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SUMMARY 
 
 

 Controlled growth of carbon nanotubes is an important step in the realization of 

practical nanoscale devices for applications in nanoelectronics, sensors, field emission 

displays, and microelectro mechanical systems (MEMS), among others. Microwave 

assisted Chemical Vapor Deposition (CVD) technique has been successfully used to 

synthesize carbon nanotubes on silicon wafer substrates. Since a transition metal catalyst, 

such as iron, nickel, cobalt is needed for growth of nanotubes, a thin film of cobalt 

catalyst (2 ~ 5 nm) is deposited on the silicon wafer substrates using Pulsed Laser 

Deposition (PLD) technique using an excimer laser (248nm). The CVD process 

conditions, including growth time, plasma pretreatment time, process gases, and flow rate 

of carbon source gas (methane) are studied towards obtaining controlled growth of 

nanotubes. Further, patterned catalyst film is formed by the PLD technique and vertically 

aligned nanotubes are successfully grown on patterned catalyst film. The carbon 

nanotubes are characterized using SEM, TEM, AFM and µ-Raman Spectroscopy. 
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CHAPTER 1 

 

INTRODUCTION 

  

 

1.1 CARBON NANOTUBES  

 Carbon nanotubes (CNTs) were discovered by Iijima in 1991 while investigating 

the soot of an arc-discharge experiment used to create C60 buckyballs [1]. Soon after his 

discovery carbon nanotube is identified as the fourth allotropic form of carbon along with 

three other allotropic forms, namely, fullerenes, graphite and diamond [2]. Experimental 

investigations and theoretical studies have shown that carbon nanotubes possess unique 

properties, such as exceptionally high young’s modulus (1-5 TPa) [3, 4], very high 

thermal conductivity (~2000 W/m/K) [5, 6, 7], least resistance for electrical conductivity 

(10
-4

 Ω -cm) [8,111], and ability to conduct remarkably huge amounts of current density ( 

10
13

 A/m
2
) [8]. As a result, carbon nanotubes can be used for a wide range of applications 

including, reinforcing fibers for composites [9], field emission displays [10, 11], and 

myriad of other applications such as interconnects in microelectronics, field effect 

transistors (FETs) [12, 13], hydrogen storage batteries and nanoprobes and  sensors [14]. 

Additionally, newly reported applications include nanotube antennas for detecting and 

transmitting radio waves [15], nano scale mass conveyors [16], filters [17], and as 

electromechanical oscillators in nanoelectromechanical systems (NEMS) [18].  

 

 



 2 

1.2 CARBON NANOTUBES- MORPHOLOGY 

Carbon nanotubes can be visualized as a sheet of graphite that has been rolled into 

a tube. Since these tubes are found to have diameters varying from a few nanometers to a 

few hundreds of nanometers these tubes are commonly known as nanotubes. The 

nanotubes exist as single walled or multiwalled tubes as shown in Figure 1.1. In the case 

of a single walled carbon nanotube, a single sheet of graphite is rolled to form the tube, or 

when multiple single walled nanotubes are arranged concentrically along a common axis 

they result in the formation of multiwalled carbon nanotubes. Carbon atoms are arranged 

in a hexagonal array in a single sheet of graphite, with each carbon atom having three 

neighboring carbon atoms.  

 

 

Figure 1.1    Illustration of a graphite sheet where carbon atoms are arranged in  

a   hexagonal array, and a single wall (middle) and, multiwall 

carbon nanotubes (right) [19]. 

 

 

1.3 CARBON NANOTUBES STRUCTURE 

The atomic structure of nanotubes is expressed in terms of the chiral vector, Ch 

which describes the structure in terms of the tube chirality (helicity) and the chiral 

angleθ . The chiral vector is described by the following equation: 
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21
ˆˆ amanCh +=  

The integers (n, m) are the number of steps along the zig-zag carbon atoms on the 

hexagonal lattice and 1â  ,  2â are the unit vectors as shown in Figure 1.2. 

 

 

        Figure 1.2.       Schematic diagram showing the hexagonal sheet of graphite,  

               rolled to form a  carbon nanotube [20].  

 

The chiral angle determines the amount of twist in the tube and two limiting cases 

occur when the chiral angle is 0° and 30°. These limiting cases are referred to as zig-zag 

and armchair based on the geometry of the carbon atoms around the circumference of the 

nanotube. The difference in armchair and zig-zag tubes is shown in Figure 1.3. In terms 

of the roll-up vector, the zig-zag nanotube is denoted by (n, 0) and the arm chair tube as 

(n, n) [20].  The chirality of the carbon nanotubes has significant implications on the 

material properties, in particular on the electronic properties of the carbon nanotubes. 

Depending on the chirality, the tubes can be either metallic or semiconducting [21].  
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                  A. armchair                                                  B. zig-zag  

 

Figure 1.3  Schematic diagram showing (A) armchair and (B) zigzag type nanotubes[21]. 

 

1.4 NANOTUBES - GROWTH METHODS 

Arc-discharge and laser ablation methods were the early processes widely used 

for growth of nanotubes. Both these methods involve condensation of carbon atoms 

generated from evaporation of solid carbon sources. Temperature involved in these 

methods are close to the temperature of vaporization of graphite (3000- 4000
o
C). Further 

details of these processes are available in literature [1, 4, 23]. Laser ablation process is 

not compatible for scaleup whereas the arc-discharge process has been used to produce 

large quantities of CNTs. However, the purity of nanotubes produced by arc-discharge is 

modest compared to those produced by the laser ablation technique, which can produce 

single walled nanotubes with purity as high as 90%.  Apart from the above mentioned 

methods, chemical vapor deposition (CVD) is an important method to grow nanotubes 

[24, 25].  
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The chemical vapor deposition (CVD) process has been widely used for several 

years. In this process, a feedstock, such as carbon monoxide (CO) or hydrocarbon gas is 

heated to about 800 - 1000°C in presence of a transition metal catalyst to promote 

nanotube growth. The chemical vapor deposition method is amenable for nanotube 

growth with control on patterned surfaces, and is reported to be suitable for fabrication 

for electronic devices, sensors, field emitters and other applications [26]. Despite all the 

reported advances in the CVD process, numerous challenges still exist in understanding 

the growth mechanisms and successful synthesis of carbon nanotubes in large scale. In 

this investigation, plasma enhanced microwave assisted CVD approach is used and an 

effort is made towards the vertically aligned growth of carbon nanotubes on patterned 

surface.  

 

1.5 OUTLINE  

After a brief introduction (Chapter 1), Chapter 2 contains the literature review on 

the mechanisms involved in growth of carbon nanotubes. It may be noted that team mate 

Raghavan’s thesis [110] cover literature review on properties and synthesis methods of 

carbon nanotubes and team mate Nidadavolu’s thesis [109] cover literature review on 

plasma assisted techniques for growth of nanotubes and applications and may be referred 

for those topics. Chapters 3 and 4 deal with problem statement and the experimental 

approach, respectively. Chapter 5 deals with the methodology and procedure used for the 

growth of nanotubes in this investigation. Chapter 6 presents the results, Chapter 7 

discussion and Chapter 8 conclusions and future work.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

Despite the development of a large body of literature on the subject of carbon 

nanotube growth mechanisms, a definitive model for the growth of nanotubes has not yet 

been determined, owing to lack of consistent experimental data [28]. Further, decades of 

research on carbon filaments growth and subsequent work on growth mechanisms 

following the discovery of carbon nanotubes by Iijima [1] have failed to decipher the 

atomic scale mechanisms by which these nanotubes grow [28]. However, considering the 

impact of these nanotubes on technology and due to lack of theoretical understanding of 

the growth of multiwalled and singlewalled nanotubes, a study of the literature on growth 

mechanisms has been pursued and reported in this chapter.  

This chapter is organized in such a way that the earlier theories detailing the 

fundamentals of carbon filament growth mechanisms are discussed first, and then growth 

mechanism of multiwalled and singlewalled carbon nanotubes are discussed later under 

the categories of microscopic and macroscopic growth mechanisms.  

 

2.2 HISTORY OF CARBON FILAMENTS  

2.2.1 Earliest literature on the growth of carbon filaments 
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Carbon fibers or filamentous carbon has been the subject of investigation long 

before the discovery of carbon nanotubes by Iijima in 1991 [1]. The earliest available 

literature on carbon fibers dates back to 1889 when Hughes and Chambers [29] patented 

a process for pyrolyzing marsh gas in iron crucibles to produce macroscopic carbon 

fibers to be used in electric lamp filaments. It has also been reported that carbon fibers 

were prepared by Edison [57] to be used as filament for an early model of an electric 

light bulb. Further, Baker and Harris [35] in their report identify Schultzenberger as one 

of the first to observe the synthesis of carbon filaments growth as early as the 1890’s 

during experimentation of passing cyanogen gas over red hot porcelain.  Despite the 

availability of literature on carbon filament growth in the early 1900’s, the filament 

growth mechanism and the exact role played by a catalyst in the formation of filaments 

was not explained and had to wait until the development of electron microscopy 

techniques in the 1950’s [35].  

 

2.2.2 Renewed Interest on Carbon filament growth in 1950’s 

In early 1953, Davis et al. [30] report an unusual form of carbon deposited on the 

brick work of a blast furnace which was causing the bricks to disintegrate. After careful 

investigation using electron microscopy and X-ray diffraction they reported the deposited 

carbon as minute vermicular growth formed by the interaction of carbon monoxide and 

iron oxide in the so called ‘iron spots’ in the brick. The observed carbon vermicules to 

have thicknesses ranging from 100 A to about 0.2 µmeters and after further identification 

of cementite (Fe3C) and iron percarbide (Fe20C9) through X-ray examination they 
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suggested the occurrence of following chemical reactions for the growth of the carbon 

filaments.   

3Fe+2CO�Fe3C+CO2 

Fe3C� 3Fe+C 

20Fe3C+14CO�3Fe20C9+7CO2 

3Fe20C9�20Fe3C+7C 

The reaction 2CO�CO2+C was suggested to be catalyzed either by iron or 

cementite (Fe3C).  Further, they explained the origination of catalyst, iron or iron carbide 

as specks on the surface of the iron oxide and each speck giving rise to a thread of 

carbon. This work shed some light on the role of catalyst played in Hughes and Chambers 

work [29], but they were less certain to comment on the status of the catalyst once growth 

commenced [35]. 

 

2.2.3 Carbon filament deposition problem in Industry 

During 1950’s Baker et al. [32] investigated the synthesis and formation of 

carbon filaments on nuclear fuel pins using controlled atmosphere electron microscopy 

(CAEM) [32]. During their experimentation, they directly observed the growth of carbon 

filaments on various metal surfaces, including iron, cobalt, and nickel [31, 33]. Carbon 

deposition was a problem to the petrochemical industry as well, as they prevent the 

formation of clean fuels. In the nuclear field, the filaments constituted a large fraction of 

the carbonaceous materials deposited on metallic components during operation with a 

methane-carbon dioxide based coolant. Heat transfer efficiencies of metallic tubed heat 

exchangers were suffering due to carbon depositions [33, 35].  
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2.2.4 Earlier growth theories 

Most of the published work on carbon filaments around that time investigated the 

parameters controlling their growth with a view to prevent their formation. Investigation 

of these deposits by Baker and others [32, 36, 37] reported the deposits  to consist of 

three types of carbon: amorphous, filamentous, and graphitic.  A mechanism was also 

proposed by Baker [34] in which particles of iron, nickel, or iron-nickel originating from 

the furnace tubes catalyze the formation of filamentous carbon. They even reasoned that 

if that mechanism was correct, they could inhibit the growth of filamentous carbon and in 

turn they could potentially reduce the accumulation of amorphous carbon and thereby 

overcome the plaguing problem of carbon deposition. 

Growth mechanisms were broadly classified under the two categories, one theory 

was based on catalyzed decomposition or disproportionation of carbon monoxide and the 

second one was based on the idea of catalyzed decomposition of hydrocarbons [35]. Both 

theories irrespective of their differences required a catalyst.  

 

2.2.5 Catalyzed disproportionation of carbon monoxide 

Disproportionation of carbon monoxide take place through a complex reaction but 

the basic stoichiometric equation is given below [35]. 

2CO�C+CO2 

The forward reaction producing carbon is exothermic and the attainment of 

equilibrium is reported to be sensitive to the reaction conditions and required catalytic 

surfaces, such as iron, cobalt, and nickel. Iron was the most studied catalyst and various 

studies are in agreement that the filaments formed in three shapes: 1. Helical, 2. Twisted, 
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and 3. Straight. The morphological details of the filaments were found to vary widely due 

to the catalyst employed and also owing to the reaction conditions [35, 37, 41].  

Additionally, Hofer et al. [36] found that iron catalyst produced solid filaments, 

nickel catalysts produced tubes, and cobalt catalyst produced both solid threads and 

tubules. However, the most controversial aspect of the disproportionation of the carbon 

monoxide theory was the identification of the active catalyst which was responsible for 

the filament growth.  

 

2.2.6 Catalyzed decomposition of hydrocarbons 

A study by Fryer and Paal [39] reported the formation of filaments on platinum 

surfaces during thermal decomposition of hydrocarbon gases like methane and mixtures 

of nitrogen, benzene and 25% hydrogen. Baker et al. [31] investigated the development 

and growth of carbon filaments from the decomposition of acetylene over isolated 

particles of nickel, iron, cobalt, and chromium. Their experimental observations revealed 

that the filaments had metal particles at the growing end and they reported that the 

filaments stopped growing when the catalyst particle was totally enveloped by a layer of 

carbon. 

 

2.3 PROPOSED GROWTH MECHANISM OF CARBON FILAMENT FORMATION 

2.3.1 Baker’s Model 

Baker et al. [35] proposed a model for the growth of filamentous carbon on metal 

particles during decomposition of hydrocarbons. The proposed key step in the mechanism 

was the diffusion of carbon species through the particle from the hotter leading surface of 
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the metal catalyst on which the hydrocarbons comes into contact, to the cooler rear 

surfaces, where carbon is precipitated from solution. They suggest the temperature 

gradient created in the metal particle during the exothermic decomposition of the 

hydrocarbon at the exposed front surface and the endothermic reaction at the rear surface 

to be the driving force for carbon diffusion. The excess carbon accumulated at the 

exposed front surfaces is transported by surface diffusion around the peripheral surfaces 

of the particle to form the graphitic skin of the carbon filament.  

If the process slows down, the available catalyst surface for adsorption and 

decomposition of hydrocarbon decreases and thereby the temperature gradient and carbon 

diffusion rate are also decreased reducing the growth rate of filaments. This process 

comes to a stop when the leading face of the catalyst is encapsulated by a layer of carbon 

preventing further hydrocarbon decomposition. They also report the metal catalyst to be 

carried away from the support surface to the tip of the filament during the growth 

process. Based on the observation of activation energies for filament growth and carbon 

diffusion, they proposed the diffusion of carbon through the catalyst particle as the rate 

determining step. Though the model attempts to explain the mechanism in detail, there 

were shortcomings and conflicts with other works. One of the assumptions was that they 

consider the reaction of catalyst decomposition of the hydrocarbon to be exothermic.  

 Figure 2.1 is a schematic of the growth mechanism of a carbon filament proposed 

by Baird et al. [47]. Baird et al. [47] proposed an explanation involving surface diffusion 

of metal-metal hydrocarbon species across the edge of carbon layer planes. Nucleation is 

reported to commence and growth of shell begins when hydrocarbons associated with the 

metal particles diffuse on the surface of the catalyst. 
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Figure 2.1 Growth mechanism schematic of a carbon filament [35].  

 

As shown in Figure 2.1, when new metal hydrocarbon species dissociate on its 

edges, the carbon layers develop by lateral growth following the external surface of the 

catalyst. This lateral growth exerts a force strong enough to lift up the catalyst particle 

above the surface of the substrate. Layers are thought to progress laterally in the same 

way and result in a filament. The hollow channel in the center is explained by the fact 

that no carbon supply can reach the back of the liquid metal droplet. Growth of carbon 

layers continues as long as there is a supply of metal from the top of the catalyst. When 

the whole metal droplet is covered by carbon layers at the tip, diffusion stops and growth 

ends. 

However, Rostrup-Nielsen and Trimm [41] argue the driving force responsible for 

diffusion of carbon to be due to the existence of a carbon concentration gradient rather 

than a temperature gradient within the particle as suggested by Baker et al. [35]. In 

contrast, Yang and Yang [42] report a temperature gradient as the driving force for the 
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diffusion process resulting in growth of carbon deposition when hydrocarbons interact 

with nickel.  

 

2.3.2 VLS (Vapor-Liquid-Solid) theory based explanation for tubular nature of filaments 

Since carbon filaments formed by gaseous decomposition of hydrocarbons were 

found to be invariably tubular, filament growth mechanisms generally considered the 

concepts of the VLS (Vapor-liquid-Solid) theory developed by Wagner and Ellis [48] to 

explain the tubular nature of carbon filaments. Based on VLS theory, whiskers or 

filaments grow because of supersaturation of catalytic liquid droplet by decomposition of 

vapor phase molecules, and also due to the solute getting continuously precipitated in the 

form of cylinders from the resulting super saturated liquid [48].  

 

2.3.3 Tibbetts model 

The reason proposed for tubular nature of carbon fibers is that it was energetically 

favorable for the newly formed surface of the growing fiber to precipitate as low-energy 

basal planes of graphite rather than as high-energy prismatic planes [50]. Further, the 

proposed model explained tubular “Tree ring” structure of carbon filaments to arise from 

the anisotropic surface free energy of graphite. In this model, a metal- metal hydrocarbon 

species diffuses across the catalytic particle allowing the carbon to precipitate in contact 

with the previous deposit, and the initial spacing and the inner diameter is determined by 

the contact angle between the catalyst metal particle and the substrate. 
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Figure 2.2 Tubular filament growth model [50] 

 

2.3.4 Precipitation of filaments 

Considering the precipitation process to occur at the bottom of the catalyst 

particle, the change in Gibbs free energy, δG, when a fiber length of dl is precipitated is 

given by 2.1 [50]. 

 

               Ω∆−++= /)/ln()(2 2

12
1 υµπσπδ ddlrrEadlrrG oioio              (2.1)    
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The first term on the right hand side represents the energy to form the surface of 

the filament and is proportional to σ, the energy required to form a unit area of (0001) 

graphite in equilibrium with the vapor phase. The second term is the elastic energy 

required to bend the graphite basal planes in the form of nested cylinders. The final term 

contains ∆µo, the chemical potential change when a carbon atom precipitates from the 

dissolved phase, the volume change dν, and the volume of carbon atom in graphite Ω. 

The number of carbon atoms in the precipitate is given by 2.2 [50].  

                                    
Ω−=Ω= /)(/

22

0 dlrrdvdn iπ
                            (2.2) 

Thus the change in chemical potential ∆µ driving the precipitation is given by  2.3 [50] 
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Further, filaments are reported to form only when ∆µ > 0. In the presence of 

catalyst particles of differing sizes, filaments having or and ir  values which give the 

largest ∆µ will be most likely to form and grow more rapidly [51]. Since or is fixed by the 

size of the catalyst particle ir adjusts itself to maximize ∆µ. Thus ir can be determined 

from the condition as shown in equation 2.4. 

 

                                                [ ] 0/)( =∂∆∂
orirµ                                                           (2.4) 

Thus, the model proposed by Tibbetts [50] for carbon filament growth 

morphology is closely related to the VLS theory and is based on the assumptions that 
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molecular decomposition and carbon solution occurs at one side of the catalytic particle. 

As soon as the catalytic particle becomes supersaturated, the subsequent gradient in 

chemical potential causes diffusion in the back face of the particle where precipitation 

takes place. So the model finally explains that it is energetically favorable for the fiber to 

precipitate with graphite basal planes parallel to the exterior planes and a hollow core. 

This model explains why the fiber structure is tubular and why the graphite basal planes 

are the exterior planes. Furthermore, it predicts that there will be a minimum diameter 

below which no filaments will grow. Also, owing to a weak maximum in chemical 

potential and also due to energy fluctuations during precipitation, graphite planes 

deposited on the inner diameter are prone to be more disordered than the exterior planes.  

 

2.3.5 Tibbetts further discussions 

Owing to high thermal conductivity of Iron (Fe), Tibbetts et al. [57] in their later 

work discuss the temperature gradient to be too small to account for the observed flux of 

carbon atoms in contrast to the mechanism suggested by Baker et al. [33]. They argue 

that the iron particles remain in the austenitic phase and they contend that surface 

diffusion takes place. Rather, they put forth a model that assumes that iron becomes super 

saturated with carbon atoms and propose that the flux is primarily driven by 

concentration gradient in agreement with Rostrup –Nielson and Trimm [41]. 

 

2.3.6 Phase of the metal catalytic particle-during the growth of filaments 

Tibbetts et al. [57] proposed a model that assumes the catalytic particle to be in 

austenitic phase, but supersaturated with carbon. However Oberlin et al. [46] report 
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identification of Fe3C as the phase of the catalyst particle during filament growth. Since 

carbide particles can also be formed when supersaturated austenitic particles are cooled, 

any post growth analysis may not necessarily indicate the true phase of the catalyst 

during the growth at high temperature. In agreement with Tibbetts’ [57] assumption, 

Bradley et al. [52] have observed catalyst particles in the austenitic phase within the 

filament, even after cooling down from high temperatures during the growth. Further 

investigation by Sacco et al. [53] is consistent with the hypothesis that carbon 

supersaturated austenitic iron as the phase of catalytic particles during filament growth. 

Furthermore, the low diffusivity of carbon in Fe3C, about four orders of magnitude less 

than that in iron [54], is reported to limit the growth rate of filaments. 

Finally, Tibbetts et al.  [57] argue that a feasible transport mechanism for carbon 

atoms from the gas phase to the lengthening of filament is adsorption of carbon atoms, 

followed by diffusion through the bulk of the particle. Diffusion through the particle is 

driven by a carbon concentration gradient and is considered rapid compared to adsorption 

of hydrocarbons on the surface of the catalyst particle.  

 

2.3.7 Growth mechanism of nanotubes  

Although there were several models proposed, after the discovery of carbon 

nanotubes by Iijima, there was a lack of real consensus between the experimental data 

and the pattern of growth of both multi-walled and single-walled nanotubes. Years of 

study of the growth of carbon filaments suggest that carbon filaments grow via 

precipitation of dissolved carbon from a catalyst particle, however notable differences 

exist between growth of carbon nanotubes and carbon filaments. Additionally, 
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differences exist in explaining the growth of singlewalled and multiwalled nanotubes as 

well. Therefore, the second part of the literature review will focus on microscopic growth 

mechanisms and macroscopic growth mechanisms, in a view to explain the differences 

behind the growth of SWNTs and MWNTs [66].  

 

2.4 MICROSCOPIC GROWTH MECHANISMS 

2.4.1 Growth mechanisms of multiwalled carbon nanotubes-Introduction 

The earliest growth model for growth of multi-walled carbon nanotubes was 

reported by Iijima [65]. This model was based on topological considerations and 

emphasized the role of pentagonal and heptagonal rings capable of bending the straight 

hexagonal network of carbon atoms.  But differences existed in understanding if the inner 

or the outer tubes grew first, and also in knowing if the different shells were assisting 

each other during the growth.  

 

2.4.2 Close-ended growth 

Endo et al. [60] report formation of carbon nanofibers based on their assumptions 

and observations that nanotubes remains closed during growth. They report that 

longitudinal growth of tube occurs by the continuous incorporation of small carbon 

clusters (C2 dimers). Since this C2 absorption process is assisted by the presence of 

pentagonal defects at the tube end, it allows bond-stitching in order to reconstruct the 

caps on the growing tubes. In support to this close-ended approach Saito et al. [61] also 

report that concentric tubules are formed by epitaxial carbon growth and report that there 

is always a closed cap at the end of each tubule.  
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                                          A.   

 

                                           B.  

 

                                              

                                           C.  

 

                                             D.  

 

          Figure 2.3.     Possible reactions for the absorption of a C2 cluster (a),  

           (b) Near a single pentagon and (c), (d) near two pentagons [60].  
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Growth mechanism of MWNTs, where the tube ends are assumed to be closed 

during growth is illustrated in Figure 2.3. In the Figure, the two open circles and the 

dashed lines denote a C2 molecule, newly formed bonds and deleted bonds, respectively. 

A new hexagon is denoted by 6 and a {7, 5} pair are created in the absorption process in 

both (a) and (b). The relative positions of the two pentagons, expressed as a linear 

combination of unit vectors of the honeycomb lattice, becomes closer after C2 absorption 

in (c) and (d), respectively [64]. The closed-tube approach was favorable compared to the 

open one, because any dangling bond that might participate in an open tube growth 

would be unstable. But the closed tube approach failed to explain the multilayer tube 

growth and how the inside shells grow to a different length compared with the outer ones 

[64].  

 

2.4.3 Tube ends open during growth-Iijima model 

Iijima [65] proposed a microscopic model for tube growth, in which the tubules 

are open at their ends while growing. Most of the tubes have multiple shells of coaxially 

arranged cylinders, and carbon hexagons on individual tubes are arranged in a helical 

fashion with variable pitches. During the growth, the ends of the tubes are kept open, but 

they tend to be closed quickly when the growth condition becomes inappropriate. If the 

tube end is open, carbon atoms are deposited onto tube peripheries, and the tube grows. 

When the tube is enclosed by introducing six pentagons on the tube periphery, the tube 

cap becomes inactive and there will be no more growth on that particular tube shell. 

Furthermore growth of these tubes takes place on other tube shells which might start to 

grow on the outer side of the existing tube wall.  
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2.4.3.1 Role of pentagons and heptagons 

When a kink or a defect site on the growing tube is supplied with two carbon 

atoms as shown in Figure 2.4, a new carbon hexagon is formed. This results in kink 

advancement and the tube grows [65]. This process is repeated and the tube growth is 

maintained in its original cylindrical shape. A helical structure promotes tube growth 

since it can provide an endless source of kinks. If a single atom is added to the kink site, a 

pentagon is formed as illustrated in the Figure [2.4 a] and it transforms the tube to a cone 

shape. Also, if rest of the kinks are furnished with hexagons, the resulting tube takes up a 

cone shape, whereas if three carbon atoms are added to the kink it results in the formation 

of heptagon. The heptagon is reported to play an important role in the transformation of a 

cone to a smaller tube.  

(a)     (b)  

Figure 2.4.  (a) Schematic representation of a kink-site on the tube end periphery. (b) 

Tube ends are open while growing by accumulation of carbon atoms at tube 

peripheries [65]  

 

In an open ended model, all the growth layers of a tube remain open during 

growth and grow in the axial direction by the addition of carbon clusters to the network at 

the open ends to form hexagonal rings. Closure of the layer is caused by the nucleation of 

pentagonal rings due to local perturbations in growth conditions or due to the competition 
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between stable structures. Further thickening of the tubes occurs by layer growth on 

already grown inner-layer templates and the large growth anisotropy results from the 

vastly different rates of growth at the high energy open ends having dangling bonds in 

comparison to the unreactive basal planes.  

Figure 2.5 summarizes various morphologies of nanotube tips. The open-ended 

tube is the starting form or the nucleus as shown in Fig 2.5 (a). A continuous supply of 

hexagons on the tube periphery results in a longer tube as shown in Fig 2.5 (b). The open 

ended tube can be enclosed when six pentagons are introduced which results in the 

formation of polygonal cap, shown in Fig 2.5 (c). The open circles represent pentagon 

locations and growth stops when the tube is enclosed. However, a second tube can be 

nucleated on the first tube sidewall and can cover it as shown in Fig 2.5 (d) and Fig 2.5 

(e). 

 

Figure 2.5.  Carbon nanotube termination based on the open-end tube growth. Arrows 

represent termination of the tubes and also growth directions. Open and 

solid circles represent locations of pentagons and heptagons respectively 

[65]  
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Formation of a single pentagon on the tube periphery triggers the transformation 

of the cylindrical tube to a cone shape as show in Fig 2.5 (g). Introduction of single 

heptagon into an open cone periphery changes the cone shape into a tube but a reverse 

growth of this transformation is shown in Fig 2.5 (h). However, growth may be stopped 

in such a case because of an expanding periphery. This will cost too much free energy to 

stabilize the dangling bonds. Thus, controlling the formation of pentagons and heptagons 

is a crucial factor in the growth of carbon nanotubes. When six heptagons are formed on 

the periphery, it results in expansion of the circular brim as shown in Fig 2.5 (i). The 

circular brim is turned around when a set of six pentagons are formed on the periphery 

shown in Fig 2.5 (j).  

 

2.4.4 Lip-lip Interaction models for growth of Multi-walled carbon nanotubes. 

Guo et al. [75] proposed that chemisorbed carbon atoms bridge the dangling 

bonds between adjacent layers of multi walled structures thereby stabilizing an open edge 

of the growing multi-walled tube. This is illustrated in Figure 2.6. 

 

Figure 2.6.  Representation of a multi-walled nanotube with an open tip. Only two of the 

many layers are shown and several spot weld adatoms are shown occupying 

sites between doubly coordinated edge atoms of adjacent layers [75].  

 

Weld adatoms 

connecting 

inner and outer 

walls 
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The presence of outer walls is reported to stabilize the innermost wall in keeping 

it open for continued growth. As suggested by Guo et al. [75], an initial graphite flake is 

formed containing at least one pentagon and if the carbon density is high, the open shell 

nucleates a second layer before closing. The second layer grows much faster on the 

existing template (inner tube). Once the edge of the outer layer reaches the edge of the 

inner shell, an adatom spot weld forms stabilizing the open end. Additional carbon 

feedstock introduced adds to the open edges to form the body of the nanotube. Additional 

outer layers of tubes are reported to grow by island nucleation and anneal on the 

underlying nanotube template. Thickening takes place by over layer growth. This 

mechanism is illustrated in Figure 2.7. 

 

 

Figure 2.7 Lip-lip stabilization in multi-walled nanotube growth 

 

Charlier et al. [66, 67] performed MD simulations to investigate the growth 

process of multi-walled carbon nanotubes. They report that dangling bonds of the inner 

and outer edges of a bilayer tube to rapidly move towards each other, forming several 

bonds to bridge the gap between the adjacent edges. Further, they report that the lip-lip 
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interaction as the stabilizing mechanism to inhibit the spontaneous dome closure of the 

inner tube. The end geometry is highly active chemically and it easily accommodates 

incoming carbon clusters, supporting growth by chemisorption from the vapor phase.  

 

2.4.5 Microscopic growth mechanism for single walled carbon nanotubes 

Charlier et al. [66] investigated the uncatalyzed edge growth of carbon nanotubes 

by MD simulations. They report that at experimental temperatures the open end of single 

walled nanotubes were observed to close spontaneously into a graphitic dome, suggesting 

that the nanotubes do not grow in the absence of transition metal catalyst. Formation of 

the graphitic dome is shown in Figure  2.8 [66].   

 

 

 

Figure 2.8  (a)Side view of the open-end starting configuration without a catalyst and  

with 10 two-coordinate carbon atoms at the top edge. (b) First pentagon is 

formed from one of the top hexagonal rings, resulting in inward bending 

[66].  

 

The tip closure results in a substantial reduction on the localized density of 

electron states. This is the reason for the lower reactivity of closed nanotube tips than 
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open ended nanotubes. Finally they report that it is unlikely that single-walled nanotubes 

could grow by sustained incorporation of C atoms into the closed tip [67]. 

Additionally, Charlier et al. [68] in their later work report single-walled 

nanotubes not to grow in the absence of transition metal catalysts. However, they caution 

that the role played by the metal atoms to be controversial and inaccessible for 

observation to determine the growth. They plausibly suggest the metal atoms initially 

decorate the dangling bonds of an open fullerene cluster, preventing it from closing. 

When more carbon atoms collide with metal decorated open carbon cluster, they are 

inserted between the metal and the existing carbon atoms in the shell. 

Kiang et al. [69] propose polyyne rings to serve as nuclei for the formation of 

single-wall tubes ( see Figure 2.9) , and report the diameter to be related to the ring size. 

In this model the starting materials are monocyclic carbon rings acting as nanotube 

precursors and ComCn species acting as catalysts, in the presence of cobalt catalyst. 

ComCn plays the role of a catalyst by adding C2 or other gas phase species into the 

growing tube. Though the composition and structure of the Co carbide cluster is 

undetermined, they bond to Cn species and/or to add the Cn carbon species to the growing 

tube. The helical angle of the single walled tube is determined by the ratio of cis to trans 

conformation during the growth initiation process as shown in the Figure 2.9.  

Birkett et al. [70] report transition metals to have necessary high propensity for 

decorating the surface of fullerenes, there by adsorbing on the surface of C60. This is 

reported to provide a template for the formation of single-walled nanotube. As carbon 

fragments or carbon species bind to the metal-clad fullerene, they self-assemble as a 

surrounding circular hexagonal chicken-wire-like fence. On formation of a belt, the 



 27 

network propagates as a cylinder, either by accretion to the reactive edge or by ingestion 

into the closed sheet. In both cases, the metal coated fullerene acts as a growth template 

and once growth has been initiated, nanotube propagation occurs.  

 

a)            b)    

 

 

c) d)  

 

 

e) f)          

Figure 2.9  Diagrams illustrating the polyyne rings nucleus mechanism for growth of   

single-layer carbon nanotubes. [69] 

 

Another explanation suggested that the carbon fragments accrete on one 

hemisphere of the C60NimCon particle when nickel and cobalt were used as catalyst and 

further suggested that a dynamic surface-moderated carbon assembly process weaves the 
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carbon atoms into a tube. They also report that the particle has a role to play in both the 

initiation process as well as the secondary propagation step [70]. 

Thess et al. [71] hypothesize a scooter mechanism, where metal atoms sitting at 

the open end of the growing tube determines the uniform diameter of the tube. The metal 

atoms scoot around the open edge of the sheet, helping to anneal away any carbon 

structures that are not energetically favorable. Optimum diameter is reported to be 

determined by the competition between the strain energy due to curvature of the graphene 

sheet and the dangling bond energy of the open edge. A metal scooter atom as shown in 

Figure 2.11 promptly anneals local structure into hexagons (preventing formation of 

pentagons) lengthening the straight tube section and keeping the end completely open. 

 

 

Figure 2.10  Representation of hexagonal rings linked to metal atoms. Ni and Co atoms 

adsorbed on the C60 surface are possible agents for the creation of single 

walled nanotubes of uniform diameter [70] 
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Figure 2.11 Nucleus of a SWNT with Ni atom chemisorbed onto the open edge [71]. 

 

A static ab initio study of the scooter model was investigated by Lee et al. [72]. 

They report the Co or Ni atom is strongly bound but still very mobile at the growing 

edge. The metal atom is reported to inhibit the formation of pentagons that would initiate 

dome closure. Additionally, the metal catalyst assists the incoming carbon atoms in the 

formation of carbon hexagons, increasing the tube length. In the absence of the catalyst at 

the tube edge, defects can no longer be annealed efficiently, thus initiating tube closure.  

Further Lee et al. [72] proposes a catalytic growth mechanism for single walled 

carbon nanotubes based on an ab initio study. They suggest that highly mobile Ni catalyst 

atoms to catalyze the continuing assembly of hexagons from carbon feedstock diffusing 

along the nanotube wall. In a concerted exchange mechanism, Ni atoms anneal carbon 

pentagons that would initiate a dome closure of the nanotube. This is illustrated in Figure 

2.12.  
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Figure 2.12   Schematic diagram of intermediate steps involved in the catalytic annealing 

of pentagon defects at the growing nanotube edge by a concerted exchange 

mechanism [72] 

 

When two carbon atoms diffuse along the surface to the tube edge that contains a 

Ni atom, one of the carbon atoms forms a pentagon defect as shown in Figure 2.12 (2). 

Due to the high mobility of Ni atom at the edge, the catalyst reacts with the adsorbed 

carbon atom to form a hexagon as shown in 2.12 (3). This intermediate structure is less 

stable than a perfect carbon hexagon at the growing edge. The incoming carbon atom 

pushes out the Ni atom and forms the carbon hexagon. Ni atom may now continue its 

diffusion about the tube edge to assist in the catalytic annealing of other defects.  

Although the scooter model and earlier models suggest an open ended growth, 

investigation based on MD simulations by Charlier et al. [66, 68] suggest that cobalt-

carbon chemical bonds frequently break and reform providing a pathway for carbon 

incorporation, leading to a closed-end catalytic growth mechanism. They report that the 

model based on molecular dynamics simulations supports the growth by chemisorption 

from the vapor phase [35,46,50], also adopting the concepts of the Vapor-liquid- Solid 

(VLS) model [48].  

However, in the VLS model growth occurs by precipitation from a super-

saturated catalytic liquid droplet located at the tip of the filament into which carbon 
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atoms are preferentially absorbed from the vapor phase. From the supersaturated liquid, 

the solute continuously precipitates generally in the form of faceted cylinders or tubular 

structures [48]. The VLS model is a macroscopic model based on fluidic nature of the 

metal particle which dissolves carbon from vapor phase and precipitates dissolved carbon 

on the fiber walls.  

Maiti et al. [73] investigated the growth of nanotubes by classical MD and kinetic 

MC simulations. They report that wide, helical tubes are grown by the net addition of 

hexagons at the step edges. This addition is reported to occur when several non 

hexagonal ring structures (pentagons, heptagons, and octagons) initially formed from 

atoms or small clusters, combine and annihilate to form hexagons.  

Regardless of their initial energy, carbon atoms were always found to insert into 

the nearest ring, or form a pentagon at a step edge. Dimers and trimers showed no unique 

pattern of deposition; rather they insert all atoms into the same ring. An incident atom 

was found to insert into the nearest ring to form a larger ring. The insertion occurs 

irrespective of the initial energy of the adatom. If the atoms initially inserts into a 

hexagon away from a step edge, it forms a heptagon (octagon). Octagons were found to 

be energetically unstable and break up into smaller rings by means of a single bond 

switch as shown in Figure 2.13. 

The initially formed heptagons and pentagons migrate and anneal into an 

essentially all-hexagonal structure, with the possible exception of a few isolated 

pentagons that get converted to hexagons by subsequent deposition. 
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Figure 2.13 Various ways in which heptagons and pentagons “anneal” to result in a 

defect free growth. (a) a heptagon at a step edge breaks up into a hexagon 

and a pentagon; (b) a heptagon “annihilates” with a pentagon to form a 

hexagon pair; (c) a pentagon coverts to a hexagon by direct insertion of a 

deposited atom; (d) a pair of adjacent pentagons at a step edge “fuses” 

together into a single hexagon [73].  

 

2.4.6 Root growth mechanism for single walled carbon nanotubes: 

Classical molecular dynamics simulations by Maiti et al. [74] reveal a possible 

atomistic process by which single-walled carbon nanotubes grow out of metal-carbide 

particles by the root growth mechanism (see Figure 2.14) .  According to the model the 

carbon atoms precipitate from the metal particle, migrate to the tube base, and are 

incorporated into the nanotube network, resulting in a defect free growth.  

They report the addition of new hexagons at the tube base occurring through a 

sequence of processes involving a pair of “handles” formation on the opposite bonds of 
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heptagons as shown in Fig 2.15. a. These “handles” are formed by adatoms between a 

pair of nearest-neighboring carbon atoms.  

 

 

 

Figure 2.14 Snapshot from a MD simulation showing curving up and growth [74]. 

 

These handles act like interstitial point defects and impart tremendous kinetic 

flexibility to the structure by being able to migrate thermally. The migration mechanism 

involves a kick out by the handle atom of one of its two neighboring atoms as shown in 

Fig 2.15. b. The ejected atom forms a new handle, while the previous handle atom 

becomes one of its neighbors. On a flat graphene sheet, the handle will thermally migrate 

on the hexagonal network until it reaches the tube base.  

 

 

Figure 2.15. Atomistic mechanism of handle migration by kick-out mechanism 
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2.4.7 Molecular mechanism taking place in the extrusive-diffusive model 

Vinciguerra et al. [62] report that diffusion inside the metal catalyst particle is not 

essential in case of SWNTs growth. The chemisorption processes underlie the catalytic 

process and hydrocarbons get rid of their hydrogen eventually breaking some of their C 

bonds and start assembling the carbon fragments on the metal catalyst to form a CNT. 

Additionally, the chemisorption of carbon fragments, such as C2 fragment on a 

transitional metal surface, is favored due to the presence of π electrons that have the right 

symmetry to overlap with the 3d electrons. Consequently, a C2 fragment has two possible 

positions on the surface of a transition metal, i.e. on top of the 3d metal atom or between 

two of them. Study of the structural properties of the Fe, Ni, and Co metal surfaces show 

that (1-1 0) planes of Fe and the (1 1 1) planes of Co and Ni to exhibit the symmetry and 

distances required to overlap with the lattice of a graphene sheet [62]. 

 

2.5 MACROSCOPIC GROWTH MECHANISMS 

2.5.1 Extrusive-diffusive growth model 

Vinciguerra et al. [62] report the growth of carbon nanotubes in the presence of 

two forces: (i) a viscous force, due to the surrounding gas, which opposes and slows 

down the growth of CNT, and (ii) an extrusive force that causes the growth. They 

propose a macroscopic growth mechanism based on the extrusive-diffusive growth 

model.  
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Figure 2.16 Sketch of growth process based on extrusion-diffusion model [62] 

 

The proposed model is schematically depicted in Figure 2.16. Considering that 

the continuous feedstock of carbon atoms comes from a hot and dense gas surrounding 

the growing CNT, they argue that the CNT growth process occurs in a diffusive regime 

where surrounding hot gases provide a viscous force that slows down the CNT growth. 

They propose an empirical model where all the processes that oppose the growth are 

included as a single friction force. In order to explain the formation of CNT in the 

presence of this resistive force, they bring into play the presence of another force, which 

is responsible for the tube growth i.e., the extruding force. 

They report a decrease in free energy in the assembling reaction that occurs at the 

interface of the catalyst and growing nanotubes to be the origin of the extruding force that 

drives and pushes off the CNTs from the surface. Further in a growing nanotube a 

continuous reaction occurs at the interface of the metal catalyst particle, and because of 
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the catalytic action of the metal particle, dehydrogenated carbon fragments are assembled 

to form a carbon nanotube.  

 

2.5.2 Growth mechanism of CNT forest by chemical vapor deposition 

Louchev et al. [63] propose a growth mechanism of carbon nanotubes forests by 

chemical vapor deposition. Based on their analysis of kinetics processes involved in 

carbon nanotube forest growth during chemical vapor deposition they suggest that (i) 

carbon species are unable to penetrate to the forest bottom whenever the mean free path 

in gas is much larger than the typical distance between nanotubes,(ii) instead, they collide 

with the nanotube surfaces, chemisorbing within the atoms of the top few µ-meters, 

diffusing along the surface, and feeding the growth at nanotube tips. They further 

estimate the typical mean free path of the C species in the gas to be 30-50 µm, which is 

much higher than the intertube distance within the forest, which was estimated to be 1 

µm. They report that the forest bottom is reached only by a negligible number of species. 

On analyzing the diffusion process, they additionally report that the contribution of 

carbon dissolution and diffusion through the catalyst nanoparticle in feeding the growth 

of nanotube to be restricted to the initial stage of the nanotube’s growth.  

They also report that the post-nucleation stage nanotube growth to occur via the 

carbon incorporation into the nanotube tip by surface diffusion over the lateral surface 

including the stages of dehydrogenation of chemisorbed hydrocarbons independent of the 

nanoparticle location, which may be either the nanotube tip or base.  
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Louchev et al. [63] report that the diffusion process through the nanoparticle to be 

important for nucleation stage and also for selection of the nanotube growth mode as 

shown schematically  in the Figure 2.17.  

 

Figure 2.17.  Sketch of the selection mechanism proposed by Louchev et al. [63] whether 

the nanoparticle is detached from the substrate and rides on nanotube tip, 

catalyzing growth and preventing nanotube closure (left-hand side) or 

remains on the substrate serving as a template for nanotube nucleation 

(right-hand side): (a) stage of nanoparticle saturation with carbon, (b) stage 

of NT nucleation, and (c) stage of post nucleation growth. Solid and dashed 

arrows indicate carbon flux from vapor and surface diffusion fluxes 

respectively.  

 

The selection is defined by two characteristic times, dependent on Db, bulk diffusion 

coefficient of carbon species: (i) the diffusion time of order required for carbon species 

penetration to the nanoparticle base [63]:       

,
2

bPd DR≈τ  

dτ , is the diffusion time, and PR  is the nanoparticle radius 
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(ii) The surface saturation time of order corresponding to the increase of C species 

content to the saturation concentration, ∗
C , triggering carbon precipitation directly on 

upper surface of nanoparticle. 

.22 QDC bs

∗≈τ  

sτ , surface saturation time, Q  is the total carbon flux at the particle surface 

If ,sd ττ >> the nanoparticle surface saturates with C species much faster than 

carbon penetrates its base. Therefore, carbon precipitates at the nanoparticle surface 

which provides a nanoscale template for NT nucleation.  

In contrast, when sd ττ << , carbon species penetrates to the base much faster than 

the nanoparticle surface reaching the saturation threshold, and carbon precipitates at the 

bottom, lifting the nanoparticle, and later on maintaining it on the nanotube tip. In this 

mode, the role of the nanoparticle remains important for inhibiting pentagon formation 

and preventing nanotube tip closure.  

The selection mechanism for nanotube forest growth modes determines the final 

morphology of the nanotubes and their properties. If the nanoparticle is held on the 

nanotube tip it inhibits the formation of pentagons and consequent nanotube closure and 

allows the growth of straight wall nanotubes. A nanoparticle remaining at the nanotube 

base provides only an initial template with a nanoscale curvature for nanotube nucleation 

predefining the morphology of resulting nanotubes. Thus cylindrical nanoparticles are 

able to form nanotubes with a straight wall whereas on conical nanoparticles, conical 

nanotubes nuclei and tend to form bamboo-like nanotubes.  

2.5.3 Mechanism for formation of helical tubes 
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To explain the growth of helical tubes Amelinckx et al. [76] introduce the concept 

of spatial velocity hodograph (geometric locus of the end points of the vectors describing 

the extrusion velocity or the growth velocity in the points along a curve) which ignores 

the atomic structure and considers the graphene sheet as continuum. They report the tip 

growth as well as base growth to be consistent with the assumption that growth occurs by 

the extrusion of carbon along the contact curve between the catalyst particle and the 

already growing tube. In the case of the growth of a straight tube, the longitudinal growth 

velocity, ν1 or the speed of extrusion is the same all along the ring shaped area where 

carbon is deposited. However, the catalyst activity is often anisotropic and 

inhomogeneous depending on the exposed crystal facet of the particle and on its 

topography. Due to this, the spatial hodograph of the extrusion speed can be more 

complicated as illustrated in Figure 2.18 C. 

 

Figure 2.18  Hodograph of the extrusion velocities for the formation of straight tubules. 

The locus of active sites is a circle (c). (A) Spatial hodograph: The extrusion 

velocity is constant along (c). (B) Planar hodograph corresponding to (A); 

the surface area under the hodograph is proportional to the extruded 

material. (C) General spatial hodograph. (D) Planar hodograph 

corresponding to (C) [76].   
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At the points where excess carbon is generated the resulting compressive stress 

slows the carbon deposition rate, and in points where too little carbon is produced the 

resulting tensile stress tends to increase the deposition rate of carbon. This feedback 

process is thought to be responsible for the growth of a helix shaped tube. However, large 

stresses may induce the formation of pentagonal meshes in the graphite network to 

relieve part of the stresses. The occurrence of pentagon-heptagon pairs minimizes the 

long-range stresses.  

 

 

 

Figure 2.19 (A) Spatial hodograph of a bent tubule, (B) Planar hodograph of (A), (C) & 

(D) The outer rim is under tensile stress and the inner rim is under 

compressive stress. (E) to (G) Successive stages in the extrusion of carbon 

in formation of a bent tubule [76].   

 

2.5.4 Bamboo growth 

Saito [79] upon observing a carbon nanotube with a peculiar shape resembling a 

bamboo, proposed a growth model. Saito suggests an intermittent growth model whereby 
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layers of graphite would form on the catalyst surface until the accumulated stresses in the 

system propels the nanotube away from each other creating a fresh surface for subsequent 

nucleation.  

 

 

Figure 2.20 Growth model of a bamboo tube [79] 

Cui et al. [78] suggest that continual growth and renucleation mechanism to take 

place in the growth of bamboo structured nanotubes. The distance between tips within a 

single tube is reported to be indicative of the time lag between renucleation events. They 

propose the renucleated tips to be continuous to the point where they terminate on the 

outer walls of the tube, forming a series of stacked cones.  

Lin et al. [82] report the formation mechanism of the bamboo-like CNTs to be 

dependent on the following parameters: (1) presence of nitrogen or other heavy gases; (2) 

keeping an active and clean top surface of the catalyst particles; and (3) prolonging the 

carbon bulk diffusion of the catalysts. The presence of nitrogen is reported to be essential 

for establishing conditions (2) and (3).  

 

2.5.5 Push-out growth mechanism  

Zhong et al. [88] report a push-out growth mechanism for formation of 

polymerized nanobells structures similar to bamboo growth. After CH4 is introduced, 

carbon atoms dissolve in metal particles and segregate as graphite at the surface of the 
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particle. When several tens of graphite layers are formed, the carbon shell just outside the 

catalyst particle will be pushed out suddenly as the stress in the layers accumulate to a 

critical value. Once this carbon shell is pushed outside, another carbon shell is formed 

outside the catalyst particle, and is again pushed out by forming nanobell or bamboo-like 

structure. This process continues and results in the formation of nanotubes containing 

nanobell or bamboo-like structure as shown in Figure 2.21. The stress accumulation in 

the carbon shell is reported to be the result of presence of nitrogen. 

 

 

Figure 2.21 Push-out growth mechanism [88]. 

2.5.6 Tip growth mechanism 

Amelinckx et al. [76] report a tip growth mechanism in growth of helical tubules 

as shown in Figure 2.22. Chen et al. [90] propose a tip growth model where growth of 

nanotubes takes place through the reaction sequences of deposition, adsorption, 

decomposition, diffusion, and growth of the carbon species. 
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Figure 2.22  Tip growth of carbon nanotubes. A. Small catalyst particle resting on 

another catalyst particle which acts as support B. & C. The catalyst particle 

lifted away from the support by deposition of graphene sheets. D. Outer 

diameter of the tube becoming equal to the catalytic particle size. E. a layer 

of graphite covers the catalyst particle and inhibits further growth of tube. F. 

Additional growth of tubes further supported by the catalyst particle. G. & 

H. If the particle is covered by a graphite layer during the initial stage, 

further growth occurs by extrusion through the base, and diffusion occurs 

along the graphite surface [76]. 

 

In the tip growth models, 1) Carbon is dissociated from the hydrocarbon source 

gases, and gets deposited on the surface of catalyst particles, where physical adsorption 

of carbon atom takes place (Figure 2.23 A). 2) After carbon adsorption, a saturated 

carbon film is formed from the continuous decomposition of carbon source gas, and often 

encapsulated the metal catalyst (Figure 2.23 B). 3) The catalyst and substrate surfaces are 

saturated with carbon layers, and Fe catalyst pushed upward due to diffusion and osmotic 

pressure, depositing carbon into the graphite structure below the catalyst. 4) Carbon 

encapsulated metal catalyst particles quickly move upward by continuous osmotic 
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pressure and a core is thus formed as shown in Figure 2.23 C and D. The walls of the 

tubes are thus formed. 5) Continuous supply of carbon species results in the diffusion and 

growth of CNTs. 

 

A.      B.  

C.    D.   E.  

 

Figure 2.23 Growth model of multiwalled CNTs following tip growth model [90] 

 

2.5.7 Multiwalled nanotubes growth 

Kanzow et al. [91] report growth of multiwalled nanotubes to take place if the 

catalyst particles are big and also if the carbon supply is high. Also lack of enough energy 

in the system is reported to be the reason for growth of multiwalled nanotubes. Carbon 

containing gas molecules exothermally decompose on the surface of the catalyst particle 

resulting in the heating of the surface. When carbon is absorbed and diffuses toward the 

cooler region of the metal catalyst particle substrate, super saturation on the cooler side 



 45 

leads to segregation of carbon atoms. These adsorbed carbon species move on the catalyst 

surface to combine and form a first graphitic layer. If there is not enough kinetic energy 

in the system, this layer does not bend to form a cap and continues to grow. If the carbon 

supply is high, the graphitic layer rapidly grows and subsequently more graphitic planes 

are generated causing the previous planes to bend. The bending of graphite planes 

stabilize the unsaturated sp
2
 orbitals at the border of the graphene sheets by over lapping 

with the orbitals of the metal. This contact then serves as crystallization seed for the 

following segregation of carbon. Thus a cylindrical multiwall growth is initiated.  

2.5.8 Single-wall carbon nanotube growth 

Kanzow et al. [91] focus on the energetics of the oscillation of the graphitic plane 

to explain the growth of SWNTs. At high temperatures (<1200°C), carbon is adsorbed 

and precipitated on the catalyst metal particle. If the system contains sufficient kinetic 

energy, the graphite plane precipitated oscillates with respect to the metal surface in such 

a way that a small cap is formed. This cap formation is reported to be assisted by 

fluctuating bonds at high temperatures. Subsequent bending of the graphite plane 

stabilizes and results in overlapping of unsaturated sp
2
 orbitals of graphene with the metal 

orbitals. This contact then serves as a crystallization seed for the segregation and growth 

of single walled nanotube.  

A certain angle – minimum overlap angle –of the unsaturated sp
2
 orbitals on the 

edges of the graphitic plane must be reached to obtain a significant stabilizing interaction 

with the metal orbitals [91]. If this condition is not reached, the plane will flatten out 

again and the graphitic cap will not be sufficiently stable to initiate the tube growth. But 

after a small tube formation, flattening out would require a huge amount of energy. The 
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key step is the bending of the planes and there are two forces that have to be overcome in 

order to bend the plane: 1. the surface tension of the sheet and 2. the work of adhesion 

between the graphitic sheet and the metal. However, the kinetic energy needed to bend 

the plane is proportional to temperature and size of the sheet.  

 

2.5.9 Nucleation and growth of nanotubes in plasma enhanced CVD 

In plasma enhanced CVD, nanotube growth on catalyst particles is reported to occur 

similar to a gas – solid interaction process such as thin film deposition on substrates. The 

growth proceeds according to the following steps and one or more of these steps may be 

rate controlling, which varies from case to case. 

i. Diffusion of hydrocarbon precursors through a thin boundary layer to the 

substrate 

ii. Adsorption of carbon species onto the surface. 

iii. Surface reactions leading to film growth 

iv. Desorption of product species and  

v. Diffusion of species through the boundary layer into the bulk stream. 

 

Additionally, Meyyappan et al. [95] report that a hydrocarbon, such as methane in a 

PECVD reactor when adsorbed onto the catalytic particle surface releases carbon upon 

decomposition, which then dissolves and diffuses into the catalyst particle. When a 

supersaturated state is reached, carbon precipitates in a crystalline tubular form. At this 

juncture, two different scenarios are possible. If the particle adheres to the substrate 

strongly enough, then the carbon precipitates from the top surface of the particle and the 
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filament or tube continues to grow with the particle anchored to the substrate. This is 

called the base growth model in a plasma enhanced CVD reactor.  

The second case occurs when the particle attachment to the substrate is relatively 

weak. In this case carbon precipitation occurs at the bottom surface of the particle and the 

filament lifts the particle as it grows. As a result, the top end of the filament is filled with 

the catalyst particle. This method is called the tip growth model. These two models are 

illustrated in Figure 2.24. 

 

Figure 2.24  Tip and base growth mechanism [34] 

2.5.10 Growth mechanism for vertically grown aligned tubes 

 Merkulov et al. [96]   propose an alignment mechanism as shown in 

Figure 2.25.The electrostatic force F creates a uniform tensile stress across the entire 

particle/CNT interface, regardless of where the particle located (tip or base). As growth 

proceeds, CNTs may bend if there are spatial fluctuations in the carbon precipitation; this 

leads to nonuniform stresses at the particle/CNT interface. When the particle is at the top, 

the electrostatic force F produces a compressive force at the CNT/particle interface where 

a greater growth rate is seen as shown in Figure 2.25 c. On the side where less growth 

rate happens, a tensile stress is applied at the interface. This opposite behavior favors 

subsequent carbon precipitation at the interface with tensile stress and a smaller growth 
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rate. The net result is a stable, negative feedback that works to equalize the growth rate 

everywhere, and vertical orientation is maintained. When the catalyst particle is at its 

base, the stress at the interface with the higher growth rate is tensile; this acts to further 

increase the rate at the same location, resulting in bending of the structure. This is an 

unstable positive feedback system.   

 

 

Figure 2.25. Alignment mechanism proposed by Merkulov et al. [96] 
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CHAPTER 3 

 

PROBLEM STATEMENT 

 

 For microelectro mechanical systems (MEMS) applications, it is necessary to 

organize or grow carbon nanotubes to the desired structures whose linear dimensions are 

on the order of several micrometers while the dimensions of individual nanotubes are 

only a few tens of nanometers. Further growth of uniform, dense multiwalled carbon 

nanotubes (MWNTs) which are vertically aligned has been a challenging problem. 

Alignment of carbon nanotubes in a regular array and organized growth of nanotubes into 

a pattern has also been an equally challenging problem. 

So, the objective of the present investigation is to obtain vertically aligned growth 

of carbon nanotubes on cobalt catalyst deposited on a silicon wafer surface using 

microwave assisted CVD technique. The following sub goals were identified to 

accomplish this: 

 

1. Deposition of cobalt catalyst on a silicon wafer surface prior to CVD growth 

2. Deposition of patterned catalyst film on to the wafer surface using Pulsed laser 

deposition (PLD) technique 

3. Parametric studies to determine the process conditions suitable for vertically 

aligned growth of nanotubes 
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The important parameters of the microwave-assisted CVD for vertically aligned 

carbon nanotubes growth are the following: 

1. Growth time 

2. Plasma treatment time 

3. Process gases 

4. Flow rate of methane gas 

5. Patterning of catalyst film 

6. Pressure 

7. Temperature 

Some of the above parameters have been studied in the present investigation to obtain 

optimum conditions for growth of vertically aligned carbon nanotubes. 
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 CHAPTER 4 

 

 EXPERIMENTAL APPROACH 

 

 

4.1 INTRODUCTION 

 

 The major emphasis of this investigation was on growth of nanotubes and 

achieving aligned nanotubes in a patterned fashion using microwave assisted CVD 

apparatus. The plasma enhanced CVD plays a very important role in the aligned growth 

of nanotubes. The CVD apparatus employed in this investigation was originally used for 

the growth of diamond thinfilms on different substrate materials. However, some 

modifications of the substrate heater design and vacuum fittings were done prior to the 

synthesis of nanotubes. Since growth of carbon nanotubes needs a transition metal 

catalyst, a transition metal catalyst thin film was deposited before the growth of 

nanotubes in the CVD setup. 

 

4.2 NEED FOR CATALYST DEPOSITION 

 

 A transition metal catalyst is needed to decompose the carbon precursor radicals 

under the experimental conditions to facilitate the growth of nanotubes on the silicon 

wafer surface. S0, the experimental procedure included a first step of catalyst deposition 

onto the substrate surface. Transition metal cobalt was used as a catalyst in this 

investigation and a pulsed laser deposition setup was used for depositing the cobalt 

catalyst on to the silicon wafer surface. Details of the pulse laser deposition setup are 

provided in the following section. 
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4.3 PULSE LASER DEPOSITION SETUP 

 

 Figure 4.1 is a schematic of the pulsed laser deposition setup used for the catalyst 

deposition on to the silicon wafer surface. Figure 4.2 is a photograph of the PLD 

experimental setup.  

 

 

 

Figure 4.1 Schematic of the pulsed laser deposition setup 

 

The apparatus consists of a vacuum chamber that houses the target holder and the 

substrate holder. The laser beam is focused by the optical system and then allowed into 

the chamber through a glass window. Means are provided to raster the beam over the 

surface of the target. The target and the substrate are placed co-axially such that the 

plume of ablated material from the target strikes the substrate. The substrate holder has 
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an integrated heater into it to facilitate heating of the substrate during the deposition 

process. A thermocouple is used to measure the temperature of the substrate. The target is 

rotated by a motor at a uniform rate to ensure that the laser beam ablated the target 

uniformly. 

 

 

Figure 4.2 Photograph of KrF Excimer laser pulsed laser deposition (PLD) setup. 

 

4.3.1 Excimer laser and Optics 

 The laser used in the PLD process is a Lambda Physik Compex (model 201) KrF 

pulsed Excimer laser (with an average power of 4W @ 10Hz, 30KV). The Excimer laser 

system is air-cooled and operates on a single phase power supply. The laser beam is 

delivered through a manually operated shutter type window. Between the output port of 

the laser and the input port of the deposition chamber, optical elements are placed in 
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order to focus the beam on to the target. The optical elements that couple the energy from 

the laser to the target are lenses, apertures, mirrors, beam splitters, and laser window. The 

lenses have a low loss, high energy anti-reflective coating on them, and the mirrors have 

a highly reflective dielectric coating for high durability and high damage threshold.  

The optical system used consists of two fully reflecting mirrors placed such that 

the laser beam is reflected at right angles. This is necessary as the laser outlet and the 

chamber are at different heights and the beam has to be brought down to a lower 

elevation. The reflected beam is made to pass through a spherical lens to focus the beam 

on to a spot. The lens is UV coated to prevent any damage that could be caused by the 

laser beam passing through it. The optical system allows the delivery of the beam into the 

chamber through the front window of the chamber. The chamber is pumped down to 10
-6

 

torr using a turbo molecular pump backed by a mechanical pump. 

 

4.4 MICROWAVE ASSISTED PLASMA CVD –EXPERIMENTAL SETUP 

 

 Figure 4.3 is a schematic of the microwave assisted CVD reactor employed in the 

present study. The microwave CVD system used for the synthesis of nanotubes in this 

investigation uses a ASTEX S-1500, 1.5 KW microwave power generator operating at 

powers of 125 to 1500 watts at 2.45 GHz microwave frequency. Microwaves generated at 

the generator are coupled by the symmetric plasma coupler to produce a ball of plasma at, 

or slightly above, the substrate surface in vertically mounted, water cooled, double-wall 

stainless steel chamber. A motorized substrate stage is used to raise or lower the substrate 

to change the proximity of the substrate to the plasma, and a resistive heater is integrated 

into the substrate stage, which can be heated up to 1100
o
C. The vacuum system, gas flow 

system, and temperature monitoring system is briefly discussed in the following section. 



 55 

4.4.1 Vacuum system 

 Typically pressures in the range of a few torr to a few tens of torr are used in 

nanotubes growth. This is achieved by evacuating the chamber to a pressure of 2 X 10
-2

 

torr using a mechanical pump (Alcatel Model 2008A) and by back filling the chamber 

with the process gases. The pressure inside the chamber is monitored continuously using 

a pressure transducer (MKS type 127) and controlled using a pressure controller (MKS 

type 250). 

 

4.4.2 Gas flow system 

 The gases required for nanotubes growth, i.e., methane (CH4), hydrogen (H2) and 

nitrogen (N2) are handled by mass flow meter (MKS type 247C) along with mass flow 

controllers (MKS Type 1159B). Stainless steel tubing with hand operated valves, and 

swagelok fittings are used for the gas flow piping. Typically, the gas flow is maintained 

at or around 100 SCCM. The gases were introduced into the chamber through a gas inlet 

port. 

 

4.4.3 Other systems used 

 The substrate temperature is monitored using a Williamson dual-wavelength 

pyrometer. The dual wavelength pyrometer features a rotating chopper carrying four 

narrow-band pairs of spectral filters of different wavelengths and determines the 

temperature by computing the ratio of the radiant energies emitted by the target in these 

wavebands. 

 



 56 

Figure 4.3 Schematic of Microwave CVD Experimental setup 

 

 Additionally Figure 4.4 and Figure 4.5 are photographs of the microwave CVD 

experimental setup. Figure 4.5 is a closer view showing the microwave generator and the 

chamber access door. 
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Figure 4.4    Photograph of Microwave assisted CVD reactor. 

 

4.5 CHARACTERIZATION 

  

 Different characterization tools were used through out the length of the study. 

However, scanning electron microscopy was the main characterization technique 

employed. A JEOL JSM -6400 scanning Electron microscope (SEM) was used for this 

purpose. Additionally, a JEOL 100 CX II STEM was used to study the internal 

morphology of the tubes, and for TEM analysis samples were prepared by scraping a part 

of the grown nanotubes from the silicon wafer surface and dispersing them in alcohol. 

Few drops of the nanotubes dispersed in alcohol were dropped on to TEM grids for 

analysis. Further a SPEX-500 MicroRaman spectrometer was used for determining the 

characteristics of the nanotubes. And a MicroXam, optical interference microscope was 
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used to characterize and image patterned catalyst thinfilms. AFM characterization was 

performed using a Digital instruments Dimension 3100 series scanning probe 

microscope.   

 

 
 

Figure 4.5 Closer view of the microwave CVD reactor. 
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CHAPTER 5 

 

METHODOLOGY FOR GROWING NANOTUBES 

 

 

5.1 INTRODUCTION 

 

 The present study is concerned with obtaining vertically aligned growth of 

nanotubes. Since growth of nanotubes necessitates catalyst particles, a thin film of cobalt 

metal catalyst is deposited using the PLD setup described in the previous chapter. Once 

the catalyst is deposited on to the wafer surface, it was transferred to the CVD reactor for 

growth of nanotubes. The steps involved are categorized under catalyst deposition and 

CVD growth procedure in the following sections of the chapter.  

 

5.2 CATALYST DEPOSITION AND PROCEDURE 

 

The PLD setup employed deposits a continuous thin film on to the silicon wafer 

substrate. Various steps involved in the deposition procedure is listed in steps in the 

following: 

 

1. Silicon wafer samples are broken into small pieces of wafers sized about 1” X 1” for 

conveniently positioning inside the PLD deposition chamber.  

2. Broken pieces of the samples are ultrasonicated in acetone for 10 minutes prior to 

loading inside the deposition chamber. 

3. The samples are placed inside the deposition chamber and the chamber was evacuated 

to 10
-2

 torr.   
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4. The Excimer laser is turned on to strike the target surface. 

5. KrF- Excimer laser of 248nm wavelength is used and the pulse repetition rate of the 

laser is kept at 10 Hz.  

6. The laser exposure time is varied from 15 seconds to 45 seconds to control the 

thickness of the catalyst film deposited. 

7. The sample is removed from PLD chamber for further processing in CVD.  

 

 

5.3 CVD PROCEDURE 

 

 Once the catalyst is deposited, the samples are removed from the PLD chamber 

and transferred to the CVD chamber, the following procedure is followed:  

1. The substrate is inserted into the CVD reaction chamber and placed on the graphite 

plate of the substrate stage. 

2. Turn on the vacuum pump and evacuate the system to a pressure of < 10
-2

 torr. Set the 

desired pressure and flow rate. Typically, pressures used are in the range of 10 – 15 

torr and a total flow of 100 sccm of the process gases (hydrogen, nitrogen, and 

methane) are used for the growth of nanotubes. 

3.  Flush the chamber with hydrogen at a pressure of  ~10 torr, and turn on the water 

supply. 

4. Switch the microwave power and initiate hydrogen plasma, microwave power is 

maintained ~ 500 watts.  

5. Once the plasma is initiated, the chamber pressure is quickly increased to 15 torr 

along with the introduction of nitrogen gas. 
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6. Hydrogen and nitrogen plasma is maintained for 5 minutes for the plasma 

pretreatment of the sample. 

7. Methane gas is pumped in. 

8. Reflected power of the microwaves is tuned using the wave guide. 

9. Optical pyrometer is used to measure the temperature of the substrate. 

10. Continue the growth of nanotubes for the required time. 

11. After the growth is complete, shut off methane and hydrogen and the microwave 

generator. 

12. After cooling in nitrogen for 5 minutes, switch off all the gas flows and water supply 

and vent the system before removing the sample for further characterization. 
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CHAPTER 6 

 

RESULTS  

 

6.1 INTRODUCTION 

Experiments on the growth of carbon nanotubes on a cobalt catalyst deposited 

silicon wafer substrates were conducted under different process conditions. Process 

conditions were varied to study their effect on the growth of nanotubes, but were chiefly 

focused towards obtaining the growth of aligned nanotubes. The key process parameters 

investigated include plasma treatment time, growth time, process gases, and flow rates of 

methane gas. Additionally, the effect of patterning the catalyst film and growth of aligned 

nanotubes on patterned catalyst surfaces is also investigated. Since this study was 

performed concurrently with investigation of nanotubes growth on iron and iron oxide 

catalysts by a team of three members, changes in process parameters were quickly 

adopted based on results of current study and also based on the results obtained from 

other two catalysts mentioned [109, 110]. This was done in an effort to quickly narrow 

down the parameters favorable for the growth of aligned nanotubes.  

In addition to the  detailed investigation presented here, more investigation 

towards the effect of the flow rates of methane, effect of chamber pressure and the effect 

of other process parameters on the growth and morphology of nanotubes is reported else 

where in the thesis work by other two team members along with whom this study was 

accomplished [109, 110].  
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Once the tests were conducted, the nanotubes grown on silicon wafer substrates 

were characterized using a scanning electron microscope. Additionally, transmission 

electron microscope (TEM) characterization of grown nanotubes was also performed for 

studying the morphology of individual nanotubes. Furthermore, characterization of 

nanotubes by atomic force microscopy was performed to estimate the nanotubes 

diameters and µ Raman spectrometer characterization was performed to determine if 

tubes are multiwalled or single walled type.  

 

6.2 EFFECT OF GROWTH TIME  

Table 6.1 lists the process parameters used in the study of the effect of growth 

time on growth morphology of nanotubes. Figures 6.2, to 6.6 are micrographs of the 

nanotubes grown on silicon wafer samples after CVD growth times of 30 seconds, 3, 5, 

10, and 15 minutes, respectively. It can be seen from Figure 6.1, (photograph of silicon 

substrate taken after CVD growth) that area of black deposition, increases progressively 

as the growth time is increased.   

It can be observed from the Figures 6.1 A and Figure 6.2 that at 30 seconds 

growth time, no growth of nanotubes occurs. Whereas at 3 minutes growth time, a black 

film is deposited on the wafer as shown in Figure 6.1 B, and the corresponding SEM 

micrograph shown in Figure 6.3 shows dense nucleation without appreciable growth of 

tubes. After 5 minutes growth time, we can see that the there is a dense growth of tubes 

as shown in Figure 6.4. After 10 minutes, the growth density increases and it can also be 

seen that the tubes are appreciably longer than the 5 minutes sample as shown in the SEM 

micrograph in Figure 6.5. After 15 minutes growth time, the nanotubes become 
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dramatically thicker than the previous samples. This can be clearly seen in the SEM 

micrograph of the 15 min CVD grown sample as shown in Figure 6.6.    

 

Table 6.1 Process parameters employed to study the effect of growth time 

 

Catalyst Deposition time, s 30  

Plasma pretreatment time, min 5  

Growth time, min 30 s, 3, 5, 10, 15 and 30  

H2 40 

N2 50 
Process gases and 

flow rates, sccm  
CH4 10 

Microwave power, watts 500  

Chamber pressure, torr 15  

Substrate temperature, 
o
C 750 to 850 
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               A. 30 seconds growth time                  B. 3 minutes growth time                                                               

   

               C. 5 minutes growth time                   D. 10 minutes growth time 

   

               E. 15 minutes growth time                  F. 30 minutes growth time  

 

Figure 6.1 Photograph of silicon wafer substrates after CVD growth. Silicon substrates 

are subjected to different growth times, and as a result growth area (seen as black 

deposition) increases progressively with increase in growth time. 
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Figure 6.2 SEM micrograph showing no nanotubes growth (30 sec growth time) 

 
 

Figure 6.3 SEM micrograph showing nucleation of nanotubes (3 min growth time) 
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Figure 6.4 SEM micrograph showing growth of nanotubes (5 min growth time)  

 

 
 

Figure 6.5 SEM micrograph showing longer tubes (10 min growth) 
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Figure 6.6 SEM micrograph showing thicker nanotubes (15 min growth time) 

 

 

Based on the observation of SEM micrographs in Figures 6.4 and 6.5, 5-10 minutes of 

CVD growth time appears to be the optimum growth time to form nanotubes with good 

amount of growth density and relatively uniform tubes.  

 

6.3 EFFECT OF PLASMA TREATMENT TIME 

Experiments were conducted at 0, 1, 3, 10 and 15 minute’s plasma pretreatment 

time. The other experimental conditions employed were maintained constant and are 

listed in Table 6.2 
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Table 6.2 Process parameters used to study the effect of plasma treatment 

Catalyst Deposition time, s 30 

Plasma pretreatment time, min 0, 1, 3, 5, 10 and 15 

Growth time, min 10 

H2 40 

N2 50 

Process gases and 

flow rates, sccm 

CH4 10 

Microwave power, watts 500 

Chamber pressure, torr 15 

Substrate temperature, 
o
C 750 to 850 

 

 

The SEM micrographs of nanotubes grown under these conditions are shown in 

Figures 6.7, to 6.12 respectively. It can be seen that there is a clear difference in the 

growth morphology of the nanotubes as the plasma treatment time is increased from 0 to 

15 minutes. The SEM micrographs of nanotubes were taken in the vicinity of an open 

region, or pin holes observed in the black deposition after the CVD growth. In the 

absence of pin holes or open regions, a scratch mark was deliberately made on the black 

deposition using sharp tweezers to reveal the growth morphology of the tubes.  
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Figure 6.7 SEM micrograph of nanotubes growth under no pretreatment condition 

 

It can be seen from Figures 6.7 and 6.8 that nanotubes are not well defined in the case of 

0 and 1 minute pretreatment experiments. However in both cases the growth appears to 

be very dense, with cluster like white spots observed on the top surface of the growth 

layer.  
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Figure 6.8 SEM micrograph of silicon substrate (1 min plasma treatment) 

 

Figure 6.9 Clearly defined nanotube growth (3 min plasma treatment) 
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Figure 6.10 SEM micrograph of nanotubes grown (5 min plasma treatment time) 

 

Figure 6.11 SEM micrograph of nanotubes (10 min plasma treatment) 
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Figure 6.12 SEM micrograph of nanotubes (15min plasma treatment) 

 

Comparing Figures 6.8 and 6.9, it can be seen that clearly defined nanotubes are observed 

when nanotubes are grown with pretreatment condition than with less or no pretreatment. 

It can also be seen from Figures 6.9 and 6.10, that growth morphology of nanotubes is 

similar in the case of 3 and 5 minutes pretreatment time. It can be seen that the nanotubes 

grown from sample subjected to 15 minutes pretreatment time resulted in vertically 

grown tubes which are less curly compared to previous samples subjected to 3, 5 and 10 

minutes pretreatment. This is can be observed from Figure 6.12. Additionally the growth 

of tubes with 15 minutes pretreatment seems to be less dense compared to samples shown 

in Figures 6.9 and 6.10. Further, nanotubes are found to grow much straighter with 15 

minutes pretreatment time than the samples with no pretreatment or less pretreatment 

time.  
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6.2.1 Wrinkle formation under no pretreatment condition 

In addition to the initial observations, another interesting phenomenon was 

observed when nanotubes are grown under no plasma treatment condition. As mentioned 

earlier, a scratch mark is deliberately made by sharp tweezers before SEM 

characterization. When scratch marks of samples with no pretreatment were compared 

with scratches on samples subjected to pretreatment condition, it can be seen that there is 

a dramatic difference in the morphology of the growth shown in Figures 6.13 and 6.14, 

respectively.  

 

 
 

Figure 6.13  Formation of wrinkles and folds when nanotubes are scratched (observed on  

a silicon substrate after CVD growth under no plasma pretreatment 

condition) 
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Figure 6.14   Scratch mark showing no wrinkle formation on silicon wafer substrate after 

CVD growth (plasma pretreated) 

 

It is can be seen from Figure 6.13 that the black deposition with nanotubes obtained after 

the CVD growth acted similar to a continuous flexible sheet or a fabric. Based on this 

behavior, the black deposition on the wafer surface with nanotubes can be considered as a 

carpet forming wrinkles when scratched. This is very much evident from the fact that the 

black deposition with nanotubes wrinkled and formed folds when scratched rather than 

breaking. Further this phenomenon was observed only on the nanotubes grown with no 

plasma treatment condition during their growth. When nanotubes grown with plasma 

treatment condition during their growth was scratched in a similar fashion, it resulted in 

no wrinkle formation and the difference in the morphology of the scratch and the 

nanotubes can be seen as shown in Figure 6.14. 
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Figure 6.15 shows another scratch mark made on the same sample with no plasma 

treatment. This further confirms the phenomenon of wrinkle and crease formation in the 

no pretreatment condition sample when scratched. In contrast, Figure 6.16 shows the less 

dense morphology of the tube growth, of the sample subjected to 15 minutes pretreatment 

conditions. Another interesting observation in this particular sample (no pretreatment 

sample) is the fact that there is tube growth even under no pretreatment condition. Figure 

6.17 is a SEM micrograph showing growth of nanotubes under no plasma treatment 

condition. 

 

 

 

 

Figure 6.15   Scratch mark showing the wrinkle and crease formation (no pretreatment 

condition) 
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Figure 6.16   Less dense tube formation (growth with 15 min pretreatment condition) 

 

Figure 6.17    Nanotubes growth observed even under no pretreatment condition 



 78 

6.4 EFFECT OF PROCESS GASES 

A series of experiments was conducted in the absence of either one of the process 

gases, hydrogen or nitrogen, and in cases when all the process gases are used, the flow 

rates of methane was modified. Table 6.3 lists the process parameters of the experiments 

conducted. In the first experiment, when nitrogen gas was not used as one of the process 

gases, no deposition was observed at the end of the CVD growth. But a black deposition 

indicating growth of nanotubes was observed on the catalyst coated wafer surface, even 

in the absence of hydrogen gas.  Further experiments were conducted with varying flow 

rates of hydrogen, nitrogen and methane. Since there was no black deposition or any 

growth of tubes observed in the absence of nitrogen, nitrogen gas was always included as 

one of the process gases through out the experimentation.   

 

 

Figure 6.18 vertically aligned growth of tubes obtained in the absence of hydrogen 
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Table 6.3 Process parameters employed in the study and effect of flow rates of gases 

 

Sample  

 

Hydrogen  

flow rate 

(sccm) 

 

Nitrogen 

flow rate 

(sccm) 

 

Methane 

flow rate  

(sccm) 

 

Pretreatment 

time 

(min) 

 

Growth  

time 

(min) 

 

Comments 

 

 

 

1 

 

 

50 

 

 

0 

 

 

10 

 

 

 

5 

 

 

30 

 

 

No growth 

 

2 

 

 

0 

 

 

36 

 

 

10 

 

 

5 

 

 

30 

 

Vertical 

tube 

growth 

 

 

3 

 

 

 

50 

 

 

36 

 

 

10 

 

 

5 

 

 

30 

 

Curly 

tube 

growth 

 

 

4 

 

 

40 

 

 

50 

 

 

15 

 

 

5 

 

 

10 

 

 

Carpet 

growth 

 

5 

 

50 

 

36 

 

10 

 

5 

 

10 

 

Growth 

observed 

 

Figure 6.18 is a SEM micrograph showing nanotubes grown in the absence of 

hydrogen as one of the process gases. Since no growth of nanotubes was obtained in the 

absence of nitrogen, micrographs of silicon substrates experimented with conditions 

listed for sample 1 in the Table 6.3 are not provided. However, nanotubes growth were 

obtained when hydrogen and nitrogen were used as process gases along with methane. 

Figure 6.19 is a SEM micrograph showing nanotubes grown on sample 3. From 

comparing Figures 6.19 and 6.18, the difference in growth morphology can be seen. 

Figure 6.20 is a high magnification SEM micrograph of nanotubes grown in the presence 

of nitrogen and methane as process gases (no hydrogen). It can be seen, that nanotubes 
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are straighter and apparently fewer defects when compared to Figure 6.21. Figure 6.21 

shows nanotubes which are grown curly when hydrogen is included in the process gases.  

 

Figure 6.22 is a SEM micrograph of nanotubes grown with only nitrogen as the 

process gas along with methane. It can be seen that the upper ends of the tubes have 

amorphous particles attached to the tubes. Where as nanotubes grown with hydrogen as 

one of the process gas did not show any amorphous particles attached to the tubes. This is 

shown in Figure 6.23. 

 

 

Figure 6.19 Curly tubes formed in the presence of hydrogen and nitrogen process gases 
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Figure 6.20 SEM micrograph of straight and aligned tubes in the absence of hydrogen 

 

Figure 6.21 SEM micrograph of curly tubes in presence of H2 and N2 
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Figures 6.24 and 6.25 are SEM micrographs of nanotubes grown with 

experimental conditions given under sample 4 and sample 5 respectively on table 6.3. As 

shown in Figure 6.24 when the nanotubes are grown in a methane flow rate of 15 sccm , 

it results in the formation of carpets of tubes, which are very dense and thick. Figure 6.25 

shows thinner tubes formed when nanotubes are grown with reduced flow rate of ~ 10 

sccm.  

 

 

Figure 6.22    SEM micrograph showing amorphous particles on the surface of tubes 
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Figure 6.23    Tubes grown under H2 showing no amorphous particles.  

 

Figure 6.24    SEM micrograph showing carpet growth at 15 sccm methane 
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Figure 6.25    SEM micrograph of thin tube formation at 10 sccm methane flow 

 

When the flow rate of methane gas was varied, higher methane flow rate resulted 

in a dense growth of carbon nanotubes. Very often the growth of nanotubes under 15 

sccm of methane flow rate resulted in carpet-like growth of nanotubes as shown in Figure 

6.24. Further, methane flow rates were varied from 5 sccm to 20 sccm, in steps of 5 sccm 

at a time, and the results indicate that the growth of tubes were observed only when the 

methane flow rates were maintained at 10 sccm and 15 sccm. Figure 6.25 is a SEM 

micrograph of nanotubes grown with a relatively less flow rate of methane around 8 – 10 

sccm. It can be seen from the picture that the tubes are relatively thinner and the growth 

is less dense unlike the samples subjected to higher methane flow rates. 
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6.5 EFFECT OF PATTERNED CATALYST AND FLOW RATES OF GASES 

To study the effect of patterned catalyst film towards growth of aligned 

nanotubes, experiments were conducted on silicon wafer substrates with patterned cobalt 

catalyst coating obtained by use of a template during PLD deposition. The parameters 

used in these experiments are listed in Table 6.4. 

 

Since the aim of this investigation was to grow nanotubes which are aligned and 

patterned, several experiments were conducted by varying experimental conditions 

starting from varying the catalyst film thickness and varying one parameter at a time. 

Experimental conditions which would support the growth of aligned nanotubes were 

narrowed down from the experimentations conducted and reported in the earlier sections. 

Further, cues and modifications to the parameters were picked up from the concurrent 

investigation on the aligned growth of nanotubes on iron catalyst along with the current  

study by other members of the research team. These parameters can be obtained from 

their theses [109, 110].   

 

It can be observed from Table 6.4, the catalyst thickness can be varied by varying 

the catalyst deposition time, and the growth time, the process gases and their flow rates 

were varied to support the growth of aligned and patterned tubes.  
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Table 6.4   Process parameters employed in the study of patterned growth 

 

Sample No: N-1 H-1 H-2 A-1 C-1 T-1 

Catalyst 

deposition  

time, sec 

30 

 

30 

 

30 

 

30 

 

45 

 

45 

 

Pretreatment 

time, min 

5 

 

5 5 5 5 5 

 

 

Growth 

time, min 

10 10 15 10 10 10 

Process 

gases and 

flow rates 

H2 and 

N2 @ 

40 and 

50 sccm  

Nitrogen 

only @ 

50 sccm 

Nitrogen 

only @  

50 sccm 

Nitrogen 

only @ 50 

sccm 

Nitrogen 

only @ 50 

sccm 

H2 and N2 

@ 

40 and 50 

sccm 

Methane 

flow rate, 

sccm 

 

5  

 

20  

 

15  

 

10  

 

10  

 

15  

Microwave 

power, watts 

 

500  

 

500  

 

500  

 

500  

 

500  

 

500  

Chamber 

pressure, 

torr 

15  15  15  15  15  15  

 

Result 

No 

growth 

Patterned  

growth 

Patterned 

growth 

not 

defined 

Patterned  

Growth 

but 

individual 

tubes curly 

Patterned 

growth but 

individual 

tubes are 

short 

Patterned 

growth 

and 

individual 

tubes 

aligned 

 

Figure 6.26 is a picture of a wafer surface before the catalyst deposition and 

Figure 6.27 shows the wafer surface after catalyst deposition. Figure 6.28 is a SEM 

micrograph showing the result of experiment on sample N-1, where no deposition or 

growth of tubes was observed on the catalyst patterned region.  
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Catalyst thickness and the flow rate of methane gas were varied in the consecutive 

experiments, and black deposition was observed after the CVD growth. Figure 6.29 is the 

SEM micrograph of sample H-1 after CVD growth. It can be seen that nanotubes have 

been grown on hexagonally patterned regions. However, the patterned region is not very 

clearly defined. Figures 6.30 and 6.31 are higher magnification SEM micrographs of 

samples H-1 and H-2, respectively. It can be seen that the first sample (N-1) does not 

have any tube growth but the second sample (H-1) reveals tube growth. 

 

 

Figure 6.26 MicroXam picture of the silicon wafer surface before catalyst deposition 
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Figure 6.27 MicroXam picture of patterned catalyst layer deposition 

 

 

Figure 6.28 SEM micrograph showing no growth (5 sccm of methane) 
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Figure 6.29 SEM micrograph showing thick growth (20 sccm of methane) 

 

Figure 6.30 SEM micrograph showing no tube growth, sample N-1 
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Figure 6.31 SEM micrograph of nanotubes (10 sccm of methane flow rate) 

 

Once growth of carbon nanotubes on the patterned region was observed, 

experimental conditions were varied as shown in the Table 6.4 in an effort towards the 

growth of aligned tubes. Since the growth of nanotubes in sample H-1 was very dense, 

and in order to obtain growth as a clearly defined pattern, the methane flow rate was 

reduced to 10 SCCM in the next experiment on sample H-2. Figure 6.32 is a SEM 

micrograph of the well defined growth seen on a hexagonally patterned catalyst film.  
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Figure 6.32 SEM micrograph revealing clearly defined growth on patterned region 

 

Additionally, Figures 6.33 and 6.34 highlight the difference in the growth 

influenced by the effect of methane flow rate. Figure 6.33 is a SEM micrograph of 

sample H-1 where a higher flow rate of methane was used, and Figure 6.34 is a SEM 

micrograph of sample H-2 with less methane flow rate. 
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Figure 6.33 SEM micrograph of H-1 sample 

 

Figure 6.34 SEM micrograph of H-2 sample 
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Figure 6.35 MicroXam picture revealing the catalyst pattern 

 

Figure 6.36 SEM micrograph of growth on the patterned region 
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It can be seen that flow rate of methane is plays a crucial role in obtaining 

patterned growth of tubes on the catalyst layer. Once the role of flow rate of methane is 

determined, templates with different geometrical patterns can be used for patterning the 

catalyst film. Figure 6.35 is a MicroXam picture showing the patterned catalyst film, and 

Figure 6.36 is a SEM micrograph after CVD growth on that particular region. Figures 

6.37 is a SEM micrograph of sample with a methane flow rate of 10 sccm with 15 min 

growth time, and Figure 6.38 is a SEM micrograph of sample subjected to 15 sccm of 

methane and 10 minutes growth time. It can be seen that a longer growth time of 15 

minutes was not a favorable condition. It can also be seen that shorter growth time with 

higher methane was also not a favorable condition. 

 

 

Figure 6.37 Coiled tubes grown due to higher methane flow rate 
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Figure 6.38      Shorter tubes due to reduced growth time with higher flow of methane  

 

6.6 GROWTH OF ALIGNED TUBES IN PATTERNED REGION 

Based on the results from samples N-1, H-1, H-2, A-1, and C-1, nanotubes growth 

was carried out on sample T-1 with the catalyst deposited for 45 seconds using PLD. In 

this case (see table 6.4), nanotubes were allowed to grow for 10 minutes after a 5 min 

pretreatment period. The methane flow rate was controlled at ~ 15 sccm and hydrogen 

and nitrogen were used as the other process gases at flow rates of 40 and 50 sccm 

respectively. These parameters were narrowed down after careful analysis of the earlier 

results involving growth of nanotubes on patterned region as well as on the non-patterned 

catalyst film. It can be seen from Figure 6.39 that aligned nanotubes are grown and the 

nanotubes are found to have a height of ~ 15 to 20 µm. 
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Figure 6.39 Growth of aligned nanotubes.  

It is evident from Figure 6.39, that growth of aligned tubes was finally achieved 

successfully. It can be seen, that tubes are not coiled or curly and they do not form 

clusters or localized bundles or intertwined tubes. In Figure 6.39, aligned growth of tubes 

are shown where the template was left on the sample during growth. However, on the 

very same sample where the template was removed, we see formation of highly aligned 

patterned growth of nanotubes. This can be seen in Figures 6.40 and 6.41.  These are the 

final results of this investigation, and the SEM micrographs clearly show the culmination 

of efforts towards the formation of faithfully aligned nanotubes within a patterned region. 

Figure 6.41 is a micrograph which clearly details the growth of the nanotubes on the 

patterned catalyst. Even at this magnification it is evident that the individual blocks of 

growth have perfectly well defined boundaries.   
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Figure 6.40 patterned carbon nanotubes grown in a regular array 

 

Figure 6.41 SEM micrograph showing faithful aligned, patterned growth of CNT 
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6.7 TEM CHARACTERIZATION 

TEM characterization was performed to study the internal and external 

morphology of nanotubes. Sample preparation for TEM analysis involved scrapping of 

nanotubes from the silicon wafer substrate and dispersing the nanotubes in methanol. 

Ultrasonication of nanotubes dispersed in methanol solution was carried out for 10 ~ 15 

minutes before they were transferred on to a TEM grid for analysis. Figure 6.42 is a TEM 

micrograph showing nanotubes of different diameters. Figure 6.43 is a TEM micrograph 

showing that nanotubes are closed at one end. Figure 6.45 is a TEM micrograph showing 

a catalytic particle within the nanotube. The TEM micrographs facilitate in locating the 

catalyst particles and knowing the location of the catalyst particle in the nanotube and can 

shed light on the growth mechanism involved in nanotube synthesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.42 TEM micrograph showing multiwall nanotubes of different diameters  
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Figure 6.43 TEM micrograph showing a nanotube closed at one end. 

 

                     
Figure 6.44 TEM micrograph of a single multiwall nanotube 

 

50 nm 

50 nm 
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Figure 6.45 TEM micrograph showing catalyst particle inside a nanotube. 

 

 

6.8 RAMAN SPECTROSCOPY CHARACTERIZATION 

Figure 6.46 shows the Raman spectra of silicon wafer substrate showing the D 

peak ~ 1350 and the G peak ~ 1380. Additionally the second overtone of the D peak is 

also identified at 2700, which is also a characteristic of the nanotubes as shown in Figure 

6.47 

 

6.9 ATOMIC FORCE MICROSCOPY- CHARACTERIZATION 

 The sample preparation for AFM characterization of nanotubes is similar to the 

procedure followed for characterization of nanotubes under TEM. Nanotubes are 

scrapped from the silicon wafer substrate and dispersed in methanol and ultrasonicated 

50 nm 



 101 

for 10 ~ 15 minutes. After ultrasonication, a few drops of nanotubes dispersed methanol 

is dropped on to a microscope cover glass. The microscope cover glass was examined in 

an AFM. Figure 6.48 is an AFM micrograph showing numerous nanotubes spread on the 

microscope cover glass surface. Figure 6.49 is an AFM micrograph showing a single 

nanotube and the diameter of the nanotube can be visually estimated to be ~ 100 to 125 

nm.  
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Figure 6.46 Raman spectra showing ‘D’ and ‘G’ peaks, at 1350 and 1580, respectively 
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Figure 6.47 Raman Spectra showing second overtone of ‘D’ peak at 2700 wave number.  

 

 

 

 
6.48 AFM micrograph of numerous nanotubes.  
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Figure 6.49 AFM micrograph of a single nanotube. 
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CHAPTER 7 

 

DISCUSSIONS 

 

7.1 EFFECT OF GROWTH TIME 

 

 It can be seen from Figures 6.2 to 6.6 that growth time has a major influence on 

the growth of nanotubes. At shorter growth time of ~ 30 seconds, no growth occurs 

because this is really shorter time for nanotubes to nucleate and grow. On the other hand, 

15 minutes growth time resulted in the formation of unusually thicker nanotubes with 

large diameters as shown in Figure 6.6. The formation of thicker tubes after 15 minutes 

growth time suggest a growth time of 5 ~ 10 minutes to be the optimum condition. 

Growth of thicker tubes is explained by the fact that nanotubes continue to grow laterally 

after a certain amount of time as originally proposed by Iijima [65]. 

As long as the growing nanotube ends are open, carbon deposition along the open 

ends results in the growth of tubes. But after a certain amount of time, the nanotube ends 

are closed which renders the growing end of the nanotube inactive to incoming carbon 

species. Once the growth of the nanotube stops, growth takes place laterally around the 

walls of the existing nanotubes as suggested by Iijima [65]. Thus, a growth time of 5 ~ 10 

minutes is found to be optimum for growth of tubes of fairly uniform diameter.  
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7.2 EFFECT OF PLASMA PRETREATMENT TIME 

 Plasma pretreatment time is one of the important parameters that controls the 

nucleation and growth density of nanotubes. Since a continuous film of catalyst deposited 

by PLD needs to be broken down to form individual catalyst particles, the catalyst 

deposited silicon wafer sample is subjected to plasma pretreatment prior to CVD 

synthesis of nanotubes.  

 It can be seen from Figures 6.7 to 6.12 that growth density of nanotubes vary 

significantly as the plasma treatment time is varied from 0 to 15 minutes respectively; For 

longer plasma treatment times, the growth density is observed to be less than that for 

samples subjected to shorter plasma treatment time. This is probably due to the fact that 

longer plasma treatment results in re-melting of individual catalyst particles and 

agglomeration of these melted catalytic particles, which results in the formation of larger 

sized particles. This step of agglomeration clearly reduces the particle density, eventually 

reducing the growth density of nanotubes. This could be the reason why the sample 

subjected to 15 minutes pretreatment time is less dense compared to samples subjected to 

shorter plasma treatment times.  

Additionally, the formation of continuous sheet of nanotubes as shown in Figures 

6.13 and 6.15 can also be explained as a result of no plasma treatment condition in that 

particular sample. Since the sample is not subjected to plasma treatment, the catalyst film 

may not have been broken into individual particles. Due to the absence of clearly defined 

catalyst particles, deposition of carbon species results in growth of nanotubes which do 

not have clearly defined structures. This is further confirmed by Figure 6.7 corresponding 

to the sample with no plasma treatment.  
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7.3 EFFECT OF PROCESS GASES 

 

 Nanotubes grow when nitrogen and methane are used as process gases, but 

nanotubes growth fails when hydrogen and methane are used as process gases. This can 

be explained by the fact that nitrogen plasma is reported to have higher bombardment 

energy than hydrogen plasma. Owing to higher bombardment energy, nitrogen plasma is 

also reported to keep the catalyst surface active for a longer time favoring the growth of 

nanotubes.  

It can be seen from Figure 6.22 that nanotubes grown in the presence of nitrogen 

and methane gases result in the formation of nanotubes along with considerable number 

of impurities, such as amorphous particles (see Figure 6.22).  However, nanotubes grown 

in the presence of hydrogen, nitrogen and methane showed no signs of amorphous 

particles clinging to the tubes (see Figure 6.23). The absence of amorphous particles in 

the second sample can be explained by the fact that the presence of atomic hydrogen is 

reported to be responsible for etching away all non-nanotube phases deposited as 

suggested by Kuttel et al. [80]. Also, the presence of atomic hydrogen is reported to be 

responsible for a delicate balance of deposition and etching away of nanotubes in the 

synthesis of nanotubes.   

Further, it can be seen from Figures 6.19 and 6.20 that nanotubes grown under 

nitrogen and methane plasma are found to be straighter, whereas nanotubes grown in the 

presence of hydrogen resulted in growth of nanotubes curly and wavy. Since straight 

tubes are formed in the presence of nitrogen, nitrogen is found to be an essential 

parameter towards the growth of vertically aligned tubes. Since hydrogen has tendency to 
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etch away amorphous impurities, a mixture of nitrogen and hydrogen is always used as a 

process gas along with methane in the growth of nanotubes.  

 

7.4 EFFECT OF METHANE FLOW RATE 

In the present investigation, patterned growth of nanotubes were obtained when 

methane flow rate was maintained ~ 10 to 15 sccm. However, when samples with 

patterned catalyst region were subjected to varying flow rates of methane, the growth 

morphology was found to vary drastically depending on the flow rate of methane. It can 

be seen from Figures 6.28 and 6.30, that no nanotubes growth occurs when the methane 

flow rate is reduced to 5 sccm. When the methane flow rate was increased to 20 sccm in 

sample H-1, there was no definitive growth on patterned region. (see Figure 6.29). It can 

be seen from Figures 6.38 that a methane flow rate of 10 sccm resulted in poor growth of 

nanotubes on the patterned region. However, samples subjected to 15 sccm of methane 

flow rate resulted in patterned growth of nanotubes. This can be seen by comparing 

Figures 6.33 and 6.34, corresponding to samples subjected to 20 and 15 sccm 

respectively.  

 

7.5 GROWTH OF ALIGNED CARBON NANOTUBES ON CATALYST 

PATTERNED SAMPLES 

 Finally growth of aligned carbon nanotubes on patterned region is obtained as 

shown in Figures 6.40 and 6.41. Figure 6.39 shows vertically aligned carbon nanotubes 

with a patterned growth. The process conditions used for the growth of vertically aligned 

tubes are listed in Table 7.1. 
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Table 7.1 Process parameters used for the aligned growth of nanotubes 

Growth condition 

 

Plasma treatment  

parameters 

CVD growth  

parameters 

 

Time period, min 

 

5  

 

10 

 

 

Process gases 

 

H2 and N2  

 

H2 ,N2 and CH4 

 

Flow rates of gases, sccm 

 

40 and 50  

 

40, 50 and 15  

 

Chamber pressure, torr 

 

15  

 

15  

 

Microwave power, watts 

 

500  

 

500  

 

Temperature,
 c
C 

 

785 

  

885 
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CHAPTER 8 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

8.1 CONCLUSIONS 

 

1. In this experimental study, growth of carbon nanotubes (CNT) is obtained on a 

cobalt catalyst deposited on a silicon wafer surface using plasma enhanced 

microwave assisted CVD technique. 

2. When carbon nanotubes are grown for different growth times, the nanotubes exhibit 

significant difference in growth morphology depending on the growth time. 

Unusually thicker tubes are formed for 15 minutes growth time. Growth time of 10 

minutes is found to be an optimum for growth of nanotubes with relatively uniform 

diameter. 

3. When cobalt catalyst deposited silicon wafer samples were subjected to plasma 

treatment prior to the growth step, samples subjected to 5 ~ 15 minutes plasma 

treatment showed clearly defined growth of nanotubes compared to samples which 

were not pretreated prior to their growth.  

4. Growth density of nanotubes is found to be less when samples are plasma pretreated 

for longer times before the growth. 

5. When nitrogen and methane were used as process gases, significant growth of 

carbon nanotubes was observed. However, there was no growth of nanotubes when 
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hydrogen and methane was used as process gases. So, nitrogen is always needed 

and is included as one of the important process gases. 

6. When nitrogen and methane were the only process gases used, it resulted in the 

growth of nanotubes with considerable non-nanotubes impurities, such as 

amorphous carbonaceous particles sticking to the ends of the nanotubes. But no 

amorphous particles are observed when hydrogen gas was included in the process 

gases along with nitrogen and methane. 

7. Nanotubes are found to grow straighter when nitrogen and methane are used as the 

process gases. Wavy or curly nanotubes are grown when hydrogen gas is mixed as 

one of the process gases along with nitrogen and methane. 

8. Higher flow rates of methane ~ 20 sccm resulted in passivation of the catalyst 

surface thereby resulting in no growth of nanotubes. A low flow rate of methane (~ 

5 sccm) was found to result in no growth. Typically, carbon nanotubes are grown 

with methane flow rates varying from 10 ~ 15 sccm. However, the exact flow rate 

of methane gas needs to be varied and adjusted depending on the catalyst film 

thickness.  

9. When the cobalt catalyst film is patterned on the silicon wafer surface, patterned 

growth of carbon nanotubes is successfully obtained.  

10. In this investigation, vertically aligned growth of nanotubes on patterned catalyst 

region is finally obtained.  

11. TEM characterization of nanotubes show that nanotubes have closed ends and 

catalyst particles are observed on upper sections of the tubes suggesting that the 

nanotubes do not follow a base growth mechanism but a tip growth mechanism. 
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12. µRaman characterization shows CNTs exhibit the characteristic D and G peaks at 

1350 and 1580 wave numbers suggesting that nanotubes grown are multiwalled.  

13. AFM characterization and TEM characterization enables estimation of the tube 

diameters. Tube diameters were found to be in the range of 50 ~ 100 nm.  

 

8.2 FUTURE WORK 

Major effort in this investigation has been towards the growth of vertically 

aligned carbon nanotubes on patterned catalyst surfaces. Experimental conditions were 

varied to study their effect on the growth of nanotubes. The results of these experiments 

were quickly analyzed to identify conditions favorable for the growth of vertically 

aligned nanotubes. With this done, future work recommended includes the following: 

1) Efforts towards synthesis of SWNTs can be studied using the existing 

experimental setup. Since growth of SWNTs is favored by the presence of 

bimetal catalyst such as, iron and cobalt, or cobalt and nickel, multiple layers 

of catalyst thin film can be formed and studied towards SWNTs growth. 

2) Aligned nanotubes can be studied for application such as reinforcement of 

composites.  

3) To exploit the high thermal conductivity of nanotubes, patterned blocks of 

nanotubes can be studied for applications such as heat sinks for molecular 

devices. 

4) Patterned growth of nanotubes can be investigated on different substrate 

surfaces, such as glass, and plastics. 
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