooling tower water loop 

Figure 3-15 shows the schematic of the fouling water loop. The main components are the 

water tank, heater, pumps, test heat exchanger, cooling tower and post cooler and flow meter.  

Due to the presence of a large number of heat exchangers in this loop, a relatively high 

pressure drop is found to occur at low flow rates and hence it is decided to use two pumps 

connected in series. A single pump would not be able to provide the required head at the desired 

flow rate and if a single pump, which could provide the required head was used it would provide 

a much greater flow rate than set point. Two identical high capacity circulating pumps shown in 

Figure 3-16, model 1400 – 50 –A operating at 3450 rpm manufactured by TACO are connected 

in series.  
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Figure 3-15. Schematic of cooling tower water loop 
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Figure 3-16. Taco pumps in series 

Figure 3-17 shows the pump curves for a single pump and that for two pumps connected 

in series.  

 

Figure 3-17. Performance Curves 

 

The water post cooler is connected in parallel with a small scale cooling tower. The 

cooling load is shared between the cooling tower and post cooler and the cooling tower 

concentrates the minerals in the water through direct air-to-water droplets evaporative process. 
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This concentration method was key to be able to provide cooling tower water with desired 

fouling potential, that is, specified amount of minerals saturated and supersaturated in the water. 

Two metering valves were used to control the flow to the cooling tower and to the post-cooler.  

 

 

 

Figure 3-18. Small scale Cooling Tower for laboratory accelerated tests of fouling 

The cooling tower as seen in Figure 3-18 consists of a 105 gallon tank, 5 feet tall with a 

12” opening at the top. Holes are drilled near the top of the tank to provide for entry of the 

piping, the end of the pipe are two nozzles which create a fine spray, holes are also drilled along 

the circumference of the tank 2 feet from the base to provide for entry of air. The opening of the 

tank is connected to the suction of a 3 HP model 9KX03 Dayton blower operating at 3505 rpm 

using a flexible Duct.  
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Figure 3-19. Water batch tank with customized heater 

The batch water tank, which is shown in Figure 3-19, acts as constant temperature and 

constant species concentration water solution reservoir for the fouling experiments.  It has a 

capacity of 150 gallon and it has a KTLS 360A 036 immersion heater manufactured by 

Chromalox. This heater is identical to the heater used in the evaporator loop except that the 

sheath elements are larger and it has maximum capacity of 9 kW. The heater is controlled by a 

PID SCR (silicon controlled rectifier) module, which modulate the heating capacity based on the 

water temperature entering the test plate heat exchanger.  

 

3.6 Plate Heat Exchangers used in the test facility 

The test plate heat exchanger is to be used as a condenser; Refrigerant R134a is to be 

condensed using cooling tower water. Four different heat exchangers are to be tested one at a 

time to measure the variation in fouling resistance and pressure drop with time. Figure 3-20 

shows the 4 different heat exchangers that are to be tested. All the plate heat exchangers are 

manufactured by GEA, Table 3-1 lists the specifications of the all the plate heat exchangers used 

in the test facility excluding the condensers which is listed in Table 3-2 in greater detail. 
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Table 3-1. Heat exchanger specifications 

 Model No of plates Heat transfer area 

[Nominal Surface] 

(ft
2
) 

Minimum heat 

transfer capacity 

(Btu/hr) 

Postcooler GB400H 20 6.9 21000 

Subcooler GB200H 10 1.5 1100 

Superheater GB400L 14 4.6 6500 

Evaporator GB400H 44 16.1 15750 

Campus 

Chiller 

water loop  

FP5x12 14 4.6 22100 

 

 

 

Figure 3-20. Test plate heat exchangers - Condenser-type brazed plate heat exchanger 
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Table 3-2.Test heat exchanger (condenser) specifications 

 

PHE A PHE B PHE C PHE C 

Length (a) [in] 13.29 13.29 21.02 20.3 

Width (b) [in] 5.08 5.08 5.08 9.8 

Protracted Length (Lp) [in] 11.06 11.06 18.82 17 

Number of plates 14 14 8 6 

Heat Transfer Ares [ft2] 4.6 4.6 3.9 5.3 

Volume Side A [ft3] 0.018 0.018 0.015 0.017 

Volume Side B [ft3] 0.021 0.021 0.016 0.026 

Chevron Angle (degrees from flow direction) 30 63  63 63 

Corrugation Depth [in] 0.079 0.079 0.079 0.079 

Corrugation Pitch transverse to ribs [in] 0.236 0.236 0.236 0.25 

Max operating pressure [psi] 300 450 450 450 

Max operating temperature [F] 350 350 350 350 

 

 

3.7 Problems encountered with design and construction of test facility and lessons learnt 

 The initial design of the system was almost completely different from the final version of 

the system because several practical issues occurred during preliminary calibration and testing of 

the experimental set up. They are briefly mentioned here to justify some of the choices that were 

made for the final version of the facility.  

 

3.7.1 Leaks on the refrigerant loop 

 Probably the most difficult and time consuming problem encountered during the 

construction of this facility were leaks on the refrigerant loop. Unlike the water loop which runs 

at relatively low pressures, the refrigerant loop has to operate at pressures up to 200 psi and even 

an extremely small leak would cause the refrigerant pressure to decay with time. In order to 

ensure that the loop was leak free, compressed nitrogen was pumped into it, the presence of a 



51 

 

large number of threaded joints and unions was responsible for most leaks. Large leaks could be 

identified by a hissing sound emanating from the point of the leak; smaller leaks are identified by 

applying a fluorescent leak detector solution on the joints and fittings, presence of bubbles 

indicates a leak. Once these leaks are eliminated the system would be left pressurized at around 

220 psi overnight. If any extremely small leaks were present the pressure would drop, the system 

would then have to be charged to pressures around 300- 350 psi so that the leak can be identified 

by the leak detector solution.  

 

Figure 3-21. Leak Check 

Figure 3-21 shows plots of pressure versus time when the system has a large, small and 

no leak. A large leak is represented by a curve, while a small leak is represented by a line with a 

declining slope and an almost straight line represents no leak. Small fluctuations are present due 

to changes in pressure corresponding to changes in ambient conditions and due to noise in the 

data acquisition system.  

 

3.7.2 Cavitation of refrigerant pump  

Cavitation is a condition that occurs within a pump when the fluid being pumped 

experiences a pressure drop and is converted to the vapor stage, i.e the fluid is in the vapor phase 

at the pump inlet. In the initial design of the setup the refrigerant pump was placed close to the 

subcooler but above it. In theory the pump should not cavitate as the refrigerant loop is a closed 

system and the location of the pump should not be a problem. However when the refrigerant is 

charged it is in two phase, the liquid tends to settle at the bottom and the vapor at the top. The 

pump being placed above the subcooler had vapor being present in the pump inlet leading to 

cavitation. This was overcome by placing the pump below the subcooler at the lowest point of 

the loop so only liquid was present at the inlet of the pump.  
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3.7.3 Melting of water tank of superheated loop 

In the initial design of the superheater loop a water tank made of composite material 

capable of withstanding temperatures up to 212 
0
F was used with a 9 KW immersion heater in it 

and a lid on top, similar to the setup of the evaporator loop. To reach the desired level of 

superheat on the refrigerant side it was determined that the water in the tank had to be heated to 

185 
0
F. The process of heating the water to 180 

0
F resulted in the formation of steam at 

temperatures higher than what the tank could handle, this resulted in a portion of the tank being 

melted. To fix this problem, the tank and immersion heater were replaced with a circulation 

heater forming a closed system, hence any steam formed will remain within the system. Figure 

3-22 shows the schematic of the original and upgraded designs. 

  

 

Figure 3-22. Schematic of original hot water auxiliary loop and upgraded loop designs 

 

3.7.4 Testing two heat exchangers simultaneously 

Because the fouling experiments are very time consuming tests, the original plan was to 

test two heat exchangers simultaneously by connecting them in parallel. However, after 

preliminary tests it was concluded that running two or multiple plate heat exchangers in 

parallel is not feasible due to the following reasons: 
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1. It is not possible to achieve the same refrigerant flow rate, inlet temperature and pressure 

at the inlet of both heat exchangers and is unadvisable since the fouling resistance is 

found to depend largely on the refrigerant pressure.  

2. The cooling capacity available on the campus chilled water does not provide sufficient 

cooling to the fouling water and subcooling to the refrigerant when two heat exchangers 

are being tested simultaneously. 

3. Under fouling conditions the pressure drop across on the water side of the heat 

exchangers increases and the pumps are not able to provide the additional head required 

which results in a decrease in the water flow rate.  
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CHAPTER IV 

CALIBRATION AND CONTROL OF FACILITY  

 

This chapter contains a brief description of the data acquisition systems, the different 

measurement and control devices used including the calibration and detailed uncertainty analysis 

on the fouling resistance. 

 

4.1 Measurement and Control Devices 

 

1. Flow meters  

 

 

Figure 4-1. Flow meter 

 There are two flow meters used in the facility to measure the water and refrigerant flow 

rates. The flow meter consists of two components a sensor and a transmitter as shown in Figure 

4-1. It measure fluid flow based on the coriolis force, which arises when a fluid is moving within 

a rotating frame of reference. The rotation produces an angular outward acceleration together 

with a linear velocity to define the coriolis force which is proportional to the flow rate of the 

fluid. The sensor contains oscillating flow tubes and the transmitter controls the oscillations and 

analyzes the results.  

 The flow meter used to measure refrigerant flow rate consists of a model DS025S119SU 

sensor and a model RFT9739E1SUJ transmitter, capable of measuring flow rates up to 11.33 
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kg/min, the standard uncertainty on the flow meter is ± 0.03 %. Figure 4-2 shows the error 

associated with the flow meter at different flow rates. 

 

Figure 4-2. Flow meter Calibration 

The flow meter used to measure the water flow rate has a model CMF025M319 sensor 

and a model 2700C12 transmitter, it can measure flow rates up to 18.14 kg/min and has a 

standard uncertainty of ± 0.03 % similar to the refrigerant flow meter. The transmitter outputs a 

current, ranging between 4 and 20 mA, 4 mA being no flow and 20 mA being the maximum flow 

capacity of the flow meter. The flow rate varies linearly between the limits and by using a linear 

equation fit the flow rate is computed in the data acquisition program. 

 

2. Pressure Transducer 

 

 

Figure 4-3. Pressure Transducer  
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The pressure transducer is used to measure the pressure of the refrigerant entering the test 

heat exchanger (condenser), the saturation temperature of the refrigerant is computed from the 

measured pressure. A model 207 setra pressure transducer shown in Fig 4-3 is used; it can 

measure pressures up to 250 psi with an accuracy of ± 0.13 %. The pressure transducer requires a 

power excitation between 12-24 VDC and the output is a voltage varying between 0.1 (minimum 

value) and 5.1 (maximum value) volts. The pressure follows a linear relationship with the 

voltage and is computed using a simple linear equation fit in the data acquisition program. Even 

though the pressure transducer virtually accepts a range of power excitation DC voltage, it was 

found that the actual value of the power excitation slightly affects the output signal of the 

pressure transducer. While the fluctuation of pressure might not be significant they are large 

enough to impact the measurement of the fouling resistance in brazed plate heat exchangers. For 

this reason, a dedicated power supply with adjustable voltage and current controls was used to 

power the pressure transducers. The power excitation was set to 13 VDC at all time and the 

current to the transducer was less than 0.75 amp. 

 

3. Differential Pressure Transducer 

A differential pressure transducer is used in the setup to measure the pressure drop across 

the water side of the test heat exchanger (condenser). A validyne model P855 differential 

pressure transducer shown in Figure 4-4 is used; it has an accuracy of 0.1% of full scale. The 

pressure transducer requires an excitation of 7-55 VDC and it outputs a current ranging between 

4-20 mA.  

 

Figure 4-4. Differential Pressure Transducer 
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4. Variable Frequency Drive 

A variable frequency drive (VFD) is used to control the speed of the refrigerant pump in 

order to maintain a constant flow rate. For incompressible fluids like water the flow rate can be 

controlled using metering valves, for refrigerant when a certain flow rate and pressure is 

required, use of a metering valve to control flow rate will cause a drop in pressure, or using a 

metering valve to control the pressure will cause a change in the flow rate, hence to achieve a 

certain flow rate and pressure, a metering valve is used to achieve the pressure and a VFD drive 

is used to achieve the flow rate.  

 

Figure 4-5. Baldor VFD Drive 

A Baldor VS1SP21-1B drive shown in Figure 4-5 with a 2 HP rating requiring 240V input is 

used. An input voltage ranging between 0 - 10 V is supplied to the drive by the Lab View system 

used for data acquisition and control, the speed varies linearly with the voltage, 10 V 

corresponding to the maximum speed of 3450 rpm. 

 

5. Heater Controls 

Each heater in this facility is controlled by a Minimax 2, three phase, 2 leg SCR power 

pack controller, which is shown in Figure 4-6. The controller receives an input voltage from the 

LabView program. The input voltage ranges between 0 and 10 V with 0 being no power supplied 

to the heater and 10 V enables the heater to operate at its maximum capacity. A PID control 
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determines the input voltage to the controller based on the temperature difference between the 

actual temperature and the set point temperature. Each heater has specific PID factors, the default 

values provided by the Lab View software  were used, the proportional gain of the controller was 

set to 1, the integral time 0.01 minutes and the derivative time to 0 minutes.  

 

Figure 4-6. SCR power pack  

6. Temperature Measurement 

The facility has 5 RTDs and 4 thermocouples, of these only two of the RTD‟s are used to 

determine the fouling resistance, the rest are used to control the heaters. Three of the four 

thermocouples are of the T-type and the other is a J-Type. Calibration of the two RTD‟s was 

done twice over the course of the project. During the first calibration the exact range of operating 

temperatures was not known and to be safe the RTD‟s were calibrated within 26 – 45 
0
C (~ 78 – 

113 
0
F). Figure 4-7 shows the error for both RTDs in the calibrated range. RTD 1 used to 

measure the temperature of water entering the test plate heat exchanger had a maximum error of 

0.0287 
0
C ( ~0.052 

0
F) and RTD 3 that measures the temperature of water exiting the test plate 

heat exchanger had a maximum error of 0.06 
0
C ( ~0.11 

0
F).  
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Figure 4-7. Calibration 1 

The second calibration was done after the completion of two tests, at this point a better 

idea of the operating temperatures was known and the RTDs were calibrated within a closer 

range of their expected operating temperature. This technique allowed to improve the accuracy 

of the RTDs. RTD 1 was calibrated between 28.3 – 30.6 
0
C (~ 82.9 – 87 

0
F) and had a maximum 

error of 0.01 
0
C (~0.019 

0
F) while RTD 3 was calibrated within 31.1 – 35.6 

0
C (~ 88 – 96 

0
F) and 

had a maximum error of 0.011 
0
C (~0.02 

0
F), figure 4-8 shows the error during calibration for 

both RTDs. 

 

Figure 4-8. Calibration 2 

 



60 

 

4.2 Data acquisition and Control systems 

The data acquisition and control systems for the facility consist mainly of 3 parts, a SCXI 

module and, a PXI computer from National Instruments and LabView software.  

 

1. SCXI  

SCXI stands for Signal Conditioning and Extension for Instrumentation; it is a high 

performance signal conditioning and switching platform for measurement and automation 

systems. It consists of multichannel signal conditioning modules installed in a rugged chassis; 

the modules are capable of taking measurements from a wide variety of sensor and signal types 

like temperature, sound, strain, etc.  Figure 4-9 shows the model 1000 SCXI manufactured by 

National Instruments that is used in this setup.  

 

Figure 4-9. SCXI 

2. PXI 

A PXI is basically a PCI extension for instrumentation that offers a high performance low 

cost solution for measurement and automation systems. A PCI (Peripheral Component 

Interconnect) is a computer bus for attaching hardware devices in a computer. A compactPCI 

system is a Eurocard based industrial computer where all boards are connected via a PCI 

backplane. PXI combines the PCI electrical bus with rugged, modular Eurocard packaging for 
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CompactPCI and adds specialized synchronizing buses and software packages. A PXI is 

composed of three parts, a chassis, system controller and peripheral modules. The PXI used in 

this project is manufactured by National Instruments and the model NI PXI-1031 (shown in 

Figure 4-10). 

 

Figure 4-10. PXI 

 

3. Lab View Program 

Lab View is a graphical programming environment used to develop sophisticated 

measurement, test and control systems using graphical icons and wires resembling a flowchart. 

The Lab View program consists of two windows, a front panel and a block diagram as shown in 

Figure 4-11. The front panel contains controls and indicators which enable the operator to input 

or extract data from the program. The block diagram contains the code for all the controls and 

indicators located on the front panel, the code is usually graphical, front panel indicators and 

controls appear as terminals on the block diagrams. 
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                         (a)                                                                  (b) 

Figure 4-11. Labview program Front Panel (a) and Block Diagram (b)  

 

LabView was selected for the data acquisition system because its robustness during 

operation, high sample rate, easiness to program and maintain the code, flexibility for 

modifications and expansion, and user-friendly graphic interfaces. Real Time, an additional 

module of the LabView platform, was used for the controls system because of the high sample 

rate, robustness of the program during operation, and easiness of integration with PXI and SCXI 

systems.  

 

4.3 Monitoring and Control of test facility 

All the controls and indicators required for running of the facility are found in the front 

panel of the LabView program. The refrigerant flow rate is viewed in a wave form chart and 

controlled manually by adjusting the speed of the pump using the VFD control shown in Figure 

4-12.  
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Figure 4-12. Refrigerant Flow control 

The fouling water flow rate is controlled by adjusting a number of metering valves 

provided on the water loop; the total flow rate is measured by the flow meter and is displayed on 

a wave form chart shown in Figure 4-13. However the flow being sent to the cooling tower needs 

to be measured manually using a stop watch and monitoring the level in the cooling tower, 

around 25% of the total flow, that is roughly 1gpm, needs to be sent to the cooling tower for 

water evaporation and concentration. The TACO pumps used in the cooling tower water loop are 

connected to a solid state switch as a safety measure and can be turned on and off using the 

LabView program. 

 

Figure 4-13. Water flow control 
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The temperature of cooling tower water entering the test heat exchanger (condenser) is 

kept constant using a PID control built in the LabView program to control the 6 kW heater 

located in the batch tank. The temperature and pressure of refrigerant entering the test heat 

exchanger are controlled using PID controls on the 24 kW inline water heater located in the 

super heater loop and the 3 kW heater in the evaporator loop. Manual adjustments of set point 

temperature, element cut off temperature and maximum power supplied to the heaters need to be 

made as shown in Figure 4-14 for effective control of process variables.  

 

Figure 4-14. Heater controls 

The cooling supplied to the post cooler and sub cooler is controlled by adjusting the 

metering valves provided in the chilled water loop. About 10 - 20 
0
F of subcooling are needed on 

the refrigerant side to prevent cavitation of the pump, excessive subcooling will result in a drop 

in the system pressure which needs to be compensated by increasing the heating capacity in the 

evaporator.  

 

4.4 Data reduction of Fouling Resistance in Brazed-type plate Condensers 

The data reduction for fouling resistance in brazed plate heat exchangers was carried out 

similarly to the steps of Table 4-1. The logarithmic mean temperature difference is based on 

refrigerant saturation temperature in agreement with AHRI standard 450 [2007]. The heat 
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transfer surface area of the heat exchanger (A) is obtained from the manufacturer and the 

saturation temperature (Tsat) is calculated from the saturation pressure (Psat.) 

 

Table 4-1. Measuring Fouling Resistance 

Step 1: At initial time t=0 measure mc, ΔTw,c, Psat 

Step 2: Calculate UAc as follows: 

                    

       
     

   
                      

            
 
 

UAc = Qc / LMTDc 

Step 3: At initial time t=t measure mf, ΔTw,f, Psat 

Step 4:  Calculate UAf as follows: 

                    

       
     

   
                      

            
 

 

UAf = Qf / LMTDf 

Step 5: Compute the fouling resistance Rf as follows: 

        
 

   
   

 

   
 )  

 

4.5 Uncertainty Analysis 

The uncertainty analysis was performed using Engineering Equation solver (EES) [2006]. 

Initially a model of the condenser was created in EES with water flow rates, water temperatures, 

refrigerant flow rates and pressures under clean and fouled conditions as inputs. The model 

outputs are the UA factor, the LMTD and the fouling resistance of the plate heat exchanger. The 

water inlet temperatures under clean and fouled conditions was taken as 85 
0
F (29.4 

0
C), the 

water exit temperature under clean conditions was assumed to be 95 
0
F (35 

0
C) resulting in a 

water temperature rise (ΔT) of 10 
0
F (5.6 

0
C) across the heat exchanger and the refrigerant 

saturation temperature was taken as 105 
0
F (40.6 

0
C). The water and refrigerant temperatures 

correspond to a standard rating condition 2 listed in AHRI standard 450 [2007]. The water flow 
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rate to achieve the required temperatures was computed from software provided by the heat 

exchanger manufacturer, it was found to be 38.8 lbm/min (17.63 kg/min), and in volumetric 

terms around 4.7 gpm. The fouling resistance was computed with water exit temperatures 

ranging from 95 – 90 
0
F (35 – 32.2 

0
C) assuming that the temperature difference due to fouling 

(ΔTf) varies between 0 – 5 
0
F (0 – 2.8 

0
C). Figure 4-15 shows a plot of the predicted fouling 

resistance in EES versus exiting water temperature difference between clean and fouled 

conditions.  

 

Figure 4-15. Fouling Resistance Vs Exiting water temperature difference between clean 

and fouled conditions 

 

The accuracy of the measurement devices used in the fouling experiments is listed in Table 4-2. 

Table 4-2. Accuracy of measurement devices 

 

 RANGE Accuracy 

 

Uncertainty type 

Flow rate  4.5 - 4.8 gpm 0.05 % Relative 

Pressure  145 to 155 psi 0.33 psi Absolute 

Temperature 

(RDTs)  

 85 - 95F 

0.11 F Absolute 

 

The overall uncertainty in the fouling resistance was calculated in EES and using 

Taylor‟s Series uncertainty propagation. The method defines the uncertainty as follows:  

Assume that a dependent variable Y is a function of several variables Xi: 
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                         (3.1) 

 

Each Xi has an associated uncertainty Uxi, that is, Xi  Uxi. Then, according to the Taylor 

expansion method, the uncertainty of the variable Y can be calculated according to the following 

equation: 

       
  

   
      

 
               (3.2) 

 

 

Where 

UY, represents the uncertainty of the variable Y, that is, Y UY 

The fouling resistance is calculated using the following equation: 

          (3.3) 

In the case of the fouling resistance, the uncertainty URf is calculated according to the following 

equation: 
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ExWTTe
, EWTTe

 
= accuracy of RTD for existing and entering water, respectively (°F) or (°C) 

 
waterme = accuracy of a mass flow meter (lb/min) or (kg/s) 

 
satPe = accuracy of a pressure transducer (psi) or (kPa) 

 

The values in table 4-4 are fed into the EEs program which returns the uncertainty on the 

computed values of fouling resistance (Rf), the uncertainty propagation is shown in Figure 4-16. 

 

Figure 4-16. Overall uncertainty of the fouling resistance, (URF in percentage) versus estimated 

fouling resistance Rf and expected water temperature difference ΔTf 

 

In Figure 4-16 the uncertainty is plotted against the fouling resistance (Rf) and the 

corresponding temperature difference between the exiting temperature of water under clean and 

fouled conditions (ΔTf). It can be seen that for a ΔTf of 0.2 
0
F the theoretical uncertainty on Rf is 

about 77 % and it reduces to 10 % as ΔTf increases to about 1.4 
0
F.  

To analyze the contribution of each measurement device to the uncertainty associated 

with the fouling resistance of ΔTf of 0.3 
0
F was selected. The region of ΔTf between 0.2 

0
F and 

0.8 
0 

F is the expected operating area for the fouling experiments. From the literature review, 
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typical fouling resistances for plate heat exchangers are generally less than 1  10
-3

 hr-ft2-F/Btu 

and in my tests the fouling resistance was less than 5  10
-4

 hr-ft2-F/Btu. . Table 4-3 shows the 

output of the EES model during the uncertainty analysis. The fouling resistance and uncertainty 

associated with a ΔTf of 0.3 
0
F was 0.000111 ± 0.000057 hr-ft

2
-
0
F/Btu or 52%. The uncertainty 

on the overall heat transfer coefficient under clean and fouled conditions were approximately 

2.1% and similar to each other.  

 

Table 4-3. Contributions of the variables to the uncertainty (URF) in percentage 

 

 

From Table 4-3 it can be observed that that 99.9% of the uncertainty associated with the 

fouling resistance is due to the temperatures of water exiting the heat exchanger under clean and 

fouled conditions Tw,o,c and Tw,o,f , or the term ΔTf which is equal to the difference between the 

two temperatures,  ΔTf = Tw,o,c - Tw,o,f . Hence it can be concluded that an increase in the accuracy 

of the temperature measurement devices would result in a significant decrease on the uncertainty 

associated with the fouling resistance. Figure 4-17 shows the theoretical uncertainty versus ΔTf 

under various accuracies of RTDs ranging from 0.05 
0
F to 0.15 

0
F. It is evident that a careful in-
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situ calibration of the RDTs is beneficial for improving the accuracy of the fouling resistance 

measurements. Thus, the calibration of the RTDs was performed at the beginning of the 

preliminary tests and checked in between the tests. It was also found that cleaning of the RDT 

probes is necessary after each fouling test. Since the RDTs probes are installed in line to the 

pipelines and directly immersed in the flow of the cooling tower water, several minerals 

accumulate on the metal rods of the sensors. Cleaning and checking the calibration of the RDT 

probes increased the accuracy and repeatability of the temperature measurements. 

 

 

 

Figure 4-17. Effect of accuracy of water temperature measurements on the overall uncertainty 

(URF in percentage) versus estimated fouling resistance Rf 
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CHAPTER V 

 

METHODOLOGY AND FINDINGS 

 

The overall aim of this research is to conduct accelerated-type fouling experiments on PHEs 

under controlled operating conditions and with water quality that are close to the ones of actual 

cooling tower applications. Each PHE was tested for a period between 30 and 60 days until 

either an asymptotic fouling resistance was identified or it was not possible to maintain the test 

operating conditions due to excessive flow blockage in the components of the cooling tower 

water loop. The following parameters were maintained nearly constant during the tests: 

1. Saturation temperature, degree of superheat and flow rate of the refrigerant entering the 

test PHE. 

2. Inlet temperature and flow rate of cooling tower water entering the test PHE. 

3. Evaporation rate of the water in the cooling tower loop since it greatly influence the 

water quality. 

The water and refrigerant inlet conditions were selected based on standard ratings listed in 

AHRI Standard 450 [2007]. The flow rates during the tests were calculated using software from 

the PHEs manufacturer, which compute the nominal flow rate for given heat transfer capacity 

and temperature difference. The flow rate of water was selected such that a measurable 

temperature difference across the heat exchanger on the water side is obtained as recommended 

by the AHRI Standard 450 [2007]. Table 5-1 lists the selected operating conditions at the inlet of 

the PHE: 

 

Table 5-1. Nominal operating conditions during the fouling tests 

Refrigerant Flow rate 3.50 lbm/min (1.59 kg/min) 

Water flow rate 38.8 lbm/min ( 17.6 kg/min) or 4.7 gpm 

Refrigerant saturation temperature 105.0 
0
F ( 40.6 

0
C) 

Refrigerant Degree of superheat 65.0 
0
F ( 36.1 

0
C) 

Water temperature 85.0 
0
F ( 29.4 

0
C) 
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The water and refrigerant exit temperatures depend on the heat transfer characteristics of 

the PHEs at the initial stage with clean plates and over time on the extent of fouling on the heat 

exchanger plates.   

 

5.1 Water quality and cooling tower cycle 

The cooling tower water used in the tests is created by mixing chemicals with reverse 

osmosis water. The chemicals added are calcium chloride, calcium hydroxide and magnesium 

sulfate. Small quantities of bleach and azole are added to the water to minimize biological 

fouling and corrosion fouling. The chemicals are added in fixed ratios to obtain the quality of 

water listed in table 5-2. It should be noticed that the water chemistry can be replicated quite well 

in any laboratory and it is independent from the geographical location of the water source. More 

details on the preparation of the cooling tower water are available in a complimentary M.S thesis 

at Oklahoma State University (Lim [2010]). 

  

Table 5-2. Water properties 

Total 

Hardness   207.00 

Calcium (ppm) 47 

Magnesium (ppm) 22 

Alkalinity 

(as 

CaCO3) 55 

Chloride (ppm) 141.7 

Sulfate (ppm) 88.7 

pH    8.9 

Iron (ppm) 0 

Copper (ppm) 0 

TDS (ppm) 523.38 

LSI   0.64 

      

The cooling tower water is circulated from the batch tank, through the test heat exchanger and 

part of flow is sent to the post cooler while the remaining is directed to the cooling tower before 

it returns to the batch tank. Around 20-25 % of the total water flow rate, that is, approximately 1 
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gpm is sent to the cooling tower. Around 10% of the water entering the cooling tower is 

transferred to the air stream during the direct exchange evaporative cooling process. The total 

water lost in the loop resulted in approximately 25 gallons per day. In real application 100 % of 

the water flow rate is sent to the cooling tower but this would require a large cooling tower, 

larger water tank and a more powerful fan and pumps.. Also around 100 gallons of water would 

be evaporated each day which would result in large quantities of make-up water required and 

also create a large latent load on the building HVAC system and finally a large flow rate through 

the spray nozzles in the cooling tower would require greater pumping power. Considering the 

available power and space in the laboratory and in order to have feasible operating conditions in 

laboratory, the cooling tower was scaled down and only a fraction of the water was directed to it.  

The cooling tower provides both cooling for the water and acts as concentrator for the 

minerals in the water since the various salts dissolved into the water do not evaporate. The initial 

concentrations of minerals in the cooling tower water are listed in Table 5-2. Then the 

concentrations of these salts increases by evaporating pure water in the cooling tower and by 

adding make up water, that is, a water solution with the same initial concentration of Table 5-2, 

to the system. Hence the cooling tower gradually decreases the volume of the pure water in the 

system and increases the concentration of the minerals. This mechanism leads to an increase in 

the LSI of the water during the actual fouling tests. The LSI represents the degree of 

supersaturation of the water and controls the precipitation of the minerals. Recall that if the 

temperature of the water increases its solubility decreases. The water temperature rises from 85 

to about 95F in the test PHEs and thus the water solubility decreases near the plates of the heat 

exchangers. Since the water is always maintained saturated with minerals, even a slight decrease 

in the local solubility causes minerals precipitation, or fouling. This phenomenon is promoted in 

vicinity of the plates within the tests PHEs while in other sections of the water system the water 

solubility is maintained high enough to avoid any precipitation. In practice, as more water is 

evaporated and make-up water added, the concentration of salts in the system along with the LSI 

continue to increase and reach values that cause visible scaling and particulate fouling not only 

in the test PHEs but in all sections of the water loop. However, the main scaling is always 

enhanced in the test PHEs, where the water is warmest.  

The control parameter of the fouling process is the LSI, which is computed using the 

water evaporation rate, PH, conductivity and alkalinity. The evaporation rate is measured on a 
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daily basis while a sample of the simulated cooling tower water is sent every two to three weeks 

to the Soil, Water and Forage Analytical Laboratory at Oklahoma State University to obtain its 

conductivity and alkalinity. More details on the computation of the LSI of the system are 

available in a complimentary M.S thesis at Oklahoma State University (Lim [2010]). The PH of 

the simulated cooling tower water in the batch tank is adjusted by adding Potassium hydroxide at 

regular intervals to maintain it between 9 -9.5. 

 

5.2 Calibration of overall heat transfer coefficient (UA)  

The fouling resistance of the heat exchanger is computed as the difference between the 

overall heat transfer coefficients under clean and fouled conditions as described in Table 4.1. The 

overall heat transfer coefficient depends on the refrigerant and water conditions at the inlet of the 

heat exchanger listed in Table 5-1. In practice the operating conditions cannot be maintained at 

the nominal values throughout the entire duration of test and even small fluctuations within the 

limits specified by the standards might cause a systematic error in measuring the fouling 

resistance. A trial run of the set up was conducted to assess the sensitivity of the UA to the 

different operating parameters listed in Table 5-1. It was found that the UA was most sensitive to 

the saturation temperature of the refrigerant which is obtained from the pressure of the 

refrigerant. A saturation temperature of 105 
0
F (40.6 

0
C) corresponds to a saturation pressure of 

149.8 psi (1032.8 KPA). During the tests the refrigerant condensation pressure might fluctuate 

from the nominal value by ± 1.5 psi. The UA of the heat exchanger was sensitive to this 

fluctuation: for example a 0.9 psi variation in the average pressure with respect to the nominal 

value resulted in a 40 btu/hr-
0
F change in the UA. Even though this accounts for only about 2 % 

of the total UA, the effect it has on the fouling resistance is significant because the fouling 

resistance is typically very small and it is computed based on the difference between the UAs. In 

normal circumstances the difference between the UA under clean and fouled conditions is 

between 0-150 btu/hr-
0
F. The UA was found to vary linearly with respect to pressure and can be 

computed based on the pressure using equation 5-1 as follows. 

 

         (5.1)  

 



75 

 

Where C1 and C2 are empirical constants determined for each PHE at the initial clean conditions 

and operating at constant flow rates and constant inlet temperatures of the water and the 

refrigerant. Table 5-3 contains values of the coefficients C1 and C2 for PHEs  A,B and C. Each 

set is obtained by varying the condensation pressure within ± 2 psi from the nominal value of 

149.8 psi while keeping all other inlet parameters close to their nominal values as listed in Table 

5-1. 

 

Table 5-3. Calibration Constants 

 C1 C2 

PHE A       -10.8 2564 

PHE B -40.5 7270 

PHE C 25.6 -2585 

 

In addition to the refrigerant saturation pressure the flow rate of the cooling tower water 

was found to have a significant impact on the overall heat transfer coefficient. Hence a 

calibration test was conducted on each heat exchanger under clean conditions first keeping all 

conditions listed in Table 5-1 constant but varying the refrigerant pressure, then keeping the 

pressure constant and varying the water flow rate. Figures 5-1, 5-2 and 5-3 show the results of 

the calibration tests conducted on plate heat exchangers A, B and C as listed in Table 3-1.  

 

Figure 5-1. Determination of the coefficients C1 and C2for the PHE A 
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Figure 5-1 shows the calibration results for PHE A which is a low pressure drop chevron design. 

It can be seen that the overall heat transfer coefficient increase almost linearly with the 

refrigerant pressure and also increases with the water flow rate. 

 

 

 

Figure 5-2. Determination of the coefficients C1 and C2 for the PHE B.  

Figures 5-2 and 5-3 show the calibration results for PHE‟s B and C which are high 

pressure drop chevron designs, it can be seen that the overall heat transfer coefficient increase 

linearly with refrigerant pressure but unlike PHE A it tends to decrease with increasing water 

flow rate.  

 

Figure 5-3. Determination of the coefficients C1 and C2 for the PHE C.  
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It can be seen that the overall heat transfer coefficient is around 950 btu/hr-
0
F for PHE A 

which is considerably less than that of PHE B which is 1300 btu/hr-
0
F. The two PHE‟s are 

identical except for their chevron pattern; PHE B has a higher chevron pattern which leads to a 

better flow distribution increasing the heat transfer. The pressure drop across the heat exchanger 

was found to be higher. PHE C has the highest overall heat transfer coefficient of the three 

PHEs. PHE C has the same chevron design as PHE B but a smaller heat transfer area which 

causes an increase in the velocity of the fluids in between the plates. This creates more 

turbulence thereby enhancing the heat transfer. The pressure drop across PHE C was found to be 

significantly higher than that of PHE A and B. 

This calibration procedure is extremely important in order to avoid a systematic error 

during the measurements of the actual fouling resistance. For example consider PHE B, if we did 

not perform this calibration we would compute a clean UA value at the start of the experiment, 

assuming the refrigerant pressure was 149.8 psi and all other parameters the same as that 

mentioned in Table 5-1, and we would obtain a UA clean around 1205 Btu/hr-
0
F. Now assume 

that after 5 days when the UA was next estimated, the average pressure is 150.4 psi and a UA is 

measured around 1192 Btu/hr-
0
F. We see a decrease in the UA and the first attempt would be to 

conclude that fouling has occurred. Now if we take a closer look at the calibration data and 

compute the clean UA based on the pressure we would find that at 150.4 psi the clean UA is 

1192 Btu/hr-
0
F. This is the same value we obtained after 5 days. Thus, the different UA at day 5 

was recorded not because fouling occurred but because the average condensation pressure was 

slightly higher than the original nominal value. During the data analysis the effects resulting 

from small variations in the average refrigerant pressure and small variations in the average 

water flow rate were taken into consideration by using the above mentioned correction 

procedure. After the UA clean was corrected for the actual operating conditions of the PHE, the 

difference between the UA and UA clean and corrected is due to only the fouling developed on 

the plates. Thus, with this new data reduction procedure the effect due to fouling is properly 

isolated and the fouling resistance is quantified more accurately.  
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5.3 Complete data reduction procedure of Fouling Resistance in Brazed-type plate 

Condensers 

As mentioned in section 5.2 the overall heat transfer coefficient (UA) of the heat 

exchanger is extremely sensitive to the refrigerant saturation pressure and computation of fouling 

resistance using the method described in Section 4.4 will lead to generation of a systematic error 

in the actual fouling resistance. Hence a new data reduction method must be used and the key 

steps are summarized in Table 5-4. 

 

Table 5-4. Complete data reduction procedure to determine actual fouling resistance 

Step 1: At initial time t=0 start the facility keeping all parameters except the 

refrigerant pressure constant and identical to the nominal values 

listed in Table 5-1.  

The water loop is charged with water as specified in Table 5.2. This 

chemistry yields to very low fouling potential. The cooling tower is 

off line and the water stream by-passes the cooling tower. The entire 

water stream is directed to the post-cooler.  

In these conditions no water evaporation occurs, the LSI remains 

below 0.7 and there is not any mineral scaling forming on the 

surfaces of the PHE under testing.  

Step 2 Perform a first test with refrigerant conditions as close as possible to 

their nominal values of Table 5-1. When reaching steady state 

operating conditions record the data for at least 3 hours and estimate 

the average heat transfer rates on both water side and refrigerant 

side. Calculate the heat balance as follows 
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HB [ % ]= (Heat TransferWater Side – Heat Transfer Refrigerant Side) / Heat 

TransferWater Side  100 

Insulate well the PHE until the heat balance is within 3 to 5%. Then 

estimate the maximum fluctuations on the refrigerant flow rate and 

on water flow rate from their nominal values. These are the limits 

that must be preserved during the fouling test. Calculate the average 

values, for example:  

Refrigerant flow rate = 3.5 ± 0.1 lbm/min 

Water flow rate = 38.6 ± 0.3 lbm/min 

This step is needed to define the acceptable range of variability in 

the flow rates during the actual fouling experiments. In particular 

variations of the refrigerant flow rate outside the boundary range 

determined in this step might affect the capacity of the PHE and thus 

alter the temperature difference of the water across the PHE. This 

effect on the water temperature might be attributed to fouling but 

instead it is due to excessive variation of the refrigerant flow rate.  

Step 3: Perform a calibration of the overall heat transfer (UA) coefficient by 

computing the UA at 3 to 4 different pressures slightly above and 

below but close to the nominal value listed in Table 5-1. The UA at 

each pressure is computed using the following procedure. 
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UApsat = Q psat / LMTDpsat  

Where psat is the refrigerant pressure. For example, perform step 3 at 

refrigerant psat of about 148,149,150 and 151 psi. 

Step 4: Plot the different values of UA against their corresponding pressures 

and obtain the curve fit using the procedure mentioned in Section 5.2 

in the form to determine the constants C1 and C2: 

 

Step 5 Turn on the cooling tower fan and send about 25% of the water flow 

rate to the cooling tower. This can be done by adjusting metering 

valves on the water pipelines.  

In this step the concentration phase begins as water starts 

evaporating in the cooling tower. The mineral concentrations and the 

LSI begin to increase. 

Step 5: At any time t during the experiment, measure mf, ΔTw,f, Psat 

Step 6:  Calculate UAf as follows: 

    

 

UAf = Qf / LMTDf 

Step 7: Calculate the clean overall heat transfer coefficient (UAc )at the 

corresponding pressure (Psat ) as follows: 
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Step 8: Compute the fouling resistance Rf at time t as follows: 

)  

Step 9: Calculate pressure drop penalty factor (P) as follows: 

  
   

   
 

Where ΔPf and ΔPc are the pressure drops across the heat exchanger 

measured under clean and fouled conditions respectively. 

 

5.4 Uncertainty Analysis of the complete data reduction procedure 

Since a revised method is used to determine the fouling resistance in the brazed plate 

condensers the procedure listed in Section 4.5 is updated to perform a more accurate uncertainty 

analysis. Initially a model of the condenser was created in EES with water flow rates, water 

temperatures, refrigerant flow rates and pressures under fouled conditions as inputs along with 

the coefficients determined during the calibration of the overall heat transfer coefficient. The 

model outputs are the UA factor, the LMTD and the fouling resistance of the plate heat 

exchanger using the procedure listed in Table 5-4. The accuracy of measurement devices is 

obtained from Table 4-2 and input into the EES program. The only difference is that in this case 

the overall heat transfer coefficient under clean condition is computed using the curve fit and not 

from recorded data. Hence it is treated as an independent variable. From Table 4-3 it was found 

that the uncertainty on the overall heat transfer coefficient (UAc) was within 2.3 % irrespective 

the operating conditions and hence the uncertainty on the UAc is taken as 2.3 % for this 

calculation.  
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5.5 Accelerated-type fouling test on PHE A 

The first plate heat exchanger tested was PHE A, the specifications of this heat exchanger 

are listed in Table 3-2, and its main characteristic is the low chevron angle which results in lower 

heat transfer rates and pressure drop.  The operating conditions were kept almost constant to the 

nominal values listed in Table 5-1. However since each heat exchanger was to be tested between 

1-2 months it was decided to record the data 2 times a day for 3 hour periods at a sampling rate 

of 2 seconds. The data collected over each 3 hour period (~ 5500 - 6000 points) are averaged to a 

single value resulting in two points per day. Table 5-5 lists the average values of the operating 

conditions and the standard deviations during the entire duration of tests which lasted for 34 

days. The operating conditions are very close to the nominal values listed in Table 5-1.  

 

Table 5-5. PHE A: Operating conditions 

 Average Standard Deviation 

Water inlet temperature (
0
F) 85.04 0.11 

Water flow rate (lbm/min) 38.78 0.28 

Refrigerant flow rate (lbm/min) 3.50 0.01 

Refrigerant pressure (psi) 149.97 0.68 

Refrigerant saturation temperature (
0
F) 105.09 0.31 

Refrigerant inlet temperature (
0
F) 170.06 0.55 

 

The test consists of four phases, first once the facility is turned on and running at the 

required operating condition the calibration of the overall heat transfer coefficient is done as 

described in Section 5.2 which is used later to compute the UAc at different pressures during the 

course of the test, at this time the cooling tower is not in operation and the entire flow circulates 

through the post cooler in order to avoid any fouling during the calibration process; this phase is 

termed as the calibration phase. The calibration phase is followed by the concentration phase. 
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During this phase the cooling tower is turned on and around 25 % of the total flow is passed 

through it. During this phase the evaporation of water in the spray nozzles leads to a 

concentration of minerals in the water remaining in the system. Over time as more water is 

evaporated the fouling potential increases from 0.7 up to 2. The concentration phase usually lasts 

for around 2 days. This is followed by the testing phase, which is Day 0 in Fig 5-4, where the 

actual recording of data of the fouling resistance takes place.  

 

Figure 5-4. PHE A: Fouling Resistance vs. Time 

During the testing phase the fouling potential of the water which is indicated by the 

Langalier Stability Index (LSI) defined in Chapter 2 continues to increase due to the increase in 

concentration of minerals in the system. The pH of the simulated cooling tower water was found 

to have a significant effect on the LSI. Because of natural evaporation of water in the batch tank, 

the pH tends to drop over time. Potassium hydroxide was added in regular intervals to keep the 

pH constant between 9 – 9.5. Figure 5-5 shows the increase of LSI with time and it can be 

observed that after the LSI reaches a value of 2 around Day 5, the fouling resistance in Figure 5-
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4 begins to increase faster right after this time. This is evident from the change in the slope of the 

fouling resistance in Figure 5-4 around day 5.  

Figure 5-5. PHE A: LSI vs Time 

During the course of this testing phase the pressure drop across the heat exchanger 

continued to increse as shown in Fig 5-6. Also the pressure losses in the water system continued 

to increase due to particulates adhering to control valves, flow spray nozzles and even the post 

cooler. After day 28 the pumps could not not produce the requried flow rate due to the increased 

pressure losses and the cooling tower was turned off. The test was forced to be concluded but 

sufficeint data were collected to identify the trend of the fouling resistance and calculate its 

asymptotic value. A large part of the pressure drop was due to the flow spray nozzles which were 

clogged in the cooling tower. The final phase of this test was conducted (i) to determine the 

effect of the cooling tower on the fouling resistance and (ii) to verify the assumpotion that with 

no continuous concentration of the water the fouling phenomena ceases. The facility was run 

with the cooling tower off for a period of 5 days. In these 5 days, which consititue the final phase 

of the test, the fouling resistance was fairly constant as seen in Figure 5-4. This confirmed that 

fouling occurred only if water is maitained saturated in the water loop and supersaturated within 

the test PHE and to achieve these conditions the cooling tower must be on line. .  
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Figure 5-6. PHE A: Pressure Drop 

Following the procedure mentioned in section 5.4 an uncertainty analysis was conducted for the 

fouling resistance at two points during the test, first at Day 15 when the fouling resistance was 

0.0016 hr-ft
2
-
0
F/Btu the uncertainty was around 15% and on Day 30 when the fouling resistance 

is 0.002 hr-ft
2
-
0
F/Btu it was around 12.5 % and is shown in Fig 5-4. 
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5.6 Accelerated - type fouling test on PHE B 

 

Figure 5-7. PHE B: Fouling Resistance 

PHE B is identical to PHE A except for the chevron angle which is larger resulting in an 

increased heat transfer and greater pressure drop across the heat exchanger, the specifications of 

PHE B are available in table 3-2. The testing procedure is identical to that used for PHE A, first 

the calibration and concentration phases were carried out followed by the testing phase. The 

fouling resistance beings to increase gradually until day 12, the LSI of the system is greater than 

2 after day 7 as seen in Fig 5-8.  
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Figure 5-8. PHE B: LSI vs Time 

The operating conditions were maintained almost constant during the entire duration of the test 

as can be seen in Table 5-6. It can be seen that the standard deviation is significantly less than 

that in Table 5-5 for PHE A largely due to the experience gained with the control of the system 

from the previous test. 

However at Day 12 the refrigerant loop of system was stopped briefly to charge more 

refrigerant while the simulated cooling tower water loop continued to run. A sudden decrease in 

the fouling resistance to its initial value was observed immediately following the brief stoppage 

of the refrigerant loop. The exact reason for this is not known, but one theory is that when the 

refrigerant loop was turned off, the temperature of the heat transfer surface decreased causing the 

cooling tower water to shift from being supersaturated to unsaturated and resulting on absorbing 

the deposit from the heat transfer surface. These reverse phenomena might have caused the 

fouling resistance to decrease. The pressure drop across the heat exchanger was also found to 

decrease during this time period as seen in Fig 5-9.  
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Table 5-6. PHE B: Operating Conditions 

 Average Standard Deviation 

Water inlet temperature (
0
F) 85.04 0.03 

Water flow rate (lbm/min) 38.82 0.05 

Refrigerant flow rate (lbm/min) 3.50 0.01 

Refrigerant pressure (psi) 149.7 0.32 

Refrigerant saturation temperature (
0
F) 104.97 0.14 

Refrigerant inlet temperature (
0
F) 170.03 0.08 

 

 

Figure 5-9. PHE B: Pressure Drop 

After day 20 the fouling resistance and pressure drop continue to increase and at Day 49 

the test was concluded. The testing phase for this test lasted significantly longer than that for 

PHE A since the fouling resistance measured for PHE B was almost one order of magnitude less 

than the one of PHE A. At the end of the testing phase it was decided to conduct a “destructive 

test” by turning off the refrigerant loop for a period of 2 days and continuing to run the cooling 
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tower water loop. This was done to try to replicate the reverse process observed right after Day 

12 and observe if the similar drop in fouling resistance and pressure drop would occur. However, 

no decrease in pressure drop across the heat exchanger was observed, even though the fouling 

resistance appears to have dropped during this “destructive test” as seen in Fig 5-7, it cannot be 

termed as a conclusive test.  

An uncertainty analysis was done using the procedure mentioned in section 5.4 at two 

points, on Day 10 when the fouling resistance was 0.000068 hr-ft
2
-
0
F/Btu the uncertainty was 

found to be 178%, is not shown in in Fig 5-7 and on Day 50 when the fouling resistance was 

0.000145 hr-ft
2
-
0
F/Btu it was around 86% as shown in Fig 5-7, the values of uncertainty are 

much higher than that of PHE A due to the low values of fouling resistance. 

 

5.7 Accelerated type fouling test on PHE C 

Table 5-7. PHE C: Operating Conditions 

 Average Standard Deviation 

Water inlet temperature (
0
F) 85.01 0.04 

Water flow rate (lbm/min) 38.84 0.04 

Refrigerant flow rate (lbm/min) 3.50 0.01 

Refrigerant pressure (psi) 149.72 0.19 

Refrigerant saturation temperature (
0
F) 104.98 0.09 

Refrigerant inlet temperature (
0
F) 169.99 0.11 

 

PHE C has the same chevron pattern as PHE B but different aspect ratio and lesser heat 

transfer area. This results in a higher flow velocity through the heat exchanger since the flow 

rates are constant irrespective of the heat exchanger size thereby producing a greater pressure 

drop across it. Its specifications are listed in Table 3-2. The testing procedure was carried out 

similar to the two previous tests, first the calibration phase followed by concentration and testing 

phases. However during the calibration phase and the first 2 days of the testing phase the 
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refrigerant loop was undercharged and large fluctuation in refrigerant flow rate were observed. 

The heat balance on the water and refrigerant loops showed a difference of 16-20 % during this 

period while during all other times it was between 3-8 %. Hence the data collected during this 

period including the calibration for the overall heat transfer coefficient cannot be used to 

compute the fouling resistance in clean conditions because the variation of the refrigerant flow 

rate was excessive. However, during this test the fluctuation of the refrigerant condensation 

pressure and flow rates were so small that their effect can be reasonable neglected. It was 

decided to compute the overall heat transfer coefficient (UA) at Day 3 and use it as the clean UA 

and proceed to compute the fouling resistance using the method described in Table 4-1 with the 

controls of Table 5-3. The operating conditions during the course of this test are listed in Table 

5-7. 

5-10, 5-11 and 5-12 show the fouling resistance, LSI and pressure drop across the heat 

exchanger PHE C.  
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Figure 5-10. PHE C: Fouling Resistance 

 

Figure 5-11. PHE C: LSI vs Time 
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Figure 5-12. PHE C: Pressure Drop 

An uncertainty analysis was performed on the fouling resistance similar to the previous 

two heat exchangers. From in-situ calibration of the RTDs, the accuracy of the RTDs was 

measured to be within 0.011 
0
F for a very narrow range around the nominal temperature of the 

water inlet and outlet. The UA under clean conditions was taken as the UA calculated during day 

2 and, as in the previous case; a 2.3% uncertainty was taken on the clean UA. On Day 10 the 

fouling resistance was found to be 0.000066 hr-ft
2
-
0
F/Btu, the uncertainty associated with it is 

143 % and on Day 40 for a fouling resistance of 0.00011 hr-ft
2
-
0
F/Btu the uncertainty was 70%. 

It should be observed that due to the improved accuracy of the RTDs the uncertainty reduces 

from 86 % as calculated for PHE B to 70 % under similar operating conditions. Thus, cleaning 

and in-situ calibration of the RTDs is recommended before commencing each experiment. This 

guarantees that the temperature measurements of the water inlet and outlet to the test PHE 

remain accurate enough to provide reasonable value for the experimental uncertainty.  

A summary of the experimental data in both clean and fouled conditions for the three 

PHEs is given in table 5-8 below. It should be noticed that the refrigerant and water flow rate 

were fairly constant throughout the tests while the water temperature difference across the PHE 

decrease by 1.6 
0
F for PHE A,  0.2 

0
F for PHE B and 0.2 

0
F for PHE C with respect to the initial 

clean conditions. This degradation was the net effect of the fouling (scaling) on the PHEs. 

 

 

1

3

5

7

9

11

0.00 10.00 20.00 30.00 40.00 50.00 60.00W
at

e
r 

si
d

e
 P

re
ss

u
re

 d
if

fe
re

n
ce

 
(p

si
g)

 

Time (Days)

Pressure Drop



93 

 

Table 5-8. Overall operating conditions 

 PHE A PHE B PHE C 

 Clean Fouled Clean Fouled Clean Fouled 

Water inlet temperature 

[
0
F] 

85.3 85.1 85.1 85.0 85.0 85.0 

Water exit temperature 

[
0
F]  

91.9 90.0 92.2 92.9 93.0 92.8 

Water side temperature 

difference [
0
F] 

6.5 4.9 8.1 7.9 8.0 7.8 

Water flow rate [lbm/min] 38.8 38.8 38.8 38.8 38.8 38.8 

Heat transfer rate (Q) 

[Btu/hr] 

15200 11382 18842 18283 18586 18146 

Refrigerant saturation 

temperature  

[
0
F] 

105.0 104.8 105.1 105.0 105.0 105.0 

Refrigerant flow rate 

[lbm/min] 

3.50 3.50 3.50 3.50 3.50 3.50 

LMTD [
0
F] 16.2 17.1 15.66 15.69 15.6 15.7 

Overall heat transfer 

coefficient [Btu/hr-
0
F] 

939.5 665.3 1203.1 1165 1189.5 1145.5 

Fouling resistance 

 [hr-ft
2
-F/Btu] 

0 0.002 0 0.00012 0 0.00018 
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Water side pressure drop  

[psig] 

1.1 1.6 1.2 1.3 2.6 9.5 

 

5.8 Estimates of asymptotic fouling resistance 

The asymptotic fouling resistance is calculated using the following expression, which 

was originally proposed by Grandgeorge et al. [1998]: 

         (5.2) 

Where, 

Rf(t) – fouling resistance at time t (hr-ft
2
-
0
F/Btu) 

Rf* - asymptotic fouling resistance (hr-ft
2
-
0
F/Btu) 

Tc – time constant (duration of test) (hours) 

The instantaneous fouling resistance is calculated and is used in the equation 5.1 along with the 

corresponding time „t‟ and the value of Rf* is computed by minimizing the quadratic error taking 

all data points into consideration. Table 5-9 lists the asymptotic fouling resistance values for all 

three heat exchangers tested along with the time constants. 
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Table 5-9. Asymptotic fouling resistance at 85F entering water temperature, 105F Refrigerant 

Tsat, and 65F refrigerant superheat degree, Water LSI  3 (severe fouling potential).   

 

 Asymptotic fouling resistance 

[hr-ft
2
-
0
F/Btu](m

2
-
0
C/ W) 

Time constant 

[hours](Days) 

PHE A 

(chevron angle, 90 - β  = 30
0
 

Aspect ratio, (L/W) = 2.6 

Flow velocity = 0.63 ft/s) 

0.0035 (0.000616) 694 (29) 

PHE B 

(chevron angle, 90 - β  = 63
0
 

Aspect ratio, (L/W) = 2.6 

Flow velocity = 0.63 ft/s) 

0.00024 (0.000042) 1187 (49.5) 

PHE C 

(chevron angle, 90 - β  = 63
0
 

Aspect ratio, (L/W) = 4.1 

Flow velocity = 1.09 ft/s) 

0.00019(0.000033) 995 (41.5) 

Tube and tube heat exchanger from 

Li and Webb [2001] 

(enhanced tube with: 

helix angle = 35
0
, no of starts = 25, 

flow velocity 3.5 ft/s) 

0.00048(0.000086) 2500 (104) 
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Using the values listed in Table 5-8 the fouling resistance curve is plotted and forecasted 

for a period of 60 days, Figures 5-13, 5-14 and 5-15 show the comparison of the fouling 

resistance obtained from the curve fit and the experimental data. Figure 5-16 shows a 

comparison asymptotic fouling curves for the different plate heat exchangers plotted in a 

logarithmic scale. A comparison with typical values of fouling in tubular heat exchanger is also 

given in table 5-8. The asymptotic fouling resistance and the time constant for the tube and tube 

heat exchanger are obtained from Webb and Li [2001]. Webb and Li [2001] conducted long term 

fouling tests on enhanced condenser tubes using cooling tower water, tubes with different helix 

angles and number of starts were used. Tube 6 in Webb and Li [2001] is selected for comparison 

since the asymptotic fouling resistance of this tube was closest to the average of all the tubes 

tested.  It had a helix angle of 35
0
 and 25 starts. The water used had a calcium hardness of 800 

ppm, conductivity around 1700 µΩ and a pH around 8.5 which corresponds to an LSI around 2.1 

and the water velocity was 3.5 ft/s. The water velocity in my plate heat exchangers ranged from 

0.6 to 1.1 ft/s. The water used by Li and Webb [2001] remained constant throughout instead of 

increasing with time since there is no cooling tower to provide the concentration of the minerals. 

The fouling resistance in plate heat exchanger with the low chevron angle of 30
0
 is around 7 

times larger that of the tube and tube heat exchanger, while the tube and tube heat exchanger has 

a fouling resistance around 2.5 times larger than the plate heat exchangers with a chevron angle 

of 63
0
. The comparison of the 63

0
 chevron angle PHEs with the tube and tube heat exchanger is 

more realistic since in applications which involve fluids with high potential for fouling low 

chevron angle PHEs are less likely to be used. Based on the literature review an lower value of 

LSI and higher flow velocities will lead to a lower value of fouling resistance, the tube and tube 

heat exchanger has a flow velocity around 3-5 times higher than the PHEs with the 63
0
 chevron 

angle and a lower LSI but still has a higher fouling resistance which indicates the tube and tube 

is likely have much greater fouling under similar operating conditions.  
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Figure 5-13. PHE A: Asymptotic fouling resistance 
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Figure 5-14. PHE B: Asymptotic fouling resistance 

 

Figure 5-15. PHE C: Asymptotic Fouling Resistance 
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Figure 5-16. Comparison of Asymptotic Fouling Resistance 

Even though for all three PHEs tested an asymptotic fouling resistance value is calculated 

using equation 5.1 as it was never actually reached, the fouling resistance was found to increase 

continuously during the period of the tests, but it is assumed an the fouling process follows 

equation 5.1 and an asymptotic fouling resistance will be reached when the rate of removal and 

deposition reach the same value. For PHE A which was tested for a period of 28 days the fouling 

resistance reached 57% of its asymptotic value while for PHE B it reached 62.5 % after 50 days 

and for PHE C it was found to be 63% after 42 days. However even if the asymptotic fouling 

resistance is reached the effect of the concentration of the minerals due to the cooling tower will 

lead to fouling in other parts of the loop, like auxiliary heat exchangers, in the pipes and flow 

control valves creating large pressure drops which may lead to damage of pumps which was the 

case in this project.  
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5.9 Discussion of the results 

 Accelerated type fouling tests were conducted on 3 different brazed plate heat exchangers 

(PHEs A, B & C) operating as condensers. There were two unique factors differentiating 

the 3 heat exchangers, PHE A had a chevron angle of 30
0
 while PHEs B & C had a 

chevron angle of 63
0
. PHEs A and B had identical geometries and heat transfer area of 

4.6 ft
2
 resulting in a water side flow velocity of 0.63 ft/s (0.19 m/s) while PHE C had an 

area of 3.9 ft
2
 resulting in a water side flow velocity of 1.09 ft/s ( 0.33 m/s ). 

 The overall heat transfer coefficient under clean conditions (UAc) was found to be the 

highest for PHE C around 1220 Btu/hr-
0
F, while that of PHE B was found to be 1200 

Btu/hr-
0
F. This slight difference is due to the flow velocities. Larger velocity in PHE C 

creates more turbulence resulting in better heat transfer. PHE A had the lowest UAc 

approximately 0.75 times that of PHEs B and C around 900 Btu/hr-
0
F which is due to the 

chevron pattern. The low chevron angle results in less mixing of the flow and generates 

less turbulence resulting in a reduced heat transfer. 

  Under clean conditions PHE A was found to have the lowest pressure drop of around 1.1 

psi while that of PHEs B and C was 1.3 and 3 psi respectively. This trend is in 

accordance with previously reviewed work. The low chevron angle associated with PHE 

A offers least impedance to the flow resulting in a low pressure drop across the heat 

exchanger, while PHE C had a much higher flow velocity than PHEs A and B resulting a 

pressure drop almost 3 times higher. 

 Even though the focus of this research is on the fouling of brazed plate heat exchangers 

operating as condensers several crucial observations were made regarding the other 

constituents of the system. In theory fouling occurs only on the hottest part of the system 

which in this case is the condenser but that was not to be the case here. The condensers 

are changed after every test but the post cooler in the cooling tower water remained in the 

system for a period of 8 months, though it is not the hottest part of the system it was 

found to have fouled significantly (partially blocked) reducing its heat transfer capacity 

and creating a large pressure drop in the system and had to be replaced. In addition to the 

post cooler deposits were found sticking to the walls of the pipes and along the inlets of 

the flow control valves reducing the flow area. A closer inspection of the pipes and the 
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valves showed that the deposit was found to be slimy which is likely the result of 

particulate fouling, it is assumed that particulate fouling contributed almost entirely to the 

fouling of the post cooler. Also the heating elements of the 6 kW heater used to heat the 

cooling tower water was found to have a coating of calcium deposits on it, this is 

understandable since it can reach high temperatures resulting in the calcium precipitating 

on its surface which were cleaned using bleach at the end of each test.  
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5.10 Modified Correlation for Overall Heat Transfer Coefficient (UA) 

The overall heat transfer coefficient is calculated according AHRI standard 450 [2007] using the 

following equations.  

           (5.3) 

          (5.4) 

         (5.5) 

          (5.6) 

           (5.7) 

          (5.8) 

Where, 

UA – overall heat transfer coefficient   [Btu/hr-
0
F] 

Q – Water side heat transfer    [Btu/hr] 

LMTD – Log mean temperature difference  [
0
F] 

Twi – water inlet temperature    [
0
F] 

Two – water exit temperature    [
0
F] 

Tsat – Refrigerant saturation temperature  [
0
F] 

It can be seen that in the correlation for UA only the inlet and exit temperatures on the 

water side are considered while that on the refrigerant side are neglected, that is, only the 

refrigerant saturation temperature is taken into account in the LMDT definition (5.4). This 

definition assumes saturated refrigerant vapor and saturated refrigerant liquid at the inlet and 

outlet of the PHE, respectively. The condensation process is represented by the segment from the 

state point 2 to 3 in Figure 5-17. The heat transfer rates due to the portions 1-2 and 3-4, in which 
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the refrigerant is superheat vapor and subcooled liquid, are neglected. 

50 75 100 125

120

140

160

180

h [Btu/lbm]

P
 [

p
s

ia
]

 170°F 

 105°F 

 88°F 

R134a

1234

 

Figure 5-17. Refrigerant Condensation Process  

In the case of the tests being conducted in this project the refrigerant saturation 

temperature is 105 
0
F, the degree of superheat is 65 

0
F resulting in a refrigerant inlet temperature 

of 170 
0
F as shown in state point 1 of Figure 5-17 . The refrigerant exit temperature depends on 

the heat transfer characteristics of the condenser being tested. For PHE‟s B and C the refrigerant 

exits in the subcooled region at a temperature around 88 
0
F while for PHE A is the saturation 

temperature of 105 
0
F since it is in the two phase region. Table 5-10 shows the heat transfer rates 

that occur in the superheated, 2-phase and subcooled region in percentage with respect to the 

total heat transfer rate. The values are estimated for the case of Figure 5-17, in which refrigerant 

R134a enter sat a temperature of 170 
0
F, exits at 88 

0
F, and has a saturation temperature of about 

105 
0
F.  
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Table 5-10. Percentage Heat Transfer by Region 

Region of the refrigerant in Figure 5-18 Heat Transfer Rate [% of total heat 

transfer) 

Superheated (segment 12) 18 

2-Phase (segment 23) 75.5 

Subcooled  (segment 34) 6.5 

 

From Table 5-10 it can be seen that only 75% of the total heat transfer occurs in the 2-

phase region. The LMTD method suggested by AHRI Standard 450 [2007] accounts for about 

75% of the heat transfer capacity. This method might be accurate enough for predicting the UA 

values of the heat exchanger but to estimate the actual fouling resistance, which is differences in 

the UAs, the superheat and subcooling portions might need to be accounted for. The following 

modifications could be made to equations (5.6) and (5.7) to take into account the effect of 

superheat and subcooling. 

          (5.9) 

          (5.10) 

Where, 

Tri – Refrigerant inlet temperature [
0
F] 

Tro – Refrigerant exit temperature [
0
F]  
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The temperature differences (5.8) and (5.9) are the actual temperature differences 

between refrigerant and water at the inlet and outlet sections of the PHE. They can substitute the 

expressions (5.6) and (5.7) in the LMDT definition (5.4) with the constraint that the refrigerant 

saturation temperature is around 105F.  

Figures 5-18, 5-19 and 5-20 show comparisons of the heat transfer coefficient (UA) calculated 

according to AHRI Standard 450 [2007], termed as “ARI Std UA”, and the overall method 

suggested above, termed as “modified UA”. The comparison is given first during the UA clean 

correction phase of the heat exchangers. In the case of PHE A since the refrigerant exits in the 2-

Phase region its saturation temperature is taken as the exit temperature.  

 

Fig 5-18. PHE A: Comparison of Overall Heat Transfer Coefficients 
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Fig 5-19. PHE B: Comparison of Overall Heat Transfer Coefficients 

 

Fig 5-20. PHE C: Comparison of Overall Heat Transfer Coefficients 

 For all three PHEs it can be seen the “ARI Std UA” decreases with refrigerant pressure 

while the “modified UA” increases. For PHEs B and C it can also be observed that as the water 

flow rate increases the “ARI Std UA” decrease while the “modified UA” increases. This is not a 

physical phenomenon but rather an artifact hidden in the calculation of the ARI Std UA. The 

trends of the “modified UA” are more intuitive than those of the “ARI Std UA”. Since higher 

refrigerant pressure and water flow rate should enhance the heat transfer rates the overall heat 

transfer coefficient UA is expected to also be higher. It can be observed that in all 3 cases the 

value of the “modified UA” is significantly less than that of the “ARI Std UA”, approximately 

62% less for PHE A, 45 % less for PHE B and 27 % less for PHE C. This is due to the increase 
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in the value of the LMTD since the degree of superheat is being taken into account for the 

“modified UA”.  

 
Fig 5-21. PHE A: Comparison of fouling resistance 

 

Figures 5-21, 5-22 and 5-23 show the comparison of the fouling resistance calculated 

using the “ARI Std UA” and the “modified UA”. In all cases it can be seen that the fouling 

resistance calculated using the “modified UA” is higher, for PHE A it is around 3 times higher at 

the conclusion of the test while for PHE B it is almost 4 times. In the case of PHE C it is slightly 

higher. For PHE A both fouling resistance curves follow the same trend while for PHE B they 

follow the same trend but the changes are much larger in the “modified UA” curve. 
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Fig 5-22. PHE B: Comparison of fouling resistance 

 

 

The drawbacks of using this “modified UA” to compute the fouling resistance is that 

slight changes in amount of superheat, subcooling or both will cause a significant change in the 

“modified UA” even though the heat transfer in these regions is only a fourth of the total heat 

transfer, this can be observed in Figures 5-22 and 5-23 where the fouling resistance calculated 

using the “modified UA” rises and falls steeply.  
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Fig 5-23. PHE C: Comparison of fouling resistance 
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CHAPTER VI 

 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

 

6.1 Conclusions 

 Enhanced heat transfer surfaces used in plate heat exchangers (PHEs) provide higher heat 

transfer coefficients than conventional plain tubes but their long term fouling characteristics were 

not sufficiently studied in the previous work available in the open domain. In particular, no data 

are available on fouling of PHEs operating as condensers. This thesis focuses on understanding 

the mineral precipitation and particulate fouling mechanisms of PHEs and develops an 

experimental methodology to measure the fouling resistance and pressure drop in this type of 

exchangers when they run at operating conditions similar to the ones in the actual cooling tower 

application. Since fouling is a very slow process accelerated-type tests were developed in 

laboratory. The accelerated tests progressively concentrate the water while running it through the 

PHE and a cooling tower. The water is maintained saturated in minerals at all time and becomes 

supersaturated near the boundaries of the plates of the PHEs. This mechanism is close to the real 

case scenario and seems to be the key factor controlling the fouling mechanism. Three PHEs 

have been tested to demonstrate the feasibility of the fouling resistance measurements. The 

specific conclusions are as follows: 

 

1. An experimental facility was designed and constructed which was able to test the 

propensity for fouling of brazed plate type condensers used to condense refrigerant 

R134a at pressures up to 175 psi using cooling tower water. The cooling tower water is 

created by mixing chemicals in fixed ratios to demineralized water and the process can be 

easily replicated. The facility incorporates a small scale cooling tower to provide the 

concentration effect to the cooling tower water, creating an atmosphere which is similar 

to the actual operation of cooling towers used in practice. 

 

2. A data acquisition and control system was designed using LabView Real time 

environment. Precise control of the cooling tower water temperatures, refrigerant inlet 

temperature and pressure was achieved using PID controls provided in the LabView 

software to control the heaters using SCR power pack controllers. The refrigerant flow 
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rate is controlled by varying the power supplied to the refrigerant pump using a VFD 

drive which can be manually adjusted using the LabView software and the cooling tower 

water flow rate is controlled using a number of metering valves provided in the system. 

 

 

3. Accelerated type fouling tests up to 55 days were conducted on three different brazed 

plate heat exchangers operating as condensers. Two of the plate heat exchangers PHE A 

and PHE B had identical geometries (number of plates, aspect ratios, heat transfer area of 

4.6 ft
2
) but different chevron angles (30

0
 & 63

0
)and two other heat exchangers PHE B 

and C had the same chevron angle (63
0
) but different aspect ratio (length/width) of the 

plates. 

 

4. An analysis on the overall heat transfer coefficient (UA) under clean conditions was 

performed for all three PHE‟s that were tested. It was found that the PHE with the low 

chevron angle had a UA which was approximately 0.75 times that of the PHEs with the 

larger chevron angle. The UA was found to be extremely sensitive to the refrigerant 

saturation pressure and cooling tower water flow rate and the variation was linear. Hence 

a calibration of the UA was performed which yielded a linear equation used to compute 

the UA under clean conditions using the refrigerant pressure assuming all other operating 

conditions are constant. 

 

 

5. The pressure drop across the PHEs was measured using a differential pressure transducer; 

it was found that the PHE C with chevron angle of 63 degree and 3.9 ft2 of heat transfer 

area had the largest pressure drop and around 3 times that of the PHE A, which has 

chevron angle of 30 degree and smallest pressure drop across it.  

 

6. The chevron angle was found to be the most important factor affecting the fouling 

resistance. The PHE with chevron angle of 30 degrees was found to have a greater rate of 

fouling than the PHEs with the chevron angles of 63 degrees. The asymptotic value of the 

fouling resistance was calculated by curve fitting the experimental data; the PHE with the 
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low chevron angle had an asymptotic fouling resistance around15 to 20 times larger than 

that of the PHEs with the larger chevron angle.  

 

7. A comprehensive uncertainty analysis was performed on the fouling resistance, it was 

found that the fouling resistance was most sensitive to the temperature of simulated 

cooling water exiting the condenser. This accounted for almost 99% of the total 

uncertainty. Hence after the first two PHEs were tested the RTD‟s were recalibrated 

again for improving their accuracy in a smaller range of operation. This resulted in the 

accuracy improving from 0.11 
0
F to 0.011 

0
F, which resulted in the uncertainty 

decreasing from 38 % to 18 % under similar operating conditions of 0.4F temperature 

difference of the leaving water under clean and fouled conditions. 

 

8. In addition to the condensers it was found that with long period of operation other heat 

exchangers in system are exposed to precipitation fouling. The post cooler which is used 

to cool the cooling tower water exiting the condenser was found to be partially blocked 

creating a large pressure drop. This damaged the water pump. Also deposits were found 

adhering the pipes and around the entrances of the flow control valves thereby reducing 

the flow area. Hence, along with replacing the condenser, the other heat exchangers in the 

system needed to be replaced. In this facility a post cooler was replaced after 3 

condensers were tested, that is, about after 9 months of operating conditions with severe 

fouling potential water. Also the pipes and flow control valves needed to be cleaned over 

time; this can be done by brushing or by circulating a weak acid solution through the 

loop. 

 

6.2 Recommendations for future work 

 

1. In the current work an analysis is done to study the effect of refrigerant saturation 

pressure and water flow rate on the overall heat transfer coefficient under clean 

conditions of PHE. Future work can involve analyzing the effects of other parameters like 

degree of superheat on the refrigerant, refrigerant flow rate and water inlet temperature 

on the overall heat transfer coefficient under clean conditions.  
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2. At present accelerated fouling tests have been carried out on heat exchangers with 2 

different chevron angles (30
0
 and 63

0
) and aspect ratios (2.6 and 4.1). PHE D which is an 

heat exchanger with an aspect ratio of 2.06 is scheduled to be tested next, analyzing its 

heat transfer characteristics under clean and fouled conditions will give a better 

understanding of the parameters that affect them.  

3. The current accelerated fouling tests are carried out at a refrigerant saturation temperature 

of 105 
0
F, from the literature review it is understood that an increase in temperature of the 

heat transfer surface leads to increased fouling, hence an accelerated fouling test at a 

refrigerant saturation pressure of 110 or 115 
0
F can be carried out the study the effect of 

refrigerant pressure on the fouling process. 

4. At present three of the four available PHEs have identical chevron angle but different 

aspect ratios and heat transfer areas resulting in different flow velocities, hence the 

current tests rather than analyzing the effect of the aspect ratio on the fouling resistance 

analyses the effect of flow velocity instead. To have a better understanding of the effect 

of the aspect ratio on the fouling it is necessary to test two heat exchanger having 

different aspect ratios but same water and refrigerant velocities.  

5. The LSI of the cooling tower water used in these tests is maintained around 3, it depends 

largely on the water evaporation rate in the cooling tower and the pH, the water 

evaporation rate is currently around 22 gallons/day and the pH around 9.3, tests can be 

carried out at different evaporation rates and pH to analyze their effect on the fouling 

resistance.  

6. During the course of tests it was found that auxiliary plate heat exchangers other than the 

condenser on the cooling tower loop were susceptible to fouling, also valves and pipes 

were found to have accumulated deposit over time. It is assumed that fouling on the 

auxiliary heat exchangers and pipes is particulate. Particulate fouling can be minimized 

using filter which removes particles with diameters greater than 5µm, hence connecting a 

filter in line with the cooling tower loop will help determine if the fouling in the auxiliary 

heat exchanger and other parts of the loop is particulate in nature. Also this will help in 

determining the individual contribution of particulate fouling and precipitation fouling to 

the total fouling of the condenser since the current accelerated fouling tests involves both 

particulate and precipitation fouling.  
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7. Lastly a tube and tube heat exchanger can be used instead of the plate heat exchanger as 

the condenser to be able to compare the fouling resistances under similar operating 

conditions.  
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APPENDIX A 

TURN ON PROCEDURE FOR FACILITY 

  

1. Fill the batch tank with 90 gallon of cooling tower water and the conical tank to 

maximum capacity with lab hot water.  

2. Purge the chilled water loop with city water and the superheater loop with city water and 

a small amount of azole.  

3. Turn on the TACO pumps on the fouling water loop and adjust the flow rate to 38.8 

lbm/min using the metering valves provided. 

4. The flow distribution to the cooling tower and post cooler is controlled by gate vales 

located at the exit of the flow meter; adjust the valves till a flow rate of 1 gpm through 

the cooling tower is observed. The flow rate to the cooling tower can be determined by 

closing the ball valve provided at the exit and timing the change in water level. After the 

desired flow rate is reached open the ball valve to allow flow from the cooling tower to 

the batch tank.  

5. Turn on the 6KW heater located in the batch tank, set the EH 1 PID RANGE DC-output 

high to 10V, set point temperature to 84.97 and EH 1 cut of to 97 as shown in the figures 

A-1 and A4.  

 

Figure A-1. Heater power output control 
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Figure A-2. Heater 1 control 

6. Turn on the pumps located on the chilled water, evaporator and superheater loops. 

7. Turn on the 24 KH heater located on the superheater loop, set the EH2 PID RANGE DC-

power output to 4.5V as shown in Figure A-1, the set point temperature to 170.1, EH-2 

water exit cutoff to 180 and EH-2 heating element cutoff to 200 as shown in Figure A-3. 

  

Figure A-3. Heater 2 control 

8. Turn on the 3 KW heater located on the evaporator loop, set the EH# PID RANGE DC-

power output to 10 V as shown in Figure A-1, EH3-set point temperature to 98 and EH3-

cutoff temp to 150 as shown in Figure A-3. 

 

Figure A-4. Heater 3 control 

9. Once the desired water temperatures are reached on all the evaporator and superheater 

loops start to charge refrigerant, charge the refrigerant till the pressure on system reaches 

165 psi.  

10. Turn on the refrigerant pump to 25 rpm and view the flow rate, if a positive flow rate is 

observed then start increasing the pump speed in 50 rpm intervals till the desired flow 
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rate of 3.5 lbm/min is observed. If a negative flow rate is observed then provide more 

subcooling to the refrigerant by adjusting the metering valves provided on the chilled 

water loop till around 15 – 20 degree of subcooling is observed. The saturation 

temperature is obtained from the measured pressure and the amount of subcooling is 

determined by subtracting the temperature measured at the pump inlet (thermocouple 23) 

from the saturation temperature. 

11. If a negative flow rate is still observed then charge more refrigerant and repeat step 10.   

12. The pressure is observed on the pressure (psig)2 plot shown in Figure A-4. If the 

observed pressure exceeds the desired pressure then decrease then slightly decrease the 

EH3-set point temperature shown in Figure A-3 and if the observed pressure is less than 

the desired pressure then increase the EH3- set point temperature.  
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APPENDIX B 

 

OVERVIEW OF FOULING TESTS 

 

 

Table 2-2 below provides a quick overview of the fouling tests reported in the literature and the 

main findings.   

 

Table B-1. Overview of fouling tests 

 Objective Parameters Results 

Cooper et al. 

[1980] 

Determine fouling 

resistance of plate heat 

exchangers condensing 

steam using cooling 

water obtained from 

different natural 

sources. 

PHE: 7 plates each 

1.14 m in length and 

0.45 m width. 

Tests conducted at 2 

flow velocities, 0.84 

and 0.45 m/s.  

Water treated to 

prevent biological 

and corrosion 

fouling. 

 

Asymptotic fouling 

resistance reached 

after 25-28 days of 

operation. 

Asymptotic fouling 

resistance at 0.85 m/s 

was half that at 0.45 

m/s. 

Fouling occurred only 

on upper third of the 

plates which is the 

hottest part. 

Karabelas et al. 

[1997] 

Study the effect of 

chevron angle and flow 

velocity on particulate 

fouling of plate heat 

exchangers. 

PHE‟s of 30
0
 and   

60 
0
 corrugation 

angles tested. 

Flow velocities 

ranging from 0.35 to 

1.35 m/s. 

Mean particles size 5 

µm  

Asymptotic fouling 

resistance obtained 

between 4-13 days of 

testing. 

Fouling resistance 

(m
2
K/W) 

a.  for 30
0
 plate: 

At 0.35 m/s is 

13.5 *10
-5 

At 1.35 m/s is   
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1.7 * 10
-5 

b. For 60
0
 plate 

At 0.35 m/s is 

4.2 * 10
-5

 

At 1.35 m/s is 

0.3 * 10
-5

 

Grandgeorge et 

al. [1998] 

Study the effect of 

chevron angle and flow 

velocity on particulate 

fouling of plate heat 

exchangers. 

PHE‟s of 30
0
 and   

60 
0
 corrugation 

angles tested. 

Mean particles size 

4-5 µm. 

Flow velocities 

ranging from0.02 –

1.4 m/s. 

Duration of tests is 

800 hours. 

 

Fouling resistance 

(m
2
K/W) at velocity 

of 0.16 m/s 

a. For 30
0
 plate 

is 0.00057 

b. For 60
0
 plate 

is 0.0001 

Andritos and 

Karabelas 

[2003] 

Study calcium 

carbonate scaling in 

plate heat exchangers 

in the presence of 

particles 

PHE: 8 plates with 

flow area of 186 

cm
2
. 

Tested with different 

particles sizes of 15, 

5.3 and 0.8 µm 

added to tap water 

with PH controlled. 

Tests conducted in 

different directions 

of flow. 

Duration of tests less 

than 5 hours. 

An increase in 

concentration of 

larger particles 

caused a greater 

increase in pressure 

drop than smaller 

particles. 

An increase in flow 

velocity led to a 

decrease in the scale 

formation. 

The direction of flow 

had no effect on scale 
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 formation. 

 

Bansal et al. 

[2000] 

Analyze performance 

of plate heat 

exchangers during 

calcium sulfate fouling 

Calcium sulfate 

solution used as 

foulant. 

PHE: 60
0
 

corrugation angle 

with length 0.43 m 

and width 0.12 m. 

Filter with size 1µm 

used to remove 

particles hence 

reducing particulate 

fouling. 

 

Fouling resistance 

was found to: 

1. Increase with 

increase in 

concentration of 

calcium sulfate. 

2. Decrease with 

increase in flow 

velocity. 

3. Increase 

significantly if the 

filter is removed. 

Deposit thickness was 

greatest at the hottest 

part. 

Zhenhua et al. 

[2008] 

Study the fouling of 

heat transfer surface 

under different 

operating parameters. 

Foulant used is a 

mixture of sodium 

bicarbonate and 

calcium chloride 

solutions. 

Coaxial heat 

exchanger is used 

with hot water 

entering at 70
0
C 

with average wall 

temperature varying 

from 50-60
0
C. 

Most cases fouling 

asymptotic fouling 

resistance was 

reached in 15-32 

hours. 

The average wall 

temperature was 

found to increase 

slightly due to 

fouling. 

Crystals were found 

not only on the heat 

transfer surface but 
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also in the foulant. 

An increase in 

asymptotic fouling 

resistance was 

observed with an 

increase in: 

1. Foulant 

hardness 

2. Foulant 

alkalinity 

3. Foulant 

temperature 

4. Heat transfer 

surface 

temperature 

However increase in 

foulant flow velocity 

resulted in a decrease 

in fouling resistance. 

Chamra [2006] Study the effect of 

water side fouling on 

copper condenser tubes 

using cooling tower 

water. 

9 tubes with 

different inside fin 

geometries (no of 

starts, helix angles) 

tested. 

R134a condensing at 

a saturation 

temperature of 

105
0
C used to heat 

the cooling tower 

water. 

Tubes with greater 

number of starts and 

larger helix angles 

fouled more. 

Asymptotic fouling 

resistance close to 

1.76E
-7

 
0
C- m

2
/W for 

tubes with 45 starts 

and helix angles 35
0
 

and 48
0
.  
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Duration of tests was 

58 days. 

Webb and Li 

[1999 a & b] 

Conduct long term 

fouling tests of 

condenser tubes using 

cooling tower water. 

8 tubes with 

different inside 

geometries (helix 

angles, no of starts) 

were tested to 

condense R11 in a 

250 ton refrigeration 

unit. 

Flow velocity was 

1.07 m/s.  

Duration of tests was 

100 days. 

 

 

Tubes with greater 

number of starts and 

larger helix angles 

fouled more. 

Tube containing 45 

starts and having a 

helix angle of 45
0
 was 

found to have an 

asymptotic fouling 

resistance of 

0.000144 m
2
K/W. 

Analysis of deposit 

showed that 59% was 

due to precipitation 

fouling and the rest 

due to particulate 

fouling. 
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Scope and Method of Study:  

 

Heat exchangers are employed to transfer thermal energy between two fluids. Fouling is defined 

as the accumulation of deposits on the heat transfer surface which provides a resistance to the 

heat transfer, thereby decreasing the heat transfer capacity of the surface. The air conditioning 

industry has been under pressure to improve the efficiency of systems adopting these heat 

exchangers. The current thesis involves the design and construction of an experimental facility to 

measure the thermal and hydraulic performances of three brazed plate heat exchangers (BPHEs) 

of different geometries (chevron angles and aspect ratios) operating under controlled fouling 

conditions. 

 

Findings and Conclusions:   

 

Fouling tests conducted on the three BPHEs revealed that the chevron angle of the plates had a 

significant impact on the overall heat transfer coefficient (UA) and fouling resistance, a BPHE 

with a chevron angle of 30
0 

had a UA 0.75 times less and a fouling resistance 15 times larger 

than a BPHE with a chevron angle of 63
0
 and identical aspect ratio. The aspect ratio was found 

to have a slight impact on the UA and fouling resistance, a BPHE with an aspect ratio 4.1 had a 

UA 2 % greater and a fouling resistance 17 % lower than a BPHE with an aspect ratio of 2.1 and 

identical chevron angle.  

 

 

 

 

 


