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CHAPTER 1 

INTRODUCTION 

1.1 The General Problem 

Material failure at all length scales experiences such processes as elastic deformation, 

dislocation generation and their propagation, cleavage, crack initiation and growth, and 

final rupture. Despite significant developments in materials simulation techniques, the 

goal of reliably predicting the properties of new materials in advance of material 

characterization and fabrication has yet to be achieved. It is also not possible to predict 

the properties of the material at nanoscale knowing the properties of the material at macro 

level or vice versa. This situation exists for several reasons that include a lack of reliable 

potentials to describe the behavior of the material at the atomistic level, computational 

limitations, inadequate modeling of the process, absence of scaling laws, and difficulties 

associated with the experimental measurement of properties even at the micro scale, let 

alone at the nano scale.  

Multiscale simulation technique can be applied to reliably predict the properties of new 

materials in advance of material characterization and fabrication. Scaling laws governing 

the mechanical behavior of materials from atomistic (nano), via mesoplastic (micro), to 

continuum (macro) are very important to numerous DoD applications, such as the 

development of a new class of aircraft engine materials, or new steels for naval battle 
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ships, or new tank armor materials for the army, or numerous micro electromechanical 

components for a myriad of applications, for the following three reasons: (1) information 

on the mechanical behavior of materials at nano level is not presently available as input 

to nanotechnology for the manufacturing of nano components or microelectro-

mechanical systems (MEMS). For example, nanostructures may possess unique 

properties in view of their very high surface to volume ratio, or the nanostructures might 

be relatively free of defects with strength approaching the theoretical values, (2) 

applications where two length scales of different orders of magnitude are involved. For 

example, one is atomistic (nano) and the other mesoplastic (micro) as in nano 

indentation, or, one is mesoplastic (micro) and the other continuum (macro) as in 

conventional indentation, and (3) it may be possible to extend the knowledge 

accumulated over time on material behavior at the macro (or continuum) level to the 

atomistic (or nano) level, via mesoplastic (micro) level.  

 

Fig. 1: Schematic of simulations at various levels (Komanduri, 2002) 
The work described, herein, is part of a larger on-going research to aid materials 

modeling and simulation. The main objective of this on-going research is to develop a 
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fundamental understanding of indentation and tension tests at various scales and develop 

a computer simulation code that would bridge the gap from atomistic to continuum, via. 

mesoplastic or microscopic behavior. Material multiscale simulations span from 

electronic structure, atomistic scale, crystal scale, to macro/continuum scale [18, 22]. 

Appropriate simulation algorithms can be used at various scales, e.g., ab initio 

computation for electronic structure, molecular dynamics at the atomistic scale, crystal 

plasticity or mesoplasticity at the crystal scale, and continuum mechanics at the macro 

scale [18]. This investigation focuses on multiscale simulations e.g., from nanometer to 

millimeter, based on the continuum mechanics approach, for 3D Indentation problem.  

At the continuum level, FEM is the dominant numerical technique used but there are 

advantages of using material point method (MPM) over FEM in some situations. The 

major advantage of material point method is that the particles are not treated as a mesh so 

that mesh entanglement is not a problem and large deformations can be treated with these 

methods. Creating new meshes and mapping between meshes is eliminated. The required 

more accurate and reliable solutions in numerical analysis of various large scale 

structural, fluid mechanics problems and design problems need more computationally 

intensive process, usage of more efficient methods and here implementation of  parallel 

processing technique is one of the best economic alternatives [23]. Parallel processing in 

FEM is not that straightforward as it is in MPM, primarily due to the coupling of a large 

number of simultaneous linear equations. 

The material point method (MPM), [25], has already demonstrated the capabilities in 

simulation of a wide range of mechanics problems including impact/contact/penetration 

and fracture. But to resolve alternating stress sign and instability problems associated 
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with conventional MPM, Bardenhagen and Kober (2004) [13] introduced recently the 

generalized interpolation material point method (GIMP) and implemented for one-

dimensional simulations. Komanduri, Lu, Roy, Wang, Hornung, Wissink , Ma (2004) 

[15] implemented it in 2D and simulated simple tension and indentation problems 

spanning multiple length scales, based on the continuum mechanics approach. 

The present investigation implements the extended GIMP method presented by 

Bardenhagen-Kober to three-dimensional simulations in SAMRAI environment and 

applies it to solve indentation problems involving rigid surface indenter as an example to 

demonstrate the capability of 3D GIMP. Structured Adaptive Mesh Refinement 

Applications Infrastructure (SAMRAI) is used here as a platform for parallel 

computation. Solving indentation problems involves the contact issues between an 

indenter and work piece. A contact algorithm, which allows the contact interface to be 

located in a few computational domains, distributed over multiple processors is 

introduced in this study. Furthermore, a refinement technique for both temporal and 

special refinement in areas of interest and a parallel processing scheme are developed 

using SAMRAI so that the serial GIMP algorithm and code can be extended for parallel 

computation of large-scale continuum mechanics computations and to reduce 

computation time and computer memory requirement. 

 

1.2 Material Point Method (MPM) 

The material point method (MPM) has demonstrated its capabilities in addressing such 

problems as impact, upsetting, penetration, and contact [25, 26]. In MPM, two 

descriptions are used - one based on a collection of material points (Lagrangian) and the 
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other based on a computational background grid (Eulerian), as proposed by Sulsky, Zhou 

and Schreyer (1995). As the dynamic analysis proceeds, the solution is tracked on the 

material points by updating all required properties such as position, velocity, acceleration, 

stress state, etc. At each time step the equation of motion for particles are solved on 

background calculation grid; this solution is used to update the particles and the 

background mesh can be discarded or reused for next time step in its initial, undistorted 

form [27]. The use of combination of Lagrangian and Eulerian methods on one hand 

avoid problems of mesh distortion associated with use Lagrangian mesh (FEM) by using 

fixed Eulerian mesh and on the other hand problems of numerical dissipation associated 

with Eulerian mesh is avoided since the variables are defined on material points which 

advect through Eulerian mesh [35]. One drawback of the conventional MPM is that when 

the material points move across the cell boundaries during deformation, some numerical 

noise/errors can be generated [13]. To solve the instability problems associated with the 

conventional MPM simulations, Bardenhagen and Kober recently proposed the 

generalized interpolation material point (GIMP) method and implemented for one-

dimensional simulations, Ma, Lu, Wang, Roy, Hornung, Wissink and Komanduri [15] 

implemented the GIMP presented by Bardenhagen and Kober to two-dimensional 

simulations.  

 

1.3 Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI) 

A platform for parallel computation, namely, the structured adaptive mesh refinement 

application infrastructure (SAMRAI) [17], has been developed recently by the Center for 

Applied Scientific Computing at the Lawrence Livermore National Laboratory. SAMRAI 
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has provided interfaces for user-defined data types so that material points carrying 

physical variables (mass, displacement, velocity, acceleration, stress, strain, etc.) can be 

readily defined. As a result, SAMRAI is very suitable for handling material points and 

their physical variables in MPM or its variant, GIMP. In this investigation SAMRAI is 

used for parallelizing GIMP computation. SAMRAI has also provided a foundation for 

parallel adaptive mesh refinement (AMR) with the use of either dynamic or static load 

balancing [28]. This function allows SAMRAI to process both spatial and temporal 

refinements in areas of interest, typically with high gradients in some physical variables 

(e.g., strains), and to use coarse mesh in the remaining areas. In this investigation with the 

appropriate use of fine and coarse meshes in different regions, multiscale simulations 

using GIPM has been conducted with desired computational accuracy and with reduced 

costs associated with computer memory and computational time.  

 

1.4 Outline of the Thesis   

This thesis is divided into seven chapters. Chapter 1 gives an introduction to present 

investigation by briefly describing multi-scale simulations, Material Point Method 

(MPM), advantages of MPM over Finite Element Method, Some of Disadvantages of 

conventional MPM, how Generalized Interpolation Material Point (GIMP) method has 

evolved, Structural Adaptive Mesh Refinement Infrastructure (SAMRAI) and how their 

roles in the present investigation. In Chapter 2, a review of literature on topics of interest 

to the present investigation, namely Generalized Interpolation Material Point (GIMP) 

method, parallel processing and contact mechanics has been presented. Chapter 3 gives 

an introduction to the GIMP method, describe the governing equations involved in GIMP 
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method and finaly their numerical implementation. Chapter 4 discusses the problem 

statement for this investigation. Chapter5 gives the detailed description of contact 

algorithm developed for GIMP for 3D Indentation problem using rigid surface Indenter. 

Chapter 6 discusses the parallel computation scheme for GIMP method using SAMRAI 

for solving 3Dimensional solid mechanics problems. This also involves refinement 

techniques for temporal and spatial refinement and parallel solver scheme for solving 

contact problems involving contact interface spanning over multiple processors.  

Chapter 7 presents results and discussion of 3D-GIMP simulation for indentation using 

parallel processing and multi-level refinement scheme. These results are compared with 

FEM simulation using ABAQUS/Explicit code when possible. Chapter 8 gives 

conclusions arising out of the present investigation and offers some suggestions for future 

work.
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Generalized Interpolation Material Point (GIMP) Method  

GIMP is a technique developed recently by Bradenhagen and Kober [13] to resolve some 

problems associated with MPM. MPM, as a computational algorithm for material 

continuum, was evolved from a method called particle in cell method. Based on the 

historical developments of these methods, we review the particle in cell method, the 

material point method in this chapter and GIMP in Chapter 3. 

 

2.1.1 Particle-In-Cell Methods (PIC) 

According to Harlow [1] the Particle-in-Cell (PIC) method was developed in 1955 at Los 

Alamos National Laboratory for the solution of complex fluid dynamics problems. PIC 

method is a combination of Lagrangian and Eulerian methods that naturally can handle 

no slip interfaces between materials and large slippage and distortions. Amsden [3] has 

developed a PIC code and explained the code in detail. 

The general idea behind the PIC method is to solve the governing equations on an 

Eulerian grid where derivatives can be conveniently defined. Information is then 

transferred from the grid to Lagrangian material particles using mapping functions. The 

material particles move or convect and carry with them certain physical properties. 
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Variations on the method can occur by changing the mapping method involving the use 

of different mapping functions. In Harlow’s classical version of PIC, velocities were 

mapped from the grid to the particle and in a less dissipative version called FLIP (FLuid-

Implicit-Particle) [54, 55] material particle velocities are only updated from the grid 

solution. 

The basic ideas behind the PIC or FLIP methods have been adapted recently by Sulsky, 

Zhou, Schreyer [25] to solid mechanics by revising FLIP-type algorithm. When the 

particle quantities are mapped to grid in preparation for solution at next time step the 

field variables such as velocity gradient, strain and stresses are evaluated at material 

points as opposed to grid in FLIP type algorithm, and the resulting approach is applied to 

impact problems with elastic and elastic-plastic constitutive equations. 

 

2.1.2 Material Point Method (MPM) 

Sulsky and Schreyer [26] presented the general description of the material point method 

(MPM), along with special considerations relevant to axisymmetric problems. The 

method utilizes a material or Lagrangian mesh defined on the body under investigation, 

and a spatial or Eulerian mesh defined over the computational domain. The set of 

material points making up the material mesh is tracked throughout the deformation 

history of the body and these points carry with them a representation of the solution in a 

Lagrangian frame. Interactions among these material points are computed by projecting 

information they carry onto a background mesh where equations of motion are solved. 

They reported that the material point method does not exhibit locking or an overly stiff 

response in simulations of upsetting. 
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The material point method (MPM) has used to solve various dynamic problems in solid 

mechanics [2, 25, 26]. In MPM, a solid body is discretized into a collection of points 

much like a computer image is represented by pixels. As the dynamic analysis proceeds, 

the solution is tracked on the material points by updating all required properties, such as 

position, velocity, acceleration, stresses strains, etc. At each time step, the particle 

information is extrapolated to a background grid which serves as a calculational tool to 

solve the equations of motions. Once the equations are solved, the grid-based solution is 

used to update all particle properties. This combination of Lagrangian and Eulerian 

methods has proven useful for solving solid mechanics problems including those with 

large deformations or rotations and involving materials with history dependent properties 

such as plasticity or viscoelasticity effects [2, 25, 26]. MPM is amendable to parallel 

computation [4], implicit integration methods [5] and alternative interpolation schemes 

that improve accuracy [6]. 

Although MPM uses a background grid and is frequently compared to finite element 

methods, a new derivation of MPM [4] presents it as a Petrov-Galerkin method that has 

similarities with meshless methods, such as Element-Free Galerkin (EFG) methods [65] 

and Meshless-Local Petrov-Galerkin (MLPG) methods [7, 8, 9]. The “meshless” aspect 

of MPM, despite the use of a grid, derives from the fact that the body and the solution are 

described on the particles while the grid is used solely for calculations. The body can 

translate through the grid. Furthermore, the grid can be discarded at each time step and 

redrawn which makes MPM suitable for adaptive mesh methods. It is essential for any 

extension to MPM, such as presented here, to preserve the separation between the grid 

and the particles. MPM, EFG, and MLPG differ in their approach to derive shape 
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functions and in their selection of test functions during numerical implementation [12, 

38]. One potential application of MPM is its use for dynamic fracture modeling. It was 

recently shown that MPM could accurately calculate fracture parameters, such as energy 

release rate [10, 64].  

MPM has found application in the solution of a wide variety of problems, including silo 

discharge [38], membrane stretching [45], landfill settlement [42], elastic vibrations [40], 

collisions [25, 12, 38, 39], and the response of granular materials [7, 12, 39], just to name 

few.

2.1.3 Generalized Interpolation Material Point Method (GIMP ) 

The MPM algorithm derivation has been recently formulated in variational, or weak form 

[2, 25]; providing standard setting for the discretization of the governing equations [65] 

but advantage of generalizing the MPM discretization technique has not been taken [13]. 

PIC methods were developed for providing alternative representation of solution 

variables on grid by using particles, so that these variables can advect through the grid 

avoiding difficult interface tracking. For appropriate correspondence between particle and 

grid, the nature of transferring information needs to be carefully attended [13]. The same 

governing equations presented by , Chen, and Scheryer [2]; Sulsky, Zhou, and Scheryer 

[25] can be derived , without reference to variational form, by conserving momentum on 

computational grid and by conserving mass and momentum in the interpolation between 

particles and grid [54]. But the variational form of governing equation provides a 

consistent framework for generalization of MPM discretization technique and identifying 

similarities to other meshless methods [6,59]. 
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In Generalized interpolation material point method full generality of the variational 

formulation is exploited. The result of this generalization is smoother representation of 

particle data on the computational grid, which has significantly removed the numerical 

artifacts inherent in MPM formulation, which develops when material points fail to 

register in self-similar fashion on computational grid [13]. The use of smoother 

representations of discrete material point data has allowed an entire family of methods to 

be developed and the nature of general derivation suggests denoting the family of 

Material Point Method discretization schemes developed by Bradenhagen and Kober, as 

the Generalized Interpolation Material Point (GIMP) methods [13]. 

 

2.2 Parallel Processing  

The required more accurate and reliable solutions in numerical analysis of various large 

scale structural, fluid mechanics problems and design problems need more 

computationally intensive process, usage of more efficient methods and here 

implementation of  parallel processing technique is one of the best economic alternatives 

[23]. Parallel processing has been used successfully in numerical analysis using different 

methods, such as FEM and boundary element method (BEM) [23] and molecular 

dynamics (MD) [21]. The computational time on parallel processors can be reduced to a 

small fraction of the time consumed by a single processor at the same processor speed. 

Parallel processing generally involves issues, such as domain decomposition/partitioning, 

load balancing, parallel solver/algorithms, parallel mesh generation, and multi-grid [23]. 

Domain decomposition has been widely applied in parallel processing in FEM [19]. With 

partitioning of the overall computational domain, sequential FEM algorithm usually 
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cannot be used directly in parallel processing without some modification, primarily due 

to the coupling of a large number of simultaneous linear equations. Remeshing is 

sometimes needed in each sub-domain. The interfaces of neighboring sub-domains must 

be meshed identically for subsequent communications [23]. These problems are intrinsic 

to certain numerical methods, such as FEM; however, they can be totally or partially 

avoided if other appropriate computational methods are used. For example, the domain 

decomposition is more straightforward for structured meshes, and large systems of 

coupled equations can be avoided, if explicit time integration is used as in GIMP method. 

 

2.3 Contact Mechanics 

 Contact problems are central to solid mechanics, because contact is the principal method 

of applying loads to a deformable body and resulting stress concentration is often the 

most critical point in the body. Contact is characterized by unilateral inequalities, 

describing the physical impossibility of tensile contact tractions and of material 

interpenetration [31]. Historically, the development of the subject stems from the famous 

Investigation of Heinrich Hertz (1882) giving the solution for the frictionless contact of 

two elastic bodies of ellipsoidal profile. Hertz’ analysis still forms the basis of the design 

procedures used in many industrial situations involving elastic contact. Since 1882, the 

subject of contact mechanics has seen considerable development and two major threads 

can be distinguished – from mathematical standpoint, emphasis has been placed on the 

extension of uniqueness of solution, whereas engineers have focused on the solution of 

particular problems in an attempt to understand and influence phenomena that occur in 

practical contacting systems, both on the macro and the micro scale [31].   
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The essence of a contact problem lies in the fact that any point on the boundary of each 

body must either be in contact or not in contact. If it is not in contact, the gap g between it 

and the other body must be positive (g>0), whereas if it is in contact, g=0, by definition. 

A dual relation involves the contact pressure p between the bodies which must be positive 

(p>0) where there is contact and zero where there is no contact. The inequalities serve to 

determine which points will be in contact and which not [31].  Fichera (1964, 1972) 

proved that the complete problem, including the inequalities, has unique solution, when 

the material is linear elastic and many related proofs have since been advanced for other 

classes of contact problem (Duvaut and Lions, 1976). 

Algorithms to handle the contact inequalities are now routinely included in most 

commercial finite element packages, usually based on smoothing of the discontinuities 

involved or the Lagrange multiplier technique. However, body fixed meshes can be 

difficult and time consuming to generate for 3D complex structures and distortion 

associated with large deformation can compromise accuracy [13]. These difficulties have 

spurred the development of methods such as MPM to avoid mesh distortion. Indentation 

involves a contact pair of a rigid indenter and a deformable work piece. The contact 

interaction between these two surfaces is governed by the Newton’s third law and 

Coulomb’s friction law as well as the boundary compatibility condition at the contact 

interface [24, 29]. While MPM can prevent the penetration at the interface automatically, 

it uses a single mesh for the two bodies and single-valued mapping functions between 

background grid nodes and material particles, so that a natural no-slip contact constraint 

will occur. To release the inherent no-slip contact constraint, a contact/sliding/separation 

scheme was proposed by introducing multi-mesh environment as background mesh by 
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Hu and Chen [20]. In multi-mesh MPM, in addition to a common mesh for all objects, 

there is an individual mesh for each of the object under consideration. All meshes are 

identical, i.e. nodal locations are same. The nodal masses and forces are mapped from the 

material points of each object to its own mesh each step. The nodal values are transferred 

to the corresponding nodes in the common mesh. When values at a node of the common 

background mesh involves contributions from two parts, the contact between two parts 

occurs so that this node is defined as overlapped node, otherwise two parts move 

independently. This multi-mesh algorithm can handle sliding and separation for the 

contact pair. However in using the multi-mesh for contact problem in GIMP method, the 

interaction at overlapped node is activated too early before the actual contact of material 

points occurs. This is physically incorrect and cause large errors in GIMP method. A new 

contact algorithm was proposed by Komanduri, Lu, Roy, Wang, Hornung, Wissink, and 

Ma [15] for GIMP to overcome these problems and implemented that in 2D. In this 

investigation that algorithm has been extended to 3D. 
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CHAPTER 3 

Generalized Interpolation Material Point Method Parallel Processing 

3.1 Introduction 

The Generalized Interpolation Material Point (GIMP) is a family of methods resulted 

from generalization of  the Material Point Method (MPM) discrete solution procedures 

for computational solid mechanics using a variational form and Petrov-Galerkin 

discretization scheme [13]. In MPM calculations a numerical artifact noise is expected 

due to lack of smoothness of interpolation functions; it occurs when material points cross 

computational grid boundaries during their coarse of deformation. This noise results in 

non-physical local variations at the material points, where constitutive response is 

evaluated, and seriously degrades the explicit solution in case of large deformations. 

GIMP method developed by Bradenhagen and Kober [13] provide next degree of  

smoothness (C1 continuous) of interpolation functions which is capable of significantly 

eliminating cell crossing noise. In the next section GIMP methods are derived from 

variational form using Petrov-Galerkin discretization scheme and specialization to MPM 

algorithm is shown. 

 

3.2 Governing Equations 

The governing equations in both conventional material point method (MPM) [20, 25] and
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generalized interpolation material point method (GIMPM), Bardenhagen and Kober 

(2004) [13], are briefly summarized in this section. The weak form of the momentum 

conservation equation in MPM is given by 

Ω⋅+⋅+Ω∇−=Ω⋅ ∫∫∫∫ ΩΩ∂ΩΩ ddSdd sbwwcwsaw ss ρρρρ : ,           (1) 

where w is the test function, a is the acceleration, and ss, cs and b are the specific stress, 

specific traction, and specific body force, respectively. Ω is the current configuration and 

∂Ω is the surface with applied traction. The material density, ρ, can be approximated as 
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where h is the thickness of a boundary layer. At each time step, all variables for each 

material point, such as mass, velocity, and force are extrapolated to the grid nodes of the 

cell in which the material point resides. New nodal momenta are computed and used to 

update the physical variables carried by the material points. Thus, material points move 

relative to each other to represent deformation in a solid. A spatially fixed background 

grid is used throughout the MPM computation. MPM has already demonstrated its 

capabilities in solving a number of problems involving impact/contact/penetration. In 

case of large deformation, however, numerical noise, or errors have been observed, 

especially when material points have just crossed cell boundaries resulting in instability 

problems in the MPM simulations [13, 25, 20]. The primary cause for the problem has 

been attributed to the discontinuity of the gradient of the shape functions across the cell 

boundaries [20,13]). To resolve this problem, Bardenhagen and Kober [13] proposed a 

generalized interpolation material point (GIMP) method. In GIMP method, the 

interpolation between node i and material point p is given by the volume averaged 

weighting function 

∫
Ω∩Ω

=
p

dSVS ip
p

ip x)x()x(1 χ , (6) 

Where Vp is the current volume of the material point, )(xpχ is the characteristic function 

of the material point, and Si(x) is the node shape function. )(xpχ is one in the current 

region occupied by the material point p and zero elsewhere. The role of the weighting 

function is the same as the shape function in conventional MPM. The modified equation 

of momentum conservation, Bardenhagen and Kober [13], can be written as  
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∫∑ ∫∑ ∫∑ ∫
Ω∂Ω∩ΩΩ∩ΩΩ∩Ω
⋅+⋅=+⋅ xvcxvbxvσxvp ddV

mddV p p

pp

p
pp

p p

pp

ppp

δδχδχδχ :& (7) 

where vδ is an admissible velocity field, pp& is the rate of change of the material point 

momentum. Eq. (7) can be further discretized and solved at the grid nodes, Bardenhagen 

and Kober  [13]. Herein, the weighting function ipS is C1 continuous under the spatially 

fixed background grid. Consequently the noises associated with material point crossing 

cell boundaries in the conventional MPM can be minimized. Bardenhagen and Kober 

have implemented GIMP method in one-dimensional simulations, further Komanduri, 

Lu, Roy, Wang, Hornung, Wissink , Ma [15] implemented GIMP in two-dimensional 

simulations.  

In this Investigation, GIMP presented by Bardenhagen-Kober and extended for three-

dimensional simulations has been implemented in SAMRAI environment. A refinement 

technique and a parallel processing scheme have been developed using SAMRAI to 

extend the serial GIMPM algorithm to code large scale parallel computing. The 

capability of parallel GIMP computing has been demonstrated by modeling three-

dimensional indentation problem. A contact algorithm has been developed to address the 

contact problem between the rigid indenter and the deformable work piece and a parallel 

solver scheme has been developed for contacts spanning over multiple processors.  

 

3.3 Numerical Implementation for 3D 

We consider the case where initially there are eight material points in a cell for which the 

1D weighting function is depicted in fig.2. In this figure, one node is at the origin and the 

horizontal axes give material point positions normalized by the cell size.  
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Fig. 2: Eight Material points in cell and the weighting function for 1D in GIMP 
method 

 

Fig. 2 is based on the same material point characteristic function and node shape function 

as in Bardenhagen and Kober [13]. To get weighing function in 3D for a material point 

first the values of weighing function along each horizontal, transverse and vertical axis is 

determined using 1D weighing function depicted in Fig.2 and then 3 values are multiplied 

to get 3D weighing function value. It is noted that the computation of the weighting 

function in the deformed state involves some practical difficulties because the integration 

boundaries in Eq. (7) can be difficult to obtain. To circumvent this problem, we assume 

that the shape of the region occupied by the eight material points remains cubical without 

rotation, so that Eq. (6) can be evaluated analytically. This assumption leads to significant 

saving in the computational time while introducing only small errors. Using this 

assumption, GIMP is extended to 3D simulations. In case of large rotations, rotation has 

to be accounted in computations for better accuracy. 

In the processing stage, first a background grid is created based on the input data and then 

material points are placed in cell based upon the shape functions derived from the natural 

co-ordinates. The complete algorithm follow the following steps. 

1. Particle mass can be found as : 
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( )celleachinparticlesofnumbertotal

densityCellvolume ×

Weighing functions ipS are calculated for each particle as described above and then 

lumped mass and momentum cab be mapped from particles to nodes using equation 

(3) and equation (8) below respectively using weighing function calculated in place of 

shape function t
piN x( ). 

Pki = momentumnode= ∑
=

pN

p
ippp SVM

1
(8) 

 Where, pV is the particle velocity 

2. Get total grid point forces:                                              

Where int)f( t
i and  extt

i )f( can be found using equations (4) and (5) and 

damping force for artificial damping can be used to reduce numerical noise. Then 

Zero TOTALt
i )F( boundary condition is imposed on nodes having fixed displacement 

boundary conditions. 

3. Update Information 

• Update grid momentum (for all the nodes): 

 ( )timesteppkpk TOTALt
i

t
i

tt
i ×+=∆+ )F(

• Find new velocity at particles: 

 ∆ pV =∑
=
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i
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i

iptt
i
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Spk
1

• Find new particle acceleration: 
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• Update particle position: 

 Pos = ∆ pV x (timestep) 

• Update particle velocity: 

 Velocity particle = ∆ Ap x (timestep) 

Final step is to update strain using the suitable constitutive law for the case analyzed for 

example elastic only or elastic perfectly plastic etc and then find stresses. For example for 

elastic only case 9 strain components in 3D can be found as following: 

Straintime = ( timestep)/2 
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And then, specific stiffness matrix below can be used to find stress from strain.  

E/(1-ν2)*ρ nu* E/(1-ν2)* ρ 0

Nu* E/(1-ν2)

* ρ

E/(1-ν2) * ρ 0

0 0 G/ ρ

For the next step again a new grid is created or same grid can be used without any 

deformation with all variables at node made zero and then the above 3 steps are 

repeated again. This process will continue until the total time of simulation is 

reached.
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CHAPTER 4 

PROBLEM STATEMENT 

The material point method (MPM) proposed by Sulsky et al. [2, 7, 25, 26] has received 

increased applications, though FEM has been the dominant numerical technique to 

simulate dynamic problems in solid mechanics. MPM has demonstrated capabilities in 

the simulation of impact/contact, penetration, and interfacial crack growth problems. As 

compared to FEM, MPM has the following advantages: 

(1) MPM is able to handle large deformation in a more natural manner so that mesh 

lock-up present in FEM is avoided; 

(2) MPM can easily couple with molecular dynamics (MD) simulations because of the 

use of material points (similar to atoms used in MD) instead of arbitrary sized 

elements in FEM; 

(3) Parallel computation is more straightforward in MPM because of the use of a grid 

structure that is consistent with parallel computing grids; and  

(4) Use of the background grid in MPM enables structured adaptive refinement for local 

interested region.  

Hence for multi-scale large deformation solid mechanics problems, MPM appears as the 

most suitable method but one drawback of the conventional MPM is that when the 

material points move across the cell boundaries during deformation, some numerical 

noise/errors can be generated, Bardenhagen and Kober [13]. Additionally, for 
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problems involving contact [20], MPM is able to provide a naturally non-slip contact 

algorithm to avoid the penetration between two bodies based on a common background 

mesh. While MPM can prevent the penetration at the interface automatically, it uses a 

single mesh for the two bodies and with the use of single-valued mapping functions 

between background grid nodes and material particles a natural no-slip contact constraint 

will occur. To release the inherent no-slip contact constraint a contact/sliding/separation 

scheme was proposed by introducing multi-mesh environment as background mesh [20]. 

In multi-mesh MPM, in addition to a common mesh for all objects, there is an individual 

mesh for each of the object under consideration. All meshes are identical, i.e. nodal 

locations are same. The nodal masses and forces are mapped from the material points of 

each object to its own mesh each step. The nodal values are transferred to the 

corresponding nodes in the common mesh. When values at a node of the common 

background mesh involves contributions from two parts, the contact between two parts 

occurs so that this node is defined as overlapped node, otherwise two parts move 

independently. This multi-mesh algorithm can handle sliding and separation for the 

contact pair. However in using the multi-mesh for contact problem in MPM, the 

interaction at overlapped node is activated too early before the actual contact of material 

points occurs. This is physically incorrect and cause large errors in MPM. One more 

disadvantages of Material point  method is their relatively high computational cost. 

To solve the instability problems associated with the conventional MPM simulations, 

Bardenhagen and Kober recently proposed the generalized interpolation material point  

(GIMP) method and implemented for one-dimensional simulations, Ma, Lu, Wang, Roy, 

Hornung, Wissink and Komanduri implemented the GIMP presented by Bardenhagen 
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and Kober to two-dimensional simulations. Parallel processing has been used 

successfully in numerical analysis using different methods, such as FEM and boundary 

element method (BEM) [23] and molecular dynamics (MD) [21]. The computational time 

on parallel processors can be reduced to a small fraction of the time consumed by a single 

processor at the same speed. A new contact algorithm was proposed by Komanduri, Lu, 

Roy, Wang, Hornung, Wissink , Ma [15] for GIMP to overcome the problems associated 

with conventional MPM for handling contact problems and implemented that in 2D. Also 

after years of scientific development 2D codes are of common use by engineer while 3D 

codes well fitted for practical applications are scares but because of improvement of 

resolution algorithms and computer technology are now in continuous progress [32]. 

Considering all the points discussed above to solve 3 dimensional multi-scale large 

deformation problems in solid mechanics based on the continuum mechanics approach, 

GIMP method algorithm presented by Bardenhagen-Kober and extended to 3D has been 

implemented in SAMRAI environment and a refinement technique and a parallel 

processing scheme using SANRAI have been developed to extend the serial GIMP 

algorithm to be used for parallel computation. Also contact algorithm proposed by 

Komanduri, Lu, Roy, Wang, Hornung, Wissink, Ma [15] for GIMP method has been 

extended to 3D to solve contact problems involving 3D indentation. A parallel solver 

scheme has also been developed for contact interface spanning over multiple processors. 
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CHAPTER 5 

CONTACT ALGORITHM FOR RIGID SURFACE INDENTER 

5.1 Introduction 

Contact problems are critical in solid mechanics, because contact is the principal method 

of applying loads to a deformable body and resulting stress concentration is often the 

most critical point in the body [31]. Indentation involves a contact pair of a rigid indenter 

and a deformable work piece. The contact interaction between these two surfaces is 

governed by the Newton’s third law and Coulomb’s friction law as well as the boundary 

compatibility condition at the contact interface, Oden and Pires (1983), Zhong (1993). 

The essence of contact problem lies in the fact that if bodies are in contact then gap g 

between the bodies is zero (g=0) otherwise it should be positive (g>0). Also the contact 

pressure p at contact should be positive (p>0) and zero where there is no contact [31]. 

While MPM can prevent the penetration at the interface automatically, it uses a single 

mesh for the two bodies and with the use of single-valued mapping functions between 

background grid nodes and material particles a natural no-slip contact constraint will 

occur. To release the inherent no-slip contact constraint a contact/sliding/separation 

scheme was proposed by introducing multi-mesh environment as background mesh [20]. 

In multi-mesh MPM, in addition to a common mesh for all objects, there is an individual 

mesh for each of the object under consideration. All meshes are identical, i.e. nodal 
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locations are same. The nodal masses and forces are mapped from the material points of 

each object to its own mesh each step. The nodal values are transferred to the 

corresponding nodes in the common mesh. When values at a node of the common 

background mesh involves contributions from two parts, the contact between two parts 

occurs so that this node is defined as overlapped node, otherwise two parts move 

independently. This multi-mesh algorithm can handle sliding and separation for the 

contact pair. However in using the multi-mesh for contact problem in GIMP method, the 

interaction at overlapped node is activated too early before the actual contact of material 

points occurs. This is physically incorrect and cause large errors in GIMP method. A new 

contact algorithm was proposed by Komanduri, Lu, Roy, Wang, Hornung, Wissink , Ma 

[15] for GIMP method to overcome these problems and implemented that in 2D and this 

investigation is extending that approach to 3D. Next section describe the contact 

algorithm in detail. 

 

Fig. 3: Schematic of contact algorithm between the rigid indenter and the 
deformable work piece      
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5.2 Contact Algorithm 

Fig. 3 illustrates the contact algorithm for the contact pair between a rigid indenter and a 

deformable work piece. A frictionless contact is assumed in this investigation. In this 

schematic diagram, even though points are used to represent material points but they 

must be understood to be areas occupied by material points in GIMP. At the beginning of 

a time step, a material point is located at point A. At the end of this time step, the material 

point moves to B, if there is no contact interaction. To satisfy the displacement 

compatibility condition, the material point has to be brought to the indenter surface and 

kept in contact with the indenter. The contact velocity correction  c
pV can be determined 

based on the rigid surface orientation indicated by its unit outward normal vector n. The 

final location of the material point is set to C by a contact pressure. Hence, the velocity of 

a material point p under contact can be determined by  
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where c
iF is the contact force on node i, 0

ip and 0
iF are the nodal momentum and force 

without consideration of the contact, respectively. The velocity 0
pV of the material point 

without the consideration of contact is given by 
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If the contact pressure c
qP on the contact material point q is assumed to be constant at 

each material point, we have ∑
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number of material points in contact with the indenter. Since c
ppp VVV += 0 , the contact 

velocity c
pV for material point p is given by 

∑ ∑∆=
N

i

Q

q

c
qiq

i

ipc
p Tm

St PV . (10) 

Eq. (10) can be solved analytically under the physical contact condition 0<⋅nPc
q to find 

the contact pressure at all material points in contact with the indenter. The contact 

pressure is then extrapolated to the nodes from the contact material points to update the 

total nodal forces.  

 

5.3 Numerical Implementation  

 Numerical Implementation of the contact algorithm described above mainly consists of 

three steps. First step is to find the particles in deformable work piece which are in 

contact with rigid surface indenter. Second step is to find the unit outward normal vector 

n to surface of indenter for each contact particle position, which is then used to find the 

contact velocity c
pV for respective particle in contact. Once the contact velocity for 

contacting particles is known, we can proceed to third step, which is to solve for contact 

pressure. This contact pressure is then used as external force applied each time step on 

the contact particles and then rest of the GIMP method computation are done as usual. 

The three steps that are specific to contact problem are described in detail in next three 

sections . 
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5.3.1 Detecting Contact 

First step in solving contact algorithm is finding particles, which are in contact with the 

rigid surface indenter. Let us refer Fig. 4 and assume that material point is at A at the start 

of current step, then projected position B of material point  at the end of step can be 

found with the help of velocity 0
pV it is having without consideration of contact. This is 

done by finding the displacement from A to B by multiplying  0
pV by the time step.

Fig. 4: A schematic of Conical and Spherical Indenters 
 

Fig. 3 is redrawn in fig.4 with more details and also case of spherical indenter is 

considered, here point P2 is same as point B in fig. 3. Now if point P2 lies inside the 

indenter then it is in contact, else not. Numerically it can be processed using the 

flowchart as shown in Fig. 5. 

θ
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Fig. 5: Flow charts for detecting contact with indenter  
 

5.3.2 Finding outward normal vector n and contact velocity c
pV for a material point 

Now if the position of Indenter tip is at P1 and the particle position is at P2 as shown in 

the fig. 4 then to find the outward normal unit vector n to indenter surface at P2 and also 

to find contact velocity c
pV for material point at P2 we can proceed in following steps. 

1. Find a point P4(x4,y4,z4) which is the intersection of  axis of indenter and the 

unit normal vector n to indenter surface passing through P2. For spherical 

indenter P4 is simply P3 center of sphere with x4=x1, y4=y1, and z4= z1+R. 

For conical indenter P4 can be found as x4=x1, y4=y1, and z4= z2 + ( (x2-

x1)2 +(y2-y1)2 )1/2 / tan (θ). 

2. Second step is find a,b,c and d,                                                                                              

where    a = x4-x2 ; b= y4-y2; c= z4-z2; d= ( a2 + b2 + c2)1/2 .

3. Outward normal unit vector n is ( a/d , b/d , c/d). 
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4. Fourth step is find displacement D; particle has to go through to be moved to 

the surface of Indenter i.e. from P2 to P5 as shown in fig. 4                                                                                   

D= (| dist1 – dist2 |) n

where dist1 = | (P4) – (P2)| ; for cone dist2 = | z4 – z1 | * sin (θ) and for sphere 

dist2=R. 

5. Now contact velocity c
pV = -D / (timestep)                                                                                                                                                                       

1.3.3 Solving for Contact Pressure 

Equation-10 above for all the particles in contact can be written in matrix form as: 
c

llk
c

k PCV = (11) 

Where k and l varies from 1 to total number of contact material points and Ckl is 

Coefficient matrix 

∑∆=
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i
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i

ik
kl Tm

StC (12) 

We can find c
kV as described in previous section and can compute coefficient matrix 

using equation-12 easily. Now eqution-(11) above can be solved under physical contact 

condition  0<⋅nPc
q to find contact pressure c

lP .
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CHAPTER 6 

Parallel Computing Scheme Using GIMPM with SAMRAI 

6.1 Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI) 

The Structured Adaptive Mesh Refinement Application Infrastructure (SAMRAI), a 

scientific computational package for structured adaptive mesh refinement and parallel 

computation, is used with the GIMP method for parallel computation of large-scale 

simulations. SAMRAI is chosen because of its similarity in grid structure with GIMP 

method. In GIMP method, the computation is usually independent of the background grid 

mesh so that a structured spatially fixed mesh can be used throughout the entire 

simulation process. This advantage makes GIMP method highly suitable for parallel 

computation, as the domain decomposition for structured mesh can be easily performed 

and no remeshing is required. Thus, the complexity and inefficiency associated with 

parallel processing can be avoided. 

In SAMRAI, the computational domain is defined as a hierarchy of nested grid levels of 

temporal and spatial mesh resolution. Each level in the hierarchy corresponds to single 

uniform degree mesh spacing [17], as shown in Fig. 6 and Fig. 7. Each grid level is 

divided into non-overlapping, logically cubical patches, each of which is a cluster of 

computational cubical cells with overlapping ghost region attached to each patch as 

shown in fig. 7, 9 and 11. In fig.9 a ghost region outside the thick line shown for Level-2 
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consisting four ghost cell layers being attached to actual patch region inside the line. Fig. 

11 shows the ghost region separated by dashed line from actual patch for Level consisting 

of 2-Patches. Cell indices that are based on location of cells in total computational 

domain are used extensively in SAMRAI to manage grid levels and patches. For 

example, patch connectivity is managed by the cell indices. The organization of the 

computational mesh into a hierarchy of levels of patches allows data communication and 

computation to be expressed in geometrically-intuitive box calculus operations. 

Communication patterns for data dependencies among patches can be computed in 

parallel without inter-processor communications, since the mesh configuration is 

replicated readily across processor memories. Inter-processor communications, i.e., data 

communications between patches on the same as well as neighboring levels, are pre-

defined by SAMRAI communication schedules. Problem-specific communication 

interfaces are also provided by SAMRAI. 

SAMRAI supports several data types defined in a patch, such as cell-centered data, node-

centered data, and face-centered data. These data are stored as arrays to allow numerical 

subroutines to be separated easily from the implementation of mesh data structures. User-

defined data structures over a patch, which can be accessed through cell index, are 

supported by SAMRAI. These characteristics make SAMRAI a very flexible parallel 

computing environment for numerous physics applications [28].  

Ideally, from application development point of view SAMRAI should be viewed as a 

collection of classes partitioned into roughly three categories: 1) mesh hierarchy and data 

structure classes, 2) algorithmic classes, and 3) classes that implement numerical routines 

on single patches. Classes from each of the categories are then combined in complex 
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ways to build an application. The way in which classes interact is clearly defined through 

the judicious use of abstract interfaces. Algorithmic and data structure components are  

used as it is  and also after specialization through C++ class derivation. Numerical 

routines are added for specific application requirements by providing numerical kernels 

that operate on patches and invoking them through C++ class derivation. Each patch data 

class is a subclass of a common abstract type that declares the basic operations for 

creation, data motion, and interprocessor communication Garaizar, Hornung, 

Kohn(1998). SAMRAI is like a “toolbox” of more then 300 classes, Fig.6. Detailed 

discussion about actual implementation of  3D-GIMP in SAMRAI is deffered till last 

section of this chapter when other information necessary for better understanding of that 

has  been provided in the next few sections. 

Fig. 6: User view of SAMRAI [66] 
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 6.2 Spatial and Temporal Refinements 

Fig. 7:  Schematic showing two neighboring coarse and fine grid levels with material 
points inside. 

Fig. 8: Schematic of coarse level only as shown in fig. 7. 

Coarse Grid 
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Coarse and fine level overlapping

Ghost Cells 
In fine level 
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Fig. 9: Schematic of fine level only as shown in fig. 7 
 

In the application of SAMRAI to large-scale GIMP method simulations, the techniques 

for refinement, both spatial and temporal, have to be developed to achieve high accuracy 

in areas of high stress/strain gradients while reducing the overall computational time by 

using coarse mesh in regions of low stress/strain gradients. Since a structured mesh is 

used in GIMP method, the refinement can be implemented by imposing fine levels of 

sub-grids at locations of interest, using the approach adopted by Berger and Oliger (1984) 

in SAMRAI. The scheme for the structured grid refinement is illustrated in Fig. 7. The 

cell size ratio, also called the refinement ratio, of two neighboring levels is always an 

integer for convenience. The advantage of this refinement technique is that nesting 

relationships between different levels can be handled. A material point in GIMPM can be 

split into several small material points. Tan and Nairn (2002) [8] proposed a criterion to 

split material points based on local deformation gradient. If the refinement ratio is two in 

each direction, one coarse material point can be split into eight material points in the next 

fine level in 3D case. In this investigation, a similar approach is used as Refinement 

Fine Grid 
 Level 2 
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scheme for communication between two neighboring levels in overlapped region (called 

ghost region). Two data exchange processes, namely Refinement and Coarsening are 

used in communication. Fig. 7, Fig. 8 and Fig. 9 shows two neighboring coarse and fine 

grid levels in 3D GIMP method computations with refinement ratio of two. The thick line 

represents the physical boundary of the fine level with four layers of ghost cells. Initially 

eight or one material point can be assigned to each cell in coarse as well as fine levels. In 

GIMP computation each level is computed independently with physical variables 

communicated through the ghost regions between neighboring levels. Refinement process 

passes information from the coarse level to the immediate fine level, while coarsening 

process will pass information from the fine level to next coarse level. During refinement 

process physical variables at coarse material points are copied to neighboring eight 

material points in the fine level. Here it is assumed that there will be not much change in 

values of physical variables in the immediate neighborhood of coarse material points to 

save computational time and to avoid complicated approach by inducing only small error. 

In coarsening process, values of physical variables for each coarse material point inside 

the thick line are replaced by average values of physical variables of neighboring eight 

fine material points in fine level.  

The refinement techniques can be applied for multiple times at the regions of interest, 

such as the stress concentration regions. A fixed refinement ratio of two between two 

neighboring levels is very effective in reducing the total number of computational cells. 

Fig. 10 shows 3D-section view of nested multi-level refinement and its corresponding 

relation between the total number of cells and the number of grid levels. The cell 
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percentage represents the ratio of the total number of cells with multi-level refinement 

mesh to the total number of cells with one-level finest mesh. 

 

Fig. 10: Schematic of a model with Nested multi-level refinement and reduction in 
the number of cells with number of levels  
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If each fine level occupies one eighth region i.e. is half-length in each direction of the 

region occupied by neighboring coarser level, as shown in Fig. 10(a), the cell percentage 

as a function of the number of grid levels can be calculated, as shown in Fig. 10(b). For 

example, when totally four levels of successive refinements are used the total number of 

cells is about 8% of that of one uniform fine mesh. A reduction in the number of 

computational cells leads to a reduction in the number of material points. Hence, the total 

amount of computational time can be reduced significantly. However, refinement/ 

coarsening communications will cost additional computational time.  

Another advantage of the multi-level refinement is that it allows for temporal refinement. 

Since the computation at each grid level is conducted independently, different time step 

increments can be used for computation at different levels. For example, a smaller time 

step increment can be used for the fine level to improve computational accuracy, while a 

larger time step increment can be used for the coarse level. Since the refinement ratio is 

an integer, the time step increment ratio should also be an integer for convenience in the 

computation and data communication/synchronization. For example, in Fig. 7 when the 

refinement ratios in both directions are fixed at two, the time step increment ratio should 

be set to two as well. As a result, two time step computations are performed at the fine 

level, and results are passed over to the immediate coarse level to couple with the results 

at the coarse level.  

 

6.3 Domain Decomposition 

GIMP method uses structured mesh, consistent with SAMRAI, so that domain 

decomposition is straightforward and no remeshing, in general, is necessary Fig. 11 
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shows a sectioned view of three-dimensional computational domain decomposed into two 

patches separated by a horizontal dash line. The ellipsoidal solid object with different 

boundary conditions applied at different regions is inside this domain/grid. 

 

Fig. 11: A computational domain of two patches in one grid level 
 
After discretization, there are a certain number of material points and part of the 

boundary in a patch, which will be computed individually. It may be noted that patch 

boundary does not have to coincide with the boundary of the material continuum. The 

patch boundary is always chosen to be larger then the region occupied by the material 

continuum so that there is extra space for the material to deform. This will not cause any 

additional computational burden as the material points are created only inside material 

continuum as shown by ellipsoidal region in Fig. 11 and the number of material points 

remains same throughout the deformation to conserve mass. A single processor can 

process each patch and the convenience in creating patches will provide great flexibility 

in parallel processing. 

Communication between two neighboring patches is realized through information sharing 

in the region overlapped by the two patches. The overlapped regions are also called 
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‘ghost’ regions, as shown in Fig 11. The ghost cells are denoted by dash lines. For ease of 

visualization, only the ghost cells overlapped by the other patch are shown and the ghost 

cells along the other three sides of a patch are not shown. On one grid level, patches can 

communicate with each other by simply copying data from one patch to another at the 

same computation time Fig. 11. Using the material point information from the previous 

time step, and the physical boundary conditions, each patch is ready to advance one more 

time step. At this time, the material point information in the outermost layer of the ghost 

cells becomes inaccurate. For instance, one outermost grid node in patch one, marked by 

the circle, obtains information from half the number of material points as compared to 

grid node in patch-2 at same location and after advancing the step it extrapolates to same 

respective material points in each patch. Hence after each step material points in the 

outermost layer and in the next inner layer in the ghost region become inaccurate as well. 

Ghost cells and material points are attached to each patch to ensure accuracy of the 

interior. Each patch can be computed independently for one GIMP method step since the 

momentum conservation equation is solved at each node and there are no coupled 

equations to solve. No data exchange is necessary during the GIMP method step. 

Therefore, different patches can be assigned to different processors for parallel 

processing. After one GIMP method step, the data in the ghost cells will be updated. 

Copying material points to ghost cells involves data exchange between processors, which 

costs small additional time. The more the number layers of ghost cells, the longer the 

time needed for communication, but communication can be performed less frequently. A 

minimum of two layers of ghost cells are necessary to ensure that computation at the 
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material points inside a patch is always correct. If three layers of ghost cells are chosen, 

the communication can be performed after every two increments of each patch. 

With these refinements and domain decomposition schemes for GIMP method, it is 

possible to implement GIMP method into the SAMRAI platform. In this study, the 

refinement ratio is chosen as two. Four layers of ghost cells are augmented to a patch 

such that data communications, including both data exchange on the same level and 

between neighboring levels, are performed every two time-steps for each fine grid level. 

This is critical because data exchange between levels has to be performed when the two 

levels are synchronized. Fig. 12 shows the flowchart advancing all grid levels recursively 

starting from the coarsest level for one coarsest time step. It may be noted that the 

sequential GIMP method algorithm can be used to advance each patch without 

modification. 

 
Fig.12: Flowchart showing advancement of grid levels recursively starting from the 

coarsest to the finest level in GIMP method [15] 
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6.4 Solver for the Contact Algorithm 

In case of indentation problem domain distributed over several processors, contact 

interface surface can be spanned over more then one processor and will require a parallel 

solver technique to solve simultaneous contact equations. Equation-11 in contact 

algorithm cannot be solved without knowing all the material points in contact in all the 

processors.  

In large scale 3-Dimensional contact problem spanning over multiple processors 

assembling the coefficient matrix and contact velocity matrix to solve simultaneously for 

contact pressure is not straightforward as it requires information required for this to be 

gathered from all processors involved in computation. Also assembling the information 

required to know which contact particles are in neighborhood. Moreover, for parallel 

processing to be efficient requires minimum data transfer across the processors or lots 

time will be spend in communication. A very efficient and simplified scheme is 

developed to address this issue. The scheme involves four steps of solving equation-(11).  

1. First step is finding contact material points in each processor and giving them 

their identification number based on the cell indices of the cell they are in. In 

this way the contact material points at same location in two patches in 

overlapping regions will have same identification number. The formula used 

to determine the identification number is 

 Material Point No. =MaxMp*(K*MaxCx*MaxCy + J*MaxCx + I) + p , 

where MaxMp is any high number assumed so that it will never be less then 

total number of material points present in cell at any time during course of 
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simulation, MaxCx is the maximum number of cells along horizontal direction 

and MaxCy is the maximum number of cells along transverse direction in 

entire computational domain. K,J and I are the cell indices of  cell the contact 

material point is in, along vertical, transverse and horizontal directions. There 

can be more then one contact material point inside the cell and p will keep 

increasing by 1 starting from value1 with each new contact material point 

found in same cell. All the variables used here are integer. 

2. Second step is creating coefficient matrix and contact velocity matrix in each 

individual processor based on the contact material points present in that 

processor and sending all this information with identification numbers 

associated with them to a master processor.  

3. In the master processor creating a global list of contact material point 

identification numbers associated with each contact material point from all the 

processor in ascending order and then assembling the global coefficient matrix 

and global contact velocity matrix based on the identification in the global list. 

For example let us assume that global list contains numbers 100, 108 ,116, 

200, 208, 248, … and so on and local list of contact numbers from processor-2 

contains numbers 200, 248, 280, … and so on. Now if we are assembling 

global coefficient matrix from the local coefficient matrices of other 

processors and we require to put value at (6, 4) in global coefficient matrix 

then we should get the value from coefficient matrix of processor-2 at (2, 1). 

As number associated with row 6 and 2 in global and local coefficient matrix, 
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respectively is 248 and with column 4 and 1 in global and local coefficient 

matrix respectively is 200. 

4. Fourth step is solving equation-11 for contact pressure and then sending 

results to individual processor based on the contact material point 

identification numbers associated with each processor. After this each 

processor can do rest of the computation independently as described in 

Chapter 3. In order to increase speed of computations fastest processor is used 

as master processor. 

Creating coefficients matrix and contact matrix first in individual processor for the 

contact material points for that processor correctly is only possible due to sufficient 

layers of ghost cells attached to the patches. Ghost cells facilitate the coupling of 

coefficient matrix and the contact velocity matrix and assembling them into global matrix 

by providing the information from neighboring contact particles from overlapping region 

with neighboring patch. Further, the coefficient matrix obtained is sparse matrix and is 

diagonally dominant.  

The coefficient matrix in equation-11 is sparse so The Portable, Extensible Toolkit for 

Scientific Computation (PETSc) is being used for solving simultaneous linear equations. 

The default matrix representation in PETSc is the general sparse AIJ format. To obtain a 

good performance while assembling AIJ sparse matrix, its is crucial to pre-allocate the 

memory needed for sparse matrix to avoid very expensive dynamic process of allocating 

new memory and copying data in PETSc. One can specify expected number of non-zeros 

for each row in PETSc. In the present investigation number of non-zero for each rows has 
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been calculated while creating local coefficient matrix and then is used to create pre-

allocate the memory and setting values in Global sparse matrix for better performance.  

 

6.5 Implementation of 3D-GIMP in SAMRAI 

The implementation of 3D-GIMP in SAMRAI starts with creating a class MPMSamrai3d 

which is inherited from classes RefinePatchStrategy and CoarsenPatchStrategy and then 

actual implementation of various methods defined as virtual in these parent classes 

should be done. The strategy pattern is the primary mechanism used to encapsulate 

complex algorithms and provide well-defined interfaces between software components in 

SAMRAI, Hornung, Kohn(1998). Most of methods, which are defined virtual in parent 

class are having empty implementation in class MPMSamrai3d, as are not required for 

our case except for the following two: 

virtual void  postprocessRefine( Patch& fine, const Patch& coarse,const Box& 

fine_box,const IntVector& ratio) 

virtual void  postprocessCoarse( Patch& coarse, const Patch& fine,const Box& 

coarse_box,const IntVector& ratio) 

These are required for user defined refinement and coarsening operations during the data 

communication between the levels by SAMRAI. In class MPMSamrai3d the main 

member functions implemented are described in Fig. 13. 

 

void setupCommunication() Setup communication schedules for the functions on 
different levels 

void initiateHierarchy( ) 
Successively finer levels are created and initialized 
with creation assigning of patchdata until the 
maximum allowable number of levels is achieved 
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 void initLevelTimeStep(double) 
 Time step for Successive finer levels are calculated 
and assigned to it until the maximum allowable 
number of levels is achieved 

double advanceMPMHierarchy(); Advance data one time step(Time step of coarsest 
Level) on hierarchy 

void recursivelyAdvanceLevel(int ) 
advancing all grid levels recursively starting 
from the coarsest level and patches on that level 
by calling advancePatchMPM( ) for one coarsest 
time step see Fig. 10 

void advancePatchMPM(Pointer<Patch>, 
int, MPM_Input, double, double,bool ) Advance each patch in level by level time step 
virtual void  postprocessRefine( Patch& 
fine, const Patch& coarse,const Box& 
fine_box,const IntVector& ratio) 

Perform user-defined refining operations. 

virtual void  postprocessCoarse( Patch& 
coarse, const Patch& fine,const Box& 
coarse_box,const IntVector& ratio) 

Perform user-defined coarseninging operations. 

void getFromInput(Pointer<Database> 
db) 

Read input data from specified database and 
initialize class members and other member variables. 

void outputTecPlot(double time,char 
*,int,int) 

Print output variables in a format conducive with 
TecPlot(A visualization software) 

Fig. 13 Main member methods of class MPMSamrai3d and their functions  
 

SAMRAI allows users to incorporate new data types, such as particles on the patches 

without modifying framework with the use of Abstract Factory creational pattern to 

generate and manage concrete data objects. Each patch data class is a subclass of a 

common abstract type that declares the basic operations for creation, data motion, and 

interprocessor communication [17]. The "Patchdata" package provides support for 

various concrete patch data types that reside on an structured AMR patch hierarchy. The 

data types found here include a variety of array-based quantities (cell-centered, node-

centered, face-centered, etc.) as well as an "index" type for managing data associated 
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with an arbitrary collection of cell indices (e.g., irregular structures like embedded 

boundaries or lists of particles), SAMRAI documentation. Hence, the data type most 

suitable for GIMP is index as shown in Fig. 14 . 

Fig. 14 SAMRAI “patch data”: index data [66] 
 

In Fig. 14 “TYPE” is the user defined data type, for 3D-GIMP, which is “Matpoint3”. 

Matpoint3 is a class written in accordance with requirements specified for “TYPE” which 

are manily related to data packing and unpacking for data transfer during parallel 

communication. Matpoint3 represent a cell data and contains a list of variables of data 

type MPM to represent material points. MPM is defined as struct consisting of physical 

variables associated with GIMP such as stress, strain, particle position, velocity etc. 

During the simulation of a solid mechanics problem there can be many material point 

residing inside a cell where as there might be none inside other cells. The dynamic link 

list  of MPM has been very efficient in handling this problem otherwise if fixed array is 
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used we will either end up wasting some extra memory or may fall short of memory for 

accommodating all the material points.  

The method, which perform main task of performing GIMP simulation in SAMRAI 

environment is “int main( int argc, char *argv[] )” written in file main.C and follows the 

steps as described below: 

1. An instance of  tbox_InputDatabase is created to store (key,value) pairs in a 

database as Pointer<Database> input_db = new box_InputDatabase("input_db") 

and then  InputManager::getManager()->parseInputFile(input_filename,input_db) 

is used to parse data from the specified input file into the existing database. 

2. A database namely “geometry_db” is created by providing the information about 

the entire computational grid region, patch grid corresponding to each level from 

input_db. Also an instance namely grid geometry of CartesianGridGeometry is 

created by providing the information regarding the cartison coordinates and the 

indexes of the lower and upper end of diagonal of cubical computational grid of 

coarsest level.  

3. An object of PatchHierarchy namely “hierarchy” is created using grid_geometry 

and then object of MPMSamrai3d is created namely “MPMSamrai3d_model” using 

these and also providing the database with information such as size of actual work  

piece, material properties, boundary conditions etc. as: 

 MPMSamrai3d* MPMSamrai3d_model = new MPMSamrai3d("MPMSamrai3d", 

hierarchy, grid_geometry,  input_db->getDatabase("MPM")); 

4. Mapping is created by assigning each patch on the level to a particular processor in 

the processors used in simulation. Mapping is array of variable of type Processor 
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Mapping and contains the information which patch is mapped to which processor 

for a level. 

5. Levels are created in the hierarchy by providing the information of Level domain 

which is array of boxes representing patches, information regarding ratio to coarsest 

grid for that level and the mapping information as : 

for (i=0 ;  i<numofLevels ; i++)                                                                                        

hierarchy->makeNewPatchLevel (i, ratioToCoarsest[i], levelDomain[I], 

mapping[i]); 

6. Then communication schedules is setup for the functions on different levels as: 

MPMSamrai3d_model->setupCommunication();          

7. Now the hierarchy is initiated by creating material points  inside the region actually 

occupied by problem domain inside the computational domain as :  

MPMSamrai3d_model->initiateHierarchy( );                                                                      

and then each level time step is initialized using:                                    

MPMSamrai3d_model->initLevelTimeStep(Coarse_Time_Step);    

In method initLevelTimeStep( Coarse_Time_Step ) timestep for coarsest level is 

calculated depending upon the wave speed and cell length for that level. After that, 

time step for successive finer levels can   be  calculated  by using the  ratio  to  the 

coarsest level. Also user  can  specify  time step  for Coarsest  level externally  by 

using the variable “Coarse_Time_Step” then time step for successive level can be 

calculated as usual.
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8. Finally  loop can be used   starting  from time zero till the end time specified  in the 

input for the simulation calling advanceMPMHierarchy( ) each time with increasing 

time by time step of coarsest level as : 

while ( (mtime <= end_time)) { 
 

mtime=MPMSamrai3d_model->advanceMPMHierarchy(); 

 MPMSamrai3d_model->outputTecPlot(mtime, file_name, 

 TecPlotStep,TrackPtStep); 

 }

Here mtime is computed each time by adding coarsest time step in it. The  method 

advanceMPMHierarchy( ) further calls  recursivelyAdvanceLevel(int ) method for 

advancing  all  grid  levels and  patches on  that level  recursively starting from the 

coarsest level for one coarsest time step see Fig. 10. In Fig. 10 the method used for 

advancing patches is:   

void  advancePatchMPM (Pointer<Patch> patch, int indexData_id, MPM_Input inp, 

double levelTime, double levelTimeStep, bool isFinestLevel) 

This method performs the 3D-GIMP computation for that patch by accessing the 

patch data for  that  patch  using  indexData_id  and  use the levelTimestep and 

MPM_Input information’s. This is described in Chapter 3 in detail.  Also for 

communication between the levels as shown in Fig. 10 user defined methods: 

MPMSamrai3d:: postprocessRefine( Patch& fine, const Patch& coarse,const Box& 

fine_box,const IntVector& ratio)                             and  

MPMSamrai3d:: postprocessCoarsen( Patch& fine, const Patch& coarse,const Box& 

fine_box,const IntVector& ratio) ; 

are used by SAMRAI. 
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The method outputTecPlot( ) is called to print desired physical variables such as 

material points position, displacements, stresses, strains etc in a format such that file 

can be directly input into Tecplot for data visualization.   
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CHAPTER 7 

Results and Discussions 

A Beowulf Linux cluster of 10 identical PCs was used in the simulations. Each PC has a 

Pentium 4 processor with a 2.4 GHz CPU, 512 MB RAM except that the master node has 

a memory of 1GB. A gigabit switch is used to connect the network. 

First example has been included here to demonstrate the significant reduction in 

computational time with parallel processing and then several indentation examples have 

been included here to demonstrate the capability of 3D GIMP parallel code developed 

using SAMRAI for solving relatively large deformation multi-scale contact problems in 

solid mechanics. Fig. 15 is the schematic of indentation model used in the examples 

involving rigid surface indenter. Fig. 15(a) shows the schematic of complete model with 

base fixed zero displacement in Z-direction displacement boundary constraint applied at 

base as shown and indenting at the middle of top surface with indenter with applied 

velocity V that is varying with time as shown in Fig 15(b). Also it can be seen from 

Fig.15 (a) that quadrant 1,2,3 and 4 are symmetrically aliened   and one of these can be 

used for simulation considering symmetric boundary condition to save computational 

time and using computer memory efficiently. It should be noted that this investigation is 

part of ongoing research in multi-scale simulation spanning from atomistic scale to 

macro/continuum scale via mesoplastic (micro) scale and the objective here is to bridge 

the gap between these scales using continuum mechanics approach. This investigation is 
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to be used to be coupled with Molecular dynamics and Meso-plasticity. Which are 

sensitive to crystal orientation and there for it is essential for this investigation to be able 

to run complete 3D models. Therefore, examples including both considering symmetric 

boundary and conditions and complete model has been included. The indenter as shown 

in Fig. 15(a) is not necessarily conical and spherical indenter has been used. Material for 

deformable work piece is aluminum for all the cases involving rigid surface indenter 

discussed here with Young’s Modulus 70GPa, Density 2.7g/cm3 and Poisson’s ratio 0.33 

and Yield Strength of 270MPa. FEM (ABAQUS) is being used to compare the 3D GIMP 

results and for validation. Tecplot is used to plot the stresses obtained from results of 

GIMP 3D and FEM. For few figures triangulation feature in tecplot is used to fill the 

region between the points with interpolated values. 

Fig.15: Loading conditions for a simple indentation problem 
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7.1 Reduction in Computational Time with parallel processing 

The main purpose and advantage of parallel processing is to reduce computational time in 

simulation and it is observed that parallel processing scheme used in this investigation 

reduces the computational time significantly but for that, some modification in the 

SAMRAI has to be made.  

 

Fig.16: Loading conditions for a simple indentation problem  
 

This is demonstrated in the first example where an indentation problem is simulated, 

where pressure is applied on an area at the center of top surface of cubical work piece 

which is fixed at bottom surface to move along vertical direction as shown in Fig. 15. The 

domain of the work piece can be discretized into patches considering that number of cells 

in the each patch grid should be nearly same. For example, the work piece domain can be 

discretized into 4 patches as shown in Fig. 16 above denoted by numbers 1, 2, 3 and 4. 

Each patch is handled by a single processor in this example. All six  simulations are 

conducted with varying number of patches as 1, 2, 3, 4, 6 and 9 and time taken per step is 

calculated by taking average of 100 steps during each simulations as shown in Fig. 17. 
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The work piece dimensions are 5.632x10-3nm × 5.632 x10-3 ×1.6x10-3nm with cell size 

64×64×64nm3 for quarter model. Initially it was observed that using parallel processing 

most of the time computational time was increasing during simulation because of 

increase in communication time as shown by curve “SAMRAI without Modification” in 

Fig. 17. During parallel computation while performing data transfer between patches 

related to overlapping region, when SAMRAI fills the ghost region with correct data 

from some other patch, it first locates that cell whose data is to be changed based on its 

indices in the link list of ghost cells local to that processor. This search operation was 

taking lot of time as each time for new cell it was starting search from the first element in 

the list. Also time consumed in search was dependent on how big is the list and where in 

the list that particular cell is located, that is why sometimes with the increase in number 

of patches the processing time was increasing and sometimes reducing. To resolve this 

problem SAMRAI was modified so that in each time of new search instead of starting 

from beginning it starts search where it left, as most of the time for our case the ghost cell 

indices are in sequence. The search operation was made smart enough to search forward 

or backward in the list depending upon the increasing or decreasing order of index of cell 

to be searched, by having an iterator in both directions and for no sequence found it will 

start search from beginning. It is observed that with this modification in general there is a 

significant reduction of time with increase in number of processors as is shown in Fig. 17 

by curve modified SAMRAI. The amount of reduction of time keeps reducing with 

increase in number of processors involved, owing to the decrease in amount of cells 

reduction handled by each processor and increase in communication time though very 

small. Communication time has been observed not to depend much on the number of 
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processors involved in simulation and was 1 or under 1 sec for most of the cases in 

example except with 3 processors where it was between 1 and 2 sec’s. This is believed to 

be because of increase in search operation described above due to increase in number of 

cells not in sequence. The least unit of time here is sec’s so further details not possible 

but it is has been observed that variation in communication  time for a simulation 

problem is never more then 1sec’s with increase in number of processors if load 

balancing is done carefully. 
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Fig.17: Time taken per step for number of processors 
 

Though parallel processing in 3D-GIMP is very effective in reducing computational time 

but with contact solver designed to solve the contact equations in one processor, some of 

the advantages parallel processing is lost and with the increase in number of contact 

equations, the amount of time saving keeps decreasing.  One way two solve this problem 

is to use processor with high processing speed to solve contact equations and other way is 

to use parallel processing for solving contact equations. 
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7.2 Validation of 3D-GIMP results with parallel processing and advantages over 
FEM  
 
The second example discussed here is to simulate the indentation problem using rigid  

conical indenter and considering quarter model only using symmetric boundary 

conditions as shown in Fig. 18(a). This model uses 4 patches spanning over 4 

processors with uniform grid with uniform cell sizes of 64 nm. The work piece 

dimensions are 1920 nm × 1920 nm × 960 nm for quarter model. The material of 

work piece is aluminum and is assumed linearly elastic throughout the simulation. 

The time step is 1.03453×10-12s. This model is used to validate results from 3D GIMP 

using parallel computation scheme and contact algorithm developed for 3D contact 

problem developed in this investigation. The contact interface at larger depth spans 

over multiple processors and which proves the capability of parallel contact solver 

scheme in accurately handling such cases.  

 

Fig.18 (a): Schematic of indentation Model used with 4 Patches and indenter 
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Fig. 18(b): Load Displacement Curves for Indentation problem. 

 

Fig. 18(c): 3D view of model at 3800 step from GIMP 
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Fig. 18(d): Side view of model at 2800 step from FEM 
 

Fig. 18(e): Side view of model at 2800 step from 3D GIMP 
 

Fig.18: Comparison of results from GIMP and FEM  
 

It is observed that at larger depth of Indentation FEM suffers excessive mesh distortions 

and finally aborts but 3D GIMP runs without any problem as shown by Load –

Displacement curves obtained in Fig. 18(a). The Load-Displacement curve obtained from  

GIMP 3D is having some noises but for FEM, the results are plotted after every 50 steps 

and look relatively smooth. The noises are present because of discontinuities involved 

and for FEM results are better because of doing appropriate smoothing of discontinuities 

[31]. The noises are observed to be reduced by using slower velocities and refinement. 

The noises can also be reduced by selecting suitable penetration factor and introducing 

artificial damping (numerical damping) in GIMP 3D.In this example a penetration factor 
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of 0.4 is used which is found to be more effective in eliminating noises for one particle 

per cell as can be seen in examples that will be followed. This demonstrates the capability 

of GIMP in handling excessive distortions. Fig. 18(d) and (e) are Side views of the model 

with contours plots of normal stresses in Z- direction at 2800 time increments for GIMP 

and FEM simulations for closer comparison. The difference in stress values is less then 

10%. The indentation depth reached at this stage is about 415 nm approximately. It 

should be noted that the FEM mesh has started distorting even at 2800 steps and 

simulation finally aborted at 3240 increments due to excessive element distortion. The 

GIMP simulation did not encounter this problem. Fig. 18(c) shows the GIMP stress result 

after 3800 increments with indentation depth of 571nm.  

 

7.3 Validation of 3D-GIMP results with two levels of Refinement and with one 
particle per cell 

 

The 3D-GIMP simulation simulations can also be done using initially one material point 

per cell instead of eight. In principle the only thing changes is the weighing function for 

this case which can be easily computed using same material point characteristic function 

and node shape function as in Bardenhagen and Kober [13] , Fig. 19. 

 

0.0

0.2

0.4

0.6

0.8

1.0

-1.5 -1 -0.5 0 0.5 1 1.5

P0



64

Fig.19: One Material points in cell and the weighting function for 1D in GIMP 
method 

A simulation with one particle per cell takes less computation time and results are 

generally same as compared to eight particles per cell but have been observed to have 

problems of separation at relatively large tensile strain for very large deformation but still 

have been observed to simulate deeper indentation correctly in comparison with FEM 

without problem. The problem of separation can be resolved by tracking the displacement 

of the particle corners but has not been incorporated yet. It has been observed that 

difference in maximum stress is around 10% between the simulation conducted with 

eight particle per cell and with one particle per cell and that is because of having a point 

more closer to indenter tip in eight particle per cell as compared to one particle per cell 

but except that the over all region there is not much difference. There has been observed 

no change in load displacement curves. Considering this further simulation has been 

conducted using one particle per cell to save computation time . 

This example also demonstrates the advantage of 3D-GIMP over FEM in simulating deep 

indentation or deep drawing problem but using one particle per cell in GIMP. The 

simulation conditions are same as above example Fig. 18(a) except the indenter used in 

this case is rigid surface spherical indenter and instead of 4 patches only 1patch per level 

is used. The simulation is conducted with first using one level and then using two Levels 

of refinement and results are compared with FEM using coarse mesh having element size 

of 1.28×1.28×1.28 µm3 same as cell in 1 level GIMP grid and with fine mesh having 

element size of 0.64×0.64×0.64 µm3 same as cell in 2nd level in GIMP. The dimensions 

of work piece are 56.32µm×56.32µm×32µm for quarter model and material is aluminum. 

The radius of spherical indenter is 3.4µm. Time step value for coarse level is 2.06906x10-
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11s. FEM quits (Fig. 20(b)) earlier then GIMP and the maximum depth it reaches is 

around 3.114 µm with fine mesh but valid results can only be obtained until some steps 

before it. 3D-GIMP simulation was stopped at 3.5 µm indentation depth as indenter is 

now fully inside the work piece. Though practically for indentation purpose we don’t go 

for such a depth but the important point here is that for simulating other large 

deformation contact problems such as deep drawing process GIMP can handle larger 

distortions then FEM. Also it is observed that generally there is not much difference in 

load-displacement curves with refinement except FEM quits early with coarse mesh but 

the difference in stresses is significant and is more then 30% for maximum stress values 

as shown in Fig. 20(f), (g), (h) and (i). For GIMP 3D for one level some noises are 

observed as seen in Fig. 20(a) but for FEM the results are obtained skipping few steps  so 

it is not possible to tell if same problem is there or not. Stress distribution is much 

smoother for fine mesh. Here the stress color bars in Figures does not show the maximum 

stress values and has been adjusted to show transition of stresses from fine level to coarse 

and has been observed to be very smooth.  Hence, in nutshell to better simulate large 

deformation contact problems fine mesh is preferable. Refinement can be easily achieved 

in 3D-GIMP without using fine grid for whole region and results in a lot of saving in 

computational time and computer memory requirement. The results with coarse grid (Fig. 

20(i)) and with refinement (Fig. 20(g)) are compared with FEM coarse (Fig. 20(h))  and 

fine mesh (Fig. 20(f)) and compares very well. 
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Fig. 20(a): Comparison of Load Displacement curve from FEM and GIMP3D 
 

Fig. 20(b): Zoomed view of model from FEM (ABAQUS) at 3.114µm indentation 
depth   
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Fig. 20(c): 3D view of model from 3D-GIMP with two levels at 3.114µm indentation 
depth   

Fig. 20(d): Side view of model (scattered plot) in Fig. 20(b)    
 

Fig. 20(e): Side view of model in Fig. 20(b) 
 

σzz (MPa)
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Fig. 20(f): Side view of model from FEM with Fine Mesh at 2.73µm indentation 
depth  

 

Fig. 20(g): Side view of model from GIMP with 2 Levels at 2.73µm indentation 
depth  

 

Fig. 20(h): Side view of model from FEM with Coarse Mesh at 2.73µm indentation 
depth  
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Fig. 20(i): Side view of model from GIMP with 1 Levels at 2.73µm indentation depth 
 

Fig. 20: Comparison of results from GIMP 3D and FEM  
 
Hence, from above two examples it can be summarized that the maximum difference in 
load-displacement values for Indentation problems has been observed to be less then 10% 
and difference in maximum stress values has been observed to be around 10 % for 
simulations using 8 particles per cell and 22% for 1 particle per cell. This high difference 
in the stress values in case of simulations run with the use of 1 particle per cell can be 
explained based on the fact that in FEM the node associated with maximum stress value 
is at the indenter tip whereas in GIMP the nearest particle is about half cell length away 
from the indenter tip. A penetration factor of 0.4 has been observed to reduce noise in 
Load-Displacement curve associated with indentation problems in GIMP significantly 
and has been used in all simulations. 
 

7.4 Results with three levels of refinement consisting four Patches each level in 
3D-GIMP using 4 Processors and comparison with FEM  
 

This fourth example included here is to demonstrate the capability and advantages of 

using multi-level refinement scheme in addition to capabilities demonstrated in previous 

example. Here full model is considered for simulation as shown in Fig. 15 and Fig. 21 (a) 

σzz (MPa) 
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with three levels of refinement as shown in Fig. 21(a) and each level is consisting of 4 

patches handled each by single processor from the 4 processors used for the simulation. 

This model also demonstrates the capability of parallel contact solver in handling 

computations accurately when the patches are arranged in this configuration. Hence, the 

first and second examples with this most varied and common arrangement of patches 

shows the capability of parallel contact solver in handling any kind of such 

configurations accurately. The material of work piece is aluminum and is assumed 

linearly elastic throughout the simulation. 

 

Fig. 21: 3D Sectioned view of  indentation showing (a) three levels of refinement and 
(b) the indenter velocity history 

 

The area below the indenter where high stress gradients are expected is refined, as shown 

in Fig. 21 (a). A prescribed velocity applied on the indenter, is shown in Fig. 21(b). Work 

piece size is 5632×5632×1600nm3. Fig. 22(c), Fig. 22(d) and Fig. 22(e) shows results at 

approximately 166.8nm depth from GIMP 3D and Fig. 22(f) shows results from FEM 

using fine mesh(transitioned). At same depth for comparison. Cell length in all 3 

directions for fine, coarse and coarsest levels in GIMP is 16nm, 32nm and 64nm and 

2.5x10-10 1.2x10-9 1.6x10-9
(s)
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minimum Element length in FEM is 15nm. The value of coarsest time step is 

1.03453x10-12 s. 
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Fig. 22(a): Comparison of Load Displacement curve from FEM fine and GIMP3d 
3levels 

0

1

2

3

4

5

6

0 50 100 150 200
Depth(nm)

Lo
ad

(m
N)

GIMP-1Level

FEM-CoarseMesh

 
Fig. 22(b): Comparison of Load Displacement curve from FEM and GIMP3d 

Coarse 
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Fig. 22(c): Nanoindentation model from GIMP3d with  Normal stresses in Z-axis at 
166.8nm indentation depth 

 

Fig. 22(d): Sectioned view with Normal stresses along Z-axis from 3D GIMP with 
Three Levels of refinement at 166.8 nm indentation depth, scattered plot 

Fig. 22(e): Sectioned view with Normal stresses along Z-axis from 3D GIMP with 
Three Levels of refinement at 166.8 nm indentation depth  
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Fig. 22(f): Side view with Normal stresses along Z-axis from FEM with fine mesh at 
166.8nm indentation depth. 

 
Fig. 22: Comparison of results from GIMP 3D and FEM  

 
Simulation is conducted using one Particle per cell. The maximum difference in load at a 

given displacement curve values for Indentation problems has been observed to be less 

then 8% and difference in maximum stress values has been observed to be 23.5%. This 

high difference in the stress values is associated with simulations performed using one 

particle per cell and is not much for the simulations having eight particles per cell 

initially where difference has been observed to be less then 10%. The rest of the region 

except for indenter tip stress contours from GIMP compares very well with FEM. Load- 

displacement curves have been observed to vary very little with refinement as is shown in 

Fig. 22(a) and 22(b) but are much smoother for fine mesh.  

σzz(MPa) 
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Fig. 23(a): Side view with Normal stresses in Z-direction from FEM with coarse 
mesh at 166.8nm   indentation depth 

----

Fig. 23(b): Side view with Normal stresses in Z-direction from 3D GIMP with coarse 
grid at 166.8nm indentation depth. 

 
Fig. 23: Comparison of results from GIMP 3D 1-level and FEM coarse 

 

Stress has been observed to be sensitive to mesh refinement as is shown in Fig. 22 and 23 

with difference in the maximum stress values in fine and coarse mesh to be around 34% 

in FEM and 34.7% in 3D GIMP. The difference in maximum stress values has been 

observed to be 24.3% between 3D GIMP one level results and FEM coarse results.  The 

element size of coarse mesh used in FEM and cell size of uniform coarse grid used in 3D 

σzz(MPa)

σzz(MPa) 
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GIMP in one level to simulate this same problem for comparison stresses is 

64×64×64nm3.

7.5 Validation of 3D-GIMP results considering bilinear plastic material behavior 

Next example considers elastic-plastic behaviour of material. A plasticity subroutine has 

been implemented assuming bilinear plasticity and is used with refinement scheme. A 

quarter model with model size 4x4x7 mm3 is used for indentation considering symmetric 

boundary conditions and  pressure P= 400MPa is applied on an area 1x1mm2 as shown in 

Fig. 24. Material used for work piece has Young’s modulus 70GPa, density 2.71g/cm3

and Poisson’s ratio 0.33 and yield strength of 60MPa with hardening modulus of 3.5GPa. 

Fig. 24 Schematic of the model used for indentation 

Simulations are conducted in FEM and GIMP with first coarse mesh (FEM) or 

grid(GIMP) with element(FEM) or cell(GIMP) size of 0.5×0.5×0.5 mm3 and then in 

FEM with fine mesh of element size 0.25×0.25×0.25 mm3 and in GIMP with 2-Levels of 
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uniform cell size of 0.5×0.5×0.5 mm3 in coarse and 0.25×0.25×0.25 mm3 in fine level. 

The normal stresses obtained for model along Z-axis obtained compare very well with 

results from FEM as shown in Fig. 25 and Fig. 26. 

Fig. 25: Comparison of normal stresses in Z-direction from FEM and GIMP coarse 
 

Fig. 26: Comparison of normal stresses in Z-direction from FEM and GIMP fine 
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For closer comparison the time histories of important physical variables such as Von 

Misses stress, normal stresses along Z-axis (σzz), equivalent plastic(EQPL) strain and 

Principle stresses along x-axis(Sxx) which will be equal to principle stresses along y-axis 

are plotted for a point close to indenter tip in Fig. 27. 

 

-400

-350

-300

-250

-200

-150

-100

-50

0
0.0E+00 2.0E-06 4.0E-06 6.0E-06 8.0E-06 1.0E-05 1.2E-05

Time(s)

Sz
(M

Pa
)

Gimp3d1Level
Gimp3d2Level
AbqCoar=1lev
AbqFine=2Lev

 

Fig. 27(a): History of Principle stresses along z-axis 

0

50

100

150

200

250

300

0.0E+00 2.0E-06 4.0E-06 6.0E-06 8.0E-06 1.0E-05 1.2E-05
Tim e(s)

Vo
nM

ise
s(M

Pa
)

Gimp3d1Level
Gimp3d2Level
AbqCoar=1Lev
AbqFine=2Lev

 
Fig. 27(b): History of Von Messes stresses 
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Fig. 27(c): History of Equivalent Plastic strain 
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Fig. 27(d): History of Principle stresses along x-axis 

Fig. 27: Time histories of important physical variables 
 

It is observed from the plots above that there is a lot of difference in the results obtained 

from fine and coarse mesh in 3D-GIMP at the later stages as compared to FEM, which 

shows that 3D-GIMP, is more sensitive then FEM to cell size. Other reason could be that 

to compare the results at the same location as coarse particle in 3D-GIMP 1-Level only  
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an average of surrounding particles is taken in case of 2-Levels in 3D-GIMP whereas in 

FEM centroid of the element is used and that can induce differences. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions  

1. To conduct multiple length scale simulations involving large deformations, a parallel 

computing scheme has been presented using GIMP 3D method under SAMRAI 

parallel computing environment in which multi-level grids are used for spatial and 

temporal refinements. 

2.  A refinement/coarsening algorithm, based on material points of GIMP in two grid 

levels, has been developed for communication between neighboring grid levels of 

different refinements. With increase in the refinement levels, as well as decrease in 

the time step increments, the computational accuracy is greatly improved in the 

region of interest while the overall computational time is reduced. The computation at 

each grid level is performed recursively to ensure that the refinement and coarsening 

are performed when the two neighboring levels are synchronized. 

3.  For the nanoindentation problem, a GIMP method algorithm for the contact between a 

rigid indenter and a deformable workpiece was developed. A reasonably good 

agreement between GIMP method and FEM results was reached, validating the 

contact algorithm presented in this investigation. 
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4. 3D-GIMP simulations were conducted for a indentation problems using multiple 

processors in parallel computations to study the effect of parallel computation on 

computation time. Parallel processing using SAMRAI has proved to be very effective 

in reducing computation time in simulations with very little increase in 

communicational time with increase in number of processors. 

5. Simulations were conducted to validate the 3D-GIMP results using parallel 

computations and with a few levels of refinement for 3D indentation problems. In 

general 3D-GIMP results agree very well with FEM results. 

6.  Simulations for indentation problem were conducted using one particle per cell and 

with eight particles per cell; with conical indenter and with spherical indenter, and 

results agree very well with FEM results for all the cases. 

7. As the deformation is increased, GIMP method continued to execute while FEM 

aborted due to element distortion. In addition, GIMP method results are stable. Thus, 

GIMP method is able to handle relatively large deformation problems. 

 
8.2 Future Work 

1.  The present code should be extended to elastic-plastic (multi-linear) and meso-plastic 

materials.  

2. To simulate multi-scale simulation spanning from atomistic to continuum scale via 

meso-plasticity present code should be coupled with MD code after introducing 

meso-plasticity in it.  
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3. To reduce computational time present contact solver should be modified to solve 

contact equations in parallel. 

4. To resolve problems related to separations for simulations involving large strains 3D-

GIMP code should be modified to track the displacement of the particle corners. 

5. To simulate indentation problems involving other common type of indenter i.e. 

Bercowich indenter subroutines should be added to the code to find contact normal 

and detecting contact with this type of indenter. 

6. Similarly, other features can be added and GIMP algorithm can be modified to 

simulate other problems in Solid mechanics without need to modify parallel 

processing and refinement part. 
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