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CHAPTER I 
 
 

INTRODUCTION 

1.1 Background 

Studying the generation of biodegradable fibers and spheres by electrostatic atomization 

of biodegradable polymer solutions is of considerable interest motivated by their 

applications in drug delivery and tissue engineering to name a few. One method for the 

generation of these fibers and spheres is electrospinning. Electrospinning was discovered 

during the 1930’s. In the electrospinning process, the polymer is dissolved into a low 

boiling point solvent to prepare a viscous solution. The solution is then placed into a 

pipette and connected to a voltage source as shown in Fig. 1.1. This induces a charge on 

the surface of the liquid. Mutual charge repulsion and the attraction of surface charges to 

the grounded collector electrode give rise to a force directly opposite to the surface 

tension. 

As the intensity of the electric field is increased, the hemispherical surface of the 

fluid at the tip of the capillary tube elongates to form a conical shape known as the Taylor 

cone. As the intensity of the electric field is further increased, a critical value is attained 

at which the repulsive electrostatic force overcomes the surface tension and a charged jet 

of fluid is ejected from the tip of the Taylor cone. The discharged polymer solution jet 

undergoes an instability and elongation process. As the jet approaches the collector 

electrode, the solvent evaporates, leaving behind a charged polymer fiber. 
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The collected polymer fiber on the grounded electrode can be used to perform 

further analysis. Scanning electron microscope (SEM) can be used to obtain images to 

investigate the morphology of the obtained polymer samples. Another method that can be 

employed is the Transmission electron microscopy (TEM). Fig. 1.2 and 1.3 show 

examples of SEM and TEM images, respectively. 

1.2 Problem Statement 

Studying the electrospinning of a biodegradable polymer solution of Poly Ethylene Oxide 

(PEO) and water at different concentrations to identify the test conditions required for the 

formation of biodegradable spheres, beaded fibers and uniform fibers. 

The main parameters that provide control over the process are as follows: 

1. Electric potential (V) applied between the capillary tube containing the polymer 

aqueous solution and the grounded collector electrode. 

2. The distance between the needle and the collector also called as gap (S) is varied 

using insulated threaded rods over which the collector electrode plate can be moved. 

3. The concentration of the polymer solution. 

4. Pressure (P) applied to the top of the capillary tube that stores the polymer aqueous 

solution. 

1.3 Specific Objectives  

1. Identifying the test conditions required for the formation of uniform fibers, beaded 

fibers and spheres.  

2. Study the morphology of spheres and fibers using scanning electron microscope 

(SEM). 
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3. Observe the trajectory of the electrospinning jet with the help of digital holographic 

microscopy (DHM).  

4. Observe the evolution of axis-symmetric instabilities near the injector using digital 

holographic microscopy. 

5. Identifying the breakup regimes and the breakup regime transitions of PEO aqueous 

solutions under electrostatic charging.  
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Figure 1.1 Schematic illustration of the basic setup for electrospinning  

(Li and Xia, 2004) 
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Figure 1.2 SEM image of electrospun partially crystalline poly-L-Lactide (PLLA) fiber 
(Bognitzki et al, 2001) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 6

 
 

Figure 1.3 TEM image of electrospun polyvinyl pyrrolidone (PVP) nanofiber  
(Li and Xia, 2004) 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

2.1 Overview 

This chapter describes previous studies in the fields of electrospinning. The effect of 

various experimental parameters on the morphology of the polymer fibers is addressed 

along with the applications of electrospinning. 

2.2 Background 

The process of electrospinning, derived from the term electrostatic spinning, was first 

patented by Formalas in 1934. He described the experimental setup for the production of 

polymer filaments using an electrostatic force. Uniform droplets of about 0.1 mm in 

diameter were produced from streams of highly electrified jets by Vonnegut and 

Neubauer in 1952. In 1971, Baumgarten made an apparatus to electrospin acrylic fibers 

with diameters in the range of 0.05–1.1 microns. Since 1980s the process of 

electrospinning has regained attention due to a surging interest in nanotechnology, as 

ultra fine fibers or fibrous structures of various polymers with diameters in submicron or 

nanometer range have been fabricated with this process. Electrospun nanofibers have 

been used for a number of applications such as filtration, tissue scaffolds, implant coating 

film and wound dressing (shown in Fig 2.1). Electrospun nanofibers with either electrical 

or optoelectronic properties have received much attention in recent years because of their 

potential uses in the fabrication of nanoscale electronic and optoelectronic devices. 
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2.3 Parameters affecting electrospinning 

There are several parameters that affect the electrospinning process. These parameters are 

discussed in this section. 

2.3.1 Viscosity  

In 1966, Simons patented an apparatus for the production of non-woven fabrics which 

were ultra thin and very light in weight using electrospinning. The positive electrode was 

immersed into the polymer solution and the negative one was connected to a belt where 

the non-woven fabric was collected. He found that the fibers from low viscosity solutions 

tended to be shorter and finer whereas those from more viscous solutions were relatively 

continuous. 

Electrospinning of aqueous Poly ethylene oxide (PEO) dissolved in ethanol-water 

solutions with viscosities in the range of 1–20 poises and surface tension between 35 and 

55 dynes/cm were found to be suitable for fiber formation by Fong et al. (1999). They 

found that, for viscosities above 20 poises, electrospinning was prohibited because of 

instability in flow caused by the high cohesiveness of the solution. Formation of droplets 

was reported when the viscosity was low (<1 poise).  

 Liu and Hsieh (2002) used cellulose acetate (CA) in 2:1 acetone/ DMA (di-methyl 

acetamide). They found the viscosities between 1.2 and 10.2 poises suitable for 

electrospinning. Outside that range, the CA solutions could not be electrospun into fibers 

at room temperature i.e. only few fibers could be obtained from a even higher viscosity 

solution or the fluid jet broke up to droplets due to too low viscosity (<1.2 poise). This 

demonstrates that the viscosity range suitable for electrospinning of different polymer 

solutions is different. 
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During electrospinning, there may be secondary jet erupting from the main 

electrospinning jet [Reneker et. al. (2000)] which is stable enough to yield fibers of 

smaller diameter at certain viscosity. This may explain the differential fiber diameter 

distribution observed in some cases [Kim et. al. (2005); Demir et. al. (2002); Deitzel et. 

al. (2001)]. However, when the viscosity is high enough, it may discourage secondary 

jets from breaking off from the main jet which may contribute to the increased fiber 

diameter [Zhao et. al. (2004)]. 

Mituppatham et. al. (2004) found that the increase in concentration meant that the 

viscosity of the solution was strong enough to discourage the bending instability to set in 

for a longer distance as it emerges from the tip of the needle. As a result, the jet path was 

reduced and the bending instability spread over a smaller area. This reduced jet path also 

meant that there was less stretching of the solution resulting in a larger fiber diameter. 

Although viscosity has an important role in the formation of smooth fibers, it may 

not determine the concentration at which fibers are formed during electrospinning. 

Morozov et. al. (1998) found that, for Polyethylene Oxide, the minimum concentration 

for smooth fiber formation was the same despite a 3.5-fold increase in viscosity. 

2.3.2 Surface Tension 

The initiation of electrospinning requires the charged solution to overcome its surface 

tension. Surface tension has the effect of decreasing the surface area per unit mass of a 

fluid. When there is a high concentration of free solvent molecules, there is a greater 

tendency for the solvent molecules to congregate and adopt a spherical shape due to 

surface tension. A higher viscosity will mean that there is greater interaction between the 

solvent and polymer molecules thus when the solution is stretched under the influence of 
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the charges, the solvent molecules will tend to spread over the entangled polymer 

molecules thus reducing the tendency for the solvent molecules to come together under 

the influence of surface tension. 

Fong et. al. (1999), found that solvent such as ethanol with low surface tension 

can be added to encourage the formation of smooth fibers. Zeng et. al. (2003) proposed 

another way to reduce the surface tension by adding surfactant to the solution. The 

addition of surfactant was found to yield more uniform fibers. Even when insoluble 

surfactant is dispersed in a solution as fine powder, the fiber morphology is improved. 

2.3.3 Solution Conductivity 

The process of electrospinning involves stretching of the solution caused by repulsion of 

the charges at its surface. Thus if the conductivity of the solution is increased, more 

charges can be carried by the electrospinning jet. The conductivity of the solution can be 

increased by the addition of ions. When a small amount of salt or polyelectrolyte is added 

to the solution, the increased charges carried by the solution will increase the stretching 

of the solution. As a result, smooth fibers are formed which may otherwise yield beaded 

fibers. Zhong et. al. (2002) found that the increase in stretching of the solution will tend 

to yield fibers of smaller diameters. But there is a limit to the reduction in the fiber 

diameter. Choi et. al. (2004) reported that there will be greater viscoelastic force acting 

against the columbic forces of the charges, as the solution is being stretched. They also 

found that the increase in charge would result in greater bending instability thereby 

increasing deposition area of the fiber. This would also favor the formation of finer fibers 

since the jet path is increased. 
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Lin et. al. (2004) used ionic surfactants triethyl benzyl ammonium chloride to 

increase the conductivity of the solution at the same time reducing the surface tension. 

This was found to cause a reduction in fiber diameter. Another way to increase the 

conductivity of the solution by changing the pH of the solution was given by Son et. al. 

(2004). They found that under a basic condition, electrospinning cellulose acetate (CA) 

solution resulted in a significant reduction in fiber diameter compared to those obtained 

under neutral condition. Since the presence of ions increases the conductivity of the 

solution, the critical voltage for electrospinning to occur was also found to decrease. 

2.3.4 Voltage 

A crucial element in electrospinning is the application of a high voltage to the solution. 

The high voltage will induce the necessary charges on the solution and together with the 

external electric field, will initiate the electrospinning process when the electrostatic force 

in the solution overcomes the surface tension of the solution. Taylor (1964) found both 

high negative or positive voltage of more than 6kV was able to cause the solution drop at 

the tip of the needle to distort into the shape of a cone (Taylor Cone) during jet initiation. 

Depending on the feedrate of the solution, a higher voltage may be required so that the 

Taylor Cone is stable. The columbic repulsive force in the jet will then stretch the 

viscoelastic solution. If the applied voltage is higher, the greater amount of charges will 

cause the jet to accelerate faster and more volume of solution will be drawn from the tip 

of the needle. This may result in a smaller and less stable Taylor Cone as observed by 

Zhong et. al. (2002). When the drawing of the solution to the collection plate is faster 

than the supply from the source, the Taylor Cone may recede into the needle [Deitzel et. 

al. (2001)]. 
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2.3.5 Feedrate 

The feedrate will determine the amount of solution available for electrospinning. For a 

given voltage, there is a corresponding feedrate if a stable Taylor cone is to be 

maintained. Zhong et. al. (2002) found that the increase in feedrate resulted in a 

corresponding increase in the fiber diameter. This was due to the fact that there was a 

greater volume of solution that could be drawn away from the needle tip. 

Rutledge et. al. (2001) found that there was a limit to the increase in diameter of 

the fiber due to higher feedrate. If the feedrate was at the same rate with which the 

solution is carried away by the electrospinning jet, then there must be a corresponding 

increase in charges when the feedrate is increased. Thus there should be a corresponding 

increase in the stretching of the solution which counters the increased diameter due to 

increased volume. Due to the greater volume of solution drawn from the needle tip, the 

jet would take longer time to dry. As a result, the solvents in the deposited fibers may not 

have enough time to evaporate given the same flight time. Therefore a lower feedrate is 

more desirable as the solvent will have more time for evaporation. 

2.3.6 Temperature 

The temperature of the solution has both the effect of increasing its evaporation rate and 

reducing the viscosity of the polymer solution. When polyurethane is electrospun at a 

higher temperature, the fibers produced have a more uniform diameter [Demir et. al. 

(2002)]. This may be due to the lower viscosity of the solution and greater solubility of 

the polymer in the solvent which allows more even stretching of the solution. With a 

lower viscosity, the Columbic forces are able to exert a greater stretching force on the 

solution thus resulting in fibers of smaller diameter [Mituppatham et. al. (2004)]. 
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Increased polymer molecules mobility due to increased temperature also allows the 

Columbic force to stretch the solution further.  

2.3.7 Distance between Tip and Collector 

Varying the distance between the tip and the collector was found to have a direct 

influence on both the flight time and the electric field strength. For the formation of 

fibers, the electrospinning jet must be allowed sufficient time for evaporation of the 

solvent. Buchko et. al. (1999) reported that, as the distance between the tip and the 

collector was reduced, the jet had shorter distance to travel before it reached the collector 

plate. The electric field strength increased at the same time leading to increased 

acceleration of the jet towards the collector. As a result, the jet may not have enough time 

for the solvent to evaporate when it hits the collector.  

When the distance between the tip and the collector is increased, the average fiber 

diameter was found to decrease [Ayutsede et. al. (2005)]. According to Reneker et. al. 

(2000), longer distance meant that there was a longer flight time for the solution to be 

stretched before it was deposited on the collector. Lee et. al. (2003) found an exception 

wherein with increase in distance, the fiber diameter increased. This was due to the 

decrease in the electrostatic field strength resulting in less stretching of the fibers. When 

the distance is too large, no fibers were deposited on the collector as observed by Zhao et. 

al. (2004). 

2.4 Morphology of the fibers 

During the process of electrospinning, the fibers formed often have beads. Arayanarakul 

et al. (2006) stated that the formation of beads along the fibers could be a result of the 

viscoelastic relaxation and surface tension upon the reduction of Coulombic force once 
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the fibers are in contact with the grounded target. Wannatong et al. (2004) stated that the 

occurrence of this phenomenon is likely when the charged jet is not dry enough prior to 

its deposition on the target, causing some parts of the charged jet to contract and form 

beads. When the jet is dry enough, contraction could be no longer possible, thus leaving 

only beaded fibers on the target. The dryness of the charged jet is controlled mainly by 

evaporation of the solvent during the transport of charged jet to the target. The amount of 

evaporating solvent is determined by a number of factors like the boiling point of the 

solvent, the initial concentration of the solution, the ambient condition, the size of the 

charged jet and the total path trajectory that the charged jet travels from the nozzle to the 

target. 

According to Doi (1996), the polymer solutions have three concentration regimes 

namely the concentrated regime, the semi-dilute regime and the dilute regime. In the 

concentrated regime, polymer chains interpenetrate and entangle with each other, which 

increases the viscosity of the polymer solution. Fong et al. (1998) showed that high 

viscosity favors the formation of thicker fibers without beads, but surface tension drives 

towards the formation of beaded fibers. Electrospinning using a concentrated nylon-4,6 

solution was performed by Huang et al. (2006), which produced smooth bead-free 

nanofibers with thicker diameters. Although the surface tension, which is one of the main 

factors that influenced the formation of beaded fibers, increased as the nylon 

concentration increased in the electrospinning solution, the viscosity increased more 

rapidly and was the main factor influencing the character of electrospun nanofibers.  

In the dilute regime, polymer molecules have a coil-like conformation, and can be 

approximated by separated spheres for most descriptions of the solution behaviour. There 



 15

are many fewer polymer chain entanglements between macromolecules in a dilute 

solution. The viscosity of a dilute polymer solution is therefore low, approaching the 

viscosity of the solvent.  

In the semi-dilute regime, polymer molecules act as separate coils, but are 

crowded and touch each other. Interactions between polymer chains therefore increase, 

producing significant increases in viscosity. Electrospinning in the semi-dilute regime 

produces nanofibers with smaller diameters, which may be beaded. The electrospinning 

of nylon-4,6 made from formic acid solutions of nylon at concentrations lower than 4% 

by weight is one such example.  

Jaeger et. al. (1998) reported beaded fibers spun from aqueous solutions of 

poly(ethylene oxide) (PEO) and found that the bead diameter and spacing were related to 

the fiber diameter: the thinner the fiber, the shorter the distance between the beads and 

the smaller the diameter of the beads. For the formation of electrospun beaded 

nanofibers, solution viscosity, net charge density carried by the electrospinning jet and 

surface tension of the solution were referred to as the main factors. They stated that the 

higher viscosity favors formation of fibers without beads and higher net charge density 

not only favors formation of fibers without beads, but also favors the formation of thinner 

fibers. They also affirmed that the surface tension drives towards the formation of beads, 

hence reduced surface tension favors the formation of fibers without beads. Also 

changing the polymer concentration can vary the solution viscosity. The surface tension 

coefficient depends on the polymer and solvent.  

Wilkes (2001) studied the effect of solution concentration, capillary–screen 

distance, electric potential at the tip and flowrate on electrospinning Esthane 5720, a 
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segmented polyether urethane. He found that bead-like structure appeared when the 

capillary–screen distance decreased, while the average fiber diameter was increased. 

When increasing the concentration, the average diameter increased and the bead-like 

structure turned into blobs at lower capillary–screen distance. Very high concentrations 

lead to failure of the fibers as the viscosity was too high. This was also attributed to high 

flow rates at lower concentration. Also increasing the potential decreased the fiber 

diameter. 

Fong et al. (1998) investigated the effect of solution viscosity, charge density 

carried by the jet, and solution surface tension on the beaded morphology of 

poly(ethylene oxide) (PEO) fibers. They found that the number of beads decreased with 

an increase in both the solution viscosity and the net charge density and a decrease in the 

solution surface tension. In their experiments with PEO polymer, the polymer 

concentrations of 1–4.5 wt% were used. The resulting fiber membranes were visualized 

under SEM. For 4 wt% PEO concentration the beads were not reported to completely 

disappear. Instead, the bead diameters at higher concentrations were even larger and 

changed from spherical to spindle like shape. 

Doshi & Reneker (1995) pointed out that by reducing surface tension of a 

polymer solution, fibers could be obtained without beads. But they also stated that this 

method had its limitations. Since surface tension is a function of solvent compositions 

and polymer concentration, different solvents would contribute to different surface 

tensions. However, not necessarily a lower surface tension of a solvent would always be 

more suitable for electrospinning.  
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Zong et al. (2002) obtained bead free fibers with the addition of certain filler 

materials into the polymer solution. They realized this while electrospinning 

biodegradable (D,L-lactic acid) (PDLLA) polymers. They found that with addition of 1 

wt% pyridinium formate (PF) salt, the resulting nanofibers were bead-free. They argued 

that the addition of salts resulted in a higher charge density on the surface of the solution 

jet during the electrospinning, bringing more electric charges to the jet. As the charges 

carried by the jet increased, higher elongation forces were imposed to the jet under the 

electrical field, resulting in smaller bead and thinner fiber diameters. This, however, does 

not imply that a higher applied electrical field could result in fewer beads and smoother 

nanofibers. The solvent system used was also found to have a strong influence on the 

morphology and diameters of the as-spun cellulose acetate (CA), poly(e-caprolactone) 

(PCL), and poly(vinyl chloride) (PVC) fibers, respectively. 

Zeng et al. (2003) observed significant diameter reduction and improved 

morphological uniformity of the as-spun poly(L-lactic acid) (PLLA) fibers were attained 

when a surfactant triethyl benzyl ammonium chloride, sodium dodecyl sulfate (SDS), or 

aliphatic PPO-PEO ether (PPO¼ poly(propylene oxide))] was added into the spinning 

solutions. 

Huang et al. (2006) used pyridine to improve the conductivity of solutions of 

nylon in formic acid. Since pyridine is an organic base that reacts with formic acid to 

give rise to an organic salt of a weak acid and a weak base, it not only improves the 

conductivity of the electrospinning solution, it can also be removed easily from the 

resulting nanofibers by evaporation. Pyridine had a significant influence on the electrical 

conductivity of the formic acid solution of nylon-4,6. About 0.4% by weight pyridine 
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doubled the electrical conductivity of the formic acid solution of 2% nylon-4,6. This was 

because the pyridine in the solution increased the concentration of the current-carrying 

ions. The addition of pyridine also changed the interactions between the nylon molecules, 

thereby increasing the viscosity which helped reduce the concentration of beads. The 

bigger beads were no longer observed when a small percentage of pyridine was added. 

Deitzel et al. (2001) found that the morphology of the fibers produced was 

influenced strongly by parameters such as the feed rate of the polymer solution and the 

applied voltage. Increasing the voltage changed the shape of the surface from which the 

electrospinning jet originates. This shape change, which corresponds to a decrease in the 

stability of the initiating jet as the voltage is increased, has been correlated with an 

increase in the number of bead defects forming along the electrospun fibers. They also 

observed that the fiber diameter increased with increasing polymer concentration 

according to a power law relationship. Demir et al. (2002) further found that the fiber 

diameter was proportional to the cube of the polymer concentration. The effect of 

temperature of the polymer solution was also studied by them. They found that while 

electrospinning polyurethane nanofibers, the fiber diameters obtained from the polymer 

solution at a high (70oC) temperature were much more uniform than those at room 

temperature. But the mechanism involved has not been fully understood. 

Lee et al. (2003) found that the electrospun polystyrene (PS) fibers produced an 

unexpected half hollowed spherical structure when tetrahydrofuran (THF) was the 

solvent for PS and the number of beads could be controlled by the amount of 

dimethylformamide (DMF) in the mixed solvents between THF and DMF. 
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Zou et al (2005) described the process of bead formation during electrospinning 

of PHBV fibers. They adopted a method to observe the morphology of the fiber near the 

injector. They found operating parameters like applied voltage and solution feeding rate 

to be important for the development of different fiber morphologies. They also found the 

solution properties like conductivity and surface tension to play key roles. They reported 

that high surface tension promoted the formation of PHBV fibers with beads, while 

increased conductivity favored uniform smooth fibers. 

2.5 Fiber Alignment 

One of the most important factors that could increase the number of applications of 

electrospinning is to produce continuous single nanofibers. Matthews et al. (2002) used a 

cylinder collector with high rotating speed as shown in Fig 2.2. They were able to align 

electrospun nanofibers of poly glycolic acid (PGA) (at 1000 rpm rotating speed) and type 

I collagen (4500 rpm rotating speed) fibers circumferentially.    

Theron et al. (2001) described a novel approach to position and align individual 

nanofibers on a tapered and grounded wheel like bobbin as shown in Fig. 2.3. The tip-like 

edge substantially concentrates the electrical field so that the spun nanofibers are 

attracted to and can be continuously wound on the sharpened edge of the rotating wheel. 

With this approach, polyethylene oxide nanofibers with diameters ranging from 100 to 

400 nm were aligned with the pitch varying from 1 to 2 mm. The alignment is attributed 

to the fact that as the nanofibers approach the electrically grounded target, they attain 

sufficient residual charges to repel each other. This influences the morphology of fiber 

depositions. As a result, once a nanofiber is attached to the wheel tip, it exerts a repulsive 
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force on the next fiber attracted to the tip. This mutual repulsion results in a separation 

between the deposited nanofibers. 

2.6 Summary 

From the study of the existing literature, the influence of various experimental parameters 

was understood. Although lots of information regarding the formation of fibers with 

varied morphology has been reported, there is no breakup map that describes the 

conditions for the formation of specific fibers. Also there is no information regarding the 

breakup transition when the polymer solution is subjected to electrostatic charging.  

The formation of beads has been reported to be influenced by many parameters 

like concentration, viscosity and surface tension. But all these conclusions are based on 

results from scanning electron microscopy (SEM), wherein a sample is collected during 

the electrospinning process and is then allowed to dry before it can be considered for 

SEM imaging. But this drying process may actually influence the morphology of the 

fiber. Hence a method is to be developed that could demonstrate the variation in 

morphology of the fiber instantaneously.        
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Figure 2.1 Nanofibers for wound dressing (www.electrosols.com). 
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Figure 2.2 A rotating collector for electrospun ultra fine fibers (Matthews et al., 2002). 
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Figure 2.3 Set up used to collect uniaxial nanofibers (Theron et al., 2001) 
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CHAPTER III 
 
 

METHODOLOGY 

3.1 Overview 

This chapter describes the experimental procedure and the test conditions for the 

implementation of electrospinning.  

3.2 Apparatus 

The experimentation involves two processes namely digital microscopic holography and 

scanning electron microscopy. The schematic illustration of the basic setup for 

electrospinning is shown in Fig. 1.1. 

The experimental setup is shown in Fig. 3.1. There are three major components 

used in the process of electrospinning namely: a high voltage DC source, a cylinder with 

a needle of outer diameter 0.5mm, and a metallic collecting screen. The cylinder along 

with a nozzle is shown in Fig. 3.2. During the process, the high voltage source is used to 

create an electrically charged jet of polymer solution. This is performed by connecting 

the cylinder containing the polymers solution to the high voltage source. The collector is 

grounded. The cylinder containing the polymer solution is subjected to an electric field, 

inducing a charge on the surface of the liquid. Mutual charge repulsion causes a force 

directly opposite to the surface tension. As the intensity of the electric field is further 

increased, the hemispherical surface of the fluid at the tip of the capillary tube (needle) 

elongates to form a conical shape known as the Taylor cone. On further increasing the 
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electric field, a critical value is attained at which the repulsive electrostatic force 

overcomes the surface tension and the charged jet of the fluid is ejected from the tip of 

the Taylor cone. The discharged polymer solution jet undergoes an instability and 

elongation process, which allows the jet to become very long and thin. As the jet of fluid 

ejected from the tip of Taylor cone approaches the collector electrode, the solvent 

evaporates, leaving behind a charged polymer fiber. This process is performed at 

different conditions varying the concentration, gap and applied voltage in a systematic 

manner. 

3.3 Instrumentation 

Two different methods are used to analyze the process of electrospinning which are 

discussed in detail in the next two sections. 

3.3.1 Digital Holographic Microscopy 

The process of holography is of great importance and has wide applications in many 

fields. When light with sufficient coherence length (laser) is split into two partial waves 

by a beam splitter, one of the waves illuminates the object, which is scattered and 

reflected towards a recording medium e.g. a CCD (Charge coupled device) sensor while 

the second wave called the reference wave illuminates the sensor directly. Both these 

waves are made to interfere and when this interference pattern is recorded, it is called a 

hologram. The original object wave is then reconstructed by illuminating the hologram 

with the reference wave. This reconstructed image exhibits all the effects of perspective 

and depth of focus. This technique was invented by Gabor (1948) and later it was made 

practical with the use of off-axis reference beam (Leith and Upatniek (1965)), which 

separated the real and virtual images. With the advancements in computer technology, 
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Goodman and Lawrence (1967) found that holograms could be recorded on film and 

reconstructed digitally. Later with the development of the CCD sensor, Schnars and 

Juptner (1994) recorded and reconstructed holograms entirely digitally. For this 

experiment two different methods namely single view digital holographic microscopy 

and double view digital holographic microscopy were used. They are discussed in the 

following section. 

3.3.1.a Single view digital holographic microscopy 

The optical setup consisted of two frequency doubled Nd: YAG lasers (Spectra Physics 

Model LAB-150, 532 nm wavelength, 7 ns pulse duration). Only one laser beam was 

used for this experiment. The beam was passed through a polarized beam splitter cube. 

The resulting beam was then passed through a half wave plate and another polarized 

beam splitter cube, which only allows either the horizontal or vertical portion of polarized 

light to pass through while the other portion was reflected and directed to a beam dump 

located at the side of the cube. This combination of half wave plate and beam splitter 

cubes controls the intensity of the beam. The beam was then expanded using an objective 

lens (M 5x) and a 15µm pinhole and then passed directly through the test section to the 

CCD as shown in Fig. 3.3. 

3.3.1.b Double view digital holographic microscopy 

Optical setup for orthogonal double-view digital microscopic holography is shown in Fig. 

3.4. A frequency doubled Nd:YAG laser was used as the light source to investigate the 

random motion of polymer jets in electrospinning process.  Unlike the single-view digital 

microscopic holography setup wherein only one CCD sensor was used, two commercial 

grade CCD sensors (Nikon D-80 and Nikon D-70) placed orthogonally were used for 
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recording holograms. The laser intensity was controlled by a half wave plate. Two 

objective lenses (M 5x) and two spatial filters (Pinhole ~ 15µm) were used to generate 

expanding laser beams in the optical setup.  The distance between the objective lens and 

the object were maintained equal for both the objective lens. Also the distance between 

the object and the CCD were made to be equal in both the cases. 

3.3.1.c Magnification and Resolution 

Digital holographic microscopy can measure very small objects by employing a spherical 

reference beam instead of the collimated plane beam. For good resolution of holograms, 

the distance between CCD and the object has to be minimized. For good holograms of 

high magnification, the objective lens should be put near the object and the CCD sensor 

should be placed far from the object. Despite this relationship between magnification and 

resolution of holograms, the total distance from the objective lens to the CCD sensor 

plays the most primary role in reconstructing holograms. A commercial grade CCD 

(Nikon D-70) was used for holographic recording.  

After the hologram was recorded, it was reconstructed using the convolution type 

approach which solves the Rayleigh Sommerfeld formula for reconstruction of a wave 

field. Digital magnification can be introduced during the reconstruction after the 

hologram has been recorded. This was done by manipulating the equations used in 

reconstruction. The manipulation comes in the form of relocating the virtual source point 

used in reconstruction. However, this does not improve the actual resolution of the image. 

The actual resolution is controlled by the distance from the object to the CCD, the 

wavelength of the light, and the pixel size of the CCD. 
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The relation between resolution, magnification and best working distance were 

established using a 1951 resolution target as shown in the Fig. 3.5. The reconstructed 

image is shown in Fig. 3.6. The resolution (R) and best reconstruction distance (D) at 

different magnifications (M) were obtained. The results for the four magnifications 

namely M=1, 2, 4 and 8 were plotted on a graph, which is shown in Fig. 3.7. The graph 

depicts that the resolution decreases as magnification increases. Also the best 

reconstruction distance increases with the increase in magnification. From these results it 

was inferred that lower magnification was most suitable for the experimental procedure. 

3.3.1.d Spatial Calibration 

After the digital hologram is stored on the CCD sensor, it was reconstructed by a 

numerical algorithm. After the reconstruction process, the three-dimensional hologram is 

expressed as many reconstructed two-dimensional image planes. A spatial calibration 

was made to determine what actual length each pixel represents. In ordinary 2-D 

techniques, image of an object of known dimensions would be captured and a global 

calibration could be applied. However, this same technique can not be used for the DMH 

because objects closer to the CCD sensor appear larger than those farther away because 

of the use of expanding laser beam in the recording process. To solve the problem five 

pins were used to determine the spatial calibration at different reconstruction distances. 

Each pin had a diameter of 0.5mm; the spacing among them was 5mm as shown in Fig. 

3.8. The hologram of the calibration pins was obtained and reconstructed. The image of 

different pins was focused best in different 2-D planes. When one pin was focused at a 

particular 2-D plane, the others were out of focus. Although the pins have the same 

physical diameter, the pixel numbers of the reconstructed pins are different from each 
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other. The reconstructed image of the nearest pin to the CCD sensor was the smallest. 

The relationship between the ratio of the measured pin diameter (dm) to its reconstructed 

pin diameter in pixels (dr) versus the reconstruction distance was obtained. The linear 

function for the spatial calibration could be determined from the best fit curve of the data 

obtained. The actual dimensions of the electrospinning jet can be determined with this 

linear equation. This equation will vary for different optical setup and a new calibration 

has to be performed each time. A more detailed description of digital holographic 

microscopy and spatial calibration process has been done by Lee et. al. (2008). 

3.3.2 Scanning Electron Microscopy 

This method was utilized to observe the morphology of the charged polymer obtained on 

the collector electrode. A small circular piece of copper was placed in the centre of the 

collecting electrode. During the electrospinning process, some part of the polymer jet 

would deposit on the piece. This piece was later used as sample for obtaining SEM 

images. Samples were obtained for each test condition. To obtain SEM images from the 

sample, the samples were first irradiated with a finely focused electron beam. A signal 

was obtained in the form of back scattered electrons and this signal was used to examine 

various characteristics of the sample. For obtaining the SEM images for this experiment, 

the scanning electron microscope at Oklahoma research park, Stillwater was used. 

Because the polymer fiber was non-conductive, it had to be coated with an ultrathin layer 

of electrically-conducting material. The material used for coating was gold and was 

deposited by high vacuum evaporation of the sample. Once the samples were ready for 

scanning electron microscopy, many SEM images with varying magnifications were 
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obtained. These images were then analyzed using Sigma scan. Sigma Scan was used to 

measure the diameter of the beads and spheres along with their tail lengths. 

3.4 Test Conditions 

PEO, with an average molecular weight of 9 x105 g/mol and distilled water (solvent) 

were used to prepare the polymer solution. The solutions were prepared at room 

temperature, and gently stirred to accelerate dissolution and to obtain solutions of 

different concentrations. A list of all the conditions at which electrospinning was 

performed is shown in the table 3.1.  

 

Test 
Con-

ditions 

PEO 
(g) 

Water 
(g) 

Applied 
Voltage 

(kV) 

Gap S 
(m) 

Viscosity 
(centipoise) 

Surface  
tension 
(mN/m) 

RH 
% 

T 
(0C) 

1 4 100 20 0.19 1250* 76.6* 25 24 

2 2 100 20 0.19 126 58.23 25 24 

3 1 100 20,30 0.17, 0.23 13* 77.8* 25 24 

4 0.5 100 20,30 0.17, 0.23 6.46 61.58 25 24 

5 0.25 100 20,30 0.17, 0.23   25 24 

 
Table 3.1 Test conditions at which the experiments were performed. 

 

* Data obtained from Fong et al. (1998) 
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Figure 3.1 Experimental setup for electrospinning 
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Figure 3.2 Cylinder for storing polymer solution 
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Figure 3.3 Schematic illustration of single view digital holographic microscopy. 
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Figure 3.4 Schematic illustration of double view digital holographic microscopy. 
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Figure 3.5 Hologram of a 1951 resolution target. 
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Figure 3.6 Reconstructed hologram of 1951 resolution target. 
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Figure 3.7 Effect of magnification on resolution and reconstruction distance. 
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Figure 3.8 Schematic of pins used for the scale calibration of reconstructed holograms 
. 
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CHAPTER IV 
 
 

FINDINGS 

4.1 Overview 
 
In this chapter the results from the digital holographic microscopy for both single view 

and double view holographic microscopy are shown. Scanning electron microscopy 

results are discussed in detail. The effects of various experimental parameters on the 

morphology of the electrospun polymer are observed using SEM images. Also the 

condition at which the formation of spheres was first seen and the conditions at which 

beaded and non-beaded polymers were observed is reported.  

4.2 Flow Visualization 

Polymer solutions of three different concentrations were considered for this study. After 

the capillary tube was filled with a polymer solution of 0.5%w/v, the image in Fig. 4.1 

was obtained upon reconstruction of the hologram. Since the voltage had not been 

applied, the polymer solution formed a spherical droplet at the tip of the needle whose 

outer diameter was 0.5mm. Once the DC voltage source was applied for a voltage of 

5kV, while keeping the gap(S) = 0.23m, the image in Fig. 4.2 was obtained. From the 

image it can be seen that the spherical droplet from Fig. 4.1 is trying to change its form 

into a cone. When the same conditions were allowed to prevail for some time, the image 

in Fig. 4.3 was obtained. From the image the formation of the Taylor cone was apparent. 

During this entire process, there was no external pressure applied on the capillary tube. 
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Due to absence of external pressure, a constant Taylor cone was not possible. As soon as 

the voltage was increased to 10kV, keeping the gap constant, the image in Fig. 4.4 was 

obtained. Two noticeable aspects of the image in Fig. 4.4 are the absence of Taylor cone 

and the deviation of the jet from the center of the nozzle. The trajectory of the 

electrospinning jet was simulated by Yarin et. al.(2001). The trajectory obtained from the 

simulation is shown in Fig. 4.5(a). To see the electrospinning of the jet over a larger area, 

the field of view was changed by moving the CCD sensor closer to the needle tip. The 

image in Fig. 4.5(b) shows the electrospinning of a 0.5%w/v PEO polymer for V= 5kV 

and S = 0.23m. This experimental result substantiates the simulation performed by Yarin 

et. al. (2001).  

The polymer concentration was increased to 2%w/v and the effect of pressure on 

the polymer solution was observed. When a voltage of 5kV for S = 0.23m was applied to 

the polymer solution, the image in Fig. 4.6 was obtained. From the image, the bending 

instability of the jet is visible. When a pressure of 1psi was applied to the capillary tube 

and the voltage and gap were maintained constant, the image in Fig. 4.7 was obtained. 

From the image it can be seen that the diameter of the jet at nozzle exit is larger. Also the 

bending instabilities are not seen for the same field of view. When a polymer solution of 

4%w/v was considered, for V=20kV, S = 0.23m and pressure at 3psi, the image in Fig. 

4.8 was obtained. From the image it can be seen that the Taylor cone is still prevailing 

even though the voltage is as high as 20kV. The concentration of the polymer and the 

pressure could be the reasons for this to occur. 

In double view digital microscopic holography, a 2%w/v polymer was considered. 

A small pressure of 0.25psi was applied to the capillary tube and a voltage of 5kV was 
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applied to the polymer solution while the gap was 0.23m. Since two CCD sensors placed 

orthogonally were used, two images were obtained for the same time instance. The image 

in Fig. 4.9 shows the front and side view of the electrospinning jet. There is a small 

difference in the size of the two images because the sensor size of Nikon D80 is larger 

than that of Nikon D70. 

The SEM images of non beaded and beaded fibers are shown in Fig. 4.10 and 

4.11 respectively. The images show that the beads are formed when the concentration of 

the PEO solution is 2%w/v. The result clearly illustrates that the initial concentration of 

the polymer solution affect the morphology of the deposited polymer fibers. The reason 

for the polymer to form a bead free fiber at the test conditions of Fig. 4.10 may be 

attributed to the increased damping of the jet instabilities. The bead-free fibers were 

generated using a polymer solution with a concentration of 4%w/v in the Fig. 4.10. The 

beaded fibers were generated using a polymer solution with a concentration of 2%w/v as 

shown in Fig. 4.11. 

4.3 Effect of Experimental Parameters 

For a given concentration of the polymer solution, the voltage and gap were varied to 

obtained different sets of test conditions as shown in table 3.1. A graph representing the 

relationship between surface tension and concentration was plotted. On the same graph 

the polymer viscosity for varying concentrations was plotted. This graph is shown in Fig. 

4.12. 

For a polymer concentration of 1%w/v i.e. 1gm of PEO in 100ml of water, the 

SEM images are shown in Fig. 4.13. The image on the top represents the conditions at 

which the gap is 0.17m and the applied voltage is 20kV. The lower image represents the 
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test condition at which the gap is 0.23m and the applied voltage is 30kV. From the 

images it is apparent that the long fibers were observed at lower voltage and smaller gap 

whereas the formation of sphere-like structures and small “satellite” spheres were 

observed for higher voltage and larger gap. 

For a polymer concentration of 0.5%w/v, four different test conditions were used 

to obtain the SEM images as shown in Fig. 4.14. Two gaps of 0.17m and 0.23m and two 

applied voltage of 20kV and 30kV were used to generate the four test conditions as 

shown. Spheres with long tails were observed at lower voltage and smaller gap. As the 

voltage was increased, shorter tail lengths along with satellite spheres were observed. For 

a larger gap of 0.23m and a higher voltage of 30 kV, the tail length decreased and 

droplets of submicron range were first observed. 

As the concentration of the polymer solution was reduced to 0.25%w/v, there was 

further reduction in the tail length. This is depicted by the SEM image shown in Fig. 

4.15. The image in the top row represents the test condition at which gap is 0.17m and 

the applied voltage is 20kV. As the distance between the electrodes was increased to 

0.23m, the sphere formation was more apparent with further reduction in the tail length. 

This is shown by the left SEM image in the second row. When the voltage was further 

increased to 30kV, the formation of spheres without any tail was observed. 

The diameters and the tail length of the droplets were measured from the SEM 

images using Sigma Scan. Three parameters namely the average diameter (davg), ratio of 

tail length (L) to davg and e (the ratio of maximum diameter to minimum diameter) were 

obtained. These parameters along with their uncertainties were plotted against the ratio of 
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applied voltage (V) and gap (S) and are shown in Fig. 4.16. The data used to plot this 

graph is included in appendix. 
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Figure 4.1 Concentration=0.5%w/v, Voltage V=0kV, S=0.23m, Pressure=0psi. 
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Figure 4.2 Concentration=0.5%w/v, Voltage V=5kV, S=0.23m, Pressure=0psi. 
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Figure 4.3 Concentration=0.5%w/v, Voltage V=5kV, S=0.23m, Pressure=0psi. 
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Figure 4.4 Concentration=0.5%w/v, Voltage V=10kV, S=0.23m, Pressure=0psi. 
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Figure 4.5 (a) Simulation of trajectory performed by Yarin et. al. (2001), (b) Larger 
field of view. Concentration=0.5%w/v, Voltage V=5kV, S=0.23m, Pressure=0psi. 
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     Figure 4.6 Concentration=2%w/v, Voltage V=5kV, S=0.23m, Pressure=0psi. 
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     Figure 4.7 Concentration=2%w/v, Voltage V=5kV, S=0.23m, Pressure=1psi. 
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   Figure 4.8 Concentration=4%w/v, Voltage V=20kV, S=0.23m, Pressure=3psi. 
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Figure 4.9 Double view digital holographic microscopy. (a) Front view. (b) Side 
view. Concentration=2%w/v, Voltage V=0kV, S=0.23m, Pressure=0psi. 
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Figure 4.10 SEM image showing non beaded fibers for polymer concentration of 4%w/v. 
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Figure 4.11 SEM image showing beaded fibers for polymer concentration of 2%w/v. 
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Figure 4.13 SEM images for polymer concentration of 1%w/v. 
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Figure 4.14 SEM images for polymer concentration of 0.5%w/v. 
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 Figure 4.15 SEM images for polymer concentration of 0.25%w/v. 
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Figure 4.16 The L/davg, e and davg plotted against V/S. 
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CHAPTER V 
 
 

CONCLUSION 

5.1 Summary 

This study showed that the morphology of the fibers produced by electrospinning of 

aqueous solutions of PEO at different concentrations is influenced by parameters such as 

the applied voltage, the distance between the nozzle tip and grounded electrode and the 

concentration of the solution. The formation of polymer spheres in sub-micron range was 

observed. The conditions at which beaded and non-beaded fibers formed was also 

illustrated. 

5.2 Conclusions 

Observations of electrospinning of aqueous solutions of PEO at different concentrations 

yielded the following major conclusions: 

1. Digital holographic microscopy can be used to observe the trajectory of the 

electrospinning jet. 

2. By making a few improvements, the change in morphology of the fiber as the 

jets propagates towards the collector can be inspected using digital 

holographic microscopy. 

3. As the concentration of the solution decreases, beaded fibers are formed. 

Further reduction in the concentration results in the generation of beads with 

spindle-like structures. This could possibly be attributed to the decrease in the 
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viscosity of the polymer solution, and hence a decrease in the damping of the 

axis-symmetric disturbances along the jet surface.  

4. Increasing the applied voltage and the traveling distance favors the formation 

of sphere-like structures with short tails. 

5. Spheres of PEO were observed for the following test conditions: applied 

voltage = 30kV, gap = 0.23m and initial polymer concentration of 0.25% by 

weight.   

5.3 Recommendations for future Studies 

Based on the present experimental results for electrospinning of PEO, the following 

recommendations are made concerning future studies: 

1. A theoretical model is required to achieve better control over the size and 

morphology of the electrospun fiber. 

2. Extensive investigation of the relation between the operating parameters (applied 

voltage, gap distance, air humidity, viscosity and surface tension of the solution) 

and the morphology of the electrospun fibers is to be made. 

3. This study needs to be extended to other polymers and a generalized theory 

applicable to a broad range of polymers should be developed.
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APPENDIX 

 

EXPERIMENTAL DATA 

 

 

Figure A.1 SEM image obtained for concentration=1%w/v, Gap=0.17m, Voltage=20kV. 
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S.No 
dmax dmin 

Tail 
Length Avg Dia dmax/dmin L/davg V/S  

(nm) (nm) L(nm) davg(nm) e   (V/m) 

1 690.3351 672.601352 438.6147 681.4105 1.026366 0.6436864 117647.06 

2 971.3926 906.384688 399.2791 938.3258 1.071722 0.4255229 117647.06 

3 883.8835 657.179401 710.2476 762.1483 1.344965 0.9319021 117647.06 

4 881.8094 824.579675 203.7251 852.7146 1.069405 0.2389136 117647.06 

5 826.3542 528.716385 3971.709 660.9894 1.562944 6.0087323 117647.06 

6 777.6479 696.145919 1683.009 735.7693 1.117076 2.2874141 117647.06 

7 828.7144 484.375 4563.322 633.5681 1.710894 7.202575 117647.06 

8 530.5602 524.078432 1319.817 527.3094 1.012368 2.5029275 117647.06 

9 1447.654 444.14595 4737.93 801.854 3.259411 5.9087191 117647.06 

10 1202.212 572.182294 1840.37 829.3878 2.101099 2.2189503 117647.06 

11 657.1794 524.078432 963.66 586.8676 1.253971 1.64204 117647.06 

12 697.5473 576.221529 3714.717 633.9888 1.210554 5.8592795 117647.06 

 
Table A.1 Measurements made from SEM image in Fig. A.1. 
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Figure A.2 SEM image obtained for concentration=1%w/v, Gap=0.23m, Voltage=30kV. 
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S.No 
dmax dmin 

Tail 
Length Avg Dia dmax/dmin L/davg V/S 

(nm) (nm) L(nm) davg(nm) e 
 

(V/m) 

1 927.1798 612.500996 562.9888 753.5904 1.51376 0.7470753 130434.78 

2 1179.847 676.793829 604.4264 893.5955 1.743288 0.6763982 130434.78 

3 918.5801 607.544737 305.3236 747.0465 1.511955 0.4087076 130434.78 

4 1083.559 766.027207 1081.231 911.0628 1.414517 1.1867798 130434.78 

5 794.2855 588.158962 1111.442 683.4955 1.350461 1.6261141 130434.78 

6 756.0956 568.99836 714.9908 655.9094 1.328819 1.0900756 130434.78 

7 857.1429 634.920635 381.6132 737.7111 1.35 0.5172935 130434.78 

8 874.3136 616.396439 924.0848 734.1143 1.418427 1.2587751 130434.78 

9 958.8405 585.367902 597.7197 749.1825 1.638014 0.7978292 130434.78 

10 952.381 683.277563 1222.487 806.6849 1.393842 1.5154451 130434.78 

11 827.8352 632.535201 435.8581 723.6262 1.308758 0.6023249 130434.78 

12 998.9917 666.855604 892.636 816.2005 1.498063 1.093648 130434.78 

13 830.5699 630.140738 587.516 723.4472 1.31807 0.8121063 130434.78 

14 730.3312 650.793651 222.2222 689.4164 1.122216 0.3223338 130434.78 

15 943.0762 747.212844 348.4841 839.4514 1.262125 0.4151331 130434.78 

16 928.9444 642.80815 602.3386 772.7438 1.445135 0.7794803 130434.78 

17 819.2691 540.61544 639.9654 665.5145 1.515438 0.9616101 130434.78 

 
Table A.2 Measurements made from SEM image in Fig. A.2. 
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Figure A.3 SEM image obtained for concentration=0.5%w/v, Gap=0.17m, 
Voltage=20kV. 
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S.No 
dmax dmin 

Tail 
Length Avg Dia dmax/dmin L/davg V/S 

(nm) (nm) L(nm) davg(nm) e  (V/m) 

1 1002.014 752.086206 823.2573 868.1017 1.332312 0.948342 117647.06 

2 730.3312 642.023759 475.6611 684.7554 1.137546 0.6946437 117647.06 

3 853.313 516.787955 501.1953 664.0647 1.651186 0.7547388 117647.06 

4 778.4254 773.066391 369.1969 775.7413 1.006932 0.4759279 117647.06 

5 551.0017 482.758931 247.9444 515.7529 1.14136 0.4807427 117647.06 

6 439.0259 286.154863 123.9722 354.4424 1.534225 0.3497669 117647.06 

7 781.6554 600.872801 333.711 685.3287 1.300867 0.4869357 117647.06 

8 869.5458 673.809056 772.4143 765.4462 1.290493 1.0091034 117647.06 

9 853.313 740.438336 596.4538 794.8746 1.152443 0.7503747 117647.06 

10 571.649 554.420609 392.6767 562.9689 1.031075 0.6975105 117647.06 

11 651.3741 537.108708 2177.3 591.4886 1.212742 3.6810519 117647.06 

12 562.5411 529.787913 356.7017 545.9189 1.061823 0.6533968 117647.06 

13 762.731 762.731033 748.7287 762.731 1 0.9816418 117647.06 

14 628.9401 581.321526 369.1969 604.6622 1.081914 0.6105838 117647.06 

15 741.1186 669.683273 6742.297 704.4961 1.10667 9.5703831 117647.06 

16 710.7496 573.409266 3389.672 638.3968 1.239515 5.3096638 117647.06 

17 719.207 639.861726 2609.787 678.3753 1.124004 3.8471139 117647.06 

 
Table A.3 Measurements made from SEM image in Fig. A.3. 
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Figure A.4 SEM image obtained for concentration=0.5%w/v, Gap=0.17m, 
Voltage=30kV. 
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S.No 
dmax dmin 

Tail 
Length Avg Dia dmax/dmin L/davg V/S 

(nm) (nm) L(nm) davg(nm) e 
 

(V/m) 

1 888.4293 475.215823 1126.085 649.7659 1.869528 1.7330621 176470.59 

2 516.5711 455.543117 244.5699 485.0984 1.133968 0.5041657 176470.59 

3 803.435 521.509977 2377.153 647.3016 1.540594 3.6724034 176470.59 

4 676.2214 632.18526 377.5952 653.8327 1.069657 0.5775104 176470.59 

5 716.8794 681.257167 1230.774 698.8413 1.052289 1.7611641 176470.59 

6 703.125 625.780762 850.0919 663.3265 1.123596 1.2815587 176470.59 

7 609.375 474.444577 977.9053 537.6938 1.284397 1.8187029 176470.59 

 
Table A.4 Measurements made from SEM image in Fig. A.4. 
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Figure A.5 SEM image obtained for concentration=0.5%w/v, Gap=0.23m, 
Voltage=20kV. 
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S.No 
dmax dmin 

Tail 
Length Avg Dia dmax/dmin L/davg V/S 

(nm) (nm) L(nm) davg(nm) e  (V/m) 

1 1057.548 935.022769 557.9147 994.4001 1.13104 0.5610565 86956.522 

2 831.802 765.625 1077.219 798.0278 1.086435 1.3498512 86956.522 

3 752.5997 682.510302 732.3776 716.6987 1.102693 1.0218766 86956.522 

4 822.0592 678.384167 998.2896 746.7743 1.21179 1.3368022 86956.522 

5 805.4077 662.175628 2231.635 730.2886 1.216305 3.0558258 86956.522 

6 831.802 801.000351 3500.679 816.2559 1.038454 4.2887029 86956.522 

7 705.0321 610.175756 1975.687 655.8914 1.155457 3.0122168 86956.522 

8 830.4801 662.918217 1728.368 741.9841 1.252764 2.3293863 86956.522 

9 816.2474 734.541205 539.6849 774.3173 1.111234 0.6969815 86956.522 

10 868.4183 761.949084 560.9788 813.4436 1.139733 0.6896346 86956.522 

11 781.8748 656.435986 2608.352 716.4152 1.191091 3.6408379 86956.522 

12 830.4801 822.059152 606.4279 826.2589 1.010244 0.7339442 86956.522 

13 911.0862 844.328505 1042.501 877.0724 1.079066 1.1886142 86956.522 

14 806.6193 546.65174 278.1952 664.033 1.475563 0.4189479 86956.522 

15 884.1596 664.384113 866.7535 766.4344 1.330796 1.1308907 86956.522 

16 940.7496 923.065968 748.2075 931.8658 1.019157 0.8029133 86956.522 
 

Table A.5 Measurements made from SEM image in Fig. A.5. 
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Figure A.6 SEM image obtained for concentration=0.5%w/v, Gap=0.23m, 
Voltage=30kV. 
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S.No 
dmax dmin 

Tail 
Length Avg Dia dmax/dmin L/davg V/S 

(nm) (nm) L(nm) davg(nm) e  (V/m) 

1 641.3867 609.375 337.2974 625.176 1.052532 0.5395239 130434.78 

2 853.5313 623.827024 3662.983 729.6957 1.368218 5.0198771 130434.78 

3 641.3867 578.125 376.2998 608.9349 1.109426 0.617964 130434.78 

4 432.1661 298.515206 359.375 359.1771 1.447719 1.0005511 130434.78 

5 532.1683 519.399067 5426.78 525.7449 1.024585 10.322078 130434.78 

6 727.0244 667.500293 306.9825 696.6269 1.089175 0.44067 130434.78 

7 734.375 671.147862 247.9304 702.05 1.094207 0.3531521 130434.78 

8 859.375 512.538108 3416.784 663.6734 1.676705 5.1482911 130434.78 

9 657.922 553.751411 234.375 603.5936 1.188118 0.3882994 130434.78 

10 692.1011 586.510137 1501.248 637.1219 1.180033 2.3562964 130434.78 

11 539.4586 499.267041 681.5703 518.9739 1.080501 1.3133036 130434.78 

12 603.1331 603.133096 459.8106 603.1331 1 0.76237 130434.78 

13 730.5419 528.716385 806.6193 621.4897 1.381727 1.2978805 130434.78 

14 629.8639 554.852528 1827.897 591.1697 1.135192 3.0920009 130434.78 

15 806.6193 594.982274 633.15 692.7656 1.355703 0.9139454 130434.78 

16 791.1868 603.133096 1975.691 690.7901 1.311795 2.8600456 130434.78 

17 687.6775 578.125 919.0901 630.5264 1.189496 1.4576551 130434.78 

18 629.0882 595.597455 312.5 612.1138 1.05623 0.510526 130434.78 

19 620.2948 512.538108 425.3055 563.8481 1.210241 0.7542909 130434.78 
 

Table A.6 Measurements made from SEM image in Fig. A.6. 
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Figure A.7 SEM image obtained for concentration=0.25%w/v, Gap=0.17m, 
Voltage=20kV. 
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S.No 
dmax dmin 

Tail 
Length Avg Dia dmax/dmin L/davg V/S 

(nm) (nm) L(nm) davg(nm) e  (V/m) 

1 682.7242 539.915916 354.9314 607.1356 1.264501 0.5845999 117647.06 

2 817.1135 783.586987 494.3623 800.1747 1.042786 0.6178179 117647.06 

3 754.5946 483.54115 4887.185 604.0509 1.560559 8.0906836 117647.06 

4 730.8485 471.93869 1988.458 587.2952 1.548609 3.3857889 117647.06 

5 909.7606 606.507085 315.0704 742.8164 1.5 0.4241564 117647.06 

6 947.3412 717.804384 415.4366 824.6245 1.319776 0.5037888 117647.06 

7 875.4655 663.066621 303.2535 761.9002 1.320328 0.3980226 117647.06 

8 873.0159 681.801003 6524.008 771.507 1.280456 8.4561872 117647.06 

9 924.4584 689.15217 1122.186 798.1808 1.341443 1.4059296 117647.06 

10 864.3145 816.187945 339.3263 839.9066 1.058965 0.4040048 117647.06 

11 868.386 673.622069 3872.912 764.8294 1.289129 5.06376 117647.06 

12 657.7254 605.051383 2488.66 630.8388 1.087057 3.9450018 117647.06 

13 874.3136 825.549436 3311.714 849.5817 1.059069 3.8980528 117647.06 

14 619.0476 539.68254 644.5695 578.0045 1.147059 1.1151636 117647.06 

15 863.8771 419.059644 533.5789 601.6777 2.061466 0.8868185 117647.06 

16 781.8165 746.706888 264.1796 764.0601 1.047019 0.3457577 117647.06 

17 602.3386 588.158962 269.8413 595.2066 1.024109 0.4533574 117647.06 

18 537.1087 533.578931 2392.412 535.3409 1.006615 4.4689504 117647.06 

19 841.8686 666.855604 1239.011 749.2695 1.262445 1.6536248 117647.06 

20 775.0194 650.793651 1531.169 710.1955 1.190883 2.1559827 117647.06 

21 508.1845 485.620906 3607.852 496.7746 1.046463 7.2625537 117647.06 

22 634.9206 559.171903 1333.711 595.8438 1.135466 2.2383573 117647.06 

23 1097.192 647.689072 1143.056 842.9941 1.69401 1.3559472 117647.06 

24 658.4911 427.394032 2622.199 530.5046 1.540712 4.9428398 117647.06 

25 743.8333 413.917613 6623.443 554.8745 1.797056 11.936831 117647.06 

 
Table A.7 Measurements made from SEM image in Fig. A.7. 
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Figure A.8 SEM image obtained for concentration=0.25%w/v, Gap=0.23m, 
Voltage=20kV. 
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S.No 
dmax dmin 

Tail 
Length Avg Dia dmax/dmin L/davg V/S 

(nm) (nm) L(nm) davg(nm) e  (V/m) 

1 958.8405 632.535201 1744.109 778.7813 1.515869 2.2395357 86956.522 

2 1049.541 683.277563 3460.114 846.8341 1.536039 4.0859413 86956.522 

3 918.5801 637.494782 295.2552 765.2385 1.440922 0.3858342 86956.522 

4 752.7559 692.980316 1762.191 722.25 1.086259 2.4398626 86956.522 

5 823.2573 550.315423 1844.964 673.0908 1.495974 2.7410333 86956.522 

6 858.4646 524.049969 7290.791 670.7297 1.638135 10.869939 86956.522 

7 809.3682 698.59305 5737.509 751.9435 1.158569 7.6302403 86956.522 

8 1003.144 734.459384 4596.173 858.3524 1.365827 5.3546461 86956.522 

9 892.4249 495.888868 8759.309 665.2395 1.799647 13.167151 86956.522 

10 1090.974 693.343799 3658.961 869.7241 1.573496 4.2070365 86956.522 

11 1069.163 876.615954 3501.963 968.1142 1.219648 3.617303 86956.522 

12 813.7146 689.882978 900.2953 749.2449 1.179497 1.2016035 86956.522 

13 968.7743 762.565851 915.6956 859.5081 1.270414 1.0653717 86956.522 

14 848.5756 650.987195 3237.661 743.2442 1.303521 4.3561203 86956.522 

15 862.4176 841.86861 1104.543 852.0812 1.024409 1.2962889 86956.522 

16 728.4314 582.13082 558.27 651.1853 1.251319 0.8573135 86956.522 

17 839.471 647.689072 628.9401 737.3711 1.296102 0.8529492 86956.522 

18 832.9931 669.683273 2224.772 746.8879 1.243861 2.9787224 86956.522 

19 587.516 587.301587 713.5644 587.4088 1.000365 1.2147663 86956.522 

20 947.0752 808.277908 2938.956 874.9285 1.17172 3.3590811 86956.522 

21 788.0757 657.725376 708.7973 719.9565 1.198183 0.9845001 86956.522 

22 902.95 866.498036 535.4644 884.5363 1.042068 0.6053617 86956.522 

23 841.8686 730.331243 325.6871 784.1192 1.152722 0.415354 86956.522 

24 704.5188 482.758931 1911.371 583.1918 1.459359 3.2774305 86956.522 

25 1219.746 968.774255 336.7175 1087.041 1.259061 0.309756 86956.522 

26 843.513 546.640488 4351.69 679.0422 1.543086 6.408571 86956.522 

27 910.8677 506.19742 5441.987 679.0279 1.799432 8.0143792 86956.522 

28 610.8534 525.969572 1199.451 566.8247 1.161385 2.1160882 86956.522 
 

Table A.8 Measurements made from SEM image in Fig. A.8. 
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Figure A.9 SEM image obtained for concentration=0.25%w/v, Gap=0.23m, 
Voltage=30kV. 
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S.No 
dmax dmin 

Tail 
Length Avg Dia dmax/dmin L/davg V/S 

(nm) (nm) L(nm) davg(nm) e  (V/m) 

1 778.4254 658.491064 667.6108 715.9512 1.182135 0.9324809 130434.78 

2 399.6723 392.676726 0 396.1591 1.017815 0 130434.78 

3 669.8714 532.160464 175.3232 597.0587 1.258777 0.2936448 130434.78 

4 669.8714 517.031666 684.7509 588.5106 1.29561 1.1635321 130434.78 

5 673.8091 627.937792 2822.64 650.4692 1.073051 4.3393905 130434.78 

6 866.498 604.426437 5197.716 723.6949 1.433587 7.1821926 130434.78 

7 712.8734 492.319442 215.8964 592.42 1.44799 0.3644313 130434.78 

8 664.5848 550.086459 1986.166 604.6314 1.208146 3.2849198 130434.78 

9 778.4254 633.729041 1673.395 702.3609 1.228325 2.3825286 130434.78 

10 1012.892 460.31746 807.9365 682.8265 2.200422 1.1832236 130434.78 

11 485.8802 439.025927 0 461.8593 1.106723 0 130434.78 

12 532.3971 492.830943 0 512.2322 1.080284 0 130434.78 

13 673.6221 647.883544 0 660.6275 1.039727 0 130434.78 

14 691.5245 605.051383 0 646.8445 1.142919 0 130434.78 

15 694.2517 594.973486 319.0437 642.6985 1.166862 0.4964127 130434.78 

16 480.4046 477.247504 0 478.8235 1.006615 0 130434.78 

17 699.1338 523.809524 2654.519 605.1553 1.33471 4.3865089 130434.78 

18 832.8419 537.108708 528.7811 668.8248 1.550602 0.7906122 130434.78 

19 746.0317 593.064816 8102.793 665.1655 1.257926 12.181618 130434.78 

20 520.6736 515.078754 0 517.8686 1.010862 0 130434.78 

21 604.4264 585.367902 0 594.8208 1.032558 0 130434.78 

22 535.4644 477.511395 0 505.6583 1.121365 0 130434.78 

23 802.6474 554.420609 498.4228 667.0864 1.447723 0.7471638 130434.78 

24 366.457 312.662152 0 338.4926 1.172054 0 130434.78 

25 671.3742 525.969572 0 594.241 1.276451 0 130434.78 

26 717.2777 647.689072 0 681.5959 1.107441 0 130434.78 

27 604.4264 492.830943 1400.608 545.7839 1.226438 2.5662321 130434.78 

28 401.5591 373.606422 0 387.3307 1.074818 0 130434.78 

29 636.7038 557.592637 506.1974 595.8367 1.14188 0.8495573 130434.78 

30 508.3105 476.190476 0 491.9884 1.067452 0 130434.78 

31 555.3288 349.206349 1146.819 440.3684 1.59026 2.6042253 130434.78 

32 457.8478 396.825397 264.1796 426.246 1.153776 0.6197821 130434.78 
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S.No 
dmax dmin 

Tail 
Length Avg Dia dmax/dmin L/davg V/S 

(nm) (nm) L(nm) davg(nm) e 
 

(V/m) 

33 493.0865 235.969345 1925.947 341.106 2.089621 5.6461845 130434.78 

34 588.159 571.648987 0 579.8452 1.028881 0 130434.78 

35 777.7778 730.848535 0 753.9481 1.064212 0 130434.78 

36 428.8653 428.865273 0 428.8653 1 0 130434.78 

37 457.8265 406.162357 0 431.2214 1.127201 0 130434.78 

38 453.0176 409.707728 0 430.8188 1.105709 0 130434.78 

39 491.2083 449.068007 288.9069 469.6658 1.093839 0.6151329 130434.78 

40 535.7671 502.866443 138.7107 519.0562 1.065426 0.2672365 130434.78 

41 655.3856 559.787176 0 605.7033 1.170776 0 130434.78 

42 642.9306 576.303416 318.7474 608.7061 1.115611 0.5236474 130434.78 

43 237.3737 227.272727 0 232.2683 1.044444 0 130434.78 

44 585.9457 585.880355 0 585.913 1.000111 0 130434.78 

45 464.6465 439.510028 762.2248 451.9035 1.057192 1.6866981 130434.78 

46 601.0313 550.528217 0 575.2258 1.091736 0 130434.78 

47 290.1734 208.788148 0 246.1397 1.389798 0 130434.78 
 

 Table A.9 Measurements made from SEM image in Fig. A.9. 
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Scope and Method of Study:  
 
An experimental process for obtaining fibers and spheres using electrospinning of a 
polymer (Polyethylene Oxide) solution in water were studied. The objectives of the study 
were to complete measurements of size of the generated fibers and spheres to develop 
phenomenological analyses to help interpret and correlate the measurements of the 
instability growth on the electrospun micro liquid (polymeric solution) jets. Digital 
holographic microscopy was used to observe the trajectory of the electrospun jet and the 
growth of instability on the electrospun micro polymeric jet. The morphology of the 
fibers deposited on the collector electrode was observed using SEM imaging. The 
conditions for formation of beaded fibers were studied. The sphere formation mechanism 
was observed for different parameters including polymer concentration, applied voltage, 
and needle to electrode distance. 
 
Findings and Conclusions:   
 
Observations of electrospinning of aqueous solutions of PEO at different concentrations 
yielded the following major conclusions: 

1. As the concentration of the solution decreases, beaded fibers are formed. Further 
reduction in the concentration results in the generation of beads with spindle-like 
structures. This could possibly be attributed to the decrease in the viscosity of the 
polymer solution, and hence a decrease in the damping of the axis-symmetric 
disturbances along the jet surface.  

2. Increasing the applied voltage and the traveling distance favors the formation of 
sphere-like structures with short tails. 

3. Spheres of PEO were observed for the following test conditions: applied voltage = 
30kV, gap = 0.23m and initial polymer concentration of 0.25% by weight. 

 
 


