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CHAPTER 1 

1INTRODUCTION 

1.1 Background 

The aerial tow system is a relatively common flight configuration.  It is a necessity for 

gliding aircraft to achieve altitude; it is common to have targets towed by aircraft for 

weapons testing and target practice; it is even being proposed by NASA as a platform for 

reusable launch space-vehicles. The configuration has been proven to be well suited for 

these uses, though they are primarily a means of transportation of the towed vehicle.   

 
Figure 1.1 The aerial tow system 
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The aerial tow system is composed of three major components (1) host vehicle, (2) 

aerial tow vehicle (ATV), and (3) connecting cable, figure 1.1.  In general, the host 

vehicle is larger than that of the tow vehicle and provides the thrust for both aircrafts.  

The cable is connected to both the host vehicle and the ATV in such a way that both 

aircraft can safely maintain flight.  It is not uncommon in this configuration for the 

connecting cable to be hundreds or thousands of feet in length.  As a result, the cable 

orientation is subject to change due to variations in the freestream conditions, cable 

dynamics, and the dynamics of the two aircraft s.  The thrust produced by the host 

aircraft’s engines is directly applied to the host aircraft and indirectly applied to the ATV 

thru the tension in the connecting cable.  The tension in the cable produces a force on the 

ATV that may differ from the host vehicle thrust in magnitude and direction depending 

on the cable orientation.  The variable cable force on the ATV causes a dynamic response 

resulting in further deformation of the connecting cable.  Clearly, the conditions effecting 

these variations are coupled.  Historical research suggests that, in general, the system is 

stable, and given sufficient time the disturbances in the system will damp out.  However 

the degree to which the atmospheric and dynamic alterations affect the system depends 

principally on the system components and is, of yet, not well known.    

Recently the aerial tow system has been chosen as a means to carry out the 

measurement of atmospheric conditions in close proximity to the ocean surface.  The 

proposed system calls for a general aviation aircraft to tow the measurement 

instrumentation equipped ATV near (or approximately 30 feet) above the ocean surface.  

The emphasis of this system is the controlled altitude of the ATV.  This is a deviation of 
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the aerial tow system from its roots as a means of transportation.  Using the aerial tow 

system simply for transportation places no strict requirement on the motion of the ATV.  

The aerial tow system is proposed as a safer, more robust alternative for recording 

oceanic atmospheric conditions.  The traditional method necessitates an aircraft fitted 

with the appropriate sensory equipment fly immediately above the ocean surface. The 

aircraft’s autopilot cannot be relied upon to safely maintain such altitude in this 

environment. Variable terrain and unknown atmospheric conditions could, indeed, result 

in disaster for the aircraft.  As a result, the mission puts forth a tremendous workload 

upon the pilot.  Due to the intense flight regime and pilot stress, the testing is usually 

limited to short duration and is confined to calm conditions.  

The implementation of the aerial tow system as a method to take oceanic atmospheric 

measurements would allow the piloted host aircraft to fly at a safe height above sea level 

(such as 250 to 2000 feet) under the control of the aircraft autopilot while towing an 

unmanned sensory aircraft a matter of feet above the ocean. This would allow for longer 

tests runs, eliminate pilot stress, expand the mission envelope, as well as reduce the 

worst-case scenario to the mere loss of the unmanned aircraft, assuming this flight 

configuration is suitable for the task at hand.  

Given the possibility of difficult ocean and atmospheric conditions, such as swales and 

wind gusts, the controllability of the tow system is in question.  The system component 

interactions are complex, and neither the system configurations for the most 

advantageous performance nor the circumstances at which the system fails to adequately 
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perform are obvious. As a result, a system simulation preceding construction and testing 

is desirable.   

Each component of the aerial tow system must be mathematically modeled in order to 

build a numerical system simulation.  Simultaneous derivation of the component 

equations of motion will produce the governing equations for the aerial towed system 

from which a response to initial and applied conditions can be simulated.   

The utilization of a system simulation would allow for prediction of the system’s 

ability to perform under various conditions such as, wind gust, wave shape, and host 

aircraft oscillation.  Previous aerial tow systems do not place such heavy emphasis on the 

maintenance of the altitude of the ATV.  The unique mission of near ocean atmospheric 

measurement has driven the design of a mathematical simulation of the low altitude aerial 

tow system. 

1.2 Design Goals 

The objectives of this study is to create a dynamic simulation of the aerial tow system 

with the main focus surrounding the derivation of the system and component equations of 

motion in both two and three-dimensions.  The study includes mathematical models for 

each of the system components as well as the methodology for the derivation of the 

equations of motion for each of the component models mentioned.  The system will be 

adequately designed such that the effect of the following conditions on the tracking 

ability of the ATV may be simulated:  

• Variable surface oscillations (ocean swales) 



 5

• Variable host vehicle altitudes 

• Lateral gusts 

• Host vehicle oscillation 

The decisions upon the design of the system will be made with the versatility of the 

simulation in mind, in the hopes that this research will assist with a wide range of future 

studies of aerially towed systems, underwater towed systems, or cable dynamics. 

1.3 Literature Review 

The study of the tow system and its components has been well documented. The 

interest of cable dynamics, alone has produced analysis on the topics of cable oscillation 

and damping due to uniform flow, three-dimensional cable shaping, cable drag model 

validity, and numerical simulations of cable dynamics. Refs 1-4.  However, the integrated 

effect of the ATV is necessary to simulate the aerial tow system.   

As various tow systems come into existence study of the systems have flourished.  

Papers on tow vehicle controllability, stability augmentation, and release and retrieval 

dynamics build upon the dynamics of the cable in a flow, Refs 5 and 6. The investigation 

of tethered aerostat dynamics and underwater towing illustrates the range of the 

application and research of the tow system, Refs 7-9. Each of these references provides 

greater understanding of the tow system and its components.  
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1.3.1 Cable Dynamics 

The cable has found its way into many applications involving fluid flow through out 

the years.  As a result, countless papers have been written for discussion on various cable 

related topics. In general, the research was initiated for reasons supplementary to the 

cable’s effect on aerial tow systems; however, each gives insight into the overall behavior 

of the cable in fluid flow. The past studies give a foothold for future system analysis 

containing cable components.  Of particular interest are the studies on the physical and 

aerodynamic models of the cable. 

1.3.1.1 Cable Models 

A prediction of the dynamic response of a cable to given conditions requires a 

mathematical model of the cable from which the equations of motion can be derived.  

Choo and Casarella10 produced a survey of various methods for modeling cables.  The 

motivation behind this article was to acknowledge various methods that could be used for 

a basis of cable system simulations and analyzing the merits and demerits of each 

technique.   

Among the methods discussed is the finite element method.  This method breaks the 

continuous cable into an arbitrary number of segments which themselves can be modeled 

in a number of ways, such as the ideal pendulum, a mass on a spring, a cylinder, or 

curved segment model.  In any case, each segment is free to rotate about its neighboring 

segments.  Discretizing the cable allows for the derivation of the equations of motion of 

the interacting cable segments. The shortcoming to this technique is that the quality of the 

simulation is directly dependant upon the number of segments used to model the cable; a 
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finer discretization produces a superior simulation.  However, as Walton and Polachek18 

discuss, when the segment length decreases a smaller step size is necessary for numerical 

convergence during simulation, which translates to more computation time.  The benefit 

of using the finite element technique is that it can be used to study several types of 

unsteady motion in a cable or cable-body system. It is for this primary reason the Choo 

and Casarella10 labeled this method as the most versatile.   

Also discussed in the survey are the method of characteristics, the linearization 

method, and the equivalent lumped mass method.  The method of characteristics employs 

constitutive laws such as Hooke’s law, to convert the partial differential equations of 

motion into ordinary differential equations of motion.  This technique allows the study of 

any sort of unsteady cable motion as long as the constitutive laws are satisfied, as an 

example; this method cannot be used on inextensible and viscoelastic cables as there are 

fewer ordinary differential equations than are original partial differential equations. In 

addition, the method of characteristics requires a large amount of computation. 

The linearization method, as it suggests, linearizes the cable equations of motion.  This 

linearization limits the technique to perturbation, small deviations from equilibrium, 

studies, such as stability and frequency response of the system.  This technique is not 

applicable in cases where a limit cycle persists and additionally is not useful in the 

analysis of unsteady cable motion. 

The equivalent lumped mass technique is useful when the most important aspect of the 

cable-body system is the body.  In this method, the dynamics of the cable are completely 

ignored and the equations of motion of the system are largely due to the rigid-body 
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equations of motion of the body with added terms representing the cable dynamic effects.  

Since the equations of motion of the cable are omitted the system is greatly simplified.  

The simplicity, unfortunately, comes at the cost of the robustness of the model.   

Each of these methods has a configuration or condition in which it gains advantage 

over the rest.  However, the only one of the techniques with no system-type limitations is 

the finite element technique.  An additional detailed description of the finite element 

method will be given in the following chapters. 

1.3.1.2 Cable Drag Model 

The work of Hoerner13 is directed at analyzing and modeling fluid drag about various 

bodies.  The cable is among the bodies researched.  Hoerner13 produced the cross-flow 

method for calculating the drag forces on a cable within a fluid.  This technique analyzes 

the friction and pressure forces on the cable.  The method is limited to straight cables of 

circular cross-section and fluid conditions that produce subcritical Reynolds numbers 

with respect to the cable diameter.  

Despite the straight cable limitation of the cross-flow principle it can predict the drag 

force on a flexible cable (even though the cable is rarely completely straight).  A curved 

cable can be approximated by a series of connected straight segment.  Given the 

orientation of the straight segment relative to the fluid flow, the drag on each segment can 

be predicted using the cross-flow principle.  Thus, the resultant fluid force on a curved 

cable is the accumulation of the individual segment’s drag forces.  As the number of 

cable segments increase so to does the accuracy of the overall drag prediction on the 

curved cable (to an extent).   
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The cross-flow principle works well with the finite element model of a cable (as it 

necessitates breaking the cable into straight cable segments).  The applied drag forces on 

each of the cable segments can easily be applied to the dynamic equations of motion for 

each segment.  The exact equation for the cross-flow principle in its original two-

dimensional form and modified three-dimensional form are presented in chapters two and 

three. 

1.3.2  Lagrange’s Equations 

Newtonian mechanics states that the motion of a particle can be determined provided 

that there is a complete knowledge of the external forces acting on the particle and that 

the initial conditions of the particle are known; the same is true for groups of interacting 

particles.  This is a fundamental step in producing the equations of motion necessary to 

create a simulation of a system in response to inertial and external forces. The 

development of the equations of motion of a system can be trivial or quite complex 

depending on the composition of the system and its environment.  

The direct application of Newton’s laws becomes difficult as the number of groups of 

particles needed to represent the system increase.  The motion of the system components 

and internal and external forces acting on the system exist as vectors, with magnitude and 

direction.  Thus, keeping track of the external forces, internal forces, and motion of the 

system components in vector form is often difficult.  A less complex method of deriving 

system equations of motion is attained by implementing Lagrange’s equations, 

Greenwood11.   



 10

The Lagrange method has two main advantages over the direct application of 

Newton’s Laws in attaining the system equations of motion.  The first is that the 

Lagrange approach is energy based rather than spatially based, thus it deals with scalar 

values which circumvents the vector bookkeeping involved with Newton’s method.  The 

other benefit of using the Lagrange equations is that, unlike the application of Newton’s 

laws, it specifies an exact process to develop the equations of motion for any well defined 

system.  After defining the system and its constraints, all one needs to do to develop the 

system equations of motion is to carryout the manipulation of Lagrange’s equations.  

An important concept in the application of Lagrange’s equations is degree of freedom 

of the system.  The number of degrees of freedom of a system is equal to the number of 

coordinates necessary to define the configuration of the system minus the number 

equations that constrain the position of the system.  For example, assume the system is 

that of a simple two-dimensional ideal pendulum.   
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 a)              b)   
Figure 1.2 Simple pendulum shown in two-dimensional a) Cartesian coordinates, and 

b) cylindrical coordinates 

In two-dimensional Cartesian coordinates the location of the pendulum mass is 

determined by its x and z positions.  However, the x and z positions are constrained to a 

circular path around the pendulum hinge with a radius equal to the length of the 

pendulum (we are assuming the length of the pendulum is rigid).  The constraint equation 

would be the sum of the square of the x and z position is equal to the square of the length 

of the pendulum. Thus, if the x position is known then the application of the constraint 

equation will produce the z position of the pendulum mass.  With two coordinates utilized 

to specify the orientation of the pendulum and the existence of one constraint equation 

the degree of freedom of the system is one.   

Imagine the same example in cylindrical coordinates. The position of mass of the 

pendulum is determined simply by the angle θ of the pendulum relative to the coordinate 
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frame.  There is then one coordinate necessary to define the pendulum orientation and no 

constraint equation resulting in one degree of freedom for the pendulum. 

As the pendulum example shows, the degree of freedom of the system is independent 

of the coordinates chosen to represent the system.  The coordinates needed to represent 

the orientation of the system are deemed generalized coordinates.  The generalized 

coordinates of the simple pendulum in the two-dimensional Cartesian coordinate system 

are the x and z position of the pendulum mass.  The generalized coordinate of the same 

pendulum in cylindrical coordinates is simply the angle θ.  Therefore, since there are 

infinite possibilities of coordinate systems that could be used to analyze the pendulum 

there are infinite possibilities for generalized coordinates.  However, in many cases there 

is a set of generalized coordinates in which the number of coordinates is equal to the 

degree of freedom of the system.  This set is referred to as the independent generalized 

coordinates.  The independent generalized coordinates require no constraint equations; as 

a result it is often simpler, mathematically, to analyze the system using the set of 

independent generalized coordinates.  In the pendulum example the angle θ is the 

independent generalized coordinate. 

In a dynamic system the generalized coordinates, independent or not, vary with time 

and are algebraic variables in Lagrange’s equations.  As stated previously, Lagrange’s 

equations are energy based.  Prior to manipulation of Lagrange’s equations the energy of 

the system must be represented in terms of the generalized coordinates.  The 

manipulation of Lagrange’s equations requires derivation of the system energies with 

respect to time and the generalized coordinates.  The exact form of Lagrange’s equations 
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as well as the execution of Lagrange’s equations will be undertaken in detail in the next 

two chapters.  

1.3.3 Aircraft Dynamics 

There has been much effort spent by researchers and scientists in the study of 

aerodynamics as it relates to aircraft.  This work ranges from simple analysis of fluid 

flow over a two-dimensional airfoil-shape to the development of nonlinear equations of 

motion for high speed maneuverable aircraft.  The extensive work accomplished for a 

wide variety of aircraft and flight conditions has produced reliable models for the 

prediction of aircraft response to fluid forces.   

The method used to represent the dynamics of the aircraft in this system is small-

disturbance theory, Nelson14.  Small-disturbance theory assumes that the motion of an 

aircraft consists of steady-state motion and small perturbations about its steady-state.  

Small-disturbance theory linearizes the rigid body equations of motion.  This is 

accomplished by substituting reference values plus a perturbation for the all variables in 

the rigid body equations of motion. Many reference values (e.g. pitch, roll, etc.,) can be 

set to zero by assuming a symmetric reference flight condition.  Simplification of the 

equations of motion after substitution produces products of perturbation.  These 

nonlinearities are ignored in the assumption that higher order small disturbances will 

produce negligible overall effects.   

Further simplifications of the equations of motion produce aerodynamic stability 

derivatives. The stability derivatives represent the change in forces or moments of a body 

due to some change in the flight conditions, such as forward velocity or angle of attack.  
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The stability derivatives are approximated based upon the size, shape, and mass 

distribution of an aircraft and its components.  Methods for approximation of aircraft 

stability derivatives are presented in Nelson14 and Raymer16.   

The equations of motion for aircraft are written in terms of normalized stability 

derivatives.  As a result, these general equations apply to a wide variety of general 

aviation aircraft over most flight conditions.  However, since the equations were 

linearized using small disturbances, the theory breaks down and thus does not produce 

accurate predictions when the motion of the system involves large amplitude motions 

such as aircraft stall or spinning. Given the simple shape of the ATV and its proposed 

flight conditions the small-disturbance theory will be adequate in modeling dynamics of 

the aircraft. 

1.3.4 Cable Towed Systems 

A cable tow system in its most simple form consists of a body constrained by cable in 

a fluid.  There are a wide range of system configurations that meet the requirements of a 

cable tow system, such as kites, tethered aerostats, mooring lines, towed buoys (above 

and below the ocean surface), gliders, and towed aircraft targets.  Research on many of 

these systems has been accomplished in the past.  Each system has its own nuances that 

separate one author’s work from another, and although not all are directly applicable to 

the aerial towed system they help to illustrate the diversity of the system.  A few of the 

papers that do apply to the aerial tow system are discussed below. 

Huffman and Genin1 research the stability of a simple aerial towed system.  Their 

research suggests that there is no direct instability in the dynamics of the towed cable 
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system.  In each case tested the disturbances of the system were damped out in time.  

They concluded that a likelihood of instability is present, however, when the dynamic 

frequency of the towed body matches the natural frequency of the cable.  The result 

would be a limit cycle oscillation.  Huffman and Genin1 also show that the natural 

frequency of cable can vary based upon parameters such as cable length and flight speed.  

As a result, the limit cycle behavior could be present in tow system at particular flight 

conditions.  However, this depends largely on many variables in the system.  As a result, 

there was no generalized parametric study. 

Cochran et al.6 investigate the effect of controlling an aerial towed vehicle.  The 

authors designed a control system that would augment the stability of the towed vehicle.  

Simulations were run in conditions that produced unstable dynamic motion in the 

uncontrolled towed vehicle (perturbed retrieval of the towed aircraft).  When the control 

system was activated the authors showed that the system damped out quickly. This paper 

addresses the difficulties of designing a controlled aerially towed system and the results 

suggest that improved stability can be achieved during maneuvers that could otherwise 

result in instability. 

Nakagawa and Obata15 studied the longitudinal dynamic modes of the aerial tow 

system.  They analyzed the modes of three flight configurations, a straight cable 

connected to a sphere, a straight cable connected to an aircraft, and a curved cable 

connected to an aircraft.  The results of the study helped to classify the types of motion of 

the aerial tow system.  In all of the configurations the main dynamic modes were the 

pitching mode, pendulum mode, and first vibration mode.  The pitching mode is simply 
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the pitching of the towed body; this has little effect on the cable dynamics or the 

translation of the towed body.  The pendulum mode oscillates the towed body about its 

static configuration.  The motion causes slight bending in the cable and little if any towed 

body pitching.  In both of the straight cable configurations the first vibration mode has 

little effect on the position or the orientation of the towed body, and simply causes 

oscillations in the cable.  However, in the curved cable configuration the first vibration 

mode causes the towed aircraft to surge fore and aft in an elliptical pattern.  The authors 

labeled this as the bowing mode. 

The authors complete a parametric study of the aircraft longitudinal stability 

derivatives and found that two of them, Zw and Mw as well as the cable-towed body hitch 

point played an important roll in the stability of the system.  The results showed a strong 

relationship between the stability derivatives and the bowing mode.  As the absolute 

values of Zw and Mw increase and decrease, respectively, the bowing mode becomes less 

stable, and eventually an unstable phenomenon known as pitching or bowing flutter 

occurs.  Nakagawa and Obata15 noticed a similar behavior as the cable hitch point on the 

towed aircraft was moved more and more fore of its center of gravity. 

The system dynamic oscillations are of the utmost importance when attempting to fly 

the towed body very near the ocean surface.  The research completed by Nakagawa and 

Obata15 suggest care should be taken when designing the ATV as its stability derivatives 

have a direct effect on unwanted system oscillations.  Lawhon and Arena19 investigated 

the effects of aircraft size and shape as well as cable parameters to develop the optimum 
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system configuration for aerially towed systems tracking very near the ocean surface.  

The ATV used in this paper was a result of the work done by Lawhon and Arena19. 
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 CHAPTER 2  

2TWO-DIMENSIONAL DYNAMICS 

2.1 Introduction 

It is the focus of this paper to derive and produce the mathematical equations that 

accurately describe the three-dimensional motion of the aerially towed system.  Followed 

by, implementing the equations of motion to produce a dynamic simulation of the aerially 

towed system.  The simulation will then be used to draw general conclusions about the 

system and its ability to perform the maneuvers desired to obtain atmospheric 

measurements near the oceans surface. 

The individual dynamic behavior of the system components and the interactions 

between them will result in quite complex set of equations of motion.  As a result of this 

complexity, it is easy to get bogged down by the shear volume of the equations and lose 

sight of the steps taken to derive the final set of equations.  This is especially true in 

reference to the three-dimensional system.  Therefore, the two-dimensional equations of 

motion will be laid out in this chapter.  The two-dimensional equations of motion will 

also act to verify that the more complex three-dimensional equations of motion are 

derived without error. It is important to note that the same principles will be held for the 

derivation of both the two and three-dimensional systems although they may differ in 

clarity. 
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The basis of any simulation is the modeling of the system components.  The quality of 

the models directly affects the value of the simulation.  The derivation of the equations 

that dictate the dynamics of a component is possible upon the completion of its 

mathematical model.  To accurately model the system, the individual component 

dynamics are important however, the modeling of the system necessitates the equations 

of motion represent the dynamic interaction between the components as well.  Thus, in 

general, the derivation of the equations of motion of a system component must be 

accomplished simultaneously with the dynamic equations of the remaining objects.  The 

result will be a set of equations that represent the dynamics of the entire system, i.e. if the 

host vehicle oscillates the system equations of motion will reflect the oscillations effect 

on the dynamics of the cable and the ATV.  

The following sections discuss the modeling of the system components and the 

development of the individual dynamic equations of each component.  As stated 

previously, the individual component dynamics are not enough to model the system; 

however, they may be of academic interest, and will lead to a clear understanding of the 

derivation of the system equations of motion. 

2.2 Cable Dynamics 

As discussed in the literature review there has been extensive study on cable dynamics 

and cable modeling for a wide range of applications. Due its versatility the finite element 

technique will be used to model the connecting cable.  The main drawback of the finite 

element technique is its computational expense.  The great strides in computer speed over 

the years helps to soften this blow.  There may also be situations when the operator is not 
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interested in a completely rigorous simulation but rather just a feel of the system’s 

behavior, this can be accomplish quickly by using fewer segments. 

 As mentioned previously, the finite element technique requires that the cable be 

broken into an arbitrary number of segments which are free to rotate about their 

neighboring segments.  The types of segments used to model the cable can vary.  Notable 

models include the simple pendulum, spring mass, thin rod, and curved structure model. 

   
Figure 2.1 Finite element cable segment models 

In the simple pendulum model, the segment is straight and inextensible.  The mass of 

the segment is lumped to a single point at the tip of the segment, resulting in a model that 

resembles that of a simple pendulum.  Being that the segment is straight the cross-flow 

method can be used to predict the drag force on the segment.  The applied force on the 

segment is exerted at the point mass or node. The inextensible constraint lends this model 

to a system in which the strain on the cable is minimal.  The benefit of this technique is 

its simplicity.  The draw back is that placing the inertial and applied forces at the tip of 

the segment only becomes a good approximation when the number of segments used is 

large. 
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The spring mass segment also lumps the mass at tip of the segment, however the 

segment length acts as a spring.  This allows for strain effects to be incorporated into the 

equations of motion of the cable.  The change in length of each segment adds an 

additional degree of freedom to the system, which increases the complexity of the 

equations of motion and increase computational intensity.  If the strain on the cable can 

be neglected the spring mass segment model expends much unneeded effort and time.   

The thin rod model is similar to the lumped mass model.  It too is straight and 

inextensible. However, the model places the inertial forces and applied forces at the 

center of mass of the segment.  The additional complexity of this model is that the mass 

of the rod is not lumped to a point; therefore, it has inertia that impedes segment rotation 

and must be taken into account the derivation of the equations of motion.  The benefit of 

the better physical model is it will take fewer segments to accurately represent the motion 

of the continuous cable than the lumped mass model. 

The last model represents the cable segment as a curved structure.  This technique 

models the segments as polynomials or splines which require slope continuity at the 

segment connections.  Due to the fact that most cable configurations are curved this 

method reduces the number of segment needed to attain an accurate simulation.  

However, the evaluation of the drag on a curved cable is not well known.  The more 

complex drag model and polynomial or spline calculations make derivation of the cable 

equations of motion difficult. 

Neglecting the strain in the cable is acceptable as we are dealing with a fairly light 

ATV and a high tensile steel connecting cable, thus the spring mass model unnecessary; 
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and given that there is a historically accepted method to model the drag on a straight 

cable the complexities of the curved structure will be avoided.  The equations of motion 

of the cable will be derived using the simplest segment model, the pendulum model, 

shown in figure 2.1.  However, a discussion about the changes to the cable equations of 

motion as a result of modeling the cable segments as thin rods will take place at the end 

of this chapter.  

 
Figure 2.2 Lumped mass finite element cable model 

2.2.1 Coordinate Systems 

In this section the primary concern is the development of the two-dimensional 

equations of motion for a flexible cable.  As a result, the host aircraft and the ATV will 

be neglected for now.  The cable is broken into n arbitrary segments in accordance with 

the finite element cable model.  Therefore, one end of the cable is fix to a point in space 

and is free to rotate while the other is end is constrained only by its preceding segments.   

The coordinate system at the cable attach point is the inertial coordinate system.  This 

coordinate system is orthogonal.  The X axis is locally parallel to the ‘ground’ and the Z 
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axis is pointing toward and is normal to the ‘ground’. The derivation of the equations of 

motion of the flexible cable will be carried out in the inertial frame.  As a result, it is 

necessary to be able to describe the orientation of the cable in this coordinate system.  

The location of the ith cable node in the inertial frame can be resolved using the length, li, 

and angle of orientation, θi, of the segment and each preceding segment, as shown below. 
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where, lj is the length of the jth segment and Xi and Zi are the position of the ith segment in 

the inertial frame.  Also note C and S are short notation for cosine and sine, this notation 

will be used throughout the remainder of this paper.  

Aside from the inertial frame, each cable segment has its own coordinate system.  The 

cable segment coordinate system is orthogonal and is configured such that the node of 

that segment is located in the positive z-direction a distance equal to that of the cable 

segment.  For example, the origin of the coordinate axis for the first cable segment is 

located at the exact same point as that of the origin of the inertial frame.  The two frames 

differ only by the angle rotation of the segment, θ1.  When the angle is equal to zero the 

two frames are identical.  In a similar manner, the origin of the second cable segment is 

located at the node of the first cable segment, and the first and second frame differ 

rotationally by the difference of θ2 and θ1.  This is evident from Figure 2.2. 
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Figure 2.3 Two-dimensional inertial and cable segment coordinate systems 

Throughout the analysis of the system it will be necessary to convert from the inertial 

frame to the segment frame.  This is accomplished by utilizing a rotational coordinate 

transformation.  The rotational coordina te transformation from the ith cable segment 

frame to the inertial frame is represented by the directional cosine matrix as follows, 
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The inverse of the directional cosine matrix produces a rotational coordinate 

transformation from the inertial frame to the ith cable segment frame. 

Calculating the inertial position of the node of the ith cable segment is a common 

implementation of the rotational transformation.  Recall that in the cable segment frame 

the node is located at a distance equal to the length of the segment in the z-direction.  

Using the directional cosine matrix the position of the ith cable segment node in the 

inertial coordinate system is as follows, 
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Note that equation 2.3 and 2.1 are equivalent. 

2.2.2 Lagrange Equations 

As discussed earlier, the connecting cable is broken into n arbitrary number of 

segments, and each segment has its own coordinate system. Deriving the equations of 

motion for the cable using the direct application of Newton’s laws of motion becomes 

increasingly difficult as the number of segments used to model the cable increases. This 

is primarily due to the fact the Newton’s laws of motion are vector based and as the 

system increases the number of coordinate systems increase resulting in labor- intensive 

derivation. Another difficulty when using the Newtonian approach is that there is no 

general method to derive the equations of motion. As discussed in the previous chapter, 

an alternative to using Newton’s laws of motion is the utilization of Lagrange’s 

equations, which is energy based. Consequently, it circumvents many of the complexities 

of vector-based derivation, as well as, gives a standard process for developing the system 

equations of motion. 

To recap, the derivation of Lagrange’s equations depends on the degree of freedom of 

the system, and the degree of freedom of the system is the number of coordinates needed 

to define the system minus the number of constraint equations of the system.  In the 

Cartesian coordinates of the inertial frame for a cable broken into n segments there are 2n 

coordinates needed to define the location of the node of each segment.  However, each 

segment has a constraint equation of the form, 
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As a result, 2n coordinates and n constraint equations produce n degrees of freedom.  In 

other words, the two-dimensional finite element cable has a degree of freedom equal to 

the number of segments used to model the cable. 

The coordinates used to define the system are the generalized coordinates.  The 

generalized coordinates are general due to the fact that there are an infinite number of 

coordinate systems that could be used to define the system all with varying number of 

constraint equations (although every system has n degrees of freedom).  Consequently, 

there are no specific coordinates that need to be used to define the system.  The 

implementation of Lagrange’s equations will be simplified if the independent generalized 

coordinates are used (recall, the independent generalized coordinates are the set of 

coordinates that define the system yet have no constraint equations). 

For the flexible cable system the independent generalized coordinates are the 

orientation or attitude angles of each of the segments, θi (i = 1, 2… n).  For the duration 

of the chapter the attitude angles of the cable segments will be used and referred to as the 

generalized coordinates of the system.  The generalized coordinates will be generically 

referred to by the variable q. 

As stated previously, Lagrange’s equations are energy based.  The Lagrangian 

function, L, represents the energies of the system and is equivalent to the kinetic energy 

minus the potential energy of the system, 
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 UTL −=  (2.5) 

where, T and U are kinetic and potential energy functions, respectively.   

Lagrange’s equations are as follows, 
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where, iQ′  represents the applied, or generalized, forces that are not derivable from a 

potential function, such forces include friction forces and forcing functions.  However, 

since the potential function for this system is not velocity dependant Lagrange’s 

equations can be reduced to the following, 
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where, Qi are the generalized forces that include applied forces and the inertial forces 

derived from the potential function.  Note that Equations 2.6 and 2.7 is actually a set of n 

equations, one equation for each generalized coordinate of the system.  Thus, in the case 

of the two-dimensional finite element modeled cable there is one equation for each 

attitude angle of the n cable segments.  Therefore, Lagrange’s equations can be rewritten 

as, 
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In order to implement Lagrange’s equations it is necessary to get the energies of the 

systems in terms of the generalized coordinate.  Only then can the proper derivation of 

the equations of motion take place.  The kinetic energy of the system at any given time is 

due to the summation of the rotational and translational motion of the inertial components 

of the system.  For the finite element cable the inertial components are simply the 

segment nodes.  Thus, the kinetic energy of the cable is the summation of the nodal 

rotational and translational kinetic energy.  However, since the mass of a segment is 

localized to a point it has no rotational inertial and consequently has no rotational kinetic 

energy.  As a result, the kinetic energy of the system is solely a function of the 

translational velocity of each node.   

 ∑
=

=
n

j
jjVmT

1

2

2
1

 (2.9) 

The velocity components of a node can be found by simply taking the time derivative 

of its position. 
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Equation 2.10 shows that the translational velocity of a node results from the rate of 

rotation of its segment and each preceding segment.  At this moment, the velocity of each 

node is in vector form.  However, squaring the velocity for the kinetic energy releases 
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any further vector bookkeeping.  The square of velocity, V, for the kth segment is can be 

written in series form as follows, 
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Similarly, the total kinetic energy for n cable segments is written in summation form as, 
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Being that the kinetic energy has been derived in terms of the generalized coordinates 

the implementation of Lagrange’s equations can commence.  The derivative of kinetic 

energy with respect to the ith generalized coordinate and the time rate of change of the ith 

generalized coordinate yields the following, 
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Finally evaluating the time rate of change of equation 2.14 produces, 
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Combining equations 2.13 and 2.15 results in the series representation of the left hand 

side of the Lagrange’s equations for the two-dimensional finite element modeled cable, 
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The right hand side of equation 2.8 represents the generalized forces of the system.  

Note that due to the fact that the generalized coordinates of the system are angles the 

general forces are actually moments.  These moments are about the pivot point of each 

segment and result from the inertial and applied forces on the node of the segment as well 

as any applied moments.  

The generalized force equation is derived from the concept of virtual work.  Suppose 

forces F1, F2, …, Fk are applied at position x1, x2, …, xk and moments M1, M2, …, Mk are 

applied at angles f 1, f 2, …, f k.  Now let us assume that the system undergoes arbitrary 

small displacements dx1, dx2, …, dxk and df 1, df 2, …, df k.  The work done by these 

applied forces and moments is known as virtual work and the small displacements are 

known as virtual displacements,  
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The virtual displacements can be rewritten in terms of the virtual displacement of the 

generalized coordinates, 
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The relationship between the generalized forces and the virtual work of the system due 

to the virtual displacement of the generalized coordinates is as follows, 
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Simplification of equation 2.20 produces the generalized force equation for the applied 

forces and moments in terms of the generic variables x and f . 
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In the case of the two-dimensional cable segment system the position variables are X 

and Z while the angles are θ.  Incidentally, the generalized coordinate for this system is 

also θ.  The equation for the generalized forces not produced by the potential function is 

as follows, 
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The total generalized force equation is made up of the external forces and moments as 

well as the inertial forces, 
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where, jXF and jZF are applied forces and jMθ  is the applied moment of the jth segment 

in the inertial coordinate frame.   
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In the expansion of equations 2.23 let us look first at the term that is the derivative of 

potential energy with respect to the ith generalized coordinate.  The potential energy of 

the cable is the summation of the potential energy of each segment node.  
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where, D is the datum line from which potential energy is measured.  Note that since 

potential energy is being differentiated the location of the datum line is inconsequential.  

Taking the derivative of equation 2.24 with respect to the ith generalized coordinate 

produces, 
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The resulting equation allows the inertial force to be included with the z-direction applied 

force.  Simplify the generalized force equation to that shown below, 
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The derivative of position and angle with respect to the ith generalized coordinate is as 

follows, 
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Note that the position of the node of a segment is dependant upon that segments attitude 

angle and the attitude angle of each preceding segment.  Due to the nature of the 

dependence of position on the generalized coordinate, the evaluation of the derivative of 

the position of the jth segment with respect to the ith generalized coordinate results in zero 

when i is greater than j. The derivative of angle with respect to the ith generalized 

coordinate is equal to one when i is equal to j and zero otherwise.  Thus, 
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The complete derivation of Lagrange’s equations for the two-dimensional finite 

element modeled cable is attained by combining equations 2.16 and 2.28.  The resulting 

set of n equations of motion is presented as follows in summation form. 
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The set of equations of motion can be more clearly presented in matrix form, yielding, 
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where, A and B are coefficient matrices and are size n by n.  The remaining three 

matrices are column matrices of size n by 1.  The values of the coefficient matrices are as 

follows, 
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where, the subscripts i and j represent the row and column of the appropriate matrix, and 

jim ,  represents the mass distribution for row i and column j.  For the lumped mass model 

of the n segments the mass distribution is simply a sum of segment masses. 
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For example, the equations of motion for a cable modeled using two cable segments 

without fluid drag would be as follows, 
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These two equations are analogous to the equations of motion of a two-dimensional ideal 

double pendulum. 
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The resulting fully nonlinear two-dimensional equations of motion describe the 

dynamics of the system due to inertial and applied loads, as well as, the dynamic 

interaction between all segments; and the set of equations place no limitations on the 

number of segments of the system (while the equations hold true independent of the 

number of segments the effects on simulation computation varies, this will be discussed 

in chapter 5).  The angular acceleration of each segment can be calculated given 

appropriate initial conditions, such as segment attitude angle and angular velocity of the 

system.  The implementation of a numerical integration routine on the set of ordinary 

differential equations allows the prediction of cable motion for various initial conditions, 

and with the addition of a drag model to predict the applied friction forces on the 

segments the simulation can be extended to that of a cable in fluid flow.  

2.2.3 Aerodynamic Forces 

The generalized force matrix in the equation 2.30 is composed of the inertial forces 

and applied forces of each of the cable segment.  These applied forces are the friction 

forces produced by the fluid interaction with the cable. Thus to fully derive the equations 

of motion for a cable in a fluid a drag model is necessary.  As stated previously, the study 

of cable drag has a history that dates back to the early aircraft and thus has been well 

documented. 

The cable crossflow-principle, Hoerner13, is a drag model that was presented in the 

sixties and has since been used as a basis for numerous research papers involving fluid 

immersed cables.  Its limitations require the cable cross-section be circular, the cable be 

straight, and fluid be at a subcritical Reynolds number. In general, aircraft tow cables are 
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circular in cross-section; due to our relatively low airspeeds the Reynolds number is 

subcritical; and our finite element model for the cable requires that the cable be broken 

into straight segments.  Therefore, the Hoerner crossflow-principle applies very nicely to 

our model of the cable system. 

The crossflow-principle calculates the tangential and normal forces on a straight cable 

segment produced by tangential and normal velocities about the cable, as shown below,  
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where, ρ, d, cf, and cp are air density, cable diameter, frictional coefficient, and pressure 

coefficient, respectively, and Fx, Fz, Vx, and Vz are the aerodynamic forces and the flow 

field velocity in the cable segment coordinate system, respectively.  

The cable velocity in the cable segment frame can be attained simply by using the 

rotational coordinate transformation of the relative velocity of the segment node in the 

inertial frame, as shown below,   
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Presumably the freestream velocities, U0 and W0, are known and the equations for 

calculating the velocity of a segment node in the inertial frame were derived in equation 

2.10. 
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Note that the drag forces produced by the drag model are in the cable frame yet the 

forces in the generalized coordinate equation are in the inertial frame.  As a result, the 

calculated normal and tangential drag forces must go through a rotational coordinate 

transformation before application can be made. 
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The implementation of the Hoerner drag model produces the mathematical model of 

the applied loads on a cable segment.  The generalized forces for each segment can be 

calculated based on cable motion and numerous freestream conditions and thus allows for 

the dynamic simulation of a cable in a fluid.  

2.3 ATV Dynamics 

The ATV alone is an aircraft, and a very simple one at that.  As a result, its rigid body 

dynamics could be easily modeled due to the extensive research and documentation done 

in the area aircraft flight dynamics.  However, in the aerial towed system the dynamics of 

the cable and the dynamics of the ATV are intertwined, consisting of individual dynamics 

and the interaction of the two components.  As a result, a system of equations containing 

both the equations of motion of the cable and that of the ATV must be derived and solved 

simultaneously.  This is most easily accomplished by reproducing the ATV as an 

additional segment, one which is attached to nth cable segment.  Thus the equations of 

motion for both the cable and ATV can be derived using Lagrange’s equations.  Since the 

equations of motion of the cable were derived to be independent of the number of 

segments this does not change the form of the equations previously derived.  The 



 38

variation in the set of equations arises because the ATV segment model differs from the 

cable segment model.  The set of equations for the cable and ATV and there variations 

from the previous cable dynamic set will be laid out in the subsequent sections. 

2.3.1 Coordinate system 

Modeling the ATV as an additional segment adds an extra coordinate system just as 

adding an extra cable segment to the cable model.  This system is analogous to the cable 

coordinate system described previously, the origin is the cable-ATV hitch point and its z-

axis passes through the center of mass of the ATV.  However, there is another coordinate 

system necessary to fully describe the orientation of the ATV.  This coordinate system 

corresponds to the standard aircraft body fixed coordinate system.   

The aircraft body fixed coordinate system has it origin at the center of gravity of the 

aircraft, and for the two-dimensional case the aircraft body fixed x-direction is pointing 

out of the nose of the aircraft and its z-axis is pointing out of the bottom of the aircraft 

(presumably towards the ground).  The two additional axes are present in figure 2.3.  

 
Figure 2.4 Two-dimensional ATV coordinate system 
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Thus, the ATV segment coordinate system and the ATV aircraft coordinate system 

differ directionally by a fixed rotation angle, γ.  This angle is geometrically defined by 

the shape of the ATV as well as the location of the cable-ATV hitch point, figure 2.3.  

The ATV aircraft coordinate system is necessary to calculate the aerodynamic forces and 

moments of the ATV using small disturbance theory.  The ATV orientation, as seen by 

the inertial frame, is determined by the ATV segment angle and ATV geometric attitude 

angle.  Thus two rotational coordinate transformations are needed to describe the ATV 

attitude in the inertial frame.  The rotational transformation from the ATV aircraft 

coordinate system to the ATV segment coordinate system is as follows, 
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where, x’ and z’ are the x and z-directions in the aircraft fixed frame. 

The rotational transformation from the ATV segment coordinate system to the inertial 

coordinate system is as follows, 
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As a result, the equation for rotational transformation from aircraft fixed coordinate 

system to the inertial coordinate system is found by combining equations 2.38 and 2.39.   
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This transformation is necessary in converting the aerodynamic loads to the 

generalized forces of the ATV segment (due to the fact that our generalized force 

equations require the applied loads be in the inertial system). 

2.3.2 Lagrange equations 

The parameters of the additional segment, which will be henceforth deemed the ATV 

segment, is dictated by the size and shape of the ATV.  The length of the segment is 

actually the distance between the cable-ATV hitch point and the center of gravity of the 

ATV.  The mass of the ATV segment is simply the mass of the aircraft itself.  Therefore, 

the equations of motion for the translation of the ATV segment require no additional 

derivation from that accomplished in the cable dynamics section.  As a result, the 

complex dynamic interaction between each cable segment and the ATV are inherently 

represented by the equations of motion.  However, the equations of motion for the ATV 

segment are not complete.  Recall that the nodes used to model the cable are point 

masses, thus they have no inertia to resist rotation.  The same cannot be said for the ATV.  

To complete the equations of motion for the cable-ATV system the Lagrange equation 

must be derived for the rotational kinetic energy of the ATV segment 

The complete representation of Lagrange’s equations for the cable and ATV system is 

as follows, 
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Due to the fact that the total kinetic energy of the system is composed of the summation 

of translational and rotational kinetic energy the resulting equations of motion due to the 

rotational kinetic energy can simply be superimposed upon the previously derived 

equations of motion (i.e. the derivation of the components of the equation 2.41 that 

represent the translational kinetic energy need not be carried out as they will yield the 

same results).  The analysis of the rotation kinetic energy will focus on the following 

portion of equation 2.41, 
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The equation for rotational kinetic energy of a rigid body is as follows, 
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where, I is the inertial matrix and ω is the angular velocity vector of the rigid body.  For 

the two-dimensional case the segment rotational equation of motion can be simplified 

since the only allowable rotation is about the y-axis.  The rotational kinetic energy of the 

system is the sum of the rotational kinetic energy of each segment.  The rotational kinetic 

energy of the two-dimensional system is as follows, 
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where, Iy is the rotational inertial of the node about its y-axis.  
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The derivation of Lagrange’s equations for rotational kinetic energy term is quite 

straightforward, producing, 
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Finally evaluating the time rate of change of equation 2.46 produces, 
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Combining equations 2.45 and 2.47 produces the supplementary left hand side of 

Lagrange’s equations due to the rotation of the each segment for the two-dimensional 

finite element modeled cable, 
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The combination of the rotational and translational components of the equations of 

motion and the addition of the ATV segment result in a set of equations of the form 

shown in equation 2.30.  The inclusion of the ATV segment into the system adds an extra 

degree of freedom and thus an extra equation to the set of the equations of motion of the 

system, resulting in the coefficient matrices increasing to size n+1 by n+1 and the column 

matrices to size n+1 by 1.  The additional column in the coefficient matrices represents 

the effect of the motion of the ATV segment on the dynamics of the cable segments.  The 
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additional row of the coefficient matrices represents the equation of motion of the ATV 

segment, which contains the effects of the dynamics of each cable segment.    

The changes to the set of equations derived for the translation of the nodes of the 

segments are in the terms of the A coefficient matrix.  The corrected terms of the A matrix 

are as follows, 

 jijijiyji mCllIA
iji ,)(,, θθδ −+=      (2.49) 

where, the kronecker delta, δ i,j, is zero at all time except when i equals j at which time its 

value is unity.  Thus the inertia term only appears on the diagonal of the A matrix, and 

since the segment nodes, in accordance with the chosen segment model, have a zero 

value for inertia the only change in A is at n+1, n+1. 

2.3.3 Generalized Forces 

The generalized force equation derived in equation 2.28 applies to all segments 

including the newly added ATV segment.  However, the crossflow method does not 

apply to aircraft.  As a result, a method for modeling the aerodynamic forces and 

moments on the aircraft are necessary.  As stated in chapter 1, there is no shortage of 

research on the aerodynamics of general aircraft.  The technique to be used in this paper 

is the linearized small-disturbance theory, Nelson14. 

In short, linearized small-disturbance theory simplifies the motion of the aircraft to 

perturbations of the aircraft about some fixed reference flight condition, such as typical 

cruising conditions.  Dealing with perturbations allows for the elimination of higher order 

terms in the aircraft equations of motion, thus linearizing them.  The aerodynamics of the 
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aircraft in the equations of motion are represented by stability derivatives.  Stability 

derivatives approximate the change in aerodynamic forces or moments due to the 

deviations from the reference flight condition. These stability derivatives are based upon 

the size, shape, and mass distribution of the aircraft, and apply to a wide range of aircraft.  

The method does breakdown when the aircraft enters a flight regime in which the 

nonlinearities are important, such as stalling and spinning.  

The two-dimensional equations for the aerodynamic forces, XF′ and ZF′ , and moment, 

M, in the aircraft fixed frame are as follows,   
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where, m and IY are aircraft mass and longitudinal rotational inertia. Also, u and w are the 

x-direction and z-direction perturbation velocities and q is the pitch rate in the ATV fixed 

frame. Xu, Xw,…, Mq are the stability derivatives. (Note that notation in equation 2.50 is 

commonly used when discussing aircraft dynamics.  The pitch rate q is not to be confused 

with the generalized coordinate q which is itself commonly used in the notation of 

Lagrange’s equations.) 

In the aerial tow system the reference flight condition for the ATV is that of the host 

aircraft, and the host aircraft reference flight conditions can simply be viewed as the 

freestream conditions, Uo and Wo.  As a result, the perturbation of the ATV about the 

reference conditions is simply a result of the attitude of the ATV and the motion due to 

segment rotation.  As we have already derived the velocity of a node due to rotation in 
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the inertial frame, a coordinate transformation from the inertial frame to the ATV aircraft 

frame can be utilized to develop the equation for perturbation velocity, 
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With the perturbation parameters in the ATV aircraft frame the aerodynamic forces 

and moments on the aircraft can easily be attained.  To calculate the generalized forces 

produced by the aerodynamics of the ATV the forces must be in the inertial frame.  This 

requires the following rotational coordinate transformation,  

 







′
′











=








+

Z

X

Z

X

F
F

CC
F
F

n γθ 1
 (2.52) 

No rotational transfo rmation is necessary for the two-dimensional applied moment.  

Thus, the aerodynamic moment, M, is directly translated to the ATV segment moment 

Mθ.  The forces and moments are applied to the generalized force equation, equation 

2.28, following the translation.   

The dynamics as well as the applied aerodynamic forces and moments of the cable-

ATV system have been modeled.  As a result, it is possible to simulate the effect of the 

cable and ATV system due to various initial conditions.  However, to fully analyze the 

aerial towed system one last component is necessary, the host aircraft. 

2.4 Host Vehicle 

Up to this point, the model of the system has the cable, immersed in a flowing fluid, 

connected to a fixed point in space.  In reality, the cable will be connected to the host 
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aircraft, and while the ideal case has the host vehicle flying at a constant speed and 

altitude it is likely that, for one reason or another, the position of the host vehicle will be 

disturbed.  The host vehicle is an airplane, and as a result its dynamics are dictated by the 

aerodynamic equations presented in equation 2.50, and as it is the towing vehicle it is 

affected by the motion of the cable and ATV segments.  On the other hand, the motion of 

the cable and ATV will also be affected by the host vehicle motion.   

In general, the host vehicle is much larger than the ATV and as a result its 

aerodynamic loads will overpower the loads produced by the motion of the cable and 

ATV.  Thus, a simplifying assumption can be made that the host vehicle is unaffected by 

the dynamics of the cable and ATV, yet the cable and ATV are affected by the motion of 

the host vehicle.  This assumption allows the host vehicle to be modeled as a simple 

point.  The motion of the host aircraft is independent of the cable and the ATV dynamics 

and consequently the movement of this point can be chosen arbitrarily.  For instance, the 

equations of motion for longitudinal oscillation in the z-direction of the host aircraft 

frame can be written simply as 
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where, z  is the host vehicle vertical displacement, t is time,  Ao is amplitude, and ωo is 

frequency. The amplitude and frequency can be chosen to represent the longitudinal 

dynamics of a wide range of host aircraft.  The effect of host aircraft oscillation on the 

vertical position of the ATV is of critical importance when the ATV is very near the 
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ground; however the aircraft is not limited to simply vertical motion.  The equations of 

motion can be derived for horizontal motion, vertical motion, or any combination of the 

two. 

The technique for modeling the cable and ATV dynamics with the introduction of the 

varying host vehicle position remains more or less the same.  In the previous models the 

cable connecting point always coincided with the origin of the inertial coordinate system.  

However, with the introduction of the movable host vehicle this is not so.  Any 

movement of the host aircraft results in the translation of the cable connection point.  The 

derivation of Lagrange’s equations for the cable and ATV hinges on the location and 

velocity of the segment nodes.  Thus, to account for host vehicle movement the inertial 

position equation must be altered to represent the translation of the cable connection 

point.  The resulting equation is as follows, 
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where, x  is the difference in the x-direction of the host aircraft in the inertial frame. 

Due to the fact that the position of the host aircraft is a function of time the derivation 

of Lagrange’s equations will produce a different outcome from that derived previously, 

the difference being the effect of the host vehicle oscillation.  The derivation of 

Lagrange’s equations begins by taking the time rate of change of position, 
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The square of velocity with the incorporation of a moving host vehicle is as follows, 
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Thus, the total kinetic energy for the aerial tow system is as follows, 
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Note that the last term in equation 2.57 is the same as that derived in the cable dynamics 

section, equation 2.12.  Thus, the derivation of Lagrange equations for the last term will 

yield the same results.  As a result, we can focus on the host vehicle oscillation terms 

when deriving the Lagrange equations and simply superimpose the results onto the 

equations of motion for the cable and ATV.  The kinetic energy due to the host vehicle 

oscillation, Thost, is as follows, 
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Note that the first two terms in the equation 2.58 are only a function of time.  Therefore, 

they will disappear during the differentiation of the kinetic energy with respect to the 

generalized coordinates. 

The derivative of kinetic energy with respect to the ith generalized coordinate and the 

time rate of change of the ith generalized coordinate yields the following, 
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Finally, the time rate of change of equation 2.60 produces, 
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Combining equations 2.59 and 2.61, in accordance with Lagrange’s equations, results in 

the following, 
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Note that equation 2.62 has units of force times distance just as the generalized forces.  

As a result, the equation 2.62 can be thought of as generalized forces due to host vehicle 

acceleration, as shown below,   
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The superposition of equation 2.63 into the generalized force equation 2.28 yields, 
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Thus in the matrix form of the set of equations of motion, the host vehicle oscillation has 

no affect on the A or B coefficient matrix.  The results of the derivation show that the 

moving host frame produces applied loads on each segment node proportional to the host 

vehicle acceleration.  Note that the derivation due to the host vehicle motion is 

independent of the functions used to model it, allowing for any harmonic model of the 

host aircraft dynamics.  

2.5 System Equations of Motion of an Alternate Segment Model 

At this point, the equations of motion for the two-dimensional aerial tow system are 

complete, and given a proper numerical integration routines and a set of valid initial 

conditions a simulation of the two-dimensional aerial tow system can be accomplished.  

However, the lumped mass model used for the finite element segments is quite simplistic.  

As discussed earlier, this model places the mass of a segment at the node at the base of 

the segment and all applied forces on the segment are located at the node.  This 

simplification is particularly poor when there are few segment s that make up the model of 

the cable.   
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Imagine the cable is modeled as one lumped mass segment.  The segment is in the 

presence of moving fluid, as a result there is a distributed friction load on the segment.  

According to the lumped mass assumption the inertial force of the segment and the 

accumulated drag force are applied at the base of the segment.  The lumped mass 

segment equation of motion is as follows, 
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It would seem a much better model would have the mass and applied force applied at 

the midpoint of the segment.  The resulting angular acceleration is twice that of the 

lumped mass model. 
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An even better model would have the segment modeled as a thin rod or cylinder.  This 

would have the inertial and applied loads at the center of mass of the rod as in the 

previous model.  However, it also has its rotational inertia that resists rotation (the 

rotational inertia about the center of gravity of a thin rod is Iy = (ml2)/12).  The resulting 

angular acceleration is an average of the two previous equations. 
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The one segment example illustrates the weakness of the lumped mass model.  

Presumably as the number of segment increase the difference in the dynamics of the 
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lumped mass and the thin rod models will decrease (this will be shown in chapter five).  

However, the as the number of segments increase so too does the computational 

workload. 

The question remains how do the equations of motion derived throughout this chapter 

for the lumped mass model change for a system modeled by thin rod segments.  The 

answer can be found by rederiving Lagrange’s equations with a new position equation 

that represents the center of mass of each segment.  Upon completion one will realized 

that equation 2.30 remains true, recall,  

 [ ][ ] [ ][ ] [ ]QBA =+ 2θθ &&&  

The only changes in the equations of motion for the thin rod modeled segments are in the 

mass distribution in the A and B coefficient matrices and the lever arm of the generalized 

force equations. 

The mass distribution of the coefficient matrices in the lumped mass model is given in 

equation 2.33.  The mass distribution of the coefficient matrices in the thin rod modeled 

system for n+1 segments is as follows, 
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The generalized force equation remains much the same however since the forces on 

the ith segment are applied at the center of mass and not at the base of the segment the 

lever arm is halved when i is equal to j, 
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Note the for equation 2.69 to be accurate for the ATV segment the ATV center of mass 

must coincide with the center of mass of the segment model.  In other words, the length 

of the ATV segment will be twice the distance between the cable-ATV hitch point and 

the ATV center of mass. 

The set of equations of motion for the aerial towed system with segments modeled as 

thin rods is attained with the implementation of equations 2.32, 2.49, 2.68 and 2.69 on 

equation 2.30.  Given a proper numerical integration routines and a set of valid initial 

conditions a simulation of the two-dimensional aerial tow system can be accomplished.  

The difference in the results of the lumped mass and thin rod segment modeled system 

simulations with the same initial conditions will be analyzed in chapter five.  It is only 

then a conclusion can be drawn about the pros and cons of the two methods.    
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CHAPTER 3 

3THREE-DIMENSIONAL DYNAMICS 

3.1 Introduction 

Modeling the aerial tow system for the two-dimensional case is more-or-less straight 

forward.  The equations of motion have been thoroughly derived, include nonlinearities, 

and make few assumptions.  As a result, we can expect that the simulation of the system 

will be thorough as well; the system could be used to complete a wide variety of case 

studies, such as, ATV position due to wind gust or host vehicle motion, as well as ATV 

tracking ability under various conditions.  However, it is still limited the phenomena that 

occur only in the two-dimensional plane.  For a more robust simulation it is necessary to 

derive the equations of motion in three dimensions.  Being that the actual system exists in 

three dimensions, this will more accurately represent the real world dynamic occurrences.  

The addition of the third dimension will drastically increase the complexity of the 

mathematical models.  The methodology for the derivation of the three-dimensional 

equations of motion is the same as that used for the two-dimensional case (chapter 2) 

although a few new concepts are necessary to carryout that methodology. 

3.2 Cable Dynamics  

The three-dimensional model of the cable is attained via the application of the finite 

element technique.  As in the two-dimensional case, the continuous cable is broken into 

an arbitrary number of segments.  The lumped mass model of the cable segments will be 
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used in the initial analysis of the cable.  Each segment is free to rotate about its 

neighbors, giving the series of rigid connections flexibility as a whole.  The added 

dimension allows the segments two additional rotations, the rotation about the x-axis and 

the ability for each segment to spin (rotation about the z-direction).  The equations of 

motion for the segment motion will include the new dynamic freedom, and as a result, the 

equations will increase in complexity. 

To focus on the dynamics of the cable we will assume that the cable is attached to the 

origin of the inertial frame.  In other words, assume that the host vehicle is steady.  Thus, 

the focus of the dynamics will be on the three-dimensional motion of the cable.  The 

effects of the motion of the cable connection point will be addressed in a later section. 

3.2.1 Coordinate Systems  

The addition of the third dimension does not have an effect on the number of 

coordinate systems needed, although it does affect the type and complexity of the 

orientation of the coordinate systems.  The inertial frame is orthogonal and fixed.  Each 

cable segment has an orthogonal coordinate system which has its origin such that the 

location of the node of that segment is the length of the segment in the positive z-

direction.  For instance, imagine there is one cable segment that rotates about the inertial 

frame.  The origin of the cable segment frame is at the point of rotation of the segment.  

Thus, the location of the origin of the first cable segment frame and the origin of the 

inertial frame are the same; the difference is in the orientation of the frames, figure 3.1. 
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Figure 3.1 Three-dimensional inertial and cable segment coordinate systems 

  The orientation of the cable segment relative to the inertial frame is due to the angle 

of rotation of the cable frame.  The cable frame can rotate about three separate axes (x, y, 

and z-axes) unlike the two-dimensional case in which it can rotate about only one (the y-

axis).  The common method for describing the three-dimensional rotation requires the use 

of Euler angles.  These Euler angles are the heading angle ψ, the attitude angle θ, and the 

bank angle φ.  Any orientation of the cable frame relative to the inertial frame can be 

described by using these three angles.  However, it is important to note that the order of 

rotation is important.   

Imagine that a cable segment frame is parallel to the inertial frame and their origins 

are coincident, figure 3.2.  Allow the cable frame to rotate about its z-axis by an angle ψ. 

The resulting coordinate system is the double primed system.  Thus, the coordinate 

transformation from the double-primed system to the fixed inertial frame is as follows, 
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Next, allow the double-primed system to rotate about the y ′′ -axis by an angle θ.  The 

resulting coordinate system is the triple-primed system.  The coordinate transformation 

from the triple-primed system to the double primed system is as follows, 
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Finally, allow the triple-primed system to rotate about the x ′′′ -axis by an angle φ.  The 

resulting coordinate system is the unprimed cable segment frame.  The coordinate 

transformation from the cable segment frame to the triple-primed system is as follows, 
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The rotational coordinate transformation from the cable segment frame to the inertial 

frame is attained by combining equations 3.1, 3.2, and 3.3, 
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Figure 3.2 Euler angle rotations 

The series of three rotations of the cable frame are sufficient to attain any orientation.  

The same is true independent of the order of rotation.  However, the order of rotation 

does have an effect on the final position of the cable frame.  The order used throughout 

this paper is ψ, θ, and φ for every three-dimensional segment rotation.  Let us assume that 

the Euler angles are limited to the following rotations, 

 πφ
π

θ
π

πψ 20,
22

,20 <≤≤≤−<≤  (3.5) 

When θ  = 2π± there is no distinct set of solutions for ψ and φ , this is known as gimbal 

lock. To avoid complications associated with gimbal lock it is common to switch to an 

alternate system.  In this particular aerial tow system the issue of gimbal lock will not 

arise as the system necessitates the ATV fly at a lower altitude than the host aircraft 

resulting in cable segment attitude angles between .2π±  
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The three-dimensional rotational coordinate transformation from the cable to the 

inertial coordinate system is represented by the following directional cosine matrix, 
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The position of the ith segment’s node in its coordinate system is by definition the length 

of the segment in the z-direction.  Since the segments are a series of connected bodies the 

directional cosine matrix can be used to formulate the node’s position in the inertial 

frame, 
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Expansion of equation 3.9 yields a more explicit form of the ith segment position in the 

inertial frame, 
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As in the tow-dimensional case, the location of the node of a segment is dependant upon 

the angles of rotation of that segment and each preceding segment. 
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3.2.2 Lagrange Equations 

The modeling of the cable is accomplished using the finite element method, just as 

with the two-dimensional case.  As discussed previously, the method breaks the cable 

into an arbitrary number of segments, and each cable segment has its own coordinate 

system.  The accuracy of the cable model improves with an increase in the number of 

segments for a given cable, so too does the difficulty of the derivation of the equations of 

motion for the cable. 

Using Newton’s method to derive the equations of motion for such a complex 

configuration would be fraught with danger, as it would require intense vector 

bookkeeping and multiple coupled rotation equations for each segment.  The advantages 

of the Lagrange technique over Newton’s method are even stronger for three-dimensional 

analysis than in the two-dimensional case.  The added dimension greatly increases the 

system complexity and since the Lagrange technique has a standard process for the 

derivation of the equations of motion it is less likely that mistakes will be made in the 

derivation of the equations. 

The bounds of the Lagrange equation are set by the degree of freedom of the system 

(refer to section 2.2.2).  In three dimensions, the complete description of a cable segment 

is composed of its nodal position and its orientation (i.e. angle of twist).  In the Cartesian 

coordinate system the position of the node is defined by its x, y, and z-coordinates.  Due 

to the fact that the segment length is fixed the coordinates are not independent.  The 

Cartesian constraint equations are shown below, 
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The Cartesian coordinates alone cannot specify the angle of twist of the segment.  

Therefore, there are in actuality four coordinates necessary to define the system, and 

being that there is one constraint equation each cable segment has three degrees of 

freedom. 

It is possible to completely define the position and orientation of a segment using the 

Euler angles.  In this case, there are three angles which completely define the segment 

and there are no constraint equations.  Therefore, the Euler angles of each segment are 

the independent generalized coordinates of the system.  For the two-dimensional case the 

independent generalized coordinates were the attitude angles of rotation and since there 

was only one angle per segment the generalized coordinate consisted of just one variable.  

However, for the three-dimensional model each segment requires three angles for 

complete description of orientation.  As a result, for a cable modeled by n segments there 

are 3n generalized coordinates made up of ψ, θ, and φ for each segment. (This assumes 

that each cable segment is free to fully rotate about the preceding segment.  The validity 

of this assumption will be discussed in a later section).   

For the three-dimensional system, Lagrange’s equations represent an equation for each 

of the 3n degrees of freedom, 
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Note that the generalized force, Q, contains applied forces, applied moments, and inertial 

forces as per the discussion in section 2.2.2.   

Equation 3.9 represents a set of 3n equations.  In which the generalized coordinate is 

made up of three independent variables.  It may be presented more clearly rewritten as 

three sets of n equations, in which the generalized coordinate for each is an independent 

variable, 
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Thus, each segment will contain three equations of motion.  Note that the applied 

moments and the moments produced by the applied forces are about the axis of rotation 

of their respective generalized coordinate, iφ& , iθ& , and iψ& . 

The method for deriving the equations of motion is the same as that carried out in the 

two-dimensional cable dynamic section.  The only difference is the more complex kinetic 

energy equation and the increase in the number of generalized coordinates of the system. 

The kinetic energy is made up of rotational and translational kinetic energy.  The nodes, 

being point masses, have no inertia and thus no rotational kinetic energy.  As a result, the 

derivation of the equations of motion relies solely on the translation kinetic energy of the 

system as a function of the generalized coordinates.   

The kinetic energy can be found by calculating the square of velocity for the node of 

each segment as a function of the generalized coordinates, equation 2.9.  The velocity 

components are simply the time rate of change of position 
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Thus, the square of velocity for the kth segment is as follows, 
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Furthermore, the three-dimensional kinetic energy equation is represented as a function 

of the independent generalized coordinates below, 
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Equation 3.15 is the basis from which Lagrange’s equations will be derived.  All one 

needs to do is compare equation 3.15 and 2.12 to grasp the increase in complexity from a 
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system existing in two to three-dimensions.  With the cable kinetic energy equation 

derived the derivation of Lagrange’s equations for each set of generalized coordinates can 

commence.  

3.2.2.1 Bank angle 

The implementation of the Lagrange equation in the three-dimensional cable model 

must be accomplished for each angle necessary for cable orientation definition.  For the 

bank angle generalized coordinate the derivation is as follows.  

The derivative of kinetic energy with respect to the bank angle and the time rate of 

change of the bank angle of the ith cable segment yield the following, 
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Finally evaluating the time rate of change of equation 3.17 produces, 
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Note that, just as in the two-dimensional case, the term representing the derivative of 

kinetic energy with respect to generalized coordinate, equation 3.16, is completely 

canceled by the some of the terms in the time rate of change of the derivative of kinetic 

energy with respect to the time rate of change of the generalized coordinate, equation 

3.18. 

Combining equations 3.16 and 3.18 results in the series representation of the left hand 

side of the Lagrange’s equations for the bank angle of the three-dimensional finite 

element modeled cable, 
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To fully develop the equations of motion the generalized force equation as a function 

of bank angle is evaluated in accordance with equation 3.12. 
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The implementation of the Lagrange equations for the bank angle generalized coordinate 

is complete, however to attain the full system equations of motion Lagrange’s equations 

must be derived for the two remaining generalized coordinates. 

3.2.2.2 Attitude Angle 

This section investigates the application of the Lagrange equations for the attitude 

angle generalized coordinate.  The Lagrange equation term representing the derivative of 

kinetic energy with respect to the attitude angle and the rate of change of the attitude 

angle of the ith cable segment is as follows,   
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Taking the time rate of change of the equation 3.22 produces the first term in Lagrange’s 

equations for the attitude angle generalized coordinate,  
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Again, the time rate of change of the derivative of kinetic energy with respect to the 

time rate of change of the generalized coordinate, equation 3.23, contains terms that are 

equal to the derivative of kinetic energy with respect to the generalized coordinate, 

equation 3.21. 

Combining equation 3.21 and 3.23 appropriately produces the left hand side of 

Lagrange’s equations for the attitude angle generalized coordinate, 
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The right hand side of Lagrange’s equations is the derivation of the generalized force for 

the ith segment.  The evaluation of equation 3.12 for the attitude angle generalized 

coordinate results in, 
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Thus, concludes the derivation of the equations of motion for the attitude angle.  

However, there still remains one generalized coordinate not yet applied to the Lagrange 

equations.  

3.2.2.3 Heading Angle 

The final generalized coordinate is the heading angle.  The equations of motion for the 

heading angle are derived in the same fashion as that of the other Euler angles.  The 
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derivation of the Lagrange equations for the heading angle of the ith segment as shown in 

equation 3.11 is presented in detail in the remainder of this section. 

The derivative of kinetic energy with respect to the heading angle and time rate of 

change of heading angle of the cable segment is evaluated below, 
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The first term of Lagrange’s equations is attained by taking the time rate of change of 

equation 3.27.  The results are as follows, 
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 (3.28) 

As with the previous derivations of Lagrange’s equations for the cable system the time 

rate of change of the derivative of kinetic energy with respect to the time rate of change 

of the generalized coordinate contains terms that are equal to the derivative of kinetic 

energy with respect to the generalized coordinate, somewhat simplifying the equations of 

motion. 
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Combining equation 3.26 and 3.28 appropriately produce the left hand side of the 

Lagrange’s equations of the heading angle generalized coordinate. 
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The final addition to the dynamics equations are the effect of the applied loads on the 

heading angle.  The generalized force for the heading angle is derived in accordance with 

equation 3.12 and result in the following,  
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The equations of motion of the cable segments are dependant upon the equations of 

motion of the Euler angles of each segment.  Simulation of the cable motion requires 

simultaneous solution of the angular acceleration of the generalized coordinates for all 

cable segments. 
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3.2.2.4 Cable Equations of Motions 

We have yet to discuss the three-dimensional aerodynamic applied loads, but 

neglecting that, the equations of motion for the three-dimensional cable have been 

derived, although they are not in a convenient form.  We can rewrite the equations of 

motion in matrix form for an arbitrary number of cable segments as was done in the two-

dimensional case.  The fully three-dimensional nonlinear differential equations of motion 

for a cable of n segments can be written in the following form,  
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where A, B, C, and Q are augmented matrices.  In other words, matrix A is composed of 

nine submatrices of size n x n.  Thus A is of size 3n x 3n.  The same is true for matrix B 

and C.  A, B, and C are coefficient matrices.  The generalized force column matrix, Q, is 

an augmented matrix of size 3n x 1.  The values of the matrices components are taken 

directly from the results of the derivation of the Lagrange equation carried out in the 

previous sections, and combine to form a set of 3n equations of motion.   

The A, B, and C matrices in equation 3.31 are represented by the equations below, 

where i and j are the row and column of the matrices. 
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Recall the mass distribution for the lumped mass modeled segment from equation 

2.33, 
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The resulting matrix equation is quite complex, but then again so is the system that the 

equations are modeling.  The equations were set up independent of the number of system 

segments.  As a result, the addition of segments is easily accomplished (however, it will 

increase the computational workload).  The angular acceleration of each segment can be 

calculated given known initial conditions such as the magnitude of the angles and angular 

velocity.  To solve the equations of motion the matrices need to be populated, as per 

equations 3.20, 3.25, 3.30, and 3.33 through 3.58, and the A matrix must be inverted and 

appropriately applied to equation 3.31.  There is an issue in the inversion of the A matrix 

but that will be discussed in a later section. 

The model of the connected cable segments allows for complete rotational freedom for 

each segment.  This assumption is valid with the exception of the twisting or rotation 

about the z-axis of the cable segment.  In an actual cable the torsion resistance would not 

allow for free twisting.  One could then introduce an additional constraint equation that 

would restrict twisting.  However the kinetic energy associated with the twisting in the 

modeled cable segment is zero due to the fact that the segment has no inertia through the 

segment z-axis.  The derivation of the equations of motion for cable using the Lagrange 
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technique is based on the kinetic energy; therefore, the free rotation of the segment about 

its z-axis is of no consequence.  The utilization of the twisting constraint equation would 

reduce the degree of freedom of the system but it would also complicate the derivation.  

As a result, this will be left for future work. 

The equations of motion to this point are sufficient to perform a dynamic simulation of 

an ideal three-dimensional cable.  The final step to complete the full cable dynamic 

simulation is the modeling of the applied loads produced by the frictional fluid forces.  

These forces can then be introduced into the Q matrix which would allow a dynamic 

simulation of a cable in a fluid.  

3.2.3 Aerodynamic Modeling 

Hoerner’s crossflow method for calculating cable drag is fundamentally applicable in 

the analysis of the three-dimensional cable model; the cable is composed of straight 

segments with circular cross-sections, and the flight conditions produce subcritical 

Reynolds number about the cable.  However, direct application does not account for flow 

in the transverse direction. 

In short, the crossflow method predicts the frictional and pressure forces produced by 

the fluid flow relative to the cable.  The friction and pressure drag are calculated via the 

components of the flow that are normal and tangent to the cable.  This is evident from the 

two-dimensional crossflow drag equations produced by Hoerner.  This concept can be 

extended to three-dimensional flow with only slight modifications. 
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In the cable segment frame, the z-axis is tangent and the x and y-axes are 

perpendicular to the cable segment.  Therefore, the magnitude of the normal velocity is 

dependant solely on the velocity of the fluid in the x and y-coordinate direction.  The 

pressure drag is a function of the magnitude of the normal velocity and the friction drag is 

a function of the magnitude of the overall velocity.  

The modification of the crossflow-principle for three-dimensional flow on the jth cable 

segment is as follows: 
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where, ρ, d, cf, and cp are air density, cable diameter, frictional coefficient, and pressure 

coefficient, respectively; Fx, Fy, and Fz are the aerodynamic forces, and Vx, Vy, and Vz are 

the flow field velocity relative to the cable segment in the cable segment frame.  

The fluid velocity relative to the cable is a result of the freestream flow, U0, V0, and 

W0, and the motion of the cable system.  The reference flight conditions as well as the 

equations calculating the segment node velocity are in the inertial frame.  The application 

of equation 3.59 requires that the inertial velocity be converted to the cable segment 

coordinate system.  Thus a rotational coordinate transformation is necessary,  



 81

 
















+
+
+





=

















j

j

jT

jz

jy

jx

ZW
YV
XU

C
V
V
V

j

&
&
&

0

0

0

,, ψθφ  (3.60) 

The drag loads are applied at the node of a given segment producing moments about 

the point of rotation of the segment.  The resulting moments are inherently calculated in 

Lagrange’s equations via the generalized force equations, equation 3.12.  However, the 

forces in the generalized force equation are in the inertial frame.  As a result, the drag 

forces calculated by the modified crossflow method require the rotational transformation 

as shown below, 
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The application of the friction forces of each cable segment to the generalized force 

equations, equations 3.20, 3.25, and 3.30, complete the system equations of motion for a 

cable in a fluid.  The angular acceleration of each segment can be calculated by the 

manipulation of equation 3.31 given that the appropriate initial conditions, such as 

segment orientation and Euler angular velocities, of each segment are known.  The 

ordinary differential equations can be utilized in combination with a numerical 

integration routine to produce a simulation that predicts the dynamics of a cable in a fluid 

field. 
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3.3 Arial Tow Vehicle 

The three-dimensional flight dynamics and analysis of simple aircraft have been well 

documented.  As a result, the simulation of the ATV alone would simply be an 

application of the aircraft equations of motion, resulting in a general flight simulator.  

However, the addition of the cable to the ATV introduces complexities for both the cable 

and ATV dynamics.  The system equations of motion must be derived and solved 

simultaneously for both the cable and ATV.   

In this configuration, the ATV is attached to the base of the cable, and the ATV is free 

to rotate about the cable-ATV hitch point.  The ATV has a center of mass, at which the 

inertial and aerodynamic forces are applied, that is a fixed distance from its rotation 

point.  It is possible, then, to describe the location of the ATV center of mass by the Euler 

angles of the imaginary line connecting the cable-ATV hitch point to the ATV center of 

mass, and like the cable segments the energy of the ATV can be described as a function 

of these Euler angles.  Therefore, it is feasible to model the ATV as an additional 

segment to the cable.  The parameters such as the mass and length of the segment are 

dictated by the configuration of the aircraft, and the applied loads on the ATV segment 

will be determined by the aircraft aerodynamics.   

Modeling the ATV as a cable segment takes advantage of the equations that have 

already been derived to model the individual and coupled dynamics of connected bodies.  

However, the total energy of the ATV is not entirely represented by the translational 

kinetic and potential energies.  Unlike the lumped mass cable segments defined in the 
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previous section the ATV has rotation kinetic energy.  As a result, the system equations 

of motion will require expansion. 

3.3.1 Coordinate System 

The additional ATV segment has a coordinate system that is defined in the same 

manner as that of the cable segments.  The origin of the ATV segment frame is at the 

cable-ATV hitch point and its z-axis passes through the ATV center of mass.  However, 

the equations representing the aerodynamics of the ATV, as they are defined in Nelson 

and Raymer, are in the general body fixed frame of the aircraft.  In this orthogonal 

coordinate system the origin is at the aircraft center of mass; the x-axis points from the 

origin towards the nose of the aircraft; the y-axis points towards the starboard side; and 

the z-axis points towards the bottom of the aircraft (presumably towards the ground).  As 

a result, the ATV segment will have two coordinate systems, the ATV segment frame and 

the ATV aircraft frame. 

 
Figure 3.3 ATV coordinate systems 

The ATV segment is geometrically defined from the cable-ATV hitch point to the 

ATV center of gravity.  Thus, the ATV segment and the ATV aircraft coordinate system 
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differ in rotation by a fixed attitude angle, ? (this makes the reasonable assumption that 

the cable-ATV hitch point is in the xz plane).  The aircraft aerodynamics that predicts the 

applied loads on the aircraft will be in the ATV aircraft frame, yet the generalized force 

equations require the forces be in the inertial frame.  A rotational transformation is able to 

accommodate the change from one coordinate system to the next.  Rotating from the 

ATV aircraft frame to the inertial frame is accomplished thru a series of transformations, 

first from the ATV aircraft to the ATV segment frame followed by the transformation 

from the ATV segment frame to the inertial frame. 

Due to the fact that the ATV aircraft and ATV segment frame differ by a fixed angle 

in the xz-plane, the rotational transformation between the two is simply represented by a 

rotation about the aircraft y-axis. 
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where, xATV, yATV, and zATV are the coordinates directions of the ATV aircraft frame. 

The ATV segment has the full three-degrees of freedom in rotation.  Therefore, the 

rotational transformation from the ATV segment frame to the inertial frame is the same 

as that derived in equation 3.6.  The rotational transformation from the ATV aircraft to 

the inertial frame is as follows, 
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This transformation will allow the use of standard aircraft aerodynamic techniques to 

be used in calculating the generalized forces on the ATV segment due to the freestream 

flow and the shape and motion of the ATV. 

3.3.2 Lagrange Equations 

Lagrange’s equations are based upon the total energy of the system, which in this 

system includes kinetic and potential energy.  The kinetic energy is composed of both 

translational and rotational kinetic energy.  The derivation of the cable segment equations 

of motion was simplified in that the segment nodes have no inertia and thus the segment 

has no rotational kinetic energy.  The same is not true for the ATV segment.  The ATV 

segment node is the ATV center of gravity and its inertia is derived from the ATV inertia.  

Therefore, the derivation of the equations of motion for the ATV segment is broken into 

two parts, translational and rotational kinetic energy.  Due to the similarities in the model 

of the ATV segment and the cable segment, the derivation due to the transla tional kinetic 

energy is identical to that derived in the previous section; leaving only the derivation of 

the Lagrange equations due to the rotational kinetic energy, see equation 2.41. 

Recall equation 2.43 presents the rotational kinetic energy equation of a rigid body, 

 { } [ ]{ }ωω IT T
rot 2

1
=    

where, ?  and I are the angular velocity vector and inertia matrix of the rigid body, 

respectively.  The angular velocity vector of the ATV segment is dependant upon the 

generalized coordinates and their time derivatives, as follows, 
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The ATV inertial matrix is a three by three matrix as follows, 
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Note that, in the notation used, xyI ′ is equivalent to yxI ′ .  Also note, that due to the 

aircraft symmetry the component of inertia xyI ′  and yzI ′  are equal to zero (this aircraft 

symmetry exists in most aircraft). 

The inertia matrix for the ATV is in the ATV aircraft frame; however the equations of 

motion are derived for the Euler angles which dictate the position and motion of the 

system segments.  Therefore, the inertia matrix in the kinetic energy equation must be 

that of the ATV segment not the ATV itself.  The two coordinate systems differ by the 

fixed rotation angle, ?.  The ATV segment inertia matrix is calculated from the ATV 

inertia as follows, 

 [ ] [ ]
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Since this transformation is accomplished via a fixed angle it need only be calculated 

once, in other words it does not affect the derivation of the rotationa l equations of motion 

since the angle is not a function of time or generalized coordinates.  The rotation of the 
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inertia matrix to the ATV segment frame does not affect the inertial symmetry (i.e Ixy and 

Ixz are zero). 

The substitution of the three-dimensional angular velocity vector, equation 3.64, and 

the inertia matrix into the kinetic energy equation, equation 2.43, produces the segment 

rotational kinetic energy equation in terms of the generalized coordinates., 
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The expansion of equation 3.67 and the application of it to every segment produce the 

rotational kinetic energy equation for the three-dimensional cable and ATV system, 
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Note that equation 3.68 accounts for each segment in the system cable and ATV alike.  

The equation would be greatly simplified under the condition that the cable segments 

were modeled using the lumped mass technique as the inertia components would be zero 

for i=1,2,…,n.  However, this simplification will not be applied until after the equations 

of motion have been derived to increase robustness. 

The effects of inertia on the dynamic response of the system is found by applying 

Lagrange’s equation to the rotational kinetic energy equation for each generalized 
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coordinate, i.e. the Euler angles (bank angle, attitude angle, and heading angle) of each 

segment. 

3.3.2.1 Bank Angle  

The rotational bank angle equation of motion for the ith segment is produced by 

evaluating Lagrange’s equations for the appropriate generalized coordinate with respect 

to rotational kinetic energy, 
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The derivative of rotational kinetic energy with respect to the bank angle and the time 

rate of change of the bank angle of the ith segment are as follows, 
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The time rate of change of equation 3.71 produces the final term of Lagrange’s 

equations, 
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The substitution of equations 3.70 and 3.72 into equation 3.69 yields the rotational 

equation of motion for the ith segment due to bank angle rotation, 
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3.3.2.2 Attitude Angle 

The rotational attitude angle equation of motion for the ith segment is produced by 

evaluating Lagrange’s equations for the appropriate generalized coordinate with respect 

to rotational kinetic energy, 
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The derivative of rotational kinetic energy with respect to the attitude angle and the 

time rate of change of the attitude angle of the ith segment are as follows, 
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The time rate of change of equation 3.76 is as follows, 
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The substitution of equation 3.75 and 3.77 into equation 3.74 yields the rotational 

equation of motion of the ith segment due to attitude angle rotation, 
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3.3.2.3 Heading Angle 

The rotational heading angle equation of motion for the ith segment is produced by 

evaluating Lagrange’s equations for the appropriate generalized coordinate with respect 

to rotational kinetic energy, 
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The derivative of rotational kinetic energy with respect to the heading angle and the 

time rate of change of the heading angle of the ith segment are as follows, 
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The time rate of change of equation 3.81 is as follows, 
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The left hand side of Lagrange’s equations for the heading generalized coordinates is 

equal to equation 3.82 since the rotational kinetic energy equation is not a function of 

heading angle. 

 

( )
[

( ) ]
[

( ) ]
[

( )]
( )1,2,1

222

22

22

2

22

22

222

2222

222

2222

2

+=

−−+

−++−

++−−

−−−

+−−+

+−+

+−−+

=
∂
∂

−







∂
∂

nifor

SCCSCSSCC

CSSSCSCCI

SSCSCCCSC

SCCCSCCCI

SSCSCCCSC

SCSCSCCSI

CSSCSI

TT
dt
d

iiiiiiiii

iiiiiiiii

iiiiiiiii

iiiiiiiii

iiiiiiiii

iiiiiiiii

iiiiii

iiiii

iiiixz

iiii

iiiiizz

iiii

iiiiiyy

iiiiiixx

i

rot

i

rot

…
&&&&&&

&&&&&&
&&&&&

&&&&&&
&&&&&

&&&&&&
&&&&&&&&

&

θθφθθφθθφ

θφθφθφθφ

θφφφφθθφφ

θθφθφφθφ

θφφφφθθφφ

θθφθφφθφ

θθθθθ

θψφψψ

θθφφ

θφθθ

θψφψψ

θφθθ

θψφψψ

θφφθψψ

ψψ

(3.83) 

3.3.2.4 Rotational Equations of Motion 

The results of the previous three sections produce the rigid body rotational equations 

of motion for the n+1 segments of the cable and ATV system.  The set of differential 

equations is best illustrated in matrix form, as follows, 
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Where, Arot, Brot, and Crot are augmented rotational coefficients matrices of size n+1 by 

n+1.  These matrices are purely diagonal due to the fact that the angular velocity of one 
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segment is independent of all other segments.  The following equations represents the 

diagonal terms of the coefficients matrices for i = 1…n+1, 
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Note that the rotational equations of motion are about the velocity vector of the 

generalized coordinates.  Recall that the three rotation vectors (φ& ,θ& , and ψ& ) are non-

orthogonal and order dependant.  A transformation can be applied to the derived rotation 

equations of motion in order to get the three non-orthogonal equations about an 

orthogonal rotational system.  The transformation is as follows, 
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Being that the coefficient matrices of equation 3.84 are diagonal the system rotation 

equations are uncoupled, thus there are n+1 independent equations.  Imagine there is only 

one body and its rotational equations of motion are represented by equation 3.84 in 

response to the moments
φ&M , θ&M , and ψ&M .  The rigid body rotational equations of 

motion in Cartesian coordinates can be attained by applying the transformation of 

equation 3.112 to the rigid body rotation equations.  Simplifying the result using equation 

3.64 produces in the following rotation equations in Cartesian coordinates, 
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Equation 3.113 is equal to the rotational equations of motion for a rigid body as 

derived by Newton’s laws.  The Cartesian coordinate rigid body rotation equations 
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cannot be used directly as the equations of motion for nodal translation are also about the 

Euler angular velocity vectors.  The transformation only serves to validate the derived 

rotational equations of motion.   

The complete set of equations of motion for the segments in the cable-ATV system are 

presented in two parts, translation and rotation of the center of mass of the segments.  The 

translational and rotational equations of motion for each segment are represented by 

equation 3.31 and 3.84, respectively.  Thus, the complete equations of motion for the 

segments are obtained simply by combining the two equations.  This is accomplished 

simply by superimposing the rotational matrices, equation 3.85-111, onto the 

translational matrices, equation 3.32-58.  For example, matrix A1 is now of the form, 
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Where, the kronecker delta insures that the rotational coefficient is applied on the 

diagonal of the matrix. 

The rotational equations of motion apply to each of the segments in the system.  

However, in the current configuration the only segment that has a nonzero inertia is the 

ATV segment, i = n+1.  As a result, the values of the rotational coefficients for the cable 

segment will be trivial (this is not be the case for a system in which the cable segment 

model has a distributed mass). 
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The n+1 row of the augmented matrices represents the ATV dynamic effect of the 

motion of each cable segment on the ATV segment, and the n+1 column of the 

augmented matrices represents the dynamic effect of the ATV segment on the motion of 

each of the cable segments.  The nonlinear system equations of motion can be solved 

simultaneously for the angular acceleration of each segment given that the initial 

conditions, such as the Euler angles, Euler rates, and generalized forces are known.  The 

generalized force equations for each segment are dependant upon the applied forces on 

the segment.  Thus the evaluation of the aerodynamic forces and moments is needed to 

produce a realistic simulation of the system.  

3.3.3 Generalized Forces 

Being that the ATV is modeled in the same fashion as the cable segments the 

generalized force equations are the same as those of the cable segments, equations 3.20, 

3.25, and 3.30.  There is, however, a difference in the model for the applied forces and 

moments between the two types of segments.  The calculation of the Aerodynamic forces 

and moments on the ATV are accomplished using linearized small-disturbance theory, 

Nelson14; where in, the aerodynamic forces and moments are calculated based upon the 

aircraft reference flight conditions and the small deviations about the reference condition. 

The aircraft aerodynamics are represented by stability derivatives that approximate the 

affects of the deviations from the reference flight condition due to various parameters 

such as perturbation velocities and angular rate of rotation. The aircraft fixed frame 

equations for the aerodynamic forces, FXATV, FYATV, and FZATV, and moments, L, M, and N, 

are as follows,   
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where, m is mass, IX, IY, and IZ are mass moment of inertia, and Xu, Xw,…, Nr are the 

stability derivatives of the aircraft. The perturbation velocities u, v, and w are the velocity 

difference between the ATV and reference freestream, 
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The angular rotation rates of the aircraft p, q, and r, are about the orthogonal aircraft 

fixed frame, 
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Note that the aerodynamic moments of equation 3.115 are about the orthogonal ATV 

fixed frame, yet the moments in the generalized force equations are in the non-orthogonal 

generalized coordinate system.  Therefore, the aerodynamic moments must be calculated 

and then translated into the proper frame prior to the implementation of the generalized 

force equations.  The first step is to translate the moments in the orthogonal aircraft frame 

to the orthogonal ATV segment frame, 
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Next, the translation matrix in equation 3.112 configures the aerodynamic moments into 

the proper non-orthogonal generalized coordinate system, 
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At this point the aerodynamic forces and moments can be correctly applied to the 

derived generalized force equations, and the simulation of the cable-ATV system is 

attainable. 

Using small disturbance theory to model the aerodynamics of the ATV allows for the 

simulation of the cable-tow system for an array of towed aircraft.  The aerodynamics of 

the ATV due to its size and shape can be quickly quantified and easily applied to the 

simulation without having to rederive the equations of motion. 

3.4 Host Vehicle 

As with the two-dimensional case, the assumption is made that the host aircraft is 

much greater in size than the ATV.  As a result, the forces produce from the motion of 

the cable and ATV will be insignificant in comparison to the aerodynamic and thrust 
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forces of the host aircraft.  That is not to say that the host vehic le dynamics are 

inconsequential.  It is likely that the autopilot of the host aircraft will not be perfect and 

that disturbances in the flow will cause oscillations of the vehicle, which will, in turn, 

affect the motion of the cable and ATV.  As a result, the motion of the host aircraft can 

be viewed as the movement of the host-cable attachment point. 

3.4.1 Coordinate System 

The movement of the host aircraft complicates the spatial definition of the system.  

Introducing the host vehicle coordinate system aids in the system evaluation.  The host 

vehicle coordinate system is purely translational, its origin is at the host-cable connection 

point, and it is parallel to the inertial coordinate system.  In the previous sections of this 

chapter the inertial and host vehicle coordinate systems have been coincident. 

The x, y, and z-axes of the host frame are denoted by X ′ ,Y ′ , and Z ′ .  The node 

position for the ith segment in the host frame is as follows, 
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The position of the origin of the host frame in the inertial coordinate system is denoted 

by x , y , and z .  As a result, the equation for the node position of the ith segment in the 

inertial frame can be rewritten as follows, 
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3.4.2 Lagrange Equations 

The motion of the host vehicle can be made arbitrarily.  For example, the x, y, and z 

components of velocity and acceleration of the host vehicle can be set as a harmonic 

function that represents a particular aircraft’s longitudinal and lateral dynamics.  It can 

also be set to model aircraft maneuvers such as coordinated turns or altitude changes. 

The motion of the host aircraft alters the translational kinetic energy of the system as 

derived in equation 3.15.  Therefore, the effect of the connecting point movement on the 

cable and ATV equations of motion is determined by deriving Lagrange’s equations for 

the appropriate kinetic energy equation. 

The kinetic energy equation is derived by first calculating the velocity of each segment 

in the inertial frame, as in the previous sections, 
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To calculate the translational kinetic energy the square of velocity must first be 

calculated.   
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The kinetic energy of the system is made up of rotational and translational kinetic 

energy.  The rotational kinetic energy equation remains unaffected by the translation of 

the host frame, and therefore will no t be rederived.  The kinetic energy equation for the 

system is as follows, 
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where, Tseg and Thost are the kinetic energy due to the translation of the rotation segments 

and the kinetic energy due to the translation of the host vehicle, respectively.  Note that 

Tseg is equivalent to the translational kinetic energy of sections 3.2 and 3.3 when the 

inertial and host frame were coincident.  The equations of motion of the aerial tow system 

can be found by applying Lagrange’s equations to the total system kinetic energy or the 

superposition of Lagrange’s equations applied to each of the kinetic energy term, 
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The derivation of the equations of motion due to Tseg and Trot has been accomplished 

in previous sections.  Therefore, the only remaining derivation is that of Lagrange’s 

equations with respect to Thost.  The equations of motion for the host-cable-ATV system 

are produced by the superposition of the results of Lagrange’s equations for each of the 

kinetic energies. 

The expansion of the kinetic energy due to the host vehicle motion is as follows, 
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The application of equation 3.125 to Lagrange’s equations returns the added effect of the 

host vehicle motion. 

3.4.2.1 Bank Angle 

The derivative of kinetic energy, due to host vehicle movement, with respect to bank 

angle and the time rate of change of bank angle is as follows, 
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Time rate of change of equation 3.127 is as follows, 
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The addition to the bank angle translation equations of motion due to the host vehicle 

translation is as follows, 

 
( )[

( ) ( )]
iiiiiii

iiiii

SCzSSSCCy

SSCCSxlm
TT

dt
d n

ik
ik

i

host

i

host

φθφθψφψ

φθψφψφφ

−+−−

+−=
∂

∂
−









∂
∂ ∑

+

=

&&&&

&&&
1

 (3.129) 

3.4.2.2 Attitude Angle 

The derivative of kinetic energy, due to host vehicle movement, with respect to 

attitude angle and the time rate of change of attitude angle is as follows, 
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Time rate of change of equation 3.131 is as follows, 
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The addition to the attitude angle translation equations of motion due to the host 

vehicle dynamics is as follows, 
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3.4.2.3 Heading Angle 

The derivative of kinetic energy, due to host vehicle movement, with respect to 

heading angle and the time rate of change of heading angle is as follows, 
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Time rate of change of equation 3.135 is as follows, 
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Finally, the addition to the heading angle translation equations of motion due to the 

host vehicle dynamics is as follows, 
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3.4.3 Generalized Forces 

The host vehicle motion alters the kinetic energy of the system consisting of just the 

cable and ATV.  This change in kinetic energy adds to the cable-ATV system equations 

of motion.  As with the two-dimensional case, the units of the equations resulting from 

the application of Lagrange’s equations on Thost, equations 3.129, 3.133, and 3.137, have 

units of force times distance and the equations are similar in form to the generalized force 
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equations, equations 3.20, 3.25, and 3.30.  As a result, the effects of the motion of the 

host vehicle can be thought of as an applied force due to the acceleration of the host 

vehicle.  The resulting equations of motion for the cable and ATV system remain the 

same in the event the host vehicle moves the only change is in the generalized force 

equation,   
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The motion of the host vehicle has no affect on the A, B, or C coefficient matrix in 

equation 3.28.  The direct results of the derivation show that the moving host frame 

produces applied loads on each segment node proportional to the host vehicle 

acceleration.  The indirect effect of the host vehicle motion is the added segment velocity 

which affects the applied aerodynamic forces and moments of the segment.  Note that the 

derivation due to the host vehicle motion is independent of the functions used to model it, 

i.e. the displacement functions can be arbitrarily chosen to represent any number of host 

vehicle maneuvers.  
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At this point, the equations of motion for the three-dimensional aerial tow system are 

complete, and given a proper numerical integration program with a set of valid initial 

conditions a simulation of the three-dimensional aerial tow system can be accomplished.  

The simulation can be created for many freestream conditions and host vehicle 

maneuvers.   

3.5 System Equations of Motion of an Alternate Segment Model 

The equations of motion derived throughout this chapter up to now have been done so 

using the lumped mass segment model.  It has been made clear in section 2.5 that the 

lumped mass model is a poor model when the number of segments is small, and it has 

been suggested that a better model for the segments would be the thin rod model.  The 

thin rod model has its center of mass at mid-length and, unlike the lumped mass model, it 

has rotational inertia. 

The equations of motion of the system for the thin rod segment model can be derived 

using Lagrange’s equations, in the same fashion as that of the lumped mass segment 

model.  Upon completing the derivation of the equations of motion one will find that 

equation 3.31 still holds true, recall equation 3.31, 
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And just as in the two-dimensional case only the mass distribution of the coefficient 

matrices A, B, and C and the lever arm of the generalized force equations will differ from 

the equations derived for the lumped mass segment model. 
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The mass distribution of the coefficient matrices for the lumped mass model is given 

in equation 2.33 and the mass distribution for the thin rod model is given in 2.68, recall 

equation 2.68,  
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This remains the same for the two and three-dimensional case. 

The generalized force equations are only slightly altered due to the fact that the inertial 

and applied forces on a segment are located at the segment’s center of mass.  Thus, the 

lever arm of the applied and inertial forces of the ith segment is half the segment length.    
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Note, for equations 3.141 – 3.143 to be accurate for the ATV segment the ATV center of 

mass must coincide with the center of mass of the segment model.   

The three-dimensional system equations of motion with the thin rod segment model 

can be attained by applying equations 3.32-3.58, 3.85-3.111, 3.141-3.143, and 2.68 with 

equation 3.31.  Given proper initial conditions and an adequate numerical integration 

routine a simulation of the three-dimensional aerial towed system with the thin rod 

segment model can be produced.  A comparison between the simulation results of the 

lumped mass and thin rod segment modeled systems with the same initial conditions will 

be analyzed in chapter five. 
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CHAPTER 4 

4FLIGHT PARAMETERS 

4.1 Introduction 

The driving force behind this work is the analysis of an aerial tow system in which the 

ATV is towed near the ocean surface.  The derived equations of motion are general and 

would apply to a wide range of aerial tow systems.  The parameters of the system that 

make it unique to the low altitude tow system are the length of separation between the 

host aircraft, the size, shape, and controllability of the ATV, and the shape of the terrain 

over which the ATV is being towed. 

In order for the ATV to maintain a given height above the ocean surface it is necessary 

that the ATV be able the ocean waves.  This can be accomplished by appropriately 

changing the applied forces on the aircraft as it cruises.  For instance, if the ATV senses 

that it is flying too low it changes its aerodynamics to apply a vertical force to increase its 

altitude.  This is attained in reality by attaching a radar altimeter and an autopilot to the 

ATV.  A mathematical model of the ATV autopilot and the ocean terrain is necessary to 

simulate the altitude hold of the ATV above the ocean waves. 
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4.2 Ocean Surface Waveform 

The ATV autopilot attempts to maintain a given altitude above the ocean surface as it 

is being towed by the host aircraft.  A radar altimeter is equipped to the ATV and it 

measures the distance between the vehicle and the ‘ground’.  Numerically this distance is 

the difference between the ATV and a given surface directly below the ATV.  The 

equations for the ATV position in the inertial frame have been derived in the previous 

sections, thus a model of the ocean is required to produce a mathematical model of the 

radar altimeter reading.  

The shape of the ocean varies widely.  It can range from placid to situations where 

there are swells of fifty feet in height.  The shape of the waves depends on many 

parameters such as ocean current, wind speed, and wave height.  As a result, there is no 

one algorithm that can be used to fit the shape of the ocean surface.   

For our simulation we will model the ocean surface as a simple sine wave with 

variable amplitude and frequency.  Therefore, the radar altimeter reading will be a result 

of the sine wave and the ATV altitude.  The sine wave oscillates about some nominal 

altitude, in our case it is sea level.  In the inertia frame sea level is a distance hn in the z-

direction. The vertical position of the wave, h, in the inertial frame is a function of time 

and inertial x-position, X, 

 ( ) noo hXtAh ++= λπω 2sin  (4.1) 
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where, Ao is the amplitude of oscillation. The wave frequency, ω0, as seen by the origin 

of the inertial frame is dependent upon its x-direction flight speed and the ocean 

wavelength, λ, as follows: 

 λω 0Uo =  (4.2) 

Note that the velocity of the ocean wave is neglected due to its comparatively small 

magnitude; however, it could be easily included by adding the wave velocity to the 

freestream flow, if the conditions deemed it necessary.  

The wave model of equation 4.1 is two-dimensionally adequate, i.e. it holds as long as 

the ATV travels in the inertial xz-plane. If a side gust were to push the ATV in the y-

direction this model would not account for transverse changes produced by neighboring 

waves.  A fully three-dimensional waveform model is necessary to accommodate the 

three-dimensional motion of the ATV.  

The transverse waves are modeled as a series of sine waves with the amplitude 

dictated by the amplitude of the longitudinal ocean wave at the point of intersection 

between the two waves.  The transverse wavelength is assumed to be identical to the 

lateral wavelength.  The resulting model is a surface where the z-position of the surface at 

any given point is a determined by its x and y-position and time.  The wave surface in the 

inertial coordinated system is as follows:  

 ( ) ( ) noo hYXtAh ++= λπλπω 2sin2sin  (4.3) 



 114

Figure 4.1 shows an isometric view and a contour plot of a general three-dimensional 

surface waveform. 

 
Figure 4.1 Three-dimensional ocean surface waveform 

The mathematical model of the ATV radar altimeter reading is determined by the time 

and three-dimensional position of the ATV, 

 ( ) ( ) ATVnATVATVoo ZhYXtAh −++=∆ λπλπω 2sin2sin  (4.4) 

where, XATV, YATV, and ZATV are the three-dimensional Cartesian coordinate position of the 

ATV in the inertial frame. 

4.3 ATV Autopilot 

For the ATV to track the ocean waves a control system is required. A wide variety of 

control schemes exist for general aviation aircraft and could be applied to the ATV for 

academic interest.  However, there is no point in simulating an intricate control scheme in 

which its application is realistically unpractical.  Often the ATV is basic in its design and 

does not possess the control surfaces necessary to equip a complex control system.   
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The configuration of the ATV used in the given tow system is similar to the towed 

targets used in weapons testing.  As a result, the control system in this aerial tow system 

is a descendant of those commonly used in aerial tow targets.  These aircraft differ from 

general aviation aircraft in that they have only one control surface, which is an all moving 

wing.  Therefore, the aircraft autopilot corrects the incidence angle of the wing to 

appropriately adjust the aircraft lift. 

A proportional derivative (pd) controller used to determine wing correction. The 

autopilot receives a signal from the radar altimeter and accelerometer to determine both 

the error signal (the difference in actual and desired ATV altitude) and time rate of 

change of the error signal. The given signals allow the autopilot to relay to the wing servo 

the appropriate wing rotation to minimize the altitude error. The ATV autopilot 

multiplies the signals by the designed gains to produce the change in wing incidence, 

 hkhki dpw
&∆+∆=∆  (4.5) 

where, kp, kd, and ∆iw are the proportional gain, derivative gain, and wing angle 

correction, respectively. In all the subsequent simulations the control law remains fixed. 

 



 116

 

 
 
 
 CHAPTER 5 
 

 
5SYSTEM SIMULATIONS 

5.1 The Ideal Cable 

The equations of motion for the two and three-dimensional cable were derived using 

Lagrange’s energy based technique.  Neglecting applied forces such as fluid drag the sole 

factors in the derivation are the potential and kinetic energy of the cable system.  This 

ideal system is conservative.  As a result, if the equations of motion are correctly derived 

and the numerical integration routine is adequate the system should maintain a constant 

energy during the simulation.   Thus an initial test of the cable equations of motion and 

the numerical simulation can be produced by analyzing the results of the ideal cable 

system. 

Another means of testing the derived equations is the comparison between the two and 

three-dimensional systems.  The three-dimensional cable equations of motion are vastly 

more complex than that of the two-dimensional cable system.  However, both should 

produce the same results given identical initial conditions.  The initial conditions are 

chosen such that the three-dimensional equations of motion are not trivialized yet the 

motion is comple tely contained in one plane.   
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The initial conditions have each cable segment with the following Euler angles, phi, 

theta, and psi equal to 30, 55, and 20 degrees, respectively.  The dynamics of the cable 

are a result of the inertial forces of the cable (initially the angular velocities are zero) and 

given the initial straight cable configuration the cable will move in a planar fashion.  

Being that the three-dimensional motion is planar it can be compared to the two-

dimensional case.  The initial cable angles for the two-dimensional system can be 

calculated such that the center of mass as well as the orientation of each of the segments 

is equal to that of the three-dimensional case.  The three-dimensional initial conditions 

are match when the angles of the two-dimensional cable segments are set at 60.216 

degrees. 

If the equations of motion are correctly derived and the numerical integration routine 

adequate both the two and three-dimensional systems should have a constant energy and 

produce the same cable orientations over the duration of the simulation.  The two and 

three-dimensional systems discussed are simulated with a 2000 foot cable that is broken 

into 25 segments.  Figure 5.1 shows the simulation results of the two and three-

dimensional system with both the lumped mass and thin rod segment model.  



 118

 
Figure 5.1 Two and Three-dimensional ideal cable simulation results.  The figure 

shows, a) the height of cable base, and b) the system energy versus time. 

Figure 5.1a plots the vertical position (in the host vehicle frame) of the free end of the 

cable with respect to time.  Note that the altitude of the free end of the cable is dependent 

upon the orientation of each of the previous segments.  Figures 5.1a and 5.1b confirm that 

for each configuration the energy remains constant and that the two and three-

dimensional systems return exactly the same results in both cable orientation and energy.  

However, while the two and three-dimensional equations of motion produce the same 

results the system with the lumped mass segment model and the system with the thin rod 

segment model do not.  Which of the two systems is producing better results? 

a)  

b)  
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Recall that the simulations undertaken were modeled by breaking the cable into 25 

segments.  It is likely that as the cable is broken into more segments the simulation will 

yield more accurate results.  Thus, a convergence test is needed to determine the proper 

number of segments for each of the segment models that will produce valid results. 

5.2 Lumped Mass Versus Thin Rod Cable Model 

The number of cable segments used in the ideal cable simulation was chosen 

arbitrarily.  At this point the equations of motion have been derived to accurately predict 

the dynamics of each segment; however even if the equations of motion are correct that 

doesn’t necessarily mean the system motion will reflect that of a continuous cable.  In 

other words, the number of segments needed to accurately predict the cable motion is 

unknown.  Thus, the segment number convergence test is conducted for both the lumped 

mass and thin rod cable segment models.  The test for convergence begins by running the 

simulation with 10 segments and comparing the results with a simulation of 25 segments.  

Additional simulations are run continually increasing the number of cable segments of 

the system until the results begin to converge.  It is then the proper number of segments 

necessary to model the dynamics of the cable can be determined. 

The ideal system is helpful in supporting the validity of the equations of motion but 

the accuracy of the simulation is of most importance for the aerial towed system flight 

configuration.  As a result, the convergence simulations include the cable friction forces 

and 100 pound weight which is added to the unfixed cable end to represent the ATV 

(note that in this simulation does not include the ATV segment or any ATV aerodynamic 

forces).  The cable dimensions and drag coefficients as well as the reference flight 
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conditions are presented in table 5.1.  (Note that at the given reference flight speed and 

cable diameter the Reynolds number is indeed subcritical.) 

 
Table 5.1 Cable parameters and reference flight conditions 

The initial cable configuration has the cable hanging perfectly vertical.  It is then 

introduced to a fluid moving at 100 knots.  As time progresses the friction forces exerted 

on the cable will induce motion, and at some point the inertial forces (including the 100 

pound weight) will balance the drag on the cable and the system will reach equilibrium.  

Figure 5.2 contains the results of the simulations with varying number of cable segments 

for both the lumped mass and thin rod cable models.   

Cable Parameters    Reference Conditions   
  Diameter d 0.065 in     Velocity U0 100 knots 

  Mass per unit length  0.00036 slug/ft      Air density ρ  0.00238 slug/ft3 

  Friction coefficient cf 0.00573        

  Pressure coefficient cp 1.1     
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Figure 5.2 A cable in fluid flow simulation results.  The cable is broken into various 
numbers of segments; the segments are modeled as, a) lumped masses, and b) thin rods. 

Both systems respond to the aerodynamic drag applied to the cable by the freestream 

flow.  As time increases the systems’ dynamics slow and equilibrium is attained.  The 

lumped mass and thin rod models produce different static locations as the number of 

segments change.  The equilibrium positions begin to converge as the number of 

segments increase.  However, the thin rod modeled system seems to be converging much 

quicker than the lumped mass system.  The thin rod system has reached a reasonable 

convergence in just 25 segments (the altitude difference between the 25 and 100 segment 

a)  

b)  
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thin rod modeled system is just 4 inches).  While it is apparent that even at 100 segments 

the lumped mass system has yet to converge.   

 
Figure 5.3 Cable base static positions versus number of cable segments 

The vertical static position of the cable base is plotted versus number of cable 

segments for lumped mass and thin rod modeled systems in figure 5.3.  It is clear from 

the figure that the thin rod modeled system converges with fewer segments than lumped 

mass system.  Upon convergence, the simulation results for both cable segment modeled 

systems are similar, yet the computational workload varies greatly. 

Figure 5.2b shows that the system simulation with the thin rod cable model produces 

slightly better results with 10 segments than with 200 segments of the system with the 

lumped mass cable model.  While both systems produced roughly the same results, the 

computation time required to produce the 90 second simulation for the system using the 

lumped mass cable model with 200 segments was more than 35 minutes.  On the other 

hand, the computation time required for the same simulation for the system using the thin 
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rod cable mode with 10 segments was less than 1 second.  The thin rod model has an 

obvious advantage. 

One of the factors attributing to the more accurate results of the thin rod cable model 

is simply the distribution of the cable mass.  The lumped mass method places the all of 

the segment mass at the segment’s end.  Clearly a better approach would be to place the 

segment’s mass in the middle of the segment.  This is illustrated best by analyzing the 

potential energy of the cable.  Imagine a cable is in the initial condition described in the 

ideal cable section (each segment is at an angle of 60.216 degrees).  For the cable 

employing the lumped mass model, as the number of segment used to model the cable 

changes so too does the potential energy of the system.  This is due to the mass placement 

of the lumped mass technique.  For the system using the thin rod segment mode the 

potential energy remains exactly the same no matter how many segments the cable is 

broke into.  Figure 5.4 depicts the potential energy of the static cable as it is broken into a 

various number of segments.  

 
Figure 5.4 Potential energy versus number of cable segments. 
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As the number of segments increase in the lumped mass model the potential energy 

approaches that of the thin rod model.  The thin rod potential energy is in fact the 

asymptote of the lumped mass model; the lumped mass model potential energy will never 

exactly match the potential energy of the thin rod mode but as the number of segments 

increase it will come ever closer.  This illustrates a fundamental flaw in the lumped mass 

cable segment model. 

The thin rod model produces much better results than that of the lumped mass mode 

simply because it is a better physical model.  For the thin rod model the inertial and 

applied forces are localized at the center of each segment; the velocity of the segment is 

calculated at the center of the segment producing a more accurate drag prediction; and the 

thin rod segments have rotational inertial that produces a more realistic dynamic 

response.  As a result, the thin rod segment model can produce a better simulation with 

fewer cable segments than the system using the lumped mass technique. 

5.3 Simulation of the Cable-ATV System 

The equations of motion governing the dynamics of the rigid body segments for both 

the cable and ATV have been derived for the two-dimensional system in chapters 2 and 

for the three-dimensional system in chapter 3.  As discussed in those chapters, the applied 

forces on the towed aircraft are dictated by the aircraft’s size and shape in the form of 

stability derivatives.  The aircraft parameters for the ATV that will be simulated 

throughout the remainder of the paper are presented in table 5.2. 
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Table 5.2 Aerial towed aircraft parameters 

5.3.1 Dimensional Comparison 

One final test of the governing equations pits the two and three-dimensional full 

system equations of motion against one another.  Just as in the ideal cable comparison the 

three-dimensional Euler angles of each cable segment are initialized with phi, theta, and 

psi at 30, 55, and 20 degrees, respectively, and the two-dimensional cable segments each 

have an angle of 60.216 degrees.  The ATV segments in both the two and three-

dimensional cases are oriented such that its initial angle of attack of the aircraft is equal 

to zero.  However, to ensure that there is no lateral ATV motion in the three-dimensional 

case the freestream flow is rotated 20 degrees about the z-axis producing components of 

flow in the x and y-directions, and the ATV segment is oriented such that the initial 

sideslip angle is zero.  The cable is 2000 feet in length and its remaining parameters are 

equal to those in table 5.1.  The cable is modeled using the thin rod method and it is 

broken into 25 segments.  The results of the simulations are presented in figure 5.5. 

ATV data       
  Moment of Inertia Ix 0.128 slug ft2    Fuselage diameter  8 in. 

 Iy 6.127 slug ft2    Mass m 8.301 slugs 

 Iz 6.121 slug ft2   ? 0 

  Longitudinal      Lateral   

  Stability derivatives X0 -9.35 lbf    Stability derivatives Yß -55.2 ft s -2 

 Xu -0.054 s -1   Yp  0 

 Xa 0   Yr  1.742 ft s -1 

 Zu 0   Lß  0 

 Za -176.1 ft s -2   Lp -19.265 s -1 

 Zq  -1.045 ft s -1   Lr  0 

 Mu 0   Nß  291.1 s -2 

 Ma -78.1 s -2   Np  0 

 Mq -1.103 s -1   Nr -2.414 s -1 



 126

 
Figure 5.5 Comparison between two and three-dimensional cable and ATV system 

Figure 5.5 plots the altitude of the center of mass of the ATV (in the host frame) over 

time.  As time progresses the initially straight cable begins to curve due to the inertial and 

aerodynamic forces of the ATV and the drag force on each of the cable segments.  

Eventually the motion of the system dies out and the system finds equilibrium.  

Throughout the simulation both the two and three-dimensional systems produce exactly 

the same results.   

5.3.2 Altitude Effects 

The equilibrium configuration of the aerial tow system is largely dependant upon the 

length of the cable in the system.  The equilibrium orientations of four configurations 

with varying cable length are presented in figure 5.6.  The configurations give the system 

enough cable to allow the ATV to cruise 250, 500, 1000, and 2000 feet below the host 

aircraft.  From the figure it is evident that the curve of the cable becomes more 

pronounced as the length of the cable increases, this is due to the fact that there is more 

cable for the air to act upon the cumulative cable drag arises as the driving force behind 

the shape of the static configuration. 
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Figure 5.6 Host vehicle cruise altitude affect on static cable curvature and position 

With the host vehicle cruising at an altitude of 250 feet the connecting cable is slightly 

curved. On the other hand when the host vehicle is at 2000 feet the cable is considerably 

more curved and the ATV cruises well aft of the host aircraft.   

The equilibrium position of the system can be easily found by solving for the angles 

that reduce the generalized force vector to zero, and then conclusions about the effect of 

the cable length can be surmised.  However, to determine the cable’s affect on the 

dynamics of the system a simulations is necessary.  

In an effort to test the dynamic motion of the aerially towed system four system 

configurations are simulated with variation in cable length.  These configurations give the 

system enough cable to allow the ATV to cruise 250, 500, 1000, and 2000 feet below the 

host aircraft, just as in figure 5.6.  The simulation begins with the system in equilibrium.  

As the simulation progresses the system is excited by the oscillation of the host aircraft.  

The amplitude and period of oscillation is such that it resembles the long period motion 

of general aviation aircraft.  (This would be the type of oscillation that would be expected 
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if the host aircraft were disturbed in someway.  The amplitude and period of the host 

vehicle oscillation is 10 feet and 30 seconds, respectively.)  During the simulation the 

natural response of the system is recorded.  Figure 5.7 presents the motion of the ATV as 

well as its static ATV position in the host frame. 

 
Figure 5.7 Dynamic response to host vehicle oscillation as viewed from the host 

vehicle coordinate system. 

The shortest cable configuration results in the ATV following almost exactly the 

motion of the host vehicle.  The ATV remains roughly 250 feet below the host aircraft at 

all times.  Conversely, the ATV in the longest cable configuration is only slightly 

disturbed from its static location.  Thus, as the cable length increases the response to the 

host oscillation decreases.  The host vehicle displacement is accommodated by the flex of 

the curved cable; whereas the force of the host vehicle displacement is applied directly to 

the ATV through the straight cable.  The dynamics of the curved cable absorb the motion 

of the ATV in a manner the straight cable configuration cannot.   

a) b)  

c) d)  
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The flex of the cable has an interesting effect on the horizontal motion of the ATV.  

Figure 5.8 traces out the path of the ATV in the xz-plane for each of the four systems.  As 

the cable length increases an elliptical pattern emerges.  This longitudinal motion is 

confirmed in research, Nakagawa and Obata15
, to be consistent with aerial tow system’s 

having a curved cable configuration. 

 
Figure 5.8 Elliptic oscillations in the x and z-direction, for a host vehicle altitude of    

a) 250 ft., b) 500 ft., c) 1000 ft., and d) 2000 ft. 

Nakagawa and Obata15 carried out the analysis of the longitudinal dynamic modes of 

the aerial tow system.  They identified two dynamic longitudinal modes that have a large 

effect on the translation of the ATV.  The two modes are the bowing and pendulum 

modes.   

The bowing mode is actually the first vibration mode of the cable.  In general the 

vibration modes of the cable have little effect on the motion of the ATV.  However, in 

configurations in which the cable is curved the first vibration mode causes the ATV to 

a)  b)  

c) d)  
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surge fore and aft as well as move vertically.  The result is an elliptical ATV motion 

about its static location.  Being that the bowing mode is a result of the curved cable 

configuration the elliptical motion is less pronounced in systems in which the cable 

curvature is small.  The pendulum mode however is unaffected by the cable’s shape. 

The pendulum mode is as named because the resulting motion resembles that of a 

simple pendulum.  The pendulum mode can be visualized as the static cable and ATV 

configuration swinging about the host-cable hitch point.  As a result, it produces little 

dynamic interaction between the cable and the ATV.  Thus, the pendulum mode rotates 

the system in an arching pattern around its equilibrium position with little effect on the 

shape of the cable or attitude of the ATV.  (Note that the pendulum arch is small enough 

that its effect appears to be linear in the simulation results.) 

The two dynamic modes produce coupled horizontal and vertical ATV motion of 

varying type.  The bowing mode stimulates an elliptical motion while the pendulum 

mode creates an arching movement.  As a result, the motion of the ATV will be a 

combination of the two and depending on the system configuration it is possible that one 

mode may be more pronounced that the other.  This can be seen in figure 5.8.  In the 

shortest cable configuration there is no visible elliptical motion, but just the oscillation of 

the pendulum mode.  As the cable length increases the bowing mode becomes visible.  

The slanted ellipse of the remaining three configurations is a combination of the elliptical 

motion of the bowing mode and the slanting of the pendulum mode.   

The length of the cable plays a critical role in determining the degree to which the 

ATV motion is coupled.  The elliptical motion of the bowing mode is a result of the cable 
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curvature, and the cable curvature is increased as the cable length is increased.  As a 

result, the bowing mode is more prevalent as the cable length increases.  Also, the 

cumulative cable drag in the long cable configuration causes the ATV to cruise well aft 

of the host vehicle.  Therefore, the slope of the arcing motion of the pendulum mode 

becomes more vertical than the short cable configuration. 

The derived aerial tow system equations of motion and simulation produce results that 

correlate with those found by Nakagawa and Obata15.  The motion of the ATV has been 

found to be coupled.  That is no vertical motion can be attained without inducing 

horizontal motion.  This leaves the question of how the coupled motion will affect the 

ability of the ATV to maintain its altitude over the ocean waves and since the cable 

length has a large effect on the degree of coupling which configuration will produce a 

better tracking of the waves.  The system’s wave tracking ability will be simulated in the 

following sections for various flight conditions. 

5.4 ATV Wave Tracking 

The goal of the aerial towed system is to safely tow the ATV in a manner that allows 

for atmospheric measurement in close proximity to the ocean surface. To gather insight 

into the behavior of the system, simulations are run with varying configurations and 

conditions.  For instance, what effect may the oceanic wave conditions, connecting cable 

length, wind conditions, or host aircraft disturbance have on the system’s ability to track 

the ocean waves?  These cases will be simulated in the subsequent sections.  Throughout 

the simulations the cable will be made discrete by breaking it into 25 segments each 
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modeled as a thin rod; the parameters of the cable and ATV as well as the reference flight 

conditions will conform to those presented previously in table 5.1 and 5.2.   

5.4.1 Surface Waveform Variation 

The utilization of the ATV autopilot presumably allows for system to track the ocean 

waves. From day to day the ocean waves may vary in amplitude and frequency 

depending on a myriad of factors. As a result, it is pertinent to know the effect the waves 

have on the system’s ability to track them. This could potentially limit the conditions at 

which oceanic measurements are taken, or at least give the designers an idea of the 

quality of the results to be expected for a given condition.  

The tracking of three waveforms is simulated and the results are presented in figure 

5.9.  Waveform 1 has an amplitude of 10 feet and a wavelength of 250 feet.  Waveform 2 

has an amplitude of 7.5 feet and a wavelength of 150 feet.  Waveform 3 has an amplitude 

of 5 feet and a wavelength of 50 feet. In each simulation the system is configured with 

the host vehicle cruising at 1000 feet above the desired tracking altitude.  In figure 5.9 the 

vertical ATV position as well as its desired position above the ocean waves is illustrated 

(ideally the ‘ATV’ path will exactly cover the ‘Track’ wave).   
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Figure 5.9 Tracking at with various ocean wavelengths 

The results show the system tracking the first waveform relative ly well, with only a 

small amplitude decrease and phase shift.  However, as the wavelength decreases the 

system’s lag of the tracking wave increases. The system dynamics are too sluggish to 

keep up with the increasing wave frequency. This inability to respond quickly causes the 

ATV oscillation to decrease in amplitude, as the wavelength decreases the autopilot and 

system dynamics filter out the ocean waveform.  

The result of testing in conditions that produce small ocean wavelengths is poor 

tracking. Although, in general, as the ocean wavelength reduces so too does the 

amplitude.  As long as the ATV is tracking the waves at an altitude slightly greater than 

that of the ocean wave amplitude there will be no resulting collision. 

5.4.2 Host Aircraft Cruise Altitude 

The host vehicle can cruise safely under the control of its autopilot at a range of 

altitudes. The length of cable required to place the ATV just above the ocean naturally 

a)  

b) c)  
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changes with the change in host vehicle cruising altitude. (However, this change is not 

proportional.) As discussed previously, the increase in the connecting cable length 

reduces the effect of the ATV’s weight on the shape of the cable, thus the static profile of 

the system changes.  The static configurations for the aerial tow systems in which the 

altitude difference between the host vehicle and the ATV are 250, 500, 1000, and 2000 

feet is presented in Figure 5.6.  

A simulation for the four configurations of varying host vehicle cruise altitude is 

accomplished to determine the effects of cable length on wave tracking quality. 

 
Figure 5.10 Host vehicle cruise altitude affect on wave tracing a) 250 ft., b) 500 ft.,     

c) 1000 ft., and d) 2000 ft. 

Figure 5.10 shows the results for simulations of four different sys tems attempting to 

follow surface waveform 2.  The figure presents the actual ‘ATV’ path and the desired 

‘Track’ wave.  It is apparent from the figure that the system with the host aircraft cruising 

at 250 feet has the most difficulty tracking the waveform.  As the host vehicle increases 

a) b)  

c) d)  
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in altitude the tracking is improved and the ATV amplitude of oscillation nears that of the 

wave. The remaining three systems, though largely different in cable length, both follow 

the waveform comparatively well.  

 
Figure 5.11 Elliptic oscillations in the x and z-direction, for a host vehicle altitude of    

a) 250 ft., b) 500 ft., c) 1000 ft., and d) 2000 ft. 

The vertical and horizontal coupled motion of the four systems is revealed in figure 

5.11.  The longitudinal dynamic modes, discussed previously, are present as the ATV’s 

autopilot attempts to track the wave, yet they are a bit more complicated than the pure 

natural response of the aerial tow system.  This complication arises through the ATV 

autopilot.  The autopilot attempts to increase and decrease the ATV altitude by changing 

the incidence angle of the wings as necessary.  This change in lift and drag has an affect 

on the curvature of the connecting cable.  During the wave tracking simulation the wing 

incidence angle ranges from positive to negative 12 degrees.  When the wing has an angle 

of incidence of 12 degrees the weight of the plane is effectively lessened and the aircraft 

sees an increase in drag.  The resulting drop in cable tension allows for a more curved 

a)  b)  

c)  d)  
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cable configuration.  When the wing has a negative 12 degrees of incidence the weight of 

the ATV is effectively larger and the drag is increased.  This causes greater cable tension 

and thus reduces the flex in the cable.   

In the systems in which the tension of the cable is dominated by the inertial and 

aerodynamic forces of the ATV the change in the aircraft incidence angle will have a 

greater effect on cable curvature than in the systems in which the inertial and 

aerodynamic forces of the cable play a greater role in dictating the tension in the cable.  

That is to say, the curve of the cable will be more greatly affected by the change in 

incidence angle for the system with a short cable rather than with a long cable.  

As a result the motion of the two systems with the shortest cables, as seen in figure 

5.11a and figure 5.11b, is affected by the pendulum and bowing modes to different 

degrees at various points in the simulation depending on the incidence angle.  The result 

is a more complex coupled motion than that produced in the natural response of the 

system, figure 5.8, in which the wing incidence angle remains zero throughout the 

simulation.  In the systems in which the connecting cable is much longer the orientation 

of the cable is dominated by the cumulative drag on the cable and the inertial and 

aerodynamic forces of the ATV are less consequential.  Thus, the long cable 

configurations remains highly curved regardless of the angle of incidence, which leads to 

similar motion between the controlled and uncontrolled response of the system.  

The configuration in which the ATV is 250 feet below the host aircraft is in a straight 

cable configuration for the majority of the simulation.  This causes the pendulum mode to 

be the more prevalent than the bowing mode, and since the ATV does not trail far aft of 
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the host vehicle the pendulum mode oscillation is largely in the horizontal direction.  

Thus, the corrective vertical motion is more highly coupled with horizontal motion than 

in the systems with a longer cable configuration. 

The cable in the system in which the ATV is 500 feet below the host aircraft remains 

more curved than the previous system.  As a result the coupled motion of the ATV is less 

affected by the pendulum mode, and the elliptical motion of the bowing mode is more 

prevalent.  Under these conditions the autopilot can increase altitude of the ATV without 

the drastic horizontal displacement which results in better wave tracking. 

In the long cable configuration the bowing mode is clearly dominant.  The bowing 

mode produces an elliptical motion that is predominantly in the vertical direction.  Thus, 

the pendulum’s effect on the ATV oscillation is minimized.  Together, these two modes 

in the long cable configurations produce little fore-aft ATV oscillation.  

In general aerial tow situations, there is no clear drawback to the coupled horizontal 

and vertical motion of the ATV.  However, when the aerial tow system is attempting to 

track ocean waves the coupled motion complicates the process.  During tracking the 

autopilot attempts to correct the altitude of the ATV but the vertical correction induces a 

horizontal surge of the ATV. This horizontal motion results in, essentially, increasing or 

decreasing the frequency of the coming wave.  In our system the degree to which the 

vertical motion produces a horizontal motion is dictated by the curve of the cable.  The 

horizontal and vertical coupling is at its most detrimental when the connecting cable is 

short, roughly 250 feet.  In this configuration the autopilot cannot track the ocean waves.  

However, increasing the cable reduces the autopilots effect on the cable curvature and 
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produces better wave tracking.  Connection cables of significant length to allow the host 

vehicle to cruise 500, 1000, and 2000 feet above the ATV produced good wave tracking 

results.  

5.4.3 Lateral Motion 

The previous simulations of variable waveforms and host vehicle altitudes were 

simulated using the two-dimensional system since all of the motion was longitudinal.  

However, to simulate the effects of lateral motion it is necessary to use the three-

dimensional equations of motion and waveform.  In this instance the ATV is tracking the 

longitudinal waves (waveform 2) as it is hit by a side gust.  The side gust has a magnitude 

of 10 knots and persists for 10 seconds.  The simulation allows for analysis of the lateral 

response of the ATV and its ability to maintain tracking of the ocean surface. 

Due to the fact that the same ATV configuration is used in each simulation, the gus t 

produces the same ATV aerodynamic side force for all system configurations. The 

difference between the simulations is the length of cable the gust acts upon and the 

system dynamics due to variance in cable length. 

Figure 5.12 graphs the motion of the ATV in the xy-plane over the period of the 

simulation for the four system configurations. The motion of the ATV prior to the gust is 

in the x and z-directions only. The gust then forces the ATV laterally. The gust subsides 

and the dynamics of the system eventually restore the motion back to the xz-plane.  
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Figure 5.12 ATV motion in the x and y-direction, at a host vehicle cruise                                                    

altitude of a) 250 ft., b) 500 ft, c) 1000 ft., and d) 2000 ft. 

The lateral translation of the ATV due to the gust is greater for the configurations with 

the longer connecting cable.  This happens for two reasons.  First, the configurations with 

longer cables naturally have more cable area for the gust to act upon, thus the system has 

a larger accumulative applied lateral force.  The other reason for the larger lateral 

translation is that the lateral displacement is directly connected to the vertical 

displacement.  As the ATV is pushed by the side gust, the na tural tendency is for the 

cable to lift the ATV, just as a pendulum’s swing increases the altitude of its mass, this 

can be thought of as the lateral pendulum mode.  A given y-displacement is going to have 

a more drastic effect on the change in altitude for a system with a shorter cable.  

Therefore, the ATV autopilot will have to respond more quickly to resist the increase in 

altitude due to the side gust for the shorter cable configuration.   

The autopilot can only counter the lateral movement by applying an increased 

downward force.  This is the same mechanism used to control the longitudinal tracking of 

the ATV. As a result, the lateral correction activates the longitudinal dynamics; that in 

a) b) c) d)  
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combination with the natural behavior of a three-dimensional pendulum results in a 

coupling of all three coordinate directions.  This ellipsoid motion can be seen in figure 

5.12.  The stronger xz-coupling of the short cable configuration produces a larger fore-aft 

oscillation during correction and tracking.  The effect of the coupling on the ability of the 

system to track the surface waveform is presented in figure 5.13. 

Prior to the gust the system is tracking the surface wave form in the xz-plane.  The 10 

knot gust is initiated and ends at 30 and 40 seconds, respectively, this is apparent in the 

change of the ‘Track’ wave at the 30 second mark.  The difference in the tracking 

waveform from case to case is due to the difference in the distance the ATV is pushed by 

the gust. More wave distortion is evident in the cases with the longer connecting cable. 

The cause is the magnitude of the translation of the ATV in the y-direction (figure 5.12 

shows the actual y-distance traveled for each case).  The farther the ATV traverses in the 

y-direction the greater the influence of the neighboring waves.   

 
Figure 5.13 Three-dimensional waveform tracking with a 10 knot side gust, host 

vehicle altitude of a) 250 ft., b) 500 ft., c) 1000 ft., and d) 2000 ft. 

a) b)  

c) d)  
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When the host vehicle is cruising 250 feet above the desired ATV altitude the side 

gust causes a y-displacement of about 20 feet. Recall that the waveform in the y-direction 

has a wavelength of 150 feet in this simulation.  As a result, the lateral translation is not 

substantial enough to cause any significant change in the height of the lateral wave; 

therefore, the distortion in the ‘Track’ waveform is faint.  

In general, the shorter cable configuration will have the most difficulty following the 

waveform while moving in the y-direction, as its lateral motion will be more strongly 

coupled with its vertical and fore-aft motion. However, the lateral ATV translation is 

arrested by the ATV autopilot and the dynamics of the system before it can be introduced 

to the complication produced by the neighboring wave. Hence, the system tracks the 

waveform with the same level of accuracy with or without the 10 knot side gust.  

As the connecting cable is lengthened the y-direction displacement due to the side gust 

increases causing the ATV to traverse more of the neighboring wave, and it also 

increases the time necessary for the system to damp out the lateral effects of the gust. The 

large y-direction displacement requires the ATV to track a varying and increasingly 

complex waveform than that prior to the gust.  Nevertheless, the control system having 

only one control surface adequately tracks the complicated waveform. The results 

indicate that the systems track the three-dimensional waveform as accurately as the two-

dimensional waveform and thus are not negatively affected by the side gust.  

5.4.4 Host Vehicle Oscillation 

The final simulation deals with host aircraft oscillations.  The host aircraft is equipped 

with an altitude hold autopilot and will be cruising at a fixed altitude; however 
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disturbances such as gusts and turbulence will produced temporary deviances of the 

altitude of the host vehicle, and thusly perturb the entire system. The simulation gives the 

host vehicle a sinusoidal motion in an effort to exaggerate the longitudinal response of 

the host aircraft to a disturbance and inspect the ability of the ATV to continue to track 

the ocean waves.  

Of the longitudinal aerodynamic modes, the long period has the largest effect on 

variation in aircraft altitude. In this system, the long period natural frequency of our host 

aircraft is just over 30 seconds. Naturally the effect of the atmospheric disturbance on the 

host vehicle damp out over time; however, in the simulation, the host vehicle continues to 

oscillate continually (this, in essence, simulates very rough flight conditions). The results 

of the simulations for various host vehicle cruise altitudes are shown in Figure 5.14. Note 

that in this figure the z-position of the track wave is measured from the host vehicle. 

Thus, the track wave is a superposition of two waves, the ocean waveform and the host 

oscillation waveform. 
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Figure 5.14 Wave tracking during host vehicle oscillation, host vehicle altitude of        

a) 250 ft., b) 500 ft., c) 1000 ft., and d) 2000 ft. 

In the simulations, the various systems attempt to track waveform 2.  The results of the 

simulation show that when the host aircraft is cruising 250 feet above the nominal 

tracking altitude, Figure 5.14a, the cable and ATV dynamics do not allow a quick enough 

response to completely track the waveform during oscillation; this is no surprise as this 

configuration cannot track waveform 2 if the host aircraft is still, figure 5.10. However, 

the ATV autopilot does successfully counter the oscillation of the host aircraft. As the 

altitude of the host craft reaches 500 feet and greater the ATV autopilot tracks both the 

ocean waves and the wave produced by the host aircraft undulation relatively well. Even 

in the presence of extensive host vehicle disturbances it is possible to configure the aerial 

tow system such that accurate wave tracking is produced.

a) b)  

c) d)  
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CHAPTER 6 

6CONCLUSIONS  

In this paper a methodology is laid out for developing a numerical simulation of the 

aerial towed system.  This includes the mathematical and aerodynamically modeling of 

the system components such as the host aircraft, connecting cable, and aerial towed 

vehicle.  Of particular interest is the finite element method for modeling the connecting 

cable.  The finite element method models the continuous cable as a series of connected 

segments from which the equations of motion dictating the dynamics of the cable can be 

derived.  Two models for the cable segments were presented, the lumped mass and thin 

rod models.  Upon modeling the component Lagrange’s equation are utilized to develop 

the two and three-dimensional nonlinear equations of motion for the connecting cable, 

the cable and ATV system, and the cable, ATV, and host vehicle system.  Additional 

models of the ATV autopilot and ocean surface waveforms allowed for the simulation of 

the aerial tow system in which the ATV attempts to track the ocean waves.  Numerous 

simulations were under taken to supply validation to the derived equations of motion and 

subsequently gain insight into the aerial tow system as a means to measure oceanic 

atmospheric conditions.   

A simulation of the cable dynamics in an ideal situation and the comparison of the two 

and three-dimensional equations of motion supported the validity of the derived 
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equations of motion.  Under ideal conditions the system is conservative.  As a result, the 

simulation should maintain a constant energy through the duration of the simulation.  

This was indeed the case.  Also, the two and three-dimensional systems were set with the 

same initial conditions while minimizing triviality in the equations of motion, and the 

simulation of the two systems produced identical results.  The results of the two 

simulations help solidify the quality of the derived equations of motion. 

A comparison between the lumped mass and thin rod cable segment model was 

undertaken.  The lumped mass model is quite prevalent in research pertaining to the 

simulation of the aerial tow system.  The thin rod cable segment model was developed by 

the author as an alternative to the commonly used lumped mass model.  Simulations of a 

system made up of the two models confirmed the benefit of using the thin rod model.  

The system in which the cable was modeled as a series of thin rods produced the same 

results as that of the lumped mass system yet did so with much fewer segments.  The 

lumped mass system took 2000 segments to produce the same results as the thin rod 

system using only 25 segments.  This resulted in the thin rod system producing 

simulation results in a fraction of the time that was required for the lumped mass system.  

Compared with the lumped mass mode the thin rod segment model is a better physical 

model of the cable, it produces a more accurate drag prediction, and it results in a more 

realistic dynamic model. 

A simulation of the natural dynamic response of the aerial tow system produced two 

longitudinal dynamic modes of motion.  These modes are corroborated by the research 

conducted by Nakagawa and Obata15 and are labeled as the pendulum and bowing modes.  
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The pendulum mode oscillates the cable and ATV about the cable-host vehicle hitch 

point.  The bowing mode is the first vibration mode of the cable, and is only visible in 

system in which the connecting cable is curved.  The vibration on the curved cable 

produces an elliptical oscillation of the ATV.  Both of the longitudinal modes couple the 

horizontal and vertical motion of the ATV.  This coupled motion becomes the main 

obstacle for the ATV autopilot during wave tracking due to the fact that the corrective 

vertical motion naturally induced horizontal motion to varying degrees. 

It was found that the degree to which the horizontal and vertical motions of the ATV 

were coupled depends largely on the length of the cable.  As the cable length increases 

the inertial and aerodynamic forces of the ATV become less significant than the inertial 

and aerodynamic forces of the connecting cable.  Long cable configuration produces a 

cable profile that is more curved than in the short cable configuration.  This curvature 

reduces fore aft surging produced by the varying cable tension caused by the changing 

wing incidence angle during wave tracking.  As a result, it found that curved cable 

configurations produced optimal wave tracking. 

Adequate wave tracking was produced when there is significant cable to allow the host 

aircraft to cruise 500 feet or high above the ATV.  The simulations suggest that if the 

ATV is to maintain an altitude of 30 feet above the ocean surface the system can safely 

record atmospheric measurements for a wide variety of wave conditions.  Even in the 

presence of lateral gusting and oscillation of the host aircraft the autopilot of the ATV 

can maintain a safe altitude above the water for a wide variety of oceanic conditions. 



 147

 

7REFERENCES 

 
1Huffman, R. R., Genin J., “The Dynamic Behavior of a Flexible Cable in a Uniform 

Flow Field,” The Aeronautical Quarterly, Vol. 22, 1971, pp. 183-195. 

 
2Genin, J., Cannon, T. C., “Equilibrium Configuration and Tensions of a Flexible Cable 

in a Uniform Flowfield,” Journal of Aircraft, Vol. 4, No. 3, 1967, pp. 200-202. 

 
3Genin, J., Citron, J., Huffman, R. R., “Coupling of Longitudinal and Transverse Motions 

of a Flexible Cable in a Uniform Flow Field,” Journal of the Acoustical Society of 

America, Vol. 52, No. 1, 1972, pp. 438-440. 

 
4Delmer, T. N., Stephens, T. C., “Numerical Simulation of Towed Cables,” Ocean 

Engineering, Vol. 10, No. 2, 1983, pp. 119-132. 

 
5Bourmistrov, A. S., Hill, R. D., Riseborough, P., “Nonlinear Control Law for Aerial 

Towed Target,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 6, 

1995, pp. 1232-1238. 

 
6Cochran, J. E., Innocenti, M., No, T. S., Thukral, A., “Dynamics and Control of 

Maneuverable Towed Flight Vehicles,” Journal of Guidance, Control, and 

Dynamics, Vol. 15, No. 5, 1992, pp. 1245-1252. 

 
7Schram, J. W., Reyle, S. P., “A Three-Dimensional Dynamic Analysis of a Towed 

System,” Journal of Hydrodynamics, Vol. 2, No. 4, 1968, pp. 213-219. 

 
8Jones, S. P., Krausman, J. A., “Nonlinear Dynamic Simulation of a Tethered Aerostat,” 

Journal of Aircraft, Vol. 19, No. 8, 1982, pp. 679-686. 

 



 148

9Sanders, J. V., “A Three-Dimensional Dynamic Analysis of a Towed System,” Ocean 

Engineering, Vol. 9, No. 5, 1982, pp. 483-499. 

 
10Choo, Y., Casarella, M. J., “A Survey of Analytical Methods for Dynamic Simulation 

of Cable-Body Systems,” Journal of Hydronautics, Vol. 7, No. 4, 1973, pp. 137-

142. 

 
11Greenwood, D. T., Principles of Dynamics, Prentice Hall, New Jersey, 1965, Chaps. 6, 

7. 

 
12Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P., Numerical Recipes in 

Fortran, 2nd ed., Cambridge University Press, New York, 1992, Chap. 2. 

 
13Hoerner, S. F., “Fluid Dynamic Drag,” 1965, Chap. 3.  

 
14Nelson, R. C., Flight Stability and Automatic Control,  2nd ed., McGraw-Hill, New 

York, 1998, Chap. 3. 

 
15Nakagawa, N., Obata, A., “Longitudinal Stability Analysis of Aerial-Towed Systems,” 

Journal of Aircraft, Vol. 29, No. 6, 1992, pp. 978-985. 

 
16Raymer, D. P., Aircraft Design: A Conceptual Approach, 3rd Edition, American 

Institute of Aeronautics and Astronautics, Inc., Virginia, 1999. 

 
17Etkins, B., “Stability of a Towed Body.” AIAA Journal of Aircraft, Vol. 35, No. 2, 

Mar.-April. 1998. 

 
18Walton, T., Polachek, H., “Calculation of Transient Motion of Submerged Cables.” 

Mathematics of Computation, Vol. 14, No. 69, Jan. 1960. 

 



 149

19Lawhon, R., D., and Arena, Jr. A. S. “Design considerations for an Aerially Towed 

Vehicle with Altitude Holding Capability,” AIAA Atmospheric Flight Mechanics 

Conference 2004, Providence, Rhode Island, In-Review. 

 



 

 

 

 
 
 
 

VITA 
 

Johnny Earl Quisenberry Jr. 

Candidate for the Degree of  

Master of Science 

 

Thesis: DYNAMIC SIMULATION OF LOW ALTITUDE AERIAL TOW 
SYSTEM 

 
Major Field:  Aerospace Engineering 
 
Biographical: 
 

 Personal Data: Born in Oklahoma City Oklahoma on July 18, 1979, the son of 
John E. and Susan L. Quisenberry.  

 
 Education:  Graduated from Del City High School, Del City Oklahoma, in May 

1997; Received Bachelor of Science degree in Aerospace Engineering 
from Oklahoma State University, Stillwater, Oklahoma, in May 2002; 
Completed the requirements for the Masters of Science Degree from 
Oklahoma State University, Stillwater, Oklahoma, July, 2005 

 
 Experience: Lab Assistant, OSU Mechanical and Aerospace Engineering, 2002-

2004; Engineering Intern, Cessna, Summer of 2001; 
 
 Professional Memberships: American Institute of Aeronautics and Astronautics 
 
 


