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CFD  Computational Fluid Dynamics 
CFL  Courant-Fredrich-Lewy Number 
FD  Finite Difference Method(s) 
FEM  Finite Element Method(s) 
FV  Finite Volume Method(s) 
GMRES Generalized Minimal Residual Algorithm 
GSMAC Generalized and Simplified Marker-and-Cell Method 
LSM  Least Squares Method 
RHS  Right-hand-side (in reference to right-hand-side of governing equations or  

right-hand-side vector) 
SUPG  Streamline Upwind Petrov-Galerkin Method 
 
Arabic Letters: 
 
[ ]A   Inverse of Jacobean matrix ( [ ] [ ] 1−= JA  ) 
Ae  Area of two-dimensional element 
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c  Chord of airfoil, ellipse, or plate 
cf  Coefficient of friction 
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cp, cv   Specific heat at constant pressure and constant volume 
Cx, Cy  Aerodynamic force coefficients (in mesh x- and y-directions) 

θC   Cosine of angle between global and local (boundary edge) coordinates 
D  Diameter of cylinder 
e  Internal energy of the flow 
fi  Generalized force vector for mode i 
Fi, Gi   Euler advection/pressure flux terms 
Fv, Gv   Viscous flux terms 
h   Total energy or enthalpy of the flow ( h = e + p / ρ ) 
k  Coefficient of thermal conductivity 
Kn  Knudson number ( Kn =  / L ) 
[ ]J   Jacobean matrix 
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  Mean free path of the fluid 
L  Characteristic length of the flow 
LBE  Limits to Boundary Edge groups (4 groups; 8 limits) 
Ma  Mach number ( Ma = U / a ) 
[ ]eM   Element “consistent” mass matrix 
[ ]LM   Lumped mass matrix 
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NSD  Number of singular nodes (inviscid and viscous) 
NSDV  Number of singular viscous nodes 
nx, ny  Components of outward facing normal vector 
NWL  Number of wall nodes (inviscid and viscous) 
NWLV  Number of viscous wall nodes 
p  Thermodynamic pressure; dimensionless after Section  
Pr  Prandtl number ( Pr = cp 0µ / k0 ) 
q  Heat flux 
R  Gas constant for a particular fluid 
Re  Reynolds number ( Re = 0ρ U0 L / 0µ  ) 
Rx, Ry  Radius from origin of mesh to center of boundary edge 
S  Sutherland’s constant 
Smod  Modified Sutherland’s constant ( Smod = cv S / U0

2 ) 
Sr  Source term 

θS   Sine of angle between global and local (boundary edge) coordinates 
T  Absolution temperature 
U  Unknowns vector ( U T = { ρ , u, v, p, hρ  } ) 
u, v  Velocities in the x- and y-directions, respectively 
Ue  External velocity 
Ui  Euler flux term 
V  Velocity vector ( V = { u , v } ) 
VMreal  Virtual memory required for 8 byte float variables 
VMinteger Virtual memory required for integer variables 
wj  Gaussian quadrature weighting factor 
Wij  Segment weighting factor for element edge data, between nodes i and j 
 
Greek Letters: 
 
α , β   van der Walls coefficients 
α   Rotational velocity of the body (non-inertial frame) 
γ   Ratio of specific heats 
Γ   Boundary of the spatial domain 

ijδ   Kronecker delta  
t∆   Time step 

advt∆   Time for fluid to move across an element 
x∆   Segment length 

ε   Strain 
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θ   Angle of rotation between global and local (boundary edge) coordinates 
κ   Coefficient of bulk viscosity 
λ   Second coefficient of viscosity 
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Miscellaneous Symbols: 
 
[ ]0   Free stream condition 
[ ]e   Referenced to the element 
[ ]L   Referenced to the reference length, L 
[ ]r   Relative velocity or energy (non-inertial frame) 
[ ]t   Transformation acceleration or velocity (non-inertial frame) 
[ ]x   Referenced to local segment length 
[ ]xy   Referenced to xy-plane 
[ ]δ   Referenced to boundary layer displacement thickness 

[ ]*   Dimensionless quantity 
[ ]( )0   Reference condition 
[ ]T   Transpose of matrix or vector 

  Magnitude of a vector 
x̂   Boundary edge local coordinate or velocity (does not apply to n̂ ) 
x  or { } Vector notation 
 
 
 
 
 



1 

 
 
 
 
 

CHAPTER 1 
 
 

1. Introduction 

This thesis presents the appropriate adaptations to a non-inertial finite element 

Euler solver to include all of the terms of the two-dimensional Navier-Stokes equations.  

The original solver was written by Cowan (2003) in order to simulate aeroservoelastic 

applications in the non-inertial reference frame.  This thesis expands the two-dimensional 

solver of Cowan to include the viscous and conduction terms present in the full Navier-

Stokes equations. 

This chapter will continue by discussing the background of viscous finite element 

solvers and will give examples as to the state-of-the-art.  The next section will define the 

scope of the research objective, and the final section will give a brief overview of this 

thesis. 

1.1. Background 

The full set of Navier-Stokes equations is a complex system of nonlinear partial 

differential equations.  Because of the complexity of their representation, no exact 

solution for the equations is available.  Only a handful of exact solutions are available for 

simplified forms of the equations:  Couette flow, Stokes’ first and second problems, flow 

between two rotating cylinder, and various others.  Several numerical solutions are 

available to less simplified, approximate forms.  One such numerical solution is the 
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Blasius boundary layer.  In order to represent the Navier-Stokes equations for more 

general geometries and boundary conditions, several discrete methods have been formed 

to solve the multi-dimensional partial differential equations using algebraic equations.  

Three of the most popular methods are the finite difference, finite volume, and finite 

element methods.  The finite difference approach uses Taylor series expansions to 

approximate the time and spatial derivatives.  This method is the most simple to 

implement but requires a structured mesh in order to retain the simplicity.  Finite volume 

increases the complexity of the solver while expanding the capabilities to more complex 

geometry and unstructured meshes.  But finite volume requires either many small 

elements or higher order approximations in order to represent complicated flow fields.  

Finite element, being the most complex method, can be used to represent complicated 

flows with fewer, less complex elements.  For these reasons, Cowan (2003) chose to 

implement a finite element scheme to solve the compressible Euler equations. 

Many sources can be found in the literature covering finite element solutions in 

general.  Most of these references handle structural finite element solvers.  Using the 

knowledge base at the time, Baker (1983) wrote a book for those who had previously 

worked on structural FEM (Finite Element Methods) and wanted to begin solving fluid 

dynamics equations.  Similarly, many other applications can be made from the structural 

FEM literature to fluid solvers, including numerical procedures, finite element methods, 

and common problems with finite elements.  The majority of fluids research involving 

FEM has involved incompressible, inviscid solvers.  These solvers were expanded into 

compressible Euler solvers and then viscous terms were explored in recent years.  The 

majority of research began in fluids FEM solvers that were written to solve specified 



3 

geometries. As time progressed, the solution of more and more complex configurations 

were tested until a few general fluids FEM solvers were assembled.  Because this 

research expands Cowan’s Euler solver to include the full Navier-Stokes equations, 

viscous finite element solvers are reviewed in the following paragraphs. 

Table 1-1 shows a quick overview of some of the viscous finite element models 

that have been documented in the literature in the last 15 years.  The table lists the name 

of the author and date of publication shown in the bibliography.  The table also includes 

the finite element method used, temporal and spatial orders, element shape, dissipation 

model, and whether the solver is implicit, explicit, or mixed.  An overview of these 

references is given below, followed by specifics of an key points from these papers.   

Table 1-1:  Overview of Viscous Finite Element References 

 

All of the examples shown in Table 1-1used some form of Galerkin methodology.  

Fernandez (1991) illustrates a basic Galerkin method mixed with an upwinding scheme.  
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(Galerkin’s method has been left for a full discussion in Section 3.1).  The upwinding 

scheme was implemented in order to help alleviate instability problems in the advection 

terms.  This method is more common in early Euler literature than in the viscous FEM 

literature shown here.  Most of the cases above utilized the SUPG, or Streamline Upwind 

Petrov-Galerkin, method (Mittal, 1998; Masud, 1997; Bonhaus, 1998; Whiting, 1999; 

Jakobsen, 2000).   SUPG is similar to the upwinding of Fernandez, but SUPG uses an 

adaptive shape function to implement the upwinding in only the momentum equations.  

Similar methods are illustrated in the literature for pressure and density.  SUPG is 

considered to be a finite element methodology because SUPG defines the shape function 

used when developing the finite element equations; but, SUPG is also specified as the 

dissipation methodology by many papers while Petrov-Galerkin is stringently referenced 

as a method for developing the FEM equations.  Even though the Galerkin or variation 

thereof, are the most widely used methodologies, Jiang (1990) says that the Least-

Squares Methodology (LSM) is the only means to a “general-purpose code…[and] 

unified method”.  Jiang goes on to say that all of the different Galerkin methods are 

useful in different aspects and flow regimes, whereas LSM can be used in all aspects and 

regimes of computational fluid dynamics.  This idea is not shown anywhere else in the 

literature, but other authors, such as Masud (1998) and Whiting (1999) use LSM as an 

alternative methology.  The final methodology to discuss is the GMRES, or generalized 

minimal residual, solution “method”.  The GMRES algorithm is outlined in non-linear 

form by Bristeau (1990) and is better described as a numerical technique to solver the 

equations established by the various solution methods above.  Although Bristeau is the 
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only reference shown to outline the technique, many other sources implement GMRES in 

their solvers, including Soulaimani (1994), Mittal (1998), and Bonhaus (1998).   

Since finite element is rooted in finite difference (FD) and finite volume (FV) 

methods, one would expect to see many similarities other than those previously 

mentioned.  Arminjon (1999) combines a finite volume approximation of the advection 

terms of the N-S equations with a finite element approximation of the diffusion terms.  

This combination allowed Arminjon to represent the diffusion terms with a lower order 

shape function than would have been possible with a full finite volume solver.  This 

method illustrates the power of FEM versus the simplicity of FV while keeping the 

unstructure mesh capabilities of both methods.  Mixed FEM and FV methods are also 

used by Luo (2004).  Tanahashi (1990) illustrates the application of a finite difference 

concept MAC (marker-and-cell) to finite elements.  Tanahashi used the velocity vectors 

on the edges (or vertices) and total energy at the center of non-orthogonal, quadrilateral 

elements to represent the GSMAC (generalized and simplified MAC) method.  GSMAC 

shows how finite element can be used to expand the structured methods of FD to the 

unstructured applications of FEM.   

Dealing with the solution technique to solve the FEM equations, Tworzydlo 

(1992) implemented a mixed implicit-explicit scheme on a Taylor-Galerkin method.  

Three parameters were used to adjust the amount of implicit or explicit used to solve the 

advection, diffusion, and other terms of the equations.  Using these parameters, 

Tworzydlo explored the linearized analytical stability of all combinations of these 

parameters. Tworzydlo found that fully explicit schemes were only stable for CFL factors 

less than unity and that the fully implicit scheme was surprisingly not the most stable 
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configuration.  Tworzydlo shows that some combinations of implicit schemes are 

unconditionally unstable, while others are stable but may exhibit underdamped 

oscillations.  Tworzydlo was able to use these findings to fine tune the solution 

techniques used in different areas of the flow field according to the needs of the flow.  

Kallinderis (1994) also implements a mixed implicit-explicit method but does not go into 

as much detail as Tworzydlo.   

Most of the methods above use a first or second order finite difference 

approximation, whether implicit or explicit, to time step their solutions.  Second order 

time approximations can be found in Tworzydlo (1992), Soulaimani (1994), and Mittal 

(1998).  Marcum (1992) gives the option of either Runge-Kutta scheme or two-step Lax-

Wendroff in order to step solutions through time.  Marcum also found that two different 

dissipation models were required to accommodate the different time stepping schemes.  

Tanahashi (1990), Kallinderis (1994), and Jakobsen (2000) illustrate a means of local 

time stepping that can be used to accelerate the convergence of steady solutions using 

unsteady methods. 

Most of the references of Table 1-1Table 1- use a first order shape function with a 

triangular or quadrilateral shaped element.  Kallinderis (1994) illustrates the use of 

triangular elements to subdivide the quadrilateral elements in order to gain a better 

resolution or to merge to different sized meshes.  Kallinderis, like many of the other 

sources, uses a structured meshing algorithm.  Marcum (1992), on the other hand, 

illustrates the applications and features of both structured and unstructured solvers.  

Unstructured solvers can also be found in Bristeau (1990), Soulaimani (1994), Masud 

(1997) , Bonhaus (1998), Arminjon (1999), Wood (2000), and Luo (2004).  Masud and 
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Wood also use moving mesh techniques to represent moving fluid boundaries.  Because 

Masud allows for free surface moving boundaries, source terms are included to represent 

the relative motion of the moving elements.   

All of the sources above, except for four, utilize a linear shape function.  

Soulaimani (1994) uses a quadratic shape function to represent the velocity distributions 

on the element and linear function for all other properties.  Masud (1997), Bonhaus 

(1998), and Whiting (1999) leave their derivations open to higher order shape functions 

in order to accommodate further research. 

The governing equations and boundary conditions are often the defining or 

limiting features of a solution method.  All of the references above implement the viscous 

stress terms of the momentum equation along with the viscous dissipation and heat 

transfer terms of the energy equation.  Ecer (1988) and Luo (2004) use Sutherland’s 

equation to allow for variable viscosity in the flow; Bonhaus (1998) uses a 0.76 power 

law in order to solve for viscosity.  Ecer, Luo, Barsoum(1995), and Mittal (1998) include 

some form of Stokes’ hypothesis to relate the second coefficient of viscosity to the first 

coefficient.  All of the sources above also implement a strong no slip condition of viscous 

solid wall surfaces (i.e., u = v = 0).  Although, these boundary conditions do vary from 

isothermal to adiabatic walls.  Bonhaus (1998) and Tworzydlo (1992) also develop their 

far field boundary conditions.  In both descriptions, the far field is assumed to contain no 

viscous flux terms; both sources also assume no shear terms on inviscid wall boundary 

conditions.  Tworzydlo further describes the conditions for a symmetry plane as lacking 

normal flow, shear stress, and heat transfer across the boundary condition.  Tworzydlo 
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also notes that finite difference methods have received considerable attention in the area 

of boundary conditions; but FEM, especially implicit methods, are not yet complete. 

Finally, all of the references above make use of primitive variables except for 

Soulaimani (1994).  Soulaimani uses conservative variables to represent flow properties 

because the application of primitive variables is “questionable in the presence of shocks.”  

Conservative variables increase the stability of the finite element approximation in 

compressible flow fields.  All of the incompressible references use velocity and pressure 

as their primitive variables; the compressible sources used velocity, density, and enthalpy 

(or total energy) to represent the primitive variables and use the ideal gas equation of 

state to implicitly solve for pressure.  Two of the sources, Jiang (1990) and Tanahashi 

(1990) adjust the viscous terms from velocity gradients to vorticity.  Vorticity is then 

solved for as a “primitive variable”. 

As a conclusion to the literature review, an outline of the capabilities of solver to 

be expanded is given below.  Cowan’s (2003) two-dimensional solver Euler2d is a 

Galerkin finite element solver used to solve the compressible Euler equations in 

conservative variable form.  The solver uses an unstructured grid of piece-wise linear 

triangle elements.  A local-time stepped steady solver along with both linear and second 

order unsteady times steps are available to step the solution.  The equations are derived in 

an implicit format but solved through an explicit iterative algorithm that utilizes the 

Courant-Fredrich-Lewy (CFL) number in order to relax the iterations.  Two dissipation 

models are also used to stabilize the solution:  A low order artificial dissipation model 

controlled by an input dissipation constant; and, a high order model, similar to the first, 
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that contains gradient limiters that reduce shock smearing and artificial flow solutions.  

Three boundary conditions are available:  Far field, solid wall, and symmetry plane.   

1.2. Research Objective 

The objective of this research is to expand Cowan’s finite element Euler solver 

into a full viscous solver.  This thesis will develop the full Navier-Stokes equation for 

two-dimensional finite elements and their corresponding boundary conditions.  Boundary 

layers are the most basic building block of all real aerodynamics problems; therefore the 

proper spacing of elements within the boundary layer are investigated to find an 

appropriate rule of thumb.   

The original Euler solver was written to handle aeroelastic and non-inertial 

problems.  The non-inertial portion of the solver was generated by adding non-inertial 

source terms to the original Euler equations.  These source terms will be kept in their 

original form.  On the other hand, the aeroelastic portion of the solver relied on a 

transpiration boundary condition in order to simulate motion in the boundary conditions 

without moving the structural surfaces.  The transpiration condition is applied by moving 

the norms for the solid surfaces and reapplying the tangential flow to the new normals.  

In the viscous flow solver, all velocities on the solid surfaces must match the surface 

velocities themselves; therefore, changing the normals will not effect the flow field.  The 

scope of this thesis is not to adapt the transpiration condition for viscous flows but rather 

to allow for future work to occur in this area. 

Keeping all of this in mind, the new viscous solver needs to be tested for added 

run time, user complexity, and validity.  The solver needs to be verified by comparisons 
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with several solutions to the simplified Navier-Stokes equations.  Then the solver must be 

validated using data from several subsonic, supersonic, and transonic test cases that have 

been generated to validate computational fluids solvers. 

1.3. Overview 

This paper will continue by discussing the finite element method in Chapter 2.  

Continuing from the background previously presented, Chapter 2 will discuss the added 

complexities and requirements of viscous solvers versus Euler solvers and the additional 

problems that can be addressed using a viscous solver.  The chapter will then focus on the 

development of the Navier-Stokes equations and the adjustments that are required to 

convert from a finite element Euler solver to a full viscous solver.  The chapter will also 

discuss other topics including variable viscosity, dimensionless forms, and limitations of 

the second coefficient of viscosity. 

Chapter 3 will introduce the finite element method used by Cowan (2003) and the 

need for a full Navier-Stokes solver.  The chapter will discuss the representation of time 

derivatives, piece-wise linear spatial discretization, and stabilization routines of the 

original Euler solver.  The chapter will also use the dimensionless form of the Navier-

Stokes equations to develop the equations for each element and the required changes to 

the boundary conditions.   

Chapter 4 will discuss the changes in computer implementation from the Euler 

solver to the new viscous solver.  The chapter will cover the amendments to the data 

structures, any algorithm changes, and additional supporting programs.  The chapter will 

also discuss the addition of shear stress to the force and moment summations, and the 
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chapter will end by covering the increased memory requirements, run times, and 

complexities to using the viscous solver over the original code. 

Chapter 5 will begin with several examples to verify the adaptations to the code.  

The chapter will conclude with a validation of the code.  Chapter 6 recaps the previous 

four chapters and gives recommendations for future work. 
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CHAPTER 2 
 
 

2. Problem Definition 

In this chapter the governing equations of the problem will be defined.  To begin, 

the difference between Euler and Navier-Stokes problems will be defined.  This 

discussion will also include a brief literature review of viscous aeroservoelastic 

applications and additional difficulties of such a solver.  In the next sections, the Euler 

equations that defined the original problem of Cowan (2003) will be expanded to include 

the additional terms of the full Navier-Stokes equation and the non-inertial form of those 

equations.  The three sections following will show that all of the properties, aside from 

viscosity and thermal conductivity, can be treated as constant properties.  The equations 

and properties will be used to develop the dimensionless forms of the governing 

equations.  Finally, Stokes’ hypothesis will be developed to give the lower limit to the 

second coefficient of viscosity. 

2.1. Choice of Governing Equations 

The Euler equations can be used to solve a wide variety of aerodynamic and 

aeroelastic cases.  The Euler equations are also simpler and easier to solve; and, for flows 

that are governed primarily by advection or pressure distributions, the Euler equations are 

a good assessment of the flow field.  But, if the shear stresses, vortical nature, or 

boundary layers are desired, the full Navier-Stokes equations must be used.  The full 
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viscous equations might also be helpful in a few Euler applications:  A Navier-Stokes 

solver could be used to sustain a stable solution behind bluff bodies, as additional 

dissipation near leading and trailing edges and near shock, or to help capture vorticity in 

pure lift calculations.  Several applications where a Navier-Stokes solver is more 

applicable are given below.  Following those applications is a short discussion on the 

difficulties that can arise in a viscous solver. 

2.1.1. Specific Applications of a Viscous Solver 

Examples of solutions requiring viscous approximations include high angle of 

attack aerodynamics, multi-component wing interactions, stores and interference 

calculations, drag assessment (although shown to not yet be accurate enough by the 

literature), boundary layer controls, boundary layer-shock interactions in transonic and 

supersonic cases, transonic aeroelasticity, and engine spill over.  This list is not definitive 

but contains many of the exemplary cases.   

Drag prediction is the most popular application of viscous solvers.  Many 

references can be found in the literature concerning inaccuracies of current viscous 

solutions.  These solutions arise because of numerical problems or bad representation of 

the flow fields and boundary conditions.  Paparone (2003) gives methods for eliminating 

“spurious drag” without excessive meshing.  Although the prediction of viscous drag may 

not be fully accurate using reasonable meshes, the change in drag due to changes in 

configurations is often found to be very accurate.  Brodersen (2002) used a Navier-Stokes 

solver to predict the changes in drag due to different engine installations and found the 

differences between the installations to be accurate.  When drag predictions are necessary 
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for specified geometries, often Euler models along with empirical data have been used in 

the past.  An example of such drag prediction is given by Oktay (2000), which predicted 

drag on missile geometries using an Euler solver, skin friction models, and empirical 

bluff body data.  Oktay found that the method worked well for many missile 

configurations.  On the other hand, configurations exist which have no empirical data or 

contain flow oscillations or other means that cannot be modeled properly using the Euler 

solvers.  Filippone (2001) assessed the drag on a helicopter fuselage while uninstalled 

from the rotors.  Filippone found that a viscous solver gave good drag predictions for the 

uninstalled drag.  The installed drag varied dramatically due to rotor effects on the 

fuselage.  Given the non-inertial capabilities of Cowan’s Euler solver, viscous terms, and 

flow field partitioning between the fuselage and rotor, the installed drag on the helicopter 

could be predicted without empirical means. 

Shock-boundary layer interactions are a big interest in transonic aerodynamics 

and aeroelasticity.  Gai (2000) shows that the effects of a shock are actually felt upstream 

of Euler predicted locations because of effects in the boundary layer.  The subsonic flow 

in the boundary layer allows the effects to propagate upstream effectively changing the 

location of the shock foot, bending the shock.  Lee (1990) found distinct frequencies in a 

shock-boundary layer solution.  These frequencies corresponded to the propagation time 

from the shock to the trailing edge of the airfoil and from the trailing edge (through the 

boundary layer) to the shock.  These oscillations were found to be self-sustaining.   

Other examples of shock-boundary layer interaction are illustrated in Jameson 

(1998), Gefroh (2002), and Lee (2004).  Jameson addresses the proper grid refinement to 

capture shock-boundary layer interactions.  Gefroh and Lee address the use of mesoflaps 
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in reducing drag due to shock-boundary layer interactions.  Mesoflaps are small flexible 

surfaces covering an otherwise closed chamber.  The mesoflaps downstream of the shock 

deflect into the chamber causing flow to be diverted out of the boundary layer; upstream 

mesoflaps deflect into the boundary layer returning the flow.  The flow in the chamber 

then recirculates from downstream to upstream.  Lee found that mesoflaps could be used 

to not only reduce wave drag caused by the shock but also the residual viscous drag 

caused by boundary layer thickening.  Gefroh obtained similar results and found that the 

boundary layer was thicker upstream of the shock but thinner downstream of the shock 

due to the mesoflaps.  Gefroh also suggested variation of mesoflap stiffness upstream of 

the shock.  Using a compressible, viscous, aeroelastic solver, the mesoflaps could be 

modeled so that stiffness and area of coverage could be cheaply and efficiently tested 

before further experiments were to take place. 

 Vortices are another aspect of viscous fluid flow.  An Euler solver can sustain 

vortical motion and convect vorticity downstream; but, without the aid of artificial 

dissipation, an Euler solver cannot generate vortices or dissipate existing vorticity.  

Without viscosity, vortices must be modeled in some way similar to that of Panaras 

(1990).  Panaras used finite vortices in a flow field.  The vortices were released in a given 

distribution upstream of either an airfoil or a corner of a step.   The vorticity was allowed 

to interact with the surface as a potential flow field would mathematically.  Panaras found 

that the “finite-area vorticity model” showed similar results to that in the laboratory, but 

Panaras was unable to model the dissipation effects and generation of new vortices from 

a separated boundary layer.  Using a full viscous solver, the vorticity could be generated 

from a shear layer or other source, similar in geometry to the laboratory device.  The 
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vorticity, convection flow, and boundary layer interactions could then be naturally 

modeled to see the effects of dissipation and boundary layer separation on the results.  

Similarly, vortical behavior is found to occur in lifting bodies.  Kandil (1990) illustrates 

the application of a compressible Navier-Stokes solver on a rounded-edge delta wing 

configuration.  The delta wing was held at a large mean angle of attack and oscillated 

about the roll axis of the wing.  Kandil found that the primary and secondary vortices 

along with the associated shocks could be modeled quite well.  Kandil was also able to 

find the oscillating pressure distribution on the wing and lift and moment coefficient 

histories.  Kandil’s computations are highly three dimensional, but the same vortical 

behavior can be found behind sharp edged objects held normal to the flow and bluff 

bodies at high enough Reynolds numbers. 

Turbomachinery often contains shock-boundary layer interactions, wake effects, 

and problems that are isolated to the low speed boundary layer propagation.  Gottfried 

(2002) used an Euler solver to explore the effects of high subsonic and transonic flows 

over an IGV (inlet guide vane) and rotor setup.  Gottfried found the solver to simulate 

shocks slightly ahead of experiment and found that the solution lacked the upper 

harmonics seen in the experimental unsteady lift.  Gottfried suggested the addition of 

viscous effects to capture the unsteady shock-boundary layer interactions on these two 

phenomena.  In another situation, Chernobrovkin (1999) successfully approximated the 

shock-boundary layer interactions in a turbomachinery situation.  Wadia (1998) used a 

viscous flow solver to experiment on the sweep angle of rotor blades in a compressor.  

Wadia found that three-dimensional viscous effects existed everywhere in the flow and 

when these effects were used properly shock-boundary layer could be minimized.  Wadia 



 17 

also found that forward swept rotors were more efficient because of reduced shock-

boundary layer losses, lower suction at the leading edge, and less accumulation of a 

boundary layer near the blade tips. Shock-wake influences, which can also be important, 

can be modeled in a viscous solver.  Darbe (2004) investigated IGV rotor interactions and 

found that shocks from the rotor disturb the IGV flow, causing unsteady effects in the 

IGV wake.  The IGV wake in turn propagates downstream and disturbs the rotor.   

The final application that will be addressed is high angle of attack flow.  Erickson 

(1995) gives an excellent review of high angle of attack flow.  Some of the examples 

given by Erickson are a general aviation plane landing in a flare, separated flow 

generated by flow over a wing-mounted engine nacelle, a fighter jet making a large-scale 

combat maneuver, and the blanketing effect seen by the tail of the space shuttle on 

reentry.  Kwon (1992) simulated the flow over a F-15 wing-body-inlet configuration at 

high angle of attack, resulting in a model of the vortical flow leaving the strake and that 

seen by the twin tails.  Similar tests were ran on a F-18 configuration by Rizk (1992) and 

Ghaffari (1993).  Rogers (2001) used a viscous solver to model the landing configuration 

of a Boeing 777-200.  The results of Rogers’ analysis show the pressure distributions 

over the wing, slats, flaps, flaperons, and Krugers all at fully extended conditions.  The 

lift and drag verse angle of attack was also found to match wind tunnel model data for 

most of the range.  The computational results did stall at a lower angle of attack than 

expected, but Rogers was able to make adjustments to improve the computational model 

in order to stall nearer the experimental limit.   
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2.1.2. Difficulties with Viscous Solvers 

Difficulties arise in modeling flows with a viscous finite element solver in the 

areas of spurious oscillations, local time stepping, numerical dissipation (in many forms), 

and appropriately capturing the viscous portions of the flow field.  Bristeau (1990) shows 

that spurious oscillations can occur because matched orders of shape functions used to 

approximate the flow velocities versus other flow properties.  Bristeau suggests using a 

higher order shape function to represent the velocities and lower order to represent 

density in compressible viscous solvers; no suggestions were made for the other flow 

properties.  Tanahashi (1990) makes similar suggestions for velocity and pressure in a 

incompressible viscous solver.  Soulaimani (1994) found that “unsteady flows appear at 

relatively low Reynolds numbers”.  Soulaimani says that these unsteady flows are due to 

numerical errors generated by the low Reynolds numbers.  (Suggestions are made below 

for local time stepping, local segment Reynolds numbers, and artificial dissipation in 

order to address these problems.)   

A different problem was identified by Shapira (1990).  Shapira modeled flows 

through a two-dimensional converging channel.  At Reynolds numbers less than the 

specified critical Reynolds numbers, the flows were found to be symmetric about the 

symmetry plane of the channel.  At Reynolds numbers greater than the critical value, an 

asymmetric condition occurred where the flow separated on one side of the channel 

earlier than the other side.  Shapira found that the asymmetric conditions were dependent 

upon the initial conditions of the solution.  Although these asymmetric conditions are not 

undermining the validity of the solution, the conditions can be set off by small 

asymmetries in the mesh or held back by symmetric meshes.  Therefore vortex shedding 
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on a cylinder or other body might be effected by the nature of the mesh itself.  The onset 

of transition, which is outside of the scope of this thesis, could even be accelerated by 

disturbances in the grid and surface representation. 

Many suggestions in the literature can be used to handle the above problems.  The 

most frequent suggestion is a homogeneous or near homogeneous grid.  For an 

unstructured grid, homogeneity is hard to ensure but steps can be taken in order to 

smooth the grid as much as possible.  Marcum (1996) comments that unstructured 

meshes for viscous flow fields has received little attention.  Additionally Marcum gives 

suggestions for viscous meshes and adaptive viscous meshes.  Burton (1993) and 

Jameson (1998) also address the topic of well constructed viscous meshes.  Jameson 

further assesses the error due to improper meshing.  Thomasset (1981) suggests that 

numerical oscillations can be avoided by considering the local Reynolds number on the 

longest side of each element to be limited to values less than two.  The computational 

cost to evaluate a mesh generated according to Thomasset’s rule is too high to endure, 

therefore, artificial dissipation is most often chosen to alleviate such problems.  Another 

suggestion is to decrease the local time step for steady flows and global time step for 

unsteady flows.  The suggestions of Tanahashi (1990) and Kallinderis (1994) are 

represented in Equations 2.1 and 2.2, respectively.  Jakobsen (2000) gives a similar idea 

for quadrilateral elements. 
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The suggestion made by Tanahashi (Eq. 1.1) requires the minimum of two values.  The 

first is the advection limit for reasonable approximations, where the fluid is not allowed 

to cross the entire element in one time step.  The second is a function of Reynolds 

number of the flow and the element size.  Tanahashi equates the first to a CFL number 

and calls the second the “diffusion number”.  Kallinderis’ suggestion contains the local 

Reynolds number hidden in the denominator. 

Finally, the numerical viscosity of a solution is discussed by several authors.  

Numerical viscosity, as defined by Bristeau (1990), is the “upwinding, artificial viscosity, 

[or] viscosity introduced via time discretization”.  Bristeau further explains that 

numerical viscosity is commonly used to settle the oscillations caused by mesh sizing, 

time stepping, or similar shape functions for velocity and the other flow properties, 

instead of handling the problems directly.  All aspects of numerical viscosity can be seen 

as numerical errors in the solver; numerical viscosity is so named to give these errors a 

positive spin because such errors are helpful and desired.  Concerning artificial 

dissipation alone, Kallinderis (1995) gives a method for measuring the effects of artificial 

dissipation compared to the final solution.  The method involves finding the ratio of 

changes due to artificial dissipation and the actual advective-viscous contributions.  

Kallinderis further found that the use of too much artificial dissipation can change the 

boundary layer solution and reduce the local skin friction coefficient significantly.  Using 

Kallinderis’ analysis, caution must be taken in the amount of artificial dissipation used in 

the viscous solutions.   
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2.1.3. Continuum Mechanics 

The Navier-Stokes equations have been developed from the idea that a fluid can 

be treated as a continuum, or a body with continuous properties.  In other words, the 

equations were not developed by thinking of the interaction between individual particles, 

but by treating the fluid as a finite volume and considering the conservation of mass, 

energy, and momentum across that volume.   

A fluid can be treated as a continuum as long as the mean free path of the fluid 

particles is much smaller than the characteristic length of the body.  The relationship 

between these two length scales is given by the Knudsen number:  LKn =  where  is 

the mean free path and L  is the characteristic length of the body.  For continuum flow to 

exist, the Knudsen number must be much less than unity, or Kn < 0.01, as a rule of 

thumb.  John (1984) presents the Knudsen number as a relationship to the Mach and 

Reynolds numbers of the flow: 

(2.3)     
δRe

MaKn ≈  

where Ma is the Mach number and δRe  is the Reynolds number for the boundary layer 

thickness.  (Note:  This equation is only appropriate for Reynolds numbers larger than 1.)   

2.1.4. Definition of a Newtonian Fluid 

The stress-strain behavior of fluids can be fit to several models:  Plastics, 

pseudoplastics, ideal Bingham plastics, and Newtonian fluids.  Simple fluids, such as 

water, oils, and gases, are most often modeled as Newtonian fluids.  The Newtonian fluid 

model says that (1) the stress is linearly proportional to the rate of strain of the fluid,     
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(2) the fluid is isotropic, and (3) in the absence of strain, the stress tensor reduces to the 

hydrostatic condition (White, 1991).  The linear stress-strain relationship is illustrated in 

the following shear stress equation: 

(2.4)       xyxy µετ 2=  

where xyτ  is the shear stress in the xy-plane, xyε  is the rate of shear strain in the xy-plane, 

and µ  is the viscosity of the fluid.   

The isotropic assumption says that the fluid properties are independent of the 

coordinate system.  The stress tensor developed in a xy-coordinate system is represented 

by the following indical equation (White, 1991): 
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where ijτ  is the stress tensor, ijδ  is the Kronecker delta, and λ  is the second coefficient 

of viscosity. This relationship also meets the third criteria in that the equation reduces to 

the hydrostatic condition in the absence of strain. 

The stress tensor is often amended so that the pressure term is separated from the 

strain terms in the following form: 
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where ijτ ′  is the amended stress tensor.  This amended relationship is used in the 

formation of the governing equations below so that the pressure term can be included in 

the inviscid portion of the equations. 
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2.1.5. Ideal Equation of State 

The ideal gas equation is often used to equate the changes in pressure of a fluid to 

the changes in density and temperature.  The ideal gas equation is developed from 

kinetic-molecular theory (Brown et al., 1997):  (1) The gas consists of a large number of 

molecules in continuous random motion, (2) the volume of the molecules is negligible 

when compared to the entire volume, (3) molecular forces are negligible, (4) molecular 

collisions are perfectly elastic, and (5) the average kinetic energy of the molecules is 

proportional to the absolute temperature and independent of time.  The ideal gas equation 

is given below: 

(2.7)         RTp ρ=  

These assumptions are correct for gases under most conditions.  But as the 

pressure increases or the temperature decreases, kinetic-molecular theory begins to break 

down.  As these conditions occur, the density of the gas increases, causing the volume of 

the molecules and interplay of molecular forces to become more important.  In 1873, 

Johannes van der Waals suggested corrections to the ideal gas equation to account for 

these conditions (Moran and Shapiro, 1996): 

(2.8)          ( ) RTp =




 −+ βραρ 12  

where 2αρ  is the correction for molecular forces and β  is the correction for the volume 

of the molecules.  

Using order of magnitude analysis, the orders of the terms in parentheses can be 

compared to determine whether the van der Waals corrections are necessary.  Typical 

values of α  are on the order of 0.001 bars (m3/kg)2; β  is typically on the order of 0.001 
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m3/kg.  Under aerodynamic conditions, pressures can range from 0.1 to 10 bars while 

densities vary from 0.001 to 0.1 kg/m3.  The order of magnitude analysis, presented 

below, shows that the van der Waals corrections are not necessary: 
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The previous relationships of the order of magnitude analysis can also be used to 

check the flow field solution for similar validity of the van der Waals equations.  To 

eliminate the need for two extra variables, the ideal gas equation should be rewritten to 

depend on flow energy, e, and the ratio of specific heats, γ , instead of the gas constant, 

R, and temperature, T.  The converted equation takes the following form: 
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2.2. The Compressible Navier-Stokes Equations 

The original governing equations of Cowan (2003) are represented by Equation 

2.12.  The vectors Ui, Fi, and Gi are given in Equations 2.13 through 2.15.  The first term 

of the vectors represent the continuity equation, the second and third terms correspond to 

the x- and y-momentum equations, and the fourth to the energy equation.  Cowan 

represents the following equation in conservative form.  The equation has been written 

here in expanded form so that the viscous terms can be more readily added.  Here the 

subscript i represents the inviscid vector: 
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The equations can be modified by adding a viscous vector to each of the spatial 

derivative terms.  The original vectors are represented by the subscript i, and the new 

viscous vectors are represented by the subscript v: 
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The stress and conduction terms are then given by the following equations: 
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Cowan also presents two additional equations for the ideal gas equation of state 

and the enthalpy relationship, shown below: 
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2.3. Non-Inertial Form of the Equations 

In order to handle the additional effects of spinning and super-maneuvering 

vehicles, Cowan introduced a fourth vector to the Euler equations.  This fourth vector is 

called the non-inertial source vector, shown in Equation 2.27: 
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where a is the acceleration and α  is the rotational velocity of the body.  The subscripts r 

and t above represent the relative and transformation conditions, respectively.  Cowan 

also places the relative subscript on all velocities in the other three vectors.   

Because the non-inertial source term is not the topic of the current research, the 

reader is referred to the dissertation written by Cowan that covers the topic in full.  

Instead, the non-inertial source vector is discussed only to show that the same 

adjustments can be made to the viscous terms to arrive at a non-inertial viscous solution.   

The new viscous terms would first need to be adjusted similarly to Cowan’s 

inviscid terms to allow for the relative velocities.  In doing so, all velocity terms in the 

equations are given a similar relative subscript: 
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where 

(2.30)         ( )r
r

xx V
x

u ⋅∇+
∂

∂=′ λµτ 2  

(2.31)         ( )r
r

yy V
y
v

⋅∇+
∂
∂

=′ λµτ 2  

(2.32)             







∂
∂

+
∂
∂

=′
x
v

y
u rr

xy µτ  

(2.33)                    
x
e

c
kq r

v
x ∂

∂
=  

(2.34)                    
y
e

c
kq r

v
y ∂

∂
=  

where er is the relative energy of the flow.   

These equations will not effect the non-inertial source term; and, the viscous 

terms themselves will remain unaffected because the relative gradients are equivalent to 

their inertial counterparts.  In other words, if the x- and y-directions of the non-inertial 

and inertial frames correspond to each other, the gradient in one frame is equal to that of 

the other frame, which can be safely said about the u- and v-velocities and energy.   

2.4. Constant Properties 

A calorically perfect gas has thermodynamic properties that are linearly 

proportional to the absolute temperature.  For calorically perfect properties, the property 

can be represented as a linear function of the absolution temperature that goes to zero at 

an absolute temperature of zero:  f(T) = k T.  To test the validity of such an assumption, 

atmospheric pressures and temperatures for Earth (Bertin, 1998) and Mars (Benson, 

2004) were represented on both sides of normal shocks ranging from Mach 1.5 to 3.5.   
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For simplification, Martian atmosphere was considered to be composed of pure 

carbon dioxide.  To obtain functions to represent cp and γ , empirical data was taken from 

three sources, and 6th order polynomials were fit to all of the points (Moran, 1996; 

Incropera, 2002; John, 1984).  (Plots of the pressure and temperature profiles from 0 to 

80 kilometers of altitude are shown for Earth and Mars in Appendix B; plots are also 

shown for cp and γ .)   

The pressure and temperature downstream of the shocks were generated from the 

normal shock equations of John (1984).  The changes in cp and γ  were generated for the 

corresponding conditions across the shock.  The percent change in properties is plotted in 

Figures B-9 through B-12 in Appendix B.  Each plot shows the variation of cp and γ  

across a normal shock at various altitudes and Mach numbers between 1.5 and 3.5.  The 

largest percent difference in cp was found to be 12.9% for air and 9.7% for carbon 

dioxide.  The largest percent difference in γ  was found to be 4.4% for air and 12.0% for 

carbon dioxide.  All four of these conditions existed at Mach 3.5, and all four percentages 

are small enough to consider these properties to be constant across the flow field.  Small 

errors will be generated due to this assumption, but the computational costs will also be 

greatly reduced.   

2.5. Variable Viscosity and Thermal Conductivity 

A similar procedure was used to test the validity of a constant viscosity flow field.  

Again Earth and Martian atmospheres were tested with supersonic shocks ranging from 

Mach 1.5 to 3.5.  (Plots of the percent change across the shock are given in Figures B-13 

and B-14 in Appendix B.)  Sutherland’s law was used to model the coefficient of 
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viscosity versus temperature (White, 1991).  The model predicted a maximum change of 

139% difference for air and 148% for carbon dioxide.  These changes are drastically 

different than those for cp and γ . 

A 150% increase in viscosity across a shock means that the Reynolds number 

would decrease by a factor of 2 ½.  This could be damaging when trying to predict the 

transition location or thickness of any boundary layer on the downwind side of the shock.  

Therefore, Sutherland’s law will be used to model the viscosity of the fluid at all points in 

the flow: 
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where ( )0µ  is the reference viscosity, ( )0T  is the reference (absolute) temperature, and S  

is Sutherland’s constant 

Since the flow field will be considered to have variable viscosity, the necessity for 

variable thermal conductivity must also be assessed.  Prandtl number is the dimension-

less ratio of the effects of viscosity to thermal conductivity: 

(2.36)        
k

c p µ
=Pr  

where k is the coefficient of thermal conductivity.  Since cp is a assumed to be constant 

for the flow, the Prandtl number can be used to relate the thermal conductivity to 

viscosity (now a variable property).  Looking at the temperatures in the Earth atmosphere 

and those after the Mach 3.5 shock, the temperature ranges from 200 to 950 K.  Across 

this range the Prandtl number averages 0.703 and only deviates by 5%.  This variation is 

a reasonable percentage to assume a constant Prandtl number.  Similarly, temperature for 

the Martian atmosphere range from 200 to 800 K.  Across this range the Prandtl number 
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averages 0.733 and again only deviates by 5%.  Again this variation is reasonable to 

assume a constant Prandtl number.  Therefore, the changes in the viscosity can be 

represented using Sutherland’s law while changes in thermal conductivity will be seen by 

scaling viscosity by the Prandtl number of the flow field.   

2.6. Dimensionless Forms 

The original solver of Cowan utilized the governing equations in dimensionless 

form.  Therefore, the additional viscous terms need to be non-dimensionalized in a 

similar manner.  Equations 2.37 through 2.44 were used by Cowan; the remaining five 

equations were added by this research. 
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Using the previously defined dimensionless ratios, the governing equations can be 

specified in the following form: 
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and the stress and conduction terms are given by: 
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Further, the ideal gas equation of state and enthalpy equation can be non-

dimensionalized into the following forms (repeated from Cowan, 2003). 
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Finally, Sutherland’s equation can be non-dimensionalized by dividing the 

equation at any state by that at the free stream condition.  The rational form eliminates 

the need for the reference temperature and viscosity.  The temperatures can then be 

converted to internal energy and non-dimensionalized into the following equation: 
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From this point onward, the asterisks are dropped to simplify the equations; 

nevertheless, the equations are still represented in dimensionless form.  

2.7. Stokes Hypothesis for Second Viscosity 

The dissipation term in the energy equation represents the energy dissipated by 

viscous effects.  Since viscous effects cannot create energy, the viscous dissipation term 

must be non-negative (either positive or zero).  This term is given Equation 2.64 where 

the subscripts x and y represent the partial derivatives with respect to the x- and y-

directions: 

(2.64)     ( )[ ] ( )2222 22 yxyxyx vuuvvu +++++=Φ λµ  

Stokes hypothesis says that the second coefficient of viscosity can be represented 

as a direction function of dynamic viscosity:  µλ 3
2−= .  Recent findings in the literature 

include values of the second coefficient greater than zero and some even greater than 

their corresponding dynamic viscosity.  These experiments are a matter of controversy 

themselves but seem to suggest than the second viscosity should be µλ 3
2−≥ .  This 

condition can be proven by showing that a non-negative dissipation term is ensured for 

the following conditions (White, 1991; Baum, 1997): 
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(2.65)           0≥µ  ;  023 ≥+ µλ  

Anderson (1984) gives a similar discussion by relating the first and second 

coefficients of viscosity to the combined viscosity, κ : 

(2.66)        λµκ +≡ 3
2  

Anderson further explains that κ  is only helpful when studying the structure of 

shocks and/or the absorption and attenuation of acoustic waves.  Anderson further 

assumes that κ  is negligible for his discussion and arrives at Stokes’ hypothesis.  

Rearranging the previous equation, the lower limit of the second coefficient is again 

illustrated: 
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CHAPTER 3 
 
 

3. Methodology 

The previous chapter started with the Euler equations used by Cowan (2003) and 

developed the full Navier-Stokes equations.  Using Cowan’s Euler solver and his original 

formulation as a model, the Navier-Stokes equations will now be developed into a finite 

element methodology.  First, the theory behind finite element methods will be illustrated 

by discussing the terms involved and benefits of using integration by parts on the original 

governing equations.  The space-time discretization established by Cowan is reviewed.  

The equations for one- and two-dimensional elements will then be generated to be used to 

represent the boundary edges and internal flow field, respectively.  Next, the boundary 

conditions used by Cowan will be reviewed along with the needed changes to establish 

the boundary conditions as viscous boundaries.  And finally, the chapter will conclude 

with a discussion of the artificial dissipation model used by Cowan. 

3.1. Overview of Finite Element Methods 

The partial differential equations represented by Equations 2.10 through 2.13 

represent the compressible Euler equations.  No closed form solution to these equations 

exists in their full representation, although solutions have been found for more simplified 

forms.  In order to solve the full compressible Euler equations, a numerical method is 

required.  Cowan (2003) chose to solve the equations using a triangular finite element 
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method with three temporal models.  Cowan selected a finite element method to represent 

the geometry without requiring body fit coordinate systems.  Instead, the finite element 

method uses an unstructured mesh of triangles.  The three temporal models include one 

steady-state model and two unsteady time stepping models.  The space-time formulations 

and dissipation models used by Cowan are left for discussion in later sections. 

In the previous chapter, the Euler equations were expanded to the Navier-Stokes 

equations given by Equations 2.14 through 2.21.  These equations can be represented in 

the same form as Cowan’s Euler equations.  In order to begin, three terms must be 

definied:  (1) the spatial domain, (2) the spatial boundary, and (3) the element shape-

weighting function.  The spatial domain, Ω , encompasses the entire flow field to be 

represented by the spatial elements.  The spatial boundary, Γ , represents the edges of the 

flow field and the edges of the spatial domain.  The spatial boundary is always one 

dimension less than that of the corresponding spatial boundary.  For example, since the 

spatial domain used in this thesis will always be the two-dimensional domain, the spatial 

boundary will always be one-dimensional.  Once the spatial domain has been established 

and bound by the spatial boundary, the domain must be broken into many finite elements.  

Each element uses a shape function, Φ , to represent the distribution of flow field 

variables across the element.  The triangular elements used here contain three points of 

information at the three vertices.  The most simple shape function is given by a linear 

relationship between these three values.  In the Galerkin method, the shape function is 

also used as the weighting function (explained below).   

In order to find a solution, the finite element method integrates the governing 

equations at a specific set of flow variables.  The equations are said to be solved when the 
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integral of the governing equation is minimized or zero.  If the integral is minimized to a 

value other than zero, the difference between the final value of the integral and zero is the 

residual numerical error.  Baker (1983) describes this process as solving equations by 

minimizing the overall error on the flow field.  A weighting function is used to scale the 

governing equations to aid in the minimization process.  Several methods have been 

developed over the years; the Galerkin method is the particular method selected by 

Cowan and will therefore be illustrated here.  The Galerkin method uses a weighting 

function that is equivalent to the element shape function. The value of the weighting 

function is equal to the shape function on the element and equivalently zero at all other 

points in the domain.  The vector form of the Galerkin integration is given below for the 

governing equations.  For more details on Galerkin formation, Lapidus and Pinder (1982) 

give a step-by-step presentation of the Galerkin integral along with several other 

methods. 
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where Ui, Fi, Fv, Gi, Gv, and Sr represent the inviscid, viscous, and non-inertial source 

vectors previously given in Equations 2.10 through 2.16 and 2.25.  Using the Gauss 

divergence theorem, or integral by parts, the equation can be broken into two integrals: 
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The first integral represents the integration on the elements interior to the flow 

field domain, Ω ; the second integral represents the integration of the boundary elements 

of the domain boundary, Γ .  The two integrals can be used to split the solution of the 
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flow domain into two separate parts:  The first part uses the domain integral to find the 

necessary contribution to the solution by the triangular elements within the domain.  The 

second part uses the boundary integral to find the necessary contributions given by the 

different boundary conditions around the boundary.   

The solution of the terms with a subscript I has already been accomplished by 

Cowan in the original solver.  The non-inertial source vector Sr is also included in 

Cowan’s problem definition.  The remaining two vectors (denoted by subscript V) are 

added by this thesis.  In the sections that follow, the original formulation of Cowan will 

be discussed to bring the reader up to speed, then an explanation of the additions made by 

this thesis will be given. 

3.2. Space-Time Formulation 

Cowan (2003) uses an implicit predictor multi-corrector algorithm to march the 

solution of Equation 3.2 to zero.  This algorithm is implicit because all of the flow 

properties in the equation are defined at the current time except for those used to 

approximate the time derivative.  The algorithm begins with the flow properties at the last 

time step and corrects for Equation 3.2.  The new flow properties at the current time 

condition are then used to iterate the solution to convergence.  The current solver does 

not specify a convergence condition but rather a number of cycles to convergence.   

The original space-time formulation used by Cowan can be separated into three 

different types:  (1) steady, (2) first order unsteady, and (3) second order unsteady, all 

with a linear piece-wise spatial formulation.  The spatial formulation is linear on each 

element and discontinuous from element to element, therefore piece-wise linear.  The 
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temporal formulation originates when the two-dimensional spatial domain is given a third 

dimension in time.   

3.2.1. Steady Solutions 

For steady solutions Cowan uses a constant-in-time approximation for the time 

step, similar to the piece-wise linear spatial domain.  Cowan names this condition the 

“jump condition” because each domain is considered to be constant in time for each 

space-time domain, but discontinuous between domains.  The “jump condition” is 

illustrated in Figure 3-1.  The vector U represents the unknowns vector at various times t.  

The superscripts represent the discontinuity in unknowns across the jump condition.   

time

t t+2t+1

Ut

Ut+2Ut+1
(+)

Ut+1
(-)

 

Figure 3-1:  Constant-in-Time Representation (or Jump Condition) 

 

The steady solution can be progressed through time just as that of an unsteady 

solution.  The time step of the solution march is limited by stability.  The stability is, in 

part, ensured by using a Courant type (CFL) stability criteria, used to scale the time step.  
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The time step is also limited to the amount of time for a fluid particle to cross the smallest 

element.  The second limitation can be lifted by allowing each element to have its own 

local time instead of enforcing a global time on the entire flow field.  In this way, a CFL 

of unity will allow information to progress across each element in the domain at every 

solution step.  The CFL factor can then be used to scale this local time step back. 

 The local time step is developed according to a energy stability analysis 

methodology.  The method relates the time step at a node to the eigenvalues of the 

segments (e.g., element edges, boundary edges) connected to that node.  For a given node 

i and CFL factor, the local time step is given by Equation 3.3: 
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where [ ]iLM  is the global lumped mass matrix at node i and kij ,λ  is the eigenvalue for the 

kth segment attached to node i, spanning between nodes i and j.  Further, the eigenvalue is 

found using the velocity at node j, kjV , , speed of sound for the segment, kija , , and 

geometric weighting vector, kijW , .  The eigenvalue for segment i,j is illustrated in 

Equation 3.4. 

(3.4)     kijkijkijkjkij WaWV ,,,,, +⋅=λ  

3.2.2. 1st Order Unsteady Solutions 

The first order unsteady solver still uses the jump conditions along with a CFL 

factor, but steps the solution at a time accurate global time step.  In order to speed up 

convergence, the solver still calculates the local time step and steps the inner iterations 
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with the local time step.  Each time step is still calculated using the global time step, but 

local time steps are used to stabilize the solution and converge the solution more quickly.  

Cowan further warns that more inner cycles per time step are required for global time 

steps that are larger than the local time step.   

The local time step is also adjusted for stability reasons when the local time is 

greater than the global time step.  Cowan describes the ratio of local to global time steps 

as a relaxation factor.  If the relaxation factor (local over global) is less than unity, the 

element is under-relaxed.  For a relaxation factor greater than unity, the element is over-

relaxed and could diverge.  Therefore, the unsteady solver is limited to local time steps 

less than or equal to the global time step.  The only remaining concern with the unsteady 

solver is ensuring that the number of cycles per time step is greater than the global time 

step divided by the local time step for the worst case scenario, generally the smallest 

element of the field. 

3.2.3. 2nd Order Unsteady Solutions 

The second order unsteady solution is generated by replacing the first order jump 

condition with a second order jump condition approximation.  The new approximation is 

a second order finite difference equation given below. 

(3.5)            
t

UUU tt
i
t

∆
+− −− 22
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12

3 2
 

where i
tU  is the flow properties at the ith iteration toward a solution of Ut; and, 1−tU  and 

2−tU  are the flow properties at the past two time steps, respectively.  
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Cowan also warns that because the local time stepping is used to numerically 

stabilize the second order solution, this solution is often found to be unstable and require 

more artificial dissipation to converge.  But the two unsteady solvers use about the same 

amount of CPU time to generate their solutions. 

3.3. Finite Element Discretization 

Now that the temporal discretization has been discussed, the spatial equations 

need to be shown in their original Euler form and their current viscous form.  First the 

unknowns vector is developed here.  The shape function is also then generated in one and 

two dimensions to find the unknowns at any point across the field element or boundary 

edge.  The shape vector and corresponding finite element equations can then be 

developed in both one and two dimensions. 

The unknowns vector is a vector containing the five unknown properties that will 

be solved for at each point in the flow.  These five properties include density, velocity in 

the x- and y-directions, pressure, and enthalpy.  The unknowns vector is illustrated in 

Equation 3.6.  From this point on the bold faced U will represent the unknowns vector, 

whereas the lowercase u will represent the velocity in the x-direction. 
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3.3.1. One-Dimensional Elements 

This section will develop the necessary shape function and derivatives along a 

one-dimensional element.  The 1-D element is will be used as a simplified version of the 

two-dimensional element and also in the development of boundary edge integrals.   

The shape function for a one-dimensional element can be defined most simply by 

two lines.  The two lines span between nodes i and j.  One of the lines must go to zero at 

node i and unity at node j; the remaining line will go to zero and unity at the opposite 

nodes.  An illustration of the shape function is given by the Figure 3-2 below.  The first 

line will be represented by the first term of the shape vector, 1Φ ; while the second line is 

represented by the remaining term, 2Φ .   

1Φ 2Φ

1

node i node j
η

 

Figure 3-2:  Shape Vector for a Linear One-Dimensional Element 

 

If the scalar product of the shape vector and the vector representing the flow 

properties is found, the scalar flow property at any location η  along the element can be 
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found by Equation 3.7.  This scalar product is represented graphically in Figure 3-3 as the 

full linear shape function of the one-dimensional element. 
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Figure 3-3:  Shape Function for a Linear One-Dimensional Element 

If the natural coordinate η  of the element spans from η  = -1 at node i to η  = 1 at 

node j, then the shape function vector for the element is given by Equation 3.8.   

(3.8)                { }ηη +−=Φ 11
2
1

e  

Since any property can be generated by a scalar product with the shape function 

vector, the x-location along the element can be found by Equation 3.9. 

(3.9)                      ( ) 2121 2
1

2
1 xxxxx ee η++=Φ=  

where 

(3.10)              exxxx ∆=−= 1221  
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Here, x1 represents the x-location of node i and x2 represents the x-location of node j.  If 

the line were sloped through an xy-plane, the y-location at any η  could be found through 

a similar approach.   

The gradient of the shape function is constant because the element has been 

represented by a linear shape function.  The relationship between the gradient in the 

natural coordinates and the gradient in the global coordinate can be related by the chain 

rule, shown in Equation 3.11. 
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where the Jacobean of the element can be found by either differentiating Equation 3.9 or 

by inspection by looking at the change in both the local and global coordinates across the 

element.  Both of these methods are illustrated below. 
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The relationship of Equation 3.11 can be reversed to find the global derivatives in 

terms of the local derivatives in the natural coordinate frame, illustrated in Equation 3.14.  

The inverse of the Jacobean is used to reverse the equation. 
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Using Equation 3.14, the gradient of the shape function can be found.   
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The gradient on the element can then be used to represent the global gradient 

vector.  The gradient of u-velocity and internal energy are illustrated in Equations 3.16 

and 3.17 below.  The gradient is constant across the element, therefore the gradient of a 

property will be expressed as a constant scalar for the element. 
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Now that the shape function has been defined, and the element gradients can be 

found in the global frame, several integrals must be examined in order to understand how 

the governing equations are converted to finite element form.  The governing equation in 

one dimension (a simplified version of Equation 3.2) is given by the following: 
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The first term of this integration can be broken down into the vector 

representation given in Equation 3.19.  Since the shape function is considered to be 

constant in time by the jump condition, the shape function can be pulled out of the time 

derivative.   
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The last term of Equation 3.19 gives a matrix, called the element mass matrix, and 

the time derivative of the vector Ui for the element.  The integration of the element mass 

matrix is given in Equation 3.20.  This matrix can be used for any of the three time 
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derivatives mentioned in Section 1.2; the time derivative needs only be represented as a 

column vector. 
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If Ui can be represented by Equation 3.21 for one-dimensional problems, then the 

time derivative of the vector can be approximated for first order accuracy by Equation 

3.22.  Using the time derivative of the momentum flux as an example, Equations 3.19 

through 3.22 can be combined to derive the finite element time derivative term for 

momentum flux, shown in Equation 3.23. 
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The second term in Equation 3.18 can be separated into two parts:  An inviscid 

integration and a viscous integration term.  The inviscid integration term will be handled 

next.  This term is given in Equation 3.24.  The gradient of the shape function is constant 

for the element and can therefore be pulled out of the integration. 
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Cowan uses Gauss quadrature to integrate the final integral form of the previous 

equation.  Numerical integration was not necessary for the inviscid integrals, but Cowan 



49 

saw fit to do so in order to accommodate the addition of viscous terms.  This equation is 

given below along with the Gauss weights, wj, and Gauss points, jη , for one- and two-

point Gauss quadrature.   
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Table 3-1:  Gauss Quadrature for One-Dimensional Elements (Chand., 1991) 

Number of Points (NP ) Gauss Points (      ) Gauss Weights (w j )

1 0.0 2.0
-0.577350269 1.0
0.577350269 1.0

2
 

Similar to the representation of Ui, Fi can be represented by Equation 3.26.  Using 

the energy flux as an example, Equations 3.24 through 3.26 can be combined to derive 

the finite element energy flux term with one point Gauss quadrature, shown in Equation 

3.27. 
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The remaining viscous term to integrate is given in Equation 3.28 below.  Notice 

that, similar to Equation 3.21, the gradient can be moved outside of the integral.  

Therefore, Gauss quadrature can be used to integrate the remaining equation resulting in 

Equation 3.29. 

jη
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The only complication occurs when trying to apply the integration to a mixture of 

gradients and variables.  This complication is easily resolved with the understanding that 

each gradient in the equation is a constant for the element, and each variable in the 

equation can be generated as a scalar value by using Equation 3.7.  Therefore, Fv can be 

represented by Equations 3.30 through 3.32.  Using the normal stress as an example, 

Equation 3.16 and Equations 3.29 through 3.32 can be combined to derive Equation 3.33 

shown below. 
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3.3.2. Two-Dimensional Elements 

Now that the one-dimensional element has been explored, the two-dimensional 

element is just an expansion on the shape function and the full two-dimensional 
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governing equations.  In the same way that the one-dimensional shape function was 

defined by a line between two points (Figure 3-3), the shape function for a two-

dimensional element can be described as three points used to establish a plane.   

The basic shape and natural coordinates of a two-dimensional element are 

illustrated in Figure 3-4 below.  The natural coordinate system of the two-dimensional 

triangle element is defined by three nodes.  At each of the nodes, two of the natural 

coordinates go to zero while one of the coordinates goes to unity.  Along the edges of the 

element, one of the coordinates remains zero while the other two span from zero to unity. 

 

node 1

node 3

node 2

(0,0,1)

(0,1,0)

(1,0,0)

 

Figure 3-4:  Geometry and Natural Coordinates for a Two-Dimensional Element 

 

( )321 ,, ξξξ
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In order to limit the possible combinations on the natural coordinates, Equation 

3.34 is used to calculate a third coordinate from the two known coordinates.   
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The three-space coordinate system of Figure 3-4 can therefore be transformed into 

a two-space coordinate system using Equation 3.34.  Equation 3.35 is the result of 

converting from a three coordinate system to a two natural coordinate system.  From this 

point forward, the two natural coordinates will be used to express the location throughout 

the triangle element.  In this way, there are two global coordinates and now two local 

coordinates on each element. 

If the scalar product of the shape vector and the flow properties vector is again 

made, as in Equation 3.36, a scalar property can be found at any position on the element.  

This scalar product is represented by a plane in Figure 3-5. 
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node 1

node 3

node 2

U 1

U 3

U 2

 

Figure 3-5:  Shape Function for a Linear Two-Dimensional Element 

 

Since any property can be generated by a scalar product with the shape function 

vector, the xy-location on the element can be found by such a product.  In Equation 3.37 

the three natural coordinates are used to find the two global coordinates. 
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Equation 3.35 can be substituted into Equation 3.37 and simplified into Equation 

3.38 below.   
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Again the gradient of the shape function is constant because the element has been 

represented by a linear shape function.  The relationship between the gradient in the local 

and global coordinates can be found through the chain rule.  In Equation 3.40, the chain 

rule has been illustrated in an i-index notation where i is either 1 or 2 for the natural 

coordinates.  The index notation has then been expanded into Equation 3.41 into matrix 

notation, where the Jacobean matrix is shown. 
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The Jacobean can be inverted and moved to the other side of the equation, 

resulting in Equation 3.42, such that the global gradient is now defined by the local 

gradient.  Notice that the determinant of the Jacobean is set equal to twice the area of the 

element, Ae, in Equation 3.43.  The element area is used this way for notation purposes 

only. 
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where 

(3.43)     [ ] 13232313det2 yxyxJAe −==  
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From Equation 3.42, the x-derivative of the shape function can be defined as: 
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Similarly, the y-derivative can be defined as: 
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Using these two relationships, the gradient on the element can then be used to 

represent the global gradient vector.  The x-gradient of u-velocity and y-gradient of 

internal energy are illustrated in Equations 3.48 and 3.49, respectively.  Remember that 

the gradient is constant across the element, therefore the gradient of a property will be 

expressed as a constant vector for the element. 
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Now that the two-dimensional shape function has been defined and used to 

develop the gradient vectors, there are several integrals to be solved.  Equation 3.2 can 

again be used as the developing equation; but, this time Equation 3.2 need not be 
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simplified in order to represent the integrals.  The first term of the equation can be broken 

down into the vector representation of Equation 3.50.  Since the shape function is 

considered to be constant in time by the jump condition, the shape function can be pulled 

out of the time derivative, as it was in Equation 3.19. 
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The last term of this equation can again be broken into the mass matrix and the 

time derivative vector.  The mass matrix is integrated in Equation 3.51.  The mass matrix 

can be used for any of the three time derivatives mentioned in Section 3.2; the time 

derivative needs only be represented as a column vector. 
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The vector UI is given by Equation 2.1 for two-dimensional problems; and, the 

time derivative of the vector can be represented to first order accuracy by Equation 3.52.  

Using the time derivative of the energy flux as an example, Equations 3.50 through 3.52 

can be combined to derive the finite element time derivative term, shown in Equation 

3.53. 
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The second and third terms of Equation 3.2 can be broken into two separate parts:  

An inviscid and a viscous integration term.  The inviscid term is the term used on each 

element of the Euler solver; the viscous term is the additional computations added by this 

thesis.  The inviscid terms are given in Equations 3.54 and 3.55.  Notice that the gradient 

of the shape function is constant for the element and can therefore be pulled out of the 

integration. 
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As with the one-dimensional element integration, Cowan used Gauss quadrature 

to numerically integrate the inviscid flux terms.  Equations 3.54 and 3.55 are repeated 

below using Gauss quadrature; the Gauss weights and points for one- and three-point 

Gauss quadrature are given for the following equations. 
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Table 3-2:  Gauss Quadrature for Two-Dimensional Elements (Chand., 1991) 

Number of Points (NP ) Gauss Points (                 ) Gauss Weights (w j )

1 ( 1/3, 1/3 ) 1/2
( 2/3, 1/6 ) 1/6
( 1/6, 2/3 ) 1/6
( 1/6, 1/6 ) 1/6

3

 

The vectors Fi and Gi can further be represented by Equations 3.58 and 3.59.  

Using the mass flux as an example, Equations 3.56 through 3.59 can be combined to 

derive the finite element mass flux terms with one point Gauss quadrature, shown in the 

equations that follow. 
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The remaining viscous terms to integrate (from the element integrals) is given in 

Equations 3.62 and 3.63 below.  Notice, the gradient can again be moved outside of the 

jj ,2,1 ,ξξ
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integral.  Gauss quadrature can again be used to numerically solve the double integral, 

resulting in the equations that follow. 
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The vectors Fv and Gv can further be represented by Equations 3.66 through 3.72.  

Using the x-momentum flux as an example, Equations 3.64 through 3.72 can be 

combined to derive the finite element x-momentum flux terms with one point Gauss 

quadrature, shown in Equations 3.73 through 3.78. 
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where 
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The remaining terms of Equation 3.2 below to the boundary edge integrals or 

boundary conditions.  These integrals are based on the one-dimensional element 

equations from the previous section.  The only difference here comes from the evaluation 

of the derivatives in the viscous integrals.  The remaining four terms of Equation 3.2 will 

be handled below in two groups:  Inviscid and viscous terms.  The inviscid terms are 

examples of the derivations used by Cowan; the viscous terms are examples of the terms 

used in this thesis. 

The inviscid boundary integral terms are given by Equations 3.79 and 3.80.   
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The two previous equations can be used by evaluating the values of Fi and Gi at 

nodes 1 and 2 using Equations 3.58 and 3.59.  Both equations assume that the inviscid 

fluxes vary linearly across the surface; this assumption is not bad and often helps with the 

stability of the boundary condition.  The values of the inviscid flux terms along with the 

boundary normal can be used to calculate the vectors from Equation 3.79 and 3.80.   The 

boundary normal, given by (nx, ny), faces into the flow field by convention. 

The viscous boundary integral terms are given by Equations 3.81 and 3.82.  This 

time instead of assuming that the viscous fluxes are linear along the boundary edge, the 

properties are assumed to vary linearly along the edge as previously represented on the 

element. 
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Fv and Gv can be found in a similar manner as with the entire element, but the 

numerical integration must also include the shape function on the boundary. Using the 

energy flux as an example, Equations 3.81 and 3.82 can be combined with Equations 3.66 

through 3.72 to derive the finite element energy flux terms with one point Gauss 

quadrature, shown in Equations 3.83 and 3.84.  Since the gradient on the element is 

constant across the element, the gradient is also constant for the boundary edge.  

Therefore, the gradient for the element that corresponds to the boundary edge is used in 

the integration of Equations 3.83 and 3.84.  This element gradient is still found using 

Equations 3.69 through 3.72.  (Note:  The indices 1, 2, and 3 in Equations 3.83 and 3.84 

may not align exactly with the indices 1 and 2 in the following equations.  The indices 

below are with respect to the boundary edge nodes; those in Equations 3.83 and 3.84 

belong to the element that corresponds to that boundary edge.) 
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3.4. Boundary Conditions and Boundary Integrals 

The original Euler solver written by Cowan (2003) contained three boundary 

condtions:  Solid wall, symmetry plane, and far field.  The solid wall condition is a slip 

conditions that restricts the flow to that tangential to the surface of the wall.  Displace-

ment and velocity of the solid wall is simulated through transpiration, which changes the 

normal of the surface rather moving the mesh to establish motion.  The symmetry 

condition also restricts flow to the tangential direction, but does so in a weakly through 

the boundary integral.  The symmetric condition cannot handle curvature well whereas 

the solid wall condition handles curvature quite well.  The far field condition uses 

Reimann invariants to adjust the boundary integral so that the freestream is weakly 

enforced at all far field edges. 

In order to apply the viscous and conduction terms to the flow field, these terms 

must also be applied to the boundary integrals through the boundary conditions.  All 

boundary conditions within the scope of this thesis are considered to be adiabatic, 

therefore all of the following sections will automatically neglect any heat transfer across 

the boundaries.  This assumption is good since no heat transfer can occur across a 

symmetry plane by definition, the far field should not contain gradients by definition, and 
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the solid surfaces have no solid conduction model to receive the heat transfer therefore it 

is only safe to assume none in the first place.  All other assumptions will be listed below 

with their corresponding boundary condition.   

All three original boundary conditions will be discuss further along with any 

adaptations, and the new viscous solid wall will be discussed in entirety.  Because a new 

viscous wall is being generated by this thesis, the original solid wall condition of Cowan 

will be referred to as an inviscid wall or Euler solid wall condition from this point 

forward. 

3.4.1. Symmetry Boundary Condition 

In order to implement the symmetry boundary condition, the definition of 

symmetry must be met across the boundary.  Therefore, any gradients perpendicular to 

the boundary must be zero, and the fluid can only flow tangent to the boundary.  Cowan 

enforces the symmetry boundary condition by weakly applying the symmetry constrains 

to the boundary integrals themselves.  The inviscid boundary flux vectors are given in 

Equation 3.90 below. 
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To apply the symmetry condition weakly, all velocities normal to the boundary 

must be neglected, shown in Equation 3.91.  If this condition is used to simplify the 

previous equation, the boundary flux vectors are given by Equation 3.92. 
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For viscous flow, the symmetry boundary condition must again apply zero 

velocity normal to the boundary, while also requiring that no velocity gradient occur 

across the symmetry plane.  These conditions mean that viscous shear stress cannot occur 

on the boundary.  The symmetry condition can, on the other hand, allow heat and viscous 

stresses parallel to the symmetry plane.  Therefore, starting with Equations 2.52 through 

2.58, the only remain terms are shown below: 
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The shear stresses have been dropped altogether, and the components of the 

normal stresses and heat transfer terms that occur parallel to their respective normal 

vector (i.e., nx, ny) have also been dropped.  The remaining terms are the components of 

the velocity divergence tangential to the symmetry plane.  Equations 3.93 and 3.95 are 

only good for symmetry planes parallel to the x- and y-directions.  Any symmetry plane 
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used in a direction not parallel to the cardinal directions would need to consider the 

gradients in the local frame as a reference to dropping terms.   

3.4.2. Far-Field Boundary Condition 

The original far-field boundary conditions use one-dimensional Reimann 

invariants to encourage the flow to return to the freestream conditions on the far-field 

boundaries of the flow.  This condition is a weakly applied boundary conditions since the 

boundary conditions are not strongly imposed on the points but rather are suggested using 

the Reimann invariants. 

For a viscous far-field boundary condition, the velocity gradients should go to 

zero at the boundary.  In this case the Reimann invariants can be left in their original 

form.  This assumption works well until the gradients at the boundary become large.  

Large gradients only exist in shocks, boundary layers, wakes, and vortices.  This thesis 

will therefore assess the relative breakdown of the solution near the far-field boundary 

and make suggestions from that assessment. 

3.4.3. Inviscid Wall Boundary Condition 

The inviscid wall boundary of the original solver assume no flow normal to the 

surface.  This condition is strongly applied on the boundary using Equation 3.96.  The 

boundary integral is applied using Equation 3.90. 

(3.96)          ( )nnVVV ˆˆ⋅−=  

Because this boundary condition is for an inviscid wall, viscous terms were not 

included in the boundary integrals.  This boundary condition does remain for two general 
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purposes:  (1) To generate shocks and other conditions that need to be present around 

viscous boundaries, when a viscous boundary is not necessary; (2) to generate inviscid 

surfaces which can be used to simulate flow geometry, such as engine exhausts. 

3.4.4. Viscous Wall Boundary Condition 

The viscous wall boundary condition is a new addition generated by this thesis.  

The inviscid integrals, Fi and Gi, are taken from Equation 3.90.  For the remaining 

viscous integrals, all of the remaining viscous terms are included along with a strong 

condition represented by the no-slip boundary conditions.  For the no-slip boundary 

condition to exist, the velocity of the fluid on the surface must be equal to the velocity of 

the surface, represented by the following equation: 

(3.97)      belvs VV =  

where vsV  is the velocity of the fluid on the viscous surface and belV  is the velocity of the 

boundary element, or velocity of the solid surface.   

If the surface is not allowed to move, Equation 3.97 is simplified to a zero 

velocity condition.  This condition can then be used to assess the viscous dissipation near 

a solid surface.  Figure 3-6 shows the distribution of velocity, shear stress, and viscous 

dissipation in the Blasius solutions.  The Blasius solution was generated using a 4th order 

Runge-Kutta algorithm to solve Equation 3.98.  In Figure 3-6, the velocity distribution 

was created by plotting f ′ , the shear stress from f ′′ , and the viscous dissipation by 

multiplying the previous two plots.   
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Figure 3-6:  Viscous Dissipation near a Viscous Surface 

 

The viscous dissipation plot goes to zero showing that there is no need to include 

viscous dissipation in the viscous wall boundary integral.  Therefore, these terms are 

excluded from the solution.  Again using Equations 2.52 through 2.58 and dropping the 

unnecessary terms, the viscous wall boundary integrals are solved using the following 

viscous terms, Fv and Gv: 
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After implementing the above equations in the viscous solid wall boundary 

integrals, the residual for the momentum equations is limited to a minimum value that far 

exceeds that of the continuity and energy residual.  The previous viscous wall equations 

contribute only to the right-hand-side vector for the nodes on the boundary.  The strong 

boundary condition is later applied to these conditions, therefore the viscous wall 

contributions in right-hand-side vector only add to overall residual of the flow field.  

Given the lack of application for the boundary integral values, the integrals were removed 

from the solver to help converge the solution residual and decrease the overall run time. 

3.5. Stabilization:  Artificial Dissipation 

The original Euler solver contains two different artificial dissipation models:  

Low-order and high-order dissipation.  The high-order dissipation model is similar to the 

low-order model except that the high-order model contains gradient limits to allow real 

flow discontinuities.  Because of the calculation time to generate the gradient limiters, the 

low-order model is much more efficient than the other model.   

Cowan found the high-order model to be unstable for high Mach number; but for 

subsonic and transonic Mach numbers with or without vorticity, the high-order model is 
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much more useful.  The high-order model is also required for the non-inertial calculations 

because the low-order model will remove any relative velocities from the flow field.  

Because of the effects of the low-order model on real flow gradients, all of the viscous 

test cases and their Euler counter parts have been generated using the high-order model 

(unless otherwise specified).
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CHAPTER 4 
 
 

4. Computer Implementation 

The Euler governing equations were extended from their original form to the 

Navier-Stokes equations in Chapter 2 and then applied to the finite element method in 

Chapter 3.  This chapter will discuss how the code was expanded to handle the changes 

outlined by the two previous chapters.  The discussion will begin with the additional 

controls and storage required to handle the new viscous terms.  The optimal 

implementation of Sutherland’s equation will also be discussed.  Further, the original 

algorithm will be outlined along with sections added by this research.  The supporting 

programs generated or amended by this research will be outlined.   

One major obstacle was encountered during startup and similar situations:  The 

solution may become unstable due to the coupling of the local time stepping and the 

viscous forces applied on elements.  This problem occurs mainly for low Reynolds 

numbers and suggestions are given to help handle the problem.  Finally, this chapter will 

be concluded with an overview of memory requirements and computational runtime 

compared with the original solver. 

4.1. Data Structures and Controls  

This section will begin by discussing the variables used to control the Euler solver 

and additional controls required for the new viscous solver.  Then the data structures used 
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by the original solver are outlined along with additional storage required to evaluate the 

viscous terms.  Finally, this section will wrap up with a discussion of how Sutherland’s 

equation is handled in the new solver. 

4.1.1. Control Variables 

The variables used to control the number of values stored in the geometry arrays 

are shown in Table 4-1.  The geometry controls are also used to compute the appropriate 

number of iterations when evaluating the elemental and boundary integrals.  Two new 

geometry controls are used by the viscous solver.  These variables are discussed below.  

The overall solver control variables are represented in Table 4-2.  These variables are 

used to control the flow properties, number of calculations, and output files.  Four 

additional parameters are needed in the new solver. 

Table 4-1:  Geometry Control Variables 

Control Name Array Description 

NND Number of nodes 
NEL Number of elements 
NSG Number of segments 
NBE Number of boundary edges 
NBP Number of boundary points 
NWL Number of nodes on solid walls (Euler and viscous) 
NSD Number of singular nodes on solid walls (Euler and viscous) 
NWLV Number of nodes on viscous solid walls 
NSDV Number of singular nodes on viscous solid walls 
LBE Limits for boundary edge groups 

 

All of the controls shown in Table 4-1 can be found in the geometry file, *.g2d.  

The arrangement of the geometry file can be seen in Appendix A.  The original solver 

required eight geometry controls; two new parameters have been added by the viscous 
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solver.  The Euler solver requires the number of solid wall nodes to evaluate the flow 

tangency condition.  The original solver also requires the number of singular nodes so 

that the tangency condition can be omitted from these nodes.  The new viscous solver 

requires the Euler and viscous surfaces to be separated in order to streamline the 

evaluation of boundary integrals.  In order to accommodate both solvers with the same 

controls, the number of viscous nodes NWLV has been included in the number of solid 

wall nodes NWL.  Similarly, the number of singular viscous nodes NSDV has been 

included in the number of singular nodes NSD.  Because NWL and NSD contain all of the 

solid surface counts, the original solver will treat all of the surfaces equally whereas the 

new viscous solver will treat the nodes according to the appropriate solid wall conditions.  

This idea is further expanded in the next section where the order of points and boundary 

edges is discussed.  Figure 4-1 and 4-2 are used to illustrate each principles. 
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Table 4-2:  Solver Control Variables 

Control Name Array Description 

DT Global time step (dimensionless) 
GAMMA Ratio of specific heats 
DISS Dissipation factor 
CFL Local time step stability factor 
LAMB Ratio of viscosity coefficients 
SMOD Modified Sutherland’s coefficient 
MACH Freestream Mach number 
RE Freestream Reynolds number 
PR Prandtl number 
ALPHA Freestream angle of attack 
REFDIM Reference dimension 
NSTP Number of solution steps 
NOUT Output frequency:  Number of steps between output files 
NCYC Iterative cycles per solution step 
ISOL CFD solution type 
IDISS Dissipation type 
IPNT Number of points for Gauss quadrature used on elemental integrals 
ISTRT Restart flag 
IAERO Aerodynamic forces flag 
IDYNM Dynamics and/or non-inertial flag 
IELAST Elastic flag 
IFREE Freestream flag 
IFORCE External forcing flag 
NR Number of elastic modes 
AINF Freestream speed of sound (dimensional) 
RHOINF Freestream density (dimensional) 

 

All of the controls shown in Table 4-2 can be found in the controls file, *.con.  

The arrangement of the controls file can also be seen in Appendix A.  The original solver 

required twenty-two controls; four new controls have been added by the viscous solver.  

These new controls include the freestream Reynolds number RE, which is used to control 

the coefficient of viscosity in the solution through dimensionless means.  The local 

coefficient of viscosity is controlled by Sutherland’s equation.  This equation is 

represented in Equation 2.61, where the modified Sutherland’s constant is given by 
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Equation 2.47.  The modified Sutherland’s coefficient SMOD represents the 

dimensionless form of the Sutherland’s constant.  The local coefficient of viscosity is 

further related to the second coefficient of viscosity through their ratio LAMB, and the 

local conduction coefficient is related to local viscosity through the Prandtl number PR of 

the flow.  Through these four variables all of the viscous and conduction effects can be 

controlled. 

4.1.2. Data Structures 

The original data structures, i.e. storage arrays, can be summarized in the table 

that follows.  No new data structures have been added by this research, but the data 

structures have been amended to include more of the required data.  The first five 

structures are read in from various input files; the next ten arrays are generated within the 

preprocessing section of the solver and used in the aerodynamics solution; and, the last 

three are developed during preprocessing and used in the elastics solution.  Each of these 

three groups are overviewed below, followed by amendments to the data structures. 
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Table 4-3:  Data Structures 

Structure Name Array Description 

COOR Nodal coordinates 
IELM Element connectivity 
ISEG Segment connectivity 
IBEL Boundary edge points,  
PHIA Nodal mode shape vector 
G2D Area and gradient of shape function for each element 
WSG Segment weights 
DM Lumped mass matrix 
DELT Local time step vector 
RBE Edge length and unit outward facing normal 
ANOR Area weighted wall normals 
GRX, GRY Nodal gradient in the x- and y-directions, respectively 
RHS Right hand side vector 
RSD Residual vector 
UNO, UN, UN1 Previous, current, and predicted future unknowns vectors, respectively 
BVEL Elastic wall deformation and velocities 
XN, XN1 Current and future conditions for mode shapes 
FA Generalized forces for mode shapes 
RM, RC, RK Mass, damping, and stiffness matrices, respectively 

 

Input Data Structures:  The first four structures listed here are read in from the 

geometry file, or *.g2d.  COOR contains an x- and y-coordinate for each node in the 

mesh.  The nodes in the mesh are indexed from 1 to NND.  IELM and ISEG represent the 

nodal connectivity for the elements and segments, respectively.  IELM contains three 

nodal indices for each element, representing the three vertices of the triangle; ISEG 

contains two indices for the end points of each segment.  The elements of IELM are 

numbered from 1 to NEL, and the segments of ISEG are numbered from 1 to NSG.   

The original IBEL contains the indices for the two nodes on each boundary edge.  

In order to increase the efficiency in evaluating boundary integral effects, Cowan chose 

to organize IBEL so that the first group of edges correspond to solid wall conditions, 
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followed by a group of symmetry plane edges, and then the far field conditions.  The 

limits of these three groups are set by the control LBE.  LBE(1) marks the beginning of 

the solid wall boundary edges, and LBE(2) marks its end.  LBE(3) and LBE(4) designate 

the symmetry boundary edges while the far field edges are bounded by LBE(5) and 

LBE(6).  The new viscous boundary edges are bounded by LBE(7) and LBE(8), such that 

these two constraints lie within the bounds of LBE(1) and LBE(2).  Therefore, the Euler 

surfaces are listed first, followed by the viscous boundary edges.  The original solver will 

only read the first six LBEs, treating both solid wall surfaces as Euler boundary edges.  

The new viscous solver differentiates between the two types, evaluating all four boundary 

conditions.  The order of IBEL is illustrated in Figure 4-1 below.  

 

Figure 4-1:  Order of Boundary Edges in Euler and Viscous Solvers 

 

Similarly, the nodes in COOR are ordered to aid in the evaluation of the tangency 

condition.  The original solver separates the first NWL nodes to lie on the solid wall 

edges.  The solver applies the strong tangential boundary conditions to all of these nodes 

except the last NSD singular nodes.  To accommodate the differences in the Euler and 
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viscous solvers, the viscous nodes are placed so that they overlap both of these areas.  

NWLV viscous wall nodes are contained within the NWL solid wall nodes.  The first 

NSDV nodes of the singular nodes are also viscous nodes.  The node order is best 

represented by Figure 4-2.  Therefore, both solvers apply the tangency condition to the 

Euler wall group of nodes, whereas only the Euler solver applies the condition to the 

viscous wall group.  Finally, the viscous groups are set equal to the boundary velocity in 

the viscous solver. 

 

Figure 4-2:  Order of Nodes in Euler and Viscous Solvers 
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The final structure is read from the mode shape vectors file, or *.vec.  PHIA 

contains the nodal shape displacement of each mode in the structural model.  Each mode 

shape is represented by a node-by-node distribution of the mode shape. 

The content and size of COOR, IELM, ISEG, and PHIA were left in their original 

form.  IBEL needed to be adapted to include information about the boundary edge 

gradient.  The original Euler solver only needed to contain the indices for the two nodes 

on the boundary edge.  An index for the attached element was added in order to evaluate 

the new viscous gradients on the boundary edges.  The gradient on the linear element is 

constant and therefore can be applied as a constant to the attached boundary edge.  The 

gradients are evaluated on all element in the flow field during the preprocessing portion 

of the run.  These gradients are stored in the G2D array.  Using the index for the attached 

element, the gradients can be called out of the G2D array without any additional 

preprocessing or storage. 

Aerodynamic Data Structures:  As previously mentioned, the G2D array is used to 

store the element area and 2 by 2 gradient matrix.  The element gradient matrix and area 

were developed previously in Equations 3.42 and 3.43, respectively.  RBE contains the 

boundary edge normal vector and edge length; ANOR contains the area weighted normal 

for solid boundary nodes.  RBE is used to hold the values of x∆ , nx, and ny in the 

Equations of Section 3.3.2.  ANOR is evaluated using the normals for the two boundary 

edges on either side of each node on a solid surface.  WSG contains the length weighted 

gradients for each segment. GRX and GRY are the nodal gradient in the x- and y-

directions, respectively.  These segment weights and nodal gradients are used to evaluate 
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the amount of dissipation needed at each node.  These six data structures are used to 

define the complete geometry of the flow field. 

DM and DELT are the element mass matrix and local time steps for each node in 

the flow field.  The mass matrix was previously defined by Equation 3.51, and the local 

time step was developed in Equations 3.3 and 3.4.  UNO, UN, and UN1 are the unknowns 

values at all nodes in the flow field at the previous, current, and future time steps, 

respectively.  The unknowns vector was previously defined by Equation 3.6.  BVEL is the 

boundary velocity evaluated by applying the structural solver or force surface motion to 

each node on the solid surfaces.  Equation 3.2 represents the right-hand side vector, 

stored in RHS.  The vector is evaluated by summing all of the contributions of Equation 

3.2 for every node in the flow field.  (The time derivative vector in Equation 3.2 is 

neglected for evaluation of the steady right-hand side vector.)  This vector is then used to 

solve for the unknowns at the next iteration.  The right-hand side vector is also used to 

evaluate the residuals vector, RSD.  The residuals vector contains one residual for each of 

the four equations evaluated.  The residual for each equation is defined as the root-mean-

square of all of the corresponding RHS contributions.  Because the flow velocities on the 

viscous surfaces are generated by setting the flow velocity equation to the surface 

velocity, the RHS for the viscous surfaces does not contribute to the solution.  Therefore, 

before the residual vector is evaluated the RHS at each node on the viscous surfaces is set 

to zero. 

Structural Arrays:  XN and XN1 represents the current and future displacement 

mode shape factors.  These factors are multiplied by the PHIA mode shape vector in 

order to find the total displacement at each node.  FA is the generalized force for each 



81 

mode shape; RM, RC, and RK are the mass, damping, and stiffness matrices for the 

structural solver.  The generalized force vector contains a generalized force component 

for each of the NR modes.  Each of the three matrices is a square matrix NR in rank.  All 

of the structural data structures were left to their original size and content. 

4.1.3. Sutherland’s law  

Sutherland’s law has been previously given in Equation 2.61.  There are two 

methods to store Sutherland’s equation in the solver:  (1) Function calls or (2) look up 

tables.  Because the actual function would include several divisions and rational powers, 

the function could be computationally expensive.  Another method is to store the proper 

values in an array during the preprocessing stage of the algorithm.  The array could then 

be used to find the most appropriate viscosity for a given energy using various 

interpolation routines.  In other words, the array is used as a “look up table”. 

The solver was first written so that the dimensionless viscosity of Equation 2.61 is 

always equated to unity.  Then four cases were tested for the increase computational cost 

for the two methods.  The first two cases explored the use of function calls.  The first 

function used the rational power of Equation 2.61 directly; the second function used the 

ratio of energies times the square root of the ratio.  The final two cases investigated look 

up tables.  One cases tested linear interpolation with an 100,000 element array; the 

second used quadratic interpolation on the same array.  Both arrays were stored so that 

the energy could be converted to an appropriate index and the index could be used to look 

up the viscosity ratio.  A laminar boundary layer in subsonic flow was used as the test 
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bed for all five test cases.  Table 4-4 shows the run time results and percent increase over 

the baseline of 0.1=µ  at all locations. 

Table 4-4:  Results of Sutherland’s Equation Tests 

 

 

The results show that the function call is the best method when the square root is 

used in place of the rational power.  This method still increases the overall run time by a 

factor of 16%.  Because of this cost, an option is included in the solver so that the 

0.1=µ  case can be used to accelerate the run time when a variable viscosity problem is 

not required.  The viscosity ratio can be set to unity everywhere by entering a value of 0.0 

for SMOD.  Any value greater than 0.0 will represent the ratio using Equation 2.61. 

4.2. Aerodynamic Forces 

The original Euler solver computed all three of the aerodynamic coefficients 

using on the average pressure distributed over the boundary edge.  Each edge is linearly 

distributed; therefore, the average pressure on each edge can be found by averaging the 

pressure at the two nodes on either side of the edge.  Using this average pressure and the 
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components of the surface normal, the components of the aerodynamic force can be 

found.  These force components can also be used to find the moment about the origin.  

The non-dimensional form of these three coefficients is shown in the following 

equations: 
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where *p  is the dimensionless pressure used in Section 2.6.  The generalized 

aerodynamic force used by the structural solver can be found similar to Equations 4.1 

through 4.3.  The generalize force vector can be found by summing the pressure for all 

nodes on the solid surfaces dotted with the mode shape at that point.  The generalized 

force vector is illustrated in the following equation: 
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where NWL is the number of wall nodes, *
jp  is the dimensionless pressure at node j, and 

ijφ  is the mode shape displacement of mode i at node j.   

For the new viscous solver, the shear stress along viscous solid surfaces must also 

be addressed.  The shear stress vector is developed in full in Appendix C, but a short 

version of that development is given here.  The local shear stress on a boundary edge is 

given with reference to the local elemental coordinate system.  The magnitude of the 

local shear stress is given by the following equation: 
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The local gradients can be found in terms of the global gradients on the element.  

The conversion from global to local gradient is given by: 
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Combining Equations 4.5 and 4.6, the magnitude of the local shear stress is given by: 
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The magnitude of the local shear stress can be assumed in the local x-direction of the 

boundary edge.  Using the same local to global coordinate transform, the local shear 

stress can be rotated back into the global reference frame to find the actual shear stress 

vector, given by Equation 4.8. 
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The equations can be converted to their final form by using the components of the surface 

normal to replace the trigonometric ratios: xn−=θsin   and  yn=θcos .  Combining 

Equations 4.7 and 4.8 and using the surface normals, the shear stress vector for a viscous 

boundary edge is represented by the following: 
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Equation 4.9 can be non-dimensionalized by dividing the shear stress vector by 

the freestream dynamic pressure.  Equation 4.10 represents the coefficient of friction as a 

vector for a boundary edge. 
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The coefficient of friction can be summed in vector form across all of the viscous 

boundary edges to find the three aerodynamic coefficients.  This process is similar to that 

of summing the coefficient of pressure across solid wall elements.  The three 

aerodynamic coefficients are equated to the shear stress below: 
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The generalize force vector can be found by summing the shear stresses for all 

nodes on the viscous surfaces dotted with the mode shape at that point.  The generalize 

force vector is illustrated in the following equation: 
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where NWLV is the number of viscous solid wall nodes, cf is the coefficient of friction at 

node j, and ijφ  is the mode shape displacement of mode i at node j.   

The final form of the aerodynamic coefficients can be found by summing up the 

contributions due to pressure across all solid wall boundary edges (Equations 4.1 through 
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4.4) and by summing the contributions due to shear stress across all viscous wall edges 

(Equations 4.11 through 4.14).  Because of the overlapping nature of the boundary edge 

limit controls, LBEs, the equations can be used in their given form and both the inviscid 

and viscous surfaces will be handled in the pressure summation while only the viscous 

surfaces will be used in the shear stress summation. 

4.3. Basic Algorithm  

The algorithm for both the Euler and Navier-Stokes solvers is represented by the 

pseudocode below.  All lines of the algorithm previous to the advancement of the first 

time step are considered part of the preprocessing of the algorithm.  There are six lines of 

the algorithm that are marked as conditional.  For non-inertial solutions, the dynamics file 

must be read during preprocessing while the elastic vectors file must be read for 

aeroelastic cases.  Both of the previous two cases require the unsteady solver for time 

accuracy.  Therefore, both non-inertial and elastic cases apply the transpiration boundary 

conditions, assemble the time derivatives using the jump condition, calculate forces on 

solid surfaces, and step the structural/dynamics solver to generate boundary conditions 

inputs for the next step of the CFD solver. 

Adaptations to generate the viscous solver include input/output files, initial and 

boundary conditions, shear forces, and the governing equations.  There were several 

changes made to the control and geometry files; these changes were reflected in the 

preprocessing section of the code.  The unknowns output file was amended to include the 

freestream Reynolds number in the header.  These changes are discussed in Section 4.1 

and are shown in the file formats in Appendix A.   
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Read control data 
  Read geometry data 
  Assemble additional geometry data 
       Compute element Jacobeans & areas 
       Invert global lumped mass matrix 
       Compute length & normal of boundary edges 
       Add element & boundary edge weights to segments 
  Open and read non-inertial / dynamic file (if necessary) 
  Open and read elastic vectors file (if necessary) 
  Compute elastic deformation & velocity for wall nodes 
  Apply initial conditions 
  Apply flow tangency 
  Compute forces on solid surfaces 
  Solve structural dynamics equations 
  Apply transpiration boundary conditions (optional for inviscid walls) 
  Advance CFD solution one time step 
       Loop over all segments and compute nodal time steps 
       Loop through inner cycles 
     Reapply solid wall boundary conditions 
     Assemble jump condition (unsteady) 
     Assemble element flux integrals 
     Assemble source vector integrals 
     Assemble inviscid solid wall boundary integrals 
 Assemble symmetry boundary integrals 
     Assemble far-field boundary integrals 
     Add dissipation to RHS vector to smooth solution 
     Apply flow tangency to inviscid wall nodes 
     Update solution for next cycle 
     Apply no slip condition for viscous solid walls 
       Repeat for NCYC times 
       Output residuals 
       Compute generalized forces acting on walls (optional) 
       Advance structural dynamics for the next time step (optional) 
       Apply transpiration B.C. for elastic modes 
       Output contents of unknowns vector 
  Repeat for NSTP times 

Figure 4-3:  Pseudocode for Euler and Navier-Stokes Solvers 

 

The initial and boundary conditions for the viscous solver include a strong 

application of the no slip condition.  Therefore, the velocity at all viscous wall nodes is 
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set equal to the wall velocity when the initial conditions are applied on the flow field.  

Further, the strong boundary conditions are reapplied at the end of each inner cycle.   

In the preprocessing section and at the end of each CFD iteration, the forces are 

summed on all solid wall surfaces.  The original code summed the contributions due to 

pressure on all solid surfaces.  The new code includes this summation over both the 

inviscid and viscous solid surfaces.  Then the code sums the shear forces on all viscous 

solid surfaces.  The application of element gradients to find the shear force vector is 

discussed in Section 4.2.  This application is made not only for the aerodynamic forces 

and moment coefficients but also for the generalized forces used to march the 

structural/dynamics solver.   

Finally, changes to the governing equations and their finite element forms are 

given in Chapters 2 and 3.  These changes are reflected in the assembly of element 

integrals and the boundary flux integral terms.  Since the far-field, source vector, and 

inviscid wall integrals were not changed, the code was left in its original in these 

sections.  The same can be said for the dissipation models.  The final adaptation for the 

governing equation was made just before the calculation of the residuals vector.  As 

previously discussed, the viscous wall boundary condition is strongly applied therefore 

any changes to the velocity terms of the right-hand side vector contribute to the residual 

vector without actually affecting the solution.  Therefore, just before the evaluation of the 

residual vector, the right-hand side terms for u- and v-velocities at all viscous wall nodes 

is set to zero.  Using this method, the residual vector should converge as for the original 

code. 
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4.4. Primary and Supporting Programs  

There are five programs used in this research.  Each of the five programs are 

outlined below.  The first program is the viscous solver explicitly outlined in this thesis.  

The second program is the original Euler solver.  The third program was originally 

written to generate the geometry file for the Euler solver; this thesis amended the 

program to generate geometry files that are valid to both the Euler and viscous solvers.  

The final two programs are used to edit the unknowns binary file and to interpolate 

solutions onto new meshes. 

NS2d:  The viscous solver is the program explicitly outlined in this thesis.  The 

program was adapted from Euler2d to include viscous terms.  The viscous solver has the 

capability to handle steady and unsteady viscous flows.  No turbulence model is available 

in the current NS2d program, therefore the solver can only handle laminar flows.  The 

solver does retain the non-inertial source terms from Euler2d.  On the other hand, the 

aeroelastic routines of NS2d cannot use transpiration to model the deformation of viscous 

surfaces; yet, the structural model was retained, leaving the ability to expand the solver to 

include a viscous transpiration model.  The format of all input and output files used by 

NS2d is illustrated in Appendix A. 

Euler2d:  The original Euler solver can be used to generate flow field solutions to 

seed the viscous solver.  The same geometry file can be used to generate an Euler 

solution, locating shocks, expansion, and large pressure gradients.  Then the solution can 

be used to seed the viscous solver so that the boundary layers and other viscous flow 

solutions can be generated.  The Euler solver requires less run time and is much more 

stable at generating start up solutions.  The Euler solver has the capability to generate 
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steady and unsteady flow solutions in either the inertial or non-inertial reference frames.  

Euler2d also has the capability to use transpiration boundary conditions to model 

aeroelastic responses using linearized mode shapes. The format of all input and output 

files used by Euler2d is illustrated in Appendix A. 

Makeg2d:  Both the Euler and Navier-Stokes solvers require a prescribed 

geometry file.  The meshing software available in the STARS package is called surface.  

Surface can be used to mesh a surface bounded by two or more curves.  As long as the 

mesh lies in only two of the cardinal directions, makeg2d can be used to rearrange the 

nodes and boundary edges according to the requirements of both the Euler and Navier-

Stokes solvers.  The output file, or *.g2d, can be seen in Appendix A.  The input files are 

called the front file, or *.fro, and the boundary conditions file, or *.bco.  The front file 

can be generated by the surface mesh generator.  The file formats for both the front and 

boundary conditions files are also given in Appendix A. 

Unkadapt2d:  The unknowns files, *.unk or *.un#, contain the dimensionless 

density, pressure, velocity components, and enthalpy at all of the nodes in the flow.  The 

files also contains several control variables in the header of each file.  Both solvers 

required the number of nodes, ratio of specific heats, Mach number, angle of attack, 

reference length, and current dimensionless time.  The Navier-Stokes solver also requires 

the freestream Reynolds number.  In order to convert an Euler2d unknowns file to a NS2d 

unknowns file, unkadapt2d can be used to read in the unknowns file and edit the header.  

Unkadapt2d can be used to read in any unknowns file and edit any of the control values 

except the number of nodes and the reference length.  The file can then be written in 

either the Euler2d or NS2d formats. 
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Unkinterp2d:  Unkinterp2d can be used to interpolate the solutions from one mesh 

to another mesh.  The elements used by both Euler2d and NS2d are linear triangular 

elements.  The interpolation program requires a geometry *.g2d file for both the old and 

new meshes, and a unknowns *.unk file for the old mesh.  The program sorts the 

elements in the old geometry file and puts the elements into an optimal arrangement of 

clusters.  The clusters are used to accelerate the search and interpolation process.  If the 

new nodes do not lie within the old mesh elements, the program extrapolates the 

solutions from the closest boundary edge.  Therefore, unkinterp2d can be used to 

interpolate solutions during the mesh convergence process.  The program can also be 

used to place a finer mesh over shocks and other natural flow gradients.  And, because of 

the extrapolation features of unkinterp2d, the program can be used on meshes.  The 

program closes by allowing the user to amend the header of the unknowns file, similar to 

unkadapt2d. 

4.5. Suggestions for Local Time Stepping Constraints  

Instabilities have been found to occur when starting up a viscous solution from 

either freestream conditions or from an Euler solution.  These problems can also occur if 

the freestream Reynolds number is decreased too quickly.  The instability can occur near 

viscous surfaces and near anomalies in the flow mesh.   

The instability problem arises because of the coupling of the local time step and 

viscous stresses.  At start up, the velocities on the surface of viscous walls are set equal to 

zero, either absolutely or relative to the non-inertial effects.  The elements lying along the 

viscous surfaces then contain the largest gradient that will be seen in the boundary layer 
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as the viscous effects develop.  This large gradient equates to a large change in the right-

hand side vector for the nodes just off the viscous surfaces.   

The problem would be much simpler if not for the coupling of the local time step.  

The local time step is calculated using Equation 4.15, which is a combination of 

Equations 3.3 and 3.4.  Notice that the two velocities used are the average acoustic speed 

on the segment aij and the local velocity at the opposite node Vj.  For the start up 

condition, the velocity along the surface is zero, therefore the node just off of the surface 

suddenly loses this velocity contribution.  The summation of velocity contributions on the 

segment is then inverted; therefore, the decrease in velocity results in an increase in the 

inverse.  This inverse is then used to scale the local time step.  The combined effects of 

the increase in local time step and viscous stresses result in a much larger impulse at the 

point just off the viscous surface. 
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Problems with the local time step have also been found to occur when an anomaly 

in the mesh occurs.  Such an anomaly is illustrated in Figure 4-4.  The anomaly allows 

for some of the segments connected to one particular node to decrease enough that an 

effect is seen in the velocity summation and therefore the inverse.  Problems are not seen 

at such anomalies unless a gradient or shock wave passes directly over the anomaly.  As 

the wave passes over the anomaly, the forces are increased at the node.  Combined with 

the increased local time, the larger impulse again occurs. 
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Figure 4-4:  Mesh Anomaly Causing an Increase in Local Time Step 

 

The properties at the point of interest are adversely affected by the large impulse 

values.  The properties are over-adjusted in the first iteration.  Then the properties are 

adjusted too far and the gradient increases.  An even larger impulse occurs.  The 

properties continue to oscillate in a diverging manner.  This process is illustrated for the 

viscous surface in Figure 4-5 and for a mesh anomaly in Figure 4-6. 

 

Figure 4-5:  Divergence of Along a Viscous Surface 
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Figure 4-6:  Divergence at a Mesh Anomaly 

 

Suggestions for Steady Solutions:  Two methods were explored for generating 

stable steady solutions when the unstable conditions exist.  The first methods involves 

increasing the freestream Reynolds number to decrease the initial viscous effects seen by 

the solver.  This method would decrease the impulse on the problematic nodes.  A stable 

Reynolds number can be found by starting at the desired Reynolds number and stepping 

by order of magnitude (i.e., Renew = 10 Reold).  A stable Reynolds number should result in 

a converging residual.  The stable Reynolds number can be used for several thousand 
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iterations or until the viscous gradients have settled out of the problem areas of the flow 

field.  The Reynolds number can then be decreased.  The residual output must be watched 

because the new solution can often converge for a short time and then diverge to infinity.  

Also, the Reynolds number in the unknowns file header must be updated at each change.  

This process was found to be tedious and required much attention by the user.  Therefore, 

this process is not suggested unless the second method would take too much time. 

The second method requires a global stabilization of all of the local impulses.  

This stabilization can occur by lowering the local time step at each node in the field.  

Equation 4.15 shows that the CFL number can be used to scale all of the local time steps.  

Figure 4-7 illustrates the results of nine tests ran to find the appropriate CFL number for 

various Reynolds numbers.  The tests varied the geometry, freestream Reynolds number, 

dissipation, and number of inner cycles.   

Two geometries were used in the tests:  A laminar boundary layer over a flat plate 

and a circular cylinder.  The boundary layer was started with freestream conditions at all 

locations in the flow.  The smallest segment in the boundary layer meshes was varied 

through a range of 0.0008, 0.0043, and 0.0208 of the reference dimension.  The cylinder 

was tested under a freestream and Euler start up solutions.  The smallest mesh for the 

cylinder was varied through a range of 0.0022, 0.0024, and 0.0027 of the reference 

dimension.  The freestream Reynolds number, dissipation constant, and number of inner 

cycles was varied for each Reynolds number.  The freestream Reynolds number was 

varied from 1 to 109 by orders of magnitude; the dissipation constant was varied from 1.0 

to 2.0 by steps of 0.2; and, the tests were given one or five inner cycles.   
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The results of the tests showed that the dissipation constant had little effect on the 

stability at start up.  In Figure 4-7, the stable CFL number varies slightly at the high end 

of the Reynolds number range.  This variation is due solely to changes in dissipation.  

One inner cycle was found to be slightly less stable than five cycles per solution step. 

Figure 4-7 represents only the results for five cycles per step.  The plot for one cycle 

shows the same linear trend at low Reynolds numbers and a decrease in maximum CFL 

available at higher Reynolds numbers, but the decrease is only from CFL of 0.7 to 0.3.   

The Reynolds number has the greatest effect of the three parameters tested.  The 

effects of Reynolds number are explicitly shown in Figure 4-7.  The two regions of the 

figure represent a stable upper limit of CFL for the solver and stable CFLs at unstable 

Reynolds numbers.  The upper limit of CFL for the viscous solver is between 0.3 and 0.7, 

which is comparable to 0.8 recommended by Cowan (2003).  

 

Figure 4-7:  Highest Stable CFL vs. Minimum Local Reynolds Number 
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The linear region of Figure 4-7 has been isolated in Figure 4-8 and approximated 

by a power law trend.  The trend is shown on the graph below.  The power generated by 

the trend is 0.94, which is very close to unity; therefore, the relationship between CFL 

and local Reynolds number is almost linear.  As a final note on these two figures, both 

figures have been plotted with Rex on the abscissa.  Rex was derived from the freestream 

Reynolds number ReL, the minimum segment length x, and the reference length L.  The 

file organization program makeg2d outputs the minimum segment length x as a standard 

output while the routine compiles the necessary data to generate the geometry file.  The 

other two values can be taken from the control file.  Using these three parameters, 

Equation 4.16 can be used to generate Rex. 

(4.16)       Lx L
x ReRe =  
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Figure 4-8:  Stable CFL Trend for Low Reynolds Numbers 

Suggestions for Unsteady Solutions:   

Using the trend in Figure 4-8 and the suggestions of Tanahashi (1990) shown in 

Equation 2.1, the following relationship is suggested to select a stable unsteady time step: 
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where advt∆  is approximated by the shortest time for fluid to cross any element in the 

flow.  One safe method for solving for advt∆  is to divide the smallest element length by 

the largest velocity in the flow field.  Once the solver has been running for a long enough 

duration, a subsonic viscous flow field will contain the smallest elements in the boundary 

layer, where the smallest velocities are also found.  On the other hand, the initial steps of 

the solver may not have small formed the boundary layer yet and the previous suggestion 
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would give a conservative estimate of the advection time.  Supersonic viscous flow fields 

will contain shocks that will use small elements to represent fast changes in the high 

speed flow.  The global time step will most likely be most restricted by the elements near 

the shock. 

4.6. Summary  

To summarize the previous sections, there were several adjustments made to the 

control variables, data structures, and sections of the algorithm.  The basic algorithm of 

the CFD and structural/dynamic algorithms were not changed, but rather the equations 

applied to the right-hand side vector were adapted so that the elemental and boundary 

integrals included not only the Euler fluxes but also the viscous terms.   

Changes to the equations were also adapted in the control variables and data 

structures.  Four new control variables were added to include viscous and conduction 

terms.  Reynolds number was added as a dimensionless form of viscosity.  The local 

viscosity was found from the freestream Reynolds number RE using Sutherland’s 

equation and the modified Sutherland’s constant, SMOD.  The ratio of viscosity 

coefficients LAMB and the Prandtl number PR are considered constant for the flow:  The 

ratio of viscosity coefficients is used to find the second coefficient of viscosity at every 

point in the flow.  Likewise, Prandtl number is used to ratio the effects of viscosity to 

conduction.  The viscous and conduction terms can be controlled completely through 

these four dimensionless numbers.   

All of the data structures were left in their original form except for the boundary 

element information IBEL.  Originally IBEL included the indices for the two nodes on 
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each boundary.  The new viscous terms require gradients to be evaluated on the 

boundaries.  These gradients are constant across the adjacent element and are therefore 

found through that element.  Therefore, a third component of IBEL was generated to 

store the element corresponding to the appropriate boundary edge. 

Changes to the calculated equations included the evaluation of Sutherland’s 

equation and the calculation of shear stresses along viscous wall surfaces.  Sutherland’s 

equation requires several divisions and rational power be accessed.  Both processes are 

computationally expensive; therefore, computationally efficiency was tested to find the 

best method for evaluating Sutherland’s equation.  The aerodynamic coefficients and 

generalized force vector needed to include contributions due to shear stress.  The 

magnitude of the local shear stress was calculated using the global gradients and an off-

axis correction.  The local shear stress magnitude was then applied to a vector parallel to 

the surface.  This vector could then be transformed back into the global coordinate frame.  

The shear stress vectors could then be summed for all boundary edges as their 

contributions to the force and moment coefficients and generalized force vector. 

An instability was shown to occur due to the coupling of an increased local time 

step and viscous stresses.  Several suggestions were made to elevate the instability at the 

cost of computational efficiency and complication.  Suggested CFL values were given for 

various Reynolds numbers in order to stabilize steady solutions.  Similar values were 

suggested for unsteady solutions along with smaller global time steps.  A warning was 

also given concerning the number of inner cycles appropriate to ensure time accuracy.  

These problems only persist during the start up of a solution and when gradients convect 

across anomalies in the mesh.  Suggestions were also made to identify these areas. 
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4.6.1. Memory Requirements  

The virtual memory requirements of the original code are summed up in 

Equations 4.17 and 4.18 for the real (8 byte float) and integer storage elements, 

respectively.  The actual size of the compiled executable is 512 kilobytes.   

(4.18)  5722345432537 2 +⋅+++++++= nwlnrnrnrnwlnbensgnelnndVM real  

(4.19)            6922334int +++++= nrnbensgnelnndVM eger  

The size of the compiled NS2d executable is 548 kilobytes, and the virtual 

memory requirements are given up in Equations 4.19 and 4.20 below, again for real and 

integer requirements, respectively. 

(4.20)  6262345432537 2 +⋅+++++++= nwlnrnrnrnwlnbensgnelnndVM real  

(4.21)            6932334int +++++= nrnbensgnelnndVM eger  

Therefore, the viscous terms to the original solver add an additional 54 real (8 

byte float) and NBE more integer values to the virtual memory and 7% increase in the file 

size.  

4.6.2. Computational Performance  

The computational time is dependent upon the number of elements, boundary 

edges (and type), and segments.  The number of segments NSG contributes to the time 

that the solver spends adjusting the dissipation portion of the solution; likewise, the 

number of boundary edges can be used to assess the time spent solving for various 

boundary conditions.  Both of these contributions are small in comparison to the time 

spent evaluating the element integrals.  In fact, the computational time is almost a linear 
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relationship of the number of elements in a solution mesh.  This linear trend is shown in 

Figure 4-9.  Variations on the relationship are dependent upon the geometry and are 

related to the time spent evaluating the dissipation and boundary conditions.  Figure 4-9 

gives two linear trend lines with zero intercepts.  These trends represent the 

computational cost per element in Euler2d and NS2d.  The addition of viscous elements 

has therefore added approximately 31.2% more computational cost for the same mesh. 

 

Figure 4-9:  Euler2d and NS2d Efficiency Comparison 

 

Most of the previously mentioned time stepping problems occur where the 

viscous effects are large, generally in low Reynolds number flows.  If the Reynolds 

number is large enough, the natural dissipation may be high enough to make artificial 

dissipation unnecessary.  The artificial dissipation was turned off for several test cases in 



103 

this research after the solution was allowed to settle out.  To reduce the computational 

time required by the dissipation models, a bypass option has been added so that the solver 

will bypass the dissipation subroutine altogether.  The bypass option is triggered by a 

dissipation factor DISS of zero.   

Using the very low Reynolds number cylinder, three tests were ran for 100 

iterations.  Each test had a different dissipation model:  (1) Low order model, (2) high 

order model, and (3) no dissipation model.  The times are reflected as 172.12, 110.64, 

and 69.50 seconds.  Therefore, the low order model requires 59% more computational 

time whereas the second order model requires 148% more time.  Further studies need to 

be made into improving the current dissipation models. 

As for the increase in the elements required to represent the boundary layer and 

wakes in test cases used in this thesis, the number of elements has increased by one order 

of magnitude in most situations.  The number of elements for the cylinder cases was 

increased by a factor of 2.5 to capture the boundary layer and wake.  Similarly the 

boundary layer and wake of the NACA 0012 was increased by a factor of 5.  Larger 

factors can be attributed to large areas of separated flow and shock boundary layer 

interactions. 
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CHAPTER 5 
 
 

5. Results 

There are two steps to proving that the viscous terms are both modeling the 

governing equations and the overall flow physics properly.  These two steps are 

verification and validation.  Slater (2004) defines verification as demonstrating that the 

program and implementation correctly represent the conceptual description of the model 

or governing equations.  Oberkampf and Trucano (2002) describe the process as using 

simplified analytical models of the governing equations, simplified numerical ODE and 

PDE models, and general features of the model to show that the model can generate the 

qualitative results.  The verification section below will illustrate a Blasius boundary layer 

(ODE) to show that NS2d models the governing equations properly for simplified flows.  

Flow visualizations from van Dyke (1982) are also used to show that the general physics 

of the flow fields are properly handled.  

Slater (2004) defines validation as demonstrating that the computational model 

agrees with physical reality. Oberkampf and Trucano (2002) define validation in the 

same way.  Both sources also require the use of experimental data for validation.  

Conforming to these standards, NS2d is validated through the use of cylinder flows and 

four airfoil experiments.  The tests cover a wide range of Reynolds numbers and subsonic 

Mach numbers.  NS2d is also compared with other viscous solvers when applicable.   
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5.1. Verification 

The verification section begins with a laminar boundary layer at a Reynolds 

number of 90000.  The boundary layer is compared to Blasius’ solution for both velocity 

profile, shear stress, and drag on a flat plate.  Many mesh configurations were run in 

order to find the appropriate number of elements to represent the boundary layer.  

Suggestions are given for obtaining a good engineering estimate of the local shear stress 

(aeroelastic applications) and overall drag (aerodynamic applications).  The next three 

cases are flow visualizations compared with van Dyke (1982).  A forward and backward 

facing step at a Reynolds number of 1 are shown.  Then the two cases are combined into 

a rectangular block setting on a flat plate with a Reynolds number of 1. These four cases 

will show that the code is solving simplified viscous geometries as designed. 

The next three groups will show that the solver is capable of modeling the flow 

over immersed bodies.  An NACA airfoil at a relatively high Reynolds number is used to 

illustrate flow over a streamlined body.  The effects of dissipation on the airfoil boundary 

layer are also discussed along with “induced vortex shedding” when the dissipation is 

decreased.  A 6:1 ellipse is then used to illustrate flow over a “bluff” body.  A vortex 

street is shown behind the ellipse, and dissipation induced shedding is again illustrated.  

The next group of immersed bodies is circular cylinders.  The Reynolds number for the 

cylinders ranges from 1.54 to 200.  A vortex street is illustrated for the two highest 

Reynolds numbers. 

To conclude this section, one problematic case is illustrated.  The case is a 2% 

thick flat plate held at an angle of attack of 2.5 degrees.  The plate illustrates leading edge 
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separation on thin airfoils.  The test case shows significant dependence upon artificial 

dissipation and requires the extra dissipation to retain a stable solution.   

5.1.1. Laminar (Blasius) Profile 

Blasius’ solution to the laminar boundary layer problem is a classical ordinary 

differential equation (ODE) approximation of the Navier-Stokes equations.  Other more 

simplified, analytical solutions to the Navier-Stokes equations exist, but these solutions 

require the solver to model attributes such as given downstream pressures or wall motion, 

which the solver does not currently utilize.  These features can be added to the solver at a 

later date, and cases such as Hagen-Poiselle and Couette flow can be used as verification 

tests for those features.  For now, the laminar boundary layer is the most simplified form 

of the governing equations. 

 

Figure 5-1:  Layout of Blasius Boundary Layer Test Case 

 

The test case geometry is given in Figure 5-1 above along with the flow properties 

and solver controls in Table 5-1 below.  The freestream Reynolds number is 3600 for the 

test case, and the plate is 25 units long.  Therefore, the Reynolds number for the entire 

plate is 90000, as specified previously.  The freestream Mach number is 0.3, and the 
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highest local Mach number in the flow was 0.31, found over the thickest part of the 

boundary layer.  Given the maximum Mach number, the flow can be considered 

incompressible and can be modeled using Blasius’ solution. 

Table 5-1:  Boundary Layer Test Case Parameters 
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Blasius’ solution can be found by using Equations 5.1 through 5.3 below (Bertin, 

1998).  The profile ends with 99% of the external velocity given atη  = 3.5.  This 

condition also ensures that the velocity at η  =  5.0 can be approximated as external, or 

freestream.  Blasius’ solution gives a boundary layer thickness (to 99% of external 

velocity) represented by Equation 5.4.  

(5.1)      0=′′+′′′ fff  

(5.2)               
eU

uff == )(η  

(5.3)       
x

U
y e
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η

2
=  

(5.4)       
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This approximation was used to define several parameters for the mesh spacing.  

The meshing software used with this research uses “sources” (i.e., points, lines, and 

triangles) to define the areas of concentrated meshes.  Each source is defined by points:  

One in the case of the point source, two for lines, and three for triangles.  Each source 

also contains three control values:  Spacing, constant radius, and radius to double.  The 

constant radius, or inner radius, is the radius about the source in which the spacing is 

constant.  The radius to double, or outer radius, is the radius where the spacing doubles.  

From these two radii, an exponential curve is fit to define the spacing at any radius away 

from the source.  The meshing routine looks at all of the sources given and the 

background mesh spacing to define the local spacing.  Using the local spacing and the 

marching front method, triangle elements are placed throughout the flow field.   
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For this test case, the boundary layer was defined by three line sources.  The first 

stretches from the leading edge of the plate to 3 reference lengths downstream; the 

second from 3 to 12 reference lengths; and, the final from 12 to 32 reference lengths.  

The additional length on the final line source was used to capture the wake behind the 

plate.  Each source was placed direction along the plate.  The first radius of the source 

was used to define the curvature of the boundary layer.  Figure 5-2 shows that the 

greatest curvature in the boundary layer occurs between η  = 1.0 and 3.5.  Therefore, the 

first radius is chosen to cover 50% of the boundary layer height, given by Equation 5.4.  

The second radius is then chosen to be 2.5 times the first.  Using the exponential decay of 

the spacing, enough elements are distributed across the boundary layer to represent the 

curvature.   

 

Figure 5-2:  First Three Derivatives of Blasius Function f 
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Finally, the spacing must be defined.  The nominal spacing is defined as one-sixth 

of the radius at the four locations.  Because the boundary layer thickness is zero at the 

leading edge, a fictitious location was used to find an appropriate radius.  This fictitious 

location was defined as 0.5 reference lengths downstream; the boundary layer thickness 

there was equated to the radius at the leading edge.  Test cases were then constructed as 

percentages of the nominal case spacing.  These percentages could then be tested to find 

the appropriate spacing to represent the boundary layer.  The nominal case is given in 

Table 5-2 below; the other cases are specified in Appendix D.  The nominal case was 

found to have 10 elements spanning the boundary layer.  The finest test case ran (60%) 

was found to have approximately 16 2/3 elements while the most coarse case had only 1 ¼ 

elements to represent the boundary layer.  An example of these three cases along with the 

160% case are illustrated in Figures 5-3 through 5-6. 

Table 5-2:  Nominal Boundary Layer Test Case 
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Figure 5-3:  Nominal 100% Boundary Layer Cases 

 

Figure 5-4:  Finest 60% Boundary Layer Case 



112 

 

Figure 5-5:  Medium 160% Boundary Layer Case 

 

Figure 5-6:  Most Coarse 800% Boundary Layer Case 
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Each case was swept through dissipations from 1.0 to 0.0 by steps of 0.1.  The 

same trend was found to occur in all of the cases:  Artificial dissipation decreases the 

curvature in the boundary layer.  This decrease in curvature is shown in Figurs 5-8 and 5-

9.  Figure 5-8 shows the boundary layer with a dissipation of 1.0; Figure 5-9 shows no 

dissipation.  With no dissipation, the laminar boundary layer profile was found to match 

Blasius’ solution for all finer meshes.  As the mesh spacing increased, the velocity profile 

overshoots at the point of greatest curvature.  Figure 5-10 illustrates this slight overshoot.  

Yet, even as the elements grow large, the slope at the base of the profile is relatively 

intact (see Figure 5-11).  The spread on the points increases as the elements grow.  This 

scatter around the solution can only be expected; larger elements mean larger jumps in 

the linear approximations. The overshoots at the point of greatest curvature can be seen in 

the 160% mesh.  Therefore, the 150% mesh represents the dynamics of the boundary 

layer within engineering approximations; although, for better accuracy, elements can be 

added.  The 150% mesh has only been tested on the flat plate, so engineering judgment 

must be used when generating other meshes. 
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Figure 5-7:  150% Mesh Velocity Profile (DISS = 0.0) 
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Figure 5-8:  Nominal Mesh with Dissipation of 1.0 

 

Figure 5-9:  Nominal Mesh with Dissipation of 0.0 
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Figure 5-10:  240% Mesh – Overshoot in Velocity Profile (DISS = 0.0) 

 

Figure 5-11:  400% Mesh – Scattering in Velocity Profile (DISS = 0.0) 
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Since the lower 20% of the boundary layer stays intact even for large element 

sizes, the shear stress is also expected to show good results.  The shear stress for the 

nominal (100%), 240%, and 400% cases are shown in Figures 5-12 through 5-15; Figures 

5-12 and 5-13 illustrate the effects of artificial dissipation on shear stress. 

 
Figure 5-12:  Nominal Mesh Shear Stress – Dissipation of 1.0 

 
Figure 5-13:  Nominal Mesh Shear Stress – Dissipation of 0.0 
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Figure 5-14:  240% Mesh – Shear Stress Distribution along Plate (DISS = 0.0) 

 

Figure 5-15:  400% Mesh – Shear Stress Distribution along Plate (DISS = 0.0) 
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In Figures 5-12 through 5-14, the shear stress increases at the end of the plate 

(i.e., x = 25).  The increase is due to the exit plane.  Figure 5-16 shows the Mach number 

profile from near the end of the plate to the exit plane.  The velocities near the exit plane 

decrease to return to the freestream condition due to the far field boundary.   

 

Figure 5-16:  Mach Number Profile Near the Exit Plane of Nominal Mesh 

 

Small decreases in the local shear stress near the leading edge of the plate can be 

seen in Figures 5-14 and 5-15.  The leading edge differences in the 175% mesh and 

larger.  Remembering again that these tests were only run for a flat plate, the 170% mesh 

case is considered to represent the local shear stress well within engineering estimates.   

End of Plate 
Exit Plane 
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Figure 5-17:  170% Mesh Shear Stress (DISS = 0.0) 

 

5.1.2. Forward and Backward Facing Steps 

The forward and backward facing steps have been generated at freestream 

Reynolds numbers of 1.  The geometry for both cases is shown in Figure 5-18; for the 

backward step, the flow comes in a 9 unit high section and leaves out the 10 unit high 

section from left to right.  The control parameters for both cases are given in Table 5-3. 
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Figure 5-18:  Layout of Forward Facing Step Test Case 

 

In order to best illustrate the flow over the backward and forward steps, velocity 

vectors have been plotted for both cases in Figure 5-19 and 5-21, respectively.  These 

velocity vector fields can be compared to the flow visualization from van Dyke (1982), 

given in Figure 5-20.  The vector fields were generated with a constant spacing of 0.1 

over the entire flow field.  The actual grids for the forward and backward facing steps can 

be seen in Figures 5-22 and 5-23.   
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Table 5-3:  Forward (Left) and Backward (Right) Step Control Parameters 

 

 

 

Figure 5-19:  Backward Facing Step Velocity Vectors 
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Figure 5-20:  Flow over a Forward/Backward Facing Step (van Dyke, 1982) 

 

Figure 5-21:  Forward Facing Step Velocity Vectors 
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Figure 5-22:  Unstructured Mesh for Forward Facing Step 

 

Figure 5-23:  Unstructured Mesh for Backward Facing Step 
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5.1.3. Rectangular Block 

Combining the forward and backward facing steps, the next cases is a rectangular 

block setting on a flat viscous surface, illustrated in Figure 5-24.  The block measures one 

unit in height and length, as the previous steps.  Similarly a vector plot has been 

generated in comparison with a flow visualization from van Dyke (1982).  The flow 

visual and vector plot are given in Figures 5-26 and 5-27, respectively.  Further, the mesh 

for this test case is given in Figure 5-25. 

 

Figure 5-24:  Layout of Rectangular Block Test Case 
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Figure 5-25:  Unstructured Mesh for Rectangular Block Case 

 

Table 5-4:  Control Parameters for Rectangular Block Case 
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Figure 5-26:  Rectangular Block on a Flat Plate, Re = 0.02 (van Dyke, 1982) 

 

Figure 5-27:  Rectangular Block Vector Plot 
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5.1.4. NACA 0012 

The next case illustrates that NS2d can handle a streamlined body in the flow 

field.  An NACA 0012 is generated using the geometry of Figure 5-28.  The mesh was 

generated using the 150% rule of Section 5.1.1.  That mesh is shown in Figure 5-29 

 

Figure 5-28:  Layout of Airfoil Test Cases 
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Table 5-5:  Control Parameters for NACA 0012 Airfoil 
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Figure 5-29:  NACA 0012 Airfoil Mesh 

 

The solution to the NACA 0012 case is given in Figure 5-30.  Figure 5-30 ranges 

from a Mach number of 0.36 to zero on the airfoil surface.  The solution shows a well 

defined boundary layer, slight separation near the trailing edge, and a distinct wake area.  

The solution shows problems capturing the boundary layer on the leading edge because 

of limitations on mesh spacing.   
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Figure 5-30:  Mach Number Distribution over NACA 0012 Airfoil (DISS = 1.0) 

 

Two different dissipation levels were tested with the NACA 0012 airfoil.  The 

first is shown in Figure 5-30.  A dissipation of 1.0 was used to converge the solution; 

then the dissipation was decreased to 0.3.  Because the artificial dissipation acts as 

viscosity in the solution, the extra “viscosity” had to be shed into the flow.  The shedding 

can be seen in the entropy plots of Figures 5-31 through 5-33.   
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Figure 5-31:  Entropy for NACA 0012 Airfoil with DISS = 1.0 and RE = 3.0x106 

 

Figure 5-32:  Entropy for NACA Airfoil 1.5 dt After Dissipation Lowered 

 

Figure 5-33:  Entropy for NACA Airfoil with DISS = 0.3 and RE = 3.0x106 

 

Not only can the shed vortices be seen in the intermediate picture, but the wake 

and boundary layer are clearly reduced due to the decrease in “viscosity”.  The shed 

vorticity goes to collaborate the effects of dissipation seen in the boundary layer studies.  
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This artificial “viscosity” acts as viscosity to the flow physics while limiting the gradients 

in the flow, even in the boundary layer itself. 

5.1.5. Thin Ellipse 

A thin ellipse of ratio 6 to 1 is used to generate a more complicated immersed 

body.  The ellipse is similar to the NACA 0012 along the leading edge and mid-surfaces.  

The trailing edge is more like the circular cylinder.  The ellipse leaves behind an 

oscillating wake because of the bluntness and the high Reynolds number of the test case.  

The geometry and a sample of the mesh are given in Figures 5-34 and 5-35, respectively. 

 

Figure 5-34:  Layout of 6:1 Ellipse Test Case 
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Table 5-6:  Control Parameters for 6:1 Ellipse 

 

 

Figure 5-35:  Unstructured Mesh for 6:1 Ellipse Case 



135 

 

Figure 5-36:  Oscillating Wake Behind 6:1 Ellipse for DISS = 0.6 and RE = 4000 

 

Figure 5-37:  Flow Visualization of 6:1 Ellipse, Re = 4000 (van Dyke, 1982) 

 

Figure 5-36 is an entropy plot, revealing the oscillating wake behind the ellipse.  

The Strouhal number for this particular ellipse was found by NS2d to be 4.8.  This picture 

can be compared to that of Figure 5-37, again from van Dyke (1982).  The ellipse was 

simulated at two different dissipation factors:  1.0 and 0.6.  Using the previous pattern of 

behavior, reducing the dissipation should reduce the “viscosity” of the flow over the 

ellipse.  The lift coefficient is shown in Figure 5-38 to oscillate as the ellipse shed 

vortices.  This oscillation changes in amplitude by a factor of 68% but not in frequency 

for a reduction in dissipation.  Although the lift coefficient oscillates, the drag coefficient 
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is constant at 0.0522 for diss = 1.0 and 0.0538 for diss = 0.6.  Therefore, the drag is 

increased by 3% by decreasing the artificial dissipation of the solver.   

 

Figure 5-38:  Oscillating Lift Coefficient for Ellipse with diss = 0.6 and 1.0 
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5.1.6. Circular Cylinder 

The geometry for the circular cylinder test case is given below. 

 

Figure 5-39:  Layout of Circular Cylinder Test Case 

Six Reynolds numbers where tested and are shown on the following pages.  Each 

cylinder flow is used to characterize a different aspect of laminar bluff body flow.  The 

first Reynolds number is 1.94, followed by 9.6, 2.6, and 4.1, the suggested limit of a 

stable wake.  Those cases are followed by Reynolds numbers of 105 and 200, which 

show a definite von Karman vortex street.  Each of these flows is verified according to 

pictures from van Dyke (1982).   

The control parameters for these cases are given in Table 5-7, and a sample of the 

unstructured mesh for the cylinders is given in Figure 5-40.   
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Table 5-7:  Control Parameters for Circular Cylinders 
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Figure 5-40:  Unstructured Mesh for Circular Cylinder Cases 
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Figure 5-41:  Circular Cylinder at Re = 1.54.  (van Dyke, 1982) 

 

 

Figure 5-42:  Computational Circular Cylinder at RE = 1.54 
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Figure 5-43:  Circular Cylinder at Re = 9.6 (van Dyke, 1982) 

 

 

Figure 5-44:  Computational Circular Cylinder at RE = 9.6 
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Figure 5-45:  Circular Cylinder at Re = 26.0.  (van Dyke, 1982) 

 

 

Figure 5-46:  Computational Circular Cylinder at RE = 26.0 
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Figure 5-47:  Circular Cylinder at Re = 41.0.  (van Dyke, 1982) 

 

 

Figure 5-48:  Computational Circular Cylinder at RE = 41.0, Velocity Vectors 
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Van Dyke comments in the caption under Figure 5-47 that “this [Reynolds 

number 41.0] is the approximate upper limit for steady flow.  Far downstream the wake 

has already begun to oscillate sinusoidally.”  The sinusoidal oscillations are far enough 

down stream that variations in velocity, density, and pressure are hard to see, and 

oscillations in the forces on the cylinder are negligible.  But Figure 5-49 shows the 

distribution of entropy in the wake.  From that figure, the oscillations can be 

distinguished quite easily. 

 

Figure 5-49:  Computational Circular Cylinder at RE = 41.0 (Entropy Production) 
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Figure 5-50:  Circular Cylinder at Re = 105, Streamlines Shown by Electrolytic 

Precipitation in Water (van Dyke, 1982) 

 

 

Figure 5-51: Computational Circular Cylinder at RE = 105 (Entropy Production) 
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Figure 5-52:  Circular Cylinder at Re = 200, Streaklines Shown by a Thin Sheet of 

Tobacco Smoke (van Dyke, 1982) 

 
Figure 5-53:  Computational Circular Cylinder at RE = 200 (Entropy Production) 

 
The vortex streets generated by NS2d are shown to be confined to the wake 

directly behind the cylinder.  Figure 5-54 shows the vector field for the Re = 200 case.  

Movement of the vortex centers is explained by the effects of the relative freestream 

velocity.  Figure 5-55 illustrates the velocity distribution between two opposing vortices.  

The picture on the right of Figure 5-55 shows the velocity distribution shifted by the 

freestream.  With the application of a freestream, the center of rotation is moved closer to 

the centerline of the flow.  This phenomenon explains differences in the previous figures. 
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Figure 5-54:  Vector Plot of Circular Cylinder at RE = 200 

 

Figure 5-55:  Velocity Distribution for Two Opposing Vortices (Left) With the 

Addition of a Freestream at Various Velocities (Right) 
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5.1.7. Leading Edge Separation on Flat Plate 

The flat plate was originally generated to investigate separation and laminar 

reattachment, especially in the leading edge separation case.  The case was unsuccessful 

at generating the flow geometry similar to that shown in Figure 5-57.  Instead three 

different cases were run to investigate the problem.   

 

Figure 5-56:  Layout of Leading Edge Separation Test Case 

Figure 5-57:  Leading Edge Separation on Flat Plate, Re = 10,000  (van Dyke, 1982) 
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Figure 5-58:  Plate for DISS = 1.0, RE = 10,000 

 

Figure 5-59:  Plate for DISS = 0.6, RE = 10,000 

 

Figure 5-60:  Plate for DISS = 0.3, RE = 10,000 
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The plate was found to be highly dependent on the dissipation factor.  In fact, 

with too much dissipation, the entire plate separates (shown in Figure 5-58).  As the 

dissipation was decreased, the flow formed a leading edge separation bubble and began to 

release vortices into the flow.  These vortices persisted through the variation of 

dissipation until the dissipation dropped low enough that the solution became unstable. 

The problem with the leading edge separation bubble is hard to understand.  

While dissipation seems to corrupt the solution, the lack of dissipation disrupts the 

solution altogether.  Two suggestions arise:  (1) Add a turbulence model and see if the 

problem persists; or, (2) try a different type of dissipation model.  Both of these ideas are 

outside of the scope of this thesis and are therefore left for future research. 

5.2. Validation 

Without a turbulence model, good validation prospects are less frequent than 

verification.  The validation section opens with the circular cylinders from the previous 

section.  The drag on the cylinders and their Strouhal number is compared to experiment.  

A low subsonic Selig-Donavan 7080 airfoil is then used to compare lift and drag at 

various angles of attck.  Finally, one high subsonic and two transonic airfoil cases are 

illustrated.  The first two are a NASA 10% Supercritical airfoil run at Mach numbers of 

0.6 and 0.79.  The Euler solver shows both airfoils to contain shocks at different locations 

than that of the Navier-Stokes solver.  Problems with these cases are addressed along 

with explanations.  And the third case is a Boeing A4 airfoil at a Mach number of 0.789.  

This case shows similar difficulties and little results. 
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5.2.1. Circular Cylinder 

The drag coefficients for the six cylinder cases are given in Table 5-8.  These 

values are further plotted against other reputable numerical solutions.  The two numerical 

solutions originate from Lei (2004) and Nakabayashi (1993).  Lei used a finite difference 

solver to estimate the drag coefficient and Strouhal numbers for various Reynolds 

numbers from 10 to 1000; Nakabayashi used iterated Oseen’s approximation on various 

shear flows to find the drag, lift, and flow visualizations for Reynolds numbers from 2 to 

40.  Both solvers were verified and validated in their own right.   

Table 5-8:  Drag Coefficient vs. Reynolds Number for Cylinder Cases 

 

The values are presented above for future comparisons, but Figure 5-61 shows 

good agreement between the three viscous solvers.   
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Figure 5-61:  Drag Coefficient vs. Reynolds Number for Various Viscous Codes 

 

The Strouhal number is also plotted versus Lei (2004) and Williamson (1998).  

Strouhal numbers for the current research were taken form the lift history plots shown in 

Figures 5-60 and 5-61.  Williamson uses a square root approximation to find the 

relationship between Strouhal and Reynolds numbers.  The current results and those of 

Lei are presented as points in Figure 5-64, while Williamson’s empirical equation is used 

to generate a trend line through the data.   
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Figure 5-62:  Lift Coefficient for Cylinder at Re = 105 with diss = 0.5 and 1.0 

 

Figure 5-63:  Lift Coefficient for Cylinder at Re = 200 with diss = 0.25, 0.5, & 1.0 
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NS2d predicts the Strouhal number to be 0.17 for the Re = 105 case and 0.19 for 

Re = 200.  These numbers correspond well to White’s (1991) approximation of 0.2 for 

Reynolds numbers between 100 and 105.  The lack of dissipation in the Re = 105 case 

increased the amplitude of lift oscillations by 8% (see Figure 5-62); the Re = 200 case 

tested three dissipation values showing an increase of 5% and 8% in the 0.5 and 0.25 

dissipation cases. 

 

Figure 5-64:  Strouhal Number vs. Reynolds Number for Various Cases 
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As a final note, the empirical curve of Williamson has been terminated on the low 

end by Re = 40.  This limit was specified by Lei to be the lower limit of Strouhal 

oscillations.  The limit also verifies the findings of Figure 5-49 and comment by van 

Dyke (1982). 

5.2.2. SD 7080 Airfoil 

The Selig-Donavan 7080 airfoil geometry is given in Figure 5-65.  The airfoil 

ordinates and experimental data were both taken from the UIUC Airfoil Data Site (Selig, 

2004).  The lift and drag curves are illustrated in Figure 5-66 and Figure 5-67, 

respectively.  The lift data from Euler2d and NS2d was plotted versus experimental data 

for Reynolds numbers of 99943, 100018, 149842, and 150082 to obtain a good average.  

Likewise, the drag data was plotted versus Reynolds numbers of 99943 and 149842. 

The lift curve generated by Euler2d is linear until the flow separates over the top 

surface at an angle of 16 degrees.  The separation is caused by “numerical viscosity” in 

the dissipation model.  The SD 7080 was then generated in NS2d at a Reynolds number 

of 105 and a Mach number of 0.3.  The lift curve from NS2d is more reasonable at lower 

angles of attack, but separates at higher angles.  Because no turbulence model was 

implemented in the viscous code, the flow must remain purely laminar.  At higher angles 

of attack, the lift is not suppressed by a higher pressure that could occur if turbulence was 

being modeled. 
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Figure 5-65:  SD 7080 Airfoil Geometry 

 

 

Table 5-9:  Control Parameters for SD 7080 Airfoil 
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Figure 5-66:  Lift Curve for SD 7080 Airfoil 

 

Similar to problems with the lift, the drag curve is lower at small angles of attack 

and increases faster than the experimental data.  The lower drag at small angles originates 

in the turbulence problem again.  Turbulence is not modeled and the Reynolds numbers 

are high enough that transition, if not turbulence, should be occurring on the airfoil.  At 

mid angles, the drag is increased because the flow separates slightly from the trailing 

edge and also sheds an unsteady wake (see Figure 5-68).  At higher angles of attack, the 

flow separates off the airfoil at the leading edge instead of staying attached (see Figure 5-

69).  This vortical separation causes an increase in drag.   



158 

 

Figure 5-67:  Drag Curve for SD 7080 Airfoil 

 

 

Figure 5-68:  SD 7080 at 4o Angle of Attack, RE = 105 (Entropy Production) 
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Figure 5-69:  SD 7080 at 10o Angle of Attack, RE = 105 (Entropy Production) 

 

5.2.3. 10% Thick NASA Supercritical Airfoil 

The airfoil geometry tested is shown in Figure 5-70.  The airfoil was run through 

to Mach number of 0.6 and 0.79.  The corresponding Reynolds numbers were 2.35x107 

and 2.79x107.  The resulting coefficient of pressure plots are shown in Figures 5-71 and 

5-74.  The computational pressure coefficients were taken from both Euler2d and NS2d 

and experimental data was taken from AGARD (Barche, 1979). 

 

Figure 5-70:  NASA 10% Thick Supercritical Airfoil Geometry 
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Table 5-10:  Control Parameters for Both 10% Thick NASA Supercritical Airfoils 

 

Looking at Figure 5-71, Euler2d predicts a shock at 10% of the chord; NS2d 

predicts all of the velocities on the airfoil to be below sonic speeds.  This shock is not 

shown in the experimental data therefore the airfoil must be running at below the critical 

Mach number.  The variation of pressure across the airfoil is represented well by NS2d, 

but problems are shown to occur near the leading edge, upper trailing edge, and under the 

trailing edge cusp.  These problems are discussed below. 
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Figure 5-71:  Coefficient of Pressure for NASA Supercritical Airfoil at M = 0.6 
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The flow over the cusp is not being predicted correctly by NS2d because NS2d 

lacks a turbulence model needed to retain attachment around the underside of the cusp.  

Separation under the cusp can be seen in Figure 5-72.  The decrease in pressure on the 

top surface of the trailing edge can also be visualized using Figure 5-72.  Again a 

turbulence model would most likely keep the flow attached to the upper surface for 

longer.   

 

Figure 5-72:  Mach Number for Cusp of NASA Supercritical Airfoil (M = 0.6) 

 

Finally problems with the leading edge occur because the flow field cannot be 

properly represented by the current meshing software.  The software was originally 

written for Euler solvers and has been used in that application since.  Only recently has 

the meshing software been pushed to the limit of viscous meshing.  The mesh around the 

leading edge is shown in Figure 5-73.  As the source spacing at the leading edge, the 

mesh become less desirable.  Notice the non-homogenous nature of the mesh in the figure 

and how the elements are skewed from equilateral to isosceles triangles.  If the mesh 

spacing is decreased beyond that shown in Figure 5-73, the mesh become unusable. 
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Figure 5-73:  Leading Edge Mesh for NASA Supercritical Airfoil 

Now examining the Mach 0.79 case, Euler2d and NS2d predicts were again run.  

The Euler solver predicted a shock very near the trailing edge (see Figure 5-75).  The 

viscous solver also predicts a shock, but the shock quickly separates the flow and is 

forced forward on the airfoil.  Again, because of a lack of turbulence, the boundary layer 

is separated by the pressure gradient across the shock.  The separation causes a change in 

“geometry”, which in turn moves the shock forward.  The separation points moves with 

the shock until a lambda-like structure appears around the quarter chord of the airfoil.  

The shock structure is represented in Figure 5-76.  In the figure, an oscillating wake is 

also shown to be shedding vortices from under the separation zone.  The motion of the 

shock-separation region is described in more detail in the discussion of the Boeing A4 

airfoil, below. 
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Figure 5-74:  Coefficient of Pressure for NASA Supercritical Airfoil at M = 0.79 
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Figure 5-75:  Euler2d Density Plot to NASA Supercritical Airfoil, MACH = 0.79 

 

 

Figure 5-76:  NS2d Mach Number Plot to NASA Supercritical Airfoil, MACH = 0.79 
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5.2.4. Boeing A4 Airfoil 

Figure 5-77 gives the pressure distribution predicted by AGARD (Elsenaar, 1994) 

for validation of CFD codes.  A clear shock is shown to be present on the upper surface at 

65% of the chord.  Figures 5-78 through 5-81 show the Boeing A4 airfoil at four 

progressions as the flow is marched through time.  The first image shows the formation 

of the boundary layer and trailing edge shocks.  The second image shows the shocks 

moving forward on the airfoil.  Separation occurs just behind the shocks.  As time 

progresses the shocks continue to move forward until the shocks move past the quarter 

chord at dt = 16.0.  Only one suggestion arises at this time:  The addition of a turbulence 

model could reattach the boundary layer and stop the shock from sliding forward.   

 

Figure 5-77:  Pressure Distribution Measured by AGARD (1994) 
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Figure 5-78:  Boeing A4 Airfoil at dt = 1.5 (Mach Number Plot) 

 

Figure 5-79:  Boeing A4 Airfoil at dt = 4.5 (Mach Number Plot) 
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Figure 5-80:  Boeing A4 Airfoil at dt = 10. 5 (Mach Number Plot) 

 

Figure 5-81:  Boeing A4 Airfoil at dt = 16.0 (Mach Number Plot) 
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CHAPTER 6 
 
 

6. Conclusion 

This chapter will wrap up all of the previous discussion and results in the first 

section.  The validity of the results and precautions to be used are also discussed below.  

The chapter ends with recommendations for future research.  These recommendations 

include adaptations to the meshing software, further exploration into problems 

encountered by this research, and expansion of the current research beyond the current 

scope. 

6.1. Discussion of Results 

Several test cases were used to both verify and validate the NS2d code.  A Blasius 

laminar boundary layer was used to verify that the solver was solving the governing 

equations for incompressible flow over a flat plate.  Several tests were also run on the 

appropriate number of elements to represent the boundary layer.  Six to seven elements 

give good results for both the velocity profile and the shear stress distribution.  Several 

slow flow cases were run and compared to pictures from van Dyke (1982) in order to 

show that the solver could handle more complex geometries.  These tests included the 

forward and backward facing step, rectangular block, 6:1 ellipse, and several circular 

cylinders.  An NACA 0012 airfoil was used to represent a baseline flow over a 

streamlined body, while the flat plate airfoil showed that problems occur due to the 
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coupling of the natural and numerical viscosities.  Several numerical dissipation effects 

were also shown including, vortex shedding after the dissipation is changed and change 

in unsteady lift amplitude for a cylinder. 

The validation cases began with the circular cylinders and showed that the drag 

coefficient could be matched to that of other low Reynolds number computer codes and 

that the Strouhal number could be correctly modeled for higher laminar Reynolds 

numbers.  A Selig-Donavan 7080 airfoil was used to generate a lift and drag plot for 

comparison to experimental data.  The lift and drag data generated by NS2d was found to 

be better than that of Euler2d.  The lift predicted by the viscous solver was found to be 

closer at small angles of attack, but separated late.  The drag was also shown to be over 

predicted at all mid to high angles of attack.  This excess drag is due to an enlarged, 

unsteady wake in mid angle cases and large vortical separation in high angle of attack 

cases.  All of these problems are due to lack of turbulence in the solution. 

The code was then run for a NASA 10% Thick Supercritical airfoil at both 

subcritical and supercritical Mach numbers.  The subcritical case was found to model the 

pressure distribution on the leading edge better than Euler2d, which predicted a transonic 

shock.  The subcritical case was hindered by the lack of a turbulence model and 

limitations on grid size and homogeneity.  The supercritical case experienced problems 

with separation that moved forward with shock.  The same problem arose for the Boeing 

A4 airfoil.  Images were presented for the motion of the shock at four times in the 

unsteady flow. 

This thesis has therefore shown that NS2d can appropriately model flow around 

moderately complex geometry at low Reynolds number regime.  As the Reynolds number 
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is increased, the solver cannot handle large separated flow nor predict properties correctly 

when the boundary layer should be transitioning or turbulent.  Problems also arose due to 

limitations in the meshing software available for the solver.  Mesh size and homogeneity 

were both important issues.  And finally, suggestions for stable steady-local and 

unsteady-global time steps were made according to empirical information from NS2d. 

6.2. Recommendations for Future Research 

Several recommendations have been made in the paragraphs that follow.  These 

recommendations include suggestions for future investigations that lie outside the scope 

of this thesis, adaptation of the current solver, changes to the support programs, and 

continuation of research within the scope of this thesis. 

Expansion of the Current Solver:  The scope of this research included the addition 

of viscous terms to a two-dimensional, non-inertial Euler solver.  This research should be 

continued by expanding the solver to contain one or several turbulent models and a 

viscous transpiration boundary condition.  Several other additions to the solver are 

mentioned below, but these two are explicitly excluded from the scope of the current 

research.  Also excluded is the expansion of Cowan’s (2003) other solver from a three-

dimensional Euler solver to include similar viscous, turbulent, and transpiration terms.  

The two-dimensional solver is needed as a staging ground for complex cross-sections and 

future additions to the solvers.  The three-dimensional solver is further needed to generate 

solutions to complex geometries at high angles of attack, transonic conditions, and other 

viscous related aeroelastic cases.   
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Local Time Stepping:  There are two problems discussed in this thesis concerning 

local time stepping:  Instabilities and proper time accurate solutions for unsteady cases.  

The instabilities were addressed in Section 4.5 where an empirical equation was found for 

stable CFL numbers and suggestions for stable global time steps.  These suggestions 

should be advanced through further research in search of an appropriate local time step. 

Tanahashi (1990), Kallinderis (1994), and Jakobsen (2000) should be used as guidelines 

in this development.  Time accuracy in unsteady cases is only ensured if the number of 

inner cycles times the local time step is greater than or equal to the global time step.  This 

comparison should be made for each node in the solution field in order to flag the user 

when single occurrences and/or excessive violation of time accuracy is found. 

Number of Gauss Points:  This research concentrated on the one-point Gauss 

quadrature when generating aerodynamic coefficient results.  Several examples were 

given to compare the two integration models used by the solvers.  Several interesting 

tests still need to be made on the number of Gauss points that could be generated for both 

the Euler solver and new Navier-Stokes solver.  Using the various test cases of this thesis 

and others as needed, the three aerodynamic coefficients should be generated for one and 

three point Gauss integration in both the inviscid and viscous solvers.  These tests could 

then be used to investigate the necessity of the higher order integration model on certain 

test cases and the sufficiency of the lower order model on other test cases.  This 

investigation should then be expanded to their effects on the aerodynamic forcing 

function used in the aeroelastic routine to step the structural solver.  This thesis also 

presented the effects of the dissipation model on various Euler results.  Similar tests 
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should be ran to investigate the effects of the higher order integration scheme on 

dissipation and other “solver” attributes. 

Second Viscosity:  This thesis presented Stokes’ hypothesis as the lower limit to 

the second coefficient of viscosity.  Several experiments have been conducted to increase 

the understanding of this second coefficient, but these investigations themselves have 

been brought into question (White, 1991).  The overall effects on all output unknowns of 

the solver should be investigated to better understand the effects of the second coefficient 

of viscosity.  The lower limit, mentioned previously, was used as the default condition of 

the ratio of viscosity coefficients.  The effects of this lower limit on flow conditions near 

the blunt leading and trailing edges should be tested along with conditions near shocks 

and any other areas of the flow that have volumetric changes.  This default condition 

should be adjusted as needed and suggestions made for the nominal ranges for the second 

coefficient of viscosity. 

Third dissipation model:  The two dissipation models presented by Cowan (2003) 

and used in this research use artificial dissipation to reduce ill effects in the flow 

solutions.  Both models use the gradients between nodes to generate an appropriate 

amount of change at each node.  The higher order model uses an additional gradient 

limiter to decrease the smearing of shocks and the effects on actual flow gradients.  

Regretfully, both models affect the shape and shear stress of boundary layers.  A third 

dissipation model should be generated that does not affect boundary layers but still 

controls shocks and other flow problems.  This model might have a null area, such that 

gradients lying in this area are not effected by the third model.  In order to generate such 

a model, investigations would need to be pursued to find the limits of the natural flow 
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gradients in both laminar and turbulent flows.  Kallinderis (1995) and Naterer (1994) 

should be used as guidelines during this investigation. 

Second Viscosity Instead of Dissipation:  The current dissipation models require 

much of the needed run time to calculate the contributions of every segment on their 

corresponding nodes.  The overall runtime of both the Euler and Navier-Stokes solvers 

could be decreased significantly if the dissipation model could be replaced.  Combining 

the two previous recommendations:  The second coefficient of viscosity might be 

capable, within reasonable limits of the natural coefficient, to generate stable shocks 

without changing the other areas of the flow.  If such a capability is available, the second 

coefficient should be investigated as a replacement for the dissipation models in some or 

all flows.  The second coefficient is already required for several calculations within the 

new solver, therefore turning off the dissipation model for available test cases could 

decrease their runtimes significantly.  The Navier-Stokes solver could be used to generate 

Euler results in shorter periods of time using the second coefficient and inviscid solid 

walls instead of the Euler solver with the dissipation model. 

Residual Watching:  An appropriate number of inner cycles is often hard to judge 

when generating an unsteady solution.  The same can be said for global iterations for 

steady solutions.  The residual vector could be used to limit both of these problems.  As 

the residual decreases for a steady solutions, the residuals are converging on an 

appropriate solution for the given flow field and boundary conditions.  A limit can be set 

in order to judge the convergence of the steady solution.  When convergence is met, the 

global iterations would be terminated.  Using this system, the number of global iterations 

could be set extremely high, knowing that the solver will terminate when the residuals 
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decrease beyond a specified value.  Similarly, the number of inner cycles could be set to a 

very large number and the residual could be used to judge when an unsteady time step 

has converged to an appropriate value.  Residual watching could also be used to safe 

guard against instability problems.  The solver could be instructed to decrease the CFL 

and repeat a global step in order to generate a stable steady solution.  As the instabilities 

dissipate, the solver could again increase the CFL number to an appropriate value with an 

upper limit given by the value specified in the control file.  A similar but much more 

complex methodology could be used to adjust the dimensionless time step in order to 

arrive at a more stable solution.  The issue of time accuracy must be kept in mind, and the 

user input time step must also be met at all loads, residual, and other outputs from the 

CFD solver.  Care must also be taken to handle the structural solver as well.  Suggestions 

to dissipation watching should also be used from Kallinderis (1995). 

Improved Far Field Condition:  The far field condition used by Cowan (2003) 

implements Reimann invariants on the far field to weakly adjust the boundary to the free 

stream conditions.  This boundary condition was originally generated to be used at large 

distances from the test cases in order to bound the flow.  In the original assumptions, the 

effects of the body and/or flow gradients would be greatly reduced across this distance so 

that a far field assumption could be used.  This research has shown that vortices, wakes, 

and other flow conditions are smeared to some extent by the current far field condition.  

The effects of the current far field condition on confined outflow conditions (i.e., nozzles, 

pipe flow, etc.) has not been undertaken.  Research is needed to improve the outflow far 

field condition or to generate a new outflow condition that will not produce numerical 
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effects near the outflow plane.  Srinivas (1984) illustrates a “non-reflecting” boundary 

condition and the appropriate references. 

Engine Boundary Conditions:  No engine inlet and outlet boundary conditions 

currently exist in either the Euler or Navier-Stokes solvers.  Such boundary conditions 

were not the focus of either investigation.  In the future these boundary conditions need to 

be available to the solver.  Inlet boundary conditions might include a required mass flow 

rate seen on the boundary; similar conditions could be used on the outflow plane.  These 

two planes could be assigned indices so that the mass flow rate from one outlet matches 

the inflow of one or several inlets.  Further, to model inlet spill over in choked flow 

conditions, a maximum mass flow condition could be used on the inlet.  This condition 

would allow any mass flow rate up to a certain value to pass through the inlet plane; any 

flow rate above this value would be limited so that spill over would occur. 

Improve Meshing Routine:  This thesis illustrated problems that occur when small 

segment are generated.  The current meshing software starts by generating nodes on the 

bounds of the flow field.  Then the routine uses the marching front method to progress 

the “front” of unconnected elements to the inside of the flow field, one element at a time.  

When the front collapses on itself, a node is placed in order to complete the mesh.  

Several mesh adaptation techniques are used to smooth the mesh as the elements are 

being placed.  Still heterogeneous areas of the mesh are allowed to occur.  Investigations 

need to be made into the control parameters of the current meshing routine to minimize 

the number of small triangles generated in the mesh.  Adaptations to the current routine 

should be added to help minimize the number of anomalies along the boundaries and 

within the mesh itself.  Suggestions can be found in Burton (1993) and Jameson (1998). 



177 

Boundary Layer Remeshing:  This research generated several laminar boundary 

layers and was able to conclude an appropriate number of elements and spacing within 

the boundary layer for several necessary conditions.  These conditions include a good 

engineering approximation of the elemental shear stress along a surface, a good flow 

physics approximation of the curvature of the boundary layer profile, and the appropriate 

aerodynamic loads for the aeroelastic solver; all without applying too many elements and 

requiring too much run time.  Applying these rules of thumb to two-dimensional 

geometries can be a grueling task using points, lines, and triangles as sources to 

communicate the necessity for a finer mesh to the meshing software.  In the future, this 

research will be expanded to a full three-dimensional Navier-Stokes solver using the 

three-dimensional solver of Cowan (2003) as a jumping off point.  With three-

dimensional surfaces, the task of generating boundary layer meshes will be even more 

difficult to the point of being impossible for the complex geometry of entire aircraft.  One 

such answer to the meshing problem could be to include the viscous surfaces themselves 

as sources for finer nodes clusters.  The draw back of this method occurs with complex 

geometries and knowing a predicted height of the boundary layer and direction of growth.  

Further complications occur when using non-inertial and aeroelastic solutions with a 

given freestream Reynolds number.  Therefore, adaptive remeshing should be explored at 

the two-dimensional level for viscous gradients near the surface of bodies and in their 

wakes.  This adaptive remeshing should also include the influence of turbulent effects if 

applicable.  The previous method could be used to generate a coarse viscous mesh near 

surfaces after running an Euler solution of the geometry.  The remeshing process could 

then continue by running a Navier-Stokes solution through an adaptive remesh process 
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similar to that mentioned above.  Further research will be needed to access the problem of 

a moving surface and morphing boundary layer seen on a aeroelastic surface or body in 

non-inertial rotation or translation.  Suggestions can be taken from Marcum (1996).
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APPENDIX A:  Summary of File Formats 
 
 

This appendix provides a summary of the input and output file formats used for 

this research.  This appendix is similar in layout and content to that of Cowan (2003) but 

has been modified to include the new terms, definitions, and notes appropriate to the 

modifications of this research. 

 

The following input files are defined: 

• case.fro (reuquired) contains the surface mesh generated by surface or some 
other meshing software.  Resorted by makeg2d in order to generate the *.g2d 
file (ASCII) (See Peiro, 1993 for details) 

• case.bco (required) contains the boundary conditions and singular point 
conditions needed to resort the *.fro file into the *.g2d file (ASCII) 

• case.g2d (required) contains the geometry data structures representing the 
computational mesh as required by the flow solver (ASCII) 

• case.con (required) contains values for the solver control parameters and flow 
conditions (ASCII) 

• case.unk (optional) contains the nodal values of the primitive flow variables 
(density, velocity, and pressure) for each node of the computational mesh to 
be used as the initial conditions for the flow solution (Binary) 

The following output files are defined: 

• case.un# contains the nodal values of the primitive flow variables (density, 
velocity, and pressure) for each node of the computational mesh (Binary) 

• case.rsd contains a history of the solution residuals for the conservation 
variables (density, momentum, and total energy) (ASCII) 

• case.lds contains a history of the dimensionless aerodynamic forces acting on 
the solid walls of the geometry (ASCII) 
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Boundary Conditions Input File (case.bco) 
 
Basic File Format 
 
Line of Text 

  ncv 

Line of Text 

  (bccv(i,1), bccv(i,2), i = 1, ncv) 

Line of Text 

  (sccv(i,1), sccv(i,2), i = 1, ncv) 

Definition of Terms 
ncv: (int) number of curves (in *.fro file) 
bccv(i,1): (int) index for curve i 
bccv(i,2): (int) boundary condition for 
  curve i 
 = 1, inviscid wall condition 
 = 2, symmetry plane condition 
 = 3, far field condition 
 = 4, far field condition 
 = 9, viscous wall condition 
sccv(i,1): (int) index for curve i 
sccv(i,2): (int) singular condition for  
  curve i 
 = 0, no singular nodes 
 = 2, first and last nodes singular 
 = 3, only first node singular 
 = 4, only last node singular 
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Geometry Input File (case.g2d) 
 
Basic File Format 
 
Line of Text 

  nnd nel nsg nbe nbp nwl nsd nwlv nsdv 

Line of Text 

  (LBE(i), i = 1, 8) 

Line of Text 

  COOR(i,1) COOR(i,2) 

    ( i = 1,…,nnd ) 

Line of Text 

  IELM(i,1) IELM(i,2) IELM(i,3) 

    ( i = 1,…,nel ) 

Line of Text 

  ISEG(i,1) ISEG(i,2) 

    ( i = 1,…,nsg ) 

Line of Text 

  IBEL(i,1) IBEL (i,2) 

    ( i = 1,…,nbe ) 

Line of Text 

  IBEL(i,3) 

    ( i = 1,…,nbe ) 

Definition of Terms 
nnd: (int) number of nodes 
nel: (int) number of elements 
nsg: (int) number of segments 
nbe: (int) number of boundary elements 
nbp: (int) number of boundary points 
nwl: (int) number of wall nodes 
nsd: (int) number of singular nodes 
nwlv: (int) number of viscous wall nodes 
nsdv: (int) number of viscous singular  
  nodes 
LBE(i): (int) boundary element 
  starting/stopping indexes for four BC types 
COOR(i,1): (real) x-coordinate for node i 
COOR(i,2): (real) y-coordinate for node i 
IELM(i,1): (int) node 1 for element i 
IELM(i,2): (int) node 2 for element i 
IELM(i,3): (int) node 3 for element i  
ISEG(i,1): (int) node 1 for segment i 
ISEG(i,2): (int) node 2 for segment i 
IBEL(i,1): (int) node 1 for boundary    
  elem. i 
IBEL(i,2): (int) node 2 for boundary  
  elem. i 
IBEL(i,3): (int) index for triangle elem. 
 
 
 

 
Comments  
 
• This is a plain text (ASCII) file. 
• Nodal data is sorted such that the first nwl nodes are defined as solid wall nodes.  

Out of the first nwl nodes, the last nsd nodes are defined as singular nodes.  The 
middle nwlv nodes are defined as viscous wall nodes and segmented by LBE. 

• The nodal coordinates in this file are treated as dimensional values and are non-
dimensionalized using the reference dimension specified in the solver control file. 

• The element connectivity data must define elements that are oriented clockwise. 
• Boundary element data is sorted based on the starting/stopping indexes for the three 

BC types, i.e. boundary elements LBE(1) through LBE(2) are solid wall elements, 
LBE(3) through LBE(4) are symmetry elements, LBE(5) through LBE(6) are 
far-field elements, and LBE(7) through LBE(8) are viscous solid wall elements.  
Note that LBE(1)< LBE(7)< LBE(8)< LBE(2). 

• The program makeg2d is used to convert a standard STARS surface triangulation file 
and modified boundary conditions file into an appropriately sorted two-dimensional 
geometry file. 
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Sample File  
 
$  nnd,  nel,  nsg,  nbe,  nbp,  nwl,  nsd, nwlv, nsdv 
     8     6    13     8     8     3     0     2     0 
$ LBE(8) 
     1     2     3     2     3     8     2     2 
$ Nodal coordinates 
 -.100000E+01 -.100000E+01 
 0.100000E+01 -.100000E+01 
 0.000000E+00 -.100000E+01 
 0.100000E+01 0.100000E+01 
 -.100000E+01 0.100000E+01 
 0.100000E+01 0.000000E+00 
 0.000000E+00 0.100000E+01 
 -.100000E+01 0.000000E+00 
$ Element connectivity 
     1     3     8 
     3     2     6 
     5     8     7 
     6     4     7 
     8     3     6 
     6     7     8 
$ Segment connectivity 
     1     3 
     1     8 
     2     3 
     2     6 
     3     8 
     3     6 
     4     6 
     4     7 
     5     8 
     5     7 
     6     7 
     6     8 
     7     8 
$ Boundary edge data 
     1     3 
     3     2 
     2     6 
     6     4 
     4     7 
     7     5 
     5     8 
     8     1 
$ Boundary edge element indices data 
     2 
     2 
     4 
     4 
     3 
     3 
     1 
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Solver Control Input File (case.con) 
 
Basic File Format  
  
&control 

dt   = 0.1d0, 
gamma  = 1.4d0, 
diss   = 1.0d0, 
cfl   = 0.5d0, 
lamb  = -0.6d0, 
smod  = 2.45d-3, 

 
mach   = 0.6d0, 
Re  = 9.0d4, 
Pr  = 0.7d0, 
alpha  = 0.0d0, 
refdim  = 1.0d0, 

 
nstp   = 100, 
nout   = 50, 
ncyc   = 3, 
isol   = 0, 
idiss  = 0, 
ipnt   = 1, 

 
istrt  = .false., 
iaero  = .false., 
idynm  = .false., 
ielast  = .false., 
ifree  = .true., 
iforce  = .false., 

 
nr   = 0, 
ainf   = 1.0d0, 
rhoinf  = 1.0d0, 

/ 

Definition of Terms  
dt: (real) dimensionless global time step 
gamma: (real) ratio of specific heats 
diss: (real) dissipation factor or constant 
cfl: (real) local time step stability factor 
lamb:  (real) ratio of second to first viscosity 
smod:  (real) modified Sutherland’s constant 
 
mach: (real) free-stream Mach number 
Re: (real) free-stream Reynolds number 
Pr: (real) Prandtl number for entire flow 
alpha: (real) free-stream angle of attack 
refdim: (real) reference dimension 
 
nstp: (int) total solution steps 
nout: (int) output frequency, steps/output 
ncyc: (int) iterative cycles per solution step 
isol: (int) CFD solution type 
idiss: (int) dissipation type 
ipnt: (int) number of points for numerical 
integration of flux/source vectors 
 
istrt: (logical) restart flag 
iaero: (logical) aerodynamic forces flag 
idynm: (logical) dynamic/non-inertial flag 
ielast: (logical) elastic flag 
ifree: (logical) free-stream velocity flag 
iforce: (logical) external force flag 
 
nr: (int) number of elastic modes 
ainf: (real) dimensional free-stream sonic 
speed 
rhoinf: (real) dimensional free-stream 
density 
 

 
Comments  
 
• This is a plain text (ASCII) file formatted as a Fortran namelist. 
• The default values for each parameter are given in the basic file format above.  Any 

term not appearing in the file is set to the default value by the solver.  Any term can 
be “commented out” by placing an exclamation mark (!) before the name of the term. 

• The global time step is only used for unsteady solutions. 
• Appropriate values for the dissipation factor are in the range 0.0 < diss < 2.0.  

Some dissipation is required to stabilize the solution, but too much dissipation will 
corrupt the solution and possibly be a destabilizing influence. 

• The local time step stability factor is a safety factor used to compute local time steps 
for each solution step. For steady solutions, a stability factor of 0.8 is typically 
acceptable for most problems. For unsteady solutions, the stability factor is typically 
in the range 0.3 < cfl < 0.8. 
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• The values of refdim, mach, ainf, and rhoinf are used to non-dimensionalize 
all values read in by the flow solver. 

• The values of Re and Pr are used by the flow solver as non-dimensional forms of 
free-stream viscosity and thermal conductivity.  Reynolds number Re is input at its 
free-stream value; Prandtl number Pr is constant for the flow field.   

• Variable viscosity is handled through Sutherland’s equation with relation to free-
stream values.  The modified Sutherland’s constant smod is non-dimensionalized by 
cv and the free-stream velocity, given by  2

0UScv . 
• Constant viscosity can be specified by smod = 0.0d0.  Any positive value of smod is 

considered to specify a variable viscosity condition. 
• lamb is the constant ratio of second viscosity to first viscosity.  The ratio of 

viscosities is given by the following equation:  lamb = µλ .  In order to maintain a 
positive viscous dissipation (not create energy with viscosity), lamb must be less 
than –2/3. 

• The free-stream angle of attack is ignored for dynamic (non-inertial) problems. 
• The number of iterative cycles should be set to 3 for steady solutions. For unsteady 

solutions, use a sufficient number of cycles to allow for an appropriate level of 
convergence at each step. 

• There are four available CFD solution types defined as follows: 
• isol = 0 is a steady solution (not time accurate) 
• isol = 1 is a first-order unsteady solution 
• isol = 2 is a second-order unsteady solution 
• isol = 3 is a supersonic piston perturbation solution 

• There are two available dissipation types defined as follows: 
• idiss = 0 is a low order dissipation 
• idiss = 1 is a high order dissipation with gradient limiters 

• The low-order dissipation is typically overly diffuse and should be used in 
conjunction with low values of the dissipation factor. Low-order dissipation works 
best for problems without strong vortices and for supersonic/hypersonic flows. 

• The high-order dissipation is more CPU intensive than the low-order dissipation and 
less stable. Larger values for the dissipation factor are typically required for 
stabilization. The high-order dissipation works best for subsonic to transonic flows 
with strong gradients or vortices. Rotating domains will typically require high-order 
dissipation to resolve the circulating pattern of the relative flow velocities. 

• There are two types of numerical integration defined as follows: 
• ipnt = 1 uses a one-point gauss quadrature 
• ipnt = 3 uses a three-point symmetric gauss quadrature 

• When the restart flag is set to .true., the solver will read one set of solution 
unknowns from the case.unk file and apply this set of unknowns as the initial 
conditions for the new iterative solution. 

• A restarted solution assumes that the time gradient of the initial state is zero, i.e. the 
solution stored in the case.unk file is a converged, steady state solution.  This has 
a significant impact on the second-order unsteady solution since it relies on two sets 
of solution unknowns for advancement to the next time step, i.e. a second-order 
unsteady solution should not be restarted from the last time step of a similar unsteady 
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solution that was stopped because both sets of unsteady data from the last solution 
step are not available for accurate evaluation of the time gradients in the flow. 

• If the free-stream velocity flag is set to .false., the free-stream velocity is set to 
zero, and relative flow velocities must be generated through dynamic rotation or 
translation of the non-inertial coordinate system. 

• If the external force flag is set to .true., the solver will read the user defined 
external force vector for each global time step from the input file case.frc. If the 
solver reaches the end of the input file before completing the solution, the last force 
vector in the file carries over to each of the remaining global time steps if it was non-
zero. 
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Unknowns (Initial Conditions) Input File (case.unk) 
 
Basic File Format 
 
nnd gam xmi alp ref t Re 
 
( ( UN(i,j), i = 1,…,nnd ), j = 1,…,5 ) 
 

Definition of Terms 
 
nnd: (int) number of nodes 
gam: (real) ratio of specific heats 
xmi: (real) freestream Mach number 
alp: (real) freestream angle of attack 
ref: (real) reference dimension 
t:  (real) dimensionless time 
Re: (real) freestream Reynolds number 
 
UN(i,1): (real) density for node i 
UN(i,2): (real) x-velocity for node i 
UN(i,3): (real) y-velocity for node i 
UN(i,4): (real) pressure for node i 
UN(i,5): (real) enthalpy for node i 
 

 
Comments 
 
• This is an unformatted (binary) file. 
• The solution unknowns stored in this file are dimensionless quantities. 
• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system. 
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Unknowns Output File (case.un#) 
 
Basic File Format 
 
nnd gam xmi alp ref t Re 
 
( ( UN(i,j), i = 1,…,nnd ), j = 1,…,5 ) 
 

Definition of Terms 
 
nnd: (int) number of nodes 
gam: (real) ratio of specific heats 
xmi: (real) freestream Mach number 
alp: (real) freestream angle of attack 
ref: (real) reference dimension 
t:  (real) dimensionless time 
Re: (real) freestream Reynolds number 
 
UN(i,1): (real) density for node i 
UN(i,2): (real) x-velocity for node i 
UN(i,3): (real) y-velocity for node i 
UN(i,4): (real) pressure for node i 
UN(i,5): (real) enthalpy for node i 
 

 
Comments 
 
• This is an unformatted (binary) file. 
• The solution unknowns stored in this file are dimensionless quantities. 
• For dynamic (non-inertial) problems, the solution unknowns stored in the file are 

relative quantities referenced to the body-fixed coordinate system. 
• The name of this file is iterated for each output file:  *.un1, *.un2, … , *.un10, …  
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Solution Residuals Output File (case.rsd) 
 
Basic File Format 
 
    1            ( RSD(i), i = 1,…,4 ) 
              
istp            ( RSD(i), i = 1,…,4 ) 
              
nstp           ( RSD(i), i = 1,…,4 ) 
 

Definition of Terms 
 
istp: (int) current solution step 
nstp: (int) total or last solution step 
 
RSD(1): (real) density solution residual 
RSD(2): (real) x-momentum solution 
residual 
RSD(3): (real) y-momentum solution 
residual 
RSD(4): (real) energy solution residual 
 

 
Comments 
 
• This is a plain text (ASCII) file. 
• For steady problems, the solution residuals indicate the degree of convergence to the 

final steady state solution.  All four solution residuals should converge to 
approximately the same order of magnitude. 

• For unsteady problems, the solution residuals indicate the degree of convergence for 
each global step of the solution, or the degree of convergence for the steady solution 
that is solved at each step. 
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Sample File 
 
     1    0.38320E-05   0.10743E-04   0.69854E-05   0.10598E-03 
     2    0.20317E-05   0.50694E-05   0.40436E-05   0.56307E-04 
     3    0.12024E-05   0.35187E-05   0.26241E-05   0.32195E-04 
     4    0.91334E-06   0.25166E-05   0.23637E-05   0.24240E-04 
     5    0.73183E-06   0.19442E-05   0.22228E-05   0.19376E-04 
     6    0.59870E-06   0.16179E-05   0.20889E-05   0.15963E-04 
     7    0.51663E-06   0.14311E-05   0.19719E-05   0.13946E-04 
     8    0.44924E-06   0.12989E-05   0.18536E-05   0.12398E-04 
     9    0.39510E-06   0.12095E-05   0.17283E-05   0.11156E-04 
    10    0.34726E-06   0.11478E-05   0.15878E-05   0.99450E-05 
    11    0.30775E-06   0.10746E-05   0.14329E-05   0.88159E-05 
    12    0.26207E-06   0.98700E-06   0.12833E-05   0.76280E-05 
    13    0.22418E-06   0.87924E-06   0.11245E-05   0.65113E-05 
    14    0.18904E-06   0.77764E-06   0.98148E-06   0.54617E-05 
    15    0.15809E-06   0.69345E-06   0.84471E-06   0.44739E-05 
    16    0.13411E-06   0.62203E-06   0.72991E-06   0.37422E-05 
    17    0.11564E-06   0.55717E-06   0.64350E-06   0.32661E-05 
    18    0.10516E-06   0.50502E-06   0.57520E-06   0.30152E-05 
    19    0.10101E-06   0.46193E-06   0.53100E-06   0.29279E-05 
    20    0.98711E-07   0.43618E-06   0.49934E-06   0.28901E-05 
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Aerodynamic Loads Output File (case.lds) 
 
Basic File Format 
 
    0            0.0  ( FD(i), i = 1,…,3 ) 
                                      
istp            tistp  ( FD(i), i = 1,…,3 ) 
                                      
nstp           tnstp  ( FD(i), i = 1,…,3 ) 
 

Definition of Terms 
 
istp: (int) current solution step 
nstp: (int) total or last solution step 
ti:  (real) dimensionaless time at step i 
 
FD(1): (real) x-force coefficient 
FD(2): (real) y-force coefficient 
FD(3): (real) moment coefficient 
 

Comments 
 
• This is a plain text (ASCII) file. 
• The force coefficients in this output file are dimensionless values based on the 

reference conditions specified in the solver control file. 
• For dynamic (non-inertial) problems, the force coefficients stored in this file are 

referenced to the body-fixed coordinate system. 
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Sample File 
 
      0    0.00000E+00    0.00000E+00    0.00000E+00    0.00000E+00 
      1    0.10000E+00    0.29186E+01    0.40893E-04    0.20386E-04 
      2    0.20000E+00    0.53878E+01    0.74036E-04    0.36920E-04 
      3    0.30000E+00    0.73426E+01    0.10798E-03    0.53867E-04 
      4    0.40000E+00    0.87754E+01    0.14611E-03    0.72920E-04 
      5    0.50000E+00    0.97221E+01    0.18835E-03    0.94033E-04 
      6    0.60000E+00    0.10250E+02    0.23574E-03    0.11772E-03 
      7    0.70000E+00    0.10444E+02    0.26257E-03    0.13112E-03 
      8    0.80000E+00    0.10391E+02    0.25348E-03    0.12657E-03 
      9    0.90000E+00    0.10173E+02    0.25302E-03    0.12632E-03 
     10    0.10000E+01    0.98630E+01    0.23377E-03    0.11668E-03 
     11    0.11000E+01    0.95136E+01    0.20482E-03    0.10219E-03 
     12    0.12000E+01    0.91543E+01    0.19370E-03    0.96640E-04 
     13    0.13000E+01    0.88118E+01    0.23365E-03    0.11662E-03 
     14    0.14000E+01    0.85116E+01    0.28553E-03    0.14256E-03 
     15    0.15000E+01    0.82553E+01    0.37539E-03    0.18747E-03 
     16    0.16000E+01    0.80367E+01    0.55544E-03    0.27749E-03 
     17    0.17000E+01    0.78461E+01    0.76662E-03    0.38306E-03 
     18    0.18000E+01    0.76747E+01    0.10095E-02    0.50449E-03 
     19    0.19000E+01    0.75147E+01    0.12664E-02    0.63292E-03 
     20    0.20000E+01    0.73607E+01    0.15058E-02    0.75262E-03 

                                           
 



201 

 
 
 
 
 

APPENDIX B:  Investigation of Constant vs. Variable Properties 
 
 

This appendix provides all of the graphs used to study the change in properties 

across a normal shock at various Mach numbers from Sections 2.4 and 2.5.  Figures B-1 

and B-2 show the standard pressure and temperature at various altitudes above the 

surface of the Earth. Figures B-3 and B-4 show the corresponding pressures and 

temperatures above the surface of Mars, as presented on the NASA Glenn Research 

Center web site.  Figures B-5 through B-8 give the thermodynamic properties of both air 

and carbon dioxide (Marsian atmosphere).  Figures B-9 through B-14 show the percent 

change in specific heat, the ratio of specific heats, and the coefficient of viscosity.  Each 

percent change in property is shown for both Earth and Martian at various altitudes and 

Mach numbers.  Mach numbers range from Mach 1.5 to 3.5 in steps of 0.5, and altitudes 

range from 0 to 80 kilometers from the surface of either planet. 
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Figure B-1:  Variation of Pressure in Standard Earth Atmosphere (Bertin, 1998) 

 

 
Figure B-2:  Temperature Variation in Standard Earth Atmosphere (Bertin, 1998) 
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Figure B-3:  Pressure Variation in Martian Atmosphere (Benson, 2004) 

 

 
Figure B-4:  Temperature Variation in Martian Atmosphere (Benson, 2004) 
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Figure B-5:  Variation of Specific Heat at Constant Pressure for Air and Carbon 

Dioxide (John, 1984; Moran, 1996; Incropera, 2002) 

 
Figure B-6:  Variation of the Ratio of Specific Heats for Air and Carbon Dioxide 

(John, 1984; Moran, 1996) 
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Figure B-7:  Variation of the Thermal Conductivity for Air and Carbon Dioxide 

(Incropera, 2002) 
 

 
Figure B-8:  Variation of the Prandtl Number for Air and Carbon Dioxide 

(Incropera, 2002) 
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Figure B-9:  Percent Increase in Specific Heat across a Normal Shock in Earth 

Atmosphere 

 

 
Figure B-10:  Percent Increase in Specific Heat across a Normal Shock in Martian 

Atmosphere 
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Figure B-11:  Percent Increase in the Ratio of Specific Heats across a Normal Shock 

in Earth Atmosphere 

 
Figure B-12: Percent Increase in the Ratio of Specific Heats across a Normal Shock 

in Martian Atmosphere 
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Figure B-13:  Percent Increase in the Coefficient of Viscosity across a Normal Shock 

in Earth Atmosphere 

 

 
Figure B-14:  Percent Increase in the Coefficient of Viscosity across a Normal Shock 

in Martian Atmosphere
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APPENDIX C:  Development of Off-Axis Shear Stress Vector 
 
 

This appendix develops the shear stress vector in several simplified and the off-

axis orientation.  The development begins with the purely horizontal and vertical solid 

surface cases.  These two cases can be later used to verify that the off-axis shear stress 

equation works correctly.  The text then develops the transformation matrices for the 

velocity and gradients between the on- and off-axis orientations.  The shear stress vector 

is then assembled in the off-axis, or local coordinate frame, and then rotated back into the 

on-axis, or global frame of the flow field. 
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The magnitude of the shear stress on a surface is given by the following scalar: 

(C-1)              







∂
∂+

∂
∂=

x
v

y
u

xy µτ  

For a surface which lies only in the x-direction, the velocity into the surface is 

always zero (i.e., v = 0).  Because all of the v-velocities along the surface are zero, the x-

derivative of the v-velocity will also always be zero.  The remaining terms of the shear 

stress equation give: 

(C-2)         
y
u

xy ∂
∂= µτ  

which is the form generally used when approaching viscous flow over a flat plate at zero 

angle of attack.  From this equation, the shear stress is positive if the u-velocity is in the 

positive x-direction and has a positive gradient in the positive y-direction, or both are 

negative.  The shear stress is negative if either the velocity or gradient is positive and the 

other is negative. 

If the surface is vertical (i.e., only lies in the y-direction), similar assumptions to 

the u-velocity and the y-derivative of the u-velocity, resulting in the following equation: 

(C-3)         
x
v

xy ∂
∂= µτ  

If the v-velocity is positive and decreases in the positive x-direction, the shear stress will 

be negative.  Likewise, if the v-velocity is negative and increases in the positive x-

direction, the shear stress will also be negative; otherwise, the shear stress is positive. 

For the general case of a surface at some angle of incidence with respect to the x-

direction, the shear stress must be formulated in the local frame of reference.  The 

previous two equations were developed in the global reference frame.  The general case 
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of the shear stress should be checked using the vertical surface (i.e., ninety-degree 

rotation from global to local reference frames).  The rotation from the global to local 

reference frames is given by: 

 

Figure C-1:  Diagram of Global and Local Axes 

 

The conversion from the global to local coordinate frames and the reverse can be 

generated by the following matrix mathematics: 
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And the transformation from global to local velocities, and vice versa, can be generated 

using the following matrix forms: 
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where 
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The derivative in the local frame can be generated using the Jacobean to convert 

from the global to local frame: 
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Because of the definition of [ ]θ , the inverse of [ ]θ  is given by the opposing 

rotation: 
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The previous equation is further used to define the u- and v-velocity gradients: 
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Using the Equation C-5b to define the velocity transform, Equation C-9 can be converted 

to the following vector equations: 
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Substituting the shorthand notation of Equation C-12 into Equations C-10 and C-11 and 

multiplying out the two vector equations results in the following forms: 
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The local shear stress is given by Equation C-15.  Equations C-13 and C-14 can 

be substituted into the local shear stress equation: 
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The shear stress in the local frame can be converted back to the global frame by the 

following transform: 
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Equation C-17 can be verified using the vertical surface as a check: 
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which matches the previous solution. 

Using the definition of the surface normal vector (outward facing by convention), 

the relationship between the surface normal components and the sine/cosine of the 

orientation angle can be found by the following steps: 

{ }yx nnn =ˆ  

where  θsinn̂nx =   and  θcosn̂ny −=   and  1ˆ =n .  Therefore, xn=θsin   and  

yn−=θcos .  From this, the shear stress can now be represented as: 
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Non-dimensionalizing, the previous equation: 
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The contribution to the x- and y-forces and moment is given by: 
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where  NVBE is the number of viscous boundary edges and Rx and Ry are the distances in 

the x- and y-directions, respectively, from the origin to the center of the boundary edge 
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APPENDIX D:  Laminar Boundary Layer Test Cases and Results 
 
 

This appendix gives a detailed description of all of the test cases used in the 

laminar boundary layer tests.  The test cases are named by the percentage of the nominal 

spacing used to generate their boundary layer meshes.  Therefore, the 100% case is the 

nominal case while fine cases are represented by percentages less than 100%, and vice 

versa for the courser cases. 
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Procedure for developing cases from 50% inner rule: 

• Using a plate of length 25 units 
• Using a freestream Reynolds number of 3600 (for 1 unit length) 
• Full plate Reynolds number of 90000 
• Using Blasius solution to initially size the thickness of the boundary layer                          

(i.e. del = 5 * x / sqrt(Rex) ) 
• Find thickness at 0.5, 3, 12, and 32 units; 50% of these thicknesses correspond to the 

inner radius of the line source at 0, 3, 12, and 32 units from the leading edge 
• Find the outer radius using the 2.5 rule (i.e. outer radius = inner radius * 2.5 ) 
• Justify the initial spacing so that six steps are required (in the least) to cross 50% of 

the boundary layer (i.e., spacing = inner radius / 6 ).  This corresponds to the 100% 
spacing test case. 

 
100% Spacing Test Case 

x-Location Fict. Local Thickness In. Rad. Out. Rad. Spacing 
0 0.5 0.0589 0.0295 0.0737 0.0049 
3 3 0.1443 0.0722 0.1804 0.0120 

12 12 0.2887 0.1443 0.3608 0.0241 
32 32 0.4714 0.2357 0.5893 0.0393 

 
Spacing for Finer Test Cases 

90% 85% 80% 75% 70% 65% 60% 
0.0044 0.0042 0.0039 0.0037 0.0034 0.0032 0.0029 
0.0108 0.0102 0.0096 0.0090 0.0084 0.0078 0.0072 
0.0217 0.0204 0.0192 0.0180 0.0168 0.0156 0.0144 
0.0354 0.0334 0.0314 0.0295 0.0275 0.0255 0.0236 

 
Spacing for Medium Test Cases 

110% 115% 120% 125% 130% 135% 140% 
0.0054 0.0056 0.0059 0.0061 0.0064 0.0066 0.0069 
0.0132 0.0138 0.0144 0.0150 0.0156 0.0162 0.0168 
0.0265 0.0277 0.0289 0.0301 0.0313 0.0325 0.0337 
0.0432 0.0452 0.0472 0.0491 0.0511 0.0531 0.0550 

 
Spacing for Medium-Course Test Cases 

150% 160% 170% 175% 180% 190% 200% 
0.0074 0.0078 0.0083 0.0086 0.0088 0.0093 0.0098 
0.0180 0.0192 0.0204 0.0210 0.0216 0.0228 0.0240 
0.0362 0.0386 0.0410 0.0422 0.0434 0.0458 0.0482 
0.0590 0.0629 0.0668 0.0688 0.0707 0.0747 0.0786 
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Spacing for Course Test Cases 
210% 220% 230% 240% 250% 260% 270% 280% 
0.0103 0.0108 0.0113 0.0118 0.0123 0.0127 0.0132 0.0137 
0.0252 0.0264 0.0276 0.0288 0.0300 0.0312 0.0324 0.0336 
0.0506 0.0530 0.0554 0.0578 0.0603 0.0627 0.0651 0.0675 
0.0825 0.0865 0.0904 0.0943 0.0983 0.1022 0.1061 0.1100 

 
Spacing for Most Course Test Cases 

300% 350% 400% 450% 500% 600% 700% 800% 
0.0147 0.0172 0.0196 0.0221 0.0245 0.0294 0.0343 0.0392 
0.0360 0.0420 0.0480 0.0540 0.0600 0.0720 0.0840 0.0960 
0.0723 0.0844 0.0964 0.1085 0.1205 0.1446 0.1687 0.1928 
0.1179 0.1376 0.1572 0.1769 0.1965 0.2358 0.2751 0.3144 

 
 

Actual Number of Elements to Span the Lower 60% of the Boundary Layer 
 

100% case 10      elements 
90% case 11.11 elements 
85% case 11.76 elements 
80% case 12.5   elements 
75% case 13.33 elements 
70% case 14.29 elements 
65% case 15.38 elements 
60% case 16.67 elements 
110% case 9.09   elements 
115% case 8.7     elements 
120% case 8.33   elements 
125% case 8        elements 
130% case 7.69   elements 
135% case 7.41   elements 
140% case 7.14   elements 
150% case 6.67   elements 
160% case 6.25   elements 
170% case 5.88   elements 
175% case 5.71   elements 

180% case 5.56   elements 
190% case 5.26   elements 
200% case 5        elements 
210% case 4.76   elements 
220% case 4.55   elements 
230% case 4.35   elements 
240% case 4.17   elements 
250% case 4        elements 
260% case 3.85   elements 
270% case 3.7     elements 
280% case 3.57   elements 
300% case 3.33   elements 
350% case 2.86   elements 
400% case 2.5     elements 
450% case 2.22   elements 
500% case 2        elements 
600% case 1.66   elements 
700% case 1.43   elements 
800% case 1.25   elements 

 

Flow external to the boundary layer is represented by a grid of 0.25 spacing (6.4 

time that of the largest spacing used above to represent flow in the boundary layer) 
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Laminar Profiles for the Various Mesh Spacings: 

 

Figure D-1:  Laminar Velocity Profiles for 60%, 65%, 70%, 75%, 80%, and 85% 

Mesh Cases.  (from left to right; top to bottom) 
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Figure D-2:  Laminar Velocity Profiles for 90%, 100%, 110%, 115%, 120%, and 

125% Mesh Cases.  (from left to right; top to bottom) 
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Figure D-3:  Laminar Velocity Profiles for 130%, 135%, 140%, 145%, 150%, and 

160% Mesh Cases.  (from left to right; top to bottom) 
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Figure D-4:  Laminar Velocity Profiles for 170%, 175%, 180%, 190%, 200%, and 

210% Mesh Cases.  (from left to right; top to bottom) 
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Figure D-5:  Laminar Velocity Profiles for 220%, 230%, 240%, 250%, 260%, and 

270% Mesh Cases.  (from left to right; top to bottom) 
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Figure D-6:  Laminar Velocity Profiles for 280%, 350%, 400%, 450%, 500%, and 

600% Mesh Cases.  (from left to right; top to bottom) 
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Figure D-7:  Laminar Velocity Profiles for 700% and 800% Mesh Cases.  (from left 

to right; top to bottom) 
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Figure D-8:  Shear Stress Distribution for 60%, 65%, 70%, 75%, 80%, and 85% 

Mesh Cases.  (from left to right; top to bottom) 
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Figure D-9:  Shear Stress Distribution for 90%, 100%, 110%, 115%, 120%, and 

125% Mesh Cases.  (from left to right; top to bottom) 
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Figure D-10:  Shear Stress Distribution for 130%, 135%, 140%, 145%, 150%, and 

160% Mesh Cases.  (from left to right; top to bottom) 
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Figure D-11:  Shear Stress Distribution for 170%, 175%, 180%, 190%, 200%, and 

210% Mesh Cases.  (from left to right; top to bottom) 
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Figure D-12:  Shear Stress Distribution for 220%, 230%, 240%, 250%, 260%, and 

270% Mesh Cases.  (from left to right; top to bottom) 
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Figure D-13:  Shear Stress Distribution for 280%, 350%, 400%, 450%, 500%, and 
600% Mesh Cases.  (from left to right; top to bottom) 
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Figure D-14:  Shear Stress Distribution for 700% and 800% Mesh Cases.  (from left 

to right; top to bottom)
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After verification and validation of the viscous solver, the solver was found to 
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