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ABSTRACT 
 
 

Chemical mechanical planarization (CMP) is used in the microelectronics and optical industries 

for local as well as global planarity and for producing mirror finished surfaces. Roughness (Ra), 

within- non-uniformity (WIWNU), and material removal rate (MRR) are the major performance 

variables in polishing. CMP is a complex process involving some 36 input variables. Analysis of 

the review of the literatures showed that static models that use process parameters are inadequate 

for estimating and monitoring the performance variables in the CMP process. Pad-level 

interactions play a major role in polishing. Sensor based monitoring techniques enables 

monitoring of the CMP process. Additionally, sensor fusion techniques may facilitate in 

improving the robustness and monitoring the process beyond using one sensor. In this work, 

wireless vibration (Z-axis) and temperature sensors mounted on a bench top polisher (ECOMET 

polisher from Buehler) are used to monitor the material removal rate (MRR) and surface finish 

(Ra). The wireless sensor platform has a sampling rate of 500 Hz for the vibration sensor and 4 

Hz for the temperature sensor. Alumina-based alkaline slurry is used in polishing process. The 

process conditions include two loading conditions (10 lb and 5 lb) and two rotational speeds (500 

rpm and 300 rpm). The polishing studies were conducted on a 1.6” copper samples and 

Microcloth pad (from Buehler). 

The overall approach used involves relating the various sensors signal features to MRR and 

Ra from the CMP process. The vibration features were extracted using statistical, frequency, and 

RQA (non-linear) analysis techniques. The vibration features were combined with temperature 

features to build multiple linear regression models. The regression fitting accuracy for the 

roughness model is ~ 93% using the statistical features, such as maximum and kurtosis, time-

frequency features, such as energy, nonlinear features such as LAM and Lmax and thermal 

features such as net temperature rise and temperature rise rate. The regression fitting accuracy for 

the MRR model is ~ 91% using the statistical features, such as variance and skewness, time-
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frequency features, such as energy and nonlinear features, such as time delay and temperature rise 

rate as temperature features. The thermal features are able to increase the coefficient of 

determination of roughness model by 10%. 

This wireless sensor fusion based regression models are found to be more efficient compared to a 

single sensor as it takes care of both the mechanical effects using a vibration sensor and thermal 

effects using a temperature sensor. It appears that this is the first time that a sensor fusion based 

technique is attempted for predicting Ra and MRR in the CMP process. 
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Chapter 1: Introduction 
 

1.1 CMP Process 

Chemical mechanical planarization (CMP) process is used in the manufacture of microelectronic 

devices to produce flat, mirror finished surfaces on field emission displays and semiconductor 

wafers. It combines chemical and mechanical actions, i.e., chemical action of the slurry weakens 

the surface layers by chemical reactions and mechanical action by the abrasive that removes this 

layer. It includes creation of porous unstable oxides by the surface chemical reaction with the 

chemical slurry. It is one of the safest processes for wafer planarization when compared to 

reactive dry-etch process because of the absence of hazardous gases. 

In the past, aluminum was used for metallization of the semiconductor wafers but this has 

been replaced by copper because of its lower electrical resistance. Also, chips made of copper run 

faster with less heat generation due to higher thermal conductivity thereby increasing the 

efficiency and chip capacity.  The ability of the CMP process to planarize multiple materials in 

the nanometer size range with global planarity has led to its wide application in the 

semiconductor industry. Zantye et al. [1] state that CMP is affected by more than 30 factors.  

They include types of slurry, abrasive size, pad, wafer, equipment etc. Polishing occurs by the 

rotation of the wafer ring and the plate. Due to this rotation, centrifugal forces cause the spread of 

slurry uniformly over the surface. Companies using this technology include Seagate, Intel, 

Micron, Sony, Intel, IBM, Nikon, Sematach Int., and Motorola. 

Previously, lapping machine was used in the process of planarization but the level of 

planarization was not in accordance with the required specification of the product. Due to 

continuous size reduction of ICs, there was a need for a process with high level of accuracy 

thereby maintaining specifications. This expectation of accuracy is maintained by CMP. In a way, 

it is the advanced version of the lapping process. The CMP is a complex and a dynamic process 

due to variation in the applied pressure by the wafer and wear of the pad. The main components 



 

of the process are the slurry, pad,

advancement for the process

parameters, such as material removal rate (

(WIWNU). In this process, there is a rotating 

bottom is platen or pad holder.

pours from the unit. 

CMP machine tools are mainly

arrangement, the platen rotates

Figures 1(a) and (b) shows 

role in the CMP process.  It 

the surface of wafer during the rota

wafer before the planarization process. 

alumina, suspended in an oxidizing

Various statistical techniques and dynamic 

process. 

Figures 1(a) and (b)
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slurry, pad, wafer, carrier and platen. In order to maintain 

advancement for the process performance, there is a need for the optimization of the 

material removal rate (MRR), roughness (Ra), and within

, there is a rotating unit, on the top is carrier or wafer 

bottom is platen or pad holder. In addition to these, there is a separate unit for the slurry which 

machine tools are mainly of two types: rotary and linear. In the 

platen rotates while the pad has a linear motion in the case of linear polisher. 

shows the two types of arrangements of CMP. Slurry plays an important 

It constitutes a mixture of chemicals and abrasives which 

during the rotation of the plate. It enables pre-weakening of the surface of

before the planarization process. Normally it includes an abrasive material

oxidizing agent and an aqueous medium, such as hy

tistical techniques and dynamic modeling methods are used in the study of 

(a) and (b): Rotary and linear CMP arrangements [2]

 
 

. In order to maintain a continuous 

of the performance 

within--non- uniformity 

wafer holder and on the 

unit for the slurry which 

the rotary type of 

case of linear polisher. 

Slurry plays an important 

s and abrasives which move below 

weakening of the surface of the 

abrasive material, e.g., silica, 

such as hydrogen peroxide. 

in the study of the CMP 

 

[2] 
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1.2 Objective: 

The objective of the present investigation is to relate the surface roughness (Ra) and 

material removal rate (MRR) of copper sample in the CMP process in real time using 

features extracted from MEMS vibration sensor and temperature sensor signals (RFID 

sensor tags) using design of experiments and statistical modeling methods. The approach 

uses sensor fusion modeling techniques to combine information from vibration and 

temperature sensors. Additionally, Preston constant is estimated using the above 

developed sensor fusion modeling technique. Experiments were conducted on a Buehler 

bench top machine (ECOMET 250) using vibration and temperature sensors, a copper 

sample, a microcloth pad, and colloidal alumina slurry (50 nm abrasive size). Various 

statistical features, time-frequency domain energy features, and recurrence quantification 

features were extracted from the signals. 

Sensor fusion based modeling techniques are developed using response surface 

methodology for monitoring the surface roughness and MRR of the wafer polished. The 

signals from the sensors were collected by systematically conducting design of 

experiments. The sensor fusion technique includes the use of vibration and temperature 

signals. Various features extracted from the vibration signals are statistical, time-

frequency, and nonlinear features. This is followed by inclusion of temperature features 

for improving the estimation of the process outcome. The thermal features are able to 

increase significantly the performance of the roughness model. The model developed 

takes cares of individual factors and their interaction in the process dynamics. 
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This thesis is organized as follows: Chapter 2 presents a review of the literature which 

includes some relevant prior work in the slurry, pad, and abrasive modeling and 

experimentation. Also temperature effects in the CMP are discussed in this chapter. 

Chapter 3 presents a brief review on the application of sensors in monitoring the CMP 

process including end point detection (EPD). It is based on the review of literature 

(journals and patents) on vibration sensors, temperature sensors, acoustic or sound 

sensors, and acoustic emission (AE) sensors. Chapter 4 presents the problem statement of 

this thesis, which is related to the need for the application by sensor fusion techniques for 

modeling and monitoring the CMP process. Chapter 5 presents preliminary results from 

initial experiments in CMP. This includes the design and construction of the CMP 

apparatus, and implementation of the wireless sensors in the CMP apparatus. Chapter 6 

describes the experimental apparatus used as well as the data collection equipment 

required for the design of experiments. The design of experiments is implemented to 

collect data from different sensors for sensor fusion modeling of Ra and MRR of the 

wafer. In this chapter, explanation of the fixture and wireless platform are provided. 

Chapter 7 describes various feature extraction techniques used in the modeling. They 

include statistical features such as mean, peak to peak amplitude, variance, time-

frequency domain based energy features and recurrence quantification analysis based 

features such as recurrence, determinism, entropy. In addition, qualitative analysis is 

done through visualization by spectrogram and recurrence analysis. Chapter 8 consists of 

modeling Ra, MRR and the Preston constant. This includes modeling using various 

vibration features, such as statistical, time-frequency, and nonlinear features followed by 
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thermal features. Chapter 9 summarizes the main research findings from the thesis. It also 

includes future recommendation for increasing the effectiveness of the models.
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Chapter 2: Literature review 
 
 
 

2.1 Mechanism of CMP polishing of copper: 

According to Saka et al. [3], three types  of contact regimes exist between the wafer and the pad, 

namely, direct contact mode, mixed or partial contact and hydroplaning. For effective MRR, the 

CMP process should be conducted in the contact mode. CMP is a very complex process involving 

many input parameters namely, slurry, pad, wafer and polishing equipment. Figure 2 shows 

various input and output parameters in the CMP process. Among the current studies, there are 

two broad sets of models proposed to explain the mechanism of CMP, namely, Hertzian 

indentation, and fluid based wear [4]. In the Hertzian indentation model, the abrasive particles are 

dragged across the surface as cutting tools while in case of fluid based wear, the particles 

impinges on the  surface at some angle and with high velocity. Steigerwald et al. [5]  proposed 

the explanation for the mechanisms of the copper removal in two modes i.e., mechanical abrasion 

in the first mode and chemical dissolution of the removed particles in the second mode. When 

Benzo-tri-azole (BTA) is added to the slurry, it forms a passivation or non-corrosive layer. This 

layer is removed after abrasive action and etches the copper surface. In the CMP, it was found 

that for effective material removal rate (MRR), the slurry should contain hydrogen peroxide, 

BTA, and organic acid.  Improvement in the dispersibility of the slurry results in an increase in 

the MRR because the abrasive involved in polishing increases as a result [6]. Pietsch et al. [7] 

studied the chemical-mechanical material removal using Fourier-transform infrared spectroscopy. 

They state the termination of ��	 results in material removal. 

2.2 Slurry: 

It is a chemical solution containing acidic or alkaline compounds which reacts with the wafer 

surface thereby preparing a passive layer followed by pre-weakening of the wafer surface during 



 

polishing. It is a medium in which abrasive particles are dispersed. It

chemical compositions which

remove the dissolving layer physically. It helps in reducing the 

tighter design fabrication. The slurry 

corrosion inhibiter, an abrasive,

increase the solubility of the copper in the slurry and to 

recessed areas on the surface.

glycine, Benzotriazole (BTA). Where

the corrosion inhibiter and h

Figure 

Carpio et al. [8] studied the 

abrasive for copper CMP.

potentiodynamic curve shows no passivation behavior stating th

9 

polishing. It is a medium in which abrasive particles are dispersed. It is generally made

which are used for the dissolution of upper layer and abrasive material

layer physically. It helps in reducing the surface features

The slurry usually contains an oxidizing agent, a complexing agent,

abrasive, a reagent, and a chelating agent. Reagent is added in 

increase the solubility of the copper in the slurry and to prevent the dissolution of copper in the 

he surface. Slurry chemistry mainly includes citric acid, hydrogen peroxide, 

glycine, Benzotriazole (BTA). Where glycine and citric acid are the complexing

hydrogen peroxide is oxidizing agent. 

Figure 2: Input and Output parameters in CMP [2] 

studied the  and   based chemistries  having silica 

for copper CMP. For a slurry based on , which is a strong copper etchant

potentiodynamic curve shows no passivation behavior stating the copper dissolution

generally made up of two 

used for the dissolution of upper layer and abrasive material to 

surface features thereby enabling 

complexing agent, a 

chelating agent. Reagent is added in the slurry to 

the dissolution of copper in the 

citric acid, hydrogen peroxide, 

complexing agents, BTA is 

 

based chemistries  having silica or alumina 

is a strong copper etchant, 

e copper dissolution, while for 
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����	 based slurry passivation takes place. Figures 3 (a) and (b) shows, the d.c. 

potentiodynamic curve of (a) abraded and (b) non abraded copper surface in HNO3 and NH4OH. 

In HNO3, absence of passivation was demonstrated by the steep slope in the anodic range and 

little difference between the corrosion potentials of the abraded and non abraded copper surface. 

However, the presence of passivation in NH4OH was demonstrated by the 300 mV difference 

between these two corrosion potential. 

 

Figures 3 (a) and (b): Potentiodynamic curve of copper in 5% HNO3 and in 1% NH4OH 

 
Ammonium salt-based slurries can mechanically improve the material removal process 

compared to KOH based slurries. The potential energy between the colloidal particles results due 

to attractive potential (by van dar Wall forces) and repulsive potential. Agglomeration occurs 

when the repulsive potential reduces compared to attractive potential. Agglomeration also occurs 

when reduction of electric double layer width takes place when salt was added in the neutral 

slurry causing decomposition of the salt in to anions and cations with reduced surface potential 

[9]. Figure 4 shows the dispersion and agglomeration behavior on silica particle surrounded by 

positive ions in high pH and neutral pH slurry solution. They found that the polishing selectivity 

increases in 
����	 based slurry using NaClO3. 
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Figure 4: Dispersion and agglomeration of EDL on the silica particles [9] 

 
Luo et al. [10] investigated  copper CMP using Al2O3 abrasive in NH4OH slurry medium with 

BTA addition to it. Polarization curves were used for measuring the corrosion current density for 

explaining the CMP behavior in this slurry. The dissolution rate of the copper decreases, when 

0.05 M of BTA was used to control the etching rate of ammonium salt with the oxidizer. Addition 

of 0.1M of NaClO3 into 3wt% NH4OH slurry leads to an increase in the removal rate with slight 

increase in current density i.e. 2 nA/cm2
 indicating the mechanical dominance during polishing.  

Polarization curves were used for measuring the corrosion current density, which indicates that 

the process was more mechanical dominant. 

Aksu et al. [11]  showed improvement in the planarization during passivation. Glycine leads 

to higher chemical dissolution of material from the surface due to abrasion at 10-2 M glycine and 

pH 12 reduces the  copper oxide formation thereby increasing the  CMP performance [12]. They 

conducted in-situ polarization experiments to understand the electrochemistry of copper-glycine 

and have investigated open circuit potential (Eoc) at a pH of 4, 9 and 12.  Figures 5 shows the 

electrochemical potential study with and without glycine at a rotational speed of 200 rpm and 
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27.6 kpa. In this case, abrasion will start at 60 sec at stable copper Eoc and second abrasion will 

start at 420 sec and this was observed in the case of pH 9 and 12 which will decrease rapidly due 

to copper and hydroxide removal [12]. The abrasion with glycine was observed to decrease less 

compared to without glycine from Eoc vs. time curve. 

 Doyle et al. [13] studied the chemical and electrochemical effects of  peroxide in the aqueous 

solution containing glycine by modeling chemical effects on polishing. They found that the 

dissolution rate in acetate buffer with pH 3 and pH 4 is more as compared to higher pH. They 

found that an  increase in the relative velocity leads to increase in the removal rate and high 

planarity  as the film  thickness of the slurry will increase in the case of high relative velocity 

[14]. Haba  et al. [15] used fumed silica slurry settlement method to remove large particles  

(above 1µm)  in slurry which leads to mirror like polish on the wafer with less defects. 

Seal et al. [16]  studied the interaction  between  glycine, hydrogen peroxide, and copper in Cu 

CMP using polarization curve, X-ray spectroscopy and AFM. They showed that removal rate 

decreases at higher concentrations of hydrogen peroxide but addition of glycine above 1%, 

increases the removal rate. 

Du et al. [17] investigated the copper removal mechanism by combining the effects of 

hydrogen peroxide as an oxidizer, glycine as a complexing agent and � Tri-amino-triazol as an 

inhibitor. They found that the removal rate reduces below alkaline pH and dynamic increase in 

the removal rate occurs as 0.1 M of glycine is added in the hydrogen peroxide solution. The 

improvement in the planarization was further observed when BTA was added to that solution. 
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Figures 5 (a) and (b): Eoc of copper at different pH values with alumina abrasive (a) without 
glycine (b) with glycine [12] 

          

Figure 6: Variation of removal rate for different H2O2 concentrations [16] 

 
Chen et al. [18] found  the dissolution rate to increase with H2O2 and the passivation of copper 

to take place at its highest concentration. Moreover, the Fe(NO3)3  resulted in the absence of 

copper passivation. The dissolution of copper in both H2O2 and Fe(NO3)3  increases at high 
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rotation speeds. Gorantla et al. [19] proposed that the surface chemical reaction occurs when 

citric acid was added a complexing  agent, with and without  H2O2  in acidic and alkaline 

solutions. A high concentration of citric acid inhibits passivation of copper in H2O2  and results in 

an increase in the dissolution of copper [20]. 

Ein-Eli et al. [21] investigated the electrochemical behavior of copper with and without  BTA 

in the absence of H2O2  in a Na2So4 based solution. They found that when BTA was added to this 

solution, copper undergoes a strong passivation below 0.2 V (SCE) and the  protective layer of 

BTA was damaged by localized corrosion attacks above 0.2 V.  The role of interaction effects of 

an oxidants and inhibitors in Cu CMP study using X-ray spectroscopy and secondary-ion mass 

spectroscopy showed that the presence of glycine in H2O2 leads to Cu-glycine complex. This 

resulted in the dissolution of copper. The BTA addition to this solution of  H2O2 and glycine leads 

to Cu-BTA  complex , causing  decreased  removal rate at  pH 2 in 5% H2O2 , 0.01 M BTA, and 

0.1 glycine [22]. Gorantla et al. [23]  used different additives to investigate the importance of 

��	 in the H2O2  slurry during Cu CMP. They found that the removal rate depends upon the 

interaction of different additives with Cu2+ and the pH of the slurry during the CMP process. Tsai 

et al. [24] investigated glycolic acid to improve the polishing rate, which also decreases the 

difficulty in post cleaning by electrostatic repulsion. The alkaline-based slurry having uric acid as 

an inhibitor and H2O2  as an oxidizing agent increased the polishing rate with passivation [25]. In 

acidic slurry, increase in the ��	 radicals in the slurry  increases the removal rate,  but it 

decreases on a further increase of ��	 radical after adding oxalic acid [26]. 

2.3 Abrasive: 

Lin et al. [27] reported that finer and softer abrasives result in  higher finish with less removal 

rate in the case of NiP/Al substrate. Gopal et al. [28] studied colloidal behavior of alumina 

abrasive through zeta potential and particle cluster distribution using different additives and 

agglomerate size distribution measurements. After the addition of glycine at a pH below 4, 

agglomeration reduction takes place due to Cu-glycine complex. However, a decrease in the 
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agglomerate size about 100-400 nm occurs when 0.2 wt% of H2O2 was added to the slurry [29]. 

The transition alumina particles [30] of 20 nm were studied as a futuristic abrasive in the CMP 

process. Its use in CMP results in superior finish and better planarity on a tantalum and thermal 

oxide layers. 

2.4 Polishing pad: 

Polishing pad acts as a carrier for a slurry transport, and the abrasives are embedded in the pores 

for material removal during polishing.  It is generally made up of two layers i.e. a polishing layer 

and a substrate layer bonded together with an adhesive, which can be a hot-melt adhesive or 

pressure sensitive adhesive. In industries, the IC 1000 pad has a stacked layer of Suba IV, which 

is used for polishing. 

 

Figure 7: SEM of surface and cross section of a unpolished pad [31] 

IC1000/ Suba pad has a superior slurry transport which results in good compressibility. This 

leads to uniform MRR and good planarity compared to the IC1000 pad. Figure 8 shows a 

comparison of the stacked IC1000 and Suba pad (top views and cross sections). 
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Figure 8: Cross-section (SEM) of IC1000/suba stacked pad [32] 

Stavreva et al. [33] discussed the impact of the IC1000/suba pad  on good planarity, which  

leads to a decrease in Cu dishing and SiO2  thinning. During polishing, wear of unconditioned pad 

takes place due to rolling and fatigue caused by the high friction force and continuous polishing. 

However,  in the case of the conditioned pad, pad wear  caused by abrasion [34]. Three different 

kinds of conditions were used to study the properties change in the suba and the IC1000 pad. The 

first condition was soaking the pad in water for 5 hrs, secondly, increasing the pad temperature, 

and thirdly, pad conditioning. The shear modulus of the pad decreases, while the material 

removal rate remains unchanged during the soaking of the pad in water. Figure 9 shows the rate 

of decrease in the shear modulus in the case of IC1000 is higher than the Suba pad in the same 

temperature range. However, in the case of an increase in the temperature of the pad, reduction in 

the shear modulus and increase in the MRR takes place. However, the MRR is maintained and the 

planarization efficiency decreases after conditioning [35]. 



 

Figure 

Byrne et al. [36] applied 

for studying  planarization. They

the pad- contact. From this,

and increased 40% at the outer radius

conducted for analyzing the pad property.

used four techniques i.e. d

scanning calorimetry (TMDSC), thermal gravimetric analysis (TGA), and thermal mechanical 

analysis (TMA) at different temperature

storage modules at about 31

Figure 10 shows the DMA scans and TMA runs for

dynamic storage modulus (

observed in a typical CMP temperature range of 25

17 

Figure 9: Dynamic shear modulus of Pads [35] 

applied the finite element method (FEM) model for predicting the pad wear  

. They assumed flat pad geometry and consistent pad properti

, they found that Von Mises stresses was low in the center of 

at the outer radius of the wafer as the pad wear. Different investigations were

for analyzing the pad property. The thermal analytically study of the soft and hard pad

dynamic mechanical analysis (DMA), thermal modulated differential 

scanning calorimetry (TMDSC), thermal gravimetric analysis (TGA), and thermal mechanical 

at different temperatures and at different times [37]. By DMA, 

at about 31-50% at a typical CMP temperature range of 25 0C -

shows the DMA scans and TMA runs for the hard pad with a 31

(G’). No dramatic change in the coefficient of thermal

in a typical CMP temperature range of 25 0C -50 0C. 

 

model for predicting the pad wear  

flat pad geometry and consistent pad properties across 

in the center of the wafer 

investigations were 

f the soft and hard pads 

s (DMA), thermal modulated differential 

scanning calorimetry (TMDSC), thermal gravimetric analysis (TGA), and thermal mechanical 

. By DMA, a decrease in the 

-50 0C was shown.  

a 31% reduction in 

of thermal expansion was 
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From the TMA test, they concluded that the temperature of the hard pad should not decrease 

below 25 0C and not increase above 50 0C for a stable coefficient of expansion, while for the soft 

pad temperature, it should not increase above 85 0C. Additionally, they concluded that the elastic 

modulus of the soft pad is not affected in a typical CMP temperature range. The mobility or 

storage modulus increases with conditioning, which increases  the performance of  a hard pad 

[37]. Also, step height has an impact on planarization. When the step height was high, the pad did 

not touch the lower surface, even if it became rough or deformed thereby maintaining efficiency. 

However, as the step height was reduced with an increase in slurry temperature, the softer fiber of 

the pad increased efficiency.  Also when the step height was further reduced, efficiency decreased 

because of pad deformation. 

 

 

Figure 10: DMA and TMA run for hard pad [37] 

Different types of pad characterization techniques were used to measure the pad shape before 

and after polishing. McGrath et al. [31] applied the contact i.e. stylus type profilometer and non-

contact techniques i.e. white light interferometry  (WLI) for studying microscale deteriotion of 

the IC/suba pad using roughness as a parameter. 
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Figure 11:  a) Path as mapped by 10 m and 90 m stylus. b) Pad surface mapped by WLI 
[31] 

The stylus based technique was found to be inadequate for measuring pad features compared 

to WLI. The WLI images were plotted to investigate the asperity heights or scale before or during 

the polishing process for a better understanding of the wear phenomenon of the pad. Bearing 

parameters such reduced peak height (Rpk), core roughness depth (Rk), and reduced valley height 

(Rvk) displayed the asperity height which was not clear in the case of the average roughness 

parameters (Ra).  This WLI based technique distinguishes between different conditions of the pad, 

which was not possible earlier [31]. 

The scanning electron microscope (SEM), white light interferometry, and attenuated total 

reflectance Fourier transform infrared method were used to measure the pore geometry, 

roughness of the pore height, and chemical changes in the pad after polishing [32] . They found 

by WLI, the pore of the used pad was smaller and shallower compared to the new pad. By using 

the IR spectrum, no chemical shift was found, which explains the absence of a chemical change 

in the pad after polishing. It indicated that physical and mechanical changes in the pad are 

prominent during polishing. 

Hooper et al. [38] conducted roughness analysis to study the conditioning of the pad in the 

CMP process. The roughness of the pad decreases with polishing due to the flow of worn out pad 

material into the pores. Moreover, they concluded that the pad wear was more in the case of 
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higher conditioning density. Zantye et al. [39] used a new metrology and characterization  

technique for a newly developed polishing pad. The pad was made of polyolefin having a surface 

coating of ceramic (TEOS) using PECVD. The new pad was chemical resistant and an excellent 

adhesive compared to polyurethane, which can be used without conditioning. SEM was used for 

surface and cross section analysis. The properties were measured by nanoindentor having an 

indentation of 1200 nm. An X-ray photoelectron spectrometer was used for characterizing the 

surface modification using a base pressure of 10-10 torr. Also, the coefficient of friction (COF) 

was measured using a wear test by Kiedon 445 static COF tool. The polyolefin pad coating time 

was proportional to the elastic modulus and hardness resulted due to increased thickness. They 

showed an increase in the COF increases the wear rate. The mechanical properties of the  soluble 

particles (WSP) based on nonporous pad with a porous pad (IC1000)  were compared with 

temperature [40]. A nonporous pad, such as IC1000 pad was found to be densely cross- linked 

leading to higher decomposition at a higher temperature. The storage modulus of the WSP was 

high.   

Yoshida et al. [41] studied the relation of pad roughness with the material removal rate at 

different ceria sizes. The removal rate was higher at a maximum pad roughness and with a 

decrease in crystalline size. Also, abrasive free technology appeared as the next viable option in 

CMP. A fixed abrasive pad in which the abrasives were embedded in the pad instead of in the 

slurry was studied, resulted in the exclusion of complex cleaning processes using deionized 

water. The material removal at the start was found to be less, compared to the conventional CMP 

process. 

 



 

Figure 

Nguyen et al. [43] studied

planarization efficiency, and

and low abrasive content, abrasive free CMP

were two types of material removal in

top-down removal was independent of

removal (round off corner of feature) was
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The fixed abrasive pad was 

CMP [42]. Figure 12 shows

resulted in reduced polishing time with small 

size by using optimized slurry 

having a property of swelling and expanding with 

pads. This property of the 

between the pad and the wafer
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Figure 12: SEM of a fixed abrasive pad [42] 

studied the four different CMP processes to investigate

and step removal. These processes were conventional CMP with high 

and low abrasive content, abrasive free CMP, and fixed abrasive pad-based CMP

two types of material removal in the CMP, i.e., lateral removal and top down removal.

independent of the feature size and pattern density,

orner of feature) was dependent on the feature size and pattern density.  

explained that the lateral removal of a fixed abrasive pad in the field area and

same as compared to a conventional CMP, i.e., good planarity.

was used to study the material removal dependency in

shows the SEM of a fixed abrasive pad. The use of the 

in reduced polishing time with small dishing, independent of pattern density

size by using optimized slurry having 15% volume H2O2 and pH of 3. The hydrophilic polymers

having a property of swelling and expanding with water, were studied for making fixed abrasive 

the pad results in self-conditioning of the pad by the 

wafer. This leads to the  removal of a weaker layer, maintaining material 

 

investigate the MRR, 

onventional CMP with high 

based CMP process. There 

and top down removal. The 

, while the lateral 

feature size and pattern density.  They 

field area and the small copper 

good planarity. 

dependency in the case of Cu 

the fixed abrasive pad 

density, and feature 

ydrophilic polymers, 

studied for making fixed abrasive 

the frictional force 

maintaining material 
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removal compared to conventional CMP [44]. Figure 13 explains the above self conditioning 

mechanism of the hydrophilic based pad. 

 

Figure 13: Polishing mechanism of tungsten CMP using hydrophilic polymer based pad [44] 

Pad conditioning maintains the MRR by means of asperities conditioning before polishing. This 

leads to higher material removal as compared to after polishing [45, 46] 

2.5 Temperature: 

The temperature plays an important role in the CMP process. The temperature change leads to 

changing of the properties of the pad and slurry which are very sensitive to it. The increase in 

temperature of the slurry results in decrease in the elastic modulus of the pad and a higher 

material removal rate. The increase in temperature leads to a decrease in the hardness of the metal 

oxide layer causing an elastic deformation of the layer [47]. Generally, in the CMP process, heat 

is generated by the rubbing action of the pad on the wafer surface. This rubbing action or abrasive 

wear is of two types i.e. two-body abrasive or three-body abrasive wear [48]. In a two-body 

abrasive wear, the abrasive present in the slurry merged on the pad surface and acts rigidly like a 

cutting tool on the wafer surface. However, in the case of three-body abrasive wear, the abrasive 
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slides or rolls freely over the  wafer surface. The three-body process is ten times slower than the 

two-body process. Therefore, it was concluded that the abrasive action in the CMP process is of a  

two-body type [48].   

Figure 14 shows the relation of the temperature with respect to the relative velocity and 

pressure. In the CMP process, the temperature change is inversely proportional to the pH value of 

the slurry. The removal rate is greatly affected by the heat dissipation at the interface due to 

various changes it brings in the polishing pad. The variation in physical properties and the 

chemical kinetics of the polishing pad are the major changes crucial in the CMP process.  

 

Figure 14: Variation of temperature with relative velocity and pressure [48] 
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An increase in the temperature of the slurry during polishing results in an increase in the 

coefficient of friction and material removal rate (using two different pads made of polyurethane). 

This resulted in an  increase in the area of the contact of the pad-wafer interface causing increased 

shear force at the interface [49]. Figure 15 shows the coefficient of friction data during the CMP 

process at different temperatures [49]. The increase in temperature also results in an increase in 

the metal dissolution rate, dishing of the surface, and metal loss [49].  Figure 16 shows the 

change in dishing with temperature.  The interaction of temperature affects the mechanical 

properties of the wafer. They found that increased slurry temperature results in an increase of the 

modulus and hardness of the polished copper surface due to work hardening. The rise in 

temperature causes a decrease in the hardness of the pad asperity, thereby the contact area 

between the pad and the wafer is increased. 

 

Figure 15: Variation of coefficient of friction with temperature [49] 

Figure 17 shows increase in the contact area with increase in temperature. This states that the 

real contact pressure is  proportional to an increase in temperature. This leads to a reduction in the 

removal rate as the pressure is decreased, which caused a reduction in the indentation of the 

abrasives [50].  Additionally, a shift in the chemical equilibrium state is observed due to a change 

in the temperature. The temperature rise leads to an increase in the particle size (due to increase in 

Pad 1

Pad 2
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kinetic energy). This causes the dispersed particle to colloid with each other, which further results 

in scratches on the  film [50]. The pH of the slurry decreases with increase in temperature. The 

shift in the equilibrium state causes a change in the pH value with temperature because the 

equilibrium state is affected by absolute temperature.  

Figure 18 shows that the variation of pH with temperature. The pH decreases from ~ 11 at 

20 °� to ~  9.3 at 70°�. By a direct measurement under the substrate using a specially designed 

carrier, it was found that the temperature under the substrate was higher compared to the pad 

temperature [51]. In the case of oxide layer, an increase in the wafer temperature leads to an 

increase in a removal rate. The linear relationship between the  temperature and removal rate of 

the oxide layer was found in Ref [52]. 

The uniformity of the oxide removal was increased due to reduced wafer temperature variation 

at a constant temperature of slurry and a densed grooved pad compared to a densed ungrooved 

pad.  Mudhivarthi et al. [53] investigated the variation of  dissolution rate in electrochemical 

machining and found an increase in the removal rate due to an increase in the  interfacial 

temperature using electrochemical,  and X-ray photoelectron spectroscopy. They concluded that 

at higher slurry temperature, oxidation of the surface occurs at higher rates in the slurry solution. 

This leads to higher material removal rate with no significant change in roughness. The non-

uniformity occurs due to increased oxidation rate at higher slurry temperature [54]. 
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Figure 16: Effect of temperature on dishing [49] 

 

Figure 17: variation of real contact area with respect to temperature [50] 

 
 

Figure 18: Variation of pH value with temperature [50] 
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2.6     Analysis of vibrations in CMP process 
 

Figure 19 shows the CMP process vibration signal obtained during the polishing process. 

Initially at the start of polishing, asperities in the pad contacted with the wafer, which leads to 

vibration in an abrasive environment caused by an uneven friction [55]. However, as polishing 

proceeded, friction between the asperities and the wafer reduces as the roughness of the pad and 

the wafer decreases. 

 

Figure 19: Vibration in chemical mechanical polishing 

 

2.7 CMP Modeling: 

 
According to Preston [56], the material removal rate in polishing of an material can be found 

empirically  as  the product of applied pressure and the relative velocity, which can be written as 

Rp pvk
dt

d
=

ξ

 

W
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Where 
dt

dξ
the removal rate or polishing rate, p is the nominal pressure, Rv is the relative 

velocity, and pk  is the Preston constant i.e. which depends on the polishing surface roughness, 

elasticity, and chemistry at the slurry- interface. Various modified Preston equations were 

developed because of the   following problem with the Preston equation i.e. gives a zero removal 

rate at zero relative velocity, fails to show that removal rate depends more on velocity than 

pressure and includes only mechanical synthesis with no chemical synthesis. Luo et al. [57] 

presented the following Preston equation 

� � ��� � ��� � �� 

K = Preston coefficient 

P = applied downward pressure 

B = constant 

V= Relative velocity 

��  =Purely chemical removable rate 

This equation takes into account the variable for a purely chemical reaction of the slurry 

during the process and the other variable for a greater dependence of MRR on the relative 

velocity. Furthermore, it was stated that the thin layer formed on the surface does not follow the 

Preston equation correctly. For the case of a large PV, a constant is fitted in the Preston equation  

[58]. Wang et al. [59] proposed a removal rate model using a combined solid and fluid 

mechanics. 

�. � � ���, ����/�� /! 

Chen et al. [60]  used dimensional analysis for modeling MRR using process and machine 

parameters where RR is the removal rate, DF is the downward force, BP is the back pressure, TT 

is the platen or pad rotational speed, and TR is the carrier rotational speed. The equation is given 

as 

�� � " # �$%/���!�&�/&&�' 
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A modified Preston equation including an Arrhenius relationship was derived to study the 

effect of the pad temperature on ILD and copper s [61]. They combined a thermal factor in the 

Preston constant k which takes into account the information regarding thermal dependent and 

inter-layer independence of copper of CMP. 

 

Figure 20: Infrared set-up for measuring the temperature at the -pad interface [62] 

A MRR model based on solid-solid contact mode was studied on an assumption of plastic 

contact over -abrasive and abrasive-pad interfaces. It included various material parameters, 

namely, wafer hardness, pad hardness, pad roughness etc with process parameters i.e. pressure 

and rpm. The basic equation of this model is as follows [63] 

�� �  ()
� 

Here () is the wafer density, N is the number of active abrasives, and V is the material removed 

by a single abrasive grain. The coefficient of friction between the pad and the metal interface was 

more when compared to the pad and dielectric layer. The slope of temperature rise in the case of 

pad-metal interface was found to be higher compared to the pad-dielectric interface. A regression- 

based pad temperature model was developed for  predicting the endpoint detection using 

kinematic energy at the pad- interface [62]. They identified the onset of change when the error 

between the five continuous second order regressions was large and that change ended when this 

error was less for second order regression. Figure 20 shows the setup for measuring temperature 



 

using an infrared camera. Li

removal rate caused by the decrease in 

rise in temperature of wafer

presented for the material removal rate combining CMP process parameters and 

mechanisms [65]. In the CMP

redistributed over the pad by radial convection. A thermal model of the heat generation, transport 

and heat exchange was developed on 

the temperature of the  is twice the pad 

an axisymmetric quasic-static 

minimum total potential energy and axisymmetric elastic stress

that model, the slurry pressure 

model. They found that V

decrease and a very steep increase at the edge

Yoshio et al. [68] devised a relat

conservation law after modifying

normal and shear component

Figure 21: Variation of 

30 

Li  et al. [64]  developed a model which showed a decrease in 

removal rate caused by the decrease in the  temperature at higher flow rates. They showed that the 

wafer was approximately twice as compared to pad. A dynamic model was 

material removal rate combining CMP process parameters and 

CMP process, most of the heat is carried away by the

redistributed over the pad by radial convection. A thermal model of the heat generation, transport 

and heat exchange was developed on a flat and concentrically grooved pad. It was 

twice the pad temperature during polishing [66]. Lin

static analysis for the explanation of the CMP model
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found that Von Mises stresses were uniform at the centre, followed by a slight 

decrease and a very steep increase at the edges (see Figure 21). 
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perfectly plastic contact between the  wafer and  the abrasive in the oxide CMP was presented 

[69]. A wear model based on an elastic model was presented to model the MRR in Si CMP. This 

model relates MRR with the material properties. Further, they concluded that an increase in the 

pressure and pad rotational speed lead to an increase in the removal rate. However, carrier 

rotation speed, back pressure, and slurry flow does not play a prominent role in the material 

removal rate [70].  
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Chapter 3: Sensors in chemical mechanical planarization (CMP) 

 

3.1 Vibration Sensors: 

Vibration sensors are used for detecting defects in various manufacturing processes. Research is 

on-going for its applications in the semiconductor industry. Researchers at the Sandia National 

labs monitored the polishing process using piezoelectric accelerometers placed in the horizontal 

and vertical position [71]. The horizontal position was found to be more appropriate for capturing 

the dynamics of the CMP process than the vertical position. They also suggested the application 

of accelerometer at low rpm of the platen and carrier as other factors dominate the acceleration 

signals at higher rpm. Figure 22 shows the implementation of sensors on the polishing head 

using a slip ring [72]. 

 

Figure 22: Acceleration sensor implementation and procedure [72] 

 
Kojima et al. [72]  at Fujitsu implemented a vibration signal based monitoring system for end 

point detection as well as for monitoring of other polishing abnormalities, such as  peeling,  

slipping. Various issues related to the sources of  mechanical vibration, such as floating 

structure of polishing head, head rotating shaft connecting material, change of  material of the 

retainer ring i.e. noise were investigated. However, they have not monitored the vibration 

along other two axis as vibrations monitored along these axis may be more significant. Figure 
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23 (a) and (b) shows the vibration-based monitoring system which includes a signal 

conditioning unit, such as an amplifier, AC/DC [72] . 

 

 

 
Figure 23 (a) and (b): Vibration signal based monitoring system [72] 

 

(a)

(b)
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Fukuroda et al. [73]  developed an in situ monitor technique for detecting the uneven surface, 

pad wear, and uniformity at the surface of wafer. They demonstrated different polishing events 

using accelerometer signals through signal processing technique. Using the vibration monitoring 

system [73], they showed that the spectra signal decreases as polishing proceeds (See Figures 

24). 

 

Figures 24 (a) and (b): (a) Horizontal and (b) Vertical components of the vibration 

spectra of a polishing head [72, 73] 
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Additionally, they implemented this monitoring system for copper CMP in which they used it 

to monitor the end point detection, which is more complex as compared to other issues, such as 

dishing and erosion [74]. They reported that the monitoring system can detect various 

abnormalities even during the change in the initial film thickness, slurry flow rate, and polishing 

rate. They detected  the end point in polishing to be in  vibration band range in the range of about 

5 kHz to 15 kHz [73] under various polishing conditions. Figure 25(a) and (b) show the vibration 

intensity change under various conditions. 

 
Figure 25 (a) and (b): Vibration intensity change detection during  (a) copper multilayer 
polishing and (b) under different defect exposures [74] 
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Bukkapatnam et al. [75]  developed a sensor based modeling approach to model  MRR  using 

various  nonlinear techniques to demonstrate the nonlinearity of the CMP process. Using this 

technique, they bypassed the problem associated with empirical technique namely modeling was 

with low predictability. Also various statistical features, such as mean, skewness, and nonlinear 

features, such as, embedding dimension, time delay, maximum Lyapunov exponent etc. were 

used for the above modeling technique. Phatak et al. [76]  used the multi-sensor  based modeling 

approach to track slurry variations during Cu CMP through wireless and wired vibration signals. 

It may be noted that the analysis was performed offline. The PCA based regression analysis was 

successful in tracking the variation in slurry parameters with high predictability compared to the 

statistical model. This model was used for predicting optimum process parameters and MRR. 

Maury et al. [77] used a vibration sensor to  monitor the endpoint by vibration signals. Figure 

26(a) shows the vibration sensor arrangement in the CMP apparatus. The vibration sensor is 

mounted on the wafer carrier to sense the vibration in the horizontal and vertical directions. The 

presence of an oxidizing agent in the slurry oxidizes the conductive layer. This layer is abraded 

by the abrasives in the slurry leaving behind the metallic layer. The exposed metallic layers 

exhibit different material properties, namely, the hardness and coefficient of friction. This result 

in a change in the frequency of the vibration related to that layer. This change in the frequency 

was then detected and monitored by the vibration sensor.   

Kramer et al. [78]  used seismic sensor for monitoring the conditions of consumables using 

seismic signals. Figure 26 (b) shows the seismic sensor attached to the drive assembly of the 

conditioning unit. In this, various consumables, such as, the conditioner, pad, slurry, and 

components of polishing head were monitored for the process stability. The seismic signals are 

indicative of the vibrations. They were monitored from the drive assembly for estimating the 

status of the consumables.  Also, the acquired signals at each time point of the predefined 
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polishing conditions were used for estimating the lifetime of the consumables. Based on the 

seismic signals, the process conditions were controlled for process stability. 

Pattengale et al. [79] used an  accelerometer  for CMP endpoint detection through spectral 

analysis .  Figure 26 (c) shows the accelerometer-based arrangement in the CMP apparatus. In 

this, the accelerometer was coupled to the machine frame, and mounted under a platen of the 

CMP apparatus. The accelerometer measured vibration signals. An electrical signal proportional 

to the process vibration was received by the spectrum analyzer. The change in the amplitude or 

frequency of one or more frequency components was detected for end-point detection, i.e., when 

the metal above the layer was polished. Additionally, the process conditions in response to this 

change were modified for an effective control of the process.    

Lim et al. [80] used vibration sensor to monitor the pad condition through vibration signals. 

Figure 26 (d) shows the accelerometer mounted on the supporting arm of the pad conditioner. 

The vibration signals from the conditioning arm were correlated with pad wear for monitoring the 

pad conditioner. The temporal signals were transformed to the frequency domain using Fast 

Fourier Transform (FFT) for analyzing the process in the frequency domain. The negative 

feedback loop was applied for real time monitoring of the pad conditioner by controlling the 

number of the sweep and head pressure of conditioning device. The process conditions were 

terminated where the amplitude of the abnormal peak increases to the maximum value.  

 

 

 

 

 



38 
 

 

Figure 26: Vibration sensor monitoring systems in CMP [77-80] 

(a) (b)

(c) (d)
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Figure 27: Thermal monitoring systems in CMP [81-84]

US 5196353 US 5597442

US 6872662 US 6976902

(a) (b) 

(c) (d) 
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3.2 Thermal sensors: 

Heat is generated by friction between the pad and the abrasive in the CMP. This is manifested by 

increase in the temperature. Sandhu et al. [81]  established an CMP process control by thermal 

image of the . Figure 27 (a) shows the thermal monitoring arrangement using infrared detector in 

the CMP apparatus. The rise in temperature at different points on the wafer has resulted due to 

change in the coefficient of friction. The real time infrared image of the wafer was developed by 

periodic scan of the temperature using the thermal imaging camera mounted to the platen. The 

endpoint of the process was detected by the rise in temperature when the first layer was polished.  

Chen et al. [82] established an in-situ endpoint detection by thermal monitoring of the pad. 

Figure 27 (b) shows the thermal monitoring arrangement of the pad. Endpoint of the process was 

detected when the temperature at a selected position on the pad decreases 2°� below the 

maximum temperature reached. Endpoint was detected when the pad temperature decreased 

below the maximum temperature of the pad at a slurry temperature of 20 °C to 22 °C.  Figure 28 

shows the variation of the pad temperature with time during the polishing process. The increase in 

pad temperature initially is due to friction. The maximum temperature is due to local high 

pressure in between the pad and the rough topography of the wafer and endpoint is the event 

where the topography of the surface is smoothed. With further in polishing time, the temperature 

of the pad reduces after the endpoint. 

 Hocheng et al. [83]  determined the endpoint detection of the CMP process using temperature 

changes. The temperature of the environment and the temperature at one point of the pad were 

measured by an infrared camera. Then a curve was plotted using temperature difference between 

the environment and pad temperature. Figure 29 shows the variation of the temperature slope 

during the polishing process. The total slope of the curve includes three slopes, namely, first 

constant slope, second non-constant slope, and third constant slope. The dots in the curve 

represent the rise in the temperature at one portion of the pad while the line represents the rise in  
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Figure 28: Variation of pad temperature with polishing time [82] 

 

Figure 29: Variation of temperature slope with polishing time [83] 

 
the temperature of the area of the pad. The endpoint was detected by the turning point between 

the first constant value slope and second constant value slope. 
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Koo et al. [84]  used the multisensor arrangement for endpoint detection of the CMP process. In 

this, temperature of the slurry was measured by the sensor attached to the bottom of the carrier 

head and temperature of the pad was measured by an opening on the table meant for 

measurement. During the polishing process, frictional force is generated that leads to a steady 

increase in the temperature of the pad or at a constant level due to this frictional effect. However, 

there occurs a sudden increase in the temperature when the first layer was polished. Figure 30 

shows the variation of temperature with time during a multilevel polishing illustrating the 

endpoint detection in the CMP process [84] . Point P is the point describing the endpoint 

detection point or where first layer is polished and after that the second layer is going to be 

polished that leads an increase in the frictional force. This results in increased temperature of the 

wafer or the pad.  

Figure 30: Variation of temperature with time in multilevel polishing [84] 
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Figure 31: Variation of temperature with pressure for slurry an

 
3.3 Acoustic emission sensor

AE sensors find application

processes, including, machining, grinding, lapping

widest range of sampling rate compared to other se

integrated in a Toyoda ultra

apparatus. The sensor is attached in the middle 
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Variation of temperature with pressure for slurry and water in CMP process 

sensor (AE): 

nd applications in many manufacturing processes from abrasive to abrasive

machining, grinding, lapping, and polishing [86] [87]. This sensor 

widest range of sampling rate compared to other sensors. Figure 32 shows the AE sensor 

a Toyoda ultra-precision float polishing machine (Model SP46)

apparatus. The sensor is attached in the middle of the platen. 

 

d water in CMP process [85] 

from abrasive to abrasive-free 

. This sensor has the 

shows the AE sensor 

odel SP46) based on CMP 



 

Figure 32

Tang et al. [89]  used AE sensor for monitoring and characterizing

used to monitor the scratches 

namely, loading stage, self

process using AE signal. The l

accommodation-stage occurs due to unsteady state of friction 

during the start of polishing

removal and surface roughness 

The first regime lasts 2-3 seconds

the third regime, a constant level and variance can be 

AE signal with numerous spikes obtained when 1µm size

intentionally to cause scratching

Using the AE sensor, Hocheng 

detection (EPD) using  energy features from the 

observed when the metal layer was polished. 

slurry chemistry during the polishing proce

signal with variation in the slurry c
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32: AE sensor arrangement in the CMP process [88]

 
used AE sensor for monitoring and characterizing the CMP process. This was 

scratches generated during the process. A three-stage polishing regime

loading stage, self-accommodation stage, and equilibrium-stage during the polishing 

The loading stage was the stage when wafer contacts

stage occurs due to unsteady state of friction caused by the geometry

during the start of polishing, and equilibrium stage was the stage where stabilization in material 

removal and surface roughness were established. Figure 33 shows this polishing regime

seconds, the second regime lasts for about several tens of seconds and at 

constant level and variance can be observed in the signal. Figure 

AE signal with numerous spikes obtained when 1µm size diamond grits are added 

to cause scratching. 

Using the AE sensor, Hocheng et al. [90] developed a regression model for the end point 

energy features from the AE signal. A decrease in the signal

observed when the metal layer was polished. Choi et al. [88]  used AE sensor to track variation in 

slurry chemistry during the polishing process. Three distinct variations were observed in the 

signal with variation in the slurry content. Figure 35 shows the AE signal during polishing. At 

 

[88] 

CMP process. This was 

stage polishing regime, 

stage during the polishing 

when wafer contacts the pad, self 

geometry of contact 

s the stage where stabilization in material 

this polishing regime in CMP. 

second regime lasts for about several tens of seconds and at 

Figure 34 shows the 

added to the slurry 

developed a regression model for the end point 

the signal energy was 

used AE sensor to track variation in 

ss. Three distinct variations were observed in the 

shows the AE signal during polishing. At 
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the start of polishing with water, the RMS of the AE signal was 1.67 V followed by a decrease in 

the signal to 1.2V after adding glycine as a complexing agent. Further transition in voltage was 

observed at 1.1 V after re-oxidation with H2O2. 

 

Figure 33: AE signal during polishing [89] 

 
Figure 34: AE signal obtained when micro scratches were formed [89] 

 



 

Figure 

Ganesan et al. [91] studied the delamination defects in CMP using wavelet

AE sensor signal. Wavelet-

Figure 36 shows the cumulative energy of AE signal at 16 levels of decomposition

control signal’s cumulative energy

both cases was significantly higher

Figure 36: Cumulative energy for 16 level

46 

Figure 35: AE signal without abrasive [88] 

studied the delamination defects in CMP using wavelet-

-based multiresolution was applied for monitoring 

shows the cumulative energy of AE signal at 16 levels of decomposition

cumulative energy was higher than in control of AE signal. Also, the energy in 

as significantly higher, up to 6 levels. 

tive energy for 16 levels for in-control and out-of-control AE signal

 

- based strategy on 

 the CMP process. 

shows the cumulative energy of AE signal at 16 levels of decomposition. The out of 

al. Also, the energy in 

 

control AE signal [91]
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Table 1: Patents on vibration sensors in CMP 

 US Patent 
No. 

Issue date Inventor Assignee Title Brief Description 

1. 6051500 18 Apr. 00 Maury et 
al.  

Lucent 
Tech. 

Device and method for 
polishing a 
semiconductor substrate  
[77] 

A multilayer CMP was described in which the process vibration 
was detected by a vibration sensor. A change in the signal was 
described as the layer gets polish. 

2. 7198542B2 3 Apr. 07 Kramer et 
al. 

AMD Method and system for 
controlling the CMP by 
using a seismic signal of 
a seismic sensor [78] 

A CMP control system was described for the detection of 
condition of consumables in polishing. Also status of the 
conditioner used can be detected by the system. The seismic 
sensor was used to detect the process vibration in the system. 

3. 6431953B1 13Aug. 02 Carter et 
al. 

Cabot, IL CMP process involving 
frequency analysis based 
monitoring [92] 

A CMP control using an algorithm was described. In this, the 
signals from different sensors were used to control the online 
process by means of power spectrum. Any change in amplitude 
or frequency will help in detecting pad wear. Frictional force 
was measured by strain gauge. 

4. 7163435 B2 16 Jan. 07 Lim et al. TSSP 
Ltd 

 

Real time monitoring of 
CMP pad conditioning 
process [80] 

A monitoring arrangement was described in which the 
accelerometer was attached to the conditioning arm for 
monitoring the pad wear. By spectrum analyzer, abnormal peak 
of the frequency was analyzed for monitoring. 

5. 2006/0063383 23 Mar. 06 Pattengale 
et al. 

 CMP process endpoint 
detection method by 
monitoring and 
analyzing vibration data 
[79] 

End point detection arrangement was described in which the 
accelerometer was attached to the CMP tool.  It included a 
computerized system in which a encoded frequency was 
detected real time during the polishing for an end point. 

6. 5904609 18 May 99 Fukuroda 
et al. 

Fujitsu 
Ltd. 

Polishing apparatus and 
polishing method [93] 

A failure detection system was being described for preventing 
the breakage and jumping of wafer  by detecting abnormal 
vibration signal. The Vibration sensor was attached to rear of 
substrate holder. 

7. 6634924 B1 21 Oct.  03 Ono et al. Ebara 
Corp. 

Polishing apparatus [94] A polishing machine with a signal analyzing method was 
described in which the vibration signal transmitted through the 
radio was used for pad wear and polishing endpoint by 
comparing the signal during the polishing with the initial signal. 
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Table 2: Patent on AE sensors in CMP 

 US Patent No. Issue date Inventor Assignee Title Brief description 

1. 6709314 23 Mar. 04 Kaushal 
et al. 

AM, CA Chemical mechanical 
polishing endpoint detection  
[95] 

A method for detecting the transition in layers of polishing 
by monitoring acoustic energy using acoustic emission is 
described. The acoustic energy was converted to electrical 
signal which was further filtered before converting to 
frequency spectrum. The end point was detected by 
comparing the frequency spectrum with the previous 
frequency spectrum 

2. 6379219 
 

30 Apr. 02 Oba SLET, 
JP 

Chemical mechanical 
polishing machine and 
method [96] 

A controlled polishing mechanism based on delay time of 
two elastic wave signals from work piece was described. A 
control by spectral analysis was done through maintaining 
a signal magnitude from different sensors. 

3. 6488569 3 Dec. 02 Wang et 
al. 

FSU,US Method and apparatus for 
detecting micro-scratching in 
semiconductor wafers during 
polishing process[97] 

CMP apparatus in which the AE sensor was attached close 
to wafer for monitoring surface defect i.e. scratches. 
Increase in amplitude threshold was used to monitor 
surface characteristics. 

4. 6424137 23 Jul. 02 Sampson STM Inc. Use of acoustic spectral 
analysis for 
monitoring/control of CMP 
processes [98] 

An online technique based on spectral analysis was 
described for detecting scratches during polishing. A band 
of frequency was being monitored to determine uneven 
vibration before any damage to wafer. 

5. 7377170 27May 08 Ganesan 
et al. 

USF System and method for the 
identification of chemical 
mechanical planarization 
defects [99] 

A moving window based strategy against delamination for 
monitoring the polishing process was described. A dyadic 
signal was decomposed up to the 6th  level and energy of 
coefficient was calculated by daubachies  wavelet of fourth 
order. The threshold limit was assigned for calculating 
significant energy through the wavelet coefficient. 
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6. 6910942B1 28 June 05 Dornfield UCA Semiconductor  CMP 
process and End point 
detection  method and 
apparatus [100] 

A system was described in which a sudden drop of AE 
signal was used as a end point of polishing. Also explained 
that the signal at the start was due to brittle abrasion and at 
the endpoint was due to the particle dielectric abrasion and 
particle metal abrasion. 

7. 5240552 31 Aug. 93 Yu et al. Micron CMP of a semiconductor  
wafer using acoustical wave 
for in-situ end point detection  
[101] 

A monitoring system for detecting the thickness and 
endpoint through acoustic emission sensor was described. 
The received signal was compared with the directed signal 
for thickness monitoring. 

8. 6494765 B2 
 

17 Dec. 02 Gitis et 
al. 

Center for 
tribology 

Inc 

Method and apparatus for 
controlled polishing  [102] 

A CMP process control arrangement comprising a 
multiples sensors namely AE sensor, force sensor, and 
temperature sensor mounted on the rotating head was 
described. The simultaneously obtained signals were 
processed and analyzed by the control unit 
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Figure 37: AE sensor monitoring systems in CMP [97, 100, 102, 103] 
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Table 3: Patent on sound sensors in CMP 

 US Patent No. Issue date Inventor Assignee Title Brief description 

1. 5245794 21 Sep, 93 Isi AMD Audio end point detector 
for chemical mechanical 
polishing and method 
therefore [104] 

A method for detecting the acoustic wave produced due to rubbing 
action and converting that into acoustic energy in the range of 30 Hz 
to100 Hz was described. A phase loop system was applied for 
detection of set frequency. 

2. 5222329 29 June, 93 Yu Micron Acoustical method and 
system for detecting and 
controlling CMP depths 
into layers of conductors, 
semiconductors and 
dielectric materials [105] 

A microphone was positioned a distance away from the wafer to 
sense the acoustic wave.  This contactless based arrangement was 
used to determine the end point detection in CMP i.e. thickness of 
the polished layer removed. This signal detected was amplified and 
analyzed by a spectrum analyzer. 

3. 6494769 17 Dec, 02 Sinclair 
et al. 

AM  Wafer carrier for 
chemical mechanical 
planarization polishing 
[106] 

A wafer carrier was developed in which the microphone was 
mounted inside the cavity just sticking the wafer plate. In this way, 
the sensor was at the rear of the wafer in contact. Also, the endpoint 
detector was adapted to measure the relative surface of the wafer. 
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Figure 38: Acoustic or sound sensor monitoring systems in CMP [104, 105] 
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Table 4: Patent on temperature sensor in CMP 

 US Patent No.  Issue date Inventor Assignee Title Brief description 

1. 5196353 23 Mar. 
93 

Sandhu et  
al. 

Micron Method for controlling a 
CMP process by measuring 
a surface temperature and 
developing a thermal image 
of wafer  [81]. 

 

A thermal arrangement was described for measuring the 
temperature of wafer using the infra red detector. The 
endpoint detection was detected by the sudden change in 
wafer temperature, when the new layer was exposed. 

2. 5597442 28 Jan.  
97 

Chen et al. TSMC Chemical mechanical 
planarization (CMP) endpoint 
method using measurement of 
polishing pad temperature [82] 

A temperature monitoring system for EPD was described. 
The infra red detection device was used to monitor the pad 
temperature at the abraded region.  

3. 5643050 1 July. 97 Chen  et al. ITRI Chemical/Mechanical polish 
(CMP) thickness monitor [107] 

A thickness monitor arrangement using temperature 
measurement at controlled slurry temperatures between 10°C 
to 30°C was described. The temperature of the wafer or pad 
versus time was plotted to monitor thickness. The removed 
thickness was derived using computer stored integration 
coefficients. These coefficients were specific for slurry 
chemistry and pattern density. 

4. 6872662 29 Mar, 
05 

Hocheng et  
al. 

 Method for detecting the 
endpoint of a chemical 
mechanical polishing (CMP) 
process [83] 

 The infrared detection device was described was used to 
measure pad temperature for an end point detection system 
for CMP. The endpoint was detected by slope variation of the 
temperature curve. The curve was plotted using numerical 
method like linear regression methods using the temperature 
difference measurement between atmosphere temperature and 
pad temperature. 
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5. 6976902 20 Dec.05 Koo et al. 
 

Samsung Chemical mechanical polishing 
apparatus [84] 

Multi sensor based EPD was employed. In this, temperature 
sensors for slurry, wafer, and pad temperature were used as 
first detector whereas load current, voltage and resistance of 
carrier head motor was used as the second detector. In the 
second invention, the second detector was replaced by an 
optical detector which detects light illumination on the wafer 
and reflected from the wafer. 

 
 
 
 
 
 
 
 
 
 
 
 



55 
 

 

Chapter 4: Problem statement 
 
 

In the CMP, the key process parameters, namely, down force, rpm, slurry flow rate play 

an important role in achieving good planarization with good material removal rates. 

Earlier work deals with the monitoring of the process using different sensors, such as, 

vibration, acoustic emission, friction, and temperature to study the polishing process 

using wired and wireless sensors [76]. However, the scope of the modeling of the process 

performance variables (MRR, roughness and WIWNU) through sensors fusion has not 

been explored. Recently, an investigation using a using a single type of wired and 

wireless sensors was reported [76]. A CMP process is a complex nonlinear process with 

some 36 input variables. Due to uncertainty of the CMP process, use of one sensor alone 

for predicting the process may not be inadequate. Wireless technology is now widely 

used for various applications. This study is undertaken to quantify the process by sensor 

fusion modeling through vibration and temperature sensor using regression analysis. 

Also, most of the models in the literature are on MRR. However, MRR is not a direct 

output parameter in the CMP process. Surface roughness and WIWNU of the wafer are 

direct output parameters for the monitoring process. Till now, there is no such model to 

track roughness in the CMP process. 

In this investigation, a sensor fusion model was proposed using data obtained from a 

full factorial design of CMP experiments on copper samples. This model is used to 

quantify the roughness and material removal of the process without the need for wired 

sensors. This technique helps in tracking the variation of process output using wireless 

temperature and vibration sensors. Response surface methodology was applied to 
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estimate the key process parameters with output variables using various sensor features, 

such as, statistical, frequency, and recurrence quantification based features. The sensor is 

located underneath the copper sample for maximizing the accuracy of the process signals. 

Two vibration and two temperature sensors are attached for monitoring the process 

dynamics during the polishing process. Wireless sensor fusion approach is found to be 

more accurate compared to single sensor modeling using linear and nonlinear statistical 

techniques. The sensor fusion model is able to estimate the roughness of the copper 

sample and MRR in the CMP process for real time monitoring using various statistics-

based features, time-frequency features, nonlinear features, and temperature features. 



 

5.1 Submerged Face-up CMP

Research on face-up CMP

national laboratories and industry

based monitoring system for 

mini-milling machine to run the 

the initial set up, the diameter

Figure 40 shows the top and front view

component of the tank had 

to hold the tank (8″ x 8″ x 4.5

Copper disc was used as a wafer

very carefully. For example, 

inorganic chemical environments. The shaft was rotated in the anticlockwise direction.
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Chapter 5: Initial CMP Studies 
 

up CMP: 

 
up CMP process has been undertaken by many researchers from

national laboratories and industry [108] [109]. Recently at OSU, we developed 

system for face up CMP. Figure 39 shows the CMP apparatus

milling machine to run the shaft or pad arrangement, and a fixture for holding

he diameters of the wafer and the pad were the same i.e. 4 inches

shows the top and front views of the submerged face up CMP apparatus

 a slot made for locating the sensors. The plastic base plate was made 

x 4.5″) during the polishing process. 

 

Figure 39: CMP polishing machine 

wafer in this arrangement. The materials of the apparatus were

very carefully. For example, polyethylene tank was used because of its resistance to most 

inorganic chemical environments. The shaft was rotated in the anticlockwise direction.

researchers from university, 

e developed a wireless sensor-

apparatus. It consists of a 

for holding the wafer. In 

4 inches in diameter. 

submerged face up CMP apparatus. The inside 

base plate was made 

materials of the apparatus were chosen 

its resistance to most 

inorganic chemical environments. The shaft was rotated in the anticlockwise direction. 
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CMP polishing was conducted under different conditions. We monitored vibration, sound, and 

temperature signals using sensors attached under the wafer. Most of the literature on CMP 

vibration monitoring was based on capturing the vibrations of the carrier holder or holder during 

polishing. The present system is different in that the sensors are attached underneath the wafer 

[71] [72].  The slurry used for polishing condition is colloidal slurry of silica having abrasive size 

of 70-90 nm, which is alkaline in nature. 

 

Figure 40: Front and Top views of the face-up CMP apparatus 

 
 

Figure 41: Sensors arrangement in the face-up CMP apparatus 
 



 

Figure 41 shows the arrangement

incorporates wireless MEMS technology for the 

submerged in slurry contained

A base plate was used to support the tank during the polishing 

the polishing process were 

Initially, the shaft was run at 75

their power spectrum, respectively

vibration signals obtained at 90 rpm 

spectrum, a wide band from 110

from the polishing process at a shaft speed of 7

rpm, the signal contained noise. A

Figure 

Statistical features, such as

band of the process signals were extracted

observed on the surface due to 

rotation to the wafer carrier.
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shows the arrangement of sensors in the CMP arrangement

wireless MEMS technology for the polishing process. In this apparatus

contained in the tank. The wafer is tight fitted in the circular slot using 

to support the tank during the polishing process. The signal

 analyzed to identify various frequencies associated with 

was run at 75 and 90 rpm.  Figure 42 shows the temporal vibration signal

respectively, obtained from the process at a sampling ra

at 90 rpm from the process was found to be nonlinear. From the power 

band from 110-140 Hz was observed. Figure 43 shows the sound signal

ng process at a shaft speed of 70 rpm. In the case of the sound 

contained noise. A frequency band at  150 Hz can be seen from the plot.

Figure 42: Vibration signals at 95 rpm, 500 Hz 

such as mean, standard deviation, maximum, minimum

s were extracted. However, some concentric rings and scratches 

urface due to pad rotation only. A motor arrangement was then

carrier. A load cell was mounted on the base plate holding the tank

arrangement. Our system 

apparatus, wafer was 

tight fitted in the circular slot using a bolt. 

The signals obtained from 

associated with the process. 

vibration signals and 

ate of 500 Hz. The 

nonlinear. From the power 

shows the sound signals 

sound sensor, at 75 

Hz can be seen from the plot. 

 

, minimum of the frequency 

rings and scratches were 

then used to provide 

on the base plate holding the tank to 



 

determine the load acting during polishing

carrier. 

Figure 

Figure 44 shows the modified arrangement 

attached to the milling machine

wireless platform was attached to the shaft holder by means of a T

silica slurry was used for polishing.

Figure 
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determine the load acting during polishing. This load cell was aligned with the axis of 

Figure 43: Acoustic/sound signals at 75 rpm, 500 Hz

shows the modified arrangement of the face up CMP apparatus. A Teflon shaft was 

milling machine spindle using an end mill holder (

platform was attached to the shaft holder by means of a T-bolt clamp. Initially, 

silica slurry was used for polishing. 

Figure 44: Face up CMP with wireless sensor 

. This load cell was aligned with the axis of wafer 

 

Hz 

A Teflon shaft was 

). The 

bolt clamp. Initially, colloidal 
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Different types of pads were investigated to optimize the polishing process. A copper cup was 

bonded to the shaft with an adhesive. A pad was attached to the cup using an adhesive for 

measuring its temperature. Figure 45 shows the copper cup arrangement for CMP. In this, a slot 

was made in the shaft for measuring the temperature of the pad. In this system, MEMS-based 

vibration sensor was attached to the shaft and the temperature sensor was attached to the rear end 

of the pad. 

 

Figure 45: Copper cup arrangement for temperature signals in CMP 

 
 This system was able to capture, pad vibration and temperature during the polishing process. 

Figure 46 shows the temperature signal of the pad obtained under the following conditions: Suba 

pad, 400 rpm for the shaft, 40 rpm for the carrier, and 30 lb load using colloidal silica-based 

slurry. The temperature rises rapidly with time reaching towards a steady state temperature. The 

net temperature rise was 6 * over 4 minutes. Figure 47 shows optical images of the as-received 

Copper cup

Polishing  pad

End mill holder

Shaft

Temperature 
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and polished copper wafers used in multistage polishing. Initially, the as-received wafer had 

defects, such as pits, scratches. After polishing, these defects were removed. 

 

Figure 46: Pad temperature signal 

The average roughness (Ra) of the polished wafer was 35 nm. Table 5 shows the conditions 

used during various stages of multistage polishing. The pads used were Suba IV, FBP, and 

microcloth. In order to obtain a defect-free surface from polishing, the loads were reduced, and 

the rpm were increased after each polishing step. The scratches or pits were removed in the first 

stage, a matty surface finish was observed in the second stage, and in the third stage mirror finish 

surface was obtained. Other different multistage steps were performed using different pads. 

Table 5: Multistage polishing process in a colloidal silica slurry 

 

Stage Pad Type Load (lb) Wafer rpm Pad rpm Polishing time (min.)

1 Suba IV (Hard Pad) 35 40 500 30

2 FBP (Medium pad) 25 50 700 30

3 Beuhler MicroCloth (Soft pad) 15 75 700 15
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Figure 47: Optical image of copper wafer using multistage polishing using a face-up 

CMP polishing apparatus 

Figure 48 shows the IC 1000 pad used for polishing the copper disc at a carrier speed of 50 

rpm and the shaft speed of 375 rpm at 20 lb load. Wear of the pad was observed after polishing. 

The color of the pad changed from white to a dark color at the end of polishing due to wear and 

impurities. Figure 49 shows the FBP 3000 pad after polishing at 20 lb load under the same 

polishing conditions. The color of the pad changed from light green to a dark color due to 

impurities and asperities removed after polishing. Wear of the pad was observed after polishing. 

The polishing conditions were optimized for polishing of the wafer in 45 minutes. A multistage 

polishing technique was used to obtain the mirror finish surface using colloidal silica slurry. In 

this, three different kinds of pads were used for polishing copper discs. The hard pad IC1000 was 

Start of polishing Stage 1: After 30min. polishing

Stage 2: After 60min. polishing Stage 2: After 75min. polishing



 

used initially for high material removal, S

FBP 3000 at the end for mirror 

Figure 48: IC 1000 pad before and after 25

Figure 50 shows the signal obtained from the CMP polishing process under

process conditions, i.e., chemomet 

An alumina slurry concentration of (1:3) was used.

500 Hz frequency. The power spectrum shows that the signal includes many frequencies. Th

power spectrum was further studied 

Figure 51 shows the power spectrums for the above polishing

power spectrum of the vibration signal for alumina

the polishing time. The amplitude of the frequency band 

[see Figure 51]. Power spectrum 

The vibration signals were very sensitive to machine vibration
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An alumina slurry concentration of (1:3) was used. The vibration sensor signal was sampled at 
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the power spectrums for the above polishing conditions. The variation in

ower spectrum of the vibration signal for alumina-based slurry was observed

The amplitude of the frequency band (from 230-235 Hz) decreased

ower spectrum analysis was made to study the frequency of the

ibration signals were very sensitive to machine vibration as well. 
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experiments. 
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Figure 50: Vibration signal and Power spectrum at 50
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Figure 49: FBP 1000 pad before and after polishing 

 

: Vibration signal and Power spectrum at 50 lb load

under different conditions were conducted for the frequency spectrum 

analysis of the CMP process signals. From this study, it was concluded that the signal 

shaft frequency, chain frequency, and their interactions. Figure 52 shows the power spectrum 

obtained under the above polishing conditions. The study was made to determine the frequencies 

of the process under a constant polishing condition. 
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Figure 51: Power spectrum during the polishing process 

Table 6: Process frequency band at various conditions 

No. Condition Frequency band 

1.  Wafer carrier rotation without contact 95-105 Hz, Vibration due to motor 

2.  Wafer carrier in contact with wafer 185-200 Hz, Process frequency band 

3. Shaft spindle rotation without contact No significant band 

4. Shaft spindle rotation in contact with the  95 -105 Hz and 150-160 Hz 

5.  Wafer carrier and shaft spindle rotation only No significant band 

6. Wafer carrier and shaft spindle rotating during 
polishing 

95-105 Hz and 150-160 Hz 

 

The shaft and carrier rpm were 400 and 40 rpm, respectively under a 30 lb load using (1:2) 

colloidal silica slurry. The vibration signal was sampled at 500 Hz. Frequencies below 60 Hz 

were coming from the motor. Table 6 shows the process frequency analysis obtained from 

Figure 52. The signals were taken under different conditions, such as shaft rotation only, 
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polishing with shaft rotation only (no motor rotation), motor rotation only, polishing with motor 

rotation only (no shaft rotation), shaft and motor rotation (no polishing),  and polishing with shaft 

and motor rotation. From the first and second conditions of the shaft rotation, it was concluded 

that power spectrum band from 95-105 Hz was the frequency band associated with shaft vibration 

and 150-160 Hz band was the frequency band associated with the CMP process. 

Tests were conducted in dry and wet environments for vibration analysis of the CMP process. 

The vibration signal was sampled at 850 Hz. The polishing conditions were 400 rpm shaft 

rotation, 40 rpm motor rotation and a 30 lb load. Figure 53 shows the vibration signals under 

different conditions. Figure 53 (a) shows the signals under dry conditions and polishing, Figure 

53(b) shows the signals under wet polishing conditions, Figure 53 (c) during polishing with 

slurry, and Figure 53(d) when slurry quantity was increased. In the case of dry polishing, when 

there was no slurry or water, one continuous signal was observed without any variation [Figure 

53 (a)]. However, when polishing was conducted in water [Figure 53b], continuous band in the 

signal was observed for a longer interval in the polishing. When water was removed, and slurry 

was added, a continuous band was observed in a small interval. These results are attributed to the 

abrasive action during polishing. Figure 54 shows the power spectrum analysis at different 

loading conditions. The sampling rate of the wireless platform was 850 Hz. Three loading 

conditions were chosen for the vibration signals, namely, 30 lb, 20 lb, and 10 lb. The shaft and 

motor rpm were fixed at 400 rpm and 50 rpm. The frequency band from 40-70 Hz was from the 

motor. The mean of power band from 170-185 Hz was plotted. The drop in power from 30 lb to 

20 lb was two times more than the drop from 20 lb to 10 lb. A qualitative study was made for the 

CMP process through vibration signals. From the above, it was evident that vibration signals were 

very sensitive to the process which includes the slurry condition and the loading condition. It was 

concluded that the vibration signal can be beneficial for monitoring the process. 
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Figure 52:  Vibration frequency power spectrum for analysis 

However, there was some uncertainty associated with the experimental set up described in 

Section 5.1. Therefore, a DOE-based quantitative study was made using bench top polisher for 

regression analysis modeling of Ra and MRR of the wafer. 
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Figure 53: Vibration signals under dry and wet polishing conditions 
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Figure 54: Power spectrum at different loading conditions under constant spindle speed  of 400 rpm 
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Chapter 6: Experimental Apparatus and Design of Experiments 
 
 
 

6.1 CMP polishing apparatus: 

Figure 55 shows a Buehler polishing machine (EcoMet® 250/AutoMet® 250 Family) used for 

CMP polishing studies. It is also used as a transmitter base for the sensors. Figure 56 shows a 

desktop computer as a receiver or base for the signal collection which was used for studying the 

CMP process. This machine contains an upper and lower main housing. The upper housing is 

equipped with an air cylinder arrangement. The lower housing is equipped with a platen of 8” 

diameter with a platen speed of 10 to 500 rpm operated by a high toque motor of 1 Hp. The 

machine is equipped with a sample holder having multiple openings of different sizes for 

polishing samples. Each opening is mounted with aluminum lip for flexible mounting of the 

samples. The sample holder is driven by a drive shaft rotated by an electric motor.  The applied 

load varies from 1 lb to 10 lb. The load was applied on the copper sample through the finger tip. 

Polishing was done by the application of down force on the sample through the actuation of 

pressure cylinder against the pad rotation in a slurry environment. Consistent repetitive pressure 

is retained due to well controlled air activated cylinder. The sample and the pad were rotated in 

opposite directions. The diameter of the sample holder is slightly less than then platen diameter. 

An adhesive pad was bonded to the bimetallic plate which intern was mounted on the platen. A 

wireless sensor network was used to sense the temperature and vibration signals. Two copper 

samples of tellurium copper (copper alloy, Alloy C14500) with 1.6” diameter were polished 

simultaneously in each experiment. MEMS sensors were attached at the rear of the sample to 

study the dynamics of the process. An alumina slurry (0.05 µm grain size) and napped Microcloth 

pad from Buehler were used in the experiments. A 1.6” diameter disc was prepared to cover the 

top of the copper piece from the slurry. The slurry was filled in the beaker for polishing. The 



 

peristaltic pump was used to pump the liquid from

slurry recirculation.  Another

the pump. The pump was run by a d

platforms were tightly packed inside the plastic boxes by means of thermocol.  

Figure 55: Transmitter base i.e. Buehler 

Figure 56: Receiver base
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peristaltic pump was used to pump the liquid from the beaker to the pad using hoses

Another beaker was placed at the outlet from where slurry 

The pump was run by a dc power source for uniform electric current.

cked inside the plastic boxes by means of thermocol.   

: Transmitter base i.e. Buehler polishing machine for vibration and temperature signal

: Receiver base for vibration and temperature signals
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beaker to the pad using hoses and for 
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The wireless platforms inside the boxes were mounted to the machine cylinder by means of a 

shaft collar. 

6.1 Wireless Sensor: 
 

Figure 57 shows the Tmote sky based wireless platform from MOTEIV for signal collection. 

Tmote sky has Zigbee-based system architecture. The main components of the Tmote sky are the 

8 MHz Texas Instrument MSP430F1611 microcontroller (10k RAM, 48k Flash) and the CC2420 

chipcon’s radio interface. TinyOS, an open source platform, was used to run NesC based program 

for programming wireless platform in the cygwin environment. The software was installed in the 

Windows Xp operating system. The java application-based oscilloscope window was used for the 

display and saving of the signals. The MEMS sensor from ‘FREESCALE’ was used for the 

vibration signal and IC sensor from ‘ANALOG DEVICES’ was used for temperature monitoring. 

The vibration signals were sampled at 500 Hz and temperature signals were sampled at 4 Hz. 

Three wireless platforms were attached to the spindle. Two platforms were attached with two 

vibration sensors, and the third Tmote sky was attached to the two temperature sensors. The 

slurry temperature was measured by a thermocouple before and after polishing. The sensors were 

attached to the workpiece by means of an electric wire to the wireless platform. Some of the 

features of tmote sky are as follows [110]: 

� 250 kbps 2.4 GHz IEEE 802.15.4 chipcon wireless transceiver 

� Integrated ADC, DAC, supply voltage supervisor, and DMA controller 

� Integrated onboard antenna with 50 m range indoors/ 125m range outdoors 

� Ultra low current consumption 

� Fast wakeup from sleep (< 6+) 

� 16-pin expansion support and optional SMA antenna connector 

� TinyOS support: Mesh networking and communication implementation 



 

Figure 

Figure 
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Figure 57: Tmote sky-based wireless platform 

 

Figure 58: Sartorius weighing balance machine 
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6.2 Design of experiments ( DOE): 

Table 7 gives details of the factors used in the full factorial design of experiments. Three factors 

(load, rpm, and slurry ratio) at two levels (high, low) were investigated to study the process 

dynamics with the sensors. After each experiment, the copper sample was cleaned in an ultrasonic 

cleaner for 2 minutes. It was then dried by air pressure before measuring its weight. The material 

removed and the roughness was measured after drying. Averages of five points were chosen for 

roughness (nm). The material removal was measured after each run using a precision weighing 

balance. Figure 58 shows the Sartorius weighing balance machine (Model 1712 MP8). The 

resolution of the instrument is 0.1mg. Experiments were conducted randomly to study the process 

dynamics without any uneven interaction. The roughness of the copper sample was measured by 

ADE Phase Shift MicroXam, Optical laser interference microscope (see Figure 59). It is a 

non-contact surface metrology system for measuring the roughness of test pieces. The resolution 

of the apparatus is 0.1 nm. It is used for mapping three dimensional surface profiles with 

the measurements made in three modes, namely, quantitative, visual and confocal modes 

using optical interferometry. 

Table 8 shows the levels used in the full factorial design. For load and rpm, the high and low 

level were (10 lb and 5 lb) and (500 rpm and 300 rpm), respectively. Before polishing, each 

sample was mechanically hand polished to an average roughness of 350-380 nm with a 600 grit 

size sand paper. Each experiment was conducted with a new pad, copper sample, and a new 

slurry concentration. Each run was divided into four parts, i.e., 30, 60, 90, and 120 sec. Each 

sample was mounted with a temperature and a vibration sensor. Response surface methodology 

was used for obtaining a regression model to estimate Ra, MRR, and Preston constant from the 

sensor signals features. These tests were carried at a constant speed (60 rpm) of the spindle. The 

MRR was the material removal rate in a particular run having initial weight of  ,-	  and initial 

time of   .-	 . 
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60: MRR repetition for Run R1 (see Table 7 for details)
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Table 7: Full factorial design of CMP experiments 

Run Load, lb Rpm Slurry ratio 

R1 10 500 1:3 

R2 10 300 1:3 

R3 5 500 1:3 

R4 5 300 1:3 

R5 10 500 1:5 

R6 10 300 1:5 

R7 5 500 1:5 

R8 5 300 1:5 

 

 
Table 8: High and low level in CMP experimental design 

 
Level Load, lb RPM Slurry ratio 

High 10 500 1:5 

Low 5 300 1:3 

 

           Figure 60 shows the MRR for two repetitions calculated under the following 

condition of 500 rpm, 10 lb, and ratio of colloidal alumina slurry 1:3. During this repetition, the 

signals were captured and analyzed for the reproducibility of the process. The trends of MRR 

were the same in all the repetitions. The MRR was measured in mg/sec. The images and 3D 

surface profiles were captured by ADE Phase Shift MicroXam, a surface-mapping microscope. 

Figure 61 (a) and (b) shows the optical microscope images of the copper sample at run R1 

condition at the start and end of polishing. At the start of polishing, the optical image was full of 

scratches and pits, which was removed in subsequent polishing after 2minutes. 
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Figure 61: Microstructure of copper sample before and after polishing 

Figures 62(a) and (b) shows the 3D surface profile of copper. After 2 minutes of polishing, 

the observed image was flattened with a surface roughness of 4 nm. Various defects like scratches 

and pits marks were removed after polishing. Figure 63 shows the time series of signals under 

two different loading conditions (10 lb and 5 lb) at the same rotational speed (500 rpm). The 

slurry ratio in both the conditions was same. It was observed that the signal’s amplitude in the 

case of the high load was more [see Figure 63 (a)] compared to the low load [see Figure 63 (b)].  

              Figure 64 shows the power spectrum of run R2 conditions where the load is 10 lb, 

platen speed 300 rpm, and slurry ratio (1:3). The frequency band was from 120 to 130 Hz which 

is the processing frequency band after 15 sec of polishing. Also, the highest peak in the power 

spectrum was observed at 126.2 Hz.  

Figure 65 shows the power spectrum after 90 sec of polishing. The power of the signal 

decreases towards the end of polishing. The dyadic length for the power spectrum was 2048. 

Figure 66 shows the temperature profiles and material removed during polishing using a 

microcloth pad. The rotational velocity of the platen and carrier were 300 rpm and 60 rpm 

respectively. The load applied was 10 lb. polishing was done at 30 sec, 60 sec, 90 sec and 120 

sec.  The material removed for 30 sec and 60 sec of polishing was 2.9 mg and 4.8 mg 

respectively. These experiments were conducted using a new pad and new slurry. 

(a) (b)



79 
 

 

Figures 62 (a) and (b): 3D surface profiles of the sample before and after polishing 

 

  

(a)  Start of polishing, 431nm

(b)  2min. of polishing, 4nm



 

Figure 63: Comparison of time series of the signals under 

lb and 5

                   

              Figure 64: Power spectrum at 30 sec 
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: Comparison of time series of the signals under two different loading

lb and 5 lb) and same platen rotating speed of 500 rpm 

: Power spectrum at 30 sec under Run R2 conditions

(a)

 

loading conditions of (10 

 

conditions [see Table 7] 

(b)



 

Figure 65: Power spectrum at 120 sec 

Figure 66: Temperature profile
300

 

0 0.2 0.4
18

20

22

24

26

28

30

T
em

pe
ra

tu
re

 (
C

)

material removed : 2.9mgMaterial removed: 2.9mg

30sec

Te
m

p
er

a
tu

re
 (°C

)

81 

: Power spectrum at 120 sec under Run R2 condition [see 

: Temperature profiles with time during CMP polishing (platen rotational speed: 
300 rpm, load: 10 lb, and pad: Microcloth) 

0.6 0.8 1 1.2 1.4 1.6
Time (Min)

material removed : 8.1mg

material removed : 6.2mg

material removed : 4.8mg

2.9mg

Material removed: 4.8mg
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Material removed: 6.2 mg

90sec

Material removed: 8.1 
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[see Table 8] 
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Chapter 7: Feature Extraction and Process Dynamic Visualization 
 

Time series analysis has been used in the past for visualization and analysis of the process in the 

time domain. With the evolution of the Fourier transforms, it became easier to analyze the 

process in the frequency domain. However, most of the signals from the CMP polishing are 

nonlinear. Consequently, this method appears to be inadequate for analyzing the process. The 

short time Fourier transform (STFT) has also been used for analyzing the process in the time and 

frequency domains. The wavelet analysis was found to be powerful enough for the denoising and 

real time condition monitoring. 

Ganesan et al. [111]  developed a sequential probability ratio test (SPRT) method 

based on a wavelet for real time monitoring of the polishing condition. They conducted CMP 

process monitoring by multi- resolution and multiscale analysis using the Daubechies wavelet on 

AE signals. It was successful in detecting the delamination defects. 

Furthermore, multiscale Bayesian SPRT was developed for monitoring the non-

stationary CMP process signals having multiple characteristics [112].  A modeling of the cutting 

process using  wavelet and recurrence analysis was described in Ref. [113]. A recurrence 

quantification analysis (RQA) features based on recurrence and Morlet wavelet was used for 

analyzing the dynamics of the cutting process. The system showed periodic oscillation at low and 

high speeds when compared to intermittent motion and was confirmed by recurrence and Morlet 

wavelet analysis. It was explained that the curved and micro- patterns have resulted due to non-

stationarity in the phase and frequency [114].  Recurrence occurred, when the integer multiple of 

the sampling interval matched with another period’s integer multiple. The origin of a curved 

macro pattern was described using modulated and non-modulated sinusoid. Vazquez et al. [115] 

used the recurrence analysis for comparing between chaotic  acoustic and chaotic pressure signal 

from bubble flow. 



83 
 

Sensor features extraction: Various features, including linear and nonlinear features were 

extracted to model the surface roughness of the polished copper samples. This includes statistical, 

energy and RQA based nonlinear features. Matlab code was written for extracting the features 

from the signal. 

7.1 Statistical features: 

 
The statistical features extracted using the Matlab for modeling roughness (Ra), MRR, and 

Preston Constant were mean, standard deviation (std.), variance, kurtosis, skewness, and mean 

peak to peak amplitude. In the following equations for statistical features, where y is the data 

points, n is the total number of points (n=1…j) and  is the mean. 

�/01,  �  ∑ 34-45 1  

6.017087 7/9:0.:;1 �+.7�, < � =1 ∑  �3 � �!-45 1  
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In addition to the above statistical features, the coefficient of variance i.e. (mean/std) feature was 

also calculated. 

 

7.2 Time series visualization: 

Figure 67 (a) and (b) shows the vibration signals obtained through the wireless channel at 5 lb 

load and 500 rpm rotating space at the start of polishing and after 2 minutes of polishing. The 

signal was observed to be burst in nature and the amplitude of the signal decreases in the 
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polishing process. This complex signal was formed mainly of two bands. The initial study was 

conducted to study the MRR, Ra with the vibration signals at a constant slurry concentration. 

Each run was carried out on a 1.6” copper sample. This test is carried with a ‘Microcloth pad’ 

from ‘Buehler’ at a constant 60 rpm of the spindle. The runs were conducted randomly to study 

the process dynamics without any uneven interactions of the factors.  

 

Figure 67: Vibration signal during the polishing process during the (a) Initial and (b) After 2 
min of polishing under load 5 lb    

7.3 Energy features: 

The energy features of the spectrogram were used to extract the features for the short wave 

varying over a short period of time. The energy features of the short time Fourier transform 

(STFT) of the signals were extracted using Matlab. X�τ, ω� is the STFT of the S�.� ω�. H T� 

Short time fourier transform, STFT � X�τ, ω� � _  S�.�`
	` ω�. H T�/	4ab7. 

Here, ω�.) is the window function centered around zero, S�.� is the signal for transformation, 

ω is the frequency, and  T is the time index. Figure 68 shows the time series, the spectrogram, 

and the power spectrum of the vibration signal studied at platen rpm of 300 rpm and load 10 lb. 

The energy band from 120-130 Hz was taken for extracting energy features. Energy α was 

defined for the energy of the red segments while Energy γ was defined for energy between the red 

segments. In Matlab, the following command was used 

(a) (b)
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Y= [S, F, T] =spectrogram(x, window, noverlap, nfft, fs). 

Here, Y returns the STFT of the signal vector x i.e. 3000 data points, window size taken was 

128, noverlap was the number of segments which each segment overlap i.e. size taken is  120,  

nfft was the dyadic length taken as 1024, and fs was the sampling frequency i.e. 500 Hz. In STFT 

matrix, S was the vector having a short time Fourier transform matrix of signal, F was the vector 

of a rounded frequency, and T was the time vector at which spectrogram was computed. 

7.4 Time-frequency visualization: 

Different conditions were investigated to study the dynamics during the polishing process. 

Wireless sensor-based technology has been applied in many processes, but so far, it was not 

applied to CMP process for a clear understanding of the process-machine interactions. In an 

earlier investigation, MEMS based wireless vibration sensors were used to compare  with the 

wired  sensor earlier for monitoring slurry chemistry effects on MRR [76]. The following 

conditions are required for vibration based monitoring i.e. the machine used for polishing should 

be stable and care should be taken for the positioning of the sensor for studying the process. The 

vibration-based sensor monitoring is complex because of the abrasives particles interacting 

during the polishing process. Figure 69 shows the spectrograms in Run R2 condition during 2 

minutes of polishing with one repetition. The energy at the end of the polishing process 

decreases. 
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Figure 68: Time-frequency representation of the vibration signal at 300 rpm, 10 lb and slurry ratio 1:5 
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Figure 69:  Spectrogram under Run R2 conditions with two repetitions [see Table 7]  

 

Start of polishing Middle of polishing 2min. of polishing

Start of polishing Middle of polishing 2min. of polishing
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Figure 70: Time delay portrait with time delay 3 under Run R2 conditions at the start of 
polishing (See Table 7) 

 

Figure 71: 3D Phase space portrait under Run R2 conditions at the start of polishing (See 
Table 7) 
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7.5 Nonlinear features: 

Bukkapatnam et al. [75]  studied the process dynamics of the polishing process for monitoring the 

MRR at different process-machine conditions using a lapping machine. The process studied was 

found to be stochastic in nature and bursts in the vibration signals were observed. The present 

study was done to study the Ra and the MRR with vibration signals at a constant slurry flow rate. 

Mainly, there were two parameters required for a recurrence plot, namely, time delay and 

dimension. 

7.5.1 Mutual information: Information on the Time delay coordinates was required for plotting 

the phase space portrait of the signal. The mutual information is better than autocorrelation for 

finding the time delay [116]. Figure 70 shows the time delay plot for 1500 points using a mutual 

information algorithm. The time delay for Figure 70 is 3, where the first local minimum takes 

place. 

7.5.2 False nearest neighbor [FNN]: This method is used for finding the dimensionality of the 

nonlinear system [117, 118]. It was found that the process was 6 dimensional at the start of 

polishing. 

7.5.3 Recurrence quantification analysis (RQA): Eckmann et al. [119] presented a recurrence plot 

based on Lorenz attractor for describing the hidden parameters or dynamics of the process which 

was difficult to find with other analysis. RQA is a nonlinear data analysis tool which is used for 

the purpose of quantification of recurrent plots of a dynamic system based upon a structure on a 

small scale. It is used for studying the nonlinear dynamics of the processes, such as heart beat 

dynamics, blood pressure, muscle fatigue, protein molecular dynamics, and financial time series 

[120]. Recurrence analysis is used for investigating the out hidden recurring patterns, non-

stationarity, and structural changes [121]. It enables visualizing of the dynamic systems through 

phase space trajectory. The total number of data points taken for the recurrence plot and RQA 
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analysis was 1500. Phase space portrait is the space in which all the possible states of the process 

can be represented.  Figure 71 shows the phase space portrait of the vibration signal of 1500 data 

points for Run R1. Generally, for a phase space trajectory having k number of points, recurrence 

is described by a matrix 

�c,4�d� � ΘLε H gxi HjjxklM,     :, m � 1, … J         [121] 

In recurrence matrix,  d is the threshold distance, Θ(x) is the Heaviside function having value 0 at 

x < 0 and value1 at x > 0. The back diagonal line is the line of identity. 

RQA was introduced by Zbilut and Webber Jr. in 1992 [122]. The phase space trajectory is 

plotted using the embedded theorem.  For recurrence analysis, proper care should be taken for 

selecting the threshold. If the threshold (ε) is too small, recurrence will be merely results due to 

noise fluctuation, leading to an increase in the area under the curve. However, if it is taken too 

large then every other point in it will be in the neighborhood of the other point which causes 

recurrence in hidden form structure, leading to a decrease in the area under the curve[123]. Also, 

5% of the phase space diameter should be chosen for threshold measurement. Nichols et al.[124] 

used RQA features for damage detection in structures using algorithms. The algorithm was based 

on one feature to detect damage detection without any assumption compared to FEM. Three 

recurrence quantifiers used were recurrence, determinism, and entropy. Recurrence showed a 

higher value when the damage occurred, and the entropy was less sensitive at a large threshold. 

Various recurrence quantifiers are as follows [122]: 

a) Recurrence rate (Recrate): It is the percentage of dark points in the threshold recurrence 

plot. It also includes the probability of the recurrence at a particular rate.  It describes the 

amount of recurrent points that will cover the recurrent plot. The recurrent rate for a 

given window size(W) can be explained as follows: 

Recurrence (%), REC=100*(number of recurrent points in the triangle) / (W (W-1)/2) 
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b) Determinism (DET): It is the percentage of all the dark points that will be aligned or 

predicted. It describes the percentage of recurrent points that lie above the diagonal line 

segments. 

Determinism (%), DET=100*(No of points in diagonal lines)/ (No of recurrent points) 

c) LMAX: It is the length of the longest diagonal line segment in the plot. It states that a 

small LMAX describes a more chaotic or a less stable signal, while a higher LMAX 

describes the repeated or periodic signal. 

d) Entropy (Shannon entropy) (ENT): It considers the signal complexity and distribution of 

the line length. It enables in finding out the probability ( Ppiq) of the diagonal line which 

has same length by frequency distribution. Its units are given by bits/bin. For the periodic 

signal, the entropy is 0 bits/bin 

ENT � H K�Ppiq�log!/� Ppiq� 

e) Trend (TND): It describes the barrier of the recurrence plot towards its edges. It is the 

quantification of the paling of recurrent points away from the diagonal. It tells about the 

system stationarity. If the system is periodic, then its value will be near 0. It is calculated 

as the slope of the line-of-best-fit through REC as a function of orthogonal displacement 

from the main diagonal. 

f) LAM: It describes the fraction of recurrence points which will be forming the vertical 

lines rather than diagonal lines in the case of the LAM. 

    LAM (%) = 100(Number of points in the vertical lines/Number of recurrent points). 

g) Trapping time (TT): It defines the average length of vertical lines in the recurrence plot. 

It explains the mean time the system traps at a particular state. 

7.5 Nonlinear dynamic visualization: 

For RQA based features extraction, data of 20 sec was divided in three parts of 1500 data 

points taken from the beginning, the middle, and the end. Then the average of all these features 
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was taken for analysis. Table 12 shows the RQA based nonlinear features of a particular run. 

Figure 72 shows the recurrence plot having high frequency components. For the recurrence plot, 

no de-noising of the signal is required. At the start of polishing, a clear high frequency segment 

can be seen in the recurrence plot, but at the end of polishing, these high frequency segments 

decreases showing the end of polishing. The average roughness of the sample at the start of 

polishing was 350 nm. Figure 73 shows the recurrence plot at the end of polishing. The energy 

of the signal decreases at the end of polishing which is shown in the faded segment in the 

recurrence plot. The roughness of the sample at the end of polishing was 15 nm. 

Table 9 shows the process parameters, such as load on the sample  (lb), rpm of the carrier, 

slurry ratio, slurry temperature rise, and change in pH at the conditions in run R1 (see Table 7). 

Table 10 shows various sensor signals based statistical features, namely, mean of the signal, 

variance of the signal, and maximum of the signal etc. 

Table 11 shows various vibration features, such as energy, peak to peak amplitude (PTP) of 

the signal, and thermal features like net temperature rise and temperature rise rate under run R1 

conditions (see Table 7). The time-frequency features i.e., energy α and energy γ were extracted 

from the spectrogram in the frequency range from 120 to 132 Hz. The energy α was the energy of 

the red segment, and energy γ is the energy in-between the two red segment in the spectrogram. 

Table 12 shows various nonlinear recurrence quantification analysis (RQA) based features under 

run R1 conditions. This includes dimension and time delay of the signals. As discussed in section 

7.3.3, the periodic signal has zero entropy. In RQA, the entropy was above four; therefore, the 

signal is not periodic in nature. 

These sensor features with process parameters were then used for sensor based modeling. 

Sensor features extracted were modeled in Minitab 15 using a response surface methodology.  �! 

stands for goodness of fit or coefficient of determination, and adjusted  �! is the modified version 
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of �! which increases only when new variables are introduced in the model [125].  �! (Pred.) 

describes how well and accurate the model predicts response for new observation. 

�! � SSRSST 

Here, SSR stands for the sum of square of the regression, and SST is the total sum of the squares. 

The total number of variables is 32. Both �! and Adjusted �! show how well the model fits the 

data. 

 

 

Figure 72: Recurrence plot obtained after the start of polishing: speed of the 

platen 300 rpm, load 10 lb, and slurry ratio 1:3 
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Figure 73: Recurrence plot: End of polishing: speed of the platen 300 rpm, load 

10 lb, and slurry ratio 1:3 

 

For good fit, both should have a high value. In addition, dfx is the degree of freedom of the error, 

i.e., 

dfx � total no. of variables H no. of features in the model H 1 

For an effective modeling, the number of degree of freedom should be at least 25. However, for 

our modeling, the minimum number of degree of freedom was 18. The models were effective in 

predicting the performance up to 92% accuracy. 
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Table 9: Machine parameters and slurry temp (°C) 

 

Table 10: Statistical features and MRR (mg/sec) 

 

Table 11: Energy features, Temperature features (°C), peak to peak and Roughness, nm 

 

Table 12: RQA (Nonlinear) features 

Run Load, lb Rpm Time, sec Slurry ratio Slurry temp rise ∆pH

R1 10 500 30 1:3 3.85 0.85

R1 10 500 60 1:3 6 0.9

R1 10 500 90 1:3 6.3 1

R1 10 500 120 1:3 5.4 0.9

Run Mean Var. Max. mode skew. Kurt. MRR

R1 2354.45 5911.76 2842.5 2350 -0.2 6.985 0.14

R1 2330.71 6354.7 2823 2338.5 0.198 5.598 0.124

R1 2296.10 6612.76 2840.5 2299.17 0.095 6.116 0.119

R1 2406.93 3687.17 2697.75 2406.75 -0.11 4.536 0.105

Run Energy,α Energy,γ Net temp rise Temp. rise rate PTP Avg. Ra

R1 193.210 190.001 11.6 0.387 104.40 24

R1 193.338 188.282 20.7 0.345 108.55 13

R1 195.251 190.439 23.5 0.261 126.20 8

R1 191.996 187.448 32.73 0.273 120.64 7

Run Time delay Dim. Recrate Det. Lmax ENT Lam TT

R1 3.67 6.67 21.69 66.67 243.67 4.75 78.06 15.51

R1 3 5.84 14.78 50.10 129.5 3.43 61.8 7.34

R1 3.56 6.45 14.72 44.53 138.67 3.83 60.71 8.5

R1 2.92 6.25 9.174 28.6 94.17 3.84 45.50 6.13
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Chapter 8: Sensor Fusion Regression Modeling 
 
 

8.1   Technical approach: 

 
Figure 74 gives the sensor fusion methodology applied in this investigation. All experiments 

were conducted using a vibration sensor and a temperature sensor. The input variables (machine 

parameters) are the load, rpm, and slurry ratio. The flow rate of the slurry was kept constant in all 

experiments. After the experiments, signal features were extracted using various statistical and 

nonlinear techniques. 

The vibration signal features were divided into three parts i.e. statistical, time-frequency, and 

nonlinear features. Two temperature features, namely, temperature rise rate and net temperature 

rise were used for this study. In addition to this, slurry temperature was used as a feature. The 

models were developed first using the vibration features followed by temperature features using 

the response surface methodology (RSM). The RSM based regression modeling is developed as 

follows: statistical features only; statistical and frequency features; statistical, frequency, and 

nonlinear features; statistical, frequency, nonlinear features, and temperature features to improve 

roughness (Ra) and MRR models. This study leads to sensor fusion modeling for monitoring the 

CMP process involving mechanical and thermal effects. This model tracks roughness and MRR 

involving linear characteristics, time-frequency characteristics, and nonlinear characteristics. The 

statistical significant value (P-value) is chosen as 0.08. 

Figure 75 shows that the plot between the residual and the fitted value showing no relation 

i.e. there is no pattern in the residual vs. fitted value. 
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Figure 74: Sensor fusion methodology 

 

Figure 75: Plot of the residual versus the fitted values  
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8.2  Regression modeling of surface roughness: 

In this, roughness of the copper sample is fitted against sensors features using response surface 

analysis incorporating two way interactions of the features which are found to be statistical 

significant in the model. The vibration and temperature sensor are found to capture the dynamics 

using a regression fit. 

Various roughness models were presented in the following sections: 

 Modeling of surface roughness with process parameters in section 8.2.1, modeling of surface 

roughness with statistical features in section 8.2.2, modeling of surface roughness with statistical 

and Energy features in section 8.2.3, modeling of surface roughness with statistical, Energy, and 

RQA features in section 8.2.4, and modeling of surface roughness with statistical, Energy, RQA, 

and thermal features in section 8.2.5. 

8.2.1 Regression model of surface roughness (nm) with process features: 

The roughness of the copper sample is fitted against process features which are statistically 

significant. The two way interactions are found to be statistically insignificant as there p-value are 

more than 0.08. Equation [1] gives the regression model or best fit for surface roughness using 

process parameters. Table 13 shows significant values for each of the predictor variables. Since 

R! value is low (23.16 %), it is clear that process parameters are not sufficient for regression 

fitting of the roughness.  

R2= 23.16 %, R2 (adj.) = 17.86 %, dfr=29 

 Ra = 48.86 -14.73 load+12.08 slurry ratio 
 [1] 
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Table 13: Regression model of Ra using process parameters 

(R2= 23.16 %, R2 (adj.) = 17.86 %, dfr=29) 

                                            

8.2.2 Regression model of surface roughness (nm) with statistical features: 

The surface roughness of the copper sample is fitted to the statistical features including their 

statistically significant two way interactions. The process parameters are not sufficient for 

modeling performance. Therefore, statistical features are used for modeling roughness. Equation 

[2] gives the regression model for surface parameters using statistical features.  

 
 
 

 

 

Table 14 shows the significant value for each of the process parameters and its interaction. 

Since, p-value of the statistical features PTP amplitude, maximum, skewness, and kurtosis with 

their interactions are below 0.08, they are significant. The sensor based statistical features alone 

are able to estimate 66% of the roughness model. 

R2 = 66.6%, R2 (adj.) = 58.6%, dfr=25 

 

 

 

 

Predictor P-value

constant 0.000

load 0.030

slurry ratio 0.071

           Ra = 156 – 105.69 PTP– 160.99 max – 83.80 skew + 230.92 krt -194.27 
PTP* skew – 90.19 max*krt. [2] 
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Table 14: Regression model of Ra using statistical features 

(R2= 66.6%, R2 (adj.) = 58.6%, dfr=25) 

 

8.2.3 Regression model of surface roughness (nm) with statistical and Energy features: 

Equation [3] gives the regression fit for the surface roughness using statistical and energy 

features. Table 15 shows the significant value for each of the statistical, energy, and their 

interactions. The model performance was not satisfactory using the statistical techniques. Also, 

the vibration signal includes time varying wave components. Therefore, energies features from 

the spectrogram are used for modeling. Since, p-value of energy γ, energy α and their interaction 

with the statistical features are below 0.08, they are significant. Use of energy features and their 

interactions with statistical features leads to an increase of approximately 15% in  R!. 

Predictor P-value

constant 0.000

PTP 0.001

maximum 0.004

skewness 0.005

kurtosis 0.000

PTP* skewness 0.004

maximum*kurtosis 0.070
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R2 = 78.40%, R2 (adj.) = 68.12%, dfr=21 
 

 

Table 15: Regression model of Ra with statistical and energy features 

(R2= 78.40%, R2 (adj.) = 68.12%, dfr=21) 

 

* Coefficient of variance (COV), skewness, and energy α, db are taken because 
they are present in the interaction terms 

 
8.2.4 Regression model of surface roughness (nm) with statistical, energy, and RQA 

features: 

In this, the roughness of the copper sample is fitted against features, such as namely, statistical, 

energy, and RQA features including their statistically significant two way interactions. Equation 

[4] gives the regression fit for surface roughness. Table 16 shows the significant values for each 

of the statistical, energy, nonlinear features, and their interactions. It can be seen from section 7.3, 

Predictor P-value

constant                          0.002

mean                             0

coefficient of var.              0.801

skewness 0.368

energy α,db                       0.132

energy γ,db                       0.025

maximum                            0.008

coefficient of var.*energy α,db   0.013

skewness*energy γ,db              0.041

skewness*maximum               0

maximum * energy α, db              0.001

      Ra = - 84814 - 0.758 mean - 483083 CoV + 742 skew+464 energy α - 
0.00463 energy γ + 36.7max + 2570 CoV* energy α+ 
0.132skew*energy γ - 2.01max*skew - 0.196 max* energy α. 

[3] 
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vibration signals are nonlinear; therefore, their nonlinear features are required to capture 

nonlinearity in the signals. In the model, the nonlinear features namely, RQA are LAM, LMAX 

and their interactions. Since p-value of the interactions are below 0.08, they are significant. There 

is an increase in R! by ~  8%. The degrees of freedom of the error for this model are 20. 

R2 = 84.08%, R2 (adj.) = 75.33%, dfr=20 

       Ra = 4955 - 4.26 max + 5252 skew - 4.5 lam + 6.36 Lmax  + 0.0474 
energy γ +0.000647 max * max - 1.93 max *skew+ 0.0337 max 
*lam - 0.0112 max*Lmax - 0.00231 energy γ *lam + 0.000659 
energy γ *Lmax. 

[4] 
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Table 16: Regression model of Ra with statistical, energy, and RQA features 

(R2= 84.08%, R2 (adj.) = 75.33%, dfr=20) 

 

* maximum, skewness, Lam, Lmax, energy γ are included because they are 
present in the interaction terms 
 
 
 

8.2.5 Regression model of surface roughness with thermal features only:  

In this, roughness of the copper sample is fitted against temperature only. The temperature 

features like net temperature rise, temperature rise rate, slurry temperature rise and their 

interactions are found to be statistically significant.  Equation [5] gives the regression model for 

Predictor P-value

constant 0.465

maximum           0.192

skewness 0.413

lam             0.065

Lmax 0.336

energy γ,db         0.04

maximum*maximum    0.042

maximum*skewness 0

maximum*lam     0.009

maximum*Lmax 0

lam*energy γ,db   0.038

Lmax*energy γ,db  0.013
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surface roughness using temperature features only.  Table 17 shows the significant values for 

each of the thermal features and their interactions. 

            R-Sq = 73.94 %, R-Sq (adj.) = 67.69 %, dfr=25  

 

 

 

 

Table 17: Regression model of Ra with thermal features only  

R-Sq = 73.94 %, R-Sq (adj.) = 67.69 %, dfr=25 

 

* net temp. rise is included because it is present in the interaction terms 
 
 

 

8.2.6  Regression model of surface roughness with statistical, Energy, RQA, and 

Temperature features: 

Predictor P-value

constant 0.000

slurry temp. rise 0.000

net temp. rise 0.868

temp. rise rate 0.015

(temp. rise rate).^2 0.014

slurry temp. rise * temp. rise rate 0.019

net temp. rise * temp. rise rate 0.030

Avg. Ra, nm = 61.525 – 60.81 slurry temp. rise – 2.882 net temp. rise +   
45.751 temp.   rise rate – 53.974 (temp. rise rate).^2 – 
54.426 (slurry temp. rise * temp. rise rate) + 94.283 (net 
temp. rise * temp. rise rate). 

[5] 
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In this, roughness of the copper sample is fitted against vibration and temperature sensors features 

including their statistically significant two way interactions. Equation [6] gives the regression 

model for surface roughness using vibration and temperatures features. Table 18 shows the 

significant value for each of the statistical, energy, RQA, temperature, and their interactions. The 

two- way interactions between vibration and temperature features are found to be statistical 

significant in the model. Thermal features taken are the net temperature rise and temperature rise 

rate. Use of thermal features leads to increase in R! of 10%. Good regression fit is obtained using 

both the sensors features with degree of the freedom of the error 18. 

R2 = 92.72%, R2 (adj.) = 87.47%, dfr=18 

 

 

 

          Table 19 shows the summary of all the results obtained from the models using response 

surface methodology. The model performance increased using vibration and thermal features. 

This table includes the estimation of prediction using above technique. 

 

 

 

 

 

 

 

 

Table 18: Regression model of Ra with statistical, energy, RQA, and temperature features 

      Ra = - 3890 + 0.607 max + 445 krt + 13.7 energy α - 0.0128 energy γ + 
2.82 lam + 1.42 Lmax - 6.67 net temp. rise + 7787 temp. rise rate- 
0.115 lam.^2 - 0.141 krt * max- 0.402 krt*Lmax + 0.0313 
Lmax*lam - 40.3 energy α* temp. rise rate.   

[6] 
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(R2= 92.72%, R2 (adj.) = 87.47%, dfr=18) 

 

*Kurtosis and energy α are included because they are present in the     

interaction   terms 

Predictor P-value

constant 0.000

maximum 0.000

kurtosis 0.126

energy α, db 0.131

energy γ, db 0.006

lam 0.037

Lmax 0.090

net temperature rise 0.000

temp. rise rate 0.001

lam*lam 0.000

maximum * kurtosis 0.000

kurtosis * Lmax 0.001

energy α, db * temp. rise rate 0.002

lam * Lmax 0.030
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          Table 19: Sensor fusion based roughness estimation 

 

8.3 Regression modeling of MRR:  

In this, MRR of the copper sample is fitted against sensors features using response surface 

methodology incorporating two-way interactions of the features. The two-way interactions in the 

regression models are found to be statistical significant.  

 

Figure 76: MRR repetition for Run R2 (see Table 7) 

 

 

Features R2 R2(adj.) R2(Pred.) dfr

Process parameters 23.16 % 17.86 % 6.44 % 29

Statistical features(Stats.) 66.60 % 58.60 % 54.42 % 25

Stats + Energy(Spectrogram) 78.40 % 68.12  % 36.36 % 21

Stats + Energy + RQA 84.08 % 75.33  % 53.17 % 20

Temperature 73.94 % 67.69 % 49.09 % 25

Stats + Energy +RQA+ Temperature 92.72 % 87.47 % 65.44 % 18

No sensor

Vibration sensor

Vibration and
Temperature sensor

Temperature sensor

0

0.03

0.06

0.09

0.12

0.15

30 60 90 120

M
R

R
  (

m
g/

se
c)

Time (sec)

Experiment1 Experiment2 Experiment3



108 
 

Vibration and temperature sensors are found to capture the process dynamics through good 

regression fit of the model. Various MRR regression fitting models were discussed in the 

following sections: 

 Modeling of MRR with process parameters in section 8.3.1; modeling of MRR with statistical 

features in section 8.3.2; modeling of MRR with statistical and energy features in section 8.3.3; 

modeling of MRR with statistical, energy, and RQA features in section 8.3.4; and modeling of 

MRR with statistical, RQA features, and temperature signal in section 8.3.5 

The development of the regression model using vibration and temperature features are given 

the following: 

 
8.3.1 Regression model of  MRR (mg/sec) with process parameters: 

In this, MRR of the copper sample is fitted against process features including their statistically 

significant two-way interactions. Figure 76 shows the material removal rate under run R2 

conditions (see Table 7) with a constant carrier rpm of 60. The MRR increases at 60sec followed 

by a decreasing trend. Equation [7] gives the regression fit for the surface roughness. The Process 

parameters, namely, load, rpm, and slurry ratio are used for regression modeling of MRR. Table 

20 shows the significant values for each of the process parameters.  R2 are found to be 49.53% 

with dfr =28. For effective modeling of MRR, process parameters are insufficient. The regression 

fit for MRR with process parameters is as follows 

R2 =49.53%, R2 (adj.) =44.12%, dfr =28 

 

 

      MRR = 0.0451 + 3.24×103 load + 1.14×104 rpm - 5.76×103 slurry ratio. 
[7] 
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Table 20: Regression model of MRR model using machine parameters alone 

(R2=49.53%, R2 (adj.) =44.12%, dfr =28) 

 

 

8.3.2 Regression model of  MRR (mg/sec) with statistical features: 

In this, MRR of the copper sample is fitted against statistical features including their statistically 

significant two way interactions. Since modeling using process parameters are not sufficient to 

investigate the process; sensor features are extracted for modeling MRR effectively. Equation [8] 

gives the regression model for MRR. Table 21 shows the significant value for each of the 

statistical features and their interaction. The coefficient of determination is 74.55% with dfr = 25. 

Statistical features alone are able to explain one-third of the model. However, it is not sufficient 

for good modeling. The MRR model using statistical features are given in the following  

R2 = 74.55 %, R2 (adj.) = 68.44%, dfr = 25 

 

Predictor P-value

constant       0

load       0.009

rpm            0

slurry ratio  0.055

MRR = - 5.64 - 2.14×104 mean – 2.2 ×105 var. + 4.61×103 max. - 0.0196 
krt. - 1×106 max*max + 5×105 var.* krt.   [8] 
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Table 21: Regression model of MRR using statistical features 

(R2= 74.55 %, R2 (adj.) = 68.44%, dfr = 25) 

 

*maximum and Kurtosis were included because they were present in the 
interaction terms 

 

8.3.3 Regression model of  MRR (mg/sec) with statistical features and energy 

features: 

Equation [9] gives the regression fit incorporating energy features from the spectrogram. 

 Table 22 shows the significant value for each of the statistical, energy and their interaction. The 

model performances using the statistical features alone are not sufficient for good estimation of 

the MRR; therefore, energy features were incorporated in it. The energy features from the 

spectrogram were calculated at 120-130 Hz. For this model, two energies are extracted using 

Matlab. After adding energy features, there was approximately a 15% increased in the coefficient 

of determination. The degree of freedom of the error is 25. 

R2 = 82.2 %, R2 (adj.) = 77.9%, dfr = 25 

 

Predictor P-value

constant           0

mean              0.047

variance         0.017

maximum             0.627

kurtosis          0.298

maximum*maximum   0.006

variance*kurtosis 0.036

MRR = -0.432+0.170 skew + 1.43×104 var + 1.28×104 energy α + 7×106   
energy γ – 4.5×105 var *skew- 1×106 var * energy γ.   [9] 
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Table 22: Regression model of MRR using statistical and energy features 

(R2= 82.2 %, R2 (adj.) = 77.9%, dfr = 25) 

 

8.3.4  Regression model of MRR (mg/sec) with statistical, energy and RQA 

features: 
 
As shown in section 7.3, vibration signals are found to be nonlinear; therefore nonlinear features 

to capture nonlinearity were added in the model. Equation [10] gives the regression model for 

MRR. Table 23 shows significant value for each of the statistical, energy, and RQA features and 

their interactions.  This leads to an increase in predictability of about approximately 7% with a 

degree of freedom 23. Since the p-value for nonlinear features namely determinism and 

dimension are below 0.08, they are statistically significant. Good regression fit is observed in this 

model. 

R2 = 87.2 %, R2 (adj.) = 82.7 %, dfr = 23 

 

Predictor P-value

constant 0.047

skewness 0.002

variance 0.021

energy α, db 0.064

energy γ, db 0.228

variance * skewness 0.001

variance *energy γ, db 0.032

MRR = -0.299 + 1.34×104  var + 0.203 skew + 1.53×103 energy α + 4×106 
energy γ – 5.4×105 var* skew -1×106 var* energy γ – 0.0169 dim 
+ 2.6×104 det.   

[10] 
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Table 23: Regression modeling of MRR using statistical, energy, and RQA features 

(R2= 87.2 %, R2 (adj.) = 82.7 %, dfr = 23) 

 

8.3.5  Regression model of MRR (mg/sec) with thermal features only:  

Equation [11] gives the regression model for MRR using thermal features only. Table 24 shows 

significant value for each of the thermal features and their interactions. The thermal features are 

net temperature rise, temperature rise rate, and slurry temperature rise.  Since the p-value of the 

features with their interactions is below 0.08, they are statistically significant. The coefficient of 

determination of this model is 81.10 % with degree of freedom of error 26. 

R-Sq = 81.10 %, R-Sq (adj.) = 77.47 %, dfr=26 

 

 

 

 

 

Predictor P-value

constant 0.135

variance 0.019

skewness 0.000

energyα, db 0.017

energyγ, db 0.415

variance * skewness 0.000

variance*energy γ, (db) 0.029

dimension 0.020

determinism 0.060

MRR = 0.08479 – 0.03208 slurry temp. rise – 0.02569 net temp. rise + 
0.04538 temp. rise rate – 0.02331 (net temp. rise).^2 – 0.01883 
(slurry temp. rise * temp. rise rate). 

[11] 
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Table 24: Regression modeling of MRR using thermal features only 

(R-Sq = 81.10 %, R-Sq (adj.) = 77.47 %, dfr=26) 

 

8.3.6   Regression model of  MRR (mg/sec) with statistical, energy,  RQA, and 

thermal features: 

Equation [12] gives the regression model for MRR. Table 25 shows the significant value of each 

of the statistical, energy, RQA, thermal features and their interaction. After adding thermal 

features, R2 of the model increase to 90.23%. Since the p-value of the interactions is below 0.08, 

they are statistically significant. The degree of freedom of error is 20. 

            R2 = 90.23%, R2 (adj.) = 84.86%, dfr=20 

 

 

Predictor P-value

constant 0.000

slurry temp. rise 0.000

net temp. rise 0.001

temp. rise rate 0.000

(net temp. rise).^2 0.005

slurry temp. rise * temp. rise rate 0.016

MRR, mg/sec= 0.11 + 3.89×103 temp rise rate + 6.8×102 var. – 1.2×102 
skew. – 3.4×103  time delay – 6.9×104 energy α -1.5×102 
energy γ – 2.3×102 temp. rise rate* energy α– 2.3×102 
temp. rise rate * energy γ-0.0563 var*skew + 2.1×102  
var.*energy α – 2.1×102 time delay* energy γ.   

[12] 
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Table 25: Regression modeling of MRR using statistical, energy, RQA, and Temperature 
features (R2= 90.23%, R2 (adj.) = 84.86%, dfr=20) 

 
*Temp. rise rate, time delay and energy α are included because they are present in the 

interaction terms 
 

Table 26 shows the summary of all the results obtained incorporating R-sq (Pred.). The 

R-sq (Pred.) decreases after including the temperature feature in the model. The overall 

coefficient of determination of the model is 90.23% with a degree of freedom of error 20. 

Predictor P-value

constant 0.000

temp. rise rate 0.641

variance 0.000

skewness 0.043

time delay 0.449

energy α, db 0.320

energy γ, db 0.035

temp. rise rate* energy α, db 0.043

temp. rise rate* energy γ, db 0.012

variance* skewness 0.005

variance*energyα, db 0.014

time delay* energy γ, db 0.049
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Table 26: Sensor fusion based MRR estimation 

 
 
8.4 Regression modeling of Preston constant (z{): 

Preston [56] formulated an MRR for glass polishing. The Preston equation does not include 

chemical or thermal effect for CMP process. From the literature, it is known that the Preston 

constant can include chemical and mechanical effects. The work mentioned below focuses on 

including thermal and mechanical effect in the Preston constant. It is known from the literature 

that tribological and thermal effects play a main role in the CMP process. The temperature plays 

an important role in the chemical parts of the CMP process. The increase in temperature leads to 

an increase in chemical reaction of the process leading to increase in the MRR. The Preston 

constant (�|) for the model can be calculated as: 

�| � �����  

The MRR is the material removal rate, P is the load applied on the copper sample, and V is the 

relative velocity. Based on the experimental conditions, the �| can be calculated. In our work, we 

have modeled Preston constant statistically using sensor fusion modeling techniques. The head 

rpm was constant in the model. In our model, the V was the platen rpm. This model is able to 

estimate �| using a vibration signal and temperature signal. In the above model, the MRR was 

calculated using sensor features i.e. 

Features R2 R2(adj.) R2(Pred.) dfr

Process parameters 49.53 % 44.12 % 34.08 % 28

Statistical features(Stats.) 74.55 % 68.44 % 42.33 % 25

Stats + Energy(Spectrogram) 82.20 % 77.90 % 71.89 % 25

Stats + Energy + RQA 87.20 % 82.70 % 76.27 % 23

Temperature 81.10 % 77.47 % 68.07 % 26

Stats +Energy+ RQA+ Temperature 90.23 % 84.86 % 72.06 % 20

No sensor

Vibration sensor

Vibration and 
Temperature sensor

Temperature sensor
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�| � ����� � }�+/1+;8 }/0.I8/0� 

In this, Preston constant is fitted against sensors features using response surface analysis 

incorporating two way interactions of the features. The two way interaction in the regression 

models are found to be statistical significant in the model. Various �| models were discussed in 

the following sections: 

Modeling  �|  with statistical features in section 8.4.1; modeling �|  with statistical and Energy 

features in section 8.4.2; modeling �|  with statistical, Energy, and RQA features in section 8.4.3; 

modeling �|  with statistical, RQA features, and temperature signal in section 8.4.4 and  

modeling �|with statistical, RQA features, temperature signal, and process parameter in section 

8.4.5. 

Development of the regression models using vibration and temperature features are given the 

following 

8.4.1 Regression model of �| with statistical features: 

In this, Preston constant is fitted against vibration sensors based statistical features including their 

statistically significant two way interactions. Equation [13] gives the regression model for Preston 

model using statistical features. Table 27 shows the significant value for each of the statistical 

features namely mean peak to peak amplitude, mean, variance, mode and their interaction. Using 

statistical features alone results in a higher estimation of the coefficient of determination with a 

degree of freedom of error 19. The coefficient of determination of the modal using statistical 

features is 74.88%. The p-value of the statistical features and their interactions is below 0.08 and 

they are statistically significant. 

 
R2 = 74.88%, R2 (adj.) = 59.02%, dfr=19 
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Table 27: Regression model of �| using statistical features 

(R2= 74.88%, R2 (adj.) = 59.02%, dfr=19) 

 
*skewness is included because it is present in the interaction terms 
 

 
8.4.2 Regression model of �|  with statistical and energy features: 

Predictor P-value

constant 0.002

PTP 0.001

mean 0.002

variance 0.008

mode 0.001

skewness 0.390

kurtosis 0.000

coefficient of var. 0.010

PTP*mean 0.009

PTP*variance 0.023

PTP*mode 0.008

PTP*skewness 0.000

mode* skewness 0.013

�|=  4.2 ×10-5 + 8.3×10-5 PTP-1.72×10-4 mean- 2.21×10-4  variance + 
1.39×10-4 mode + 8×10-6 skew+ 5.7×10-5 krt.+ 2.24×10-4 CoV- 
2.86×10-5 PTP*mean+ 3.8×10-5 PTP*var+ 2.91×10-4 PTP*mode-
1.52×10-4 PTP* skew +6.2×10-5  mode*skew. 

[13] 
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In this, Preston constant is fitted against statistical and energy features which includes their 

statistically significant two way interactions. To increase the performance of the �| model, 

energy features are incorporated in the model.  

Table 28: Regression model of �|  model using statistical and energy features 

(R2= 80.29%, R2 (adj.) = 64.05%, dfr=17) 

 
*mode is included because it is present in the interaction terms 

 

 

Predictor P-value

constant 0.429

PTP 0.019

mean 0.025

variance 0.026

mode 0.288

skewness 0.000

kurtosis 0.000

energy γ,db 0.028

coefficient of var. 0.007

PTP*skewness 0.000

variance*mode 0.009

variance*coefficient of variance 0.027

mode*kurtosis 0.053

mode* energyγ, db 0.008

skewness*energyγ, db 0.004
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The energy features from the spectrogram are extracted using Matlab. Equation [14] gives the 

regression model for Preston model.  

Table 28 shows the significant value of each of the statistical features, energy features and their 

interactions. After including energy features, the estimation of the coefficient of determination 

increased approximately by 9% with a degree of freedom of error 17.  

R2 = 80.29%, R2 (adj.) = 64.05%, dfr=17 

 

 

 

 
8.4.3 Regression modeling �|  with statistical, energy, and RQA features: 

Nonlinear features are extracted from the signal using recurrence quantification analysis for 

analyzing the dynamic nature of the CMP process. The RQA features were able to detect the 

deterministic nature of the vibration signals in the CMP process. Equation [15] gives the 

regression model for Preston constant. Table 29 shows the significant value for each of the 

statistical, energy, RQA features and their interactions. Since the p-value of the interactions of 

statistical and RQA features are below 0.08, they are significant. The coefficient of determination 

after adding RQA features increased from 80.29 % to 85.59 % with a degree of freedom of error 

20. 

R2 = 85.59%, R2 (adj.) = 77.66%, dfr=20 

 

 

 

�|= 1.6×10-5+ 3.1×10-5 PTP- 8.4×10-5 mean- 3.66×10-4 var + 4.8×10-5 

mode+ 4.3×10-5 skew+ 8.4×10-5 krt+ 3.82×10-4 CoV- 3.5×10-5 
energy γ - 1.074×10-4 PTP *skew + 3.8×10-5var*mode+ 7.2×10-5 
var* CoV- 7.7×10-5 mode* krt- 2.9×10-5 mode* energy γ + 7.0×10-

skew* energy γ.   

[14] 

�|= -1×10-6- 1.6×10-5 skew- 1.03×10-4 var- 2.1×10-5 Lmax+ 1.36×10-4 
lam+9×10-6 time delay + 3.1×10-5 det– 9×10-6 energy γ -1.12×10-4 

(lam)2 -8.1×10-5 skew* var- 1.49×10-4 var* Lmax + 2.7×10-4 var* 
lam.   

[15] 
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Table 29: Regression model of  �| using statistical, energy, and RQA features 

(R2= 85.59%, R2 (adj.) = 77.66%, dfr=20) 

 
*Lmax is included because it is present in the interaction terms 
 
 

8.4.4 Regression modeling of �| with thermal features only:  

Equation [16] gives the regression model for Preston constant. Table 30 shows the 

significant value for each of the thermal features and their interactions. Since the p-value of the 

features and their interactions are below 0.08, they are significant. The coefficient of 

determination of this model is 68.75 % with degree of freedom of error 25. 

R-Sq = 68.75 % , R-Sq (adj.) = 61.25 %, dfr=25 

 

 

Predictor P-value

constant 0.960

skewness 0.003

variance 0.000

Lmax 0.159

lam 0.000

time delay 0.052

determinism 0.001

energy γ, db 0.001

lam*lam 0.000

skewness* variance 0.000

variance*Lmax 0.000

variance* lam 0.000

 �|= 3.1× 105 – 2.5 × 105 slurry temp. rise + 1 × 105 net temp. rise + 1.3 × 
105 temp. rise rate +2.3 × 105 (slurry temp. rise ).^2 – 2.5 × 105 
(slurry temp. rise * net temp. rise )+ 3.2 × 105 (temp. rise rate * net 
temp. rise )  

                                       

[16] 
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Table 30: Regression model of  �| using thermal features only 

(R-Sq = 68.75 %, R-Sq (adj.) = 61.25 %, dfr=25) 
 

 
 
 

8.4.5 Regression modeling of �| with statistical, energy, RQA, and thermal features: 

Equation [17] gives the regression model for Preston constant.  

Table 31 shows the significant value for each of the statistical, energy, RQA, thermal features 

and their interaction. Since the p-value for the thermal feature i.e. slurry temperature incorporated 

in the model is below 0.08, it is statistically significant. After incorporating this feature, the 

coefficient of determination increases by approximately 1%. 

R2 = 86.00%, R2 (adj.) = 75.9%, dfr=19 

 

 

 

 

 

 

Predictor P-value

constant 0.000

slurry temp. rise 0.000

net temp. rise 0.126

temp. rise rate 0.05

(slurry temp. rise ).^2 0.002

slurry temp. rise * net temp. rise 0.009

temp. rise rate * net temp. rise 0.011

�|= 9.9×10-5 +4.23×10-4 var-4.7×10-4 CoV + 9×10-6 energy α+2×10-4  

energy γ -4.6×10-5 mode-1×10-6 time delay-9×10-6 slurry temp rise- 
2.8×10-4 (var)2+2.08×10-4 var* CoV+ 3.57×10-4 var* energy γ -
3.92×10-4 CoV*energy γ -2×10-5 CoV * time delay -2.7×10-5 energy 
α*mode.   

[17] 
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Table 31: Regression model of  �| using statistical, energy, RQA, and temperature 
features (R2= 86.00%   R2 (adj.) = 75.9%, dfr=19) 

 
 
 

8.4.6 Regression modeling of �| with statistical, RQA, thermal features, and process 

parameters: 

In this, Preston constant of the wafer is fitted against process features, statistical features, RQA 

features, and thermal features. Also, includes their statistically significant two way interactions. 

Equation [18] gives the regression model for Preston constant. Table 32 shows the various 

sensor features and their interactions. There is an increase in estimation of  K~ by 91% with a  

 

Predictor P-value

constant 0.000

coefficient of var. 0.000

variance 0.000

energy α, db 0.001

energy γ, db 0.000

mode 0.002

time delay 0.001

variance * variance 0.011

coefficient of var.* variance 0.043

coefficient of var.* energy γ, db 0.000

coefficient of var.* time delay 0.002

energy α, db* mode 0.001

variance * energy γ, db 0.000

slurry temp. rise 0.003
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degree of freedom of error 21. Since the p-value of the energy features is below 0.08, they are 

insignificant, therefore are not incorporated in the model. 

R2 = 91.98 %, R2 (adj.) = 88.16%, dfr=21. 

 

 

 

Table 32: Regression model of �| with sensors features and process parameter 

(R2= 91.98 %,   R2 (adj.) = 88.16%, dfr=21) 

 
                            *Slurry temperature rise, skewness, and determinism are included because they 

are present in the interaction terms 
 
Table 33 shows the summary of all results from the model estimation by a response surface 

methodology. This �! prediction for the combined model is 79.96 % with a degree of freedom of 

error 21. The overall coefficient of determination of the model is 91.98%.

Predictor P-value

constant 0.000

load 0.000

rpm 0.001

slurry temp. rise 0.152

temp. rise rate 0.006

skewness 0.948

determinism 0.221

lam 0.013

slurry temp. rise* slurry temp. rise 0.000

determinism* determinism 0.015

temperature rise rate* Skewness 0.046

�|= 2.1×10-5- 1.0×10-5 load- 4×10-6 rpm -3 ×10-6 slurry temp rise+ 
1.5×10-5 temp rise rate +1×10-6 skew - 4×10-6 det+ 1.4×10-5 lam+ 
1.5×10-5 (slurry temp rise)2+ 1.2×10-5 (det)2- 1.6×10-5 temp rise rate* 
skew.   

[18] 
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Table 33: Summary of the �� model 

Features R2 R2(adj.) R2(Pred.) dfr

Statistical 74.88 % 59.02 % 50.01 % 19

Statistical + Energy 80.29 % 64.05 % 19.58 % 17

Statistical + Energy + RQA 85.59 % 64.39 % 64.39 % 20

Temperature 68.75 % 61.25 % 50.48 % 25

Statistical + Energy + RQA + Temp 86.00 % 75.90 % 44.45 % 19

Process parameter+ Statistical + Energy + RQA + Temp 91.98 % 88.16 % 79.76 % 21

Vibration sensor

Vibration and 
Temperature sensor

Temperature sensor

Process parameter, 
Vibration, and 

Temperature sensor
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Chapter 9: Conclusions and Future Work 
 
 
 

From a monitoring point of view, the performance parameters interactions with the input 

features should be known. This is perhaps the first time, a roughness model is attempted using 

experimental results from the sensor fusion approach. The sensor fusion based modeling is 

attempted to track roughness and MRR during the process. The empirical model includes 

mechanical and thermal parameters. The experimental investigation is conducted on a bench top 

machine using full factorial design of experiments to build the models.  Various features such as 

statistical, time-frequency features, and nonlinear features are incorporated in the regression 

models to track the process parameters in the model. It was found from the literature that 

temperature plays an important role in the performance of the process. The inclusions of thermal 

features lead to an increase in the performance of the roughness regression model by 

approximately 10 %. Temperature features such as slurry temperature and the temperature of the 

copper sample are found to be statistically significant in the model. Also, the MRR and Preston 

constant are modeled using sensor fusion based features. Details of the roughness regression 

model for various parameters are given in Table 34.  

From roughness model, it is concluded that the process parameters such as loading and rpm 

conditions are not sufficient for modeling. Using statistical features alone led to an estimate of the 

roughness of 66.6 %.  After incorporating energy and RQA features, the regression model was 

able to estimate 84.08 % of the roughness of the copper wafer. The regression model is able to 

estimate approximately 92.72 % of the roughness after incorporating thermal features with a 

degree of freedom of error 18. Details of the MRR regression model for various parameters are 

given in Table 34. 
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Table 34: Regression models of surface roughness and MRR 

 

In the MRR regression model, the process parameters are able to estimate up to 50 % of the MRR 

of the copper sample. However, this estimation is not enough for effective modeling. Therefore, 

sensor based features were added in the model. Using statistical features alone, the estimation of 

the MRR is approximately 75 %. Then on incorporating energy and RQA features, the estimation 

of the MRR is approximately 91 %. The thermal features further increase the estimation to 

approximately 91 %. 

In addition to the above, a model is proposed for modeling the Preston constant. The proposed 

model includes process parameters, vibration features, and thermal features. Details of the 

Preston Constant model for various parameters are given in Table 35.  

Sensor based features are able to effectively estimate the process output variables. For further 

work, wavelet based features after denoising can be incorporated which can help in increasing the 

estimation of the process. Thus multiscale regression models can be helpful in monitoring 

purposes. The vibration sensor was sampled at 500 Hz. Higher sampling rate of the sensor can be 

helpful for predictive model performance by extracting features from the high frequency 

component of the Fast Fourier Transform. 

 

Features Roughness model MRR model

R2 R2(adj.) R2(Pred.) dfr R2 R2(adj.) R2(Pred.) dfr

Process parameters 23.16 % 17.86 % 6.44 % 29 49.53 % 44.12 % 34.08 % 28

Statistical features(Stats.) 66.60 % 58.6  % 54.42 % 25 74.55 % 68.44 % 42.33 % 25

Stats + Energy(Spectrogram) 78.40 % 68.12 % 36.36 % 21 82.20 % 77.90 % 71.89 % 25

Stats + Energy + RQA 84.08 % 75.33 % 53.17 % 20 87.20 % 82.70 % 76.27 % 23

Temperature 73.94 % 67.69 % 49.09 % 25 81.10 % 77.47 % 68.07 % 26

Stats + Energy +RQA+ Temperature 92.72 % 87.47 % 65.44 % 18 90.23 % 84.86 % 72.06 % 20
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Table 35: Regression models of Preston Constant 

 

In addition, acoustic or sound sensor features can be incorporated in the model. Temperature 

of the pad and various parameters of the pad, such as roughness, hardness of the pad can be 

incorporated in the model for increasing its performance. The features extracted from the signal 

can be used to build models for predicting the states of the system. These features can further be 

used for detecting various defects. Neural network and fuzzy logic based models can be 

developed for optimizing the model, thereby better understands the CMP process. 

 

 

 

 

 

 

 

 

 

 

 

Features R2 R2(adj.) R2(Pred.) dfr

Statistical 74.88 % 59.02 % 50.01 % 19

Statistical + Energy 80.29 % 64.05 % 19.58 % 17

Statistical + Energy + RQA 85.59 % 64.39 % 64.39 % 20

Temperature 68.75 % 61.25 % 50.48 % 25

Statistical + Energy + RQA + Temp 86.00 % 75.90 % 44.45 % 19

Process parameter+ Statistical + Energy + RQA + Temp 91.98 % 88.16 % 79.76 % 21
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Appendix 

Here the plots of the time series of the vibration signal at Z-axis as well as power spectra 

of the time series acquired at different runs are presented. For every run, (a) time series of 

2000 data points, (b) wave form of 500 data points long, and (c) power spectrum of 2048 

dyadic points are plotted. These plots are one at the start and the other at the end (i.e. 2 

min. after the start) of polishing. The details of the experimental runs are provided in 

Table 7. 
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Run R1: Start of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 

 
Run R1: End of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 
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Run R2: Start of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 

 
Run R2: End of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 
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Run R3: Start of Polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 

 
Run R3: End of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 
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Run R4: Start of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 

 
Run R4: End of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 
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Run R5: Start of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 

 
Run R5: End of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 
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Run R6: Start of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 

 
Run R6: End of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 
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Run R7: Start of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 

 
Run R7: End of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 
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Run R8: Start of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 

 

 
Run R8: End of polishing: (a) Time series of signals (b) Wave form of the time series (c) Power spectrum 
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