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ABSTRACT

Chemical mechanical planarization (CMP) is used in th&oelectronics and optical industries
for local as well as global planarity and for producing mirimsished surfaces. Roughness (Ra),
within- non-uniformity (WIWNU), and material removal rafdRR) are the major performance
variables in polishing. CMP is a complex process involving se@mput variables. Analysis of
the review of the literatures showed that static modelsudeprocess parameters are inadequate
for estimating and monitoring the performance variables in tMP (process. Pad-level
interactions play a major role in polishing. Sensor based mimgtaiechniques enables
monitoring of the CMP process. Additionally, sensor fusion techniquag facilitate in
improving the robustness and monitoring the process beyond using one $erthis work,
wireless vibration (Z-axis) and temperature sensors mounted amch tmp polisher (ECOMET
polisher from Buehler) are used to monitor the material rehmate (MRR) and surface finish
(Ra). The wireless sensor platform has a sampling raés®®MHz for the vibration sensor and 4
Hz for the temperature sensor. Alumina-based alkaline slsraged in polishing process. The
process conditions include two loading conditions (10 Ib and 5 Ib) amdotational speeds (500
rom and 300 rpm). The polishing studies were conducted on a 1.6" coppplesaamd
Microcloth pad (from Buehler).

The overall approach used involves relating the various sesigmral features to MRR and
Ra from the CMP process. The vibration features were eatrarsting statistical, frequency, and
RQA (non-linear) analysis techniques. The vibration feature® combined with temperature
features to build multiple linear regression models. The seigme fitting accuracy for the
roughness model is 93% using the statistical features, such as maximum and le,rtose-
frequency features, such as energy, nonlinear features sucAMasand Lmax and thermal
features such as net temperature rise and temperaturates&€he regression fitting accuracy for

the MRR model is~ 91% using the statistical features, such as variance and swinee-



frequency features, such as energy and nonlinear features, such as tinaadééagperature rise
rate as temperature features. The thermal features deet@ increase the coefficient of
determination of roughness model by 10%.

This wireless sensor fusion based regression models aretfmbadmore efficient compared to a
single sensor as it takes care of both the mechanicatsefising a vibration sensor and thermal
effects using a temperature sensor. It appears that this fg'st time that a sensor fusion based

technique is attempted for predicting Ra and MRR in the CMRepsoc



Chapter 1: Introduction
11 CMP Process
Chemical mechanical planarization (CMP) process is used imaineifacture of microelectronic
devices to produce flat, mirror finished surfaces on field gioisdisplays and semiconductor
wafers. It combines chemical and mechanical actions, i.aniclkaction of the slurry weakens
the surface layers by chemical reactions and mechanibah dy the abrasive that removes this
layer. It includes creation of porous unstable oxides by theceudiaemical reaction with the
chemical slurry. It is one of the safest processes foemplfanarization when compared to
reactive dry-etch process because of the absence of hazardous gases.

In the past, aluminum was used for metallization of the semictordwafers but this has
been replaced by copper because of its lower electrical resstalso, chips made of copper run
faster with less heat generation due to higher thermal conidycthereby increasing the
efficiency and chip capacity. The ability of the CMP prodesplanarize multiple materials in
the nanometer size range with global planarity has led towitkee application in the
semiconductor industry. Zantya al. [1] state that CMP is affected by more than 30 factors.
They include types of slurry, abrasive size, pad, wafer, equipetc. Polishing occurs by the
rotation of the wafer ring and the plate. Due to this rotation, ceg#iifforces cause the spread of
slurry uniformly over the surface. Companies using this technoiogiide Seagate, Intel,
Micron, Sony, Intel, IBM, Nikon, Sematach Int., and Motorola.

Previously, lapping machine was used in the process of ratian but the level of
planarization was not in accordance with the required spdificaf the product. Due to
continuous size reduction of ICs, there was a need for a praciéssigh level of accuracy
thereby maintaining specifications. This expectation of accuraogiistained by CMP. In a way,
it is the advanced version of the lapping process. The CNMR@nplex and a dynamic process

due to variation in the applied pressure by the wafer and Vi¢lae pad. The main components
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of the process are traurry, pac wafer, carrier and platedn order to maintaira continuous

advancement for the proc performance, there is a need for the optimizatiotihe performance

parameters, such asaterial removal rateMRR), roughness (Ra), andthin--non- uniformity

(WIWNU). In this processthere is a rotatinunit, on the top is carrier evaferholder and on the

bottom is platen or pad hold In addition to these, there is a sepataté for the slurry whict

pours from the unit.

CMP machine tools are mair of two types: rotary and linear. Ithe rotary type of

arrangement, thplaten rotate while the pad has a linear motion in ttese of linear polishe

Figures 1a) and (b)showsthe two types of arrangements of CMBturry plays an importat

role in the CMP procesdt constitutes a mixture of chemisahnd abrasives whiimove below

the surface of wafesturing the rottion of the plate. It enables pveeakening of the surface the

wafer before the planarization proceNormally it includes arabrasive materi, e.g., silica,

alumina, suspended in axidizing agent and an aqueous mediguch as hdrogen peroxide.

Various stéistical techniques and dynanmodeling methods are usédthe study otthe CMP

process.
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1.2 Objective:

The objective of the present investigation is to relate the suraeghness (Ra) and
material removal rate (MRR) of copper sample in the CMP groae real time using
features extracted from MEMS vibration sensor and temperatasarseignals (RFID
sensor tags) using design of experiments and statistical mgaeéthods. The approach
uses sensor fusion modeling techniques to combine information from erbratd
temperature sensors. Additionally, Preston constant is estimaied tlee above
developed sensor fusion modeling technique. Experiments were conducidguehler
bench top machine (ECOMET 250) using vibration and temperature seasmpper
sample, a microcloth pad, and colloidal alumina slurry (50 nm abragieg Various
statistical features, time-frequency domain energy featarnesrecurrence quantification
features were extracted from the signals.

Sensor fusion based modeling techniques are developed using response surfac
methodology for monitoring the surface roughness and MRR of ther walished. The
signals from the sensors were collected by systematicalyducting design of
experiments. The sensor fusion technique includes the use of vibratidenaperature
signals. Various features extracted from the vibration signads statistical, time-
frequency, and nonlinear features. This is followed by inclusionnopeéeature features
for improving the estimation of the process outcome. The thermairésaare able to
increase significantly the performance of the roughness matiel. model developed

takes cares of individual factors and their interaction in the process dynamics



This thesis is organized as follows: Chapter 2 presents a reYiie literature which
includes some relevant prior work in the slurry, pad, and abrasive mgdatd
experimentation. Also temperature effects in the CMP are disdus this chapter.
Chapter 3 presents a brief review on the application of sensors itonmanithe CMP
process including end point detection (EPD). It is based on theweni literature
(journals and patents) on vibration sensors, temperature sensoustiaa sound
sensors, and acoustic emission (AE) sensors. Chapter 4 ptegeptsblem statement of
this thesis, which is related to the need for the applicatioemsos fusion techniques for
modeling and monitoring the CMP process. Chapter 5 presents prelimasaits from
initial experiments in CMP. This includes the design and congtruaif the CMP
apparatus, and implementation of the wireless sensors in the gpéiPatus. Chapter 6
describes the experimental apparatus used as well as thedla@ion equipment
required for the design of experiments. The design of experimgnisplemented to
collect data from different sensors for sensor fusion modeling cirfdaMRR of the
wafer. In this chapter, explanation of the fixture and wirel@dasform are provided.
Chapter 7 describes various feature extraction techniques used nmotigéing. They
include statistical features such as mean, peak to peak amplitadance, time-
frequency domain based energy features and recurrence quaatfiaatlysis based
features such as recurrence, determinism, entropy. In addition,atjualiainalysis is
done through visualization by spectrogram and recurrence analyspter 8 consists of
modeling Ra, MRR and the Preston constant. This includes modeling various

vibration features, such as statistical, time-frequency, and nanlieatures followed by



thermal features. Chapter 9 summarizes the main researahgsrfdom the thesis. It also

includes future recommendation for increasing the effectivenesshef models.



Chapter 2: Literature review

21 Mechanism of CMP polishing of copper:

According to Sakat al. [3], three types of contact regimes exist between #fervand the pad,
namely, direct contact mode, mixed or partial contact and hydroplaRor effective MRR, the
CMP process should be conducted in the contact mode. CMP is a vergx@maess involving
many input parameters namely, slurry, pad, wafer and polishing eqiipRigure 2shows
various input and output parameters in the CMP process. Amonguthent studies, there are
two broad sets of models proposed to explain the mechanism of CMRJynafertzian
indentation, and fluid based wear [4]. In the Hertzian indentatmateinthe abrasive particles are
dragged across the surface as cutting tools while in chdkid based wear, the particles
impinges on the surface at some angle and with high vel&i#ygerwaldet al. [5] proposed
the explanation for the mechanisms of the copper removabimimdes i.e., mechanical abrasion
in the first mode and chemical dissolution of the removed pesticl the second mode. When
Benzo-tri-azole (BTA) is added to the slurry, it forms agpaation or non-corrosive layer. This
layer is removed after abrasive action and etches the cepgace. In the CMP, it was found
that for effective material removal rate (MRR), tharst should contain hydrogen peroxide,
BTA, and organic acid. Improvement in the dispersibility of shery results in an increase in
the MRR because the abrasive involved in polishing increasasresult [6]. Pietscht al. [7]
studied the chemical-mechanical material removal usingéretnansform infrared spectroscopy.
They state the termination 6~ results in material removal.

2.2 Slurry:

It is a chemical solution containing acidic or alkaline compoumdish reacts with the wafer

surface thereby preparing a passive layer followed by pr&emésg of the wafer surface during

8



polishing. It is a medium in which abrasive padgchre dispersed is generally mad up of two
chemical compositionwhich areused for the dissolution of upper layer and abesmateric to
remove the dissolvintayer physically. It helps in reducing tisurface featurt thereby enabling
tighter design fabricatiormhe slurryusually contains an oxidizing agentcamplexing ager a
corrosion inhibiter, ambrasive a reagent, and@helating agent. Reagent is addethe slurry to
increase the solubility of the copper in the sluand topreventthe dissolution of copper in ti
recessed areas ohet surface Slurry chemistry mainly includesitric acid, hydrogen peroxid
glycine, Benzotriazole (BTA). Whe glycine and citric acid are trmmplexin¢ agents, BTA is

the corrosion inhibiter anldydrogen peroxide is oxidizing agent.

Input Paramcters Cutput Parameters

Wafer
H. Oxidizers Slurry Wafer Scale Average £
Euﬁ ering Ag T Material Removal Rate, H
Abrasive Concentration, \thr:ﬂnéthftlerI:lNonunITOIm e
Abrasive Geometry, and ?‘:ﬁwﬁmwa
Size Distribution y - K
Pad Die Scale Die
Topography, Fiber Struciure, Within-Dig '
Conditioning, Compressibility, Nenuniform Material
and Modulus Removal (WIDNU)
Feature Scale -
Wafer Step Height Reduction eauqe
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Figure2: Input and Output parameters in CMP [2]

Carpioet al. [8] studied the and based chemistries having silior alumina

abrasivefor copper CMF For a slurry based on which is a strong copper etch;,

potentiodynamic curve shows no passivation behastating tle copper dissoluti¢, while for



NH,OH~ based slurry passivation takes pladegures 3 (a) and (b) shows, the d.c.

potentiodynamic curve of (a) abraded and (b) non abraded copper saorf#ld®; and NHOH.

In HNQ;, absence of passivation was demonstrated by the steep sldgeanadic range and

little difference between the corrosion potentials of theded and non abraded copper surface.

However, the presence of passivation in,8H was demonstrated by the 300 mV difference

between these two corrosion potential.
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Figures 3 (a) and (b): Potentiodynamic curve of copper in 5% HNO3 and in 1% NH40H

Ammonium salt-based slurries can mechanically improve the risdatemoval process

compared to KOH based slurries. The potential energy betweenltbidal particles results due

to attractive potential (by van dar Wall forces) and repulpietential. Agglomeration occurs

when the repulsive potential reduces compared to attractivetijphtégglomeration also occurs

when reduction of electric double layer width takes place whemwsaltadded in the neutral

slurry causing decomposition of the salt in to anions and catighseduced surface potential

[9]. Figure 4shows the dispersion and agglomeration behavior on silica paticieunded by

positive ions in high pH and neutral pH slurry solution. They fountdttieapolishing selectivity

increases iNH,OH ™~ based slurry using NaCO
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Figure 4: Dispersion and agglomeration of EDL on the silica particles [9]

Luo et al. [10] investigated copper CMP using,@k abrasive in NEHOH slurry medium with
BTA addition to it. Polarization curves were used for soemg the corrosion current density for
explaining the CMP behavior in this slurry. The dissolution ratih@ copper decreases, when
0.05 M of BTA was used to control the etching rate of ammoniunwgal the oxidizer. Addition
of 0.1M of NaClQinto 3wt% NHOH slurry leads to an increase in the removal rate sligjint
increase in current density i.e. 2 nAfdmdicating the mechanical dominance during polishing.
Polarization curves were used for measuring the corrosioantulensity, which indicates that
the process was more mechanical dominant.

Aksu et al. [11] showed improvement in the planarization during passivatiorir@&yeads
to higher chemical dissolution of material from the surfdwe to abrasion at M glycine and
pH 12 reduces the copper oxide formation thereby increasing ke pérformance [12]. They

conductedn-situ polarization experiments to understand the electrochemistry of cglycéere

and have investigated open circuit potentigyEt a pH of 4, 9 and 12Figures S5shows the

electrochemical potential study with and without glycine at atimtal speed of 200 rpm and
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27.6 kpa. In this case, abrasion will start at 60 sec atestaiplper Ec and second abrasion will

start at 420 sec and this was observed in the case ofapd 92 which will decrease rapidly due

to copper and hydroxide removal [12]. The abrasion with glycire abaerved to decrease less

compared to without glycine fromyEvs. time curve.

Doyleet al. [13] studied the chemical and electrochemical effectparfoxide in the aqueous
solution containing glycine by modeling chemical effects onspolg. They found that the
dissolution rate in acetate buffer with pH 3 and pH 4 is moreoagpared to higher pH. They
found that an increase in the relative velocity leadsitoease in the removal rate and high
planarity as the film thickness of the slurry will ingse in the case of high relative velocity
[14]. Haba et al. [15] used fumed silica slurry settlement method to remowge Igarticles
(above 1pm) in slurry which leads to mirror like polish on the waftr legs defects.

Sealet al. [16] studied the interaction between glycine, hydrogen peroxide, and doher
CMP using polarization curve, X-ray spectroscopy and AFM. They shewatdemoval rate
decreases at higher concentrations of hydrogen peroxide butoadditiglycine above 1%,
increases the removal rate.

Du et al. [17] investigated the copper removal mechanism by combiningetfeets of
hydrogen peroxide as an oxidizer, glycine as a complexing agert @neamino-triazol as an
inhibitor. They found that the removal rate reduces below alkakh@nd dynamic increase in
the removal rate occurs as 0.1 M of glycine is added irhyldeogen peroxide solution. The

improvement in the planarization was further observed when BTAada@ed to that solution.
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Figure 6: Variation of removal rate for different® concentrations [16]

Chenet al. [18] found the dissolution rate to increase witokHand the passivation of copper
to take place at its highest concentration. Moreover, thBl@¢{ resulted in the absence of
copper passivation. The dissolution of copper in boid,Hand Fe(N@); increases at high
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rotation speeds. Gorantkt al. [19] proposed that the surface chemical reaction occurs when
citric acid was added a complexing agent, with and withoyO,Hin acidic and alkaline
solutions. A high concentration of citric acid inhibits passivatiocopiper in HO, and results in
an increase in the dissolution of copper [20].

Ein-Eli et al. [21] investigated the electrochemical behavior of copp#r amd without BTA
in the absence of @, in a NaSaq, based solution. They found that when BTA was added to this
solution, copper undergoes a strong passivation below 0.2 V (SCEhengrotective layer of
BTA was damaged by localized corrosion attacks above 0.2 V.rolénef interaction effects of
an oxidants and inhibitors in Cu CMP study using X-ray speapysand secondary-ion mass
spectroscopy showed that the presence of glycine,@ l¢ads toCu-glycine complex. This
resulted in the dissolution of copper. The BTA addition togbiation of HO,and glycine leads
to Cu-BTA complex , causing decreased removal ragga® in 5% HO, , 0.01 M BTA, and
0.1 glycine [22]. Gorantlat al. [23] used different additives to investigate the importance of
OH™ in the HO, slurry during Cu CMP. They found that the removal rate depapds the
interaction of different additives with €uand the pH of the slurry during the CMP process. Tsai
et al. [24] investigated glycolic acid to improve the polishingerawhich also decreases the
difficulty in post cleaning by electrostatic repulsion. THahhe-based slurry having uric acid as
an inhibitor and KO, as an oxidizing agent increased the polishing rate with dEsivi25]. In
acidic slurry, increase in th@H~ radicals in the slurry increases the removal rate, tbut i
decreases on a further increas@Hf~ radical after adding oxalic acid [26].

23 Abrasive:

Lin et al. [27] reported that finer and softer abrasives resultighdn finish with less removal
rate in the case of NiP/Al substrate. Gopalal. [28] studied colloidal behavior of alumina
abrasive through zeta potential and particle cluster diswibuising different additives and
agglomerate size distribution measurements. After the adddf glycine at a pH below 4,

agglomeration reduction takes place due to Cu-glycine @mplowever, a decrease in the
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agglomerate size about 100-400 nm occurs when 0.2 wt%@fwhs added to the slurry [29].
The transition alumina particles [30] of 20 nm were studied fasuaistic abrasive in the CMP
process. Its use in CMP results in superior finish and betteanitha on a tantalum and thermal
oxide layers.

24 Polishing pad:

Polishing pad acts as a carrier for a slurry transportttendbrasives are embedded in the pores
for material removal during polishing. It is generally made upwvoflayers i.e. a polishing layer
and a substrate layer bonded together with an adhesive, wéuiche a hot-melt adhesive or
pressure sensitive adhesive. In industries, the IC 1000 padsteckad layer of Suba IV, which

is used for polishing.

(a)

Figure 7: SEM of surface and cross section of a unpolished pad [31]

IC1000/ Suba pad has a superior slurry transport which resulteoth @mpressibility. This
leads to uniform MRR and good planarity compared to the 1C1000 Figdre 8shows a

comparison of the stacked IC1000 and Suba pad (top views and cross sections)
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Figure 8: Cross-section (SEM) of IC1000/suba stacked pad [32]
Stavrevaet al. [33] discussed the impact of the IC1000/suba pad on good pyanehnich

leads to a decrease in Cu dishing and, Sitinning. During polishing, wear of unconditioned pad
takes place due to rolling and fatigue caused by the high fricroe find continuous polishing.
However, in the case of the conditioned pad, pad wear causdddsion [34]. Three different
kinds of conditions were used to study the properties change sullaeand the IC1000 pad. The
first condition was soaking the pad in water for 5 hrs, sdgpimtreasing the pad temperature,
and thirdly, pad conditioning. The shear modulus of the pad decresbis, the material
removal rate remains unchanged during the soaking of the peaten Figure 9shows the rate
of decrease in the shear modulus in the case of IC1000 ig hifglrethe Suba pad in the same
temperature range. However, in the case of an increasetentperature of the pad, reduction in
the shear modulus and increase in the MRR takes place. Howev®tRRR is maintained and the

planarization efficiency decreases after conditioning [35].
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Byrne et al. [36] appliedthe finite element method (FEMWYodel for predicting the pad we:
for studying planarizatiariThey assumedlat pad geometry and consistent pad proes across
the pad- contact. From thithey found that Von Mises stresses was ilowthe center othe wafer
and increased 40%t the outer radit of the wafer as the pad wear. Differamtestigations wei
conductedor analyzing the pad proper The thermal analytically studyf the soft and hard ps
used four techniques i.eynamic mechanical analgsiDMA), thermal modulated differenti
scanning calorimetry (TMDSC), thermal gravimetrigalysis (TGA), and thermal mechani
analysis (TMA)at different temperatus and at different times [37By DMA, a decrease in the
storage moduleat about 3-50% at a typical CMP temperature range of@550°C was shown.

Figure 10shows the DMA scans and TMA runs the hard pad witla 3% reduction in
dynamic storage moduly§’). No dramatic change in the coefficiarfttherma expansion was

observedn a typical CMP temperature range o °C -50°C.
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From the TMA test, they concluded that the temperature dfidhe pad should not decrease
below 25°C and not increase above %D for a stable coefficient of expansion, while for the soft
pad temperature, it should not increase abovi&83additionally, they concluded that the elastic
modulus of the soft pad is not affected in a typical CMP temyreratinge. The mobility or
storage modulus increases with conditioning, which increases etf@mmance of a hard pad
[37]. Also, step height has an impact on planarization. Whestépeheight was high, the pad did
not touch the lower surface, even if it became rough or detbthereby maintaining efficiency.
However, as the step height was reduced with an incieabary temperature, the softer fiber of
the pad increased efficiency. Also when the step height was fuethered, efficiency decreased

because of pad deformation.
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Figure 10: DMA and TMA run for hard pad [37]
Different types of pad characterization techniques were useeasure the pad shape before
and after polishing. McGrat#t al. [31] applied the contact i.e. stylus type profilometer and non-
contact techniques i.e. white light interferometry (WLI) §twudying microscale deteriotion of

the IC/suba pad using roughness as a parameter.
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Figure 11: a) Path as mapped byub® and 9Qum stylus. b) Pad surface mapped by WLI
[31]

The stylus based technique was found to be inadequate for megsadifigatures compared
to WLI. The WLI images were plotted to investigate éisperity heights or scale before or during
the polishing process for a better understanding of the wear phenowietie pad. Bearing
parameters such reduced peak heighf)(Rore roughness depthJRand reduced valley height
(Rw) displayed the asperity height which was not clear in tlse cd the average roughness
parameters ()2 This WLI based technique distinguishes between different condafahe pad,
which was not possible earlier [31].

The scanning electron microscope (SEM), white light interfestry, and attenuated total
reflectance Fourier transform infrared method were used tasume the pore geometry,
roughness of the pore height, and chemical changes in the pagdifibing [32] . They found
by WLI, the pore of the used pad was smaller and shallower comjpatieel new pad. By using
the IR spectrum, no chemical shift was found, which explainglisence of a chemical change
in the pad after polishing. It indicated that physical and mechlanltanges in the pad are
prominent during polishing.

Hooperet al. [38] conducted roughness analysis to study the conditioning of the phd in
CMP process. The roughness of the pad decreases with pgldlke to the flow of worn out pad

material into the pores. Moreover, they concluded that thewgaad was more in the case of
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higher conditioning density. Zantyet al. [39] used a new metrology and characterization
technique for a newly developed polishing pad. The pad was ofguaéyolefin having a surface
coating of ceramic (TEOS) using PECVD. The new pad was claéngsistant and an excellent
adhesive compared to polyurethane, which can be used without conditiS&ikigwas used for
surface and cross section analysis. The properties wesisuneel by nanoindentor having an
indentation of 1200 nm. An X-ray photoelectron spectrometer was fasatharacterizing the
surface modification using a base pressure of 1@rr. Also, the coefficient of friction (COF)
was measured using a wear test by Kiedon 445 static COFTtumlpolyolefin pad coating time
was proportional to the elastic modulus and hardness resulteth duereased thickness. They
showed an increase in the COF increases the wear ratemébmanical properties of the soluble
particles (WSP) based on nonporous pad with a porous pad (IC100® compared with
temperature [40]. A nonporous pad, such as IC1000 pad was found to bly devs® linked
leading to higher decomposition at a higher temperature. The stoagdus of the WSP was
high.

Yoshidaet al. [41] studied the relation of pad roughness with the mateerabval rate at
different ceria sizes. The removal rate was higher atagimum pad roughness and with a
decrease in crystalline size. Also, abrasive free techp@ppeared as the next viable option in
CMP. A fixed abrasive pad in which the abrasives were dddxkin the pad instead of in the
slurry was studied, resulted in the exclusion of compleanthg processes using deionized
water. The material removal at the start was found tes® tompared to the conventional CMP

process.
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Figurel2: SEM of a fixed abrasive pad [42]
Nguyen et al. [43] studiec the four different CMP processes movestigat: the MRR,

planarization efficiencyanc step removal. These processes werneventional CMP with higl
and low abrasive content, abrasive free (, and fixed abrasive paiased CM process. There
weretwo types of material removal the CMP, i.e., lateral removahd top down removi The
top-down removal wasndependent ¢ the feature size and pattern densishile the lateral
removal (round off arner of feature) wi dependent on thieature size and pattern densiThey
explained that the lateral removal a fixed abrasive pad in tHeeld area an the small copper
feature were theame as comparec a conventional CMP, i.egood planarity

The fixed abrasive padasused to study the material remod#pendency the case of Cu
CMP [42].Figure 12show: the SEM of a fixed abrasive pad. The us¢heffixed abrasive pad
resultedin reduced polishing time with smiishing, independent of pattedensity, and feature
size by using optimized slurhaving 15% volume kD, and pH of 3. The ydrophilic polymer,
having a property of swelling and expanding vwater, werestudied for making fixed abrasi
pads. This property athe pad results in self-conditioning of the pad the frictional force

between the pad and thafel. This leads to the removal of a weaker laygaintaining materie
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removal compared to conventional CMP [4E]gure 13explains the above self conditioning

mechanism of the hydrophilic based pad.
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Figure 13: Polishing mechanism of tungsten CMP using hydrophilic polymer basgi#tpad

Pad conditioning maintains the MRR by means of asperities comidigi before polishing. This
leads to higher material removal as compared to after polishing 6]

25 Temperature:

The temperature plays an important role in the CMP processtefperature change leads to
changing of the properties of the pad and slurry which are egrsitve to it. The increase in
temperature of the slurry results in decrease in th&tielanodulus of the pad and a higher
material removal rate. The increase in temperature leadsdcrease in the hardness of the metal
oxide layer causing an elastic deformation of the layer [@&herally, in the CMP process, heat
is generated by the rubbing action of the pad on the wafer surface. Thiggrabbon or abrasive
wear is of two types i.e. two-body abrasive or three-bodysalravear [48]. In a two-body
abrasive wear, the abrasive present in the slurry mergéteqrad surface and acts rigidly like a

cutting tool on the wafer surface. However, in the case oéthoely abrasive wear, the abrasive
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slides or rolls freely over the wafer surface. The thregripodcess is ten times slower than the

two-body process. Therefore, it was concluded that the abrasiga acthe CMP process is of a

two-body type [48].

Figure 14shows the relation of the temperature with respect to th&vee velocity and

pressure. In the CMP process, the temperature change is inyegmortional to the pH value of

the slurry. The removal rate is greatly affected by the Hessipation at the interface due to

various changes it brings in the polishing pad. The variatiophiysical properties and the

chemical kinetics of the polishing pad are the major changes druti@ CMP process.
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An increase in the temperature of the slurry during polishésglts in an increase in the
coefficient of friction and material removal rate (usitng different pads made of polyurethane).
This resulted in an increase in the area of the contact of the padimtafface causing increased
shear force at the interface [48jgure 15shows the coefficient of friction data during the CMP
process at different temperatures [49]. The increase ipeterture also results in an increase in
the metal dissolution rate, dishing of the surface, and metal[4®. Figure 16shows the
change in dishing with temperature. The interaction of temtyer affects the mechanical
properties of the wafeiT heyfound that increased slurry temperature results in an ircafahe

modulus and hardness of the polished copper surface due to work hardEmingise in
temperature causes a decrease in the hardness of thespmdya thereby the contact area
between the pad and the wafer is increased
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Figure 15: Variation of coefficient of friction with temperature [49]
Figure 17shows increase in the contact area with increase in tatnperThis states that the
real contact pressure is proportional to an increase in tempefEtigdeads to a reduction in the
removal rate as the pressure is decreased, which causeldicion in the indentation of the

abrasives [50]. Additionally, a shift in the chemical equilibristate is observed due to a change

in the temperature. The temperature rise leads to an increaseparticle size (due to increase in
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kinetic energy). This causes the dispersed particle toidallith each other, which further results
in scratches on the film [50]. The pH of the slurry decreastsincrease in temperature. The
shift in the equilibrium state causes a change in the pHewvaith temperature because the
equilibrium state is affected by absolute temperature.

Figure 18shows that the variation of pH with temperature. The pH decdema ~ 11 at
20°C to~ 9.3 at 70C. By a direct measurement under the substrate using a speesigned
carrier, it was found that the temperature under the substestehigher compared to the pad
temperature [51]In the case of oxide layer, an increase in the wafer tenuperbgads to an
increase in a removal rate. The linear relationship bettleerntemperature and removal rate of
the oxide layer was found in Ref [52].

The uniformity of the oxide removal was increased due to reduced twafperature variation
at a constant temperature of slurry and a densed grooved padreonto a densed ungrooved
pad. Mudhivarthiet al. [53] investigated the variation of dissolution rate iac&lochemical
machining and found an increase in the removal rate due to amgecin the interfacial
temperature using electrochemical, and X-ray photoelectrotrepempy. They concluded that
at higher slurry temperature, oxidation of the surface oatunggher rates in the slurry solution.
This leads to higher material removal rate with no §icanit change in roughness. The non-

uniformity occurs due to increased oxidation rate at higher skempérature [54].
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2.6  Analysis of vibrations in CMP process

Figure 19shows the CMP process vibration signal obtained during the polishowess:.
Initially at the start of polishing, asperities in the mahtacted with the wafer, which leads to
vibration in an abrasive environment caused by an uneverofrifib]. However, as polishing

proceeded, friction between the asperities and the waferaga@scthe roughness of the pad and

the wafer decreases.
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Figure 19: Vibration in chemical mechanical polishing

2.7 CMP Modeling:

According to Preston [56], the material removal rate in pwig of an material can be found

empirically as the product of applied pressure and the relaloeity, which can be written as

d
d_f = kp pVR
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Where Ethe removal rate or polishing rate, p is the nominal presswye the relative

velocity, and kp is the Preston constant i.e. which depends on the polishing surfatmessg

elasticity, and chemistry at the slurry- interface. Wasi modified Preston equations were
developed because of théollowing problem with the Preston equation i.e. gives a zemwwal
rate at zero relative velocity, fails to show that resionate depends more on velocity than
pressure and includes only mechanical synthesis with no chemithlesis. Luoet al. [57]
presented the following Preston equation
R = (KP+B)V +R.

K = Preston coefficient

P = applied downward pressure

B = constant

V= Relative velocity

R, =Purely chemical removable rate

This equation takes into account the variable for a purely ichémeaction of the slurry
during the process and the other variable for a greater dependéidRR on the relative
velocity. Furthermore, it was stated that the thin layer éafron the surface does not follow the
Preston equation correctly. For the case of a large PV, a nbisstdated in the Preston equation
[58]. Wang et al. [59] proposed a removal rate model using a combined solid and fluid
mechanics.
R.R = M(P,V)P5/8y1/2
Chenet al. [60] used dimensional analysis for modeling MRR using processraatiine
parameters where RR is the removal rate, DF is the dowlrfeare, BP is the back pressure, TT
is the platen or pad rotational speed, and TR is theecaatational speed. The equation is given
as
RR = A x (DF /BP)*(TR/TT)?
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A modified Preston equation including an Arrhenius relationship demived to study the
effect of the pad temperature on ILD and copper s. [Bii¢y combined a thermal factor in the
Preston constant k which takes into account the informationrdiegathermal dependent and

inter-layer independence of copper of CMP.
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Figure 20: Infrared set-up for measuring the temperature gbakdanterface [62]

A MRR model based on solid-solid contact mode was studied on anmgsumf plastic
contact over -abrasive and abrasive-pad interfaces. It includedus material parameters,
namely, wafer hardness, pad hardness, pad roughness etc witts ra@seters i.e. pressure
and rpm. The basic equation of this model is as follows [63]

RR = p, NV

Herep,, is the wafer density, N is the number of active abrasivesVais the material removed
by a single abrasive grain. The coefficient of friction betwi® pad and the metal interface was
more when compared to the pad and dielectric layer. The sldpepérature rise in the case of
pad-metal interface was found to be higher compared to the padtdesieterface. A regression-
based pad temperature model was developed for predicting the déndpt@otion using
kinematic energy at the pad- interface [6Pfhey identified the onset of change when the error
between the five continuous second order regressions wasalagbat change ended when this

error was less for second order regresdiogure 20shows the setup for measuring temperature
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using an infrared camerhi et al. [64] developed a model which showedezrease ila material
removal rate caused by the decreasthe temperature at higher flow rat&€sey showed that tr
rise in temperature afiafel was approximately twice as compared to padynamic model wa
presented for thenaterial removal rate combining CMP process pararaeincthe energy flow
mechanisms [65]. In thEMP process, most of the heat is carried awayheyslurry flow and
redistributed over the pad by radial convectiorih@rmal model of the heat generation, trans
and heat exchange was developeca flat and concentrically groovezhd. It wasreported that
the temperature of the twice the pactemperature during polishing [66]in et al. [67] applied
an axisymmetric quasitatic analysis for the explanation of tH@MP mode. They used a
minimum btal potential energy and axisymmetric elasticss-strain relation for that model.
that model, theslurry pressurewas neglected, and the four layer stiweswere used for the
model. Theyfound that ‘on Mises stresses wetmiform at the centre, followed by a slic

decrease and a very steep increase at thes (sedrigure 21).

Yoshio et al. [68] devised a relionship for the material removal ratesing the energy
conservation law aftemodifying the Preston empirical relationship. Thepk into account the
normal and lsear compones of the down forceA MRR model based on the assumptiot
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Figure 21: \ariation ofVon Misses stresses with distarfoan cente [69]
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perfectlyplastic contact between the wafer and the abrasive in the oxide CMi?esasted
[69]. A wear model based on an elastic model was presented to model the RBMi®. This
model relates MRR with the material properties. Further, tbagladed that an increase in the
pressure and pad rotational speed lead to an increase in the Irexteavdowever, carrier
rotation speed, back pressure, and slurry flow does not play a promireeint tfted material

removal rate [70].
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Chapter 3: Sensors in chemical mechanical planarization (CMP)

3.1 Vibration Sensors:

Vibration sensors are used for detecting defects in varionsifax@uring processes. Research is
on-going for its applications in the semiconductor industry. &ebkers at the Sandia National
labs monitored the polishing process using piezoelectric aco®éers placed in the horizontal
and vertical position [71]. The horizontal position was found to be rappropriate for capturing
the dynamics of the CMP process than the vertical positioey &lso suggested the application
of accelerometer at low rpm of the platen and carrier as tabtars dominate the acceleration

signals at higher rpnfigure 22shows the implementation of sensors on the polishing head

using a slip rind72].

; FEITE
AtoD Analyzis
. Y1 slipring
Actelzromelgr-mm=-. - " ————____ Pdlishing Table
T aeyT LIS, WaferCarier i
g =E 5 A )
“-—___ FrontendAmp and Fier " )

S o

Vertical Horicuntal
accelerometer e acceleromsater

Figure 22: Acceleration sensor implementation and procedure [72]

Kojimaet al. [72] at Fujitsu implemented a vibration signal based mong@ystem for end
point detection as well as for monitoring of other polishing abnormeglisuch as peeling,
slipping. Various issues related to the sources of mechanimation, such as floating
structure of polishing head, head rotating shaft connecting material, changé¢eoialnoéthe

retainer ring i.e. noise were investigated. However, they havenonitored the vibration

along other two axis as vibrations monitored along these axis may be nmmfieasig Figure
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23 (a) and (b) shows the vibration-based monitoring system whidhdex a signal

conditioning unit, such as an amplifier, AC/DC [72] .
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Figure 23 (a) and (b): Vibration signal based monitoring system [72]
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Fukurodaet al. [73] developed ain situ monitor technique for detecting the uneven surface,
pad wear, and uniformity at the surface of wafer. They demadadtdifferent polishing events
using accelerometer signals through signal processing techhigung. the vibration monitoring

system [73], they showed that the spectra signal decreagmdistsng proceeds (Sdeigures
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Figures 24 (a) and (b): (a) Horizontal and (b) Vertical components of tredioiir

spectra of a polishing head [72, 73]
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Additionally, they implemented this monitoring system for copper CMP in witneis used it
to monitor the end point detection, which is more complex as aeuaha other issues, such as
dishing and erosion [74]. They reported that the monitoring systam detect various
abnormalities even during the change in the initial film théds, slurry flow rate, and polishing
rate. They detected the end point in polishing to be matibn band range in the range of about
5 kHz to 15 kHz [73] under various polishing conditiodRigure 2%a) and (b) show the vibration

intensity change under various conditions.
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Figure 25 (a) and (b): Vibration intensity change detection during (@ecopultilayer
polishing and (b) under different defect exposures [74]
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Bukkapatnanet al. [75] developed a sensor based modeling approach to model MRB usi
various nonlinear techniques to demonstrate the nonlinearity cEMHe process. Using this
technique, they bypassed the problem associated with empédteldique namely modeling was
with low predictability. Also various statistical feataresuch as mean, skewness, and nonlinear
features, such as, embedding dimension, time delay, maximum Lyapxporeat etc. were
used for the above modeling technique. Phetak. [76] used the multi-sensor based modeling
approach to track slurry variations during Cu CMP through vasedand wired vibration signals.

It may be noted that the analysis was performed offline.Pi& based regression analysis was
successful in tracking the variation in slurry parametetis high predictability compared to the
statistical model. This model was used for predicting optimum preegameters and MRR.

Maury et al. [77] used a vibration sensor to monitor the endpoint by wioratgnals Figure
26(a) shows the vibration sensor arrangement in the CMP apparatusitiraéon sensor is
mounted on the wafer carrier to sense the vibration in the haalzamd vertical directions. The
presence of an oxidizing agent in the slurry oxidizes the cone@uetyer. This layer is abraded
by the abrasives in the slurry leaving behind the metallicrlaliee exposed metallic layers
exhibit different material properties, namely, the hardnadscaefficient of friction. This result
in a change in the frequency of the vibration related to that.l&yis change in the frequency
was then detected and monitored by the vibration sensor.

Krameret al. [78] used seismic sensor for monitoring the conditions of consumables using
seismic signalsFigure 26 (b)shows theseismic sensor attached to the drive assembly of the
conditioning unit. In this, various consumables, such as, the conditipadr, slurry, and
components of polishing head were monitored for the process gtablig seismic signals are
indicative of the vibrations. They were monitored from the deseembly for estimating the

status of the consumables. Also, the acquired signals at ieaehpoint of the predefined
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polishing conditions were used for estimating the lifetime of dblesumables. Based on the
seismic signals, the process conditions were controlled for procbsiysta
Pattengaleet al. [79] used an accelerometer for CMP endpoint detection thrspgttral

analysis . Figure 26(c) shows the accelerometer-based arrangement in the CMP applaratus.

this, the accelerometer was coupled to the machine frame, amadted under a platen of the
CMP apparatus. The accelerometer measured vibration sigmakdectrical signal proportional
to the process vibration was received by the spectrum analyzerchange in the amplitude or
frequency of one or more frequency components was detected for endigigiction, i.e., when
the metal above the layer was polished. Additionally, the psocasditions in response to this
change were modified for an effective control of the process.

Lim et al. [80] used vibration sensor to monitor the pad condition through vibragoalsi

Figure 26(d) shows the accelerometer mounted on the supporting arm of the padormnditi

The vibration signals from the conditioning arm were correlated with padfaemonitoring the
pad conditioner. The temporal signals were transformed to the fregdemain using Fast
Fourier Transform (FFT) for analyzing the process in the frequdoimain. The negative
feedback loop was applied for real time monitoring of the pad conditiormariisolling the
number of the sweep and head pressure of conditioning device. The processnsoneite

terminated where the amplitude of the abnormal peak increases to theumaxitae.
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3.2 Thermal sensors:

Heat is generated by friction between the pad and the abiagive CMP. This is manifested by
increase in the temperature. Sanéhal. [81] established an CMP process control by thermal
image of the Figure 27(a) shows theéhermal monitoring arrangement using infrared detector in
the CMP apparatus. The rise in temperature at different pmintee wafer has resulted due to
change in the coefficient of friction. The real time infran@dge of the wafer was developed by
periodic scan of the temperature using the thermal imagintgeia mounted to the platen. The
endpoint of the process was detected by the rise in temperature whest thgdirwas polished.

Chenet al. [82] established amisitu endpoint detection by thermal monitoring of the pad.
Figure 27(b) shows the thermal monitoring arrangement of the pad. Endpoint of the pnasess
detected when the temperature at a selected position on the padsdecZ below the
maximum temperature reached. Endpoint was detected when th&erppdrature decreased
below the maximum temperature of the pad at a slurry tenoperat 20 °C to 22 °CFigure 28
shows the variation of the pad temperature with time during the poliphiegss. The increase in
pad temperature initially is due to friction. The maximum gerature is due to local high
pressure in between the pad and the rough topography of the wefendpoint is the event
where the topography of the surface is smoothed. With furthgolishing time, the temperature
of the pad reduces after the endpoint.

Hochenget al. [83] determined the endpoint detection of the CMP process tesingerature
changes. The temperature of the environment and the temperatme point of the pad were
measured by an infrared camera. Then a curve was plottedtesipgrature difference between
the environment and pad temperatdregure 29shows the variation of the temperature slope
during the polishing process. The total slope of the curve inclimes slopes, namely, first
constant slope, second non-constant slope, and third constant slope.t3Ha te curve

represent the rise in the temperature at one portion of the pad whileethediesents the rise in
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Figure 28: Variation of pad temperature with polishing time [82]
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Figure 29: Variation of temperature slope with polishing time [83]

the temperature of the area of the pad. The endpoint was debgctbe turning point between

the first constant value slope and second constant value slope.
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Koo et al. [84] used the multisensor arrangement for endpoint detection of the Gi&spr In
this, temperature of the slurry was measured by the senaohedtto the bottom of the carrier
head and temperature of the pad was measured by an opening on l¢henéaimt for
measurement. During the polishing process, frictional forceeiemgted that leads to a steady
increase in the temperature of the pad or at a constantigedb this frictional effect. However,
there occurs a sudden increase in the temperature whemsthieyfer was polishedrigure 30
shows the variation of temperature with time during a mu#llgwlishing illustrating the
endpoint detection in the CMP procd&] . Point P is the point describing the endpoint
detection point or where first layer is polished and after tifwa second layer is going to be
polished that leads an increase in the frictional forces fdsults in increased temperature of the

wafer or the pad.

i
%’ 80 |-
g
(]
£ P
2 l

20 N
0 20 40 60 80

Time (sec)
Figure 30: Variation of temperature with time in multilevel polishing [84]
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Figure 31:Variation of temperature with pressure for slurrd water in CMP proce¢[85]

3.3 Acoustic emission sensor (AE):

AE sensordind applicatios in many manufacturing processesm abrasive to abrasi-free

processes, includingpnachining, grinding, lappir, and polishing [86] [87]This sensohas the
widest range of sampling rate compared to othnsors. Figure 32shows the AE sens

integrated ina Toyoda ultr-precision float polishing machine @del SP4¢ based on CMP

apparatus. The sensor is attached in the mof the platen.
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Figure32: AE sensor arrangement in the CMP pro¢88%

Tanget al. [89] used AE sensor for monitoring and characteri the CMP process. This we
used to monitor thescratchesgenerated during the process. A thséage polishing regin,
namely, loading stage, seaccommodation stage, and equilibristage during the polishir
process using AE signalhe oading stage was the stagken wafer contac the pad, self
accommodatiorstage occurs due to unsteady state of friccaused by thgeometr of contact
during the start of polishir, and equilibrium stage wahe stage where stabilization in mate
removal and surface roughnewvere establishedrigure 33showsthis polishing regim in CMP.
The first regime lasts 2-8econd, thesecond regime lasts for about several tens of seconds
the third regime, aonstant level and variance canobserved in the signdfigure34 shows the
AE signal with numerous spikes obtained when 1pmnr diamond grits araddedto the slurry
intentionallyto cause scratchi.

Using the AE sensor, Hochelet al. [90] developed a regression model for the end |
detection (EPD) usingenergy features from trAE signal. A decrease ithe signe energy was
observed when the metal layer was polisiChoiet al. [88] used AE sensor to track variation
slurry chemistry during the polishing prss. Three distinct variations were observed in

signal with variation in the slurryontent.Figure 35shows the AE signal during polishing.
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the start of polishing with water, the RMS of the AE sigmas 1.67 V followed by a decrease in
the signal to 1.2V after adding glycine as a complexing agenthét transition in voltage was

observed at 1.1 V after re-oxidation with®4.

AE rms signals using normal slurry
L] L] L] L L
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II: Running-in stage:

I: Equilibrium stage

Carrier sp96d=25 rem
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o i : . i ;
(o] 10 20 30 40 50 60
Running time (s)

Figure 33: AE signal during polishing [89]
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Figure 34: AE signal obtained when micro scratches were formed [89]
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Figure35: AE signal without abrasive [88]

Ganesaret al. [91] studied the delamination defects in CMP using wa- based strategy on
AE sensor signal. Wavelbased multiresolution was applied for monitorthg CMP process.
Figure 36shows the cumulative energy of AE signal at 16 levels of decotigm. The out of
control signal’'scumulative ener¢ was higher than in control of AE sigin Also, the energy i
both cases as significantly highe, up to 6 levels.
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Figure 36: Cumuldve energy for 16 levs for in-control and out-oontrol AE signe [91]
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Table 1: Patents on vibration sensors in CMP

on
as

O

U

de

cak

US Patent | Issue date| Inventon  Assignee Title Brief Description
No.
6051500 18 Apr. 00 Maust Lucent | Device and method for | A multilayer CMP was described in which the process vibrat
al. Tech. polishing a was detected by a vibration sensor. A change in the signal w
semiconductor substrate described as the layer gets polish.
[77]
7198542B2 3 Apr. 07 Kramet AMD Method and system for | A CMP control system was described for the detection of
al. controlling the CMP by | condition of consumables in polishing. Also status of the
using a seismic signal of conditioner used can be detected by the system. The seismi
a seismic sensor [78] | sensor was used to detect the process vibration in the syste
6431953B1 13Aug. 02 Carter | Cabot, IL | CMP process involving| A CMP control using an algorithm was described. In this, the
al. frequency analysis basedsignals from different sensors were used to control the onling
monitoring [92] process by means of power spectrum. Any change in amplit
or frequency will help in detecting pad wear. Frictional force
was measured by strain gauge.
7163435 B2 16 Jan. 07 Liehal. TSSP Real time monitoring of | A monitoring arrangement was described in which the
Ltd CMP pad conditioning | accelerometer was attached to the conditioning arm for
process [80] monitoring the pad wear. By spectrum analyzer, abnormal p
of the frequency was analyzed for monitoring.
2006/0063383 23 Mar. 06 Pattenggle CMP process endpoint | End point detection arrangement was described in which the
etal. detection method by accelerometer was attached to the CMP tool. It included a
monitoring and computerized system in which a encoded frequency was
analyzing vibration data| detected real time during the polishing for an end point.
[79]
5904609 18 May 99 Fukuroda Fujitsu Polishing apparatus and A failure detection system was being described for preventin
etal. Ltd. polishing method [93] | the breakage and jumping of wafer by detecting abnormal
vibration signal. The Vibration sensor was attached to rear o
substrate holder.
6634924 B1 21 Oct. 03 Ombal. Ebara | Polishing apparatus [94] A polishing machine with a signal analyzing method was
Corp. described in which the vibration signal transmitted through th
radio was used for pad wear and polishing endpoint by
comparing the signal during the polishing with the initial sign

ne

al.
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Table 2: Patent on AE sensors in CMP

ng
is
ical

of
d. A

ing

lose

for

US Patent No. Issue datg Inventpr  Assignee Title Brief ghé¢iser
6709314 23 Mar. 04 Kaushdgl AM, CA | Chemical mechanical A method for detecting the transition in layers of polishi
etal polishing endpoint detection | by monitoring acoustic energy using acoustic emission
[95] described. The acoustic energy was converted to elect
signal which was further filtered before converting to
frequency spectrum. The end point was detected by
comparing the frequency spectrum with the previous
frequency spectrum
6379219 30 Apr. 02 Oba SLET, Chemical mechanical A controlled polishing mechanism based on delay time
JP polishing machine and two elastic wave signals from work piece was describe
method [96] control by spectral analysis was done through maintain
a signal magnitude from different sensors.
6488569 3 Dec. 02 Wang et FSU,US | Method and apparatus for | CMP apparatus in which the AE sensor was attached ¢
al. detecting micro-scratching in| to wafer for monitoring surface defect i.e. scratches.
semiconductor wafers during Increase in amplitude threshold was used to monitor
polishing process[97] surface characteristics.

6424137 23 Jul. 02 Sampson  STM Inc. Use of acoustic spectral | An online technique based on spectral analysis was
analysis for described for detecting scratches during polishing. A band
monitoring/control of CMP | of frequency was being monitored to determine unever
processes [98] vibration before any damage to wafer.

7377170 27May 08 Ganesgan USF System and method for the | A moving window based strategy against delamination

etal identification of chemical monitoring the polishing process was described. A dya

mechanical planarization
defects [99]

signal was decomposed up to tffelével and energy of
coefficient was calculated by daubachies wavelet of fo
order. The threshold limit was assigned for calculating
significant energy through the wavelet coefficient.

lic

urth
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6910942B1 28 June 05 Dornfield UCA Semiconductor CMP A system was described in which a sudden drop of AE
process and End point signal was used as a end point of polishing. Also explal
detection method and that the signal at the start was due to brittle abrasion ar
apparatus [100] the endpoint was due to the particle dielectric abrasion
particle metal abrasion.

5240552 31 Aug. 93 Yu et al. Micron  CMP of a semiconductor | A monitoring system for detecting the thickness and
wafer using acoustical wave | endpoint through acoustic emission sensor was descril;
for in-situ end point detection The received signal was compared with the directed signal
[101] for thickness monitoring.

6494765 B2 | 17 Dec. 02 Gitit | Center for| Method and apparatus for | A CMP process control arrangement comprising a
al. tribology | controlled polishing [102] multiples sensors namely AE sensor, force sensor, and

Inc

temperature sensor mounted on the rotating head was
described. The simultaneously obtained signals were
processed and analyzed by the control unit
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Table 3: Patent on sound sensors in CMP

US Patent No

Issue dats

Inventor

ee Title

Brief qemxri

5245794

21 Sep, 93

Isi

Audio end point detect
for chemical mechanical
polishing and method
therefore [104]

pA method for detecting the acoustic wave produced due to rubb

ing

action and converting that into acoustic energy in the range of 30 Hz

t0100 Hz was described. A phase loop system was applied for
detection of set frequency.

5222329

29 June, 93

Yu

Acoustical method and A microphone was positioned a distance away from the wafer tq

system for detecting and
controlling CMP depths
into layers of conductors
semiconductors and
dielectric materials [105]

sense the acoustic wave. This contactless based arrangement
used to determine the end point detection in CMP i.e. thickness
the polished layer removed. This signal detected was amplified
analyzed by a spectrum analyzer.

was
of
and

6494769

17 Dec, 02

Sinclair

etal.

Wafer carrier for
chemical mechanical
planarization polishing
[106]

A wafer carrier was developed in which the microphone was

mounted inside the cavity just sticking the wafer plate. In this way,

the sensor was at the rear of the wafer in contact. Also, the end

point

detector was adapted to measure the relative surface of the wafer.
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Table 4: Patent on temperature sensor in CMP

pad temperature.

US Patent No| Issue date Inventor | Assignee Title Brief description
5196353 23 Mar. | Sandhuet Micron Method for controlling a A thermal arrangement was described for measuring the
93 al. CMP process by measuring | temperature of wafer using the infra red detector. The
a surface temperature and | endpoint detection was detected by the sudden change in]
developing a thermal image | wafer temperature, when the new layer was exposed.
of wafer [81].
5597442 28 Jan. | Chenetal. | TSMC Chemical mechanical A temperature monitoring system for EPD was described
97 planarization (CMP) endpoint| The infra red detection device was used to monitor the pad
method using measurement af temperature at the abraded region.
polishing pad temperature [82]
5643050 1July.97 Chestal. | ITRI Chemical/Mechanical polish | A thickness monitor arrangement using temperature
(CMP) thickness monitor [107] measurement at controlled slurry temperatures between 10°C
to 30°C was described. The temperature of the wafer or pad
versus time was plotted to monitor thickness. The removed
thickness was derived using computer stored integration
coefficients. These coefficients were specific for slurry
chemistry and pattern density.
6872662 29 Mar, | Hochenget Method for detecting the The infrared detection device was described was used td
05 al. endpoint of a chemical measure pad temperature for an end point detection system
mechanical polishing (CMP) | for CMP. The endpoint was detected by slope variation of the
process [83] temperature curve. The curve was plotted using numerical
method like linear regression methods using the temperature
difference measurement between atmosphere temperature and
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6976902 20 Dec.0bKoo €t al. Samsung Chemical mechanical polishinilulti sensor based EPD was employed. In this, temperature
apparatus [84] sensors for slurry, wafer, and pad temperature were used as
first detector whereas load current, voltage and resistance of
carrier head motor was used as the second detector. In the
second invention, the second detector was replaced by a
optical detector which detects light illumination on the wafer
and reflected from the wafer.
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Chapter 4: Problem statement

In the CMP, the key process parameters, namely, down forcesiymy, flow rate play
an important role in achieving good planarization with good mategialoval rates.
Earlier work deals with the monitoring of the process using reifesensors, such as,
vibration, acoustic emission, friction, and temperature to study thshjpm process
using wired and wireless sensors [76]. However, the scope of theingpdf the process
performance variables (MRR, roughness and WIWNU) through sensaos fuss not
been explored. Recently, an investigation using a using a singge dfy wired and
wireless sensors was reported [76]. A CMP process is a comgidixiear process with
some 36 input variables. Due to uncertainty of the CMP process, use sdmsw alone
for predicting the process may not be inadequate. Wireless techrislogyv widely
used for various applications. This study is undertaken to quantifyrtloess by sensor
fusion modeling through vibration and temperature sensor using regressilysisa
Also, most of the models in the literature are on MRR. However, MRfvt a direct
output parameter in the CMP process. Surface roughness and WIWtie whfer are
direct output parameters for the monitoring process. Till now, lseme such model to
track roughness in the CMP process.

In this investigation, a sensor fusion model was proposed usingllaiaed from a
full factorial design of CMP experiments on copper samples. Thidemis used to
guantify the roughness and material removal of the process witih@uteed for wired
sensors. This technique helps in tracking the variation of process osipgtwireless
temperature and vibration sensors. Response surface methodologypmli@sl do
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estimate the key process parameters with output variablesussiogs sensor features,
such as, statistical, frequency, and recurrence quantificatied iestures. The sensor is
located underneath the copper sample for maximizing the acafray process signals.
Two vibration and two temperature sensors are attached for miogitthre process
dynamics during the polishing process. Wireless sensor fusion abpsoémund to be
more accurate compared to single sensor modeling using lineaoahdear statistical
techniques. The sensor fusion model is able to estimate the rgsgbhéhe copper
sample and MRR in the CMP process for real time monitoring w&ngus statistics-

based features, time-frequency features, nonlinear featuresewrpeérature features.
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Chapter 5: Initial CMP Studies

5.1 Submerged Face-up CMP:

Research on facgp CMF process has been undertaken by misgarchers fro university,

national laboratories and indus [108] [109] Recently at OSU, @/develope@ wireless sensor-

based monitoringystem forface up CMPFigure 39shows the CMRpparatu. It consists of a
mini-milling machine to run thshaft or pad arrangement, and a fixtimeholdin¢ the wafer. In
the initial set up,he diametes of the wafer and the pad were the sametiiache: in diameter.
Figure 40shows the top and front vis of thesubmerged face up CMP appar. The inside
component of the tank hadslot made for locating the sensors. The pldstae plate was ma

to hold the tank8” x 8" x 4.E") during the polishing process.

o -
Mini
Milling
m/c

Figure 39: CMP polishing machine

Copper disc was used asvafel in this arrangement. Theaterials of the apparatus w chosen
very carefully. For examplepolyethylene tank was used becauseitefresistance to mo

inorganic chemical environments. The shaft was rotated in the anticéecHirectior
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CMP polishing was conducted under different conditions. We meuitaibration, sound, and
temperature signals using sensors attached under the wafdar.oMtiee literature on CMP
vibration monitoring was based on capturing the vibrations of thieecaolder or holder during
polishing. The present system is different in that the semserattached underneath the wafer

[71] [72]. The slurry used for polishing condition is colloidal sluwfysilica having abrasive size

of 70-90 nm, which is alkaline in nature.

]

Tank

Base Plate

sengor
B,

Acoustic
sensor
-

Figure 41: Sensors arrangement in the face-up CMP apparatus
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Figure 41shows the arrangem¢ of sensors in the CMRarrangemel. Our system
incorporatesvireless MEMS technology for trpolishing process. In thiapparatu, wafer was
submerged in slurrgontaine in the tank. The wafer igght fitted in the circular slot usira bolt.
A base plate was uséa support the tank during the polishiprocessThe signes obtained from
the polishing process weenalyzed to identify various frequenci@ssociated witlthe process.
Initially, the shaftwas run at 7 and 90 rpm.Figure 42shows the temporaibration signes and
their power spectruntespectivel, obtained from the process at a samplistg of 500 Hz. The
vibration signals obtaineat 90 rprrfrom the process was found to benlinear. From the pow:

spectrum, a widdand from 11-140 Hz was observedrigure 43shows the sound sigis
from the polishing process at a shaft speed O rpm. h the case of theoundsensor, at 75

rpm, the signatontained noise. frequency band at 198z can be seen from the p
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1950 ff
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55;30 ?[:;un 75inn euhn BE;]D QD;J[] ! % 50 100 150 2
Data points Frequency, Hz
Figure42: Vibration signals at 95 rpm, 500 Hz
Statistical featuressuch a mean, standard deviation, maximuminimurr of the frequency
band of the process sigealvere extracte. However, some concentnings and scratchewere

observed on theusface due t(pad rotation only. A motor arrangement vilasr used to provide

rotation to the wafecarrier A load cell was mountedn the base plate holding the t to
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determine the load acting during polist. This load cell was aligned with the axis wafer

carrier.
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Figure43: Acoustic/sound signals at 75 rpm, 5@0
Figure 44shows the modified arrangemeof the face up CMP apparatusTeflon shaft wa:
attached to thailling machine¢ spindle using an end mill holder ( ). The

wirelessplatform was attached to the shaft holder by means +bolt clamp. Initially,colloidal

silica slurry was used for polishit

Motor-chain arrangement
for Carrier rotation

Slurry
Circulation ——>

Figure44: Face up CMP with wireless sensor
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Different types of pads were investigated to optimize thisiiog process. A copper cup was
bonded to the shaft with an adhesive. A pad was attached to the ogpansadhesive for
measuring its temperatureigure 45shows the copper cup arrangement for CMP. In this, a slot
was made in the shaft for measuring the temperature giatieln this system, MEMS-based
vibration sensor was attached to the shaft and the tempesanser was attached to the rear end

of the pad.

Copper cup

Polishing pad

Figure 45: Copper cup arrangement for temperature signals in CMP

This system was able to capture, pad vibration and tempedatring the polishing process.
Figure 46shows the temperature signal of the pad obtained under theifgjloanditions: Suba
pad, 400 rpm for the shaft, 40 rpm for the carrier, and 30 Ib load gsifgdal silica-based
slurry. The temperature rises rapidly with time reachowards a steady state temperature. The

net temperature rise was®over 4 minuteskigure 47shows optical images of the as-received
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and polished copper wafers used in multistage polishing. Injtilly as-received wafer had

defects, such as pits, scratches. After polishing, these defectsawereed.

28
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Figure 46: Pad temperature signal

The average roughness (Ra) of the polished wafer was 3% aine 5shows the conditions

used during various stages of multistage polishing. The pagtd were Suba IV, FBP, and

microcloth. In order to obtain a defect-free surface from pwlgs the loads were reduced, and

the rpm were increased after each polishing step. The Isesate pits were removed in the first

stage, a matty surface finish was observed in the setagel &ind in the third stage mirror finish

surface was obtained. Other different multistage steps werempedarsing different pads.

Table 5: Multistage polishing process in a colloidal silica slurry

Stage Pad Type Load ()  Wafer rpm Pad rpm Polishing ¢imie.)
1 Suba IV (Hard Pad) 35 40 500 30
2 FBP (Medium pad) 25 50 700 30
3 Beuhler MicroCloth (Soft pad) 15 75 700 15
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Start of polishing Stage 1: After 30min. polishing

Stage 2: After 60min. polishing Stage 2: After 75nmalishing

Figure 47: Optical image of copper wafer using multistage polishing asiace-up
CMP polishing apparatus

Figure 48shows the IC 1000 pad used for polishing the copper disc at ercgreied of 50
rpm and the shaft speed of 375 rpm at 20 Ib load. Wear of the gmdhserved after polishing.
The color of the pad changed from white to a dark color at the epolishing due to wear and
impurities. Figure 49shows the FBP 3000 pad after polishing at 20 Ib load under the sa
polishing conditions. The color of the pad changed from lightrgteea dark color due to
impurities and asperities removed after polishing. Wedhefpad was observed after polishing.
The polishing conditions were optimized for polishing of the wafet5 minutes. A multistage
polishing technique was used to obtain the mirror finish surfiaggy colloidal silica slurry. In

this, three different kinds of pads were used for polishopper discs. The hard pad IC1000 was
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used initidly for high material removal, uba IV pad in the middle for intermediate polishing

FBP 300 at the end for mirrcinish. Colloidal silica slurry was used in thesgerimers.

Figure 48 IC 1000 pad before and after min. of polishing timewith colloidal silica slurry
(1:2)

Figure 50shows the signal obtained from the CMP polishing process the following
process conditions, i.echemomepad, shaft speed of 300 rpm, and carsigeed of the £ rpm.
An alumina slurry concentration of (1:3) was u The vibration sensor signal was samplec
500 Hz frequencyThe power spectrum shows that the signal includes many fregaefite
power spectrum was further studifor analyzing theprocess during polishing time inters.
Figure 51showsthe power spectrums for the above polis conditions. e variation il the
power spectrum of the vibration signal for alun-based slurrywas observe at 10 minutes of
the polishing timeThe amplitude of the frequency ba(from 230-235 H} decrease with time
[seeFigure 5]. Power spectrunanalysis was made to study tinequency of th CMP process.

The vibration signals were very sensitive to machine vibri as well.



As Recerved Polished Pad, After 40min

Figure49: FBP 1000 pad before and after polishing
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Figure 50 Vibration signal and Power spectrum a Ib loac
Initially, experimentsunder different conditics were conducted for the frequency spect
analysis of the CMP process sigl. From this study, it wasoncluded that the signincludes
shaft frequency, chain frequel, and their interactiongzigure 52shows the power spectrt
obtained under the above polishing conditions. The study was made toidetdgrenfrequencie

of the process under a constant polishing cond
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Figure 51: Power spectrum during the polishing process

Table 6: Process frequency band at various conditions

No. Condition Frequency band

1. | Wafer carrier rotation without contact 95-105 Hz, Vibration due tomot

2. Wafer carrier in contact with wafer 185-200 Hz, Process freyusand

3. | Shaft spindle rotation without contact No significant band

4. | Shaft spindle rotation in contact with the 95 -105 Hz and 150-160 Hz

5. | Wafer carrier and shaft spindle rotation only No significantiba

6. W?fir_ carrier and shaft spindle rotating during95-105 Hz and 150-160 Hz
polishing

The shaft and carrier rpom were 400 and 40 rpm, respectively an8@rlb load using (1:2)
colloidal silica slurry. The vibration signal was sampled@® Hz. Frequencies below 60 Hz

were coming from the motoiTable 6shows the process frequency analysis obtained from

Figure 52.The signals were taken under different conditions, such &% rsitation only,
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polishing with shaft rotation only (no motor rotation), motor rotatioty, polishing with motor
rotation only (no shaft rotation), shaft and motor rotation (no polishiagyl polishing with shaft
and motor rotation. From the first and second conditions of the shatibrgtit was concluded
that power spectrum band from 95-105 Hz was the frequency band associated witlbisisrfn
and 150-160 Hz band was the frequency band associated with the CMP process.

Tests were conducted in dry and wet environments for vibratiopsisalf the CMP process.
The vibration signal was sampled at 850 Hz. The polishing conslitieere 400 rpm shaft
rotation, 40 rpm motor rotation and a 30 Ib loktgure 53shows the vibration signals under
different conditionsFigure 53(a) shows the signals under dry conditions and poliskirgyre
53(b) shows the signals under wet polishing conditidgfigure 53(c) during polishing with
slurry, andFigure 53d) when slurry quantity was increased. In the case of dryhgmdiswhen
there was no slurry or water, one continuous signal was obsentealitvitny variationfigure
53 (a)]. However, when polishing was conducted in watéguire 53], continuous band in the
signal was observed for a longer interval in the polishiigen water was removed, and slurry
was added, a continuous band was observed in a small interval.résele are attributed to the
abrasive action during polishingrigure 54shows the power spectrum analysis at different
loading conditions. The sampling rate of the wireless platforra 880 Hz. Three loading
conditions were chosen for the vibration signals, namely, 30 Ib, 2thtb10 Ib. The shaft and
motor rpm were fixed at 400 rpm and 50 rpm. The frequency band frof #2-was from the
motor. The mean of power band from 170-185 Hz was plotted. The drop ér frem 30 Ib to
20 Ib was two times more than the drop from 20 Ib to 10 Ib. A aquiakt study was made for the
CMP process through vibration signals. From the above, it was evidewitzion signals were
very sensitive to the process which includes the slurry conditnd the loading condition. It was

concluded that the vibration signal can be beneficial for monitoring toegs.
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Figure 52: Vibration frequency power spectrum for analysis

However, there was some uncertainty associated with the mgueal set up described in
Section 5.1. Therefore, a DOE-based quantitative study was miadebesich top polisher for

regression analysis modeling of Ra and MRR of the wafer.
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Figure 53: Vibration signals under dry and wet polishing conditions
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Chapter 6: Experimental Apparatus and Design of Experiments

6.1 CMP polishing apparatus:

Figure 55shows a Buehler polishing machine (EcoMet® 250/AutoMet® 250 IiFpomsed for
CMP polishing studies. It is also used as a transmittee b the sensor§igure 56 shows a
desktop computer as a receiver or base for the signal coflaghich was used for studying the
CMP process. This machine contains an upper and lower main housingppérehousing is
equipped with an air cylinder arrangement. The lower housing ippagliwith a platen of 8”
diameter with a platen speed of 10 to 500 rpm operated by a high nomjoe of 1 Hp. The
machine is equipped with a sample holder having multiple operohgdifferent sizes for
polishing samples. Each opening is mounted with aluminum lip for feexiounting of the
samples. The sample holder is driven by a drive shaft rogteah electric motor. The applied
load varies from 1 Ib to 10 Ib. The load was applied on the caameple through the finger tip.
Polishing was done by the application of down force on the sammagthrthe actuation of
pressure cylinder against the pad rotation in a slurry environi@ensistent repetitive pressure
is retained due to well controlled air activated cylindédre sample and the pad were rotated in
opposite directions. The diameter of the sample holder is Igligists than then platen diameter.
An adhesive pad was bonded to the bimetallic plate which imasnmounted on the platen. A
wireless sensor network was used to sense the temperatuvbeatthn signals. Two copper
samples of tellurium copper (copper alloy, Alloy C14500) with d&imeter were polished
simultaneously in each experiment. MEMS sensors were attathis rear of the sample to
study the dynamics of the process. An alumina slurry (0.05 um grajrasideapped Microcloth
pad from Buehler were used in the experiments. A 1.6” diametervws prepared to cover the

top of the copper piece from the slurry. The slurry wdsdiin the beaker for polishing. The
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peristaltic pump was used to pump the liquid 1 the beaker to the pad using hao and for
slurry recirculation.Anothei beaker was placed at the oufletm where slurnyis circulated using
the pump.The pump was run by ec power source for uniform electric curre The wireless

platforms were tightly peked inside the plastic boxes by means of thermc

U

BUEHLER

AutofMet” 250

fynarweano

Figure 56 Receiver bas for vibration and temperature sigr
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The wireless platforms inside the boxes were mounted to theimeacylinder by means of a
shaft collar.
6.1 Wireless Sensor:
Figure 57shows the Tmote sky based wireless platform from MOTEIV iigmas collection.
Tmote sky has Zigbee-based system architecture. The main cantgpohéhe Tmote sky are the
8 MHz Texas Instrument MSP430F1611 microcontroller (10k RAM, 48k kasth the CC2420
chipcon’s radio interface. TinyOS, an open source platform, was usexd esC based program
for programming wireless platform in the cygwin environment. Thiveoé was installed in the
Windows Xp operating system. The java application-based osafpeswindow was used for the
display and saving of the signals. The MEMS sensor from EREALE’ was used for the
vibration signal and IC sensor from ‘ANALOG DEVICES'’ was u$edtemperature monitoring.
The vibration signals were sampled at 500 Hz and temperaturalssigere sampled at 4 Hz.
Three wireless platforms were attached to the spindle. dlatborms were attached with two
vibration sensors, and the third Tmote sky was attached to théetmmerature sensors. The
slurry temperature was measured by a thermocouple before andddifithing. The sensors were
attached to the workpiece by means of an electric wire taviteess platform. Some of the
features of tmote sky are as follows [110]:

= 250 kbps 2.4 GHz IEEE 802.15.4 chipcon wireless transceiver

» Integrated ADC, DAC, supply voltage supervisor, and DMA controller

» Integrated onboard antenna with 50 m range indoors/ 125m range outdoors

= Ultra low current consumption

= Fast wakeup from sleep (¢9

= 16-pin expansion support and optional SMA antenna connector

= TinyOS support: Mesh networking and communication implementation
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Figure57: Tmote sky-based wireless platform

Figure58: Sartorius weighing balance machine
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6.2 Design of experiments ( DOE):

Table 7gives details of the factors used in the full factoriaigie of experiments. Three factors
(load, rpm, and slurry ratio) at two levels (high, low) wereestigated to study the process
dynamics with the sensors. After each experiment, the copper sangddeamed in an ultrasonic
cleaner for 2 minutes. It was then dried by air pressuredaefeasuring its weight. The material
removed and the roughness was measured after drying. Averaijes pdints were chosen for
roughness (nm). The material removal was measured afterwaclsing a precision weighing
balance.Figure 58shows the Sartorius weighing balance machine (Model 1712 MP8). Th
resolution of the instrument is 0.1mg. Experiments were conducted ranaiostlydy the process
dynamics without any uneven interaction. The roughness of the coppglesaas measured by
ADE Phase Shift MicroXamOptical laser interference microscope (5égure 59) It is a
non-contact surface metrology system for measuring the roughintesst pieces. The resolution
of the apparatus is 0.1 nrit.is used for mapping three dimensional surface profiles wit
the measurements made in three modes, namely, quantitative, vidualrdocal modes
using optical interferometry.

Table 8shows the levels used in the full factorial design. For loadram, the high and low
level were (10 Ib and 5 Ib) and (500 rpm and 300 rpm), respéctiBefore polishing, each
sample was mechanically hand polished to an average roughri&s3-880 nm with a 600 grit
size sand paper. Each experiment was conducted with a new padr sapgple, and a new
slurry concentration. Each run was divided into four parts, i.e., 30900and 120 sec. Each
sample was mounted with a temperature and a vibration sensoonBesurface methodology
was used for obtaining a regression model to estimate Ra, EiRRRPreston constant from the
sensor signals features. These tests were carriedogistant speed (60 rpm) of the spindle. The
MRR was the material removal rate in a particular rurirftawnitial weight of W,,_; and initial

time of t,_;.
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Table 7: Full factorial design of CMP experiments

Run Load, Ib Rpm Slurry ratio
R1 10 500 1:3

R2 10 300 1:3

R3 5 500 1:3

R4 5 300 1:3

R5 10 500 1:5

R6 10 300 1:5

R7 5 500 1:5

R8 5 300 1:5

Table 8: High and low level in CMP experimental design

Level | Load, Ib | RPM| Slurry ratio

High 10 500 1:5

Low 5 300 1:3

Figure 60shows the MRR for two repetitions calculated under theovatig
condition of 500 rpm, 10 Ib, and ratio of colloidal aluminarsiur.3. During this repetition, the
signals were captured and analyzed for the reproducibilithefprocess. The trends of MRR
were the same in all the repetitions. The MRR was measareng/sec. The images and 3D
surface profiles were captured by ADE Phase Shift MiaraXa surface-mapping microscope.
Figure 61 (a) and (bghows the optical microscope images of the copper sample &Irun
condition at the start and end of polishing. At the start of lgialis the optical image was full of
scratches and pits, which was removed in subsequent polishing aiftetésn
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(b)
Figure 61: Microstructure of copper sample before and after polishing
Figures 62a) and (b) shows the 3D surface profile of copper. After 2 msnoftgpolishing,
the observed image was flattened with a surface roughnessmf\Marious defects like scratches
and pits marks were removed after polishing. Figure 63 shimsvéime series of signals under
two different loading conditions (10 Ib and 5 Ib) at the sameioott speed (500 rpm). The
slurry ratio in both the conditions was same. It was obsehatdthie signal’'s amplitude in the
case of the high load was more [see Figure 63 (a)] compatled kow load [see Figure §8)].
Figure 64hows the power spectrum of run R2 conditions where the load s 10 |
platen speed 300 rpm, and slurry ratio (1:3). The frequency basdrem 120 to 130 Hz which

is the processing frequency band after 15 sec of polishing. Alsdighest peak in the power
spectrum was observed at 126.2 Hz.

Figure 65shows the power spectrum after 90 sec of polishing. The powdreosignal
decreases towards the end of polishing. The dyadic length fqyother spectrum was 2048.
Figure 66 shows the temperature profiles and material removed duringhpai using a
microcloth pad. The rotational velocity of the platen andieawere 300 rpm and 60 rpm
respectively. The load applied was 10 Ib. polishing was done s¢&060 sec, 90 sec and 120
sec. The material removed for 30 sec and 60 sec of polishing2Wasg and 4.8 mg
respectively. These experiments were conducted using a new pad and new slur
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Figures 62 (a) and (b): 3D surface profiles of the sample before anghalishing
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Figure 64Power spectrum at 30 sunder Run RZondition: [see Table 7]
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Chapter 7: Feature Extraction and Process Dynamic Visualization

Time series analysis has been used in the past folizatien and analysis of the process in the
time domain. With the evolution of the Fourier transforms, itab@e easier to analyze the
process in the frequency domain. However, most of the signalstfren€MP polishing are
nonlinear. Consequently, this method appears to be inadequate fgzirapahe process. The
short time Fourier transform (STFT) has also been usechfdyzang the process in the time and
frequency domains. The wavelet analysis was found to be powadubh for the denoising and
real time condition monitoring.

Ganesaret al. [111] developed a sequential probability ratio &PRT) method
based on a wavelet for real time monitoring of the polishing dondiThey conducted CMP
process monitoring by multi- resolution and multiscale analysis tise@aubechies wavelet on
AE signals. It was successful in detecting the delaminationtdefec

Furthermore, multiscale Bayesian SPRT was developed for magitthhe non-
stationary CMP process signals having multiple charatiteyil12]. A modeling of the cutting
process using wavelet and recurrence analysis was des@nib@df. [113]. A recurrence
guantification analysis (RQA) features based on recurrenceVianigt wavelet was used for
analyzing the dynamics of the cutting process. The system dhpevedic oscillation at low and
high speeds when compared to intermittent motion and was codflsgneecurrence and Morlet
wavelet analysis. It was explained that the curved and npetterns have resulted due to non-
stationarity in the phase and frequency [114]. Recurrencered¢uvhen the integer multiple of
the sampling interval matched with another period’s integetipfell The origin of a curved
macro pattern was described using modulated and non-modulated sinusagise2éhal. [115]
used the recurrence analysis for comparing between chadaticstimcand chaotic pressure signal
from bubble flow.
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Sensor features extraction: Various features, including linear and nonlinear features were
extracted to model the surface roughness of the polished coppeesamips$ includes statistical,
energy and RQA based nonlinear features. Matlab code wasnwidttextracting the features

from the signal.

7.1 Statistical features:

The statistical features extracted using the Matlabniodeling roughness (Ra), MRR, and
Preston Constant were mean, standard deviation (std.), variamtasik skewness, and mean
peak to peak amplitude. In the following equations for stedisfeatures, where vy is the data

points, n is the total number of points (n=1...j) anid the mean.

Z?:l y]

Mean,u = -

12?:1 v+ #)2

Standard deviation (std), o = \/

n
Variance (var), 6% = (y — u)?
n ( )4
Kurtosis (krt) = Z #
: no,
j=1
3
D

n
Skewness (skew) = z (}]]—3
o nop

In addition to the above statistical features, the coefficdémariance i.e. (mean/std) feature was

also calculated.

7.2 Time series visualization:
Figure 67 (a) and (lghows the vibration signals obtained through the wireless chanBdb
load and 500 rpm rotating space at the start of polishing and2afténutes of polishing. The

signal was observed to be burst in nature and the ampldftidee signal decreases in the
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polishing process. This complex signal was formed mainly of two banwsinitial study was
conducted to study the MRR, Ra with the vibration signals at aard@nslurry concentration.
Each run was carried out on a 1.6” copper sample. This testrisdcavith a ‘Microcloth pad’

from ‘Buehler’ at a constant 60 rpm of the spindle. The runs warducted randomly to study

the process dynamics without any uneven interactions of the factors.
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Figure 67: Vibration signal during the polishing process during the (a)l kuitth(b) After 2
min of polishing under load 5 Ib

7.3 Energy features:
The energy features of the spectrogram were used to eitedeatures for the short wave
varying over a short period of time. The energy featureth@fshort time Fourier transform

(STFT) of the signals were extracted using Matiy, w) is the STFT of the(t) w(t — 1)
Short time fourier transform, STFT = X(t, w) = f x(t) w(t — 1)e/tdt

Here,w(t) is the window function centered around zer@,) is the signal for transformation,
w is the frequency, and is the time indexFigure 68shows the time series, the spectrogram,
and the power spectrum of the vibration signal studied at platerfr@@0 rpm and load 10 Ib.
The energy band from 120-130 Hz was taken for extracting eneajurés. Energy was
defined for the energy of the red segments while Energgs defined for energy between the red

segments. In Matlab, the following command was used
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Y=[S, F, T] =spectrogram(x, window, noverlap, nfft, fs).

Here, Y returns the STFT of the signal vector x i.e. 3008 paints, window size taken was
128, noverlap was the number of segments which each segmelajpaver size taken is 120,
nfft was the dyadic length taken as 1024, and fs was the sam@qeehcy i.e. 500 Hz. In STFT
matrix, S was the vector having a short time Fourier tramsfoatrix of signal, F was the vector
of a rounded frequency, and T was the time vector at which spectrogragomputed.

7.4 Time-frequency visualization:

Different conditions were investigated to study the dynamicsngluthe polishing process.
Wireless sensor-based technology has been applied in many protesgses,far, it was not
applied to CMP process for a clear understanding of the prowedsne interactions. In an
earlier investigation, MEMS based wireless vibration senga@re used to compare with the
wired sensor earlier for monitoring slurry chemistry eéeon MRR [76]. The following
conditions are required for vibration based monitoring i.e. the mackieg for polishing should
be stable and care should be taken for the positioning of ther$enstudying the process. The
vibration-based sensor monitoring is complex because of thesieds particles interacting

during the polishing proceskigure 69shows the spectrograms in Run R2 condition during 2

minutes of polishing with one repetition. The energy at the dnthe polishing process

decreases.

85



Power spectrum

x10*

Spectrogram

SuL
siod erep

—> <— Red segments

200

150

100

50

frequency

Hz

Frequency (Hz)

300rpm, 10Ib, 1:5 slurry

Figure 68: Time-frequency representation of the vibration signal agp®0010 |b and slurry ratio 1:5
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Figure 70: Time delay portrait with time delay 3 under Run R2 conditions atdlt of
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7.5 Nonlinear features:

Bukkapatnanet al. [75] studied the process dynamics of the polishing process for monitioeing
MRR at different process-machine conditions using a lappirghime. The process studied was
found to be stochastic in nature and bursts in the vibrationlsigreae observed. The present
study was done to study the Ra and the MRR with vibration signa constant slurry flow rate.
Mainly, there were two parameters required for a recwe plot, namely, time delay and
dimension.

7.5.1 Mutual informationinformation on the Time delay coordinates was required fotimdot

the phase space portrait of the signal. The mutual informatibetter than autocorrelation for
finding the time delay [116Figure 70shows the time delay plot for 1500 points using a mutual
information algorithm. The time delay féigure 70is 3, where the first local minimum takes

place.

7.5.2 False nearest neighbor [FNNhis method is used for finding the dimensionality of the

nonlinear system [117, 118]. It was found that the process was 6 dim&nat the start of
polishing.

7.5.3_Recurrence quantification analy@A): Eckmanret al. [119] presented a recurrence plot

based on Lorenz attractor for describing the hidden parametdymamics of the process which
was difficult to find with other analysis. RQA is a nonlinéata analysis tool which is used for
the purpose of quantification of recurrent plots of a dynamitesydased upon a structure on a
small scale. It is used for studying the nonlinear dynamics opitheesses, such as heart beat
dynamics, blood pressure, muscle fatigue, protein molecular dymaamd financial time series
[120]. Recurrence analysis is used for investigating thehaden recurring patterns, non-
stationarity, and structural changes [121]. It enables visnglof the dynamic systems through

phase space trajectory. The total number of data points takenefeecurrence plot and RQA
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analysis was 150®hase space portrait is the space in which all the possités of the process
can be representefFigure 71shows the phase space portrait of the vibration signal of 1500 data
points for Run R1. Generally, for a phase space trajectoipdéavnumber of points, recurrence

is described by a matrix

Ri,j(g) = @(S - ”Xi _Xll

), Lj=1..k [121]
In recurrence matrixg is the threshold distanc@(x) is the Heaviside function having value 0 at
X < 0 and valuel at x > 0. The back diagonal line is the line of identity

RQA was introduced by Zbilut and Webber Jr. in 1992 [122]. The plpsse drajectory is
plotted using the embedded theorem. For recurrence analysist paopeshould be taken for
selecting the threshold. If the threshatyl i€ too small, recurrence will be merely results due to
noise fluctuation, leading to an increase in the area uhdecurve. However, if it is taken too
large then every other point in it will be in the neighborhobdhe other point which causes
recurrence in hidden form structure, leading to a decieabe area under the curve[123]. Also,
5% of the phase space diameter should be chosen for thresholdenmeaguiNicholst al.[124]
used RQA features for damage detection in structures usiogtiaigs. The algorithm was based
on one feature to detect damage detection without any assumptigraied to FEM. Three
recurrence quantifiers used were recurrence, determir@agh entropy. Recurrence showed a
higher value when the damage occurred, and the entropy waehs#s/e at a large threshold.
Various recurrence quantifiers are as follows [122]:

a) Recurrence rate (Recrate): It is the percentage of danitspiai the threshold recurrence
plot. It also includes the probability of the recurrence atrticpéar rate. It describes the
amount of recurrent points that will cover the recurrent gibe recurrent rate for a
given window size(W) can be explained as follows:

Recurrence (%), REC=100*(number of recurrent points in the trianfé)¥V-1)/2)
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b) Determinism (DET): It is the percentage of all the dadints that will be aligned or
predicted. It describes the percentage of recurrent pointielatiove the diagonal line
segments.

Determinism (%), DET=100*(No of points in diagonal lines)/ (No of recurpeirits)

c) LMAX: It is the length of the longest diagonal line segmenthia plot. It states that a
small LMAX describes a more chaotic or a less stable sigvizile a higher LMAX
describes the repeated or periodic signal.

d) Entropy (Shannon entropy) (ENT): It considers the signal complanritydistribution of
the line length. It enables in finding out the probabiliB{,) of the diagonal line which
has same length by frequency distribution. Its units are givert®¥ibi For the periodic

signal, the entropy is 0 bits/bin

ENT = = " (Pyin)10g2/(Poin)

e) Trend (TND): It describes the barrier of the recurrence folards its edges. It is the
guantification of the paling of recurrent points away from thgatfal. It tells about the
system stationarity. If the system is periodic, thewatse will be near 0. It is calculated
as the slope of the line-of-best-fit through REC as a functi@rtbbgonal displacement
from the main diagonal.

f) LAM: It describes the fraction of recurrence points which Wwél forming the vertical
lines rather than diagonal lines in the case of the LAM.

LAM (%) = 100(Number of points in the vertical lines/Number of remitrpoints).

g) Trapping time (TT): It defines the average length of gattiines in the recurrence plot.

It explains the mean time the system traps at a particular state.
7.5 Nonlinear dynamic visualization:
For RQA based features extraction, data of 20 sec wadedivn three parts of 1500 data

points taken from the beginning, the middle, and the end. Then ¢hagavof all these features
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was taken for analysidable 12shows the RQA based nonlinear features of a particular run.
Figure 72shows the recurrence plot having high frequency components. Fecthreence plot,

no de-noising of the signal is required. At the start of palggha clear high frequency segment
can be seen in the recurrence plot, but at the end of polishegg high frequency segments
decreases showing the end of polishing. The average roughness sainthke at the start of
polishing was 350 nnfrigure 73shows the recurrence plot at the end of polishing. Theggner
of the signal decreases at the end of polishing which is showheidfaded segment in the
recurrence plot. The roughness of the sample at the end of poligsntb nm.

Table 9shows the process parameters, such as load on the samplepn{llnf, the carrier,
slurry ratio, slurry temperature rise, and change in pHeatonditions in run R1 (séeable 7.
Table 10shows various sensor signals based statistical features,ynanezin of the signal,
variance of the signal, and maximum of the signal etc.

Table 11shows various vibration features, such as energy, peak to p@titude (PTP) of
the signal, and thermal features like net temperature m$aemperature rise rate under run R1
conditions (sedable 7. The time-frequency features i.e., enesgynd energy were extracted
from the spectrogram in the frequency range from 120 to 132 Hz. Thgyenwas the energy of
the red segment, and enengis the energy in-between the two red segment in therspeain.
Table 12shows various nonlinear recurrence quantification analy§ajased features under
run R1 conditions. This includes dimension and time delay of the sighmdiscussed in section
7.3.3, the periodic signal has zero entropy. In RQA, the entropyalwave four; therefore, the
signal is not periodic in nature.

These sensor features with process parameters were thefouseshsor based modeling.
Sensor features extracted were modeled in Minitab 15 using a respofece methodologyR?

stands for goodness of fit or coefficient of determination, apgstedi R? is the modified version
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of R? which increases only when new variables are introducdheirmodel [125]. R? (Pred.)

describes how well and accurate the model predicts response for new trserva

, _SSR
~ SST

Here, SSR stands for the sum of square of the regreasid§ST is the total sum of the squares.

The total number of variables is 32. Bdth and Adjusted?? show how well the model fits the

data.

Recurrence Plot

Time Index

400 600 800 1000 1200 1400
Time Index

Figure 72: Recurrence plot obtained after the start of polishing: spdea of t

platen 300 rpm, load 10 Ib, and slurry ratio 1:3
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Figure 73: Recurrence plot: End of polishing: speed of the platen 300 rpm, load

10 Ib, and slurry ratio 1:3

For good fit, both should have a high value. In addititfpjs the degree of freedom of the error,

i.e.,
df. = total no. of variables — no. of features in the model — 1
For an effective modeling, the number of degree of freedom shouwdd Ibast 25. However, for

our modeling, the minimum number of degree of freedom was 18. The maelelffective in

predicting the performance up to 92% accuracy.
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Table 9: Machine parameters and slurry temp (°C)

Run Load, Ib Rpm Time, sec Slurry ratio Slurry temp risg ApH
R1 10 500 30 1:3 3.85 0.85
R1 10 500 60 1:3 6 0.9
R1 10 500 90 1:3 6.3 1
R1 10 500 120 1:3 54 0.9
Table 10: Statistical features and MRR (mg/sec)
Run Mean Var. Max. mode skew Kurt MRR
R1 2354.45 5911.76 28425 2350 -0.2 6.985 0.14
R1 | 2330.71 6354.7 2823 2338.5 0.198 5.598 0.124
R1 | 2296.10| 6612.76 2840.5 2299.17 0.095 6.116 0.11p
R1 | 2406.93| 3687.17 2697.7% 2406.75 -0.11 4.536 0.10b

Table 11: Energy features, Temperature features (°C), peak to peak amhé&ssigm

Run Energyp. | Energy,y | Nettemp risg Temp. rise ra1|e PTH Avg. Ra
R1 193.210 190.001 11.6 0.387 104.40 24
R1 193.338 188.282 20.7 0.345 108.%5 13
R1 195.251 190.439 23.5 0.261 126.20 8
R1 191.996 187.448 32.73 0.273 120.64 7

Table 12: RQA (Nonlinear) features

Run | Time delay Dim. Recrate Det Lmax EN] Lam TT

R1 3.67 6.67 21.69 66.67 243.6} 4.7 78.06 1591

R1 3 5.84 14.78 50.1(¢ 129.5 34 61.8 7.34

R1 3.56 6.45 14.72 44,53 138.6} 3.8 60.71 8.5

R1 2.92 6.25 9.174 28.6 94.17 3.8 45.5D 6.13
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Chapter 8: Sensor Fusion Regression Modeling

8.1 Technical approach:

Figure 74gives the sensor fusion methodology applied in this investigatitbrexperiments
were conducted using a vibration sensor and a temperature. SEmsanput variables (machine
parameters) are the load, rpm, and slurry ratio. The flonofdtes slurry was kept constant in all
experiments. After the experiments, signal features weraatet! using various statistical and
nonlinear techniques.

The vibration signal features were divided into three pagtsstatistical, time-frequency, and
nonlinear features. Two temperature features, namely, temperae rate and net temperature
rise were used for this study. In addition to this, slurry tentperavas used as a feature. The
models were developed first using the vibration featurdswed by temperature features using
the response surface methodology (RSM). The RSM based regressieling is developed as
follows: statistical features only; statistical and fregpye features; statistical, frequency, and
nonlinear features; statistical, frequency, nonlinear featarestemperature features to improve
roughness (Ra) and MRR models. This study leads to sensor fasdeiing for monitoring the
CMP process involving mechanical and thermal effects. This Intictdks roughness and MRR
involving linear characteristics, time-frequency charactesisand nonlinear characteristics. The
statistical significant value (P-value) is chosen as 0.08.

Figure 75shows that the plot between the residual and the fitted valuerghaw relation

i.e. there is no pattern in the residual vs. fitted value.

96



CMP Setup

Sensor Fusion

CMP Experiment

Features

v

Statistical Time Frequency Nonlinear Thermal

y y y y

MRR and Roughness Estimation

Figure 74: Sensor fusion methodology
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Figure 75: Plot of the residual versus the fitted values
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8.2 Regression modeling of surface roughness:

In this, roughness of the copper sample is fitted against sensorg$aadimg response surface
analysis incorporating two way interactions of the features varieliound to be statistical
significant in the model. The vibration and temperature sensor are fmeagture the dynamics
using a regression fit.

Various roughness models were presented in the following sections:

Modeling of surface roughness with process parameters in se@iém8deling of surface
roughness with statistical features in section 8r2@leling of surface roughness with statistical
and Energy features in section 8,2r®deling of surface roughness with statistical, Energy, and
RQA features in section 8.2.andmodeling of surface roughness with statistical, Energy, RQA,

and thermal features in section 8.2.5.

8.2.1 Regression model of surface roughness (nm) with process features:
The roughness of the copper sample is fitted against process feghiclesre statistically
significant. The two way interactions are found to be statisticadignificant as there p-value are
more than 0.08Equation [1] gives the regression model or best fit for surfawghness using
process parameterable 13shows significant values for each of the predictor vaemlfince
R? value is low (23.16 %), it is clear that process parameters aseiffiotent for regression
fitting of the roughness.

R’=23.16 %, R (adj.) = 17.86 %, 29

Ra = 48.86 -14.73 load+12.08 slurry rati

O

[1]
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Table 13: Regression model of Ra using process parameters

(R*=23.16 %, R (ad].) = 17.86 %, @£29)

Predictor P-value
constant 0.000
load 0.030

slurry ratio 0.071

8.2.2 Regression model of surface roughn@ss) with statistical features:
The surface roughness of the copper sample is fitted to thstistdtfeatures including their
statistically significant two way interactiondhe process parameters are not sufficient for
modeling performance. Therefore, statistical featuresised for modeling roughness. Equation

[2] gives the regression model for surface parameters usingisshfisatures.

Table 14shows the significant value for each of the process paresraste its interaction.
Since, p-value of the statistical features PTP amplitud&inmian, skewness, and kurtosis with
their interactions are below 0.08, they are significant. Theosdrased statistical features alone
are able to estimate 66% of the roughness model.

R?= 66.6%, R (adj.) = 58.6%, df25

Ra =156 — 105.69 PTP—- 160.99 max — 83.80 skew + 230.92 krt -194.”~
PTP* skew — 90.19 max*krt. [2]
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Table 14: Regression model of Ra using statistical features

(R*= 66.6%, R (adj.) = 58.6%, df25)

Predictor P-value

constant 0.000
PTP 0.001
maximum 0.004

skewness 0.005
kurtosis 0.000

PTP* skewness 0.004
maximum*kurtosis| 0.070

8.2.3 Regression model of surface roughn@ss) with statistical and Energy features:
Equation [3] gives the regression fit for the surface roughnegsy statistical and energy
features.Table 15shows the significant value for each of the statistieakrgy, and their
interactions. The model performance was not satisfactory tisengtatistical techniques. Also,
the vibration signal includes time varying wave components. Tdreteenergies features from
the spectrogram are used for modeling. Since, p-value of epeegergye and their interaction
with the statistical features are below 0.08, they arefgignt. Use of energy features and their

interactions with statistical features leads to an inereaspproximately 15% iR?.
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R?= 78.40%, R(adj.) = 68.12%, ¢£21

Ra =- 84814 - 0.758 mean - 483083 CoV + 742 skew+464 energy
0.00463 energy + 36.7max + 2570 CoV* energy+
0.132skew*energy - 2.01lmax*skew - 0.196 max* energy

sat

(R’= 78.40%, R (adj.) = 68.12%, ¢21)

Predictor P-value
constant 0.002
mean 0
coefficient of var. 0.801
skewness 0.368
energyo,db 0.132
energyy,db 0.025
maximum 0.008
coefficient of var.*energy,db 0.013
skewness*energy,db 0.041
skewnesgnaximum 0
maximum * energy, db 0.001
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* Coefficient of variance (COV), skewness, and energglb are taken because
they are present in the interaction terms

8.2.4 Regression model of surface roughn@ssa) with statistical, energy, and RQA

In this, the roughness of the copper sample is fitted agamsirés, such as namely, statistical,
energy, and RQA features including their statistically sigaift two way interaction€quation
[4] gives the regression fit for surface roughndsable 16shows the significant values for each

of the statistical, energy, nonlinear features, and their interactit can be seen from section 7.3,



vibration signals are nonlinear; therefore, their nonlinesatures are required to capture
nonlinearity in the signals. In the model, the nonlinear feanmexely, RQA are LAM, LMAX
and their interactions. Since p-value of the interactioadalow 0.08, they are significant. There
is an increase iR? by ~ 8%. The degrees of freedom of the error for this model are 20.

R?= 84.08%, R(adj.) = 75.33%, ¢£20

Ra = 4955 - 4.26 max + 5252 skew - 4.5 lam + 6.36 Lmax + 0.0474
energyy +0.000647 max * max - 1.93 max *skew+ 0.0337 max  [4]
*lam - 0.0112 max*Lmax - 0.00231 energylam + 0.000659
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Table 16: Regression model of Ra with statistical, energy, 7 fRatures

(R?= 84.08%, R (adj.) = 75.33%, @£20)

Predictor P-value
constant 0.465
maximum 0.192
skewness 0.413
lam 0.065
Lmax 0.336
energyy,db 0.04

maximum*maximum| 0.042

maximum*skewness 0
maximum*lam 0.009
maximum*Lmax 0
lam*energyy,db 0.038

Lmax*energyy,db 0.013

* maximum, skewness, Lam, Lmax, enefggre included because they are
present in the interaction terms

8.2.5 Regression model of surface roughness with thermal features only:

In this, roughness of the copper sample is fitted against temperature anbeniperature

features like net temperature rise, temperature rise ratg; #mperature rise and their

interactions are found to be statistically significant. Equationi{®jsghe regression model for
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surface roughness using temperature features drple 17shows the significant values for

each of the thermal features and their interactions.

R-Sq = 73.94 %, R-Sq (adj.) = 67.69 %25

Avg. Ra, nm = 61.525 — 60.81 slurry temp. rise — 2.882 net temp. rise +
45.751 temp. rise rate — 53.974 (temp. rise rate)."2 — [5]
54.426 (slurry temp. rise * temp. rise rate) + 94.283 (ne
temp. rise * temp. rise rate).

14
—

Table 17: Regression model of Ra with thermal features only

R-Sq = 73.94 %, R-Sq (adj.) = 67.69 %=a6

Predictor P-value
constant 0.000
slurry temp. rise 0.000
net temp. rise 0.868
temp. rise rate 0.015
(temp. rise rate).”2 0.014
slurry temp. rise * temp. rise rafe 0.019
net temp. rise * temp. rise rate 0.03p

* net temp. rise is included because it is present in the interaction terms

8.2.6 Regression model of surface roughnessh statistical, Energy, RQA, and

Temperature features:
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In this, roughness of the copper sample is fitted against vibratiomeupetature sensors features
including their statistically significant two way interaxts. Equation [6] gives the regression
model for surface roughness using vibration and temperaturesefeafable 18shows the
significant value for each of the statistical, energy, R@fperature, and their interactions. The
two- way interactions between vibration and temperaturturies are found to be statistical
significant in the model. Thermal features taken are theengidrature rise and temperature rise
rate. Use of thermal features leads to increa®é iof 10%. Good regression fit is obtained using
both the sensors features with degree of the freedom of the error 18.

R?=92.72%, R(adj.) = 87.47%, ¢£18

Ra =- 3890 + 0.607 max + 445 krt + 13.7 energy).0128 energy +
2.82 lam + 1.42 Lmax - 6.67 net temp. rise + 7787 temp. rise fra [6]
0.115 lam."2 - 0.141 krt * max- 0.402 krt*Lmax + 0.0313
Lmax*lam - 40.3 energy* temp. rise rate.

Tablel9 shows the summary of all the results obtained from the modielg response

surface methodology. The model performance increased usingiambeatd thermal features.

This table includes the estimation of prediction using above technique.

Table 18: Regression model of Ra with statistical, energy, RQA, enktature features
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(R?= 92.72%, R (adj.) = 87.47%, @£18)

Predictor P-value
constant 0.000
maximum 0.000
kurtosis 0.126
energyoa, db 0.131
energyy, db 0.006
lam 0.037
Lmax 0.090
net temperature rise 0.000
temp. rise rate 0.001
lam*lam 0.000
maximum * kurtosis 0.000
kurtosis * Lmax 0.001
energya, db * temp. rise rate 0.002
lam * Lmax 0.030

*Kurtosis and energy. are included because they are present in the

interaction terms
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Table 19: Sensor fusion based roughness estimation

Features R? R2?(adj.) R?(Pred.) df,
No sensor—>| Process parameters 23.16 Yo 17.86 Po 6.44 % 29
>| Statistical features(Stats.) 66.60 %o 58.60 %6 54.42 Mo 25
Vibration sensot Stats + Energy(Spectrogram) 78.40 Mo 68.12 (% 36.36|% P1
5| Stats + Energy + RQA 84.08%  75.33 % 53.17 % 2p
Temperature sensals{ Temperature 73.94 % 67.69 9 49.09 9 25
Vibration and
Temperature sensor—>] Stats + Energy +RQA+ Temperatute  92.72(% 87.47(% 6444 18

8.3 Regression modeling of MRR:
In this, MRR of the copper sample is fitted against sens@sires using response surface
methodology incorporating two-way interactions of the featurke.tivo-way interactions in the

regression models are found to be statistical significant.

0.15

0.12

MRR (mg/sec)

o
o
<)

0.03

-= Experiment1l-+Experiment24-Experiment3

30 60 90 120
Time (sec)

Figure 76: MRR repetition for Run R2 (see Table 7)
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Vibration and temperature sensors are found to capture thesprdgeamics through good
regression fit of the model. Various MRR regression fitting r®deere discussed in the
following sections:

Modeling of MRR with process parameters in section 8.3.1; modeling & Mikh statistical
features in section 8.3.2; modeling of MRR with statistical anergy features in section 8.3.3;
modeling of MRR with statistical, energy, and RQA featuresection 8.3.4; and modeling of
MRR with statistical, RQA features, and temperature signséction 8.3.5

The development of the regression model using vibration and tetomgefa@atures are given

the following:

8.3.1 Regression model of MRR (mg/sec) with process parameters:
In this, MRR of the copper sample is fitted against protessires including their statistically
significant two-way interactionskFigure 76shows the material removal rate under run R2
conditions (sed able 7 with a constant carrier rpm of 60. The MRR increases acs@tiowed
by a decreasing trend. Equation [7] gives the regressiaor fihé surface roughness. The Process
parameters, namely, load, rpm, and slurry ratio are useeédoession modeling of MRR.able
20 shows the significant values for each of the process p#essn Rare found to be 49.53%
with df, =28. For effective modeling of MRR, process parameters auffisient. The regression
fit for MRR with process parameters is as follows

R?=49.53%, R(adj.) =44.12%, df=28

MRR = 0.0451 + 3.24xF0oad + 1.14x1brpm - 5.76x1&slurry ratio. 7
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Table 20: Regression model of MRR model using machine parameters alone

(RP=49.53%, R(ad].) =44.12%, df=28)

Predictor P-value
constant 0
load 0.009
rpm 0
slurry ratio 0.055

8.3.2 Regression model of MRR (mg/sec) with statistical features:

In this, MRR of the copper sample is fitted against stedilsteatures including their statistically

significant two way interactionsSince modeling using process parameters are not sufficient to

investigate the process; sensor features are extractewftmling MRR effectively. Equation [8]

gives the regression model for MRR. Table 21 shows the isignif value for each of the

statistical features and their interaction. The coeffioddéretermination is 74.55% with,df 25.

Statistical features alone are able to explain one-thitheofnodel. However, it is not sufficient

for good modeling. The MRR model using statistical features are givha fnltowing

R?= 74.55 %, R(adj.) = 68.44%, df= 25

MRR = - 5.64 - 2.14x10mean — 2.2 xQvar. + 4.61x10max. - 0.0196
krt. - 1x10 max*max + 5x18var.* krt.
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Table 21: Regression model of MRR using statistical features

(R= 74.55 %, R (adj.) = 68.44%, ¢f= 25)

Predictor P-value
constant 0
mean 0.047
variance 0.017
maximum 0.627
kurtosis 0.298
maximum*maximun{ _ 0.006
variance*kurtosis 0.036

*maximum and Kurtosis were included because they were present in the
interaction terms

8.3.3 Regression model of MRR (mg/sec) with statistical features and energy

features:
Equation [9] gives the regression fit incorporating energy feattoesthe spectrogram.
Table 22shows the significant value for each of the statisticakggynand their interaction. The
model performances using the statistical features aloneatrsufficient for good estimation of
the MRR; therefore, energy features were incorporated. ifhie energy features from the
spectrogram were calculated at 120-130 Hz. For this model, mexgies are extracted using
Matlab. After adding energy features, there was approximat&B26 increased in the coefficient
of determination. The degree of freedom of the error is 25.

R?=82.2 %, R(adj.) = 77.9%, df= 25

MRR = -0.432+0.170 skew + 1.43X1ar + 1.28x1benergyon + 7x10
energyy — 4.5x10 var *skew- 1x1B8var * energyy. []
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Table 22: Regression model of MRR using statistical and energydsa

(R’= 82.2 %, R (ad].) = 77.9%, df= 25)

Predictor P-value
constant 0.047
skewness 0.002
variance 0.021
energyoa, db 0.064
energyy, db 0.228

variance * skewness 0.001
variance *energy, db 0.032

8.3.4 Regression model of MRR (mg/sec) with statistical, energy and RQA
features:

As shown in section 7.3, vibration signals are found to be nonlinesaefdhe nonlinear features
to capture nonlinearity were added in the model. Equation [10] ¢imesegression model for
MRR. Table 23shows significant value for each of the statistical, gneagd RQA features and
their interactions. This leads to an increase in pralility of about approximately 7% with a
degree of freedom 23Since the p-value for nonlinear features namely determirasih

dimension are below 0.08, they are statistically significant. Gegieéssion fit is observed in this

model.

R?=87.2 %, R(adj.) = 82.7 %, df= 23

MRR = -0.299 + 1.34xI0var + 0.203 skew + 1.53x16nergyu + 4x1¢
energyy — 5.4x10 var* skew -1x18var* energyy — 0.0169 dim | [10]
+2.6x10 det.
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Table 23: Regression modeling of MRR using statistical, energy, @Adféatures
(R’= 87.2 %, R (ad].) = 82.7 %, di= 23)

Predictor P-value
constant 0.135
variance 0.019
skewness 0.000
energya, db 0.017
energyy, db 0.415

variance * skewness 0.000
variance*energy, (db) 0.029
dimension 0.020
determinism 0.060

8.3.5 Regression model of MRR (mg/sec) with thermal features only:
Equation [11] gives the regression model for MRR using thefeaglires onlyTable 24shows
significant value for each of the thermal features and thedractions. The thermal features are
net temperature rise, temperature rise rate, and slumyetature rise. Since the p-value of the
features with their interactions is below 0.08, they aressitally significant. The coefficient of
determination of this model is 81.10 % with degree of freedom of error 26.

R-Sq = 81.10 %, R-Sq (adj.) = 77.47 %=a6

MRR = 0.08479 — 0.03208 slurry temp. rise — 0.02569 net temp. rise +
0.04538 temp. rise rate — 0.02331 (net temp. rise)."2 — 0.01883 [11]
(slurry temp. rise * temp. rise rate).
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Table 24: Regression modeling of MRR using thermal features only

(R-Sq = 81.10 %, R-Sq (adj.) = 77.47 %=26)

Predictor P-value
constant 0.000
slurry temp. rise 0.000
net temp. rise 0.001
temp. rise rate 0.000
(net temp. rise)."2 0.005
slurry temp. rise * temp. rise raT—z 0.016

8.3.6 Regression model of MRR (mg/sec) with statistical, energy,

thermal features:

RQA, and

Equation [12] gives the regression model for MRRble 25shows the significant value of each

of the statistical, energy, RQA, thermal features and tindraction. After adding thermal

featuresR? of the model increase to 90.23%. Since the p-value of the interaidsi below 0.08,

they are statistically significant. The degree of freedomrof és 20.

R =90.23%, R(ad].) = 84.86%, ¢£20

MRR, mg/sec= 0.11 + 3.89x1@mp rise rate + 6.8x10ar. — 1.2x18
skew. — 3.4x19 time delay — 6.9xT0energya -1.5x10
energyy — 2.3x16 temp. rise rate* energy- 2.3x16
temp. rise rate * energy0.0563 var*skew + 2.1x70
var*energya — 2.1x1C° time delay* energy.
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Table 25: Regression modeling of MRR using statistical, energy, RQUATemperature
features (R= 90.23%, R (adj.) = 84.86%, @£20)

Predictor P-value
constant 0.000
temp. rise rate 0.641
variance 0.000
skewness 0.043
time delay 0.449
energya, db 0.320
energyy, db 0.035

temp. rise rate* energy, db 0.043

temp. rise rate* energy, db 0.012

variance* skewness 0.005
variance*energy, db 0.014
time delay* energy, db 0.049

*Temp. rise rate, time delay and energyare included because they are present in the
interaction terms

Table 26 shows the summary of all the results obtained incorporating R-sq (Fred.). T
R-sq (Pred.) decreases after including the temperature feattire model. The overall

coefficient of determination of the model is 90.23% with a degree of freedom of@rror
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Table 26: Sensor fusion based MRR estimation

Features R2 R%(adj.) | R2(Pred.) | df,
No sensor—s)| Process parameters 4953% 44.12p6 34.08 % 28
> Statistical features(Stats.) 7455% 68.44% 4233 % 25
Vibration sensot Stats + Energy(Spectrogram) 8220% 77.90P0 71.89% 25
S Stats + Energy + RQA 87.20 % 82.70 % 76.27 9 P3
Temperature sensaLs)| Temperature 81.10 % 77.47 9 68.07 % 26
Vibration and Stats +Energy+ RQA+ Temperature ~ 90.23%  84.86|%  7406| 20
Temperature sensor

8.4 Regression modeling of Preston constant (K):

Preston [56] formulated an MRR for glass polishing. The Preston equatios dog include
chemical or thermal effect for CMP process. From thealitee, it is known that the Preston
constant can include chemical and mechanical effects. Thie mentioned below focuses on
including thermal and mechanical effect in the Preston congdtaatknown from the literature
that tribological and thermal effects play a main roléhin CMP process. The temperature plays
an important role in the chemical parts of the CMP processinthease in temperature leads to
an increase in chemical reaction of the process leadinigctease in the MRR. The Preston
constantK,) for the model can be calculated as:

_ MRR
PPV

The MRR is the material removal rate, P is the loadiegpn the copper sample, and V is the
relative velocity. Based on the experimental conditionskthean be calculated. In our work, we
have modeled Preston constant statistically using sensonfosdeling techniques. The head
rpm was constant in the model. In our model, the V was the platenThis model is able to

estimatek,, using a vibration signal and temperature signal. In the abodelrthe MRR was

calculated using sensor features i.e.
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MRR = KPV = f(sensor features)

« _ MRR
PPV

= f(sensor featurea)
In this, Preston constant is fitted against sensors featgieg response surface analysis
incorporating two way interactions of the features. The two iwtgraction in the regression
models are found to be statistical significant in the model.ovait,, models were discussed in
the following sections:
Modeling K,, with statistical features in section 8.4.1; modelifjg with statistical and Energy
features in section 8.4.2; modelikg with statistical, Energy, and RQA features in section 8.4.3;
modelingK,, with statistical, RQA features, and temperature signal tioseg.4.4 and
modelingK,with statistical, RQA features, temperature signal, andegsparameter in section
8.4.5.
Development of the regression models using vibration and tempefaaitges are given the
following

8.4.1 Regression model of K, with statistical features:
In this, Preston constant is fitted against vibration sensors bagestical features including their
statistically significant two way interactiorisquation [13] gives the regression model for Preston
model using statistical featureBable 27shows the significant value for each of the statistical
features namely mean peak to peak amplitude, mean, varianceantbtieir interaction. Using
statistical features alone results in a higher estomati the coefficient of determination with a
degree of freedom of error 19. The coefficient of deternonatif the modal using statistical
features is 74.88%. The p-value of the statistical feaamdgheir interactions is below 0.08 and

they are statistically significant.

R?= 74.88%, R(adj.) = 59.02%, ¢£19
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K,= 4.2 x10°+ 8.3x10° PTP-1.72x10 mean- 2.21x10 variance +
1.39x10*mode + 8x10 skew+ 5.7x10krt.+ 2.24x10 CoV-
2.86x10° PTP*mean+ 3.8xIOPTP*var+ 2.91x13 PTP*mode-
1.52x10* PTP* skewt6.2x10° mode*skew.

Table 27: Regression model &5 using statistical features

(R%= 74.88%, R (adj.) = 59.02%, ¢£19)

Predictor P-value
constant 0.002
PTP 0.001
mean 0.002
variance 0.008
mode 0.001
skewness 0.390
kurtosis 0.000
coefficient of var. 0.010
PTP*mean 0.009
PTP*variance 0.023
PTP*mode 0.008
PTP*skewness 0.000
mode* skewness 0.013

*skewness is included because it is present in the interactios te

8.4.2 Regression model of K,, with statistical and energy features:
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In this, Preston constant is fitted against statistical axailgg features which includes their
statistically significant two way interaction$o increase the performance of tkg model,

energy features are incorporated in the model.

Table 28: Regression model&5f model using statistical and energy features

(R’= 80.29%, R (adj.) = 64.05%, ¢£17)

Predictor P-value
constant 0.429
PTP 0.019
mean 0.025
variance 0.026
mode 0.288
skewness 0.000
kurtosis 0.000
energyy,db 0.028
coefficient of var. 0.007
PTP*skewness 0.000
variance*mode 0.009
variance*coefficient of variance 0.027
mode*kurtosis 0.053
mode* energyy, db 0.008
skewness*energy, db 0.004

*mode is included because it is present in the interactiorsterm
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The energy features from the spectrogram are extracted Msitigh. Equation [14] gives the

regression model for Preston model.
Table 28shows the significant value of each of the statistical feafienergy features and their

interactions. After including energy features, the estimatioth®fcoefficient of determination

increased approximately by 9% with a degree of freedom of error 17.

R?=80.29%, R(adj.) = 64.05%, ¢£17

K,=1.6x10%+ 3.1x10° PTP- 8.4x10 mean- 3.66x10var + 4.8x10
mode+ 4.3x10skew+ 8.4x10 krt+ 3.82x10' CoV- 3.5x10° [14]
energyy - 1.074x10 PTP *skew + 3.8xI8var*mode+ 7.2x10
var* CoV- 7.7x10° mode* krt- 2.9x10 mode* energy + 7.0x10
skew* energyy.

8.4.3 Regression modeling K;, with statistical, energy, and RQA features:

Nonlinear features are extracted from the signal usingrneatee quantification analysis for
analyzing the dynamic nature of the CMP process. The RQA feauses able to detect the
deterministic nature of the vibration signals in the CMP gsec Equation [15] gives the
regression model for Preston constahable 29shows the significant value for each of the
statistical, energy, RQA features and their interactionseSihe p-value of the interactions of
statistical and RQA features are below 0.08, they are signifi The coefficient of determination
after adding RQA features increased from 80.29 % to 85.59 % withraedef freedom of error
20.

R?= 85.59%, R(adj.) = 77.66%, ¢£20

K,=-1x10° 1.6x10° skew- 1.03x10 var- 2.1x10 Lmax+ 1.36x10
lam+9x10°time delay+ 3.1x10° det— 9x10 energyy -1.12x10" [15]
(lamy -8.1x10° skew* var- 1.49x19 var* Lmax+ 2.7x10* var*
lam.
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Table 29: Regression model &, using statistical, energy, and RQA features

(R’= 85.59%, R (adj.) = 77.66%, ¢£20)

Predictor P-value
constant 0.960
skewness 0.003
variance 0.000
Lmax 0.159
lam 0.000
time delay 0.052
determinism 0.001
energyy, db 0.001
lam*lam 0.000
skewness* variancs 0.000
variance*Lmax 0.000
variance* lam 0.000

*Lmax is included because it is present in the interaction terms

8.4.4 Regression modeling of K,, with thermal features only:

Equation [16] gives the regression model for Preston constant. Table 30shows the
significant value for each of the thermal features and thigractions. Since the p-value of the
features and their interactions are below 0.08, they are s@mifi The coefficient of
determination of this model is 68.75 % with degree of freedom of error 25.

R-Sq = 68.75 %, R-Sq (adj.) = 61.25 %, df,=25

K,=3.1x 16 — 2.5 x 108 slurry temp. rise + 1 x 2(et temp. rise + 1.3 >
10° temp. rise rate +2.3 x 1Qslurry temp. rise ).*2 — 2.5 x 10 [16]
(slurry temp. rise * net temp. rise )+ 3.2 ¥ {@mp. rise rate * net
temp. rise )




Table 30: Regression model &, using thermal features only

(R-Sq = 68.75 %, R-Sq (adj.) = 61.25 %z=a5)

Predictor P-value
constant 0.000
slurry temp. rise 0.000
net temp. rise 0.126
temp. rise rate 0.05
(slurry temp. rise )."2 0.002
slurry temp. rise * net temp. rise¢ 0.009
temp. rise rate * net temp. rise 0.01L

8.4.5 Regression modeling of K, with statistical, energy, RQA, and thermal features:
Equation [17] gives the regression model for Preston constant.
Table 31shows the significant value for each of the statisticaygy, RQA, thermal features
and their interaction. Since the p-value for the thermal feateir slurry temperature incorporated
in the model is below 0.08, it is statistically significanttekfincorporating this feature, the
coefficient of determination increases by approximately 1%.

R?=86.00%,R? (adj.) = 75.9%, d&19

K,=9.9x10°+4.23x10" var-4.7x10' CoV + 9x10° energyn+2x10*
energyy -4.6x10° mode-1x10 time delay-9x18 slurry temp rise- [17]
2.8x10* Vary+2.08x10" var* CoV+ 3.57x1d var* energyy -
3.92x10" CoV*energyy -2x10° CoV * time delay -2.7x10energy
a*mode.
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Table 31: Regression model &, using statistical, energy, RQA, and temperature
features (R= 86.00% R (adj.) = 75.9%, g£19)

Predictor P-value
constant 0.000
coefficient of var. 0.000
variance 0.000
energya, db 0.001
energyy, db 0.000
mode 0.002
time delay 0.001
variance * variance 0.011
coefficient of var.* variance 0.043
coefficient of var.* energy, db 0.000
coefficient of var.* time delay 0.002
energya, db* mode 0.001
variance * energy, db 0.000
slurry temp. rise 0.003

8.4.6 Regression modeling ok, with statistical, RQA, thermal features, and process
parameters:
In this, Preston constant of the wafer is fitted against peofaatures, statistical features, RQA
features, and thermal features. Also, includes their statfigtisignificant two way interactions
Equation [18] gives the regression model for Preston conskalitle 32shows the various

sensor features and their interactions. There is an indreasémation ofK,, by 91% with a
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degree of freedom of error 2%ince the p-value of thenergy features is below 0.08, they are

insignificant, therefore are not incorporated in the model.

R?=91.98 %, R(adj.) = 88.16%, qf21.

K,=2.1x10°> 1.0x10’ load- 4x10 rpm -3 x10 slurry temp rise+
1.5x10° temp rise rate +1x10skew - 4x10 det+ 1.4x16 lam+ [18]
1.5%10° (slurry temp riséf 1.2x10° (detf- 1.6x10° temp rise rate*
skew.

Table 32: Regression modeli5f with sensors features and process parameter

(R>=91.98 %, R(adj.) = 88.16%, dfr=21)

Predictor P-value
constant 0.000
load 0.000
rpm 0.001
slurry temp. rise 0.152
temp. rise rate 0.006
skewness 0.948
determinism 0.221
lam 0.013
slurry temp. rise* slurry temp. rise 0.00(
determinism* determinism 0.015
temperature rise rate* Skewness 0.046

*Slurry temperature rise, skewness, and determinism adedhbecause they
are present in the interaction terms

Table 33shows the summary of all results from the model estimation by anssgurface
methodology. Thi®? prediction for the combined model is 79.96 % with a degree of freedom of
error 21. The overall coefficient of determination of the model is 91.98%.

123



Table 33: Summary of thi€ép model

Vibration sensof

L

N

Temperature sensot—>,

Vibration and
Temperature sensor
Process parameter

Vibration, and
Temperature sensor

Features R2 R2(adj.) R%(Pred.) | df,
Statistical 74.88 % 59.02 % 50.01 % 19
Statistical + Energy 80.29 % 64.05 % 19.58 % 17
Statistical + Energy + RQA 85.59 % 64.39 % 64.39 % 2
Temperature 68.75 % 61.25 % 50.48 % 25
—>| Statistical + Energy + RQA + Temp 86.00 % 75.90 % 44.45 9
Process parameter+ Statistical + Energy + RQA + Temp| 1.98% 88.16 % 79.76 % 21

rd
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Chapter 9: Conclusions and Future Work

From a monitoring point of view, the performance parametersacttens with the input
features should be known. This is perhaps the first time, ennesg model is attempted using
experimental results from the sensor fusion approach. Thersémson based modeling is
attempted to track roughness and MRR during the process. Theicainpnodel includes
mechanical and thermal parameters. The experimental inuestiga conducted on a bench top
machine using full factorial design of experiments to buildnoelels. Various features such as
statistical, time-frequency features, and nonlinear feataresincorporated in the regression
models to track the process parameters in the model. It was foomdthe literature that
temperature plays an important role in the performanclkeoptocess. The inclusions of thermal
features lead to an increase in the performance of the roughegssssion model by
approximately 10 %. Temperature features such as slunpetature and the temperature of the
copper sample are found to be statistically significant inribdel. Also, the MRR and Preston
constant are modeled using sensor fusion based featureds Détthe roughness regression
model for various parameters are gived able 34

From roughness model, it is concluded that the process parametéras loading and rpm
conditions are not sufficient for modeling. Using statistical features adoln® lan estimate of the
roughness of 66.6 %. After incorporating energy and RQA festtine regression model was
able to estimate 84.08 % of the roughness of the copper Wékemegression model is able to
estimate approximately 92.72 % of the roughness after incoinpridtermal features with a
degree of freedom of error 18. Details of the MRR regressiodel for various parameters are

given inTable 34
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Table 34: Regression models of surface roughness and MRR

Features Roughness model MRR model

R? R?(adj.) R(Pred.) df R2 R2(adj.) R(Pred.) df
Process parameters 23.16 % 17.86 po 6.44 % P9 4953 % %A.1B34.08 % 28
Statistical features(Stats.) 66.60 %o 58.6 % 54.42(% P5 55@h | 68.44%| 42.33% 25
Stats + Energy(Spectrogram) 78.40 % 68.12(% 36.39 % 21 .2088 | 77.90%| 71.89% 25|
Stats + Energy + RQA 84.08 9 75.33 % 53.17 \o 40 87.20% 7084 | 76.27 % 23
Temperature 73.94 % 67.69 ¢ 49.09 % 26 81.10|%  77.47 % 0768. 26
Stats + Energy +RQA+ Temperatufe 92.72 o 87.47|% %44 18 90.23% | 84.869% 72.06% 2

In the MRR regression model, the process parameters are alienatesip to 50 % of the MRR
of the copper sample. However, this estimation is not enouglféatiee modeling. Therefore,
sensor based features were added in the model. Using cahfistitures alone, the estimation of
the MRR is approximately 75 %. Then on incorporating energy &l features, the estimation
of the MRR is approximately 91 %. The thermal featureshéurincrease the estimation to
approximately 91 %.

In addition to the above, a model is proposed for modeling the Preststant. The proposed
model includes process parameters, vibration features, andathésatures. Details of the

Preston Constant model for various parameters are givealte 35

Sensor based features are able to effectively estimaprahess output variables. For further
work, wavelet based features after denoising can be incorporhield @an help in increasing the
estimation of the process. Thus multiscale regression modelsbe helpful in monitoring
purposes. The vibration sensor was sampled at 500 Hz. Higher sgungté of the sensor can be
helpful for predictive model performance by extracting fesgufrom the high frequency

component of the Fast Fourier Transform.
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Table 35: Regression models of Preston Constant

Features R2 R%(adj.) | R3(Pred.) | df,
Statistical 74.88% | 59.02% | 50.01% 19
Statistical + Energy 80.29%| 64.05% 19.589 17
Statistical + Energy + RQA 8559% 64.39% 64.39°0 20
Temperature 68.75% | 61.25% | 50.48% 25
Statistical + Energy + RQA + Temp 86.00% 7590% 844 | 19
Process parameter+ Statistical + Energy + RQA + Temb98%6 | 88.16 % | 79.76 % 21

In addition, acoustic or sound sensor features can be incorpordatesl model. Temperature

of the pad and various parameters of the pad, such as roughndsgshasf the pad can be

incorporated in the model for increasing its performance. Tharé=saextracted from the signal

can be used to build models for predicting the states ofyters. These features can further be

used for detecting various defects. Neural network and fuzzg logsed models can be

developed for optimizing the model, thereby better understands the @ESg.
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Appendix
Here the plots of the time series of the vibration signal @iZ-as well as power spectra
of the time series acquired at different runs are presented. Forramefg) time series of
2000 data points, (b) wave form of 500 data points long, and (c) poweruspext2048
dyadic points are plotted. These plots are one at the starhamdher at the end (i.e. 2
min. after the start) of polishing. The details of the experialanins are provided in

Table 7.
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