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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Introduction 

Composite materials are one of the many advanced level structural materials 

available for next generation flight vehicles. Its unique and attractive properties make it 

the perfect solution for the design of next generation Space Shuttle. One such initiative is 

the Reusable Launch Vehicle (RLV) program, in which the impetus is towards using a 

mostly composite airframe in order to increase payload and decrease vehicle weight 

while not compromising on the other properties that the vehicle would have had if it was 

made of conventional material. However, with its application arise problems which have 

to be addressed before it is fully incorporated into production. One such problem is the 

permeation of liquid propellant through micro-cracks in the composite structure.  

One of the major design features of a next generation space shuttle will be internal 

cryogenic fuel tanks (usually holding liquid hydrogen) made entirely of polymer 

composite. The cryogenic temperatures combined with the action of various flight loads 

(e.g. re-entry, repeated take-off, landing, i.e. fatigue type loads) can cause the tank to 

develop micro-crack as shown in Fig. 1.1. The micro-cracks usually appear through the 
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thickness of the composite structure in the form of transverse matrix cracks. It is easy to 

imagine the micro-cracks forming a micro-size network of connecting pathways (See Fig. 

1.2) through the thickness of the structure leading to the leakage of cryogenic fuel 

(permeant). Needless to say, the situation is not desirable and warrants scientific 

investigation. 

Fig. 1.1 Cross-ply laminate subjected to uniaxial loading and resulting damage. 

 

Shown in Fig. 1.2 is an idealized version of connecting pathways in a composite 

laminate of arbitrary ply orientation. It has been observed that at the junctions of these 

intersecting micro-cracks, delaminations may occur which, coupled with the crack 

opening displacements, will enable the permeant to escape. It is hence of primary 

importance that an analytical solution be developed inorder to model, predict and 

understand the damage mechanism(s) behind the permeation process.  
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Fig.1.2 Permeation path at overlap of transverse cracks in arbitrarily orientated plies. 

 

1.2. Thesis Overview 

In this thesis, an analytical model is presented to analyze composite laminates 

with transverse matrix cracks and delaminations in them. The model will be used to 

determine the crack opening of damaged laminates subjected to mechanical and/or 

thermal loads. Since, in the past researchers have limited the study to orthotropic or 

balanced laminates, the model suggested in this thesis will be generalized to study a 

generic symmetric laminate. Further, the model will be used to determine the distribution 

of delaminated crack opening displacement (DCOD) through the thickness of the 

laminate. The results from the crack opening analysis will be used to determine the 

permeability of the damaged composite using the analytical model suggested by Roy and 

Benjamin [36]. Finally, the analytical model will be used to study the damage evolution 

of transverse matrix cracks and delaminations within the cracked ply of the laminate. 
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The proposed micro-mechanics model is based on the classical lamination theory 

(CLT) for composites. The substructure of the damaged laminate is defined using 

sublaminates or ply groups into which uncracked and cracked plies are grouped as per 

their position within the laminate. Further, since the load transfer from the cracked to the 

uncracked ply (ply or sublaminate) is primarily through shear transfer, the model uses a 

sublaminate wise first order shear deformation theory to simulate the load transfer 

between the plies.  

Most previous models have used either a one- or two-dimensional shear lag model 

to analyze damage of composites. The use of first order shear deformation assumptions 

makes the current model superior in analysis, since the transverse shear effects are 

included in the model through its governing equations and it does not separately need the 

inclusion of interface shear terms to simulate the interactions between the cracked and 

uncracked plies. Further, of the models that have been proposed to solve for general 

configuration laminates previously, most have not addressed the issue of stitch cracks 

that has been observed in off-axis plies of a general anisotropic laminate. In this report, 

an analytical model is suggested to address these experimental observations. The stitch 

crack model will be a part of the extended model of the current analysis that will be used 

to analyze a laminate of general configuration. The extended model will be used to 

predict the delaminated crack opening displacement (DCOD) (with and with-out stitch 

cracks – as per cracked-ply configuration) for each layer in the IM7/5250-4 laminate of 

lay-up [0/45/-45/90]s and will be verified against 2-D FEA results for both mechanical 

and thermal load cases.  
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Subsequently, the results (delaminated crack opening displacements) from the 

analysis of a generic laminate system will be used as input to the permeability model, 

from which the permeability of the damaged laminate will be evaluated. In this thesis, the 

combined DCOD-permeability model [36] is verified using experimental results for a 

IM7/5250-4 composite of lay-up [0/45/-45/90]s.  

An equally important contribution of this model is to the study of damage 

evolution in general configuration laminates. The model developed in thesis is capable of 

handling cracks in different layers and predicting the damage evolution in the laminate 

using parameters calculated from the suggested analytical model. The damage evolution 

(in the form of both uniform matrix cracks and interlaminar delamination) for the 

IM7/5250-4 laminate of configuration [0/45/-45/90]s is predicted using this model and 

verified using two dimensional finite element analysis (FEA).  
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 Due to the challenge involved in the analytical modeling of composites, 

significant interest has been generated in the scientific community to propose models that 

will best solve a given problem easily and accurately. References [1-3] used a continuum 

damage mechanics approach to determine the degradation of mechanical properties of the 

laminate. The damage in the laminate (e.g., interfacial debond, matrix crack,  

delamination) is included in the definition of internal damage variables which is then 

used to extract the properties of the damaged laminate. While this method is widely used 

in the analysis of homogenous isotropic materials, the anisotropic nature of most 

composite fracture problems makes this method harder to use in the analysis of 

composite damage. Many researchers in this field tend to use the structural mechanics 

approach wherein, an approximate distribution of the stresses and displacements in the 

cracked region is determined, from which the damage state of the laminate is easily 

extracted. Two and three dimensional finite element analysis [4], [31], [34] and [35] has 

also been used to numerically simulate transverse crack multiplication in cross-ply 

laminates.
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References [5-8] use variational approach to study the stress field in the cracked 

orthotropic laminates.  The solutions from the analysis in [5]-[7] were verified with 

experiments. Nairn [6,7], used a two-dimensional variational approach to analyse the 

stress fields in cracked laminates with delaminations originating from the crack tip for 

[S/90n]s laminates (where, S is the balanced set of sublaminates). He observed that for 

lower crack densities the damage grows in the damaged ply through pure matrix cracks 

until the crack density becomes too large (called the saturation crack density) after which 

point the damage mode switches to delamination growth. The variational solution 

methods have shown good agreement with experimental results for cross-ply laminates. 

However, the extension of this solution procedure to the analysis of general laminate 

configurations would be difficult.  

McCartney [9,10], proposed and determined an approximate solution for the 

stresses in cross-ply laminates. Through its analysis the model simulates stress transfer 

between the plies of an orthotropic laminate with cracks in the 90 ply. The model was 

validated and shown to produce the same results as the variational solution by 

Schoeppner and Pagano [8] (refer [10]).  

Since, it was evident that the damage mechanism in the cracked laminates could 

be studied in detail by using approximate stress transfer methods, researchers have 

frequently employed to shear-lag type analysis. Hong et al [12] and Han et al [13] used 

one-dimensional shear lag model to determine the drop in mechanical properties of the 

laminate with pure matrix cracks. Henaff-Gardin et al [14] derived a simple closed form 

solution for strain energy release in mixed mode conditions (in case of a general in-plane 

loading) for damage in cross-ply laminates using one-dimensional shear lag. Zhang et al 
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[15]-[18], improved the one-dimensional shear lag model inorder to satisfy the 

equilibrium equations for the inplane shear stress. In this method, the out of plane shear 

stresses was approximated to vary linearly along the laminate length. Zhang and Fan 

[15], proposed the use of an equivalent constrained model (ECM) to evaluate the damage 

parameters of the laminate system. The ECM considers the damaged laminate to be a 

perfectly bonded set of laminates with stiffness of the laminate equal to that of the 

damaged laminate. Using the 2-D shear lag along with ECM assumptions the degradation 

in material properties were evaluated for both non-uniform matrix cracking and 

delamination growth in laminates of [±θm/90n]s configuration. It was noted that the use of 

2-D shear lag/ECM made an improvement in predictions in stiffness degradation over the 

1-D shear lag ([16]-[18]). Kashtalayan and Soutis [19] used the modified ECM/2-D shear 

lag to predict the stiffness degradation of damaged cross-ply laminates with transverse 

matrix cracks in the 90˚ plies and fiber breakage in the 0˚ plies. Their model compared 

well with the variational solutions of Hashin [5], Schoeppner and Pagano [8], and the 

shear lag solutions of Henaff-Gardin et al [14]. 

The first order shear plate model avoids the use of “fictional” boundary shear to 

simulate the transfer of load between the cracked and uncracked plies. This model is 

based on the modified classical lamination theory to include first order deformation 

approximation. It was first used by Armanios et al [20] to solve for stiffness degradations 

in composite laminates with a cracked 90˚ middle ply. The model was further extended to 

the five layer ECM by Zhang et al [21]. As per the assumptions of the first order plate 

theory, load shearing in the cracked laminate is assumed to occur purely through the 

shear deformations of the ply groups (or sublaminates) of the model. Using this model, 
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Armanios et al [20] was able to simulate the reduction in delamination onset strain for 

[±25/90n]s laminates with increase in ‘n’ (or the number of cracked plies in the laminate), 

as observed in experiments. From the analysis of the five layer ECM, Zhang et al [21] 

showed that the strain energy release rate for local delamination is strongly influenced by 

the constraining layers immediately adjacent to the cracked 90 ply group. This effect of 

local laminate architecture cannot be simulated through regular shear lag models. The 

FLM proposed in [21] was extended to solve for multilayer cracking in laminates of any 

orientation in [22]. The solution was restricted to pure intra-lamina cracks (or matrix 

cracks) with no delaminations.  

References [23]-[27] list some of the studies to characterize damage in off-axis 

plies. O’Brien and Hooper [23] and O’Brien [24] used tensile tests and quasi-three 

dimensional FEA to characterize and model damage in [0/+θ2/-θ2]s laminates, for θ=15˚, 

20˚, 25˚ and 30˚. It was observed from FEA that the stresses normal to the fiber in off-

axis plies were compressive at the interior of the laminate and tensile at the edge of the 

laminate, and that the matrix cracks in the off-axis plies initiates at the edge of the 

laminate. Further, they observed from experiments that the local delamination is only 

uniform at the edge of the ply, whereas in the interior of the laminate the local 

delamination is restricted to an area bounded by the angle ply matrix cracks. Two strain 

energy release rates solutions were derived: one for uniform through-width delamination 

growing from angle ply matrix crack while another for a delamination growth from the 

matrix crack confined to a localized area around the angle-ply crack. Salpekar, O’Brien 

and Shivkumar [25] used three dimensional FEA to model delaminations in graphite 

epoxy laminates of lay-up [0/+θ/-θ]s and [-θ/+θ/0]s, for θ=15˚ and 30˚. They computed the 
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strain energy release rate (SERR) at the delamination front using three techniques: the 

virtual crack closure technique (VCCT), the equivalent domain integral (EDI) and global 

energy balance. Kashtalayan and Soutis [26] extended the ECM/two dimensional shear 

lag model [18] to derive closed form expressions for SERRs in mode I and mode II in 

terms of the in-situ damage functions for laminates with off-axis plies. They compared 

this model with the closed form expression for mode II SERR from O’Brien [24]. They 

observed that O’Brien’s solution significantly overestimates the SERR for delamination 

growth. Using their model they saw that the damage induced stiffness changes for 

unbalanced laminates were significantly higher than balanced laminates. However, since 

the model was not verified more rigorously against experimental data the validity of the 

conclusions are questionable. Varna et al [27] used a synergistic damage mechanics 

approach to study the cracks in off-axis plies. They verified their theoretical model with 

experimental data for glass fiber/epoxy laminates of configuration [ 4 1/ 20 / / 0± θ ]s, for 

θ=55˚, 70˚ and 90˚. Using this model they were able to capture the stiffness degradations 

of the cracked ply quite well.  

References [28]-[31] document the experimental verification of the various 

analytical models suggested for matrix crack growth in laminates. Henaff-Gardin et al 

[28] developed a simple one-dimensional shear lag model to analyse cross-ply laminates 

and tested the solution with experimental data of cycling of T300/914 laminates in 

thermal load. They used the biaxial nature of thermal loads to create cracks in the 0 and 

90 plies of the cross-ply laminate. Takeda et al [29] verified McCartney’s stress transfer 

solution [9] for axial displacements, using a ply-refinement method for the case of cracks 

in the 90 ply of a cross-ply laminate. They observed that the model predictions for axial 
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displacements cross-ply laminates compared well with the experimental ply-refinement 

technique. McManus and Maddocks [30] used a modified shear-lag analysis to model 

damage progress (based on self-similar matrix crack multiplication) in general composite 

laminates. Their simple analysis was able to capture, in general, the damage trends in 

AS4/3501-6 laminates of three different lay-ups: [04/454/904/-454]s, [02/452/902/-452]s and 

[02/602/-602]s. This simple shear-lag theory is a fairly good first approximation of the 

damage growth in the laminate. However for a more detailed analysis of the damage state 

the analysis is ineffective since, it does not include damage growth in the form of 

delaminations. Su et al [31] used a combined FEA/ECM to predict micro-crack densities 

in IM7/977-2 graphite epoxy laminate of lay-up [0/45/90/-45]s for uniform matrix crack 

multiplication. Although their predictions compared reasonably well with the 

experimental data from Donaldson et al [37], the method is computationally expensive to 

use as a design tool.  

The determination of the crack opening displacement (COD) is closely related to 

the damage state in a composite. Properties such as permeability, largely depends on the 

crack opening of its individual layers. Hence, it is important to understand the variation 

of crack opening with applied load and also to functionalize the COD in terms of 

geometry and damage parameters of the laminate. Varna et al [32] predicted average 

COD based on shear-lag model and variational approach and found that the stiffness 

reduction in the uncracked layer influences COD of the interior layer. Roy and Benjamin 

[33] developed a simple shear-lag model to determine COD. Noh and Whitcomb [34, 35] 

developed analytical expressions for calculating the crack opening volume (COV) and 

studied the effects of various parameters such as adjacent ply orientation, material 
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properties of the cracked and surrounding plies on its value. More recently, they used 3-D 

FEA to determine the growth of delamination and calculated the resulting delaminated 

crack opening displacement (DCOD) at the intersection of transverse matrix cracks 

(TMC) [35]. Roy and Benjamin [36] were able to extend the first order shear deformable 

plate model proposed by Armanios et al [20] and Zhang et al [21] to study the DCOD in 

the 90˚ ply of the laminate configuration [ l m n r/ / ... / / 90φ ϕ θ ]s subjected to mechanical 

and/or thermal load(s). This model was subsequently verified for cross-ply laminates 

using 2-D FEA, representing damage states that included transverse matrix cracks as well 

as delaminations.   

Any one of the damage model for composites suggested above can be used to 

predict the permeability of damaged composite when subjected to mechanical and/or 

temperature fields. However, experimental setups for permeability prediction are hard to 

design and use effectively. The challenge involved in inducing cracks in undamaged 

laminates and reliably studying their permeability characteristics has motivated many 

researchers to study this problem intently. References [37]-[41] list the major 

experimental work currently in progress in this area. Donaldson et al [37] were able to 

induce damage in IM7/977-2 composite samples of lay-up [0/45/90/-45]s through 

mechanical cycling in cryogenic condition. Grenoble and Gates [40] induced micro-

cracks in IM7/977-2 laminates through mechanical cycling at room temperature and then 

tested them for permeability at both room and cryogenic temperature. They observed that 

the damage develops quicker in the off-axis plies near the top and/or bottom surface of 

the laminate. They also observed that the permeability depended strongly on the crack 

density, loading conditions and test temperature. Bechel [38, 41] was able to induce 
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damage in IM7/5250-4, IM7/977-2 and IM7/977-3 of laminate stacking sequences: 

[0/90]2s, [0/90/45/-45]s, and [0/45/-45/90]s. The experimental setup was designed based 

on the setup by Henaff-Gardin et al [28]: the biaxial thermal fatigue in the composite 

caused through thermal cycling between a high temperature (~177˚C) and liquid nitrogen 

temperature (-196˚C) induces matrix cracks to develop in the composite. They studied 

and reported in particular the permeation characteristics of the [0/45/-45/90]s IM7/5250-4 

laminate since it was found to be the most susceptible to permeation. Aoki et al [39] 

observed that the chief difference between the cracks in a composite with off-axis plies 

and cross-ply laminates were the existence of short “stitch” cracks in the off-axis cracked 

layer(s). They observed that the cracks in angle plies do not usually develop through the 

width of the lamina; instead they tend to accumulate around the junctions with the crack 

in the adjacent layer. They referred to the through-thickness cracks in the 0 (or 90) plies 

as long cracks since the cracks in these layers usually extend through the width, and 

referred to the partially extended through the width cracks as stitch cracks. They further, 

observed from a study of laminates with varying off-axis ply lay-ups that the stitch cracks 

were dominant in the cracked ply as its orientation moved away from orthotropic 

configurations. Bechel et al [41] verified the existence of stitch cracks in the off-axis 

(±45) layers of the [0/90/45/-45]s, and [0/45/-45/90]s laminates that were thermally 

cycled.  

Peddiraju et al [42] predicted the experimental observations made by Gates et al 

[38] using an analytical model. They used the crack opening and crack spacing data from 

experiments to describe the geometry of the cracked laminate and then made predictions 

for the leak rate after modeling the geometry in a commercial fluid analysis code. Roy 
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and Benjamin [36] proposed an analytical model based on Darcy’s law to predict 

permeability. This analytical model was not validated against any experimental data.  

In this thesis, the damage analysis model proposed by Roy and Benjamin [36] will 

be first extended to determine the crack opening distribution through the thickness of a 

generic configuration of plies, and then used to verify the analytical permeability model 

in [36] using experimental results from Bechel et al [41]. 

Of the various models that have been reviewed in this chapter, the first order 

shear deformable plate theory has been chosen to analyze damaged laminates. The ability 

of this analytical model to give approximate two-dimensional solutions of longitudinal 

displacements of the laminate in the presence of TMC and delaminations makes it an 

ideal candidate for simple COD analysis.  

The model presented in Roy and Benjamin [36] uses the first order plate 

theory\ECM to predict the COD in cross-ply laminates for a given crack density under 

the influence of mechanical and/or thermal loads. This two dimensional analysis model 

considers uniformly spaced through thickness transverse matrix cracks along with 

delaminations that extend from the tips of each matrix crack. Since, cross-ply laminates 

have limited application in most aerospace structures the model will be extended, as 

presented in this thesis, to include analysis of cracks in off-axis cracked plies which can 

be located at any position along the thickness. Zhang et al [22], suggested a similar 

analytical model that solves for pure matrix crack growth in a general configuration 

laminate. However, since the solution procedure requires the determination of eigen 

values of a 10x10 system matrix, the method is computationally demanding and can be 

solved only numerically. However, with the extended model suggested in this thesis the 
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system matrix is reduced to a 3x3 system, which is significantly easier to solve. The 

model analysis in this thesis simplifies the multi-layer cracking model of [22], by the 

assumption that there is no interaction between the cracks in adjacent layers. Hence, for 

each instance of crack analysis there will be unique ECM associated with that crack (with 

or without delamination) in which, all other sublaminates will be intact. Further, the 

inclusion of the delamination damage model to the analysis makes this model more 

sophisticated. Also, a simple methodology to model stitch cracks is proposed to address 

experimental observations. The extended model (which is the input for the permeability 

analysis) will include this model for the stitch cracks. The extended model proposed in 

this thesis will also be used to determine the strain energy release rates associated with 

mode I (matrix crack multiplication, self-similar crack growth) and mode II (interlaminar 

delamination) for a laminate of any given lay-up. The damage evolution will be verified 

using 2-D FEA.  

It is anticipated that when this model is implemented and verified, it can be used 

as a screening tool in the design of cryogenic composite propellant tanks subjected to 

mechanical and/or temperature loads, within the limits of a first order approximation, 

without recourse to labor extensive three-dimensional FEA. 
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CHAPTER 3 

 

THE FIVE LAYER MODEL 

 

3.1. Delaminated Crack Opening Displacement 

The most common damage modes of a composite under the action of thermal and 

or mechanical loading are transverse matrix cracks and delaminations. Transverse matrix 

cracks is typically the initial damage mode observed and is enhanced with increasing 

load, however, due to the high local stresses that develop at crack tips, damage mode 

soon switches from matrix cracks to delamination. The delaminated crack opening 

displacement (DCOD) for a cracked composite sublaminate is defined as the minimum 

crack opening distance between the two faces of the transverse matrix crack in the 

sublaminate. In this thesis a five layer model (FLM) has been suggested to determine the 

DCOD of the cracked laminate. The FLM is a 2-D model based on the governing 

equations from classical lamination theory (CLT). In order to simulate the transverse 

shear in the laminate, the equations from CLT are modified with first order shear 

deformable plate theory assumptions. 
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The delaminated crack opening displacement (DCOD) determined from this 

model is a critical input to the permeability model (discussed later in chapter 7). Also, 

since the model will be used in the study of damage evolution (chapter 6) in the cracked 

layer, it is important to build a model that can accurately describe the variation of the 

crack opening as a function of applied mechanical load and/or applied temperature 

excursion.  

The FLM presented in this thesis is an extension to the model suggested by Roy 

and Benjamin [36]. The extension is provided in the manner of cracks in sublaminate 5 

and sublaminate 6 of the FLM. Fig. 3.1, shows the typical 3-D repeating volume element 

(RVE) of a cracked laminate symmetric about its mid-plane. Also shown in the figure 

shows are the various cracked sublaminate configurations that will be addressed using 

FLM.  

 

Fig. 3.1. Illustration of crack RVE and the corresponding mathematical models  

 

As shown in the figure above, a unique analysis model is suggested to handle 

each specific case of cracked configuration. The focus of this thesis will be to superpose 
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the sublaminate models to analyze a laminate with cracks in objective plies of any 

orientation. In the section to follow (section 3.2), the three FLM cases for cracked 90 

plies are introduced. Later, in section for the extended FLM (section 3.5), the analyses are 

generalized for a cracked layer of any orientation. 

 

3.2. Introduction to FLM 

In this section, analytical expressions to determine the DCOD for crack positions 

in sublaminates 5 and 6 are studied. Also, a summary of the work by Roy and Benjamin 

[36], where the motivation was to determine the crack opening displacement for the 

delaminated layer 3 of the FLM, has been included in the interest of completeness. Since 

the models presented in this thesis are an extension to [36], the notations and symbols 

used in [36] will be retained. 

 

Fig. 3.2. The global XYZ axis for the composite 
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Before we proceed to the detailed analysis and solution of each case of crack 

position, the governing equations of the FLM are introduced. 

The two-dimensional FLM model is assumed to lie in the Y-Z plane, with the 

principle axis of the 0˚ ply group coinciding with the global Y axis (refer Fig. 3.2). A 

plain strain condition is assumed to exist in the X-direction of the laminate. In addition to 

the global axis a sublaminate-wise local axis is also used inorder to describe 

displacements and rotations of the sublaminate (e.g., see Fig. 3.3(b)). Since the model 

employs a first order shear deformation plate theory, the displacements in y (v) and z (w) 

direction are assumed to be of the form: 

 
( ) ( ) ( )( , ) ( ) ( )i i iv y z V y z yβ= +  (3.1a) 

 
( ) ( )( ) ( )i iw y W y=  (3.1b) 

Where, V(y) is the mid-plane displacement in the y-direction and β(y) is the slope 

of the normal to the mid-plane of the sublaminate in the y-direction. Note that, the 

displacement in the z-direction, W(y), does not vary through the thickness.  

The equilibrium equations of the model are listed below in the order of force 

balance in the y-direction, moment balance along the x axis and force equilibrium in the 

z-direction. Assuming plain strain conditions to exist in the x-direction of the model, we 

get, for each sublaminate, 

 , 0y t bN T T+ − =  (3.2a) 

 , ( ) 0
2y t b
hM Q T T− + + =  (3.2b) 
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 , 0y t bQ P P+ − =  (3.2c) 

Where, N, M and Q are the axial force, bending moment and shear resultants, 

while P and T denote the inter-laminar peel and shear stresses associated with the with 

top (t) and bottom (b) surfaces. The constitutive relations for each sublaminate are: (the 

subscript ‘m’ denotes “mechanical” or applied load)  

 22 , 22 , 22

f

ref

T

M y y y
T

N A V B Q h dTβ α= + − ∫  (3.3a) 

 22 , 22 , 22

f

ref

T

M y y y
T

M B V D Q hZ dTβ α= + − ∫  (3.3b) 

 44 ,( )yQ A Wβ= +  (3.3c) 

Where, 22A , 22B , 22D & 44A are components of the A, B and D stiffness matrices 

from classical lamination theory (CLT), h is the thickness of the lamina, Z  is the 

centroidal distance of the lamina from laminate mid-plane, yα  is the coefficient of 

thermal expansion in y-direction. Substituting in (3.3a – 3.3c) into (3.2a – 3.2c) we have 

the governing equations, 

 22 , 22 , 0yy yy t bA V B T Tβ+ + − =  (3.4a) 

 
2
22 22 22

22 , 44 ,
22 22 22

( ) 0
2 2yy y t b

B B Bh hD A W T T
A A A

β β
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− − + + − − + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  (3.4b) 

 44 , ,( ) 0y yy t bA W P Pβ + + − =  (3.4c) 
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The governing equations above can be modified as required by the lamina (or 

sublaminate) boundary conditions. In the sections to follow, the ‘i’ superscript will be 

attached to the displacements and rotations to describe the displacements in ith 

sublaminate. 

 

3.2.1. Case 1: Crack in Sublaminate 4 

 

Fig. 3.3(a). The Five-Layer Model for Case 1  

 

 

Fig. 3.3(b). One quarter repeating interval of the FLM (Case 1) 
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The solutions for this case are already listed in Roy and Benjamin [36]. Using this 

baseline case we can solve for the DCOD in a symmetric laminate with the general 

configuration [ l m n r/ ... / / / 90φ ϕ θ ]s, with the crack in the 90˚ ply. The transverse matrix 

cracks are assumed to have a uniform spacing of ‘2S’, while delaminations are assumed 

to initiate and grow in a symmetric manner from tips of each matrix crack and extend a 

length “L” from the crack tip. The Fig. 3.3(a) shows the FLM for the case of crack in a 

middle layer. Fig. 3.3(b) shows the RVE developed from Fig. 3.3(a) after invoking 

conditions of symmetery in load and geometry. Note that the FLM for this case takes into 

account the effect of a primary and secondary constraining layer Zhang et al [21] on the 

delaminated crack opening (see Fig. 3.3(a)).  From [36], the solutions for this case of 

crack configuration are: 

 
(4 ) (4 ) (3) (4 )( , ) ( ) ( )v y z V y z yβ= +  (3.5) 

 
(5) (5) (2 ) (5)( , ) ( ) ( )v y z V y z yβ= +  (3.6) 

 Where, 
(4)

3 4V yψ ψ= +  (3.7) 

  
(5)

1 1 2 5 7( )y yV k e e yω ωθ θ θ θ−= − + + +  (3.8) 

                                             
1 1(4)

1 2
y ye eω ωβ ψ ψ −= +  (3.9) 

 
(5)

1 2 3 4( )y yq e e yω ωβ θ θ θ θ−= + + +  (3.10) 

The detailed procedure for obtaining the constants for the case of mechanical 

and/or thermal loading can be found in Roy and Benjamin [36]. 



 23

Using equations (3.5 – 3.10), the delaminated crack opening displacement 

calculated at the interface of sublaminate 4 and 5 at y=S for a given delamination length 

L and crack density 1/2S is, 

 DCOD= 
(2) (3)

(5) (4)( , ) ( , )
2 2
h hv S v S− −  (3.11) 

 

3.2.2. Case 2: Crack in Sublaminate 5 

 

Fig. 3.4(a). The Five-Layer Model for Case 2  

 

We next consider the case for crack in layers 2, 4 of the FLM (Fig. 3.3(a)), or 

sublaminate 5 of the quarter repeating model (Fig. 3.4(b)). The model solves DCOD for 

the general case of [ l m n p q/ ... / / 90 / / ... /φ θ ϕ ψ ]s , with the crack located in the 90˚ ply. 

The geometry and material parameters follow the same notation and meaning as before 

(see Fig. 3.4(b)). 
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Fig. 3.4(b). One quarter repeating interval of the FLM (Case 2) 

 

As can be seen from the Fig. 3.4(b) above, the model has been generalized to have 

unsymmetric sublaminates (in this case the sublaminate groups [ l m/ ... /φ θ ] & 

[ p q/ ... /ϕ ψ ]s) surround the cracked ply. Since only the effective “smeared” properties of 

the uncracked sublaminate groups are considered the model does not capture the effect of 

an immediate constraining layer. The analysis can easily be modified to include the effect 

of the constraining plies, but that will result in equations that can only be solved 

numerically (e.g., Zhang et al [22]). A detailed derivation for the individual mid-plane 

displacements and rotations for Case 2 are presented in Appendix A. 

From first order shear deformation assumptions we have the following relations, 

 
(4) (4) (3) (4)( , ) ( ) ( )v y z V y z yβ= +  (3.12) 

 
(5) (5) (2) (5)( , ) ( ) ( )v y z V y z yβ= +  (3.13) 

 
(6) (6) (1) (6)( , ) ( ) ( )v y z V y z yβ= +  (3.14) 
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The solutions for the displacements and rotations are given by, 

 
(6)

6 8V yθ θ= +  (3.15) 

                                             
(6)

3 4yβ θ θ= +  (3.16) 

 
(5)

3 4V yψ ψ= +  (3.17) 

  
1 1(5)

1 2
y ye eω ωβ ψ ψ −= +  (3.18) 

                                             
(4)

5 7V yθ θ= +  (3.19) 

 

 
(4)

1 2yβ θ θ= +  (3.20) 

Using equations (3.12 – 3.20), the delaminated crack opening displacement 

(DCOD) for sublaminate 5 in Fig. 3.3(b) at y=S for a given delamination length L and 

crack density 1/2S can be determined, 

From the boundary conditions for the sublaminate, we see that the relative 

displacement calculated at the interface of sublaminates 4 and 5 (or, sublaminates 5 and 

6) at y=S will be the same, since V(4)(S) =V(6)(S) and β(4)(S)=0, β(6)(S)=0 (refer Appendix 

A).  

 DCOD= 
(2) (3)

(5) (4)( , ) ( , )
2 2
h hv S v S− −  (3.21) 

 Or, DCOD= 
(2) (1)

(5) (6)( , ) ( , )
2 2

h hv S v S −−  (3.22) 
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3.2.3. Case 3: Crack in Sublaminate 6 

 

Fig. 3.5(a). The Five-Layer Model for Case 3  

 

The configuration of FLM considers the crack to be at the outer most layers of the 

laminate (i.e., layer 6 in Fig. 3.5(b)). This model includes the effect of the primary and 

secondary constraining layers of the FLM (Fig. 3.5(b)).  

 

Fig. 3.5(b). One quarter repeating interval of the FLM (Case 3) 

The solution for displacements and rotations are given in detail in Appendix B. 

From first order shear deformable plate theory assumptions, 
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(5) (5) (2) (5)( , ) ( ) ( )v y z V y z yβ= +  (3.23) 

 
(6) (6) (1) (6)( , ) ( ) ( )v y z V y z yβ= +  (3.24) 

Solving the set of governing equations for this case (Appendix B) gives, 

 
(6)

3 4V yψ ψ= +  (3.25) 

 
(5)

3 1 2 5 7( )y yV k e e yω ωθ θ θ θ−= + + +  (3.26) 

                                             
1 1(6)

1 2
y ye eω ωβ ψ ψ −= +  (3.27) 

 
(5)

1 2 3 4
y ye e yω ωβ θ θ θ θ−= + + +  (3.28) 

  

Using equations (3.23 – 3.28), the delaminated crack opening displacement 

calculated in layer 6 (Fig. 3.5(b)) at y=S for a given delamination length L and crack 

density 1/2S is given by, 

 DCOD=
(1) (2)

(6) (5)( , ) ( , )
2 2
h hv S v S− −  (3.29) 

 

3.3. Issues regarding FLM 

Although the suggested models compare well with 2-D FEA results (see, section 

8.1) there are however analytical modeling issues such as discontinuity of rotations at the 

interfaces that are not fully accounted for. Specifically, if we look at the boundary 

conditions that are satisfied for the FLM – case 2 (Appendix A), we see that the mid-

plane rotations between sublaminate 3 and 4 are not included (i.e., (3) (4)(s l) (s l)β − ≠ β − ) 



 28

since, there were inadequate number of constants available to satisfy all the boundary 

conditions. This problem of discontinuity was probably one of the sources of error while 

computing the strain energy of the model. However, this issue does not affect the solution 

for mid-plane displacements, as seen from FEA results. The critical problem is however, 

the method employed to solve the governing equations for sublaminate-4 in the FLM 

Cases 2 and 3. In particular, the solution for (4)β  is the cause of errors in the derivation of 

FLM – Cases 2 and 3. Consider for instance the solution of sublaminate 4 in FLM – Case 

2 (Refer Fig. 3.4(b)). Following our assumptions of no lateral displacement (i.e., 

W(4)(y)=0, from symmetry) and no surface shear tractions for sublaminate 4 (due to the 

delamination on top and model symmetry at the bottom) we arrive at the two governing 

equations involving (4)b for this sublaminate, 

 
(3)2

(3) (4) (3) (4)22
22 , 44(3)

22

0yy
BD A
A

β β
⎛ ⎞

− + =⎜ ⎟
⎝ ⎠  (3.30) 

  
(3) (4) (4)
44 , 0y bA Pβ − =  (3.31) 

Solving eq. (3.30) we get: (4)
1 2

y ye eω ωβ ψ ψ −= + , where 
(3)
44

(3)2
(3) 22
22 (3)

22

 A
BD
A

ω =
−

. 

Following this solution procedure we see that the governing equation for shear, 

eq. (3.31), is not satisfied since, the function (4)
bP , the peel-stress at the bottom of 

sublaminate-4, is unknown. While this does not affect the solutions of FLM – Case 1, the 

solutions of FLM – Cases 2 and 3 depend on the manner in which sublaminate 4 is 
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solved. In other words, the solutions for these two cases are coupled to solution of 

sublaminate 4 (refer to Appendix A & B for details).  

From 2-D FEA simulations it is observed that this error in formulation only 

affects the solutions for mid-plane rotation and displacement of sublaminate 2 (Fig. 

3.4(b)) (i.e. (2) (y)β and (2)V (y) ). Since these functions are important to the determination 

of the crack opening displacement, we can “suppress” the error by simply omitting the 

terms in (2)V (y)  that has contributions from the terms from (2) (y)β , i.e., We have the 

solution 
3

(2) (2)

1

( ) sinh( )j j j
j

y P yβ α λ
=

=∑ , while, 
3

(2) (2)
5

1

( ) sinh( )j j j
j

V y y yα γ λ α
=

= +∑ . Hence, 

The corrected solution for (2)V (y)  now becomes a simple expression: (2)
5V (y) y= α . 

By neglecting the contribution from the summation term in the solution for 

(2)V (y)  the solutions for DCOD were closer to the results from 2-D FEA (section 8.1).  

Going back to our exponential solutions for (4)β , we see that the parameter ‘ w’ is 

susceptible to numerical instabilities. It can be seen that when 
(3)2

(3) (3) 22
44 22 (3)

22

BA D
A

>> − , the 

solution for (4)β  approaches physically unrealistic values at y=S, the axis along which the 

DCOD is computed. In Appendix A, an alternate solution is proposed to suppress this 

instability. In this solution, it is assumed that the shear force in the sublaminate 4 is zero. 

It is further assumed that (4)W 0≠  and (4) 0bP = . The boundary conditions for the 

sublaminate along with the above assumptions yield solutions similar to sublaminate 6, 

for the FLM - Case 2 (refer to Appendix A).  
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While, only the errors in the solution for the FLM – Case 2 are documented in this 

section, similar errors were seen in FLM – Case 3 for which identical methods were 

adopted to suppress errors and instabilities (Appendix B).  

Another flaw that exists in the current (and previous, Roy and Benjamin [36]) 

FLM is in the modeling of the cracked sublaminate, for all cases of FLM. While, the 

solutions in the cracked sublaminate for all cases could adequately ensure continuity in 

displacements and force, it does not handle the variation of moment within the cracked 

sublaminate, i.e., since the cracked end at y=S in the delaminated portion of the laminate 

is a free surface, the moment must go to zero at the cracked surface. However in the 

current formulation of the cracked sublaminate the moment in the cracked lamina 

increases as y S→ . In the following section, a novel method is proposed to simulate the 

variation of moment with in the cracked sublaminate accurately. 

 

3.4. Elastic Foundation 

In this section an alternate solution for the cracked sublaminate is suggested. In 

this approach, we assume that the cracked sublaminate to be supported by a system of 

springs representing an elastic foundation (see Fig. 3.6), with the spring stiffness equal to 

E3/h(k), where E3 is the modulus of the composite in the direction normal to the mid-plane 

of the laminate, while h(k) is the thickness of the cracked layer. 
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Fig. 3.6. Elastic foundation model 

 

It is argued that through this foundation of elastic springs we can enforce the 

moment and shear forces with in the laminate to go to zero at the cracked surface (i.e., at 

y=S).  

In Fig. 3.6, a general cracked sub-laminate of length L (the delamination length) 

is shown. The thickness of this layer is assumed to be h(i) (where, i = 4, 5 or 6). For the 

derivation that follows, we consider the case of crack in sublaminate 4 (i.e. i = 4), in 

which case the sublaminate is supported at the mid-plane (see Fig. 3.3(a) & (b)), so that 

h(i)=h(3)/2. A distributed spring system is setup at the bottom of the sublaminate such that, 

(4) (4)3
(3)

2
b

EP W
h

= . We also assume that W(4)(y) ¹ 0. Using these assumptions and the 
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application of the appropriate traction boundary conditions ( (4) (4)
t bT T 0= = ), the 

governing equations for this sublaminate reduce to: 

 
(3) (4)
22 , 0yyA V =  (3.32) 

 
(3) (4) (3) (4) (4)
22 , 44 ,( ) 0yy yD A Wβ β− + =  (3.33) 

 
(3) (4) (4) (4)3
44 , , (3)

2( ) 0y yy
EA W W

h
β + − =  (3.34) 

Since, the solution for eq. (3.32) is not affected with the introduction of the elastic 

foundation, we first consider the solution to the coupled system of equations, eqs. (3.33) 

and (3.34). Eliminating one of the functions in terms of another, we get the following 

governing equation for this sublaminate (refer to Appendix C for details). 

 
(3) (3)4 (4) 2 (4)

(3) (3) (4)22 3 3 44
22 44 4 (3) 2 (3)

2 2 0D E E Ad dD A
dy h dy h
β β β− + =  (3.35) 

Assuming the solution to be of the form (4) yeωβ = , we arrive at the following 

eigen values (4 in number) to the characteristic equation (Appendix C). 

 

1
2(3) (3)2

3 44
(1,2,3 or 4) (3) (3) (3)

44 22 3

21 1E h A
h A D E

ω
⎡ ⎤⎛ ⎞
⎢ ⎥= ± ± −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (3.36) 

If 
(3) (3)2

44
(3)
22 3

2 1h A
D E

> , then we get, 

 
1 1(4)

1 2 2 2 3 2 4 2( cos sin ) ( cos sin )C y C ye C y C y e C y C yβ ψ ψ ψ ψ−= + + +  (3.37) 
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else,  

 
1 1 2 2(4)

1 2 3 4
y y y ye e e eω ω ω ωβ ψ ψ ψ ψ− −= + + +  (3.38) 

The four constants ( 1 2 3 4, ,  & ψ ψ ψ ψ ) are solved using the following four 

boundary conditions, 

(3) (4)

(3) (4)
M M
(4)
M

(4)

(i) (S L) (S L)
(ii)M (S L) M (S L)

(iii)M (S) 0

(iv)Q (S) 0

β − = β −
− = −

=

=

 

Through the use of these boundary conditions, the spurious moment and the shear 

force at the end of the sublaminate, are effectively suppressed. 

Analogously, For the FLM Cases 2 and 3, the boundary conditions are changed to 

suppress the high values of mid-plane rotations due to discontinuities in the FLM 

formulation (see section 3.2). In order to do so, the boundary condition in shear, 

(iv) (i)Q (S) 0= , is replaced with (i) (S) 0β = (where, i is the cracked sublaminate). All the 

other equations remain unchanged ensuring that the appropriate cracked sublaminate 

moment and rotation continuities are enforced.  

 

3.5. The extended FLM  

Since the FLM was proposed to solve for cracks in a 90˚ oriented layer for any 

position of crack, the equations derived for the 90˚ cases have to be modified in-order to 

solve for the cracks in a general configuration of plies. 
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Consider a laminate configuration: [ 0 / / 90θ ]s, which has the number of cracks in 

the layer, specified through the thickness, subjected to a mechanical and/or thermal load. 

Fig. 3.7, shows the angle-ply lamina (the θ  oriented ply) in the global XYZ axis. The 

crack in 90º can be solved using the FLM case 1, while the crack in 0 and the θ  ply can 

be analyzed using Cases 2 and 3 respectively. However, a slightly modified procedure 

will have to be applied to study the cracks in the 0 and θ  oriented plies. Consider for 

now, the crack in the θ  ply in-order to develop the equations for the extended FLM. The 

crack in this ply can be analyzed using the second case of FLM, since, the crack is 

located in the middle layer. However, to use the FLM Case 2 the coordinate system has to 

be rotated such that the orientation of the cracked layer becomes 90˚. In other words, the 

laminate has to be rotated such that the local axis of the θ  ply coincides with the 

reference axis x'y'z', the principle axis of the ply (see Fig. 3.7).  

 

Fig. 3.7. The global XYZ and the rotated x'y'z' reference frames for the angle-ply. 
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Through this rotation the θ  ply becomes the 90 oriented ply and to which we can 

now use the equations developed in FLM Case 2 to solve for its DCOD. The equations 

below give the appropriate transformations in applied loads and material properties of the 

lamina (or the sublaminate). The rotation angle of the lamina, Rθ  (see Fig. 3.7) is given 

by, 

 90Rθ θ= −  (3.39) 

Since, the laminate is to be rotated about the Z axis of the global reference frame, 

the new orientation of the layers will be given by,  

 
( ) ( )' k k

Rφ φ θ= +  (3.40) 

Where, (k)'φ  is the orientation of the thk ply in the x'y'z' frame. (k)φ is the 

orientation of the thk ply in the XYZ frame, while Rθ  is the rotation angle. It is easily 

seen that, if we substitute (k)φ = θ  in the above equation, the angle of this ply in the x'y'z' 

frame will be 90˚. Similarly, if we substitute, (k) 0φ = , we will get R 90θ =  i.e., the 

laminate has to be rotated by 90˚ in-order to view the 0 as the cracked ply. 

The loads (both thermal and mechanical) will also need to be transformed using 

the following force transformations,  

 cos sinx x R y RN N Nθ θ′ = +  (3.41) 

 cos siny y R x RN N Nθ θ′ = −  (3.42) 

 



 36

Where, 

 ( ) ( )x x xN N mechanical N thermal= +  (3.43) 

 ( ) ( )y y yN N mechanical N thermal= +  (3.44) 

In-plane shear load Nxy is ignored. The DCOD obtained in this frame (say, xyzΔ ) 

after the appropriate FLM analysis, needs to be transformed back to the original frame 

XYZ in-order to determine the actual value of the opening ( XYZΔ ). This transformation is 

given by, 

 sinXYZ xyz
RθΔ = Δ  (3.45) 

Using these equations for the extended FLM, we can now analyze a laminate of 

any configuration.  
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CHAPTER 4 

 

THE STITCH CRACK MODEL 

 

4.1. Introduction to Stitch Cracks 

Until now it was assumed that the cracks in the composite extend though the 

thickness of the individual layer and that it also spans the entire width of the laminate.  

 

Fig. 4.1. Experimental† observation of stitch-cracks in a 45˚ laminate, with through (or 
long cracks) in the 90˚ ply. 

                                                 
† Yokozeki, T., Aoki, T., Ogasawara, T., and Takashi, I., “Effects of layup angle and ply-
thickness on matrix crack interaction in contiguous plies of composite laminates”, 
Composites Part A: Applied Science and Manufacturing, Vol. 36, 2005, pp. 1229-1235 
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However, recent experimental observations [39,41] have shown that although 

most cracks extend through the thickness of the ply, they do not necessarily span the 

entire width of the laminate. Instead, they tend to form short cracks concentrated along 

the intersections of the crack with the cracks in adjacent layer (see Fig. 4.1).  

Aoki et al [39] compared cracked composites samples of orientations of 0˚, 30˚, 

45˚, 60˚, 90˚. They observed that while there are long cracks (cracks that extend through 

the width of the lamina) in the orthotropic layers, as the fiber orientation moves away 

from an orthotropic configuration the cracks show a greater tendency to accumulate as 

stitches around the intersections with cracks in the adjacent layers. They observed that the 

stitch cracks typically do not extend through the width of the ply, even though they might 

extend through thickness of the lamina (see Fig. 4.1). Bechel et al [41] had made similar 

observations for the cracks in [0/45/-45/90]s. They observed that the majority of the 

cracks in the off axis plies (i.e., +45 and -45) fit the description of stitch cracks. 

Due to this stitch like pattern of the cracks within the lamina, there will be 

significantly more resistance offered by the laminate to permeation than if these were 

long cracks. The FLM, on the other hand, considers the cracks to extend through the 

width of the lamina, hence the permeability predicted by a FLM analysis will be higher. 

The stitch crack model proposed below, provides a sample methodology to simulate this 

3-D phenomena within the framework of 2-D FLM. 
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4.2. The FLM Stitch Crack  

The idea of the FLM stitch crack model will be to simulate the overall reduction 

in crack opening displacement (COD) in the laminate due to the presence of stitch cracks 

in the place of long cracks. Fig. 4.2, depicts the top view of stitch cracks in a generic 

angle-ply lamina with orientation angle θ, with long cracks in the adjacent 0˚ ply. As 

shown in the schematic, the cracks in the angle ply do not develop through the full extent 

of the width of the laminate, and usually end up as stitches concentrated along the seam 

of a 0˚ (or 90˚) ply. 

 

Fig. 4.2. Top view sketch of stitch-cracks in the angle-ply laminate, with through 
(or long) cracks in the 0˚ ply. 

 

To model this phenomenon, a linear spring at the end of the cracked surface to 

represent the effective stiffness of the un-cracked ligament in the cracked sublaminate is 

employed (see Fig. 4.3). This implies that the DCOD for a stitch crack in an angle ply 
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lamina will be less than that for a long crack due to the constraining effect of the 

uncracked ligament(s). We could simply write the effective spring stiffness ‘ ( )k
springK ’ as, 

 
( ) ( ) ( )

22
k k k

springK Aε=  (4.1) 

with, 

 
( ) ( )

( )
( )

k k
k EFF

k
EFF

W a
W

ε −=  (4.2) 

Where, ( )k
EFFW  is the effective width of a fully developed (long) crack in the kth 

angle-ply (see Fig. 4.2), ‘a(k)’ is the total length of the stitch cracks (i.e. summation of 

individual lengths). ( )
22

kA  is the extensional stiffness of the cracked ply perpendicular to 

the crack plane. It can be seen that when ε(k) = 0 stitch cracks have coalesced into a “long 

crack”, while, ε(k) = 1 implies that the lamina is uncracked.  

 

 

Fig. 4.3. 3-D view of stitch cracks in a 45˚ ply, with the equivalent FLM spring 
model 
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Fig. 4.3, depicts the configuration of the effective “spring” within the cracked 

sublaminate. Appendix D has the derivation of the solutions for the spring model. The 

effective spring model was verified using 2-D FEA and then implemented in the 

permeation prediction model as well. 
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CHAPTER 5 

 

STRAIN ENERGY RELEASE RATE 

 

5.1. Introduction to Strain Energy Release Rate 

In this section a generalized model to determine the damage evolution parameters 

for the FLM subjected to general loading is developed. The model for the strain energy 

release rate (SERR) for matrix cracking and delamination growth is determined for the 

FLM based on the equivalent constraint model (ECM) by Zhang et al [21]. As per the 

assumptions of the ECM, the laminate is assumed to be a perfectly bonded set of 

damaged laminates. Zhang et al [15, 21] has proposed the use of an in-situ damage 

effective function (IDEF) to evaluate the degradation in stiffness of the laminate system 

as a function of the loss of load carrying capacity of the cracked 90˚ plies. The model 

presented in this thesis will follow the idea of ECM, however, unlike [21], whose focus 

was to define the damage growth in the model in terms of the IDEF, the damage 

parameters will follow the classical definition. In this report, the matrix crack evolution is 

assumed to be self-similar and uniform, hence the Griffith’s energy balance equation is 

employed to model this phenomenon. For delamination growth, the model is developed 

based on the stiffness degradation of the laminate with increasing delamination length to
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which we can use the basic definitions of energy release rate to evaluate the damage 

growth. Also, the damage model suggested in [21] has been extended to include the effect 

of thermal loads on the damaged laminate. Note that in the sections to follow, the ‘d’ 

superscript will be used to represent a damage state variable.  

 

5.2. Potential Energy 

Following Zhang et al [18], the potential energy for the damaged system is 

derived in terms of the stiffness reduction parameters. To simplify the formulation, only 

the reduction in extensional stiffness of the laminate is considered. 

From Zhang et al [18, 21] we define, the overall or total strain of the laminate as, 

 
( ) ( )k

y
V S

S
ε =  (5.1) 

Where, (k)V (S)  is the displacement of the uncracked sublaminate at y=S, e.g., for 

the FLM Case 2, k=4 or 6. Now, define N as the applied mechanical load and NT as the 

total thermal load given by, 

 
(1) (1) (1) (2) (2) (2) (3) (3) (3)
22 22 222

f f f

ref ref ref

T T T

T y y y
T T T

N Q h dT Q h dT Q h dTα α α
⎛ ⎞
⎜ ⎟= + +
⎜ ⎟⎝ ⎠

∫ ∫ ∫  (5.2) 

From [18], we have the constitutive law for the laminate for the ECM as, 

 { } [ ]({ } { })= − pN A ε ε  (5.3) 
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Where, { }N  is the load force vector, [ ]A  is the extensional stiffness matrix of the 

damaged laminate, { }ε  is the macro-strain vector [18] of the laminate, while { }pε  is 

defined as, 

 
1 0 1 0 0{ } [ ] ({ } { }) [ ] ({ } { })− −= + − +p T H T HA N N A N Nε  (5.4) 

Where, { }TN , { }HN  and 0{ }TN , 0{ }HN  are the effective damaged and 

undamaged thermal and hygro load vectors, respectively, calculated using the appropriate 

reduced stiffnesses in the resultant thermal and hygro-force equations from classical 

lamination theory (Jones [46]).  

The derivation in this thesis, does not consider the effect of moisture diffusion. 

Hence, ignoring the hygro-loads, assuming plain strain conditions in the laminate width 

direction and neglecting the shear coupling terms in eq. (5.4) we get the expression, 

 22
22

f

ref

T
d T

y yd
T

NN A dT
A

ε α
⎛ ⎞
⎜ ⎟= − +
⎜ ⎟⎝ ⎠

∫   

 22 f

ref

d T T
T

y y
T

N N N NA
dT

ε
ε α

+ +⇒ = =
+ ∫

 (5.5) 

Where, 
f

ref

T

y y
T

dTε ε α= + ∫ , yα  is the effective thermal coefficient of expansion of 

the laminate in the global ‘y’ direction. Note that the undamaged total thermal load NT is 

used instead of d
TN  (the total thermal load calculated using the damaged stiffnesses of the 

laminas). This was done to reduce the complexity of the final equations. As a result of 
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this assumption the damaged stiffness of the laminate predicted by eq. (5.5) will always 

be higher than the actual damaged stiffness of the laminate. It can be seen that when there 

is no thermal load on the laminate eq. (5.5) reduces to the case presented in [21]: 

 22
d

y

NA
ε

=  (5.6) 

 

From [18] and [21], for a specimen of gage length 2S and unit width, we have the 

strain energy (U) of the laminate as, 

 
2 2

22 22
1 ( ) (2 )
2

d dU A S A Sε ε= ⋅ =  (5.7) 

The work done by the external applied load ‘N’ will be (from [18] and [21]), 

 2yW N Sε=  (5.8) 

The potential energy (π ) of the laminate can be now calculated using the equation 

below. 

 ( , , , )S L N T U Wπ Δ = −  (5.9) 

 

5.3. Strain Energy Release Rate for Matrix Cracks 

The matrix crack multiplication in the cracked ply is assumed to occur in a self-

similar manner. Shown in Fig. 5.1, is the self-similar initiation of the crack within the 

cracked ply.  



 46

 

Fig. 5.1. Model of the two systems with existing and hypothetical cracks 

 

If it is assumed that cracks exist within the cracked ply are equally spaced at 2S, 

then the new crack will be formed at y=S, i.e., half-way between the two existing cracks. 

The new cracked surface area formed will be, (2h(k))*(1), assuming unit width (under 

plain strain conditions) with, h(k) as the thickness of the kth cracked ply.  

Mcmanus and Maddocks [30] used a shear-lag type analysis and the self-similar 

crack formation concept to evaluate the mode I release rate. Extending the Griffiths 

energy balance criterion for self similar crack formation (under fixed load conditons), we 

have the SERR for the kth cracked ply as,  

 
( )

( )

2 ( / 2) ( )
2

k
I k

S SG
h

π π−= −  (5.10) 

Where, (S)π  is the potential energy of the system with the crack spacing of 2S 

while (S / 2)π  is the potential energy of the laminate system with a crack spacing of S. 
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The potential is evaluated keeping the applied load(s) and delamination length constant. 

The results from this analysis are compared and verified with results from 2-D finite 

element analysis (FEA) in Section 8.4. 

 

5.3. Strain Energy Release Rate for Delamination Growth 

The delamination propogation is assumed to occur at the interface between the 

cracked and uncracked ply under pure mode II conditions. 2-D FEA solutions (section 

6.4) show that the above assumption is correct for a 2-D delamination analysis. The mode 

II strain energy release rate is defined as the first partial derivative of the potential energy 

of the system with respect to the total delaminated crack surface area, with the applied 

load kept constant. We can write the SERR in mode II for the kth cracked ply as, 

 
( )

,

1
4

k
II

N T

G
L
π

Δ

∂= −
∂  (5.11) 

The model has been compared and verified using 2-D FEA. The results to the 

verification are tabulated in section 8.4. 
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CHAPTER 6 

 

FINITE ELEMENT MODELING 

 

6.1. Introduction  

The finite element analysis (FEA) was used to verify the analytical solutions for 

crack opening and strain energy release rates derived in earlier chapters. The analysis was 

done using the commercially available FEA code, ABAQUS®. The non-linear solver 

available in ABAQUS, was used in all the analyses. The benchmark FEA models for all 

problems were 2-D. Even though ABAQUS has an option to create 2-D models of 

composite laminas, it was not used. Instead, the analysis employed the orthotropic and 

anisotropic elastic material models available in ABAQUS, because of the 3-D nature of 

the problems solved with respect to the orientation of the plies and the applied load. In all 

FEA models, contact controls were used at the interface of the delaminations, in-order to 

prevent the inter-penetration of the two surfaces that came into contact during the 

analysis. 
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6.2. Delaminated Crack Opening Displacement  

The delaminated crack opening displacement (DCOD) obtained from the 3 cases 

of FLM was verified for the quasi-isotropic configuration [0/45/-45/90]s. The verification 

was run for the cases of crack in each of the four individual plies of the above laminate. It 

should be noted that, the verification for the outer (0) and middle (±45) plies were done 

for their rotated counterparts (refer section 3.4 for details) of the FLM, since the 

modeling of these cracks as inclined to the loading direction would have been 

complicated. The verification for the 90 ply is straight forward since the FLM case 1 can 

be directly used with out any further rotation. In order to simulate FLM conditions, the 

FEA models were constructed assuming that there is only a single cracked ply and all the 

other plies remain intact and that there are no interactions between cracks in adjacent 

layers.  

The delamination and matrix cracks were modeled by manipulation of the input 

file to ABAQUS. At the required position of matrix crack (or delamination) a line of 

duplicate nodes with identical coordinates were created and the connectivity of the 

associated elements were changed to create the crack model. Fig. 6.1., illustrates this 

idea. Two dimensional, 8 node, plain-strain quadrilateral elements were used to discretize 

the geometry (available in ABAQUS as CPE8R). 
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Fig.6.1. FEA model of crack 

 

Figures 6.2 – 6.5, show the two-dimenesional FEA models associated with each 

case of FLM verification. Due to mid-plane symmetry only one-half of the laminate 

geometry was modeled. For the case of cracks in 0, +45 and -45, the layers were rotated 

using the equations from the extended FLM (section 3.4). In the figures below, the 

rotated orientations of each  layer for the respective case of FLM are indicated. Fig. 6.2, 

is the model to verify the FLM case 1, Fig. 6.3 and Fig. 6.4 is to verify FLM case 2, while 

Fig. 6.5 is the model to verify the results from FLM case 3. 
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Fig. 6.2. FEA model for FLM case 1 (crack in 90˚) 

 

 

Fig. 6.3. FEA model for FLM case 2 (crack in -45˚) 
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Fig. 6.4. FEA model for FLM case 2 (crack in +45˚) 

 

 

Fig. 6.5. FEA model for FLM case 2 (crack in 0˚) 

 

The thicknesses for all the plies were the same (h1= h2= h3= h4=0.003”). A crack 

density of 2.5 cracks per inch (S=0.2 inches) was assumed. The delamination length (L) 

was 0.03 inches. The material used was IM7/5250-4 graphite-epoxy composite (see Table 

for properties). The mechanical load was applied as a surface traction on the edge as 

shown in the figures. The magnitude of the applied surface traction = 
1 2 3 42 ( )

N
h h h h⋅ + + +
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lbs/inch2, where N=500 lbs/inch, applied in the direction as shown in the schematic. For 

the thermal case, a constant through the thickness temperature field was applied to the 

model. The field had an initial value equal to zero and a final value equal to the ΔT 

applied to FLM. The results of the thermal and mechanical load analysis are given in 

section 8.1.   

 

6.2. Stitch Crack  

 

Fig. 6.6. 2-D FEA model of Spring Crack Model 

 

Fig. 6.6, shows the 2-D FEA model constructed to verify the FLM-Spring Model. 

The material chosen was IM7/5250-4 with the [0/45/-45/90]s lay-up. As mentioned 

before, since the stitch cracks tend to form only in the angle-plies, the DCOD values was 

only verified for the ±45˚ layers. A crack spacing of 0.2 inches with a delamination 

length of 0.03 inches was used as geometry input to the FLM. As can be seen from Fig. 



 54

6.6, a distributed spring system was chosen in the FEA model to simulate the single 

spring in FLM inorder to prevent local distortions to the crack face in FEA model. The 

spring system in the FEA simulation was chosen so that it was equivalent to the single 

spring used in FLM (the stiffness of each FEA spring was = Kspring/N, where N is the 

number of springs in the FEA model). Section 8.3 describes the results to the variation of 

DCOD with decreasing spring stiffness in a thermal loading condition (ΔT=-760.8˚F) and 

applied mechanical load condition (N=500lbs/inch) for the cases of stitch cracks in 45 

and -45.  

 

6.3. Strain Energy Release Rate for Matrix Cracking  

 

Fig. 6.7. FEA models for SERR: Matrix Cracking  
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The strain energy release rate (SERR) for matrix cracking was determined from 

FEA using the self-similar crack growth concept used in FLM (refer to section 5.3). The 

SERR solutions for the cracking of the mid 90 ply group of the [0/45/-45/90]s 

configuration was determined and compared with FEA. From symmetry, only half the 

geometry was modeled for analysis.  

In the first step, the model is assumed to have an array of cracks with a crack 

spacing 2S that corresponds to the initial crack density (Fig. 6.7(a)). The FEA is then 

performed with an applied mechanical load (or applied thermal field). In the second step, 

a second model is created with reduced crack spacing, S, and FEA simulation is run 

again, with the applied loads remaining the same. The total strain energy is then 

computed for the two models in region 1,  REGION 1U  (in Fig. 6.7(a)) and region 2, 

REGION 2U  (in Fig. 6.7(b)), The strain energy release rate can be then determined from the 

Griffith’s energy balance equation, 

 
REGION 2 REGION 1

3

4 2
2I

U UG
h
−=  (6.1) 

If I IcG G<  the critical strain energy release rate for mode I matrix crack, the load 

is increased and the analysis is performed again. The process is repeated until we reach 

the critical applied load, i.e. the load at which, I IcG G= . Fig. 6.8, has the logic for the 

above described iterative technique. 
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Fig. 6.8. Flow chart for determination of critical applied load. 

 

The applied critical load (in both mechanical and thermal loading conditions) for 

the crack densities: 2.5 and 5 cracks per meter were determined using FLM and verified 

using the process discussed above. Section 8.4 has the results to the verification. 
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6.4. Strain Energy Release Rate for Delamination Growth 

The delamination growth predicted by the FLM case 1, for the crack in the 90 ply 

of a [0/45/-45/90]s composite was compared with the values from 2-D FEA. Unlike the 

model for matrix crack formation, the delamination growth is assumed to be continuous 

and propagating within the cracked and uncracked ply interface (in this example at the 

interface between -45 and 90 layers). We assume that the delamination growth is 

primarily a mode II phenomenon, and thus it is dominated by the shear forces acting at 

the crack tip. The FEA solutions show that this assumption of mode II crack growth is 

correct for the delamination lengths considered in this study. Fig. 6.9, is the schematic of 

the FEA model used.  

 

Fig. 6.9. FEA model for Delamination Growth 

 

The FEA model for delamination analysis uses the quarter symmetry model for 

analysis, since there is a need for a highly refined mesh at the crack tip. Fig. 6.10, shows 

the FEA mesh used for the analysis.  
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Fig. 6.10. FEA mesh for delamination 

 

From Fig. 6.10, we can see that the mesh is non-uniform and refined at the crack 

tip. The modified one-step virtual crack closure technique (VCCT) Krueger [45] was 

used to evaluate the mode II SERR at the crack-tip. As per the self-similar crack growth 

assumptions of the virtual crack closure technique, we assume that energy released when 

the crack is extended from L+ΔL to L+2ΔL, is the same as the energy required to close 

the cracks from node m to node k (refer to Fig. 6.11). The modified crack closure further 

assumes that the extension of the crack from node i to node k (or from node k to node m) 

does not significantly alter the displacements behind the crack (or the forces at the crack 

tip), i.e., the displacements behind node k is approximately equal to the displacements 

behind the original crack at node i. 



 59

 

Fig. 6.11. The one step VCCT  

 

From VCCT, we have the energy release rate as, 

 ( ) ( )* *
1 1( ) ( )

2 2II i i i j j j i i j jG X u u X u u X u X u
L L

= − − + − = − Δ + Δ
Δ Δ  (6.2) 

It is evident that this modified one-step procedure is only applicable for refined 

meshes, since a coarse mesh at the crack tip would invalidate the assumptions of the 

VCCT. The mesh used in FEA model had non-uniform lengths for elements around the 

crack tip. Hence, the eq. (6.2) has to be modified slightly to include this non-uniformity 

of element lengths. From [45], we have the modified formula for energy release rate as, 

 ( ) 1

1 2

1
2II i i j j

LG X u X u
L L

Δ= − Δ + Δ
Δ Δ  (6.3) 

Where, ΔL1 is the element length behind the crack tip (the distance between node 

i and k) while ΔL2 is the the element length ahead of the crack tip (the distance between 
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node m and k). The value of L=0.005m was used for the analysis. Note that the 

delamination length used is large but, was employed in the interest of theoretical 

validation. The GII values from FEA and FLM was verified for four crack densities: 2.5, 

5, 10 cracks per meter, for the same delamination length and keeping the load applied in 

FEA and FLM the same. Comparison of solutions for GII from the thermal case and 

mechanical case are given in Section 8.4. 
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CHAPTER 7 

 

PERMEATION MODEL 

 

7.1. Introduction  

In the recent past, much scientific effort has been spent to learn the permeation 

characteristics of damaged composite structures. Extensive experimental work [38-42, 

44] has been performed in this area to characterize permeation in composites according to 

the damage state in the composite and permeant leakage. In this section, the extended 

FLM discussed earlier (section 3.4) will be used to calculate the delaminated crack 

opening displacement (DCOD) distribution through the thickness of a cracked composite 

laminate of given damage state and loading condition (mechanical and/or thermal), which 

will be subsequently input into the permeability model to calculate the permeability of 

the cracked composite.  

The permeability model presented in this thesis is the work already reported by 

Roy and Benjamin [36]. However, the model presented in [36] lacked experimental 

verification and was only used to theoretically study the permeation characteristics of 

IM7/PETI-5 orthotropic laminates. In this thesis the model is extended to study a generic 

configuration plies and is verified through comparison with experimental data provided
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by Bechel [40]. Since, the model here is an extension to the one presented in [36], only 

the more important equations of the analysis are repeated here.  

 

7.2. Permeability modeling  

The analytical model for permeation follows Darcy’s assumptions for flow 

through porous media. From the assumptions of Darcy’s law we have the mass flow rate 

(U) through the composite damaged laminate given by, 

 totalU C P= Δ  (7.1) 

 

Fig. 7.1. Conductance through composite laminate 

 

Where, totalC is the total conductance of the damaged laminate in the thickness 

direction and ΔP is the total pressure drop across the thickness of the laminate. Further 

the conductance ( totalC ) for a series of damaged plies (see Fig. 7.1) is given by, 

 

1

1

1N

total
K K

C
C

−

=

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑  (7.2) 
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Where, KC is the conductance of the Kth layer, of a composite with N plies. With 

these assumptions we can now derive the equations for the micro-crack permeation 

model. Fig. 7.2 is the top view of the junction of two idealized intersecting micro-cracks 

in the Kth and K+1th plies.   

 

Fig. 7.2. Top view of two intersecting micro-cracks in a laminate 

 

From the figure above we see that the area formed from the intersection of the 

two cracks is given by the trapezoid ABCD. That is the overlap area for the Kth interface 

will be,  

 area ABCD 1.
ˆsin

K K

θ
+Δ Δ=  (7.3) 

Where, KΔ  and K 1+Δ  are the delaminated crack opening diplacements (DCOD) of 

the Kth and K+1th ply, and θ̂  is the angle between the fiber directions of the Kth and K+1th 

ply. As see from the derivations for the FLM in chapter 3 we know that the DCOD KΔ  

and K 1+Δ  are functions of the delamination lengths K K 1d  and d +  (shown in Fig. 7.2) of its 

respective layer, i.e., K K K(d ) Δ = Δ  K 1 K 1 K 1while (d )+ + +Δ = Δ .  
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For a given crack density in the Kth ply K(N )  and the K+1th ply K 1(N )+ , we can 

write the total overlap area ( )KΩ  as, 

 
1 1

sin
K K K K

K
N N

θ
+ +Δ ΔΩ = )  (7.4) 

Assuming that the conductance at the interface is proportional to the DCOD 

overlap area [44] we have for the Kth cracked layer, 

 K KC C= Ω
)

 (7.5) 

Where, C
)

 is a material constant that needs to be characterized from experimental 

data. Hence, from eq. (7.4), (7.5) and using relation (7.2) for total conductance we get, 
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)
 (7.6) 

From (7.1) and (7.6) we get, 
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From Darcy’s law for isothermal, viscous flow of gases through porous media we 

have, 

 
oB M dPu P

RT dX
ρ

η
−=  (7.8) 



 65

Where, r  is the density of the fluid (or the permeant), oB  is the permeability of 

the material, h  is the viscosity of the fluid, P the pressure, M the molecular weight of the 

gas, T is the temperature and R is the universal gas constant. Assuming that the flow is in 

the X-direction (with ‘X’ denoting the thickness direction) and u is the velocity 

component in the X-direction we get ‘ uρ ’ as the mass flow per unit area in the X-

direction. In other words we have, U u= ρ , by definition. 

Integrating eq. (7.8) [36, 43] and applying the pressure boundary conditions of 1P  

at 1X X=  and 2P  at 2X X= , we get, 

  
o AVGB MPU u P

RT h
ρ

η
⎛ − ⎞= = Δ⎜ ⎟
⎝ ⎠  (7.9) 

Where, AVGP  is the average pressure 1 2

2
P P+⎛ ⎞=⎜ ⎟⎝ ⎠

 and 2 1P P PΔ = − , the pressure 

differential, while h is the layer thickness ( 2 1h X X= − ). Comparing eq. (7.7) and (7.9) 

we obtain, 
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Where,    
AVG

CRT hC
MP

η=
)

 

Using eq. (7.10) we can determine the permeability oB  for any composite with 

known crack density and delamination data, subjected to thermo-mechanical loads.  

The analytical model for permeability was verified using experimental data from 

Bechel [40] for the IM7/5250-4 composite laminate of lay-up [0/45/-45/90]s. The 
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characterization of the material constant C was obtained for this material using a 

combination of experimental and analytical results.  The same material constant C was 

then used to predict the permeability of the composite laminate. The detailed procedure 

for the characterization of C and the experimental verification of the permeability 

predictions are discussed in section 8.5.  
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CHAPTER 8 

 

RESULTS AND DISCUSSION 

 

8.1. FLM  

The finite element analysis models to determine the DCOD(s) for the [0/45/-

45/90]s carbon/epoxy composite was created as described in section 6.1. The laminate 

has equal thickness plies of 0.003 inch. The material used is IM7/5250-4 (see Table 8.1 

for properties). All cases of the FLM were verified for mechanical load (N=500lbs/inch) 

and thermal load (ΔT=-760.8˚F). The results to the mechanical analysis are tabulated in 

Table 8.2, while the thermal case results are given in Table 8.3. Fig. 8.1 to 8.4 show the 

DCOD profile comparisons for each individual ply in the [0/45/-45/90]s laminate from 

FLM and 2-D FEA for the mechanical case. Fig. 8.5 to 8.8, are the DCOD profiles from 

the thermal analysis. Equations from Elastic foundation (section 3.4) were used in the 

analysis of the cracked layers, in which the rotation and moment at the boundary of the 

delaminated portion were set to zero. As a result of these boundary conditions, the DCOD 

profiles for the crack face will always be a straight line, as can be seen from the Figures 

8.1 – 8.8. We can see from the results that the FLM compares very well with FEA for 

each ply, for the mechanical loading case. However for the thermal case, since the FLM
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is linear through-the-thickness it is unable to capture the non-linear deformation of the 

delaminated beam at y=S, as depicted in Fig. 8.5 to 8.8. 

 
Table 8.1. Material properties of IM7/5250-4 (Bechel et al [41]) 

 

 

 

Fig. 8.1. Crack Profile Comparison FLM – 2-D FEA for [0/45/-45/90]s IM7/5250-4 
laminate with crack in 0˚ layer: N = 500 lbs/inch, L=0.03”, S=0.20” 
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Fig. 8.2. Crack Profile Comparison FLM – 2-D FEA for [0/45/-45/90]s IM7/5250-4 
laminate with crack in 45˚ layer: N = 500 lbs/inch, L=0.03”, S=0.20” 

 

 

Fig. 8.3. Crack Profile Comparison FLM – 2-D FEA for [0/45/-45/90]s IM7/5250-4 
laminate with crack in -45˚ layer: N = 500 lbs/inch, L=0.03”, S=0.20” 
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Fig. 8.4. Crack Profile Comparison FLM – 2-D FEA for [0/45/-45/90]s IM7/5250-4 
laminate with crack in 90˚ layer: N = 500 lbs/inch, L=0.03”, S=0.20” 

 
 
 

Table 8.2. DCOD Predictions: Enhanced FLM – 2-D FEA  

[0/45/-45/90]s laminate, under mechanical load 
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Fig. 8.5. Crack Profile Comparison FLM – 2-D FEA for [0/45/-45/90]s IM7/5250-4 
laminate with crack in 0˚ layer: ΔT = -760.8˚F, L=0.03”, S=0.20” 

 

 

Fig. 8.6. Crack Profile Comparison FLM – 2-D FEA for [0/45/-45/90]s IM7/5250-4 
laminate with crack in 45˚ layer: ΔT = -760.8˚F, L=0.03”, S=0.20” 
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Fig. 8.7. Crack Profile Comparison FLM – 2-D FEA for [0/45/-45/90]s IM7/5250-4 
laminate with crack in 0˚ layer: ΔT = -760.8˚F, L=0.03”, S=0.20” 

 

 

Fig. 8.8. Crack Profile Comparison FLM – 2-D FEA for [0/45/-45/90]s IM7/5250-4 
laminate with crack in 0˚ layer: ΔT = -760.8˚F, L=0.03”, S=0.20” 
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Table 8.3. DCOD Predictions: Enhanced FLM – 2-D FEA  

[0/45/-45/90]s laminate, under thermal load. 

 

 

8.2. Stitch Crack  

Figures 8.9-8.12 are plots comparing the results from the extended FLM analysis 

with stitch cracks (Chapter 4) and 2-D FEA. The stitch crack model was applied to five 

cases of laminate width. As per the spring crack formulation in FLM, the percentage of 

through cracked can be converted to an equivalent spring stiffness, using equations 

discussed in Chapter 4. The analysis was performed for the ±45˚ plies of the [0/45/-

45/90]s IM7/5250-4 laminate (S=0.2”, L=0.03”), for both thermal (ΔT = -760.8˚F) and 

mechanical (N=500lbs/in) cases. Fig. 8.9 and 8.10 are the results from comparison of the 

FLM-2-D FEA for +45 and -45 ply for mechanical loading, while Fig. 8.11 and 8.12 are 

the results for +45 and -45 from thermal load case, respectively.  
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Fig. 8.9. DCOD vs. Stitch Crack Length for cracks in +45 Mechanical load, 
N=500lbs/in, L=0.03”, S=0.20”. 

 

Fig. 8.10. DCOD vs. Stitch Crack Length for cracks in -45 Mechanical load, 
N=500lbs/in, L=0.03”, S=0.20”. 
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Table. 8.4. DCOD comparisons FLM-FEA for stitch crack model, Mechanical 
load case 

 DCOD for +45 
for N=500lbs/in, L=0.03”, S=0.20” 

DCOD for -45 
for N=500lbs/in, L=0.03”, S=0.20” 

a/W FLM 
(inch) 

2-D FEA 
(inch) %Error FLM 

(inch) 
2-D FEA 

(inch) %Error 

0.07 5.21x10-05 6.08x10-05 -14.24 5.18x10-05 6.09x10-05 -14.98 
0.25 5.39x10-05 6.16x10-05 -12.40 5.35x10-05 6.16x10-05 -13.09 
0.50 5.65 x10-5 6.27x10-05 -9.91 5.61x10-05 6.27x10-05 -10.62 
0.75 5.90 x10-5 6.38x10-05 -7.50 5.86x10-05 6.38x10-05 -8.23 

1 6.16x10-05 6.50x10-05 -5.18 6.12x10-05 6.50x10-05 -5.93 
 

 

Fig. 8.11. DCOD vs. Stitch Crack Length for cracks in +45 Mechanical load, ΔT 
= -760.8˚F, L=0.03”, S=0.20”. 
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Fig. 8.12. DCOD vs. Stitch Crack Length for cracks in -45 Mechanical load, ΔT = 
-760.8˚F, L=0.03”, S=0.20”. 

 

 

Table. 8.5. DCOD comparisons FLM-FEA for stitch crack model, Thermal load 
case 

 DCOD for +45 
for ΔT = -760.8˚F, L=0.03”, S=0.20”

DCOD for -45 
for ΔT = -760.8˚F, L=0.03”, S=0.20”

a/W FLM 
(inch) 

2-D FEA 
(inch) %Error FLM 

(inch) 
2-D FEA 

(inch) %Error 

0.07 5.82x10-04 6.04x10-04 -3.63 5.77x10-04 6.04x10-04 -4.39 
0.25 5.99x10-04 6.11x10-04 -2.00 5.95x10-04 6.12x10-04 -2.77 
0.50 6.23x10-04 6.22x10-04 0.20 6.19x10-04 6.23x10-04 -0.59 
0.75 6.48x10-04 6.33x10-04 2.32 6.43x10-04 6.34x10-04 1.51 

1 6.71x10-04 6.45x10-04 5.34 6.74x10-04 6.46x10-04 5.74 
 

The crack openings given above are not the actual openings, The true or projected 

opening for the laminate can be calculated by multiplying the above values with √2 (refer 

section 3.5 for details). As can be seen from the plots above, the FLM-spring model has 

the same the trends for both the mechanical and thermal load cases.  

  



 77

8.3. Strain Energy Release Rate  

The FEA models discussed in section 6.3 and 6.4 were employed to compare with 

the results from FLM for both mode I and mode II energy release rate. As before the 

material used is IM7/5250-4 laminate of lay-up [0/45/-45/90]s. The mode I and mode II 

SERR were compared for the case of crack in the 90 ply of the above composite (FLM 

Case 1).  

For mode I, the critical load (the applied load at which the energy release rate is 

equal to GIC, the critical energy release rate) was computed for crack densities of 0.0635 

and 0.127 cracks/inch (2.5 and 5 cracks/m), using Griffith’s energy balance equation 

[eq.(5.9)] for both thermal and mechanical load cases. The delamination length for both 

these cases were kept constant at L=0.197 inch (0.005 m), for all cases of crack density 

(CD). Given in Table 8.6 are comparisons of FLM with FEA, for the mode I critical 

applied load assuming GIC=1.6 lbs/inch (280 N/m) (from Bechel et al [39],[41]). 

 

Table 8.6. Critical Applied Load comparisons FLM – 2-D FEA 

 Critical Mechanical load Critical Thermal Load 
Crack 

Density 
(cracks/inch) 

FLM 
(lbs/inch) 

2-D FEA 
(lbs/inch) %Error FLM 

(˚F) 
2-D FEA 

(˚F) %Error 

0.0635 16559.44 18272.48 -9.37 -213.88 -183.82 16.35 
0.127 16559.44 18272.48 -9.37 -213.88 -183.82 16.35 

 

As observed from the results for mode I, we see that the FLM under predicts the 

critical mechanical load and over-predicts the critical applied thermal load. While, under-

prediction in load cases can be considered conservative with respect to the crack-

initiation, over prediction of the critical thermal load implies that the number of cracks 
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formed in this layer as predicted by FLM, will likely be lower in comparison with the 

actual experimental results. However, since the mode I model has been verified only with 

numerical simulation it is recommended that the results be checked against monotonic-

tensile loaded composite specimens to verify the solutions from the current mode I 

damage model.   

For the verification of mode II, the laminate was considered with three different 

cases of crack spacing: S=1.97 inch (0.05m), S=3.94 inch (0.1m) and S=7.87 inch (0.2m). 

The energy release rate from FLM was found by solving (eq.5.11) numerically. The 

virtual crack closure technique (VCCT) was used to evaluate the energy release rate from 

2-D FEA. Identical loads were applied both to the FLM and FEA models and the 

resulting mode II energy release rate from the two analyses were compared. The results 

from the comparisons are tabulated in Table 8.7, indicating reasonable agreement, with 

FEA with FLM predictions consistently conservative. 

Table 8.7. GII comparisons FLM – 2-D FEA 

 GII for Mechanical load  
(N=18.3x103 lbs/inch) 

GII for Thermal Load  
(ΔT = -184˚F) 

Crack 
Density 

(cracks/inch) 

FLM 
(N/m) 

2-D FEA 
(N/m) %Error FLM 

(N/m) 
2-D FEA 

(N/m) %Error 

0.0635 0.343 0.249 37.83 0.218 0.173 25.79 
0.127 0.343 0.255 34.54 0.218 0.181 20.56 
0.254 0.343 0.255 34.39 0.218 0.204 7.06 

 

The damage model verified above, was subsequently used to study the variation 

of critical applied load for both the mechanical and thermal loading cases. Fig. 8.13 and 

8.14, show the variation of crack density in the 90˚ layer of a [0/45/-45/90]s IM7/5250-4 
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composite for mechanical and thermal loading cases. The effect of delamination length 

on the crack initiation is also presented in Fig. 8.13 and 8.14.  

 

Fig. 8.13. Crack Density vs. Critical Applied Mechanical load  
 

 
Fig. 8.14. Crack Density vs. Critical Applied Thermal Load 

 

From the figures above, a similarity in the trends for the pure mechanical and pure 

thermal loading cases can be observed. First we see that for lower crack densities the 

applied load initially remains constant until a critical crack spacing is reached after which 
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the cracks within the system increases exponentially with linear increase in load. This 

was also observed in shear-lag solutions of Mcmanus and Maddocks [30]. Initially, for 

lower crack densities, the cracks spacing is wide enough so that the critical stress 

required to initiate the crack at the required position (refer section 5.1) is always 

available. However, as the cracks get closer, for the same applied load, the critical stress 

midway between any two cracks decreases, and therefore the crack initiation load 

increases.  

However, with increase in delamination length the mechanics behind crack 

multiplication changes. With increase in delamination length the load transferred to the 

adjacent uncracked ply is decreased, Hence, sufficient strain energy is still available for 

the crack to initiate and that too at a lower load (with respect to an un-delaminated 

laminate). 

   

8.4. Permeability  

In this section, the permeability model proposed in Chapter 7, is validated using 

experimental data from Bechel et al [41] for the IM7/5250-4 composite of lay-up: [0/45/-

45/90]s. The laminate is of thickness 0.13 mm, with equal thickness plies. Bechel et al 

induced cracks in the composite laminate through thermal cycling (See Ref. 

[28],[38],[41]). Bechel et al [41], has compiled data for cycling composite laminates, and 

provided crack density data for every 250 cycles starting from 750 through to 1250 for 

three different temperature profiles (-196˚C to 177˚C, -196˚C to 120˚C and -196˚C to 

room temperature) and also measured the permeability of the damaged composite for 

each temperature profile at both cryogenic temperature (in liquid nitrogen, -196˚C) and 
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room temperature. Table 8.8 shows the average crack density data from their thermal-

cycling experiments, while Table 8.9 is the permeability of the damaged cycled 

composite laminates measured by Bechel et al [41] at both room temperature and liquid 

nitrogen temperature. The permeation data for the composite samples cycled from -196˚C 

to room temperature (RT) are not reported since, they did not to experience appreciable 

permeation at both room and cryogenic temperatures. 

 

Table 8.8. Crack densities in IM7/5250-4 [0/45/-45/90]s vs. thermal cycle profile 

Cycling profiles : -196˚C to 177˚C 
(cracks/cm) 

-196˚C to 120˚C 
(cracks/cm) 

-196˚C to RT 
(cracks/cm) 

plies 1, 8 
 

12.08 
 

9.03 
 

4.33 
plies 2, 7 6.92 2.82 0.1 
plies 3, 6 0.63 0.04 0 
plies 4, 5 1.13 0.34 0.2 

750 
cycles 

    

plies 1, 8 
 

12.21 
 

9.84 
 

5.97 
plies 2, 7 10.45 3.93 0.1 
plies 3, 6 4.08 0.14 0 
plies 4, 5 6.66 0.34 0.2 

1000 
cycles 

    

plies 1, 8 
 

13.41 
 

10.36 
 

not tested 
plies 2, 7 13.76 4.91 not tested 
plies 3, 6 6.89 0.42 not tested 
plies 4, 5 6.52 0.44 not tested 

1250 
cycles 
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Table 8.9. Permeability vs. thermal cycle profile (Bechel et al [41]) 

 Permeability at Room Temperature 
Cycles -196˚C to 177˚C 

(scc/s-cm2) 
-196˚C to 120˚C 

(scc/s-cm2) 
750 5.49 x10-08 1.15 x10-09 
1000 5.28 x10-06 1.47 x10-08 
1250 1.75 x10-05 1.80 x10-07 

   
 Permeability at LN2 Temperature 

Cycles -196˚C to 177˚C 
(scc/s-cm2) 

-196˚C to 120˚C 
(scc/s-cm2) 

750 6.23 x10-07 1.15 x10-09 
1000 6.87 x10-05 4.11 x10-07 
1250 2.75 x10-04 3.60 x10-06 

   
 

In this thesis, crack densities from the -196˚C to 177˚C range thermal cycling was 

input to the extended FLM proposed in Chapter 3, to predict the DCOD distribution 

through the thickness of the [0/45/-45/90]s laminate. Since, considerable permeation only 

occured for experiments at liquid nitrogen temperature conditions, the experimental data 

from the cryogenic tests (Bechel et al [41]) for this temperature profile were used to 

validate the model. For the FLM, a thermal load of -760.8˚F was applied to simulate the 

temperature drop from cure (Tinitial=440˚F) to test (Tfinal=-320.8˚F) temperature. The 

material properties (listed in Table 8.1) were assumed not to vary with temperature 

although, the FLM non-linear (NL), in which the material property varies with 

temperature, could be used as easily, once we know the variation of the material 

properties with temperature. 
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Table 8.10. Assumed delamination lengths in IM7/5250-4 [0/45/-45/90]s vs. thermal 
cycle profile 

Cycling profiles : -196˚C to 177˚C  Delamination length (in inch) 
 

plies 1, 8 
 
0 

plies 2, 7 0 
plies 3, 6 0.0109 
plies 4, 5 0 

750 cycles 

  
 

plies 1, 8 0.0010 
plies 2, 7 0.0011 
plies 3, 6 0.0029 
plies 4, 5 0.0018 

1000 cycles 

  
 

plies 1, 8 0.0018 
plies 2, 7 0.0017 
plies 3, 6 0.0034 
plies 4, 5 0.0036 

1250 cycles 

  
  

Since experimental measurements of the delamination lengths were not available 

and because delamination length is an important input parameter to the FLM, an evolving 

delamination distribution that increases with number of cycles was assumed. It was 

assumed for the 750 cycles the 0˚(Plies 1 and 8) , 45˚(Plies 2 and 7) and 90˚(Plies 4 and 

5) do not have any delaminations with the exception of the -45 (Plies 3 and 6) where the 

delamination was assumed to be 3.5% of its crack spacing (crack spacing ‘S’=1/(2CD), 

where CD is the crack density).  For the 1000 and 1250 cycles, the delaminations of each 

layer was assumed, respectively, to be 6% and 12% of the crack spacing (S) of that layer, 

respectively. Table 8.10 shows the delamination lengths assumed in each ply for the three 

cycles. 
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The FLM was then used to evaluate the normalized permeability (Bo/C) for the 

750, 1000, 1250 cycles. The model was also run for different percentages of through 

cracks in the ±45 plies (both plies having the same amount of stitch cracks), starting from 

7, 25, 50, 75 and 100%. This was done in order to conduct a parametric sensitivity study 

on the effect of the length of stitch cracks on the permeability of the laminate. The stitch 

crack model (Chapter 4) was used in the extended FLM to calculate the DCOD for the 

±45 plies. An estimation for the conductance ‘C’ was made using the experimental value 

for permeability at 1000 cycles and the value for (Bo/C) from the FLM with 7% through 

cracks at 1000 cycles, i.e.: 

For the case of 7% through cracked, (Bo/C)FLM for 1000 cycles = 3.022x10-07. 

From Table 8.9, the experimental value of (Bo)1000 at LN2 temperature = 

6.870x10-05 scc/s-cm2. 

Hence, C = o 1000

o FLM

(B )
(B /C)  

=
-05

-07

6.870x10
3.022x10

= 2273.103 scc/s-cm2. 

The value calculated for the conductance ‘C’ was then used to predict the 

permeability for the 750 and 1250 cycles (for various lengths of stitch cracks). Fig. 8.15, 

is the plot of permeability calculated from FLM compared with the experimental data 

from Bechel et al [41].  
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Fig. 8.15. Log [Permeability (scc/s-cm2)] vs. Number of thermal cycles 

 

Table 8.11, tabulates the relative errors (in percentage) between the predicted 

analytical result and the corresponding experimental result. As can be observed, the 

analytical predictions for permeability are conservative and within acceptable error 

limits. It is also evident that the error in predictions decreases with the decrease in the 

length of stitch cracks in the angle plies, the reduction in error becoming more obvious in 

the prediction of permeability for the 750 cycles, underscoring the significance of 

including the stitch crack model in FLM.  

The relative insensitivity of the stitch crack model in the prediction for 1250 

cycles could be attributed to the fact that, the permeability measured at 1000 and 1250 

cycles do not undergo as big an increase (the permeability increased by a single order of 
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magnitude) as compared with the one between 750 and 1000 cycles (where, the values 

increase roughly by 11,000%).  

If the permeability were measured at cycles that were more spread apart, the drop 

would have been much more significant. 

Table 8.11. Permeability predictions using FLM compared with experimental data 
(Bechel et al [41])  
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CHAPTER 9 

 

CONCLUSIONS 

 

An analytical model was developed to find the crack opening displacements in 

composites with transverse matrix cracks and delaminations subjected to mechanical 

and/or thermal loads. Verification using finite element analysis has shown that the model 

could be used to analyze laminates of any general configuration. The introduction of 

stitch crack model and subsequent verification with experimental data for permeation 

indicate that the experimental observations can be closely simulated using this simple 

model.  

The model was used to predict the permeability of thermo-cycled damaged 

composite specimens. Good agreement in the results from experiment and theoretical 

analysis suggest that the model proposed in this thesis could be used as a tool in the 

initial design of composite structures subjected to thermal and mechanical load. 

However, In the interest of future enhancement of the model a few points are suggested 

below: 
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• Although a damage evolution model was proposed and verified with finite 

element analysis, the applicability of this model to design can only be 

evaluated through verification with experimental results. It is suggested that 

the damage evolution model be verified with results from experiments for 

composites under monotonic tension (for the mechanical case) and a uniform 

thermal field (for the case of thermal load). 

• The FLM in this thesis, is based on a linear model for which certain boundary 

conditions are not satisfied (refer section 3.3). These issues could be 

addressed with a model based on higher order deformation theory. By using, a 

higher order model the non-linearity in the deformation of the delaminated ply 

could also be captured. However, the higher order model will require a 

numerical the solution process. 

• The model under predicts the crack initiation under mechanical load and over 

predicts the critical thermal load. Since, under prediction of critical load is 

conservative and amenable to a good design tool, the over-prediction in 

thermal load is not favorable especially if the model is to be used in the 

analysis of composites in cryogenic environments. For this, the damage 

evolution model proposed for the thermal case, suggested in Chapter 5, should 

be modified to superpose the effects of each individual ply group, instead of 

the effective method in use currently. However, this would complicate the 

equations considerably. 

• Finally, the COD from the model should be compared with actual COD data 

from experiments. The permeability predictions in this thesis were performed 
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after assuming trends in the input parameters (i.e., crack density, delamination 

length). A more comprehensive validation would be if these parameters were 

confirmed using experimental observations.  
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APPENDIX A 

 

FIVE-LAYER MODEL ANALYSIS (CASE 2) 

 

In this section, the governing equations for the five-layer model (FLM) are 

presented and solved for the case of laminate with the generalized ply orientation 

[ l m n p q/ ... / / 90 / / ... /φ θ ϕ ψ ]s. Fig. A.1. shows the quarter model selected from the FLM 

(Fig. 3.4(a)) from symmetry of load and boundary conditions.  

 

Fig. A.1. One quarter repeating interval of the FLM (Case 2) 

 

The quarter symmetry model is divided into 6 sublaminate groups. Sublaminates 

1, 2 and 3 are intact and extend from y=0 to y=S-L. Sublaminate group 6 and 4 are a 

continuation of plies 1 and 3 respectively and are unbroken. Sublaminate 5 represents the
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delaminated portion, extending from y=S-L to y=S. Since, sublaminates 1, 2 and 3 are 

intact their solutions will be determined first. The derivation for these sublaminates are 

based on the derivation presented earlier by [21, 36], extended to include asymmetric 

configuration of plies in sublaminate 3.  

From first order shear deformation theory assumptions we have the displacement 

field as, 

 
( ) ( ) ( )( , ) ( ) ( )i i iv y z V y z yβ= +  (A.1a) 

 
( ) ( )( ) ( )i iw y W y=  (A.1b) 

Where, V(y) is the mid-plane displacement in the y-direction, β(y) is the slope of 

the normal to the mid-plane of the sublaminate in the y-direction. Note that, the 

displacement in the z-direction, W(y) does not vary through the thickness.  

The governing equations for each sublaminate are, 

 , 0y t bN T T+ − =  (A.2a) 

 , ( ) 0
2y t b
hM Q T T− + + =  (A.2b) 

 , 0y t bQ P P+ − =  (A.2c) 

 Where, N, M and Q are the Axial Force, Bending Moment and Shear resultants, 

while P and T denote the inter-laminar peel and shear stresses with t and b denote the top 

and bottom surfaces. The constitutive relations are: (the ‘m’ subscripts denote the 

“mechanical”)  

 22 , 22 , 22

f

ref

T

M y y y
T

N A V B Q h dTβ α= + − ∫  (A.3a) 
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 22 , 22 , 22

f

ref

T

M y y y
T

M B V D Q hZ dTβ α= + − ∫  (A.3b) 

 44 ,( )yQ A Wβ= +  (A.3c) 

Where, 22A , 22B , 22D & 44A are components of the A, B and D stiffness matrices 

from classical lamination theory, h is the thickness of the lamina, Z  is the centroidal 

distance of the lamina from laminate mid-plane, yα  is the coefficient of thermal 

expansion in y-direction. Plugging in (A.3a – A.3c) into (A.2a – A.2c) we have the 

governing equations, 

 22 , 22 , 0yy yy t bA V B T Tβ+ + − =  (A.4a) 

 
2
22 22 22

22 , 44 ,
22 22 22

( ) 0
2 2yy y t b

B B Bh hD A W T T
A A A

β β
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− − + + − + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  (A.4b) 

 44 , ,( ) 0y yy t bA W P Pβ + + − =  (A.4c) 

In the sections to follow, the governing equations listed above will be modified as 

required by the lamina (or sublaminate) boundary conditions.  

 

A.1. Laminated Portion: Sublaminate 1, 2 and 3 (0 ≤ y ≤ S-L) 

Since the sublaminates are intact the following conditions of continuity must be 

satisfied. 

 
(1) (2)

(1) (1) (2) (2)( ) ( ) ( ) ( )
2 2

h hV y y V y yβ β− = +  (A.5a) 

 
(2) (3)

(2) (2) (3) (3)( ) ( ) ( ) ( )
2 2

h hV y y V y yβ β− = +  (A.5b) 
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From eqs. (A.4a) and (A.4b) and using the zero shear tractions on free surface of 

sublaminate 1( (1) 0tT = ) and the bottom of sublaminate 3 ( (3) 0bT = ) due to mid plane 

symmetry, the governing equations for the individual sublaminates are, 

 
(1) (1) (1) (1) (1)
22 , 22 , 0yy yy bA V B Tβ+ − =  (A.6a) 

 
(2) (2) (2) (2)
22 , 0yy t bA V T T+ − =  (A.6b) 

 
(3) (3) (3) (3) (3)
22 , 22 , 0yy yy bA V B Tβ+ + =  (A.6c) 

And, 

 
(1)2 (1)(1)

(1) (1) (1) (1) (1)22 22
22 , 44(1) (1)

22 22

0
2yy b

B BhD A T
A A

β β
⎛ ⎞ ⎛ ⎞

− − + + =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  (A.7a) 

 
(2)

(2) (2) (2) (2)
22 , 44 ( ) 0

2yy t b
hD A T Tβ β− + + =  (A.7b) 

 
(3)2 (3)(3)

(3) (3) (3) (3) (3)22 22
22 , 44(3) (3)

22 22

0
2yy b

B BhD A T
A A

β β
⎛ ⎞ ⎛ ⎞

− − + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  (A.7c) 

Using the continuity in displacement, eqs. (A.5a) and (A.5b) and the continuity of 

surface tractions, i.e., (1) (2)
b tT T=  and (2) (3)

b tT T= , we can solve for the quantities (1)
, yyV , (2)

, yyV  

and (3)
, yyV  from eqs. (A.6a), (A.6b) and (A.6c). 

 
{

}

(1) (1) (2) (3) (1) (1)
, 22 22 22 ,

22

(2) (2) (3) (2) (2) (3) (3) (3)
22 22 , 22 22 ,

1 [ ( ) 2 ]

             ( 2 ) ( 2 )

yy yy

yy yy

V h A A B
A

h A A h A B

β

β β

= + −

+ + + −
 (A.8a) 

 
{

}

(2) (1) (2) (1) (1) (2) (1) (3) (2)
, 22 22 , 22 22 ,

22

(2) (3) (3) (3)
22 22 ,

1 ( 2 ) ( )

             ( 2 )

yy yy yy

yy

V h A B h A A
A

h A B

β β

β

= − + + −

− −
 (A.8b) 
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{

}

(3) (1) (1) (1) (1) (2) (1) (2) (2)
, 22 22 , 22 22 ,

22

(3) (3) (1) (2) (3)
22 22 22 ,

1 ( 2 ) (2 )

             [2 ( )]

yy yy yy

yy

V h A B h A A
A

B h A A

β β

β

= − + + +

+ + +
 (A.8c) 

Where, (1) (2) (3)
22 22 22 222( )A A A A= + + , is the total extensional stiffness of the laminate. 

 Using equations above (A.8a) – (A.8c), along with the eqs. (A.6a) – (A.6c) for 

the surface tractions we can solve for the surface tractions, 

 
{

}

(1) (2) (2) (3) (1) (1) (1) (1)
22 22 22 22 ,

22

(2) (1) (2) (3) (2) (1) (3) (3) (3) (3)
22 22 22 , 22 22 22 ,

1 ( )( 2 )

             ( 2 ) ( 2 )

b t yy

yy yy

T T A A h A B
A

h A A A A h A B

β

β β

= = + +

+ + + −
 (A.9) 

 
{

}

(1) (2) (3) (1) (1) (1) (1) (2) (3) (1) (2) (2)
22 22 22 , 22 22 22 ,

22

(1) (2) (3) (3) (3) (3)
22 22 22 22 ,

1 ( 2 ) (2 )

             +( )( 2 )

b t yy yy

yy

T T A h A B h A A A
A

A A h A B

β β

β

= = + + +

+ −
 (A.10) 

Substituting the eqs. (A.9) and (A.10) into (A.7a) – (A.7c), we arrive at the 

following system of coupled differential equations, 

 

(1) (1) (1)
11 12 13 , 44

(2) (2) (2)
12 22 23 , 44

(3) (3) (3)
13 23 22 , 44

0 0
0 0
0 0

yy

yy

yy

a a a A
a a a A
a a a A

β β
β β
β β

⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (A.11) 

The expressions for aij has been defined in Appendix E. The solution for this set 

of equations follows the approach developed in Zhang et al [21]. Using the method in 

[21], we get, 

 
3

( ) ( )

1
sinh( )i i

j j j
j

P yβ α λ
=

=∑  (A.12) 

Where, i=1, 2 and 3, while, 
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*(1) (2) *

13 44 22 13 12 23
(2) (1) ** (1) * (2) 2 *2

23 44 11 13 12 2311 44 22 44 12

a ( )
a ( )( )( )

jj j

j jj j j

P A a a a a
P A a a a aa A a A a

λ λ
λλ λ λ

⎧ ⎫ ⎧ ⎫− −⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬− −− − −⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭
 (A.13) 

with, (3) 1jP =  and *
jλ  is one of the three real positive solutions to the following 

cubic characteristic equation ( *
j jλ λ= ), 

 

2 2 2 *3
11 22 33 12 13 23 33 12 11 23 22 13

(3) (1) (2) 2 (3) 2 (1) 2 (2) *2
11 22 44 33 22 44 33 11 44 12 44 23 44 13 44

(2) (3) (1) (3) (2) (1) * (1) (2) (3)
11 44 44 22 44 44 33 44 44 44 44 44

( 2 )

( )

( ) 0

a a a a a a a a a a a a

a a A a a A a a A a A a A a A

a A A a A A a A A A A A

λ
λ

λ

+ − − −

− + + − − −

+ + + − =
 (A.14) 

 Substituting (A.12) into (A.8a) – (A.8c), and integrating we get (after applying 

condition of no transalations at y=0), 

 
3

( ) ( )
3

1
sinh( )i i

j j j i
j

V y yα γ λ α +
=

= +∑  (A.15) 

From (A.3a) and (A.3b), we have the force and moment resultants as, 

 
3

( ) ( ) ( ) ( ) ( ) ( )
22 3 22

1

cosh( )
f

ref

T
i i i i i i

M j j j i y
j T

N y A Q h dTα η λ α α+
=

= + −∑ ∫  (A.16) 

 
3

( ) ( ) ( ) ( ) ( ) ( ) ( )
22 3 22

1

cosh( )
f

ref

T
i i i i i i i

M j j j i y
j T

M y B Q h Z dTα ξ λ α α+
=

= + −∑ ∫  (A.17) 

The constants ( )i
jγ , ( )i

jη  and ( )i
jξ  have been listed in Appendix E. 

 

A.2. Laminated Portion: Sublaminate 6 (S-L ≤ y ≤ S) 

The sublaminate 6 is an intact ply group, unsymmetric about its mid-plane (Fig. 

A.1). Assuming that W(6)≠0 and applying the traction boundary conditions (6) 0tT = , 



 103

(6) 0bT = , (6) 0tP =  and (6) 0bP =  to the sublaminate, we get the governing equations for this 

sublaminate as, 

 
(1) (6) (1) (6)
22 , 22 , 0yy yyA V B β+ =  (A.18a) 

 
(1)2

(1) (6) (1) (6) (6)22
22 , 44 ,(1)

22

( ) 0yy y
BD A W
A

β β
⎛ ⎞

− − + =⎜ ⎟
⎝ ⎠  (A.18b) 

 
(1) (6) (6)
44 , ,( ) 0y yyA Wβ + =  (A.18c) 

Integrating, (A.18c) once and applying the boundary condition Q(6)(S)=0 (from 

symmetry of FLM), we get, 

 
(1) (6) (6)
44 ,( ) 0yA Wβ + =  (A.18d) 

From (A.18b) and (A.18d) we get, 

 
(6)
, 0yyβ =   

 or, (6)
3 4yβ θ θ= +  (A.19) 

Similarly, from (A.18a) and (A.19) we get, 

 
(6)

6 8V yθ θ= +  (A.20) 

Solving (A.18d), we get, 

 
2

(6)
3 4 92

yW yθ θ θ= − − +  (A.21) 

Using the constitutive relations listed (A.3a) and (A.3b) we have the relations for 

resultant force and moment for the sublaminate as, 
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(6) (1) (1) (1) (1) (1)

22 6 22 3 22

f

ref

T

M y
T

N A B Q h dTθ θ α= + − ∫  (A.22) 

 
(6) (1) (1) (1) (1) (1) (1)

22 6 22 3 22

f

ref

T

M y
T

M B D Q h Z dTθ θ α= + − ∫  (A.23) 

 

A.3. Laminated Portion: Sublaminate 4 (S-L ≤ y ≤ S) 

The sublaminate 4 is an intact ply group, unsymmetric about its mid-plane (Fig. 

A.1). Due to the problems faced in modeling sublaminate 4 with W(4)=0 (refer section 

3.3), a modified solution for sublaminate 4 is suggested here. Assume W(6)≠0 and the 

peel stress at the bottom of the sublaminate (4) 0bP = . Now applying the traction boundary 

conditions (6) 0tT = , (6) 0bT =  to the sublaminate, the governing equations for this 

sublaminate will be, 

 

 
(3) (4) (3) (4)
22 , 22 , 0yy yyA V B β+ =  (A.24a) 

 
(3)2

(3) (4) (3) (4) (4)22
22 , 44 ,(3)

22

( ) 0yy y
BD A W
A

β β
⎛ ⎞

− − + =⎜ ⎟
⎝ ⎠  (A.24b) 

 
(3) (4) (4)
44 , ,( ) 0y yyA Wβ + =  (A.24c) 

Since, Q(6)(S)=0, the solutions for sublaminate 4 and 6 will be similar. Following 

a solution procedure similar to that for sublaminate 6, we get, 

 
(4)

1 2yβ θ θ= +  (A.25) 

 
(4)

5 7V yθ θ= +  (A.26) 
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2

(4)
1 2 102

yW yθ θ θ= − − +  (A.27) 

 
(4) (3) (3) (3) (3) (3)

22 5 22 1 22

f

ref

T

M y
T

N A B Q h dTθ θ α= + − ∫  (A.28) 

 
(4) (3) (3) (3) (3) (3) (3)

22 5 22 1 22

f

ref

T

M y
T

M B D Q h Z dTθ θ α= + − ∫  (A.29) 

 
A.4. Delaminated Portion: Sublaminate 5 (S-L ≤ y ≤ S) 

The solution for rotations in the delaminated portion is solved using the elastic 

foundation solutions described in Section 3.4. Since, the cracked layer is decoupled from 

the solution to the rest of the laminate we can discuss the solution for rotations and 

displacements separately. 

The equilibrium equation for the cracked lamina is, 

 
(5) (5)
22 , 0yyA V =  (A.30) 

Solving the above equation we get, 

 
(5)

5 6V yψ ψ= +  (A.31) 

From, the above solution we can derive the solution for mechanical load in the 

cracked sublaminate as, 

 
(5) (2) (5) (2) (2) (2) (2) (2) (2) (2)

22 , 22 22 5 22

f f

ref ref

T T

M y y y
T T

N A V Q h dT A Q h dTα ψ α= − = −∫ ∫  (A.32) 

Hence, we need to specify 18 boundary conditions to solve for the 18 constants 

( 1 2 6 1 2 10 5 6, ,..., , , ,..., , ,α α α θ θ θ ψ ψ ).  
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A.5. Solutions for constants: 1 2 6 1 2 10 5 6, ,..., , , ,..., , ,α α α θ θ θ ψ ψ  

The boundary conditions that need to be satisfied are, 

 
(4) ( ) 0Sβ =  (A.33a) 

 
(6) ( ) 0Sβ =  (A.33b) 

 
(6) (4)( ) ( )V S V S=  (A.33c) 

 
(5) ( ) 0MN S =  (A.33d) 

 
(1) (6)( ) ( )S L S Lβ β− = −  (A.33e) 

 
(3) (4)( ) ( )S L S Lβ β− = −  (A.33f) 

 
(1) (6)( ) ( )V S L V S L− = −  (A.33g) 

 
(2) (5)( ) ( )V S L V S L− = −  (A.33h) 

 
(3) (4)( ) ( )V S L V S L− = −  (A.33i) 

 
(1) (6)( ) ( )W S L W S L− = −  (A.33j) 

 
(3) (4)( ) ( )W S L W S L− = −  (A.33k) 

 
(1) (6)( ) ( )M MN S L N S L− = −  (A.33l) 

 
(2) (5)( ) ( )M MN S L N S L− = −  (A.33m) 

 
(3) (4)( ) ( )M MN S L N S L− = −  (A.33n) 

 
(1) (6)( ) ( )M MM S L M S L− = −  (A.33o) 

 
(3) (4)( ) ( )M MM S L M S L− = −  (A.33p) 
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(1) (2) (3)(0) (0) (0)

2M M M
NN N N+ + =  (A.33q) 

The above 17 boundary conditions and the two continuity equations (A.5a, b) (19 

boundary conditions in total) have to be satisfied. However, the unavailability of 

constants (only 18 in number) implies that one of the boundary conditions have to be 

dropped. Due to this restraint, the eq. (A.33e) : the boundary condition for continuity in 

rotation is omitted. Problems that may arise from this solution procedure has been 

discussed in Section 3.3. Also note that here, the axial load ta the boundary of the cracked 

layer (the free surface) has been set to zero in eq. (A.33d). However, in the stitch crack 

model this will be modified to include the spring force at the end of the delaminated 

beam. Hence, the appropriate changes have to be made in the equations for ‘ψ5’ and ‘ψ6’ 

to be made, depending on the model. 

Substituting the solutions to rotations and displacements from the sections before, 

we get, 

 1 2 0Sθ θ+ =  (A.34a) 

 3 4 0Sθ θ+ =  (A.34b) 

 6 8 5 7S Sθ θ θ θ+ = +  (A.34c) 

 
(2) (2) (2) (2)
22 5 22 0

f

ref

T

y
T

A Q h dTψ α− =∫  (A.34d) 

 
3

(1)
3 4

1
sinh( ( )) ( )j j j

j
P S L S Lα λ θ θ

=

− = − +∑  (A.34e) 

 
3

1 2
1

sinh( ( )) ( )j j
j

S L S Lα λ θ θ
=

− = − +∑  (A.34f) 
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3

(1)
4 6 8

1

sinh( ( )) ( ) ( )j j j
j

S L S L S Lα γ λ α θ θ
=

− + − = − +∑  (A.34g) 

 
3

(2)
5 5 6

1
sinh( ( )) ( ) ( )j j j

j
S L S L S Lα γ λ α ψ ψ

=

− + − = − +∑  (A.34h) 

 
3

(3)
6 5 7

1

sinh( ( )) ( ) ( )j j j
j

S L S L S Lα γ λ α θ θ
=

− + − = − +∑  (A.34i) 

 
2

3 4 9
( ) ( ) 0

2
S L S Lθ θ θ−− − − + =  (A.34j) 

 
2

1 2 10
( ) ( ) 0

2
S L S Lθ θ θ−− − − + =  (A.34k) 

 
3

(1) (1) (1) (1)
22 4 22 6 22 3

1

cosh( ( ))j j j
j

S L A A Bα η λ α θ θ
=

− + = +∑  (A.34l) 

 
3

(2) (2) (2)
22 5 22 5

1
cosh( ( ))j j j

j
S L A Aα η λ α ψ

=

− + =∑  (A.34m) 

 
3

(3) (3) (3) (3)
22 4 22 5 22 1

1

cosh( ( ))j j j
j

S L A A Bα η λ α θ θ
=

− + = +∑  (A.34n) 

 
3

(1) (1) (1) (1)
22 4 22 6 22 3

1

cosh( ( ))j j j
j

S L B B Dα ξ λ α θ θ
=

− + = +∑  (A.34o) 

 
3

(3) (3) (3) (3)
22 4 22 5 22 1

1
cosh( ( ))j j j

j
S L B B Dα ξ λ α θ θ

=

− + = +∑  (A.34p) 

 
(1) (2) (3)
22 4 22 5 22 6 2

TN NA A Aα α α ++ + =  (A.34q) 

Substituting (A.12), (A.15) in (A.5a) and (A.5b) we get, 

 4 5 5 6 and α α α α= =  (A.35a,b) 

Substituting (A.35a,b) in (A.34q), 
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 4 5 6
22

TN N
A

α α α += = =  (A.36) 

Where, A22 is the extension stiffness of the laminate (See Appendix E).  

 

From (A.34a), (A.34b) and (A.34d) we get, 

 2 1Sθ θ= −  (A.37) 

 4 3Sθ θ= −  (A.38) 

 
(2)

5

f

ref

T

y
T

dTψ α= ∫  (A.39) 

Note that for the stitch crack model eq.(A.39) will not be applicable (refer 

Appendix D). 

From (A.34b) and (A.34e), we get, 

 
3

(1)
3

1
sinh( ( ))j j j

j
P S L Lα λ θ

=

− = −∑  (A.40) 

From (A.34c) we get, 

 8 7 6 5( )Sθ θ θ θ− = − −  (A.41a) 

Subtracting (A.34i) from (A.34g)  

 
3

(1) (3)
6 5 8 7

1
( )sinh( ( )) ( )( ) ( )j j j j

j
S L S Lα γ γ λ θ θ θ θ

=

− − = − − + −∑  (A.41b) 

Substituting (A.41a) in (A.41b), 

 
3

(1) (3)
6 5

1

( )sinh( ( )) ( )j j j j
j

S L Lα γ γ λ θ θ
=

− − = − −∑  (A.42) 
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Rearranging (A.34l) we get, 

 
(1) (1)3

22
6 3(1) (1)

1 22 22 22

cosh( ( ))j T
j j

j

B N NS L
A A A
η

θ α λ θ
=

+= − − +∑  (A.43a) 

Similarly, from (A.34n), 

 
(3) (3)3

22
5 1(3) (3)

1 22 22 22

cosh( ( ))j T
j j

j

B N NS L
A A A
η

θ α λ θ
=

+= − − +∑  (A.43b) 

Substituting (A.43a) in (A.34o) we get, 

 
3

(1)
3

1
cosh( ( ))j j j j

j
P S Lθ α λ λ

=

= −∑  (A.44) 

Similarly substituting (A.43b) in (A.34p) gives, 

 
3

1
1

cosh( ( ))j j j
j

S Lθ α λ λ
=

= −∑  (A.45) 

Substituting (A.44) and (A.45) in (A.43a,b) respectively, 

 
3

(1)
6

1 22

cosh( ( )) T
j j j j

j

N NS L
A

θ α γ λ λ
=

+= − +∑  (A.46) 

 
3

(3)
5

1 22

cosh( ( )) T
j j j j

j

N NS L
A

θ α γ λ λ
=

+= − +∑  (A.47) 

Substituting (A.44) in (A.40) we get, 

 ( )
3

(1)

1
sinh( ( )) cosh( ( )) 0j j j j j

j
P S L L S Lα λ λ λ

=

− + − =∑  (A.48) 

Substituting (A.46) and (A.47) in (A.42) we get, 

 ( )
3

(1) (3)

1
( ) sinh( ( )) cosh( ( )) 0j j j j j j

j
S L L S Lα γ γ λ λ λ

=

− − + − =∑  (A.49) 
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Rearranging terms in (A.34m) we get, 

 
3

(2) (2)
22 5 5

1
cosh( ( )) ( )j j j

j
S L Aα η λ ψ α

=

− = −∑  (A.50) 

If Stitch Crack is not present then, (2)
5

f

ref

T

y
T

dTψ α= ∫  else for a stitch crack model we 

get, 

(5)
(2)

22
5 (2) (5)

22

( )( )spring T
T

spring

K S L N N
N

A
A K L

ψ

− +
+

=
−

 (refer Appendix D). 

From (A.34g) and (A.34i), 

 
3

(3)
7 5

1 22

sinh( ( )) ( ) ( )T
j j j

j

N NS L S L S L
A

θ α γ λ θ
=

+= − + − − −∑  (A.51) 

 
3

(1)
8 6

1 22

sinh( ( )) ( ) ( )T
j j j

j

N NS L S L S L
A

θ α γ λ θ
=

+= − + − − −∑  (A.52) 

And from eq. A.34a, b, j and k, we get, 

 
2 2

9 3
1 ( )
2

S Lθ θ= − −  (A.53) 

 
2 2

10 1
1 ( )
2

S Lθ θ= − −  (A.54) 

Eq. (A.48) – (A.50) can be written in a matrix form as below, 

 [ ]{ } { }=F Rα  (A.55a) 

Where, 

 

( )
( )

(1)
1

(1) (3)
2

(2)
3

sinh( ( )) cosh( ( ))

( ) sinh( ( )) cosh( ( ))

cosh( ( ))                             

j j j j j

j j j j j j

j j j

F P S L L S L

F S L L S L

F S L

λ λ λ

γ γ λ λ λ

η λ

= − + −

= − − + −

= −
 (A.55b) 
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Are elements of the 3x3 matrix F (j=1 to 3). 

While, {α}=
1

2

3

α
α
α

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 and {R}=
(2)
22 5 5

0
0

( )A ψ α

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪−⎩ ⎭

. 

α1, α2 and α3 can be solved from the simultaneous solution of (A.55a).  
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APPENDIX B 

 

FIVE-LAYER MODEL ANALYSIS (CASE 3) 

 

In this section, the governing equations for the five-layer model (FLM) are 

presented and solved for the case of laminate with the generalized ply orientation 

[ p q r90 / / / ... /θ φ ϕ ]s. Fig. A.1. shows the quarter model selected from the FLM (Fig. 

3.5(a)) from symmetry of load and boundary conditions.  

 

Fig. B.1. One quarter repeating interval of the FLM (Case 2) 

 

The quarter symmetry model is divided into 6 sublaminate groups. Sublaminates 

1, 2 and 3 are intact and extend from y=0 to y=S-L. Sublaminate group 4 and 5 are a
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continuation of plies 1 and 3 respectively and are unbroken. Sublaminate 6 represents the 

delaminated portion, extending from y=S-L to y=S.  

 

 From first order shear deformation theory assumptions we have the displacement 

field as, 

 
( ) ( ) ( )( , ) ( ) ( )i i iv y z V y z yβ= +  (B.1a) 

 
( ) ( )( ) ( )i iw y W y=  (B.1b) 

Where, V(y) is the mid-plane displacement in the y-direction, β(y) is the slope of 

the normal to the mid-plane of the sublaminate in the y-direction. Note that, the 

displacement in the z-direction, W(y) does not vary through the thickness.  

The governing equations for each sublaminate are, 

 , 0y t bN T T+ − =  (B.2a) 

 , ( ) 0
2y t b
hM Q T T− + + =  (B.2b) 

 , 0y t bQ P P+ − =  (B.2c) 

 Where, N, M and Q are the Axial Force, Bending Moment and Shear resultants, 

while P and T denote the inter-laminar peel and shear stresses with t and b denote the top 

and bottom surfaces. The constitutive relations are: (the ‘m’ subscripts denote the 

“mechanical”)  

 22 , 22 , 22

f

ref

T

M y y y
T

N A V B Q h dTβ α= + − ∫  (B.3a) 
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 22 , 22 , 22

f

ref

T

M y y y
T

M B V D Q hZ dTβ α= + − ∫  (B.3b) 

 44 ,( )yQ A Wβ= +  (B.3c) 

Where, 22A , 22B , 22D & 44A are components of the A, B and D stiffness matrices 

from classical lamination theory, h is the thickness of the lamina, Z  is the centroidal 

distance of the lamina from laminate mid-plane, yα  is the coefficient of thermal 

expansion in y-direction. Plugging in (B.3a – B.3c) into (B.2a – B.2c) we have the 

governing equations, 

 22 , 22 , 0yy yy t bA V B T Tβ+ + − =  (B.4a) 

 
2
22 22 22

22 , 44 ,
22 22 22

( ) 0
2 2yy y t b

B B Bh hD A W T T
A A A

β β
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− − + + − + + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠  (B.4b) 

 44 , ,( ) 0y yy t bA W P Pβ + + − =  (B.4c) 

In the sections to follow, the governing equations listed above will be modified as 

required by the lamina (or sublaminate) boundary conditions.  

Since, sublaminates 1, 2 and 3 are intact their solutions will be determined first. 

Since, the derivation for these sublaminates follow the solution procedure presented in 

section A.1 exactly, only the solutions for displacements and forces are repeated here. 

 

A.1. Laminated Portion: Sublaminate 1, 2 and 3 (0 ≤ y ≤ S-L) 

The derivation for this portion has already been given in detail in section A.1. 

Hence only the solutions for these sublaminates are given here. 
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3

( ) ( )

1

sinh( )i i
j j j

j

P yβ α λ
=

=∑  (B.5) 

 
3

( ) ( )
3

1
sinh( )i i

j j j i
j

V y yα γ λ α +
=

= +∑  (B.6) 

 
3

( ) ( ) ( ) ( ) ( ) ( )
22 3 22

1

cosh( )
f

ref

T
i i i i i i

M j j j i y
j T

N y A Q h dTα η λ α α+
=

= + −∑ ∫  (B.7) 

 
3

( ) ( ) ( ) ( ) ( ) ( ) ( )
22 3 22

1

cosh( )
f

ref

T
i i i i i i i

M j j j i y
j T

M y B Q h Z dTα ξ λ α α+
=

= + −∑ ∫  (B.8) 

The definition of the constants ( )i
jγ , ( )i

jη  and ( )i
jξ  remain the same and have been 

listed in Appendix E. 

 

A.2. Laminated Portion: Sublaminate 4 and 5 (S-L ≤ y ≤ S) 

The sublaminates 4 and 5 are an intact ply group, unsymmetric about its mid-

plane (Fig. B.1) and has to be solved as a coupled set of equations. Since, this solution 

procedure has already been examined in detail in Zhang et al [21] and further extended to 

include the effect of thermal load by Roy and Benjamin [36] only the solutions to the 

equations are presented here.  

Assuming that W(4)=W(5)≠0 and applying the traction boundary conditions 

(5) 0tT = , (5) (4)
b tT T= , (4) 0bT = , (5) 0tP = , (5) (4)

b tP P= and (4) 0bP = ‡ to the sublaminate 

governing equations, we get the solutions for this sublaminate as (refer [21]), 

 
(4)

1 2 3 4(5)

1 1
1 1 1 1

y yq q
e e yω ωβ θ θ θ θ

β
−⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫ ⎧ ⎫

= + + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭  (B.9) 

                                                 
‡ Refer Section 3.4 for details about the error with this assumption. 
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Where, 

 
(2) (3)
44 44 11 22 12

(2) (3) 2
44 44 11 22 12

( 2 )
( )( )
A A b b b
A A b b b

ω + +=
+ −   

 
22 12

11 12

b bq
b b

+= −
+   

The mid-plane displacements will be, 

 
(4)

1 1 2 5 7( )y yV k e e yω ωθ θ θ θ−= − + + +  (B.10) 

 
(5)

3 1 2 6 8( )y yV k e e yω ωθ θ θ θ−= + + +  (B.11) 

 
(2) (3)

(4) (5) 244 44
1 2 3 4 9(2) (3)

44 44

1( )
( ) 2

y yA qAW W e e y y
A A

ω ωθ θ θ θ θ
ω

−+= = − − − − +
+  (B.12) 

The force and moment resultants for are, 

 
(4) (2) (3) (3) (3) (3) (3)

3 22 1 2 22 3 22 5 22( )
f

ref

T
y y

M y
T

N k A e e B A Q h dTω ωω θ θ θ θ α−= − − + + − ∫  (B.13) 

 
(5) (2) (2) (2) (2) (2)

3 22 1 2 22 6 22( )
f

ref

T
y y

M y
T

N k A e e A Q h dTω ωω θ θ θ α−= − + − ∫  (B.14) 

 
(4) (3) (3) (3) (3) (3) (3) (3)

22 3 22 1 2 22 3 22 5 22( ) ( )
f

ref

T
y y

M y
T

M qD k B e e D B Q h Z dTω ωω θ θ θ θ α−= − − + + − ∫  (B.15) 

 
(5) (2) (2) (2) (2)

2 1 2 22 3 22( )
f

ref

T
y y

M y
T

M k e e D Q h Z dTω ωθ θ θ α−= − + − ∫  (B.16) 

A.3. Delaminated Portion: Sublaminate 6 (S-L ≤ y ≤ S) 

The solution for rotations in the delaminated portion is solved using the elastic 

foundation solutions described in Section 3.4. Since, the cracked layer is decoupled from 
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the solution to the rest of the laminate we can discuss the solution for rotations and 

displacements separately. 

The equilibrium equation for the cracked lamina is, 

 
(1) (6)
22 , 0yyA V =  (B.17) 

Solving the above equation we get, 

 
(6)

5 6V yψ ψ= +  (B.18) 

From, the above solution we can derive the solution for mechanical load in the 

cracked sublaminate as, 

 
(6) (1) (6) (1) (1) (1) (1) (1) (1) (1)

22 , 22 22 5 22

f f

ref ref

T T

M y y y
T T

N A V Q h dT A Q h dTα ψ α= − = −∫ ∫  (B.19) 

Hence, we need to specify 17 boundary conditions to solve for the 17 constants 

( 1 2 6 1 2 9 5 6, ,..., , , ,..., , ,α α α θ θ θ ψ ψ ).  

 

A.4. Solutions for constants: 1 2 6 1 2 9 5 6, ,..., , , ,..., , ,α α α θ θ θ ψ ψ  

The boundary conditions that need to be satisfied for this case are: 

 
(4) ( ) 0Sβ =  (B.20a) 

 
(5) ( ) 0Sβ =  (B.20b) 

 
(4) (5)( ) ( )V S V S=  (B.20c) 

 
(6) ( ) 0MN S =  (B.20d) 
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(4) (5)( ) ( )

2M M
NN S N S+ =  (B.20e) 

 
(1) (6)( ) ( )S L S Lβ β− = −  (B.20f) 

 
(3) (4)( ) ( )S L S Lβ β− = −  (B.20g) 

 
(1) (6)( ) ( )V S L V S L− = −  (B.20h) 

 
(2) (5)( ) ( )V S L V S L− = −  (B.20i) 

 
(3) (4)( ) ( )V S L V S L− = −  (B.20j) 

 
(4) (5)( ) ( ) 0W S L W S L− = − =  (B.20k) 

 
(1) (6)( ) ( )M MN S L N S L− = −  (B.20l) 

 
(2) (5)( ) ( )M MN S L N S L− = −  (B.20m) 

 
(2) (5)( ) ( )M MM S L M S L− = −  (B.20n) 

 
(1) (2) (3)(0) (0) (0)

2M M M
NN N N+ + =  (B.20o) 

The above 15 boundary conditions and the two continuity equations (A.5a, b) (17 

boundary conditions in total) have to be satisfied. Following the solution procedure given 

in Zhang et al [21], we can solve using the following equations, 

 [ ]{ } { }=F Rα  (B.21a) 

Where, 

 

(2)
1

(1)
2

(2)
3

tanh( )( 1)sinh( ( )) (1 ) cosh( ( ))

cosh( ( ))

( 1)sinh( ( )) (1 ) cosh( ( ))                             

j j j j j

j j j

j j j j j

LF P S L q S L

F S L

F qP S L q L S L

ωλ ρ λ
ω

η λ

λ δ λ

= − − + − −

= −

= − − − − −
 (B.21b) 

Are elements of the 3x3 matrix F (j=1 to 3). 



 120

While, {α}=
1

2

3

α
α
α

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

 and {R}=

0
4 3

(1) (1)
22

22

0
4 3

(1 ) tanh( )
( )

(1 )
( )

T
T

q L
k k

N NN A
A

q L
k k

ω φ
ω

φ

⎧ ⎫−
⎪ ⎪−⎪ ⎪
⎪ ⎪+−⎨ ⎬
⎪ ⎪
⎪ ⎪−
⎪ ⎪

−⎩ ⎭

. 

Where, 
(2) (3)

0 (2) (3)
22 22 22

2( )
2( )

T T TN N N N N
A A A

φ + + += −
+

 

The solutions for the other constants are as follows, 

 4 5 6
22

TN N
A

α α α += = =  (B.22) 

 
3

0
1

1 3 4

1 cosh( ( ))
2 cosh( ) j j jS

j
S L

e L k kω
φθ α ρ λ

ω ω =

⎡ ⎤
= − +⎢ ⎥−⎣ ⎦

∑  (B.23) 

 
2

2 1
se ωθ θ= −  (B.24) 

 
3

0
3

1 3 4

cosh( ( ))j j j
j

S L
k k
φθ α δ λ

=

= − +
−∑  (B.25) 

 4 3Sθ θ= −  (B.26) 

 
(2) (3)

5 5 3(2) (3)
22 22

2( )
2( )

T TN N N k
A A

θ θ+ += −
+  (B.27) 

 
(2) (3)

6 4 3(2) (3)
22 22

2( )
2( )

T TN N N k
A A

θ θ+ += +
+  (B.28) 

 
3

(3)
7 1 3 5

1 22

sinh( ( )) ( ) 2 sinh( ) ( )ST
j j j

j

N NS L S L k e L S L
A

ωθ α γ λ θ ω θ
=

+= − + − + − −∑  (B.29) 

 
3

(1)
8 1 1 6

1 22

sinh( ( )) ( ) 2 sinh( ) ( )ST
j j j

j

N NS L S L k e L S L
A

ωθ α γ λ θ ω θ
=

+= − + − − − −∑  (B.30) 

 
(2) (3)

2 244 44
9 1 3(2) (3)

44 44

2( ) 1cosh( ) ( )
( ) 2

SA qA e L S L
A A

ωθ θ ω θ
ω

+= − −
+  (B.31) 
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APPENDIX C 

 

DERIVATION OF THE ELASTIC FOUNDATION MODEL 

 

The moment and shear equilibrium equations for the cracked sublaminate are,  

 
(3) (4) (3) (4) (4)
22 , 44 ,( ) 0yy yD A Wβ β− + =  (C.1) 

 
(3) (4) (4) (4)3
44 , , (3)

2( ) 0y yy
EA W W

h
β + − =  (C.2) 

Equilibrium equations (C.1) & (C.2) can be written as follows, 

 
(3) 2 (3) (4) (3) (4)
22 44 44( )D D A A DWβ− =  (C.1a) 

 
(3) (4) (3) 2 (4)3
44 44 (3)

2( )EA D A D W
h

β− = −  (C.2a) 

Where, 
2

2
2,d dD D

dy dy
≡ ≡  

Simultaneously solving (C.1a) & (C.2a) for (4)β  we get the governing differential 

equation to the system, 

(3) 2 (3) (3) 2 (3) (3) 2 (4)
22 44 22 44 44( )( ) ( ) 0D D A D D A A D β⎡ ⎤− − + =⎣ ⎦
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(3) (3)
(3) (3) 4 2 (4)22 3 3 44
22 44 (3) (3)

2 2 0D E E AD A D D
h h

β⎡ ⎤
⇒ − + =⎢ ⎥

⎣ ⎦
 

 

 
(3) (3)4 (4) 2 (4)

(3) (3) (4)22 3 3 44
22 44 4 (3) 2 (3)

2 2 0D E E Ad dD A
dy h dy h
β β β⇒ − + =  (C.3) 

The characteristic equation to the above equation is (assuming solution is of the 

form (4) yeωβ = ), 

(3) (3)
(3) (3) 4 222 3 3 44
22 44 (3) (3)

2 2 0D E E AD A
h h

ω ω− + =  

We can reduce the 4th order auxiliary equation to its equivalent 2nd order form by 

the transformation, 

 
2*ω ω=  (C.4) 

The equation now becomes, 

(3) (3)
(3) (3) 2 22 3 3 44
22 44 (3) (3)

2 2* * 0D E E AD A
h h

ω ω− + =  

Let, 
(3) (3)

(3) (3) 22 3 3 44
22 44 (3) (3)

2 2, ,D E E Aa D A b c
h h

= = = . 

The roots to the reduced equation will be, 

2
*
1,2

4
2

b b ac
a

ω ± −=  

Plugging in values for a, b & c. 
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( )
2(3) (3) (3)

(3) (3)22 3 22 3 3 44
22 44(3) (3) (3)

1,2 (3) (3)
22 44

2 2 24

2

D E D E E AD A
h h h

D A
ω∗

⎛ ⎞ ⎛ ⎞
± −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠=  

 

 
(3) (3)2

3 44
1,2 (3) (3) (3)

44 22 3

21 1E h A
h A D E

ω∗
⎛ ⎞

⇒ = ± −⎜ ⎟⎜ ⎟⎝ ⎠
 

Case I. Assume that the parameter,
(3) (3)2

44
(3)
22 3

2 1h A
D E

> , for the given material system. 

Then, 1,2ω∗ become complex numbers.  

If we set, 
2

(3) (3)2
2 23 344
1 (3) (3) (3) (3) (3)

44 22 3 22

221 1E Eh A
h A D E h D

⎛ ⎞
Δ = + − =⎜ ⎟⎜ ⎟⎝ ⎠

  

also, set 
(3) (3)2

1 44
2 (3)

22 3

22 tan 1h A
D E

−Δ = − .  

We will have, 2 22 22 2
1 1 2 1;i ie eω ωΔ − Δ∗ ∗= Δ = Δ .  

Using (C.4), we get the roots to the original 4th order equation as, 

2 2 2 2
1 1 1 1, , ,i i i ie e e eΔ Δ − Δ − ΔΔ −Δ Δ −Δ . 

Thus, the solution to (C.3) is, 

 
2 2 2 2

1 1 1 1(4)
1 2 3 4

i i i ie y e y e y e ye e e eβ ψ ψ ψ ψ
Δ Δ − Δ − ΔΔ −Δ Δ −Δ∗ ∗ ∗ ∗= + + +  (C.5) 

Next we set,  

 1 1 2 2 1 2cos ; sinC C= Δ Δ = Δ Δ  (C.6) 

Using (C.6) we can rewrite (C.5) as follows, 
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1 2 1 2 1 2 1 2( ) ( ) ( ) ( )(4)
1 2 3 4

C iC y C iC y C iC y C iC ye e e eβ ψ ψ ψ ψ+ − − − − +∗ ∗ ∗ ∗= + + +  

Or, we can write, 

 
1 1(4)

1 2 2 2 3 2 4 2( cos sin ) ( cos sin )C y C ye C y C y e C y C yβ ψ ψ ψ ψ−= + + +  (C.7) 

(4)W can be solved from (C.1) and (C.7). 

Boundary conditions for (4)β . 

(3) (4)

(3) (4)
M M
(4)
M

(4)

(i) (S L) (S L)
(ii)M (S L) M (S L)

(iii)M (S) 0

(iv)Q (S) 0

β − = β −
− = −

=

=

 

The equation for moment follows from the constitutive relation listed below 

 
(4) (3) (4) (3)

22 ,M y tM D Mβ= −  (C.8) 

For Shear: we have from relation (C.1), 

 
(4) (3) (4) (4) (3) (4)

44 , 22 ,( )y yyQ A W Dβ β= + =  (C.9) 

Plugging in (C.7) into the above equations, 

 
( )

( )
1

1

(4) (3)
22 1 1 2 2 2 2 2

(3)
3 2 2 4 2 2

cos( ) sin( )

         cos( ) sin( )

C y
M

C y
t

M D e C y C y

e C y C y M

ψ ψ

ψ ψ−

⎡= Δ + Δ + + Δ⎣
⎤− − Δ + −Δ −⎦

 (C.10) 

 
( )

( )
1

1

(4) (3) 2
22 1 1 2 2 2 2 2

3 2 2 4 2 2

cos( 2 ) sin( 2 )

            cos( 2 ) sin( 2 )

C y

C y

Q D e C y C y

e C y C y

ψ ψ

ψ ψ−

⎡= Δ + Δ + + Δ⎣
⎤+ − Δ + − Δ ⎦

 (C.11) 
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Applying Boundary conditions, we get 4 equations from which we can solve the 4 

unknowns 1 2 3 4, , ,ψ ψ ψ ψ . 

Case II. If the parameter 
(3) (3)2

44
(3)
22 3

2 1h A
D E

< , Then, 1,2ω∗  are real positive numbers. 

Using (C.4) we have the solutions to the 4th order equation as: 1 1 2 2, , ,ω −ω ω −ω . 

Where, *
i iω ω= . 

Hence, the solution to (C.3) is: 

 
1 1 2 2(4)

1 2 3 4
y y y ye e e eω ω ω ωβ ψ ψ ψ ψ− −= + + +  (C.12) 

Using (C.8), (C.9) & (C.12) we can show the Moment and Shear relations to be, 

 ( ) ( )1 1 2 2(4) (3) (3)
22 1 1 2 2 3 4

y y y y
M tM D e e e e Mω ω ω ωω ψ ψ ω ψ ψ− −⎡ ⎤= − + − −⎣ ⎦  (C.13) 

 ( ) ( )1 1 2 2(4) (3) 2 2
22 1 1 2 2 3 4

y y y yQ D e e e eω ω ω ωω ψ ψ ω ψ ψ− −⎡ ⎤= + + +⎣ ⎦  (C.14) 

Applying Boundary conditions (i) (iv)- , we can solve for constants 

1 2 3 4, , ,ψ ψ ψ ψ . 
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APPENDIX D 

 

DERIVATION OF THE STITCH CRACK MODEL 

 

The inclusion of the linear spring at the end of the FLM cracked layer is assumed 

to only affect the solution of the mid-plane displacement of the cracked layer. Since, the 

off-axis plies are usually located within the laminate and almost never in the outer or on 

the mid-plies the derivation given here, models the stitch crack as an extension to the 

FLM-Case 2. However, since the cracked layer solutions for all FLM cases are the same 

we can easily modify the solution given below to any generic case of the FLM. 

The equilibrium equation for the cracked lamina is, 

 
(5) (5)
22 , 0yyA V =  (D.1) 

Solving the above equation we get, 

 
(5)

5 6V yψ ψ= +  (D.2) 

From, the above solution we can derive the solution for mechanical load in the 

cracked sublaminate as, 

 
(5) (2) (5) (2) (2) (2)

22 , 22 5M y T TN A V N A Nψ= − = −  (D.3)
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where, we have set, 

 
(2) (2) (2)

22

final

ref

T

T y
T

N Q h dTα= ∫  (D.4) 

Since there is a pseudo-force introduced by the inclusion of the linear spring at the 

end of the model, the boundary conditions for the cracked lamina will now become, 

 
(2) (5)( ) ( )V S L V S L− = −  (D.5a) 

 
(5) (5) (5)( ) ( )M springN S K V S=  (D.5b) 

Where, (5)
springK , the stiffness of the spring defined is, 

 
(5) (2)

22springK Aε=  (D.6) 

We see that when the parameter ε=0, we revert to the original set of boundary 

conditions for the FLM cracked layer (see Appendix A). 

Using the modified solution for (2)V (see section 3.2), and plugging in the 

solutions (D.2) and (D.3) into (D.5a) and (D.5b) we get, 

 5 6
22

( ) ( )TN NS L S L
A

ψ ψ
⎛ ⎞+− + = −⎜ ⎟
⎝ ⎠  (D.7a) 

 
(2) (2) (5)
22 5 5 6( )T springA N K Sψ ψ ψ− = +  (D.7b) 

 

Solving (D.7a) and (D.7b) simultaneously we get, 
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(5)
(2)

22
5 (2) (5)

22

( )( )spring T
T

spring

K S L N N
N

A
A K L

ψ

− +
+

=
−  (D.8a) 

 6 1
22

( ) ( )TN N S L S L
A

ψ ψ+= − − −  (D.8b) 
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APPENDIX E 

 

ALL CONSTANTS OF THE FIVE-LAYER MODEL 

 

 
(1) (2) (3)

22 22 22 222( )A A A A= + +  (E.1) 

 
( ) ( ) ( ) ( )

22 for i=1,2 or 3
f

ref

T
i i i i

T y
T

N Q h dTα= ∫  (E.2) 

 
(1) (2) (3)2( )T T T TN N N N= + +  (E.3) 

 
(1) (1) (1) (1) (2) (3) (1)2

(1) 22 22 22 22 22
11 22

22

(4 )( ) 4
2

h B h A A A Ba D
A

+ + −= +  (E.4) 

 

(2) (1) (1) (1) (2) (3)
22 22 22 22

12 21
22

1( )( 2 )
2

h B h A A A
a a

A

+ +
= =  (E.5) 

 

(1) (1) (1) (3) (3) (3)
22 22 22 22

13 31
22

1( )( 2 )
2

h A B h A B
a a

A

+ −
= =  (E.6) 

 
(2)2 (1) (3) (1) (2) (2) (3)

(2) 22 22 22 22 22 22
22 22

22

(4 )
2

h A A A A A Aa D
A

+ += +  (E.7)
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(2) (3) (3) (3) (1) (2)

22 22 22 22
23 32

22

( 2 )(2 )
2

h h A B A Aa a
A

− += =  (E.8) 

 

 
(3)2 (3) (3) (3) 2 (1) (2)

(3) 22 22 22 22 22
33 22 (3) (3)

22 22 22

( 2 ) ( )
2

B h A B A Aa D
A A A

− += − +  (E.9) 

 
(3)2 (2) (3) (3) (3) 2

(3) 22 22 22 22
11 22 (3) (3) (2) (3)

22 22 22 22

( 2 )
4 ( )

B A h A Bb D
A A A A

−= − +
+  (E.10) 

 
(2)2 (2) (3)

(2) 22 22
22 22 (3) (2) (3)

22 22 224 ( )
h A Ab D

A A A
= +

+  (E.11) 

 
(2) (2) (3) (3) (3)

22 22 22
12 21 (2) (3)

22 22

( 2 )
4( )

h A h A Bb b
A A

−= =
+  (E.12) 

 
(2) (3) (2) (3)

22 22
1 (2) (3)

22 22

( ) 2
2( )

h qh A qBk
A A

+ +=
+  (E.13) 

 
(2)

2 22k Dω=  (E.14) 

 
(2) (3) (2) (3)

22 22
3 (2) (3)

22 22

( ) 2
2( )

h qh A qBk
A A

+ −=
+  (E.15) 

 
(2) (3) (2) (3)

22 22
4 (2) (3)

22 22

( ) 2
2( )

h h A Bk
A A

+ −=
+  (E.16) 

 
(2) (3) (2) (3)

22 22
5 (2) (3)

22 22

( ) 2
2( )

h h A Bk
A A

+ +=
+  (E.17) 
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(1) (1) (2) (3) (1) (2) (2) (2) (3) (3) (3) (3)

22 22 22 22 22 22 22(1)

22

( ( ) 2 ) ( 2 ) 2j j
j

P h A A B P h A A h A B
A

γ
+ − + + + −

=  (E.18) 

 
(1) (1) (1) (1) (2) (2) (1) (3) (3) (3) (3)

22 22 22 22 22 22(2)

22

( 2 ) ( ) 2j j
j

P h A B P h A A B h A
A

γ
+ + − + −

= −  (E.19) 

 
(1) (1) (1) (1) (2) (2) (1) (2) (3) (3) (1) (2)

22 22 22 22 22 22 22(3)

22

( 2 ) (2 ) 2 ( )j j
j

P h A B P h A A B h A A
A

γ
+ + + + + +

= −  (E.20) 

 
(1) (1) (1) (1) (1)

22 22( )j j j jB P Aη γ λ= +  (E.21) 

 
(2) (2) (2)

22j j jAη γ λ=  (E.22) 

 
(3) (3) (3) (3)

22 22( )j j jB Aη γ λ= +  (E.23) 

 
(1) (1) (1) (1) (1)

22 22( )j j j jD P Bξ γ λ= +  (E.24) 

 
(2) (2) (2)

22j j jD Pξ λ=  (E.25) 

 
(3) (3) (3) (3)

22 22( )j j jD Bξ γ λ= +  (E.26) 
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