
SELECTED TOPICS IN DEVELOPMENT OF A CAD

APPLICATION FOR SIZING LIGHT GAUGE COLD

ROLLED STEEL ROOF TRUSSES

By

KEYUR SHARADKUMAR PANDYA

Bachelor of Engineering

National Institute of Technology

Surat, India

2005

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

July, 2008

 ii

SELECTED TOPICS IN DEVELOPMENT OF A CAD

APPLICATION FOR SIZING LIGHT GUAGE COLD

ROLLED STEEL ROOF TRUSSES

 Thesis Approved:

 Dr. Ronald D. Delahoussaye

 Thesis Adviser

 Dr. Hongbing B. Lu

 Dr. Jeremy A. Morton

 Dr. Blayne E. Mayfield

 Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

ACKNOWLEDGMENTS

I would like to take this chance to thank my advisor, Dr. Ronald D. Delahoussaye. He has

supported me and guided me not only as an advisor but like a family member. This

project would not have been possible without him. Also thanks to my committee

members Dr. Hongbing B. Lu, Dr. Jeremy A. Morton, and Dr. Blayne E. Mayfield, who

offered their guidance and support. Thanks to NPDC and our corporate sponsors for

providing with the financial means to complete this project. And finally, thanks to my

parents, and numerous friends who endured this long process with me, always offering

support and love.

 iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. OUTLINE OF THE PROJECT ..3

III. GENERATION OF DESIRED ROOF SLOPES USING OPTIMIZATION.........6

IV. SIZING OF TRUSSES ...19

V. DATA STRUCTURE ...30

VI. TEXT IN 3D ...36

VII. CONSTRAINTS...41

VIII. UNDO / REDO...45

IX. CONCLUSION AND RECOMMENDATION..50

REFERENCES ..52

APPENDICES ...53

 v

LIST OF FIGURES

Figure Page

 1. Screenshot of the application ..5

 2. Simple four sided building..6

 3. Simple ‘L’ shaped building...7

 4. Starting condition (Example 1)...10

 5. After optimization (Example 1) ..10

 6. Starting condition (Example 2)...11

 7. After optimization (Example 2) ..11

 8. Starting condition (Example 3)...12

 9. After optimization (Example 3) ..12

 10. Starting condition (Example 4)...14

 11. After optimization (Example 4) ..14

 12. Starting condition (Example 5)...15

 13. After optimization (Example 5) ..15

 14. Starting condition (Example 6)...17

 15. After optimization (Example 6) ..17

 16. Plan view of ‘T’ shape building..18

 17. Side view of ‘T’ shape building without Joint line...18

 18. Side view of ‘T’ shape building with Joint line..18

 vi

Figure Page

 19. A simple building with trusses running parallel to each other and having equal

spacing ...20

 20. Truss regions of all the trusses on a simple building..21

 21. Non-parallel truss arrangement...22

 22. Truss regions in non-parallel truss arrangement...23

 23. Truss regions of an imaginary truss arrangement in a simple square building.....24

 24. Imaginary truss arrangement in a simple square building24

 25. Schematic diagram of truss with loads applied...27

 26. Properties of a ‘C’ shaped cross section ...29

 27. Representation of the winged edge data structure ..31

 28. Schematic diagram of a truss ..34

 29. Sample text rendering ...40

 1

CHAPTER I

INTRODUCTION

Pre-fabricated roof trusses rapidly increased in popularity during the 1960s and they are

widely used in many buildings even today. However, the design procedure for these roof

trusses is very tedious and involves much calculation based on the codes. This

complexity in the design procedure may leads to an improper designing and over loading.

This may lead to a failure of the roof trusses. A computer program which can do all of

these calculation will be very useful in increasing the accuracy in the design procedure.

The design procedure starts with an estimation of different loads on the whole roof

structure. These loads are transferred into the trusses and forces on each truss member are

calculated. Determination of these forces leads to material and cross section selection.

However, there may be many combinations of materials and cross sections which satisfy

the strength and safety factor requirement. Thus, it is an iterative process to reach an

optimum solution. Sometimes an even better solution can be achieved by changing the

truss layout in a roof structure. Therefore, the entire procedure is an iterative process.

In most cases, there are many combinations which satisfy the engineering requirement.

The optimization is determined based on economic consideration. The Cross section of

 2

a truss member directly influences its weight, which is closely related to material cost.

Perfect balance between load safety and cost of raw material needs to be achieved for the

most economical solution. The procedure becomes even more complicated when other

factors like the cost of labor, availability of machinery and transportation come into

consideration. If a tool were available that would allow the user to enter various

combinations and choose the best one based on a given set of parameters, it would

dramatically increase the efficiency of the roof truss design.

The goal of the current project is to develop an application which will let users easily

define building and truss geometries. Then, optimum truss member size will be calculated

based on load inputs. The application will be user friendly with required features and is

expected to facilitate a wide range of users. However, this project is a proprietary work

and much information related to this project can not be disclosed. The purpose of this

document is to discuss the selected topics involved in the development of this CAD

application. The selected topics cover the use of an optimization technique to generate the

desired roof slopes, the procedure to size the trusses, the data structure required for the

computer program, the fonts to display text in 3D, the method to associate constraints on

the geometry and the implementation of Undo/Redo functionality in the application.

 3

CHAPTER II

OUTLINE OF THE PROJECT

The computer graphics enabled interactive tool, which understands a group of trusses, is

very useful in analyzing the truss system in a better way. It assists in the overall and

detailed visualization of trusses arranged under the roof envelop. The application

understands the basic structure of a building, which influences the overall truss system.

Also, the application contains a predefined library of trusses which can be used in the

program. Moreover, enough functionality is provided by the application to achieve user-

friendliness. The main focus of the application is to get data from the user about loading

conditions and structural parameters including truss layout under the roof envelop. With

these input parameters, the application will size all trusses using its engineering

knowledge programmed underneath. Development of such an application required two

major parts. First, a user-friendly CAD application which allows a user to input all

parameters specified above was developed. Second, a method to size the trusses to

achieve optimum results was developed.

Sizing of Trusses

A method was required to be developed or selected to analyze the whole roof-truss

system. Different loads are applied on roofs which are transferred to the supports through

 4

the trusses.
[1]

First, a technique is required to distribute overall loads on the roofs to all

trusses based on their position and orientation in the system. The next step is to calculate

the forces in all the members using FEA analysis. Optimum member sizes are chosen

based on these loads. The method is described in detail in chapter –3 and chapter – 4.

A CAD application

The goal of this part of the project is to develop general features required in any CAD

application. Discussion about which operating system or which programming language

will give the best result is not in the scope of this project. The application is a Microsoft

Foundation Classes (MFC) based Visual C++ (VC++) application built with Visual

Studio 2005. This selection was based on the learning curve involved in the programming

language and the fact that Major CAD applications like AutoCAD and SolidWorks are

MFC based VC++ applications
 [8]

.

A graphic language is needed to render the three dimensional display on the computer

screen. OpenGL 1.1 version is used as the graphics API in this application. OpenGL
[9]

 is

a very powerful open source graphics API with good document support. Other graphics

API like DirectX
[10]

 are also available; however selecting the best graphics API for the

CAD application is not the focus of this project. A screen shot of the application is shown

below.

 5

There have been many problems encountered during the development of this CAD

application. All major problems encountered are explained in chapter – 5 to chapter – 8

with detailed consideration of all influencing factors. Related discussion of all problems

such as other people’s approach, methods used and reasons to support those methods are

included in chapter – 5 to chapter – 8.

Discussions in chapter – 3 to chapter – 8 are general and do not relate to any specific

programming language or operating system. The issues discussed are general enough to

be considered for CAD application development in general.

Figure 1: Screenshot of the application

 6

Figure 2: Simple four sided building

CHAPTER III

GENERATION OF DESIRED ROOF SLOPES USING OPTIMIZATION

When architect define a roof panel, they define it in terms of the slope of a panel. The

profile of every roof panel is calculated from the intersection of adjoining panels.

Likewise the profile of a whole roof envelope can be calculated. However, many times

the slopes of these panels are not flawlessly defined and the intersection of panels results

in discontinuity of the roof profile. This may cause many problems like non-flat panels,

leakage in roof, etc. Moreover, if the parameters of the roof profile are incorrect, then

complications related to the trusses are likely, as they are designed based on incorrect

data. Erroneous design of roof a panel might lead to disastrous results. For this reason

determining the correct slope of a roof panel is of high importance.

Consider a simple rectangular

building covered with a four sided

roof as shown in the figure. All

combinations of slopes on these

four panels are possible as long as

the Ridge Line stays inside the

building perimeter.

 7

Figure 3: Simple ‘L’ shaped building

Now consider an ‘L’-shaped building

shown in the figure with both sides

having different widths. There cannot

be a case where the slopes of each

roof panel are the same. The only

possible solution is to get the desired

slope on some panels and calculate

modified slope on other panels. The modified slope of the panels needs to be calculated

to achieve the closest solution to a desired roof profile as mathematically / physically

possible. This scenario leads to the conclusion that the problem can be solved by an

optimization technique.

[11]
Optimization is a formalized process of selecting alternatives and choosing between

them to achieve the “best” design. In the above case, a design will be considered “best” if

the modified roof profile is closest to desired roof profile. In other words, cumulative

change in modified roof slope from user input should be as small as possible.

Optimization technique

There are many computational techniques to determine an optimal solution. Selection of

the technique depends on the following parameters:

• Set of possible options

• Nature of an error function

• Number of degrees of freedom

 8

As there is no constraint on the set of possible options, it is not possible to pick one

option and compare with another. Therefore, comparing a set of possible options is not a

feasible selection in this case.

Our objective function is a simple weighted sum of the difference between modified

slope and desired slope. Methods which require derivatives of an objective function

cannot be used. In such cases, simplex method would be a good option to choose.

However, the number of the design variables is not fixed which restricts the use of Linear

Programming. In such a case, downhill simplex method/ Nelder-Mead method serves as a

good alternative.

There are other optimization methods also which may be faster than Nelder-Mead

method
[11]

. However, comparing different optimization technique is not within the scope

of the project. The Nelder-Mead method is described in detail in the next section.

Nelder-Mead method

The Nelder-Mead method is a numerical method for minimizing objective functions in

multi-dimensional space. It uses an N+1 dimensional space for N number of vertices.

Nelder-Mead generates new test positions by extrapolating the behavior of an objective

function. The objective function is measured at each test point and arranged as a simplex.

The algorithm then decides to replace one point in a simplex with the new test point. The

progressive replacement takes place by reflecting the worst point about the centroid of

remaining points.

 9

Moreover, if reflection generates better result, then the radius of reflection is increased

and if it generates a poor result, it is an indication that the minima has passed, implying

that the radius of reflection should be reduced. Thus, the algorithm proceeds towards the

minima by increasing or decreasing the radius of reflection. However, one of the

disadvantages in Nelder-Mead is that it often finds the local minima. One solution to

resolve this problem is to restart optimization with a large radius of reflection.

Optimization parameter

In any optimization, there are three factors that are taken into consideration: objective

function, design variable, and performance variable. In the present scenario, objective

function is a function of the difference between a modified slope and the desired slope.

Next design variables must be selected.

Design variables are the set of variables which need to be optimized. At first glance, it

looks like slopes are the final values which need to be optimized. However, when design

variables are selected, optimization might generate a combination of slope which will

result in discontinuity of the Ridge Line. But, if the end points of the Ridge Line are

controlled in such a way that it will not result in discontinuity then the problem is

nullified. Moreover, the slope of each panel can be controlled by controlling the end

points of a Ridge Line. Therefore end points of a Ridge Line serve the purpose of the

design variable in optimization. Some of the results from the application have been

shown below.

 10

Example 1: A four sided building with desired slope of 4 in 12 on all roof panels.

Starting Condition:

Panel Slope (in 12)

A 1.92

B 1.65

C 1.65

D 1.92

After Optimization:

Panel Slope (in 12)

A 4.00

B 4.00

C 4.00

D 4.00

As it is seen in the results, all panels have the desired slope after optimization.

Required coordinates for ridge line are set to achieve the result.

Figure 4: Starting condition (Example 1)

Figure 5: After optimization (Example 1)

 11

Example 2: An ‘L’ shaped building with desired slope of 4 in 12 on all roof panels.

Starting Condition:

Panel Slope (in 12)

A 2.60

B 3.04

C 3.04

D 1.89

E 1.89

F 3.18

After Optimization:

Panel Slope (in 12)

A 4.00

B 4.00

C 4.00

D 2.59

E 2.38

F 4.00

 Here, an ‘L’ shaped building with both sides having different width and equal

desired slope on all panels is considered. However, there is no possible solution which

can achieve the desired result without discontinuity in the Ridge line. Results from

optimization shows that panels A, B, C and F have the desired slope of 4 in 12, while

panel D and E are set to other slopes to achieve the closest configuration with the desired

values.

Figure 6: Starting condition (Example 2)

Figure 7: After optimization (Example 2)

 12

Example 3: A ‘U’ shaped building with desired slope of 4 in 12 on all roof panels.

Starting Condition:

Panel Slope (in 12)

A 3.31

B 2.94

C 3.31

D 3.06

E 3.14

F 2.11

G 2.11

H 2.94

After optimization:

Panel Slope (in 12)

A 4.28

B 4.00

C 4.28

D 4.00

E 4.00

F 2.72

G 2.72

H 4.00

 It can be seen from the result that as the geometry becomes more complicated, the

number of panels which achieve the desired slope decreases.

Figure 8: Starting condition (Example 3)

Figure 9: After optimization (Example 3)

 13

Performance Variables

Performance variables are functions of design variables that are used as a measure of

performance and contribute to the objective function. Consider the case shown above, of

an ‘L’-shaped building with both sides having different widths. Suppose that all the

panels have the same desired slope. In such a case, the optimization will generate panels

on one side with the desired slope while the others will have a modified slope. But, there

is no control on which panel should get the desired slope. In the above case, panels B and

C were had the desired slope and panels D and E had the modified slope. If performance

of the result generated by optimization is rated, then the problem can be solved. In other

words, if the difference between the modified slope and the desired slope of one panel

has more importance than another in the objective function, then optimization will be

driven towards one of the minima. This will reduce the change in slope of a panel with

high importance.

Performance can be rated by any number of discrete values. Three levels of performance

i.e. Low, Medium, and High are being used in the application. This means, optimization

will try to generate the closest match in slope of a panel with a high performance rating.

This is achieved by changing the slope of the panels with Low performance ratings. An

example is shown below.

 14

Example 4: An ‘L’ shaped building with desired slope of 4 in 12 on all roof panels.

Starting Condition:

Panel
Slope
(in 12) Importance

A 3.06 Mid

B 3.20 High

C 3.20 High

D 1.87 Low

E 1.87 Low

F 3.35 Mid

After optimization:

Panel
Slope
(in 12)

Importance

A 4.00 Mid

B 4.00 High

C 4.00 High

D 2.46 Low

E 2.21 Low

F 4.00 Mid

 Here it can be seen that optimization has generated the desired slope on panel B

and C because of their high importance, by changing the slope of panel D & E. Running

the optimization again by setting High importance on panel D & E and setting Low

importance on panel B & C should generate different results.

Figure 10: Starting condition (Example 4)

Figure 11: After optimization (Example 4)

 15

Example 5: An ‘L’ shaped building with desired slope of 4 in 12 on all roof panels.

Starting Condition:

Panel
Slope
(in 12) Importance

A 3.06 Mid

B 3.20 Low

C 3.20 Low

D 1.87 High

E 1.87 High

F 3.35 Mid

After optimization:

Panel
Slope
(in 12)

Importance

A 4.00 Mid

B 7.02 Low

C 6.72 Low

D 4.00 High

E 4.00 High

F 4.00 Mid

 The results show that optimization has generated panel D and E with the desired

slope, by changing the slope of panels B & C. Thus optimization is trying to match the

slope of the panels with high performance importance. The result of optimization can be

controlled in a better way by using performance variables.

Figure 12: Starting condition (Example 5)

Figure 13: After optimization (Example 5)

 16

Using constraints

Example 4 and 5 explain the use of performance variables. In example 4, optimization

generated the desired slopes on the panel B and C by changing the slopes of the panel D

and E. But, these modified slopes of the panel D and E are not equal. One of the ways to

get equal slope on both the panels is to associate a constraint to the Ridge line.

Constraints will be discussed later in more detail in chapter 7.

As explained earlier, optimization changes the x, y, and z coordinates of the end points of

a Ridge line to generate the desired roof profile. If x location of the Ridge line between

the panel D and E is fixed then optimization will generate equal slopes on the panel D

and E, which can be seen in example 6 below.

 17

Example 6: An ‘L’ shaped building with desired slope of 4 in 12 on all roof panels.

Starting Condition:

Panel Slope
(in 12)

Importance

A 2.79 Mid

B 2.82 Low

C 2.82 Low

D 1.87 High

E 1.87 High

F 2.93 Mid

After optimization:

Panel Slope
(in 12)

Importance

A 4.00 Mid

B 6.01 Low

C 6.01 Low

D 4.00 High

E 4.00 High

F 4.00 Mid

 The results show that optimization has generated the desired slopes on the panel

D and E, by changing the slope of the panels B & C but keeping them equal.

Figure 15: After optimization (Example 6)

Figure 14: Starting condition (Example 6)

 18

Joint lines

Fig 16 shows a plan view of a T – shape

building. If we see the same building in

side view in fig. 17, then we can notice

that the Ridge line between the panel E

and F is not connected to the panel D. The

same condition may result from the optimization also. A condition is required which will

place one of the end points of Ridge line on the Panel D by maintaining the flatness of

panels.

The problem is solved by

adding the concept of

Joint lines. If any two

panels are sharing a Joint

line as one their boundary then optimization will generate equal slope on those panels.

Thus, Joint line will assure the continuity in panels and also keeping them flat. The result

of the optimization after adding Joint lines is shown in Fig 18 below.

Figure 16: Plan view of ‘T’ shape building

Figure 17: Side view of ‘T’ shape building (Without Joint line)

Figure 18: Side view of ‘T’ shape building (With Joint line)

 19

CHAPTER IV

SIZING OF TRUSSES

Sizing of the trusses is done to determine the optimum cross section that will survive

under all different load conditions. There are various types of loads which are applied on

the roof panels and there are many ways to transfer these loads from the panel to the

trusses. There are three main phases in the process of sizing trusses. They are:

1. Calculate different loads on a panel

2. Transfer loads from roof panel to trusses

3. Size truss members which can carry these loads

Each phase is discussed below.

Calculation of the loads on the panel

There are many types of loads which are applied on roof panels. However, only the three

most significant loads; dead load, live load, and wind load are considered in this project.

All other loads will be considered as special loads which explicitly need to be provided

by the user. Calculation of all three types of loads is described in “The Analysis of Cold-

Formed Steel Roof Trusses” by Matt C. Ritter
[1]

. Thus, all three types of loads on any

panel can be calculated, with all other loads considered as special load. This adds an

ability to perform calculations of different combinations of these four types of loads.

20

However, one important issue to be considered is in the calculation of wind load. When

the wind is blowing on roof panels, it applies pushing pressure on some part of the panels

and applies pulling pressure on the other parts. Thus, we need to consider two different

values for wind loads, pulling and pushing. So theoretically, two different loads need to

be considered for wind loads.

Transferring the load from panel to the trusses:

The method to calculate different loads on a panel was described in the previous section.

Next, what fraction of the loads on a panel is being supported by which particular truss

must be determined. Consider the simplest case, a four sided building with two roof

panels making a gable on each end. Assume that the trusses are running perpendicular to

Figure 19: A simple building with trusses running parallel to each other and having equal spacing

21

the panels with equal spacing. Also, the distance between the end trusses and the end of

the panel is half the spacing between the trusses.

In this case, the panel loads are equally supported by all of the trusses. Therefore the

calculation of each sub-panel, which transfers all its loads into one particular truss, is

very simple. Panels need to be divided at the mid-line of each truss line to calculate sub-

panels.

The solution looks good for simple cases like the one discussed above, in which each

truss calculates the geometry of its panel area or sub-panel from which it will get its

Figure 20: Truss regions of all the trusses on a simple building

22

loads. But the process becomes very complicated when spacing between trusses is not

equal and trusses do not run parallel to each other. The problem becomes even more

complicated in the case of girder trusses (when trusses cross each other). Such a case is

shown below.

However, rather than using a segregation approach to calculate the geometry of a

subpanel, an accumulation approach can be used to determine the same thing. A panel is

first divided into a large number of micro-panels. The area of a micro-panel is so small

that pressure variation on it is negligible and load applied on each micro-panel can be

considered as a point load. Each micro-panel is associated to its nearest truss in the

 Figure 21: Non-parallel truss arrangement

23

system and all micro-panels associated with a particular truss will cumulatively form a

sub-panel for that truss. Results generated with the above method are shown in the figure.

Consider an imaginary truss alignment as shown in the figure which is very complicated

in nature. The method described above will handle the problem easily and will find the

solution as shown below. However, sub-panels generated with curvilinear boundaries will

be very difficult to calculate with the previous approach.

Figure 22: Truss regions in non-parallel truss arrangement

24

Figure 24: Imaginary truss arrangement in a simple square building

Figure 23: Truss regions of an imaginary truss arrangement in a simple square building

25

Size Truss Members:

Once the loads applied on each truss are known, a programmable method is required to

calculate forces acting on each member. Trusses can then be sized to get optimized

results. In programming language, dealing with matrices is easier than dealing with

individual equations.
[6]

There are two methods to analyze trusses using a matrix.

a. Stiffness matrix method

b. Flexibility method

In the flexibility method, two separate procedures are used, on for statically determinate

trusses, the other for indeterminate trusses. In the stiffness matrix method, a single

procedure can be followed to handle both kinds of trusses. Moreover, the stiffness matrix

method directly yields displacement and forces in the members. Thus, the stiffness matrix

method is better to use this analysis process.

In the stiffness matrix method, a truss is treated as a collection of discrete finite elements

called a member, which are connected at joint points called nodes. The forces and

displacement properties of each member are analyzed and the global stiffness matrix ‘K’

of a truss is calculated. The procedure to generate the global stiffness matrix is explained

in
[6]

 “Structural Analysis” by R. C. Hibbeler. Once the global stiffness matrix is

calculated, the unknown displacement of nodes can be determined. Using the force-

displacement properties of each member, the internal forces can be calculated for each

member. However, for determining forces in truss members, cross section properties are

needed to carry out the calculation. This puts the process into iteration.

26

The application is using a pre-defined library of cross sections. Cross sections are sorted

based on their area. The reason behind sorting them by cross sectional area is that the

area is directly proportional to its weight which is closely related to its cost. The process

starts with the weakest cross section in the library and determines the forces in the

members. If the cross section can sustain under those forces, then that cross section can

be used. Otherwise, the process selects the next cross section from the library and re-

determines the forces. The loop continues until the application finds the lightest cross

section which will carry the applied loads.

A method to decide, weather a truss member will carry the applied load or not is

described in
[1]

 “The Analysis of Cold-Formed Steel Roof Trusses” by Matt Ritter which

completes the whole process to find out the optimum size of a truss member. Below is an

example for sizing a particular truss under a specific loading condition.

27

Truss Geometry and loads

Sample truss geometry is given below with loads applied on different nodes as shown in

the fig below. Forces and moments in each member are calculated and are given below.

These data are used to determine the smallest cross section of members which will carry

these loads. The results are shown below.

Figure 25: Schematic diagram of truss with loads applied

28

Resultant forces and moments

Near Far A I L NX NY NZ FX FY FZ

 in * in in ^ 4 in Kip Kip Kip Kip Kip Kip

1 13 0.7215 2.8791 36.0000 -0.5684 0.0947 -0.0001 0.5684 -0.0947 15.0032

3 20 0.7215 2.8791 36.0001 1.8169 -0.7364 15.1725 -1.8169 0.7364 2.8649

5 6 0.8356 4.7280 12.0000 -0.0001 0.0000 -0.0003 0.0001 0.0000 -0.0003

7 8 0.8356 4.7280 252.0000 -2.2629 -0.3832 -64.8003 2.2629 0.3832 -31.7696

7 1 0.8356 0.0000 36.4966 -0.5684 0.0947 0.0000 0.5684 -0.0947 0.0000

2 15 0.7215 2.8791 72.0000 1.8168 1.8163 18.2999 -1.8168 -1.8163 7.8334

7 2 0.8356 0.0000 157.0350 2.8312 2.9885 0.0000 -2.8312 -2.9885 0.0000

8 9 0.8356 4.7280 252.0000 -2.2629 0.3832 31.7696 2.2629 -0.3832 64.8007

8 2 0.8356 0.0000 183.6628 -0.4461 0.3531 0.0000 0.4461 -0.3531 0.0000

8 3 0.8356 0.0000 222.0000 0.0000 -1.4727 0.0000 0.0000 1.4727 0.0000

4 18 0.7215 2.8791 72.0000 -0.5683 0.9853 18.3006 0.5683 -0.9853 13.9044

8 4 0.8356 0.0000 183.6628 0.4461 0.3531 0.0000 -0.4461 -0.3531 0.0000

9 11 0.8356 4.7280 24.0000 0.0000 -2.7000 -64.8007 0.0000 2.7000 0.0004

4 9 0.8356 0.0000 157.0350 2.8312 -2.9885 0.0000 -2.8312 2.9885 0.0000

9 10 0.8356 0.0000 36.4966 0.5684 0.0947 0.0000 -0.5684 -0.0947 0.0000

11 12 0.8356 4.7280 12.0000 0.0000 0.0000 -0.0003 0.0000 0.0000 -0.0001

6 7 0.8356 4.7280 24.0000 0.0000 2.7000 -0.0003 0.0000 -2.7000 64.8003

13 14 0.7215 2.8791 72.0000 -0.5683 -0.4453 -15.0034 0.5683 0.4453 13.9042

14 2 0.7215 2.8791 72.0000 -0.5683 -0.9853 -13.9042 0.5683 0.9853 -18.2999

15 16 0.7215 2.8791 72.0000 1.8169 1.2764 -7.8334 -1.8169 -1.2764 2.8648

16 3 0.7215 2.8791 36.0001 1.8168 0.7363 -2.8647 -1.8168 -0.7363 -15.1726

17 10 0.7215 2.8791 36.0000 -0.5683 -0.0947 -15.0035 0.5683 0.0947 0.0001

18 17 0.7215 2.8791 72.0000 -0.5683 0.4453 -13.9044 0.5683 -0.4453 15.0037

19 4 0.7215 2.8791 72.0000 1.8168 -1.8163 -7.8339 -1.8168 1.8163 -18.3005

20 19 0.7215 2.8791 72.0000 1.8168 -1.2763 -2.8649 -1.8168 1.2763 7.8339

29

Cross section dimensions

Fig below shows the ‘C’ shaped cross sections of members. The three sizes for top,

bottom, and web members are listed below.

Top Members

A' 5 in

B' 2.3 in

C' 0.525 in

t 0.0713 in

R 0.107 in

alpha 1

Fy 50 ksi

Fu 40 ksi

mu 0.3

Bottom Members

A' 6 in

B' 2.5 in

C' 0.625 in

t 0.0713 in

R 0.107 in

alpha 1

Fy 70 ksi

Fu 60 ksi

mu 0.3

Web Members

A' 6 in

B' 2.5 in

C' 0.625 in

t 0.0713 in

R 0.107 in

alpha 1

Fy 70 ksi

Fu 60 ksi

mu 0.3

Fig 26: Properties of a ‘C’ shaped cross section

30

CHAPTER V

DATA STRUCTURE

The central idea of any CAD application is to display three dimensional data and provide

an easy way to manipulate that three dimensional data. However, efficiency of

demonstration and manipulation of 3D data is heavily dependent on the model for storing

the data. This section will focus on structures and techniques that are used internally to

store and manipulate organized units of information.

In any CAD application, the basic topological items are vertices, edges and faces. Now a

model is considered to store these items and relate them internally.

In any programming language, arrays are the basic structure to store multiple items of the

same kind. However, they do not provide dynamic memory allocation, which is a

significant requirement of any application. In this case, Link List is the best option, which

provides an ability to store multiple objects with dynamic memory allocation. Moreover,

Link List is supported in many programming languages. The next task is to find a model

to relate the data internally.

There are three basic categories of models to represent the relationships between vertices,

edges and polygons
[13]

.

1. Vertex Centric Relationship model

2. Edge Centric Relationship model

31

3. Polygon Centric Relationship model

Vertex Centric Relationship model

In this type of model, vertices are stored in a list and all polygons and all edges which use

these vertices will point to specific vertices in a list. However, this is a very inefficient

way of storing the relationships because the relationships between edges and polygons

are not directly provided. The model is calculation intensive in manipulating edges and

polygons.

Edge Centric Relationship model

In this type of model, edges are stored in a list and each

edge, points to two vertices and two polygons. The two

vertices being pointed to by an edge are the two end

points of that edge. The polygons being pointed to by an

edge are the two polygons which include that edge as

their boundaries. One of the oldest data structures for this

type of model is the
[2]

Winged Edge data structure.

The Winged Edge data structure is the most sophisticated

type of Boundary Representation (B-Rep) model. As shown in the figure, each edge in

the data structure points to:

a. Two vertices, which are the end points of that edge

b. Two polygons, which use that edge as one of their boundary lines.

Fig 27: Representation of

the winged edge data

structure

32

c. Four edges which emanates from the end points and are associated with the

two polygons pointed to.

The data structure for Winged Edge is shown above. There are two more types of B-Rep

model.

a. Quad Edge Data structure

b. Half Edge Data structure

Both of them are a little different from the winged edge data structure. But, the core idea

is the same. The method of storing the data structure discussed above makes them an

excellent choice for many applications.

Polygon Centric Relationship model

The edge Centric Relationship model is sufficient for implementing a data structure, but

it can be improved significantly by enhancing the data structure for polyhedral geometry.

The model is designed in such a way that all properties of a polygon are directly

accessible from the data structure. Polygons are stored in a linked List. This linkage is

purely for an ease in implementing the algorithm that requires frequent computation

related to all polygons.

Polygon Structure

 Each polygon in a Link List will point to:

d. A Link List of pointers to an edge which form a boundary for that polygon.

These edges are organized in a specific order to give outward normal of a

33

polygon. Moreover, the specific order is important to calculate the loops

involved in that polygon.

e. A Link List of pointers to vertices which lie on the boundary of a polygon.

These lists of vertices can be accessed by an edge list. But a pre-formed list

will increase the speed of computation. These vertices are organized in an

order to give the outward normal of a polygon.

f. Extra pre-calculated information can be stored such as the normal vector,

plane vector or area.

Edge Structure

Each edge in a Link List will point to:

a. Two vertices which are end points of an edge

b. Two polygons which contain the edge

c. Extra pre-calculated information can be stored such as the length or line

vector.

Vertex Structure

 Each vertex in a Link List will point to:

a. A Link List of pointers to polygons which contain that vertex

b. A link List of pointers to edges which contain that vertex

c. It also stores the x, y, z location

34

Advantages

1. The model contains heavy use of pointers which removes the problem of duplicate

data in memory. The solution not only saves memory, but also reduces the

complexity of updating that duplicate data.

2. When a value of any one vertex changes, updates in properties of only those edges

and polygons which contains that vertex can be done. Thus, it saves time in

calculating property of all other edges and polygons which are not affected by that

vertex.

3. The model is not specific to any programming language.

4. When drawing the whole geometry, a list of edges can be drawn rather than drawing a

list of polygons. This saves time in overdrawing edges which are being shared by two

polygons.

Data structure for the Truss

Any truss is a collection of members which are connected at joints. These joints are

called nodes. Thus, any truss is a collection of nodes and members, and analysis of a truss

is an analysis of these nodes and members only. A data structure of a truss should have an

ability to store the information of its members and nodes and also express the

relationships between them.

A schematic diagram of a sample

truss shown in the figure shows the

fact that a truss can be visualized as Figure 28: Schematic diagram of a truss

35

a collection of edges and points, where each edge represents a member of a truss and the

end point of an edge represents a node in a truss. Thus, the same polyhedral data structure

can be used for a truss with little modification. Moreover, members and nodes are not

shared across different trusses. The data structures for nodes, members and truss are as

described below.

Node Data structure

a. It contains x and y coordinates from a reference point in the truss

b. It points to a Link List of pointers to members which contain that node.

Member Data structure

a. It contains pointers to two nodes: Near node and Far node.

b. It contains some extra information like length, cross section, weight etc.

A polyhedral data structure is a very good model to store information for any CAD

application. Moreover, the model is easy to implement, supports faster computation and

is less error prone. Also the same model can be used for both topological and truss

geometry.

36

CHAPTER VI

TEXT IN 3D

All engineering drawings will result in a meaningless collection of lines and curves if it

does not include associated data with it like dimensions, labels, and other information.

The same thing holds true if such drawings are being rendered on a computer screen. The

information associated with each element in CAD geometry needs to be displayed on

screen. Generally this information will be displayed in the form of some text in the

drawing. This scenario leads to a requirement for the ability to render text in a three

dimensional drawing. The problem might look simple, but there are many concerns

associated with rendering text in a three dimensional drawing. This adds significant

complexity to the problem. The basis of computer fonts is discussed in the next section to

find the solution.

In typography, the shape of each symbol is known as a glyph
[12]

. In this case, a symbol

means character set A – Z, a – z, 0 – 9 and other symbols like comma, colons,

punctuation etc. A method is required to display these set of glyphs on a computer screen.

A data file font is nothing but an electronic version of such methods. There are three

basic formats of font files.

• Bitmap fonts

• Outline fonts

• Stroke based fonts

37

 The advantages and disadvantages of all three types of fonts are considered

below.

Bitmap fonts

In this type of format, each glyph is stored in an array of pixels (i.e. bitmap). For this

reason sometimes they are called raster fonts. It stores each glyph in form of small

images, which makes it extremely fast in rendering. But there are many major

disadvantages to this style. One of the most important is that they are not scalable, which

means different sets of small images are required for each different size of glyph. One

more problem in 3D rendering is that these fonts cannot be rotated in 3D space. Thus, it

is not appropriate to use bitmap fonts in the application.

Outline fonts

In this format, the outline of a font is defined as set of lines and curves (Bezier curve).

These fonts are heavily used in vector monitors and vector plotters. The main advantage

of these fonts is that it allows an infinite level of scaling in a single definition. Formats

like PostScript and OpenType are widely used in drawing applications like adobe and

others.

However, the accuracy of curves on a raster display is not very good and it requires

considerable processing power. This disadvantage becomes significant when used in a

real time application like CAD. Even though, major CAD applications like AutoCAD and

38

SolidWorks use this type of format, called TrueType, SHX; the main reason for the

selection is to provide an additional functionality and not to provide a core requirement.

Stroke based fonts

In this type of format, fonts are defined by strokes of the pen. Each stroke is a straight

line between two vertices and the stroke profile defines the complete glyph. It eliminates

the use of curves which was a major drawback in outline fonts. Moreover, an infinite

level of scaling is still available, rotation in 3D is possible and the requirement of

processing power is very moderate. Thus, this type of method is most useful in real time

application like CAD, because drawing a series of lines in a CAD application is highly

optimized. A particular type of stroke based font known as Hershey fonts is used in the

present application.

Hershey fonts
[4]

The “Hershey fonts” were developed in 1960s by Dr. A. V. Hershey at the U. S. Naval

Weapon Laboratory. There were 1377 glyphs in the original version. Each glyph was

assigned by a number in the range 1 – 3926, all of which are not used. The files defining

those glyphs are freely available on the internet. Due to this availability, the format of the

file has changed over time and many forms are available today. In all types of the forms,

a file will contain a series of the definition of glyphs. The particular format which is

being using is described below. The file can be referred to in the appendix.

39

• A line starts with a definition of each glyph. The first five spaces contain a number

associated with a glyph.

• Next three spaces contain a number, which represents the number of coordinate pairs

involved in the definition.

• The following part of the string represents a series of alphabetical characters. Each

represents a value relative to an ASCII value of ‘R’.

o The first pair of characters in the remaining part of the string indicates the

most left and the most right coordinate of the glyph.

o Successive pair of characters represents the (x, y) coordinates of the

vertices.

o The pen up option is indicated by “R”.

A sample example of a glyph is shown below.

“ 8 9MWOMOV RUMUV ROQUQ”

• The first five spaces give “ 8” which is associated with the number of that glyph.

• Next three spaces give “9” which tells the number of coordinate pairs, which means

there will be 9 pairs of coordinates involved in the definition.

• The first pair gives the most left and most right value.

ASCII value of ‘M’ – ASCII value of ‘R’ = 77 – 82 = -5

ASCII value of ‘W’ – ASCII value of ‘R’ = 87 – 82 = 5

Thus the width of the glyph is 10 units.

40

• The next pair gives coordinates of the first vertices.

ASCII value of ‘O’ – ascii value of ‘R’ = 79 – 82 = -3

ASCII value of ‘M’ – ASCII value of ‘R’ = 77 – 82 = -5

Thus the coordinates are (-3, -5).

• The next pair “OV” represents coordinate (-3, 4).

• The successive pair is “R” which means pen needs to raise up.

• Each consecutive pair of characters represents coordinates (3, -5), (3, 4), pen up, (-3, -

1), (3, 1), respectively.

• This will draw three lines in such a way that it will look like a character ‘H’ on

screen.

Thus, all glyphs can be rendered by a series of lines. Moreover,

different characters can be rendered side by side to render a

string. As the width of each character is known, rendering

characters with varying widths will not be a problem. A sample string rendered in the

application is displayed here.

Hershey Font is very easy to implement, fast enough to render, and allows rotation and

scaling in 3D. This makes it very valuable to use in this CAD application.

Figure 29: Sample text

rendering

41

CHAPTER VII

CONSTRAINTS

The main motivation behind the creation of a CAD application was to provide a tool to

generate computer based diagram to replace the paper based diagrams. Therefore, a tool

should provide at least those features which are available for paper based drawings.

When an engineer draws a straight horizontal line on paper, he uses a ruler or a drafter for

that. But, these tools cannot be used to draw a line on a computer screen. Moreover, some

behaviors are expected by users that are not automatic for the computer. For example,

most users expect that certain lines should remain horizontal even if either of its end

points changes its position. There are many constrain like this, e.g. Vertical, Parallel,

perpendicular, tangent, constant length. This scenario leads to the requirement of an

ability to create and maintain such constrains. An ability to create such a constraint is

done by including a snapping feature in the drawing application. Maintaining such

constraints is generally done by geometric modeling, in which these constraints are

represented by equations and by solving the set of equations, the constraints are

maintained.

However, the model used in the application is not a geometric model and in such cases

the method described above is very difficult to implement. This is outside the scope of

this project. Another method for snapping and constraints has been used. This method is

easy to implement and works best with the requirements of this project. There may be

many disadvantages for this method and it is not claimed to be good for other

42

applications.

Snapping

The algorithm is very basic in nature. When a user moves a point in a 3D OpenGL space,

the application takes coordinates of that point and finds its distance from all possible snap

locations, like snap to horizontal, snap to vertical, snap to mid-point of a line etc. If the

nearest possible snap location is within the vicinity of a point then a point will be snapped

to that location.

A significant factor in the algorithm is the definition of vicinity, which means the

program must decide whether the snap location is near enough or not. The definition of

the vicinity should be defined in terms of distance on screen and not a distance in

OpenGL space.

Constraints

Constraints are nothing but conditions which must be satisfied even after changes in the

drawing dimensions occur. There are two ways a user can change the drawing entity on

screen.

• Dragging a point

• Dragging an edge

43

However, dragging of an edge can be seen as the simultaneous dragging of both end

points equally. Thus, theoretically there is only one phenomenon which changes the

dimension of a drawing, changing a position of a point. So, whenever a position of any

point changes, it is required to make sure that all constraint conditions are satisfied.

There can be many types of conditions which can be applied to a diagram. In the

beginning, efforts have been made to include many constraints in the program. However,

considering the time line of the project, constraints which are not used very often in the

program are omitted. Below is the list of constraints which are implemented in the

program.

• Fix the ‘X’ dimension of a point

• Fix the ‘Y’ dimension of a point

• Fix the ‘Z’ dimension of a point

• Horizontal Edge

• Vertical Edge

• Fixed Length Edge

The first three conditions are associated with the point itself. When an attempt is made to

change the position, the above conditions will be checked and if any of the x, y, or z

coordinates are fixed then it will not allow any change in that coordinate.

Now consider a Horizontal Edge. If one of the end points of that edge is moved then

44

another end point needs to be moved in such a way that it will fulfill the condition of

horizontality. Thus, the only action required is to figure out which point needs to move

and to where it needs to be moved. The same phenomenon applies to the other three

conditions as well. Below is the algorithm to solve any condition.

1. If any point is attempted to be moved then first it will check weather any of its

coordinate is fixed or not. If any coordinate is fixed then change in that coordinate

will not be allowed and rest of coordinates will be changed.

2. The next step is to check all conditions applied to edges which are pointing to this

point.

In a point data structure, there is a Link List of pointers to edges which points to that

point, and the same Link List can be used to check conditions applied to those edges.

Special note

It may seem like the algorithm will break if one of the fixed points is moved in effect due

to the movement of some other point, but that is not true. Suppose there are two points,

P1 & P2, and the position of point P2 is fixed. Now, there is some condition that exists

which relates point P1 & P2. So if the position of point P1 is changed, then condition will

make an attempt to change the position of point P2. However, as point P2 is fixed, the

only way to fulfill the condition is to change position of point P1 back to its original

position. Thus, algorithm works well in such complex conditions. The algorithm also

works even if a fixed point is encountered at any level in loop. It will revert back all its

effects to fulfill all the conditions.

45

CHAPTER VIII

UNDO / REDO

In the early days, the undo/redo function was considered an additional function to

enhance the performance of an application. But nowadays, it is a very basic and essential

function for any application. Undo means to nullify an effect of an action which has just

been performed. Redo means to replicate an effect of an action which has just been

undone. Even though the function is very basic and very old, its method of

implementation varies substantially for different applications. One of the main reasons is

that, it is extremely influenced by the data structure.
[7]

The main idea behind the function

is to store information, which is required to perform the Redo and Undo actions. This

information is generally stored in either of the two ways described below.

1. Directly storing a state of an application after each action is performed

2. Information regarding each action which has been performed is stored in a

sequence.

Each of the above method is explained below in detail.

Storing the state of an application

In this method the state of an application is pushed on the Undo stack after each action is

performed. As sequences of actions are performed, the Undo stack grows. If at any point

in time, the Undo operation is performed, the current state of an application will pushed

on to redo stack and the last state of the application from the Undo stack will become the

current state of an application. The same scenario will be reversed to perform the Redo

46

operation. Thus, maintaining two lists of the states of the application, the Undo/Redo

function can be implemented very easily. The ease in this method serves as a core reason

for selecting this method.

However, there are some disadvantages involved in this method.

a. As the sequence of operation is performed, the list grows substantially, and if

a state of an application requires a significant amount of memory, then the

application may soon run out of memory.

b. This method is not applicable when storing a state of an application requires

storing a pointer. If a state of an application has a pointer which points

somewhere in memory, then that pointer will be of no use when a copy of a

state has been pushed on the stack.

These two disadvantages are very significant and thus this method is not useful in a CAD

application.

Storing information regarding each action

Whenever any action is performed, this method will store a sufficient amount of

information about that action to re-perform it any time. There are two ways to perform an

Undo/Redo operation in this method.

1. Information about each action is stored, which is capable of calculating its

reversible action, which will nullify any effect of an original action.

47

A simple example is that if an original action creates some entity then its reversible

action will delete that entity. Thus, whenever an Undo action is required after a series of

actions then the application will perform the reversible action for the last action

performed. For performing a Redo action, the application will replicate the last undone

action from the information stored.

Many applications use this methodology, however sometimes calculating a reversible

action becomes a highly complicated task. In such case the chance of errors is very high

and many times the methodology described below is used.

2. Another way of performing an Undo operation from information stored is to take

a fresh copy of an application and replicate all the actions performed from the

information stored except the last one. The application will then be in a state as it

was before the last action was performed. The Redo operation will be performed

by simply replicating the last undone action from the information stored.

Advantages

• It eliminates the requirement of calculating a reversible action

• The methodology is easy to implement and less error prone.

• The same list of information can be used as a “file save”, when file is reopened,

all actions will be performed again to reach the latest stage.

48

Thus, this methodology is very useful in an application like CAD. Implementation of a

methodology in the application is explained below.

Implementation of a methodology

As explained above, enough information needs to be stored about an action so that it can

be replicated. There are two basic categories of actions which can be performed in the

application

i. Mouse click on drawing

ii. General task actions

General task actions are all actions except mouse clicks on the drawing area. Storing of

these actions is very easy, as the only information required to store is the occurrence of

an event and user input parameters. Mouse click actions can be stored by using storing

locations of mouse clicks whenever they are performed. The information stored is enough

to replicate the mouse click actions. However, there are two options for storing a location

of a mouse click i.e. screen coordinates or OpenGL coordinates. Screen coordinates

relates to different OpenGL coordinates when the screen size is different or when the

OpenGL mapping screen is different. Moreover, as entities are generated in OpenGL

coordinates, it is better to store the location of a mouse click in OpenGL coordinates.

Problem

Consider the scenario when a user performs a series of actions and stores the file while

working in a higher resolution. One of the actions is to select a point. It is discussed in the

49

previous section that snapping is performed in screen size coordinates and a screen

distance defines the vicinity of a point. So a difference in resolution may cause a

difference in vicinity value which may produce different results of an action.

Solution

The easiest solution is to calculate the ratio of screen distance to the height of the screen

and use that ratio as a mean of defining the vicinity distance.

50

CHAPTER IX

CONCLUSION AND RECOMMENDATION

Conclusion

The project is still under progress, however all major landmarks have been achieved.

The computer program lets user to generate a building in a 3D application. Snapping

functionality and constraint feature is working correctly in the program. Once the user

has defined that building geometry, the application allows the user to define the location

of trusses in the plan view. The user can also define group of trusses by defining a region

and spacing between those trusses. The application will calculate the truss envelope

based on the roof profile defined. The user can define a custom truss or a pre-defined

truss can be added from the available library. The standard truss from the library has an

ability to fit itself to fill the truss envelope.

Once the trusses are defined, the program will generate the loads on roof panel. These

loads on the panel are then transferred to trusses in an appropriate manner. Once the loads

on each truss are known, the program calculates the internal forces and moments. Based

on these forces and moments, the program will determine the smallest cross section

available in the library which will carry these loads.

The results generated by the program are validated and a good match is found in the

results. Another major feature still under development is to find out the optimum number

of panels in a particular truss. The program will calculate the optimum number of panels

51

required in any given truss to reduce the cost of that truss.

Recommendation

Currently the optimization is working properly in the program, but study can be extended

to determine an even faster algorithm for optimization. Additional user interface can be

added to increase the user friendliness of the program. The program can be extended by

adding an AutoCAD compatibility feature, which allows reading and writing an

AutoCAD file. Automatically determining a type of truss for given envelope will be very

useful feature of the program.

52

REFERENCES

1. Ritter, M. (2008). The analysis of cold-formed steel roof trusses

2. http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/model/winged-e.html

3. http://en.wikipedia.org/wiki/Nelder-Mead_method

4. http://emergent.unpythonic.net/software/hershey

5. http://mbinfo.mbdesign.net/CAD-History.htm

6. Hibbeler, R.C. Structural analysis sixth edition

7. http://www.geocities.com/evilsnack/undo.htm

8. http://mbinfo.mbdesign.net/CAD-History.htm

9. www.opengl.org

10. http://www.gamesforwindows.com/en-US/AboutGFW/Pages/DirectX10.aspx

11. Curtis F. Gerald, Patrick O. Wheatley, Applied Numerical Analysis

12. http://en.wikipedia.org/wiki/Computer_font

13. http://www.flipcode.com/archives/The_Half-Edge_Data_Structure.shtml

53

APPENDICES

Hershey Fonts: rowmans.jhf

 699 1JZ

 714 9MWRFRT RRYQZR[SZRY

 717 6JZNFNM RVFVM

 733 12H]SBLb RYBRb RLOZO RKUYU

 719 27H\PBP_ RTBT_ RYIWGTFPFMGKIKKLMMNOOUQWRXSYUYXWZT[P[MZKX

 2271 32F^[FI[RNFPHPJOLMMKMIKIIJGLFNFPGSHVHYG[F

RWTUUTWTYV[X[ZZ[X[VYTWT

 734

35E_\O\N[MZMYNXPVUTXRZP[L[JZIYHWHUISJRQNRMSKSIRGPFNGMIMKNNPQUXWZY[

[[\Z\Y

 731 8MWRHQGRFSGSIRKQL

 721 11KYVBTDRGPKOPOTPYR]T`Vb

 722 11KYNBPDRGTKUPUTTYR]P`Nb

 2219 9JZRFRR RMIWO RWIMO

 725 6E_RIR[RIR[R

 711 9MWSZR[QZRYSZS\R^Q_

 724 3E_IR[R

 710 6MWRYQZR[SZRY

 720 3G][BIb

 700 18H\QFNGLJKOKRLWNZQ[S[VZXWYRYOXJVGSFQF

 701 5H\NJPISFS[

 702 15H\LKLJMHNGPFTFVGWHXJXLWNUQK[Y[

 703 16H\MFXFRNUNWOXPYSYUXXVZS[P[MZLYKW

 704 7H\UFKTZT RUFU[

 705 18H\WFMFLOMNPMSMVNXPYSYUXXVZS[P[MZLYKW

 706 24H\XIWGTFRFOGMJLOLTMXOZR[S[VZXXYUYTXQVOSNRNOOMQLT

 707 6H\YFO[RKFYF

 708 30H\PFMGLILKMMONSOVPXRYTYWXYWZT[P[MZLYKWKTLRNPQOUNWMXKXIWGTFPF

709 24H\XMWPURRSQSNRLPKMKLLINGQFRFUGWIXMXRWWUZR[P[MZLX

 712 12MWRMQNROSNRM RRYQZR[SZRY

 713 15MWRMQNROSNRM RSZR[QZRYSZS\R^Q_

 2241 4F^ZIJRZ[

 726 6E_IO[O RIU[U

 2242 4F^JIZRJ[

 715 21I[LKLJMHNGPFTFVGWHXJXLWNVORQRT RRYQZR[SZRY

 2273 56E`WNVLTKQKOLNMMPMSNUPVSVUUVS RQKOMNPNSOUPV

RWKVSVUXVZV\T]Q]O\L[J

YHWGTFQFNGLHJJILHOHRIUJWLYNZQ[T[WZYYZX RXKWSWUXV

 501 9I[RFJ[RRFZ[RMTWT

 502 24G\KFK[RKFTFWGXHYJYLXNWOTP RKPTPWQXRYTYWXYWZT[K[

 503 19H]ZKYIWGUFQFOGMILKKNKSLVMXOZQ[U[WZYXZV

 504 16G\KFK[RKFRFUGWIXKYNYSXVWXUZR[K[

 505 12H[LFL[RLFYF RLPTP RL[Y[

 506 9HZLFL[RLFYF RLPTP

 507 23H]ZKYIWGUFQFOGMILKKNKSLVMXOZQ[U[WZYXZVZS RUSZS

54

508 9G]KFK[RYFY[RKPYP

 509 3NVRFR[

 510 11JZVFVVUYTZR[P[NZMYLVLT

 511 9G\KFK[RYFKT RPOY[

 512 6HYLFL[RL[X[

 513 12F^JFJ[RJFR[RZFR[RZFZ[

 514 9G]KFK[RKFY[RYFY[

 515 22G]PFNGLIKKJNJSKVLXNZP[T[VZXXYVZSZNYKXIVGTFPF

 516 14G\KFK[RKFTFWGXHYJYMXOWPTQKQ

 517 25G]PFNGLIKKJNJSKVLXNZP[T[VZXXYVZSZNYKXIVGTFPF RSWY]

 518 17G\KFK[RKFTFWGXHYJYLXNWOTPKP RRPY[

 519 21H\YIWGTFPFMGKIKKLMMNOOUQWRXSYUYXWZT[P[MZKX

 520 6JZRFR[RKFYF

 521 11G]KFKULXNZQ[S[VZXXYUYF

 522 6I[JFR[RZFR[

 523 12F^HFM[RRFM[RRFW[R\FW[

 524 6H\KFY[RYFK[

 525 7I[JFRPR[RZFRP

 526 9H\YFK[RKFYF RK[Y[

 2223 12KYOBOb RPBPb ROBVB RObVb

 804 3KYKFY^

 2224 12KYTBTb RUBUb RNBUB RNbUb

 2262 11JZPLRITL RMORJWO RRJR[

 999 3JZJ]Z]

 730 8MWSFRGQIQKRLSKRJ

 601 18I\XMX[RXPVNTMQMONMPLSLUMXOZQ[T[VZXX

 602 18H[LFL[RLPNNPMSMUNWPXSXUWXUZS[P[NZLX

 603 15I[XPVNTMQMONMPLSLUMXOZQ[T[VZXX

 604 18I\XFX[RXPVNTMQMONMPLSLUMXOZQ[T[VZXX

 605 18I[LSXSXQWOVNTMQMONMPLSLUMXOZQ[T[VZXX

 606 9MYWFUFSGRJR[ROMVM

 607 23I\XMX]W`VaTbQbOa RXPVNTMQMONMPLSLUMXOZQ[T[VZXX

 608 11I\MFM[RMQPNRMUMWNXQX[

 609 9NVQFRGSFREQF RRMR[

 610 12MWRFSGTFSERF RSMS^RaPbNb

 611 9IZMFM[RWMMW RQSX[

 612 3NVRFR[

 613 19CaGMG[RGQJNLMOMQNRQR[RRQUNWMZM\N]Q][

 614 11I\MMM[RMQPNRMUMWNXQX[

 615 18I\QMONMPLSLUMXOZQ[T[VZXXYUYSXPVNTMQM

 616 18H[LMLb RLPNNPMSMUNWPXSXUWXUZS[P[NZLX

 617 18I\XMXb RXPVNTMQMONMPLSLUMXOZQ[T[VZXX

 618 9KXOMO[ROSPPRNTMWM

 619 18J[XPWNTMQMNNMPNRPSUTWUXWXXWZT[Q[NZMX

 620 9MYRFRWSZU[W[ROMVM

 621 11I\MMMWNZP[S[UZXW RXMX[

 622 6JZLMR[RXMR[

 623 12G]JMN[RRMN[RRMV[RZMV[

 624 6J[MMX[RXMM[

 625 10JZLMR[RXMR[P_NaLbKb

 626 9J[XMM[RMMXM RM[X[

 2225 40KYTBRCQDPFPHQJRKSMSOQQ RRCQEQGRISJTLTNSPORSTTVTXSZR[Q]Q_Ra

RQSSU

SWRYQZP\P^Q`RaTb

 723 3NVRBRb

 2226 40KYPBRCSDTFTHSJRKQMQOSQ RRCSESGRIQJPLPNQPURQTPVPXQZR[S]S_Ra

RSSQU

55

QWRYSZT\T^S`RaPb

 2246 24F^IUISJPLONOPPTSVTXTZS[Q RISJQLPNPPQTTVUXUZT[Q[O

 718 14KYQFOGNINKOMQNSNUMVKVIUGSFQF

VITA

KEYUR SHARADKUMAR PANDYA

Candidate for the Degree of

Master of Science

Thesis: SELECTED TOPICS IN DEVELOPMENT OF A CAD APPLICATION FOR

SIZING LIGHT GUAGE COLD ROLLED STILL ROOF TRUSSES

Major Field: Mechanical and aerospace engineering

Biographical:

Education:

Completed the requirements for the Master of Science or in Mechanical and

aerospace engineering at Oklahoma State University, Stillwater, Oklahoma in

July, 2008.

ADVISER’S APPROVAL: Dr. Ronald D. Delahoussaye

Name: Keyur Sharadkumar Pandya Date of Degree: July, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: SELECTED TOPICS IN DEVELOPMENT OF A CAD APPLICATION

FOR SIZING LIGHT GUAGE COLD ROLLED STILL ROOF

TRUSSES

Pages in Study: 55 Candidate for the Degree of Master of Science

Major Field: Mechanical and aerospace engineering

Scope and Method of Study: The goal of the current project is to develop an application

which will let users easily define building and truss geometries. Then, optimum

truss member sizes will be calculated based on load inputs. The application will

be user friendly with required features and is expected to facilitate a wide range of

users. The purpose of this document’s to discuss the selected topics involved in

the development of this CAD application. The selected topics cover the use of an

optimization technique to generate the desired roof slopes, the procedure to size

the trusses, the data structure required for the computer program, the fonts to

display text in 3D, the method to associate constraints on the geometry and the

implementation of Undo/Redo functionality in the application.

Findings and Conclusions: The computer program lets user to generate a building in a

3D application. Snapping functionality and constraint feature is working correctly

in the program. Once the user has defined the building geometry, the application

will allow the user to define the location of trusses in the plan view. The user can

also define group of trusses by defining a region and spacing between those

trusses. Application will calculate the truss envelope based on the roof profile

defined. User can define a custom truss or a pre-defined truss can be added from

the available library. The results generated by the program are validated and a

good match is found in the results. The application can also determine the

optimum number of panels in any truss added from the library.

