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CHAPTER 1

INTRODUCTION

Polymer composites have a wide range of application in aircraft, automobile, sport,

construction, fuel and especially in packaging industry. The overgrowing demands

have given rise to a significant amount of interest in manufacturing packaging films

with greatly improved barrier properties. Again the permeability is related to environ-

mental degradtion property of polymer composite. Polymers with lower permeability

creates opportunity for new application like transportaion vechicle of gasses like hy-

drogen and nitrogen. Typical approach to decrease permeability of polymer is to

apply barrier coating such as aluminum metallization on polymer surfaces [1] and to

laminate high barrier material, such as ethylene vinyl alcohol [2] and polyvinyl alco-

hol (PVA) [3] which is usually too expensive and cannot achieve desired long-term

barrier properties [2]. The emergence of polymer nanocomposites introduced a new

opportunity to improve barrier properties of polymers.

Clay is conventionally used as nanofiller to improve barrier property of nanocom-

posite.It is reported that gas permeability can be reduced by 5–50% using as little

as 3% nanoclay dispersion[4]. Moreover, clay has high stiffness, high aspect ratio,

cost effectiveness and provides superior mechanical, thermal properties at low levels

of loading when compared to neat resin[5, 6].However, processing of clay nanocom-

posite is difficult mainly due to the high viscosities of the caly and the need to keep

a homogeneous dispersion throughout the process [7]. Also higher percentage of clay

creates agglomeration, decreases the mechanical property of the composite and makes

it impossible to use in some manufacturing technique in case of composite like Vac-
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cum Assited Resin Trannsfer Molding (VARTM). This brings the concept of another

nanofiller Polyhedral Oligomeric Silsequioxane (POSS). It is a kind of hybrid material

that possess both organic and inorganic properties, having a size between 1–3 nm and

have several advantages over conventional inorganic fillers including monodispersity,

low density, high thermal stability and controllable functionalities. Uniform disper-

sion of POSS in a polymer matrix at nanoscale level can create synergistic effect on

improving the bulk properties [8, 9, 10]

Recently POSS has been widely used in manufacturing nanocomposite due to good

thermal stability, abrasion resistance, chemical resistance, environmental friendliness

and controllable functionalities [11, 12, 13]. Surprisingly, there has not been significant

amount of investigation on the permeability of POSS, specially epoxy POSS system.

There has been few studies like O2 and N2 permeability of polystyre/POSS by Rios

dominguezet al.[14], CO2 transport property of poly(bispanol A coarbonate)/POSS

by Ning hao et al.[15] and gas diffusivity of poly(methyl methacrylate)/POSS by

molecular simulation by Zhang et al.[16].

Focus of this study is to compare the helium gas permeability of POSS and clay

nanocomoposite respectively with two different kinds of epoxy and to have a clear

understanding about the permeation behavior of POSS nanocomposite.The reason

for choosing helium gas is due to the fact that the molecular size of helium is close to

hydrogen. As a result determining helium gas permeability coefficient will enable us

to utilize this composite in various new applications with hydrogen.

1.1 Nanocomposites for reducing permeability

Polymer nanocomposites are nanoscale materials, in which at least one of the com-

ponents has a dimension smaller than 100 nm. The incorporation of nanoparticles

with huge surface area and often anisotropic geometry in a polymer matrix leads to

increased particle-matrix interactions and decreased interparticle distances with con-
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sequent changes in morphology and performance without degrading density of the

material[17, 18]. Significant improvements in permeability, thermal stability, flame

retardency and mechanical and dielectric properties have been observed at low filler

volume fraction compared to conventional polymer[19, 20, 21, 22, 23, 24] .

These improvements in the gas barrier properties result from two separate phe-

nomena. Firstly, the change in the solubility of the permeant gas, within the nanocom-

posite followed by diffusion through it. This occurs due to the incorporation of in-

organic phase resulting in modifying the polymer chain flexibility and the polymer

matrix itself, which ultimately lowers the penetrant mobility [25]. Secondly, the im-

permeable inorganic phase forces a more tortuous pathway for permeant molecules

by presenting a physical barrier and resulting in affecting the diffusion through ad-

ventitious pores and free volumes.

1.2 Epoxy resin

Amine cured epoxies are one of the most commonly used matrix material for fiber

reinforced composite having superior mechanical property, chemical resistance due to

their high degree of crosslinking [26, 27] . Recently, there has been a lot of inves-

tigation in improving their property by adding filler material. With addition of the

filler there are significant changes in curing kinetics, local stoichiometry, curing reac-

tion, curing temperature of neat resin resulting in changes in mechanical property. In

particular nano size fillers have unique properties, show uniform dispersion without

agglomeration and small amount is needed to cause significant changes. Again, for

POSS epoxy resin is the one with higher compatibility. They offer potential for bet-

ter cross linking opportunities with POSS with strong hydrogen bonding along with

inorganic silica core incorporation [28]. The principal reason for choosing SC79 and

Epon862 is their compatibility with clay and POSS. These resins are well understood,

readily available and amenable to nanoparticulate blending.
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1.3 Clay

Clay is a montmorillonite mineral belonging to the smectite family, obtained from the

volcanic eruptions of bentonite. This montmorillonite clay is of special interest due

to their high surface area and high aspect ratio which influence barrier property of

nanocomposite. The unit layer of clay has an octahedral sheet of aluminum or mag-

nesium hydroxide sandwiched between two tetrahedral sheets of silicon oxide figure

1.1. The layers become negatively charged by replacement of silicon by aluminum

or of aluminum by magnesium ion and attracts cations such as sodium, potassium

etc. The layers are connected by Van Der Waals creating galleries. It was discov-

ered by Toyota that, incorporating low volume fractions of clay (such as 2%) with

nylon fibers, improved the strength, modulus and heat distortion temperature of the

composite compare to neat resin. [29, 30]

Figure 1.1: Clay structure

In general, clays are commercially modified with surfactant to achieve less surface

energy of the clay layers and to match their surface polarity to polymer polarity to
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have better dispersion. Dispersion is classified into three terms: phase separation,

intercalation and exfoliation. Phase separation or agglomeration is breaking of clay

tactoids in the resin with no monomer particle or polymer matrix present in layers as

shown in Fig. 1.2a. Intercalation is breaking of clay stacks into groups of smaller stacks

with polymer chain inserted between the layers and platelets move apart but are still

exhibiting in a regular ordered structure[Fig1.2b]. Exfoliation is the separation of the

clay platelets into individual platelets in the polymer resin as shown in fig. 1.2c and

it gives the best mechanical and barrier properties [31].

(a) clay and polymer

(b) aggolomerate (c) intercalated (d) exfoiited

Figure 1.2: (a) Clay and polymer, clay layers (b) aggolemerate(c) intercalated (d)

exfoilted

Factors that influence the permeability of nanocomposite are the volume frac-

tion of nanoplatelet, their aspect ratio and their orientation relative to the diffusion

direction. For clay the decrease in solubility coefficient is lower than the diffusion

coefficient as the volume of nanoclay is low in polymer matrix. On the other hand,

decrease in diffusion coefficient is the result of introducing more tortuous pathway

by clay.However, tortuosity is dependent on the shape and degree of dispersion of
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clay.[32, 33] Fully dispersed (exfoliated) clay in polymer will have higher values of

tortuosity factor and aspect ratio in comparison to partially dispersed (intercalated)

clay composite making it impermeable to gas.

1.4 Polyhedral Oligomeric Silsiquioxane

The POSS molecule contanis both organic and inorganic part with the formula

(RSiO1.5)n. The inoganic part consists of silicon cage containing silicon and oxy-

gen atom and organic part consists of the substituents on the inorganic cage [fig. 1.3].

Figure 1.3: POSS structure

The POSS molecule was first reported in 1946 [34] and have been succesfully

incorporated into polymers by scientists from the Air Force Research Laboratory

[35]. POSS with an average size of 1–3 nanometer can be considered as the smallest

possible particle of silica. However, unlike silica, silicon or any filler the reactive or

unreactive organic part of POSS makes it more compatible with polymer. Studies

have shown that POSS have enhanced mechanical strength, reduced flame reterdancy,

higher glass transition temperature[36].

Dispersion of POSS depends on the interaction of the organic part with polymer.

Generally there are two kinds of interaction based on the reactivity of the organic

6



substituent:

1.Reactive organic substituent reacts with polymer chain forming covalent bond.

2. The non reactive organic substituent shows compatibility either by similarities

in chemical structure or by specific polar interaction between itself and the polymer

chain.

Usually positive reinforcement is obtained if there is good interaction between the

polymer and POSS. The main difference between clay and POSS as a nanofiller is that

clay is physically incorporated in polymer whereas POSS is chemically incorporated.

Also POSS can be dissolved into other monomer and copolymerized. So the dispersion

of POSS is more easily achievable compare to clay which influences the permeability

by affecting the diffusivity factor. The silicon cage of POSS is the impermeable part

of the substituent. However for POSS the key factor is the compatibility between the

resin system and POSS.

In this study, we compared the permeability of POSS and clay reinforced poly-

mer respectively. We analyzed the interaction between the nanofiller and resin to

comprehend a total understanding about their permeability characteristics.
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CHAPTER 2

MATERIALS AND METHODS

2.1 Materials

2.1.1 Resin System

Two types of resin system have been used in this study. The first one is SC79 Part

A(Apllied Poleramics,Benificia,CA) a diglycidyl ether of bisphneol A which was cured

with SC79 Part B, a cycloaliphatic amine. The second one is EPON 862 (Hexion

speciality chemicals,Columbus,OH) which was cured with Epikure 3274, an aliphatic

amine having low viscosity. Figure2.1 and Figure2.2 shows the chemical structure of

both the resin and curing agent.

(a) SC79 (b) Monomer of cyclo

aliphatic amine

Figure 2.1: Chemical structure of (a) SC 79 and (b) Curing agent

These resins were selected for this study as these are well studied in literature,

show superior mechanical property, chemical resistance and also easy to fabricate.

Both of these resins have high cross linking density.
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(a) Epon 862

(b) Epikure 3274

Figure 2.2: Chemical structure of (a) Epon 862 and (b) Epikure 3274

2.1.2 Nanofillers

Two types of nanofiller were used in this work. One is the conventional nanofiller

nanoclay. We used Nanomer I28E (Southern Clay Products, Gonzales, TX, USA)

due to it’s compatibility with the resins and high temperature resistance. It has an

average particle size of 8–10µm and an aspect ratio of 75-120. This clay is modified

with quaternary trimethylsterayl ammonium salt.

The second one is Polyhedral oligomeric silsesquioxane(POSS). For SC79 we used

three different fuctionalities of POSS which are trisilanol phenyl, methacryl and gly-

cidyl. These POSS were purchased from Hybrid Plastics, Hattiesburg, MS. For

Epon862 we used only glycidyl and methacryl POSS. Figure2.3 shows the chemical

structure of these POSS.

Based on the presence of the functional group on silicon atom and interaction

with epoxy resin these POSS were selected among different types of POSS. All these

POSS are compatable with our resin system. Trisilanol phenyl has the appearance

9



(a) trsilanol phenyl (b) Methacryl (c) Glycidyl

Figure 2.3: Chemical structure of (a) Trisilanol Phenyl and (b )Methacryl (c) Glycidyl

of white powder,glycidyl is viscous liquid in room temperature and methycryl is a

colorless oil (clear to hazy).

2.2 Material preparation

For both of the resin system POSS molecule was mixed using magnetic stirrer (fig. 2.4a)

at 400 rpm for 12 hour at 65◦C. But for Epon862 preheating was done at 65◦C for 10

minute and then POSS was added.

After the mixing, curing agent was added to the resin at a 10:4 weight ratio doing

a hand mixing for about 10 min. This was followed by degassing to remove all the

air bubbles that were introduced during mixing. Next the mixture was poured into

an aluminium mold with a dimension of 6”x6” (fig. 2.4b).The curing cycle of SC79

is 121◦C for 6 hour. For Epon862, it takes 24h at room temperature to be cured,

followed by a post curing at 121◦C for 6h. The same process was used to prepare

neat resin sample.

Similar mixing technique was used for clay. Only the rpm used for mixing was

700 rpm for 12 h at the same temperature followed by shear mixing(fig. 2.5) for 30
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(a) magnetic stirrer (b) Mold

Figure 2.4: Sample preparation of POSS (a) Magnetic stirrer and (b) Prepared mold

min for both the resins.

As shear mixing induces large amount of bubbles, degassing was done before

adding hardener. After all the bubbles were removed from the mixture, hardener was

added at the same ratio like POSS, followed by hand mixing. Subsequently degassing

was done to remove the entrapped bubble in the mixture. Then mixture was poured

into the mold followed by the same curing cycle.

2.3 Determination of gas Permeability

The standard test method for determining gas permeability is documented in ASTM

D14382 (re-approved in 1997) “Standard Test Method for Determining Gas Perme-

ability Characteristic of Plastic Film and Sheeting ”[37]. The permeability can be

measured by two experimental methods. Volumetric determination method has been

adopted for this investigation.
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Figure 2.5: Shear mixer
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2.3.1 Gas permeation apparatus

The gas permeation apparatus basically consists of three chambers. The permeant

gas is pressurized in upstream chamber, permeates through the sample in middle

chamber and escapes through the downstream chamber. Two pressure transducers

(model:PX01C1-075G5T, Omega Dyne Inc.) are connected to inlet and and outlet

to acquire precision pressure of upstream and downstream chamber. The data of the

pressure was obtained with the help of an oscilloscope (Tektronix TDS 460 A).

In order to evacuate the chambers two valves are connected with inlet and outlet

section. Figure2.6 shows all the parts of the setup. It also includes a high capacity

gas purifier (Agilient Technologies,Paolo Alto, CA, USA), as shown in fig. 2.6, to

prevent any impurity present in the helium gas coming from the gas tank.

Figure 2.6: Gas permeability setup
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2.3.2 Calibration of the setup

Volume of the cavity in the downstream chamber was calibrated. A plastic pipe was

connected with the outlet valve and filled with water. Subsequently, the inlet valve

was opened to allow the gas for permeation at 20 psi. When there was enough pressure

in the lower chamber the outlet valve was opened and the permeant gas (helium) was

allowed to pass through the pipe. From the deflection of water in the pipe calibration

was done and it has about 10% error with the geometric dimension. These data are

summarized in Table 2.1.

PressureP1 P2 P1 P2 h V V (Avg) error V(geometric) error

(V) (mV) (psi) (psi) (m3) (m3) (m3)

1.04 760 15.6 11.4 155 5.3294E-05 5.13E-05 6.7% 5.71E-05 10.18%

1.04 758 15.6 11.37 150 5.1075E-05 10.61%

1.04 758 15.6 11.37 157 5.346E-05 6.45%

1.042 776 15.63 11.64 140 5.173E-05 9.46%

1.042 776 15.63 11.64 140 5.173E-05 9.46%

1.042 776 15.63 11.64 130 4.804E-05 15.93%

1.042 778 15.63 11.67 135 5.039E-05 11.81%

1.044 776 15.66 11.67 139 5.15E-05 9.88%

1.042 772 15.63 11.58 140 5.0708E-05 11.26%

1.042 774 15.63 11.61 132 4.82E-05 15.5%

Table 2.1: Data for volume calibration

The setup was calibrated using a standard mylar film. In this process the per-

meability coefficient was evaluated under steady state condition using the following

expression [38]

P =
273V L

76ATP0

dp(t)

dt
(2.1)
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here, P= Permeability(bar), V=volume of the downstream chamber(cm3), dp(t)/dt=

rate of pressure change in downstrem chamber(cmHg/s)(fig 3.3), L=thickness of the

flim(cm), A=area of the film(cm2), P0 = inlet pressure(cm Hg), T=temperature(K).

Permeability for three different pressures with a time interval of 90 minute and

also for another two different time interval was evaluated and the error came out

to be around 30%-38%. The calibration was done for three different inlet pressure

with differnt time interval and for each acse ten reading were taken. So the error

actually ranges from 30%-38% for all these cases which also accounts the errorof 10%

in downstream chamber. As a summary this error includes systematic error and for

particular sample the result can vary within 2-3% from actual value excluding this

systematic error. These results are shown in Table 2.2 and Table 2.3 respectively.

P Slope Slope Thickness T V A P P P Error

(cm (cmHg/ (cm (cm) (K) (cm3) (cm2) (Barrer) (cc/100in2/24hr/ (mylar)

Hg) min Hg/s) atm/mil)

103. .009 1.202 .002 314 51.3 1.25 1.27 203. 150 35.

40 3 E-05 337 41 E-10 3977 598%

129 .011 1.447 .002 314 51.3 1.25 1.2248 195. 150 30.

.25 2 E-05 337 41 E-10 9616 64%

155 .013 1.78 .002 314 51. 1.25 1.25 201. 150 34.

.10 8 E-05 337 3 41 7E-10 2106 14%

Table 2.2: Data for different pressure in 90 minute

2.3.3 Evalutaion of Permeability coefficient

Permeability of the nanocomposite was evaluated based on Darcy’s equation:

Q =
kpA

µx
(2.2)

15



(a) 20 psi (b) 25 psi

(c) 30 psi

Figure 2.7: Different pressure graphs

16



P P1 P2 delp V A T del t L P P P Error

(cmHg) (mV) (mV) (cmHg) (cm3) (cm2) (K) (sec) (cm) (bar) mylar

51. 148 148 .01 51.3 1.25 314 1800 .002 1.276 204. 150 36.08

7 .1 .24 0857 41 337 E-10 127 47%

10 216 216 .003 51.3 1.25 314 300 .002 1.285 205. 150 37

3.4 .37 .416 567 41 337 E-10 5848 .06%

10 216 216 .003 51.3 1.25 314 300 .002 1.276 201. 150 34

3.4 .54 .587 567 41 337 E-10 2106 .14%

129 265 265 .003 51.3 1.25 314 300 .002 1.2904 206. 150 37

.25 .626 .685 567 41 337 E-10 4596 .64%

129 265 265 .003 51.3 1.25 314 300 .002 1.2685 202. 150 35

.25 .34 .398 567 41 337 E-10 9603 .31%

Table 2.3: Data for different pressure for different time

here, Q= volume flow rate of gas, k=permeability, p= pressure change in both sides,

µ= dynamic viscosity, x=thickness of the medium, A=area

Pressure change was known from pressure transducers. By applying ideal gas law

the volume flow rate Q was evaluated

PV = nRT (2.3)

here, P= Pressure in downstream chamber(Pa), V=volume of the downstrem chamber(m3),

n=amount of gas(mol), R=universal gas constant, T=temperature(K)

Getting the value of n from this equation and using the molar weight and density

of helium the volume of the gas was calculated. Subsequently, flow rate was evaluated

taking time into consideration.
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2.4 Physical Characterization

The morphology of the samples were analyzed using the scanning electron microscope

(SEM) (Hitachi S-4800 FESEM, Dallas, TX). Since the samples were nonconductive

they were sputtered using the gold-palladium alloy before any imaging was done.The

samples were also analyzed by energy dispersive X-ray analysis (EDX) to identify the

Si composition in the specimen.

18



CHAPTER 3

RESULT AND DISCUSSION

3.1 Permeabilty coefficient

3.1.1 Nanocomposite of Diglycidyl Ether of Bisphanol-A (SC79)

For this epoxy system three kinds of POSS and I28E clay are used as nanofiller. The

permeability was evaluated at room temperature and at a constant pressure of 20 psi.

For each percentage of nanofiller five samples were tested and error was determined.

Figure 3.1: Permeability coefficient of DGEB-A resin with methycryl, glycidyl, tris-

lanol phenyl and clay

19



From fig. 3.1 we can observe that the incorporation of POSS resulted in better

barrier property compared to clay. The permeability decreases approximately 20%

for methycryl whereas it only decreases upto 7% for clay in comparison to neat resin.

All three functionality of POSS showed the same trend where lower permeability

coefficient at 2%. Among three POSS methycryl showed the lowest permeability.

For POSS the permeation can occur by two methods as follows:

1. through the Si-O cage of POSS

2. through the polymer matrix

Tejerina et al. computationally showed that high energy barrier exists in Si-O cage

which may prevent the permeation of the penetrant gas through it [39]. So the

permeation of helium gas occurs through the polymer matrix only which depends on

the excess free volume.

Free volumes act as sites for gas sorption. Basically free volumes are disconnected

packets that slowly exchange position because of thermally activated chain motion.

Activated diffusional jump of permeant gas takes place through this process. Dis-

persion of POSS in the polymer matrix will cause reduction of the free volume and

restriction of the polymer chain motion. Therefore, will decrease the diffusivity and

solubility of penetrant. This phenomenon explains the decrease in permeability com-

pared to neat resin in case of POSS that we observed in our experiment. Also the

specific trend that we see in all the POSS curves could be attributed to the fact of

uniform dispersion of POSS which was further clarified with help of SEM and EDX

analysis.

For clay like POSS the factor that affects the permeability is the dispersion. Due

to the high aspect ratio clay itself works as an impermeable barrier to the pentrant

gas, forcing them to follow a longer or tortuous pathway. So with better dispersion

or exfoliation the effective surface area of clay increase which resluts in increasing

the tortuosity factor. Also the restriction of polymer motion is a function of the
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interaction of the polymer with the surface of clay. As a result, by adding clay a

decrease in solubility is expected due to the reduction in matrix free volume as well as

decrease in diffusivity by increasing tortuosity factor. This is the reason for observing

a decreasing trend for clay in fig. 3.1 with higher percentage. However, clay tends to

agglomerate easily causing large scale of holes in the matrix. This holes act as a lower

resistance path for gas and results in higher permeability. This explains the reason

of epoxy/clay nanocomposite having higher permeability compare to epoxy/POSS in

DGEB-A resin system which is verified by SEM images.

3.1.2 Nanocomposite of Diglycidyl Ether of Bisphanol-F

For this epoxy system the experimental condition is same as DGEB-A. Figure3.2

shows the experimental evaluation of permeability of DGEB-F. In case of this system

only methycryl and glycidyl POSS were used.
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Figure 3.2: Permeability coefficient of DGEB-F resin with methycryl, glycidyl and

clay

Surprisingly for this resin system we can see that the epoxy/clay nanocomposite

showed better barrier property compared to epoxy/POSS nanocomposite. For clay

the decrease in permeability coefficient is upto 12% whereas it is only 3.33% for

methycryl compared to neat resin. However, for POSS we observed the same trend

as DGEB-A and methycryl showing lower permeabilty compared to glycidyl.

The dispersion of any nanofiller in any resin system depends on their compati-

bility. The reason of this resin system showing higher permeability with POSS can

be attributed to this fact. And this can also be the reason for clay to have lower

permeability. This hypothesis is further investigated by SEM and EDX.
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3.2 SEM and EDX

3.2.1 DGEB-A

The SEM images showed hole like structure for all of the POSS compared to neat

resin. All the holes have high percentage of silica which is confirmed by EDX. So it can

be concluded that these holes are created due to POSS molecules. As POSS has a lot

functional groups, it is possible that during the polymerization process some volatile

material was created. These volatile materials created holes during degassing of the

samples. From the images of methycryl we can observe that the hole number increases

with decreasing permeability for upto 2% of methycryl and then again reduces when

permeability increases for higher percentage (fig. ).

POSS was physically incorporated to the resin where they got molecularly dis-

persed within the resin. However, when amines are added as hardener several POSS

molecules get attached with amine chain. Basically POSS molecules form a homoge-

neous hybrid polymer network with silicon caging dispersed in epoxy matrix. This

dispersion is actually indicated by the hole numbers. The numbers of these holes vary

for different percentage and for different POSS. All these data from SEM and EDX

are summarized in table 3.1.

From the table it can be said that these holes govern the permeability property

of POSS. Large number of holes indicates better interaction of POSS and epoxy

system providing better dispersion of impermeable silicon caging. These silicon cages

decreased the free volume and created more tortuous pathway for permeant gas. All

these incidents resulted in lower permeability. Also this explains the specific trend of

POSS of having the increase in the number of holes upto 2% and then the decrease in

the number of holes. Among three POSS, methycryl shows the higher hole numbers

and lower permeability and for glycidyl this phenomenon is just reversed. Methycryl

has more compatibility with epoxy resin and hardener due to the existence of more
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(a) Neat SC79 (DGEB-A)

(b) 1% methycryl (c) 2% methycryl

(d) 3%methycryl (e) 4%methycryl

Figure 3.3: Surface image of (a) DGEB-A resin and epoxy/methycryl (c) 1% (d) 2%

(e) 3% and (f) 4% by SEM
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Percentage Average hole hole number Si in Silicon in Average

dia (micrometer) hole smooth surfae Si

methycryl 1% 0.321 26 0.4 0.36 0.2

2% 0.364 65 0.5 0.365 0.3

3% 0.2395 56 0.49 0.355 0.4

4% 0.158 10 0.46 0..565 .6

glycidyl 1% 0.354 17 0.55 0.4 0.4

2% 0.3691 21 1 0.8 0.73

3% 0.323 18 1.4 1.6 1.7

4% 0.3368 15 3.35 2.5 2.65

Table 3.1: Data of holes of methycryl and glycidyl POSS

double bonds which has higher reactivity than any other functional group. Therefore,

methycryl shows higher number of holes and better dispersion of silicon cage with

better barrier property. Glycidyl interacts with epoxy by substituting the epoxy ring.

It has lesser compatibility than methycryl which is the reason for less dispersion and

lesser number of holes. This comparison is shown in fig. 3.4. Again, all the POSS

shows larger number and better dispersion of aggregates at 2% which can be due to

the reason of having better stoichiometric ratio at this percentage only.

Another POSS, trisilanol phenyl which we used with this epoxy system showed

their permeability coefficient in between methycryl and glycidyl. Because it is more

compatible with DGEB-A compare to glycidyl by having phenyl group for substitu-

tion and hydroxyl group for hydrogen bond in epoxy. However, still it showed higher

permeability than methycryl. For both glycidyl and trisilanol phenyl we can assume

that steric hindrance is another reason to have less compatibility with DGEB-A com-

pare to methycryl.

Surprisingly, we can also observe the holes in epoxy/clay nanocomposite with

increasing number of hole with the increasing percentage (fig. 3.5). As a result it can
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(a) 1% methycryl (b) 3%methycryl

(c) 1% glycidyl (d) 3%glycidyl

Figure 3.4: Surface image of epoxy with (a) methycryl 1% (b) glycidyl 1% (c) methy-

cryl 3% and(d)glycidyl 3% by SEM
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not be concluded for sure that the epoxy/POSS interaction is the reason for creation

of holes. There is also a posssbility that there were bubbles inside the samples which

were not removed and both the nanofillers clay and POSS were clutterd with bubbles

which gives high percentage of silica. .

(a) 1% clay (b) 2% clay

(c) 3%clay

Figure 3.5: Surface image of DGEB-A resin and clay(a) 1% (b) 2% (c) 3% by SEM

However, the interaction of clay with epoxy and the process of affecting perme-

ability by clay is different. Clay is a layered silicate where the functional group is

present due to the surface modifierThe interaction of clay with epoxy has several

steps with numerous parameters at each step. The first step is the swelling of clay

which depends on the physico-chemical interaction between the clay and neat resin.
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The next step is reaction with hardener which has different interaction and swelling

kinetics with clay compare to neat resin. At this step there is a competition between

intra and extra gallery due to different stoichiometric ratio. During polymerization

the elastic energy between the layers can increase and can push apart the layers and

this force is balanced by the viscosity of the monomer outside the gallery. This affects

the intercalation or exfoliation process and it is represented pictorially in fig. 3.6 and

all the data from SEM and EDX are summarized in table 3.2.

Percentage Average hole hole number Si in Silicon in Average

dia (micrometer) hole smooth surfae Si

1% 0.293 12 0.7 0.7 .7

2% 0.2878 15 1.41 1.417 1.452

3% 0.263 25 0.997 1.062 1.46

4% 0.255 33 5.421 7.441 3.743

Table 3.2: Data of nanoaggregration of DGEB-A and clay

From the table we observe that though the hole number increases with percentage.

This can be attributed to the fact that, clay has more attraction to the aromatic part

of the resin and create areas with high silicon and also without silicon. With higher

percentage it had better interaction with high number of holes, higher percentage of

silicon and lower permeability. However, for clay another prime factor is the high

aspect ratio which can be achieved through exfoliation. With the high interaction it

cannot be concluded that clay has higher dispersion as the dispersion or exfoliation

depends on numerous parameter as discussed earlier. From the SEM images we can

conclude that though with higher percentage there were higher nuber of holes it was

not good enough to create exfoliation and may be also the state of intercalation which

results in higher permeability than POSS.
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(a) modified clay

(b) intercalated state

(c) exfoliated state

Figure 3.6: Schematic illustration of intercalated and exfoliated state showing forces

on a pair of clay layers (a) modified clay (b) intercalated (c) exfoliated
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3.2.2 DGEB-F

The SEM images of DGEB-F and methycryl showed a very little amount of aggregate

compare to neat resin (fig. 3.7). The SEM images presented in fig. 3.7 are in higher

magnification than the images for DGEB-A as in lower magnification we were not

able to see any kind of aggregate for this epoxy.

(a) 1% methycryl (b) 2% methycryl

(c) 3%methycryl (d) 4%methycryl

Figure 3.7: Surface image of DGEB-F resin and methycryl (a) 1% (b) 2% (c) 3% and

(d) 4% by SEM

From these images we can conclude that methycryl has less compatibility with

DGEB-F. So initially it remained unreacted in the epoxy/POSS system before hard-
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ener was added. We used aliphatic amine as a hardener for this epoxy system which

has the highest reactivity towards epoxy. For amine the reactivity will follow this

pattern: aliphatic amine>cycloaliphatic amine>aromatic amine. As a result in the

polymerization process the POSS remained unreacted and aggregated[40]. Therefore,

it had less affect on the free volume of polymer as well as in permeability. This phe-

nomenon exactly explains our experimental finding of having only 3.33% reduction

in permeability for Epon862/methycryl samples compared to neat resin. For this

resin system both POSS have close values of permeability coefficient. So the same

explanation justifies the permeability behavior of glycidyl also. Similarly, the lowest

value of permeability at 2% could be explained by perfect stoichiometric ratio.

The SEM images for clay (fig. 3.8) clearly revealed the reasons for better barrier

property. With the higher percentage, the clay is well dispersed and clay appeared

almost everywhere on the surface. As clay has higher aspect ratio this well dispersion

decreased the free volume of polymer matrix and more importantly created more

tortuous pathway for penetrant molecule resulting in lower permeability.

From the images and permeability data it can be concluded that clay had better

compatibility with this epoxy resin system which resulted from a good stoichiometric

ratio, the balanced intra/extra gallery reaction and being the extra gallery reaction

not too fast providing good inter gallery reaction leading to exfoliation.

3.2.3 Comparison between DGEB-A and DGEB-F

POSS

The POSS with DGEB-A showed better barrier property compared to DGEB-F. The

decrease in permeabilty is upto 20% in case of DGEB-A and methycryl where it was

only upto 3.33% for DGEB-F and methycryl compared to neat resin respectively. The

only reason behind this is the compatibility between the POSS and epoxy system.

For DGEB-F it is possible that for this system there was more steric hindrance so
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(a) 1% clay (b) 2% clay

(c) 3%clay

Figure 3.8: Surface image of DGEB-F resin and clay(a) 1% (b) 2% (c) 3% by SEM
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POSS could not interact with resin properly. Also the hardener we used for DGEB-A

was cycloaliphatic amine where as it was tertiary amine for DGEB-F having higher

attraction to resin itself rather than POSS.

For clay DGEB-F resin showed better result having upto 12% decrease in perme-

ability where it was 7% for DGEB-A system. This is also due to same reason that

for clay, DGEB-F provided better interaction which leads to better dispersion and

higher barrier property. Figure3.9 shows the visual difference between the two system

in case of clay.

(a) 1% clay with DGEB-F (b) 3% clay with DGEB-F

(c) 1%claywith DGEB-A (d) 3%clay with DGEB-A

Figure 3.9: Surface image of (a) DGEB-F resin and clay1% ,(b) 3% and DGEB-A

and clay(c) 1%, (d)3% by SEM

33



As a summary we can say that the creation of holes is mainly due to the resin

sytem as we did not observe any kind of holes in DGEB-F system for any nanofiller.

These holes are related with the dispersion of nanofiller which affects the permeabilty

in case of POSS. However, for clay the dispersion is a complex process involving

several parameters including mixing technique which can be the reason for showing

differnt permeability in case of differnt epoxy resin though there is less decrease in

permeability compare to POSS.
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CHAPTER 4

CONCLUSIONS

Epoxy nanocomposites were synthesized by physical incorporation of nanofiller. There

were significant reductions in permeability in nanocomposite compare to neat resin.

Permeability was measured by an experimental setup following ASTM Standard

D1434. We obtained specific trend for all kind of POSS with both epoxy system.

For DGEB-A, POSS nanocomposite samples showed less permeability in comparison

to clay and for DGEB-F this was reversed. These experimental findings were ana-

lyzed using SEM and EDX. Among three POSS used methycryl showed the lowest

permeability compare to neat resin.

From our result we can conclude that permeability of nanocomposite depends

on the compatibility between the nanofiller and the epoxy system. For POSS the

creation of holes is the principal reason for reducing permeability which is confirmed

by SEM and EDX. We assume that these holes indicated better interaction of POSS

with epoxy as well as dispersion of silicon cage causing decrease in volume fraction,

creating more tortuous pathway and resulting in lower permeability. However, the

interaction depends on the reactivity of POSS functionality. Because with increasing

number of existing covalent bonds between the POSS and polymer the compatability

becmoes more efficient and produces more stable network. As a result Epon862

does not show good barrier property due to insufficient compatibility with the POSS

used. But this hypothesis can not confirmed as we also observe holes in case of clay

and DGEB-A nanocomposite, which again helps us to conclude that the creation of

holes depends on particular epoxy sytem and this phenomenon could have been more
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effectively analyzed with the help of FTIR and TEM images of clay nanocomposites.

For clay the dispersion is the prime factor in addiiton with the orientation of the clay

platelets influencing permeability. Dispersion depends on the interaction of resin,

hardener and clay itself. It is evident from SEM images that DGEB-F has better

dispersion of clay resulting in lower permeability. As a summary we can conclude

that the conventional nanofiller clay does not show better barrier property with each

type of epoxy system. Alternatively for a specific epoxy system a particular POSS

can achieve lower permeability compare to clay. But the selection of any kind of

nanofiller entirely depends on the interaction of resin and nanofiller.

It will be worth to investigate the permeability as well as mechanical property of

epoxy nanocomposite in cryogenic condition. This will create opportunity towards

new industrial application of epoxy nanocomposite. Also developing a mathematical

model to compare the permeability with experimental result to obtain more effective

analysis is a good scope for future work.
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