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CHAPTER 1
INTRODUCTION

1.1 Background

The aerial tow system is arelatively common flight configuration. It is a necessity for
gliding aircraft to achieve altitude; it is common to have targets towed by aircraft for
weapons testing and target practice; it is even being proposed by NASA as a platform for
reusable launch space-vehicles. The configuration has been proven to be well suited for

these uses, though they are primarily a means of transportation of the towed vehicle.

—_

Figure1.1 The aerid tow system



The aerial tow system is composed of three major components (1) host vehicle, (2)
aeria tow vehicle (ATV), and (3) connecting cable, figure 1.1. In gereral, the host
vehicle is larger thanthat of the tow vehicle and provides the thrust for both aircrafts.
The cable is connected to both the host vehicle and the ATV in such away that both
aircraft can safely maintain flight. It is not uncommon in this configuration for the
connecting cable to be hundreds or thousands of feet in length. As aresult, the cable
orientation is subject to change due to variations in the freestream conditions, cable
dynamics, and the dynamics of the two aircrafts. The thrust produced by the host
aircraft’s enginesis directly applied to the host aircraft and indirectly applied to the ATV
thru the tension in the connecting cable. The tension in the cable produces a force on the
ATV that may differ from the host vehicle thrust in magnitude and direction depending
on the cable orientation. The variable cable force on the ATV causes a dynamic response
resulting in further deformation of the connecting cable. Clearly, the conditions effecting
these variations are coupled. Historical research suggests that, in general, the system is
gtable, and given sufficient time the disturbances in the system will damp out. However
the degree to which the atmospheric and dynamic alterations affect the system depends

principally on the system components and is, of yet, not well known.

Recently the aerial tow system has been chosen as a means to carry out the
measurement of atmospheric conditions in close proximity to the ocean surface. The
proposed system calls for a genera aviation aircraft to tow the measurement
instrumentation equipped ATV near (or approximately 30 feet) above the ocean surface.

The emphasis of this system is the controlled atitude of the ATV. Thisisadeviation of



the aerial tow system from its roots as a means of transportation. Using the aerial tow

system simply for transportation places no strict requirement on the motion of the ATV.

The aerial tow system is proposed as a safer, more robust alternative for recording
oceanic atmospheric conditions. The traditional method necessitates an aircraft fitted
with the appropriate sensory equipment fly immediately above the ocean surface. The
aircraft’s autopilot cannot be relied upon to safely maintain such atitude in this
environment. Variable terrain and unknown atmospheric conditions could, indeed, result
in disaster for the aircraft. Asaresult, the mission puts forth a tremendous workload
upon the pilot. Due to the intense flight regime and pilot stress, the testing is usually

limited to short duration and is confined to calm conditions.

The implementation of the aerial tow system as a method to take oceanic atmospheric
measurements would allow the piloted host aircraft to fly at a safe height above sea level
(such as 250 to 2000 feet) under the control of the aircraft autopilot while towing an
unmanned sensory aircraft a matter of feet above the ocean. Thiswould allow for longer
tests runs, eliminate pilot stress, expand the mission envelope, as well as reduce the
worst-case scenario to the mere loss of the unmanned aircraft, assuming this flight

configuration is suitable for the task at hand.

Given the possibility of difficult ocean and atmospheric conditions, such as swales and
wind gusts, the controllability of the tow system isin question. The system component
interactions are complex, and neither the system configurations for the most

advantageous performance nor the circumstances at which the system fails to adequately



perform are obvious. As aresult, a system simulation preceding construction and tesing

isdesirable.

Each component of the aeria tow system must be mathematically modeled in order to
build a numerical system simulation Simultaneous derivation of the component
equations of motion will produce the governing equations for the aerial towed system

from which aresponse to initial and applied conditions can be simulated.

The utilization of a system simulation would allow for prediction of the system’s
ability to perform under various conditions such as, wind gust, wave shape, and host
aircraft oscillation. Previous aerial tow systems do not place such heavy emphasis on the
maintenance of the altitude of the ATV. The unique mission of near ocean atmospheric
measurement has driven the design of a mathematical simulationof the low altitule aerial

tow system.

1.2 Design Gods

The objectives of this study isto create adynamic ssmulation of the aerial tow system
with the main focus surrounding the derivation of the system and component equations of
motion in both two and three-dimensions. The study includes mathematical models for
each of the system components as well as the methodology for the derivation of the
equations of motion for each of the component models mentioned. The system will be
adequately designed such that the effect of the following conditions on the tracking

ability of the ATV may be ssmulated:

Variable surface oscillations (ocean swales)



Variable host vehicle altitudes

Lateral gusts

Host vehicle oscillation

The decisions upon the design of the system will be made with the versatility of the
simulation in mind, in the hopes that this research will assist with a wide range of future

studies of aerially towed systems, underwater towed systems, or cable dynamics.

1.3 Literature Review

The study of the tow system and its components has been well documented. The
interest of cable dynamics, alone has produced analysis on the topics of cable oscillation
and damping due to uniform flow, three-dimensional cable shaping, cable drag model
validity, and numerical simulations of cable dynamics. Refs 1-4. However, the integrated

effect of the ATV is necessary to ssimulate the aerial tow system.

Asvarious tow systems come into existence study of the systems have flourished.
Papers on tow vehicle controllability, stability augmentation, and release and retrieval
dynamics build upon the dynamics of the cable in aflow, Refs 5 and 6. The investigation
of tethered aerostat dynamics and underwater towing illustrates the range of the
application and research of the tow system, Refs 7-9. Each of these references provides

greater understanding of the tow system and its components.



1.3.1 Cable Dynamics

The cable has found its way into many applications involving fluid flow through out
the years. Asaresult, countless papers have been written for discussion on various cable
related topics. In general, the research was initiated for reasons supplementary to the
cable' s effect on aerial tow systems; however, each gives insight into the overall behavior
of the cable in fluid flow. The past studies give a foothold for future system analysis
containing cable components. Of particular interest are the studies on the physical and

aerodynamic models of the cable.

1.3.1.1 Cable Models

A prediction of the dynamic response of a cable to given conditions requires a
mathematical model of the cable from which the equations of motion can be derived.
Choo and Casarella™® produced a survey of various methods for modeling cables. The
motivation behind this article was to acknowledge various methods that could be used for
a basis of cable system simulations and analyzing the merits and demerits of each

technique.

Among the methods discussed is the finite element method. This method breaks the
continuous cable into an arbitrary number of segments which themselves can be modeled
in anumber of ways, such as the ideal pendulum, a mass on a spring, a cylinder, or
curved segment model. In any case, each segment is free to rotate about its neighboring
segments. Discretizing the cable allows for the derivation of the equations of motionof
the interacting cable segments. The shortcoming to this technique is that the quality of the

simulation is directly dependant upon the number of segments used to model the cable; a



finer discretization produces a superior simulation. However, as Walton and Polachek*®
discuss, when the segment length decreases a smaller step size is necessary for numerical
convergence during simulation, which trand ates to more computation time. The benefit
of using the finite element technique is that it can be used to study several types of
unsteady motion in a cable or cable-body system. It is for this primary reason the Choo

and Casarella'® labeled this method as the most versdtile.

Also discussed in the survey are the method of characteristics, the linearization
method, and the equivalent lumped mass method. The method of characteristics employs
constitutive laws such as Hooke' s law, to convert the partial differential equations of
motion into ordinary differential equations of motion. This technique allows the study of
any sort of unsteady cable motion as long as the constitutive laws are satisfied, as an
example; this method cannot be used on inextensible and viscoel astic cables as there are
fewer ordinary differential equations than are original partia differential equations. In

addition, the method of characteristics requires alarge amount of computation.

The linearization method, as it suggests, linearizes the cable equations of motion. This
linearization limits the technique to perturbation, small deviations from equilibrium,
studies, such as stability and frequency response of the system. This technique is not
applicable in cases where a limit cycle persists and additionally is not useful in the

analysis of unsteady cable motion.

The equivaent lumped mass technique is useful when the most important aspect of the
cable-body system is the body. In this method, the dynamics of the cable are completely

ignored and the equations of motion of the system are largely due to the rigid-body



equations of motion of the body with added terms representing the cable dynamic effects.
Since the equations of motion of the cable are omitted the system is greatly simplified.

The simplicity, unfortunately, comes at the cost of the robustness of the model.

Each of these methods has a configuration or condition in which it gains advantage
over therest. However, the only one of the techniques with no system-type limitations is
the finite element technique. An additional detailed description of the finite element

method will be given in the following chapters.

1.3.1.2 Cable Drag Model

The work of Hoerner™® is directed at analyzing and modeling fluid drag about various
bodies. The cable is among the bodies researched. Hoerner™® produced the cross-flow
method for calculating the drag forces on a cable within afluid. This technique analyzes
the friction and pressure forces on the cable. The method is limited to straight cables of
circular cross-section and fluid conditions that produce subcritical Reynolds numbers

with respect to the cable diameter.

Despite the straight cable limitation of the cross-flow principle it can predict the drag
force on aflexible cable (even though the cable is rarely completely straight). A curved
cable can be approximated by a series of connected straight segment. Given the
orientation of the straight segment relative to the fluid flow, the drag on each segment can
be predicted using the cross-flow principle. Thus, the resultant fluid force on a curved
cable is the accumulation of the individual segment’s drag forces As the number of
cable segments increase so to does the accuracy of the overall drag predictionon the

curved cable (to an extent).



The cross-flow principle works well with the finite element model of a cable (as it
necessitates breaking the cable into straight cable segments). The applied drag forces on
each of the cable segments can easily be applied to the dynamic equations of motion for
each segment. The exact equation for the cross-flow principle in its original two-
dimensional form and modified three-dimensional form are presented in chapters two and

three.

1.3.2 Lagrange's Equations

Newtonian mechanics states that the motion of a particle can be determined provided
that there is a complete knowledge of the external forces acting onthe particle and that
theinitial conditions of the particle are known; the same is true for groups of interacting
particles. Thisis afundamental step in producing the equations of motion necessary to
create a simulation of a system in response to inertial and externa forces. The
development of the equations of motion of a system can be trivial or quite complex

depending on the composition of the system and its environment.

The direct application of Newton’s laws becomes difficult as the number of groups of
particles needed to represent the system increase. The motionof the system components
and internal and external forces acting on the system exist as vectors, with magnitude and
direction Thus, keeping track of the external forces, internal forces, and motion of the
system components in vector form is often difficult. A less complex method of deriving
system equations of motion is attained by implementing Lagrange’s equations,

Greenwood*’.



The Lagrange method has two main advantages over the direct application of
Newton’s Laws in attaining the system equations of motion. The first is that the
Lagrange approach is energy based rather than spatially based, thus it deals with scalar
values which circumvents the vector bookkeeping involved with Newton's method. The
other benefit of using the Lagrange equations is that, unlike the application of Newton's
laws, it specifies an exact process to develop the equations of motionfor any well defined
system After defining the system and its constraints, all one needs to do to develop the

system equations of motion is to carryout the manipulation of Lagrange’s equations.

An important concept in the application of Lagrange’s equations is degree of freedom
of the system. The number of degrees of freedom of a system is equa to the number of
coordinates necessary to define the configuration of the system minus the number
equations that constrain the position of the system. For example, assume the system is

that of a smple two-dimensional ideal pendulum.

10
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a) b) "

Figure 1.2 Simple pendulum shown in two-dimensional @) Cartesian coordinates, and
b) cylindrical coordinates

In two-dimensional Cartesian coordinates the location of the pendulum massis
determined by its x and z positiors. However, the x and z positiors are constrained to a
circular path around the pendulum hinge with a radius equal to the length of the
pendulum (we are assuming the length of the pendulum isrigid). The constraint equation
would be the sum of the square of the x and z position is equal to the square of the length
of the pendulum. Thus, if the x position is known then the application of the constraint
equation will produce the z position of the pendulum mass. With two coordinates utilized
to specify the orientation of the pendulum and the existence of one constraint equation

the degree of freedom of the system is one.

I magine the same example in cylindrical coordinates. The position of mass of the

pendulum is determined simply by the angle g of the pendulum relative to the coordinate

11



frame. There isthen one coordinate necessary to define the pendulum orientation and no

constraint equation resulting in one degree of freedom for the pendulum.

As the pendulum example shows, the degree of freedom of the system is independent
of the coordinates chosen to represent the system. The coordinates needed to represent
the orientation of the system are deemed generalized coordinates. The generalized
coordinates of the simple pendulum in the two-dimensional Cartesian coordinate system
are the x and z position of the pendulum mass. The generalized coordinate of the same
pendulum in cylindrical coordinates is simply the angle . Therefore, since there are
infinite possibilities of coordinate systems that could be used to analyze the pendulum
there are infinite possibilities for generalized coordinates. However, in many cases there
isaset of generalized coordinates in which the number of coordinatesis equa to the
degree of freedom of the system. This set isreferred to as the independent generalized
coordinates. The independent generalized coordinates require no constraint equations; as
aresult it is often smpler, mathematically, to analyze the system using the set of
independent generalized coordinates. In the pendulum example the angle q isthe

independent generalized coordinate.

In a dynamic system the generalized coordinates, independent or not, vary with time
and are algebraic variables in Lagrange' s equations. As stated previously, Lagrange’'s
equations are energy based. Prior to manipulation of Lagrange's equations the energy of
the system must be represented in terms of the generalized coordinates. The
manipulation of Lagrange’s equations requires derivation of the system energies with

respect to time and the gereralized coordinates. The exact form of Lagrange’ s equations

12



aswell as the executionof Lagrange’s equations will be undertaken in detail in the next

two chapters.

1.3.3 Aircraft Dynamics

There has been much effort spent by researchers and scientists in the study of
aerodynamics as it relates to aircraft. This work ranges from simple analysisof fluid
flow over atwo-dimensional airfoil-shape to the development of nonlinear equations of
motion for high speed maneuverable aircraft. The extensive work accomplished for a
wide variety of aircraft and flight conditions has produced reliable models for the

prediction of aircraft response to fluid forces.

The method used to represent the dynamics of the aircraft in this systemis small-
disturbance theory, Nelsont*. Small-disturbance theory assumes that the motion of an
aircraft consists of steady-state motion and small perturbations about its steady-state.
Small-disturbance theory linearizes the rigid body equations of motion. Thisis
accomplished by substituting reference values plus a perturbation for the all variables in
the rigid body equations of motion. Many reference values (e.g. pitch, roll, etc.,) can be
set to zero by assuming a symmetric reference flight condition. Simplification of the
equations of motion after substitution produces products of perturbation. These
nonlinearities are ignored in the assumption that higher order small disturbances will

produce negligible overall effects.

Further ssimplifications of the equations of motion produce aerodynamic stability
derivatives. The stability derivatives represent the change in forces or moments of a body

due to some change in the flight conditions, such as forward velocity or angle of attack.

13



The stability derivatives are approximated based upon the size, shape, and mass
distributionof an aircraft and its components. Methods for approximation of aircraft

stability derivatives are presented in Nelson* and Raymer™®.

The equations of motion for aircraft are written in terms of normalized stability
derivatives. Asaresult, these general equations apply to awide variety of general
aviation aircraft over most flight conditions. However, since the equations were
linearized using small disturbances, the theory breaks down and thus does not produce
accurate predictions when the motion of the system involves large amplitude motions
such as aircraft stall or spinning. Given the smple shape of the ATV and its proposed
flight conditions the small-disturbance theory will be adequate in modeling dynamics of

the aircraft.

1.3.4 Cable Towed Systems

A cable tow system in its most simple form consists of a body constrained by cable in
afluid. There are awide range of system configurations that meet the requirements of a
cable tow system, such as kites, tethered aerostats, mooring lines, towed buoys (above
and below the ocean surface), gliders, and towed aircraft targets. Research on many of
these systems has been accomplished in the past. Each system has its own nuances that
separate one author’s work from another, and although not all are directly applicable to
the aerial towed system they help to illustrate the diversity of the system. A few of the

papers that do apply to the aeria tow system are discussed below.

Huffman and Genin' research the stability of asimple aerial towed system. Their

research suggests that there is no direct instability in the dynamics of the towed cable

14



system. In each case tested the disturbances of the system were damped out in time.
They concluded that a likelihood of instability is present, however, when the dynamic
frequency of the towed body matches the natural frequency of the cable. The result
would be alimit cycle oscillation Huffman and Genin' also show that the natural
frequency of cable can vary based upon parameters such as cable length and flight speed.
As aresult, the limit cycle behavior could be present in tow system at particular flight
conditions. However, this depends largely on many variables in the system. As aresult,

there was no generalized parametric study.

Cochran et d.° investigate the effect of controlling an aerial towed vehicle. The
authors designed a control system that would augment the stability of the towed vehicle.
Simulations were run in conditions that produced unstable dynamic motion in the
uncontrolled towed vehicle (perturbed retrieval of the towed aircraft). When the control
system was activated the authors showed that the system damped out quickly. This paper
addresses the difficulties of designing a controlled aerially towed systemand the results
suggest that improved stability can be achieved during maneuvers that could otherwise

result in instability.

Nakagawa and Obata'® studied the longitudinal dynamic modes of the aerial tow
system. They analyzed the modes of three flight configurations, a straight cable
connected to a sphere, a straight cable connected to an aircraft, and a curved cable
connected to an aircraft. The results of the study helped to classify the types of motion of
the aerial tow system. In all of the configurations the main dynamic modes were the

pitching mode, pendulum mode, and first vibration mode. The pitching mode is simply

15



the pitching of the towed body; this has little effect on the cable dynamics or the
trangdlation of the towed body. The pendulum mode oscillates the towed body about its
static configuration. The motion causes sight bending in the cable and little if any towed
body pitching. In both of the straight cable configurations the first vibration mode has
little effect on the position or the orientation of the towed body, and simply causes
oscillations in the cable. However, in the curved cable configuration the first vibration
mode causes the towed aircraft to surge fore and aft in an elliptical pattern. The authors

labeled this as the bowing mode.

The authors complete a parametric study of the aircraft longitudinal stability
derivatives and found that two of them Z,, and M,, as well as the cable-towed body hitch
point played an important roll in the stability of the system The results showed a strong
relationship between the stability derivatives and the bowing mode. As the absolute
valuesof Z,, and M,y increase and decrease, respectively, the bowing mode becomes less
stable, and eventually an unstable phenomenon known as pitching or bowing flutter
occurs. Nakagawa and Obata™ noticed a similar behavior as the cable hitch point on the

towed aircraft was moved more and more fore of its center of gravity.

The system dynamic oscillations are of the utmost importance when attempting to fly
the towed body very near the ocean surface. The research completed by Nakagawa and
Obata®™ suggest care should be taken when designing the ATV as its stability derivatives
have a direct effect onunwanted system oscillations. Lawhon and Arena®® investigated

the effects of aircraft size and shape as well as cable parameters to develop the optimum
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system configuration for aerially towed systems tracking very near the ocean surface.

The ATV used in this paper was a result of the work done by Lawhon and Arena®®.
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CHAPTER 2

TWO-DIMENSIONAL DYNAMICS

2.1 Introduction

It is the focus of this paper to derive and produce the mathematical equations that
accurately describe the three-dimensional motion of the aerially towed system Followed
by, implementing the equatiors of motionto produce a dynamic simulation of the aerially
towed system. The smulation will then be used to draw general conclusions about the
systemand itsability to perform the maneuvers desired to obtain atmospheric

measurements near the oceans surface.

The individual dynamic behavior of the system components and the interactions
between themwill result in quite complex set of equations of motion. As aresult of this
complexity, it is easy to get bogged down by the shear volume of the equations ard lose
sight of the steps taken to derive the final set of equations. Thisis especialy truein
reference to the three-dimensional system. Therefore, the two-dimensional equations of
motion will be laid out in this chapter. The two-dimensional equations of motion will
also act to verify that the more complex three-dimensiona equations of motionare
derived without error. It is important to note that the same principles will be held for the
derivationof both the two and three-dimensional systems although they may differ in

clarity.
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The basis of any simulation is the modeling of the system components. The quality of
the models directly affects the value of the smulation. The derivation of the equations
that dictate the dynamics of a component is possible upon the completion of its
mathematical model. To accurately model the system, the individual component
dynamics are important however, the modeling of the system necessitates the equations
of motion represent the dynamic interaction between the components as well. Thus, in
general, the derivation of the equations of motion of a system component must be
accomplished simultaneously with the dynamic equations of the remaining objects. The
result will be a set of equations that represent the dynamics of the entire system, i.e. if the
host vehicle oscillates the system equations of motion will reflect the oscillations effect

on the dynamics of the cable and the ATV.

The following sections discuss the modeling of the system componentsand the
development of the individual dynamic equations of each component. As stated
previoudly, the individual component dynamics are not enough to model the system;
however, they may be of academic interest, and will lead to a clear understanding of the

derivation of the system equations of motion.

2.2 Cable Dynamics

As discussed in the literature review there has been extensive study on cable dynamics
and cable modeling for a wide range of applications. Due its versatility the finite element
technique will be used to modd the connecting cable. The main drawback of the finite
element technique is its computational expense. The great strides in computer speed over

the years helps to soften this blow. There may aso be situations when the operator is not
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interested in a completely rigorous simulation but rather just afeel of the system’s

behavior, this can be accomplish quickly by using fewer segments.

As mentioned previously, the finite element technique requires that the cable be
broken into an arbitrary number of segments which are free to rotate about their
neighboring segments. The types of segments used to model the cable can vary. Notable

models include the simple pendulum, spring mass, thin rod, and curved structure model.

- “
Figure2.1 Finite element cable segment models
In the simple pendulum model, the segment is straight and inextensible. The mass of
the segment is lumped to a single point at the tip of the segment, resulting in amodel that
resembles that of a simple pendulum. Being that the segment is straight the cross- flow
method can be used to predict the drag force on the segment. The applied force on the
segment isexerted at the point mass or node. The inextensible constraint lends this model
to a system in which the strain on the cable is minimal. The benefit of this techniqueis
itssmplicity. The draw back isthat placing the inertial and applied forces at the tip of
the segment only becomes a good approximation when the number of segments used is

large.
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The spring mass segment also lumps the mass at tip of the segment, however the
segment length acts as a spring. This allows for strain effects to be incorporated into the
equations of motion of the cable. The change in length of each segment adds an
additional degree of freedom to the system, which increases the complexity of the
equations of motion and increase computational intensity. If the strain on the cable can

be neglected the spring mass segment model expends much unneeded effort and time.

Thethin rod mode is similar to the lumped mass model. It too is straight and
inextensible. However, the model places the inertia forces and applied forces at the
center of mass of the segment. The additional complexity of this model is that the mass
of therod is not lumped to a point; therefore, it has inertia that impedes segment rotation
and must be taken into account the derivation of the equations of motion. The benefit of
the better physical model is it will take fewer segments to accurately represent the motion

of the continuous cable than the lumped mass model.

The last model represents the cable segment as a curved structure. This technique
model s the segments as polynomials or splines which require slope continuity at the
segment connections. Due to the fact that most cable configuratiors are curved this
method reduces the number of segment needed to attain an accurate simulation.
However, the evaluation of the drag on a curved cable is not well known. The more
complex drag model and polynomial or spline calculations make derivation of the cable

equations of motion difficult.

Neglecting the strain in the cable is acceptable as we are dealing with afairly light

ATV and a high tensile steel connecting cable, thus the spring mass model unnecessary;
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and given that there is a historically accepted method to model the drag on a straight
cable the complexities of the curved structure will be avoided. The equations of motion
of the cable will be derived using the ssmplest segment model, the pendulum mode!,
shownin figure 2.1. However, adiscussion about the changes to the cable equations of
motion as aresult of modeling the cable segments as thin rods will take place at the end

of this chapter.

Figure 2.2 Lumped mass finite element cable model

2.2.1 Coordinate Systems

In this section the primary concern is the development of the two-dimensional
equations of motion for a flexible cable. Asaresult, the host aircraft and the ATV will
be neglected for now. The cable is broken into n arbitrary segments in accordance with
the finite element cable nodel. Therefore, one end of the cable isfix to a point in space

and is free to rotate while the other is end is constrained only by its preceding segments.

The coordinate system at the cable attach point is the inertial coordinate system. This

coordinate system is orthogonal. The X axisislocaly paralld to the ‘ground’ and the Z
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axisis pointing toward and is normal to the ‘ground’. The derivation of the equations of
motion of the flexible cable will be carried out in the inertial frame. Asaresult, it is
necessary to be able to describe the orientation of the cable in this coordinate system
The locationof the i cable node in the inertial frame can be resolved using the length, [;,

and angle of orientation, ¢, of the segment and each preceding segment, as shown below.

A (i=12...n) (2.1)

where, |; is the length of the j™ segment and X; and Z; are the position of the i segment in
the inertial frame. Also note C and S are short notation for cosine and sine, this notation

will be used throughout the remainder of this paper.

Aside from the inertial frame, each cable segment has its own coordinate system. The
cable segment coordinate system is orthogonal and is configured such that the node of
that segmert is located in the positive z-direction a distance equal to that of the cable
segment. For example, the origin of the coordinate axis for the first cable segment is
located at the exact same point as that of the origin of the inertial frame. The two frames
differ only by the angle rotation of the segment, ;. When the angle is equal to zero the
two frames are identical. In asimilar manner, the origin of the second cable segment is
located at the node of the first cable segment, and the first and second frame differ

rotationally by the difference of g, and g;. Thisis evident from Figure 2.2.
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Figure 2.3 Two-dimensional inertial and cable segment coordinate systems

Throughout the analysis of the system it will be necessary to convert from the inertial
frame to the segment frame. Thisis accomplished by utilizing arotational coordinate
transformation. The rotational coordinate transformation from the i™" cable segment

frame to the inertial frame is represented by the directional cosine matrix as follows,

qu Sqi :
s, C

i i

(2.2)

O

1
; D D~
oOC\C

The inverse of the directional cosine matrix produces a rotational coordinate

transformation from the inertial frame to the i cable segment frame.

Calculating the inertial position of the node of the i™" cable segment is a common
implementation of the rotational transformation. Recall that in the cable segment frame
the node is located at a distance equal to the length of the segment in the z-direction.
Using the directional cosine matrix the position of the i cable segment node in the

inertial coordinate system is as follows,
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4600
@ u (=12...n) 2.3)
iu

Note that equation 2.3 and 2.1 are equivalent.

2.2.2 Lagrange Equations

As discussed earlier, the connecting cable is broken into n arbitrary number of
segments, and each segment has its own coordinate system. Deriving the equations of
motion for the cable using the direct application of Newton’s laws of motion becomes
increasingly difficult as the number of segments used to model the cable increases. This
is primarily due to the fact the Newton’s laws of motion are vector based and as the
system increases the number of coordinate systems increase resulting in labor- intensive
derivation. Another difficulty when using the Newtonian approach is that there is no
general method to derive the equations of motion. As discussed in the previous chapter,
an aternative to using Newton’s laws of motion is the utilization of Lagrange's
equations, whichis energy based. Consequently, it circumvents many of the complexities
of vector-based derivation, as well as, gives a standard process for developing the system

equations of motion.

To recap, the derivation of Lagrange’ s equations depends on the degree of freedom of
the system, and the degree of freedom of the system is the number of coordinates needed
to define the system minus the number of constraint equations of the system. In the
Cartesian coordinates of the inertial frame for a cable broken into n segments there are 2n
coordinates needed to define the location of the node of each segment. However, each

segment has a constraint equation of the form,
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, & B 0 & b'_0
l, :éxi-axj; +&Z -a Z;z (=12...,n) (2.9)
=l @ =g

Asaresult, 2n coordinates and n constraint equations produce n degrees of freedom. In
other words, the two-dimensional finite element cable has a degree of freedom equal to

the number of segments used to model the cable.

The coordinates used to define the system are the generalized coordinates. The
generalized coordinates are genera due to the fact that there are an infinite number of
coordinate systems that could be used to define the system all with varying number of
constraint equations (although every system has n degrees of freedom). Consequently,
there are no specific coordinates that need to be used to define the system. The
implementation of Lagrange's equations will be ssimplified if the independent generalized
coordinates are used (recall, the independent generalized coordinates are the set of

coordinates that define the system yet have no constraint equations).

For the flexible cable system the independent generalized coordinates are the
orientation or attitude angles of each of the segments, g; (i = 1, 2... n). For the duration
of the chapter the attitude angles of the cable segments will be used and referred to as the

generalized coordinates of the system. The generalized coordinates will be generically

referred to by the variable g.

As stated previoudly, Lagrange’' s equations are energy based. The Lagrangian
function, L, represents the energies of the system and is equivaent to the kinetic energy

minus the potential energy of the system,
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L=T-U (25)
where, T and U are kinetic and potential energy functions, respectively.

Lagrange’ s equations are as follows,

deell o L .
Ll =12,..., 2.6
p g_ﬂq 19 Q¢ (i=1 n) (2.6)

where, Q¢ represents the applied, or generalized, forces that are not derivable from a

potential function, such forces include friction forces and forcing functions. However,
since the potentia function for this system is not velocity dependant Lagrange's

equations can be reduced to the following,

dagTO 1T U
86!1_11__Q|‘H

dt gﬁﬂ ﬂq| 1-[Cll ! (I i l2 ..... n) (27)

where, Q; are the generalized forces that include applied forces and the inertial forces
derived from the potential function. Note that Equations 2.6 and 2.7 is actually a set of n
equations, one equation for each generalized coordinate of the system. Thus, in the case
of the two-dimensional finite element modeled cable there is one equation for each
attitude angle of the n cable segments. Therefore, Lagrange’s equations can be rewritten
as,

deeTO T

= ﬂq|+_ﬂ_q_Q (=12,...,n) (2.8)
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In order to implement Lagrange' s equations it is necessary to get the energies of the
systems in terms of the generalized coordinate. Only then can the proper derivation of
the equations of motion take place. The kinetic energy of the system at any given timeis
due to the summation of the rotational and translational motion of the inertial components
of the system. For the finite element cable the inertial components are ssmply the
segment nodes. Thus, the kinetic energy of the cable is the summation of the nodal
rotational and trandational kinetic energy. However, since the mass of a segment is
localized to a point it has no rotational inertial and consequently has no rotational kinetic
energy. Asaresult, the kinetic energy of the systemis solely a function of the
translational velocity of each node.

T=28 mv; 29)
25
The velocity components of a node can be found by ssimply taking the time derivative

of its position.
(i=12,...,n) (2.10)

Equation 2.10 shows that the translatioral velocity of a node results from the rate of
rotation of its segment and each preceding segment. At this moment, the velocity of each

node is in vector form. However, squaring the velocity for the kinetic energy releases
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any further vector bookkeeping. The square of velocity, V, for the k™ segment is can be

written in series form as follows,

o kK &k
Vi = (Xf +Zk2): a alilaq (ququ + Sqisqj):a a lila9,Cq,)  (211)

j=1i=1 j=1i=1

Similarly, the total kinetic energy for n cable segments is written in summation form as,

T=2amV}= mi1,69,C, o) (212

=
1l

N
Qo>
. mox
Qiox

=~
1

NP
Qos

1 1 j=1i

1

Being that the kinetic energy has been derived in terms of the generalized coordinates
the implementation of Lagrange’s equations can commence. The derivative of kinetic
energy with respect to the i generalized coordinate and the time rate of change of the i

generalized coordinate yields the following,

m_2 & ..

g mdlag; S, (2.13)
i =1 =

m_& & .

g &8 mlaCe.q) (2.14)

Finally evaluating the time rate of change of equation 2.14 produces,

deegmo_¢ & ; , o
dt &1q; ;Zaz 21% mklil"hjc(qfqi) ) qJS(qj-qi)@j - 0 )] (2.15)

Combining equations 2.13 and 2.15 results in the series representation of the left hand

side of the Lagrange’ s equations for the two-dimensional finite element modeled cable,
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deeT o I _s & P .
=aaml PR IS AN (i=22,...,n) (2.16)
dt ﬂql g ﬂql kel j=1 ( (Q] ql) ngj ql))

Theright hand side of equation 2.8 represents the generalized forces of the system.
Note that due to the fact that the generalized coordinates of the system are angles the
general forces are actually moments. These moments are about the pivot point of each
segment and result fromthe inertial and applied forces on the node of the segment as well

as any applied moments.

The generalized force equation is derived from the concept of virtual work. Suppose
forcesFi, Fo, ..., Fxareapplied at position X1, X2, ..., Xk ad moments M1, Mg, ..., My are
applied at anglesf 1, f 2, ..., f x. Now let us assume that the system undergoes arbitrary
small displacements dxi, dxo, ..., dxcand df 1, df », ..., df . Thework done by these
applied forces and moments is known as virtual work and the small displacements are

known as virtual displacements,

kK
dw =g Fdx, +M dj (2.17)
j=1

The virtual displacements can be rewritten in terms of the virtual displacement of the

generalized coordinates,

i, = 4 g (2.18)
i= 10
g i
—Ldq, 2.19
|a_1 wq q (2.19)



The relationship between the generalized forces and the virtual work of the system due

to the virtual displacement of the generalized coordinates is as follows,

K . i n
w=84F %dqi M, ’#T}dqi -4 Qdq 220

j=1i= !

Simplification of equation 2.20 produces the generalized force equationfor the applied

forces and moments in terms of the generic variables x and f .

Qiq::én.lzjmdqi"'MjL

- 2.21
iz 10, Ta; l ( )

In the case of the two-dimensional cable segment system the position variables are X
and Z while the angles are g. Incidentally, the generalized coordinate for this system is
also g. The equation for the generalized forces not produced by the potential function is

as follows,

n X. . :
Q= F e, iy,

_ +F, —L+M_ =12...,n 2.22
=1 X ﬂq| 2] ﬂq| 4 ﬂq, ) ( )

The total generalized force equation is made up of the external forces and moments as
well asthe inertia forces,
v g X, 1z,

=-—+3F, —+F, —L
Ta; 1'6}1 Xjﬂch “ fa,

o,

k™

(i=12...,n) (2.23)

where, F, and F,  are applied forcesand M, ; isthe applied moment of the j™ segment
in the inertial coordinate frame.
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In the expansion of equations 2.23 let us look first at the term that is the derivative of
potential energy with respect to the i generalized coordinate. The potential energy of

the cable is the summation of the potential energy of each segment node.

a mag(z - D) (2.24)

i=1

Qo5

U =

=
Il

1

where, D is the datum line from which potential energy is measured. Note that since
potential energy is being differentiated the location of the datum line is inconsequential.
Taking the derivative of equation 2.24 with respect to the i™" generalized coordinate

produces,

w_g . %

=amag— 2.25
ﬂQi j=1 Jgﬂq ( )

Theresulting equation allows the inertial force to be included with the z-direction applied
force. Simplify the generalized force equation to that shown below,
X

_g j
Qi —JalexJ'ﬂ_qi-F(FZj +mig)

12, T

o Ma g (i=12...,n) (2.26)

The derivative of position and angle with respect to the i generalized coordinate is as

follows,
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Ta; a
."—q::-IiSqi (j=i) (2.27)
fq,

Note that the position of the node of a segment is dependant upon that segments attitude
angle and the attitude angle of each preceding segment. Due to the nature of the
dependence of position on the generalized coordinate, the evaluation of the derivative of
the position of the j™ segment with respect to the i generalized coordinate results in zero
when i is greater than j. The derivative of angle with respect to the i generalized

coordinate is equal to one when i isequal toj and zero otherwise. Thus,

Q =M, +4 FIC, - (F,, +ma)s, (i=12...n) (2.28)

j=i

The complete derivation of Lagrange’s equations for the two-dimensional finite
element modeled cable is attained by combining equations 2.16 and 2.28. The resulting

set of n equations of motion is presented as follows in summation form.

mklilj(q.jc(q,-q.) - qus(q,-Q.)):

Qo>
Qox~

=
1l

1 j=1

Mg, +8 FiIC, - (Fr, +ma)s,  (229)
j=i

The set of equations of motion can be more clearly presented in matrix form, yielding,
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[Allg ]+ [Bld?|= [ (2.30)

where, A and B are coefficient matrices and are size n by n. The remaining three
matrices are column matrices of size n by 1. The values of the coefficient matrices are as

follows,

A, =l1,Cq oy, (2.31)

B =-11,S oM, (2:32)

1]

where, the subscriptsi and j represent the row and column of the appropriate matrix, and

m, ; represents the mass distribution for row i and column j. For the lumped mass model

of the n segments the mass distribution is ssimply a sum of segment masses.

m.= am (2.33)

=,
k=max( i, j)

For example, the equations of motion for a cable modeled using two cable segments

without fluid drag would be as follows,

ém+m)i2 mll,C, . 0&0 é O - L1, -0) U120

EnlL,C 2 Y& UTe oy 0o .07

ghloCh) Ml pdln & MhSea) 0&l2 0 (2.34)
& (m+m,)gls, u
e
é - m29|28Q2 0

These two equations are analogous to the equations of motion of a two-dimensiona ideal

double pendulum.



The resulting fully nonlinear two-dimensional equations of motion describe the
dynamics of the system due to inertial and applied loads, as well as, the dynamic
interaction between all segments; and the set of equations place no limitations on the
number of segments of the system (while the equations hold true independent of the
number of segments the effects on simulation computation varies, this will be discussed
in chapter 5). The angular acceleration of each segment can be calculated given
appropriate initial conditions, such as segment attitude angle and angular velocity of the
system The implementation of a numerical integration routine on the set of ordinary
differential equations allows the prediction of cable motion for various initial conditions,
and with the addition of a drag model to predict the applied friction forces on the

segments the simulation can be extended to that of a cable in fluid flow.

2.2.3 Aerodynamic Forces

The generalized force matrix in the equation 2.30 is composed of the inertia forces
and applied forces of each of the cable segment. These applied forces are the friction
forces produced by the fluid interaction with the cable. Thusto fully derive the equations
of motion for acable in afluid a drag modd is necessary. As stated previoudly, the study
of cable drag has a history that dates back to the early aircraft and thus has been well

documented.

The cable crossflow-principle, Hoerner™3, is a drag model that was presented in the
sixties and has since been used as a basis for numerous research papers involving fluid
immersed cables. Itslimitations require the cable cross-section be circular, the cable be

straight, and fluid be at a subcritical Reynolds number. In genera, aircraft tow cables are
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circular in cross-section; due to our relatively low airspeeds the Reynolds number is
subcritical; and our finite element model for the cable requires that the cable be broken
into straight segments. Therefore, the Hoerner crossflow-principle applies very nicely to

our model of the cable system.

The crossflow-principle calcul ates the tangential and normal forces on a straight cable

segment produced by tangential and normal velocities about the cable, as shown below,

R, = 31ay, be fT VT v
F, =- %r dyv, (pcf ,/fo +V221)

(2.35)

where, r, d, ¢, and ¢, are air density, cable diameter, frictional coefficient, and pressure
coefficient, respectively, and Fy, F,, Vy, and V; are the aerodynamic forces and the flow

field velocity in the cable segment coordinate system, respectively.

The cable velocity in the cable segment frame can be attained simply by using the
rotational coordinate transformation of the relative velocity of the segment node in the

inertial frame, as shown below,

& U0 &6 géa +Xu
~ X7 _ -0 i

0=l u &y .5 U (2.36)
&G 6L g\No+Z,-g

Presumably the freestream velocities, Ug and W, are known and the equations for
calculating the velocity of a segment node in the inertial frame were derived in equation

2.10.



Note that the drag forces produced by the drag modd are in the cable frame yet the
forces in the generalized coordinate equation are in the inertial frame. Asaresult, the
calculated normal and tangentia drag forces must go through arotationa coordinate

transformation before application can be made.

eFu_¢  fh U

e u=&Cq g G (2.37)
éFZjO &E@:ﬂo

The implementation of the Hoerner drag model produces the mathematical model of
the applied loads on a cable segment. The generalized forces for each segment can be
calculated based on cable motion and numerous freestream conditions and thus allows for

the dynamic simulation of a cable in afluid.

2.3 ATV Dynamics

The ATV adoneisanaircraft, and avery simple one at that. Asaresult, itsrigid body
dynamics could be easily modeled due to the extensive research and documentation done
in the area aircraft flight dynamics. However, in the aerial towed system the dynamics of
the cable and the dynamics of the ATV are intertwined, consisting of individual dynamics
and the interaction of the two components. As aresult, a system of equations containing
both the equations of motion of the cable and that of the ATV must be derived and solved
simultaneously. Thisismost easily accomplished by reproducing the ATV asan
additional segment, one which is attached to n™ cable segment. Thus the equations of
motion for both the cable and ATV can be derived using Lagrange’s equations. Since the
equations of motion of the cable were derived to be independent of the number of

segments this does not change the form of the equations previously derived. The
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variation in the set of equations arises because the ATV segment model differs from the
cable segment model. The set of equations for the cable and ATV and there variations

from the previous cable dynamic set will be laid out in the subsequent sections.

2.3.1 Coordinate system

Modeling the ATV as an additional segment adds an extra coordinate systemjust as
adding an extra cable segment to the cable model. This system is analogous to the cable
coordinate system described previously, the origin is the cable-ATV hitch point and its
axis passes through the center of mass of the ATV. However, there is another coordinate
system necessary to fully describe the orientation of the ATV. This coordinate system

corresponds to the standard aircraft body fixed coordinate system.

The aircraft body fixed coordinate system hasit origin at the center of gravity of the
aircraft, and for the two-dimensional case the aircraft body fixed x-direction is pointing
out of the nose of the aircraft and its z-axis is pointing out of the bottom of the aircraft

(presumably towards the ground). The two additional axes are present in figure 2.3.

#]

Figure 2.4 Two-dimensional ATV coordinate system
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Thus, the ATV segment coordinate system and the ATV aircraft coordinate system
differ directionally by a fixed rotation angle, g. Thisangleis geometrically defined by
the shape of the ATV aswell as the location of the cable-ATV hitch point, figure 2.3.
The ATV aircraft coordinate system is necessary to calculate the aerodynamic forces and
moments of the ATV using small disturbance theory. The ATV orientation, as seen by
the inertial frame, is determined by the ATV segment angle and ATV geometric attitude
angle. Thustwo rotational coordinate transformations are needed to describe the ATV
attitude in the inertial frame. The rotational transformation from the ATV aircraft

coordinate system to the ATV segment coordinate system is as follows,

exu g X
q=c (2.38)
a

where, X and z arethe x and z-directions in the aircraft fixed frame.

The rotational transformation from the ATV segment coordinate system to the inertial
coordinate system is as follows,

XU _&. U

o =g, B (2.39)
4™ el

As aresult, the equation for rotational transformation from aircraft fixed coordinate

system to the inertia coordinate system is found by combining equations 2.38 and 2.39.

XU 6. . XU

~ =S Yo U 2.40
A KB @0
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This transformation is necessary in converting the aerodynamic loads to the
generalized forces of the ATV segment (due to the fact that our generalized force

equations require the applied loads be in the inertial system).

2.3.2 Lagrange equations

The parameters of the additional segment, which will be henceforth deemed the ATV
segment, is dictated by the size and shape of the ATV. The length of the segment is
actually the distance between the cable-ATV hitch point and the center of gravity of the
ATV. The mass of the ATV segment is ssimply the mass of the aircraft itself. Therefore,
the equations of motion for the trandation of the ATV segment require no additional
derivationfrom that accomplished in the cable dynamics section Asaresult, the
complex dynamic interaction between each cable segment and the ATV are inherently
represented by the equations of motion. However, the equations of motion for the ATV
segment are not complete. Recall that the nodes used to model the cable are point
masses, thus they have no inertiato resist rotation The same cannot be said for the ATV.
To complete the equations of motion for the cable-ATV system the Lagrange equation

must be derived for the rotationa kinetic energy of the ATV segment

The complete representation of Lagrange’ s equations for the cable and ATV system is

as follows,

gﬂ(T -'--I-rot)l;J 1-[(T + Trot)
& 16 4 1 O
| | (i=12,...,n+1) (2.41)
dadITO 9T ] .,

dtg‘ﬂqg Ta, dtg'ﬂq. g Ta,

=Qi
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Due to the fact that the total kinetic energy of the system is composed of the summation
of trandational and rotational kinetic energy the resulting equations of motion due to the
rotational kinetic energy can simply be superimposed upon the previoudy derived
equations of motion (i.e. the derivation of the components of the equation2.41 that
represent the tranglational kinetic energy need not be carried out as they will yield the
same results). The analysis of the rotation kinetic energy will focus on the following

portion of equation 2.41,

iaﬂ-mt 9_ 1-[(Trot)
dtg T 5 Ta,

(i=22,...,n+]J) (2.42)

The equation for rotational kinetic energy of arigid body is as follows,
1o a7
Trot = E{W} [l ]{W} (243)

where, | isthe inertial matrix and w is the angular velocity vector of the rigid body. For
the two-dimensional case the segment rotational equation of motion can be simplified
since the only allowable rotation is about the y-axis. The rotational kinetic energy of the
system is the sum of the rotational kinetic energy of each segment. The rotational kinetic

energy of the two-dimensional system is as follows,

11
Ta=a

8507, (=12..n+) (244)

where, |y is the rotational inertial of the node about its y-axis.
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The derivation of Lagrange's equations for rotational kinetic energy term is quite

straightforward, producing,

% =0 (2.45)
% =G1, (2.46)

Finally evaluating the time rate of change of equation 2.46 produces,

o .
d#ETE_G, (2.47)
dtgfla, g =
Combining equations 2.45 and 2.47 produces the supplementary left hand side of

Lagrange' s equations due to the rotation of the each segment for the two-dimensional
finite element modeled cable,

%ﬁgi %%:d}u (i=12,...,n+1) (2.48)

The combination of the rotational and trandlational components of the equations of

motion and the addition of the ATV segment result in a set of equations of the form
shown in equation 2.30. The inclusion of the ATV segment into the systemadds an extra
degree of freedom and thus an extra equation to the set of the equations of motion of the
system, resulting in the coefficient matrices increasing to size n+1 by n+1 and the column
matricesto sizen+1 by 1. The additional column in the coefficient matrices represents
the effect of the motion of the ATV segment on the dynamics of the cable segments. The
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additional row of the coefficient matrices represents the equation of motion of the ATV

segment, which contains the effects of the dynamics of each cable segment.

The changes to the set of equations derived for the trandation of the nodes of the
segments are in the terms of the A coefficient matrix. The corrected terms of the A matrix

are as follows,

A =lydi +ELCG o)my (2.49)

where, the kronecker delta, d;, is zero at all time except when i equalsj at which time its
value is unity. Thus the inertiaterm only appears on the diagonal of the A matrix, and
since the segment nodes, in accordance with the chosen segment model, have a zero

value for inertia the only changein A isat n+1, n+1.

2.3.3 Generdized Forces

The generalized force equation derived in equation 2.28 applies to all segments
including the newly added ATV segment. However, the crossflow method does not
apply to aircraft. Asaresult, amethod for modeling the aerodynamic forces and
moments on the aircraft are necessary. As stated in chapter 1, there is no shortage of
research on the aerodynamics of genera aircraft. The technique to be used in this paper

isthe linearized small-disturbance theory, Nelson'*.

In short, linearized small-disturbance theory simplifies the motion of the aircraft to
perturbations of the aircraft about some fixed reference flight condition, such as typical
cruising conditions. Dealing with perturbations allows for the elimination of higher order

termsin the aircraft equations of motion, thus linearizing them. The aerodynamics of the
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aircraft in the equations of motion are represented by stability derivatives. Stability
derivatives approximate the change in aerodynamic forces or moments due to the
deviations from the reference flight condition. These stability derivatives are based upon
the size, shape, and mass distribution of the aircraft, and apply to a wide range of aircraft.
The method does breakdown when the aircraft enters a flight regime in which the

nonlinearities are important, such as stalling and spinning.

The two-dimensional equations for the aerodynamic forces, F§and FS, and moment,

M, in the aircraft fixed frame are as follows

F§ = X, +m(X,u+ X, w)
Fg=2,+mZu+ Z,w+Z,Ww+Z,q) (2.50)
M =M, +1,(Mu+M,w+M,w+M.q)

where, mand |y are aircraft mass and longitudinal rotational inertia. Also, u and w arethe
x-direction and z-direction perturbation velocitiesand q is the pitch rate in the ATV fixed
frame. Xy, Xw,..., Mq are the stability derivatives. (Note that notation in equation 2.50 is
commonly used when discussing aircraft dynamics. The pitch rate g is not to be confused
with the generalized coordinate q which is itself commonly used in the notation of
Lagrange’s equatiors.)

In the aeria tow system the reference flight condition for the ATV is that of the host
aircraft, and the host aircraft reference flight conditions can smply be viewed as the
freestream conditions, U, and W,. Asaresult, the perturbation of the ATV about the
reference conditions is ssmply aresult of the attitude of the ATV and the motion due to

segment rotation. Aswe have already derived the velocity of a node due to rotation in



the inertial frame, a coordinate transformation from the inertial frame to the ATV aircraft
frame can be utilized to develop the equation for perturbation velocity,

VY

éud 0
ec J E‘c & - a0 (2.51)
Gni T 8ol el Gv +2, B S !

With the perturbation parameters in the ATV aircraft frame the aerodynamic forces
and moments on the aircraft can easily be attained. To calculate the generalized forces
produced by the aerodynamics of the ATV the forces must be in the inertial frame. This

requires the following rotational coordinate transformation,

‘1°-|

Fxl_e. g U
8 = oty (2.52)
& H B Bty

No rotational transformation is necessary for the two-dimensiona applied moment.
Thus, the aerodynamic moment, M, is directly trandated to the ATV segment moment
Mg. The forces and moments are applied to the generalized force equation, equation

2.28, following the trangdlation

The dynamics as well as the applied aerodynamic forces and moments of the cable-
ATV system have been modeled. Asaresult, it is possible to simulate the effect of the
cableand ATV system due to various initial conditions. However, to fully analyze the

aerial towed system one last component is necessary, the host aircraft.

24 Host Vehicle

Up to this point, the model of the system has the cable, immersed in a flowing fluid,

connected to afixed point in space. In redlity, the cable will be connected to the host
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aircraft, and while the ideal case has the host vehicle flying at a constant speed and
atitude it is likely that, for one reason or another, the position of the host vehicle will be
disturbed. The host vehicle is an airplane, and as a result its dynamics are dictated by the
aerodynamic equations presented in equation 2.50, and as it is the towing vehicleit is
affected by the motionof the cable and ATV segments. On the other hand, the motion of

the cable and ATV will also be affected by the host vehicle motion

In general, the host vehicle is much larger than the ATV and as aresult its
aerodynamic loads will overpower the loads produced by the motion of the cable and
ATV. Thus, asimplifying assumption can be made that the host vehicle is unaffected by
the dynamics of the cable and ATV, yet the cable and ATV are affected by the motion of
the host vehicle. This assumption allows the host vehicle to be modeled as asimple
point. The motion of the host aircraft is independent of the cable and the ATV dynamics
and consequently the movement of this point can be chosen arbitrarily. For instance, the
equations of motion for longitudinal oscillation in the z-direction of the host aircraft

frame can be written ssimply as

A, Sn(w,t)
AW, cos(w,t) (2.53)

- AW Sin(w)

ING N IN
I

where, z isthe host vehicle vertical displacement, t istime, A, isamplitude, and wy is

frequency. The amplitude and frequency can be chosen to represent the longitudinal
dynamics of awide range of host aircraft. The effect of host aircraft oscillation on the

vertical position of the ATV is of critical importance when the ATV isvery near the
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ground; however the aircraft is not limited to simply vertica motion. The equations of
motion can be derived for horizontal motion, vertical motion, or any combination of the

two.

The technique for modeling the cable and ATV dynamics with the introduction of the
varying host vehicle position remains more or less the same. In the previous models the
cable connecting point always coincided with the origin of the inertial coordinate system.
However, with the introduction of the movable host vehicle thisisnot so. Any
movement of the host aircraft results in the trandation of the cable connection point. The
derivation of Lagrange's equations for the cable and ATV hinges on the locationand
velocity of the segment nodes. Thus, to account for host vehicle movement the inertial
position equation must be altered to represent the translation of the cable connection
point. The resulting equation is as follows,

(2.59)

u ¢ é. 0
+a
AR

j=1e—

P&
C)C -
fRfD’lgi
C)C C

where, X isthe difference in the x-direction of the host aircraft inthe inertial frame.

Due to the fact that the position of the host aircraft is a function of time the derivation
of Lagrange’s equations will produce a different outcome from that derived previoudly,
the difference being the effect of the host vehicle oscillation. The derivation of

Lagrange’ s equations begins by taking the time rate of change of position,
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= (2.55)

The square of velocity with the incorporation of a moving host vehicle is as follows,

V2 =(X2+22)=

28 e - mrs )+ f £ aa (259
Z+x ta ()_quiCQi - _Z:IiliSQi)-l-a a la9,Cq o)
i=1

j=1i=1

Thus, the total kinetic energy for the aerial tow system is as follows,

_1% s
T=—amVS=
2 (2.57)
1% e, . & & . 9 -
samEr i +4 3 (6i0.C, - 7ilS, )+ & & 11,66,Cp )
21 i=1 i=1 g

Note that the last term in equation 2.57 is the same as that derived in the cable dynamics
section, equation 2.12. Thus, the derivation of Lagrange equations for the last term will
yield the same results. As aresult, we can focus onthe host vehicle oscillation terms
when deriving the Lagrange equations and simply superimpose the results onto the
equations of motion for the cable and ATV. The kinetic energy due to the host vehicle
oscillation, Thost, IS as follows,

17 n+1

k .
T.=—am& +x+4 (241, - 2518, (2.58)
e i=1 4]

osc
2 k=1
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Note that the first two terms in the equation2.58 are only a function of time. Therefore,
they will disappear during the differentiation of the kinetic energy with respect to the

generalized coordinates

The derivative of kinetic energy with respect to the i™ generalized coordinate and the

time rate of change of the i"" generalized coordinate yields the following,

Mow ~ 2 m(i.1S, +mil.C, ) (2.59)
fa, k=i
Mee = E mu.c, - 25,) (260)
Ta; k=i

Finally, the time rate of change of equation2.60 produces,

. _ ‘
Ezamk(zdicqi - 4.5, - 41§, '_Zhlicqi) (2.61)
K=

Combining equations 2.59 and 2.61, in accordance with Lagrange’s equatiors, resultsin

the following,

Em-[TOSCQ_ 1TI—OSC
dt& 9 5 Ta,

-
F

1

m(dc, -4,8) (=12..n+3 (262)

T Qo

Note that equation 2.62 has units of force times distance just as the generalized forces.
Asaresult, the equation 2.62 can be thought of as generalized forces due to host vehicle

acceleration, as shown below,
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n+l

Qua =@ MMC, - 4,S,) (=12...,n+]) (2.63)
k=i

The superposition of equation2.63 into the generalized force equation 2.28 yields,

n+l

Q =M, +é. (ij i miz)icqi i (FZJ' m (9- z))isqi
j=i

(i=12...,n+]

(2.64)

Thus in the matrix form of the set of equations of motion the host vehicle oscillation has
no affect on the A or B coefficient matrix. The results of the derivation show that the
moving host frame produces applied loads on each segment node proportional to the host
vehicle acceleration. Note that the derivation due to the host vehicle motion is
independent of the functions used to modéd it, allowing for any harmonic model of the

host aircraft dynamics.

25  System Equations of Motion of an Alternate Segment Model

At this point, the equations of motion for the two-dimensional aerial tow system are
complete, and given a proper numerical integration routines and a set of valid initial
conditions a simulation of the two-dimensional aerial tow system can be accomplished.
However, the lumped mass model used for the finite element segments is quite simplistic.
As discussed earlier, this model places the mass of a segment at the node at the base of
the segment and all applied forces on the segment are located at the node. This
simplification is particularly poor when there are few segment s that make up the model of

the cable.
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Imagine the cable is modeled as one lumped mass segment. The segment isin the
presence of moving fluid, as aresult there is a distributed friction load on the segment.
According to the lumped mass assumption the inertial force of the segment and the
accumulated drag force are applied at the base of the segment. The lumped mass

segment equation of motion is as follows,

4 (2.65)

It would seem a much better model would have the mass and applied force applied at
the midpoint of the segment. The resulting angular acceleration is twice that of the
lumped mass model.

q' =92 Fx Cq ~ (;ZI + mg)Sq (2.66)

An even better model would have the segment modeled as a thin rod or cylinder. This
would have the inertial and applied loads at the center of mass of the rod asin the
previous model. However, it also has its rotational inertia that resists rotation (the
rotational inertia about the center of gravity of athinrodisly = (ml?)/12). Theresulting

angular acceleration is an average of the two previous equations.

q' ZEFxcq B (Fz +mg)sq

> ~ (2.67)

The one segment exampl e illustrates the weakness of the lumped mass mode.

Presumably as the number of segment increase the difference in the dynamics of the
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lumped mass and the thin rod models will decrease (this will be shown in chapter five).
However, the as the number of segments increase so too does the computational

workload.

The question remains how do the equations of motion derived throughout this chapter
for the lumped mass model change for a system modeled by thin rod segments. The
answer can be found by rederiving Lagrange's equations with a new position equation
that represents the center of mass of each segment. Upon completion one will realized

that equation 2.30 remains true, recall,

[Alld |+ [B]*]=[c]

The only changes in the equations of motion for the thin rod modeled segments are in the
mass distributionin the A and B coefficient matrices and the lever arm of the generalized

force equations.

The mass distribution of the coefficient matrices in the lumped mass model is givenin
equation 2.33. The mass distribution of the coefficient matrices in the thin rod modeled
systemfor n+1 segments is as follows,

& d; b
mi,j:'mm(i,j)g§+71 +oam (2.68)
The generalized force equation remains much the same however since the forces on

the i™ segment are applied at the center of mass and not at the base of the segment the

lever arm is halved when i isequal toj,
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n+1l

Q = M+a[ .-mx (sz+mj(g-g))i8qi 4

Note the for equation 2.69 to be accurate for the ATV segment the ATV center of mass
must coincide with the center of mass of the segment model. In other words, the length
of the ATV segment will be twice the distance between the cable-ATV hitch point and

the ATV center of mass.

The set of equations of motion for the aerial towed system with segments modeled as
thin rods is attained with the implementation of equations 2.32, 2.49, 2.68 and 2.69 on
equation 2.30. Given a proper numerical integration routines and a set of valid initial
conditions a simulation of the two-dimensional aerial tow system can be accomplished.
The difference in the results of the lumped mass and thin rod segment modeled system
simulations with the same initial conditions will be analyzed in chapter five. Itisonly

then a conclusion can be drawn about the pros and cons of the two methods.
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CHAPTER 3

THREE-DIMENSIONAL DYNAMICS

3.1 Introduction

Modeling the aerial tow system for the two-dimensional case is more-or-less straight
forward. The equations of motion have been thoroughly derived, include nonlinearities,
and make few assumptions. As aresult, we can expect that the ssimulation of the system
will be thorough as well; the system could be used to complete a wide variety of case
studies, such as, ATV position due to wind gust or host vehicle motion, aswell as ATV
tracking ability under various conditions. However, it is ill limited the phenomena that
occur only in the two-dimensional plane. For a more robust ssimulation it is necessary to
derive the equations of motion in three dimensions. Being that the actual system existsin
three dimensions, this will more accurately represent the real world dynamic occurrences.
The addition of the third dimension will drastically increase the complexity of the
mathematical models. The methodology for the derivation of the three-dimensional
equations of motion is the same as that used for the two-dimensional case (chapter 2)

although afew new concepts are necessary to carryout that methodology.

3.2 Cable Dynamics

The three-dimensional model of the cable is attained via the application of the finite
element technique. Asin the two-dimensional case, the continuous cable is broken into
an arbitrary number of segments. The lumped mass model of the cable segments will be
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used in the initial analysis of the cable. Each segment is free to rotate about its

neighbors, giving the series of rigid connections flexibility as awhole. The added
dimension allows the segments two additional rotations, the rotation about the x-axis and
the ability for each segment to spin (rotation about the z-direction). The equations of
motion for the segment motion will include the new dynamic freedom, and as a result, the

equations will increase in complexity.

To focus on the dynamics of the cable we will assume that the cable is attached to the
origin of the inertial frame. In other words, assume that the host vehicle is steady. Thus,
the focus of the dynamics will be on the three-dimensional motion of the cable. The

effects of the motion of the cable connection point will be addressed in alater section.

3.2.1 Coordinate Systems

The addition of the third dimension does not have an effect on the number of
coordinate systems needed, although it does affect the type and complexity of the
orientation of the coordinate systems. The inertial frame is orthogonal and fixed. Each
cable segment has an orthogonal coordinate system which has its origin such that the
location of the node of that segment is the length of the segmert in the positive z-
direction. For instance, imagine there is one cable segment that rotates about the inertial
frame. The origin of the cable segment frame is at the point of rotation of the segment.
Thus, the location of the origin of the first cable segment frame and the origin of the

inertial frame are the same; the difference is in the orientation of the frames, figure 3.1.
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Figure3.1 Three-dimensional inertial and cable segment coordinate systems

The orientation of the cable segment relative to the inertial frame is due to the angle
of rotation of the cable frame. The cable frame can rotate about three separate axes (x, Y,
and z-axes) unlike the two-dimensional case in which it can rotate about only one (the y-
axis). The common method for describing the three-dimensional rotation requires the use
of Euler angles. These Euler angles are the heading angle y , the attitude angle g, and the
bank anglef . Any orientation of the cable frame relative to the inertial frame can be
described by using these three angles. However, it is important to note that the order of

rotation is important.

Imagine that a cable segment frame is parallel to the inertia frame and their origins
are coincident, figure 3.2. Allow the cable frame to rotate about its zaxisby an angley .
The resulting coordinate system is the double primed system. Thus, the coordinate

transformation from the double-primed system to the fixed inertial frame is as follows,
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Next, alow the double-primed systemto rotate abou the y«-axisby anangleq. The

resulting coordinate system is the triple-primed system. The coordinate transformation

from the triple-primed system to the double primed systemis as follows,

eXm eC 0 SQLEXCU ¢ eXCI‘u

eyag“o 1 ouag yag (32)
ez &S 0 Crez% SZHEZ"WH

Finally, allow the triple-primed systemto rotate about the x@-axisby ananglef. The

resulting coordinate system is the unprimed cable segment frame. The coordinate

transformation from the cable segment frame to the triple-primed system is as follows,

éx® €1 0 Ou&u | éxu
o ¢ Ugxy - ex
=0 ¢ Suéy3=8<:f:§2y3 (33)
&% @ -S Cezd e

The rotationa coordinate transformation from the cable segment frame to the inertial

frame is attained by combining equations 3.1, 3.2, and 3.3,

exu
eYu e ue LE LE‘ U

;ZE %H@:Eﬁ:ﬁe
ec C, - syq +C,S,S S§S +C,SC lxu 34

&5C. GG +SSS -GS +§S8C @y
§- S C,S c.G  feed
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Figure 3.2 Euler angle rotations

The series of three rotations of the cable frame are sufficient to attain any orientation.
The same is true independent of the order of rotation. However, the order of rotation
does have an effect on the final position of the cable frame. The order used throughout
thispaperisy, q, and f for every three-dimensional segment rotation. Let us assume that

the Euler angles are limited to the following rotations,
_P P
0fy <2p, 2£q£2, 0£f <2p (3.5)

Whenq = +p/2 thereis no distinct set of solutionsfory and f , thisis known as gimbal

lock. To avoid complications associated with gimbal lock it is common to switch to an
aternate system. In this particular aeria tow system the issue of gimbal lock will not
arise as the system necessitates the ATV fly at alower atitude than the host aircraft

resulting in cable segment attitude angles between+ p/2.
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The three-dimensional rotationa coordinate transformation from the cable to the

inertial coordinate system is represented by the following directional cosine matrix,

] . &,C, -§C +C S S S§S +CSCG U
oy g=e5C GG +SSS -GS +S8G (36)
S'Sq Cqs Cqu H

The position of the i segment’s node in its coordinate system is by definition the length
of the segment in the zdirection. Since the segments are a series of connected bodies the
directional cosine matrix can be used to formulate the node’ s position in the inertia

frame,

ex;u éou
&, U_go € e U
Y c=a & oy a0y (3.7)
?Z u jzlg fJ’quJhg E
g4 q;H

Expansion of equation 3.9 yields a more explicit form of the i"" segment position in the

inertial frame,

xi:f.?'ill,-(%lS,’ny,Sq,Cf,)

j=1

a |J.(- C S +sylsqjcfl) (i=12...,n) (3.8)

i
j=1

Y,

Z :éi‘ Ij(CqJCfl)

j=1

As in the tow-dimensional case, the location of the node of a segment is dependant upon

the angles of rotation of that segment and each preceding segment.
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3.2.2 Lagrange Equations

The modeling of the cable is accomplished using the finite element method, just as
with the two-dimensional case. As discussed previously, the method breaks the cable
into an arbitrary number of segments, and each cable segment has its own coordinate
system. The accuracy of the cable model improves with anincrease in the number of
segments for a given cable, so too does the difficulty of the derivation of the equations of

motion for the cable.

Using Newton’s method to derive the equations of motion for such a complex
configuration would be fraught with danger, as it would require intense vector
bookkeeping and multiple coupled rotation equations for each segment. The advantages
of the Lagrange technique over Newton’s method are even stronger for three-dimensional
analysis than in the two-dimensional case. The added dimension greatly increases the
system complexity and since the Lagrange technique has a standard process for the
derivation of the equations of motion it isless likely that mistakes will be made in the

derivationof the equations.

The bounds of the Lagrange equation are set by the degree of freedom of the system
(refer to section 2.2.2). In three dimensions, the complete description of a cable segment
is composed of its nodal position and its orientation (i.e. angle of twist). In the Cartesian
coordinate system the position of the node is defined by its x, y, and z-coordinates. Due
to the fact that the segment length is fixed the coordinates are not independent. The

Cartesian constraint equations are shown below,
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The Cartesian coordinates alone cannot specify the angle of twist of the segment.
Therefore, there are in actuality four coordinates necessary to define the system, and
being that there is one constraint equation each cable segment has three degrees of

freedom

It is possible to completely define the position and orientation of a segment using the
Euler angles. In thiscase, there are three angles which completely define the segment
and there are no constraint equations. Therefore, the Euler angles of each segment are
the independent generalized coordinates of the system. For the two-dimensional case the
independent generalized coordinates were the attitude angles of rotation and since there
was only one angle per segment the generalized coordinate consisted of just one variable.
However, for the three-dimensional model each segment requires three angles for
complete description of orientation. As aresult, for a cable modeled by n segments there
are 3n generalized coordinates made up of y, g, and f for each segment. (This assumes
that each cable segment is free to fully rotate about the preceding segment. The validity

of this assumption will be discussed in a later section).

For the three-dimensional system, Lagrange’s equations represent an equation for each

of the 3n degrees of freedom,

daATo 'nT
. 1,2,...,3n 3.9
p g—z 9 Q (= n) (3.9)
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Note that the generalized force, Q, contains applied forces, applied noments, and inertial

forces as per the discussion in section 2.2.2.

Equation 3.9 represents a set of 3n equations. In which the generalized coordinate is
made up of three independent variables. 1t may be presented more clearly rewritten as

three sets of n equations, in which the generalized coordinate for each is an independent

variable,
EWQ_EZQ
a5
d TO T .
dta?q %—Q (i=12...n) (3.11)
dae'nTo T -Q
dt ﬂy|ﬂ ﬂyl i
g . Y. iz, qf .
QfI:ja:lFXj ﬂfiJ+FYjﬂfi’+(F mg)‘”f Mf“”f:
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g X 1y, 1Z; Ty
=aF, — — +mgl—+M, —
Y 21 Ty, Ty, (Z‘ Jg)ﬂyi Yy
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Thus, each segment will contain three equations of motion. Note that the applied

moments and the moments produced by the applied forces are about the axis of rotation

of their respective generalized coordinate,f,, g,, and y',.

The method for deriving the equations of motion is the same as that carried out in the
two-dimensional cable dynamic section. The only difference is the more complexkinetic
energy equation and the increase in the number of generalized coordinates of the system.
The kinetic energy is made up of rotational and trandational kinetic energy. The nodes
being point masses, have no inertia and thus no rotational kinetic energy. Asaresult, the
derivation of the equations of motion relies solely on the trandation kinetic energy of the

systemas a function of the generalized coordinates

The kinetic energy can be found by calculating the square of velocity for the node of
each segment as a function of the generalized coordinates, equation 2.9. The velocity

components are simply the time rate of change of position

x=&1f(sc -85k ec)yls -sscl

=
1
Qo

S|
[y

'ka ( G G - S/,Sq,sn)+qj(31,cq,cr,)+y'j(5/,st, +Cy,sq,cr,)] (3.13)

z=a1klcs)dlsc)

j=1

Thus, the square of velocity for the k™ segment is as follows,
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Furthermore, the three-dimensional kinetic energy equation is represented as a function

of the independent generalized coordinates below,
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Equation 3.15 is the basis from which Lagrange' s equations will be derived. All one

needs to do is compare equation 3.15 and 2.12 to grasp the increase in complexity from a
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gystem existing in two to three-dimensions. With the cable kinetic energy equation
derived the derivation of Lagrange’ s equations for each set of generalized coordinates can

commence.

3.2.2.1 Bank angle

The implementation of the Lagrange equation in the three-dimensional cable model
must be accomplished for each angle necessary for cable orientation definition. For the

bank angle generalized coordinate the derivation is as follows.

The derivative of kinetic energy with respect to the bank angle and the time rate of

change of the bank angle of the i cable segment yield the following,
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(3.16)
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Finally evaluating the time rate of change of equation 3.17 produces,
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(3.18)
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Note that, just asin the two-dimensional case, the term representing the derivative of
kinetic energy with respect to generalized coordinate, equation 3.16, is completely
canceled by the some of the terms in the time rate of change of the derivative of kinetic
energy with respect to the time rate of change of the generalized coordinate, equation

3.18.

Combining equations 3.16 and 3.18 results in the series representation of the left hand
side of the Lagrange's equations for the bank angle of the three-dimensiona finite

element modeled cable,
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for (i=12...,n)

To fully develop the equations of motion the generalized force equation as a function

of bank angle is evaluated in accordance with equation 3.12.
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The implementation of the Lagrange equations for the bank angle generalized coordinate
is complete, however to attain the full system equations of motion Lagrange’ s equations

must be derived for the two remaining generalized coordinates.

3.2.2.2 Attitude Angle

This section investigates the application of the Lagrange equations for the attitude
angle generalized coordinate. The Lagrange equation term representing the derivative of
kinetic energy with respect to the attitude angle and the rate of change of the attitude

angle of thei™ cable segment is as follows,
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Taking the time rate of change of the equation 3.22 produces the first term in Lagrange’s

equations for the attitude angle generalized coordinate,
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Again, the time rate of change of the derivative of kinetic energy with respect to the
time rate of change of the generalized coordinate, equation 3.23, contains terms that are

equal to the derivative of kinetic energy with respect to the generalized coordinate,

equation 3.21.

Combining equation 3.21 and 3.23 appropriately produces the left hand side of

Lagrange’ s equations for the attitude angle generalized coordinate,

70



daETo T _ o &
dta?TTq'ﬂ 11TTQ. k:ja:_m{

flc,6SCS +S ,GC G +CS SC )+
q, (cyi_yicficficqicqj +cfic,jsqisqj)+

y,6 ,C8C -5 ,CGCCS )

,q,( G, C.S.C,C, -GS 5,5, )+ (3.24)
y.ls,ccec,)

zyjfj(cy ,.C.CCy*S ,.C.S CeS )+

(¢, ,CCCS -S ,GSC,+CC S )+
q'f(- yyccfcsq+cc:sqc)
Y'Z(‘ S 5.GS G - Cyj-infinquiqu)}:

i

QJo

The right hand side of Lagrange’s equations is the derivation of the generalized force for
the ™ segment. The evaluation of equation 3.12 for the attitude angle generalized

coordinate results in,

qu = Mqi +§:. [ijli (CfiCQiCyi)+ Flei(Cf.qus/l)+(in * mjg)i(- Cfisq' )] (3.29)

for (i=12,...,n)

Thus, concludes the derivation of the equations of motion for the attitude angle.
However, there still remains one generalized coordinate not yet applied to the Lagrange

equations.

3.2.2.3 Heading Angle

The final generalized coordinate is the heading angle. The equations of motion for the

heading angle are derived in the same fashion as that of the other Euler angles. The
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derivation of the Lagrange equations for the heading angle of the i" segment as shown in

equation 3.11 is presented in detail in the remainder of this section.

The derivative of kinetic energy with respect to the heading angle and time rate of

change of heading angle of the cable segment is evaluated below,
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The first term of Lagrange's equations is attained by taking the time rate of change of

equation 3.27. The results are as follows,
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As with the previous derivations of Lagrange's equations for the cable system the time
rate of change of the derivative of kinetic energy with respect to the time rate of change
of the generalized coordinate contains terms that are equal to the derivative of kinetic
energy with respect to the generalized coordinate, somewhat simplifying the equations of

motion.
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Combining equation 3.26 and 3.28 appropriately produce the left hand side of the

Lagrange’ s equations of the heading angle generalized coordinate.
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The final addition to the dynamics equations are the effect of the applied loads on the
heading angle. The generalized force for the heading angle is derived in accordance with

equation 3.12 and result in the following,

Qyi :Myi +.én:. [ijli(SiCYi ) Cfisqi%i)-'- Flei(S‘%i +CriSquyi)] (3.30)

for (i=12,...,n)

The equations of motion of the cable segments are dependant upon the equations of
motion of the Euler angles of each segment. Simulation of the cable motion requires
simultaneous solution of the angular acceleration of the generalized coordinatesfor dl

cable segments.
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3.2.2.4 Cable Equations of Motions

We have yet to discuss the three-dimensional aerodynamic applied loads, but
neglecting that, the equations of motion for the three-dimensional cable have been
derived, although they are not in a convenient form. We can rewrite the equations of
motion in matrix form for an arbitrary number of cable segments as was done in the two-
dimensional case. The fully three-dimensioral nonlinear differential equations of motion

for acable of n segments can be written in the following form,

¢A A AU éB B, Bud’U & C, Cuéfqu éQu
2 e--u é Je-oU @ e Ll é_u
A A AgtB B Bl '+ &4 G cﬂéq i= gpu (331)
A A AU 8 B BE¥’l & G CHdfd R

where A, B, C, and Q are augmented matrices. In other words, matrix A is composed of
nine submatrices of sizen xn. Thus A isof size3n x 3n. The sameis true for matrix B
and C. A, B, and C are coefficient matrices. The generalized force column matrix, Q, is
an augmented matrix of size 3n x 1. The values of the matrices components are taken
directly from the results of the derivation of the Lagrange equation carried out in the

previous sections, and combine to form a set of 3n equations of motion.

The A, B, and C matrices in equation 3.31 are represented by the equations below,

where i and j are the row and column of the matrices.
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Recall the mass distribution for the lumped mass modeled segment from equation

2.33,

The resulting matrix equation is quite complex, but then again so is the system that the
equations are modeling. The equations were set up independent of the number of system
segments. As aresult, the addition of segments is easily accomplished (however, it will
increase the computational workload). The angular acceleration of each segment can be
calculated given known initial conditions such as the magnitude of the angles and angular
velocity. To solve the equations of motion the matrices need to be populated, as per
equations 3.20, 3.25, 3.30, and 3.33 through 3.58, and the A matrix must be inverted and
appropriately applied to equation 3.31. There isanissue in the inversion of the A matrix

but thet will be discussed in alater section.

The model of the connected cable segments alows for complete rotational freedom for
each segment. This assumption is valid with the exception of the twisting or rotation
about the z-axis of the cable segment. In an actual cable the torsion resistance would not
alow for free twisting. One could then introduce an additional constraint equation that
would restrict twisting. However the kinetic energy associated with the twisting in the
modeled cable segment is zero due to the fact that the segment has no inertia through the

segment z-axis. The derivation of the equations of motion for cable using the Lagrange
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technique is based on the kinetic energy; therefore, the free rotation of the segment about
itsz-axisis of no consequence. The utilization of the twisting constraint equation would
reduce the degree of freedom of the system but it would also complicate the derivation.

As aresult, thiswill be left for future work.

The equations of mation to this point are sufficient to perform a dynamic simulation of
an ideal three-dimensional cable. The final step to complete the full cable dynamic
simulation is the modeling of the applied loads produced by the frictional fluid forces.
These forces can then be introduced into the Q matrix which would allow adynamic

simulation of acablein afluid.

3.2.3 Aerodynamic Modeling

Hoerner’s crossflow method for calculating cable drag is fundamentally applicable in
the analysis of the three-dimensional cable model; the cable is composed of straight
segmentswith circular cross-sections, and the flight conditions produce subcritical
Reynolds number about the cable. However, direct application does not account for flow

in the transverse direction.

In short, the crossflow method predicts the frictional and pressure forces produced by
the fluid flow relative to the cable. The friction and pressure drag are calculated viathe
components of the flow that are normal and tangent to the cable. Thisis evident from the
two-dimensional crossflow drag equations produced by Hoerner. This concept can be

extended to three-dimensional flow with only slight modifications.
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In the cable segment frame, the z-axis is tangent and the x and y-axes are
perpendicular to the cable segment. Therefore, the magnitude of the normal velocity is
dependant solely on the velocity of the fluid in the x and y-coordinate direction The
pressure drag is a function of the magnitude of the normal velocity and the friction drag is

afunction of the magnitude of the overall velocity.

The modification of the crossflow-principle for three-dimensional flow on the | cable

segment is as follows:

1 (p 2 2 2 2 2)
F =- Erdl-vx, Cf\/vxv +V- +Vzv +C \/VX' +VY1

Xj

_=-%rdlv (p VS V] +ch2+vyzj) (3.59)
sz =- lrdljvz (ocf Vx2 +Vy2. +V22,)

i 2 i i i i

where, r, d, ¢;, and ¢, are air density, cable diameter, frictional coefficient, and pressure
coefficient, respectively; Fy, Fy, and F; are the aerodynamic forces, and Vy, Vy, and V, are

the flow field velocity relative to the cable segment in the cable segment frame.

The fluid velocity relative to the cable is a result of the freestream flow, Ug, Vo, and
Wp, and the motion of the cable system. The reference flight conditions as well as the
equations calculating the segment node velocity are in the inertial frame. The application
of equation 3.59 requires that the inertial velocity be converted to the cable segment

coordinate system. Thus arotational coordinate transformation is necessary,
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The dragloads are applied at the node of a given segment producing moments about
the point of rotation of the segment. The resulting moments are inherently calculated in
Lagrange’s equations via the generalized force equations, equation 3.12. However, the
forces in the generalized force equation are in the inertial frame. As aresult, the drag
forces calculated by the modified crossflow method require the rotational transformation

as shown below,
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The application of the friction forces of each cable segment to the generalized force
equations, equations 3.20, 3.25, and 3.30, complete the system equations of motion for a
cablein afluid. The angular acceleration of each segment can be calculated by the
manipulation of equation 3.31 given that the appropriate initial conditions, such as
segment orientation and Euler angular velocities, of each segment are known. The
ordinary differential equations can be utilized in combination with a numerical
integration routine to produce a ssimulation that predicts the dynamics of a cablein afluid

field.
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3.3 Arid Tow Vehicle

The three-dimensional flight dynamics and analysis of simple aircraft have been well
documented. As aresult, the smulation of the ATV aone would smply be an
application of the aircraft equations of motion, resulting in a genera flight simulator.
However, the addition of the cable to the ATV introduces complexities for both the cable
and ATV dynamics. The system equations of motion must be derived and solved

simultaneoudly for both the cable and ATV.

In this configuration, the ATV is attached to the base of the cable, and the ATV isfree
to rotate about the cable-ATV hitch point. The ATV has a center of mass at which the
inertial and aerodynamic forces are applied, that is a fixed distance from its rotation
point. It is possible, then, to describe the location of the ATV center of mass by the Euler
angles of the imaginary line connecting the cable-ATV hitch point to the ATV center of
mass, and like the cable segments the energy of the ATV can be described as a function
of these Euler angles. Therefore, it is feasible to model the ATV as an additional
segment to the cable. The parameters such as the mass and length of the segment are
dictated by the configuration of the aircraft, and the applied loads on the ATV segment

will be determined by the aircraft aerodynamics

Modeling the ATV as a cable segment takes advantage of the equations that have
already been derived to model the individual and coupled dynamics of connected bodies.
However, the total energy of the ATV is not entirely represented by the trandlational

kinetic and potential energies. Unlike the lumped mass cable segments defined in the
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previous section the ATV has rotation kinetic energy. As aresult, the system equations

of mation will require expansion

3.3.1 Coordinate System

The additional ATV segment has a coordinate system that is defined in the same
manner as that of the cable segments. The origin of the ATV segment frame is at the
cable-ATV hitch point and its z-axis passes through the ATV center of mass. However,
the equations representing the aerodynamics of the ATV, asthey are defined in Nelson
and Raymer, are in the general body fixed frame of the aircraft. In this orthogonal
coordinate system the origin is at the aircraft center of mass; the x-axis points from the
origin towards the nose of the aircraft; the y-axis points towards the starboard side; and
the zaxis points towards the bottom of the aircraft (presumably towards the ground). As
aresult, the ATV segment will have two coordinate systems, the ATV segment frame and

the ATV aircraft frame.

y Yarv

T x,nﬂ'
z..q!'"
Figure 3.3 ATV coordinate systems

The ATV segment is geometrically defined from the cable-ATV hitch point to the

ATV center of gravity. Thus, the ATV segment and the ATV aircraft coordinate system
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differ in rotation by a fixed attitude angle, ? (this makes the reasonable assumption that
the cable-ATV hitch point isin the xz plane). The aircraft aerodynamics that predicts the
applied loads on the aircraft will be in the ATV aircraft frame, yet the generalized force
equations require the forces be in the inertial frame. A rotational transformation is able to
accommodate the change from one coordinate system to the next. Rotating from the
ATV aircraft frame to the inertia frame isaccomplished thrua series of transformations,
first from the ATV aircraft to the ATV segment frame followed by the transformation

from the ATV segment frame to the inertial frame.

Due to the fact that the ATV aircraft and ATV segment frame differ by a fixed angle
in the xz-plane, the rotational transformation between the two is ssmply represented by a

rotation about the aircraft y-axis.
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where, Xatv, Yatv, and zay are the coordinates directions of the ATV aircraft frame.
The ATV segment has the full three-degrees of freedom in rotation. Therefore, the

rotational transformation from the ATV segment frame to the inertial frame is the same

asthat derived in equation 3.6. Therotational transformation from the ATV aircraft to

the inertial frame is as follows,
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This transformation will alow the use of standard aircraft aerodynamic techniques to
be used in calculating the generalized forces on the ATV segment due to the freestream

flow and the shape and motion of the ATV.

3.3.2 Lagrange Equations

Lagrange’s equations are based uponthe total energy of the system which in this
system includes kinetic and potential energy. The kinetic energy is composed of both
trandational and rotational kinetic energy. The derivation of the cable segment equations
of motion was simplified in that the segment nodes have no inertia and thus the segment
has no rotational kinetic energy. The same is not true for the ATV segment. The ATV
segment node isthe ATV center of gravity and its inertia is derived from the ATV inertia.
Therefore, the derivation of the equations of motion for the ATV segment is broken into
two parts, trandational and rotational kinetic energy. Due to the similarities in the model
of the ATV segment and the cable segment, the derivation due to the trandational kinetic
energy isidentical to that derived in the previous section; leaving only the derivation of

the Lagrange equations due to the rotational kinetic energy, see equation 2.41.

Recall equation 2.43 presents the rotational kinetic energy equation of arigid body,

T = 500 1)

where, ? and | are the angular velocity vector and inertia matrix of the rigid body,
respectively. The angular velocity vector of the ATV segment is dependant upon the

generalized coordinates and their time derivatives, as follows,
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év,u € f-y§ U
2) b € - . u

(W} =gv, 4= 849G +YC,S g (3.64)
éNZH g- qs +y‘Cqu H

The ATV inertial matrix is athree by three matrix as follows,

4¢ 1g 1gu
d=g¢ 19 16 (3.65)
&g 1§ 164

Note that, in the notation used, 1§ isequivalent to 1¢ . Also note, that due to the
aircraft symmetry the component of inertia |{, and 1, are equal to zero (this aircraft

symmetry exists in most aircraft).

The inertia matrix for the ATV isin the ATV aircraft frame; however the equations of
motion are derived for the Euler angles which dictate the position and motion of the
system segments. Therefore, the inertia matrix in the kinetic energy equation must be
that of the ATV segment not the ATV itself. Thetwo coordinate systems differ by the
fixed rotation angle, ?. The ATV segment inertia matrix is calculated fromthe ATV

inertia as follows,
[1]= §CE=QE[| a]§c8=g§ (3.66)

Since this transformation is accomplished via a fixed angle it need only be calculated
once, in other words it does not affect the derivation of the rotational equations of motion

since the angle is not a function of time or generalized coordinates. The rotation of the
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inertia matrix to the ATV segment frame does not affect the inertial symmetry (i.e I,y and

I, are zero).

The substitution of the three-dimensional angular velocity vector, equation 3.64, and
the inertia matrix into the kinetic energy equation, equation 2.43, produces the segment

rotational kinetic energy equation in terms of the generalized coordinates.,

. T .
é f-y bd, 0 I 8 f-y 0
16 y.S“ ué @ - y.S“ U

Trot _Eequ +y CqS l;j éo Iyy 0 L’équ +y Cqs [;| (367)
8' qS‘ +y‘Cq Cf H él zX 0 Izz% qu +y.Cq Cf H

The exparsion of equation 3.67 and the application of it to every segment produce the

rotational kinetic energy equation for the three-dimensional cable and ATV system,

n+l

Trot :%é [IXX, (l:.i2 +y‘ izsqzi - Z"iy'iSJi )+
i=1

I, 067G +y 7C2S + 2y C, S C, )+ (368)
Izzi 6/ ichzicf? +qi232i - 2qu ini SfiCQi )+
2 Xz (f'iy.icficqi B f.iq'ia‘i -y ichicqi Sq‘ +y‘iq‘isfisqw )]

Note that equation 3.68 accounts for each segment in the systemcable and ATV dlike.
The equation would be greatly simplified under the conditionthat the cable segments
were modeled using the lumped mass technique as the inertia components would be zero
fori=1,2,...,n. However, thissmplification will not be applied until after the equations

of motion have been derived to increase robustness.

The effects of inertia on the dynamic response of the system is found by applying

Lagrange' s equation to the rotational kinetic energy equation for each generalized
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coordinate, i.e. the Euler angles (bank angle, attitude angle, and heading angle) of each

segmen.

3.3.2.1 Bank Angle

The rotational bank angle equation of motion for the i segment is produced by
evaluating Lagrange' s equations for the appropriate generalized coordinate with respect

to rotational kinetic energy,

d a-[-I-I’ ot 0 1-|-I_I' ot

aé T g (3.69)

The derivative of rotational kinetic energy with respect to the bank angle and the time

rate of change of the bank angle of the i segment are as follows,

1-|-I-I' ot
Tt

=1, [d’c s +yC s 2 +dy C, (7 - )+

L[y ic s C2+dic s -dy C, (G- 52+ (3.70)
I><zi (' f.iy'iSfiqu ) f.iq-ini ty iZSiqu Sqi +y‘iq.iniSqi)

L
i

:|xx1(f.i _y'iSq,)-I—Ixz, &.icf,cq, 'qisf,) (3.71)

The time rate of change of equation 3.71 produces the final term of Lagrange's
equations,
d arl-rot O

otr=| f -y.S -y gC
dtg 1f, 5 XX( YiS -y qi)+ (3.72)

|XZi e/“iniqu B y if‘iSfiCQi B y.iq‘ini %i B q"iSfi } q.if‘i Cfi)
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The substitution of equations 3.70 and 3.72 into equation 3.69 yieldsthe rotational

equationof motion for the iy, segment due to bank angle rotation,

E&ﬂTrot 9_ ﬂTrot -

dte 9t 5 T,
Ixxi (fl - y”iSqi - y iqicqi )+
Ly [qizcr. S, -¥iC SCs - q.iy.icq. (sz. } S?)]"' (3.73)

Ly ci-di s vayic, - 5
| Vicricqi i %/‘iq.icfiSQi i q.isfi Y8, Sqi)
for (1=12,...n+1)

3.3.2.2 Attitude Angle

The rotational attitude angle equation of motion for the i" segment is produced by
evaluating Lagrange' s equations for the appropriate generalized coordinate with respect

to rotational kinetic energy,

i a-[TI'Ot 9 - 1-lTI'Ot

= 3.74
dgfa, g Ta, &7

The derivative of rotational kinetic energy with respect to the attitude angle and the

time rate of change of the attitude angle of the i segment are as follows,

1-lTrot
fla;

= IX& 6’ iZqu Sq‘ B f'y'iqu )+

Ly, ( Yy C 8, S - ayiC. 8 S, )+ (3.75)
., - y'’C’C, S, +q'y'in‘3fiSqi)+
I, [' fy.C.S, -y G, (qui i qui)-'-y.iq'isicqi]
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m?t =1, (qicfzi +yC, §.C, )+ |2 (q' §-YGSC )+ (3.76)

| (— f.iSi +y’isi%i)

The time rate of change of equation3.76 is as follows,

&G 5
IWi [q‘icfzi - Zqif'iniSfi +y“iniSiqu 'y. iqufiSfiSqi +y. if‘icqi (sz. ) S?)]-'-(3-77)
LS +20f.C S -y C.S.C +Y,6C S S -V G, (- 52+
I><zi (' fhisfi - f‘iZCfi +y"iS‘i Sqi +y if‘icfi Sqi +y‘iq‘i$iCQi)

i m-[TI’OI 9 j—

The substitution of equation 3.75 and 3.77 into equation 3.74 yields the rotational

equation of maotion of theiy segment due to attitude angle rotation,

dadT, 0 MMy _
aET6, 5 fa,
I><><i (' y iZqu Sqi +f.iy’ [ qu )+
|, lacz- 2df.c s +y.C sC, +yifC,(c - st)+yzsic,s, |+ (379
L kst+afc s -y.c sc, -yific (G- s)+yicic,.s |+
Ixzi [' f“iSfi B f.iZCfi +y“iSfiSqi +2f.y‘icfisqi +y iZCri (qui B Sci )]
for (i=22...n+1)

3.3.2.3 Heading Angle

The rotational heading angle equation of motion for the i segment is produced by
evaluating Lagrange' s equations for the appropriate generalized coordinate with respect

to rotational kinetic energy,
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E a-[TI’O'[ 2 _ 1-|-I-I'0t

o - (3.79)
dtgly g Ty,

The derivative of rotational kinetic energy with respect to the heading angle and the

time rate of change of the heading angle of the i segment are as follows,

1-|-I-I‘ ot

=0 3.80
iy, (380

el s )

L, bc2s?+qc s ¢ )+ (3.81)
6’ C C2 quf|Sf|Cq|)+
le (ricficq, - %/‘icficql S:h +qiSf,Sqi )]

The time rate of change of equation 3.81 is as follows,

d T, 6_
xx@/ S] +2y.Q. a; q f"iSq. -f.iqicq,)+
yyi[YiSthzi +2yi iCriSfiqu: - A/.iq‘isfcqism +
GC.S.C, +afic, [c2 - §)-dc, 5.5, ]+ (382
Imqu-wmqsd Y G,C7C, S, -
GG, 8., -dfC, (e - §)rarc s 8]+
1[G Cy - 7S C, +GS S, +d7S,C, -
G, C.S, +¥ 8C. S, - ¥dC, [C: - &)
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The left hand side of Lagrange’s equations for the heading generalized coordinates is

equal to equation 3.82 since the rotaional kinetic energy equation is not a function of

heading angle.
A& 0 MM _
dtgfy; g Ty,
LS+ 6c, s, 118, - Fic, )+
yyi[yisficqi At fisfi 4 q Sr'cq'sq' ¥
q.C, 3 C +q'if'.C (C2 - § ) q°C, §, Sq]+
L bCoCZ -y £,C S C2- 3 GCiC,s, - (389

qicfisicqi- fc c2- §)+dic, 5.8 )+
IXZi k“iCriCQi B f.iZSiCQi +qi$ S +q' Sf C B
&.iniCqIS]i-'-%/.i i q,Sq allqcf ( )]
for ( —12,...n+1)

3.3.2.4 Rotational Equations of Motion

The results of the previous three sections produce the rigid body rotational equations

of motionfor the n+1 segments of the cable and ATV system. The set of differential

equations is best illustrated in matrix form, as follows,

A 2
ngtl Aotz Aot3 lH lil eBrotl Brot2 Brot3 l'Ef

vé -
éArot,, Aots Aots Léq U+ eBrot4 Brots Bro’r6 l_Eq 2 U

ga\foﬁ A'Ots Aotg t@ u e rot Bmts "0'(9 tﬁ “u (3 84)
Low Cu, Cro, WU '
éCr0t4 Crot5 Crot uéqy u
&€, Ca, Co, BT

Where, Arot, Brot, and C; ot are augmented rotational coefficients matrices of size n+1 by

n+1. These matrices are purely diagonal due to the fact that the angular velocity of one
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segment is independent of all other segments. The following equations represents the

diagonal terms of the coefficients matrices for i = 1...n+1,

Aoy, =l (3.85)

A, =-14S (3.86)

Aw,, = 1S, +1,C,C, (3.87)

Ao, = Ao, (3.89)

Ao, =1y Gl +1,S (3.89)

A, =(ly - 1:)5.8.C, +1.S.S, (3.90)
Ac, = Aa (3.91)

Ao, = Aoy (3.92)

Ag, =1, S+, 8- 1,C2)c2-2,CC,58, (3.93)
B, =0 (3.94)

Bo,, =(ly, - 1,)C.S, (3.95)

By, =1z - 14 )G,S,C2 - 1,C, (3.96)
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Brot4-v =- Ixz,Cf,

rots

By =(1,+1,8-1,C2)k.S +1,CC

Totg; ; XX Wi T zz; ~f; /770 TQ; xzi 7 2q;
BfOIm - IXZi SiC:Qi

Brotgi’i :(I zZ ~ Iyyipiaisqi + Ixzisicqi

Cr0t2i,i :(- IXX1 B IWiC2fi + IZZiC2fi G 2|X2iniSQi

Crotg,ivi :(Ixx1 + Iyy,C2fI - IZZ,CZf, of +2|xz,Cf,Sq,

Crotm :(- IXX1 + IWiC2fi B IZZCZi)qu

CrOtgi,i = 2(IXX1 B IWiSZi B IZZCfZi k:Qi Sh B 2|><Z‘CfiC2qi

94

(3.97)

(3.98)

(3.99)

(3.100)

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

(3.107)

(3.108)

(3.109)

(3.110)



Cr0t9i,i =2(I wi IZZi k:fisficqzi +2IXZiSTiCCI\ Scli (3111)

Note that the rotational equations of motion are about the velocity vector of the
generalized coordinates Recall that the three rotation vectors (f ,q, andy ) are non

orthogonal and order dependant. A transformation can be applied to the derived rotation
equations of motion in order to get the three non-orthogonal equations about an

orthogonal rotational system. The transformation is as follows,

eM,u é 1 0 0 UM, U
e b € ue u
3 yﬂ ST, C  S/C Mgy (3.112)
M8 &T, -S C/CHMHY

Being that the coefficient matrices of equation 3.84 are diagonal the system rotation
equations are uncoupled, thus there are n+1 independent equations. Imagine thereisonly
one body and its rotational equations of motion are represented by equation 3.84 in

response to the momentsM ., M., and M, . Therigid body rotational equations of

motion in Cartesian coordinates can be attained by applying the transformationof
equation 3.112 to therigid body rotation equations. Simplifying the result using equation

3.64 produces in the following rotation equations in Cartesian coordinates,

Ixxwx +Wsz(Iz_ Iy)+|xz(vvz +Wny):Mx
L +waw (1 - 1)+ 1, W2 - w?)= M, (3.113)
L, +wow (1, - 1)+ 1, - wow, )= M,

Equation 3.113 is equal to the rotational equations of motion for arigid body as

derived by Newton’'slaws. The Cartesian coordinate rigid body rotation equations
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cannot be used directly as the equations of motion for nodal trandation are also about the
Euler angular velocity vectors. The transformation only serves to validate the derived

rotational equations of motion.

The complete set of equations of motion for the segmentsin the cable-ATV systemare
presented in two parts, trandation and rotation of the center of mass of the segments. The
trandational and rotational equations of motion for each segment are represented by
equation3.31 and 3.84, respectively. Thus, the complete equations of motion for the
segment s are obtained simply by combining the two equations. This is accomplished
simply by superimposing the rotational matrices, equation 3.85-111, onto the

trandational matrices, equation3.32-58. For example, matrix A; is now of the form,

A, = Ao +mi,i|i|Jle.-y.(Sfis,-sqisq, +Cfin,-)+
.ss -scs)ssce| Guy
for (i=12...,n+1)

Where, the kronecker delta insures that the rotational coefficient is applied on the

diagonal of the matrix.

The rotational equations of motion apply to each of the segments in the system.
However, in the current configuration the only segment that has a nonzero inertiais the
ATV segment, i = n+1. Asaresult, the values of the rotational coefficients for the cable
segment will be trivial (thisis not be the case for a system in which the cable segment

model has a distributed mass).
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The n+1 row of the augmented matrices representsthe ATV dynamic effect of the
motion of each cable segment on the ATV segment, and the n+1 column of the
augmented matrices represents the dynamic effect of the ATV segment on the motion of
each of the cable segments. The nonlinear system equations of motion can be solved
simultareously for the angular acceleration of each segment given that the initial
conditions, such as the Euler angles Euler rates, and generalized forces are known. The
generalized force equations for each segment are dependant upon the applied forces on
the segment. Thus the evaluation of the aerodynamic forces and moments is needed to

produce a realistic simulation of the system.

3.3.3 Generadized Forces

Being that the ATV is modeled in the same fashion as the cable segments the
generalized force equations are the same as those of the cable segments, equations 3.20,
3.25, and 3.30. Thereis, however, a difference in the model for the applied forces and
moments between the two types of segments. The calculation of the Aerodynamic forces
and moments on the ATV are accomplished using linearized small-disturbance theory,
Nelsont*; where in, the aerodynamic forces and moments are cal culated based upon the
aircraft reference flight conditions and the small deviations about the reference condition.
The aircraft aerodynamics are represented by stability derivatives that approximate the
affects of the deviations from the reference flight conditiondue to various parameters
such as perturbation velocities and angular rate of rotation The aircraft fixed frame
equations for the aerodynamic forces, Fxaty, Fyamv, and Fzamy, and moments, L, M, and N,

are as follows,
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Foary = Xo +m(X,u+ X,w)

FYATV =Y, +m( v+Ypp+Yrr)

Fory = Zo+MZyu+Z,w+ Z, W+ Z,q)
Lo+ 1y [Lv+L,p+Lr)

M, + IY(Muu+MWW+MW\N+qu)
No+1, (N,v+N_ p+Nr)

(3.115)

L=
M =
N

where, m is mass, Ik, |y, and |z are mass moment of inertia, and Xy, Xw,..., N arethe
stability derivatives of the aircraft. The perturbation velocities u, v, and w are the velocity

difference between the ATV and reference freestream,

éuu T &J + x l;l éJ u

é l:| _ é l:| A u e . u U

évl;l - gC_QEI g(; ay "ﬂg n+1 ua- g\/o U (3116)
Ve g/v0 +Z,.4 8Vof

The angular rotationrates of the aircraft p, g, and r, are about the orthogonal aircraft

fixed frame,

épl}l é T gNXnu H p N g f y n+1SQn +1 8
e u_ u _ u .
8967 8. 0= Co g 84mGr, Y 0aCa.S . G (3.117)
el 8.l & GyuS, *Y niCq,Cr,
€ zZal e LU g PN 1~ ~fha U

Note that the aerodynamic moments of equation 3.115 are about the orthogonal ATV
fixed frame, yet the moments in the generalized force equations are in the non-orthogonal
generalized coordinate system. Therefore, the aerodynamic moments must be calculated
and then trandated into the proper frame prior to the implementation of the generalized
force equations. The first step is to trandate the moments in the orthogonal aircraft frame

to the orthogonal ATV segment frame,
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M, élu
u_e~ ue ,u

gvl 07 s geMa (3.118)

ev.d eNg

Next, the trandation matrix in equation 3.112 configures the aerodynamic moments into

the proper nonorthogonal generalized coordinate system,

[

gl\/lfu él 0 0 u éM, u
6, u_=¢6 ué, u
Mig=eST, G Sf/Cqu gMyL]
s 1 & T - C./C < Z'
gvlyH @ q 3 f/ qH 8'\/' H (3-119)
(:91 0 0 U ‘éLl‘J
_é e~ ug ,u
—§0 C 'SI:ICEQ 'AML'J
&S SG CGGH  eNg

At this point the aerodynamic forces and moments can be correctly applied to the
derived generalized force equations, and the simulation of the cable-ATV system is

atainable.

Using small disturbance theory to model the aerodynamics of the ATV alows for the
simulation of the cable-tow system for an array of towed aircraft. The aerodynamics of
the ATV due to its size and shape can be quickly quantified and easily applied to the

simulation without having to rederive the egquations of motion.

34 Host Vehicle

As with the two-dimensional case, the assumption is made that the host aircraft is
much grester in size than the ATV. Asaresult, the forces produce from the motionof

the cableand ATV will be insignificant in comparison to the aerodynamic and thrust
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forces of the host aircraft. That is not to say that the host vehicle dynamics are
inconsequential. It islikely that the autopilot of the host aircraft will not be perfect and
that disturbances in the flow will cause oscillations of the vehicle, which will, in turn,
affect the motion of the cable and ATV. Asaresult, the motion of the host aircraft can

be viewed as the movement of the host-cable attachment point.

3.4.1 Coordinate System

The movement of the host aircraft complicates the spatial definition of the system.
Introducing the host vehicle coordinate system aids in the system evaluation. The host
vehicle coordinate system is purely trandational, its origin is at the host-cable connection
point, and it is parallel to the inertial coordinate system. In the previous sections of this

chapter the inertial and host vehicle coordinate systems have been coincident.

Thex, y, and z-axes of the host frame are denoted by X ¢(,Y ¢, and Z¢. The node

position for the i™ segment in the host frame is as follows,

X W €ou
By ql_ 2 & e, u
EY&=a &Ciay. 600 (3.120)
R I

The position of the origin of the host frame in the inertial coordinate system is denoted
by X,y,and z. Asaresult, the equation for the node position of the i segment in the

inertial frame can be rewritten as follows,
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eX;u é&xu éX@ éxu éou
&, U_éu, e, 0_6éu, s é ué.u
e 1= 0" Y= A v, 0 (120
62 H &8 &2% &zf 8,4

3.4.2 Lagrange Equations

The motion of the host vehicle can be made arbitrarily. For example, the x, y, and z
components of velocity and acceleration of the host vehicle can be set as a harmonic
function that represents a particular aircraft’s longitudinal and lateral dynamics. It can

also be set to model aircraft maneuvers such as coordinated turns or altitude changes.

The motion of the host aircraft altersthe trandational kinetic energy of the system as
derived in equation 3.15. Therefore, the effect of the connecting point movement on the
cable and ATV equations of motion is determined by deriving Lagrange’s equations for

the appropriate kinetic energy equation.

The kinetic energy equation is derived by first calculating the velocity of each segment

in the inertia frame, as in the previous sections,

eX u exu eX(U

é.u eu e
&Y o= ey +&vd (3.121)

2.4 e 24

To calculate the trandational kinetic energy the square of velocity must first be

caculated.
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V2= (Xk2 +Y?2 +Zk2):>'<2 +2XxX g+ X F +
Yo+ 2+ L + (3.122)
7*+2728+2¢

The kinetic energy of the system is made up of rotational and trandational kinetic
energy. Therotational kinetic energy equation remains unaffected by the trandation of

the host frame, and therefore will not be rederived. The kinetic energy equation for the

system is as follows

T :Trot +1é mka2 =
2,2

14 2, w2, .2 = N :
T=T_+=3m +y +72°+2xXC+2WE+ 27 C)+
rot 2 21 K (Z X = Z S; XYK = S:) (3123)

24 m (X +vE +2¢)
k=1

T :Trot +Thost +T

seg

where, Tseg and Thost are the kinetic energy due to the trandation of the rotation segments
and the kinetic energy due to the trandation of the hog vehicle, respectively. Note that
Tseg IS equivaent to the trandational kinetic energy of sections 3.2 and 3.3 when the
inertial and host frame were coincident. The equations of motion of the aerial tow system
can be found by applying Lagrange’'s equations to the total system kinetic energy or the

superposition of Lagrange' s equations applied to each of the kinetic energy term,

d Eﬂ( rot +Thost + Tseg)l:l ﬂ(Trot +Thost + Tseg) —

prd : a- =Q

dt & p[[ef a fla

d Eq[Thost 0 ﬂThost rot)" ﬂ(Tseg +Trot)

3 =Q, 3.124
dtgﬂq.g flo, dtg o & flo, ° ( )

for fi=12,...,3n+1)
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The derivation of the equations of motion due to Tsg and T; ot has been accomplished
in previous sections. Therefore, the only remaining derivation isthat of Lagrange’s
equations with respect to Thos. The equations of motion for the host-cable-ATV system
are produced by the superposition of the results of Lagrange’s equations for each of the

kinetic energies.

The expansion of the kinetic energy due to the host vehicle motion is as follows,

2>_'(ki(s/icfi -G S, S, ) +q, (C C_)+y‘ (C S -3.56G )] (3.125)
k(¢ c -s.85 ) (59 C.C )+, (sy s +C, S,C J+
24 (- ¢, s, J+a [ s,c )}

The application of equation3.125 to Lagrange’s equations returns the added effect of the

host vehicle motion.

3.4.2.1 Bank Angle

The derivative of kinetic energy, due to host vehicle movement, with respect to bank

angle and the time rate of change of bank angleis as follows,

1-|Thost — n+
ﬂf - ka-l mk |{

Flss -6 86 )6lGcs) v Gc 558 ) @
e s -ssc)Halscs)visc-css
& ( c.c )+dlss )
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o - Emifis G- 6,55 )

Wc.c -85 )+ cs))

(3.127)

Time rate of change of equation3.127 is as follows,

T 0 B
%ﬂﬂﬁm ;:kazl mkli{

s ¢c -¢ 85 )ty C G -5.85 )+ ¢S )+

ol ss - s6c)hlbees)yilce +sss ]y @
s -ssc)alscs)vige -css]

g[f'i (' qu Cfi )+di (Sq Sfi )]}

The addition to the bank angle trandation equations of motion due to the host vehicle

translationis as follows,

d AT, .« 9_ Mo = g X -
Eé ﬂfh| é ﬂ; Ei rnkli [l((%. Cfi Cyi Sqi Sfi )+ (3129)

3t GG -5.88)2cs)

3.4.2.2 Attitude Angle

The derivative of kinetic energy, due to host vehicle movement, with respect to

attitude angle and the time rate of change of attitude angle is as follows,
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{
& c.cs)ralc sc )y bsce )
'()+q}(- 556 )+ c.c )+

Mo - 1 i €, o 388,6,6, )+ 4 5.,

Time rate of change of equation3.131 is as follows,

dadqT, 0 %
§__59

C,.C,C )+ 38 CqC)+( c, )+
x[f(ccqs)w(c ch;) Lscc
b s.cs )il 5.56)v6.c )]
(s, )+a.t c,c )l

(3.130)

(3.131)

(3.132)

The addition to the attitude angle trandlation equations of motion due to the host

vehicle dynamicsis as follows,

98§ Moow - & milxc, 0,0 )+5(s 00 )+ 2l 8,0 )] @39

dt ﬂq, 6 ﬂq| =i

3.4.2.3 Heading Angle

The derivative of kinetic energy, due to host vehicle movement, with respect to

heading angle and the time rate of change of heading angle is as follows,
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ﬂThost_nﬂm
v, & !

{.c ¢ +s 55 )+dlscc)viss -csc )+ @134
hls.c. - c,5.5 )46, 6.6 )6 s - 5,50 )

ﬂ1-1|;/hOSt _grnkl [X i B %iSQini)+X(%iSi +CYiSQini)] (3135)

Time rate of change of equation3.135 is as follows,
d T, O_ %
. St = a mk |{
ﬂf k=i

_(cyisi : %isqicfi)+ 9(8,8,+C, G J+
)_'([f.i(Cinfi +%isqisi)+qi(' S/iquCfi)+y'i(- S/isi ) CyiSqufi)]+ (3.136)
X[f.i(g’icfi - CyiSqiﬁi)+q'i(Cinqufi)+y'i(CyiSfi - SyiSqufi)]}

Finally, the addition to the heading angle trandlation equations of motion due to the
host vehicle dynamics is as follows,
d aer-hos’[g ﬂThost rgl

W, 5 T, _?lmk"[xc S -5.5C )+ils S +G,. 8¢ ) 3137

3.4.3 Generdized Forces

The host vehicle motionalters the kinetic energy of the system consisting of just the
cableand ATV. Thischange in kinetic energy adds to the cable-ATV system equations
of motion. As with the two-dimensional case, the units of the equations resulting from
the application of Lagrange’ s equations on Theg, equations 3.129, 3.133, and 3.137, have

units of force times distance and the equations are similar in form to the generalized force
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equations, equations 3.20, 3.25, and 3.30. As aresult, the effects of the motion of the
host vehicle can be thought of as an applied force due to the acceleration of the host
vehicle. The resulting equations of motion for the cable and ATV system remain the
same in the event the host vehicle moves the only change is in the generalized force

equation,

n+l

Q =M, +Ia{(Fxl-mx) S S,.C +C S )+

(Fv-my) SfSSy CC) (3.139)
F. +m(-2)-sc. )}

Q, =M, +I, :g{ {F., - mxlc.c,c )+, - myle.c,s )+ (3.139)

F, +m(o- 2 8.}

n+l
[¢}

Qy. = I\/Iyl +|ija:'i [(FXI - ijX' Cf. Sq. Sy| +SfICy')+ (3.140)

(F, -my)c.s.c +s.5)

The motion of the host vehicle has no affect on the A, B, or C coefficient matrix in
equation3.28. The direct results of the derivation show that the moving host frame
produces applied loads on each segment node proportional to the host vehicle
acceleration. The indirect effect of the host vehicle motion is the added segment velocity
which affects the applied aerodynamic forces and moments of the segment. Note that the
derivation due to the host vehicle motion is independent of the functions used to modd it,
i.e. the displacement functions can be arbitrarily chosen to represent any number of host

vehicle maneuvers.
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At this point, the equations of motion for the three-dimensional aerial tow system are
complete, and given a proper numerical integration program with a set of valid initia
conditions a simulation of the three-dimensional aerial tow system can be accomplished.
The simulation can be created for many freestream conditions and host vehicle

maneuvers.

35  System Equations of Motion of an Alternate Segment Model

The equations of motion derived throughout this chapter up to now have been done so
using the lumped mass segment model. It has been made clear in section 2.5 that the
lumped mass model is a poor model when the number of segmentsis small, and it has
been suggested that a better model for the segments would be the thin rod model. The
thin rod model has its center of mass at mid-length and, unlike the lumped mass mode!, it

has rotational inertia.

The equations of motion of the system for the thin rod segment model can be derived
using Lagrange's equations, in the same fashion as that of the lumped mass segment
model. Upon completing the derivation of the equations of motion one will find that

eguation 3.31 still holds true, recall equation3.31,

N

€A A AU éB B, Buf’U & C, Cuéf'q'u &Q U
é e--u é Ué-,u @ u_ée_ u
A A As@@+é84 B Beuéng+é4 G Ceuéjl 0= E)Qu
A A AU 8 B BEF°’Y & C CH¥fld & H

And just asin the two-dimensional case only the mass distribution of the coefficient
matrices A, B, and C and the lever arm of the generalized force equations will differ from
the equations derived for the lumped mass segment model.
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The mass distribution of the coefficient matrices for the lumped mass model is given
in equation 2.33 and the mass distribution for the thin rod model is given in 2.68, recall

eguation 2.68,
D) =M gt oer A

L (i,]) _— K

] Jga 4g o

This remains the same for the two and three-dimensional case.

The generalized force equations are only slightly altered due to the fact that the inertial
and applied forces on a segment are located at the segment’ s center of mass. Thus, the

lever arm of the applied and inertial forces of the i segment is half the segment length.

Q =M, +|,:~;{( -m x| §8,G +C§ )+

j=i

(v myXS%% CC) (3.141)
F, +m(o- 2f s.c, )}? %J%

0 s (3.142)

. emio- 2l s JE- 52

Qy = My +|Iné+-l[(FX ijX‘ C Sq S@/ +S Cy )+
. (3.143)
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Note, for equations 3.141 — 3.143 to be accurate for the ATV segment the ATV center of

mass must coincide with the center of mass of the segment model.

The three-dimensional system equations of motion with the thin rod segment model
can be attained by applying equations 3.32-3.58, 3.85-3.111, 3.141-3.143, and 2.68 with
equation 3.31. Givenproper initial conditions and an adequate numerical integration
routine a simulation of the three-dimensional aerial towed system with the thin rod
segment model can be produced. A comparison between the simulation results of the
lumped mass and thin rod segment modeled systems with the same initial conditions will

be analyzed in chapter five.
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CHAPTER 4

FLIGHT PARAMETERS

4.1 Introduction

The driving force behind this work is the analysis of an aeria tow system in which the
ATV istowed near the ocean surface. The derived equations of motion are general and
would apply to awide range of aerial tow systems. The parameters of the system that
make it unique to the low altitude tow system are the length of separation between the
host aircraft, the size, shape, and controllability of the ATV, and the shape of the terrain

over which the ATV is being towed.

In order for the ATV to maintain a given height above the ocean surface it is necessary
that the ATV be able the ocean waves. This can be accomplished by appropriately
changing the applied forces on the aircraft as it cruises. For instance, if the ATV senses
that it is flying too low it changes its aerodynamics to apply a vertical force to increase its
atitude. Thisisattained in reality by attaching aradar altimeter and an autopilot to the
ATV. A mathematical model of the ATV autopilot and the ocean terrain is necessary to

smulate the dtitude hold of the ATV above the ocean waves.
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4.2 Ocean Surface Waveform

The ATV autopilot attempts to maintain a given atitude above the ocean surface as it
is being towed by the host aircraft. A radar atimeter is equipped to the ATV and it
measures the distance between the vehicle and the ‘ground’. Numerically this distanceis
the difference between the ATV and a given surface directly below the ATV. The
equations for the ATV position in the inertial frame have been derived in the previous
sections, thus a model of the ocean is required to produce a mathematical model of the

radar altimeter reading.

The shape of the ocean varies widely. It can range from placid to situations where
there are swells of fifty feet in height. The shape of the waves depends on many
parameters such as ocean current, wind speed, and wave height. Asaresult, thereisno

one algorithm that can be used to fit the shape of the ocean surface.

For our simulation we will model the ocean surface as a ssimple sine wave with
variable amplitude and frequency. Therefore, the radar altimeter reading will be a result
of the sine wave and the ATV dltitude. The sine wave oscillates about some nominal
altitude, in our caseitissealevel. Intheinertia frame sealevel is adistance hy in the z
direction The vertical position of the wave, h, in the inertial frame is a function of time

and inertial x-position, X,

h= A sn(wit+20X/l )+h, (4.2)
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where, A, is the amplitude of oscillation. The wave frequency, wp, as seen by the origin
of the inertial frame is dependent upon its x-direction flight speed and the ocean

wavelength, | , as follows:

w, =U,/I 4.2)

Note that the velocity of the ocean wave is neglected due to its comparatively small
magnitude however, it could be easily included by adding the wave velocity to the

freestream flow, if the conditions deemed it necessary.

The wave model of equation 4.1 istwo-dimensionally adequate, i.e. it holds as long as
the ATV travelsin theinertial xz-plane. If a side gust were to push the ATV in the y-
direction this model would not account for transverse changes produced by neighboring
waves. A fully three-dimensional waveform model is necessary to accommodate the

three-dimensional motion of the ATV.

The transverse waves are modeled as a series of sine waves with the amplitude
dictated by the amplitude of the longitudinal ocean wave at the point of intersection
betweenthe two waves. The transverse wavelength is assumed to be identical to the
lateral wavelength. The resulting model is a surface where the z-position of the surface at
any given point is a determined by itsx and y-position and time. The wave surface in the

inertial coordinated system is as follows:

h=Asn(w,t+2pX/l )sn(2p Y/l )+h, (4.3)
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Figure 4.1 shows an isometric view and a contour plot of a genera three-dimensional

surface waveform.
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Figure4.1 Three-dimensional ocean surface waveform

The mathematical model of the ATV radar altimeter reading is determined by the time

and three-dimensional positionof the ATV,
Dh= A, Sin (Wt + 20X iy /1 )SN(20 Y, /1 )+, - Z sy (4.4)

where, Xarv, Yaty, and Zaty are the three-dimensional Cartesian coordinate position of the

ATV inthe inertial frame.

4.3 ATV Autopilot

For the ATV to track the ocean waves a control system is required. A wide variety of
control schemes exist for general aviation aircraft and could be applied to the ATV for
academic interest. However, there is no point in simulating an intricate control schemein
which its application is redistically unpractical. Often the ATV isbasic in its design and

does not possess the control surfaces necessary to equip a complex control system
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The configuration of the ATV used in the given tow system is similar to the towed
targets used in weapons testing. As aresult, the control system in this aerial tow system
is a descendant of those commonly used in aerial tow targets. These aircraft differ from
general aviation aircraft in that they have only one control surface, which isan al moving
wing. Therefore, the aircraft autopilot corrects the incidence angle of the wing to

appropriately adjust the aircraft lift.

A proportional derivative (pd) controller used to determine wing correction. The
autopilot receives a signal from the radar altimeter and accelerometer to determine both
the error signal (the difference in actual and desired ATV dltitude) and time rate of
change of the error signal. The given signals allow the autopilot to relay to the wing servo
the appropriate wing rotation to minimize the altitude error. The ATV autopilot

multiplies the signals by the designed gains to produce the change in wing incidence,
Di,, = k,Dh+k,Dh (4.5)

where, K, kg, and Diy, are the proportional gain, derivative gain, and wing angle

correction, respectively. In all the subsequent simulations the control law remains fixed.
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CHAPTER 5

SYSTEM SIMULATIONS

51 The Ideal Cable

The equations of motion for the two and three-dimensional cable were derived using
Lagrange' s energy based technique. Neglecting applied forces such as fluid drag the sole
factorsin the derivation are the potential and kinetic energy of the cable system. This
ideal system is conservative. Asaresult, if the equations of motion are correctly derived
and the numerical integration routine is adequate the system should maintain a constant
energy during the simulation. Thus an initial test of the cable equations of motion and
the numerical simulation can be produced by analyzing the results of the ideal cable

system.

Another means of testing the derived equations is the comparison between the two and
three-dimensional systems. The three-dimensional cable equations of motion are vastly
more complex than that of the two-dimensional cable system. However, both should
produce the same results given identical initial conditions. The initia conditions are
chosen such that the three-dimensional equations of motion are not trivialized yet the

motion is completely contained in one plane.
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The initia conditions have each cable segment with the following Euler angles, phi,
theta, and psi equal to 30, 55, and 20 degrees, respectively. The dynamics of the cable
are aresult of the inertia forces of the cable (initially the angular velocities are zero) and
given the initia straight cable configuration the cable will move in a planar fashion.
Being that the three-dimensional motion is planar it can be compared to the two-
dimensional case. Theinitial cable angles for the two-dimensional system can be
calculated such that the center of mass as well asthe orientation of each of the segments
is equal to that of the three-dimensional case. The three-dimensional initial conditions
are match when the angles of the two-dimensional cable segments are set at 60.216

degrees.

If the equations of motionare correctly derived and the numerical integration routine
adequate both the two and three-dimensional systems should have a constant energy and
produce the same cabl e orientations over the duration of the simulation. The two and
three-dimensional systems discussed are simulated with a 2000 foot cable that isbroken
into 25 segments. Figure 5.1 shows the simulation results of the two and three-

dimensional system with boththe lumped mass and thin rod segment model.
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Figure5.1 Two and Three-dimensional ideal cable simulation results. The figure
shows, a) the height of cable base, and b) the system energy versus time.

Figure 5.1a plots the vertical position (in the host vehicle frame) of the free end of the
cable with respect to time. Note that the atitude of the free end of the cable is deperdent
upon the orientation of each of the previous segments. Figures 5.1aand 5.1b confirm that
for each configuration the energy remains constant and that the two and three-
dimensional systems return exactly the same resultsin both cable orientation and energy.
However, while the two and three-dimensional equations of motion produce the same
results the system with the lumped mass segment model and the system with the thin rod

segment model do not. Which of the two systems is producing better results?
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Recall that the simulations undertaken were modeled by breaking the cable into 25
segments. It islikely that as the cable is broken into more segments the smulation will
yield more accurate results. Thus, a convergence test is needed to determine the proper

number of segments for each of the segment models that will produce valid results.

5.2  Lumped Mass Versus Thin Rod Cable Model

The number of cable segments used in the ideal cable simulation was chosen
arbitrarily. At this point the equations of motion have been derived to accurately predict
the dynamics of each segment; however even if the equations of motion are correct that
doesn’t necessarily mean the system motion will reflect that of a continuous cable. In
other words, the number of segments needed to accurately predict the cable motion is
unknown. Thus, the segment number convergence test is conducted for both the lumped
mass and thin rod cable segment models. The test for convergence begins by running the
simulation with 10 segments and comparing the results with a simulation of 25 segments
Additional smulations are run continually increasing the number of cable segments of
the system until the results begin to converge. It isthen the proper number of segments

necessary to model the dynamics of the cable can be determined.

The ideal system is helpful in supporting the validity of the equations of motion but
the accuracy of the smulation is of most importance for the aerial towed systemflight
configuration Asaresult, the convergence simulations include the cable friction forces
and 100 pound weight which is added to the unfixed cable end to represent the ATV
(note that in this ssimulation does not include the ATV segment or any ATV aerodynamic

forces). The cable dimensions and drag coefficients as well as the reference flight
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conditions are presented in table 5.1. (Note that at the givenreference flight speed and

cable diameter the Reynolds number is indeed subcritical.)

Cable Parameters Reference Conditions
Diameter d 0.065in Velocity Up 100 knots
Mass per unit length 0.00036 slug/ft Air density r  0.00238 slug/ft®
Friction coefficient ¢ 0.00573
Pressure coefficient c 11

Table 5.1 Cable parameters and reference flight conditions

Theinitial cable configuration has the cable hanging perfectly vertical. It isthen
introduced to a fluid moving at 100 knots. As time progresses the friction forces exerted
on the cable will induce motion, and at some point the inertial forces (including the 100
pound weight) will balance the drag on the cable and the system will reach equilibrium.
Figure 5.2 contains the results of the simulations with varying number of cable segments

for both the lumped mass and thin rod cable models.
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Figure 5.2 A cablein fluid flow simulation results. The cable is broken into various
numbers of segments; the segment s are modeled as, @) lumped masses, and b) thin rods.

Both systems respond to the aerodynamic drag applied to the cable by the freestream
flow. Astime increases the systems dynamics slow and equilibrium is attained. The
lumped mass and thin rod models produce different static locations as the number of
segments change. The equilibrium positions begin to converge as the number of
segments increase. However, the thin rod modeled system seems to be converging much
quicker than the lumped mass system. The thin rod system has reached a reasonable

convergence in just 25 segments (the altitude difference between the 25 and 100 segment
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thin rod modeled system is just 4 inches). While it is apparent that even at 100 segments

the lumped mass system has yet to converge.
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The vertical static position of the cable base is plotted versus number of cable
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segments for lumped mass and thin rod modeled systems in figure 5.3. It is clear from

the figure that the thin rod modeled system converges with fewer segments than lumped

mass system. Upon convergence, the ssmulation results for both cable segment modeled

systems are similar, yet the comp utational workload varies greatly.

Figure 5.2b shows that the system simulation with the thin rod cable model produces

dightly better results with 10 segments than with 200 segments of the system with the

lumped mass cable model. While both systems produced roughly the same results, the

computation time required to produce the 90 second simulation for the system using the

lumped mass cable model with 200 segments was more than 35 minutes. On the other

hand, the computation time required for the same simulation for the system using the thin
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rod cable mode with 10 segments was less than 1 second. The thin rod model has an

obvious advantage.

One of the factors attributing to the more accurate results of the thin rod cable model
issimply the distribution of the cable mass. The lumped mass method places the all of
the segment mass at the segment’s end. Clearly a better approach would be to place the
segment’s mass in the middle of the segment. Thisisillustrated best by analyzing the
potential energy of the cable. Imagine acableisin theinitial condition described in the
ideal cable section (each segment is at an angle of 60.216 degrees). For the cable
employing the lumped mass model, as the number of segment used to model the cable
changes so too does the potential energy of the system. Thisis due to the mass placement
of the lumped mass technique. For the system using the thin rod segment mode the
potential energy remains exactly the same no matter how many segments the cable is
broke into. Figure 5.4 depicts the potential energy of the static cable as it is broken into a

various number of segments.
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Figure5.4 Potential energy versus number of cable segments.
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As the number of segments increase in the lumped mass model the potential energy
approaches that of the thin rod model. The thin rod potential energy isin fact the
asymptote of the lumped mass model; the lumped mass model potential energy will never
exactly match the potential energy of the thin rod mode but as the number of segments
increase it will come ever closer. Thisillustrates a fundamental flaw in the lumped mass

cable segment moddl.

The thin rod model produces much better results than that of the lumped mass mode
simply because it is a better physical model. For the thin rod model the inertial and
applied forces are localized at the center of each segment; the velocity of the segment is
calculated at the center of the segment producing a more accurate drag prediction and the
thin rod segments have rotational inertial that produces a more realistic dynamic
response. Asaresult, the thin rod segment model can produce a better ssmulation with

fewer cable segments than the system using the lumped mass technique.

5.3  Simulation of the Cable-ATV System

The equations of motion governing the dynamics of the rigid body segments for both
the cable and ATV have been derived for the two-dimensional system in chapters 2 and
for the three-dimensional system in chapter 3. As discussed in those chapters, the applied
forces on the towed aircraft are dictated by the aircraft’ s size and shape in the form of
stability derivatives. The aircraft parameters for the ATV that will be simulated

throughout the remainder of the paper are presented in table 5.2.
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ATV data

Moment of Inertia I, 0.128slug ft* Fusel age diameter 8in.
ly 6.127 slug ft* Mass m  8.301slugs
I, 6.121dugft? 2 0
Longitudinal Lateral
Stability derivatives Xo -9.35I1bf Stability derivatives Yz -55.2fts?
X, -0.054s? Y, O
Xa O Y, 1742fts?t
Z, 0 Lg O
Z, -176.1fts? L, -19.265s™
Z, -1045ftst L O
M, O Ng 291157
M, -78.1s? N, O
Mg -1.103s™ N, -2414s™

Table5.2 Aeria towed aircraft parameters

5.3.1 Dimensional Comparison

One final test of the governing equations pits the two and three-dimensional full
system equations of motion against one another. Just asin the ideal cable comparison the
three-dimensional Euler angles of each cable segment are initialized with phi, theta, and
psi at 30, 55, and 20 degrees, respectively, and the two-dimensional cable segments each
have an angle of 60.216 degrees. The ATV segments in both the two and three-
dimensional cases are oriented suchthat itsinitial angle of attack of the aircraft isequal
to zero. However, to ensure that thereis no lateral ATV motion in the three-dimensional
case the freestream flow is rotated 20 degrees about the zaxis producing components of
flow in the x and y-directions, and the ATV segment is oriented such that the initial
sidedip angle is zero. The cable is 2000 feet in length and its remaining parameters are
equal to those in table 5.1. The cable is modeled using the thin rod method and it is

broken into 25 segments. The results of the smulations are presented in figure 5.5.
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Figure5.5 Comparison between two and three-dimensional cable and ATV system

Figure 5.5 plots the altitude of the center of mass of the ATV (in the host frame) over
time. As time progresses the initially straight cable begins to curve due to the inertial and
aerodynamic forces of the ATV and the drag force on each of the cable segments.
Eventually the motion of the system dies out and the system finds equilibrium.
Throughout the simulation both the two and three-dimensional systems produce exactly

the same results.

5.3.2 Altitude Effects

The equilibrium configuration of the aerial tow systemislargely dependant upon the
length of the cable in the system The equilibrium orientatiors of four configurations
with varying cable length are presented in figure 5.6. The configurations give the system
enough cable to alow the ATV to cruise 250, 500, 1000, and 2000 feet below the host
aircraft. From the figure it is evident that the curve of the cable becomes more
pronounced as the length of the cable increases, this is due to the fact that there is more
cable for the air to act upon the cumulative cable drag arises as the driving force behind

the shape of the static configuration.
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Figure 5.6 Host vehicle cruise altitude affect on static cable curvature and position

With the host vehicle cruising at an altitude of 250 feet the connecting cable is dightly
curved. On the other hand when the host vehicle is at 2000 feet the cable is considerably

more curved and the ATV cruises well aft of the host aircraft.

The equilibrium positionof the system can be easily found by solving for the angles
that reduce the generalized force vector to zero, and then conclusions about the effect of
the cable length can be surmised. However, to determine the cable’ s affect on the

dynamics of the system a simulations is necessary.

In an effort to test the dynamic motion of the aerially towed system four system
configurations are simulated with variation in cable length. These configurations give the
system enough cable to alow the ATV to cruise 250, 500, 1000, and 2000 feet below the
host aircraft, just asin figure 5.6. The simulation begins with the system in equilibrium.
As the ssimulation progresses the system is excited by the oscillation of the host aircraft.
The amplitude and period of oscillation is such that it resembles the long period motion

of general aviation aircraft. (Thiswould be the type of oscillation that would be expected
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if the host aircraft were disturbed in someway. The amplitude and period of the host
vehicle oscillation is 10 feet and 30 seconds, respectively.) During the simulation the
natural response of the system is recorded. Figure 5.7 presents the motion of the ATV as

well as its static ATV position in the host frame.
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Figure 5.7 Dynamic response to host vehicle oscillation as viewed from the host
vehicle coordinate system.

The shortest cable configuration results in the ATV following almost exactly the
motion of the host vehicle. The ATV remains roughly 250 feet below the host aircraft at
al times. Conversely, the ATV in the longest cable configuration is only dightly
disturbed from its static location. Thus, as the cable length increases the response to the
host oscillation decreases. The host vehicle displacement is accommodated by the flex of
the curved cable; whereas the force of the host vehicle displacement isapplied directly to
the ATV through the straight cable. The dynamics of the curved cable absorb the motion

of the ATV in amanner the straight cable configuration cannot.

128



The flex of the cable has an interesting effect on the horizontal motion of the ATV.
Figure 5.8 traces out the path of the ATV in the xz-plane for each of the four systems. As
the cable length increases an elliptical pattern emerges. This longitudinal motion is
confirmed in research Nakagawa and Obata'® to be consistent with aerial tow system'’s

having a curved cable configuration
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Figure 5.8 Elliptic oscillations in the x and z-direction, for a host vehicle atitude of
a) 250 ft., b) 500 ft., ¢) 1000 ft., and d) 2000 ft.

Nakagawa and Obata™ carried out the analysis of the longitudinal dynamic modes of
the aerial tow system. They identified two dynamic longitudinal modes that have a large
effect on the trandation of the ATV. The two modes are the bowing and pendulum

modes.

The bowing mode is actually the first vibration mode of the cable. In genera the
vibration modes of the cable have little effect on the motion of the ATV. However, in

configurations in which the cable is curved the first vibration mode causes the ATV to
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surge fore and aft as well as move vertically. The result isan eliptical ATV motion
about its static location Being that the bowing mode is a result of the curved cable
configuration the eliptical motion is less pronounced in systems in which the cable

curvature is small. The pendulum mode however is unaffected by the cable’' s shape.

The pendulum mode is as named because the resulting motion resembles that of a
simple pendulum. The pendulum mode can be visualized as the static cable and ATV
configuration swinging about the host-cable hitch point. As aresult, it produces little
dynamic interaction between the cable and the ATV. Thus, the pendulum mode rotates
the system in an arching pattern around its equilibrium positionwith little effect on the
shape of the cable or attitude of the ATV. (Note that the pendulum arch is small enough

that its effect appears to be linear in the simulation results.)

The two dynamic modes produce coupled horizontal and vertical ATV motion of
varying type. The bowing mode stimulates an elliptical motion while the pendulum
mode creates an arching movement. As aresult, the motion of the ATV will be a
combination of the two and depending on the system configuration it is possible that one
mode may be more pronounced that the other. This can be seen in figure 5.8. Inthe
shortest cable configuration there is no visible elliptical motion but just the oscillation of
the pendulum mode. As the cable length increases the bowing mode becomes visible.
The slanted ellipse of the remaining three configurations is a combination of the elliptical

motion of the bowing mode and the dlanting of the pendulum mode.

The length of the cable plays a critical role in determining the degree to which the

ATV motion is coupled. The dlliptical motion of the bowing mode is aresult of the cable
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curvature, and the cable curvature is increased as the cable length isincreased. Asa
result, the bowing mode is more prevalent as the cable length increases. Also, the
cumulative cable drag in the long cable configuration causes the ATV to cruise well aft
of the host vehicle. Therefore, the slope of the arcing motion of the pendulum mode

becomes more vertical than the short cable configuration.

The derived aeria tow system equations of motion and simulation produce results that
correlate with those found by Nakagawa and Obata™®. The motion of the ATV has been
found to be coupled. That is no vertical motion can be attained without inducing
horizontal motion. This leaves the question of how the coupled motion will affect the
ability of the ATV to maintain its altitude over the ocean waves and since the cable
length has a large effect on the degree of coupling which configuration will produce a
better tracking of the waves. The system’s wave tracking ability will be smulated in the

following sectiors for various flight conditions.

54 ATV Wave Tracking

The goal of the aeria towed system is to safely tow the ATV in a manner that allows
for atmospheric measurement in close proximity to the ocean surface. To gather insight
into the behavior of the system, simulations are run with varying configurations and
conditions. For instance, what effect may the oceanic wave conditions, connecting cable
length, wind conditions, or host aircraft disturbance have on the system’s ability to track
the ocean waves? These cases will be smulated in the subsequent sections. Throughout

the ssimulations the cable will be made discrete by breaking it into 25 segments each
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modeled as a thin rod; the parameters of the cableand ATV as well as the reference flight

conditions will conform to those presented previously in table 5.1 and 5.2.

5.4.1 Surface Waveform Variation

The utilization of the ATV autopilot presumably allows for system to track the ocean
waves. From day to day the ocean waves may vary in amplitude and frequency
depending on a myriad of factors. Asaresult, it is pertinent to know the effect the waves
have on the system’s ability to track them. This could potentially limit the conditions at
which oceanic measurements are taken, or at least give the designers an idea of the

quality of the results to be expected for a given condition.

The tracking of three waveforms is simulated and the results are presented in figure
5.9. Waveform 1 has an amplitude of 10 feet and a wavelength of 250 feet. Waveform 2
has an amplitude of 7.5 feet and a wavelength of 150 feet. Waveform 3 has an amplitude
of 5 feet and awavelength of 50 feet. In each smulation the system is configured with
the host vehicle cruising at 1000 feet above the desired tracking altitude. In figure5.9 the
vertical ATV position as well as its desired position above the ocean wavesisillustrated

(ideally the ‘ATV’ path will exactly cover the ‘ Track’ wave).
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Figure 5.9 Tracking at with various ocean wavelengths

The results show the system tracking the first waveform relatively well, with only a
small amplitude decrease and phase shift. However, as the wavelength decreases the
system’s lag of the tracking wave increases. The system dynamics are too sluggish to
keep up with the increasing wave frequency. This inability to respond quickly causes the
ATV oscillationto decrease in amplitude, as the wavelength decreases the autopilot and

system dynamics filter out the ocean waveform.

The result of testing in conditions that produce small ocean wavelengthsis poor
tracking. Although, in general, as the ocean wavelength reduces so too does the
amplitude. Aslong asthe ATV is tracking the waves at an altitude dightly greater than

that of the ocean wave amplitude there will be no resulting collision.

5.4.2 Host Aircraft Cruise Altitude

The host vehicle can cruise safely under the control of its autopilot at a range of

altitudes. The length of cable required to place the ATV just above the ocean naturally
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changes with the change in host vehicle cruising atitude. (However, this change is rot
proportional.) As discussed previoudly, the increase in the connecting cable length
reduces the effect of the ATV’ s weight on the shape of the cable, thus the static profile of
the system changes. The static configurations for the aerial tow systens in which the
atitude difference between the host vehicle and the ATV are 250, 500, 1000, and 2000

feet ispresented in Figure 5.6.

A simulation for the four configurations of varying host vehicle cruise dtitude is

accomplished to determine the effects of cable length on wave tracking quality.
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Figure5.10 Host vehicle cruise altitude affect on wave tracing @) 250 ft., b) 500 ft.,
c) 1000 ft., and d) 2000 ft.

Figure 5.10 shows the results for simulations of four different systems attempting to
follow surface waveform 2. The figure presents the actual ‘ATV’ path and the desired
‘Track’ wave. It is apparent from the figure that the system with the host aircraft cruising

at 250 feet has the most difficulty tracking the waveform As the host vehicle increases
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in atitude the tracking is improved and the ATV amplitude of oscillation nears that of the
wave. The remaining three systems, though largely different in cable length, both follow

the waveform comparatively well.
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Figure5.11  Elliptic oscillationsin the x and z-direction, for a host vehicle altitude of
a) 250 ft., b) 500 ft., ¢) 1000 ft., and d) 2000 ft.

The vertical and horizontal coupled motion of the four systemsisrevealed in figure
5.11. The longitudina dynamic modes, discussed previously, are present asthe ATV'’s
autopilot attempts to track the wave, yet they are a bit more complicated than the pure
natural response of the aeria tow system. This complication arises through the ATV
autopilot. The autopilot attempts to increase and decrease the ATV altitude by changing
the incidence angle of the wings as necessary. This change in lift and drag has an affect
on the curvature of the connecting cable. During the wave tracking simulation the wing
incidence angle ranges from positive to negative 12 degrees. When the wing has an angle
of incidence of 12 degrees the weight of the plane is effectively lessened and the aircraft

sees an increase in drag The resulting drop in cabletension allows for a more curved
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cable configuration. When the wing has a negative 12 degrees of incidence the weight of
the ATV is effectively larger and the drag is increased. This causes greater cable tension

and thus reduces the flex in the cable.

In the systems in which the tension of the cable is dominated by the inertial and
aerodynamic forces of the ATV the change in the aircraft incidence angle will have a
greater effect on cable curvature than in the systems in which the inertial and
aerodynamic forces of the cable play a greater role in dictating the tension in the cable.
That isto say, the curve of the cable will be more gresatly affected by the change in

incidence angle for the system with a short cable rather than with along cable.

As aresult the motion of the two systems with the shortest cables, as seen in figure
5.11aand figure 5.11b, is affected by the pendulum and bowing modes to different
degrees at various points in the ssmulation depending on the incidence angle. The result
isamore complex coupled motion than that produced in the natural response of the
system, figure 5.8, in which the wing incidence angle remains zero throughout the
simulation In the systems in which the connecting cable is much longer the orientation
of the cable is dominated by the cumulative drag on the cable and the inertial and
aerodynamic forces of the ATV are less consequential. Thus, the long cable
configurations remains highly curved regardiess of the angle of incidence, which leads to

similar motion between the controlled and uncontrolled response of the system.

The configuration in which the ATV is 250 feet below the host aircraft isin a straight
cable configuration for the mgjority of the simulation. This causes the pendulum mode to

be the more prevalent than the bowing mode, and since the ATV does not trail far aft of
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the host vehicle the pendulum mode oscillation is largely in the horizontal direction.
Thus, the corrective vertical motion is more highly coupled with horizontal motion than

in the systems with alonger cable configuration.

The cable in the systemin which the ATV is 500 feet below the host aircraft remains
more curved than the previous system As aresult the coupled motion of the ATV isless
affected by the pendulum mode, and the elliptical motion of the bowing mode is more
prevalent. Under these conditions the autopilot can increase atitude of the ATV without

the drastic horizontal displacement which results in better wave tracking.

In the long cable configuration the bowing mode is clearly dominant. The bowing
mode produces anélliptical motion that is predominantly in the vertical direction. Thus,
the pendulum’ s effect on the ATV oscillation is minimized. Together, these two modes

in the long cable configurations produce little fore-aft ATV oscillation.

In genera aerial tow Situations, there is no clear drawback to the coupled horizontal
and vertical motion of the ATV. However, when the aerial tow system is attempting to
track ocean waves the coupled motion complicates the process. During tracking the
autopilot attempts to correct the altitude of the ATV but the vertical correction induces a
horizontal surge of the ATV. This horizontal motion results in, essentially, increasing or
decreasing the frequency of the coming wave. In our system the degree to which the
vertical motion produces a horizontal motion is dictated by the curve of the cable. The
horizontal and vertical coupling is at its most detrimental when the connecting cable is
short, roughly 250 feet. In this configuration the autopilot cannot track the ocean waves.

However, increasing the cable reduces the autopilots effect on the cable curvature and
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produces better wave tracking. Connection cables of significant length to allow the host
vehicle to cruise 500, 1000, and 2000 feet above the ATV produced good wave tracking

results.

5.4.3 Laterad Motion

The previous simulations of variable waveforms and host vehicle atitudes were
simulated using the two-dimensional system since all of the motion was longitudinal.
However, to simulate the effects of lateral motion it is necessary to use the three-
dimensional equations of motion and waveform. In thisinstance the ATV istracking the
longitudinal waves (waveform 2) asit is hit by aside gust. The side gust has a magnitude
of 10 knots and persists for 10 seconds. The simulation alows for analysis of the lateral

response of the ATV and its ability to maintain tracking of the ocean surface.

Due to the fact that the same ATV configuration is used in each simulation, the gust
produces the same ATV aerodynamic side force for all system configurations. The
difference between the smulations is the length of cable the gust acts upon and the

system dynamics due to variance in cable length.

Figure 5.12 graphs the motion of the ATV in the xy-plane over the period of the
simulation for the four system configurations. The motion of the ATV prior to the gust is
in the x and zdirections only. The gust then forces the ATV laterally. The gust subsides

and the dynamics of the system event ually restore the motion back to the xz-plane.
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The latera trandation of the ATV due to the gust is greater for the configurations with
the longer connecting cable. This happens for two reasons. First, the configurations with
longer cables naturally have more cable area for the gust to act upon thus the system has
alarger accumulative applied lateral force. The other reason for the larger lateral
trandation is that the lateral displacement is directly connected to the vertical
displacement. Asthe ATV is pushed by the side gust, the natural tendency is for the
cable to lift the ATV, just as a pendulum’s swing increases the altitude of its mass, this
can be thought of as the lateral pendulum mode. A given y-displacement is going to have
amore drastic effect on the change in atitude for a system with a shorter cable.
Therefore, the ATV autopilot will have to respond more quickly to resist the increase in

atitude due to the side gust for the shorter cable configuration.

The autopilot can only counter the lateral movement by applying an increased
downward force. Thisis the same mechanism used to control the longitudinal tracking of

the ATV. As aresult, the lateral correction activates the longitudinal dynamics; that in
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combination with the natural behavior of athree-dimensional perdulum resultsin a
coupling of al three coordinate directions. This ellipsoid motion can be seen in figure
5.12. The stronger xz-coupling of the short cable configuration produces a larger fore-aft
oscillation during correction and tracking. The effect of the coupling on the ability of the

system to track the surface waveform is presented in figure 5.13.

Prior to the gust the system is tracking the surface wave form in the xz-plane. The 10
knot gust is initiated and ends at 30 and 40 seconds, respectively, thisis apparent in the
change of the ‘Track’ wave at the 30 second mark. The difference in the tracking
waveform from case to case is due to the difference in the distance the ATV is pushed by
the gust. More wave distortion is evident in the cases with the longer connecting cable.
The cause is the magnitude of the trandation of the ATV in the y-direction (figure 5.12
shows the actual y-distance traveled for each case). The farther the ATV traversesin the

y-direction the greater the influence of the neighboring waves.
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Figure5.13  Three-dimensiona waveform tracking with a 10 knot side gust, host
vehicle altitude of a) 250 ft., b) 500 ft., ¢) 1000 ft., and d) 2000 ft.
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When the host vehicle is cruising 250 feet above the desired ATV dtitude the side
gust causes a y-displacement of about 20 feet. Recall that the waveform in the y-direction
has awavelength of 150 feet in this simulation. As aresult, the lateral trandationis not
substantial enough to cause any significant change in the height of the lateral wave;

therefore, the distortion in the ‘ Track’ waveform is faint.

In general, the shorter cable configuration will have the most difficulty following the
waveform while moving in the y-direction, as its lateral motion will be more strongly
coupled with its vertical and fore-aft motion. However, the lateral ATV trandation is
arrested by the ATV autopilot and the dynamics of the system before it can be introduced
to the complication produced by the neighboring wave. Hence, the system tracks the

waveform with the same level of accuracy with or without the 10 knot side gust.

As the connecting cable is lengthened the y-direction displacement due to the side gust
increases causing the ATV to traverse more of the neighboring wave, and it also
increases the time necessary for the system to damp out the lateral effects of the gust. The
large y-direction displacement requiresthe ATV to track a varying and increasingly
complex waveform than that prior to the gust. Nevertheless, the control system having
only one control surface adequately tracks the complicated waveform. The results
indicate that the systems track the three-dimensional waveform as accurately as the two-

dimensional waveform and thus are not negatively affected by the side gust.

5.4.4 Host Vehicle Oscillation

The final simulation deals with host aircraft oscillations. The host aircraft is equipped

with an altitude hold autopilot and will be cruising at afixed altitude; however
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disturbances such as gusts and turbulence will produced temporary deviances of the
altitude of the host vehicle, and thusly perturb the entire system. The simulation gives the
host vehicle a sinusoidal motionin an effort to exaggerate the longitudinal response of
the host aircraft to a disturbance and inspect the ability of the ATV to continue to track

the ocean waves.

Of the longitudinal aerodynamic modes, the long period has the largest effect on
variation in aircraft altitude. In this system, the long period natural frequency of our host
aircraft is just over 30 seconds. Naturally the effect of the atmospheric disturbance on the
host vehicle damp out over time; however, in the simulation, the host vehicle continues to
oscillate continualy (this, in essence, simulates very rough flight conditions). The results
of the simulations for various host vehicle cruise atitudes are shown in Figure 5.14. Note
that in this figure the z-position of the track wave is measured from the host vehicle.
Thus, the track wave is a superposition of two waves, the ocean waveform and the host

oscillation waveform.
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In the simulations, the various systems attempt to track waveform 2. The results of the
simulation show that when the host aircraft is cruising 250 feet above the nomina
tracking dtitude, Figure 5.14a, the cable and ATV dynamics do not alow a quick enough
response to completely track the waveform during oscillation; thisis no surprise as this
configuration cannot track waveform 2 if the host aircraft is still, figure 5.10. However,
the ATV autopilot does successfully counter the oscillation of the host aircraft. Asthe
altitude of the host craft reaches 500 feet and greater the ATV autopilot tracks both the
ocean waves and the wave produced by the host aircraft undulationrelatively well. Even
in the presence of extensive host vehicle disturbancesit is possible to configure the aerial

tow system such that accurate wave tracking is produced.
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CHAPTER 6

CONCLUSIONS

In this paper a methodology is laid out for developing a numerical smulation of the
aeria towed system. Thisincludes the mathematical and aerodynamically modeling of
the system components such as the host aircraft, connecting cable, and aerial towed
vehicle. Of particular interest is the finite element method for modeling the connecting
cable. The finite element method models the continuous cable as a series of connected
segments from which the egquations of motion dictating the dynamics of the cable can be
derived. Two models for the cable segments were presented, the lumped mass and thin
rod models. Upon modeling the component Lagrange’ s equation are utilized to develop
the two and three-dimensional nonlinear equations of motionfor the connecting cable,
the cable and ATV system, and the cable, ATV, and host vehicle system. Additional
models of the ATV autopilot and ocean surface waveforms allowed for the simulation of
the aeria tow system in which the ATV attempts to track the ocean waves. Numerous
simulations were under taken to supply validation to the derived equations of motion and
subsequently gain insight into the aerial tow system as a means to measure oceanic

atmospheric conditions.

A simulation of the cable dynamicsin an ideal situation and the comparison of the two

and three-dimensional equations of motionsupported the validity of the derived
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equations of motion. Under ideal conditions the system is conservative. As aresult, the
simulation should maintain a constant energy through the duration of the simulation.
This was indeed the case. Also, the two and three-dimensional systems were set with the
same initial conditions while minimizing triviality in the equations of motion, and the
simulation of the two systems produced identical results. The results of the two

simulations help solidify the quality of the derived equations of maotion.

A comparison between the lumped mass and thin rod cable segment model was
undertaken. The lumped mass model is quite prevalent in research pertaining to the
simulation of the aerial tow system. The thin rod cable segment model was developed by
the author as an alternative to the commonly used lumped mass model. Simulations of a
system made up of the two models confirmed the benefit of using the thin rod model.
The system in which the cable was modeled as a series of thin rods produced the same
results as that of the lumped mass system yet did so with much fewer segments. The
lumped mass system took 2000 segments to produce the same results as the thin rod
system using only 25 segments. This resulted in the thin rod system producing
simulation results in afraction of the time that was required for the lumped mass system.
Compared with the lumped mass mode the thin rod segment model is a better physical
model of the cable, it produces a more accurate drag prediction, and it results in a more

realistic dynamic model.

A simulation of the natural dynamic response of the aerial tow system produced two
longitudinal dynamic modes of motion. These modes are corroborated by the research

conducted by Nakagawa and Obata'® and are labeled asthe pendulum and bowing modes.
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The pendulum mode oscillates the cable and ATV about the cable- host vehicle hitch
point. The bowing mode is the first vibration mode of the cable, and isonly visible in
system in which the connecting cable is curved. The vibration on the curved cable
produces an elliptical oscillation of the ATV. Both of the longitudinal modes couple the
horizontal and vertical motion of the ATV. This coupled motion becomes the main
obstacle for the ATV autopilot during wave tracking due to the fact that the corrective

vertical motion naturally induced horizontal motion to varying degrees.

It was found that the degree to which the horizontal and vertical motions of the ATV
were coupled depends largely on the length of the cable. As the cable length increases
the inertial and aerodynamic forces of the ATV become less significant than the inertial
and aerodynamic forces of the connecting cable. Long cable configuration produces a
cable profile that is more curved than in the short cable configuration. This curvature
reduces fore aft surging produced by the varying cable tension caused by the changing
wing incidence angle during wave tracking. Asaresult, it found that curved cable

configurations produced optimal wave tracking.

Adequate wave tracking was produced when there is significant cable to allow the host
aircraft to cruise 500 feet or high above the ATV. The simulations suggest that if the
ATV isto maintain an altitude of 30 feet above the ocean surface the system can safely
record atmospheric measurements for a wide variety of wave conditions. Even in the
presence of lateral gusting and oscillation of the host aircraft the autopilot of the ATV

can maintain a safe atitude above the water for a wide variety of oceanic conditions.
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