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Chapter 1:  Introduction 
 

 

Copper Chemical Mechanical Planarization (Cu-CMP) has evolved 

as a process of choice to achieve local as well as global planarity in VLSI 

and ULSI applications [1, 2]. The inherent nature of CMP process is that 

of fine abrasive polishing. The schematic of the CMP process is as shown 

in Fig. 1-1.  

 

Fig. 1-1: Schematic representation of CMP process [3]. 

 

The wafer is pressed facedown on a rotating polishing pad. The 

slurry is dispensed over the rotating polishing pad and is circulated over 
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pad surface due to centrifugal force of the rotating platen. The simplistic 

nature of material removal is that of chemical modification of the surface 

and subsequent removal of material by abrasion. Judicious efforts have 

been put in getting a good insight on the mechanical aspects of the 

process [4-15]. Efforts have also been made to use various modeling 

techniques to achieve efficient process control [16-22].  

 The Tribological and thermal attributes of the process also play a 

critical role in determining the efficiency of the process. Rise of 

temperatures beyond a certain limiting value results in weakening of the 

novel low–k dielectric materials [23]. Overall process temperature also 

decides the rate of various chemical reactions which take place at the 

wafer-pad interface [24]. Hence, efforts also have been made to 

investigate the temperature rise associated with Cu-CMP process [14, 25, 

26]. The main hindrance in estimating various tribological parameters at 

the wafer-pad interface is the complex nature of contact between the 

abrasives pad and the wafer [10, 26-29]. 

Polishing slurry chemistry also plays a crucial role in efficient 

operation of the entire process. It is critical in a way because copper 

being soft, can be scratched easily. These scratches can be sites for 

defect generations, which in turn could lead to electromigration defects 

in interconnects [30]. Numerous polishing slurry compositions are found 

in patent literature [29-42]. Fine tuning of various slurry parameters is 
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required by industry so as to maximize the throughput of the polishing 

process. Many of these slurry compositions are considered proprietary 

and tend to be one of the key actors in improving the throughput of the 

process. This directly reflects on the plethora of patents filed for 

application specific polishing slurry compositions [31-44].  

The slurry contains numerous components, namely, de-ionized 

water, oxidizing agent, buffering agent, complexing agent, abrasives, 

acids, and corrosion inhibiting agent. The effect of various constituents 

and slurry characteristics will be discussed in detail in the literature 

review and the following slurry constituents will be briefly considered. 

De-ionized water (DI water) 
 

The primary purpose of using DI water is to facilitate easy flow of 

polishing compounds such as abrasives between the wafer-pad interface. 

It also functions as a diluting medium for concentrated acids which are 

used in the polishing slurry. Care needs to be taken to prevent organic as 

well as inorganic impurities reaching the wafer-pad interface. Chances of 

foreign particles getting into an otherwise “clean” wafer fabrication 

process are more through the slurry compounds, more so via DI water 

owing to the fact that it is used heavily not only in CMP but in the entire 

fabrication process. 
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Oxidizing agent 
 

Various types of oxidizing agents, such as hydrogen peroxide, ferric 

nitrite, potassium iodate. Most commonly hydrogen peroxide is used as 

an oxidizing agent in conventional Cu-CMP slurries. The primary aim of 

an oxidizing agent is to facilitate formation of a native surface oxide film. 

This film prevents the removal of low areas of the surface while the high 

areas of the profile are removed by mechanical abrasion. This exposes 

the virgin surface for further oxidation and these cycles of abrasion and 

subsequent oxidation continue till the desired planarity is achieved [45].  

Buffering agent 
 

Various types of buffering agents, such as potassium hydroxide, 

sodium hydroxide are utilized small quantities in conventional Cu-CMP 

slurries. The function of these agents is to adjust the pH of polishing 

slurry and also aid in maintaining it at a certain standard during the 

polishing process. Other types of buffering agents such as, potassium 

acetate aid in foaming up the slurry there by reducing the chances of 

hard indentation on copper due to abrasion [34]. 

Complexing agent 
 

Various types of complexing agents such as, citric acid, glycine, and 

ammonium hydroxide are used in conventional Cu-CMP slurries. In 

order to enhance the material removal capabilities of the slurry, and to 

prevent redeposition of abraded species on the wafer, a complexing agent 
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is added to the slurry. It forms complexes with the various abraded 

copper species [46]. Citric acid or glycine is a preferred complexing agent 

used normally in dissolution based industrial Cu-CMP slurries.  

Abrasives 
 

Nanometric size abrasives are incorporated in almost all CMP 

slurries. Addition of abrasives facilitates mechanical abrasion of high 

areas on the profile, thereby facilitating exposure of underlying virgin 

copper surface for further oxidation. The preferred abrasive used is 

alumina over silicon oxide, as alumina abrasive tend to be softer and 

tends to leave fewer deep indentations under overall CMP conditions. 

Acids 
 

Acidic pH slurries are preferred in Cu-CMP as it will be elucidated 

later [46, 47]. Various acids such as nitric acid, and acetic acid are used 

in conventional Cu-CMP slurries to achieve this required acidic pH value. 

Inclusion of these acids in the polishing slurry also facilitates easy 

dissolution of copper during polishing [1, 48] 

Corrosion inhibiting agent 
 

With the use of dissolution type slurries, it becomes imperative to 

protect the wafer surface from static etching [2]. These agents form non-

native films over the copper surface preventing the low areas of the 

profile from active dissolution [1]. Benzotriazole (BTA) is the most 

common corrosion inhibiting agent used the conventional Cu-CMP 
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slurries. Improper selection of the quantity of BTA in the slurry can 

cause severe damage to the wafer being polished. 

Each of the above listed slurry components along with the pH of the 

slurry has interplay with each other. These interactions determine the 

yield of the planarization process [2]. So, it becomes important not only 

to study the effect of each of the process parameter individually on the 

process output but also to study the interaction effects of each of the 

process parameters with the other. Then and only then a near complete 

estimation of effect of the slurry chemistry on the material removal rate 

can be obtained.  

The drifts in the initial preset values of the above listed process 

parameters as polishing progresses are also a concern, as they affect the 

MRR as well as the surface characteristics produced after polishing. 

Hence process monitoring emerges as one of the key areas of interest to 

both industry and academia. Numerous approaches have been made for 

process monitoring [49-51] and modeling [52] using a variety of sensors 

including acoustic emission as well as vibration sensors.  
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Chapter 2:  Literature Review 

 

2.1 Effect of slurry pH on Cu-CMP process 

 

Among the slurry related parameters, pH of the slurry has a direct 

effect on dissolution behavior of the metal to be polished. Nitric acid is 

used to achieve acidic pH in the polishing slurries while ammonium 

hydroxide is used to achieve alkaline pH in the polishing slurries. The pH 

of the polishing slurry drastically affects the chemical stability of the 

abrasive particles in the slurry [53]. Most abrasive particles dispersed in 

water have a hydroxide surface layer. This surface layer is amphoteric in 

nature and can react either as an acid or as a base. It can be charged 

either positively or negatively via the following mechanism [54]. 

M-(OH) + H+  � M – (OH2) + (+ vely charged at pH<6) 

M-(OH) + OH- � M- (O)- +H2O (- vely charged at pH>6) 

 Alumina abrasive, which is preferred for copper-CMP, has distinct zeta 

potentials at different pH values. The Zeta potential refers to the 

electrostatic potential generated by the accumulation of ions at the 

surface of a colloidal particle. The particle is organized into an electrical 

double-layer, consisting of a stern layer and a diffuse layer. It has a 
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significant bearing on the stability of colloids, such as the CMP slurries. 

This potential for an alumina abrasive is near zero at a pH of ~ 6, positive 

for pH < 6, and negative at pH > 6. Consequently, slurry with alumina 

abrasive is very unstable at a pH of ~ 6 due to lack of electrostatic 

repulsion. Consequently the abrasives will quickly agglomerate. In 

contrast, the slurry is very stable at very low or very high pH values [53]. 

The role of pH and its effect on the mechanisms of material removal on 

Cu-CMP is discussed in Ref no. 47. Polishing with slurries containing 

hydrogen peroxide and glycine at varying pH values shows that a soft 

oxide/hydroxide layer is formed on bare copper surface. The rates of 

dissolution and abrasion of the above mentioned layers reduces with 

increase in pH [47]. 

Slurry pH value is crucial when considering selectivity issues. For 

example, the dissolution of silicon oxide is enhanced at alkaline pH. 

Hence, along with copper polishing, the slurry readily removes silicon 

oxide. Earlier studies [1, 48] have shown that removal rate of silicon 

oxide increases with increase in pH. This implies that in order to achieve 

a highly selective CMP of metal and oxide, dissolution type slurry with a 

low pH and an added corrosion inhibitor is preferred.  

The use of low pH slurries, commonly realized using nitric acid, 

gives an appreciably high static etch rate. Nitric acid readily etches 

copper. The low pH and oxidizing nature of HNO3 results in Cu2+ to be 
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the thermodynamically stable form of copper. This automatically provides 

a driving force for copper to readily dissolve in the solution. In order to 

have good planarity, a high ratio of polish to etch rate is desired. This 

ensures that the high areas or the peaks on the copper surface are 

polished away while the low areas or the valleys are protected from static 

etching [45]. Nitric acid does provide a wide range of ratios for selection, 

yet the overall higher etch rate causes material to be removed from the 

low areas on the surface. For acidic pH values (pH < 6), the rate is more 

dominated by chemical dissolution while for alkaline values (pH > 9) it is 

more mechanical in nature [1, 47, 48]. Although pH of polishing slurry is 

a key factor in Cu-CMP process, interactions with other slurry 

parameters, such as the oxidizing agent (e.g. hydrogen peroxide) and 

complexing agent (e.g. citric acid, glycine) are important determinants of 

MRR. Thus, it is seen that slurry pH has an impact on multiple process 

parameters and not just the MRR. 

The effect of pH on the material removal mechanism of copper 

during CMP is elucidated by Jindal et al. [47]. Effect of the pH of 

polishing slurry is studied using open circuit potential studies during 

polishing and then subsequent measurement of surface microhardness. 

From the open circuit potential diagrams a useful insight can be 

gathered on the mechanisms of material removal at various pH values. 
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Fig. 2.1 shows the open circuit potential diagram for a period of 9 

minutes.  

 

Fig. 2-1: In-situ open circuit potential measurements of copper in 
polishing slurry comprising 3 wt % alumina abrasives, 5 wt % 
hydrogen peroxide, 1 wt % glycine and DI water as vehicle 
media [47]. 

 

For the first 3 minutes the disk is polished, for the next 3 minutes 

it is stationary, and then polished again for the remaining 3 minutes. The 

slurry used during these experiments comprised of 3 wt % alumina 

abrasives, 5 wt % hydrogen peroxide, 1 wt % glycine and DI water 

remaining as vehicle media. 

During polishing with slurry of pH 2, no change was observed in 

the open circuit potential. It drops somewhat during the static period 

and reverts back to the original value as soon as polishing is restarted 
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again. Since there is no significant jump in the potential during the static 

period, no passivation layer formation was found. Hence, the removal at 

this pH is a combination of mechanical abrasion and direct dissolution. 

Also from the potential value it can be seen that the potential is least 

anodic at pH value of 2. Hence, the tendency to dissolve actively is much 

more than that at any other pH value. 

The mechanisms of material removal of copper at pH 4, 6, and 8 

are found to be similar. The jump in potential during the static period 

symbolizes the growth of the passivation layer. But as soon as polishing 

is restarted the potentials drop back again. From the potential it can be 

seen that the passivity of the layers formed reduces in the order of pH 6, 

8 and 4.  

Microhardness testing was conducted on the copper disks before 

and after exposure for 10 minutes. The results indicate a drastic drop in 

the hardness value when the disk exposed to a solution of pH 2. This 

also supports the fact that passive film formation is not observed during 

polishing with slurry at pH 2. Fig. 2-2 shows the microhardness plots for 

copper disk before and after exposure to polishing slurries of varying pH. 

Comparing the drop in hardness at pH 2, the drop in hardness at pH of 7 

and 12 is smaller. 
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Fig. 2-2 :  Microhardness of copper disk before and after 10 min 
exposure to a slurry containing 5 wt % hydrogen peroxide, 
1 wt % glycine in DI water at pH 2,7, and 12 [47]. 

 

As discussed in the opening part of this section, polishing slurry 

pH has a significant affect on the zeta potential of the abrasive particles 

in the slurry. Hence, slurry pH would play a crucial role in slurry 

stability. The tendency of agglomeration is heavily dependant on the 

polishing slurry pH. 

 Luo et al. [53] elucidated the effect of pH on the slurry stability 

from the standpoint of abrasive agglomerate formation. A 50 ml vertical 

cylinder with stopper is used to determine the settling rates of alumina 

particles under various conditions. The zeta potentials of the abrasives in 

different slurries are measured. The particles were naturally dried and 

kept in desiccators for Fourier Transformed infrared Spectroscopy (FTIR) 

measurements. 
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 The slurry is stable at both very high and very low pH, as the 

abrasives are positively charged at low pH and negatively charged at high 

pH. Electrostatic repulsion facilitates the slurry to be stable.  

From Fig. 2-3, it can be seen that the settling rates of slurries at 

the extreme ends of the pH band are very low, while the slurry is 

extremely unstable or the settling rates at point of zero charge are very 

high. The zeta potential data also correlates well with the above 

observation.  

 

Fig. 2-3 : Effect of polishing slurry pH on the settling rates and zeta 
potential of alumina slurry [53]. 
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Near the point of zero charge the zeta potential is almost zero, or rather it 

crosses from being positive at low pH to being negative at higher pH. This 

means that the electrostatic repulsion between individual abrasive 

particles is almost absent at a pH of ~6. Hence, the tendency of the 

abrasives to settle down and form agglomerates is very high in the pH 

value of ~6.  

Hernandez et al. [46] elucidated the complex interactions between 

oxidizing agent content and the polishing slurry pH during the Cu-CMP 

process. Blanket copper wafer samples were polished with acidic alumina 

slurry containing an organic acid salt (phthalic acid salt) and an 

oxidizing agent (H2O2). They used X-ray photoelectron spectroscopy (XPS) 

to ascertain the nature of various oxide films formed on bare copper 

surface at varying slurry combinations. 

 Fig. 2-4 shows the combined effect of pH and oxidizer content on 

MRR in copper CMP. Variation of slurry pH has an effect on the solubility 

of various oxide films formed on bare Cu surface. At a lower pH value, 

the cupric slurries dissolve more easily. Again in this scenario, cupric 

oxide (CuO) is less soluble than cupric hydroxide (Cu(OH)2). The removal 

rate at low oxidizing agent concentrations as a function of slurry pH is 

thus rate limited by the formation of these cupric oxide species, which in 

turn form cupric complexes. On the other hand, at high oxidizing agent 



 15 

concentrations, the removal rate is determined by the solubility of the 

CuO film which is formed on the bare copper surface during CMP. 

 

Fig. 2-4 : Material removal rate of copper as a function of oxidizer content 
and polishing slurry pH [46]. 

 

From Fig. 2-4 it can be seen that at higher oxidizer contents and 

high pH the MRR is low due to the fact that copper shows the tendency 

to passivate at higher pH. While at lower oxidizer contents, and higher 

pH, the MRR increases slightly. The reason attributed for this behavior is 

the increase in complexing ability of the phthalic salt with increasing pH 

[55]. This facet will be discussed in more detail when the effect of 

complexing agent content in the slurry is considered. 
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2.2 Effect of oxidizing agent content 

 

The pH of polishing slurry combined with the oxidizing agent 

content of the slurry determines the nature of the film formed on the 

virgin copper surface [1, 46, 47]. Copper resists corrosion in near neutral 

or alkaline pH values, but, it is prone to chemical attack in strongly 

acidic slurries [47]. Formation of an oxide film over bare copper surface 

thus becomes a key factor in determining the throughput of the process 

[46]. Slurry pH along with the oxidizing agent content determines the 

nature of the film that is formed on the virgin copper surface. Higher 

content of the oxidizing agent in the slurry tends to passivate virgin 

copper surface by the formation of an oxide layer [46]. Under the 

conditions stated above, either cupric oxide (CuO) or hydroxide (Cu 

(OH)2) films are formed on the bare copper surface. The dissolution of 

these films decreases with increase in pH. Cupric oxide (CuO) is less 

soluble than Cu (OH)2 near a pH value of 4. Hence, the presence of CuO 

on the surface becomes a limiting factor in the removal rate of copper 

[46].  

In a summary, polishing slurry pH and the oxidizing agent content 

of the slurry have a strong interaction with each other, which indeed is 

one of the very key factors determining the process yield. 

Study of etching as well as removal behavior of copper as a 

function of slurry pH and oxidizer content in conventional citric acid 
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based polishing slurries is presented by Eom et al. [56]. Fig. 2-5 depicts 

the relation between concentration of dissolved copper ions in the slurry 

with copper oxide film thickness as a function of hydrogen peroxide 

concentration. 

 

Fig. 2-5 : Concentration of dissolved copper ions and copper oxide film 
thickness as a function of hydrogen peroxide concentration 
[56]. 

 

Concentration of dissolved copper ions in the slurry decreases with 

increasing hydrogen peroxide content, while the thickness of the oxide 

film formed increases with increasing hydrogen peroxide content. This 

indicates that with increasing hydrogen peroxide content the copper 

surface passivates thereby preventing dissolution of bare copper. This 

inhibits active dissolution based removal of bare copper from the 

substrate.  
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Potentiodynamic curves for copper are plotted as a function of 

hydrogen peroxide content in the polishing slurry. Fig. 2-6 shows that 

with increasing hydrogen peroxide content at pH of 4 and 6, respectively 

the corrosion potential shifts towards more positive values, thereby 

suppressing the anodic dissolution of copper into the solution. This 

shows that with addition of more oxidizing agent to the slurry, the 

tendency to passivate the bare copper layer increases. This will inhibit 

active dissolution of copper into the slurry. 

 

Fig. 2-6 : Potentiodynamic plots of copper in polishing slurries with 
varying amounts of hydrogen peroxide [56]. 
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Lu et al. [57] have presented a detailed electrochemical study of 

certain chemical aspects of Cu-CMP in glycine–peroxide containing 

polishing slurry. In-situ potentiodynamic and open circuit potential 

measurements were used to ascertain the relative roles of Hydrogen 

Peroxide and Glycine in copper-CMP. At pH 4, the most common glycine 

species found is zwitterion, and this species is known to strongly 

chemisorb on bare Cu [58]. Recent study has also provided evidence that 

there is preferential formation of Cu-glycine complexes at surface sites of 

CuO [59]. Hence, it is likely that adsorption of glycine performs two 

tasks, namely, one of formation of *OH radical which would enhance the 

oxidation of bare Cu surface and the other of removing this oxide by 

formation of Cu-glycine complexes.  

A three-step chemical cycle has also been proposed. First, *OH 

radical is catalytically produced from hydrogen peroxide by soluble Cu-

Glycine complexes in the solution. Second, *OH thus produced enhances 

the oxidation of the copper surface. The predominant oxide specie on the 

surface is CuO. Third, this oxide layer becomes unstable due to its 

interaction with solvated glycine through formation of soluble Cu-glycine 

complexes. Regeneration of these complexes brings us back to step one. 

A combined study of effect of alumina abrasive, citric acid, and 

hydrogen peroxide is presented by Chen et al. [60]. Surface analysis is 

performed using X-ray photoelectron spectroscopy and atomic force 
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microscopy (AFM). Several slurry combinations containing two 

concentrations of citric acid are tested.  

 Only metallic copper was observed when the specimens were 

immersed in slurry containing 1 wt % alumina abrasive in DI water. This 

shows that oxidation of copper was almost negligible in this slurry. When 

samples were immersed in slurries without any hydrogen peroxide, but 

only 0.0078M and 0.5M citric acid + 1 wt % alumina abrasives, the 

surface showed formation of CuO and Cu(OH)2 along with the presence 

of metallic copper. Fig. 2-7 shows the XPS spectra of copper immersed in 

the above slurries. Addition of 9 vol % hydrogen peroxide changes the 

scenario drastically. When added to the slurry containing lower citric 

acid, it promotes formation of CuO, Cu(OH)2. The peak associated with 

metallic Cu disappeared. This enables us to ascertain that oxide film 

formed was rather thick.  
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Fig. 2-7 : XPS spectra of Cu 2p3/2 and 2p1/2 after immersion in (a): 1 
wt % alumina abrasive, (b): (a) + 0.0078M citric acid, (c): (a) + 
0.5M citric acid [60]. 
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Fig. 2-8 : XPS spectra of Cu 2p3/2 and 2p1/2 for Cu after immersion for 60 
min in different slurries, (a): 1 wt % alumina + 9 vol. % H2O2; 
(b): (a)+0.0078M Citric acid: (c): (a) + 0.5 M Citric acid [60]. 
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On the other hand, adding hydrogen peroxide to the slurry 

containing higher citric acid reduces the intensity of the peak associated 

with CuO. As can be seen from Fig. 2-8, the peak associated with 

metallic copper reappears with a higher intensity. This indicates that 

citric acid retards oxide film formation, while addition of an oxidizing 

agent enhances the dissolution of copper into the slurry. 

The presence of citric acid and hydrogen peroxide promotes the total 

copper removal rate in copper CMP. Addition of hydrogen peroxide in 

substantial amounts helps in the formation of passivation layer over bare 

copper at low citric acid concentrations. The addition of citric acid to the 

polishing slurry increases copper dissolution by complexing the copper 

ions dissolved in the slurry. The complexing action of citric acid 

increases with increase in the concentration of citric acid. 

2.3 Effect of complexing agent content 
 

 

Removal of oxides from the pad-wafer interface and thus 

preventing redeposition is key in ensuring a defect-free polishing process. 

To facilitate easy removal, complexing agents (citric acid or glycine) are 

added to the polishing slurry. The activity of these species is also a 

function of the value of the polishing slurry pH [55]. Eom et al. [56] 

studied the combined effect of hydrogen peroxide as an oxidizing agent  

with citric acid as a complexing agent during Cu-CMP [56]. Results 
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indicate that static etch rate decreases significantly with increase in pH 

at high oxidizing agent contents. This again corroborates with the fact 

that at high pH and high oxidizing agent content, the oxide film is 

passivating preventing direct dissolution of copper into the slurry. 

Addition of glycine changes the polishing conditions. Glycine and Cu2+ 

form Cu – glycine complex. This catalyzes the process of production of 

hydroxyl (*OH) radicals, which are more stronger oxidizers than 

peroxides [2]. 

The complexing action of the slurry is also a function of the slurry 

pH. Kummert et al. [55] have shown that in the pH range of 3–5, the 

dissociation of phthalic salt increases with pH. Hence, at high pH, the 

greater concentration of phthalic anions would allow enhanced 

complexation of Cu2+ ions. In high pH polishing slurries addition of an 

extra complexing agent is not required as complexing is achieved due to 

the action of the dissolved ammonia gas [2]. Complexing by ammonia gas 

occurs due to shielding of Cu ions by the ammonia ions in solution. 

Ammonia molecules thus effectively shield the charge of one copper ion 

from the other thereby reducing the activity of copper ions in solution 

and allowing more ions to be accommodated. This gives enhanced 

solubility of copper in the presence of ammonia gas [2].  

Aksu et al. [61] studied the role of glycine as a complexing agent 

for copper polishing slurries using potentiodynamic techniques. The 
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effect on the behavior of copper at various pH values with and without 

glycine is carried out using a rotating disk electrode (RDE) configuration. 

Copper has a tendency to passivate in aqueous solutions at high pH, 

while at low pH, it dissolves actively [1, 47, 48, 62]. Addition of glycine to 

the above aqueous solutions changes the picture drastically. The 

passivation observed at a pH of 9 is no more observed and copper shows 

active behavior till a pH of 9 [61]. This is attributed to the fact that both 

zwitterionic and anionic forms of glycine exist at this pH, which indicates 

enhanced complexing action of dissolved copper ions in the slurry. The 

removal rate at low oxidizing agent contents at low pH is thus limited by 

the ability to form cupric complexes, since at low pH the cupric species 

can dissolve easily, while at high oxidizer contents, the removal rate is a 

function of the thickness of the cupric oxide (CuO) film formed on the 

surface.  

The combined effect of oxidizing agent content and complexing 

agent content are investigated by Eom et al. [56]. They used 

potentiodynamic polarization curves to study the effect of variation in 

oxidizing agent content in citric acid based slurries at different pH 

values. Static etch rates were used as a measure to study the behavior of 

copper in slurries with variable oxidizing agent content slurries. 
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Fig. 2-9 : Static etch rate of copper as a function of citric acid 
concentration at pH 4 with varying oxidizing agent content 
[56]. 

Fig. 2-9 shows the static etch rate of copper in slurries with 

varying oxidizing agent content as a function of citric acid concentration 

at pH 4.  For lower concentrations of hydrogen peroxide i.e. 1 vol %, the 

etch rate remained constant irrespective of the concentration of citric 

acid in the slurry. Increasing the hydrogen peroxide content up to 30 vol. 

% also does not show any signs of the removal rate reaching saturation. 

This indicates that at acidic pH values, active dissolution of copper in the 

slurry is favored than passivation. Increasing the pH to 6 changes the 

scenario rapidly as shown in Fig. 2-10. The etch rates at 1 vol % 

hydrogen peroxide is highest and increases linearly with increasing citric 

acid concentration, while the etch rates at 10 vol % and 30 vol % are 

significantly lower and remain constant for varying concentrations of 

citric acid.  
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Fig. 2-10 : Static etch rate of copper in pH 6 slurry as a function of citric 
acid content and oxidizing agent content [56]. 

 

The trend observed under the above conditions is validated using 

potentiodynamic curves for each of the slurry combinations. It is seen 

that at both the pH values the corrosion potential shifted to a more 

positive value with increasing oxidizing agent content. Figs. 2-11(a) and 

(b) show potentiodynamic curves for the above conditions.  These results 

also enabled reaffirming the passivating behavior of copper as the slurry 

pH is increased. 
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Fig. 2-11 :  Potentiodynamic polarization curves for copper in Hydrogen 
peroxide and citric acid slurries at (a) pH 4, and (b) pH 6 
[56]. 

 

The shift of corrosion potential to a more positive value means that 

the anodic reaction of copper will be inhibited and the dissolution of 

copper will be reduced due to formation of copper oxide passivation layer. 

Based on the results obtained from the above studies a mechanism for 

material removal under the conditions studied is proposed. Fig. 2-12 

illustrates the mechanism of material removal for Cu-CMP under 
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conditions of low and high oxidizer concentrations with high and low pH 

polishing slurries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2-12 : Schematic of the Mechanism of material removal at different 
polishing conditions of oxidizer content, slurry pH and 
complexing agent content [56]. 

 

 Polishing in slurries with low oxidizing agent concentrations as 

well as low pH leads to the formation of Cu ions due to formation of thin 

oxide film. The  film is hypothesized to be thin enough to be attacked by 
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other chemical ingredients in the slurry. These Cu ions can thus easily 

form Cu-citrate complexes with the citrate ions dissociated from citric 

acid in the slurry. This accelerates the etching of copper due to the 

availability of more space for Cu ions to be able to go into the slurry. 

 On the other hand polishing with slurries with high oxidizing agent 

contents and high pH leads to the formation of a thicker oxide film over 

bare copper surface. This reduces the amount of Cu ions that goes into 

the solution. This means a reduced complexing action of the complexing 

agent present in the slurry. The overall effect is that of reduced removal 

of copper from the substrate.  

Aksu et al. [61] studied the role of glycine as a complexing agent in 

copper polishing slurries using potentiodynamic techniques. The effect 

on behavior of copper at various pH with and without glycine is carried 

out using a rotating disk electrode (RDE) configuration. Copper shows a 

tendency to passivate in aqueous solutions at high pH, while at lower pH 

it dissolves actively [1, 48].  
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Fig. 2-13 : Effect of pH on polarization of copper in aqueous solutions at 
various pH [61]. 

 

As shown in Fig. 2-13, the anodic part of the curve shows clear 

passive regions at pH of 9 and 12 while at pH of 4 it is active with high 

anodic currents all through till the end of the scan. Addition of glycine to 

the above aqueous solutions changes the picture drastically. The 

passivation observed at a pH of 9 is no longer observed and copper 

shows active behavior till a pH of 9. This is attributed to the fact that 

both zwitterionic and anionic forms of glycine exist at this pH. It can be 

seen from Fig. 2-14, the corrosion current at pH 9 is higher than that at 

pH of 4. But, the anodic currents are higher at pH of 4 beyond the 

potential of 0.35 V. The general mechanism of complexation of copper by 

complexing agents such as glycine, ethylene diamine, ammonia requires 
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that dissolved oxygen be adsorped on the bare copper surface. This 

means that formation of a thin oxide layer is the first step in this 

process. Then complexing agents help dissolve the copper where the 

adsorption of copper has taken place. At higher pH values, formation of 

copper oxide competes with the dissolution of copper by complexing 

agent.  

 

Fig. 2-14 : The Effect of addition of 0.01 M of glycine to aqueous 
polishing solutions on polarization behavior of copper [61]. 

 

The introduction of polishing pad and abrasive brings out some 

nuances of the process. Fig. 2-15 shows the polarization curves with no 

abrasion, polishing with only pad and polishing with pad with 5 wt % 

alumina abrasive. 
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(a)      (b) 

 

Fig. 2-15 : Polarization behavior of copper in aqueous solution at pH 12 
(b) No Glycine and  (b) 0.01 M Glycine : under no abrasion, 
polishing with pad and polishing with pad and 5 wt % 
abrasives [61]. 

  

The addition of abrasives seems to be preventing the formation of a 

passivating film. Comparing Fig. 2-15 (a) and (b) it is evident that a 

slurry at a pH of 12 with glycine promotes passivation to the low lying 

areas while at the same time enhances dissolution of the mechanically 

abraded region. This can be inferred from over two orders of magnitude 

difference in anodic dissolution in Fig. 2-15 (b) between with and without 

abrasion. This situation of high dissolution with abrasion and low 

dissolution without abrasion is ideal from the point of view of achieving 

planarity.  
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2.3 Effect of corrosion inhibiting agent content 

 

The inherently reactive nature of low pH acidic slurries also 

presents the need to add a corrosion inhibitor (benzotriazole, BTA) to 

prevent static etching of low areas on the copper surface profile. Hence, 

the effect of the various slurry parameters on copper-CMP process is 

rather complex and inter dependant. BTA, however has its own 

drawbacks. For example, it is a weak acid and dissociates according to 

the following mechanism: 

BTA � BTA- 
 +  H+ 

 

The concentrations of BTA and BTA- both depend on the overall 

concentration of BTA in the slurry and on the slurry pH. BTA- is easily 

adsorbed on to the positively charged surface of the alumina abrasive at 

low pH. But the amount of BTA- adsorbed is less as the dissociation itself 

is less due to low pH. Hence, the slurry even in the presence of BTA, 

remains stable at low pH. With increase in pH, the surface charge of the 

abrasive particles is negative and the dissociation of BTA- is more. Since 

the surface charge is same, there is electrostatic repulsion and the slurry 

remains stable [53]. The amount of BTA in the slurry is critical, as excess 

BTA can reduce the MRR drastically. In conventional polishing slurries 

0.01-0.05 wt % BTA effectively inhibits excessive static etching of Cu 

surface [42]. 
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Luo et al. [53] investigated the effect of BTA on the slurry stability 

by performing settling rate tests. BTA is a preferred inhibitor 

incorporated in dissolution based Cu-CMP slurries to prevent excessive 

static etching of bare copper surface [1,48]. Zeta potential measurements 

were conducted to validate the results obtained from the settling rate 

tests. Fourier transformed infrared (FTIR) spectroscopy tests were also 

conducted subsequently for an insight into the adsorption of BTA on 

alumina abrasives. The effect of ferric nitrate on the stability of the slurry 

was also investigated. The effect of these parameters on the material 

removal rate (MRR) and selectivity of polishing between Cu and SiO2 were 

also investigated. 

 A 50 ml vertical cylinder with a stopper was used to determine the 

settling rates of alumina particles under various BTA content conditions. 

The zeta potentials of the abrasive for different BTA content slurries were 

measured. The particles were naturally dried and kept in a desiccator for 

the FTIR measurements. 

 Fig. 2-16 shows the variation in zeta potential and its 

corresponding effect on settling rate of slurry as a function of BTA 

concentration in the slurry. At low concentration of BTA, the zeta 

potential of the abrasives is at the positive end of the range. As the 

concentration of BTA increases in the slurry, the zeta potential 

approaches the point of zero charge (PZC). At this point the settling rate 
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is very high, indicating that the slurry is very unstable and tendency of 

coagulation is very high.  

 

Fig. 2-16 : Effect of BTA concentration on the zeta potential and slurry 
stability measured by the slurry settling rate [53]. 

 

Fig. 2-17 shows a plot of adsorption isotherms of BTA on alumina 

abrasive particles at various pH values. The adsorption behavior of BTA 

on alumina abrasives is very highly pH dependant. At lower pH values 

the amount of pH adsorped is more than that at higher pH values. Since 

alumina particles are positively charged at low pH values, the adsorption 

of BTA- is more. However as the pH increases, the abrasive particles 

become more negatively charged, which thus causes a reduction in the 

adsorption of BTA-. But surprisingly at pH of 5.5 the adsorption is the 
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maximum, which means that the adsorption is not just due to 

electrostatic forces but also due to chemical adsorption and/or hydrogen 

bonding. 

 

Fig. 2-17 : Adsorption isotherms of BTA on alumina abrasive particles 
[53]. 

 

 

Fig. 2-18 : FTIR spectroscopy for (a) pure BTA, and (b) BTA adsorped on 
alumina abrasive particles [53]. 

 

Fig. 2-18 shows the FTIR spectroscopy for pure BTA and BTA 

adsorped on the alumina abrasive particle surface. The shift in the peak 
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from 1209 cm-1 observed in the spectroscopy for pure BTA to 1095 cm-1 

in BTA adsorped on alumina indicates that Al on the surface of alumina 

particles is coordinated to unsaturated nitrogen ring forming a bidentate 

structure. 

Other special additive to the Cu-CMP slurry includes a surfactant. 

The main purpose of a surfactant to the polishing slurry is to reduce 

pattern sensitive erosion of the interlayer dielectric layer. A 0.25 wt % 

cetyltrimethylammonium bromide (CTAB) is added as a surfactant to the 

polishing slurry [37]. Addition of stannate salts facilitates in increasing 

the slurry stability by preventing degradation of the oxidizing capabilities 

of the slurry. It exhibits affinity to trace metals to form complexes 

thereby preventing the ability of the trace metals to catalyze 

decomposition of the slurry itself. The stannate salts thus facilitate in 

preventing trace metal ions from reacting with the slurry oxidizer [44]. To 

prevent flocculation and settling of the slurry polymeric compounds are 

added to the slurry. Polyoxyalkylene ether is added in small quantities (~ 

0.001 wt %) to achieve the desired steric stability [39]. 

Other enhancements like multiple abrasive slurries also have been 

suggested [38]. The use of ceria abrasive particles of 100 nm size 

alongwith smaller alumina abrasive of 50 nm size is proposed. The aim 

here is to reduce the overall abrasive size, thereby reducing the tendency 

of scratching yet achieving acceptable removal rates.  
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The use of coated abrasives has also been suggested to improve 

wettability, dispersability, and bonding. This again in a way helps in 

reducing scratching as well as agglomerate formation of individual 

abrasive particles [63]. 

To compensate for the variable hardness of materials to be 

polished on a substrate, use of softer abrasives which can polish copper 

overburden, while not damaging the barrier layer is also suggested [64]. 

More specifically, abrasives that are harder than copper, such as iron 

oxide, strontium titanate, apatite, diopase, fluorite, and hydrated iron 

oxide are used to polish copper over layer. They have hardness values 

less than the barrier layer. This, thus, protects the barrier layer from 

getting abraded during polishing.  

To reduce the scratching probability and frictional heating 

buffering agents or caking agents are also added to the polishing slurries 

[32]. Potassium acetate is a common choice of buffering agent added to 

the slurry. Addition of potassium acetate is also known to facilitate in 

maintaining the slurry pH at desired level. It can be directly added to the 

slurry or generated in-situ in the slurry by the reaction of potassium 

hydroxide and acetic acid. 

The oxidation energies associated with the conductive layer and 

the barrier layer demand the use of multiple slurry chemistries, more 

specifically with altered oxidizing capabilities [41]. Tungsten has an 
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oxidizing potential of 0.12V and that of Copper is 0.34V. This means that 

tungsten has a tendency to oxidize preferentially than copper. Care must 

be taken to completely eliminate this potential difference in oxidation or 

rather attempt to reduce it as much as possible. 

It is thus evident that all the abovementioned slurry parameters 

have a strong interplay with each other and hence not only they 

individually affect the process performance but their interactions with 

each other also bear significant effect on process outputs. This scenario 

becomes even more complex when in-situ drifts occur in the initial set 

values of the above machine settings. For instance, as polishing 

progresses there is a gradual change in the slurry pH. To combat this, 

monitoring of the various process parameters such as the slurry pH, 

complexing agent content of the slurry, corrosion inhibitor content of the 

slurry should be effectuated.  

Various sensor based monitoring approaches have been 

investigated for monitoring [49-51] and modeling [52] of chemical 

mechanical planarization of silicon as well as copper. A detail overview of 

the previous work in sensor-based techniques in process monitoring and 

modeling is presented in the next chapter. 
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Chapter 3:  Sensors in CMP 
 

 

Modeling silicon CMP by incorporating wired as well as vibration 

sensors is realized by the group of Bukkapatnam et al. [52]. These 

sensors were mounted on a polishing machine and the data acquired is 

analyzed offline. Pertinent features were extracted from the acquired 

sensor data in both the time and frequency domains. Once these features 

are extracted, a matrix comprising all these features is constructed. 

Then, principle component analysis (PCA) is performed on these 

candidate sensor features. The aim of performing PCA is to reduce the 

volume of data that needs to be handled as well as to normalize it. The 

MRR is then modeled using these extracted sensor features.  

 Numerous statistical tests and techniques were implemented to 

model the MRR in silicon CMP. In the first attempt, linear regression of 

MRR was performed with the machine settings as predictors. A modest 

regression coefficient of ~ 70% was achieved. In order to validate the 
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Effectiveness of sensors for process modeling, key sensor features were 

then incorporated in the model for MRR.  

Some of the features extracted from the sensor signal data showed 

distinct variation with changes in the machine settings. For instance the 

signal skewness showed a sizeable drop upon increase in the polishing 

slurry pH. Fig. 3-1 shows the variation in signal skewness with variation 

in slurry pH. 

 

Fig. 3-1 : Variation of signal skewness for two slurry pH values [52]. 

 

An attempt was made to model the MRR with a main feature set, 

which is determined from the values of direction cosines obtained after 

performing PCA. But this does not help to improve the predictability of 

the MRR. 

Hence it was concluded that linear modeling techniques do not 

help much in improving the predictability of the process. Hence, in a 
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second approach towards enhancing the predictability of the model, non 

linear techniques were implemented. Again in implementing non-linear 

techniques, a set of tests were carried out to determine the effectiveness 

of implementing non linear principles. These tests include determination 

of autocorrelation function, plotting the Poincaré section plots which help 

in determining inherent non-linearity in the process.   

Various non-linear features, such as the Shannon entropy, 

maximum Lyapunov exponent, and Kaplan-Yorke dimension are 

extracted from the sensor data. In the subsequent analysis it is found 

that the maximum Lyapunov exponent effectively detects the variation in 

downforce levels and the Shannon entropy values capture changes in the 

levels of slurry flow rate. Inclusion of non-linear features in the model 

alongwith the machine setting gives an enhanced predictability of ~90%. 

From a process monitoring standpoint, Tang et al. [65] suggest an 

acoustic emission based method for detection of the formation of 

scratches due to agglomeration of abrasives, or due to inherent 

contamination of the slurry, or in some cases due to a poor pad 

conditioning wheel. A conditioning wheel can leave diamond grit on the 

pad surface, which then can cause catastrophic scratches on the wafer.  

These scratches can lead to sites for electromigration defects and bear a 

significant effect on the successful production of the chip. Hence, 

prediction of occurrence of scratches, if effectuated, would help in 
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reducing catastrophic failure of an entire chip. Instead, the polishing 

process can be halted and necessary corrective actions initiated. 

Use of acoustic emission sensors to detect microscratching in CMP 

has been reported by Tang et al. [65]. Two sets of tests were performed, 

one on a laboratory type polishing machine, and the other on an 

industrial grade machine. To detect the microscratching phenomenon, 

diamond abrasive grit of size 1µm is added to the slurry. Fig. 3-2 shows 

a typical AE rms signal for a normal polishing process taken on an 

industrial grade CMP machine. It has three distinct zones viz. the loading 

stage, the running in stage and the equilibrium stage. The point to notice 

here is that there are no significant periodic spikes observed in the 

signal. Primary tests are carried on a laboratory grade polisher. AE rms 

data was acquired for both before and after conditioning the pad with 

250 µm grit diamond wheel. It is seen that in the signal before pad 

conditioning, the magnitude of signal (peak to peak) is significantly lower 

than that after pad conditioning is performed. Fig. 3-3 shows the signal 

before pad conditioning has been performed while Fig. 3-4 shows the 

signal after performing pad conditioning with a 250 µm grit diamond 

tool. 
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Fig. 3-2 : AE rms signal for a normal (unscratched) CMP run on an 
industrial grade machine [65]. 

 

 

Fig. 3-3 : AE rms data on laboratory polishing machine before pad 
conditioning [65]. 
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Fig. 3-4 : AE rms data on laboratory machine after pad conditioning with 
250 µm diamond wheel [65]. 

 

As can be seen from the results obtained from the tests carried out 

on the laboratory grade polishing machine, have been extended to 

industrial grade machine.  

 

Fig. 3-5 : AE rms data taken on an industrial CMP machine after 
artificially adding hard and bigger alumina abrasives to the 
polishing slurry [65]. 
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Fig. 3-2 shows the AE rms signal for an unconditioned pad while Fig. 3-5 

shows the signal after 300 nm alumina particles were introduced in to 

the slurry. There is a significant presence of periodic spikes which are 

correlated to the scratching of the wafer due to hard and bigger alumina 

particles.  

Based on the review of the literature, it affirms that multiple 

sensors can be implemented in monitoring as well as modeling of the 

CMP process. The incorporation of sensors in CMP process helps in 

achieving better process control as well as to improve the throughput by 

helping in reducing the damage caused due to wafer scrapping and 

rework. 
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Chapter 4:  Problem Statement 

As discussed in the literature review pertaining to the slurry 

chemistry effects in Cu-CMP process performance, the slurry chemistry 

and interactions between the individual slurry characteristics play a very 

important role in deciding the quality (surface finish, WIWNU) as well as 

quantity (MRR) of the process. 

From a process control standpoint as well as process monitoring 

standpoint, it is important that the variability in the process performance 

associated with variations in input process parameters be quantified. 

Subsequent process control measures should also be established, thus 

developing a closed loop system. 

A key step here is to quantify the variations in output with known 

variations in the input variables. This task is proposed to be achieved by 

conducting designed experiments. Subsequently, after knowing this 

variability, it is critical to be able to in-situ sense or track this variability 

in process variables, so that immediate corrective action can be initiated 

and process control is again established. In short, tracking the variations 

in input process variables should be accomplished so as to be able to 

control them, or fine tune them for maximized throughput. 
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To be able to track these variations, some indirect method has to be 

adopted, as the actual wafer pad interface is virtually inaccessible. In 

this investigation we incorporated multiple vibration sensors (Wired and 

Wireless) to investigate as to whether they can help in gathering insights 

into the process dynamics. The results of the experimental investigations 

as well as sensor-based modeling techniques shall be discussed in the 

later sections of the document. 

To perform the experimental investigation of Cu-CMP, we use a 

Lapmaster 12 polishing machine instrumented with one wired and 

wireless vibration sensor. A two step modeling approach was 

incorporated, we first modeled the MRR using just the process variables 

and the interaction terms in between them as predictors. This helped in 

assessing the effect of each of the input process variables on the MRR. 

But as mentioned, from the process monitoring viewpoint, we then 

incorporated sensor features as predictors for the models. The models 

based on sensor features show improved estimation of the MRR as well 

help in tracking the variations in the input process parameters. 
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Chapter 5:  Experimental Setup 
 

5.1 Experimental Setup: 

We present here, an investigation of implementing sensors on Cu-

CMP machine. The process characteristics for Cu-CMP are entirely 

different than those for silicon or oxide CMP. Especially the slurry 

chemistry plays a pivotal role as copper is chemically more active  and is 

prone to chemical damage, if faced with improper slurry chemistry 

selection. 

 In order to track the variations of various characteristics of Cu-

CMP slurries and their effects on performance, to determine the average 

MRR of the copper-CMP process in real time, polishing studies have been 

carried out. Regression analysis is conducted based on the experiment 

data to investigate the relationship among process performance (MRR), 

machine settings, and sensor data. 

 Polishing tests are carried out on a LapMaster 12 bench top 

polishing machine instrumented with wired and wireless vibration 

sensors as shown in Fig. 5-1. Unpatterned copper wafers (1.25 mm thick 

and 100 mm diameter) are used. Different slurries of varying chemistry 
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are used and the effect of these variations on average MRR of Cu-CMP is 

investigated. Fig. 5-2 show the wafers used in this investigation.  

The platen rotates at 60 rpm and the wafer is pressed face down 

against the rotating platen with a down pressure of 1 psi. The retaining  

 

Fig. 5-1: Experimental setup used for conducting sensor based Cu-CMP 
investigation. 

 

Fig. 5-2: Unpatterned copper wafer used in the sensor based Cu-CMP 
investigation. 
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rings keep the wafers in place during platen rotation. Use of a DC pump 

facilitates slurry delivery at the centre of the platen. 

Two sensors namely, a wired accelerometer (KISTLER Model No. 

8728A500, sampling at 5 KHz), and a single channel wireless 

accelerometer (MOTEiv, sampling at 500Hz) are mounted on the 

polishing machine at locations shown in Fig.5-1. Wired sensor signals 

are acquired through a charge amplifier (Kistler 5134A1) and digitized 

using NI PCI 6024 board, sampled at 5 KHz. The wireless sensor signals 

are acquired through a Universal Serial Bus (USB) receiver with the aid 

of a program designed in the Cygwin environment. Signals obtained from 

the wired and wireless vibration sensors are analyzed offline for 

monitoring the copper-CMP process. 

 

Fig. 5-3: Wired vibration sensor (Kistler 8728A500) used for sensor based 
Cu-CMP investigation. 
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Table 5-1: Specifications of wired Kistler accelerometer used in the 
experimental investigation. 
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Fig. 5-4: Wireless vibration sensor unit used in sensor based Cu-CMP 
investigation. 

 

 

Fig. 5-5: Sartorius manufactured precision digital weighing scale used to 
measure wafer weight after each polishing cycle. 

 

Fig. 5-3 shows a wired vibration sensor used in this investigation. 

The technical specifications of which are given in Table 5-1. Fig 5-4 

shows the wireless vibration sensor used.  
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Fig. 5-6: ADE Phase Shift Technologies, MicroXAM, Laser interferometric 
microscope used for surface quality measurement during Cu-
CMP experiments. 

 

The material removal rate is measured using a high precision 

digital weighing scale (Sartorius Model 1712 MP8, resolution 0.1 mg) 

capable of measuring to the resolution of 0.1mg (Fig. 5-5). The 

specifications of this weighing scale are as follows:. Wafer weight 

measurements are taken at the end of every 20 second polishing cycle. 

Surface quality measurements are effectuated using a laser 

interferometric microscope (MicroXAM, ADE Phase shift Technologies). 

The basic operating principle of interferometer is based on the 

classical Michelson interferometer. With an optical interferometer the 

physical distance between two objects can be measured in terms if 
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wavelengths of light. Fig. 5-6 shows the ADE Phase Shift Technologies, 

MicroXAM used in this investigation to qualitatively monitor the surface 

quality of the wafer during CMP. 

5.2 Design of Experiments 

Taguchi L12 array (see Table 5-2) was used to investigate the effect 

of various slurry ingredients (referred to as input variables) on the 

average MRR (henceforth, referred to as output variable) of the process. 

The resulting regression model is used to estimate the variation in slurry 

content and its effect on the average MRR from the sensor data acquired. 

As summarized in Table 5-3, the input variables (machine settings) 

include: (1) pH of the polishing slurry (range 3 to 5), (2) flow rate of the 

slurry (range 50 to 100 ml/min), (3) amount of complexing agent (range 0 

to 20 gms/lit), and (4) amount of BTA (range 0 to 1 gm/lit).  

Each polishing run at a given setting is comprised of multiple (4-6) 

20 sec long polishing cycles. The average MRR is measured based on 

wafer weight differences over a polishing cycle measured using a 

precision weighing scale. The average MRR is given by: 

MRR = (Wi – Wf) / (Tf – To) 

where Wi is the wafer weight at the start of a  polishing cycle (gms), Wf is 

the wafer weight at the end of a  polishing cycle (gms), Tf is the time at 

the end of a polishing cycle (sec), and T0 is the time at the start of a 
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polishing cycle (sec). The average MRR is an average of 3 wafers used 

simultaneously in each polishing run. 

 

Table 5-2 : Taguchi L-12 Matrix implemented to study the slurry 
chemistry effects on MRR in Cu-CMP 

 

 pH 

Down 

Force 

Flow 

Rate 

Complexing 

agent BTA 

R1 L H L L L 

R2 L H L L L 

R3 L H H H H 

R4 L H L H H 

R5 L H H L H 

R6 L H H H L 

R7 H H H H L 

R8 H H H L H 

R9 H H L H H 

R10 H H H L L 

R11 H H L H L 

R12 H H L L H 

 

In the above table, ‘H’ denotes that for that particular treatment 

condition, the given machine setting is at the high setting, while ‘L’ 

denotes that it is at a low machine setting. The high and low values 

enable verifying whether the sensors are able to track variations in the 

machine settings.  
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Table 5-3 : High (H) and low (L) levels of machine settings given as per 
Experimental matrix defined in Table 5-1. 

 

 Machine Setting Low High 

pH 3 5 

Flow Rate, ml/min 50  100  

Complexing Agent, gms 0  20  

BTA, gms 0  1  

 

 

 Various chemicals and slurry ingredients used in the above 

investigation are as follows: 

1. De-ionized water: A general vehicle for the polishing slurry 

compounds. 

2. Hydrogen Peroxide (30%) (Reagent grade from Fisher Scientific): 

intended to facilitate formation of a passivation film over the 

virgin copper surface. 

3. Nitric acid (Reagent grade, 98% pure): used to maintain acidic 

pH recommended for Cu-CMP.  

4. Citric acid (Reagent grade): used as a complexing agent. It 

combines with abraded copper oxide species and removes them 

from the wafer surface thus preventing redeposition. 
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5. Abrasives: α-alumina (average diameter 50 nm, from Buehler) is 

used as an abrasive to facilitate mechanical abrasion and 

removal of material during CMP. 

6. BTA (Benzotriazole) (Reagent grade from Aldrich): It is used to 

form a non-native film on the bare copper surface and protects 

the troughs on the surface profile from getting etched away by 

the slurry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 60 

Chapter 6:  Main Effects of various slurry chemistry 

parameters on average MRR 

 

It is important to evaluate the effect of variation of each of the 

individual machine setting on the average MRR. This, although a 

simplistic test, can be used as a good indicator of the goodness of 

experiments. It also serves as a test that enables in determining the most 

significant machine parameter that affects the average MRR. The aim of 

these tests is to demonstrate the variations  in average MRR with 

variation in the machine settings such as polishing slurry pH, 

complexing agent content, corrosion inhibiting agent content and slurry 

flow rate respectively. 

Effect of slurry pH on average MRR 
 

The variation in polishing slurry pH brings about a drastic variation 

in the average MRR in Cu-CMP. As stated in the literature review, copper 

has a tendency to dissolve actively at low acidic pH values. As the pH 

increases, the tendency to show passivation also is increased. This 

tendency of passivation causes a drop in MRR. Hence the experimental 

results agree well with the earlier research reported in the literature on 
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the effect of polishing slurry pH on MRR in Cu-CMP [46, 47]. The 

results of variation of MRR with polishing slurry pH are given in Fig. 6-1. 

 

Effect of variation of complexing agent content on average MRR 
 

The purpose of adding a complexing agent to the polishing slurry is 

to facilitate easy removal of abraded species. Complexing agent prevents 

redeposition of debris on the wafer surface. It also forms Cu-complexes 

and enhances the material removal capabilities of the polishing slurry. 

Thus, addition of complexing agent should enhance the removal 

rate. The experimental results of effect of the variation of complexing 

agent content in the slurry on the MRR are shown in Fig. 6-1. 

[CA]

[BTA]

pH

FL

-1.2

-0.8

-0.4

0

0.4

0.8

1.2

R
el

a
ti

v
e 

se
n

si
ti

v
it

y
 o

f 
a
v
g

. 
M

R
R

 t
o
 v

a
ri

o
u

s 
in

p
u

t 

(s
lu

rr
y

) 
p

a
ra

m
et

er
s

 

Fig. 6-1: Sensitivity of avg. MRR to various slurry chemistry parameters. 
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Effect of variation in the corrosion inhibiting agent content (BTA) 

on average MRR 

 
When using low pH dissolution type slurries for Cu-CMP, it becomes 

very critical to protect the low areas of the wafer surface from being 

statically etched. This ensures achievement of planarity, else only 

material removal is achieved with no improvement or in many cases 

damaged profile is obtained.  

As stated in the literature review, BTA is commonly used as a 

corrosion inhibiting agent in most Cu-CMP slurries. It forms a non-native 

inhibiting film which protects static etching of bare copper. This means 

that if BTA is added in excess than normally required, it will result in the 

formation of a thick inhibiting film causing an appreciable drop in the 

removal rate. 

Theoretically, addition of BTA should reduce the MRR. The results 

illustrated in Fig. 6-1 show that addition of BTA does reduce the MRR cf 

copper during polishing. 

Effect of variation of slurry flow rate variation on average MRR in 

Cu-CMP 

 
Slurry flow rate is a key parameter when the transport mechanisms 

beneath the wafer are considered [26, 66]. Inadequate slurry flow rate 

might give rise to problems such as flash heating due to friction, 
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scratching due to lack of lubrication otherwise facilitated by the slurry 

flow. Overall, slurry flow causes flushing of abraded products from the 

wafer pad interface.   

The removal rate of copper should increase with increase in the 

slurry flow rate, due to an increase in the flushing action of the slurry.  

The effects of all the above slurry chemistry parameters on the 

average MRR are illustrated in Fig. 6-1. The y-axis is the difference in the 

values of average MRR for each of the slurry chemistry parameter. 
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Chapter 7:  Sensor Signal Analysis and Feature 

Extraction 

 

As detailed in the experimental section, we incorporated vibration 

sensors in the polishing machine to aid in process modeling and 

monitoring capabilities. The sensor data acquired is analyzed in the time 

and the frequency domain. Pertinent features are extracted from the 

sensor signal and used to model the process performance as well as 

track variations in the process parameters.   

Fig. 7-1 shows a time series of the wired sensor signal and Fig. 7-2 

shows the frequency domain representation of the wired sensor signal for 

treatment condition R 11 (see Table 5-1). Similar data is also acquired 

from the wireless vibration sensor. The only difference, as stated earlier, 

is that, the wireless sensor samples at a lower sampling frequency of 500 

Hz. Fig. 7-3 shows a time series of data acquired from the wireless sensor 

signal and Fig. 7-4 shows the frequency domain representation of the 

wireless sensor data. 
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Fig. 7-1: Time series representation of wired sensor data for treatment 
condition R11 (pH = 5, down pressure = 1 psi, slurry flow rate = 
50 ml/min, complexing agent content = 20 gms/lit. BTA 
content = 0 gm). Red: Polish start, Green: Polish end   
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Fig. 7-2: Frequency domain representation of wired vibration sensor 
signal for treatment condition R 11. 
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Fig. 7-3: Time series data from wireless vibration sensor signal for R 11 
(Red: Polish start, Green: Polish end) 
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Fig. 7-4: Frequency domain representation of the wireless vibration 
sensor signal for treatment condition R 11. 
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Salient features are extracted from both wired and wireless sensor 

signals. Table 7-1 lists eight candidate features extracted from wired 

vibration sensor signal and Table 7-2 lists all the six candidate features 

extracted from the wireless vibration sensor signal. Some features listed 

in Tables 7-1 and 7-2 are extracted from the time series of the sensor 

signal while others are extracted from the frequency domain of the 

sensor signal.  

Table 7-1 : Candidate feature matrix for wired sensor signal for treatment 
condition R 11  

 

PTP 

(mV) 

std 

dev 

Freq 1 

(Hz) 

Energy in 

Freq 1 

(mV
2
) 

Freq 2 

(Hz) 

Energy 

in Freq 2 

(mV
2
) Skewness Kurtosis   

Polishing 

Time, 

(sec) 

MRR, 

(mg/sec) 

6.564 0.420 119.62 422.323 1343.50 44.768 -0.0504 9.763   20 0.43 

15.475 1.023 328.57 96886.91 1413.57 626.218 -0.245 16.942   40 0.605 

16.478 1.179 219.72 119087.23 1279.09 1063.954 -0.162 12.164   60 0.0245 

15.574 0.779 229.28 4511.189 1317.34 197.737 0.102 18.194   80 0.02575 

 

Table 7-2 : Candidate feature matrix for wireless sensor signal for 
treatment condition R 1  

 

PTP  

(µV) std.dev. 

Freq 1 

(Hz) 

Energy in 

Freq 1 (µV
2
) Skewness Kurtosis   

Polishing 

Time 

(sec) 

MRR, 

(mg/sec) 

1112.5 101.1529 123.41 1.0397E+12 -0.3201 2.097437   20 1.406 

1994 103.6296 123.04 1.0114E+12 1.6820 20.0108   40 0.78 

1209.5 100.5716 123.77 2.3009E+12 -0.0139 2.30975   60 0.715 

853.5 87.35064 121.70 1.3463E+12 -0.0143 1.658281   80 0.583 

Machine settings for R1 are: pH = 3, down pressure = 1 psi, slurry flow 

rate = 50 ml/min, complexing agent content = 0 gms/lit. BTA content = 0 

gm. 
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For example, the peak-to-peak amplitude (PTP) is extracted from the time 

domain analysis of the signal, while Freq1 (which refers to the first 

dominant frequency peak of the signal) is extracted from the frequency 

analysis of the sensor signal. The features extracted from the wired 

sensor are: PTP, standard deviation, first predominant frequency (Freq1), 

energy under Freq1, second predominant frequency (Freq2), energy 

under Freq2, signal skewness, and kurtosis. While the features extracted 

from the wireless vibration sensor are PTP, standard deviation, 

predominant frequency (Freq1), energy under Freq1, signal skewness 

and, kurtosis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 69 

Chapter 8:  Process Modeling using Response Surface   

Analysis 

 

Based on the experimental and sensor data collected, three types 

of regression models are investigated. The response/predictor variables 

of these three models are as follows: 

Model (1): Response variable is MRR and predictor variables are 

the process parameters (machine and slurry chemistry settings). 

Model (2): Response variable is MRR and predictor variables are 

the sensor features. 

Model (3): Response variables are the machine settings and 

predictor variables are the sensor features.  

 For model (1), the response surface analysis is conducted using the 

four original machine settings, namely, slurry pH, complexing agent 

content of the slurry, slurry flow rate, and BTA content as predictor 

variables. From the data analysis in Section 5, it can be seen that a total 

of 14 sensor features are extracted from the time series data recorded by 

the two sensors. If we directly apply the response surface methodology 

which takes the 14 sensor features as predictor variables, we may come 

up with a complex model with a large number of parameters. In order to 
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address this problem, the principal component regression (PCR) is used 

to fit a more compact model while still maintaining high predictability. 

 PCR is a technique used to combat multilinearity issue of the 

predictor matrix which is composed of a number of runs of predictor 

variables at different levels. This method uses the principal component 

analysis (PCA) [67] to transform the original predictor variables into a 

new set of orthogonal variables, called principal components. 

Subsequently, the new orthogonal variables are ranked in terms of their 

importance. After eliminating the least important principal components, 

a regression analysis of the response variable, based on reduced set of 

principal components is performed using ordinary least squares 

estimation. Details of PCR can be found in Ref. [68].  

In order to apply PCR, PCA is carried out first on the predictor 

matrix which is composed of the original 14 sensor features obtained at 

different levels of process parameter settings. Thereafter, nine “key” 

features (principal components) remain which are significant (keeping 

95% of the original variation) in capturing total variation. These key 

features are used to build a regression model for average MRR and 

formulate regression models to track variations in the machine settings, 

viz. pH of polishing slurry, complexing agent content, BTA content and 

slurry flow rate. 
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After conducting principal component analysis (PCA) on the data, 

the following nomenclature is used: (1) W1 to W4: the principal features 

extracted from the wired vibration sensor data, and (2) WL1 to WL5: the 

principal features extracted from the wireless vibration sensor data. 

 The model performance is evaluated using such methods as R2, 

R2
adjusted and R2

predicted. Here, R2 is that statistic which gives information 

about the goodness of the fit of the regression model given by the 

equation: 

R2 = 1- (SSE/SST) 

Here, SSE is the sum of the squares of the differences of the predicted 

values and the grand mean. SST is the sum of the squares of the 

difference of the dependent variable and its grand mean. R2
adjusted is a 

modification of R2 that adjusts for the number of predictor terms in a 

model. Unlike R2, the R2
adjusted increases only if the new term improves 

the model more than would be expected by chance. The R2
adjusted can be 

negative, and will always be less than or equal to R2. R2
predicted is used in 

regression analysis to indicate how well and accurate the model predicts 

responses for new observations. In contrast, R2 indicates how well the 

model fits the given data. R2
predicted prevents over-fitting of the model and 

can be more useful than R2
adjusted for comparing models because it is 

calculated using observations not included in model estimation. A 
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detailed discussion of the results from the three aforementioned 

regression models is given in the following subsections. 

8.1 Model 1: Modeling Average Material Removal Rate (MRR) with 

Process Parameters 

Average Material Removal Rate (MRR) is fitted using response 

surface analysis against the process parameter settings, namely, pH of 

slurry, complexing agent content, BTA content, and slurry flow rate. Two 

way interactions between process parameters, which can be important in 

the prediction of MRR, are also incorporated in the model. For e.g., in 

Cu-CMP practice the interaction between the pH and the action of the 

complexing agent is important [55].  

Table 8-1 : Regression model of MRR with machine settings with two way 
interactions (R2 = 94.2%, R2

adjusted. = 92.2%m R2
predicted = 

88.47%)  

 

Predictors p - val  Predictors p - val 

constant 0  BTA 0 

Time 0.224  Time*CA 0.003 

pH 0  Time*BTA 0 

Flow Rate (Fl) 0.021  pH*CA 0.002 

Complexing Agent (CA) 0  Fl*CA 0 

 

Regression coefficients are given in Table 8-1. Fig. 8-1 shows the 

normal probability plot for the regression model of MRR with machine 

settings and key interactions between them. Although its direct influence 
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is minimal, as gathered from a large p-value, Flow rate term is retained 

in the model because it forms part of a significant interaction term. 

 

Fig. 8-1 : Normal probability plot of residuals for regression model of 
MRR against machine settings only namely, slurry pH, 
complexing agent content of slurry, BTA content and slurry 
flow rate. 

 

It can be seen from Table 8-1 that a high predictability ca be 

achieved by response surface techniques. The model not only gives a 

high goodness of fit for the experimental data but also gives high 

predictability (~88%) for predicting average MRR for any given machine 

setting combination. The high R2
predicted value validates the fact that this 

model holds good for values of machine settings other than those tested 

in this investigation. 
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8.2  Model 2: Modeling average MRR with Key Sensor Features 

Average MRR is fitted against key sensor features and their 

significant two way interactions. The aim here is to monitor the Cu-CMP 

process independent of the machine settings. The model though has a 

large (24) number of terms; it can be effectively used to monitor the MRR 

of the process. This also establishes the effectiveness of incorporating 

sensors in Cu-CMP process. Table 8-2 lists various terms and their p-

values in the regression model with key sensor features. 

Table 8-2 : Regression model of average MRR with key sensor features 
and two way interactions (R2 = 97.7%, R2

adjusted = 92.66%, 
R2

predicted = 65.84%) 

Predictor Coefficient p-val  Predictor Coefficient p-val 

Constant 0.000942 0.981  W1*WL4 -0.008851 0.002 

W1 -0.005502 0.003  W1*WL5 0.01149 0.004 

W2 0.000979 0.028  W2*WL3 -0.006772 0.002 

W3 0.002464 0  W2*WL5 -0.001512 0.484 

W4 -0.002647 0.027  W3*WL4 0.002502 0.003 

WL1 0.006323 0.009  W4*WL4 -0.002401 0.004 

WL2 0.002488 0.002  WL1*WL2 -0.00131 0.337 

WL3 0.011006 0  WL1*WL4 -0.00626 0 

WL4 -0.003465 0.017  WL1*WL5 0.005988 0 

WL5 0.007973 0.002  WL2*WL3 0.004771 0.012 

W1*W4 -0.009447 0  WL2*WL5 0.007821 0 

W1*WL1 0.010952 0.005  WL4*WL5 -0.000537 0.446 

W1*WL3 0.018177 0.002     

 

MRR=Constant-0.005502*W1+0.000979*W2+ …… -0.000537*WL4*WL5 
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The use of sensor signals for modeling the process performance, 

here MRR, has been proven effective. Good predictability is achieved from 

the model. Also this model turns out to be fairly predictive for data other 

than that tested in this investigation owing to the modest R2
predicted 

achieved from the model. 

8.3 Model 3: Modeling the Variation in Machine Settings using the 

Sensor Data 

As stated earlier, monitoring of the process variables is one of the 

objectives of this study. It is important to monitor these variations as 

small drifts can cause significant variation in the output or efficiency of 

the process. For instance, the etching behavior of copper can drastically 

change with decrease or increase in the pH of the polishing slurry [1, 48]. 

The dissolution rate of oxides also varies with pH [47]. In the pH range 

considered here, cupric oxide is less soluble than cuprous oxide [46]. The 

complexing action of citric acid also varies drastically with change in the 

pH value [55]. 

 Non-native film formed due to addition of BTA also plays a pivotal 

role in how efficiently the planarity is achieved. The key to success for 

dissolution based slurries with an inhibitor lies in the fact how efficiently 

the film is formed and how thick and integral the film is. The dissociation 

of BTA in any solution is pH dependant. The point being that all the 

machine settings are highly interrelated [2]. 
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8.3.1 Modeling variations in slurry pH using key sensor features 

Table 8-3 shows various terms in the regression model and their 

respective p–values for slurry pH using key sensor features obtained after 

conducting PCA on the candidate features only.  

Table 8-3 : Regression model of pH of Polishing slurry with key sensor 
features and two way interactions (R2 = 99.8%, R2

adjusted. = 
99.12%, R2

predicted = 72.81%) 

 

Predictor Coefficient p-val  Predictor Coefficient p-val 

Constant 1.6558 0  W2*W4 6.3849 0 

W1 -2.1954 0  W2*WL3 -7.1305 0 

W2 -0.213 0.624  W2*WL4 -1.7246 0.002 

W3 -0.4661 0.023  W3*WL2 -3.4001 0 

W4 -7.1823 0  W3*WL5 1.554 0.001 

WL1 6.3187 0  W4*WL1 7.3523 0 

WL2 -4.9894 0  W4*WL3 4.7544 0 

WL3 -1.0112 0.055  W4*WL4 -1.1951 0.026 

WL4 -1.1548 0  W4*WL5 -1.3933 0.047 

WL5 -0.1724 0.692  WL1*WL2 5.9046 0 

W4*W4 -3.4289 0  WL1*WL4 5.1372 0 

WL5*WL5 -1.6145 0  WL1*WL5 -2.5463 0 

W1*W2 -5.1139 0  WL2*WL3 -5.5969 0 

W1*WL1 7.9113 0  WL2*WL4 5.8692 0 

 

pH = Constant-2.1954*W1-0.213*W2 ……+5.8692*WL2*WL4 
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Although the number of terms in the model is high (27), it is useful 

in the context of simultaneous process monitoring, i.e., the same feature 

combination is effective in tracking other setting as discussed further.  

The sensor data is very effective in tracking the variations in polishing 

slurry pH. Excellent goodness of fit is observed as seen from the very 

high regression coefficient. The model also has a good predictability, as 

seen by the modest R2
predicted (~72%) achieved from the model.  

8.3.2 Modeling variations in complexing agent content using key 

sensor features 

Variations in complexing agent content of the polishing slurry are 

linearly regressed with the sensor data only. Table 8-4 shows various 

terms and their respective p-values in the regression model. As is the 

case with the pH model, the number of terms is again high (28) but it can 

be very effectively used for in-situ monitoring of variations in the 

complexing agent content in the slurry.  

As stated in the literature review, the concentration of complexing 

agent content in the polishing slurry drastically affects the MRR of 

copper. It also has a strong interdependence on the slurry pH and 

oxidizing agent content of the slurry. To the best of the author’s 

knowledge, till date no commercial sensors are available which can 

effectively track the variation of complexing agent content in the slurry. 

From the model given in Table 8-4, the sensor data is very effective in 
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tracking the variation in the citric acid content of the polishing slurry. 

Citric acid is one of the most preferred complexing agent used in Cu-CMP 

slurries.  

Table 8-4 : Regression model of complexing agent in polishing slurry with 
key sensor features and two way interactions in between them 
(R2 = 99.96%, R2

adjusted = 99.78%, R2
predicted = 92.73%) 

 

Predictor Coefficient p-val  Predictor Coefficient p-val 

Constant -13.236 0  W1*W2 106.245 0 

W1 62.081 0  W1*W3 -62.212 0 

W2 211.363 0  W1*WL2 17.741 0.003 

W3 -40.665 0  W1*WL3 133.496 0 

W4 -90.385 0  W2*W3 82.338 0 

WL1 4.014 0.006  W2*W4 88.929 0 

WL2 -45.381 0  W2*WL1 -38.387 0 

WL3 128.896 0  W2*WL3 -159.726 0 

WL4 37.233 0  W3*W4 -18.797 0 

WL5 37.824 0  W3*WL3 -16.27 0.001 

W1*W1 137.628 0  W4*WL1 48.553 0 

W2*W2 -64.141 0  W4*WL2 -50.13 0 

W4*W4 -50.246 0  W4*WL3 97.368 0 

WL2*WL2 -43.08 0  WL2*WL4 143.309 0 

WL3*WL3 -34.454 0     

 

Complexing agent=Constant+62.081*W1+211.363*W2... 

...+143.309*WL2*WL4 
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The model not only effectively tracks the variations in this 

investigation (as seen from an excellent regression coefficient of ~99%), 

but also has a very good predictability for the data which is beyond that 

examined in this investigation (which can be seen from the very high 

R2predicted value of ~92%). 

This model can be used a building block for constructing more 

dynamic models which can be used for predictive modeling of slurry 

chemistry drifts which can predict in-situ upcoming changes,  hence 

helping in taking proactive actions to prevent the consequences arising 

from these drifts.  

8.3.3 Modeling the BTA content using key sensor features 

 

BTA content used in the slurry is on the order of milligrams per 

liter of the solution. Sensing and monitoring of the BTA content in-situ is 

a difficult task. It needs control, as small drifts or changes in the BTA 

content changes the film formation dynamics on the bare copper surface 

quite drastically. Along the same line as the models for pH and 

complexing agent, BTA content of the polishing slurry is linearly 

regressed against sensor features. This model provides a reasonable fit, 

R2 = 90.21%, R2
adjusted = 81.97%.  

Table 8-5 shows various terms and their respective p–values in the 

regression model. Although the number of terms in the model is 
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significantly high (16), the predictability achieved is appreciable, 

especially as there are no sensors known to track the variation in BTA 

content in the slurry. 

Table 8-5 : Regression model of BTA against key sensor features and two 
way interactions in between them (R2 = 90.21%, R2

adjusted = 
81.97%, R2

predicted = 58.14%) 

 

Predictor Coefficient p-val  Predictor Coefficient p-val 

Constant -1.4326 0  WL5 -0.5565 0 

W1 -1.4178 0  W2*W2 0.8727 0.001 

W2 -0.5938 0.071  W3*W3 1.0486 0.007 

W3 4.0635 0  W1*W3 7.3137 0 

W4 -2.6194 0  W1*W4 -2.4383 0.001 

WL1 -0.1268 0.356  W2*W3 -2.7303 0 

WL2 -0.4223 0.018  W2*WL3 -1.0195 0.059 

WL3 0.7584 0  W3*WL1 0.6037 0.007 

WL4 -0.2186 0.048     

 

BTA = Constant-1.41*W1-0.5938*W2…+0.6037*W3*WL1 

 

A change of few milligrams of BTA in the slurry can shift the 

performance of the process by a large value. The content of BTA in the 

slurry is even more critical as it directly affects the slurry stability, which 

in turn can be damaging considering the damage inflicted by agglomerate 

formation on the overall surface quality by means of scratched surface, 

damaged dielectric layer and so on so forth. 
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8.3.4 Modeling slurry flow rate variations using key sensor features 

 

Slurry flow rate becomes an important factor when considering the 

tribology at the wafer-pad interface. It plays a significant role in 

determining the transport of reacting species uniformly beneath the 

wafer. This, in turn, determines the reactions that would take place and 

the removal of reaction products (or debris) from the reaction site [66, 69, 

70]. 

Table 8-6 : Regression model of variation in slurry flow rate with key 
sensor features and two way interactions between them (R2 = 
86.31%, R2

adjusted = 78.22%, R2predicted = 64.65%) 

 

Predictor Coefficients p-val  Predictor Coefficients p-val 

Constant 6.658 0.566  WL3 -30.659 0 

W1 -94.012 0  WL4 21.325 0.007 

W2 -82.684 0  WL5 31.515 0.001 

W3 -17.966 0.01  W1*W2 -105.163 0 

W4 -59.678 0  W4*WL1 97.572 0 

WL1 35.631 0.001  WL3*WL4 -69.637 0 

WL2 -11.127 0.231  WL3*WL5 -76.796 0.001 

 

Flow rate = Constant-94.012*W1-82.684*W2…-76.796*WL3*WL5 

 

The variation in the flow rate is linearly regressed with sensor 

features only. Any change in the slurry flow rate is predicted with good 
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accuracy by the model. Table 8-6 gives regression model of the slurry 

flow rate with sensor features. 
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Chapter 9:  Electrochemical Polishing of Copper 

All machining processes that rely on chemistry and a DC power 

source for material removal work on the basic principles of the simple 

electrochemical cell and Faraday’s law that governs the cell. A brief 

description of a simple electrochemical cell and pertinent definitions are 

given below. As a matter of fact electrochemical machining (ECM) is 

controlled and intentional corrosion of metal surfaces to get high quality 

surfaces as well as remove excess material from areas of interest. 

 When the oxide free surface of a metal becomes exposed to an 

oxidizing solution, positively charged metal ions tend to pass into the 

solution, leaving behind electrons behind in the metal. 

M � Mn+ + ne- 

The accumulation of negative charge on the metal due to the residual 

electrons leads to an increase in the potential difference between the 

metal and the solution. This potential difference is called the electrode 

potential, which then becomes more negative. The change in the 

potential tends to retard the dissolution of metal ions and encourages the 

deposition of dissolved metal ions from the solution onto the metal. 

Continuation of the dissolution and deposition of metal ions would result 

in the metal reaching a stable potential such that the rate of dissolution 
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becomes equal to the rate of deposition. This potential is termed as 

reversible potential and its value depends on the concentration of 

dissolved metal ions and the standard reversible potential for unit 

activity of metal ions in the solution. This potential can be calculated 

using the Nernst equation for non unit concentrations of dissolved ions.  

 In practical corroding solutions the scenario is different. The 

potential of a metal in a solution does not often reach the reversible 

potential but remains more positive because electrons can be removed 

from the metal by alternative reactions i.e. the excess electrons generated 

due to dissolution of metal ions are taken away by “electron acceptors”. 

In acid solutions, electrons can react with hydrogen ions adsorbed on the 

metal surface from the solution to produce hydrogen gas. 

2H+ + 2e-  � H2 

The occurrence of the above reaction permits the continued passage of 

an equivalent quantity of metal ions into solution i.e. there is always a 

way for electrons generated on the metal surface to be accepted. This 

means that instead of metal depositing by reaction if metal ions from the 

solution and electrons on the metal surface, the metal ions just dissolve 

and electrons are taken away by the hydrogen evolution reaction. This, 

leads to corrosion of metal. 

In neutral solutions, the concentration of hydrogen ions is too low for 

hydrogen evolution to take place, but electrons in the metal can react 
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with oxygen molecules adsorbed on the metal surface from air dissolved 

in the solution to produce hydroxyl ions.  

In electrochemical terminology, an electrode at which an oxidation 

reaction occurs is called an anode. The process of oxidation involves loss 

of electrons by the reacting species. An electrode at which a reduction 

reaction occurs is called a cathode. Reduction involves a gain of 

electrons. The reduction of hydrogen ions and oxygen are known as 

reduction reactions. 

Typically a simple electrochemical cell consists of an anode which 

donates electrons or oxidizes. These electrons are consumed by the 

cathode which accepts these electrons and undergoes reduction. This 

combination of corrosion process (anodic reaction) of the metal dissolving 

as ions generates some electrons, which are consumed by a secondary 

process (cathodic reaction). These two processes have to balance their 

charges. The sites hosting these two processes can be located close to 

each other on the metal's surface, or far apart depending on the 

circumstances [71]. 

The current semiconductor fabrication scenario enables industry to 

use conventional CMP techniques for polishing the overburden. But as 

the industry makes inroads into the 32 nm era, alongwith incorporation 

of low-k dielectrics for reduced time lags, the limitations of CMP become 

more evident. These constraints are as follows: 
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1. To reduce the time lag that is accompanied with miniaturization of 

circuitry, a possible alternative suggested is to use low-k 

dielectrics. 

2. These dielectrics are inherently soft and porous. The mechanical 

strength associated with these materials is very low and the 

structural integrity is lost at much lower forces than the current 

materials being used.  

3. Hence, the forces that are involved in conventional CMP process 

tend to damage the low-k dielectric materials being used. 

This calls for a much more ‘soft’ approach for polishing than CMP. A 

possible method being suggested is electropolishing of copper in various 

chemical slurries. This method almost completely eliminates the 

mechanical aspect of the process. The fundamentals of this process are 

the same as electrochemical machining. It is controlled dissolution of a 

metal into reacting slurry facilitated by the application of anodic 

overpotential.   

 Concentrated phosphoric acid-based slurries have been used to 

realize electrochemical polishing of copper [72, 73]. Conventional 

electropolishing processes are realized beyond the current density where 

the dissolution is dependant on the rate of mass transfer of a reactant to 

or from the surface being polished. This mass transfer limiting rate is a 

function of viscosity of the electrolyte, the diffusion coefficient of the 
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reactant and the convection conditions present in the polishing bath. 

When performing electropolishing at this mass transfer limiting region, 

the peaks on the electrode surface are polished preferentially as they are 

more accessible to the bulk solution [74]. Formation of a diffusion layer 

above the surface to be polished is a key step in copper electrochemical 

planarization. In fact the ability to achieve planarity is almost in entirety 

depends upon the dynamics of formation of this boundary layer. The 

schematic shown in Fig. 9-1 depicts the mechanism by which planarity 

is achieved in copper electrochemical polishing. The peaks on the profile 

have easy access to the bulk slurry, and are reacted upon preferentially. 

Once the first peak is dissolved, the next highest regions on the profile 

get reacted upon. This way over a period of time planarity is achieved. 

 To elucidate the mechanism by which planarity is achieved in 

copper electrochemical polishing, consider the system analogous to a 

resistance path for the slurry reactants. The path of highest resistance 

will be removed the least, while the parts that have the least resistance 

shall be removed preferentially. The schematic of which is as shown in 

Fig. 9-2. 
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Fig. 9-1: Schematic of Copper overburden electropolishing [75]. 

  

  

 

Fig. 9-2: Schematic illustrating the analogy behind achieving planarity 
during copper electrochemical polishing [76].   
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Fig. 9-3 illustrates the potentiodynamic behavior of copper in 

phosphoric acid slurry used in electrochemical polishing. In the initial 

stages (region A-B) as the anodic potential is increased, there is a rapid 

increase in the corrosion current flowing through the system. Further 

increase of anodic voltage (region B-C) gives rise to a reduction in the 

polishing currents. This indicates a start of the formation of a resistive 

film or layer over the surface to be polished. From the pattern of 

corrosion current the resistance of the film formed increases with further 

increase in anodic voltage. Inherently the corrosion current remains 

constant in this region (region C-D). This is the region of interest, and 

from the surface profile plots, it can be seen that the surface is highly 

bright and polished in this region than in any other region. Further 

increase in the voltage induces anodic reaction of oxygen evolution, this 

cause intense pitting on the surface of copper sample being polished. The 

damaged surface is portrayed in the last surface plot shown in Fig. 9-3. 
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Fig. 9-3: Various regions of copper electropolishing; the constant current 
plateau is the region of interest where actual surface 
improvement is taking place [77]. 

 

Anodic polarization of metallic surfaces at low potentials causes 

dissolution at preferred crystallographic locations, such as grain 

boundaries. This results in etching and consequently dulling of the wafer 

surface. During etching, anodic current densities increase with 

increasing potential by an activation polarization relationship. If the 

anodic overpotential is increased beyond a certain threshold, the anodic 

current density stops increasing or becomes insensitive to the variations 

in the anodic potential. This threshold current density depends on 

various factors viz. solubility of dissolving species in the particular 
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electrolyte, the concentration, temperature, the diffusion coefficient, and 

fluid dynamics conditions prevalent. After this threshold is attained the 

dissolution of metal surface is controlled by mass transfer through the 

surface boundary layer. If the outer boundary layer were smooth, then 

the peak points on the metal surface would oxidize preferentially as they 

are more accessible to the bulk solution resulting in the generation of a 

smooth and shiny surface. If the potential is increased further, oxygen 

evolution reactions start and are marked with an increase in the current 

density. 

 Electropolishing of bulk copper is drastically different from 

planarization of thin copper films for ULSI applications. Here, the 

disparity in topography is significant in proportion to the thickness of the 

copper film. As stated above, electropolishing occurs only when a 

boundary layer is established over the virgin metal surface. Hence the 

amount of copper dissolution required to form this boundary layer 

dictates how effective electropolishing the surface would be [78]. 

Two mechanisms are proposed for the existence of the mass 

transport limited for the progress of the electropolishing process: 

1. Salt film mechanism. 

2. Acceptor mechanism. 

A brief discussion of these two mechanisms is given in the following: 
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Salt Film Mechanism 

 Metallic ions accumulate near the electrode surface until the 

solubility of the salt is exceeded. At this instance a new phase nucleates 

and a salt film precipitates on the electrode surface. In the presence of 

this film the concentration of cationic and anionic components of the salt 

are determined by their solubility product, and the dissolution rate is 

subsequently dictated by mass transfer of the metallic ions from the 

film/electrolyte interface to the bulk solution. The schematic of the salt 

film mechanism is as shown in Fig. 9-4.  

Iron polishing in sodium chloride solution is an ideal experimental 

validation of the salt film mechanism. During iron electropolishing the 

ferrous ions at the electrode surface increase until the solubility limit for 

ferrous chloride is exceeded. Once this limit is exceeded a salt film 

precipitates.  

Acceptor Mechanism 

 A schematic of acceptor mechanism for the formation of diffusion 

limiting layer is as shown in Fig. 9-5. This mechanism is more suitable 

for the Cu/phosphoric acid polishing system [73]. In this mechanism, it 

is hypothesized that the metallic ions must be complexed (by water 

molecules in case of aqueous electrolytes) before they are transported 

away from the electrode surface. Thus, the dissolution of metal is limited 

by transport of the complexing agent to the electrode surface. 
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Fig. 9-4: Salt film Mechanism for formation of limiting current density 
plateau in copper electropolishing [79]. 

 

 

Fig. 9-5: Acceptor mechanism supporting the existence of limiting 
current density plateau during electropolishing [79]. 

Copper ECP has its own advantages and limitations. The key merit 

of this process is that of reduced post-process cleaning issues. As 
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compared to conventional CMP, where abrasive adhering to the substrate 

is a key issue which then brings along with it complicated cleaning 

methods.  

 Simplistically, average feature sizes at this technological node are 

45 nm, while the average abrasive size of α-alumina abrasive particles 

used is ~50 nm. This means that even a single nano abrasive can cause 

a damaged feature on the chip. Previous research on post-CMP cleaning 

mechanisms showed that in non-contact type cleaning mode, removal of 

particles of sizes 100 nm and below are difficult. Using contact mode for 

cleaning shows that higher brush speeds are required to remove 

particulate contaminants remaining on the substrates after CMP [80]. 

This becomes more detrimental when using soft low-k dielectric materials 

on the microchip. 

 Another advantage when working with copper ECP is that of easy 

and effective end point detection. Copper ECP involves precise tuning of 

process parameters such as polishing voltage which gives a 

characteristic current waveform for different materials. This current 

waveform can be monitored to determine when polishing has to be 

stopped [81]. More specifically, the current density while polishing a 

copper overburden will be noticeably different than that when the slurry 

reactants make contact with the dielectric or barrier layer just beneath 

the copper layer. As soon as this change in current is observed it can be 
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confirmed that the copper layer has been polished successfully and 

completely. 

 Fig. 9-6 shows the logic of easy end-point detection, The sudden 

drop in polishing current with respect to polishing time is an indicator 

that copper layer has been polished and that polishing has reached its  

end. 

  

Fig. 9-6: End-point detection during copper ECP [81]. 

 

9.1 Effects of slurry chemistry on copper electrochemical polishing 

Conventional electrochemical polishing slurry contains the 

following components: 

1. Phosphoric acid. 
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2. DI water. 

3. Ethylene glycol/Polyethylene glycol. 

4. Acetic acid. 

 

The concentrations of each of these additives plays a major role in 

deciding the Material Removal rate (MRR) as well as surface finish (Ra) of 

the copper wafer. Especially as the conductivity and slurry reactivity is 

affected drastically with small variation in concentrations. The effect of 

various slurry components is discussed in the following: 

Effect of phosphoric acid content in the slurry 
 

The phosphoric acid content of the slurry determines the 

conductivity of the slurry. This is a direct measure of the material 

removal capability of the slurry. The higher the phosphoric acid content 

of the slurry, the lesser the conductivity and hence lesser the removal 

rate capabilities [77]. Fig. 9-7 shows the trend of polishing currents with 

polishing time plotted for varying concentrations of phosphoric acids. It 

can be seen that for dilute phosphoric acid slurries, the conductivity is 

very high and hence the pattern of material removal is more on 

uncontrolled dissolution, hence the surface finish obtained is 

unacceptable. Severely roughened surface is obtained when polishing 

with dilute phosphoric acid slurries. But as the concentration of 

phosphoric acid content in the slurry is increased, the conductivity 
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drops, also reducing the material removal capability, but this shows a 

marked improvement in the surface quality produced from polishing. 

 

Fig. 9-7: Variation in conductivity of polishing slurries with variation in 
the content of phosphoric acid and its effect on the surface 
generated post polishing [22]. 

 

The approach suggested here relates to the use of dilute 

phosphoric acid slurries to facilitate fast material removal in the initial 

stages of polishing. The results obtained will be discussed in the 

following sections. 

Effect of DI water content in the slurry 
 

As discussed in the previous section of effect of phosphoric acid 

content of the slurry, DI water content directly affects the dissolution 
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behavior of copper in phosphoric acid based slurries. As shown in Fig. 9-

7, dilution increases the conductivity of the slurry, thus increasing the 

removal rate of copper in any given slurry. However, excessive dilution 

might result in a severely pitted surface due to uncontrolled dissolution.  

Effect of Ethylene glycol/Polyethylene glycol in the slurry 
 

The most important factor in copper electrochemical polishing is 

that of tackling oxygen evolution reaction taking place at higher anodic 

potential. Huo et al. [82] show that addition of ethylene glycol results in 

drastic improvement in the attained surface roughness of the polished 

copper sample. The results presented in this investigation also agree with 

the findings of Huo et al. [82]. 

Effect of acetic acid in the slurry 
 

Liu et al. [83] investigated the role of multiple additives on damascene 

copper electropolishing. Behavior of copper in organic acid accelerator 

and alcohol based phosphoric acid slurries were investigated. A 

mechanism governing improved planarizing efficiency was proposed. The 

additives perform the task of reducing the acidity as well as increase the 

resistance of troughs on the reacting surface. Both these actions inhibit 

Cu removal, hence improve the surface planarity. 

Fig. 9-8 shows a schematic of a mechanism of acetic acid and 

alcohol based phosphoric acid slurries. These slurries show highest 

polishing efficiencies. This is especially critical when considering pattern 
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density and size effects during polishing. As seen from the above section, 

considerable efforts have been made to investigate the mechanisms and 

effect of various slurry chemistry effects on process performance. 

 

 

Fig. 9-8: Effect of addition of acetic acid and alcohol on copper electro 
chemical polishing [83].   

 

But from the process control and process performance monitoring 

standpoint, no work has been yet performed. In this investigation we 

mount vibration sensors and analyzed the sensor signal to model the 

process performance as well as track the variations in the process 

parameters i.e. the slurry chemistry settings. 
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9.2 Experimental Apparatus and Design of Experiments 

A Buehler Electromet III electropolisher was used to carry out the 

experiments. Copper samples of 4” diameter are used as samples. The 

area polished is a central circular region of diameter 1”. The polishing 

voltage during the experiments was set to a constant value of +1.1 V DC. 

The primary aim of this set of experiments is to validate the use of 

vibration sensors to monitor the process dynamics and to study and 

verify experimentally the effect of variations in the process output (MRR 

and Ra) with known variations in process inputs (slurry chemistry). 

A wireless vibration sensor based on the MOTEiv technology 

sampling at 500 Hz is mounted on the back side of the wafer, thereby 

being very close to the actual process can sense even small changes in 

the process characteristics. Most of the vibrations associated with the 

ECP process are flow induced vibrations. They can be related to the 

formation of diffusion limiting layer over the substrate surface and also 

in some cases initiation of oxygen evolution reaction. We do not have 

experimental evidence which correlates exactly the vibration patterns to 

the abovementioned process characteristics. This investigation is aimed 

at investigating the effectiveness of vibration sensor signals in better 

estimating the process performance as well as tracking the changes in 

preset process parameter settings. MRR is arrived by measuring the disc 

weight after each 1-minute polishing runs. Surface roughness is 
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obtained by examining the wafer after such 1 minute polishing run 

under a ADE MicroXAM, a no contact type laser interferometric surface 

profiler. Surface roughness is analyzed at 6 locations after each 1 minute 

polishing cycle. Each experimental run consists of 3 such polishing runs. 

The vibration sensor and the weighing scale are the same as from the 

previous Cu-CMP experimental setup. 

 

 

Fig. 9-9: Experimental apparatus used to conduct copper electro 
chemical polishing experiments. 
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Design of Experiments 
 

A Taguchi L8 experimental matrix is leveraged to determine the 

effect of slurry chemistry effects on Material Removal Rate (MRR) and 

average surface roughness (Ra) during copper electro chemical polishing. 

The matrix has phosphoric acid, water content and salt content as the 

factors; the effect of which on MRR and Ra is to be determined. We 

implemented a L8 matrix here for the reason that we have 3 factors in 

the matrix and these factors are investigated at two levels i.e. high and 

low.  

Table 9-1: Experimental matrix implemented in copper electropolishing 
experiments. 

 

Run 

No. 

Phosphoric 

Acid Water 

Copper 

Sulfate 

R1 L L L 

R2 L L H 

R3 L H L 

R4 L H H 

R5 H L L 

R6 H L H 

R7 H H L 

R8 H H H 
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Table 9-2: High and low levels of various factors investigated in Copper 
electrochemical polishing using phosphoric acid slurry 
chemistry. 

 

Factor High Low 

Phosphoric Acid 15 M 10 M 

Water 15 M 10 M 

Copper Sulfate 0.2 M 0 M 

 

Table 9-1 lists the experimental matrix utilized to carry out the 

electropolishing experiments, and Table 9-2 lists the high and low values 

for the factors investigated in Table 9-1. Each polishing run consists of a 

total of 3 minutes of polishing divided into 3 polish steps of 1-minute 

duration each. This polishing slurry will be henceforth referred to as 

“phosphoric acid slurry chemistry”. 

As acetic acid and alcohol based slurries also showed enhanced 

polishing efficiencies, a second experimental matrix was formulated to 

test the effect of ethylene glycol content as well as acetic acid content on 

the behavior of copper during electrochemical polishing.  
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Table 9-3: Experimental matrix implemented to study the effect of 
ethylene glycol and acetic acid content in polishing slurry on 
copper electrochemical polishing. 

 

Run No. Ethylene Glycol Acetic acid 

R1 L L 

R2 L H 

R3 H L 

R4 H H 

 

Table 9-4: High and low levels of factors investigated in Copper 
electrochemical polishing using acetic acid slurry chemistry. 

 

Factor High Low 

Ethylene Glycol (EG) 300 ml 150 ml 

Acetic acid (AA) 90 ml 50 ml 

 

Table 9-3 illustrates the experimental matrix implemented, while 

Table 9-4 lists the high and low levels of slurry parameters used in the 

experimental study. The base composition for this slurry was kept 

constant at 800 ml of phosphoric acid and 100 ml of water. This slurry 

chemistry shall be henceforth referred to as “acetic acid slurry 

chemistry”. 
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Chapter 10:  Surface profiles and MRR trends of Copper 

ECP 

Chang et al. [77] have shown that with increasing water content in 

the polishing slurry the conductivity of the electrolyte is increased. This 

enhances the diffusion of dissolved ions into the bulk thus increasing the 

limiting current density. This means with higher water content slurries 

the limiting currents are going to be high thereby giving a high MRR. At 

high MRR values the planarization capability of the slurry is hampered 

significantly. Hence, it is recommended that concentrated phosphoric 

acid slurries are used to attain planarity as well as acceptable MRR 

values. 

Fig. 10-1 shows the plot of average MRR for each treatment 

condition. Note that R1, R2, R5 and R6 are the conditions where the 

concentration of phosphoric acid is higher. It can be seen from the plot, 

that they yield significantly lower MRR than the runs where the 

phosphoric acid content is lower. These results agree with previous 

results reported in Ref [84]. Fig. 10-2 shows the surface profiles of an as-

received copper disk and after 3 minutes of electropolish for experimental 

runs R3 and R7 respectively. 
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Fig. 10-1: Average MRR for Runs R1 to R8. For Runs with High water 
content (R3, R4, R7, R8) MRR is higher than that with the 
corresponding low water content treatment conditions. 

 

Fig. 10-2: Surface profile plots for treatment conditions R3, Red: As 
received profile,  Green: surface profile after 1 min 
electropolish, Black: surface profile after 2 min electropolish, 
Blue: surface profile after 3 min electropolish. 
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Fig. 10-3: Surface profile plot for treatment conditions R7, Red: As 
received profile,  Green: surface profile after 1 min 
electropolish, Black: surface profile after 2 min electropolish, 
Blue: surface profile after 3 min electropolish. 

 

A smoothening effect is visible as the surface asperities have 

become less pronounced in the surface profile after 3 minutes of polish. 

The average Ra of an as-received copper disc is ~220 nm while that of a 3 

minute polished disc is ~ 60 nm. 

The addition of acetic acid and ethylene glycol in the slurry, show 

improved surface finish with drastic reduction in pitting on the surface. 

This agrees with the work reported by Liu et al. [83]. 
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Fig. 10-4: Optical micrograph of 3 min polished copper surface in slurry 
with no acetic acid and ethylene glycol as additives for machine 
settings; Phosphoric acid = 10M, Water = 10M, Copper sulfate = 
0.2M). 

 

As shown in Figs. 10-4 and 10-5, noticeable improvement in the 

surface quality was observed when the copper specimen was polished 

with an acetic acid containing slurry. This makes us put forward a novel 

two step electrochemical polishing process for copper using different 

slurry chemistries for different stages of the process. The objective of the 

first stage of this process is to have material removal at a higher rate, 

and that of the second stage is surface quality improvement. 
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Fig. 10-5: Optical micrograph of copper surface after 3 min polishing in 
acetic acid and ethylene glycol added slurries with machine 
settings; Acetic acid = 90 ml, ethylene glycol = 300 ml. 

 

Details of the two step process as well as the sensor based process 

modeling approach will be discussed in the next chapter.  
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Chapter 11:  Sensor data, feature extraction and, 

process modeling 

 

11.1 Vibration sensor data acquisition and processing  

Vibration sensor data is continuously acquired on a personal 

computer and analyzed offline. A typical time series of the vibration data 

is shown in Fig. 11- 1. Pertinent features are extracted from the sensor 

data, some of which are extracted from the time series while others from 

the frequency analyses.  

We extract 12 pertinent features from the time as well ad frequency 

domain representation of the sensor signals. These features are as shown 

in Table 11-1. 
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Fig. 11-1: Time series of wireless sensor data for treatment condition R1 
(Phosphoric acid = 10 M, Water = 10 M, Copper sulfate = 0 M). 

  

Table 11-1: Candidate feature matrix for R1 

 

PTP 

std 

dev kurtosis skewness 

peak 

freq 1 

(Hz) 

amp  

freq 1 

(µV) 

peak  

freq 2 

(Hz) 

amp 

freq 2 

(µV) 

peak 

freq 3 

(Hz) 

amp 

freq 3 

(µV) 

peak 

freq 4 

(Hz) 

amp 

freq 4 

(µV) 

188.5 12.49 8.14 -0.335 43.13 6615.09 120.68 7715.3 183.06 5190.8 244.26 2580.02 

243.1 43.37 4.88 0.572 38.49 11466.64 122.39 87491.1 184.57 26062.0 227.41 18282.9 

137.8 6.43 20.83 -0.039 41.84 4342.83 121.53 195.289 185.10 1381.40 236.76 393.823 

 

 

This data is then further reduced by performing principle 

component analysis (PCA). This helps in reducing the dimensions of the 

data to be analyzed. After doing PCA 8 principle features (named F1 – F8) 

remain which are used to perform response surface analysis. 
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11.2 Process Modeling  

In this section various process models were considered. The details of 

which are given in the following: 

1. Modeling process performance (MRR and Ra) with the input 

process parameters (Slurry chemistry parameters). 

2. Modeling process performance (MRR and Ra) with sensor features. 

3. Modeling variations in input process parameters (slurry chemistry 

parameters) with sensor features. 

 Modeling MRR with machine settings for phosphoric acid slurry 

chemistry 

Using the phosphoric acid slurry chemistry parameters, we model 

the MRR using the slurry input parameters as inputs to the model. This 

enables in gathering of insights on parameters which have a significant 

bearing on the MRR during copper electrochemical polishing. 

Table 11-2: Regression model of MRR with machine settings (R2 = 69.3%, 
R2

adj. = 66.37%, R2
predicted = 59.9%) 

 

Predictor p-val 

Phosphoric acid 0 

Water 0 

 

Table 11-2 gives the various slurry input parameters that have a 

significant effect on the MRR of copper during electrochemical polishing. 
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A modest regression coefficient of ~ 69% is achieved. This model shall 

help in providing conditions for maximizing MRR in the proposed first 

stage of a two step polishing process. 

 Modeling Ra with machine settings for phosphoric acid slurry 

chemistry 

Table 11-3 gives the parameters for the regression model for 

predicting Ra with the machine settings only. The regression coefficient 

is very low (~ 29%). But one thing can be concluded that the amount of 

phosphoric acid in the slurry has a certain effect on the Ra that can be 

achieved from the given slurry. 

Table 11-3: Regression model of average surface roughness with machine     
settings (R2 = 29.23%, R2

adj. = 18.61%, R2
predicted = 0%) 

 

Predictor p-val 

Phosphoric acid 0.133 

sulfate 0.363 

Phosphoric acid*Sulfate 0.038 

 

 

 

 The above two models indicate that there exists a need for a much 

better process modeling and process monitoring technique than just the 

process parameters. Hence, we incorporated sensors on to the polishing 

machine to aid in process modeling and process monitoring. Inclusion of 

time as a factor in all the above models showed marked improvements in 
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the overall predictability. But the polishing time is beyond the control of 

the operator and is mainly determined by the end point detection 

systems incorporated in the machine. 

 Modeling MRR with machine settings for acetic acid slurry 

chemistry 

Table 11-4 gives the parameters for the regression model for avg. 

MRR with the machine settings and key interactions between them. The 

model is almost non existent. This again is an indication that more 

promising process modeling approaches are needed to be incorporated to 

effectively model the process. 

 

Table 11-4: Regression model for avg. MRR with machine settings for 
acetic acid slurry chemistry (R2 = 11.52%, R2

adj. = 0%, 
R2

predicted = 0%) 

 

Predictor p-val 

(EG) 0.716 

(AA) 0.415 

(EG)*(AA) 0.699 

 

 

 Modeling Ra with machine settings for acetic acid slurry chemistry 

Table 11-5 gives the parameters for the regression model for Ra 

with machine settings and key interactions in between them for acetic 

acid slurry chemistry. The model is very bad in predicting Ra, again 
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reiterating a need for a better way for process modeling and subsequent 

process monitoring. 

Table 11-5: Regression model for Ra with machine settings for the acetic 
acid slurry chemistry (R2 = 4.06%, R2

adj. = 0%, R2
predicted = 

0%) 

 

Predictor p-val 

(EG) 0.626 

(AA) 0.651 

(EG)*(AA) 0.84 

 Modeling the MRR and Ra with sensor features 

Modeling MRR with sensor features for the phosphoric acid slurry 

chemistry 

Incorporating sensors in the process have dual motives. Firstly 

they can be used to create static models which can be used to construct 

much more complex dynamic models and secondly they can be used for 

in-situ monitoring the process dynamics. Here we use sensor data to 

create static models for process performance (here MRR and Ra) and the 

process parameters (slurry chemistry parameters). 
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Table 11-6: Regression model of MRR for phosphoric acid slurry 
chemistry with sensor data only (R2 = 93.92%, R2

adj. = 
84.45%). 

Predictor Coef p-val   Predictor Coef p-val 

Constant 0.04486 0   F8 0.011622 0.014 

F1 0.027523 0   F1*F2 0.081075 0 

F2 -0.00321 0.561   F1*F3 0.067556 0 

F3 0.059572 0   F1*F7 0.043289 0.001 

F4 -0.06958 0   F1*F8 0.044434 0 

F5 -0.02857 0   F2*F5 -0.04029 0.001 

F6 -0.03234 0   F2*F6 -0.03348 0 

F7 0.016754 0         

 

MRR = Constant+0.027523*F1-0.00321*F2…-0.03348*F2*F6 

 

As listed in the Table 11-6 above, sensor features are effectively 

incorporated to model the MRR in phosphoric acid chemistry. This shows 

implementation of a vibration sensor to model process performance of 

copper electrochemical polishing. Good regression coefficients are 

obtained for the model of MRR against sensor features. To illustrate the 

estimation capability of the model we plot the actual experimental MRR 

and the MRR predicted by the model. The comparison is as shown in Fig. 

11-2. 
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Fig. 11-2: Model performance of sensor based model for MRR for 
phosphoric acid based slurries. 

 

Modeling Ra with sensor features for phosphoric acid based slurry 

chemistry 

From the process monitoring standpoint, modeling the average 

surface roughness with sensor data becomes critical. This in its own 

importance is also crucial as it would help in reducing the damages 

caused due to excessive polishing. An excellent regression model is 

obtained for the Ra with sensor features.  
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Table 11-7: Regression model of average surface roughness with sensor 
data for phosphoric acid slurry chemistry (R2 = 99.65%, R2

adj. 
= 98.40%) 

 

Predictor Coef p-val   Predictor Coef p-val 

Constant -154.2 0  F2*F2 -171.85 0 

F1 254.79 0  F3*F3 -151.81 0 

F2 -206.82 0  F2*F3 242.75 0 

F3 162.57 0  F2*F5 -548.64 0 

F4 197.13 0  F2*F6 -443.04 0 

F5 187.51 0  F2*F7 401.12 0 

F6 72.72 0.016  F4*F5 -662.91 0 

F7 139.29 0  F4*F6 -494.22 0 

F8 -93.19 0.001  F4*F8 -239.63 0 

F1*F1 535.7 0         

 

Ra = Constant+254.79*F1-206.82*F2 …-239.63*F4*F8 

 

A regression coefficient of ~99% is obtained. This suggests that the 

Ra is in good correlation with the sensor data. Table 11-7 lists the 

various terms and their respective p-values in the regression model. 

As illustrated for the MRR model for the phosphoric acid based 

slurries, we also plot the Ra as predicted by the model for the phosphoric 

acid chemistry. This again helps to get a quick snapshot of how the 

model performs in estimating the surface roughness based on the sensor 

signals. The comparison is as shown in Fig. 11-4. 



 119 

0

50

100

150

200

250

1 5 9 13 17 21

Run number

R
a
 (
n

m
)

Actual Ra (nm)

Fitted Ra (nm)

 

Fig. 11-3: Model performance of sensor based model for surface 
roughness of copper in phosphoric acid based slurries. 

 

Modeling MRR with sensor features for acetic acid slurry chemistry 

Table 11-8 illustrates the regression model for avg. MRR against 

the sensor features. The limitations of a poor model for avg. MRR based 

on machine settings is overcome with this model which gives a good 

regression coefficient. This model can be thus effectively used for further 

prediction and monitoring of process performance. Also such models 

make way for more dynamic models which can predict the process 

performance. 
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Table 11-8: Regression model for avg. MRR with sensor features for 
acetic acid slurry chemistry (R2 = 98.64%, R2

adj. = 96.27%, 
R2

predicted = 73.59%) 

Predictor Coef p-val   Predictor Coef p-val 

Constant 0.004759 0  F4 0.002197 0.024 

F1 -0.0023 0.004  F2*F2 -0.03135 0 

F2 -0.03068 0  F3*F3 -0.00728 0.001 

F3 0.001114 0.043   F4*F4 0.002221 0.058 

 

MRR = Constant-0.0023*F1-0.03068*F2…+0.002221*F4*F4 

Modeling Ra with sensor features for acetic acid slurry chemistry 

Table 11-9: Regression model for Ra with sensor features for acetic acid 
slurry chemistry (R2 = 96.45%, R2

adj. = 91.12%, R2
predicted = 

62.39%) 

 

Predictor Coef p-val   Predictor Coef p-val 

Constant 9.096 0.394  F1*F1 40.187 0.007 

F1 -26.582 0.031  F1*F2 -75.169 0.007 

F2 -48.789 0.006  F1*F3 -51.618 0.001 

F3 -50.873 0.002  F1*F4 -37.753 0 

F4 -13.946 0.019   F2*F3 -42.467 0.002 

 

Ra = Constant-26.582*F1-48.789*F2…-42.467*F2*F3 

 

Table 11-9 illustrates the model for Ra with sensor features only 

for acetic acid slurry chemistry. The model shows a good fit for the 

surface roughness. This shows that wireless vibration sensors are able to 

capture excellent process performance dynamics. 
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 Modeling the variations in slurry chemistry in Copper 

electrochemical polishing. 

Modeling the variation in phosphoric acid content of the slurry 

It is important from the in-situ process monitoring standpoint that 

the variations in the slurry chemistry are tracked efficiently by the 

sensor signals. Key sensor features are used to track the variations in 

the phosphoric acid content of the model.  

Table 11-10: Regression model of variations in phosphoric acid content of 
slurry with sensor data.(R2 = 96.17%, R2

adj. = 90.20%) 

 

Predictor Coef p-val   Predictor Coef p-val 

Constant -0.1242 0.647  F2*F2 -1.4122 0.3855 

F2 -1.7794 0  F3*F3 -4.5686 0.5343 

F3 2.7641 0  F2*F3 5.1875 0.6334 

F4 2.7778 0  F2*F6 -4.3475 0.485 

F5 3.3171 0  F2*F7 2.1084 0.4015 

F6 -1.9062 0  F4*F5 -8.1573 1.0659 

F7 0.6346 0.018  F4*F8 -4.3682 0.8196 

F8 0.6387 0.072         

 

Phosphoric acid = Constant-1.7794*F2+2.7641*F3…-4.3682*F4*F8 

 

A good fit is observed between the variations in phosphoric acid 

content and the sensor features; Table 11-10 lists all the terms and their 
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respective p-values for the regression model of phosphoric acid content 

with sensor data only. 

Modeling the variations in the water content of the slurry 

Again to effectively monitor the process in-situ, it is important that 

all the slurry chemistry parameters are monitored as accurately as 

possible. Water plays a major role in deciding the MRR of the process 

and in turn the surface finish that can be attained from a given slurry 

configuration [85]. 

Table 11-11: Regression model of variations in the water content of the 
slurry with sensor data only. (R2 = 85.38%, R2

adj. = 75.99%) 

 

Predictor Coef p-val   Predictor Coef p-val 

Constant 4.2378 0  F7 0.3631 0.168 

F1 -0.7226 0.004  F8 -1.3944 0 

F2 3.478 0  F1*F1 -4.8622 0 

F4 0.9288 0.015  F7*F7 -1.5381 0.006 

F5 -1.0903 0   F8*F8 -0.9954 0.033 

 

Water = Constant-0.7226*F1+3.478*F2…-0.9954*F8*F8 

Modeling the variations in Ethylene Glycol content of the slurry 

As a continuation of modeling the variations in the process 

parameters, we build a model that can effectively track the variations in 

the ethylene glycol content of the polishing slurry.  
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Table 11-12: Regression model for modeling variations in the Ethylene 
Glycol content of the slurry (R2 = 95.08%, R2

adj. = 87.69%, 
R2

predicted = 69.91%) 

 

Predictor Coef p-val  Predictor Coef p-val 

Constant 2.3756 0.001  F1*F1 -3.5373 0.001 

F1 -0.2934 0.191  F4*F4 1.0753 0.044 

F2 1.3709 0.001  F1*F3 3.5285 0.002 

F3 3.7639 0  F1*F4 2.0404 0.001 

F4 2.3796 0.004  F2*F4 1.6886 0.065 

 

Ethylene glycol = Constant - 0.2934* F1 + 1.3709 * F2 … + 1.6886 * F2 

* F4 

The importance of ethylene glycol content in the slurry has been proven 

to give good surface finish in copper electrochemical polishing [83]. 

 Multi stage optimization of slurry chemistry for copper ECP 

We suggest a two-step process for copper electrochemical polishing 

using concentrated phosphoric acid slurries. The first stage is designed 

to facilitate higher removal rates of copper while the second stage aims at 

giving enhanced surface finish. We suggest it as a composite process 

comprising of changing the slurry chemistry as the process switches 

regimes from high removal to a surface improvement. To verify the 

effectiveness of multistage optimization, single stage optimization was 

investigated first. But careful interpretation of Figs. 11-4 and 11-6 clearly 

demarcate two different regimes of polishing. Combining the results of 
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both the regimes of polishing has the effect of shadowing the output 

variables of interest.  
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Fig. 11-4: Comparison of MRR for phosphoric acid based slurries (tall 
columns) and acetic acid based slurries (short columns). 
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Fig. 11-5: Comparison of surface roughness achieved using phosphoric 
acid (tall columns) and acetic acid (short columns) based 
slurry chemistries. 

 

More specifically, including surface roughness in the first stage 

optimization has the effect of reducing the optimization efficiency for 

MRR as it is clearly seen that, the input process variables that showed 

good surface roughness have a very low MRR value. 

Fig. 11-5 shows that using phosphoric acid and water based 

slurries gives higher removal rates compared to acetic acid and ethylene 
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glycol based slurries. Hence, a ratio of 2/1 for phosphoric acid/water in 

the first stage of the process is suggested for achieving higher removal 

rates.  

The second stage, improving the surface roughness is the primary 

concern rather than faster material removal. For this regime we propose 

adding ethylene glycol and acetic acid in a ratio of 3/1 to the base slurry 

would give better surface finish with minimal pitting on the surface. 

Fig. 11-7 shows a flow chart of the two-stage process we propose 

from this investigation. In the first stage, introduce dilute phosphoric 

acid slurries which would yield higher removal rate and during the 

second stage, introduce the slurry with acetic acid and ethylene glycol to 

enhance the surface quality that can be achieved from the process. 
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Fig. 11-6: Flow chart for two-stage process proposed for copper ECP. 
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Chapter 12:  Conclusions and Future Work 

From a process monitoring and control standpoint, it is important 

that a relationship between the process performance (here, MRR) and 

input process parameters (here, slurry chemistry) be established and 

quantified. This task was achieved in this investigation by conducting a 

Taguchi L12 set of experiments using a LapMaster 12 lapping machine. 

After establishing this relationship, to be able to in-situ sense the 

variations in input process parameters was important, so that necessary 

corrective action can be initiated and process control achieved.  

To track these variations, an indirect method, such as the use of a 

vibration sensor, has to be adopted, as the actual wafer-pad interface is 

inaccessible. In this investigation we incorporated one wired and one 

wireless vibration sensor to gather information on the process dynamics. 

The vibration sensor signals have been analyzed and used to model the 

process performance as well variations in input process parameters. The 

results of the experimental investigation as well as sensor-based models 

will be enumerated below. 

From the above investigation, primarily the effectiveness of sensors 

has been established in tracking the rather intractable variations in 

slurry chemistry parameters in Cu-CMP as well as Cu- Electrochemical 
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Polishing process. At this juncture the ability of the models proposed 

in this investigation to track changes in complexing agent content, 

corrosion inhibiting agent content are of prime importance and in a way 

novel. The details of each model for variation in slurry chemistry are as 

follows: 

1. Sensor based model for tracking variations in polishing slurry 

pH; R2
 = 99.8%, R2

adjusted. = 99.12%, R2
predicted = 72.81%. 

2. Sensor based model for tracking variations in complexing 

agent content of polishing slurry; R2 = 99.96%, R2
adjusted = 

99.78%, R2
predicted = 92.73%. 

3. Sensor based model for tracking variations in the corrosion 

inhibiting agent content of polishing slurry; R2 = 90.21%, 

R2
adjusted = 81.97%, R2

predicted = 58.14%. 

4. Sensor based model for tracking variations in the slurry flow 

rate; R2 = 86.31%, R2
adjusted = 78.22%, R2

predicted = 64.65%. 

5. Sensor based model for tracking variations in the phosphoric 

acid content of the slurry; R2 = 96.17%, R2
adjusted = 90.20%. 

6. Sensor based model for tracking variations in the water 

content of the slurry; R2 = 85.38%, R2
adjusted = 75.99%. 

7. Sensor based model for tracking the variation in ethylene 

glycol content of the slurry; R2 = 95.08%, R2
adjusted = 87.69%, 

R2
predicted = 69.91%. 
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The process performance (here Material Removal Rate) is successfully 

modeled. The incorporation of multiple vibration sensors provides with a 

novel approach for process modeling and aids in formulating simple 

models which can be used for much more complex dynamic models. The 

model for MRR based on sensor data has the regression coefficients as 

follows; R2 = 97.7%, R2
adjusted = 92.66%, R2

predicted = 65.84%. 

Considering the process performance evaluation in Copper 

electrochemical polishing, following models are proposed: 

1. Sensor based model for MRR in phosphoric acid based slurry 

chemistry; R2 = 93.92%, R2
adjusted = 84.45%. 

2. Sensor based model for Ra in phosphoric acid based slurry 

chemistry; R2 = 99.65%, R2
adjusted = 98.40%.  

3. Sensor based model for MRR in acetic acid based slurry 

chemistry; R2 = 98.64%, R2adjusted = 96.27%, R2
predicted = 

73.59%. 

4. Sensor based model for Ra in acetic acid based slurry 

chemistry; R2 = 96.45%, R2
adjusted = 91.12%, R2

predicted = 

62.39%.  

Thus as listed above, sensor signals and various features extracted 

from the signal are effectively used to model the Cu-CMP process 

performance as well as to track the variations in slurry chemistry 

settings.  
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A more sophisticated signal processing and filtering method can be 

incorporated which would help remove extraneous noise content much 

effectively, yielding better estimation efficiencies from the sensor based 

models. 

From the models proposed here, investigations can be aimed at more 

dynamic modeling approaches. These models can actually aim at 

predicting the future state of the process from the models proposed in 

this investigation.  

Modeling the surface planarity also is one of the key tasks that has to 

be accomplished by use of more sophisticated planarizing machines. 

Alongwith planarity monitoring, it also is a key to model global planarity 

or Within wafer non uniformity. In a nutshell, local as well as global 

planarity needs to be modeled. 



 132 

Principles of electrochemistry such as monitoring the corrosion 

current to monitor the progress of surface being polished can be 

effectuated. It is known that corrosion current density is area dependant 

and that the corrosion currents are more for a rough surface, and a 

gradual drop should be seen in it if the surface being polished is actually 

polished. This concept can be effectively implemented to model as well as 

monitor the surface quality of the surface to be polished. 
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Scope and Method of Study: Material removal rate (MRR) and surface quality in copper 

CMP (Cu-CMP) process are highly sensitive to slurry chemistry parameters, 

namely, pH, and concentrations of complexing, corrosion inhibiting, and 

oxidizing agents. Capturing the effects of these slurry parameters on MRR and 

surface quality in real-time through the use of sensor signals is key to ensuring an 

efficient Cu-CMP process. In this investigation vibration sensor signals collected 

from the Cu-CMP experiments are used to capture the variations in various slurry 

parameters as well as their influence on the MRR. 

 

Findings and Conclusions:  The study has shown that features from wireless 

accelerometer signals sampled at 500Hz, and those from wired accelerometer 

signals sampled at 5 kHz can be used to estimate MRR more accurately than 

conventional static statistical regression models that relate the input (slurry) 

parameters to MRR. Here, the sensor features have been related to MRR using 

principal component regression (PCR) models. The improvement in the accuracy 

of estimation with sensor-based PCR models (R
2
 of 97.7% compared to 89.8% 

with a conventional statistical regression model) is likely because the vibration 

sensor signal characteristics are not only sensitive to variations in MRR, but also 

to the relevant variations in the input (slurry) parameters during the operation. 

The in-process variations in the slurry parameters cannot be tracked in 

conventional (static) statistical regression models. 
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