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Abstract:  

 
Near infrared sensors project light into particle-laden flows and use light returned via diffuse 

reflectance and scattering phenomena to measure solids concentration and chemical composition. 

An important measurement parameter is the depth of penetration returning the light used in the 

measurements. In this work several optical modeling approaches were evaluated for predicting 

the depth of penetration of near-infrared (NIR) light in slurry flow in a pipe. The goal was to find 

a model suitable for predicting the depth of penetration for slurry flows with arbitrary solid 

concentration profiles. The models which were considered fall in two categories; continuum and 

discontinuum theories. Continuum models consider the sample as one integral layer while 

discontinuum models divide the sample into layers one particle thick. Hence, discontinuum 

models are well suited for slurries with varying concentrations which can be adjusted layer by 

layer. The continuum theories used were Shuster, Kubelka–Munk, radiation transfer, three flux, 

and diffusion. The discontinuum theories used were plane parallel layer, assembly of sheets, and 

representative layer theory. Discontinuum models were applied to cases which included uniform, 

hypothetical, and realistic concentration profiles predicted using Computational Fluid Dynamics 

(CFD).  For the CFD predictions, the slurry was xylene liquid and ADP solid flowing in a 50.8 

mm diameter horizontal pipe at mean velocities between approximately 1.8 and 4.0 m/s, 

corresponding to Reynolds numbers between 1.2x105 and 2.8x105. Monodisperse spherical slurry 

particles with diameters ranging from 38 to 150 microns were considered with solid volume 

fractions ranging from 5% to 35%.  

Numerical versions of the optical models were created for the theories using MATLAB R2012a. 

Each model simulated the passage of NIR radiation through the sample based on light fractions. 

Light fractions were computed for each layer of the discontinuous models, and the depth of 

penetration was evaluated. Validation was performed with results in the literature for optical 

experiments for similar cases. Comparisons of the results suggest that the discontinuum theories 

are more accurate than continuum theories for these applications, with representative layer theory 

used with Stokes formula providing the best results. It is concluded that the models are suitable 

for predicting the depth of penetration for NIR measurements. 
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CHAPTER I 

 

 

INTRODUCTION AND BACKGROUND 

 

1.1 Introduction 

One of the main goals of the thesis is to answer the fundamental question “How far does light 

penetrate into the slurry fluid flow in a pipe during Near-Infrared (NIR) irradiation by a NIR sensor?” 

For a particular case, a quick answer to this question would be to run an experiment. Moreover, an 

experiment requires an equipped laboratory with imaging instruments, probes inside the pipe, and 

other facilities to visualize the flow field. This might not be affordable. Since numerical approaches 

allow solutions for many cases, it is preferred to use a computational approach to simulate the travel 

of light inside the pipe using the newest and the most efficient theoretical approaches. By choosing the 

numerical method, a model is built based on the characteristics of the fluid at rest. Then the results 

from the model can be compared to the NIR diffuse reflectance theories. Calculating the penetration 

depth requires answers to related questions: “What is the concentration of particles inside the field and 

how is it going to be predicted through optical theories?”, and “What is the light distribution in terms 

of fractions of the incident radiation inside the particulate slurry?” There are related works in the 

literature, however, most of them are experimental techniques to measure concentrations of slurries 

either online or offline using optical NIR sensors. However, almost none of the theoretical approaches 

have been applied to predict light interactions with particles inside a slurry sample. It means that the 

theories found in the literature have not yet been applied to the case of a slurry sample. However,
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experimental methods to model light interaction with slurries are available in the literature. Study and 

research in the field of optical size and concentration monitoring of slurries have been performed 

using analytical methods, which required some parameters from experiments. But, there are 

approaches that do not need any experiment. Those methods use experiment-dependent models which 

require some input parameters that must be provided through an experiment. In this thesis, the details 

of both of these two types of methods along with their experimental requirements, assumptions, and 

mathematical models will be reviewed. 

 

1.2 Motivation  

In recent years, near-infrared (NIR) optical modeling has gained extensive acceptance in different 

scientific and industrial areas by means of its advantages over other analytical techniques. This type of 

spectroscopy is prominent because of its ability to record spectra for solid and liquid samples. Modern 

applications of near-infrared use it to measure the composition of unknown samples using techniques 

invented by scientists at the United States Department of Agriculture (Workman and Weyer, 2008). It 

has become a very popular technique in a wide variety of industries due to its speed, precision, broad 

applicability and avoidance of extraneous chemicals. It is widely used in agricultural, chemical, 

pharmaceutical, combustion products, textile and many other industries. Moreover, advances in 

instrumentation have caused the manufacture of spectrophotometers capable of rapidly providing 

spectra that are flexible enough for use in different applications. NIR spectroscopy requires some 

input parameters such as the intensity of radiation, the fractions of diffuse light in the medium, and the 

characteristics of the slurry fluid. A wide range of theories has been developed to support 

experimental capabilities of methods that use NIR diffuse reflectance and transmittance.   

There are a number of distinct mathematical models capable of characterizing near-infrared 

light diffusion in one-phase mediums or one phase with a mixture of two or more types of different 

components. These models are different, however, most of them implement the fundamental technique 
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of applying near-infrared radiation to monitor different materials. The applications of NIR 

spectroscopy are summarized in Table 1.1.  

Table 1.1 Description of different fields and applications of near-infrared radiation has already 

been used in the previous works 

Field Applications Model/Technique 

Clinical sector 
Human blood cells, In vivo imaging 

Human body tissues, Optical topography of brain 

Monte Carlo Simulation, Diffusion 

approximations, Steady state 

diffusion theory, Transport theory, 

Addding doubling method, Delta-

Eddington approximation, 

Astronomical sector 
Astrophysics, Detection of infrared galaxies, 

Interstellar molecules 
Dual field interferometry 

Agriculture 

Agricultural products monitoring, Analysis of food 

crops, Analysis of processed food like baking 

products, and Analysis of non-food agricultural 

products like paper, wool, etc. 

Representative layer theory, Kubelka-

Munk theory, Diffuse reflectance 

theory, Schuster’s theory  

Remote monitoring 
NIR spectroscopic imaging, Hyperspectral imaging 

in the remote investigation of plants and soils 

Experimental techniques to collect 

data from airplanes or satellites to 

investigate the soil chemistry on the 

ground 

Material Science Film thickness measurements 
Near-infrared measurement in the 

diffuse reflectance mode 

Particle measurement 
Slurry flow, granular flow, fluidized beds, powders 

and ground materials 

Continuum theories of diffuse 

reflectance such as classical Kubelka-

Munk theory, Beer-Lambert’s law, 

etc., Monte-Carlo Simulation 

Industrial uses 

Study of industrial chemicals, Process control 

applications, Rapid laboratory measurements, Real-

time online analyses 

Particle-Laden slurry transport in 

mines, Process control for food,  

agricultural, combustion, textile, and 

pharmaceutical products,  

 

Before examining the techniques shown in Table 1.1 in detail consider a brief introduction to 

NIR models. Based on the foundations of near-infrared models there are two different paths indicated 

by these theoretical treatments: continuum theories and discontinuum theories. These two types of 

theories are separated by the two distinct types of mathematical models on which they are based. For 

example, the theory of representative layers is applicable in many industrial processes. Among the 
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theories of diffuse reflectance, the representative layer theory is the latest efficient method to model 

near-infrared phenomena inside particulate, turbid, in vivo, powdered, and generally uniform and non-

uniform mediums using discontinuous mathematics. As it was depicted in the Table 1.1, none of the 

near-infrared theoretical treatments have analyzed slurries with discontinuum mathematical 

techniques. Reviewing the literature, discontinuous mathematical methods have not yet been used for 

slurries. Continuum theories are imperfect due to their weakness in exhibiting the light interactions 

with particles in real non-uniform mixtures that scatter light and are not continuous. On the other 

hand, the only method that addresses light propagation inside a slurry has been found in the work of 

Rabhi, Masion, Roze, Dussouillez, and Bottero (2010) that uses an experimental-theoretical 

algorithm and some parameters such as refractive index to find particle size distribution (PSD), and 

the slurry concentration to be fed into a simulation. Hence, their approach is not pure theoretical. 

Meeten and Wood (1993) introduced another approximation for measuring the diffuse reflectance of 

fluids using optical fiber methods, but the classic Kubelka-Munk theory is applied to interpret the 

experimental data. Kubelka-Munk theory is a powerful tool to describe light diffusion but is only 

applicable to continuous mediums: it underestimates the optical properties of a real discontinuous 

sample. This introduction presents the approaches that are going to be discussed in the present thesis. 

In the following chapters the latest approach has been used to characterize the optical properties of 

slurries that naturally have discontinuity in their composition.  

 

1.3 Background 

Near-infrared technology and slurry mixtures are two separate academic, technological, and industrial 

areas for which at first it may seem very difficult to find a connection, but after a brief introduction 

one may see the relationship between them. Hence, studying an overview about the Near-Infrared and 

the slurry is essential to reading and understanding this thesis. 
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1.3.1 Near Infrared Technology 

Near-infrared is the electromagnetic radiation with a spectrum of wavelengths just beyond visible 

light. Near-infrared is a part of infrared radiation which usually is divided into three spectral regions: 

near-, mid- and far-infrared. However, another categorization is done by Center for Measurement, 

Vegetation, and Health [MVH] (2006) at the University of New Hampshire: the infrared region is 

divided into five parts: near, short-wave, mid-wave, long-wave, and far-infrared  . This spectrum is 

shown in Figure 1.1.  

 

Figure 1.1 Schematic representation of divisions of the infrared electromagnetic spectrum.  

The near infrared region corresponds to a wavelength range of between 700 and 2500nm. The 

mid-infrared region is further divided into short, mid and long wave infrared and corresponds 

to a wavelength range of 2500 – 5x10
4
 nm. Finally the far infrared region corresponds to a 

wavelength range of 5x 10
4
 – 1x10

6
 nm. (MVH, 2006) 

 

 

The boundaries between near, mid- and far-infrared regions are not agreed upon and can vary. The 

main factor that decides which wavelengths are included in each of these three infrared regions is the 

type of detector technology used for gathering infrared beams of light. The infrared region of light has 

longer wavelengths than visible light, making it invisible to the human eye, however, the near-infrared 

spectrum has shorter wavelengths with proximity to visible light. Spectroscopy is defined as the study 

http://sirtf.caltech.edu/EPO/Field/emspec.html
http://www.ipac.caltech.edu/outreach/Edu/infrared.html
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of the wavelength spectrum of radiated energy interacts with matter – it is transmitted, reflected or 

absorbed. Although a theoretical analysis underlies NIR spectroscopy, it is mostly known as an 

experimental branch of NIR technology. Theoretical techniques have been developed to interpret the 

data gathered from the spectrum. Modeling is absent in the spectroscopic techniques. On the other 

hand, theories of diffuse reflectance provide an opportunity to model the near-infrared penetration of 

light inside a sample. Recently, more sophisticated theorems have been applied to model the near-

infrared phenomena. 

The earliest application of Near-Infrared spectroscopy goes back to the 1800’s, when organic 

compounds were investigated by NIR photography. Thus, the first application of NIR technology was 

studying chemicals in compounds. In the 1940s, the availability of new commercial instruments led to 

one of the first industrial applications of NIR in chemical and polymer industries. Until that time 

applications were confined to academic or research projects (Workman and Weyer, 2008). Norris in 

USDA in 1949 was the first person who began to apply NIR in the food industries. During the 1950s 

and 1960s, progress in this field of chemical monitoring became stagnant, however, diffuse reflection 

theories propelled NIR spectroscopy to a wide range of applications in agriculture, pharmaceuticals, 

and many other industries. With the advent of new instrumentation and methods, the interest in NIR 

industrial applications has become greater. Infrared technology is not limited to physical applications 

monitoring materials in samples; it can be applied in astrophysics and astronomical observations. NIR 

observations have been made from ground based observatories since the 1960's. They are done in 

much the same way as visible light observations for wavelengths less than 1 micron, but require 

special infrared detectors beyond 1 micron. Mid- and far-infrared observations can only be made by 

observatories which can get above our atmosphere because space-borne telescopes are very sensitive 

to heat. The reason is that the telescope itself has a certain temperature and continually radiates heat 

that would interfere with the measurements taken by a NIR sensor. Far infrared waves are thermal, 

therefore, we experience this type of infrared radiation every day in the form of heat. The heat that we 
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feel from sunlight, a fire, an oven or a warm coffee is infrared. These observations require the use 

of special cooled detectors containing crystals like germanium whose electrical resistance is very 

sensitive to heat. Despite all of the mid- and far infrared applications, NIR is more popular among 

industries. 

Industries strive to produce quality commercial products at the lowest cost and in the shortest 

time. Introducing analytical methods that offer technical and cost-saving advantages over 

conventional approaches can lead to business-related improvements in the manufacture of chemical 

products. In recent years, near-infrared (NIR) spectroscopy has been incorporated into several 

analytical protocols for obtaining qualitative and quantitative information on incoming materials, 

mixtures, and products. One of the most important applications in industries is slurries. NIR 

spectroscopy is used in these industries to monitor composition and control the process. Therefore, 

NIR light and slurries are connected through this widespread application. 

1.3.2 Slurries 

Despite much progress in techniques of conveying materials discovered in mines, the semi-industrial 

transport of minerals out of mines had been an issue until the early sixteenth century, when a solution 

was found. Hydraulic conveying over short distances for alluvial mineral separation was documented 

in the sixteenth century. The hydraulic term refers to the technique of transporting those minerals; the 

process that is performed with the stream of fluid inside pipelines. The particulate medium by which 

the hydraulic transport of minerals took place has an academic name; a slurry. Particle-laden slurry 

transport through pipelines is one of the important industrial applications of slurries.  

The scientific interpretation of the word introduces the slurry as a solid-liquid mixture. The 

slurry has been categorized in the group of multiphase mixtures. Another meaning states a thick 

suspension of solids in a liquid. Therefore, this type of flow can be categorized in the group of 

dispersed phase and separated flows. When there is more than one phase participating in a fluid 

http://sirtf.caltech.edu/EPO/Field/cryogenics_gen.html
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mixture, the combination is known as a multiphase mixture.  As shown in Table 1.2, there are four 

types of multiphase flows (Crowe, 2012). Due to the presence of two phases, this flow is more 

complex than single phase flows. Two-phase flows consist of discrete elements such as droplets in a 

gas or solids in a liquid. Thus, they are not attached to each other, therefore, in a separated flow, two 

phases are dispersed by a line of contact.  

Table 1.2 Examples of single and multi-component, multiphase fluids 

 Single Component Multi-component 

Single-phase Water, Oxygen Air, Emulsions 

Multiphase Steam-Water, Freon-Freon Vapor Air-Xylene, Slurry 

 

Slurries are applicable in many engineering, industrial, chemical, and fossil energy areas like 

transport of bulk quantities of materials such as coals and ores or flow of mud. The significance of 

particle deposition results from its key role in industrial processes such as filtration, separation, 

particle transport, combustion, air and water pollution, metallurgical processes and many others 

(Hossain, Naser, and Imteaz, 2011). The fluid that carries the particles through the pipe may be 

Newtonian or non-Newtonian, and usually influenced by turbulence, drag, hindered velocity, virtual 

mass effects, phase interaction, crossing-trajectories, and particle inertia (Chen, 1994). Moreover, the 

process of transporting solid-liquid mixtures through pipelines is common in the mining and 

petrochemical industries. Furthermore, turbulent slurry flows with high solid volumetric 

concentrations are an important part of many chemical or mineral applications. In addition, the need to 

measure the pressure drop and concentration profiles in pipelines made researchers study this kind of 

fluid and build more accurate models (Lahiry and Ghanta, 2010). Slurry transportation in the 

horizontal direction may be classified into three major flow patterns: (1) pseudo-homogeneous slurry 

(or homogeneous); (2) heterogeneous and sliding bed slurry (or moving bed), and (3) saltation and 

stationary bed slurries, as described by Ling et al. (2003). A pseudo-homogeneous slurry is a pattern 
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in which particles are uniformly distributed along the cross-section of the pipe since the velocity is so 

high to prevent the particles from accumulating in the bottom of pipe cross-section due to gravity 

effects. This process is practical since the high flow rates prevent the particles from falling due to the 

influence of gravity. However, heterogeneity happens in a slurry flow when the flow rate cannot 

overcome the transportation of the particles to the lower part of the cross-section. By further 

decreasing the velocity, the particles will accumulate in the bottom of the pipe cross-section. This 

region is called a moving bed layer (Ling et al., 2003). This phenomenon occurs in the saltation and 

stationary bed flows. In conclusion, when one thinks about the combination of a liquid with insoluble 

solids inside, there are many different examples. 

 

 

1.4 Statement of the Problem 

The main goal can be expressed in this form: the near-infrared region of a light beam is chosen to 

penetrate into a slurry for detecting the slurry particles by sensing the fractions of light in each section 

through the sample depth, with reflectance or transmittance to a NIR sensor.  The problem is to 

estimate the fractions of light at each distance inside the sample to answer the question of the depth 

inside the slurry at which the particles will be detected by the sensor. Therefore, the fractions of light 

at each possible point inside the sample must be known to estimate the layer within the media where 

the light is able to be transmitted to the detector or is blocked by the heavy concentration of particles. 

As it is depicted in Figure 1.2, when the generated light reaches the surface of the medium, a 

portion is transmitted into the sample, and the rest is reflected. Then the transmitted light goes through 

the sample, which may be represented as many layers of particulate slurry. The reflectance, 

transmittance, and abrorptance occurs in each layer, until the remaining transmitted portion of light is 

detected by the detector. This geometry can be shown with another configuration where the detector is 

located in the same place as the generator, detecting the reflectance of the light instead of 

transmission. 
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Figure 1.2 The geometry of the light generator, detectors, and the sample 

Now, the problem is to predict the amount of the light through the sample and the penetration 

depth of light inside the slurry. Transmission, reflection, and absorption inside the sample gives us 

information about the concentration of particles inside the sample. Moreover, it can predict the shape 

of particle accumulation in each layer inside the slurry.  

 

1.5 Goals 

The primary goal of this thesis is to permit accurate estimates of how much light is detectable by the 

sensor, and what portion of the sample contributes to the signal. Answering these two fundamental 
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questions will describe the sample from a spectroscopic perspective. This information will help us 

choose the best location for installing the NIR sensor outside of an slurry sample.  

Tools for modeling the NIR light interactions with particles inside a slurry are theories of 

diffuse reflectance. These theories were applied to the problem with their limitations and assumptions 

considered. The purpose for using different theories to model the optical interaction is to compare 

them and find the most computationally efficient approach for modeling the NIR diffuse reflectance 

phenomena in slurries. Moreover, the problem is divided into two groups of NIR diffuse reflectance 

theorems based on their mathematical treatments: continuous and discontinuous functions. Each of 

these two groups requires different arrangements for the configuration of the sample. Therefore, they 

have different results. Continuum theories aim to find the light fractions integrally inside the sample, 

so the accumulative fractions are estimable without using any other theory in any distance from the 

boundaries of the sample where the light first was encountered. This means that continuum theories 

directly calculate the cumulative fractions of light in each distance from the edge of the sample, and 

the methodology of these theories is different from discontinuum ones in which the light fractions are 

estimated locally, so one must combine them with another method to find light fractions at each depth 

inside the sample. The details of these methods will be discussed in the following chapters. The 

purpose of implementing discontinuous theories is to find the same fractions but locally. This gives us 

an opportunity to have an estimation about optical properties of each possible point and layer inside 

the sample when the effects of other layers are not present. It means that the reaction of each particular 

layer to the incident beam is considered in isolation and only based on the local configuration of the 

particles inside each particular layer of the sample. 

 The main goal is achieved by considering these objectives and steps: (i) for continuum 

mathematical approaches such as plane parallel mathematics, Kubelka-Munk theory, Schuster’s 

theory, three flux approximation, and diffusion theory, and (ii) for discontinuum mathematical 
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approaches such as the theory for plane parallel mathematics, assembly of sheets, representative layer 

theory, and combined representative layer theory and the Stokes formulas.  

In order to meet the goals discussed above, the following tasks must be done: (i) reviewing all 

of the theoretical approaches appropriate for the case of this problem in terms of assumptions, 

limitations, advantages, etc, (ii) implementing the theories by developing a mathematical model based 

on them, and (iii) comparing the results of the models. 

The first task will be done in Chapter 2, where continuum and discontinuum diffuse 

reflectance theories are introduced. In Chapter 3 the models created based on these two groups of 

theories are discussed respectively according to the mathematics of the methods. In Chapter 4, the 

results are compared with each other. Hence, the most compatible model will be introduced based on 

the results.  Finally, in Chapter 5, the conclusions and recommendations are presented. 
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CHAPTER II 

 

 

PAST CONTRIBUTIONS 
 

2.1 Introduction 

Optical methods for modeling NIR radiation phenomena inside a medium, whether it is composed of 

one-phase continuous components, one-phase powdered sample, or multiphase elements are available 

in the literature which will be addressed in this chapter. Although, this work connects the fluid 

dynamics of a slurry flow to an optical phenomena that is the interaction of light with particles in a 

slurry sample, most of the work has been concentrated on optical theories to model the NIR radiation 

inside a slurry. Hence, this chapter is dedicated to surveying the theoretical methods pertaining to 

optical modeling inside slurries. Before describing the approaches, one needs to know what has been 

done in past contributions to NIR technology in analyzing samples. Then, acquiring a preliminary 

knowledge about the definitions of fundamental expressions and terms that are related to optical 

models and are mostly used in this thesis is essential. After introducing the optical nomenclature, NIR 

optical methods are reviewed. These approaches are gathered by reviewing these major concepts in 

the available literature: near-infrared spectroscopy, online and offline measurement of slurries, NIR 

diffuse reflectance and transmittance, particle size analysis, slurry concentration measurements, and 

theories used in optics.  

All of the optical methods examined in this study have certain fields of application based on 

their assumptions. The assumptions make constraints, however, by simplifying the analytical model
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one may produce a new model consistent with the restrictions. Therefore, measuring the capabilities 

of each theory in the literature through a thorough study may facilitate the choice of the approach 

which best matches the requirements of our problem. In this part optical methods are briefly 

introduced and then their assumptions and basic concepts, as well as the mathematics beyond those 

concepts will be discussed. 

 

2.2 History of past contributions 

History of past contribution to the theories of diffuse reflectance helps to a better understanding of the 

theorems. A summary is gathered in Table 2.1. Bouguer in 1760, and scientists start the works on 

diffuse reflectance and engineers have been involved in the measurement of light since the early 

experiments and instruments described by him. Pierre Bouguer (1729) and Johann Lambert (1760) 

developed the principle underlying the model for the absorption of light that relates the absorption to 

the properties of the material through which the light is traveling (Dahm & Dahm, 2007). This law 

will be introduced in detail in this chapter.  

Moreover, Bouguer’s elementary mirror hypothesis (1729) represents an application of the 

absorption by glass and water for various thicknesses (Darrigol, 2012). Darrigol also reviewed the 

absorption law pointed out by Bouguer stating that the successive equal layers of a homogenous 

transparent medium absorb a constant ratio of light that they receive. Kortum (1969) delineated 

Bouguer’s elementary mirror hypothesis which has been employed to explain diffuse reflection from 

surfaces. Lambert’s inverse square law, additivity law, and extinction laws are all based on Bouguer’s 

work. Lambert’s hypotheses were more accepted than Bouguer’s findings since there were some 

contradictions in Bouguer’s observations in the laws of diffuse reflection. In fact, Bouguer’s model of 

diffuse reflection was found to fail later (Darrigol, 2012).  
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Table 2.1 Overview of the development of modeling techniques for diffuse reflection. 

1760 
P. Bouguer described diffuse reflection by elementary mirror hypothesis for surfaces with 

random orientations 

1860 

G.G. Stokes produced a two-flux theory of diffuse reflectance. The theory considers 

individual particles as plane parallel layers, and provides an analytical tool to the 

mathematics of plane parallel layers. 

1887 
E. Lommel and R.V. Seeliger developed a complicated theory of diffuse reflection 

concerning interactive irradiation of distinct elements inside a sample. 

1905 
A. Schuster proposed a special part of diffuse reflection based on continuous mathematics 

by publishing “Radiation through a foggy atmosphere”, which involves particles in sample. 

1908 
G. Mie devised a novel method involving the scattering of light by isolated spherical 

particles, which uses the mathematics of complex variables and numbers.  

1926 
T.H. Gronwall proposed an article that emphasized on a simplified version of plane parallel 

mathematics. 

1931 

Kubelka and Munk published their classic paper that demonstrates the Kubelka–Munk 

equation, derived using continuous mathematics. They displayed that the reflection which 

is calculated by the absorption/remission formula from an infinitely thick sample, is 

equivalent to the ratio of absorption to remission coefficients for a medium. Their work 

produced many controversies over the failure of their model at certain conditions, and 

confusion over the effects of: direct and diffuse illumination; front surface reflection; and 

the relationship of the absorption and scattering coefficients of a sample to the coefficients 

of the material making up the sample. (Chalmers & Griffiths, 2002) 

1946 
F. Benford produced a very complete theory describing the mathematics of plane parallel 

layers. His work was very creative, novel, and independent of previous contributions.  

1963 
N.T. Melamed published a paper proving his method for modeling diffuse reflectance 

inside particulate samples, which is independent from plane parallel mathematics.  

1966 
Wendlandt and Hecht published the first “handbook of diffuse reflection” in 1966, which 

was the first handbook in the field of spectroscopy. 

1969 

G. Kortum published ‘Reflectance Spectroscopy’, a book which is heavily mathematical 

and covers continuum and discontinuum theories rather thoroughly. (Chalmers & Griffiths, 

2002) 

1970-1975 

E.L. Simmons proposed several articles including simplified version of plane parallel 

mathematics to model particles inside a sample, and a modified particle theory (Chalmers 

& Griffiths, 2002). He proved the proportionality of the discontinuous and continuous 

theories in the case of two-flux approximations. 

1997 

T. Burger et al. presented a method in their publication pointing out application of the 

radiation transfer model to characterize diffuse reflectance through more advanced methods 

such as using three (or more) fluxes to separate absorption and scattering coefficients. 

1995-2000 

Dahm and Dahm conducted a carefully planned research that results in: a method to use 

plane parallel mathematics to separate absorption and remission coefficients; presenting an 

absorption/remission function which is constant for all sample thickness; and an equation 

relating the absorption and remission of one thickness of sample to that of any other 

thickness. They clarified the confusions over Kubelka–Munk theory, developed the 

representative layer theory that models a complex sample by defining layers, each one 

representative of the sample. They also developed a simple particle model.  



16 

 

The calculation of the amounts of light absorbed, transmitted and remitted by several layers is 

a very complicated process. Some fraction of light will be absorbed by a layer, which reduces the 

transmitted fraction to the next consecutive layer. In addition, some may return to the first layer as the 

result of reflection from the next layer, which again a portion may again be absorbed, transmitted, or 

remitted back to the next consecutive layer. The mathematics that is able to model this complex 

physical situation is called mathematics of plane parallel layers, which was developed by Sir George 

Stokes in 1860. Dahm and Dahm (2007) assert that Stokes theory is an exact estimation for plane 

parallel particles. 

The Lommel – Seeliger reflectance law is a time honored-law, which has been used until 

today. It is based on a model, which is founded based on diffuse reflection by considering the optical 

characteristic of every single element inside the sample. Therefore, this model was very complex 

comparing to similar ones in that ages. However, it has some limitations such as predicting only the 

scattering of only collimated incident light (Fairbairn, 2004).  

Schuster proposed a method of scattering and absorption within a sample by visualizing a 

dilute suspension of particles in which the particles were luminescent, absorbing, and scattering. He 

published a paper in 1905 describing a particle theory that developed to determine a solution for 

particular problems (Griffiths & Dahm, 2008). He developed his particle theory using continuous 

mathematics.  

Gustav Mie designed a solution to Maxwell’s equations to describe the scattering of 

electromagnetic radiation by a sphere. The solution is in the form of an analytical infinite series. The 

Mie scattering solution finds exact solutions for Maxwell’s equations by separating equations for 

radial and angular dependence of the solution in the problems dealing with scattering (Bohren & 

Huffman, 1998). Thomas Hakon Grönwall published a paper in 1926 about new method in 

geometrical optics and presents a simpler method than the plane parallel mathematics.  
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Kubelka and Munk (1931) published their classic paper in the field of optics, which revealed 

a formulation for the scattering, and absorption of infinitely thick samples. Kubelka and Munk 

published their paper which is a two-flux version of a multi-flux method of solving radiation transfer 

problems. This method is popular because of its simple analytical equation, which is known as the 

Kubelka-Munk equation. However, this theory has some assumptions that limit the cases to which it 

can be applied. 

Benford (1946) described mathematics of plane parallel layers, which is very complete and 

novel. In 1946, he published a detailed analysis of the absorption and scattering of light in the article 

of ‘Radiation in a diffusing medium. He used discontinuous mathematics and assumed that the sample 

was divided into a series of plane parallel layers (Dahm & Dahm, 2008). Benford’s calculations were 

developing a system of relations that can be used to compute the reflection, absorption and 

transmission fractions for a sample if the number of layers and those fractions for each are known.  

Melamed proposed a complete statistical theory for the absolute diffuse reflectance of 

powders about a half century ago (Mandelis, Boroumand, & Bergh, 1990). In the past half century 

many spectroscopists performing quantitative diffuse reflectance spectroscopy of powdered 

materials have used the Melamed model. Melmad’s theorem was successful in the field of 

modeling diffuse reflectance since unlike other discontinuum mathematics, Melamed applied 

statistical summations on the sample consisting of discrete particles reflecting light diffusely. The 

laws of geometrical optics (Mandelis et al., 1990) limited his model. Mandelis et al. deduced that 

Melamed’s statistical approach had prominence over other theories that are based on plane 

parallel mathematics but with some limiting assumptions. Proceeding Melamed’s unique theory, 

Wendlandt and Hecht (1966) published the first handbook in the field of spectroscopy. In 1969, 

Kortum presented his book in the field of reflectance spectroscopy that is a breakthrough in using 
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cumbersome mathematics to embellish continuum and discontinuum theories of diffuse 

reflectance (Griffiths & Dahm, 2008). 

Simmons has used a simplified particle model (plane parallel mathematics) to relate 

diffuse reflectance to some optical parameters of the model without the use of heavy equations, 

which result from the more modified Melamed’s theory (Mielenz et al., 1977). A more recent 

study in the field of diffuse reflectance was done by Burger et al. (1995) who developed a diffuse 

reflectance model using three or more fluxes (Griffiths & Dahm, 2008). 

Dahm and Dahm (1999) presented a more complete method to study the diffuse 

reflection phenomena inside samples containing non-homogeneous particles. They used the plane 

parallel layer model of Benford (1946) to develop a more accurate approximation to calculate the 

fractions of light for each layer. This accuracy is a result of relating the physical properties of the 

elements of the medium to the optical properties of the sample. They also developed an equation 

for relating absorption/remission of one layer to that of the sample. This equation is comparable 

to the Kubelka-Munk function but is a descriptive tool for more complex samples (Griffiths & 

Dahm, 2008). Moreover, throughout their systematic work, they presented a series of 

explanations about the Kubelka-Munk theory and its controversies.  

 

2.3 Fundamental Definitions 

In this section fundamental definitions are presented that are necessary for the appreciation of the 

concepts proposed not only in this chapter but also in the following chapters. There is a chain of 

prerequisites for conveying the information about topics from basic elementary components in optics 

to more rigorous concepts. Some of the definitions are not found in the theories but introducing them 

is essential since these fundamental terms have used in some more advanced definitions. Hence, they 
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are explained before separately. Each part is described sufficiently for applying the theorems into 

models. 

2.3.1 Geometrical Optics 

Geometrical optics is the study of light without diffraction or interference (Greivenkamp, 2004). It is 

essential to explain the fundamental definition of geometrical optics to briefly introduce this 

significant part of classical optics. Geometric optics refers to the ray optics and describe the light 

propagation in terms of rays. In this part of classical optics, the rays are explained to spread out in 

rectilinear path in a homogenous medium. Rays are able to be bent, transmitted by splitting in two or 

more parts at the interface between two distinct media, may be refracted in a medium where 

the refractive index changes, or are absorbed and reflected. Geometrical optics provides rules, which 

depend on the wavelength of the electromagnetic wave, for propagating these rays through an optical 

system. Therefore, geometric optics is a crucial simplification of optical sciences that fails to account 

for some optical phenomena such as diffraction and interference. It provides an outstanding estimation 

about the travel of light into materials, however, when the wavelength is very small compared with the 

size of objects or materials with which the light interacts. Geometric optics can be used to describe the 

geometrical aspects of imaging, including optical aberrations. 

2.3.2 Wavefront and Ray 

In physics, a wavefront is the locus of points having the same phase: a two dimensional line, curve, or 

surface for a wave propagating in 3D space (Schuster, 1904). Greivenkamp (2004) reported a very 

concise description about the geometrical optics based on the optical path length. Optical path length 

is proportional to the time required for light to travel between two points (Greivenkamp, 2004). The 

relation is: 

            
 

 

 (2.1) 
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where   is the refractive index which varies along the path. If it is constant the integration is not 

required. Mouroulis and Macdonald (1997) suggested that the propagation of waves is commonly 

described by means of wavefronts.  

In geometrical optics the concept of wavefront is fundamental. Because of the higher 

frequencies of the waves such as infrared, optical, x-ray and gamma-ray, the temporal component of 

electromagnetic waves is usually neglected for the corresponding wavelengths, therefore, the phase of 

the spatial oscillation is the only parameter that is described. Moreover, most optical system and 

detectors are indifferent to polarization, so this property of the wave is also usually 

neglected. Maxwell's equations are a powerful descriptor for the optical system electromagnetic 

waves, and linear propagating waves such as sound waves that have similar wave equations. There are 

also geometrical wavefronts which are described similar to the physical wavefronts but are not 

propagating and are frozen in space (Mouroulis & Macdonald, 1997). 

 Introducing the wavefront is essential to define another fundamental element in optical 

physics which is the ray. Rays are defined as the lines normal to a family of wavefronts. The direction 

of electromagnetic propagation as suggested by Mouroulis and Macdonald (1997) is given by the 

Poynting vector, which is the cross product of the electric and magnetic field vectors. This direction of 

energy flow is conveniently described by rays. One might think that a very narrow beam of light is a 

ray but it is not. The divergance in the beams of light contributes the idea that the cross-section of 

beams are not constant in their lengths.  

In this thesis, it has been assumed that the media is isotropic and our definition of rays is 

consistent with this assumption. However, there are some materials in which the direction of 

electromagnetic waves such as visible or near-infrared light is not always normal to the wavefronts 

such as crystals or non-linear media where it is possible for the wave to exit the material at a different 

wavelength from which it entered. 
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2.3.3 Radiant Energy 

McCluney (1994) stated that radiation is the scattering of energy in several forms through space. 

Following this definition, the radiant energy can be described as the quantity of energy propagating 

onto, through, or emerging from, a specified surface of given area in a given period of time. For 

estimating the energy, all the wavelength spectrum contained in the radiation are must be included. 

The radiant energy is known by Q and its unit when a limited wavelength range is to be considered is 

shown in joule. Near-infrared light has a radiant energy calculated by integrating the radiant flux over 

time. 

2.3.4 Solid Angle 

Solid angle is a two dimensional angle in three dimensional space and is described by a closed curve 

and a point in space. According to Figure 2.1 (a), the solid angle is the projection of curve C in space, 

and curve C subtends solid angle  at point P at the center of a unit sphere. It extends the two 

dimensional concept of a plane angle to three dimensions. The magnitude of this angle is calculated by 

projecting the area of a closed curve in space on a sphere of unit radius, therefore, the solid angle of an 

object is equivalent to the area of the segment of a unit sphere, centered at the angle's vertex or center 

of sphere, that the object covers. Another relation that has been set forth by Palmer and Grant (2010) 

is the ratio of projected area of the closed curve on a sphere with arbitrary radius,         , over the 

square of the sphere radius. This defining the solid angle along with the corresponding relationships 

have been presented schematically by Figure 2.1 (b). The unit of this angle is measured by steradian. 

The relationship associated with solid angle is: 

  
        

  
 (2.2) 

where   is the solid angle,          is the segment of the projected area on the sphere, and r is the 

radius of sphere.  

http://en.wikipedia.org/wiki/Area_(geometry)
http://en.wikipedia.org/wiki/Unit_sphere
http://en.wikipedia.org/wiki/Vertex_(geometry)
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(a) 

 
(b) 

Figure 2.1 (a) Schematic representation of solid angle. (McCluney, 1994); (b) Solid angle 

relationships 

Hemispherical solid angle is another important definition. The three solid angles are directional, 

conical, and hemispherical. McCluney (1994) distinguished between these three types and claimed 

that the directional one refers to an infinitesimally small solid angle in a particular direction from 

arbitrary point p in space like Figure 2.1 (a) and (b).  Directional solid angles are only used in 

mathematical models of reflectance and transmittance but are not applied in experiments and 

measurements since the associated flux with this infinitesimal angle is unmeasureable in quantity. 

Conical solid angles are measures of intermediate-sized solid angles in the shape of circular cones. 

The mostly used solid angle is the hemispherical one that has the size of    steradians. The shape of 

this angle is the same as a hemisphere. 

2.3.5 Radiant flux 

The radiant flux is the time rate of flow of radiant energy with the unit of watt. This flow of radiation 

is characterized by the quantity of energy transferring through a region in space or usually a surface 

per unit of time. The defining equation is: 

  
  

  
 (2.3) 
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where   is the radiant energy in Joules and   is the radiant flux with the unit of Joules per second or 

watt (McCluney, 1994). According to this definition, the radiant flux is radiated from a source over 

optical wavelengths, which are defined to be from        to        Hz. This region is equivalent 

to the electromagnetic spectrum commonly referred to as ultraviolet, visible, and infrared.  

2.3.6 Radiance 

We started defining the fundamental quantities with radiant energy   which has as its unit the joule 

(J). Radiant power introduced as radiant flux is energy per unit time (
  

  
) with the symbol   and is 

measured in Watts. Palmer and Grant (2010) deduced that these two definitions are not informational 

about the spatial distribution of power in terms of area or direction. Hence, another parameter is 

required that is an elemental quantity in radiometry, and is defined as the power per unit area, and per 

unit projected solid angle. It is known as radiance (Palmer & Grant, 2010). Since the radiance can be 

integrated along a beam, it is possible to calculate it in any location of an optical system.  The radiance 

depends upon the direction and it can come from many points on a surface. Moreover, it can exist 

everywhere since it applies to a field quantity. The defining equation is (Palmer & Grant, 2010): 

     
       

 
  

         
  

   

         
 

   

     
 (2.4) 

where, L is the radiance,   is the solid angle,   is the radiant flux and s is the surface. 

2.3.7 Irradiance 

Irradiance (radiant incidence) is defined as the power of electromagnetic radiation per unit area. 

Described by McCluney, irradiance is the area density of radiant flux, the radiant flux per unit area in 

a specified surface that is incident on, passing through, or emerging from a point in the specified 

surface. The defining equation is:  

  
  

   
 (2.5) 
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where    is an element of radiant flux and     is an element of area in the surface. It is essential to 

mention that radiance and irradiance are quite different. Radiance is the angular distribution of 

radiation emitted per unit area into a cone having unit solid angle, while irradiance sums up all this 

angular distribution over a specified solid angle . Hence, the relation associated with the summation 

over the solid angle comes from the following integration: 

      
 

 (2.6) 

where, L is the radiance and   is the solid angle.  

2.3.8 Radiant Intensity 

McCluney (1994) characterized radiant intensity, I, as the density of solid angle or flux of energy 

radiated per unit solid angle (steradian) incident on, passing through, or emerging from a point in 

space. The defining equation is: 

  
  

  
 (2.7) 

where    is an element of radiant flux and    is the element of a solid angle in the specified 

direction. The intensity is a strong function of direction from or toward the point for which it is 

defined. Also, it changes with distance from its source except for a collimated beam (Dahm & Dahm, 

2007). Intensity can be derived from radiance by integrating over area: 

      
 

 (2.8) 

2.3.9 Refractive Index 

Index of refraction is a very fundamental parameter in optics, and it can be measured with a very high 

accuracy of      (Chartier, 2005). Refractive index is a property of a substance which is a number 

indicating the level of electromagnetic wave propagation in a medium. Before introducing the relation 
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for refractive index, it is essential to know about the source of this concept. Fundamental equations of 

wave propagation into a medium are known as Maxwell’s equations. Using Maxwell’s equations for a 

dielectric medium and then simplifying the integral forms and implementing some mathematical 

operations and manipulating, one can obtain the general wave equations for the propagation of a 

periodic disturbance, which is shown below (Hecht, 2002): 

          
     

   
 (2.9) 

          
     

   
 (2.10) 

where E is the electric field vector, B is the magnetic field vector,     is the electric permittivity of free 

space, and    is the permeability of the free space. The phase velocity of Maxwell’s equations is: 

        (2.11) 

Therefore, based on the Wendlandt and Hecht (1966) analysis, the refractive index, defined as the 

phase velocity in a vacuum which is equal to the speed of light compared to that in a given medium, 

is: 

  
 

 
  

  

    
 (2.12) 

where c is the speed of light or phase velocity in vacuum and   is the phase velocity in the material.   

and   are permittivity and permeability of the material, while    and    are permittivity and 

permeability of the vacuum. When light passes through a medium, some part of it will always 

be absorbed. This can be conveniently considered by introducing a complex index of refraction:  

         (2.13) 

where the real part of the refractive index   indicates the phase speed, whereas the imaginary part   is 

the amount of absorption loss when the electromagnetic wave propagates through the medium.  
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2.3.10 Diffraction 

Diffraction appears as a limitation to the rectilinear propagation of light (Chartier, 2005). Diffraction 

is a complicated process, and occurs when a light beam collides with an obstacle. After collision, 

some parts of the light deviate in different directions. In classical physics the diffraction is described 

as the apparent bending of waves around small obstacles and the spreading out of waves past small 

orifices. Diffraction is observed for any kind of propagating phenomenon. All types of waves can be 

diffracted. Pedrotti et al. (2007) have presented a compelete study on this important phenomenon in 

classical optics. They suggested a simple defintion for this term that is any deviation from geometrical 

optics which results from the obstruction of wavefront of the light. The diffraction is observed even if 

the obstacle is not opaque and the transmitted wavefronts are affected by change of amplitude and 

phase. 

2.3.11 Refraction 

Refraction is the change in direction of a wave due to a change in its medium. This phenomenon 

occurs because of an inhomogeniety and discontinuity of the interface atoms which reflects light 

backward or transmit it forward through the medium. Hence, the fact that the incident rays are bent is 

called refraction (Hecht, 2002). Wendlandt and Hecht (1966) pointed out a simpler definition for 

refraction. They supposed that the electromagnetic radiation starts its path through a medium with a 

specific index of refraction while it reaches to another medium with a different refractive index. 

Whenever it encounters the separating region between two different media, a part of the beam is 

reflected back into the first medium, however part continues into the second medium, but with an 

altered direction of propagation. Hence, the refraction is essentially a surface phenomenon.  

Electromagnetic radiation is an element in the refraction process, hence the governing equations of 

electromagnetic radiation are valid when the light refracts from one medium to another. When the 
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light passes through the medium, the phase velocity of the wave is changed but its frequency remains 

constant. The refraction occurs for any type of electromagnetic wave; from light to any other 

electromagnetic waves such as sound. Refraction is described by Snell's law, which constructs an 

expression based on the law of refraction for the relationship between the two incident and refraction 

angles and the properties of the wave which passes through the boundary of two different isotropic 

materials.  The formula is derived for a given pair of media and a wave with a specified frequency 

stating that the ratio of the sines of the angle of incidence    and angle of transmitted wave after 

refraction    is equivalent to the ratio of phase velocities (       ) in the two media. This ratio is also 

equivalent to the opposite ratio of the indices of refraction (       ): 

     
     

 
   

  
 
  
  
  (2.14) 

To prove the expression above, one can start from sketching the refraction phenomenon at an interface 

like Figure 2.2 by drawing the wavefronts at an instant of time. Each of them is a surface that has a 

constant phase. Because of the change in the phase velocity at the interface, the waves bend (Hecht, 

2002). In fact, Figure 2.2 is a representation of several exposures of a single wavefront that shows it in 

equal time intervals of   .  

When the wavefront OB reaches the interface, it refracts at point A. Assuming that it takes    for the 

wavefront OAB to get to the surface RED with phase velocity of    ,  different points on the surface of 

the wave traverse with different phase velocities after this time interval because one portion of the 

wave is in the incident medium with phase velocity     and another part is in the transmitting medium 

with phase velocity of   . 

In this thesis, the analysis is done on the two-phase flow of Xylene as the liquid and ADP particles as 

the solids. Near-infrared radiation is employed as an electromagnetic wave that penetrates the solid-

liquid mixture by a sensor which is located in air outside of the mixture.  The refractive index of 
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xylene and ADP are greater than the air                     or the phase velocity in air is greater 

than that in a liquid-solid mixture                   . 

 

 

 

 

 

 

 

 

 

Figure 2.2 Geometric description for the refracted waves approached the interface at equal time 

intervals 

Hence, according to Figure 2.2, for the case of near-infrared waves in air as the incident medium 

striking on the xylene-ADP sample as the transmitting medium, the vector BD is longer than  AE  

because       and time intervals are equal. In Figure 2.2, the two triangles ABD and AED share a 

common hypotenuse which is AD. Therefore, 

     
  

 
      

  
  (2.15) 

where,          and         , so 

     
  

 
      

  
  (2.16) 

By multiplying both sides by c and since    
 

  
 and    

 

  
 , one has: 

                   (2.17) 
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The equation above is the general law of refraction or Snell’s law. 

2.3.12 Reflectance (reflection) and reflectivity 

Introducing this important concept in optics, demands an understanding of the difference between 

three distinct terminologies which are common for all light fractions. As pointed out by Siegel and 

Howell (1981) there are differences between the fractions ending –itivity and –ance. It is common to 

refer the ending –ivity to intensive, coherent, or bulk properties of matter. The ending –ance is used to 

assign for the extensive properties of a material.  

Reflection is a phenomenon by which a part of the light rays that are incident on the medium 

or particle leave it from the same side or scatter backward. This was a preliminary definition of 

reflectance that was addressed by Rea (2000). Hecht (2002) explained that reflection occurs when a 

beam of electromagnetic radiation impinges on a surface of material some light will scatter backward. 

Reflection, usually refers to a surface reflection not internal or external reflections within the medium. 

Hecht also clarified this issue for the gradual change in the mediums. In this situation, there is a 

continuous change of interface and very small amounts of reflection will be observed since the 

interface is effectively vanished. In contrast, any abrupt change in the interface exerts a discontinuity 

to the light intensity since a portion is reflected. Internal and external reflections will be discussed 

later in this section. There is no difference between the concept of reflection and reflectance in the 

literature, and it is possible to use reflectance in place of reflection or vice versa. However, in some of 

the references the meaning of reflectance and reflection are separated. For instance, Rea (2000) clearly 

delineated their boundaries by defining the reflectance as the ratio of reflected flux to the incident 

flux, while the reflection is a general term for the process by which the incident flux leaves a medium 

from the incident side or with a reflection angle less than 90 degrees, and without any change in 

frequency.  According to CIE (1987), reflectance is the ratio of the reflected radiant to the incident 

flux that is radiated on the sample. Reflectivity is generally known as reflectance since it refers to the 
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incident electromagnetic power that is reflected at an interface.  However, there is a slightly 

difference. The bureau of CIE (1987) specified a definition for reflectivity which is distinguished from 

reflectance. They suggested that reflectivity is the reflectance of a layer of the material with a 

thickness that does not change the reflectance if it is increased. This means that the sample or object is 

thick enough that the reflectance is not influenced by adding more thickness to  it. This definition for 

reflectivity includes both internal scattering and surface reflectance. In other words, reflectivity is the 

restrictive value of reflectance as the surface becomes thick; it can be attributed to the inherent 

reflectance of the surface. McCluney (1994) claimed that sometimes it would be desirable to limit the 

definition of reflectivity to include only interface effects. By interpreting this definition, one can say 

that reflectivity is property of material, while reflection is the property of a particular sample of that 

material or surface.  

Dilaura (2011) deduced that reflection is affected by the geometry, wavelength, and 

polarization of the incident flux. There are three types of surface reflections depend on the radiation 

flux; specular, mixed, and diffuse reflection. Specular reflection happens on a polished material when 

the beams are reflected specularly. Specular reflection, also called regular reflection, occurs when all 

the parallel incident flux is reflected with reflection angles equal to the incidence angle (McCluney, 

1994). Hecht (2002) pointed out that the specular reflection process occurs when the light remitted by 

millions of atoms combines as a single beam. As is obvious from Figure 2.3, what is important is that 

the scattering effects are absent in the specular reflections. In this Figure, specular angle and incident 

angles are shown. Specular angle is the angle between the reflected ray and the normal to the surface.  

For regular (specular) reflections these two angles are equal. Perfectly specular reflections have no 

diffuse element.   
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Figure 2.3 The geometry of the light generator, detectors, and the sample 

Another type of reflectance is diffuse reflection. Diffuse reflectance or irregular reflection 

occurs on samples and materials that consist of particles and crystals or have rough surfaces. Each 

incident ray encounters an infinitesimal particle which obeys the basic definition and rule of 

reflection. However, since the shapes of particles in a solid-liquid mixture may not be uniform, there 

are some particles that do not have flat surfaces. Therefore, the reflected rays leave the particle surface 

in other planes with many different reflection angles and distinct directions. This process is depicted 

in Figure 2.4(a) where the incident beam strikes a particulate sample but it reflects diffusely in many 

different angles and in different planes. The intensities of reflected rays are not constant as is shown in 

Figure 2.4(a) and (b). The illuminated spot has the most energy and the reflected ray from this point 

has the greatest intensity, then it diminishes as the viewing angle to any side increases (Juds, 1988). 

Moreover, some of the energy of the incident illumination is attenuated by being transmitted through 

the sample or being absorbed by the liquid or solid particles inside the slurry which changes into heat 

and rises the temperature. A beam of parallel rays incident on a surface or medium that has a diffusely 

reflecting characteristic will be converted to a collection of rays distributed over a hemispherical solid 

angle. The diffusivity of materials are different. Some produce strong forward scattering whereas 

others diffuse the light almost in all directions. McCluney (1994) emphasized that if the reflection 

radiance is constant for all directions, then the surface type is called a Lambertian surface. The term 

diffuse can also be used for the non-Lambertian surfaces. Perfectly diffuse reflectance is special case 
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for the diffuse reflections. This phenomenon occurs when the density and distribution of reflected 

beams are higher near the surface normal and decreases as the cosine of the angle of the reflected 

direction. An important point is that perfect diffusion does not mean perfect reflection; it does not 

mean that the reflection is 1.0.  

Most surfaces have a mixture of diffuse and specular characteristics. Rea (2000) described this feature 

on some special surfaces which diffuse most of the light in all directions except for a ray that reflects 

specularly. Therefore, this type of reflection is partly regular (specular) and partly diffuse. In real 

situations, a specularly reflecting material has less quantified capability to diffuse the light than reflect 

it specularly. On the other hand, a diffusely reflecting material reflects the light specularly less than 

the amount that it diffuses, quantitatively (McCluney, 1994).  

 
(a) 

 
(b) 

 
(c) 

 Figure 2.4 (a) Diffuse 

reflection from a sample 

composed of particles 

(SPECAC Limited, n.d.); (b) 

Specular versus diffuse 

reflectance on the surface of a 

slurry fluid. (c) Diffuse and 

specular reflectance. Diffuse 

reflectance (left) sends beams 

in all directions regardless of 

the uniform parallel incident 

rays. Specular reflectance 

(right) incident cone is 

preserved (Dilaura, 2011) 
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All types of reflections which occur at interfaces including specular, diffuse, and mixed 

reflections, are external reflections. Total reflection has two categories; external and internal 

reflections. Considering the passage of an incident beam from medium 1 (incident medium) to 

medium 2 (transmitting medium), one can construe the occurrence of an external reflection when the 

refractive index of the first medium is less than the one for the second or transmitting medium.  The 

reason is that the light is initially traveling from a less to a more optically dense medium. This 

phenomena happens since the compression of atoms in a dense material does not allow the photons to 

find a way through the medium, hence the reflection at the interface is strong. In fact, specular and 

diffuse reflections which are surface reflections are categorized as external reflections. On the other 

hand, internal reflection occurs when the light going from a region with high refractive index to a 

region with lower index. Dahm and Dahm (1999) also defined internal reflections as light that has 

been transmitted through one or more particles, returned from an internal particle, and transmitted 

through any particle encountered on the way back to the detector. In some occasions, neither reflection 

nor transmission takes place when incident beam encounters the interface. From a two dimensional 

perspective, the beam reflects exactly at the line of the interface or in a 3-D view it will be reflected in 

the plane of the interface (Pedrotti et al., 2007).  

In this thesis the remission is used as the reflection in agreement with the notation used in the 

literature. Remission is the summation of external reflection, internal reflection, and backward 

scattering (Dahm & Dahm, 1999). The remission fraction is the ratio of the remitted intensity to 

incident light; the light that strikes a particle (Dahm & Dahm, 2007). 

2.3.13 Scattering 

Scattering is a form of propagation of electromagnetic waves in a way that energy is attenuated 

through the scattering medium and remission to many directions (Pedrotti, 2007). Therefore, the 

scattering will be a result of deviation of light from the medium. Scattering is also called diffuse 
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scattering by Dahm and Dahm (1999). They referred to a process in which light interacts with a 

particle and changes its path in many directions regardless of the orientation of particle surface. This 

light is capable of being absorbed or remitted immediately. Mie theory is a powerful tool to exactly 

predict the scattering. The intensity of scattered light relies on the particle geometry (Dahm & Dahm, 

1999).  

For inferring the difference between scattering and diffuse reflection, Kortum (1969) clarified 

this very important issue. Before going through the difference, a concise explanation about the 

dependency of particle size and wavelength is required. Reflection, refraction, and diffraction are 

three different elements by which the interaction of the wave with a particle is characterized. These 

three phenomena occurs differently if the particle size is greater than the wavelength of the 

electromagnetic wave. However, if the dimension of the particle is less than or comparable to the 

wavelength of light, then it would be impossible to separate the contribution of the concepts of 

reflection, refraction, and diffraction during the collision of waves with particles. This phenomenon is 

known as scattering (Kortum, 1969). In contrast, diffuse reflection is the isotropic angular distribution 

of light in densely packed materials. 

Single and Multiple Scattering 

It is very important to introduce two different phenomena about scattering; single and multiple 

scattering. Single scattering happens when radiation is scattered locally by a local center. If the 

numbers of scattering centers are high, the scattering will occur many times which is called multiple 

scattering.  The difference between the single and multiple scattering is that single scattering is similar 

to a random phenomenon; however, multiple scattering is less random. The location of single 

scattering center is not determined, therefore, it tends to depend on the incident trajectory, which looks 

random to an observer. Single scattering is described by probability distributions (Bohren, 1998). 
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The reason that multiple scattering is less random than single scattering is because of the 

averaging of a large number of scattering events. Hence the final path of the radiation appears to be a 

deterministic distribution of intensity. This is exemplified by a light beam passing through thick fog. 

Multiple scattering is analogous to diffusion. Optical scattering centers designed to produce multiple 

scattering are thus known as diffusers. 

Forward and Backward Scattering 

 Forward and backward scattering are two types of scattering events. Forward scattering refers to the 

scattered beams that leave a sample travelling in a direction that produces a component with the same 

direction as the incident beam. Backward scattering is defined as the scattered light that leaves a 

sample in the opposite direction of the radiation. 

2.3.14 Reflection (remission) Coefficient 

Reflection coefficient is defined as the difference between the propagation velocities of the two media 

forming the interface (Guenther, 1990). He offered the following equation for the reflection 

coefficient between two media: 

  
     
     

  (2.18) 

where b is the reflection coefficient and    and    are the index of refractions for the incident and 

transmitted media, respectively. Or, Pedrotti et al. (2007) suggested the following formula which is 

the same as Equation 2.18: 

  
   

   
  (2.19) 

where n is the relative refractive index. Dahm and Dahm (2007) suggested the following definition for 

the apparent linear remission coefficient of a sample which is the fraction of light remitted from a 

small thickness of the material divided by the magnitude of that small thickness. 
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  (2.20) 

where    is the remission fraction for light that is reflected from a small thickness of material. 

Chartier (2005) defined the reflection coefficient as a complex number where its modulus is equal to 

unity. He deduced this definition based on doing some calculation on Fresnel formulas. For modeling 

purposes in this thesis the formulation of Dahm has been used since it is consistent with the number of 

different layers. 

2.3.15 Absorptance (absorption) 

In physics, absorption of an electromagnetic wave is a phenomenon in which the energy of a photon in 

the ray is taken up by the material. This energy is consumed in a nano scale by the electrons of 

an atom. The activities of the electrons due to radiation heat up the matter. In spectroscopy, 

absorptance, absorbance or absorption, also called optical density of a material is the logarithmic ratio 

of the radiation strike on a material to the radiation transmitted through a material. In the literature,  

the absorption of light through a material  has been also called attenuation. When speaking of the 

linear absorption,  the dependency of the attenuation is independent of the intensity of the beam, but in 

certain conditions, the medium changes its transparency due to the intensity of waves going through, 

and nonlinear absorption happens (Venkatram, Rao, & Akundi, 2005). McCluney (1994) defined the 

absorptance as the ratio of the absorbed radiant to the incident flux which has the symbol  .  

Absorbance measurements are often carried out in analytical chemistry. Considering a light beam 

having an intensity    impinging on a sample and an intensity    incident on the detector, Dahm and 

Dahm (2007) suggested that absorbance function is the negative logarithm of the fraction of the 

incident intensity that strikes a detector. According to this definition the following formula is derived: 

    
  
  

 (2.21) 
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where A is the absorption fraction    is the incident intensity, and     is the intensity exits the sample. 

Sometimes it is said that the absorbance is defined for the case of transmission through non-scattering 

sample as         , where T is the transmission fraction (Dahm & Dahm, 2007). In contrast, the 

absorption function has certainly been useful in the field of near-infrared reflectance spectroscopy in 

which it is defined as         , where R is the remission fraction of light. But what is suggested by 

Dahm and Dahm (2007) and is used in this thesis is the meaning of absorbance function for the case of 

transmission. The reason for using this interpretation of absorption is because of instruments which 

use log-based absorbance. Dahm and Dahm (2007) stated different usages of log-based transmission 

and reflection cases. In a transmission measurement, since the fraction of light transmitted is 

calculated from        , absorbance function can be written in the form of      
 

 
 . In the 

experiments that are based on remission, the absorbance is calculated in terms of remission in the form 

of:  

      
 

 
  (2.22) 

where R is the remission fraction measured from incident light. However, the exponential form of the 

absorption fraction is used for quantitative purposes. This form will be introduced completely in 

Chapter Three.  

2.3.16 Absorption Coefficient 

The traditional definition for the absorption coefficient is the ratio of absorbed light by a thin layer in 

the material to the length of that small thickness (Dahm & Dahm, 2007). The following equation 

represents the absorption coefficient for a linear type of material:  

     
   

  
 

 (2.23) 

K is the absorption coefficient, d is the thickness of the small layer of sample, and A is the absorption 

fraction of light inside the medium. An important point about the absorption is related to nonlinear 
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situations. When a specific thickness of the sample for which the absorption fraction is calculated is 

thick – the thickness criterion is explained in detail in Chapter Three – then the absorption fraction is 

not a linear function of the depth of the layer. Dahm and Dahm (2007) asserted that as the thickness of 

the layer under measurement gets smaller, the absorption fraction falls in the linear regions. If the 

sample is a small layer of material, the absorption is called linear and the value will be linearly 

proportional to the sample thickness. Dahm and Dahm (1999) also described this linearity for the 

material through their proposed hypothesis. According to their descriptions, the absorption is linear if 

all internal parts of the material are equally illuminated.  

Dahm and Dahm (2007) asserted that absorption coefficient is another definition for the absorption 

power of the material while there is no scattering in the sample. In a homogeneous sample any 

particular thickness which absorbs light, has a limit of capacity for absorption. The amount of 

absorption is in constant or linear proportion to the intensity of radiation. This fraction is independent 

of: the absolute value of intensity; and the location of that special thickness or layer of the sample. 

This rule is known as Bouguer-Lambert Law in optical physics. The formulation is: 

  
   

            (2.24) 

where k is the absorption coefficient, T is the transmitted intensity,    is the intensity of the light a 

which passes the thickness of the material in the location of line 0 which is shown in Figure 2.5, and 

   is the intensity of light at the point d, d is the distance between two lines, and d is the absorbing 

power of the material. Penetrating through the sample, some portion is absorbed and some will be 

transmitted. Pierre Bouguer (1760) discovered the law of absorption of light through the material, and 

later it was developed by Johann Lambert (Dahm & Dahm, 2007). This law describes the absorbed 

light by a homogenous material as a linear fraction of intensity on such a layer. The limitation of this 

technique is its homogeneity.  
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The absorbing power of material is known as the negative of the natural log of the intensity 

transmitted through a particular distance d of the sample (Dahm & Dahm, 2007). The absorbing power 

of a material is the same as the absorbance of a homogeneous sample of the material of unit thickness. 

For example, the absorbing power of a material is the same as the absorbance of a homogeneous 

sample of the material that is 1 cm thick: 

          
  

       
     

 

       
  (2.25) 

 

 

 

 

 

 

 

Figure 2.5 Illustration of Bouguer-Lambert law 

Therefore, the absorbing power of the material or k is calculated by the absorbance of the 

homogeneous sample of the material. It should be noticed that kd  does not have any units. If one 

divides the relation above by the distance that light travels, d, the result will be the absorption power 

which is derived from the following equation: 

   
   

  
  
 

 
  

   
 
   

 

 
 

(2.26) 

d 

      

  
  
   

          

k is independent of thickness 
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For a portion of sample that is under direct illumination, the absorbing power of the material is the 

ratio of the amount of light that would be absorbed if every absorption portion were under incident 

intensity equal to the incident ray, to the intensity of the incident beam (Dahm & Dahm, 2007). 

The thickness of the layers is calculated in the units of     . In this thesis   will refer to the 

absorption coefficient of a sample and   is the absorption coefficient of a material which is also 

known as absorption power of material.  

2.3.17 Transmittance (transmission) 

Transmittance is the fraction of electromagnetic wave at a specified wavelength that passes through a 

sample. A more concise definition is the movement of light through a sample of material without 

being absorbed (Dahm & Dahm, 1999). The important point about transmission is that it is 

incorporated with the fact that suggests the amount of light that is not absorbed, is reflected or 

transmitted. The only difference between the reflection and transmission is the angle of incidence and 

the angle that light makes with the normal to the surface of interface. If the light is transmitted through 

the medium with an angle less than the critical angle – at which the remitted beam falls exactly on the 

interface line – the light is transmitted, whether internally within the layers of sample or externally 

outside of the medium. In this situation the light is refracted and it is transmitted to the other layers 

inside the sample or it is coming out of the sample. However, when the incident light strikes the 

sample at an angle more than the critical angle, the beam that is leaving the medium is said to be 

reflected. Therefore, the boundary between the reflectance and transmittance is very close.  

 Dahm and Dahm (2007) pointed out that the transmission fraction is calculated from the 

following equation which is derived based on the Bouguer – Lambert law for transmission. The law 

says that the fraction of light beam transmitted through the sample while moving through the distance 

d inside a continuum medium is calculated from: 
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           (2.27) 

where k is the linear absorption coefficient in the absence of scattering inside the sample. Considering 

this limiting assumption, one can conclude that this expression is designed for the samples with high 

concentration of particles. The reason is that by increasing the number of particles the chance of light 

scattering will increase, which is not consistent with the assumption of this law. But fortunately this 

equation is valid for the small particles according, as shown in Figure 2.6.  

The straight line in Figure 2.6 is a tangent line to the relation          that represents the 

deviation of transmission curve from the line C with the relation kd. This line can be used instead of 

the exponential function in the linear region. The linear region is essential to be found since the 

validity of some theories such as Bouguer-Lambert law and plane parallel layers are dependent upon 

this assumption. In Chapter Three, this linearity assumption is introduced. Furthermore, least squares 

method to find threshold for the minimum deviation from the straight line is presented not only for 

transmission but also for absorption. 

 

Figure 2.6 (A) Absorption fraction; (B) transmission fraction (      ; (C) straight line 

representing Kd which lies on the transmission curve in smaller thicknesses of the sample or 

layer of the sample which is illuminated  (Dahm & Dahm, 1999) 
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2.4 Continiuum Theories of Diffuse Reflection 

2.4.1 Introduction 

Near-infrared (NIR) diffuse reflection (DR) has become extensively applicable for the quantitative 

analysis of many products and commodities since it 40 years ago when it was first used in 

spectroscopy. As was mentioned in Chapter 1, mid-infrared diffuse reflectance is used more for 

investigating and characterizing than for the determining the quantity of particulate samples. 

Considering the mentioned cases, investigating the diffuse reflectance process is useful if the very 

large amount of information is to be collected from the spectrum. Those theories of diffuse reflectance 

that use simple mathematics has connections with the reflectance of a sample which is known by 

     . In this situation, the assumption which says all light being reflected from both a sample and a  a 

standard reflecting reference with 100% reflectance can be measured (Chalmers & Griffiths, 2002). 

Chalmers and Griffiths (2002) suggested that the relative diffuse reflectance        can be measured by 

estimating the ratio of the spectrum of the radiation received by the detector from a particulate sample 

and the corresponding spectrum which can be estimated experimentally after reflection from a non-

absorbing reference matter. In the cases which the material thickness is large, any change in the 

thickness does not influence on the power of the radiation which is going to be received by the 

detector. Therefore, the power will not change. The measured spectrum is called the reflectance 

spectrum at infinite depth,        (Chalmers & Griffiths, 2002).  

Chalmers and Griffiths (2002) asserted that all algorithms for multivariate analysis obtain the 

most accurate calculations about the concentration when the intensity of each spectral parameter is 

proportional to the concentration of the anlayte in a linear fashion. Hence, diffuse reflectance will be 

changed into the linear form if an ideal standard for the analysis of diffuse reflectance is required by 

applying theories. In the linear condition, the dependence of intensity of the spectrum on the 

concentration of each analyte is linear which is analogous to the conversion of transmittance spectra to 
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absorbance for considering Beer’s law (Chalmers & Griffiths, 2002). For many cases in near-infrared 

diffuse reflectance spectrometry, a conversion which is equivalent to what is mentioned is performed. 

For instance, before applying the theorems to the sample and model the light interactions, one may 

require to change the    spectrum in to the form of –log    or log      . It is significant to mention 

that most NIR/DR spectra is usually estimated using log1/R which, for thick samples, is the same as 

log   (Chalmers & Griffiths, 2002). Fortunately, for many materials the concentration of the sample 

under anlysis will not change most of the time by even a factor of two. Therefore, the linear 

assumption is valid and the deviation from linearity is not considerable. Hence, Chalmers and Griffths 

(2002) concluded this approach usually have excellent results.  

Applying the parameter of log 1/R as the preferred ordinate for near-infrared diffuse 

reflection is in opposite side to what most physical scientists would consider appropriate for 

experimental part of a diffuse reflectance measurement (Griffiths & Dahm, 2008). The theory of 

Kubelka and Munk is one of the mostly used theories of diffuse reflectance spectroscopy.  In this 

Chapter, this theory is introduced with a summary of other continuum theories of diffuse reflection. 

The assumptions of the theories are very important since they produce limitations. These constraints 

only affect the accuracy of the results. However, all of these methods have been validated through 

experiments. The last part of this thesis contains a discussion of some studies and measurements about 

the depth of penetration of light. The information and models are investigated based on the available 

theories in the literature. Modeling the penetration depth in a two-phase flow of xylene and ADP is 

achieved using the theorems, which are to be discussed in this Chapter. 

2.4.2 Lambert Cosine Law 

The diffuse reflectance phenomenon is a widely applicable usages of near-infrared radiation, which is 

easily noticed in everyday life. Griffiths and Dahm (2002) made an example for the intensity of 

radiation reflected from a completely matte surface. The reflected or remitted radiation has equal 



44 

 

intensity in all directions. Also, it is not important to know what is the angle of incidence or angle of 

observation of light from the surface. This experiment made Lambert to be the first person who 

created a mathematical formula and theory based on the diffuse reflectance of light (Chalmers & 

Griffiths, 2002). He assumed that the reflected flux which is known by   , in an area      , and solid 

angle   steradians (sr), is proportionate to the cosine of the angle, which the incident beam builds 

with the normal to the surface,  , and the angle of observation   that are shown in Figure 2.7. This is 

obtained from the Equation 2.28: 

      

  
 
   
 

                 (2.28) 

 

Figure 2.7 Diagram showing the variables used in the Lambert cosine law (Griffiths & Olinger, 

2002) 

where B is the radiation density or surface brightness in W        ,     is the irradiation intensity in 

W     for normal incidence, and the constant C is the fraction of the reflected intensity of radiation. 

C is less than unity because some portions of radiation flux are always absorbed with the surface. 

Equation 2.28 is famous since it is known as the Lambert cosine law (Chalmers & Griffiths, 2002). 

Kortum (1969) suggested that the Lambert cosine law can be derived from the second law of 

thermodynamics, although this opinion was not held by Wendlandt and Hecht (1966). Kortum (1966) 

pointed out that it is rigorously valid only for a material which has the characteristics of a black-body. 
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These black body radiators acting as an ideal diffuse reflector. Griffiths and Dahm (2008) pointed out 

that the angular distribution of the reflected or remitted light is not dependent of the angle of incident 

radiation. This fact is in contradiction with tehe features of black-body radiator since ideal diffuse 

reflectors has some different characteristics. This contradiction is made since all incident radiation is 

absorbed by a black body, however, an ideal diffuse reflector does not absorpb all the radiation. An 

ideal diffuse reflector is not realistic and has never been found in practice. Hence, the Lambert cosine 

law is an ideal descriptor of diffuse reflection which always there are deviations from that. According 

to what Chalmers and Griffiths (2002) stated, there are many authors that have reported the results of 

experimental investigations that were prepared to prove or disprove this law. They found that in the 

law is only valid when both the angle of incidence   and the angle of observation   are small. 

2.4.3 Mie Scattering 

One of the most applicable and more accepted theories of the scattering of light was developed around 

by Mie. Mie scattering theory models the travel of light into the isolated particles, and predicts the 

absorption by and scattering from that particle. Only a very brief introduction is given here. Kortum 

(1969) has pointed out a summarized description about Mie scattering theory. Mie developed and 

derived a model to predict the following factors: (i) the angular distribution of the intensity, and (ii) 

the angular distribution of polarization of scattered radiation for a plane wave which is scattered once  

through a phenomena called single scattering by a particle (Griffiths & Dahm, 2008). These two 

phenomena can be both dielectric and absorbing. Mie assumes that the particle is spherical, and there 

is no limit on its size. He presented that the angular distribution of scattered radiation for single 

scattering will not be isotropic. The basic equation of Mie scattering theory is:  

   
  

 
  

     
              (2.29) 
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where    , is the scattered intensity at a distance R from the center of the sphere;    is the intensity of 

the incident radiation, and    is the wavelength of the incident radiation (Chalmers & Griffiths, 2002). 

The variables    and    are functions of the angle of the scattered radiation   , the refractive index 

difference between particle and medium, and the ratio of the particle circumference to wavelength. 

The ratio of the refractive index of the sphere to its environment is known by m, and the ratio of the 

particle circumference to wavelength is known by p (Chalmers & Griffiths, 2002). Equation 2.29 

applies only to the case of a dielectric nonabsorbing particle. If the particle absorption is high, the 

complex refractive index must be used in the determination of     and   . 

Mie theory is general for spherical particles of any size. However, it is valid only for single 

scattering, therefore, is applicable only to systems in which particles are well separated (Chalmers & 

Griffiths, 2002). For instance, when the particles in the atmosphere scatter light, the special case of 

Mie theory is obtained where the particle is much smaller than the wavelength of incident radiation. 

Most analyses in the range of mid-infrared and near-infrared spectroscopy the multiple scattering is a 

definite assumption since it happens in real samples (Chalmers & Griffiths, 2002). Theissing (1950) 

improved Mie theory by assuming that the multiple scattering from particles which nonetheless are 

still supposed to be sufficiently well dispersed and separated in the medium. Therefore, the  

interference and phase differences between the scattered fluxes from the particles are not important 

and can be neglected. The number of times when a photon is scattered and distributed in the medium 

is defined as the scattering order (Chalmers & Griffiths, 2002). By increasing the order of scatter the 

value of forward scattering in the sample is doing an opposite behavior and will decrease, therefore, 

the angular distribution of scattered light does not change with direction and in all directions is 

isotropic. He also discovered that the if the ratio of particle circumference to wavelength is larger the 

order of scattering must increase to generate an isotropic scattering. For example, if p is 0.6 and m is 

1.25, twofold scattering is required for an isotropic distribution of the reflected radiation. However, 
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while p = 5 and m = 1.25, a scattering order of 8 is needed for isotropic reflection of radiation 

(Chalmers & Griffiths, 2002). 

In the NIR region, band absorptions are so low that large particle sizes, of the order of 100 

microns, can be calculated using Mie theory (Griffiths & Dahm, 2008). Hence, p, the ratio of the 

particle circumference to wavelength, is large. In this case, the order of scattering must also be large in 

order to have an isotropic variation of the scattered radiation. In the mid-infrared range, this feature is 

changed where it is quite common for p. Hence, it will be approximately around 1 (Griffiths & Dahm, 

2008). If the number of particles in a sample is large, multiple scattering does take place for most 

samples of the type used for infrared reflection analysis, therefore, the diffusely reflected radiation has 

an isotropic distribution that should at least be reached. Hence, to predict multiple scattering in a 

densely packed medium is required to model the variation of reflectance with the change in 

concentration (Griffiths & Dahm, 2008). 

In most of the samples for which the near-infrared diffuse reflection can be used, the 

scattering density is large, the ratio of particle circumference to wavelength is higher than 1, and the 

concentration of particles are high enough that phase relations and interferences between scattered 

beams do exist (Chalmers & Griffiths, 2002). Hence, in this case, there is no solution to the problem 

of multiple scattering in the sample. Therefore the scientist must resort to the phenomenological 

analysis may be required. 

2.4.4 Radiation Transfer Treatments 

Theories that have been developed to predict the diffuse reflection of radiation are built based on the 

radiation transfer equation. A radiation transfer equation can be written as if one simplify it: 

           (2.30) 
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Equation 2.30 is a description of the change in intensity dI of radiant flux in a specific 

wavelength in a sample with the density   and with the pathlength of ds.   describes the attenuation 

coefficient for the total radiation loss. This dissipation can be due to scattering or absorption. The 

radiation transfer equation that is used in the derivation of most phenomenological analyses considers 

only plane parallel layers of particles within the sample and can be written as: 

 
       

  
         

 

 
         

    
 

  

         (2.31) 

where    is the cosine of the angle   with respect to the outward surface normal; m is the cosine of the 

angle   with respect to the inward surface normal;    is the optical thickness and is equal to       , 

where dx is the distance between the boundaries of one plane-parallel layer; I is the intensity of the 

beam of radiation striking the layer;    
 

     
 is the albedo for single scattering, with the scattering 

and absorption coefficients   and   (Chalmers & Griffiths, 2002). The scattering phase function 

      
   is the probability for scattering from direction    into  . If each beam scatters isotropically, 

      
     and is not dependent to the angle between the incident radiation and the scattered 

radiation. The phenomenological analyses that have been developed can be deemed as continuum 

theories or discontinuum theories (Chalmers & Griffiths, 2002). In continuum theories, the absorption 

and scattering coefficients are the properties of the irradiated material. However, in discontinuum 

theories a layer of the material is made up of several partial layers whose thickness is limited by the 

size of the scattering and absorbing particles. It means that based on the size of particles the thicknesss 

of the layers must change (Chalmers & Griffiths, 2002).  Optical constants can then be found from the 

scattering and absorption of these particles. This section only considers a sample as a continuum. 

In our modeling, we have used the method of approximation for the radiation transfer 

equation proposed by Patterson, Schwartz, and Wilson (1989). Figure 2.8 is an experimental apparatus 

that they used in their method. When the light reflects diffusely from the tissue containing a dye, the 
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changes in the reflectance is identified by the concentration of dye. In Figure 2.8, the measurement 

setup is shown. In this figure, an experiment based on radiative transfer approximation is illustrated. 

 

Figure 2.8 (a) Experimental apparatus for the measurement of R( ), the local diffuse reflectance 

(b) Apparatus for the measurement of R, the total diffuse reflectance (Patterson et al., 1989) 

2.4.5 Schuster’s Theory 

 Schuster’ theory was one of the earliest theories of diffuse reflectance. He was interested in 

astrophysical problems that were related to radiation transfer. From the general laws of radiation, 

Schuster suggested that an atmosphere is required for a star to show emission lines of light instead of 

absorption lines. The characteristics of this atmosphere is that the scattering overcomes the absorption. 

As mentioned by Nobbs (1985), the approach adopted by Kubelka and Munk was first introduced by 

Schuster in 1905 and was developed to calculate the radiation from the self-luminous opaque dust 

cloud surrounding a star.  This theorem will be modeled with details in Chapter Three. 

2.4.6 Kubelka-Munk Theory 

Kubelka-Munk is a widely used theory in the field of diffuse reflectance. The theory was basically 

developed in the field of spectroscopy. However, recently there were many debates on the revisions 
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over it to increase its accuracy and the number of different applications. The theory developed by 

Kubelka and Munk is obtained based on solutions to the radiative transfer problem. This theorem was 

first used to investigate the optics of paint layers. Kubelka and Munk developed their models based on 

the remission, not scattering. Kublka – Munk equations are produced from radiative transfer and are in 

the form of differential equations. The Kubelka-Munk equation is a two flux version of a multi-flux 

method used to solve the radiation transfer problem (Nobbs, 1985). Kubelka and Munk made several 

assumptions in their derivation of a simplified solution to the radiation transfer equation. Note that 

none of them are exactly the same as the corresponding parameters defined by Schuster. Figure 2.9 

shows the type of system for which Kubelka and Munk derived their solution.  

 

Figure 2.9 Schematic representation of a layer of absorbing and light scattering particles 

The assumptions are listed below: 

 The radiation fluxes (  and  ) travel in two opposite directions. 
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 The sample is illuminated with monochromatic radiation of intensity I0. 

 The distribution of scattered radiation is isotropic so that all regular (specular) reflection is 

ignored. 

 The particles in the sample layer (defined as the region between x = 0 and x = d) are 

randomly distributed. 

 The particles are very much smaller than the thickness of the sample layer d. 

 The sample layer is subject only to diffuse irradiation. 

 The breadth of the macroscopic sample surface (in the    plane) is great compared to the 

depth   of the sample and the diameter of the beam of incident radiation (to discriminate 

against edge effects). 

 The scattering particles are distributed homogeneously throughout the entire sample. 

Either an exponential or hyperbolic solution may be developed, although only the exponential 

derivation is shown here. A detailed description of the hyperbolic solution is given elsewhere. 

Kubelka and Munk arrived at the two fundamental differential equations which, once solved, give 

the simplified solution to Schuster’s fundamental function. As it is feasible that the angle through   ,  , 

which the radiation might follow could be between    and    , the average pathlength for radiation passing 

through dx in the +x direction can be found by the integral: 

        
  

   
  

  

    
     

 
 

 

 (2.32) 

After some mathematical operations and manipulations, which are discussed in detail in Chapter 

Three, one can find the two fundamental differential equations for Kubelka-Munk theory: 

                         (2.33) 

                         (2.34) 
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2.4.7 Diffusion Theory 

Kienle et al. (1998) presented a different approach to investigate the radiation transfer equation. This 

approach is applicable in biomechanics and biomedical engineering. In the paper that is published by 

Kienle et al. (1998), the diffusion approximation is used to determine the optical properties of 

biological tissue. Griffiths and Dahm (2008) pointed out that the propagation of photons in a thick 

sample with scattering coefficients which are larger than the absorption coefficients, are described by 

diffusion approximation. The details of this approach are described in Chapter Three and the results 

are discussed in Chapter Four.  

 

2.5 Discontinuum Theories of Diffuse Reflection 

2.5.1 Representative Layer Theory 

A layer is representative of a sample if each one of the particles in the sample provide the same 

volume and surface area fractions in each layer as in the sample (Dahm & Dahm, 2007). The reason 

for using the volume fraction of the particles is because the absorption fraction of the particle is 

completely related to volume. On the other hand, the remission is strongly dependent on the surface 

area fraction of the particle.  

The important question is what makes a layer be representative of a sample. Dahm and Dahm 

(2007) demonstrated three reasons for a layer to be representative. First, the thickness of the layer 

should have no more than the thickness of one particle since one of the assumptions of representative 

layer theory was related to the scattering and absorption properties of the layer by combining the 

mentioned properties for each particle in the layer. Therefore, it would be more suitable to use the 

thickness for the layer to be nowhere more than one particle thick. 

Second, another feature of the representative layer introduced by Dahm and Dahm (2007) is 

that the volume fraction of each particle in the layer is the same as the sample. One of the most 
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important assumptions of representative layer theory is related to the voids. Thus, the media that 

represents the voids does not absorb or scatter light. This means that if the media is a fluid its 

absorption and scattering must be neglected. Moreover, the void fraction of the representative layer 

must be the same as the sample.  

Finally, the third reason is that the surface area fraction of each particle in the layer will be 

the same as the sample. Surface area fraction is a property that is more difficult to work with than 

volume fraction because the shape and size of the particles are required to estimate the total surface 

area fraction. 

 In the model of the representative layer that we present here, a particle is of a different type 

from another if it differs in size and/or composition. Each particle type is characterized by its 

composition (as represented by its absorption and remission coefficients), its volume, and the average 

cross-sectional surface area that it presents to the incident beam. We will picture a particle as having 

two flat ends, each perpendicular to the incident beam. While the shape of the cross-section is not 

important for our model, it may be pictured as a square. Thus, a representative layer is made up of 

voids and of particles (shaped as boxes) of varying size. The ends of the boxes are perpendicular to the 

incident beam. The representative layer is of non-uniform thickness, but is nowhere more than a single 

particle thick. The layer is representative if: 

 The volume fraction of each particle type is the same in the layer as in the sample as a whole. 

 For all particle types, the cross-sectional surface area in the layer is in the same proportion as 

the surface area of the particle type in the sample as a whole. 

 The fraction of the cross-sectional surface area that is made up of voids is the same as the 

void fraction of the sample as a whole. 

 Surface area and volume fractions for a given particle type can be computed from weight 

fractions and particle densities as follows (subscript i denotes a specific particle type and j is 
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an index denoting a summation over all particle types). Also, the variables used in the 

following equations are introduced in Table 2.2. 

Table 2.2 Variables used in the development of representative layer theory 

Definition of terms 

i Density of a particle si Fraction of particle surface area 

vi 

Fraction of occupied volume 

by particle i 

Si Fraction of cross-sectional surface area 

Vi Fraction of total volume wi Weight fraction 

vo Void fraction di Thickness of a particle 

Ki Absorption Coefficient bi Remission Coefficient 

 

    
 
  
  
 

  
  
  
 
 (2.35) 

    
 
  

    
 

  
  
    

 
 (2.36) 

            (2.37) 

            (2.38) 

The following formulas assume that the amount of transmitted light lost by an interaction 

with a single particle to either absorption or remission is small. According to the assumption of our 

model, for a single particle, the fraction of light absorbed is given by the cross-sectional area and the 

Bouguer–Lambert law, and the remission fraction is given by the cross-sectional area and     . Thus, 

for a representative layer, Equations 2.39 – 2.40: 
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(2.39) 

             (2.40) 

The model used to form the layer assumes that the absorption coefficient is independent of remission. 

For the case of low absorption, an additional simplification may be made. It has been shown 

experimentally by Kortum (1969) that    is proportional to     . This observation is attributed to the 

fact that the surface area to volume ratio of a particle is proportional to 1/di; the observation is thus 

consistent with the assumption that remission is a surface phenomenon. This implies that the product 

     is a property of the composition of the material making up the particle but is independent of 

particle size. Thus, we term       the remitting power of a material. For this case, the following 

approximation is reasonable. Therefore in Equation 2.41 we have: 

            (2.41) 

In the linear region, where, for a given absorbing power of a material, the absorption fraction 

of a particle is proportional to its thickness, the following conditions will be observed.  

1. The contribution of a particle type to absorption is proportional to the volume fraction 

(including voids) of the particle type and to the absorption coefficient of  the material making 

up the particle. 

2. The contribution of a particle type to remission is proportional to the cross-sectional surface 

area of the particle type in the representative layer and the remission power of the material 

making up the particle. 

3. In a mixture of two or more particle types of similar remitting power, the 

absorption/remission function of each particle type is represented in the absorption/remission 

function of the sample weighted in proportion to surface area to volume ratio of the particle 

type.  
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In regions of higher absorption, the coefficients obtained from the plane parallel mathematics 

depart significantly from those of the material under consideration and the assumptions about the 

shape of the particles and the direction of light travel become more important. The regions of 

extremely high absorption tend not to be of value for compositional analysis. Here, the contribution of 

a particle to the absorption of a layer is proportional to the surface area fraction of the particle type 

and not dependent on its thickness. The representative layer model would still be useful in 

applications such as image analysis.  

In the representative layer theory, the remission coefficient is taken as the remission fraction 

of a single, real layer that is one particle thick divided by the effective thickness of the layer. (The 

representative layer does not necessarily have a uniform thickness, but its total volume V and a front 

surface area S can be determined, and V/S can be termed its effective thickness.) The idea behind this 

is that such a layer has every particle exposed to the full intensity of the incident beam, just as every 

molecule is exposed to the full intensity of the beam in a sample of infinitesimal thickness. This 

consideration is not of particular importance to the spectroscopist, but it is brought up to point again 

out that the coefficients are only approximations to the quantities which we would like to measure. 
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CHAPTER III 

 

 

OPTICAL MODELING 

 

3.1 Overview and Organization 

Optical modeling of the near-infrared radiation traversing through a medium containing a slurry flow 

with varying and non-uniform concentration profiles requires investigating different optical theories 

that are capable of predicting the light scattering and absorption through a particulate medium. These 

models are chosen based on their applications found in the literature. These theories are applied to 

similar cases such as powdered samples, which are used in the food product industries or multiphase 

flow of slurries in oil and gas industries. The validity of methods applied to this problem have been 

measured through experiments. Hence, only those theoretical methods were chosen which had some 

experimental results consistent to the two-phase flows or at least particulate solid materials such as 

coal ore. Detailed study of six broad areas of applied optics results in choosing the most applicable  

models to the case of solid-liquid mixture of ammonium dihydrogen phosphate (ADP) as the solid 

phase and the xylene as the liquid phase.  

Doing research for choosing best models that matches the case of the proposed study has 

mostly been focused on the application of models and their assumptions. The applications of models 

are crucial since they reveal the physics of the operational environments known as mediums, as well 

as the experiments conducted to test these models. Moreover, the assumptions play another important 
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role since there are some restrictions such as the shape of particles, homogeneity of the medium, the 

distribution of the light inside the sample, scattering level of the light, the absorption power of the 

sample, etc. The next priority was dedicated to choice of a model that has been applied to near-

infrared radiation. The wavelength of the light has a relation to the particle sizes in some of the 

models. Therefore, knowledge about the average particle size in the slurry is required. Some models 

such as Kubelka-Munk and Mie Scattering theories have been applied to several cases. The theory 

proposed by Kubelka and Munk is not founded on rigorous mathematics and there have been many 

controversies in the world of optics over the modifications made on the Kubelka-Munk theory to build 

up a more advanced model.  However, Mie scattering is the most accepted theory and a powerful tool 

to predict the radiation scattering and absorption phenomena on isolated particles, and is restricted to 

only spherical ones. Therefore, the choice of model was a very important process. The details of the 

assumptions and restrictions are described in this chapter. Based on applications, all of the categories 

that are studied are gathered into the following major areas:    

Near-infrared spectroscopy of mixtures consisting of opaque materials and fluids such as 

paint or blood with applications in biotechnology such as monitoring blood vessels is a major category 

of this study. Other liquid-liquid mixtures such as milk and solid-liquid mixtures such as oil and sand 

slurries are the working fluids of some experiments that that have been performed to validate the 

results of theorems. These theorems are Kubelka-Munk, diffusion theory, and Mie scattering theories. 

Near-infrared spectroscopy of uniform powdered samples is applied to many industrial uses. 

This area consists of several studies which have been performed on some theories to be compared 

with the experiments. These theories are representative layer theory, simplified version of Kubelka-

Munk theory; 

Optical modeling of light transport in tissue is another important area in near-infrared 

radiation. This area contains many papers used to estimate the penetration of light inside the human 
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tissue. These papers apply experiments to compensate the lack of information for the input data 

required for modeling the phenomena. For instance, Monte Carlo simulation is a popular method for 

this purpose. In addition, diffusion theory is used to predict the light fractions through the medium. 

Optical modeling of non-uniform powdered samples is the third category of applicable 

models that were studied in this research. In this situation the light is absorbed or scattered by a 

mixture of solid particles of different types. The sample then is non-uniform. These models even are 

able to be applied to the cases of light through samples containing multiphase flows such as two or 

more types of solids in a liquid. The representative layer theory is the most recent theorem that models 

this type of complex mixture since it was developed in 1999. 

These models, which have been reviewed to be implemented in this study, have some 

common restrictions such as the homogeneity. However, the representative layer theory is not 

restricted to homogeneous samples. The optical theories that are modeled have been chosen wisely to 

solve the problem of near-infrared light penetration through different depths inside the slurry sample. 

The aims of this chapter are: introducing the development process of the models in terms of the 

formulation; then applying those formula, as well as the assumptions to build algorithms of  models, 

also introducing different scenarios for some of models which require input data to be fed from an 

external source such as computational fluid dynamics (CFD); and showing the process of 

computerizing the algorithm in MATLAB 7.10.0.499 (R2010a) and FORTRAN 2003. In this Chapter, 

before making the algorithms the assumptions and the mathematics of the theories are investigated. 

Since the mathematics of each theory suggests a specific configuration and is based on a unique 

geometry, the arrangement of the elements is studied to make the building of algorithm easier. In this 

chapter the development of different parts are as follows: (i) optical models: in this section the 

mathematical formulas are gathered or derived for making the algorithms, (ii) designing the 

algorithms: algorithms of codes are introduced in this section, (iii) code development: in this section 
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the values of some input parameters for different scenarios of the methods are addressed. Finally, after 

writing the interactive software code based on the models, the results are will be presented in Chapter 

3. A detailed description about the results is presented in Chapter 4. 

 

3.2 Development of Continuum Optical Models 

Optical models introduced in the previous chapter are derived and modified based for the case of two-

phase slurry of xylene and ADP. Methods are developed here in two parts: continuum and 

discontinuum theories. We kept this categorization since some elements in developing algorithms of 

models are different from continuum to discontinuum theories. These elements are concerned with 

adjustments that have been made to discontinuum models, which are required as inputs for algorithms. 

For instance, one of the most important adjustments has been done is for the representative layer 

theory to make it compatible to the case of a slurry fluid by being fed with the computational fluid 

dynamics models of Reynolds stress and k-epsilon. Uniform and non-uniform concentration profiles 

were those elements that were used as inputs for the adjusted model of representative layer. These 

concentration profiles are modeled separately. Complete details of computational approaches for 

optical models are discussed in this section.  

Models that are discussed here are continuum models or are based on particle treatments. 

Continuum models are mostly developed by deriving solutions to the radiatiative transfer equation and 

applying approximations to them. Continuum models that are developed are: Schuster’s theory, 

Kubelka-Munk theory, radiative transfer treatment, three-flux approximation, and diffusion theory. 

Most continuum models are much easier to apply than discontinuum ones because of their 

mathematical operations. However, their simplicity includes many differences with other models of 

diffuse reflectance or particle theory such as Mie scattering theory. These continuum theories are not 

as powerful as Mie scattering to predict the scattering and absorption in particles. In this section, 
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models are developed. Moreover, restrictions for the case of slurry fluid flow will be discussed 

concisely.  

3.2.1 Schuster’s Model  

In Chapter Two a brief discussion about Schuster’s theory is reviewed from literature. In this section, 

his formulas to solve the radiation transfer equation will be implemented. He has built a very simple 

model. In this study, the purpose is to apply it to this novel case of a slurry sample, and to compare its 

results with other theories of diffuse reflectance.  

As stated by Chalmers and Griffiths (2002), in 1905, Schuster was the first scientist who tried 

to find a simplified solution of the radiation transfer equation. He assumed that the light penetrates the 

slurry sample through two oppositely incident radiations in direct illumination. This was a very simple 

assumption since the incident beam encounters the sample with an intensity  , and reflects back with 

an intensity  . Hence, these two different fluxes that are in opposite directions symbolize a very simple 

case in dealing with the particular problem of radiation transfer. With this simplification, Schuster 

derived the following two differential equations: 

 
  

  
           (3.1) 

  

  
           (3.2) 

when 

  
  

   
 (3.3) 

  
 

   
 (3.4) 

where   is the true absorption coefficient of single scattering,   is the scattering coefficient for single 

scattering, and   is the penetration depth through the sample. In Equation 3.4,   used by Schuster is 

identical to the albedo    for single scattering. As it was introduced in Chapter Two, albedo is a 
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parameter that refers to diffuse reflectivity or reflectance power of a surface. It has been defined as the 

fraction of reflectance intensity from the surface to incident radiation upon it. Albedo is a 

dimensionless fraction like reflection or absorption that states the extent to which it reflects light. The 

albedo number for a black surface is zero and for perfect white surface is one. As it stated by 

Chalmers and Griffiths (2002), these coefficients relate to the reflectance measured as if particles in 

the model were separated so far apart so that only single scattering is able to happen. It means that 

these coefficients, can be applied to the individual particles in the case of single scattering. 

If the boundary conditions are set as: 

     at     (3.5) 

                        at      for       (3.6) 

These boundary conditions can be interpreted to the following expressions:  

1. The intensity of flux   is equivalent to the incident intensity at zero penetration depth, and; 

2. At an infinite depth into the sample the intensity of both rays   and   is zero, therefore there 

will be no change in the diffuse reflection. 

 the differential Equations 3.1 and 3.2 is solved to represent the reflectance at infinite depth, i.e. the 

depth which a sample must be in order to have no further change in the measured diffuse reflectance: 

   
      

  
 
              

              
 (3.7) 

where    is the reflectance of the light that returns to the sensor above the sample. This can be written 

as: 

      
 

   
 
 

 
 
  

 
 

(3.8) 
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Equation 3.8 is known as Schuster’s equation. It gives the reflectance for isotropic scattering 

when two radiation fluxes that are assumed in the direction of the surface normal and are opposite to 

each other encounter the sample. In Section 3.2.2, it will be seen that Kubelka and Munk derived an 

expression similar to Schuster’s solution. The difference between the scattering and absorption 

coefficients in Kubelka-Munk and Schuster’s theories is only related to the definition of two constants 

k and s. Schuster defined these constants in terms of the absorption and scattering coefficients for 

single scattering, while, Kubelka and Munk presented k and s in their equations as the absorption and 

scattering coefficients for the densely packed sample as a whole. Dahm and Dahm (2007) pointed out 

that the Schuster’s scattering and absorption coefficients have the following relations with the 

scattering and absorption coefficients in Kubelka-Munk equations: 

               (3.9) 

where   and   are absorption and scattering coefficient similar to Kubelka-Munk function. As 

mentioned by Dahm and Dahm (2007), since Schuster’s theory deals with isotropically scattering 

particles, even if the direct illumination strikes the sample, it becomes diffuse as it scatters within a 

sample.  

According to the Schuster’s paper for the “foggy atmosphere”, which is a sample of particles, 

it can be imagined that the atmosphere is divided into layers, each containing a number of particles. 

Therefore, Griffiths and Dahm (2008) stated that in the limit of infinite dilution, there will be one 

particle in such a layer. For such a condition, there can be no multiple scatter between particles in the 

same layer. Equations 3.1 to 3.4 represent an implicit assumption that the fraction (    ) is 

insignificant compared to 1. This limitation is somewhat improved by the following discontinuous 

solution: 

      
      

 

   
 
 

 
 
        

 
 (3.10) 
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which is the discontinuous form of Schuster’s equation for isotropic scattering. The Dahm equation is 

an exact solution to diffuse reflectance using discontinuum approaches. Dahm’s equation is also valid 

for anisotropic scattering and does not assume that      is insignificant compared to 1. For 

modeling Schuster’s theory, the equation above is modified to account for the void fraction and to be 

implemented in the model produced by representative layer theory that uses the concentration profiles 

obtained from CFD. 

                         
      

 

   
 
 

 
 
        

 
  

 

    
                 (3.11) 

3.2.2 Kubelka-Munk Model  

Kubelka-Munk (K-M) theory has been introduced in Chapter Two. It is a two dimensional theory in 

the field of diffuse reflectance. Kubelka-Munk equations are derived here in this section following the 

approach of Wendlandt and Hecht (1966). Nobbs’s (1985) clarification of the model is also applied to 

the developed model. He has used plane parallel layers to develop the Kubelka-Munk equations, 

improving the accuracy. 

This method has provided the most widely adopted approach to determine the characteristic 

of  light in diffusing media by solving simultaneous first order differential equations. These equations 

describe the reduction of light in a sample due to scattering and absorption.   

Configuration of model: 

1. By considering a layer composed of absorbing and light scattering particles that are uniformly or 

randomly distributed, one can start using diffusion theory.  

2. The dimensions of particles are smaller than the layer thicknesses.  

3. The width of the layer has been extended to infinity. Consequently, the effect of edges can be 

neglected. 
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4. According to Figure 3.1,   is the thickness of the layer, and the positive x direction is downward 

such that x = 0 is the illuminated surface and x = d is the unilluminated surface. The radiant flux 

in the positive   direction is I while the reflection in the negative x direction is J. Also, the 

incident beam has the intensity of   . 

5. It can be approximated that only the two directions of the incident and reflected beams are 

considered in this theory and that they are perpendicular to the surface of the layer. This 

assumption introduces a small error compared to ideal diffuse reflection. 

 

Figure 3.1 Diagram of a sample of slurry representing the Kubelka-Munk model. There is a 

random distribution of particles. (Chalmers & Griffiths,  2002) 

If the illuminated beam has an angle   from the surface normal, as it goes through an 

infinitesimal layer   . But the path is not    and is        . Hence, to calculate the average path 

length,    , of light when it passes dx in downward direction we have: 
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 (3.12) 

where 
  

  
 is the angular distribution of the intensity in the positive   direction. The average path-

length of light passing through infinitesimal layer    in the reverse direction toward the illuminated 

surface of sample can be estimated through the following relation: 

       
  

   

  

    
    

   

 

 
(3.13) 

All of the variables used in this model are explained in Table 3.1. These variables are also used in 

Schuster’s theory. 

Table 3.1 Variables used in the development of Kubelka and Munk’s simplified solution to the 

radiation transfer equation. (Neither   or   are exactly the same as the corresponding 

parameters defined by Schuster) 
 

Field Description 

d sample layer thickness 

+x downward direction through the sample 

-x upward direction through the sample 

x = 0 illuminated surface 

x = d unilluminated surface 

I radiant flux in +x direction 

J radiant flux in –x direction 

  angle at which a particular ray traverses through dx 

   an infinitesimal layer 

  
      pathlength of a particular ray traverses through dx 

    
Average pathlengtth of  radiation passing through dx in the +x  

direction 

  Fraction of radiation absorbed per unit pathlength in the sample 

  Fraction of radiation scattered per unit pathlength in the sample 

Let   be the absorption coefficient that means the fraction of light absorbed per unit path 

length. Moreover,   is the scattering coefficient that is defined by the fraction of scattering 
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coefficient to the unit path length. Now, consider when the flux is penetrating the sample in the 

positive x direction. According to the theory of diffuse reflectance, it is easily seen that any 

reduction in intensity, when light passes through the element of    is: 

                    (3.14) 

where       is the amount of light that is absorbed and       is the part which is scattered. 

Inversely, if the infinitesimal thickness of    is illuminated by   component – when the light is 

reflected back to the illumination surface – the corresponding expression for the decrease in the 

intensity can be obtained by: 

                    (3.15) 

According to the discussion above, for the whole    there are two different illuminations 

of light reflected or absorbed by the thickness   . Therefore, the differential equation describing 

the reduction in the intensity of the flux in both directions of I and J through that infinitesimal 

layer    is: 

                     (3.16) 

and, 

                    (3.17) 

According to the equations above, the signs have been chosen to be compatible with this 

principle that by increasing  ,   and   decrease. In an ideal diffusing medium, the radiation has 

the same intensity in all directions. The angular distribution of the flux through a plane in a given 

direction for example in   direction is (Hecht, 1966): 

  

  
        

(3.18) 
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Moreover, for the negative   direction, the change of the intensity in angular direction is: 

  

  
        (3.19) 

By substituting the Equations 3.18 and 3.19 into 3.16 and 3.17 respectively, then the values of   and   

in the Equations 3.16 and 3.17 can be obtained using the following formula: 

     
     

    

   

 

              
   

 

 
(3.20) 

The reason for integrating over the range of     to      is because of the angle of the incident 

light through the sample. The angle     corresponds to the beam normal to surface and      is 

parallel to the surface. Therefore, by substituting the magnitude of   and   from the integration above 

into Equations 3.16 and 3.17, the differential equations for   and   are: 

                   

                  
(3.21) 

where        and       . The Equations of 3.21 are only valid for the ideal diffusion of light in 

the layer which is under consideration (Wendlandt & Hecht, 1966). The ideal diffusion means that the 

intensity of light is the same in all directions. In the case of diffuse incident radiation or the case of 

parallel light, these two equations are also valid. For example, for the case of diffuse illumination at 

incident angle of 60 degrees,   and   are again equal to 2 since      
 

 
. According to experiments 

discussed by Bull (1990) as well as Dahm and Griffiths (2008), the equations seem to be valid for 

powdered samples. By solving this system of differential equations, the radiation flux for ideally 

diffusing medium can be obtained through the following general solutions: 

                        

                       
(3.22) 
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where,  

           
(3.23) 

and, 

  
 

    
  

 

    
 (3.24) 

A and B are constants that must be determined by the boundary conditions of the sample at x=0 and 

   , if we integrate over the entire thickness of the sample. Therefore, the boundary conditions are: 

                  

                           
(3.25) 

Solution for A and B under these conditions gives: 

   
         

                    
   

  
        

                    
   

(3.26) 

Now, we can use geometric optics to find the relations for the reflection and transmission fractions. 

The transmission and reflection are:  

  
    
  

 
  

                    
 

  
    
  

 
                

                    
   

(3.27) 

These formulas also can be written in the form of hyperbolic functions which have been derived by 

Kubelka (Wendlandt & Hecht, 1966). 

  
    
  

 
  

                      
 

  
    
  

 
              

                      
   

(3.28) 
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If there is no scattering within the layer, then     and from Equations 3.23 and 3.24,     and 

   . Substituting into Equation 3.27, the transmittance of the layer is calculated similar to the Beer-

Lambert law, and is       . Wendlandt and Hecht (1966) defined the reflectance of infinite layers 

as   , which refers to the infinite thickness of sample or    , therefore,     . The following 

formula is derived for the reflectance of an infinitely thick sample: 

   
   

   
 
               

               
 (3.29) 

   is the reflectance of a layer so thick that further increase in thickness fails to change the 

reflectance. Absorption and scattering coefficients of Kubelka-Munk model for a special case of 

xylem and ADP is obtainable with an experiment. However, Nobbs (1989) proved that the plane 

parallel mathematics can be used with the Kubelka-Munk theory. In this situation, Kubelka-Munk 

functions are derived with a discontinuum approach using the layers shown in Figure 3.2. The incident 

and reflected intensities are obtained for each layer. Then, they are applied to calculate the light 

fractions to find absorption and scattering coefficient in each layer. According to this formula one can 

apply them in the optical model code by using the plane parallel layers. It means that the form of 

Equations 3.29 is only applicable to a thick layer of the sample. However, one must transfer it into the 

form of discontinuous layers and make it possible to be applied to several layers. Figure 3.2 represents 

the reflectance and transmittance of a thin layer of material. This has been done by Nobbs (1985).  

 

 

 

 

Figure 3.2 Reflectance and transmittance of a thin layer of thickness d within a sample 
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The reflectance and transmittance of a thin layer of thickness   is characterized by the following 

formula (Nobbs, 1985): 

          
 

 
        

  
 
    

                
         

  
 
    

(3.30) 

where    and   are the reflectance and transmittance of a single layer, respectively. In this form of the 

Kubelka-Munk model, the scattering and absorption coefficients are defined as follows:     is the 

reflectance and             is the transmittance that can be substituted as   and   in Equations 

3.30.  

   
  
 
      

   
  

  

   
 

 
       

  

  
   

   
  

  
(3.31) 

Therefore, the diffuse reflectance of an infinitely thick sample can be achieved using Equations 3.30 

and 3.31 considering this fact that the     
  

  
 . Hence, 

   
     

            
          

   

   
 (3.32) 

The reflectance of a sample over an ideally black background,  , and the transmittance will be written 

as: 

   
          

     
      

 
(3.33) 

  
     

     

     
      

 
(3.34) 

where,  

               
(3.35) 

or,  
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                (3.36) 

where x is the depth through the sample, K  is the absorption coefficient and S is the scattering 

coefficient. K and S are reflectance and transmittance coefficients of a thin layer. They are 

proportional to the concentrations of absorbing and scattering particles present in the material. A 

separate model is required to relate K and S to the fundamental optical properties of the material, or 

absorption coefficient,  , or scattering coefficient,  . The relationship between   and K is calculated 

by Kubleka when the light traverses the infinitesimal distance du is    . The average pathlength for 

diffuse light is explained through an integral in Equation 3.20. However, for the relationship between 

scattering coefficient S and  , there is no straightforward method. The simple approach that was 

developed by Kubelka assumes that the light was isotropically scattered. Therefore, only half of the 

total scattered will be into the upper half hemisphere and contribute to the reflectance of the layer.  

3.2.3 Radiation Transfer Approximations 

There are several models developed to simplify radiation transfer theory for different spectroscopic 

applications. The model used here is an approximation of radiation transfer equation developed by 

Patterson, Schwartz, and Wilson (1989). This model was introduced in Chapter Two, and in this 

section the formulation used in the model will be discussed.  

This model is developed based on a measurement. The schematic view of the experiment was 

shown in Figure 2.8. In this setup, light is projected on the surface of the tissue by an optical fiber 

sensor and scattered light is detected by a second sensor also positioned on the surface at a distance 

from the source. The steady-state solution to radiation transfer equation, which for a homogeneous 

medium, results in a differential equation for the photon fluence rate      

                    (3.37) 

where D is the diffusion coefficient and can be determined from the following equation: 
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(3.38) 

where, S(r) is the photon source, g is the mean of the cosine of scattering angles,    is the linear 

absorption coefficient, and    is the linear scattering coefficient. The solutions to radiation transfer 

equation are somewhat unwieldy to use, therefore it is difficult to derive useful analytic expressions 

for the quantities of interest in reflectance spectroscopy. Some assumptions is made to simplify the 

model and to find expressions that are approximate. 

Patterson et al. (1989) introduced an accurate approximation of radiation transfer equation, 

which incorporates based on a refractive index mismatch at the surface of the material. This 

approximation is achieved by solving the reflectance when a set of parallel beams is incident on the 

surface. A one dimensional version of Equation 3.37 is determined from the following equation: 

  
      

   
             (3.39) 

where S(z) represents a source of first scattered photons: 

                                 (3.40) 

and the differential equation is solved based on the boundary condition. Equation 3.41 shows the 

empirical relation of the internal diffuse reflection coefficient that is related to refractive index of the 

material (Patterson et al., 1989): 

                                  (3.41) 

where n is the refractive index, and    is the internal diffuse reflection. Finally, the total diffuse 

reflection is derived using the boundary condition at the surface (z = 0): 
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 (3.42) 

where    is the transport albedo: 

   
       

          
 (3.43) 

and, 

  
    
    

 (3.44) 

Patterson et al. examined Equation 3.42 with Monte-Carlo simulation and suggested that the diffuse 

reflectance obtained from this relation is accurate to within 2% for values of   ,   , and g. Moreover, 

Equation 3.42 is applicable to soft tissues in the red, and near-infrared wavelengths. 

3.2.4 Three Flux Model 

This model is developed based on two methods: that developed by Burger, Kuhn, Caps, and Fricke 

(1997) and another which is a diffuse reflectance approximate model based on the radiative transfer 

equation proposed by Burger, Ploss, Kuhn, Ebel, and Fricke (1997). The equation of radiative 

transfer for diffuse reflectance and transmittance is analytically solved by using a three flux 

approximation. In the studies performed by Burger et al., combined transmittance and reflectance 

measurements allow one to derive both the scattering and the absorption coefficients. Therefore, their 

studies are not pure theoretical (experiment is required) since they measured these two coefficients.  

 The radiation transfer through a scattering and absorbing non-homogeneous medium can be 

described by the equation of radiative transfer (ERT). For a plane-parallel sample, the change of 

intensity   at an optical depth   along the path    in a direction   is given by: 

 
  

  
           

  
  

                 

  

 (3.45) 
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where   is the cosine of the angle between the direction   and the surface normal of the sample. 

Intensity losses are caused by scattering and absorption processes. An intensity increase caused by 

scattering from all directions is evaluated by the probability of such scattering events. This probability 

is defined as the phase function or        .  

3.2.5 Diffusion Model 

The diffusion model is a totally distinct method to describe and anlayze the radiation transfer through 

materials. The diffusion approximation is a technique, which is often used in biomedical applications. 

Griffiths and Dahm (2008) pointed out that the scattering of the light beams in a medium with 

sufficient thickness can be predicted by a diffusion of radiation. The feature of this diffusion process is 

the scattering coefficient which should be greater than the absorption coefficient. A similar approach  

to Equation 3.32 is designed to calculated the diffuse reflectance of the sample of slurry fluid with an 

large optical thickness. Hence, R∞ can be described as a function of the ratio    . This ratio is the 

absorption to scattering coefficient defined by Schuster (1905). The diffuse reflectance for directional 

sample illumination yields (Chalmers & Griffiths, 2002): 

   
 

                               
 (3.46) 

The result of applying the two radiative transfer approximations such as three-flux model and 

diffusion approximation, which predict the diffuse reflectance of an optically thick sample are 

compared with the Kubelka-Munk results in Chapter Four. Chalmers and Griffiths (2002) stated that 

three models of diffusion theory, the three-flux theory, and the radiative transfer approximation were 

computed for both directional and diffuse illuminations, however, for the K-M theory, only diffuse 

illumination is considered. It is essential to recall that the directional illumination applies to samples 

which are illuminated by a perpendicular direction of light and diffuse illumination occurs when 

beams. The data according to the K–M theory (Equation 3.32) were obtained for diffuse sample 
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illumination. The differences between the K–M theory and the other models are because of the 

direction of sample illumination. In addition, the definition of Schuster’s and Kubelka-Munk’s 

scattering and absorption coefficients cause discrepancies between the results of diffuse reflectance in 

the continuum models. Giovanelli (1955) proposed an approach to solve radiation transfer equation. 

His model is an exact solution to the radiation transfer equation, and the three-flux approximation is in 

very good agreement to the results of Giovanelli (1955). However, in the model of diffusion 

approximation large deviations from the exact solution is appeared for larger ratios of absorption to 

remission coefficients. It is essential to mentioned that in all the models described in previous 

sections, specular reflection when the light first encounters the boundary of the sample is neglected. 

Hence, these models are only valid for the slurries which does not have high concentrations or have to 

be used with care for other samples (Griffiths & Dahm, 2002). 

 

3.3 Development of Discontinuum Optical Models 

3.3.1 Model of Plane Parallel Layers 

The strategy of the plane parallel layer treatment is to divide a sample into distinct layers. Radiation 

entering a given layer may be absorbed, may be transmitted forward into the next layer, or may 

change direction and be remitted (the word we use to describe the summation of regular and diffuse 

reflection) into the previous layer. A layer having a thickness d absorbs a particular fraction    of the 

radiation, transmits a particular fraction   , and remits a particular fraction   , with             . 

Note that the thickness d is simply a label that designates the layer to which the symbol applies and does 

not affect the calculation. The fractions of incident light absorbed, remitted, and transmitted (which we 

refer to as the A, R, T fractions) from a particular layer, i, of unknown thickness can be equally well 

represented by the symbols      , and  i. 

The remainder of this section presents mathematics used to represent a sample as a combination of 

layers. This mathematics are valid regardless of the number of fluxes, or any other aspect of the model used 
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to determine the properties of an individual layer. If an incident beam first encounters layer i and then a 

second layer, j, a fraction of the incident intensity    enters layer j, and a fraction      will be transmitted 

through both. A fraction      will be remitted by the second layer back into the first. It may, then, either be 

transmitted through the first layer (and recorded as part of the total reflected light), absorbed in the first 

layer, or remitted back into the second layer. This remission back and forth between layers in a sample can 

continue indefinitely, as illustrated in Figure 3.3. 

Assume a sample is composed of two layers, i and j (where i is closest to the incident beam) 

and the A, R, and T properties for each individual layer are known. The properties for the sample as a 

whole (indicated by the label i and j) are given by the following equations: 

                    

          
             (3.47) 

                  

 

Figure 3.3 Absorption, reflection and transmission possibilities for a sample composed of two 

layers 
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Note that Equation 3.41 does not require that the properties of the material in layer i are the 

same as those in layer j. For materials composed of multiple identical layers, the properties of a 

sample consisting of     such layers can be derived from the properties of a sample consisting of   

layers, using Equation 3.48: 

                    

          
             (3.48) 

                  

For a sample of a homogeneous material twice as thick as a sample of thickness d, Equation 3.49: 

                    
       

   
 

       
  

   

    
       

  
 

    
             (3.49) 

                

3.3.2 Model for Assembly of Sheets 

Model for the assembly of sheets considers a layer of the sample and applies the model formulation on 

that layer. This layer is called a sheet. A sheet is a three dimensional layer of material with two large, 

flat, smooth, parallel surfaces with two dimensions much larger than the third (Griffiths & Dahm, 

2008). The third dimension is the thickness of the sheet. It is assumed that the sheets are under 

directed illumination. It means that the sheets are subjected to a directed beam from a direction 

perpendicular to the other two dimensions which are larger than the thickness. The radius of the beam 

is much smaller than the front surface area of the sheet that it encounters. When the incidence is 

directional, the reflectance from the surface of a sheet,   , may be estimated from the index of 

refraction of the material,   , and the index of refraction of the dispersing medium,   , based on the 

Fresnel equation (Dahm & Dahm, 2007): 



79 

 

   
       

 

       
 
 (3.50) 

This formula does not study the effect of absorption on remission. It is important to mention 

that in the near-infrared region, the absorption is small. Hence, the refractive index, and consequently 

the reflectance of a surface should not change dramatically with absorption fraction of light (Griffiths 

& Dahm, 2008). However, in the mid-infrared region, the effect of absorption on reflectivity should be 

considered. Moreover, in this region, the refractive index changes significantly across the band. In 

these situations, it has been suggested by Griffiths and Dahm (2008) that the effect of absorption must 

be considered before using the Fresnel equations. 

Inside a sheet, the transmission is dissipated due to absorption since the light is absorbed 

based on the absorption power of the material. The loss of transmission due to absorption can be 

calculated from the Bouguer–Lambert law using the expression               , where k is the 

linear absorption coefficient of the material making up the layer and d is the thickness of the sheet. 

Therefore, when a portion of the light incident on the back surface is absorbed, and the reflection from 

it is correspondingly reduced. The fraction of incident light the total transmittance through a layer,   , 

and the fraction of light absorbed by a layer,   , and the fraction remitted by a single sheet,    can be 

estimated from the Equations 3.51. 

      
      

             

    
           

  

   
      

           

    
           

 (3.51) 

             

The reflectance from a layer, R1, describes a very important physical meaning. The expression 

          is an exponential function always between zero and one, and is located in a negative term 
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in the denominator. Hence, for the case of a constant reflectivity, if the absorption increases, the 

remission is affected in a sense that it will be reduced from the total intensity that has penetrated into a 

single sheet of the material. Hence, if the surface reflections and absorptions are independent from 

each other and are not influenced by the reduction of one fraction, it is possible to find a condition 

under which the layer’s absorption and remission depends on each other. Therefore, the remission 

from a sheet of material or a particle inside a medium, which has both a front and rear surface and has 

absorbing characteritics, does depend on absorption.  

In this model it is assumed that refractive index of particles and medium is a constant value in 

the range of near-infrared spectrum. Hence, because of this assumption the constant reflectivity,   , 

which depends on a constant refractive index, is a reasonable assumption in the NIR region. However, 

in higher wavelengths such as the mid-infrared, the conditions are more complicated since the 

refractive index varies in the spectrum, where there are strong absorption bands. Therefore, increases 

  . In this situation, it is probable that the remission from an absorbing layer or particle depends on 

absorption. 

The equations that govern the travel of light through a sample composed of several sheets are 

complicated, but they are solved and computed with a computer program. Here in the following 

equations, x represent the distance into the sample analogous to the thickness of a single sheet. For 

example if x is equal to 2, it is twice the thickness of a single sheet, and if x is 1/2, it is half the 

thickness of a single sheet (Griffiths and Dahm, 2008). These equations are used to integrally calculate 

the fractions of light inside the medium. From the fractions of a single layer (given by A1, R1, and T1), 

we can calculate the fractions for a distance x (with           ) by Equations 3.52. The 

fractions of light calculated from the following equations are their total value from the surface or 

boundary of medium to the point represented with the value of x. The algorithm of this model is 

illustrated in Figure 3.4.  
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 (3.52) 

            

where   , , and   are defined as: 

  
       

   

   
  

                                         (3.53) 

  
       

   

   
  

 

Figure 3.4 The flow chart of the model of assembly of sheets 
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In Figure 3.4 the algorithm of the assembly of sheets is described. In this model one may use 

the Equations of 3.51 independently to calculate the fractions of light without using plane parallel 

mathematics. But it is essential to mention that in this situation, the absorption and remission 

coefficients of the particles and the medium to be measured, however, plane parallel layers is used to 

calculate the these coefficients. The convergence is based on the absorption coefficient. This 

algorithm is used for the representative layer after small modifications. 

3.3.3 Representative Layer Model  

Representative layer model has rigorous mathematics that can calculate the fractions of locally for 

each layer of material by relating the physical properties of the slurry with optical properties of the 

sample. There are many assumptions that must be presented before presenting the main theory (Dahm 

& Dahm, 1999). These assumptions are described in the following.  

1. One assumption relates to the fractions of remission and absorption. It is assumed that the 

absorption domain is molecular and therefore may be described as a continuum. The 

remission domain will not be well represented as continuum by using the continuous 

functions since remission is defined to have a domain which is particular.    

2. A second assumption is that the sample is composed of the combination of identical layers, 

each characterizing the sample as a whole. 

Generally, the representative layer theory builds a bridge between the sample properties shown by its 

representative layers and the properties of the individual particles. Each sample can be divided into 

several layers to apply plane parallel mathematics to those layers and find the properties of each layer 

in terms of absorption, remission, and transmission fractions. The representative layer theory can also 

be applied to such samples. The properties of the representative layer are described by the following: 

1. The absorbing power of material (related to the absorption coefficients of the materials in the 

sample) 
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2. The remission power (related to the index of refraction of the particle making up the sample)  

3. The volume of the particles in the layer. 

4. The cross-sectional area of the particles of which the layer is comprised. 

There are some exceptions in specific conditions in which the fractions of light do not depend 

on the four major properties described above. For instance, in the absence of absorption, the fraction 

of incident light remitted by a layer is independent of the thickness of the layer and is dependent only 

on the remission power and the cross-sectional surface area  of the particles in the sample. 

The representative layer theory is used to model the fractions of light into the sample. The 

geometry of the sample can be determined based on the location of the sensor and the direction of 

illumination. We have assumed that the direction of illumination is perpendicular to the surface of the 

sample, hence there will be no deviation in the direction of the light before striking the sample. This 

assumption makes the use of two flux models easier. A code is developed for numerical computations 

of the light fractions on representative layer. MATLAB 7 release 2010b is used to implement the 

algorithm to the computer. Then, all the assumptions of representative layer theory have been applied 

to this model.  

These assumptions are: 

1. The geometry consists of plane parallel layers each no more than one particle thick.  

2. The volume fraction of each particle in the layer is calculated from the local concentration of 

particles in that particular depth inside the sample. This concentration can be result of CFD 

calculations. 

3. The thicknesses of all the layers are equal. 

4. The particles are assumed to be spherical. 

5. The void fraction of the layer is obtained by subtracting the concentration from hundred 

percent concentrations. 
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6. The absorption is assumed not to be high; therefore, it is possible to use the linear absorption 

region in Figure 3.4 which is derived based on plane parallel mathematics.  

It is essential to mention that in the regions of extremely high absorption, the plane parallel 

math is unreliable and instead, the contribution of a particle to the absorption of the layer is 

proportional to the surface area fraction of the particle, and is not dependent on its thickness. Light 

fractions are shown in the Figure 3.4 for a sample case.   

 
Figure 3.5 Absorption (A), remission (R), and transmission (T) fractions as a function of 

thickness for the case A1 = 0.1, R1 = 0.1, T1 = 0.8 

The purpose of using the linear region for our model is mentioned above. However, finding 

the limit between the linear and non-linear regions for the absorption fraction of light is also 

important. In the linear region, compositional analysis of plane parallel mathematics is used to model 

the fractions of light, however, in no-linear regions the plane parallel mathematics is less reliable.As 

shown in Figure 3.5, this linear region starts from the first layer where the incident ray encounters the 
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medium, and would finish when the linear absorption line intersect with the absorption curve derived 

from plane parallel mathematics. 

 

Figure 3.6 The most linear region for absorption fraction based on the least square error 

between linear absorption with equation A = K.d and absorption curve derived from plane 

parallel mathematics 

7. The number of layers is chosen as to maintain the first assumption. It means that each layer 

occupies only one particle in depth, so the thickness of a layer is equal to the thickness of a 

single particle. 

Absorption/Remission function for a representative layer: 

The absorption fraction in a representative layer can be calculated by summation of the 

absorption of each particle in that layer. The contribution of an individual particle to absorption is a 

function of two parameters: the absorption fraction of the particle and its volume fraction in the layer. 

Moreover, to calculate the remission fraction of a representative layer, it is possible to estimate the 
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remission fraction and surface area fraction of each particle. Thus, the absorption fraction of all the 

particles can be achieved by multiplying the absorption fraction of each particle by the volume 

fraction of the particles.  

Absorption all particles = (Absorption fraction of one particle)   (volume fraction of particles) 

By generalizing, the fraction of light absorbed by the representative layer, A1, is introduced as: 

         (3.54) 

where    is the absorption coefficient for a particular type of particle i, and    is the volume fraction of 

the same type of the particle. On the other hand, the total remission fraction of the layer can be 

obtained by multiplying the remission coefficient of each particle by the surface area fraction instead 

of the volume fraction. Hence, the total amount of light remitted by the representative layer, R1, is: 

         (3.55) 

where    is surface area fraction of particles of type i, and    is the fraction of incident light remitted 

from the surface of a particle of type i. This terminology is used by Dahm and Dahm (2007). The 

important fact is that A1/R1 is a function of volume fraction to surface area fraction which can be 

simplified as the fraction of d (dimension of each particle) by assuming cubic particles.  

      
     
     

 
   
   

 
  

  
   

(3.56) 

Hence, the bigger the particle the higher the absorption fraction of the particle.  

The absorption/remission function relates the fraction of light absorbed, the fraction of light 

remitted, and the fraction of light transmitted by a representative layer. If one can measure the fraction 
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of incident light absorbed, remitted, or transmitted by a sample, the Dahm equation for 

Absorption/remission function is introduced as: 

       
     

     
 

  
 
            

  
 (3.57) 

where the subscript s refers to a measured quantity and subscript d represents properties of a layer of 

thickness   (Dahm and Dahm, 2007). 

Some principles and formulas related to representative layer theory: 

Two different kinds of samples can be expressed as non-scattering and particulate samples 

(Dahm & Dahm, 2007). 

In a non-scattering sample we have: 

 the absorbing power of the sample can be determined easily, 

 the absorbing power of a material making up a sample is the same as that of the sample as a 

whole, and 

 the contribution of a component in a material to the absorbing power of that material is 

proportional to its concentration.  

In a scattering (particulate) sample: 

 determination of linear absorption coefficient requires measurement and calculation, 

 the absorbing power of material is not as easy to determine as the non-scattering samples 

which is obtainable from linear absorption coefficient, 

 the contribution of a component in a material that make up a particle to the absorbing power 

of the material is proportional to its concentration, and 

 the properties of the particle such as shape and size, would be helpful to determine the 

relationship between the absorption coefficient of a sample and the absorbing power of a 

material.  
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In the samples that have no scatter, a principle relationship fundamental to spectroscopy can be 

introduced as: 

               
  
  
  (3.58) 

where    is the intensity of incident light radiation, and    is the intensity of transmitted radiation. This 

relationship depends on the Bouguer-Lambert Law, which describes the fraction of a light beam 

absorbed, A, and transmitted, T, when moving within a homogeneous material with negligible 

remission. The results are: 

                                   
(3.59) 

                                   

The symbol k denotes the linear absorption coefficient of the material in the absence of scatter. This 

can be referred to as the absorbing power of the material.  

When a sample scatters and absorbs light, the situation is more complicated. Consider a plane 

parallel sample that has a uniform thickness and is directly illuminated, with the direction of light 

perpendicular to the surface. All fractions of the incident beam can be divided into three fractions: 

absorption, A; remission, R; and transmission, T. Consider a case with a sample divided into two 

different layers x and y. Suppose all of the fractions of A, R, and T for each layer are known. Benford 

(1946), proposed that the properties of each individual layer for the sample named as x+y are the 

following: 

                    

          
             (3.60) 

                  

In the equations above there are just two identical layers. If there were n+1 identical layers, the 

following equations may be derived for the sample of n+1 layers: 
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             (3.61) 

                  

If the thickness of the sample is twice as thick as a sample with thickness d, the following equations 

may be derived by using the terminology of Dahm and Dahm (2007). The following formulas are 

derived for two parallel identical layers of thickness d. 

                    
       

    

       
  

   

    
       

  
 

    
             (3.62) 

                

Also, the assumption of uniformly distributed material holds here. Finally, if the thickness of the 

sample is half as thick as a sample with thickness d, by changing d into d/2 it is possible to derive the 

following equations: 

                     
   

       
  
        
                        

    
  

 

    
       

           
     

        
                      

   (3.63) 

                  

These equalities may be expressed in a form known as the Absorption/Remission function, 

A(R,T), which is constant for any thickness of a sample. These relationships may be summarized in 

the Dahm equation (Dahm, 1999) as: 

       
         

 
 (3.64)  

By expanding the numerator of Equation 3.64, one has: 

       
         

 
 
              

 
 (3.65)  

Also, we had the following equation for the relationship between A, R, and T: 
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        (3.66)  

By substituting Equation 3.66 into 3.65 the following equation will be derived: 

       
        

 
 
        

 
 (3.67)  

Now, by taking T from equation 3.66 and substituting into 3.67, we have: 

       
              

 
 
         

 
 (3.68)  

The Absorption/Remission function is also proportional to the ratio of both the linear 

absorption, K, and remission, B, coefficients for the sample and the fraction of light absorbed, A0, and 

remitted, R0, by a sample of infinitesimal thickness.  

       
  

 
  

  
  

 (3.69) 

Equations 3.68 or 3.69 are known as Dahm equations which are equivalent to Kubelka-Munk 

absorption to remission function. 

There are many reasons for the absorption coefficient to be different from the absorbing 

power of the material of which the sample is comprised. According to Dahm and Dahm (2007), the 

reasons are the voids, surface reflection, and the distance that the light traveled  

1. Voids: A scattering sample is likely to contain voids. 

2. Surface reflection: Each particle reflects a fraction of the light that strikes the surface, thus this 

amount cannot be absorbed. 

3. The distance that the light travels: The absorption coefficient of the sample is dependent on the 

distance that the light travels through a sample. This is different from the distance through a 

homogeneous material since the scattered light moves through the sample in all directions. 

Moreover, light is remitted frequently between internal surfaces of the particle. 
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 Stokes Formulas 

After finding the properties of one layer from representative layer theory, one is able to apply 

those properties to Stokes formulas. The Stokes formulas approximate the passing of light through a 

sample composed of several parallel sheets. If we assume that x represents the distance into the 

sample compared to the thickness of a single sheet we have: 

   
     

           
  

   
         

           
 (3.70) 

            

where   and   is obtained from the following: 

  
       

   

   
 

(3.71) 

  
       

   

   
 

in which   is obtained from the following relation: 

                                        
    (3.72) 

         are the initial fraction of light. For instance, if x is equal to 2, it means that the x is twice the 

thickness of a single sheet. On the other hand, if x=0.5 it represents a distance that is one half the 

thickness of a single sheet. Since in our model we have assumed that the thickness of a sheet is equal 

the thickness of a single particle (Dahm & Dahm, 2007) then the number of sheets are obtained by 

dividing the thickness of the whole sample over the thickness of a single sheet. Figure 3.7 illustrates 

the flow chart of  the combined model of representative layer and Stokes formulas. 
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Properties of One Layer (Representative Layer Theory) 

                                          

                    

           

 

 

 

 

 

 

 

 

           

 

 

Figure 3.7 Schematic of the algorithm used to computerize the representative layer theory and 

the Stokes formula for the integral light fractions 
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In Figure 3.7, the algorithm of the assembly of sheets is introduced. The representative layer 

theory is the input for the model, where all of the fractions of light are calculated based on their initial 

condition, volume fraction of particles and layers, surface area fraction of particles and layers, number 

of layers, and number of particles. 

After calculating the first block of the integrated model, the fractions of light for each layer 

are determined and imported to the second block in Figure 3.7.  Now, the model is changed into 

Stokes model. Hence, the formula based on the Stokes model is the governing equation of the Stokes 

block. The convergence criterion is the absorption coefficient. In this model , , and  are 

calculated using A1, T1, and R1. Then, Stokes formulas are applied to estimate the fractions of light in 

any depth through the sample.  

 

3.4 Code Implementation 

MATLAB is used as a program to facilitate the calculations. The program requires inputs to 

calculate light fractions for each layer. The inputs are: 

1. Concentration of three different particle sizes (38, 75, and 150 m) is imported from Fluent 

CFD results into MATLAB. The profiles are shown in Figure 3.8. 

2. The geometry of each rectangular layer including its length and width is entered. 

3. The number of the layers and the density of the particles must be adjusted by the user. 

The structure of the program is composed of a main code and three different subroutines for 

three different sizes. In these three subroutines the data from Fluent is loaded and a curve is fit to this 

data to give us a function for the concentration of the particles at each point inside the sample. Then, 

for three initial concentrations of 5%, 20%, and 30%, the following relations are computed in loop: 
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                        (3.73) 

where C is the concentration. 

 
Figure 3.8 Concentration profiles derived from Fluent simulation for the initial concentration of 

5% and Reynolds number of 140000 for three particle sizes of 38, 75, and 150 µm 

With the equation above, one is able to calculate the total volume of the particles in the sample. 

                        (3.74) 

where, C is the concentration. The relation calculates the total volume of fluid in the layer. Then the 

number of particles is calculated based on the sphericity assumption through the following equation: 

           
            
     

 (3.75) 

where, d is the average diameter of the particles. By substituting volume of particles from Equation 

3.73 into the Equation 3.75, it is possible to compute the number of particles. Moreover, the mass of 

each particle is: 
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                                   (3.76) 

where,  is the density of the ADP particles. The aim to use the mass of the particles to compute the 

weight fraction of the particles through the following relation: 

   
            

                 
 (3.77) 

where g is the gravity. The subscript p refers to any particle inside the layer. The weight fraction is 

defined as the fraction of each particle weight to the total weight of the layer. Weight fraction, number 

of particles, volume of the particles in the sample, volume of fluid, and mass of each particle helps us 

to initialize the materials needed to use in the Dahm equations for developing the representative layer 

theory, which is going to be discussed in this chapter. Another helpful relation is the volume fraction 

of particles: 

   
     
      

 
     

   
  

  
 
 (3.78) 

where the    is the volume fraction of a particle type which is proposed by Dahm in his paper (Dahm, 

1999),    is the number of particles in the representative layer,    is the weight fraction of the 

particle which has been calculated in Equation 3.77, and finally    is the density of the particle. Also, 

fraction of particle surface area that belongs to a particle type inside the layer is determined by 

substituting the weight fraction from 3.66 into the following relation: 

   
         

          
 
         

   
  

    
 

 
(3.79) 

where the    is the surface area fraction of a particle type,    is the number of particles in the 

representative layer,    is the weight fraction of the particle which has been calculated in Equation 
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3.77,    is the diameter of a particle, and finally    is the density of the particle. In addition, the next 

step is to calculate the fraction of total volume composed of particle type:  

                        
(3.80) 

where j refers to number of particles in the layer,    is the volume fraction of a particle type,    is the 

void fraction, and C is the concentration of the particles at that particular layer. Also, fraction of cross 

sectional surface area comprised of particles of this type is: 

                        (3.81) 

Equations 3.73 to 3.80 are computed for three different initial concentrations as well as 3 different 

particle sizes.  

 The main code then calls the three subroutines for these three particle sizes. On the other 

hand, the absorption and scattering coefficients must be provided for the main code. This can be 

achieved through plane parallel mathematics and by computing the following equations for n layers of 

the sample: 

                   

        
  

   
      

 

                 

(3.82) 

the purpose to calculate these fractions of light is just to find the scattering and absorption coefficients 

for each layer through the following relations: 

             

(3.83) 

             

Although the fractions of light that are obtained from plane parallel mathematics are different from 

what is derived from representative layer theory, the absorption and reflection coefficients are 
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calculated just from the plane parallel math to be fed into the model developed based on representative 

layer theory. Hence, we will use K and B that are estimated for each layer based on Equations 3.83, 

and then one can use them to substitute into the light fraction relations derived from representative 

layer theory: 

                                           

                    (3.84) 

            

where j refers to a particle inside a layer and p refers to an individual particle inside one layer. Since 

the particles are assumed to be identical the absorption fraction summation over the whole layer is a 

derived by finding the absorption fraction for one particle which is identified by subscript p and 

multiplying by the number of particles. For the equations above, the unknowns are the absorption A1, 

remission R1, and T1 fractions, as well as bj and kj, that are two other unknowns which have already 

been estimated from Equation 3.83 (plane parallel mathematics). Sj and dj are the fractions of cross-

sectional surface are comprised of particle type and the average diameter of particles, respectively.  
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CHAPTER IV 

 

 

RESULTS AND DISCUSSION 

 

4.1 Brief Recapitulation  

It has been discussed in the preceding chapters that characterizing the light movement in a multiphase 

flow involving solid particles within a liquid phase may be achieved through: (i) studying and 

investigating different mathematical models in the field of diffuse reflectance, (ii) investigating their 

compatibilities with modeling particles in a fluid and simulating the near-infrared phenomena in a 

slurry, (iii) developing programs in MATLAB to build computational algorithms based on 

mathematical models obtained from optical theories in the field of diffuse reflectance. The motivation 

is to build a novel method for predicting the depth of penetration of light through the slurry by 

calculating the fractions of light. Also, it has been considered that Computational Fluid Dynamics can 

provide the required varying concentrations of particles as input for mathematical predictions of 

optical phenomena. Uniform concentrations are constant through the cross-section of pipe, while 

varying concentrations are not constant. In the current study CFD results for the flow of a chemical 

slurry in which 2-Amino-4, 6-dimethylpyrimidine (ADP) are the particles and Xylene is the liquid 

were used. Many different cases of CFD simulations have been applied from the available models in 

previous research databases to feed concentration profiles to discontinuum theory optical models 

which are demonstrated in this chapter. The schematic representation of the problem depicted in
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Figure 4.1 (has been shown previously, however, it is worth repeating here. This picture helps to 

understand the geometry of the model and the light beam direction through the sample.  

 

Figure 4.1 The geometry of the light generator, detectors, and the sample 

The optical properties associated with a beam of diffuse light with a particular intensity striking the 

very first layer of the sample will be changed because portions of light will be absorbed, transmitted, 

or remitted. The fractions of light which are called initial fractions for this simulation are considered 

as inputs for all of the discontinuum and some of those continuum theories which use simple 

discontinuous mathematics to divide the sample into layers and apply their continuous method for 

each infinitesimal layer inside the sample. These models are discussed in this chapter and their results 

are compared with the literature. Kubelka-Munk theory is a continuum approach. However, in some 

special applications such as powdered samples, it has been improved by being added to the model of 

plane parallel mathematics. This work has been done by Nobbs (1985). Hence, it is capable of 
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predicting a freely suspended layer inside a sample containing a lot of other layers with more 

complicated and accurate mathematics (Nobbs, 1985). The effects of initial fractions of the light – 

absorption, remission, and transmission – that enters the medium will be discussed in this Chapter. By 

adjusting some of the parameters such as refractive index, scattering and absorption power, 

concentration of particles, and initial fraction of light to the case of slurry sample of xylene and ADP, 

one is able to make the models compatible to the geometry of problem. For continuum theories initial 

fraction refers to the boundary of integration applied for solving differential equations. For 

discontinuum theories the initial fraction of light pertains to the property of the first layer where the 

light encounters the sample. In this Chapter the results of different models are explained in detail.  

This Chapter aims at presenting the important findings of the current research which focuses 

on the application of optical theories to model near-infrared phenomena inside slurries. The arbitrary 

solid concentration profiles are used in representative layer theory as input data on the composition of 

the sample. Concentration profiles are the results of different CFD simulations done separately in 

other research in this project using ANSYS Fluent 13.0 and 12.0 CFD software packages. Different 

turbulence models including K-  and Reynolds stress were applied to determine profiles of solid 

concentrations. In this analysis, the penetration of light was considered spatially, and since the light 

monitors the sample with much higher speed than the flow field velocity, it is assumed NIR 

transmittance to and reflectance from the pipe happens instantaneously, so that the slurry is stationary 

relative to the light during this momentary process. Fluctuations due to fluid and particle motion are 

not considered. Optical models were created based on the fundamentals of each theory. They were 

developed using Fortran 2003 and MATLAB R2012a software programs as two different 

computational tools. The codes are available in the Appendix B. Each model simulated the passage of 

NIR radiation through the sample based on light fractions. Computing light fractions was performed 

for each layer, so the depth of penetration has been evaluated based on the value of these fractions at 

each depth through the sample. In this Chapter, the results of different models are discussed; they are 
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validated with the optical experiments performed for similar cases in the literature. Moreover, results 

of continuum and discontinuum theories are compared through investigating similar cases for the 

input data. Also, the depth of penetration of light is estimated for each scenario. 

This Chapter is divided to two major parts, one for continuum theories and the other for the 

discontinuum ones. In the continuum part the results of five different approximations and theories are 

presented and discussed. In the discontinuum part, the results of the three different complicated 

models are reviewed and analyzed. Finally, the results of two groups are compared and the advantages 

and disadvantages of each group are investigated.   

 

4.2 Results of Continuum Optical Models 

In this section the continuum model results are presented. The first one is Schuster’s theory which is a 

very old model of diffuse reflection with very simplified mathematics which may help to understand 

and estimate the light through the medium. Kubelka-Munk is a more advanced model than Schuster’s 

approximation. Hence, the results of these two theories are compared in section 4.4. Kubelka-Munk 

theory is used for optically thick samples. The three flux model is another model applied to solve the 

radiative transfer equation using an approximate method. This model is compared to Giovanelli’s 

theory, published in 1955, in Section 4.4. As it was mentioned in previous chapters, the radiative 

transfer model is based on one equation that treats the extinction of a flux of radiation in a particular 

direction. The intensity inside the layers, penetration depth of light or the distance that light travels, 

density of medium, and the scattering and absorption coefficients are the components that vary in the 

proposed models. The diffusion model is the last theory whose results are comparable to other 

continuum theories, however, it treats the scatter as photons taking a random walk through a 

concentration gradient until the path of light is discontinued by absorption in the medium (Dahm & 

Dahm, 2007). 
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4.2.1 Schuster’s Model  

Schuster’s particle theory uses continuum mathematics. The process for deriving equations presented 

in Chapter Three is similar to Kubelka-Munk theory. The difference between these two models will be 

discussed later in this chapter. As is illustrated in Figure 4.2, the parameter    which is known as 

reflectance at infinite depth is an essential element in continuum theories. This parameter is the 

reflectance of a layer of material which is optically thick. This means that whenever the light  

 

Figure 4.2 Illustration of diffuse reflectance of thick layers at different depths through the 

sample. X values represent the distance from the edge of the sample through its depth. 

penetrates a sample of finite thickness, it will be reflected in each depth that it travels through the 

sample. The gradient of reflection through the sample will continue until a depth where any increase 

in thickness does not change the reflection. Therefore, the change in the depth of the sample will not 

affect the reflectance. Each point greater than X = 0.02 in Figure 4.2 represents a depth in the sample 

at which the reflectance is saturated. For this simulation of Schuster’s theory, the sample thickness is 

assumed to be 10 cm. According to the Figure 4.2, the reflectance reached the constant value very 
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quickly at about the 3 cm depth. By increasing the sample thickness the reflectance does not change 

significantly. This phenomenon depends on the sample thickness; scattering and absorption 

coefficients; and the intensity of the light beam. Hence, the reflection from the material is a function 

of those elements. The scattering and absorption coefficients are characterizing the power of material 

in reflecting and absorbing the light. Note the assumptions of this theory are very restrictive. The 

reflectance function derived by Schuster (1905) involves two oppositely directed radiation fluxes 

which are in the direction of surface normal. Hence, the direction is not inclined and there will not be 

any angular distribution of light after striking the sample.  

Kubelka and Munk (1931) developed a more accurate two-flux model than Schuster’s. This 

model is similar to Schuster’s solution, with the primary difference being the definition of two 

coefficients of absorption and scattering. These two constants are known as   and  . On the other 

hand, Schuster defined similar constants in terms of absorption and scattering for a sample containing 

a material which has a property of single scattering. Kubelka and Munk derived their model for a 

densely packed sample which has the properties of absorbing and scattering the light ideally. These 

materials are called ideally diffusing mediums. However, Schuster’s model applied to a foggy 

atmosphere where the concentrations of particles are not very high. These two differences are shown 

in Figure 4.3, where Kubelka-Munk absorption to scattering coefficient is higher than the one 

developed by Schuster. The reason is the assumption of Schuster’s theory which only applies to 

samples with small concentrations and consequently small amounts of absorption. According to 

Section 3.2.1, the ratio of coefficients   over   is exactly twice as great as the ratio of absorption to 

scattering    . As illustrated in the figure, the thickness of layers decreases when the distance through 

the sample increases. It is because of the linearity of light fractions in the smaller depths through the 

sample. Absorption, reflection, and transmission are linear until their rate of change is decreased. 

Hence, larger depths need more resolution, and for this, the number of data points increased in the 

large depths. Each point in Figure 4.3 can also represent a unique sample. For each point, the value on 



104 

 

the horizontal axis illustrates the distance through a specific sample at which the maximum reflection 

occurs.    

 

Figure 4.3 Scattering and absorption coefficients for the models of Schuster and Kubelka-Munk. 

X values represent imaginary thickness inside the sample. 

The difference between multiple and single scattering is very important for the case of Schuster’s 

theory. The reason stems from the fact that single scattering is effective for a random media, where the 

interaction of light with particles is not deterministic. Therefore, for the Kubelka-Munk model which 

is used for a denser medium than Schuster’s model, the single scattering assumption does not work 

well. In addition, Schuster’s theory is a simple two-flux theory that refers to reflection and 

transmission of light. It can be concluded from this discussion that Shuster’s model is very simple to 

apply to the cases of complex non-homogeneous samples where the concentration varies. In a sample 

with low concentration of particles, the probabilities of light striking the medium are used to predict 

the fractions of light. As mentioned in Chapter Two, in the limit of infinite dilution, Schuster’s 

assumption suggests that one particle may be present in each layer. Considering the discontinuous 
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interpretation of Schuster’s theory, the level of dilution will be solved easily through the discontinuous 

solution of Schuster’s equations.  

Another important factor that affects the reflectance of light is its initial fraction. The initial fraction of 

the light beam is defined as the lower boundary of integration or one of the boundary conditions of the 

differential  equations that are discussed in Chapter Three. As illustrated in Figure 4.4, small 

variations in the boundary conditions will have significant influence on the total remission fraction of 

light.  

 

Figure 4.4 Total diffuse reflectance for different initial fraction of light as a boundary condition 

for the sample. 

In Figure 4.4, the values associated with symbols   ,   , and    are called initial fractions of light or 

boundary condition for solving the differential equation of Schuster’s model. It is obvious that the 

diffuse reflectance is a strong function of initial reflection. The other important fact about this diagram 
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total diffuse reflectance is not influenced by increases in absorption. This effect is shown in more 

detail in Figure 4.5. In this graph, four different cases are investigated. The first and second cases 

consider constant transmission, where the absorption increases, while remission is slightly reduced. 

These two cases have the behavior that was just described. Transmission is constant and the remission 

is decreased, hence, diffuse reflection is also decreased, however, as was mentioned before, the 

absorption does not affect the total reflection.  

 

Figure 4.5 Diffuse reflections for four different cases of initial fraction of light. 
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constant and equal to 0.3, while remission is increased. This case proves that the total remission is a 

strong function of the initial remission fraction, while it is a weak function of initial transmission, and 

is not affected by the initial absorption.    

4.2.2 Kubelka-Munk Model  

The Kubelka-Munk model was developed as a solution to the radiation transfer problem. This theory 

is very similar to Schuster’s formula derived in Chapter Three, however, unlike Schuster, Kubelka 

envisioned using the solution for dense systems with high concentrations. Another discrepancy 

between the Kubelka-Munk model and Schuster’s theory is related to the different scattering effects 

that are assumed by the two theorems. The Kubelka-Munk model solved the differential equations for 

the case of remission, not the isotropic scattering assumed by Schuster. Isotropic scattering refers to 

the distribution of reflected or transmitted radiation which is the same in all directions.  

As discussed by Kubelka and Munk, the relationship between the scattering and absorption 

coefficients is defined for the whole thick sample. As was pointed out by Nobbs (1985), these two 

coefficients are also calculated through the reflectance and transmittance of a thin layer inside the 

sample. Therefore, by limiting the boundaries of integration to one layer of material, one is able to 

predict all fractions of light, as well as absorption and scattering coefficients for that layer and then 

expand the model to the whole material to calculate the optical properties for each layer. This 

approach of solving a differential equation for an infinitesimal thickness inside the sample is more 

accurate than integrating over the whole sample since the composition of each infinitesimal layer is 

determined by one particle thickness. This is one of the fundamental assumptions of K-M theory. 

Figure 4.6 shows the reflectance from and transmittance through an isolated layer of material. The 

layer is imagined to be freely suspended and illuminated from above by diffusely incident light of 

intensity  . The layer reflects the amount      and transmits the amount    . Moreover,    and   are 

the reflectance and transmittance of the layer respectively for incident light. If the layer is diffusely 
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illuminated from the opposite direction by an intensity  , then the amounts reflected or transmitted are 

     and    , respectively.  

Figure 4.6 is representative of a layer in a sample. It might be confusing since the Kubelka-

Munk theory is a continuous method, however, using the approach proposed by Nobbs (1985) made 

our model more accurate because the fractions of light are calculated for each infinitesimal thickness, 

which  may help to assume that the scattering effects within the infinitesimal layer are negligible. 

 

 

 

 

Figure 4.6 Reflectance and transmittance of a thin layer of thickness d within a sample 

 

Kubelka – Munk function is a powerful tool that predicts the diffuse reflectance of an infinitely thick     

sample. According to Figure 4.7 and Figure 4.8 the intensity of light is decreasing whether it is a 

reflected beam or a incident beam. The intensity is different from the light fraction. Here intensity 

ratio is the ratio of reflected J or transmitted I intensity to the reference intensity    or transmission    

which implies reflectance (     ) and transmittance     , respectively. The reflectance and 

transmittance are almost similar for all of the initial fractions. Reflection is a transmission but in 

opposite direction, hence both will decrease in the sample. Before calculating this function, the 

fractions of light must be determined throughout the method developed in Chapter Three. According 

to the equations the remission, transmission, and absorption are found for a sample of 100 units of 

thickness. These thicknesses are similar to layers in the discontinuum theories, however, they are 

different.  
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Figure 4.7 Intensity of incident beam through the sample at different initial boundary conditions 

 
Figure 4.8 Intensity of reflected beam from the sample at different initial boundary conditions 
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The approach used here is a continuous method but the numbers in the horizontal axis correspond to a 

depth inside the sample. The numbers on the horizontal axis refers to number of layers. Since K-M 

theory is continuous and layers are not used, each number is representative of a fictitious layer that 

does not exist. According to Figure 4.9 the rate of growth of remission per unit thickness is much 

faster than the absorption or transmission. The absorption reaches the maximum after 25 unit 

thicknesses, while remission reaches the maximum after 10 unit thicknesses. On the other hand, 

transmission decays very much slower than the last two fractions. When the transmission reaches 

zero, the absorption and remission are meaningless since the model is saturated. Because of the 

simplicity of the model, in which the concentrations of particles are not considered, it is impossible to 

predict the real depth at which there is no transmission. Here, the model assumes the sample is a 

homogeneous mixture of xylene and ADP. The absorption and remission coefficient for the xylene 

and ADP must be measured from an experiment. However, in this model, the absorption and 

remission coefficients are found from Equation 2.20 and 2.23 

 

Figure 4.9 Absorption, remission, and transmission fractions calculated from Kubelka-Munk 

function 
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Figure 4.9 which represents a limited amount for absorption, however, xylene has considerable power 

of absorbing light. This is a limiting assumption that proves basic K-M theory is not a powerful tool 

for the slurry sample of xylene and ADP.  

The Kubelka-Munk function is derived from continuous mathematics by making several 

assumptions. These assumptions which were introduced in Chapter Three are based on the 

experimental arrangement and configuration of the sample. If the geometry is not compatible with the 

assumptions the model will fail. Isotropic scattering is an important assumption. For instance, if there 

is specular reflection, there may be preferential directions of travel of light through the sample, which 

violate the diffuse radiation assumption (Griffiths & Dahm, 2008).  

Effect of sample particle size on reflectance: 

The model developed by Bull (1990) is a simplified version of the Kubelka-Munk model. By 

a making the constraint that the particle size is much greater than half the coherence length of the 

radiation and must be greater than the radiation wavelength, it is possible to use the simplified model 

to predict the contribution of particle size on the reflectance in the sample. The model is discussed in 

previous chapters. In order to relate the reflectance of the sample to the particle size using the 

equations derived in Chapter Two, it is necessary to determine the relationship between particle size 

and absorption and reflectance of individual particles. Let us use the parameter which is known as 
 

 
, 

penetration depth, with the symbol  . It was proven by Bull (1990) that the fraction     is equivalent 

to particle size since according to the Beer Lambert law and the Kubelka-Munk function        

      
        which gives            , where r is the reflectance of a single layer. Therefore, 

as it is shown in Figure 4.10, the log of inverted diffuse reflection, called reciprocal reflectance, 

increases with the particle size. This means that the reflection is decreasing as the particle size 

increases since the vertical axis is      not   . This graph is derived for different cases of initial 

fractions of light. In this diagram, it is obvious the lower the reflectance, the higher the log of 
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reciprocal reflectance. The reflectance and transmittance had the most effects on the diffuse reflection. 

According to Figure 4.10, if the reflection fraction in a particular area of the sample is low the particle 

sizes in that region are small. 

 

Figure 4.10 The log of reciprocal reflectance plotted as a function of the A/R fraction. 

The model proposed here for the Kubelka-Munk model is compared to the similar result 

proposed by Bull (1990). The model of Bull was applied to a powdered sample of wheat to derive the 

reflectance. As is clear from Figure 4.11 the diffuse reflectance has the same trend, which is 

ascending. The discrepancy in the values of reflection is related to the difference between two 

samples. By comparing these two figures, it is clear that similar results are obtained from our model. 

 
Figure 4. 11 The log of reciprocal reflectance plotted versus A/R fraction derived by Bull (1990) 
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Finding a numerical regression for the diffuse reflectance is important since it is possible to use the 

absorption to remission or even the particle size of the sample for predicting the total reflection from 

each layer in the sample or from the whole sample. In Figure 4.12, a polynomial curve fit is used. 

 

 

Figure 4.12 Polynomial curve fitted to the log of reciprocal reflectance versus equivalent particle 

size in units of     

In Figure 4.13, a simpler formula is derived to predict the reflectance by inserting particle size or A/R. 

 

Figure 4.13 Exponential curve fitted to the log of reciprocal reflectance 
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4.2.3 Radiation Transfer Approximations 

The radiation transfer approximation is developed based on the model proposed by Patterson et al. 

(1989). The model has been applied to the case of diffuse reflection from tissue. This is a simple 

model of light propagation which allows quantitative prediction of diffuse reflection. For this model 

the absorption, remission, and transmission must be obtained from an experiment. In the experiment, 

the optical properties of the layers of material such as absorption and scattering coefficients are 

obtained. In this model the cosine of scattering angle is applied for two cases. The first case is for an 

isotropic scattering, which suggests the cosine of scattering angles must be zero. However, for a case 

of forward scattering the value of cosine of scattering angles must be derived from an experiment. 

Different values are chosen for the cosine of scattering angles, and they are shown in Figure 4.14.  It 

has been illustrated that for isotropic scattering        , diffuse reflection is maximum, but the 

minimum  

 

Figure 4.14 Diffuse reflection of radiative transfer approximation for different cosine of 

scattering angle 
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occurs when the value of   approaches 1. This Figure provides information about the whole range of 

scattering; from isotropic to completely forward scattering. In this thesis, the wavelength of light is in 

the near-infrared region, from 0.75    to 1.4   . Therefore, the sizes of particles in this research are 

assumed to be in the range of 38    to 750   , much larger than the wavelength of radiation. Thus 

the slurry sample in this study shows significant scattering in the forward direction since the particle 

sizes are much greater than the wavelength of the light. The values near 1 may be more realistic for 

the NIR radiation in the slurry of xylene and ADP, however, for an accurate estimation about the 

radiation through a sample, this model requires an experiment to find the absorption and scattering 

coefficients. In our model, the absorption and scattering coefficients are derived from the absorption 

and reflection fractions of light which were obtained from the approximate solution of radiation 

transfer equation. Figure 4.15 is derived from the following equation, previously discussed in Chapter 

Three.  

        

       
          

                   
       

          
     

              

 
      

       
          

 
  (4.1) 

where all of parameters have been discussed in Chapter Three.  Patterson et al. suggested the Equation 

4.1. The relation above uses the scattering and absorption coefficient, as well as the cosine of 

scattering angle to provide an estimation of diffuse reflection. It is derived from a more advanced 

model of radiative transfer equation, the Kubelka-Munk theory and provides better and more 

reasonable  results. 

In Figure 4.15 the radiative transfer approximation is used to investigate the effect of 

boundary conditions on the diffuse reflection from the sample. As is obvious, the remission is the 

most powerful parameter that determines the diffuse reflection strength. As before, transmission has 

less effect on the total reflection from a sample, however, absorption does not change the diffuse 

reflection. The reason that transmission and reflection affects the total reflectance is because of their 
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similarities. As in Chapter Two, reflection is transmission but in an opposite direction. Therefore, 

some theories such as Mie scattering uses scattering instead of the reflection and absorption. Mie 

scattering is a particle theory which studies the light on single particles not layers.  

 

Figure 4.15 Diffuse reflection of radiation transfer model of Equation 4.1 for seven different cases of 

initial fraction of light. Model of Patterson et al. (1989). 

Figure 4.15 implies another important fact about the diffuse reflection at small distances. 

Diffuse reflection for different initial fractions of light varies from the smaller distances to larger 

distances inside  the sample. In distances between 0.001 m to almost 0.01 m, diffuse reflection 

changes from 0.08 to 0.6 for different initial fractions, however, in larger depths through the sample, 

an expansion for the various diffuse reflections happens. When light encounters the sample in the very 

first distances through the sample, it diffuses, however, at first the diffusion is not high since the 

medium is just changed. Minor varaiance for different initial fractions in this stage belongs to the 
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sensitivity of the model to the initial conditions.  In longer distances through the sample the diffusion 

strength is higher, therefore, one can see the divergence of the total reflections.  

Another approximation of the radiative transfer equation by Griffiths and Dahm (2008) 

suggests the following formula which was derived in Chapter Three. It uses coefficients of single 

scattering developed by Schuster (1905).   

   
 

    
 
 
    

 
 
    

  

  
    

 
 
 

 
(4.2) 

Figure 4.16 uses this equation to illustrate different results for the same initial fractions used in Figure 

4.15. By comparing this Figure and Figure 4.16, it is concluded that the diffuse reflection in the model 

of Patterson et al. (1989) is smaller than the values of diffuse reflection in Figure 4.16. The diffusion 

of reflectance throughout the sample is lower than the model of Figure 4.15.  

 

Figure 4.16 Diffuse reflection of radiation transfer model for seven different cases of initial 

fraction of light based on the radiative transfer approximation proposed by Griffiths and Dahm 

(2008).  

10
-2

10
-1

10
-2

10
-1

10
0

Distance X [m]

R


 (
R

a
d

ia
ti

v
e
 T

ra
n

s
fe

r 
A

p
p

ro
x

im
a

ti
o

n
)

 

 

T
1
 = 0.90, R

1
 = 0.06, A

1
 = 0.04

T
1
 = 0.85, R

1
 = 0.10, A

1
 = 0.05

T
1
 = 0.70, R

1
 = 0.20, A

1
 = 0.1

T
1
 = 0.55, R

1
 = 0.25, A

1
 = 0.2

T
1
 = 0.35, R

1
 = 0.35, A

1
 = 0.3

T
1
 = 0.20, R

1
 = 0.40, A

1
 = 0.4

T
1
 = 0.10, R

1
 = 0.45, A

1
 = 0.45



118 

 

4.2.4 Three Flux Model 

This model was proposed by Burger, Kuhn, Caps and Fricke (1997). The model solves three 

simultaneous differential equations that are developed based on the solution to the radiative transfer 

equation (RTE). This equation is solved analytically for diffuse reflectance and transmittance. The 

isotropic scattering of an optically thick sample is derived based on the parameter that is called albedo,  

  , which is the ratio of scattering to extinction coefficient. The equation of radiative transfer 

describes the influence of scattering and absorption coefficient within a medium (Kuhn et al. 1993). In 

the model proposed by Burger et al. the difference between the directional and diffuse illumination is 

considered. However, the directional illumination is the only part that is modeled here since it has 

been assumed that the sensor directly illuminates the light into the sample. Table 4.1 can be plotted as 

Figure 4.17, which illustrates the difference between diffuse and directional illuminations. 

Table 4.1 The total reflectance and ratio of absorption and scattering coefficients of radiative 

transfer equation (
  

  
) which is calculated based on a three flux approximation by Burger et. al 

(1997) 

 
Directional illumination  Diffuse illumination 

       
  

  
 
          

  
  

  
 
      

 
 

    
  

  
 
          

  
  

  
 
      

 

0.1 0.01639 9 8.8182  0.0217 9 8.2696 

0.15 0.03524 4 3.9271  0.04626 4 3.6869 

0.3 0.05721 2.3333 2.2976  0.07445 2.3333 2.1574 

0.4 0.08336 1.5 1.4811  0.10934 1.5 1.3603 

0.5 0.11521 1 0.9907  0.14653 1 0.9321 

0.6 0.15541 0.6667 0.6623  0.19471 0.6667 0.6245 

0.7 0.20867 0.4286 0.4278  0.25655 0.4286 0.404 

0.8 0.28526 0.25 0.2507  0.34187 0.25 0.2376 

0.85 0.33966 0.1765 0.1775  0.40017 0.1765 0.1686 

0.9 0.41495 0.1111 0.1121  0.47802 0.1111 0.1069 

0.95 0.53555 0.0526 0.0533  0.59667 0.0526 0.0511 

0.99 0.75275 0.0101 0.0103  0.79457 0.0101 0.01 

0.99 0.91285 0.001 0.001  0.92971 0.001 0.001 

1 1 0 0  1 0 0 
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In Figure 4.17 the diffuse illumination is calculated based on the results of the radiation 

transfer equation presented by Burger et al. (1997). In the diffuse illumination, there is a slightly 

deviation from the directional illumination. Therefore, for the simplified model proposed by Burger et 

al. (1997), the diffuse illumination is not well determined since the scattering and absorption 

coefficients are dependent on the cross sections and phase functions of Mie scattering theory. The 

following equation which was derived in Chapter Three, is a tool to relate the Kubelka-Munk 

scattering and absorption coefficients to the radiative transfer coefficients (Burger et al, 1997). This 

helps to compare the results of this three flux model with Kubelka-Munk’s results. It relies on two 

basic coefficients,    and   , which must be derived from Legendre polynomials for the case of 

diffuse illumination. However, they suggested a simplified coefficient for isotropic diffuse 

illumination that is a limiting assumption for the case of a slurry fluid.  

    
 

          
 
  
  

 (4.3) 

 
 

Figure 4.17 Diffuse reflectance for the direct and diffuse illuminations plotted versus the ratio of 

absorption to scattering coefficients of RTE approximate model developed by Burger (1997). 
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These two coefficients are derived for different cases of particle shapes by Mudgett and Richards 

(1971). The nearest case to the slurry was calculated for sphere disks. He suggested the values for the 

coefficients presented in Table 4.2. 

Table 4.2 The values of two coefficients of Legendre polynomials for spherical disks suggested 

by Mudgett and Richards (1971). 

      

1.000 1.5560 

By applying these values into Equation 4.3, one can plot Figure 4.18. By comparing to Figure 4.17, 

one can conclude that in Figure 4.18, in the regions far from the wall, the reflectance for diffuse 

illumination is about 0.02, and for directional illuminations is about 0.03-0.08 higher than Figure 4.17. 

The reason is related to the conversion from radiation transfer coefficients 
  

  
 to the Kubelk-Munk 

terminology, K/S. Now, we can use Figure 4.17 for comparing with Kubelka-Munk’s results.  

 

Figure 4.18 Diffuse reflectance of direct and diffuse illuminations plotted versus the ratio of 

absorption to scattering coefficients of K-M theory for particles with the shape of  spherical 

disks. 
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  To avoid using the assumption of spherical disks, only the directional illumination is applied. 

In Figure 4.19 the proposed model is compared with the values suggested in the three flux model of 

Burger et al. (1997). The discrepancy occurs because Burger’s model applied the absorption to 

scattering coefficients  
  

  
  that are used in the radiative transfer equation, however, the model of the 

three flux approximation proposed here uses the Kubelka-Munk terminology. The terminology of the 

radiative transfer equation has not been used here because one needs to conduct an experiment to 

measure the absorption and scattering coefficients as inputs for the three flux model. Another reason 

for not using the diffuse illumination is because of the properties of xylene in absorbing the light. 

Xylene absorbs the light significantly; therefore, the diffusion is not very much higher than absorption 

in xylene and ADP mixture. The reason for the small bump in the model of Burger is not clear since 

the data for the model of Burger et. al (1997) is directly derived from their results in their paper. 

 

Figure 4.19 Diffuse reflectance of three different models of diffuse reflectance derived by 

Griffiths and Dahm (2008).  
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It has been noted by Burger et al. (1997) that the results of three flux approximation show a 

maximum relative error of about 2% for         . This error causes a jump in the directional total 

reflectance in Figure 4.19. The differences between the Kubelka-Munk, the three flux approximation, 

and diffusion theories are discussed in Section 4.2.5.  

4.2.5 Diffusion Model 

In this thesis, the diffusion model is studied briefly for the purpose of comparing its results with other 

continuum theories. This model is a summary of work done by Griffiths and Dahm (2008) which is 

another approach to investigate the radiation transfer equation. One important assumption about this 

model, mentioned in the previous Chapter, is related to the scattering and absorption coefficients. It 

has been assumed that the scattering is much larger than absorption, therefore, it is described through 

a diffusion process. This assumption is sufficient not to consider this theory for our modeling because 

xylene absorbs light considerably, so the diffusion is not much higher than absorption in our sample. 

Figure 4.20 illustrates the diffuse reflectance of four different optical theories in the cases of 

continuum mathematics which was derived by Griffiths and Dahm (2008).  

 

Figure 4.20 Diffuse reflectance of three different theories of diffuse reflectance derived by 

Griffiths and Dahm (2008).  
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Figure 4.21 presents the difference between these three models. The diffuse reflectance is modeled by 

diffusion approximation. As discussed by Burger et al. (1997), Kubelka-Munk theory deviates from 

the other two models due to its limitations and simplicity. The relative error for    in Kubelka-Munk 

compared to Giovanelli’s calculations is more than 8% for small    and below 5% for larger   . 

Diffusion and three flux approximations shows less errors (Burger et al., 1997). This observation is in 

accordance with the results of Kortum (1969), who pointed out the crucial deviation of K-M theory 

with experimental results for         . 

 

Figure 4.21 Diffuse reflection of an isotropic, optically thick sample according to the three flux 

approximation, the diffusion approximation, and Kubelka-Munk different models continuum 

theories. 

 

4.3 Results of Discontinuum Optical Models 

Continuum models are investigated in detail in Section 4.2. In the present section, the results of 

discontinuum optical models are reviewed and discussed. Discontinuum optical theories are discussed 

in detail in Chapter Two and the models were built in Chapter Three. Discontinuum models are more 
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appropriate for mixtures than continuum ones since they suggest a more advanced description of the 

sample. Discontinuum models describe the light interaction phenomena with individual particles and 

the whole sample throughout more visible functions that are hidden in the assumptions of continuum 

theories (Griffiths & Dahm, 2008).  This feature is achieved by treating the sample through defining 

multiple layers which divide one thick sample into many smaller samples in size which maintain the 

properties of the whole sample. Each layer is a collection of infinitesimal particles. Hence, the size of 

particles controls the thickness of the layers and consequently, the scattering and absorption properties 

of the layers are determined by particles and the surrounding medium. Dahm and Dahm (2007) have 

recently proposed a novel approach in applying discontinuum theory to the two-flux results of 

radiative transfer equation. This method is known as representative layer theory and results are shown 

in this Section. The model of plane parallel layers is applied to compute the fractions of light 

discontinuously throughout the sample. Other discontinuous models also use descriptions similar to 

the fundamental formulation of plane parallel layers. Discontinuum theories use a definition for the 

initial fraction of light which is different from continuum theories. These models assume that the 

sample is divided into several layers each one particle thick. When the light beam encounters the 

sample, the first layer will be interacted. Some portion of the light is transmitted to the next layer,   , 

some is reflected out,   , and some is absorbed,   . The fractions of   ,   , and    are known as 

initial fractions of light for the following sections discussing discontinuum models. The plane parallel 

layers, assembly of sheets, and representative layer model, combined with Stokes formulas, are 

discussed. 

4.3.1 Model of Plane Parallel Layers 

The plane parallel layer model is used to predict the absorption, remission, and transmission locally 

for each layer in the sample. The sample is divided into a finite number of layers. Each one has 

different thickness relative to the other layers. According to Figure 4.22, the light beam approaches 
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the sample in a layer recognized as    . The light beam has three possible options, whether being 

transmitted to the layer n, being reflected out of the sample, or being absorbed by the same layer. If it 

is transmitted to the next layer, the probability of this phenomena is     , however, if it reflects back 

from the sample it comes out with the possibility of      .  The absorption is unknown, however, and 

will be calculated from reflection and transmission probabilities since the total probability is equal to 

one;                 . This is the phenomena for the first layer being illuminated by the 

incident beam. The transmitted beam from the layer     is considered as a incident beam for the 

second layer but its intensity is     , not 1.  

 

Figure 4.22 Absorption, reflection and transmission probabilities in two layers of a sample 

consisting of n+1 layers with different thicknesses changing sequentially based on a geometrical 

progression. 

This process also occurs for the other layers as a sequential phenomena, and finally it will be absorbed 

by the sample or reflected to the sensor or transmitted to the other side of the sample. The intensity 

may approach zero without being absorbed after several reflections or transmissions. It is hard to 

predict all these probabilities without modeling. In our model, a geometric progression is applied as a 
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scheme that requires more accuracy from the layers that are far from the sample edge where the 

incident beam was first encountered. This accuracy is achieved by decreasing the thickness of the 

layers gradually as depicted in Figure 4.22.  

 Absorption, remission, and transmission fractions at different layers of the sample with a total 

thickness of 1.5 cm are shown in Figure 4.23. This Figure is plotted for a sample that has a high 

remission. In this sample, there are 50 layers. The thickness of the layers starts from 0.01 m and 

decreases with a rate of 1.01 that finally approaches a thickness of 0.015 m after passing through 50 

layers. The rate of decay in transmission is much faster than the rate of growth in the other two 

fractions. The reason stems from the convergence criterion which has been met very fast. The 

convergence in this model is determined from the absorption coefficient. Dahm and Dahm (1999) 

pointed out that the absorption coefficient is a parameter that converges faster than other coefficients 

such as remission coefficient. In this model the absorption and remission coefficients for each layer  

 
Figure 4.23 Local absorption, reflection and transmission probabilities in the sample for initial 

condition of                         
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are evaluated from the ratio of absorption fraction to the thickness of that infinitesimal layer. 

Therefore, the absorption coefficient is controlled in each iteration. The control process is achieved by 

controlling the absolute values of the absorption coefficients between two consecutive iterations. In 

this model, this absolute value of this difference is chosen to be less than  
 

     
. Hence, one can be 

certain about the convergence of the equations. Also, there are other parameters that increase the 

accuracy. One parameter which increases the accuracy is the thickness of the layers. Increasing the 

number of layers will increase the accuracy of model since the fraction of light is calculated for a 

small thickness. However, by increasing the thickness of layers, the model get closer to a continuum 

one in the limit, so the accuracy decreases and the convergence criterion which is based on absorption 

coefficient does not approach the accuracy of 0.01 for this model. . 

Dahm and Dahm (1999) pointed out that the plane parallel layer is not a descriptor for regions 

of high absorption. In higher absorption samples they suggested that the representative layer theory is 

a more powerful descriptor. Therefore, the linear absorption region is better to be determined from 

absorption fraction and absorption coefficient (Dahm & Dahm, 1999). The linear region is obtained by 

using a least squared regression technique for absorption fraction.  In the model of representative 

layers, a similar approach to the plane parallel model is used to obtain the absorption and remission 

coefficients. Therefore, these coefficients are calculated by dividing the absorption fraction over the 

thickness of the layer. The linear region in Figure 4.24 is determined by a least squared tolerance of 

5% error. In this Figure, it has been shown that this amount of error is achieved when the light passes 

the layer number 7. At this point the absorption fraction is A = 0.484. Another line plotted that is 

obtained from the equation     , where K is the absorption fraction and d is the thickness of the 

layer. This equation is an approximation of the Beer-Lambert law. 

The Beer-Lambert law suggests the absorption and transmission in a sample with the property 

of negligible remission (Dahm & Dahm, 1999). This law suggests that the transmission and absorption 
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through a sample of thickness d in a material for which K is a linear absorption coefficient can be 

determined from the following equations: 

         

(4.4) 

       

These two equations are very important since they have been used in more rigorous models such as 

representative layer theory. Therefore, the equation      is an approximation of linearity since for 

small absorption fractions, the absorption is proportional to sample thickness     . The absorption 

fraction curvature is very close to the line of kd in the first seven layers of the sample. Initial fractions 

of light for this simulation are assumed to be                            . It must be noted 

that regions of extremely high absorption will not be considered in this report since these regions are 

not compatible with the compositional analyses discussed in Section 3.3.3 (Dahm & Dahm, 1999). 

 
Figure 4.24 The illustration of linear region in the model of plane parallel layers determined 

from sum of squared regression.   
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Figures 4.25 and 4.26 illustrate the results of plane parallel layers and the Beer-Lambert law 

for absorption and transmission fractions. The variations of A and T with different initial fractions are 

remarkable.  

 

Figure 4.25 Local absorption fraction for different initial conditions 

 

Figure 4.26  Local transmission fractions for different initial conditions 
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A careful observation of these Figures reveals that the Beer-Lambert law converges faster than plane 

parallel mathematics since the equations used by Beer-Lambert law are exponential. Moreover, one 

can notice that the curve corresponding to highest initial absorption fraction with the values of 

                              has a different behavior than other 4 curves. The reason is that the 

initial absorption fraction in this figure is much higher than the others.  

Application to the system of slurry flow (xylene and ADP) 

The plane parallel model is a good approximation for layers with discontinuities since it can 

predict the fractions of light in layers that are exactly one particle or any integral number of particles 

thick. Hence plane parallel layer is an accurate descriptor of systems that consist of several particles. 

In our model the xylene is a liquid and primary medium. The ADP particles are the secondary phase 

of the sample with their own optical properties. The initial fractions of light are crucial components 

representing the optical properties of the sample in a plane parallel layer model. These fractions for 

the sample of xylene and ADP must be determined through experiment. Chalmers and Griffiths (2002) 

suggested the initial fraction of light for a real sample that consist of particles. These fractions are 

                           .  Table 4.3 illustrates the result of applying this real fraction of 

light to our model of plane parallel layers.  

Using Equation 3.41 which is another interpretation of plane parallel layers, one can use 

geometric progression in the inverse direction. In this method of using plane parallel layers, the initial 

fractions of light are known from experiment, however, the fractions of light are unknown inside the 

sample. By the aid of inverse geometric progression and applying plane parallel layers, one can 

determine the fractions of light in all of the layers of material as shown in Table 4.3. The first row in 

Table 4.3 is the known initial fraction of the sample, however, the fractions for other layers were 

unknown. The extrapolation is a powerful technique that has been applied to plane parallel layers. It 

enables us to use the fractions of the first layer and expand the calculations to find the fractions for 

other layers.  
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Table 4.3 Description of computing absorption and remission coefficients by extrapolating from 

a known sample of thickness d to a sample of infinitesimal thickness. 

Thickness (  

is thickness of 

known 

sample 

    

Absorption 

fraction  

    

Remission 

fraction 

   

Transmission 

fraction 

B 

Remission 

coefficient 

(units are those of d 

                 ) 

K 

Absorption 

coefficient       

(units are those of d 

                 ) 
      

d 0.100000 0.050000 0.850000 0.050000 0.100000 

d/2 0.051355 0.027027 0.921618 0.054054 0.102711 

d/4 0.026021 0.014065 0.959914 0.056259 0.104084 

d/8 0.013097 0.007176 0.979727 0.057410 0.104775 

d/16 0.006570 0.003625 0.989805 0.057997 0.105122 

d/32 0.003290 0.001822 0.994888 0.058295 0.105295 

d/64 0.001647 0.000913 0.997440 0.058444 0.105382 

d/128 0.000824 0.000457 0.998719 0.058519 0.105426 

d/256 0.000412 0.000229 0.999359 0.058556 0.105447 

d/512 0.000206 0.000114 0.999680 0.058575 0.105458 

d/1024 0.000103 0.000057 0.999840 0.058585 0.105464 

d/2048 0.000051 0.000029 0.999920 0.058589 0.105466 

d/4096 0.000026 0.000014 0.999960 0.058592 0.105468 
      

 

 

4.3.2 Model for Assembly of Sheets 

The assembly of sheets model has been introduced in Chapters Two and Three. In this Section the 

results of the model are discussed. This model uses Stokes formulas to solve the problem of remission 

from and transmission through a sample of parallel sheets.  As was mentioned in the previous Chapter, 

a sheet is an object with two large smooth flat surfaces which are parallel to each other. The theory 

uses the reflectance of a surface that is obtained using the Fresnel equation which relates the refractive 

indices of the primary phase and secondary phase. The formulas and the assumptions of this model are 

discussed in detail in Chapter Three. Dahm and Dahm (2007) have pointed out that the model of 

assembly of sheets is also called a series of Stokes sheets. The procedure for modeling is discussed in 

Chapter Three, but a brief recapitulation is given here. The remission, transmission, and absorption 

fractions of light are first calculated based on the assembly of sheets formulas presented in Chapter 

Three. These fractions are for one layer of material, however, the Stokes formulas are used to predict 

the light fractions for different distances through the sample. The refractive indices in this model are 

shown in Table 4.4. The reflection is obtained from the Fresnel law, Equation 4.5 is  reviewed here. 
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According to this equation, the reflection is obtained based on the values of Table 4.4. The reflection 

value is 8.8x10E-5.  

In the near-infrared region, the refractive index of ADP does not change considerably. 

According to the Figure 4.27, the refractive index of ADP changes less than 0.03 in the range of 0.7 to 

1.4   . According to Figure 4.27, an arbitrary value of 1.5242 is chosen. The refractive index of 

xylene is an average in the NIR spectrum which was shown in Table 4.4. 

   
       

 

       
 
 (4.5) 

 

Table 4.4 Refractive index of xylene and ADP 

Refractive index of xylene Refractive index of ADP 

1.49582 1.52424 
 

 

Figure 4.27 Refractive index of ADP as a function of wavelength. The data is collected from 

Refractive Index Database (N.d.) 

Now consider the results of applying the model. The remission is plotted against the distance 

through the sample. This model is achieved by applying the refractive index to Stokes formulas. In 

Figure 4.28, the total absorption fraction through the layers for different initial fractions of light have 

been plotted. It is noticeable that the absorption for this model almost is the same for different initial 
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fractions of light. This phenomenon must be proved analytically. According to the complex formula of 

the model of assembly of sheets, the absorption is dependent on the other two fractions of light; 

remission and transmission. Since absorption does not change by changing the initial fractions of 

light, one can think of the equation of absorption        . According to this equation, if the 

absorption is constant for initial fractions of light, the sum of remission and transmission will be 

constant for various initial conditions. Another reason stems from the refractive indices that are used 

in this model. The optical properties of xylene suggest a considerable absorption in the range of near-

infrared radiation. Having this discussion in mind, one can conclude that the absorption fraction is 

much higher than the other two fractions of light. Hence, the variations in those small fractions of light 

such as remission and transmission do not affect the total absorption very much. 

 

Figure 4.28 Total absorption fraction through the layers of the sample for different initial 

conditions. 

Figure 4.29 presents the remission fraction through a sample of xylene and ADP that is 

modeled by using the assembly of sheets. As expected, the remission from this sample is not as 

considerable as the absorption. Therefore, one can conclude that unlike other theories of diffuse 

reflectance investigated so far (except representative layer theory), the theory for the assembly of 
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sheets is the most applicable theory to the case of a two-phase sample of xylene and ADP. Theory for 

assembly of sheets predicts the fractions of light not only locally but also integrally through the 

sample. Figure 4.29 shows that the effect of other fractions of light on remission is not considerable 

since the initial absorption fraction is changed from 0.01 to 0.775, and the effects on the remission are 

negligible. It can be concluded that the initial remission has the greatest effect on the total remission 

computed from model of assembly of sheets. 

 

Figure 4.29 Total absorption fractions through the layers of the sample for different initial 

conditions 

 

4.3.3 Representative Layer Model 

Representative layer theory (RLT) is the last theorem in this study. It is the newest theory in the field 

of diffuse reflectance that is studied in this thesis. In fact, representative layer theory is an 

approximate method that builds a bridge between the properties of the particles in a layer of a sample 

and the properties of the whole mixture. This theory is capable of modeling particles of different types 

with different size and composition (Chalmers & Griffiths, 2002). In the model of the representative 

layer that we present, hypothetical arbitrary concentration profiles also are used. Computational Fluid 
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Dynamics (CFD) is used to predict the concentration of particles in the sample in the direction 

perpendicular to the axis of pipe. The algorithm and the procedure used to implement the CFD results 

in the model is discussed in detail in Chapter Three. For describing the theoretical scope of 

representative layer theory, one can assert that this theorem is a combination of plane parallel layers, 

Beer-Lambert law, Stokes formulas, and even Kubelka-Munk theory. In this model, each particle is 

characterized by its composition, the cross - sectional surface area that it presents to the light beam 

incident on the sample, its volume, and the density. We assume that the particle cross section is 

circular since the RLT does not have any restriction about the particle shape.  

Modeling for Arbitrary Concentrations 

 One important point about the representative layer model used in this section is the geometry 

of the model. As shown in Figure 4.1, the representative model applied is to a rectangular sample. The 

cross section of this rectangle is a square with sides equal to D. The reason for changing the circular 

cross-section of the pipe into a square is because of the assumption of direct illumination in the 

representative layer model. This assumption makes us build a geometry in which the layers are 

parallel to each other and perpendicular to the incident beam. Before applying CFD concentration 

profiles to the model, six different cases of hypothetical arbitrary concentrations are used. The aim is 

to investigate the results for arbitrary concentration profiles.  

In Table 4.5, hypothetical concentrations are divided into three groups of uniform, linear, and 

parabolic concentrations. These concentrations have been applied to the sample of xylene and ADP 

with the particle sizes of 75  . The uniform concentration profiles are shown in the left side of 

Figure 4.30. On the right side of Figure 4.30, one can see the linear and parabolic concentration 

profiles. The equations for the linear and parabolic concentrations are chosen arbitrarily, however, the 

two lines of on the right side of figure start from 0.2 and 0.3 to compare with uniform concentrations.  
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Table 4.5 Different cases of hypothetical concentrations 
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Figure 4.30 Hypothetical concentration profiles in a sample with particles of 75 micron 

Figure 4.31 illustrates the local and integral absorption fraction of light for uniform 

concentrations. As it was expected, local absorption will remain constant since the concentration of 

particles in each layer is constant. In the diagram on the left, there is a small variation in the very near 

the wall region which occurs because of the numerical convergence of the code. However, this small 
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bump does not appear in the integral absorption since the absorption fractions for the layers are 

summed up layer by layer. Therefore, one can see the starting point of the integral absorption in the 

very near wall region is higher than the constant value of local absorption. For example, for the initial 

concentration of 20%, the constant value of local absorption is A = 0.1, while its integral absorption 

starts from the value of A = 0.15 for the first layer. This phenomenon occurs because of the very small 

variations in local absorption in the layers adjacent to wall, shown in Figure 4.31. 

 
Figure 4.31 Local and integral absorption fraction for the case of uniform concentrations 

Remission fraction of light is plotted in Figure 4.32. In the left side of the figure, the local 

remission is plotted, while in the right, the integral remission shows the variation for this fraction. It 

can be noticed that unlike absorption fraction, the local remission does not show variations in the very 

near wall region. The absorption equation is an exponential function. The function takes the exponent 

of negative values of absorption coefficient, according to Equation 3.84. Therefore, the absorption 

fraction is a nonlinear function of the layers. In addition, the convergence criterion of the model is 
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based on the absorption coefficient which is illustrated in Equation 3.83. Convergence criterion in the 

model representative layer theory is the same as plane parallel layers which checks the absolute values 

of absorption coefficients for convergence of the model. This value must be optimized for different 

initial conditions since it is a very strong function of boundary conditions. For these reasons, the 

jumps in the local remission fraction are very small or negligible for lower initial concentrations to 

higher ones, as shown in Figure 4.32. 

 
Figure 4.32 Local and integral remission fraction for the case of uniform concentrations 

Figure 4.33 illustrates the transmission fraction which is plotted based on the other two fractions since 

the transmission fraction is dependent on the absorption and transmission fraction in the representative 

layer theory. The rate of decrease in the integral transmission is faster than the rate of increase in 

absorption and remission since the integral transmission, unlike local transmission, is not dependent to 

the absorption and remission. Moreover, according to Equation 3.70 the numerator of the integral 

transmission decreases much faster than the remission fraction. The reason stems from the function of 
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  that is much smaller than the   function for the layers far from the wall. The denominator of   is 

local remission which is very high for the regions far from the wall. 

 

Figure 4.33 Local and integral transmission fraction for the case of uniform concentrations 

Figures 4.34 to 4.36 illustrate the absorption and remission of the two linear and parabolic 

concentrations. In Figure 4.34, the local absorption is a strong function of the concentration profiles 

shown in Figure 4.30. Integral absorption fraction in Figure 4.34 illustrates that the three integral 

absorptions for the three concentration profiles are very close to each other. From Y/D =0 to Y/D = 

0.2, in the plot of the integral absorption, the discrepancy between the three concentration profiles is 

not considerable. In the integral absorption shown in the right side of Fogure 4.33, for the region very 

near the wall, from Y/D = 0.003 to Y/D = 0.04, the line with equation C = -0.1(Y/D) + 0.3 has a lower 

absorption than the other two concentration profiles. This is reasonable because the local absorption of 

this line is the lowest. However, in the integral absorption region at point Y/D = 0.04 the absorption of 

this concentration profile jumps higher than the integral absorption of the other two profiles. This may 
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look unreasonable, however, by examining Equation 3.70 one can find the reason. In representative 

layer theory, the integral absorption is dependent to the integral remission and transmission through 

this equation:           . By looking at integral remission in Figure 4.35 we may conclude 

that the integral remission for this linear concentration is the lowest, hence, the integral absorption will 

increase more than the parabolic and other linear concentrations.   

 
 Figure 4.34 Local and integral Absorption fraction for the case of arbitrary linear and 

parabolic concentration profiles 

 Figure 4.35 shows that the integral remission has the same behavior as the local remission. In 

Figure 4.36, the transmission is decreasing very fast at the beginning of the sample when light first 

encounters the first layer and then after that it is almost zero. 

Studying Figures 4.31 to 4.36 suggests that the absorption which occurs for the case of 

uniform concentrations is different from the behavior of linear concentrations.   
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Figure 4.35 Local and integral remission fraction for the case of arbitrary linear and parabolic 

concentration profiles 

 

Figure 4.36 Local and integral transmission fraction for the case of arbitrary linear and 

parabolic concentration profiles 
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According to Figure 4.31 the curves reach the highest value of absorption at two different 

points. The points Y/D = 0.2 and Y/D = 0.04 are the ones at which the integral absorption first reaches 

the maximum. Therefore, the absorption for different initial conditions is different. According to 

Figure 4.34 the Y/D is equal to 0.04 even if the concentration is changed. This model predicts the 

absorption fraction much more accurately than continuum theories. Remission is a very important 

factor in predicting the light travel into the sample of slurry. The remission (Figure 4.32) is also 

increasing layer by layer. The only parameter that decreases is the transmission. The transmission 

reaches zero at about 0.07 of the cross-sectional diameter. Therefore, this sample with the mentioned 

initial fraction of light is saturated at about Y/D = 0.1. One can conclude the penetration depth of light 

is somewhere between Y/D = 0.06 to Y/D = 0.2. If the pipe diameter is D = 0.0254, the depth of 

penetration will be in the range between 0.15 cm to 0.5 cm. 

Modeling for CFD Concentrations 

CFD results are shown in the following different cases in Table 4.6. In addition to the data presented 

below, other particle sizes were simulated in this thesis. Some of the following cases are discussed in 

this section. Since there are many cases, only the cases of ReD = 140000 are plotted here. 

Table 4.6 Different cases of CFD results   

C
F

D
 C

o
n

ce
n

tr
a

ti
o

n
s 

Pipe Reynolds number,      140000   Pipe Reynolds number,      280000 

Particle diameter 

   ( m) 
Concentration (C)  

Particle diameter 

  ( m) 
Concentration (C) 

38 0.05 0.2 0.3  38 0.05 0.2 0.3 

75 0.05 0.2 0.3  75 0.05 0.2 0.3 

150 0.05 0.2 0.3  150 0.05 0.2 0.3 

Figure 4.37 illustrates the CFD concentration profiles for three particle sizes ranging from 38 

microns to 150 microns.  
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This Figure is plotted for 5% initial concentration. Here, the cases for 5% concentrations are 

discussed, while the 20% and 30% concentrations are presented in Appendix A. 

 
 

Figure 4.37 CFD concentration profiles 

From Figures 4.38 to 4.40, one can conclude that the local fractions of light are functions of 

concentration profiles. Figure 4.38 illustrates the local absorption of light for three different particle 

sizes. One can notice that the three absorption curves have not passed through one point such as 

Figure 4.37. This may be because of the effect of concentration on absorption. The absorption is a 

strong function of particle size. The little jumps in the near wall regions are due to the previously 

mentioned effects of absorption coefficient and the numerical convergence criterion. This coefficient 

is adjusted for the whole model but since it is sensitive to absorption, one can see the effects of 

convergence in the very near wall region only for absorption fraction. Figure 4.38 describes the 

remission for the three particle sizes. The remission is also influenced by the concentration profiles, 

however, there are some small differences between Figure 4.37 and Figure 4.39 in the shape of the 

curves.  
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Figure 4.38 Local absorption fraction for particles with initial concentration of 5% in three 

different sizes of 38  , 75   , and 150    

 
Figure 4.39 Local remission fraction for particles with initial concentration of 5% in three 

different sizes of 38  , 75   , and 150    
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Figure 4.40 presents local transmission for the same initial concentration and particle sizes. It shows 

different trends than local remission and absorption and it increases for any isolated representative 

layer inside the sample. 

 
Figure 4.40 Local transmission fraction for particles with initial concentration of 5% in three 

different sizes of 38   , 75   , and 150    
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Figure 4.41 Integral absorption fraction for particles with initial concentration of 5% in three 

different sizes of 38  , 75   , and 150    

 
Figure 4.42 Integral remission fraction for particles with initial concentration of 5% in three 

different sizes of 38  , 75   , and 150    
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Surface area fraction of particles is an important parameter for remission. Remission is also 

influenced by concentration. Comparing Figures 4.37 and 4.39, one can see that particles with 38 

microns have the lowest remission, however, the effect of concentration is stronger since 150 microns 

particles have  the smallest remission away from the wall.  

Like the hypothetical concentration profiles the integral remission is a function of 

concentration and it decrease through the sample. The results in Figure 4.42 are reasonable since the 

concentrations of particles decreased throughout the sample, therefore the remission at any distance 

through the sample decreases. Figure 4.43 shows the transmission through the sample. This Figure 

reveals logical results since the 38 micron particles which had the highest concentrations, represent the 

least transmission. The higher the concentrations of particles in the sample, the lower values of 

transmission obtained. For 38 microns particles, the transmission is zero after Y/D = 0.2 which is 

almost 0.5 cm into the sample depth. However, for 150 micron particles sizes, which have the lowest 

concentrations in the depth of the pipe, the transmission never approaches zero.  

 
Figure 4.43 Integral transmission fraction for particles with initial concentration of 5% in three 

different sizes of 38   , 75   , and 150    
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Dahm Equation and effect of voids 

The Dahm equation is derived in Section 3.3.3 and designated as Equation 3.68. Figure 4.44 presents 

the reflectance function plotted against the ratio of absorption to remission for five different initial 

fractions of light. This figure illustrates the reflection of the sample against the absorption to remission 

function. It illustrates that by increasing the absorption of the sample the reflectance is decreased.  

 
Figure 4.44 Diffuse reflectance obtained based on of Dahm equation for different absorption to 

remission fractions 

Figure 4.45 shows a curve fit to the results in Figure 4.44. The equation is a logarithmic function 

which is derived by fitting a curve through all the points. This equation applies to the case of isotropic 

scattering. The Dahm equation is used in terms of absorption to remission function.  

Figure 4.46  represents the effect of voids on the absorption/remission function. Figure 4.46 

illustrates that for a given void fraction of the sample which is 1-C (concentration), when the 

absorption of a layer increases; the absorption to remission function also increases. Dahm and Dahm 

(2007) derived a similar result for the effects of voids. This effect is important since the slurry is 

moving and the voids change in the cross-section of the pipe. 
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Figure 4. 45 Fitted to the reflectance derived from Dahm equation in all initial fractions showed 

in Figure 4.44. 

 

Figure 4.46 Illustration of the void fraction effects on the absorption/remission function. 
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The absorption/remission function is important since it is proportional to the ration of 

absorption to remission, therefore, the A/R is equivalent to particle size (Dahm & Dahm, 2007). One 

can create the voids by removing the particles; however, the concentrations of particles are changed 

during the time in a slurry pipe. As the void fraction of the layer goes up, the absorption and remission 

of the layer reduce proportionately. For example, if we remove 25% of particles, both A and R will 

have the value of 75% of their previous value (Dahm & Dahm, 2007). Therefore, A/R or 

absorption/remission function will remain constant for that particular layer. However, according to the 

absorption/remission function (Equation 4.6) is derived by Dahm and known as Dahm equation, the 

lower values of A and R will make the term          go up. Therefore, an increase in void 

fraction will increase the A(R,T). 

       
         

 
 (4.6) 

where A is the absorption, R, remission, and T, transmission fractions. Dahm and Dahm (2007) 

present an example that its concept which is the effect of voids is investigated in our model. If the 

absorption of a single layer inside a sample is        , and        , then we have the following 

cases: 

 No voids:         
         

 
 

                

   
   

 For 25% voids:        
                                     

         
  .75 

Hence increasing the voids will increase the absorption to remission function. The particle size also 

has some effects which are discussed in Section 4.2.5 and also were investigated in Chapter Three. In 

Section 3.3.3, the effects of particle size on absorption/remission function are derived. 
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4.4 Comparison of Continuum and Discontinuum Models 

As discussed by Griffiths and Dahm (2008), continuum theories make some common implicit 

assumptions including: (i) the size of particles must be infinitesimal, (ii) the absorption fraction of the 

particles inside the sample must be very small. In continuum theories the size of the finite element 

inside the sample is not determined by the properties of the sample, and it is required to be 

infinitesimal. The integration over the sample is applied by sweeping this infinitesimal thickness over 

the whole sample. Therefore, if there was a discontinuity in the sample composition, they will fail to 

predict the light interactions with the sample.  

Continuum theories have some advantages and disadvantages, The advantage of using them is 

that their function is analytical, so integration may be used to evaluate the sample. However, one 

important problem is to find the boundary conditions. Since the real samples such as slurries have 

discontinuities, the continuum theories are not capable of predicting the light interactions in surfaces 

with distinct boundaries (Chalmers & Griffiths (2002). As noted in Section 4.2, continuum models are 

capable of predicting the samples with very small particles. This point can be observed from Figure 

4.20 and 4.21 where the methods of Kubelka-Munk, Diffusion and the more accurate three flux 

approximation diverge in the regions with larger values of absorption to remission, corresponding to  

larger particles. Therefore, discontinuous mathematics has the advantage of being capable of 

describing real systems. The advantage of using continuum theories is related to their simpler models. 

They may be used for preliminary estimates before implementing the discontinuum mathematics. To 

clarify this, one can discuss determining the range of absorption and remission coefficients by 

continuum theories before applying discontinuum theories. These two coefficients must be obtained 

from experiments. However, when the experimental results are not available, the continuum theories 

can be used to estimate them before implementing in discontinuum models. These coefficients are 

applied to check the convergence of models such as plane parallel or representative layer theory. This 



152 

 

was on important advantage of using continuum theories beside discontinuum ones. The scattering of 

light is a discontinuous phenomena. Also, these discontinuities influence the absorption and remission 

fractions. Hence, these theories are not reliable in predicting the light interactions with particles. 

 In this thesis, after investigating the results from continuum and discontinuum theories, one 

can conclude that the discontinuum theories are more suitable to apply to slurries since they do not 

have a limiting assumption about not having discontinuity. Moreover, they  can provide a relationship 

between the fundamental physical properties of the particles such as refractive index, volume, density, 

area, and shape. A few weaknesses of continuum mathematics are:  

1. The Kubelka-Munk theory is not proportional to the concentration of an absorber (Dahm & 

Dahm, 2007). Kubleka-Munk’s and also Schuster’s theories assume the particles to be 

homogeneous and nothing is defined for non-homogeneous concentrations in this theory. 

2. Kubelka-Munk’s and Schuster’s theorems are two flux models, and are not suitable for even 

the isotropic scattering assumptions (Dahm & Dahm, 2007). The small particle assumption is 

a limiting case applied to the continuum theories to make them applicable for dilute samples. 

This assumption does not match with slurries since the particle sizes and concentrations are 

much greater than dilute suspensions of particles. 

3. In two flux models, the scattering and absorptions are not independent since the equations are 

solved simultaneously. 

Finally, comparing the results of continuum theories to the discontinuum theories, one may be 

confident about using models that can predict high discontinuities that are available in a slurry sample. 

Discontinuum theories showed reasonable results. Using representative layer theory enables predicting 

the fractions of light in the layers of materials as isolated sheets. Using Stokes formulas with 

representative layer results, enables predicting the total fractions of light in the sample. The 

penetration depth of the sample was another important factor which can be predicted. 
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4.5 Depth of Penetration 

Prediction of the depth of penetration of light inside the sample of a slurry is the goal presented in this 

thesis. In this section, a brief discussion about depth of penetration will be reviewed. According to the 

methodology reviewed by Griffiths and Dahm (2008) for applying diffuse reflection to the purposes 

like the quality control of a sample, investigating the actual distance that the light penetrates the 

sample is required. Therefore, the sample volume that is under investigation is equivalent to the 

radiation penetration depth or the effective sample size      and it is essential to be calculated. 

Berntsson et. al (1999) presented a new method for calculating the effective sample size of 

pharmaceutical powders using the three flux approximation. Berntsson et. al (1999) has proposed an 

empirical method known as the variable layer thickness (VLT) approach. In the study, the effective 

sample size      is defined as the mass per area of the sample. The diffuse reflectance of this sample 

     
   

      is 98% of the diffuse reflectance of a corresponding optically thick sample. The 

procedure for obtaining this variable is not analytical since some of the parameters must be 

determined from experiments. The scattering and absorption coefficients are required from 

experiment. Then by substituting into the following equation, one can determine the albedo.  

   
  

     
 (4.7) 

where,    is the albedo,    is the radiation transfer absorption coefficient and    is the scattering 

coefficient. The optical depth is calculated from: 

           (4.8) 

where x is the geometrical depth of sample. Then the effective value of albedo   
  and the optical 

path length are determined from the following: 

            (4.9) 
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where g is the cosine of scattering angles which was introduced in Chapter Three. Then the effectve 

albedo is evaluated from:  

  
  

       

       
 

(4.10) 

The effective albedo also may be calculated from the three flux approximation using the following 

formula: 

 

  
   

  
  

 
      

 

   

 

       
 

(4.11) 

Then, the diffuse reflectance is computed as a function of the scattering and absorption coefficients for 

each wavelength, for an increasing sample thickness. Then the results are compared to the diffuse 

reflectance of an infinitely thick sample. The sample thickness for which the above 98% limit is 

reached corresponds to the effective sample size     . This method is applicable when an 

experimental setup is available to predict the optical properties of the sample.  

 

4.6 Summary 

In summary, for the results of the representative layer model, one can conclude that the depth of 

penetration of light inside the sample may be estimated from the fractions of light. The fractions of 

light represent the behavior of light interactions in a particulate medium like the slurry of xylene and 

ADP. The integral absorption, remission, and transmission fractions are analyzed with an accurate 

model by combining the representative layer theory with Stokes formulas. When there is no 

transmission in the sample, the sensor which is located in one side of the sample is not able to see the 

light transmitting to the other side of the sample. Also, if the reflection goes down in the sample 

because of the decrease in concentrations of particles, the possibilities of sensing the reflected beam 

will decrease. For the absorption the same procedure happens. The absorption fraction is a function of 
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reflectance and transmittance. Therefore, if the reflection and transmission both go down the 

absorption will go up. The threshold for this model is the sensitivity of the sensor. If the tolerance of 

the sensor is high to predict very small intensities, then the absolute zero value of the reflection and 

transmission generates the threshold. As discussed in Section 2.3.10, the reflection is a transmission 

but in the opposite direction. Therefore, the zero value for the threshold is obtainable from either 

remission or transmission. This zero value is obtained by transmission fraction in this Chapter. The 

transmission and reflections are high in the beginning of the process at which the light encounters the 

sample. However, after a little depth into the sample, they decrease. The reduction in the fraction may 

be sensible to the sensors, however, when they approach zero values, they may not able to sense the 

light fraction. Therefore, finding a value as a threshold that matches with the capabilities of sensor in 

sensing the light when it has a small intensity is a work which can be performed in the future. 
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CHAPTER V 

 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

The present work is dedicated to the study of diffuse reflectance theories to model near-infrared 

phenomena in slurries to predict the depth of penetration of NIR light in the sample consisting of two-

phase solid-liquid flows. The approaches are successfully developed based on optical theories that are 

capable of determining the light interactions with particles in a particle-laden slurry sample. The 

modeling was performed in MATLAB and FORTAN. The models were developed based on two 

major approaches in the field of optical methods; continuum and discontinuumm theories. Five 

theories in the field of continuum theories and three in the field of discontinuum are modeled. In this 

thesis, two areas of continuum and discontinuum theories were observed to have different results in 

modeling the light interactions with the sample. The results of the theorems focused on the fractions of 

light; absorption, remission, and transmission. These fractions have been found from implementing 

the models to the case of a slurry and then solving the model. Some of the input parameters used in 

these models are inherently experimental. They are different for each material. In the present work, 

the refractive indices, the cosine of scattering angles, and the albedo were three parameters which 

were chosen based on similar cases in the literature. However, for modeling of the three flux 

approximation, choosing the albedo from similar cases in the literature was impossible. Therefore, a 

range of values was defined to build the model and run the code. Hence, the results are a function of
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different input parameters. There are two parameters, which are basic parameters in optical modeling; 

absorption coefficient and reflection or scattering coefficient. A considerable part of the models was 

dedicated to determining the absorption and reflection coefficient. In some of the continuum theories, 

such as radiative transfer approximation, three flux, Kubelka-Munk, diffusion, and Schuster’s theory, 

they were evaluated from other inherent parameters such as absorption and reflection power of 

materials. However, for the theories of plane parallel mathematics, assembly of sheets and 

representative layer theory, a mathematical approach is built based on plane parallel layers to find the 

absorption and remission coefficients. Choosing the models was based on their applications in 

modeling NIR radiation in particulate materials and then their assumptions. In the following sections, 

the conclusions for the modeling approaches, as well as the recommendations to improve the models 

are summarized. 

 

 

5.1 Conclusion of continuum theories 

Continuum theories are applied to the case of slurry flow in a sample under direct illumination. 

Theories of Schuster, Kubleka-Munk, three flux, radiative transfer, and diffusion were chosen based 

upon similar applications to powdered samples. 

Schuster’s theory is a two-flux approach only applied to the case of homogeneous slurry fluid 

flow. The total reflectance from the sample depends on the boundary conditions of the differential 

equations, which are solved by integrating over an optically thick sample. The boundary conditions 

applied to the boundary of integration. The equations were solved for different boundary conditions to 

give information about different absorption and remission coefficients.  The converged values of total 

reflections and the distance at which they converged differed with the boundary conditions. However, 

they are not very different and almost occur in the edge of the sample. Schuster’s theory is powerful 
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for homogeneous samples. The weaknesses of this theory are that it cannot be used in a general case 

of a slurry sample. It can be used only for dilute suspensions of particles. 

Kubelka-Munk (K-M) theory is another two-flux model, which is applied to several initial 

conditions to find a reciprocal reflectance, which is known as      
 

  
 . The compared diffuse 

reflectance matches exactly the model derived by Bull (1990). The diffuse reflection versus the 

absorption/remission fraction demonstrates the overall reflectance as a function of equivalent particle 

sizes. Hence, by knowing the particle size in our model in units of 2  , the diffuse reflectance of a 

uniform sample of xylene and ADP can be obtained. The information required from an experiment is 

only the 1/e penetration depth. This model is very powerful only in the samples without 

discontinuities. K-M theory has many assumptions that limit the modeling. The uniformity of the 

sample under consideration of K-M theory is a problem for non-uniform samples of slurries. Also, K-

M theory assumes that the level of absorption in particles should be small. However, this may 

contradict absorption in the mixture of xylene and ADP since xylene is a good absorber and ADP 

particles absorb light. Therefore, Kubelka assumed that the particle sizes should be infinitesimal. 

However, this is a qualitative assumption, and no suggested values were found in the literature for this 

assumption. This is one of the weaknesses of K-M theory. Recently, many revisions to K-M theory 

have been proposed. The absorption and scattering coefficients should be found from experiments for 

use with this theory. 

Radiation transfer is a fundamental theory in the field of diffuse reflectance. The 

approximation that is offered here has been applied to the optical modeling of human blood using 

near-infrared radiation. The model of Patterson (1989) suggested a procedure to find the diffuse 

reflection similar to Schuster’s model. This procedure finds diffuse reflection for different initial 

conditions. This model is capable of estimating the diffuse reflection of light if the initial fractions of 

light and the cosines of scattering angles are given.  



159 

 

The three-flux approximation technique is newer than the other continuum techniques. This 

model successfully predicted the values of reflection as a function of absorption to reflection 

coefficient. The three flux model presented in this work provide results in good agreement to those of 

Burger et al. (1997).  

The diffusion approximation is the last continuum theory. In this method the model was built 

based on the work presented by Kienle et al. (1998). The model results showed that the diffuse 

reflection decreases as the absorption increases because the reflectance decreases as the particle size 

increases. Moreover, this model has reasonable results. 

 

5.2 Conclusions of discontinuum theories 

Plane parallel mathematics is a fundamental model in the field of discontinuum optical theories. This 

model is very simple in its mathematics. However, the results show that it can be applied to the case of 

slurries since these materials have discontinuities. The fractions of light for absorption, remission and 

transmission are found by using several inputs of initial fraction of light. The absorption and remission 

coefficients are estimated based on the fractions of light in each layer of the sample.  The results of the 

plane parallel model were compared to Chalmers and Griffiths (2002) and show that the this model 

has a good match with real samples. 

The assembly of sheets model applies three equations that are developed based on plane 

parallel mathematics, but are more sophisticated than the equations of plane parallel theory. Moreover, 

the Stokes formula is used in this model to find integral fractions of light. The refractive index is an 

important input for this model. The absorption of this model is not sensitive to the initial fraction of 

light; however, remission is very small, and almost negligible. The local fraction of light is evaluated 

based on a technique similar to plane parallel layers. This theory is as powerful as the representative 

layer theory in predicting the integral fraction of light. 
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The last and the most important model is representative layer theory. This model has been 

used to predict the reflectance, transmittance, and absorbance of a series of plane parallel layers for a 

slurry of xylene and ADP. The representative layer model is applied to two different cases. 

Concentration profiles from CFD results are used to find the volume fraction that is presented by the 

Dahm equations. The integral fractions of light were modeled based on Stokes formulas. Arbitrary 

solids concentration profiles were used to test the model. The results were reasonable. The depth at 

which the light can penetrate into the sample may be found from the integral fractions of light. 

 

5.3 Recommendations 

The recommendations for application of the continuum and discontinuum models are discussed. For 

future study, the following general tasks should be performed. 

 The effects of light interaction with individual particles should be studied by applying 

appropriate particle theories such as Mie scattering theory. 

 The effects of particle motion and turbulent fluctuation on light fractions is an important stage 

in modeling NIR radiation through a multiphase fluid flow and should be studied. 

 The effects of different particles with various shapes and polydisperse sizes on the radiation 

of light into the slurry fluid flow should be examined. 

 The refractive index, absorbing power, remitting power, absorption coefficient, and remission 

coefficient of the slurry of xylene and ADP should be determined through experiments. 

 A more sophisticated and numerically intensive method combining Mie scattering with 

Monte – Carlo simulation should be used to predict the absorption and scattering coefficients 

and the transport of light in the slurry. 
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APPENDICES 
 

 

There are two different codes in this Appendix. In Section A.1 the code for Continuum theories are modeled based on Matlab 2010. In Appendix A.2 the 

scripts of representative layer model is illustrated. 

 

A.1 MATLAB Script for continuum models and theory for assembly of sheets  

 

% ######################################################################### 
%       Continuum Theories of Diffuse Reflection + Assembly of Sheets 
% ######################################################################### 

  
clear 
clc 
close all 
state = 7 
iter = 100; 

  
%##################### Plane Parallel Mathematics ######################### 

  
% Initial Conditions ****************************************************** 

  
T(1,1) = 0.9; R(1,1) = 0.06; A(1,1) = 0.04;                 
T(1,2) = 0.85; R(1,2) = 0.1; A(1,2) = 0.05;                 
T(1,3) = 0.7; R(1,3) = 0.2; A(1,3) = 0.1; 
T(1,4) = 0.55; R(1,4) = 0.25; A(1,4) = 0.2;
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T(1,5) = 0.35; R(1,5) = 0.35; A(1,5) = 0.3; 
T(1,6) = 0.2; R(1,6) = 0.4; A(1,6) = 0.4; 
T(1,7) = 0.1; R(1,7) = 0.45; A(1,7) = 0.45; 

  
% ****************** Three Flux approximation (with albedo) *************** 
% My Model 
Albedo = 0.01:0.01:1; 
EaOEs = 1./Albedo -1; 
KOS_3flux = (8/3)*EaOEs; 
KOS_3flux = 5.54*EaOEs; 
R_3flux_dir = (-(4*EaOEs + 6/5)+ 2*(4*EaOEs.^2 + 3*EaOEs).^0.5)./(2*EaOEs-6/5); 
RHS = (1-R_3flux_dir)^2/(2*R_3flux_dir)*(6/5)/(R_3flux_dir+4); 
w0_s = 1/(RHS+1); 

  
R_3flux_dif = 1 + KOS_3flux - (KOS_3flux.^2 + 2*KOS_3flux).^0.5; 

  
% Kuhn Model 
data1 = load('3FluxKuhn.mat','albedo_kuhn');albedo_kuhn(:,1) = data1.albedo_kuhn; 
data2 = load('3FluxKuhn.mat','R_inf_dir');R_inf_dir(:,1) = data2.R_inf_dir; 
data3 = load('3FluxKuhn.mat','R_inf_dif');R_inf_dif(:,1) = data3.R_inf_dif; 
data4 = load('3FluxKuhn.mat','EaOEs_Gio_dir');EaOEs_Gio_dir(:,1) = data4.EaOEs_Gio_dir; 
data5 = load('3FluxKuhn.mat','EaOEs_Gio_dif');EaOEs_Gio_dif(:,1) = data5.EaOEs_Gio_dif; 
data6 = load('3FluxKuhn.mat','EaOEs_3flux_dir');EaOEs_3flux_dir(:,1) = data6.EaOEs_3flux_dir; 
data7 = load('3FluxKuhn.mat','EaOEs_3flux_dif');EaOEs_3flux_dif(:,1) = data7.EaOEs_3flux_dif; 
EaOEs_Kuhn = 1./albedo_kuhn -1; 

  
 

%########################## Beer-Lambert Approach ##################### 

  
for j = 1:state    
 

    % ##################################################################### 
    %                     Initialization of Models 
    % ##################################################################### 
    %########################### Bull (1990) ############################## 

  
    F(1,j) = (-A(1,j)/R(1,j)) + ((A(1,j)/R(1,j))^2 + 1)^0.5;      % Initial Remission function 
    U(1,j) = log10(1/F(1,j));                                     % Initial reciprocal reflectance 

    Z(1,j) = A(1,j)/R(1,j);                                       % Absorption to Remission ratio 
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    %########################## Beer-Lambert Approach ##################### 

     
    Layer(1,j) = 0.001;                                       % Thickness of first layer 
    K(1,j)= A(1,j)/Layer(1,j);                                % Initial Absorption Coefficient 
    S (1,j) = R(1,j)/Layer(1,j); 
    Absorb(1,j) = 1-exp(-(K(1,j)).* Layer(1,j));              % Absorption fraction (Beer-Lambert law) 
    Kd(1,j) = (K(1,j)).* Layer(1,j);                          % Absorption fraction of Beer_Lambert law 

times the thickness of that specific layer 
    Trans(1,j)= exp(-Kd(1,j));                                % Transmission of the Beer_Lambert law 
    thick_sum(1,j) = Layer(1,j);                              % this is a variable that sum up all the 

layers to give us sample overall thickness 

     
    %######################## Three Flux Approximation #################### 

     
    alpha_O_sigma(1,j) = (3/5)*((1-R(1,j))^2)/(R(1,j)*(R(1,j)+4)); 
    Alpha_O_sigma(1,j) = 0.5*(A(1,j)/R(1,j)); 
    R_3flux(1,j) = (-(4*Alpha_O_sigma(1,j)+(6/5))+ 2* 

(4*(Alpha_O_sigma(1,j)^2)+3*Alpha_O_sigma(1,j))^0.5)/((2*Alpha_O_sigma(1,j))-(6/5)); 

     
    %######################## Diffusion Theory ############################ 

     
    R_diffusion(1,j) = 1/(1+ 3*Alpha_O_sigma(1,j)+(5/3)*(3*(Alpha_O_sigma(1,j))^2 + 

3*Alpha_O_sigma(1,j))^0.5); 

     
    %######################## Schuster's Theory ########################### 

     
    R_Schu(1,j) = (1-(K(1,j)/(K(1,j)+2*S(1,j)))^0.5)/((1+(K(1,j)/(K(1,j)+2*S(1,j)))^0.5)); 
    KoS(1,j) = K(1,j)/S(1,j); 
    alphosig (1,j) = 0.5 * KoS(1,j); 

     
%     %######################## Radiative Transfer ########################## 

  
    refract = 1.5054; 
    g = 0; 
    rd = -1.44*refract^(-2)+0.71*refract^(-1)+0.668+0.0636*refract; 
    ap(1,j) = (1 - g)*S(1,j)/(K(1,j) + (1-g)*S(1,j)); 
    kk = (1 + rd)/(1 - rd); 
    R_rte(1,j) = ap(1,j)/(1+2*kk(1,j)*(1-refract) + (1+2*kk/3)*(3*(1-ap(1,j)))^0.5); 
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    R_rte_2(1,j) = 1/(1 + 1.5 * KoS(1,j) + (5/3)*(0.75*(KoS(1,j))^2 + 1.5 * KoS(1,j))^0.5); 

     
    %######################## Theory for Sheets and an assembly of sphere 

     
    n0 = 1.00027417;                    % The refractive index of air 
    n1 = 1.52424;                       % The refractive index of ADP 
    n2 = 1.49582;                       % The refractive index of Xylene 
    r0 = ((n1-n2)^2)/(n1+n2)^2; 
    B0 = 2*r0/(1-r0); 
    B(1,j) = R(1,j)/Layer(1,j); 
    k(1,j) = (K(1,j)+(B(1,j)-B0)*(1-r0^2))*(1-r0^2); 
    X(1,j) = Layer(1,j); 
    R1(1,j) = r0 + (1-r0)^2 * r0 * exp(-2*k(1,j)*Layer(1,j))/(1-exp(-2*k(1,j)*Layer(1,j))*(r0)^2); 
    T1(1,j) = (1-r0)^2 * r0 * exp(-k(1,j)*Layer(1,j))/(1-exp(-2*k(1,j)*Layer(1,j))*(r0)^2); 
    A1(1,j) = 1 - R1(1,j) - T1(1,j); 
    Delta(1,j) = ((1+R1(1,j)+T1(1,j))*(1+R1(1,j)-T1(1,j))*(1 - R1(1,j)+ T1(1,j))*(1 - R1(1,j) - 

T1(1,j)))^0.5; 
    Omega(1,j) = (1+R1(1,j)+(T1(1,j))^2+Delta(1,j))/(2*R1(1,j)); 
    Psi(1,j) = (1+R1(1,j)+(T1(1,j))^2+Delta(1,j))/(2*T1(1,j)); 
    Tx(1,j) = (Omega(1,j)-(1/Omega(1,j)))/(Omega(1,j)*Psi(1,j)^X(1,j) - (1/(Omega(1,j)*Psi(1,j)^X(1,j)))); 
    Rx(1,j) = (Psi(1,j).^X(1,j) - (1/Psi(1,j).^X(1,j)))/(Omega(1,j)*Psi(1,j).^X(1,j) - 

(1/(Omega(1,j)*Psi(1,j).^X(1,j)))); 
    Ax(1,j) = 1 - Tx(1,j) - Rx(1,j); 

     
    %######################## Dahm_1 Equation1 ############################## 

     
    Dahm_1(1,j) = (2-A(1,j)-2*R(1,j))*A(1,j)/(2*R(1,j));       % (1-R)^2/R = Dahm_1 
    Delt(1,j) = (Dahm_1(1,j)+2)^2 - 4; 
    R_Dahm_1(1,j)= ((Dahm_1(1,j)+2) + (Delt(1,j))^0.5)/2;      %  R_Dahm_1 = ((Dahm_1(1,j)+2) - 

(Delt(1,j))^0.5)/2; 
    aOr(1,j) = (1-F(1,j))^2/(F(1,j)*(2-A(1,j)-R(1,j))); 
    K_M(1,j) = (1-F(1,j))^2/F(1,j); 

     
    %######################## Kubelka - Munk ############################## 

     
    % 1:-------------- To find the T and R from differential equation 

     
    S(1,j) = 1-A(1,j);  % scattering 
    kappa(1,j) = (K(1,j)*(K(1,j) + 2*S(1,j)))^0.5; 
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    Beta(1,j) = kappa(1,j)/(K(1,j) + 2*S(1,j)); 
    T_diff(1,j) = (4*Beta(1,j))/((1+(Beta(1,j))^2)*exp(kappa(1,j)* Layer(1,j))); 
    R_diff(1,j)= (1 - Beta(1,j)^2)*(exp(kappa(1,j)* Layer(1,j))-exp(-kappa(1,j)* 

Layer(1,j)))/((1+Beta(1,j))^2*exp(kappa(1,j)* Layer(1,j))-(1-Beta(1,j))^2*exp(-kappa(1,j)* Layer(1,j))); 
    d_diff(1,j) = log((2*Beta(1,j) + (Beta(1,j).^4.*T(1,j)^2 - 2*Beta(1,j)^2*T(1,j).^2 + 4*Beta(1,j).^2 + 

T(1,j)^2).^(1/2))/(T(1,j).*Beta(1,j).^2 + 2*T(1,j).*Beta(1,j) + T(1,j)))./kappa(1,j); 

     
     

% 2:-------------- To find Thickness where J=0 by trial and error 

     
    samp_thick = 0.0127; 
    A_const_O_I0(1,j) = - (1 - Beta(1,j))* exp(-kappa(1,j) * samp_thick) / ((1 + Beta(1,j))^2 * 

exp(kappa(1,j) * samp_thick) - (1-Beta(1,j))^2 * exp(-kappa(1,j) * samp_thick)); 
    B_const_O_I0(1,j) = + (1 + Beta(1,j))* exp(+kappa(1,j) * samp_thick) / ((1 + Beta(1,j))^2 * 

exp(kappa(1,j) * samp_thick) - (1-Beta(1,j))^2 * exp(-kappa(1,j) * samp_thick)); 
    Ix(1,j) = A_const_O_I0(1,j) * (1 - Beta(1,j))* exp(+kappa(1,j)*X(1,j)) + B_const_O_I0(1,j) * (1 + 

Beta(1,j))* exp(-kappa(1,j)*X(1,j)); 
    Jx(1,j) = A_const_O_I0(1,j) * (1 + Beta(1,j))* exp(+kappa(1,j)*X(1,j)) + B_const_O_I0(1,j) * (1 - 

Beta(1,j))* exp(-kappa(1,j)*X(1,j)); 

     
    % ************************************************************************* 

     
    for i = 1:iter 
        T(i+1,j) = (T(i,j) * T(1,j))/(1-  R(i,j)*R(1,j)); 
        R(i+1,j) = R(i,j) + ((T(i,j))^2)*R(1,j)/(1 - R(1,j)*R(1,j)); 
        A(i+1,j) = 1 - T(i+1,j) - R(i+1,j); 
        Layer(i+1,j) = (Layer(i,j)).*1.001; 
        K(i+1,j) = A(i+1,j)/(Layer(i+1,j)); 
        S(i+1,j) = R(i+1,j) / Layer(i+1,j); 
        F(i+1,j) = (1+A(i+1,j)/R(i+1,j)) - ((1+A(i+1,j)/R(i+1,j))^2 - 1)^0.5; 
        U(i+1,j) = log10(1/F(i+1,j)); 
        Z(i+1,j) = A(i+1,j)/R(i+1,j); 
        Absorb(i+1,j) = 1-exp(-(K(i+1,j))* Layer(i+1,j)); 
        Kd(i+1,j) = (K(i+1,j))* Layer(i+1,j); 
        Trans(i+1,j)= exp(-Kd(i+1,j)); 
        thick_sum(i+1,j) = Layer(i+1,j)+ thick_sum(i,j); 

         
        %######################## Schuster's Theory ########################### 
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        R_Schu(i+1,j) = (1- 

(K(i+1,j)/(K(i+1,j)+2*S(i+1,j)))^0.5)/((1+(K(i+1,j)/(K(i+1,j)+2*S(i+1,j)))^0.5)); 
        KoS(i+1,j) = K(i+1,j)/S(i+1,j); 
        alphosig (i+1,j) = 0.5 * KoS(i+1,j); 

         
        %######################## Radiative Transfer ########################## 

         
        refract = 1.5054; 
        g = 0.8; 
        rd = -1.44*refract^(-2)+0.71*refract^(-1)+0.668+0.0636*refract; 
        ap (i+1,j) = (1 - g)*S(i+1,j)/(K(i+1,j) + (1-g)*S(i+1,j)); 
        kk = (1 + rd)/(1-rd); 
        R_rte(i+1,j) = ap(i+1,j)/(1+2*kk*(1-refract) + (1+2*kk/3)*(3*(1-ap(i+1,j)))^0.5); 

         
        R_rte_2(i+1,j) = 1/(1 + 1.5 * KoS(i+1,j) + (5/3)*(0.75*(KoS(i+1,j))^2 + 1.5 * KoS(i+1,j))^0.5); 

         
        %**************** Theory for Sheets and an assembly of sphere******* 

         
        n0 = 1.00027417;                    % The refractive index of air 
        n1 = 1.52424;                       % The refractive index of ADP 
        n2 = 1.49582;                       % The refractive index of Xylene 
        r0 = ((n1-n2)^2)/(n1+n2)^2; 
        B0 = 2*r0/(1-r0); 
        B(i+1,j) = R(i+1,j)/Layer(1,j); 
        k(i+1,j) = (K(i+1,j)+(B(i+1,j)-B0)*(1-r0^2))*(1-r0^2); 

         
        X(i+1,j) = X(i,j) + Layer(i+1,j); 
        R1(i+1,j) = r0 + (1-r0)^2 * r0 * exp(-2*k(i+1,j)*Layer(i+1,j))/(1-exp(-

2*k(i+1,j)*Layer(i+1,j))*(r0)^2); 
        T1(i+1,j) = (1-r0)^2 * r0 * exp(-k(i+1,j)*Layer(i+1,j))/(1-exp(-2*k(i+1,j)*Layer(i+1,j))*(r0)^2); 
        A1(i+1,j) = 1 - R1(i+1,j) - T1(i+1,j); 
        Delta(i+1,j) = ((1+R1(i+1,j)+T1(i+1,j))*(1+R1(i+1,j)-T1(i+1,j))*(1 - R1(i+1,j)+ T1(i+1,j))*(1 - 

R1(i+1,j) - T1(i+1,j)))^0.5; 
        Omega(i+1,j) = (1+R1(i+1,j)+(T1(i+1,j))^2+Delta(i+1,j))/(2*R1(i+1,j)); 
        Psi(i+1,j) = (1+R1(i+1,j)+(T1(i+1,j))^2+Delta(i+1,j))/(2*T1(i+1,j)); 

         
        Tx(i+1,j) = (Omega(i+1,j)-(1./Omega(i+1,j)))/(Omega(i+1,j)*Psi(i+1,j).^X(i+1,j) - 

(1/(Omega(i+1,j)*Psi(i+1,j).^X(i+1,j)))); 
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        Rx(i+1,j) = (Psi(i+1,j).^X(i+1,j) - (1/Psi(i+1,j).^X(i+1,j)))/(Omega(i+1,j)*Psi(i+1,j).^X(i+1,j) - 

(1/(Omega(i,j)*Psi(i+1,j).^X(i+1,j)))); 
        Ax(i+1,j) = 1 - Tx(i+1,j) - Rx(i+1,j); 

         
        %*******************Dahm_1 Equation ******************************* 
        Dahm_1(i+1,j) = (2-A(i+1,j)-2*R(i+1,j))*A(i+1,j)/(2*R(i+1,j));       % (1-R)^2/R = Dahm_1 
        Delt(i+1,j) = (Dahm_1(i+1,j)+2)^2 - 4; 
        R_Dahm_1(i+1,j)= ((Dahm_1(i+1,j)+2) + (Delt(i+1,j))^0.5)/2; 
        aOr(i+1,j) = (1-F(i+1,j))^2/(F(i+1,j)*(2-A(i+1,j)-R(i+1,j))); 
        K_M(i+1,j) = (1-F(i+1,j))^2/F(i+1,j); 
        Alpha_O_sigma(i+1,j) = 0.5*(A(i+1,j)/R(i+1,j)); 
        R_3flux(i+1,j) = (-(4*Alpha_O_sigma(i+1,j)+(6/5))+ 2* 

(4*(Alpha_O_sigma(i+1,j)^2)+3*Alpha_O_sigma(i+1,j))^0.5)/((2*Alpha_O_sigma(i+1,j))-(6/5)); 
        R_diffusion(i+1,j) = 1/(1+ 3*Alpha_O_sigma(i+1,j)+(5/3)*(3*(Alpha_O_sigma(i+1,j))^2 + 

3*Alpha_O_sigma(i+1,j))^0.5); 

         
         

 

  %######################## Kubelka-Munk theory ##################### 
        % 1:-------------- To find the T and R from differential equation 
        S(i+1,j) = 1-A(i+1,j);  % scattering 
        kappa(i+1,j) = 0.1*(K(i+1,j)*(K(i+1,j) + 2*S(i+1,j)))^0.5; 
        Beta(i+1,j) = kappa(i+1,j)/(K(i+1,j) + 2*S(i+1,j)); 
        T_diff(i+1,j) = (4*Beta(i+1,j))/((1+(Beta(i+1,j))^2)*exp(kappa(i+1,j)* Layer(i+1,j))); 
        R_diff(i+1,j)= (1 - Beta(i+1,j)^2)*(exp(kappa(i+1,j)* Layer(i+1,j))-exp(-kappa(i+1,j)* 

Layer(i+1,j)))/((1+Beta(i+1,j))^2*exp(kappa(i+1,j)* Layer(i+1,j))-(1-Beta(i+1,j))^2*exp(-kappa(i+1,j)* 

Layer(i+1,j))); 
        d_diff(i+1,j) = log((2*Beta(i+1,j) + (Beta(i+1,j)^4.*T(i+1,j).^2 - 2*Beta(i+1,j).^2*T(i+1,j).^2 + 

4*Beta(i+1,j).^2 + T(i+1,j)^2).^(1/2))/(T(i+1,j)*Beta(i+1,j).^2 + 2*T(i+1,j).*Beta(i+1,j) + 

T(i+1,j)))/kappa(i+1,j); 
        % 2:-------------- To find Thickness where J=0 by trial and error 
        samp_thick = .1; 
        A_const_O_I0(i+1,j) = - (1 - Beta(i+1,j))* exp(-kappa(i+1,j) * samp_thick) / ((1 + Beta(i+1,j))^2 * 

exp(kappa(i+1,j) * samp_thick) - (1-Beta(i+1,j))^2 * exp(-kappa(i+1,j) * samp_thick)); 
        B_const_O_I0(i+1,j) = + (1 + Beta(i+1,j))* exp(+kappa(i+1,j) * samp_thick) / ((1 + Beta(i+1,j))^2 * 

exp(kappa(i+1,j) * samp_thick) - (1-Beta(i+1,j))^2 * exp(-kappa(i+1,j) * samp_thick)); 
        Ix(i+1,j) = A_const_O_I0(i+1,j) * (1 - Beta(i+1,j))* exp(+kappa(i+1,j)*X(i+1,j)) + 

B_const_O_I0(i+1,j) * (1 + Beta(i+1,j))* exp(-kappa(i+1,j)*X(i+1,j)); 
        Jx(i+1,j) = A_const_O_I0(i+1,j) * (1 + Beta(i+1,j))* exp(+kappa(i+1,j)*X(i+1,j)) + 

B_const_O_I0(i+1,j) * (1 - Beta(i+1,j))* exp(-kappa(i+1,j)*X(i+1,j)); 
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        if (abs(K(i+1,j)-K(i,j)) < 0.0001) 
            break 
        end 
    end 
    x(j) = i; 
end 
 

 

A.2 MATLAB scripts for the Representative Layer Theory 

First, the main code for the representative layer model is illustrated. This code calls three other codes that belong to the three particle sizes corresponding 

to 38, 75, and 150 microns.  In this section three MATLAB m-files which take the CFD concentrations and import them to the main code is illustrated.  

A.2.1 Main code of representative layer model 

 
close all 
clear 
clc 
format short g 

  
D = 0.0254;                     % D: Diameter of pipe 
rhop = 1480;                    % rhop: Density of ADP 
rhof = 870;                     % rhof: Density of Xylene 
L = 2;                      % L: Length of the pipe 
n_38 = round(0.0254/(38*10^-6));% n: Number of layers 
n_75 = round(0.0254/(75*10^-6)); 
n_150 = round(0.0254/(150*10^-6)); 
thk_38 = D/n_38; 
thk_75 = D/n_75; 
thk_150 = D/n_150; 

  
inicon = [5 20 30];             % inicon: initial concentration 



 

 

1
7

3 

no_add = 6;                     % no_add: number of additional(assumed) concentrations to the fluent 

concentrations 

  
[Sp38_14,Sp38_28,Np_lay38_14,Np_lay38_28,dp_38,y_38] = micron38(D,rhop,rhof,L,thk_38,inicon,no_add); 
[Sp75_14,Sp75_28,Np_lay75_14,Np_lay75_28,dp_75,y_75] = micron75(D,rhop,rhof,L,thk_75,inicon,no_add); 
[Sp150_14,Sp150_28,Np_lay150_14,Np_lay150_28,dp_150,y_150] = 

micron150(D,rhop,rhof,L,thk_150,inicon,no_add); 

  
%% Preallocarion ************************************************************ 
T_38 = zeros(1,n_38-2);R_38 = zeros(1,n_38-2); A_38=zeros(1,n_38-2);k_38 = zeros(1,n_38-2); b_38 = 

zeros(1,n_38-2); 

  
A_38(1) = 0.5; 
R_38(1) = 0.4; 
T_38(1) = 0.1; 
k_38(1) = A_38(1)/thk_38; 
b_38(1) = R_38(1)/thk_38; 
for i = 1:n_38-1 
    T_38(i+1) = (T_38(i) * T_38(1))/(1-  R_38(i)*R_38(1)); 
    R_38(i+1) = R_38(i) + ((T_38(i))^2)*R_38(1)/(1 - R_38(i)*R_38(1)); 
    A_38(i+1) = 1 - T_38(i+1) - R_38(i+1); 
    k_38(i+1) = A_38(i+1)/thk_38; 
    b_38(i+1) = R_38(i+1)/thk_38; 
end 

  

  
A_75(1) = 0.6; 
R_75(1) = 0.3; 
T_75(1) = 0.1; 
k_75(1) = A_75(1)/thk_75; 
b_75(1) = R_75(1)/thk_75; 
for i = 1:n_75-1 
    T_75(i+1) = (T_75(i) * T_75(1))/(1-  R_75(i)*R_75(1)); 
    R_75(i+1) = R_75(i) + ((T_75(i))^2)*R_75(1)/(1 - R_75(i)*R_75(1)); 
    A_75(i+1) = 1 - T_75(i+1) - R_75(i+1); 
    k_75(i+1) = A_75(i+1)/thk_75; 
    b_75(i+1) = R_75(i+1)/thk_75; 
end 
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T_150 = zeros(1,n_150-2);R_150 = zeros(1,n_150-2); A_150=zeros(1,n_150-2);k_150 = zeros(1,n_150-2); b_150 = 

zeros(1,n_150-2); 

  
A_150(1) = 0.5; 
R_150(1) = 0.4; 
T_150(1) = 0.1; 
k_150(1) = A_150(1)/thk_150; 
b_150(1) = R_150(1)/thk_150; 

  
for i = 1:n_150-1 
    T_150(i+1) = (T_150(i) * T_150(1))/(1-  R_150(i)*R_150(1)); 
    R_150(i+1) = R_150(i) + ((T_150(i))^2)*R_150(1)/(1 - R_150(i)*R_150(1)); 
    A_150(i+1) = 1 - T_150(i+1) - R_150(i+1); 
    k_150(i+1) = A_150(i+1)/thk_150; 
    b_150(i+1) = R_150(i+1)/thk_150; 
end 

  
%% Preallocation ********************************************************* 
A1_38u_14 = cell(1,3);R1_38u_14 = cell(1,3);T1_38u_14 = cell(1,3); 
A1_38u_28 = cell(1,3);R1_38u_28 = cell(1,3);T1_38u_28 = cell(1,3); 

  
A1_75u_14 = cell(1,3+no_add);R1_75u_14 = cell(1,3+no_add);T1_75u_14 = cell(1,3+no_add); 
A1_75u_28 = cell(1,3);R1_75u_28 = cell(1,3);T1_75u_28 = cell(1,3); 

  
A1_150u_14 = cell(1,3);R1_150u_14 = cell(1,3);T1_150u_14 = cell(1,3); 
A1_150u_28 = cell(1,3);R1_150u_28 = cell(1,3);T1_150u_28 = cell(1,3); 

  

  
x_38 = 1:n_38; 
x_75 = 1:n_75; 
x_150 = 1:n_150; 

  
for j = 1:size(inicon,2) 
    A1_38u_14{j} = Np_lay38_14{j} .*Sp38_14{j}.*(1-exp(-k_38.*dp_38)); 
    R1_38u_14{j} = Np_lay38_14{j}.*Sp38_14{j} .*b_38 * dp_38; 
    T1_38u_14{j} = 1-A1_38u_14{j}-R1_38u_14{j};  
 

    Omega_38u_14{j} = (1 + R1_38u_14{j} + (T1_38u_14{j}).^2 + Delta_38u_14{j})./(2*R1_38u_14{j}); 
    Psi_38u_14{j} = (1 + R1_38u_14{j} + (T1_38u_14{j}).^2 + Delta_38u_14{j})./(2*T1_38u_14{j}); 
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    Rx_38u_14{j} = Omega_38u_14{j}.*(Psi_38u_14{j}.^(2*x_38)-

1)./((Omega_38u_14{j}.*Psi_38u_14{j}.^x_38).^2-1); 
    Ax_38u_14{j} = 1 - Rx_38u_14{j} - Tx_38u_14{j}; 

  

     
    A1_38u_28{j} = Np_lay38_28{j} .*Sp38_28{j}.*(1-exp(-k_38.*dp_38)); 
    R1_38u_28{j} = Np_lay38_28{j}.*Sp38_28{j} .*b_38 * dp_38; 
    T1_38u_28{j} = 1-A1_38u_28{j}-R1_38u_14{j}; 
    Delta_38u_28{j} = sqrt((1+R1_38u_28{j}+T1_38u_28{j}).*(1+R1_38u_28{j}-T1_38u_28{j}).*(1-

R1_38u_28{j}+T1_38u_28{j}).*(1-R1_38u_28{j}-T1_38u_28{j})); 
    Omega_38u_28{j} = (1 + R1_38u_28{j} + (T1_38u_28{j}).^2 + Delta_38u_28{j})./(2*R1_38u_28{j}); 
    Psi_38u_28{j} = (1 + R1_38u_28{j} + (T1_38u_28{j}).^2 + Delta_38u_28{j})./(2*T1_38u_28{j}); 
    Rx_38u_28{j} = Omega_38u_28{j}.*(Psi_38u_28{j}.^(2*x_38)-

1)./((Omega_38u_28{j}.*Psi_38u_28{j}.^x_38).^2-1); 
    Tx_38u_28{j} = (1./Psi_38u_28{j}.^x_38).*(Omega_38u_28{j}.^2 - 1)./(Omega_38u_28{j}.^2-

1./Psi_38u_28{j}.^(2*x_38)); 
    Ax_38u_28{j} = 1 - Rx_38u_28{j} - Tx_38u_28{j}; 

     
    R1_75u_14{j} = Np_lay75_14{j}.*Sp75_14{j} .*b_75 * dp_75; R1_75u_14{j+no_add-size(inicon,2)} = 

Np_lay75_14{j+no_add-size(inicon,2)}.*Sp75_14{j+no_add-size(inicon,2)} .*b_75 * dp_75; R1_75u_14{j+no_add} 

= Np_lay75_14{j+no_add}.*Sp75_14{j+no_add} .*b_75 * dp_75; 
    T1_75u_14{j} = 1-A1_75u_14{j}-R1_75u_14{j};T1_75u_14{j+no_add-size(inicon,2)} = 1-A1_75u_14{j+no_add-

size(inicon,2)}-R1_75u_14{j+no_add-size(inicon,2)};T1_75u_14{j+no_add} = 1-A1_75u_14{j+no_add}-

R1_75u_14{j+no_add}; 
    Delta_75u_14{j} = sqrt((1+R1_75u_14{j}+T1_75u_14{j}).*(1+R1_75u_14{j}-T1_75u_14{j}).*(1-

R1_75u_14{j}+T1_75u_14{j}).*(1-R1_75u_14{j}-T1_75u_14{j}));Delta_75u_14{j+no_add-size(inicon,2)} = 

sqrt((1+R1_75u_14{j+no_add-size(inicon,2)}+T1_75u_14{j+no_add-size(inicon,2)}).*(1+R1_75u_14{j+no_add-

size(inicon,2)}-T1_75u_14{j+no_add-size(inicon,2)}).*(1-R1_75u_14{j+no_add-

size(inicon,2)}+T1_75u_14{j+no_add-size(inicon,2)}).*(1-R1_75u_14{j+no_add-size(inicon,2)}-

T1_75u_14{j+no_add-size(inicon,2)}));Delta_75u_14{j+no_add} = 

sqrt((1+R1_75u_14{j+no_add}+T1_75u_14{j+no_add}).*(1+R1_75u_14{j+no_add}-T1_75u_14{j+no_add}).*(1-

R1_75u_14{j+no_add}+T1_75u_14{j+no_add}).*(1-R1_75u_14{j+no_add}-T1_75u_14{j+no_add})); 
    Omega_75u_14{j} = (1 + R1_75u_14{j} + (T1_75u_14{j}).^2 + 

Delta_75u_14{j})./(2*R1_75u_14{j});Omega_75u_14{j+no_add-size(inicon,2)} = (1 + R1_75u_14{j+no_add-

size(inicon,2)} + (T1_75u_14{j+no_add-size(inicon,2)}).^2 + Delta_75u_14{j+no_add-

size(inicon,2)})./(2*R1_75u_14{j+no_add-size(inicon,2)});Omega_75u_14{j+no_add} = (1 + R1_75u_14{j+no_add} 

+ (T1_75u_14{j+no_add}).^2 + Delta_75u_14{j+no_add})./(2*R1_75u_14{j+no_add}); 
    Rx_75u_14{j} = Omega_75u_14{j}.*(Psi_75u_14{j}.^(2*x_75)-

1)./((Omega_75u_14{j}.*Psi_75u_14{j}.^x_75).^2-1);Rx_75u_14{j+no_add-size(inicon,2)} = 

Omega_75u_14{j+no_add-size(inicon,2)}.*(Psi_75u_14{j+no_add-size(inicon,2)}.^(2*x_75)-
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1)./((Omega_75u_14{j+no_add-size(inicon,2)}.*Psi_75u_14{j+no_add-size(inicon,2)}.^x_75).^2-

1);Rx_75u_14{j+no_add} = Omega_75u_14{j+no_add}.*(Psi_75u_14{j+no_add}.^(2*x_75)-

1)./((Omega_75u_14{j+no_add}.*Psi_75u_14{j+no_add}.^x_75).^2-1); 
    Tx_75u_14{j} = (1./Psi_75u_14{j}.^x_75).*(Omega_75u_14{j}.^2 - 1)./(Omega_75u_14{j}.^2-

1./Psi_75u_14{j}.^(2*x_75));Tx_75u_14{j+no_add-size(inicon,2)} = (1./Psi_75u_14{j+no_add-

size(inicon,2)}.^x_75).*(Omega_75u_14{j+no_add-size(inicon,2)}.^2 - 1)./(Omega_75u_14{j+no_add-

size(inicon,2)}.^2-1./Psi_75u_14{j+no_add-size(inicon,2)}.^(2*x_75));Tx_75u_14{j+no_add} = 

(1./Psi_75u_14{j+no_add}.^x_75).*(Omega_75u_14{j+no_add}.^2 - 1)./(Omega_75u_14{j+no_add}.^2-

1./Psi_75u_14{j+no_add}.^(2*x_75)); 
    Ax_75u_14{j} = 1 - Rx_75u_14{j} - Tx_75u_14{j};Ax_75u_14{j+no_add-size(inicon,2)} = 1 - 

Rx_75u_14{j+no_add-size(inicon,2)} - Tx_75u_14{j+no_add-size(inicon,2)};Ax_75u_14{j+no_add} = 1 - 

Rx_75u_14{j+no_add} - Tx_75u_14{j+no_add}; 

     
    A1_75u_28{j} = Np_lay75_28{j} .*Sp75_28{j}.*(1-exp(-k_75.*dp_75)); 
    R1_75u_28{j} = Np_lay75_28{j}.*Sp75_28{j} .*b_75 * dp_75; 
    T1_75u_28{j} = 1-A1_75u_28{j}-R1_75u_28{j}; 
    Delta_75u_28{j} = sqrt((1+R1_75u_28{j}+T1_75u_28{j}).*(1+R1_75u_28{j}-T1_75u_28{j}).*(1-

R1_75u_28{j}+T1_75u_28{j}).*(1-R1_75u_28{j}-T1_75u_28{j})); 
    Omega_75u_28{j} = (1 + R1_75u_28{j} + (T1_75u_28{j}).^2 + Delta_75u_28{j})./(2*R1_75u_28{j}); 
    Psi_75u_28{j} = (1 + R1_75u_28{j} + (T1_75u_28{j}).^2 + Delta_75u_28{j})./(2*T1_75u_28{j}); 
    Rx_75u_28{j} = Omega_75u_28{j}.*(Psi_75u_28{j}.^(2*x_75)-

1)./((Omega_75u_28{j}.*Psi_75u_28{j}.^x_75).^2-1); 
    Tx_75u_28{j} = (1./Psi_75u_28{j}.^x_75).*(Omega_75u_28{j}.^2 - 1)./(Omega_75u_28{j}.^2-

1./Psi_75u_28{j}.^(2*x_75)); 
    Ax_75u_28{j} = 1 - Rx_75u_28{j} - Tx_75u_28{j}; 

     
    A1_150u_14{j} = Np_lay150_14{j} .*Sp150_14{j}.*(1-exp(-k_150.*dp_150)); 
    R1_150u_14{j} = Np_lay150_14{j}.*Sp150_14{j} .*b_150 * dp_150; 
    T1_150u_14{j} = 1-A1_150u_14{j}-R1_150u_14{j}; 
    Delta_150u_14{j} = sqrt((1+R1_150u_14{j}+T1_150u_14{j}).*(1+R1_150u_14{j}-T1_150u_14{j}).*(1-

R1_150u_14{j}+T1_150u_14{j}).*(1-R1_150u_14{j}-T1_150u_14{j})); 
    Omega_150u_14{j} = (1 + R1_150u_14{j} + (T1_150u_14{j}).^2 + Delta_150u_14{j})./(2*R1_150u_14{j}); 
    Psi_150u_14{j} = (1 + R1_150u_14{j} + (T1_150u_14{j}).^2 + Delta_150u_14{j})./(2*T1_150u_14{j}); 
    Rx_150u_14{j} = Omega_150u_14{j}.*(Psi_150u_14{j}.^(2*x_150)-

1)./((Omega_150u_14{j}.*Psi_150u_14{j}.^x_150).^2-1); 
    Tx_150u_14{j} = (1./Psi_150u_14{j}.^x_150).*(Omega_150u_14{j}.^2 - 1)./(Omega_150u_14{j}.^2-

1./Psi_150u_14{j}.^(2*x_150)); 
    Ax_150u_14{j} = 1 - Rx_150u_14{j} - Tx_150u_14{j}; 
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    A1_150u_28{j} = Np_lay150_28{j} .*Sp150_28{j}.*(1-exp(-k_150.*dp_150)); 
    R1_150u_28{j} = Np_lay150_28{j}.*Sp150_28{j} .*b_150 * dp_150; 
    T1_150u_28{j} = 1-A1_150u_28{j}-R1_150u_28{j}; 
    Delta_150u_28{j} = sqrt((1+R1_150u_28{j}+T1_150u_28{j}).*(1+R1_150u_28{j}-T1_150u_28{j}).*(1-

R1_150u_28{j}+T1_150u_28{j}).*(1-R1_150u_28{j}-T1_150u_28{j})); 
    Omega_150u_28{j} = (1 + R1_150u_28{j} + (T1_150u_28{j}).^2 + Delta_150u_28{j})./(2*R1_150u_28{j}); 
    Psi_150u_28{j} = (1 + R1_150u_28{j} + (T1_150u_28{j}).^2 + Delta_150u_28{j})./(2*T1_150u_28{j}); 
    Rx_150u_28{j} = Omega_150u_28{j}.*(Psi_150u_28{j}.^(2*x_150)-

1)./((Omega_150u_28{j}.*Psi_150u_28{j}.^x_150).^2-1); 
    Tx_150u_28{j} = (1./Psi_150u_28{j}.^x_150).*(Omega_150u_28{j}.^2 - 1)./(Omega_150u_28{j}.^2-

1./Psi_150u_28{j}.^(2*x_150)); 
    Ax_150u_28{j} = 1 - Rx_150u_28{j} - Tx_150u_28{j}; 
end 

  
%% Converting 18 cells to matrices 18*3 = 54 Matrices: ******************** 
A38u14_5 = cat(2,A1_38u_14{1});A38u14_20 = cat(2,A1_38u_14{2});A38u14_30 = cat(2,A1_38u_14{3}); 
A38u28_5 = cat(2,A1_38u_28{1});A38u28_20 = cat(2,A1_38u_28{2});A38u28_30 = cat(2,A1_38u_28{3}); 
A75u28_5 = cat(2,A1_75u_28{1});A75u28_20 = cat(2,A1_75u_28{2});A75u28_30 = cat(2,A1_75u_28{3}); 
A150u14_5 = cat(2,A1_150u_14{1});A150u14_20 = cat(2,A1_150u_14{2});A150u14_30 = cat(2,A1_150u_14{3}); 
A150u28_5 = cat(2,A1_150u_28{1});A150u28_20 = cat(2,A1_150u_28{2});A150u28_30 = cat(2,A1_150u_28{3}); 

  
R38u14_5 = cat(2,R1_38u_14{1});R38u14_20 = cat(2,R1_38u_14{2});R38u14_30 = cat(2,R1_38u_14{3}); 
R38u28_5 = cat(2,R1_38u_28{1});R38u28_20 = cat(2,R1_38u_28{2});R38u28_30 = cat(2,R1_38u_28{3}); 
R75u14_5 = cat(2,R1_75u_14{1});R75u14_20 = cat(2,R1_75u_14{2});R75u14_30 = 

cat(2,R1_75u_14{3});R75u14_5_unif = cat(2,R1_75u_14{4});R75u14_20_unif = cat(2,R1_75u_14{5});R75u14_30_unif 

= cat(2,R1_75u_14{6});R_lin20 = cat(2,R1_75u_14{7});R_lin30 = cat(2,R1_75u_14{8});R_parabolic = 

cat(2,R1_75u_14{9}); 
R75u28_5 = cat(2,R1_75u_28{1});R75u28_20 = cat(2,R1_75u_28{2});R75u28_30 = cat(2,R1_75u_28{3}); 
R150u14_5 = cat(2,R1_150u_14{1});R150u14_20 = cat(2,R1_150u_14{2});R150u14_30 = cat(2,R1_150u_14{3}); 
R150u28_5 = cat(2,R1_150u_28{1});R150u28_20 = cat(2,R1_150u_28{2});R150u28_30 = cat(2,R1_150u_28{3}); 

  
T38u14_5 = cat(2,T1_38u_14{1});T38u14_20 = cat(2,T1_38u_14{2});T38u14_30 = cat(2,T1_38u_14{3}); 
T38u28_5 = cat(2,T1_38u_28{1});T38u28_20 = cat(2,T1_38u_28{2});T38u28_30 = cat(2,T1_38u_28{3}); 
T75u14_5 = cat(2,T1_75u_14{1});T75u14_20 = cat(2,T1_75u_14{2});T75u14_30 = 

cat(2,T1_75u_14{3});T75u14_5_unif = cat(2,T1_75u_14{4});T75u14_20_unif = cat(2,T1_75u_14{5});T75u14_30_unif 

= cat(2,T1_75u_14{6});T_lin20 = cat(2,T1_75u_14{7});T_lin30 = cat(2,T1_75u_14{8});T_parabolic = 

cat(2,T1_75u_14{9}); 
T75u28_5 = cat(2,T1_75u_28{1});T75u28_20 = cat(2,T1_75u_28{2});T75u28_30 = cat(2,T1_75u_28{3}); 
T150u14_5 = cat(2,T1_150u_14{1});T150u14_20 = cat(2,T1_150u_14{2});T150u14_30 = cat(2,T1_150u_14{3}); 
T150u28_5 = cat(2,T1_150u_28{1});T150u28_20 = cat(2,T1_150u_28{2});T150u28_30 = cat(2,T1_150u_28{3}); 
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% Preallocation ********************************************************* 
cumA3814_5 = zeros(1,n_38-1);cumA3814_20 = zeros(1,n_38-1);cumA3814_30 = zeros(1,n_38-1);   
cumA3828_5 = zeros(1,n_38-1);cumA3828_20 = zeros(1,n_38-1);cumA3828_30 = zeros(1,n_38-1);   
cumA7514_5 = zeros(1,n_75-1);cumA7514_20 = zeros(1,n_75-1);cumA7514_30 = zeros(1,n_75-1); 

 
cumA7528_5 = zeros(1,n_75-1);cumA7528_20 = zeros(1,n_75-1);cumA7528_30 = zeros(1,n_75-1); 
cumA15014_5 = zeros(1,n_150-1);cumA15014_20 = zeros(1,n_150-1);cumA15014_30 = zeros(1,n_150-1); 
cumA15028_5 = zeros(1,n_150-1);cumA15028_20 = zeros(1,n_150-1);cumA15028_30 = zeros(1,n_150-1); 

  
cumR3814_5 = zeros(1,n_38-1);cumR3814_20 = zeros(1,n_38-1);cumR3814_30 = zeros(1,n_38-1);   
cumR3828_5 = zeros(1,n_38-1);cumR3828_20 = zeros(1,n_38-1);cumR3828_30 = zeros(1,n_38-1);   
cumR7514_5 = zeros(1,n_75-1);cumR7514_20 = zeros(1,n_75-1);cumR7514_30 = zeros(1,n_75-1); 

 
cumR7528_5 = zeros(1,n_75-1);cumR7528_20 = zeros(1,n_75-1);cumR7528_30 = zeros(1,n_75-1); 
cumR15014_5 = zeros(1,n_150-1);cumR15014_20 = zeros(1,n_150-1);cumR15014_30 = zeros(1,n_150-1); 
cumR15028_5 = zeros(1,n_150-1);cumR15028_20 = zeros(1,n_150-1);cumR15028_30 = zeros(1,n_150-1); 

  
cumT3814_5 = zeros(1,n_38-1);cumT3814_20 = zeros(1,n_38-1);cumT3814_30 = zeros(1,n_38-1);   
cumT3828_5 = zeros(1,n_38-1);cumT3828_20 = zeros(1,n_38-1);cumT3828_30 = zeros(1,n_38-1);   
cumT7514_5 = zeros(1,n_75-1);cumT7514_20 = zeros(1,n_75-1);cumT7514_30 = zeros(1,n_75-1); 

 

cumT7528_5 = zeros(1,n_75-1);cumT7528_20 = zeros(1,n_75-1);cumT7528_30 = zeros(1,n_75-1); 
cumT15014_5 = zeros(1,n_150-1);cumT15014_20 = zeros(1,n_150-1);cumT15014_30 = zeros(1,n_150-1); 
cumT15028_5 = zeros(1,n_150-1);cumT15028_20 = zeros(1,n_150-1);cumT15028_30 = zeros(1,n_150-1); 

  
for m = 1:n_38-1 
    cumA3814_5(m) = sum(A38u14_5(1:m));cumA3814_20(m) = sum(A38u14_20(1:m));cumA3814_30(m) = 

sum(A38u14_30(1:m)); 
    cumA3828_5(m) = sum(A38u28_5(1:m));cumA3828_20(m) = sum(A38u28_20(1:m));cumA3828_30(m) = 

sum(A38u28_30(1:m)); 

     
    cumR3814_5(m) = sum(R38u14_5(1:m));cumR3814_20(m) = sum(R38u14_20(1:m));cumR3814_30(m) = 

sum(R38u14_30(1:m)); 
    cumR3828_5(m) = sum(R38u28_5(1:m));cumR3828_20(m) = sum(R38u28_20(1:m));cumR3828_30(m) = 

sum(R38u28_30(1:m)); 

    
    cumT3814_5(m) = sum(T38u14_5(1:m));cumT3814_20(m) = sum(T38u14_20(1:m));cumT3814_30(m) = 

sum(T38u14_30(1:m)); 
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    cumT3828_5(m) = sum(T38u28_5(1:m));cumT3828_20(m) = sum(T38u28_20(1:m));cumT3828_30(m) = 

sum(T38u28_30(1:m)); 
end 

  
for m = 1:n_75-1 
    cumA7514_5(m) = sum(A75u14_5(1:m));cumA7514_20(m) = sum(A75u14_20(1:m));cumA7514_30(m) = 

sum(A75u14_30(1:m)); 
    cumA7528_5(m) = sum(A75u28_5(1:m));cumA7528_20(m) = sum(A75u28_20(1:m));cumA7528_30(m) = 

sum(A75u28_30(1:m)); 

     
    cumR7514_5(m) = sum(R75u14_5(1:m));cumR7514_20(m) = sum(R75u14_20(1:m));cumR7514_30(m) = 

sum(R75u14_30(1:m)); 
    cumR7528_5(m) = sum(R75u28_5(1:m));cumR7528_20(m) = sum(R75u28_20(1:m));cumR7528_30(m) = 

sum(R75u28_30(1:m)); 

     
    cumT7514_5(m) = sum(T75u14_5(1:m));cumT7514_20(m) = sum(T75u14_20(1:m));cumT7514_30(m) = 

sum(T75u14_30(1:m)); 

 

    cumT7528_5(m) = sum(T75u28_5(1:m));cumT7528_20(m) = sum(T75u28_20(1:m));cumT7528_30(m) = 

sum(T75u28_30(1:m)); 
end 

  
for m = 1:n_150-1 
    cumA15014_5(m) = sum(A150u14_5(1:m));cumA15014_20(m) = sum(A150u14_20(1:m));cumA15014_30(m) = 

sum(A150u14_30(1:m)); 
    cumA15028_5(m) = sum(A150u28_5(1:m));cumA15028_20(m) = sum(A150u28_20(1:m));cumA15028_30(m) = 

sum(A150u28_30(1:m)); 

     
    cumR15014_5(m) = sum(R150u14_5(1:m));cumR15014_20(m) = sum(R150u14_20(1:m));cumR15014_30(m) = 

sum(R150u14_30(1:m)); 
    cumR15028_5(m) = sum(R150u28_5(1:m));cumR15028_20(m) = sum(R150u28_20(1:m));cumR15028_30(m) = 

sum(R150u28_30(1:m));  

     
    cumT15014_5(m) = sum(T150u14_5(1:m));cumT15014_20(m) = sum(T150u14_20(1:m));cumT15014_30(m) = 

sum(T150u14_30(1:m)); 
    cumT15028_5(m) = sum(T150u28_5(1:m));cumT15028_20(m) = sum(T150u28_20(1:m));cumT15028_30(m) = 

sum(T150u28_30(1:m)); 
end 
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PS = [38, 75, 150]; 

 

A.2.2 MATLAB input script for 38 micorn 

function [Sp_14,Sp_28,Np_lay_14,Np_lay_28,dp,y] = micron38(D,rhop,rhof,L,thk,inicon,no_add) 

  
dp = 38*10^-6; 
n_38 = round(0.0254/(dp)); 
thk_38 = D/n_38; 
y = thk_38:thk_38:D; 
wdth = D; 
polyorder = 6; 
vol_lay = L*thk*wdth; 

  
cxls_Re14 = cell(size(inicon,2),1); 
cxls_Re28 = cell(size(inicon,2),1); 
yOD_Re14 = cell(size(inicon,2),1); 
yOD_Re28 = cell(size(inicon,2),1); 

  
data1 = load('concentration_38um.mat','cxls_Re14_5'); cxls_Re14{1} = data1.cxls_Re14_5; 
data2 = load('concentration_38um.mat','cxls_Re14_20'); cxls_Re14{2} = data2.cxls_Re14_20; 
data3 = load('concentration_38um.mat','cxls_Re14_30'); cxls_Re14{3} = data3.cxls_Re14_30; 
data4 = load('concentration_38um.mat','cxls_Re28_5'); cxls_Re28{1} = data4.cxls_Re28_5; 
data5 = load('concentration_38um.mat','cxls_Re28_20'); cxls_Re28{2} = data5.cxls_Re28_20; 
data6 = load('concentration_38um.mat','cxls_Re28_30'); cxls_Re28{3} = data6.cxls_Re28_30; 
data7 = load('concentration_38um.mat','yOD_Re14_5'); yOD_Re14{1} = data7.yOD_Re14_5; 
data8 = load('concentration_38um.mat','yOD_Re14_20'); yOD_Re14{2} = data8.yOD_Re14_20; 
data9 = load('concentration_38um.mat','yOD_Re14_30'); yOD_Re14{3} = data9.yOD_Re14_30; 
data10 = load('concentration_38um.mat','yOD_Re28_5'); yOD_Re28{1} = data10.yOD_Re28_5; 
data11 = load('concentration_38um.mat','yOD_Re28_20'); yOD_Re28{2} = data11.yOD_Re28_20; 
data12 = load('concentration_38um.mat','yOD_Re28_30'); yOD_Re28{3} = data12.yOD_Re28_30; 

  
% Preallocation ********************************************************* 
coeff_Re14 = cell(1,size(inicon,2)); coeff_Re28 = cell(1,size(inicon,2)); 
c_fittoxls_Re14 = cell(1,size(inicon,2)); c_fittoxls_Re28 = cell(1,size(inicon,2)); 
c_Re14 = cell(1,size(inicon,2)); c_Re28 = cell(1,size(inicon,2)); 
volp_14 = cell(1,size(inicon,2)); volp_28 = cell(1,size(inicon,2)); 
volf_14 = cell(1,size(inicon,2)); volf_28 = cell(1,size(inicon,2)); 
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Np_lay_14 = cell(1,size(inicon,2)); Np_lay_28 = cell(1,size(inicon,2)); 
mp_14 = cell(1,size(inicon,2)); mp_28 = cell(1,size(inicon,2)); 
wp_14 = cell(1,size(inicon,2)); wp_28 = cell(1,size(inicon,2)); 
vp_14 = cell(1,size(inicon,2)); vp_28 = cell(1,size(inicon,2)); 
sp_14 = cell(1,size(inicon,2)); sp_28 = cell(1,size(inicon,2)); 
void_14 = cell(1,size(inicon,2)); void_28 = cell(1,size(inicon,2)); 
Vp_14 = cell(1,size(inicon,2)); Vp_28 = cell(1,size(inicon,2)); 
Sp_14 = cell(1,size(inicon,2)); Sp_28 = cell(1,size(inicon,2)); 

  
for i = 1:size(inicon,2) 

     
    coeff_Re14{i} = polyfit(yOD_Re14{i},cxls_Re14{i},polyorder); 
    coeff_Re28{i} = polyfit(yOD_Re28{i},cxls_Re28{i},polyorder); 

     
    c_fittoxls_Re14{i} = polyval(coeff_Re14{i},yOD_Re14{i});        % c_fittoxls_Re14: The values of the 

trendline @ Y/D values obtained from the Fluent 
    c_fittoxls_Re28{i} = polyval(coeff_Re28{i},yOD_Re28{i}); 

     
    c_Re14{i} = polyval(coeff_Re14{i},y/D);                  % Particle Size = 5: fitted concentration 

equation as a function of y/D 
    c_Re28{i} = polyval(coeff_Re28{i},y/D);                  % Particle Size = 5: fitted concentration 

equation as a function of y/D 

     
    volp_14{i} = c_Re14{i} .* vol_lay; 
    volp_28{i} = c_Re28{i} .* vol_lay; 

     
    volf_14{i} = vol_lay.* (1-c_Re14{i}); 
    volf_28{i} = vol_lay.* (1-c_Re28{i}); 

     
    Np_lay_14{i} = volp_14{i}/(pi*dp^3/6); 
    Np_lay_28{i} = volp_28{i}/(pi*dp^3/6); 

     
    mp_14{i} = rhop * volp_14{i}; 
    mp_28{i} = rhop * volp_28{i}; 

     
    wp_14{i} = mp_14{i}./ (rhop*volp_14{i} + rhof * volf_14{i}); 
    wp_28{i} = mp_28{i}./ (rhop*volp_28{i} + rhof * volf_28{i}); 

     
    vp_14{i} = (wp_14{i}/(rhop))./(Np_lay_14{i}.*wp_14{i}/(rhop));          % vp: for each particle 
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    vp_28{i} = (wp_28{i}/(rhop))./(Np_lay_28{i}.*wp_28{i}/(rhop)); 

     
    sp_14{i} = (wp_14{i}./(rhop*dp))/(Np_lay_14{i}.*wp_14{i}/(rhop*dp)); 
    sp_28{i} = (wp_28{i}./(rhop*dp))/(Np_lay_28{i}.*wp_28{i}/(rhop*dp)); 

     
    void_14{i} = 1- c_Re14{i}; 
    void_28{i} = 1- c_Re28{i}; 

     
    Vp_14{i} = (1-void_14{i}).*vp_14{i}; 
    Vp_28{i} = (1-void_28{i}).*vp_28{i}; 

     
    Sp_14{i} = (1-void_14{i}).*sp_14{i}; 
    Sp_28{i} = (1-void_28{i}).*sp_28{i}; 

     
end 

  

 

A.2.3 MATLAB input script for 75 micron 

function [Sp_14,Sp_28,Np_lay_14,Np_lay_28,dp,y] = micron75(D,rhop,rhof,L,thk,inicon,no_add) 

  
dp = 75*10^-6; 
n_75 = round(0.0254/(dp)); 
thk_75 = D/n_75; 
y = thk_75:thk_75:D;%-D/n_75; 
wdth = D; 
polyorder = 12; 
vol_lay = L*thk*wdth; 

  
data1 = load('concentration_75um.mat','cxls_Re14_5'); cxls_Re14{1} = data1.cxls_Re14_5; 
data2 = load('concentration_75um.mat','cxls_Re14_20'); cxls_Re14{2} = data2.cxls_Re14_20; 
data3 = load('concentration_75um.mat','cxls_Re14_30'); cxls_Re14{3} = data3.cxls_Re14_30; 
data4 = load('concentration_75um.mat','cxls_Re14_5_unif'); cxls_Re14{4} = data4.cxls_Re14_5_unif;           

% 5% uniform concentration of Excel Sheet Concentration New, Sheet 75(Re=14000) Column AG and greater 
data5 = load('concentration_75um.mat','cxls_Re14_20_unif'); cxls_Re14{5} = data5.cxls_Re14_20_unif;         

% 20% uniform concentration of Excel Sheet Concentration New, Sheet 75(Re=14000) Column AG and greater 
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data6 = load('concentration_75um.mat','cxls_Re14_30_unif'); cxls_Re14{6} = data6.cxls_Re14_30_unif;         

% 30% uniform concentration of Excel Sheet Concentration New, Sheet 75(Re=14000) Column AG and greater 
data7 = load('concentration_75um.mat','cxls_Re28_5'); cxls_Re28{1} = data7.cxls_Re28_5; 
data8 = load('concentration_75um.mat','cxls_Re28_20'); cxls_Re28{2} = data8.cxls_Re28_20; 
data9 = load('concentration_75um.mat','cxls_Re28_30'); cxls_Re28{3} = data9.cxls_Re28_30; 
data10 = load('concentration_75um.mat','yOD_Re14_5'); yOD_Re14{1} = data10.yOD_Re14_5; 
data11 = load('concentration_75um.mat','yOD_Re14_20'); yOD_Re14{2} = data11.yOD_Re14_20; 
data12 = load('concentration_75um.mat','yOD_Re14_30'); yOD_Re14{3} = data12.yOD_Re14_30; 
data13 = load('concentration_75um.mat','yOD_Re14_5_unif'); yOD_Re14{4} = data13.yOD_Re14_5_unif;            

% 5% uniform concentration of Excel Sheet Concentration New, Sheet 75(Re=14000) Column AG and greater 
data14 = load('concentration_75um.mat','yOD_Re14_20_unif'); yOD_Re14{5} = data14.yOD_Re14_20_unif;          

% 5% uniform concentration of Excel Sheet Concentration New, Sheet 75(Re=14000) Column AG and greater 
data15 = load('concentration_75um.mat','yOD_Re14_30_unif'); yOD_Re14{6} = data15.yOD_Re14_30_unif;          

% 5% uniform concentration of Excel Sheet Concentration New, Sheet 75(Re=14000) Column AG and greater 
data16 = load('concentration_75um.mat','yOD_Re28_5'); yOD_Re28{1} = data16.yOD_Re28_5; 
data17 = load('concentration_75um.mat','yOD_Re28_20'); yOD_Re28{2} = data17.yOD_Re28_20; 
data18 = load('concentration_75um.mat','yOD_Re28_30'); yOD_Re28{3} = data18.yOD_Re28_30; 

  
data19 = load('concentration_75um.mat','cxls_lin5'); cxls_Re14{7} = data19.cxls_lin5; 
data20 = load('concentration_75um.mat','cxls_lin20'); cxls_Re14{8} = data20.cxls_lin20; 
data21 = load('concentration_75um.mat','cxls_parabola'); cxls_Re14{9} = data21.cxls_parabola; 
data22 = load('concentration_75um.mat','yOD_lin5'); yOD_Re14{7} = data22.yOD_lin5; 
data23 = load('concentration_75um.mat','yOD_lin20'); yOD_Re14{8} = data23.yOD_lin20; 
data24 = load('concentration_75um.mat','yOD_parabola'); yOD_Re14{9} = data24.yOD_parabola; 

   
% Preallocation ********************************************************* 
coeff_Re14 = cell(1,size(inicon,2)+no_add); coeff_Re28 = cell(1,size(inicon,2)); 
c_fittoxls_Re14 = cell(1,size(inicon,2)+no_add); c_fittoxls_Re28 = cell(1,size(inicon,2)); 
c_Re14 = cell(1,size(inicon,2)+no_add); c_Re28 = cell(1,size(inicon,2)); 
volp_14 = cell(1,size(inicon,2)+no_add); volp_28 = cell(1,size(inicon,2)); 
volf_14 = cell(1,size(inicon,2)+no_add); volf_28 = cell(1,size(inicon,2)); 
Np_lay_14 = cell(1,size(inicon,2)+no_add); Np_lay_28 = cell(1,size(inicon,2)); 
mp_14 = cell(1,size(inicon,2)+no_add); mp_28 = cell(1,size(inicon,2)); 
wp_14 = cell(1,size(inicon,2)+no_add); wp_28 = cell(1,size(inicon,2)); 
vp_14 = cell(1,size(inicon,2)+no_add); vp_28 = cell(1,size(inicon,2)); 
sp_14 = cell(1,size(inicon,2)+no_add); sp_28 = cell(1,size(inicon,2)); 
void_14 = cell(1,size(inicon,2)+no_add); void_28 = cell(1,size(inicon,2)); 
Vp_14 = cell(1,size(inicon,2)+no_add); Vp_28 = cell(1,size(inicon,2)); 
Sp_14 = cell(1,size(inicon,2)+no_add); Sp_28 = cell(1,size(inicon,2)); 
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for i = 1:size(inicon,2) 

     
    coeff_Re14{i} = polyfit(yOD_Re14{i},cxls_Re14{i},polyorder); 
    coeff_Re28{i} = polyfit(yOD_Re28{i},cxls_Re28{i},polyorder); 
    coeff_Re14{i+no_add} = polyfit(yOD_Re14{i+no_add},cxls_Re14{i+no_add},polyorder);        % This is a 

curve fitt coefficient for uniform concentration 
    coeff_Re14{i+no_add-size(inicon,2)} = polyfit(yOD_Re14{i+no_add-size(inicon,2)},cxls_Re14{i+no_add-

size(inicon,2)},polyorder);        % This is a curve fitt coefficient for uniform concentration 

  

     
    c_fittoxls_Re14{i} = polyval(coeff_Re14{i},yOD_Re14{i});        % c_fittoxls_Re14: The values of the 

trendline @ Y/D values obtained from the Fluent 
    c_fittoxls_Re28{i} = polyval(coeff_Re28{i},yOD_Re28{i}); 
    c_fittoxls_Re14{i+no_add} = polyval(coeff_Re14{i+no_add},yOD_Re14{i+no_add});  % c_fittoxls_Re14: The 

values of the trendline @ Y/D values for the uniform concentration  
    c_fittoxls_Re14{i+no_add-size(inicon,2)} = polyval(coeff_Re14{i+no_add-

size(inicon,2)},yOD_Re14{i+no_add-size(inicon,2)});  % c_fittoxls_Re14: The values of the trendline @ Y/D 

values for the uniform concentration  

  
    c_Re14{i} = polyval(coeff_Re14{i},y/D);                  % Particle Size = 5: fitted concentration 

equation as a function of y/D 
    c_Re28{i} = polyval(coeff_Re28{i},y/D);                  % Particle Size = 5: fitted concentration 

equation as a function of y/D 
    c_Re14{i+no_add} = polyval(coeff_Re14{i+no_add},y/D); 
    c_Re14{i+no_add-size(inicon,2)} = polyval(coeff_Re14{i+no_add-size(inicon,2)},y/D); 

     
    volp_14{i} = c_Re14{i} .* vol_lay; 
    volp_28{i} = c_Re28{i} .* vol_lay; 
    volp_14{i+no_add} = c_Re14{i+no_add} .* vol_lay; 
    volp_14{i+no_add-size(inicon,2)} = c_Re14{i+no_add-size(inicon,2)} .* vol_lay; 

     
    volf_14{i} = vol_lay.* (1-c_Re14{i}); 
    volf_28{i} = vol_lay.* (1-c_Re28{i}); 
    volf_14{i+no_add} = vol_lay.* (1-c_Re14{i+no_add}); 
    volf_14{i+no_add-size(inicon,2)} = vol_lay.* (1-c_Re14{i+no_add-size(inicon,2)}); 

  
    Np_lay_14{i} = volp_14{i}/(pi*dp^3/6); 
    Np_lay_28{i} = volp_28{i}/(pi*dp^3/6); 
    Np_lay_14{i+no_add} = volp_14{i+no_add}/(pi*dp^3/6); 
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    Np_lay_14{i+no_add-size(inicon,2)} = volp_14{i+no_add-size(inicon,2)}/(pi*dp^3/6); 

  
    mp_14{i} = rhop * volp_14{i}; 
    mp_28{i} = rhop * volp_28{i}; 
    mp_14{i+no_add} = rhop * volp_14{i+no_add}; 
    mp_14{i+no_add-size(inicon,2)} = rhop * volp_14{i+no_add-size(inicon,2)}; 
%      
    wp_14{i} = mp_14{i}./ (rhop*volp_14{i} + rhof * volf_14{i}); 
    wp_28{i} = mp_28{i}./ (rhop*volp_28{i} + rhof * volf_28{i}); 
    wp_14{i+no_add} = mp_14{i+no_add}./ (rhop*volp_14{i+no_add} + rhof * volf_14{i+no_add}); 
    wp_14{i+no_add-size(inicon,2)} = mp_14{i+no_add-size(inicon,2)}./ (rhop*volp_14{i+no_add-

size(inicon,2)} + rhof * volf_14{i+no_add-size(inicon,2)}); 

  
    vp_14{i} = (wp_14{i}/(rhop))./(Np_lay_14{i}.*wp_14{i}/(rhop));          % vp: for each particle 
    vp_28{i} = (wp_28{i}/(rhop))./(Np_lay_28{i}.*wp_28{i}/(rhop)); 
    vp_14{i+no_add} = (wp_14{i+no_add}/(rhop))./(Np_lay_14{i+no_add}.*wp_14{i+no_add}/(rhop));          % 

vp: for each particle 
    vp_14{i+no_add-size(inicon,2)} = (wp_14{i+no_add-size(inicon,2)}/(rhop))./(Np_lay_14{i+no_add-

size(inicon,2)}.*wp_14{i+no_add-size(inicon,2)}/(rhop));          % vp: for each particle 

  
    sp_14{i} = (wp_14{i}./(rhop*dp))/(Np_lay_14{i}.*wp_14{i}/(rhop*dp)); 
    sp_28{i} = (wp_28{i}./(rhop*dp))/(Np_lay_28{i}.*wp_28{i}/(rhop*dp)); 
    sp_14{i+no_add} = (wp_14{i+no_add}./(rhop*dp))/(Np_lay_14{i+no_add}.*wp_14{i+no_add}/(rhop*dp)); 
    sp_14{i+no_add-size(inicon,2)} = (wp_14{i+no_add-size(inicon,2)}./(rhop*dp))/(Np_lay_14{i+no_add-

size(inicon,2)}.*wp_14{i+no_add-size(inicon,2)}/(rhop*dp)); 

  
    void_14{i} = 1- c_Re14{i}; 
    void_28{i} = 1- c_Re28{i}; 
    void_14{i+no_add} = 1- c_Re14{i+no_add}; 
    void_14{i+no_add-size(inicon,2)} = 1- c_Re14{i+no_add-size(inicon,2)}; 

     
    Vp_14{i} = (1-void_14{i}).*vp_14{i}; 
    Vp_28{i} = (1-void_28{i}).*vp_28{i}; 
    Vp_14{i+no_add} = (1-void_14{i+no_add}).*vp_14{i+no_add}; 
    Vp_14{i+no_add-size(inicon,2)} = (1-void_14{i+no_add-size(inicon,2)}).*vp_14{i+no_add-size(inicon,2)}; 

  
    Sp_14{i} = (1-void_14{i}).*sp_14{i}; 
    Sp_28{i} = (1-void_28{i}).*sp_28{i}; 
    Sp_14{i+no_add} = (1-void_14{i+no_add}).*sp_14{i+no_add}; 
    Sp_14{i+no_add-size(inicon,2)} = (1-void_14{i+no_add-size(inicon,2)}).*sp_14{i+no_add-size(inicon,2)}; 
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end 

 

A.2.4 MATLAB input script for 150 micron 

function [Sp_14,Sp_28,Np_lay_14,Np_lay_28,dp,y] = micron150(D,rhop,rhof,L,thk,inicon,no_add) 

  
dp = 150*10^-6; 
n_150 = round(0.0254/(dp)); 
thk_150 = D/n_150; 
y = thk_150:thk_150:D;%-D/n_150; 

  
% wdth = 2*((D^2/4 - (y-D/2).^2).^0.5); 
wdth = D; 
% lgth = 1.778; 
polyorder = 12; 
vol_lay = L*thk*wdth; 

  
data1 = load('concentration_150um.mat','cxls_Re14_5'); cxls_Re14{1} = data1.cxls_Re14_5; 
data2 = load('concentration_150um.mat','cxls_Re14_20'); cxls_Re14{2} = data2.cxls_Re14_20; 
data3 = load('concentration_150um.mat','cxls_Re14_30'); cxls_Re14{3} = data3.cxls_Re14_30; 
data4 = load('concentration_150um.mat','cxls_Re28_5'); cxls_Re28{1} = data4.cxls_Re28_5; 
data5 = load('concentration_150um.mat','cxls_Re28_20'); cxls_Re28{2} = data5.cxls_Re28_20; 
data6 = load('concentration_150um.mat','cxls_Re28_30'); cxls_Re28{3} = data6.cxls_Re28_30; 
data7 = load('concentration_150um.mat','yOD_Re14_5'); yOD_Re14{1} = data7.yOD_Re14_5; 
data8 = load('concentration_150um.mat','yOD_Re14_20'); yOD_Re14{2} = data8.yOD_Re14_20; 
data9 = load('concentration_150um.mat','yOD_Re14_30'); yOD_Re14{3} = data9.yOD_Re14_30; 
data10 = load('concentration_150um.mat','yOD_Re28_5'); yOD_Re28{1} = data10.yOD_Re28_5; 
data11 = load('concentration_150um.mat','yOD_Re28_20'); yOD_Re28{2} = data11.yOD_Re28_20; 
data12 = load('concentration_150um.mat','yOD_Re28_30'); yOD_Re28{3} = data12.yOD_Re28_30; 

  
% Preallocation ********************************************************* 
coeff_Re14 = cell(1,size(inicon,2)); coeff_Re28 = cell(1,size(inicon,2)); 
c_fittoxls_Re14 = cell(1,size(inicon,2)); c_fittoxls_Re28 = cell(1,size(inicon,2)); 
c_Re14 = cell(1,size(inicon,2)); c_Re28 = cell(1,size(inicon,2)); 
volp_14 = cell(1,size(inicon,2)); volp_28 = cell(1,size(inicon,2)); 
volf_14 = cell(1,size(inicon,2)); volf_28 = cell(1,size(inicon,2)); 
Np_lay_14 = cell(1,size(inicon,2)); Np_lay_28 = cell(1,size(inicon,2)); 
mp_14 = cell(1,size(inicon,2)); mp_28 = cell(1,size(inicon,2)); 
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wp_14 = cell(1,size(inicon,2)); wp_28 = cell(1,size(inicon,2)); 
vp_14 = cell(1,size(inicon,2)); vp_28 = cell(1,size(inicon,2)); 
sp_14 = cell(1,size(inicon,2)); sp_28 = cell(1,size(inicon,2)); 
void_14 = cell(1,size(inicon,2)); void_28 = cell(1,size(inicon,2)); 
Vp_14 = cell(1,size(inicon,2)); Vp_28 = cell(1,size(inicon,2)); 
Sp_14 = cell(1,size(inicon,2)); Sp_28 = cell(1,size(inicon,2)); 

  
for i = 1:size(inicon,2) 

     
    coeff_Re14{i} = polyfit(yOD_Re14{i},cxls_Re14{i},polyorder); 
    coeff_Re28{i} = polyfit(yOD_Re28{i},cxls_Re28{i},polyorder); 

     
    c_fittoxls_Re14{i} = polyval(coeff_Re14{i},yOD_Re14{i});        % c_fittoxls_Re14: The values of the 

trendline @ Y/D values obtained from the Fluent 
    c_fittoxls_Re28{i} = polyval(coeff_Re28{i},yOD_Re28{i}); 

     
    c_Re14{i} = polyval(coeff_Re14{i},y/D);                  % Particle Size = 5: fitted concentration 

equation as a function of y/D 
    c_Re28{i} = polyval(coeff_Re28{i},y/D);                  % Particle Size = 5: fitted concentration 

equation as a function of y/D 

     
    volp_14{i} = c_Re14{i} .* vol_lay; 
    volp_28{i} = c_Re28{i} .* vol_lay; 

     
    volf_14{i} = vol_lay.* (1-c_Re14{i}); 
    volf_28{i} = vol_lay.* (1-c_Re28{i}); 

     
    Np_lay_14{i} = volp_14{i}/(pi*dp^3/6); 
    Np_lay_28{i} = volp_28{i}/(pi*dp^3/6); 

     
    mp_14{i} = rhop * volp_14{i}; 
    mp_28{i} = rhop * volp_28{i}; 

     
    wp_14{i} = mp_14{i}./ (rhop*volp_14{i} + rhof * volf_14{i}); 
    wp_28{i} = mp_28{i}./ (rhop*volp_28{i} + rhof * volf_28{i}); 

     
    vp_14{i} = (wp_14{i}/(rhop))./(Np_lay_14{i}.*wp_14{i}/(rhop));          % vp: for each particle 
    vp_28{i} = (wp_28{i}/(rhop))./(Np_lay_28{i}.*wp_28{i}/(rhop)); 
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    sp_14{i} = (wp_14{i}./(rhop*dp))/(Np_lay_14{i}.*wp_14{i}/(rhop*dp)); 
    sp_28{i} = (wp_28{i}./(rhop*dp))/(Np_lay_28{i}.*wp_28{i}/(rhop*dp)); 

     
    void_14{i} = 1- c_Re14{i}; 
    void_28{i} = 1- c_Re28{i}; 

     
    Vp_14{i} = (1-void_14{i}).*vp_14{i}; 
    Vp_28{i} = (1-void_28{i}).*vp_28{i}; 

     
    Sp_14{i} = (1-void_14{i}).*sp_14{i}; 
    Sp_28{i} = (1-void_28{i}).*sp_28{i}; 

     
end 
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