THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

A MEAN-VARIANCE MODEL
FOR STOCHASTIC TIME-DEPENDENT NETWORKS

A Dissertation
SUBMITTED TO THE GRADUATE FACULTY
in partial fulfillment of the requirements for the
degree of

Doctor of Philosophy

By

JAEJIN SEOK
Norman, Oklahoma
2005

UMI Number: 3203320

®

UMI

UMI Microform 3203320

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

A MEAN-VARIANCE MODEL
FOR STOCHASTIC TIME-DEPENDENT NETWORKS

A Dissertation APPROVED FOR THE
SCHOOL OF INDUSTRIAL ENGINEERING

R

Dr. P. Simin Pulat, Committee Chair

Dr. Tﬁoryﬁs Landers

bl Bl]~

Dr. Sridhar Radhakrishnan

—

Dr. Theodore B. Trafalis

(© Copyright by JAEJIN SEOK 2005
All Rights Reserved.

Acknowledgements

Praise God from whom all blessings flow! First, I would like to thank God for
the constant inspiration, spirit, and faith which have provided me with what | most
needed to complete this study. With God all things are possible and thus it has been so
for me. Amen.

This dissertation would not have been possible without many people who have
contributed to my life and research. | owe them all my sincerest gratitude. My advisor,
Dr. Pulat has provided me with the thoughtful guidance support, and direction for this
dissertation. She has been a guide when | felt confused in a maze of details, always and
consistently keeping perspectives on the bigger picture. She will always be appreciated
and remembered. | would like to express my appreciation to the other committee
members, Dr. Landers, Dr. Radhakrishnan, Dr. Rhoads, and Dr. Trafalis for their
valuable insights and comments during the progress of this research.

This work is dedicated to my parents and all family members who supported
and encouraged me not only during my study at OU but throughout my life. Specially, I
thank my wife, Hyunsook, and my beautiful daughters, Jisun and Hayoung, for their
patience and understanding for the many hours | have stolen from their lives. Without
their sacrifice, I would never have completed my research.

I give special thanks to my brother in law’s family who truly have helped my
family in many way. | also would like to express my appreciation to all of church

members for their prayer support.

Table of Contents

LIST OF FIGURES ...ttt bbb r bbbt nennenes viii
LIST OF TABLES ...t bbbt e bbbttt b e e nnean e X
F N = R I S ¥ G SRRSO xi
CHAPTER 1. INTRODUCTIONoiiiiiiieiiesieee ettt nre e ne e 1
L1 MOTIVATION Lottt et b e b e e bt e e e s R e e s be e sbeesneenneenneennennnenreen 1
1.2 RESEARCH OVERVIEW. ...ttt nn e nne s 5
1.2.1 PROBLEM STATEMENT: STOCHASTIC TIME-DEPENDENT NETWORKS.......ccccectterenrenrenreeneenennnes 5
1.2.3 SOLUTION DIFFICULTIES AND GENERAL APPROACHES......c..ceouiriiriiniieiienieeteereerenieenieenneeneennes 7
1.3 RESEARCH SUMMARY ..ottt ettt sttt st sbe bt sb et esbeesbeesbesnaesneas 11
1.3.1 PATH COMPARISON: THREE DOMINANCE CRITERIAcc..uteruteeniiieniieeniieenieeeiteeniteenieeesieeenseeesseesnnee 11
1.3.2 A PRIORI MINIMUM VARIANCE AND MEAN-VARIANCE ROUTING ALGORITHMScccccevveerueennne 12
1.3.3 TIME-ADAPTIVE MINIMUM MEAN-VARIANCE ROUTING ALGORITHMScoceeiereiinienienienneeneenns 14
1.4 CONTRIBUTIONS ...ttt ettt e bt b e et e bt e sbe e b e e nbeesbe st e e sbeesbeeaeannas 14
1.5 ORGANIZATION ...ttt ettt he e bt e bt et e esb e st s e sbeesbeenbeeeeannas 15
CHAPTER 2. LITERATURE REVIEWooiiiiiii ettt 18
2.1 BASIC CONCEPT AND CLASSIFICATION OF SHORTEST PATH PROBLEMS............... 18
2.1.1 LABELING ALGORITHMS FOR THE SHORTEST PATH PROBLEMcccoceviruirieiicieiiienienieneeneenee 21
2.2 K-SHORTEST PATH PROBLEM AND ALGORITHMS ..ot 22
2.3 MULTI-CRITERIA SHORTEST PATH PROBLEMcccooiiii e 23
24 STOCHASTIC SHORTEST PATH PROBLEM.......cciiiiie e 26
25 STOCHASTIC TIME-DEPENDENT SHORTEST PATH PROBLEMS..........coooiiiii 34
CHAPTER 3. BACKGROUND AND FRAMEWORKc.cooiiiiiienieee e 38
3.1 NOTATION FOR STOCHASTIC TIME DEPENDENT NETWORKS........ccooiiiiiiiienicenn 38
3.2 DEFINITIONS FOR STOCHASTIC, TIME-DEPENDENT NETWORKS........cccoiiiiiiin 40
3.2.1 THE SPACE-TIME EXPANSIONcuieuiiieiiiintinientieie ettt sttt et sae et et e nesae s sae v 40
3.2.2 THE PARAMETERS FOR PATH SELECTION......cccccitiiiiiiiiiiiiniieiieieetieeete e 43
3.2.3 EXPECTATION AND PATHS ...coiiiiiiiiiiiiiiiiiiiie sttt s 44
3.3 PATH COMPARISONS FOR STOCHASTIC, TIME-DEPENDENT NETWORKS................ 49
3.3.1 CRITERIA FOR A PRIORI PATH COMPARISONS.......c.ccciiiiiiiiiiiiiiiiieiieieieie st 50
3.3.2 PATH COMPARISONS BETWEEN MULTIPLE PATHS OVER A TIME PERIOD........cccccoceenuiiiiriinnnne 55
34 CONCLUSIONS ...ttt bbb bbbttt bbb bbbttt 62

CHAPTER 4. A PRIORI MINIMUM VARIANCE AND MEAN-VARIANCE PATH IN

STOCHASTIC TIME-DEPENDENT NETWORKS. ...ttt 64
41 ADDITIONAL NOTATION FOR STOCHASTIC TIME-DEPENDENT NETWORKS.......... 64
4.2 PROBLEM FORMULATION ...ttt ettt e e s et e e st e s s eatae s e sabana e s sabeeesenteneesnnees 66
4.2.1 EXPECTED TRAVEL TIME A ROUTING PROBLEM.........cccoiuvviiiieiieeiiiieeee e eeeeiveeeeeeeeeeeivereeeeeeeennns 66
422 THE OPTIMALITY CONDITION FOR IMEANuuuiiiiiiiiiiiiitiiieeeeeeeeeieeeeeeeeeesnaaeeeeeesessnnaaseeessesnnnnes 68
423 VARIANCE OF A ROUTING PROBLEMcooiiiiiiiiiiiiiii 71
424 THE OPTIMALITY CONDITION FOR VARIANCEccceitiiiueiiieeeeieeiieiereeeeeeesissaeeeeeeesssnsnseseeesesssnnnes 76
43 AN ALGORITHM FOR A PRIORI MINIMUM VARIANCE PATH PROBLEMS................. 79
43.1 AN ALGORITHM ...uvvviiiiiieiiiiieeeeeeeeeeeate e e e e eeeaeeeeeeeeseesaaaaeeeeesseesaaaeseeesssesssaseseeesseesssaereeeseessnnres 80
432 DISCUSSION OF ALGORITHM PMV ..ottt 84
44 ALGORITHM FOR A PRIORI MINIMUM MEAN-VARIANCE PATH PROBLEMS:
IMPLEMENTATION OF PMV ALGORITHMS ..ottt 87
44.1 AN ALGORITHMS ..ovvviiieeiiiitieeieeeeeeeeetteeeeeeeeeeetatreeeeeeeeestaseeeseeeeesiasaereseeseesssreseeeseeesetsereeeseeennnes 87
442 DISCUSSION OF ALGORITHM PMMYV L...oooiiiiiiiie et 91
45 TLLUSTRATIVE EXAMPLE ...ttt ettt et e e e aae e e 92
46 CONCLUDING REMARKS ...ttt e et e s st e e s et e e s s bee e s s ebaeeesarbeeeeanes 102
CHAPTERS5. TIME-ADAPTIVE MINIMUM MEAN-VARIANCE ALGORITHMS................. 104
5.1 NON-DOMINATED PATH SELECTION FOR MEAN-VARIANCE ROUTING.................. 105
5.1.1 PRIMARY COMPARISON RULEcoitiiiiiiiieeieiiieiee ettt e e et e e e e eeeaaareeeeeeeenens 106
5.1.2 SECONDARY COMPARISON RULEccoiiiiiiiiiiee ettt ettt eee e eee e e e e aaneee s 109
5.1.3 ALGORITHM TAMMYV-ND ...ttt et e e e e e eetareaeaeeens 111
5.1.4 JLLUSTRATIVE EXAMPLE......uuuuuuiueeeee s nssnssnsnnnsnnnsnnnnnnnnn 113
5.2 TIME-ADAPTIVE MEAN-VARIANCE ALGORITHMS ... 121
5.2.1 THE TAMMYV 1T ALGORITHM.....uuuuuuie s snsnsssnnnsnnnnnnnsnnnsnnnnnnnns 122
52.2 THE TAMMYV2 ALGORITHM......ciittuuueeiieeeeeiiiieeeeeeeeeeisaseeeeeeeeesstrereeesseessssssseeesesssssisssesssesssnnnes 127
5.3 CONCLUSIONS ... e e e e s s e bbb e e e e e s s s s bbb e e e e e e s e sabebaees 132
CHAPTER 6. COMPUTATIONAL TESTINGooiii ettt ettt e 155
6.1 EXPERIMENTAL DESIGN......cii ittt ettt sttt e s s a e e e s s e saarbaee s 155
6.1.1 GENERATING THE NETWORKS......couutiiteeiieiiiteeeteeeeeeiiarerieeesesisssssseeessesssssssseesssssssssseeesssssnnnes 156
6.1.2 GENERATING THE ARC TRAVEL TIME RANDOM VARIABLESuvvvviiiiiiiiiieeieeeeeeeiieeeeeeeeennnes 156
6.1.3 DESIGN OF THE EXPERIMENTScouuutitiieiiiiiiiteeteeeeeeiitreeeeeeeeessssrereeessesssssssseeesssssssssseessesssnnnes 157
6.2 EXPERIMENTAL RESULTS ..ottt saarba e 158
6.2.1 PERFORMANCE ON RANDOMLY GENERATED NETWORKSccoovurvriieeiiiiiireeeeeeeeeeiieeeeeeeeeennnes 159
6.3 APPLICATIONS AND EXTENSIONS ...t 166
6.3.1 INTRODUGCTION ...ouvviiiiiiiieiiiieeeeeeeeeetee e e e eeeeta et e e e eeeeeaaaaeeeeeeeesestaaseeeeeeeentsareeeseeeanstsereseseeennnees 166
6.3.2 LA AREA TRAFFIC DATA ANALYSIS c.vvveiieeeeiiiiieeieeeeeeeiiteeeeeeeeeeetaeeeeeseeeessasaseseseeesssssereseseesnnnes 167
6.3.3 PROBLEM DESCRIPTIONcuvviiiieeieiiititeeeeeeeeeiiitreeeeeeeeesisseseeeeeeeseissssesesessssssssesesesssssisssesesessnnnses 173
634 RESULTS OF THE CASE STUDY ...ooutttttieeeeeeeiitteeeeeeeeeeitteeeeeeeeesetseaeeeeeeeeesssaseseseeeenssssseseseeeennses 175
5.4 CONCLUSIONS ... e e e e e s et e e e s s e s bbb e e s e e s s e s iab b b et e e eessssbrbeees 180

Vi

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH ..o 182

7.1 RESEARCH SUMMARY ...ttt 182
7.2 FUTURE RESEARCH DIRECTIONS.......cooitiiiiiiereee e 185
REFERENGCES ...ttt bbb bbb sn e s 187

vii

List of Figures

Figure 3.1 Deterministic time-dependent NetWork G..........cccccvvvviiiiiivienieniecie e 40
Figure 3.2 Space-time expansion 0f G: G’cccvevvieviieiieniecieeie et sne e seve e 41
Figure 3.3 Stochastic, time-dependent network H..........c.coovviiiiiiiiiiiiiiiiecece e 41
Figure 3.4 Time-Space network of H: H™ ...ooccoiiiiiiiiiicc e 42
Figure 3.5 A stochastic NEtWOTKccviiiiiieiiicciiecee e 46
Figure 3.6 Expected arc travel tMEcccvveeciiieiiiiciie ettt sreeeiee e esreeeeveeseveeenes 47
Figure 3.7 Example network with time-dependent pmfc.cccoovveriiiiiiiiniiecie e 48

Figure 3.8.a Path 1 deterministically dominates Path 2 at time t as seen by the
non-overlapping density fUNCLIONScccecieriierienienieeieee e 51

Figure 3.8.b Path 1 deterministically dominates Path 2 at time t as seen by the

diStribution fUNCHONSeeeuieeiieiieieettee sttt e enee s 51
Figure 3.9 The over-lapping paths 1-2-3-4 and 1-2-4 share arc (1, 2).....ccccocevvererenneenenennes 52
Figure 3.10 Path 1 stochastically dominates Path 2 at time t as seen by the

non-intersecting distribution fUNCLIONSccververirriieieeieree e 53
Figure 3.11 Example NetWorkcooiiiiiiiiiiieeee e 54
Figure 3.12. Three dOmMinance CIIteTIaeeueruerierierieeierieeiteeesteete e ee sttt s eiee e e enee 55
Figure 3.13 Path comparisons at time 1 and 2ccoceeieririieniiieeeeee e 57
Figure 3.14 Example NetWorkcoocoiiiiiiiieeeee e 59
Figure 3.15 Arc travel time comparisons at time 1 and 2..........cooceeieiinieieninereeeeee e 60
Figure 4.1 An Illustrative Example for Optimality Conditions Meancccceveererueeeeneene. 70
Figure 4.2 An Illustrative Example for Optimality Conditions Variance.............ccccccvveeuveennee. 77
Figure 4.3 EXaMPIe NEIWOTKccccviiiiiiiiiiieciie ettt ettt e sv e svaeeseveessbaeeeaeesaveeenees 92

Figure 4.4 Resulting minimum variance path for departure time 0 at nodel for the
(€21 101 0] (8 o1 (0] o) (<3 1 4 LTSRS PTR 98
Figure 4.5 Resulting minimum mean-variance path for departure time 0 at nodel

for the example Problem...........ccooviiiiiiiiiiee e 101

Figure 5.1 Comparison of stochastic path attributes L} and L’ where 4 < 4’ and

Figure 5.2. Comparison of two path travel time Lll. and Lf where

L <AL AN V] > V7 s 110

viii

Figure 5.3 Flow chart for algorithm TAMMVIccoiioiiiiiiiee et 124
Figure 5.4 Flow chart for algorithm TAMMYV2ccoooiiiiiiiiieeeecee et 128
Figure 5.5 Resulting hyperpaths for departure time t=0 from node 1...........ccccoeveivriiveiirennennne. 142
Figure 6.1 Running time of Algorithm TAMMYV1 as a function of the number of the

nodes, n. Tests are performed for time interval 10, 30, and 60coccueennenee. 164
Figure 6.2 Running time of Algorithm TAMMYV?2 as a function of the number of the

nodes, n. Tests are performed for time interval 10, 30, and 60.ccccveneee.ee. 164
Figure 6.3 Running time of Algorithm TAMMYV 1 with the number of the arcs, m.

Tests are performed for time interval 10, 30, and 60...........c.cccceeevvevierieenieneennnnns 165
Figure 6.4 Running time of Algorithm TAMMYV-STD2 with the number of the arcs, m.

Tests are performed for time interval 10, 30, and 60...........c.cccceeevveeierierieneenennns 165
Figure 6.5 Running time of Algorithm TAMMV-STDland TAMMV-STD 2

as a function of the time Horizon, TTccoooviviiiiiiiiiiieeeeeeeee e 166
Figure 6.6 Major highway sensor location map in LA area............cccoeveevveereeneeneesvesnesneennes 168
Figure 6.7 A section 24-25 in Interstate highway 5S.........ccccccviviiviiniieniece e 169
Figure 6.8.a Lane 1 speed for all sensors in arc 24-25.........cccevvvieeciiienieeniie e 170
Figure 6.8.b Lane 2 speed for all sensors in arc 24-25coceeviiiiiieecieenieeeiee e esvee e 170
Figure 6.8.c Lane 3 speed for all sensors in arc 24-25.........cccevvvieeciiieniieeiie e 170
Figure 6.8.d Lane 4 speed for all sensors in arc 24-25coceoovieiiieeciieenieeeieeeeeeesveeevee s 171
Figure 6.9.a Mean speed for all sensors in arc 24-25cocoveviievciieecieeniee e 171
Figure 6.9.b Mean of all 4 lanes speed for all sensors in arc 24-25.........cccecvevieecienieeneeneenne 171
Figure 6.10 Travel time from node 24 t0 25ooiiiiiiiiieeeeeeeee et 172
Figure 6.11 Travel time data for every 30 minutes for arc 24-25ccccoevievieneenienienienee. 172
Figure 6.12 The LA traffic NetWork.........cccoevieiiiiieiiieieee et 174
Figure 6.13 Minimum mean travel times for departure time varing............ccecveevverveerveenneenes 176
Figure 6.14 Minimum variance routing for departure time varingcocceecververcvervennennnes 177
Figure 6.15 Minimum mean-variance routing for departure time varing-PMMV................... 178
Figure 6.16 Minimum mean-variance routing for departure time varing-TAMMV1.............. 179
Figure 6.17 Resulting hyperpaths as shown through conditional tree structure 180

X

List of Tables

Table 2.1 Classifications of shortest path problemsccccceeevirciieviievieneenieree e 20
Tabe 2.2 Comparisons between label-setting and label-correcting algorithms 21
Table 2.3 Existing approaches for the MCSPP without a utility function.............cccceevvvennnnns 24
Table 3.1 Determining expected least time through network of Figure 3.5..........cccceveeiienns 46
Table 3.2 PMFs of arcs and subpaths in Figure 3.9..........ccccoviiiiiiiiieciieeeeeeee e 52
Table 3.3 Unconditional pmfs of paths in Figure 3.9ccccooiiiiiiieciiieececee e 52
Table 3.4 Travel time pmf’s for Figure 3.11......ccoooiiiiiiiiiieeeeeeee e 54
Table 3.5 Travel time cdf’s of path ab and ac at departure time t=0cccceeverreireirennnnee. 54
Table 3.6 Possible path travel times at time intervals 1 and 2..........coceviiriiiieeiienieeeeee 57
Table 3.7.a Possible realizations for time interval 1...........ccoocieiiiiiiniiiniieee e 58
Table 3.7.b Possible realizations for time interval 2...........cccccoeoiiriiiniinineeeeceeeeee 58
Table 3.8 Table of pmf's of travel times in Figure 3.5cccccevviiiviinciinieeeceeeeee e, 59
Table 4.1 Example of vector label with five time intervalsccccooceveiininenineeecee 84
Table 4.2 Table of pmfs of travel times in Figure 4.3cccoocvviieciniiieeeeeneecee e 92
Table 6.1 Comparison of run times in CPU seconds for PMV & PMMYV algorithms............. 160
Table 6.2 Run times in ¢.p.u seconds for PMMYV algorithmcccccceevieviieiiiccieeniecieeene, 160
Table 6.3 Run times in ¢.p.u seconds for TAMMV1 algorithmccccceveveeiiivieenieenieennee, 161
Table 6.4 Run times in ¢.p.u seconds for TAMMV2 algorithmccccceveiveiiivieenieenieenenee, 162
Table 6.5 Running time in c.p.u seconds for TAMMV1 and TAMMV?2 algorithms............... 163
Table 6.6 Example of PMFs for the arc alccccocovviiiiiiiiiecie e 173
Table 6.7 Minimum mean travel time and paths for MMV algorithmccccoceveeeeirinnns 175
Table 6.8 Minimum variance and paths for PMV algorithm..............cccceeeiieniiiiniiiiieecieeas 177
Table 6.9 Minimum mean, variance and paths for PMMYV algorithm............cccccccvveerirnnnnnee. 178
Table 6.10 Minimum mean, variance and next node for TAMMV 1 algorithm....................... 179

Abstract

Traditional models of route generation are based on choosing routes that
minimize expected travel-time between origin and destination. The variance of the least-
time path is not included in the path selection. In addition, due to congestion in
transportation networks, travel times are time-dependent and stochastic in nature. This
research focuses on the time dependency as well as the stochastic nature of traffic flow.

Two algorithms are developed for determining a minimum travel time variance
path and minimum mean-variance path assuming a priori best path routing policy. Under
this policy, drivers use the path that corresponds to the minimum travel time variance to
their destination node determined prior to the actual departure time at an origin node. We
prove that both algorithms reach the optimal solution in finite number of steps but have
non-polynomial running times. In addition, two algorithms, specialized modified label
correcting and label setting algorithms, are developed for determining minimum mean-
variance travel time path for time-adaptive routing problem. These algorithms allow the
travel to define the route as he/she travels from the origin to the destination. Both
algorithms reach optimal solution in finite number of steps and have polynomial
computational complexity.

The computational performance of the algorithms was evaluated through
numerical experiments using randomly generated networks. A regression curve relating
the running time to number of nodes, arc density, number of time intervals, and the
number of discrete arc travel times has been generated for each algorithm. The results
show that number of nodes and arc density influence the running time worse than linearly.

The proposed algorithms were illustrated using a real-life network and near-real time

Xi

travel information between Beverly Hills and Garden Grove in Los Angeles, California.
The data was generated using the Freeway Performance Measurement System (PaMS)
run by California Department of Transportation and the University of California at
Berkeley. The illustration showed that more research is needed in extracting travel time
information from real-life data which is vast and influenced by several factors such as the
day of the week, holidays, time of the day, accidents. However, through the illustration
we were able to demonstrate how the proposed algorithms can be used with near real-

time information.

Xii

Chapter 1. Introduction

1.1 Motivation

Time is the essence in today's ever-mobile world. While the time it takes to
travel long distances is getting shorter each year, daily commuters spend more time just
to get to work. One main reason for this situation is traffic congestion. Traffic congestion
is perhaps the most prominent problem of modern society and has both direct and
indirect impact. As described in the 2005 Urban Mobility Report, by the Texas Institute
of Transportation: “Despite a slow growth in jobs and travel in 2003, congestion caused
3.7 billion hours of travel delay and 2.3 billion gallons of wasted fuel, an increase of 79
million hours and 69 million gallons from 2002 to a total cost of more than $63 billion.”
To an individual traveler, congestion reduces the quality of life by reducing leisure time,
increasing anxiety, and wasting personal resources. To firms, congestion reduces the
work efficiency of employees and increases freight transportation costs. To the society as
a whole, congestion negatively affects environmental quality by causing more gas
emissions and noise, and endangers traffic safety by causing stress and fatigue for drivers.

Adding capacity by building infrastructure is the most common measure taken to
improve traffic flow. However, the more traditional approach of simply adding more
infrastructure and capacity is not always possible or desirable. Furthermore, new
infrastructure will induce more demand, which could affect the increased capacity or
even make the congestion worse. However, improvements can still be made by

increasing the efficiency of the existing system. These treatments are particularly

effective in three ways. They have a relatively low cost. They can usually be
implemented quickly and can be tailored to individual situations, making them more
useful because they are flexible. They are usually a distinct, visible change; it is obvious
that the operating agencies are reacting to the situation and attempting improvements.

Measures to relieve traffic congestion are generally based on the concept of
making the best use of current infrastructure with the advanced information technology,
which is the underlying idea of Intelligent Transportation Systems (ITS). Advanced
Traffic Management Systems (ATMS) and Advanced Traveler Information Systems
(ATIS) are fields of ITS which put congestion management as a major priority. Among
the various sub-systems of ITS, ATIS aims to provide travelers with updated and useful
information about network conditions to traveler to aid in making better decision. As
traffic conditions are stochastic in nature, the information is of even greater importance.
For example, when an accident happens, a timely notice by ATIS to travelers who plan to
take the route on which the accident happened would be quite beneficial.

All parameters of a real time traffic such as traffic volume and travel time are
stochastic in nature. The travel time of even commonly undertaken trips like home to
work differ over day of the week and even time of the day. The randomness can come
from multiple sources that are both recurrent and non-recurrent. One of the most
significant sources is the disturbances that cause unpredictable (called non-recurrent)
congestion, such as accidents and vehicle breakdown. Traffic conditions with predictable
(recurrent) congestion, on the other hand, are also usually different from day to day,
largely because of fluctuations in origin-destination (OD) trips. The fluctuations can be in

both the total number of OD trips and the spread of OD trips over departure times (i.e.

traffic flow per unit time). Travelers with non-commuting trip purposes might decide not
to take a trip on a particular day, due to other personal business, and the no-travel
decisions collectively result in a random number of OD trips. Travelers may also respond
to congestion by shifting departure times from day to day, and thus, there exists a random
pattern in OD trips’ spread. These and more reasons make the traffic flow more
stochastic and less predictable.

Travelers make decisions (destination, mode, departure time, route) based on
their information about the traffic network. The information can be obtained through a
wide range of means: the travelers’ own experience, word of mouth, radio broadcast,
variable message signs (VMS), an in-vehicle communication system, and so on. This
information can be classified as a priori or real time. A priori information is about the
day-to-day fluctuations of traffic quantities, e.g. the time it takes to travel from Norman
to OKC is 20 minutes on average, but roughly once in a month, the travel time is
unusually high, due to various reasons. Real time information is about the traffic
conditions on a specific day, e.g. an incident just occurred on a route, and thus will
impact the traffic for the next 30 minutes. This classification is meaningful only when
there is stochasticity in the network; it is in that way real time information is different
from a priori information. Destination, departure time and mode decisions are usually
made only at origins and can rarely be changed en route, while route decisions can be
changed en route more easily and thus benefit more from real time information. ATIS
can provide both a priori and real time information. Travelers only have personal
experience to guide them on their selected routes. In order to obtain a priori information

about the whole network, they need to go beyond their personal experience, and a good

source is ATIS. ATIS can provide travelers with reports of traffic conditions in the past
and possibly predictions about the future, for the temporal and spatial ranges and in
formats specified by travelers. Combining all sources of priori information, travelers can
form their own general pictures about the network. Nevertheless, the benefit of ATIS is
primarily embodied through the provision of real time information, especially in a
network disturbed randomly by accidents, vehicle breakdowns, bad weather, work zones,
special events, and so on. The sensors are, in general, installed on state highways and
interstates to collect real time traffic data. This real time sensor data can be use to assist
commuters (passengers, emergency and commercial vehicles) in making the best
decisions on route selection.

Travelers’ routing decisions in a stochastic network with real time information is
conceivably different from those in a deterministic network. It is generally believed that
adaptive routing will save travel time and enhance travel time reliability. For example, in
a network with random incidents, if one does not adapt to an incident scenario, he/she
could be delayed in the incident link for a very long time. However, if adequate real time
information is available about the incident and the traveler adapts to it by taking an
alternative route, he/she can save travel time as compared to the non-adaptive case. The
adaptiveness also ensures that the travel time is not prohibitively high in incident
scenarios, and thus provides a more reliable travel time.

It is therefore a very interesting research question how an individual traveler
makes adaptive routing decisions in a stochastic and time-dependent network. Traditional
models of route generation are based on choosing routes that minimize expected travel-

time between origin and destination. Such approaches do not account for the fact that

travelers often incorporate travel-time variability within their decision making. Thus, a route
with lower travel-time variability is preferred by some travelers, even if such a route is not
one with the lowest mean of travel-time. Such traveler behavior is best captured by a multi-
objective model (mean-variance) in which the choice of a route is based on the mean as well
as the variance of the path’s travel-time. The route planning model developed in this work

is intended to help travelers with decision making.

1.2 Research Overview

1.2.1 Problem Statement: Stochastic Time-Dependent Networks

Travel time between an origin and destination is often the primary criterion in
routing vehicles such as ambulances, police cars, vehicles carrying hazardous substances,
and individuals on their way to some activity. Today's traffic routes have ever-changing
traffic patterns that lead to time-varying dynamic networks. To analyze this dynamic
situation, one would need to use dynamic algorithms that can take into account time-
dependent behavior. This leads to the concept of dynamic network optimization and real-
time traffic routing.

There may be some uncertainty associated with the travel times (or travel costs)
along the arcs as a result of inherent uncertainties in future trip times, incomplete a priori
information, or inaccurate methods of predicting future trip times. In part, such inherent
uncertainties in travel times can be attributed to the varying characteristics of drivers and
vehicles, the amount of interaction between vehicles due to the level of congestion and
the unexpected delays as a result of automobile failures or accidents, construction or lane

closures, road hazards, train passings, bus stops, and so on. In order to optimally route

vehicles, both the stochastic and time-dependent nature of the travel times must be
considered. Future travel times, as well as other travel costs, can be treated as random
variables whose probability distribution functions vary with time.

Two types of algorithms are generally used for routing in networks: (1) shortest
path based routing algorithms, and (2) optimal routing algorithms based on other
measures. The efficiency of a routing algorithm depends on how it performs during times
of congestion in the network. The main tasks that have to be performed by these routing
algorithms are routing choice and the error-free and reliable delivery of a message.

The average travel-time that would be experienced by drivers may depend on the
type of routing policy adopted. In literature, the following two routing policies have been
considered (Chabini, 2001).

1) The best path routing policy (Route planning): A minimum of the expected
travel-time path is determined in this policy during the drivers’ trips from an
origin node to a destination node. Because of travel time random variable,
there can be exist multiple criteria to measure the quality of a path. The expected
travel time is only one possible criterion.

2) The best next-arc routing policy (Route guidance): Rather than determining a
single best path based only on information known before travel begins, routes with
lower travel times may be obtained by allowing the driver to react en route to
revealed (actual) arrival times. This is referred to as time-adaptive route choice by
Hall (1986). A driver recursively selects the best next arc to follow when
departing from the current node, depending on the actual arrival time at this

node.

These two policies possess the same solution in static or in deterministic problems.
However, in general stochastic time-dependent networks, the above two policies lead to
different expected travel-times. There are two results that follow from this interpretation:
(1) the expected travel time corresponding to the second policy is always less than or
equal to the expected travel time corresponding to the first policy, and (2) generating a
solution to the second policy is a less difficult algorithmic task than computing a solution
to the first one (Chabini, 2001). The aim of the best next arc routing policy is to compute
an a priori routing strategy that would be repetitively used to guide drivers during their
trips between a pair of origin-destination nodes. Under the best path routing policy,
drivers use the same path. Under the best next-arc routing policy, drivers may follow

different paths.

1.2.3 Solution difficulties and General Approaches

Many difficulties come up to solve the problem of determining "best" paths in
stochastic, time-dependent networks that are not present in the deterministic, time-
dependent problem. In problems involving a single objective function, like minimum
travel times, of deterministic quantities, a single optimal solution can be identified, with
possible alternate optimal solutions. If alternate optimal solutions exist, the solutions all
have the same deterministic value; and thus, a solution can be arbitrarily selected without
regret. A single objective problem of a stochastic quantity may result in multiple non-
dominated solutions because several solutions may have some probability of being best
for one or more realizations of the random quantity. For this reason, multiple non-

dominated least time (or shortest) paths may exist in stochastic networks where more

than one path may have the least time for some realization of the network.

There are numerous criteria that one uses to select one route over another in
stochastic time dependent networks. For example, one may prefer the path that has some
probability of having the least possible time. Miller-Hooks and Mahmassani (1998a)
proposed efficient procedures for determining the least possible time paths in stochastic
time dependent networks. In stochastic time dependent networks, paths comparison is
further complicated by the fact that such comparisons of the path probability distribution
functions must be made over a time period. Several algorithms for determining a priori
paths in stochastic time dependent networks that employ such path-comparison
techniques were proposed by Miller-Hooks and Mahmassani (1998a, 1998b, and 2000).
Common approaches to stochastic problems that often lead to solutions with the least-
expected value. The determination of the least-expected time paths in stochastic time
dependent networks is more difficult than in networks where the arc traversal time
distributions are time-independent. In stochastic time-dependent networks, one cannot
simply set the random arc traversal times to their expected values and solve for the least
expected time paths through the use of a deterministic shortest path algorithm, as is
possible in time-invariant networks. This is because the expected traversal time on an arc
in stochastic time-varing networks depends on the time of arrival at its origin node.
Miller-Hooks and Mahmassani (1998a, 2000) and Miller-Hooks (2001) discuss
approaches for the time-varying and stochastic transportation and data networks. They
propose label-correcting algorithm and a modified label-correcting algorithm to
determine a priori least expected time path and a lower bound on least expected time

path, respectively. They also illustrate how adaptive least expected time hyperpaths can

be determined using an extension of the modified label-correcting algorithm to generate
best routing policies conditioned on the node arrival times. Chabini (2001) proposed a
dynamic programming approach to determine the least expected travel costs from all
nodes to a given destination. Gao and Chabini (2001) studied the best routing policy
problem. They provide a comprehensive taxonomy of the problem, based on information
access and network statistical dependency. An exact algorithm and four approximations
are proposed.

Previous approaches in stochastic time dependent problems do not account for the
fact that travelers often incorporate travel-time variability in decision making. Thus, a route
with lower travel-time variability is preferred at certain situations like hazardous material
shipment, even if such a route is not one with the lowest mean of travel-time. Such traveler
behavior is best captured by a mean-variance model in which the choice of a route is based
on the mean as well as the variance of the path’s travel-time. To the best of author’s
knowledge, there is no papers in the literature that deals with minimum variance and
mean-variance path problems in stochastic time-dependent networks. In this study, we
develop the methodology for minimum variance and mean-variance path that
accommodates variance and both means and variances within a route guidance model.

Two procedures presented in this study are specialized modified label correcting
and efficient specialized label setting algorithms for generating "preferred" paths. The
first procedure determines a prior minimum variance and mean-variance paths from all
origins to a single destination for each departure time in the peak period. The second
procedure determines the “best” next arc routing from all origins to a single destination

for each departure time in the peak period. In generic label correcting algorithms for

time-independent, deterministic shortest path problems, a single label associated with
each node maintains the current shortest time from the node to the destination. The labels
are updated until optimality conditions are satisfied. Upon termination, as long as a path
exists, a single shortest path (which may be tied for shortest) from all origins to the
destination node and the corresponding distances (or times) are known. In deterministic,
time-dependent networks, vector labels are associated with each node, maintaining the
current shortest distance (or time) from the node to the destination for each time interval
in the peak period (Ziliaskopoulos and Mahmassani, 1993). Unlike label correcting
algorithms, where the components of all vector labels are temporarily set until
termination, after each iteration of the label setting algorithm, where the labels are
updated for a specific deprture time, ¢, the component of each vector label associated
with 7 is permanently set for all 7.

Similarly, in stochastic, time-dependent networks, vector labels are maintained
from each node to the destination node, the number and contents of which now depend
on the specific problem that one is solving. If the problem is to determine the least
expected time paths, then the optimality conditions based on expected times are used. If
the problem is to determine the least variance paths, then the optimality conditions based
on the variance of travel times are used. Again multiple vector labels are associated with
each node (as more than one path may have the least expected time for one or more
departure time intervals). Each vector label maintains the expected time or variance for
its associated path from the node to the destination for all ¢. For each of these problem
formulations in stochastic, time-varying networks, until termination, the labels of any

Pareto-optimal, or optimal, paths must be maintained over the entire time period.

10

In this work, problem formulations that permit the use of a single vector label from each
node, maintaining single deterministic quantities for each departure time, can result in
polynomial time algorithms with a worst-case performance similar to that of the

deterministic, time-varying shortest path problem.

1.3 Research summary

The procedures developed in this dissertation for determining "best" paths in
stochastic, time-dependent networks are organized in two sets. The first set addresses the
problems of generating the “best” paths for both a priori best path routing and time-adaptive
best routing problems. An additional procedure for determining a priori minimum variance
path and minimum mean-variance paths, and time adaptive minimum mean-variance

routing is presented.

1.3.1 Path comparison: three dominance criteria

Three dominance criteria, deterministic dominance, stochastic dominance, and
expected value dominance, (Miller-Hooks and Mahmassani, 2003) are considered in the
determination of non-dominated (or efficient) paths, described in detail in Chapter 3. In this
section, a brief description of the rationale behind each dominance criterion is given.

The first dominance criterion is deterministic dominance. By this criterion, if for a
given departure time the highest travel time on the best path is lower than the lowest travel
time on the second best path, then the second best path has zero-probability of having a

lower travel time than the first. The first path is said to dominate the second for the given

11

departure time. For this departure time, one can choose the first path with certainty that
the second path will not be better.

The second dominance criterion, stochastic dominance, is less conservative than the
deterministic dominance, possibly resulting in fewer non-dominated (or efficient) paths.
Here, for a given departure time, the first path dominates second, and if for all possible
travel time values, the probability that the first path's travel time is less than or equal to that
value is always greater than the probability that the second path's travel time is less than or
equal to this same value.

The third criterion considered uses the expected value to establish dominance. If,
for all departure time intervals in the peak period, the first path has lower expected time than the
second, the first path dominates the second.

In this research, procedures for generating a priori minimum variance time paths, a
priori minimum mean-variance paths, and time adaptive minimum mean-variance paths are

developed using the third criteria.

1.3.2 A priori Minimum variance and Mean-Variance routing algorithms

A distinctive feature of a traffic network is the link-wise and time-wise
stochastic dependency of link travel times. However, a comprehensive literature review
on optimal routing policy problems for minimum variance in stochastic time-dependent
networks reveals that no research has considered this important feature of a traffic
network. When faced with travel time uncertainty, travelers are also concerned about the
reliability of their travel times. Travel time variance is used to represent travel time

reliability (Sen, et al., 2001). A routing policy with less travel time variance is viewed as

12

more reliable. For commuters, the desired arrival time in the morning might be some
time around the work starting time. For a traveler trying to catch a plane, the desired
arrival time might be roughly one hour before the plane’s departure. It is generally
believed and verified that a constant travel time path is preferred over a high variance
path, even if it has a shorter travel time. Since expected travel time is the primary
criterion in routing optimization, and reliability measures (variance) are generally
secondary, it is necessary to design algorithms that minimize linear combination of
expected travel time and variance. The detail descriptions are presented in chapter 5.

Two algorithms, PMV and PMMV, are developed for determining a minimum
travel time variance path and minimum mean-variance path for a priori best path routing
problem. In this routing policy, drivers use the same path that corresponds the minimum
travel time variance to their destination node depending on their actual departure time at
an origin node.

We find the recursive relationship between means and variances of a given
routing policy starting from two adjacent nodes. The node labels are updated by using the
recursive formulation. At termination of either algorithm, the final node labels are the
minimum travel time variance or mean-variance from each node to the destination node
for departure time ¢. Both algorithms are similar because both mean and variance
calculations are required in both procedures. One main difference between these two
algorithms is the way to update the node labels. Detail descriptions of the algorithms are

in Chapter 4.

13

1.3.3 Time-adaptive Minimum mean-variance routing algorithms

Rather than selecting a priori single best path based only on information known
before travel begins, routes with lower expected travel times and variance may be obtained
by allowing the driver to react en route to revealed (actual) arrival times.

Two algorithms, TAMMV1 and TAMMV?2, are presented for determining
minimum mean-variance travel time path for “best” next arc routing problem. The same
recursive formulations are used for these algorithms.

The next node is computed like this: a path with a minimum linear combination
of expected travel time and variance from the current node to the destination is computed,
and then the first link along this path is followed. When the user arrives at the next node,
a new minimum linear combination of expected travel time and variance path is
computed and the first link followed. Note that the new path is not necessarily a subpath
of the previous one. This routing method is adaptive as a new path is computed each time
a new decision node is reached, but it is myopic in the sense that it assumes no future

changes in network conditions when computing the next node to take.

1.4 Contributions

The contributions of the thesis in stochastic time-dependent networks are
summarized as follows:
1. The specific computational steps are developed to find a priori minimum
variance path in stochastic time-dependent networks.
2. The specific computational steps are developed to find a priori minimum mean-

variance path in stochastic time-dependent networks.

14

3. Two different computational steps are developed to find minimum mean-
variance paths in stochastic time-dependent networks for a time-adaptive routing
problem.

4. Computer programs for these models are prepared, and extensive numerical
experiments are conducted to assess the average run time.

5. The proposed algorithms were illustrated using a real-life network and near-real

time travel information.

1.5 Organization

The dissertation is arranged in seven chapters. This first chapter describes the
problems that are addressed and gives an overview of the general approach that is taken
for solving these problems. This is followed by a brief description of the procedures that
are developed for solving the problems, the contributions of this work, and finally, the
organization of this thesis.

In Chapter 2, we survey the literature on this topic, including deterministic
shortest path routing problems, k-shortest path routing problems, multi-objective shortest
path routing problems, routing in stochastic static networks, and routing in stochastic
time-dependent networks. This survey reveals that there are a number of variants of the
optimal routing problem in an stochastic time dependent network.

In Chapter 3, some basic concepts, as they apply to stochastic, time-dependent
networks, are defined. Techniques for selecting a best path through compromise from the
set of non-dominated solutions are discussed. Three dominance criteria are presented for

comparing paths with random travel times whose probability distribution functions vary

15

over time. The conditions are given for comparing two paths at a single departure time
and multiple paths over the time period for both a priori path selection and time-adaptive
route choice.

In Chapter 4, we develop the PMV and the PMMYV algorithms to find a priori
minimum variance path and minimum mean-variance path in stochastic time dependent
networks. We find the recursive relationship between the mean and the variances of a
given routing policy starting from two adjacent nodes. The worst-case computational
complexity of the algorithms are discussed

In Chapter 5, the TAMMV1 and the TAMMYV?2 algorithms are developed to find
a minimum variance path in stochastic time dependent networks for time-adaptive
routing problem. The worst-case computational complexity of both algorithms is
discussed.

In Chapter 6, the procedures of chapters 4 and 5 are implemented and tested on
numerous randomly generated networks and a more realistic transportation network. The
tests are intended to estimate the average run time. The procedures are tested on
randomly generated networks with an average arc density of 2, 4, and 6 with number of
nodes 50, 100, and 500. The methodologies used for randomly generating the networks
and time-varying probability distribution functions are described. The results of these
experiments are presented.

The procedures presented in Chapters 4 and 5 are illustrated on an example
problem: the best path selection from Beverly Hills to Garden Grove during rush hours in
a representation of the Los Angeles traffic network. The travel times of this network are

collected on Freeway Performance Measurement System (PeMS) based on actual

16

distances and varying travel speeds by traffic sensors.
Finally, a summary of the dissertation work and future research directions are

discussed in Chapter 7.

17

Chapter 2. Literature Review

The routing problems in networks have been an important and well researched
topic for a long time. We first give a brief introduction to the shortest path problem in
deterministic networks, including the well developed static shortest path (SSP) problem
and the dynamic shortest path problem. This will be useful to the study of routing
problems in stochastic networks. We then proceed to stochastic networks. There are
various ways of defining a stochastic network. Most of the problem variants studied in
literature assumes that the underlying network is static (not dependent on time). Some
other variants studied in the literary work with special cases of dynamic stochastic
networks do not represent time explicitly. A limited number of papers have studied the
optimal routing in a stochastic time dependent network with specific assumptions. A

comprehensive study of the problem is not available in the literature.

2.1 Basic Concept and Classification of Shortest Path

Problems

The shortest path problem is one of the most fundamental network optimization
problems. It is an important problem by itself for its many applications in the real world.
It also important as a sub-problem in other network flow problems. The minimum cost
flow and the maximum flow problems all can be solved by finding the shortest paths and
augmenting flows along such paths. Lawler (1976), Tarjan (1983), and Ahuja et al.
(1993) provided an excellent review of how the shortest path problems can be used in

other network problems.

18

Algorithms for solving the shortest path problem have been studied for a long
time. However, advances in the theory of shortest path algorithms are still being made.

Let G(N, A) be a network, where N is the set of nodes and A is the set of links.
Each link (i,j) has a cost ¢(7, j) and we term a path with minimum cost as the shortest path.
The SSP is to find the shortest path from a source node s to a destination node d.
Dijkstra’s algorithm is the most commonly used algorithm to solve the shortest path
problem for networks with nonnegative arc costs. Various implementations of Dijkstra’s
algorithm exist. The most straightforward one is based on the array of data structure and
has a running time of O(n?), where n is the number of nodes. The implementation using a
Fibonacci heap can achieve a running time of O(m + n log n), where m is the number of
arcs. This implementation is also currently the best strongly polynomial-time algorithm
for solving the shortest path problem. If the network has negative arc costs, more
sophisticated algorithms (such as the label-correcting algorithms) are needed. These
algorithms basically check whether the optimality conditions

d(i)+c(i,j)=d(j), V(i,j)e A are satisfied, where the label d(i) is the cost for the

origin to node i. They make necessary changes by changing cost labels until no arc
violates this condition. A first-in-first-out (FIFO) queue implementation of the label
correcting algorithm has a running time of O(mn).

The existing shortest path problems (SPP) and their extensions may be classified
by various criteria. The first classification may be by the number of routes identified.
There are two categories: One is a generic shortest path algorithm which identifies a
single path, and the other is the so-called k shortest path algorithm which identifies k

shortest paths. These shortest path algorithms and extensions usually consider a single

19

attribute such as time, cost, distance or a combination of attributes that are combined into
a single generalized cost.

The second classification may be based on whether a single attribute or multiple
attributes are considered in the objective function. The majority of the traditional shortest
path and k-shortest path algorithms belong to the single attribute category, while the
multi-criteria shortest path problem (MCSPP) belongs to the second category. Table 2.1

summarizes the classifications of the SPP and gives examples of each type.

Table 2.1. Classifications of shortest path problems

o Number of routes identified Number of attribgtes in objective
Classification function
Single Multiple Single Multiple
- Generic shortest | - k-shortest - Traditional - Multi-
path algorithm path shortest path Criteria
Problems & | - Label setting algorithm algorithm shortest path
Algorithms algorithm - k-shortest path
- Label correcting algorithm
algorithm

Another classification of the existing SPP and extensions could be based on the
time-dependency of the link attributes. If the link cost changes with the time of day,
identifying the shortest path is defined as a dynamic shortest path problem or shortest
path problem in a dynamic traffic network. Lastly, in many transportation situations, the
link travel time in a network is not deterministic but is a discrete or continuous stochastic
process. That is, the cost or travel time on each link may be considered as a random
variable. There exists a large amount of literature on the SPP in a dynamic and static
network that require procedures to model those network characteristics.

The following section focuses on the review of the standard SPP algorithms that

identify a single route based on a single attribute in a static, deterministic network.

20

2.1.1 Labeling Algorithms for the Shortest Path Problem

Labeling algorithms are the most popular and efficient algorithms for solving the
SPP. These algorithms utilize a label for each node that corresponds to the tentative
shortest path length pi to that node. The algorithm proceeds in a way so that these labels
are improved until the shortest path is found. There are two types of labeling algorithms:
label setting (LS) and label correcting (LC). The LS algorithm sets the label of one node
permanently at each iteration, thus increasing the shortest path vector by one component
at each step. The LC algorithm does not set any label permanently. All the components
of the shortest path vector are obtained simultaneously, after the algorithm terminates. A
predecessor label is stored for each node that will represent the previous node in the

shortest path to the current node. This is used to construct the shortest paths to each node

by backtracking. Table 2.2 gives a comparison of these two algorithms.

Table 2.2. Comparisons between label-setting and label-correcting algorithms

Label-setting algorithm

Label-correcting algorithm

Applicable

- Shortest path problems defined on
acyclic networks with arbitrary arc
lengths.

- Shortest path problems with
nonnegative arc lengths.

- More general and applies to all classes

of problem, including those with
negative arc lengths.

- Shortest path problems with arbitrary

arc lengths.

- Much more efficient.

- More algorithmic flexibility.

Efficiency | Much better worst-case complexity.
- Dijkstra algorithm (Dijkstra, 1959). F Bellman-Ford-Moore algorithm
(Bellman, 1958; Moore, 1957; Ford,
1956).
- Incremental-graph algorithm
Algorithms (Pape,1974 and Pallottino, 1984).

+ Threshold algorithm (Glover et al.,

1984).

- Topological ordering (Goldberg and

Radzik, 1993).

21

2.2 K-Shortest Path Problem and Algorithms

In many transportation applications, there is a need to identify a multiple number
of paths. Drivers may wish to make explicit trade-offs between routes, such as taking a
longer route that has a lower variance or fewer stops. There is currently no algorithm that
can determine the optimal route in this situation. A possible approach to both of these
situations is to identify a number of distinct routes that then, using some multiple criteria
decision making (MCDM) techniques, identify the best route. A common subset of the
problem to identify a multiple number of routes is the k-shortest path problem (K-SPP)

Two classes of the k-shortest path problems in static networks have been
investigated. In the first class, optimal paths are not allowed to contain loops. This class
of problems was studied by several authors including Bellman (1958), Fox (1975, 1978),
Lawler (1972, 1977), Minieka and Shier (1973), Perko (1986) and Yen (1971). In the
second class, paths may contain repeated nodes. Authors who studied the second class of
problems include Bellman (1958), Dreyfus (1969), Fox (1973), Hoffman and Pavley
(1959), and Lawler (1972). Minieka and Shier (1973) and Shier (1976, 1979) appear to
be the first who discovered and exploited algebraic structures that exist between the usual
shortest path and the k-shortest path problems. The formulation of the k-shortest path
problem in dynamic networks can be viewed as an adaptation of a static k-shortest
problem formulation in the time-expanded equivalent network representation of a

discrete-time dynamic network.

22

2.3 Multi-Criteria Shortest Path Problem

The previous two sections have provided reviews of the traditional shortest and
K shortest path algorithms which are concerned with only one route attribute or travel
time. However, drivers consider a number of criteria when selecting routes, and may
have different preferences or utility functions when selecting a best route. It is therefore
necessary to take into account various route attributes and the drivers' preferences when
identifying an optimal route.

There is a rich source of literature on the multi-criteria shortest path problem
(MCSPP) in the operations research and management science areas. The existing
algorithms for the MCSPP may be classified into two groups. In general, the first group
generates all non-dominated paths while the second group focuses on the problem of
finding the optimal path based on the users' objectives.

The difficulty in solving the MCSPP may be attributed to the fact that there may
be no single optimal solution (i.e., path in this dissertation) that satisfies all objectives
simultaneously. If there were, the solution to the MCSPP would be very straightforward
because the best path would dominate all other paths in terms of all objectives. Due to
the non-existence of the overall best solution, a set of non-dominated paths or Pareto
optimal paths, from which the decision maker must select the most preferred or most
compromising solution, must be generated. The existing approaches for the MCSPP
without utility function are broadly classified into two, as follows and they are

summarized in Table 2.3.

23

Table 2.3. Existing approaches for the MCSPP without a utility function

Approach Output Advantages Algorithms
/disadvantages
Generate all non-dominated * Exponentially Hansen (1980)
paths by increasing number |Martins (1984)
Exact - modified label setting or | myjtiple | of non-dominated |Henig (1985)
approach correcting algorithm paths paths (NP-hard) |Corley and
- k-shortest path algorithms Moon(1985)
* Set contains ete.
optimal path
Estimate the non-dominated * Enhancing Warburton
path set to some multiple computational (1987)
Approxim predetermm.ed degref of ; paths efficiency
ation |2ccuracy using a scaling an
rounding technique * Set may not
Apply A* search technique multiple ;(;l}:aln optimal Stewart and
paths White (1989)

A traditionally employed methodology for the MCSPP would be to generate the
entire set of non-dominated paths. The exact algorithms for generating the entire set of
Pareto optimal paths may be classified based on their methods: 1) the labeling method
and 2) the k-shortest path algorithm or linear programming-based approach. Hansen
(1980), Henig (1994), and Sancho (1988) extended generic label setting shortest path
algorithms, such as Dijkstra's (1959), into a multiple-labeling scheme, while Loui (1983),
Corley and Moon (1985), and Brumbaugh-Smith and Shier (1989) extended general label
correcting algorithms such as Moore's (1957). Brumbaugh-Smith and Shier implemented
the labeling correcting algorithm in an artificial two-attribute network with varying size
and varying degree of correlation between the two artificial attributes. Bicriterion
algorithms of Climaco and Martins (1982) and Henig (1985) are based on the k-shortest
path algorithm. The algorithm first computes the fastest path and the cheapest path, and

computes the j-th cheapest paths until the cost of the j-th cheapest path is the same as the

24

cost of the fastest path.

Aside from the above mentioned generic MCSPP, there have been relatively few
attempts to incorporate multiple criteria within route choice modeling for transportation
problems.

The review by Current and Marsh (1993) describes the various approaches quite
well. Multiobjective routing of hazardous material shipments is an important application
of such methods. The reviews by List et al. (1991) and Erkut and Verter (1995) provide
insight into hazmat applications, and more recent hazmat routing and scheduling efforts
(e.g., Nozick, List, and Turnquist 1997; Miller-Hooks and Mahmassani 1998b) have
begun to merge multiobjective routing with time-dependent and stochastic attributes.

Dial (1996) formulated a bicriterion user equilibrium assignment model based on
out of pocket costs and trip time based on the previous study which assumes a linear
utility function (i.e., weighting method). Blue et al. (1997) proposed an algorithm for the
MCSPP which considers two attributes: travel time and route complexity. The route
complexity is represented by turning maneuvers. The algorithm is based on the simple
weighting method and assumes that all members of a particular user class use the same
value of weight, under the assumption that the nonlinear utility function is known a priori.
Scott and Bernstein (1998)'s algorithm generates a set of Pareto optimal paths using a
CSPP and then identifies the best path by evaluating the utility values of the alternative
paths. It should be stressed that none of the existing MCSPP algorithms discussed above
are concerned with the route similarity in terms of links used, which is a critical aspect
for alternative paths from the drivers' point of view.

The generalization of the stochastic dynamic shortest path problem to multiple

25

objectives, creating the multiobjective stochastic dynamic shortest-path (MSDSP)
problem, results in a problem that is very difficult to solve. To our knowledge, only two
studies, Turnquist (1987) and Miller-Hooks and Mahmassani (1998b), have been done on
the MSDSP problem. Both of these studies focus on applications to hazmat

transportation.

2.4 Stochastic Shortest Path Problem

In many transportation applications of the SPP, the travel time of each link is not
really fixed but is, in fact, a random variable. The problem of determining the optimal
path in this type of network is known as the stochastic shortest path problem (SSPP). The
uncertainty of the link travel times is an important factor to be modeled in ITS because
(1) there is an inherent uncertainty or randomness in link travel times, (2) the route
optimization is based on the link travel times forecasted over the multiple periods into
the future and, accordingly, the uncertainty is expected to increase as link arrival time
increases, and (3) travel time reliability or variance of a route is one of the crucial criteria
for route choice.

If the underlying network is assumed to be static (non-time-dependent), the link
travel times remain unchanged after they are revealed to the travelers. In a time-
dependent network, on the other hand, the travel time of every link at every time period
is an individual random variable, so travel times revealed at different time periods could
be different. The study of SSP problems in static networks is useful to the study of its
time-dependent counterpart.

Different types of stochastic shortest path problems have been considered with a

26

different meaning for the optimal path. One of the most considered criterion for
determining the optimal path is one that maximizes the decision maker’s expected utility.
Such a criterion stems from the Von Neumann- Morgenstern formulation of how
preference judgments are made under uncertainty (Loui, 1983). Another good
definition of an optimal path is one that maximizes the probability that its length does not
exceed a pre-specified threshold value (Frank, 1969). The same criterion has also been
used by Henig (1990) for the stochastic knapsack problem. A closely related stochastic
shortest path problem involves chance constraints. An optimal path minimizes the
threshold value, while satisfying the constraint that the probability of the path length
exceeding this threshold value is at most, a pre-specified value a. Such a criteria was
considered by Henig (1990) for the knapsack problem, and by Ishii et al. (1981) for the
minimal spanning tree problem.

One possible way for computing the distribution of shortest length is by
formulating the problem as a stochastic linear program with random objective
coefficients. Bereanu (1966) and Eubank (1974) proposed methods for computing the
distribution of the optimal objective value when the coefficients are continuous random
variables. These methods require the evaluation of the probability that a given basis is
optimal. This is a task that requires a complicated partition of the state space of the
objective function. Frank (1969) and Sigal et al. (1980) presented exact methods, both of
which rely on the evaluation of multiple integrals. Because of the great complications
that arise in those evaluations, they suggested Monte-Carlo sampling. Kulkarni (1986)
presented an analytic method for the exact computation of the distribution of shortest

distance. It is based on a Markov process with an absorbing state when the arc lengths

27

are independent and on exponentially distributed random variables. He constructed a
continuous time Markov chain with a single absorbing state from the original network.
Time until absorption in this absorbing state starting from the initial state is equal to the
length of the shortest path original network. Algorithms are also developed for
computing the probability that a given path is the shortest path in the network. This is for
computing the conditional distribution of the length of a path given that it is the shortest
path in the network.

The issue of arcs being random plays an important role especially in
communication networks. Two computational tools are often important in the design and
analysis of the communication networks. One is the method to compute network
reliability and the other is the method to compute the response time of the system. By
reliability, it is meant the probability of connectivity between a given source and sink
node. By time response, it is meant the expected time delay that a message that
originates at the source node sustains before it reaches a sink node. Hansler (1972) has
proposed an interesting algorithm on the reliability of networks based on generating
mutually exclusive cut sets and calculating probabilities of related events. In the
literature dealing with reliability of networks (and also in the literature related to
switching circuits, communication networks, and traffic networks), there are many
methods that deal with various algorithms dealing with reliability of networks.

Mircandi (1976) analyzed the calculation of reliability of various emergency
networks. His approach starts with sorting all (s, #) paths and creating a disjoint
expression by comparing neighboring paths. This expression is then used for computing

the probability that there exists an (s, #) path of length less than or equal to a fixed value

28

or the mean of the shortest path length.

Sigal et al.(1980) introduced the concept of path optimality index as a
performance measure for selecting a path in a stochastic network. A path optimality
index is defined as the probability of a given path being shorter than all other network
paths. Uniformly directed cutsets are introduced by them. It was further studied by
Adlakha (1986) and Kamburowski (1985). Also, Alexopoulos (1997), and Seok and
Pulat (2000) generated the probability distribution function of path travel times using
probability axioms, Markov Chains, or simulation and then selected the path with the
highest probability of being the shortest.

The theory of analyzing the stochastic shortest path problems, using the
Markovian decision problems, applies only when the arc costs are non negative or all non
positive. The deterministic theory of shortest path problems allows arc lengths that can
be negative, as well as positive. Bertsekas and Tsitsiklis (1991) provided an analysis of
the stochastic path problems that generalizes the known results of the deterministic
counterpart.

A factoring approach for the stochastic shortest path problem was suggested by
Hayhurst and Shier (1991). In their work, the authors assumed that the arc lengths are
discrete random variables assuming a finite number of non-negative integer values. Also,
the arc lengths are assumed to be statistically independent. Since the arc lengths assume
random length, the length of the shortest path is a random variable and the authors were
interested in finding the distribution of the arc lengths. The factoring approach is based
on the concept of structural factoring, in which a stochastic network is decomposed into

an equivalent set of smaller, generally less complex sub networks. Several networks are

29

identified and exploited to significantly reduce the computational effort required to solve
a problem relative to complete enumeration. This algorithm can be applied to two
important classes of stochastic network problems. One is determining the critical path
length distribution for acyclic networks and the other, terminal reliability for probabilistic
networks.

Bard and Bennett (1991) developed heuristic methods involving Monte-Carlo
simulation to solve the stochastic shortest path problem with a general non-increasing
utility function. They showed that their heuristic was able to solve a large number of
randomly generated test problems, with sizes ranging from 20 to 60 nodes.

Corea and Kulkarni (1993) proposed a methodology for computing the
distribution of shortest length and criticality indices of paths. They assumed that the arc
lengths are integer-valued, replaced each arc with largest possible length m by a sub-
network with 2m arcs, and constructed Markovchains with absorbing state and binary
transition costs. The above measures are computed by evaluating the distribution of the
total cost incurred until absorption. Unfortunately, their construction limits the
applicability of the methods to problems of small size.

Cai, Kloks, and Wong (1996) studied the time varying shortest path problems
with constraints. They studied the problem in which the objective is to study the shortest
path subject with the constraint that the total traverse time is at most, some number T. In
this study, the authors addressed the situation where the transit time and the cost to
traverse an arc that is varying over time, and depending upon the departure time at the
beginning vertex of the arc. Waiting times at vertices are considered decision variables.

The problem is to find an optimal path as well as the optimal waiting times at the vertices

30

along the path, subject to the constraint that the total traverse time of the path is, at most,
T. The authors tested the model for a variety of applications.

The literature shows a combination of stochastic network concepts with
interesting concepts of the utility functions. Murthy and Sarkar (1997) considered a
stochastic shortest path problem of determining a path that maximizes the expected
utility. The nature of the utility functions used to evaluate paths was of decreasing
deadline type. Algorithms based on pruning techniques were developed for this case. One
of the two algorithms makes use of the concept of local preference relations while the
other type makes use of the relaxations.

State Space Partitioning methods, developed by Alexopoulas (1997), examine
discrete arc random lengths. The method is used for developing computing measures for
shortest paths. The computation measures include the probability that a path exists where
the length doesn’t exceed a specified value and the probability that a given path is
shortest. These methods are based on an iterative partition of the network space and
provide bounds that improve after each iteration and eventually become equal to the
respective measure. These bounds can also be used for constructing simple variance
reducing Monte Carlo sampling plans, thus making the algorithm useful for large
problems. The algorithms can be easily modified to compute performance characteristics
in stochastic activity networks.

Andreatta and Romeo (1988) study the problem in a static network where the
topology is stochastic. A stochastic topology is defined by a deterministic set of nodes N
and a random set of links. Each possible topology has a positive probability. A random

link can be either active or not. When it is active, it is included in the network; when it is

31

not active, it is removed from the network. The decision maker (DM) can learn whether a
link is active or not once he/she reaches the node from which the link emanates. The DM
can reroute once he/she finds out the next link is inactive. They prove four facts about a
stochastic shortest path that are different from those about a deterministic shortest path.
A stochastic dynamic programming formulation of the problem is provided, with the
definition of “information state” which reveals the active/inactive links of the network to
the decision maker so far and based on which, the recourse decision is made. It is pointed
out that the complexity of the algorithm can grow exponentially with the number of links.

Polychronopoulos and Tsitsiklis (1996) extend the work of Andreatta and
Romeo (1988). They study the problem both in networks with link travel times that are
correlated and in networks with independent link travel times. For the dependent case, a
joint distribution of link travel times is used to represent the stochastic network. We can
see that the stochastic topology in Andreatta and Romeo (1988) is actually one special
form of joint distribution of link travel times. It is assumed that the travel time
realizations of outgoing links of a given node are known and remembered by the traveler
once he/she arrives at this node, and the realizations remain unchanged afterwards. As
the traveler moves on the network from the origin to the destination, more link travel
time realizations are learned, and the network becomes closer to a deterministic one. The
concept of an information set is introduced to represent the traveler’s knowledge about
the network. An information set is composed of support points that are consistent with
the link travel times revealed so far. When the information set becomes a singleton, the
network becomes deterministic. A similar approach is designed for the independent case,

with changes in the manner in which the information set is defined. The algorithms,

32

however, have exponential running times: the algorithm for the dependent case has a
running time exponential in the number of support points, and the algorithm for the
independent case exponential in the number of links. It is proved that the problem with
dependent link travel times is NP-complete, and that with independent link travel times is
NP-hard. Some heuristics are given and the relationships between results from heuristics
and exact algorithms are studied.

Cheung (1998) studies the problem with the same independent network
assumptions as those in Polychronopoulos and Tsitsiklis (1996), except with the
assumption that two visits to the same node result in two independent realizations of
outgoing link travel times. This assumption (which is termed as “reset” later by Provan
(2003)) actually makes ambiguous the statement that the network is static, as the same
link can take different travel times at different times, although the distribution is the same.
On the other hand, the reset assumption makes possible a simple recursive equation for
the expected minimum travel times. An approach that mimics the classical label-
correcting algorithm is presented. Computational tests are carried out to compare
different implementations of the label-correcting approach. Provan (2003) studies the
same problem as defined by Cheung (1998) with the extension that the link travel times
can be dependent. However, this relaxation from independent to dependent networks
does not make the problem harder. In fact, the reset assumption makes the term
“dependent” less clear, as one can never make inferences about travel times on links
other than those going out of the current node. The same recursive equation is presented,
but a polynomial-time algorithm is designed and its complexity analyzed.

The shortest path algorithms also have been found to be applicable to compute

33

shortest paths in time-dependent (but not stochastic) networks (Dreyfus, 1969; Orda and
Rom, 1990; Kaufman and Smith, 1993; Ziliaskopoulos and Mahmassani, 1993; Chabini,
1997 and 1998).

Selection of minimum variance paths is studied by Frieze and Grimett (1985).
Sen et al (2001) present a parametric 0-1 quadratic programming approach to select a
path with the least mean-variance. A variance-constrained shortest path problem for
hazardous material transport had been dealt with earlier by Sivakumar and Batta (1994).
Sen et al (2001) proposed a mean-variance model for route selection assuming time
independence. They proposed a bicriteria network flow model where the objectives are to
minimize expected travel time (linear) and minimize variance of the total trip time
(quadratic). The variance-covariance matrix is assumed to be positive definite to avoid
cycles during the path selection process. A parametric approach is used to determine the
set of efficient solutions. For each parameter value, the optimal solution to the
continuous relaxation of the problem is determined. If the solution contains multiple
routes, the route with the least objective function value is selected. The method is not

difficult to implement and includes link dependencies.

2.5 Stochastic Time-Dependent Shortest Path Problems

In the stochastic time-dependent shortest path problem (STDSPP), the link travel
times are time varying random variables and are modeled using probability density
functions and time-dependency.

Hall (1986) proposed an approach combining branch-and-bound and k-shortest

paths techniques for determining the least expected time path in a stochastic time-

34

dependent network where the path is chosen a priori. The algorithm required that the
expected times and least possible times be calculated for each path; however, no
procedure was given for calculating these values. There is no guarantee that the
algorithm will terminate before all paths have been evaluated. A heuristic method was
suggested in Kaufman and Smith (1993) for improving the computational time of this
procedure. They generalized the rules for the use of LS algorithms for TDSP problems
by including the stochastic case. They prescribed the use of expected values instead of
deterministic values and showed that under the consistency assumption, one may obtain
results similar to the deterministic case.

Psaraftis and Tsitsiklis (1993) considered optimal policies for determining the
least expected cost path between an origin and destination in an acyclic, dynamic and
stochastic network. The cost of traveling on arcs, leaving each node, is associated with a
finite-state Markov process, which varies randomly, but independently, of the states of
the other nodes of the network and is known only upon arrival. Waiting is permitted.
Koutsopoulos and Xu (1993) have shown that time-dependent link delays can be
modeled as a Markov process.

Fu and Rilett (1998) conducted the first study which explicitly estimated route
mean travel time and variance based on link information typically available in
transportation networks. Using a Taylor series expansion, they proposed first and second
order route mean travel time and variance approximation algorithms. Subsequently,
they developed a heuristic approach to determine the expected shortest path. Instead of
enumerating all the possible paths, the heuristic algorithm generates multiple numbers of

paths using traditional k shortest path algorithm, and identifies a path with a minimum

35

expected route travel time among them. The tradeoff between the number of paths
considered and the probability of finding the optimal solution were analyzed.
Miller-Hooks and Mahmassani (1998) proposed two efficient procedures to
determine the least possible travel time paths from all origins to a single destination in
networks where the link travel times are independent, discrete, time-dependent random
variables that are permitted to operate under non-FIFO conditions. The first algorithm
determines the least possible time path from each node to a destination node for each
departure time in the time period and a lower bound on the associated probability of the
occurrence of this travel time. The second algorithm determines up to k least possible
time paths, the associated travel times, and the corresponding probability of occurrence
of the travel times. Both algorithms are an extension of the label correcting-based SPP.
The authors proposed several algorithms for determining a priori paths in STD networks
that employ such path-comparison techniques. In a subsequent study, Miller-Hooks and
Mahmassani (2000) investigated the all-to-one variant of the problem. They presented
two specialized modified label correcting algorithms for the problem of generating least
expected time paths in stochastic time dependent networks. First, the expected value
algorithm was presented for generating all a priori least expected time paths with
associated expected times from all origins to a single destination for each departure time.
Second, the expected lower bound algorithm was presented as an efficient procedure for
determining lower bounds on the expected times of the least expected time paths without
any associated path information. Miller-Hooks (2001) presented a specialized label-
setting algorithm, the stochastic decreasing order of time algorithm, for determining the

adaptive least expected time hyperpaths in stochastic time dependent networks. The

36

author compared the performance of both label-correcting (expected lower bound)
algorithms and label-setting algorithms. The results showed that the expected lower
bound algorithm performed better on average than predicted by worst-case complexity.
Chabini (2001) developed an efficient solution algorithm based on the concept of
the decreasing order of time for stochastic networks. This algorithm extends the
decreasing order of time algorithm developed by Chabini (1997). His algorithm was
shown to be computationally efficient both in theory and in practice. Gao and Chabini
(2001) specified the best routing policy based on the availability of information access
defining which arc travel time realizations are available to the travelers at any given time
and node. They performed four different approximations techniques: (1) the certainty
equivalent approximation, (2) the no-information approximation, (3) the open loop
feedback certainty equivalent approximation, and (4) the open loop feedback with no-
information approximation. There was a trade-off between effectiveness and efficiency
for all approximations. They could have satisfactory running times, but their results
could be arbitrarily worse in absolute value than those obtained by running the exact
algorithm. The computational tests studied the relationship between some parameters and

the performance of approximations.

37

Chapter 3. Background and Framework

In deterministic networks, the least time path is defined simply and explicitly.
However the nature and complexity of the least time path is different for a stochastic network.
In this chapter, several key concepts of stochastic, time-dependent networks are described.
These concepts are critical to the development of the algorithms presented in Chapter 4 and 5.
The first two sections of this chapter, notations and some of the concepts of stochastic time-
dependent networks are described. In section 3.3, the basis for selecting one path over another,
when the path’s travel times are random variables with probability distribution functions that

vary with time is discussed.

3.1 Notation for Stochastic Time dependent Networks

Let G= (N, 4, T, T, P) be a directed graph where N is the set of nodes, /N/=n,

and A is the set of arcs, /4/=m. It is assumed that the travel times along the arcs are

represented by discrete random variables whose distribution functions are time-
dependent during the period of interest, ¢y < ¢ < ty+ (I)J, referred to as the "peak period",
and are stationary any time thereafter, ¢ > #)+ (1)0. This formulation can be generalized
to travel times with continuous distributions. The network is considered at a set 7 of
discrete times {fyp+ nd}, where n is an integer, n = 0, I,..., I, and J is the smallest

increment of time over which a perceptible change in the travel time distributions will

occur for teT.

38

For each departure time €7 and each arc (i, j)eA, the set TI(¢) of non-negative real

valued possible travel times z'; (¢) for traversing the arc at a given time t is given, k=L,..., Kj;(1),

where Kj;(?) is the number of distinct travel time values on arc (7, j) possible at time t. Travel

time 7 (¢) occurs with the probability p; (r), where p;(r) € P(t)tand

Ky (1)

Y pit)y=1, ViteTl
k=1

It is assumed that 7, (t) = 7, (t, +I8)and p} (1) = p;(t, +16) ¥V k=1,..,K (¢) and (ij)
€A for all t occurring after the peak period, i.e.V ¢ > fy+ 0. The set of travel times and the

corresponding set of probabilities with which each travel time will occur, (77, P), are assumed
to be given.

The arc travel time probability distribution functions are assumed to be
independent across arcs and over time and no waiting is permitted at any intermediate
node. The network is assumed to be non-FIFO. Such a network is referred to as a
stochastic, time-dependent network. This stochastic, time-dependent network definition
is an expansion of the deterministic, time-dependent network described by

Ziliaskopoulos and Mahmassani (1993).

This dissertation addresses the problem of determining "preferred" paths VieN to

a given destination, d, for each 77 in stochastic, time-dependent networks. While this

problem has some of the same elements as the problem of determining least time paths in

deterministic, time-dependent networks, where the arc travel times change dynamically

39

over time, but occur with probability-one in a given time interval, the added dimension

of stochasticity dramatically increases the difficulty of the problem.

3.2 Definitions for Stochastic, Time-Dependent Networks

3.2.1 The Space-Time Expansion

It is common to represent dynamic problems by space-time networks (Powell,
Jaillet and Odoni, 1995). Consider a street network where the arc travel times are
deterministic, dynamic quantities. If this network is graphically represented without
incorporating time as a dimension, the graph, G. will consist of a set of nodes that represent
intersections, and a set of arcs, that represent the streets. A vector of travel times (or some
measure of cost) is associated with every link. This vector represents travel time for the
given departure time. An example network is shown in Figure 3.1 where the arc travel times are
given by row vectors and time moves from 0, increasing to the right in constant increments of

time. It is assumed that the travel times are given in the units of these time increments.

2313 .. 3125 ...
Time (t) 0 1 2 3
Arc a-b 2 3 1 3
Arc b-c 3 1 2 5

Figure 3.1. Deterministic time-dependent network G

This network is expanded to a space-time representation G', where time increases
from left to right and each node of G' corresponds to a node in G at a given departure time.

This graphical representation can be extended for use in dynamic networks with stochastic arc

40

weights. Since there may be more than one possible travel time for each departure time from
anode in a stochastic network, several arcs may originate from each space-time node. However
a deterministic network can have only one arc originating from each space time node. If the arc
weights are continuous random variables, then an infinite number of arcs may emanate from

each space-time node.

A ° A
=5 ° =5
t=4 @ =4
t=3 ° t=3
t=2 ° t=2
t=1 @ t=1

2

Figure 3.2. Space-time expansion of G: G

‘e o)

C
@

Arc a-b Arc b-c
Time (t) 0 1 0 1 2
1(04) 1(1.0) 1(0.5) 2(0.3) 2(0.1)
2 (0.6) 3(0.5) 4(0.7) 3(0.5)

4(0.4)

Figure 3.3. Stochastic, time-dependent network E

41

Consider the network of Figure 3.3, with discrete random arc times whose
probability mass functions (PMF) vary with time. For each arc, for the given departure
time ¢, the travel times with positive probability are given. For example, for departure
time 1 from node b, arc (b, ¢c) will have a travel time of two units with the probability 0.3. In
the figure, the PMF’s for each arc are shown at only a few time intervals, for clarity. The space-
time expansion of this network is shown in Figure 3.4, where the arcs have weights

corresponding to the associated probability of occurrence.

S EORENORNON It
-0 © /of-
S IORENOCN/PON N
-|o 0 o=
JlcgZofiFol e
o ol

w2

Figure 3.4. Time-Space network of E: E’

If the arc travel times are independent, the probability of each arrival time at node C is

determined from the multiplication of the probabilities associated with the appropriate arcs of E'.

42

For example, the probability of arriving at node € at time 3, if one leaves from node a at time
0, is 0.4*0.3=0.12. Similarly, the probability of arriving at node C at time 4, if one leaves
from node a at time 0, is 0.6*0.1=0.06. In the same way, the probability of arriving at node
c at time 5, if one leaves from node a at time 0 is (0.28 + 0.30) = 0.58. The network in Figure
3.3 is trivial in that only one topological path exists between nodes a and ¢; however, if more
than one path were possible, the path with the least possible travel time could be identified

directly from the graph, E'.

3.2.2 The Parameters for Path Selection

The selection of a single "best compromise" path from the set of non-dominated least
time paths ultimately depends on the decision-maker's preferences, and is likely to be
situation-specific. For instance, a risk-averse decision-maker may choose the path that has the
smallest probability of being the longest. On the other hand, a risk seeker may choose the path
with the highest probability of being the shortest. Typically, the decision-maker considers
certain trade-offs, between expected travel time and variance. In opting to get the better in
travel time a decision maker has to compromise in variance. Several measures can be
considered for selecting the best-compromise solution for a given situation. The list hereafter
is by no means all inclusive, and is intended to present some examples of the logic and

preferential basis that a decision-maker employs in order to select one path over another.

Let L!(¢) be the travel time random variable of the h"™ non-dominated path from node i
to the destination for departure time #, with the cumulative distribution function F(L!(z)).

Let p; be the set of non-dominated paths from the node at departure time t. The

following measures may be considered individually or jointly in the selection among non-

43

dominated paths:

Least Expected Value

Select the path for which E[L!(¢)], he p; , is minimized. ~Although the expected

value is a commonly used measure, it may not be the most appropriate for many
applications. If the application involves a single or only a few trials, other measures

may provide more appropriate criteria for path selection.

Least Variance

Variance is often used as a replacement for risk: Var[L/ (¢)], he p! .

Smallest probability of being longest

Selecting the path with the smallest probability of being longest may be appropriate

for the risk-averse decision-makers. Choose the path /e p; that minimizes

Pr{Lf.’ (t)=2Li(t), Vg#he pf} Note that this measure does not preclude the

possibility that the path may be very long.

Largest probability of being shortest

The truck dispatcher may wish to select the path /e p that maximizes
Pr{Li’ ()< Li(t), Vg#hep, } Again, such a path may have some probability of

being very long. These measures can be used as criteria to select the best-compromise

path.

3.2.3 Expectation and Paths

The expected value criterion is of particular interest because it can be used to reduce

stochastic to a deterministic problem. This can eliminate many complexities associated with

44

comparing random variables. Although the expected value is a commonly used measure, it
may not be appropriate in all situations. If the probability that a path will take a certain length
is interpreted as a long-run relative frequency, then the expected value for the random variable
is defined for an infinitely large number of repetitions (Kalbfleisch, 1985). That is, if a vehicle
travels over the path with the least expected travel time many times, then in the long run, the
average travel time over all the trips will be shorter than had another path been selected for
repeated traversal. Depending on the application, this long-run minimum path may or may not
be appropriate. If the application involves a single or only a few trials, other measures may

provide more appropriate criteria for path selection.

A closely related measure with very different implications is the least expected travel
time through a stochastic network. This can be determined by computing the sum of the
arc costs on the least costs path for every realization of the network state weighted by the
probability of such a realization. A similar method can be used to determine the pmf of the
minimum travel time. This is most useful if one is interested in finding the expected arrival
time, or the pmf of the minimum travel time, of a vehicle in a transportation network, or a packet
in a communication network, to a destination node given that the shortest path at the time of
departure will be selected. In a reliability framework, Mirchandani (1976) shows that the original
stochastic network can be transformed to an "emergency equivalent network" from which
the expected least travel time through the network can be computed. See (Hagstrom,
1990) for related work on this problem.

The following example illustrates the difference between determining the least
expected travel time through a network and the expected time of the least expected travel

time path.

45

Figure 3.5. A stochastic network
From Table 3.1, the probability mass function of the minimum travel time between nodes 1 and 3
of the network in Figure 3.5 is (4, 6, 7) with the corresponding probability of occurrence of
(0.28, 0.54, 0.18), respectively. The expected least travel time from node 1 to node 3 is 5.62
units of time, determined directly from the pmf of the minimum travel time. If the arc travel
time random variable is set to its expected value, the expected travel time on the least expected

time path is 6.1 units of time, as shown in Figure 3.6:

Table 3.1. Determining expected least time through network of Figure 3.5

Arc(1,2) Arc(2,3) Path Arc(1,3) Least

1-2-3 Path
Travel | Prob Travel Prob Travel Travel Prob | Travel Prob of

Time Time Time Time Time Realization

2 0.4 2 0.7 4 6 0.4 4 0.112
4 0.6 2 0.7 6 6 0.4 6 0.168
2 0.4 5 0.3 7 6 0.4 6 0.048
4 0.6 5 0.3 9 6 0.4 6 0.072
2 0.4 2 0.7 4 7 0,6 4 0.170
4 0.6 2 0.7 6 7 0.6 6 0.252
2 0.4 5 0.3 7 7 0.6 7 0.072
4 0.6 5 0.3 9 7 0.6 7 0.108

Expected least travel time = 5.62

46

3.2 29

1 6.6 @

Figure 3.6. Expected arc travel time

The expected time of the least expected time path provides an upper bound on the
expected least travel time through the network. Likewise, the expected least travel time
through the network is a lower bound on the expected travel time of the least expected
time path. The expected least travel time through the network is not necessarily the
expected travel time on any particular path, nor is it necessarily a feasible travel time on
any path.

For certain applications, such as routing messages between nodes in a
communication network, the pmf or expectation of the minimum time between the two
nodes of a network may be required. However, neither measure provides path
information as these times come from the composition of more than one path. Some
applications, on the other hand, require actual path information and thus, these bounds
would be insufficient.

In a network where the arc times are random variables with time-independent
pmfs, one can simply set the random travel times to their expected values and apply a
deterministic shortest path algorithm to determine the path with the least expected travel
time, i.e., the path with lowest sum of constituent expected arc times, as shown in the
previous example. However, in a time-dependent, stochastic network, the least expected

time (cost) path can no longer be determined by setting each arc time to its expected

47

travel time and solving the equivalent deterministic problem {Hall, 1986), because the
travel time on an arc now depends on the time of arrival at its origin node. This is further

explained in Proposition 3.1.

Proposition 3.1. In a network with random arc travel times with time varying pmf’s, the
least expected time path cannot be determined by setting each arc time random variable

to its expected value and solving an equivalent deterministic, time-dependent problem.

Proof. Assume that time can be discretized into small time intervals. Within each time
interval, the pmf’s of the arc travel time random variables are assumed to be constant and
the travel times are given in multiples of these time intervals. The proof proceeds by
counter example.

Suppose a network is given with discrete probability mass functions of the travel
limes at departure times, 5, as shown in Figure 3.7. For departure time 0, the expected

travel time on path a-b-c can be calculated.

t=4

t=5.2 t=7
t=0 4 05
4 06 5 03 6 05 8 06
7 04 8 0.5 10 0.4

: 6 02

Figure 3.7. Example network with time-dependent pmf

Assume that each arc travel time random variable can be replaced by its expected
value. Then the expected travel time on arcs a-b and b-c is 5.2 and 7 units of time,

respectively, and the expected path length is 12.2 time units.

48

Instead of replacing each arc travel time random variable with its expected value,
the expectation can be calculated directly. Thus, a vehicle departing node a at time zero
can arrive at node b at either time 4 or time 7. Assuming that no waiting is permitted at
node b, the vehicle must leave immediately upon arrival. If arrival at node b is at time 4
then the travel time on path a-b-c is 8 units of time with the probability 0.30 or 9 with the
probability 0.18, or 10 with the probability 0.12. If arrival at node b is at time 7, then the
path length for a-b-c is 15 and 17 units with probabilities 0.24 and 0.16 respectively.
Thus the expected travel time on path a-b-c, given the departure time from node a at time
Z€ero, 1s:

(8x0.30)+ (9x0.18)+ (10 x 0.12)+ (15 x 0.24)+(17 x0.16)= 11.54
And hence, there is no guarantee that the expected travel time on a path in a stochastic,
time-dependent network can be calculated by setting each arc travel time random
variable to its expected value and solving an equivalent deterministic, time-dependent

problem.

3.3 Path Comparisons for Stochastic, Time-Dependent
Networks

The concepts and methodology required for this comparison depend on the
decision process along the path and information availability. If the entire path is specified
before traveling begins, and no deviations en route are permitted, the non-dominated
paths are selected a priori on the basis of only the time-varying probability distribution
functions of the arc travel times. This is referred to as a priori path selection. Paths with

lower actual travel times may be determined by allowing decisions at intermediate nodes,

49

given that the additional information on the actual (revealed) arrival times is given at the
intermediate nodes. Some of the paths determined a priori may never be "best" in this
context, and therefore could be eliminated. Strict-comparison rules are presented for
determining non-dominated paths where such decisions at intermediate nodes are

permitted.

3.3.1 Criteria for A Priori Path Comparisons

Three criteria for comparing two paths at a single time interval are explored in this
section: deterministic dominance, stochastic dominance and comparison via expected value.
First consider two non-overlapping paths (paths that do not topologically share any arcs)
between a given origin and destination at a given departure time. Because it is assumed that

arc travel times are independent, the paths' travel times are independent. Let the two random

variables x; and x,, with distribution functions £, (t) and F, (t), denote the respective

travel times on the two paths for the given departure time t. Comparing these paths is similar

to comparing the two distribution functions £, (t) and F,_(t). If the travel time along one

path is at least as short as the other path for all possible realizations of the two paths and is
shorter than the other for at least one realization, then this path is said to exhibit deterministic
dominance (see Figures 3.8.a and 3.8.b where Path 1 deterministically dominates Path 2) for
that time interval. If, on the other hand, neither path deterministically dominates the other
path for this time interval, i.e. each path has some probability of being shorter than the other,
then both paths are non-dominated, or efficient for this time interval. Likewise, a path that is

deterministically dominated is called non-optimal, dominated or inefficient.

50

fX1 fX2

7NN

X

\4

Figure 3.8.a. Path 1 deterministically dominates Path 2 at timt
as seen by the non-overlapping density

Fx 4

Fxi Fxz

»
»

0 X

Figure 3.8.a. Path 1 deterministically dominates Path 2 at time t
as seen by the distribution functions

Consider now two paths (between the same origin and destination) that
topologically share one or more arcs. In a time-invariant network, the path travel times
are no longer independent of one another. In a time-varying network, travel time (for the
same departure time from the origin) on paths that topologically share an arc may still be
independent if the arcs are not used at the same time intervals (under our assumption of
the independence of arc travel times across time intervals).

It is incorrect to directly compare the distribution functions of two over-lapping
paths via deterministic dominance because certain joint realizations of the respective path
travel times may be impossible as they would imply different travel time values to hold
simultaneously on the same shared arc(s). The following is a simple example in the

stochastic network shown in Figure 3.9.

51

Figure 3.9. The over-lapping paths 1-2-3-4 and 1-2-4 share arc (1, 2)

Consider the probability mass functions for arc (1,2) and for subpaths 2-3-4 and 2-4

given in Table 3.2.

Table 3.2. PMFs of arcs and subpaths in Figure 3.9

Travel time (probability)

Arc 1-2 Subpath 2-3-4 Subpath 2-4
2(0.5) 2(0.2) 6 (0.5)
5(0.5) 3(0.5) 7(0.3)

5(0.3) 8(0.2)

From the pmfs of the subpaths 2-3-4 and 2-4, any realization of subpath 2-3-4 is
better than subpath 2-4. For any realization of arc (1,2), path 1-2-3-4 dominates path 1-2-4.
Now consider the marginal (unconditional) pmfs of paths 1-2-3-4 and 1-2-4, given in Table
3.3.

Table 3.3. Unconditional pmfs of paths in Figure 3.9

Travel time (probability)
Path 1-2-3-4 Path 1-2-4
4(0.10) 8 (0.25)
5(0.25) 9(0.15)
7(0.25) 10 (0.10)
8 (0.25) 11 (0.25)
10 (0.15) 12 (0.15)
13 (0.10)

52

From the pmfs of the two paths, it appears that neither path dominates the other. Because
travel time on path 1-2-4 could be 8 minutes, and path 1-2-3-4 could have a travel time of 8
minutes, it may be incorrectly concluded that there is some probability that path 1-2-4 will
be better than path 1-2-3-4. In fact, there is zero probability of a joint realization of the
respective path travel times where path 1-2-4 is better than 1-2-3-4. Path 1-2-4 can take 9
minutes only if arc (1, 2) takes 2 minutes, while path 1-2-3-4 can take 10 minutes only if arc
(1,2) takes 8 minutes. A joint realization where path 1-2-4 is better than path 1-2-3-4 would
require the travel time on arc (1, 2) to assume a value of 2 minutes and 5 minutes
simultaneously, an impossible event under the assumptions of this problem. Therefore, it is
not sufficient to simply compare the marginal distribution functions of two paths that share
arcs in order to determine if deterministic dominance exists
Graphically, in Figure 3.10, Path 1 stochastically dominates Path 2 for a given

time interval.

»

F(x/t) 1

Fi(x/t) Fa(x/t)

»
»

0 X

Figure 3.10. Path 1 stochastically dominates Path 2 at time t as seen
by the non-intersecting distribution functions

Unlike deterministic dominance, stochastic dominance is established using full
information from the distribution functions of the two paths. Even if the paths share one

or more arcs, stochastic dominance between two paths can be established without

53

conditioning on the travel times of the shared arcs because, unlike deterministic

dominance, path travel time realizations are not used to compare the path travel time

distribution functions.

Consider the example network in Figure 3.11 to illustrate the above argument.

(1)

Figure 3.11. Example network

b

C

Table 3.4. Travel time pmf’s for Figure 3.11

Arca Archb Arcc

t=0 =1 t=2 =1 =2
1(0.5) 3(0.4) 5(0.5) 3(0.38) 5(0.48)
2(0.5) 4(0.6) 6(0.5) 4(0.62) 6(0.52)

Arc b stochastically dominates arc ¢ at both departure time 1 and 2 (the possible time at

node 2). The paths’ cdfs are determined and given in Table 3.5:

Table 3.5. Travel time cdf’s of path ab and ac at
departure time t=0 (cumulative probability)

Path ab Path ac
t=0 t=0
4(0.2) 4(0.19)
5(0.5) 5(0.50)
7(0.75) 7(0.74)
8 (1.0) 8 (1.0)

Path ab dominates path ac. There is no need to condition on the travel times of shared arc

54

a (at common departure time 0) because stochastic dominance is maintained when the
path travel times cdf’s are constructed using a shared arc.

Comparing two paths by their expected travel times is simply the comparison of
two deterministic values. Let E[X(t)] be the expected time of the random variable for the
travel time on Path 1, for departure time t; similarly for E[x,(t)]. Then if E[X;(t)] <
E[x,(t)], then Path 1 has a lower expected time than Path 2 at time interval t.

Deterministic dominance, stochastic dominance and comparison based on
expected value are related as follows. By definition, deterministic dominance implies
stochastic dominance, and stochastic dominance implies a lower expected value of the
dominating path.

For a given departure time t,

Path 1 deterministically dominates Path2
O[T () < x5 (O[T,)

\4

Path 1 stochastically dominates Path2
>
FO>F(0) Yx

F.()>F, () 3x

l

Elx, ()] < E[x,(2)]

Figure 3.12. Three dominance criteria

3.3.2 Path Comparisons between Multiple Paths over A Time Period

When several paths exist between a pair of nodes, one or more of these paths

55

may be dominated by at least one other path for every time interval in the period but by
no single path for all time intervals. In any paired comparison of these paths, such a path
will not be dominated. Dominance established by paired comparisons is referred to as
pair-wise dominance. Pair-wise dominance applied to deterministic dominance,
stochastic dominance and comparison via expected value is referred to as deterministic
pair-wise dominance, stochastic pair-wise dominance, and expected value pair-wise
dominance, respectively. For some applications, paths that are dominated by at least one
other path for every time interval in the period are poorer paths (they will never be
selected), even if they are non-dominated for every pairwise comparison. In this case,
dominance can be determined by pairwise path comparisons at each time interval
individually, referred to as group dominance. Here a dominated path is one that is
dominated at each time interval in the period by at least one other path. By definition, the
paths that are non-dominated by group dominance are all non-dominated by pairwise
dominance. Deterministic group dominance, stochastic group dominance and expected
value group dominance refer to dominance that is established by group comparisons for
each time interval in the period by deterministic dominance, stochastic dominance and
comparison via expected value, respectively. When multiple paths are compared over a
time period, non-dominated optimal conditions based on group dominance will eliminate
at least as many paths as conditions based on pairwise dominance.

An example is given next to illustrate the use of these dominance concepts for the
comparison of three independent paths. The path travel times that have nonzero
probability of occurring for each departure time in the peak period are shown in Table

3.6.

56

Table 3.6. Possible path travel times at time intervals 1 and 2

Path A Path B Path C
Time 1 Time 2 Time 1 Time 2 Time 1 Time 2
4 5 6 8 3 4
5 9 7 7 6 6
10 10
8 8
g
=) § .
2 2
0 0
Path A Path B Path C Path A Path B Path C
Time 1 Time 2

time interval 1 but that neither path deterministically dominates the other at time interval
2. Likewise, Path C deterministically dominates Path B at time interval 2 but neither path
deterministically dominates the other at time interval 1. Thus, Path B is not dominated by
Path A nor by Path C in both time intervals, but Path B is dominated in each time interval
by one of either Path A or C. Considering all possible realizations of these paths for each

time interval, it is seen in Tables 3.7.a and 3.7.b that Path B is never the least time path

for any realization.

Figure 3.13. Path comparisons at time 1 and 2

57

It is seen from the Figure 3.13 that Path A deterministically dominates Path B at

Table 3.7.a. Possible realizations for time interval 1

Realization | Path A | Path B | Path C | Best Path

© N AU AW N -
(U VNV O N NN
SIS NC NiE- NS NG R- NIoN
W NW W N W
> QP> 0> 0> 0

Table 3.7.b. Possible realizations for time interval 2

Realization | Path A | Path B | Path C | Best Path

5 8 4

o B o N N T N
O © WV O L L W
=N 9 0o ®
= N N NI N T =)
a0 » a0

As illustrated in this example, a path that is not deterministically dominated by a single
path over the entire time period, but is dominated at every time interval in the time period
by at least one path, has zero probability of being the least time path for any realization
of the network. Group dominance would eliminate those paths that have zero probability
of being the least time paths for any realization. However, it is shown in Propositions 3.2
that group dominance is not sufficient for determining all non-dominated paths for a

priori path selection, because some non-dominated paths may be incorrectly eliminated.

58

Proposition 3.2. Expected value group dominance is not sufficient for determining all
least expected time paths in stochastic, time-dependent networks for a priori route

selection.

Proof. (by counter example)

Assume that group dominance is sufficient to determine the least expected time path for a
given departure time. For this given departure time, no dominated path can have a lower
expected time than the nondominated path selected. A counterexample given in Figure
3.14 shows that it is possible that, for a given departure time, the least expected time path

will be dominated if group dominance is permitted.

G
d

Figure 3.14. Example network

Table 3.8. Table of pmf's of travel times in Figure 3.14.

Arca Arch Arcce Arcd

t=0 t=1 t=3 t=1 t=3 t=1 t=3
1 105 4 |06 5 |04 4 1 9 1 8 107 3 1
31051 6 (04] 7 |06 12 | 0.3

From Table 3.8, the expected travel times of all paths from node 1 to node 3 at departure

59

time O are:
E[ab]==(1+4)*(0.5*0.6)+(1+6)*(0.5%0.4)+(3+5)*(0.5*0.4)+(3+7)*(0.5*0.6)=7.5 min
Elac]i=o = (1+4)*0.5+(3+9)*0.5=8.5 min
Elad]i=0 = (1+8)*(0.5*0.7)+(1+12)*(0.5*0.3)+(3+3)*0.5=8.1 min.
The least expected time path from node 1 uses the path with constituent arcs a and b,
Path ab. If group dominance is used then the path from node 2 to 3 with constituent arc b,
Path b, would be eliminated because:

E[b]i=1 = 4*0.6+6*0.4=4.8 minutes

E[b]i=; = 5*%0.4+7*0.6=6.2 minutes

E[c]i=1 = 4.0 minutes

E[c]i=3 = 9.0 minutes

E[d]= = 8%0.7+12%0.3=9.2 minutes

E[d]=; = 3.0 minutes.

10 10
8 8
[[
E 67 E 6 [|
° ©
& 4 i g 4l
= =
2 2 | L
0 0
E[b] Elc] E[d] E[b] E[c] E[d]
Time 1 Time 3

Figure 3.15. Arc travel time comparisons at time 1 and 3

Path ¢ has a lower expected time than Path b at time interval 1 but not at time

interval 2 and Path d has a lower expected time than Path b at time interval 3 but not at

60

time interval 1. Thus, no path dominates Path b at both time intervals but Path b is
dominated by some path at every time interval. Path 5 would be omitted from the set of
solutions at node 2 and Path ab would be dominated, hence, omitting the least expected
time path from the final solution. Therefore, expected value group dominance is not
sufficient for determining least expected time paths.

In a priori path selection the entire route is selected before leaving the origin
node. No deviations en route are permitted. Since the arc travel times are random
variables, their actual values do not become known until travel along the arc has been
completed. A better path can then be selected with this revealed information, referred to
by Hall (1986) as "time-adaptive route choice." A similar concept arises in solving the
transit equilibrium assignment problem where transit users have a set of strategies for
determining which route to take in light of intermediate information, such as the bus
arrival times at transfer points (Nguyen and Pallottino, 1988; Spiess and Florian, 1989;
Wu and Florian, 1993; Wu et al., 1994). Such strategies can be represented by an acyclic
subnetwork, called a hyperpath, that includes the arcs corresponding to these strategies
with their associated conditional probabilities of being selected (Nguyen and Pallottino,
1986, 1988). In the context of time-adaptive route selection in stochastic, time-dependent
networks, for each departure time interval, the set of optimal (for least expected time)
strategies for selecting the best path between a pair of nodes can be depicted as a
hyperpath where the conditional probabilities associated with the arcs may be replaced
by conditional expected travel times or conditional travel time probability distribution
functions for each departure time interval.

Using the example in the proof of Proposition 3.2, it is shown that for a given

61

departure time interval, the least expected time paths for a priori path selection are not
necessarily the paths with the least expected time in a time-adaptive route choice
framework. Consider the expected time on each Path ab, ac and ad, at departure time 0
from node 1. For departure time 0, the path with the least expected time of 7.5 minutes is
ab. However, for any possible travel time on arc a, and thus, any possible arrival time at
node 2, arc b is never on the least expected time path:

E[ab/a=1] = 5.8 minutes and E[ab/a=3] = 9.2 minutes

E[ac/a=1] =5 minutes and E[ac/a=3] = 12 minutes

E[ad/a=1] = 10.2 minutes and E[ad/a=3] = 6.0 minutes.

For the example problem, for departure time 0 from node 1, the least expected
time path is Path ac if the driver arrives at node 2 in departure time interval 1 and it is
Path ad if the driver arrives there in departure time interval 2. Path ab, the a priori least
expected time path for departure time 0, is not the least expected time path when the
driver is permitted to react to the actual (revealed) arrival time at node 2. By group
dominance the a priori least expected time paths that contain subpaths to the destination
node that are never the least expected time subpaths for any possible arrival times are
eliminated. For each departure time interval, the set of optimal strategies with the
associated conditional expected values or pdf’s, respectively, be identified from this

reduced set of paths.

3.4 Conclusions

In this chapter, concepts and path selection criteria are described for networks

where arc times are random variables with time-dependent probability distribution

62

functions. In the next chapter, procedures based on the concepts of expected value
dominance described in this chapter are presented for determining non-dominated least

expected time paths in stochastic, time-dependent networks.

63

Chapter 4. A Priori Minimum Variance and Mean-Variance

Path in Stochastic Time-Dependent Networks

In this chapter, the algorithm for determining a minimum variance travel time
path in a stochastic time dependent networks for a priori path selection are presented. In
section 4.1, we present additional notation for stochastic time dependent networks. The
notation of this subsection complements the notation given in subsection 3.1. A
mathematical formulation for the problem of computing minimum expected travel time
and variance travel time from all nodes to a given destination node d were described in
section 4.2 and 4.3. In section 4.4 and 4.5, procedures, referred to as the PMV and
PMMYV algorithms, are presented for determining a priori minimum variance path and
minimum mean-variance path from all nodes to a given destination node for all time

intervals. Concluding remarks are given in Section 4.6.

4.1 Additional Notation for Stochastic Time-Dependent

Networks

Assume that link travel times are discrete random variables with time-dependent
mass probability functions. We assume independence across the arcs and time of all

random variables. T} (z) denotes the discrete random variables corresponding to the
travel time of link (i, j) at time t. The function z'l’]‘ (1), pl’]‘ (t) denotes the probability mass
function corresponding to the random variable T, (¢), where k, (z) denotes the number

of distinct possible values for T7)(¢) and ke{l, 2, .., kl.].(t)}. The probability that

64

k : k : .o .
T,(t) takes the value 7, (¢) is p;(z). The maximum range of k,(7), over (i, j, 1) is

denoted by R. We assume that all possible link travel times are strictly positive and finite.
In order to ensure the representation of all time-dependent network data within a

finite computer memory, we impose the common restriction that all such data is only

specified within the finite time window ¢ € {0, 1, 2, ..., M}. This window must be made

large enough to capture any relevant time-dependency in link travel time data in a real-
world application. For times after the time horizon, M, all link travel times are assumed

to be static and equal to the value they are assumed at time AM; that is,
r,(t=M)=7,(M) and p (t=M)=p (M).

In the algorithm of this section, since link travel times are assumed to be positive,
negative-cost cycles may not arise in the dynamic region of time, corresponding to <M.
They may however arise in the static region of time, corresponding to time instant greater
than or equal to M. We then impose the common restriction that there be no negative-cost
cycles in the network, for t >M. Throughout this study we will treat the entire set of times
{t: t > M} as an atomic unit. We have assumed that the set of discrete times and link
travel times are integers. The actual discrete time set however, need not to be the set of
integers. The adopted discrete-time assumption is common in literature, and includes the
representation of actual time instants and travel times that are multiples of the value of
this constant spacing. The value of parameter M can then be viewed as the number of
time sub-intervals resulting from the discretization of a given time period, such as the
peak-period in a traffic network, using a given time spacing. A finer time-discretization

would lead to increased accuracy in a given network model and an increase in the value

65

of parameter M.

4.2 Problem Formulation

4.2.1 Expected Travel Time A Routing Problem

We are interested in developing a mathematical formulation for the problem of
computing least expected travel times, and a corresponding solution, from all nodes to a
given destination node d. Let a random variable L (#) denote the travel time from node
i to destination node d, considering that one departs from node i at time ¢. Similarly, let

random variable L, (¢) denote the travel time to destination node d, if one departs at the
beginning of arc (i, j) at time 7. The expected values of L,(¢)and L,(¢) are respectively
denoted ¢;(¢) and e, (r)where e,(¢)=E[L,(¢)] and e, (1) = E[L,(?)].
For all t >= 0, we have the following relation:

e; (1) = E[L; ()] = E[T; (O] + E[L,; (t + T;(1))] (4-1)
The expected value of L, (¢+T,(¢)) is given by:

ky (2)

ElL e+ 1,0)]= ZEL e+ o) pio

Ky (1)
= Zej (t + T; (t))* p,lf (?)
k 42)

Hence, the minimum expected travel time e, (¢) is given by:

66

e, (t) = E(L,(t)) = E|T,(0) |+ E|L, (¢ + T, (¢))]
ky (1) ky (1)

M AGEHO) BN ARG) R

Elef) +e,t+ 7))

Note that if £~=M, expression (4-3) changes to:

ky (1) ky (1)

e, ()= [k pE)]+ S [e, (M) pl)]
— E[r, (M)]+ e, (M) (4-4)

The minimum expected travel times e, (#) then verify the following functional

equations:

min (E|T, (M) |+e,(M)) i#d

e (t>=M)=e (M) =i 4-5
(e M) = (M) { . o @-5)
ey () ey (1)
: k k k k .
. ()= g&[zk:[rif(t)*py(t)]+ Zk:[ej(t—krij(t))*pij(t)]) i%d, Vi<M o
0 i=d, Vt<M

Now denote by 7,(¢#) a node such that (i, 7,(z)) is a next “best” arc corresponding to
minimum expected travel time e, (¢). Functions 7, (¢) verify the following equations:

76> M) = 7,(M) = {Arg ga(ElT""(fM)h 4n) i# z 4-7)
1=

ky (1) ky (1)

3 [eh)+ plo)]+ Z[ej(t+2'§(t))*p§(t)]J id, Vi<M o
0 i=d, Vt<M

N=118 JmAlfﬂ[

Functional equations (4-5)-(4-8) define a formulation to the problem of computing the

all-to-one minimum expected travel times and an associated both next arcs solution

67

corresponding to the “best” next arc routing policy and a priori best path routing policy.

Remark:

Deterministic dynamic networks can be viewed as a particular case of stochastic
dependent networks, where for all (i, j, t) we have: k() =1, (r;‘), p; (t)): (z'ij. (), 1).

Hence, functional equations (4-5)-(4-6) are equivalent to:

(1> M) = e, (M) = {f»?}%?)(Tlf (MO +e () i Z (4-9)
i=

At (4-10)
0 i=d, Vi<M

" {min(r,.j(t) te,li+7,0)) i#d, Vi<M

e (t)=

Functional equations (4-9)—(4-10) are necessary and sufficient optimality conditions of
the all-to-one minimum travel-time path problem in deterministic dynamic networks (see
for instance, Cooke and Halsey (1969) or Chabini (1998) for more details about proving
this equivalency and developing efficient solution algorithms). We indicated that in

deterministic time dependent networks, the “best” path routing policy and the “best” next

arc routing policy are equivalent.

4.2.2 The Optimality Condition for Mean

Define N(i) as the set of downstream nodes of node i, z'; (t) as the travel time

random variable for link (i, j) at time #. We make the assumption that there exists at least
one path from any node to the destination node d under any possible value of the link

travel time vector. e,(t) and 7,(¢) are optimal if and only if they are solutions of the

following system of equations:

68

e,(t) = min{E|z, () +e,(t+7,(t)]f

jed(i)
7,(f) = arg Eljg{E[rU (0)+e;(t+7,(0)]

with the boundary conditions:

e,()=0,7,(t)=d,VteT and e (t)=e, (M), VieN,t>M
Note that we assume the outcome of the decision is deterministic, i.e. the traveler will
end up at node ; if he/she chooses node j as his/her next node. Croucher (1978) studies
the problem where the outcome of the decision itself is stochastic. We do not discuss this
case, as our motivation in studying the optimal routing problem is for traffic applications,
where this case rarely arises.

The proof of the optimality conditions is similar to the proof of Proposition 7.2.1
in Bertsekas (2000). The problem in Bertsekas (2000) is denoted as a stochastic shortest
path problem and is viewed as an infinite horizon dynamic programming problem. The
proof provided uses only the node number as a state, yet we can simply replace the state
by {i, ¢} and the proof becomes valid for our case.

We will show an illustrative example of how the optimality condition works.
The topological network is shown at the upper side of Figure 4.1, and the major part of
the figure represents a time-space representation of the network. In a time-space network,
time 1s shown along the vertical axis (the time axis), and the node number is shown along
the horizontal axis (the space axis).Each point in this network represents a node-time pair
(i, t), and any link between (i, ;) and (j, ¢;) indicates that link (7, j) has a travel time of t,

— t; if departure time from node i is t;.We are interested in finding the minimum expected

travel time path from node 1 to node 4 at departure time 0, namely e, (¢ =0), and only

69

these node-time pairs and links which are relevant to the computation are shown.

t=8

t=7

t=5

t=4

t=3

t=2

t=1

t=0

Figure 4-1 shows the marginal distributions of the link travel time random
variables. Link (1, 2) at time 0 could have two values of travel time: 4 with probability
0.5 and 2 with probability 0.5. Link (1, 3) at time 0 could have two values of travel time:
1 with the probability 0.2 and 3 with the probability 0.8. Link (2, 4) at time 4 could have
two values of travel times: 3 with probability 0.75 and 4 with probability 0.25. Link (3,

4) at time 3 could have two values of travel times: 2 with probability 0.3 and 3 with

<]

4 0.25
3 0.75
1 :
3
6
4 05
3 08
2 05
102

t=4

t=3

t=2

t=1

t=0

Figure 4.1. An Illustrative Example for Optimality Conditions

probability 0.7. All other link travel times are deterministic.

70

We apply the optimality conditions to obtain the value of e,(# =0).

e, (t=0)=min{(0.2 % (1 +¢; (1)) + (0.8 (3+¢,(3))), (0.5%(2+e,(2)))+(0.5%(4+e,(4)))}

It can be easily observed from the figure that e,(#=1) =6 and 7 (1) =(node)4,
e,(t=2) =4 and 1) =(node) 4, e;(t=5) = 3 and x5 =(node)4, and
e,(t =3)=2%0.3+4*0.7=3.4 and 7,3)=(node)4. We apply the optimality condition
again to obtain e, (f =4):
e, (t =4) = min{l + e,(5), 0.25% 4 +0.75 %3} = min{6, 3.25} = 3.25
and 7,(4)=(node)4. With the values of e,(t=1), e,(t=2), e,(t=3), and e,(t=4)
in hand, we can obtain
e,(t=0)=min{(0.2%6)+(0.8%(2+3.4)), (0.5%(2+4))+(0.5%(4+3.25))}=5.52

and 7 ,(0)=3. Therefore, minimum expected travel time for node 1 at time 0 turn out

to be a path: 1-3-4.

4.2.3 Variance of a Routing Problem

Before presenting the optimality conditions, we try to find the recursive
relationship between the variances of a given routing policy starting from two adjacent
nodes. This relationship is much more involved than that for the expected travel time of a
routing policy. As we know, the expected travel time of a routing can be decomposed
into two parts: one is the expected travel time of the next link, and the other is the
expected travel time from the next state (whose current-node is the next node) to the

destination.

71

As we have seen in previous section, e, () denotes the expected travel time from
i to the given destination node d. We define T, (¢) as a travel time random variable of
link (i, j) at time t conditional on current travel time information, and L, (¢+7,(¢)) asa
travel time from node j to destination node d at time ¢+7,(¢), if one departs from node i.

Then we have

e,(t)=E[T,(t)+ Ele,(t + T, (1))}
Next, we develop the recursive equation for the variance of a routing. We define
additional variables as follows. All routing decisions are made to reach a single
destination d.

v,(t) : travel time variance from node i to destination node d at time ¢
v,(t) =Var[L,(1)]
p; (¢) : probability that takes the value 7, (¢)
In the following mathematical development, all the calculations are conditional
on the current travel time information. The major theorem we use is the Law of

Conditional Variances(Ross, 1989):

By definition of Var(X/Y), we have that

Var(X/Y)=E[(X - E(X/Y))’]
= E[X* -2XE(X/Y)+E*(X/Y)/Y] (4-11)
=E[X*/Y]-2E[X/Y]E[X/Y]+E’[X/Y]

where we the fact that E[X/Y] and E*[X/Y] are functions of Y and thus, given Y, they

may be treated as constants.

Therefore,

72

Var(X /Y)=E[X*/Y]-2E[X/Y]E[X /Y]+E*[X /Y]

(4-12)
=E[X*/Y]-E*[X/Y]
and taking expectations yields
E[Var(X/Y)=E[E[X*/Y]]-E[E’[X /Y]] “-13)

=E[X°]-E[E’[X /Y]]

Var(E[X /Y]) = E[(E[X/Y]- E(E[X/Y]))*]
= E[(E(X/Y)- E(X))’]
= E[E’[X/Y]]-2E[E[X/Y]E[X]+ E’[X] (4-14)
= E[E’[X/Y]]-2E*[X]+E*[X]
=E[E’[X/Y]]-E’[X]

Hence, from equation (4-13) and (4-14), we arrive at

E[Var(X /Y)+Var(E[X/Y])= E[X*]- E[E*[X/Y]]+ E[E’[X /Y]]- E*[X]
= E[X*]-E’[X] (4-15)
=Var(X)

Therefore, the variance of X, given the random variable Y, is defined by
Var(X)=E[Var(X/Y)|+Var(E[X/Y])

Note that E[X /Y] and Var(X/Y)are also random variables. E[X/y] is a constant,

which is the expected value of X given that Y =y.Var(X/y) is a constant, which is the

variance of X given that Y =Y.

Since L,(t) =T,(t)+ L;(¢+T;(¢)), we have

v,()=Var[L(1)]
= E[Var[L,(t) T, (6)]+ VarlELL,(1) | T, (1)]] (4-16)

=3) *VarlL (1) / 7,1+ Var ELL,(6) T, (0)]

The first equality is according to the definition of v,(¢) . The second equality is due to

the Law of Conditional Variances. The third equality is according to the definitions of

73

expected value and the variance of a random variable.

Next, we compute the individual components of the right hand side of the last
line in Equation 4.3 one by one.
We apply the Law of Conditional Variances again to obtain

Var[L,(#)/ 7, ()] =Var[T,(t) + L, (¢t +7,(?))]
=Var[L,(t +7,(?)] (4-17)
=v,(t+7,;(0)

The first equality is due to the decomposition of travel time from (i, t) into two parts. The

second equality is due to the fact that 7,(¢) is a deterministic value and thus, does not
contribute to the variance of L.(f). The third equality is by the definition of
v,(t) =Var[L,(1)].
Therefore we have

EWVar{L.(t)/ 7;(1)] Z Py ()= Var[L(1)/ 7,(1)]

4-18
- zpy‘(t) v, (t+7,(1) (4-18)

Now that we have finished developing the first component of the right hand side of the
last line of Equation (4-16), let us study the second component.

E[L(1)/7,(t)] = 7,(0) + E[L (¢ + 2, (1))]

(4-19)
=7, (D) +e;(t+7,(1))
Therefore the expectation of E[L,(¢)/7,(¢)] is evaluated as:
ELELL () 7,011 = Y. pl () (e, () + et + 7, (1))
k (4-20)

=¢,(1)

and the second component of the right hand side of the last line of Equation (4-16),

74

which is actually the variance of E[L,(¢)/7,(¢)], can be evaluated as:
Var[E[L(t)/ T,()]]= E[E[L,(¢)/ Ty()] - ELE[L/(t)/ (]I
=Y () * (ELL)/ T, (0] - ELELL () T,0Nf (4-21)
= 2 PO, () +e,(t+ 7))

Substituting Equation (4-18) and (4-21) into Equation (4-16), we obtain the final result:

v,(0)=Var(L, (1)
= EWVar{L, 1)/ T, ()] + Var{ ELL, (1) T, (1)]] (4-22)

=3 pE@ v (4, (O)+ Y ph@) (e, () e, (t+7,() - e, (0]

v, (=0
Please note that all calculations are conditional on the current travel time information.
Intuitively, we can view the first part as the variance from the next node to the
destination, and the second part as the variance induced by including the next link in the
routing.
For the given origin node 1 and departure time t , the objective of the “minimum
variance path” problem is to minimize the variance of travel time to a select destination

given that the path can be determined before travel starts. Let v,(¢) be the minimum

travel time variance from node i to destination node d at departure time t. The problem is
then to find the best path routing , that is, the set of paths, for each origin node at each

departure time in the peak period such that v,(¢) 1s minimized. As we discussed in

previous section 4.2, v,(¢) can be computed as follows:

V()= E{k j;(t)*vj(t+r{;(t))+k ;(t)*(r”(t)—i-e_/(t+r§(t))—ei(t))j sizd, Vt<M 4-23)
0 si=d, Vt<M

75

v.t=M) ;i#d,Vt=M

(> M)=
vi(e=M) { 0 i=d, V> M

Now denote by 7,(f) a node such that (i, z,(f)) is a next arc corresponding to
minimum travel time variance v,(¢). Functions 7,(¢) verify the following equation:
. i e . .
20)= Arﬂif){kzgj(t)*vj(t+f{;(t)}+k2gj(z){qj(z)+ej(z+z-;(z)) ei(t))zl = d V<M o
0 i=d, Yt <M

0 T(t=M) ;izd, Vt=M
JT. =
’ 0 ii=d,Vt>M

Functional equations (4-23) and (4-24) define a formulation to the problem of computing
the all-to-one minimum travel time variance.

To the best of the author’s knowledge, there is no paper in the literature that
deals with minimum variance path (routing) problems in stochastic time dependent
networks. The study here is a preliminary attempt to tackle the minimum mean-variance

routing problem.

4.2.4 The optimality Condition for variance
We make the assumption that there exists at least one path from any node to the

destination node d under any possible value of the link travel time variance. v,(¢f) and

7(¢) are optimal if and only if they are solutions of the following system of equations:

JeAW)\ &k k

v,(f) = min (Z PE@O v+t)+ ph) e, () + e, + 75 (1) —e, (r))zj

7,(0) =arg ml(n){ [Z IORACEACE WACR GRS ACEIO) j}

76

with the boundary conditions:

v,t)=0,7,(t)=d,VteT and v,(t)=v,(M), VieN,t>M
Note that we assume the outcome of the decision is deterministic, i.e. the traveler will
end up at node j if he/she chooses node j as his/her next node.

We will show an illustrative example of how the optimality condition works.

A A
t=8 t=8
t=7 t=7
t=6 t=6
t=5 t=5
t=4 t=4
t=3 t=3
t=2 4 t=2
t=1 A t=1
t=0 | t=0

Figure 4.2. An Illustrative Example for Optimality Conditions

The topological network is shown at the upper side of Figure 4-1, and the major
part of the Figure is a time-space representation of the network. In a time-space network,
time is shown along the vertical axis (the time axis), and the node number is shown along
the horizontal axis (the space axis).Each point in this network represents a node-time pair
(i, t), and any link between (i, t;) and (j, t;)indicates that link (i, j) has a travel time of t, —

t; if departure time from node i is t;.We are interested in finding the minimum variance

77

path from node 1 to node 4 at departure time 0, namely v, (¢ =0), and only those node-

time pairs and links relevant to the computation are shown.

Figure 4.2. shows the marginal distributions of the link travel time random
variables. Link (1, 2) at time O could have two values of travel time: 4 with probability
0.5 and 2 with probability. 0.5. Link (1, 3) at time 0 could have two values of travel time:
1 with probability 0.2 and 3 with probability 0.8. Link (2, 4) at time 4 could have two
values of travel times: 3 with probability 0.75 and 4 with probability 0.25. Link (3, 4) at
time 3 could have two values of travel times: 2 with probability 0.3 and 3 with

probability 0.7. All other link travel times are deterministic.

We apply the optimality conditions to obtain the value of e,(#=0).

(0.5%13(2)+(0.5*(2+ey(2)—e| (0))°
05+ (A)+05%(4+e, (@) —e ()) "
((0.5*1/22(2)+(O.5*(2+e§(2)—612(0))2 J

e, (t=0)=min
+0.5)%v; (@) +0.5)*(4+e; (e (0)

(02) %14 (1) +(1%0.2) *(1+e3 (1) —¢; (0))°
+(0.8)*11(3)+(3*0.8) *(4+¢€,(3)—e; (0))° i

It can be easily observed from the Figure that
ey(t=2)=4, vi(t=2)=0
ey(t=4)=3.25, vi(t=4)=0.1875
e/ (t =0)=6.625
e;(t=2)=5.4, vi(t=2)=0.24
e;(t=4=3.4, vi(t=4)=0.24
el (t=0)=174
es(t=1)=6, vi(t=1)=0

el(t=3)=3.4, vi(t=3)=0.84

78

e (1 =0)=6.52
Therefore, v,(t =0) =min{(0.4844) .\ 5 . (224) i1 asas (0.7296) s, |=0.4844

and 7 ,(0)=2, p=1. Therefore, minimum variance of travel time for node 1 at time 0 turn

out to be a path: 1-2-4.

4.3 An Algorithm for A Priori Minimum Variance Path
Problems

In this section, an algorithm to compute minimum variance path routing policies
with a criterion of travel time reliability (variance) were presented.. We have been
focusing on the study of minimum expected travel time policies, as expected travel time
is the primary concern of travelers in making routing decisions. On the other hand, when
faced with uncertainty, travelers are also concerned about the reliability of their travel
times. For example, unreliable travel times will cause anxiety or disutility among
travelers because of the possibility of an unexpected late arrival at their destinations. We
use travel time variance to represent travel time reliability. A routing policy with less
travel time variance is viewed as more reliable. For commuters, the desired arrival time
in the morning might be some time around the work starting time. For a traveler catching
a plane, the desired arrival time might be roughly one hour before the plane’s departure.
It is generally believed and verified by some empirical studies that both early and late
arrivals cause disutility to the user. For example, although late arrival at the workplace
would cause trouble for a commuter, an arrival too early would also make the commuter
feel as if it was a waste of time.

Therefore, we design algorithms that minimize travel time variance from all

nodes to a given destination node d. We develop formulas that describe the relationship

79

between a variance at a given state (7, ¢) and the attributes at succeeding nodes. Then we
present the optimal condition for the policy that minimizes the travel time variance. The
following two sections provide a theoretical base for the algorithm design in next section.

The illustrative examples are presented to have good picture of two algorithms.

4.3.1 An Algorithm

For each node ieN and each potentially optimal path % to the destination node d,

a vector label &/(f),t €T is maintained, where &'(f),teT is the expected travel time
along path 4 from node i to the destination, leaving node 7 at time #; i.e., &'(¢) = E[L!(¢)].
Similarly, a vector label @/ (¢),teT is maintained for the variance of travel time along

path & from node i to the destination, leaving node i at time #; i.e., @/ (t) =Var[L!(1)].

These labels are called candidate-optimal because each is potentially optimal for
one or more time intervals. Until the termination of the algorithm, more than one label
vector is maintained at each node unless a single label is best for all time intervals. Let

q(1) be the set of candidate-optimal labels at node i. At each iteration of the algorithm, a

node j is scanned and a temporary label vector is constructed, &' (t)<—e!(¢) for

expected time and /' (¢) <—v!(h) for variance, from each of its predecessor nodes,

1€A(1, j). This temporary label is compared with the candidate-optimal labels at node 1,

Q, (1), according to the following conditions:

! (t) corresponds to a candidate-optimal path iff 3 no path & e (i)

80

such that Q, ()< ! (¢t) Vt e T ,otherwise the path is dominated.

Even if a temporary label is dominated by any currently candidate-optimal path, this
temporary label can be a part of another candidate-optimal path. Therefore, all temporary
labels need to be kept for future path variance calculations. This is major difference
between a priori least expected time path algorithm and minimum variance path
algorithm.

Two pointers are required for each label c at each node i to store the candidate-

optimal paths efficiently: a pointer, 7 (t), from the h'™ label at node i to the next node on
the path and a pointer, (), to indicate the appropriate path label at the next node.

Note that 7;” and 6" hold the path information of a temporary label until that

label is determined to be non-dominated solution or is discarded.

Algorithm PMV
begin
Procedure Initialization
begin
create the NODE_LIST, SA
put all nodes i to NODE_LIST
set SA=0)
set each node i,
ENt)y=c0, VieN-d,teT, he{l,2,..,P}

where P is a large enough number to permit as many
candidate-optimal path at any node as might be required

ENt) =0, VteT
o! ()=, YieN-d,teT, he{l,2,.., P}

) (t)=0, VteT

81

Q,(t)=o, VieN~-d,teT, he{l,2,...,P}
Q,()=0,VteT
zl(t)=w, VieN,teT, he{l,2,..,P}
0! ()=, YteT ,he{l,2,..,P}
q(d) = 1 (put the first path label at node d)
Insert destination node and path label pair (d, /) to set SA list
end
while SA#0 do
begin
select the first node and path label from the set SA
call this node the current node, j
scan the current node, j
begin
for each 7 unlabeled do
if succ(i)=j, (ij)eA, then
begin
mark node i labeled

end

procedure Update Node Labels
For all i labeled
begin
update the vector |&/ (1), @ (6), 7" (1),0! (1)),
Temporary label Creation: calculate the expected time

and variance for the newly constructed path from node i

calculate el.h (), Vl.h () VteT asfollows

o)=Y |+ @+) pho)

82

end

vl =3lpt a4 0)
" Z[p§<r>*(r;fm+§f(t+r;;<t>)—ef(z))2]

”ih(t) =/, aih(t):p
where £ is the set of indices of possible travel

times on arc(i,j) at time .
AGEIAG
w!(t)=v!(t)

Label comparisons

Compare ! (¢) with Q_(¢), forallh
if o'(t)<Q, () then

Qi ()= a)ih @), ﬂ-ih =/, eih H=rp
otherwise keep previous information

If !(t) is candidate-optimal, add the path

information p into ¢(i) and put this node-path label
pair in the SA list.

Check if all #eq(i) are still candidate-optimal and
remove the non- candidate-optimal, labels from q(1).

if (7, p) ¢ SA then
put (i,p) in set SA list

end
Remove (j, p) from SA

Unlabeled all nodes

end

83

4.3.2 Discussion of Algorithm PMV

The PMV can be viewed as an efficient specialized modified label correcting algorithm
for determining the minimum variance path from all i to a select destination, d. Similar to the
Time-dependent Least-time Problem (TDLTP) algorithm of Ziliaskopoulos and Mahmassani
(1993) for determining least-time paths in deterministic, time-varying networks, the PMV
algorithm employs a vector label at each node, each component of which is associated with a
given departure time interval. In the TDLTP algorithm, each component maintains the least
time known thus far from the associated node to the destination node, for the given
departure time. Similarly, each component of the vector label used in the PMV algorithm
maintains the minimum variance travel time known thus far from the associated node to the
destination node for the corresponding departure time. A vector label associated with node 1 is
depicted in Table 4.1. In this example, the peak period consists of six time intervals (to
through ts). For each departure time interval, the minimum variance of travel time (denoted by

Q(t)) from this node to the destination is given in the vector label component and the associated

successor node and subpath is given to the right of the component. For example, at time 3, the
minimum variance path has a variance value of 2.8 units of time, and the next node of this path

at time 4 is node 2 and subpath from this node 2 is 1.

Table 4.1. Example of vector label with five time intervals

Departure | Minimum Variance | pext node Subpath
Time Q, (1) routing routing

0 2.4 2 1

1 1.9 3 1

2 4.7 3 2

3 2.8 2 1

84

5 5.4 4 2

Lemma 4.1. The PMV algorithm terminates with the set of minimum variance of travel time

paths. The following relation holds for every label at every 7€T:

Q,(t)<ﬂ Lo/l 2ol S0 @+l 20)-dof | ver neliz.. B

Proof. At the end of each iteration,

Q)= mm{a) O)=V'(t)= Z‘lpl] O/ e+ o)+ Z[p; O (t)+¢f(t+z{;(t))—e,ﬁ(t))2]}

JEA(D)
as required in Update Node Labels of the algorithm. Thus, there can be no j (j=secc(i))

such that
Q0> Y|y v e+t)+ Z[p” O*(ct @)+ e+t)=)]

Since the label components corresponding to a particular departure’s time interval are
permanently set once all labels at the same departure time have been determined, the

proposed relation must hold.

Proposition 4.1. The PMV algorithm terminates in a finite number of steps.
Proof. The algorithm terminates in a finite number of steps if the SA list is empty in a finite
number of steps. Suppose that the SA list does not get empty in a finite number of steps, then

at least one node-label pair must be inserted in the SA an infinite number of times. This

implies that the label at the node has improved by at least a positive real-value of travel time. If

the improvement at the node continues an infinite number of times, then the variance of travel

85

time on the path would eventually become negative, which contradicts the positive variance
of travel times. This contradicts the supposition that the SA list is not empty in a finite
number of steps and hence shows that the PMV algorithm terminates in a finite number

of steps.

The actual number of paths that may have the minimum variance for one or more
departure time intervals must be no greater than 77, because at most, one path has the
minimum variance for each departure time (ties broken arbitrarily). However, an
arbitrarily large (but finite) number of labels may need to be maintained at each node.
Therefore, in a worst-case scenario, this algorithm can perform very poorly -

nonpolynomially. This is shown in Proposition 4.2.

Proposition 4.2. The PMV algorithm have a worst-case computational complexity that
grows exponentially with the number of nodes if 77 > I, where 717 is the number of time

intervals.

Proof. Assume 77 = 2. A label for every possible path from a node to the destination

node may need to be maintained, because no label may beat another label over all time

intervals. Assume O > 0, then the following may occur:

Path 1 Path 2 Path 3 Path4

Time=l 5 548 5428 5430 ...,
Time=2 3 35 328 330 e

No path listed above is better than any other for both time intervals. Thus, all paths must

86

be maintained. This applies to 77> 2.

4.4 Algorithm for A Priori Minimum Mean-Variance path

Problems: Implementation of PMV Algorithms

Since expected travel time is the primary criterion in routing optimization, and
variance is secondary, it is necessary to design algorithms that minimize expected travel
time and variance. In this section, we design algorithms that minimize a linear
combination of expected travel time and travel time variance. Therefore, the algorithm,
PMMYV, is developed for a priori mean-variance path routing. Since the PMMV
algorithm has very similar procedures with the algorithm PMV, the algorithm PMYV is
easily extended for determining a priori minimum mean-variance paths in networks

where the arc travel times are random variables with time-dependent probability
distribution functions. In a PMV algorithm, the node vector label Q! (¢) is maintained
for the variance of travel time along path / from node i to the destination at time ¢. The

new vector label A’(¢) is maintained for the mean-variance combination along path h

for a PMV algorithm.

4.4.1 An Algorithms

For each node ieN and each potentially optimal path /4 to the destination node d,

a vector label &/(¢),teT is maintained, where &/(¢),te€T is the mean-variance

combination along path /4 from node i to the destination, leaving node i at time ¢ i.e.,

5! (t)=leih () +a* v (t)l VteT. These labels are called candidate-optimal because

87

each is potentially optimal for one or more time intervals. At each iteration of the

algorithm, a node j is scanned and a temporary label vector is constructed,

5ih(t)<—lel.”(t)+a*,/vih(t)J, from each of its predecessor nodes, i€A(i, j). This

temporary label is compared with the candidate-optimal labels at node i, A, (1),
according to the following conditions:

5! (t) corresponds to a candidate-optimal path if 3 no path % e (i)

such that A"(t)< 6 (t) Vt e T ,otherwise the path is dominated.

This approach that we adopt will allow us to study trade-offs between mean and variance.
Our route guidance model is intended to help travelers make choices that reflect their
decision-making process better. A flow chart the basic procedure steps of the TAMMYV2

algorithm is presented in Figure 5.4.

Algorithm PMMYV
begin
Procedure Initialization
begin

create the NODE LIST, SA LIST
put all nodes i to NODE_LIST
set SA=0
set each node 7,

ENty=w, VieN-d,teT, he{l,2,..,P}

where P is a large enough number to permit as many
candidate-optimal path at any node as might be required

ENt)=0, VteT

o! ()=, YieN-d,teT, he{l,2,.. P}

88

) (t)=0, VteT
A,(t)=w, VieN-d,teT, he{l,2,...,P}
A,(t)=0, VteT
zl(ty=w, VieN,teT, he{l,2,..,P}
0! (t)=w, VteT ,he{l,2,..,P}
q(d) = 1 (put the first path label at node d)
Insert destination node and path label pair (d, 1) to set SA list
end
while SA#0 do
begin
select the first node and path label from the set SA
call this node the current node, j
scan the current node, j
begin
for each i unlabeled do

if succ(i)=j, (i,j)€A, then

begin
mark node 7 labeled

end

procedure Update Node Labels
For all i labeled
begin

update the vector [é‘,.h (1), @' (1), 7 (t),0] (t)LT

calculate e/ (¢), v/ (t) VteT as follows

)=\ +(& ¢+ 0))- ot 0]

89

Vi =Y ek o+ 0)
4 Z[pg OO+ (+ @) (z))z]

z'(O=j, 6'O=p
where £ is the set of indices of possible travel

times on arc(i,j) at time ¢.
&'(n=el(0)
ol (O =v!'(1)

g 0+axfd o)

Label comparisons

5=

Compare & () with A,(¢), for all h
if 6'(t)<A,(t) then

AW =6/, ='(=j, 6 @®)=p
otherwise keep previous information

If &'(¢) is candidate-optimal, then add the path information
p into g(i) and put this node-path label pair on the SA list.
Check if all ~eg(i) are still candidate-optimal and remove the
non- candidate-optimal labels from q(i).

if (i, p) & SA then
put (i,p) in set SA list

end

Remove (j, p) from SA
Unlabeled all nodes
end

end

90

4.4.2 Discussion of Algorithm PMMV

The PMMYV also can be viewed as an efficient specialized modified label correcting
algorithm for determining the minimum mean-variance path from all 7 to a select destination,
d. Similar to the PMV algorithm, the PMMYV algorithm employs a vector label at each node,
each component of which is associated with a given departure time interval. In the PMV
algorithm, each component maintains the least variance travel time path from the associated
node to the destination node, for the given departure time. Similarly, each component of
the vector label used in the PMMYV algorithm maintains the minimum mean-variance travel
time path from the associated node to the destination node for the corresponding departure

time. Proposition 4.1 and 4.2 are also applied for the PMMYV algorithm.

Lemma 4.2. The PMMYV algorithm terminates with the set of minimum mean-variance of travel

time paths. The following relation holds for every label at every <T:

Ai(t)S(el.h(t)+a*w/Vf(t)) VieN, he{l2, .., p}, VteT

Proof. As we verify the principle of optimality of minimum expected travel time and
minimum variance, we can say that the principle of optimality holds for the minimization

of linear combination of mean-variance routing policy. Linear combination of above two

equation is e/ (t)+a *+/v/(t) . The optimality conditions are:

e;’(z){z[r;(t)* Lo Y e, e+ @) p;‘.(t)]} VieN, VteT

V(1) =(Z POy v (47 O)+ S ph@) e, (O + e, + 24 (1)) e, (z))zj, VieN, VteT
5ih(t):min(e,.h(t)+a*Jvf(r)l VieN, VteT,he{l,2,.. p}

JeA(i)

At the end of each iteration,

91

(Z[(0)* p; (t)] [(z +1; (t))* o (z)]j i
A, (f) =min

JeA(D)

a*J[Zp;; OV + T O+ Y POz, () + e+ L 1)~ (t))zj

as required in Update Node Labels of the algorithm. Thus, there can be no j (j=secc(i))
such that

(Z[U(t) #pl)]+ Z[(+7k @) p;(t)]}r

A) >

a* \/(Z PLOV (2t)+ Y ph) Hr, () +e! (1 475)~ (z))zj

Since the label components corresponding to a particular departure’s time interval are
permanently set once all labels at the same departure time have been determined, the

proposed relation must hold.

4.5 lllustrative Example

In this section, both the PMV and PMMYV algorithms are illustrated on the

example problem. The network is shown in Figure 4.2.

Figure 4.3. Example network

Table 4.2. Table of pmfs of travel times in Figure 4.2
Arca | Arcb Arcc Arcd Arce
t=0 t=0 t=2 t=3 t=2 t=3 t=4 t=5 t=6 t=7

2 105 5 04 4 08 1 03] 3 108 6 [04] 4 |02] 5103 1 091 3 103

3 0.5 7 061 5 021 3 071 7 102 7 [06] 6 |08 8 107 2 |01 4 107

92

PMYV algorithm

Initialization

Node List N={1,2,3,4}
Arc_List A=1{a,b,c,d e}
Time space T = {0,1,2,3,4,5,6,7}
Destination Node d =4

Scan_Available List SA= ¢

Set each node 1,

EMt)=w, Viell, 2,3},te{0,1,2,3,4,5,6,7}, he{,2,3}
ENt)=0, V1e{0,1,2,3,4,5,6,7},h e {1,2,3}
o!(t)=w, Viell, 2,3}, te{0,1,2,3,4,56,7}, he{1,2,3}
w!(t)=0, V1e{0,1,2,3,4,5,6,7}, h e {1,2,3}
Q, ()=, Vie{l,2,3,4},1€{0,1,2,3,4,56,7|T, he{l,2,3}
Q,(1)=0, Vte{0,,2,3,4,56,7}, he{1,2,3}
z'(t)=o0, Viell, 2, 3,4}1{0,1,2,3,4,56,7}he{l,2,3}
0! (t)=c0, Viell,2,34},te{0,1,2,3,4,56,7}, he{l,23}

q(4)=1
Insert the pair of destination node d and path label 7, (4,1)
SA = {(d,)}

Step 1
Select the first pair (4, 1) from the SA list

Call this is current node, j = 4 and path h=1

Step 2

For each i, i€ A(i,)
i= {2,3}

Select node 2,1=2, h=1
t=2

93

&(t=2)=[z @+ +2,@) 2@+ [@+ 2+ 2,@) 22,2
=(3+¢,(2+3))%08 + (7+¢(2+7))%02
=3+0)*0.8+(7+0)*0.2
=38

nr=2)=[pL@*vi2+2,@)+ pL @) *vi2+722)

| PO @+ 62 @) -6 @)f
+pL(D* (2, + 62+ 3,2) -)]
=[0.8%0+0.2%0]+ [0.8*(3+0-3.8)> +0.2%(7+0-3.8)"]
=2.56

Temporary label & (t=2)=e,(t=2)=3.8

o)(t=2)=v,(t=2)=2.56

Since @ (t=2) :2.56<Qz(t :2) =0,

Update Q,(2) =2.56, 7z.(2)=4, 6.(2)=1

t=3

&(r=3)=[,3)+ e, G+ 2,0 PLO+ 23 +He 3+ 2,3 £23)]
= (6+¢,(2+3))%04 + (7+e,2+7))*0.6
= (6+0)*0.4+ (7+0)*0.6
=6.6

i(r=3)=[p% 3 *viB+ 73,3+ p2 3 *viB+73,0)|

AERON OGN REIO))

+) *(2,3)+ e B+1L03) - B)f
=0.24

Temporary label & (¢ =3)=e,(t =3)=6.6
ol (t=3)=v. (1 =3)=0.24

Since ,(1=3)=0.24 < Q,(t=3)=00,
Update Q,(3) =0.24, 7,(3)=4, 6,(3)=1

q(2)=1
If i is not in SA list, Putiand h=1in SA list, (2,1)

94

SA ={(2,1)}

Select node 3,1 =3, h=1

t=4
er=4)=56
vi(t=4)=0.64

Elt=4)=ej(t=4)=5.6
oy(t =4) = vi(t = 4)=0.64

Update Q,(4) =0.64, zi(4)=4, 6)(4)=1

t=5
elt=5)="71
vi(t=5)=1.89
E(t=5=el(t=5=T7.1
w\(t=5)=vi(t=5)=1.89

Update Q,(5) =1.89, 7,(5)=4, 6;(5)=1

=6
er=6)=1.1
vi(t=6)=10.09

E(t=6)=ey(t =6)=1.1
ol (t=6)=v!(t=6)=0.09

Update Q,(6)=0.09, r.(6)=4, 6!(6)=1

t=7
ei(r=7)=3.7
vi(t=7)=0.21

ENt=T)=el(t=7)=3.7
@y (t=T7)=vi(t=7)=0.21

Update Q,(4) =0.21, 7;(4)=4, 6,(3)=1

q(3)=1
If i is not in SA list, Put node 3 and label 1 pair in SA list
SA={(2,1),3,1)}

95

GO TOSTEP1

Step 1
Select the first pair (2,1) from the SA list

Call this is current pair, j = 2, h=1
Step 2

Foreachi, (i,j)e 4
i= {1}
Selectnode 1, i=1,j=2, h=1
t=0
el(t=0)=7.7
v/ (t=0)=5.01

E({t=0)=¢/(t=0)=7.7
a)ll(t =0)= Vll(l‘ =0)=5.01

Since @ (t=0)=5.01< Q,(t=0)=00,
Update Q,(0)=5.01, 7;/(0)=2, 6'(0)=1
q(1)=1

Node label pair(1,1) is not in SA list, Put (1,1)in SA list
SA = {(3,1), (1.1)}

GO TOSTEP1

Step 1
Select the first pair (3,1) from the SA list

Call this is current pair, j = 3, h=1, SA ={(1.1)}

Step 2

Foreachi, (i,j)e 4
i= {1,2}

Selectnode 1, i=1,j=3, h=1

EX(t=0)=e (t=0)=11.26
o} (t=0)=v,(t =0)=1.35

96

Since @ (t=0)=1.35< Q (t=0) =5.01
Update ©,(0)=1.35, z’(0)=3, 67(0)=1

q(1)=2
Pair (1,2) is already in SA list,
SA={(1,1) (1,2)}

Select node 2, i=2(j=3), h=1

t=2
es(t=2)=5.82
vyt =2)=2.188

EX(t=2)=e)(t =2)=5.82
@;(t=2)=v)(t=2)=2.188

Since @;(t=2)=2.188< Q,(t=2) =2.56
Update Q,(2) =2.188, 7;(2)=3, 6;(2)=2

t=3
es(t=3)=4.85
vi(t =3)=1.568

EX(t=3)=e)(t =3)=4.85
@ (t=3)=v,(t=3)=1.568

Since @}(r=3) =1.568>Q,(t=3)=0.24
Keep Q,(3) =0.24, 7(3)=4, 6,(3)=1

node 1 is available and h=3, pair (1,2) in SA list, SA={(1,1) (1,2), (2, 2)}
q(2)=2
GO TOSTEP1

Select the first pair (1,1) from the SA list
Call this is current node, j =1, SA ={(2,2)}

Step 2

For eachi, (i,j)e 4
i= ¢

97

GO TOSTEP1
Select the first pair (1,2) from the SA list

Call this is current node, j =1, SA ={(2,2)}

Step 2

For eachi, (i,j)e 4
i= ¢

GO TOSTEP1

Select the pair (2,2) from the SA list
Call this is current node, j =2, SA={ } h=2

Selectnode 1, i=1

t=0
e (t=0)=6.825
vi(t=0)=5.6

E(t=0)=e’ (t =0)=4.85
@ (t=0)=v}(t=0)=1.568

Since @ (t=0) =5.6 > Q(t=0)=1.35
Keep Q,(0) =135, 7z (0)=3, 6(0)=2
SA={ }

STOP

Mean= 11.26

Variance= 1.34
t=0

Figure 4.4. Resulting minimum variance path for departure
time 0 at nodel for the example problem

PMMV algorithm
Node 2

98

Temporary label & (¢t =2)=3.8
wh(t =2)=2.56
&' (t=2)=[38+1x/256/=54
Since O)(t=2)=54<A,(t=2) =
Update A,(2) =54, £(2)=3.8 w,(2)=2.56 7,(2)=4, 6,(2)=1

t=3
Temporary label 521 (t=3) =6.6
o, (t =3)=0.24
8.(t=3)=[66+1%/024|=71

Since S (t=3)=7.1<A,(t=3) =
Update A,(3) =7.1, £(3)=3.8 @(3)=2.56 7;(3)=4, 6,(3) =1

Node 3
i=4, h=1
t=4
&E(t=4)=e(1=4)=5.6
oi(t =4) =vi(t = 4)=0.64
8 (t=4)=[5.6+1:/0.64]=64
Update A,(4) =6.4, 7.(4) =4, 6/(4)=1

t=5

E(t=5=el(t=5)=7.1

i (t=5)=Vvi(t=5)=1.89
5(t=5)=[71+1/189]=844

Update A,(5) =8.44, mi(5)=4, 6,(5)=1
t=6

El(t=6)=ei(t =6)=1.1

@, (t=6)=vi(t =6)=0.09
5(t=6)=|L1+1%,/009]=14

Update A,(6) =0.09, 7,(6)=4, 6i(6)=1

99

t=7

Et=T)=ey(t=T7)=3.7
oy(t=T)=vi(t=7)=0.21
8(t=7)=p7+1%021|=416

Update A,(4) =4.16, 7;(4)=4, 6,(3)=1

Node 1
=2, h=1
t=0
Elt=0)=e¢/(t=0)=7.7
o (t=0)=v}(t=0)=5.01
8(t=0)=[77+1%y501]=994
Since @ (1=0)=9.94< Q,(t=0)=c0,
Update A,(0) =9.94, z}(0)=2, 6/(0)=1

Node 1

EX(t=0)=e/(t=0)=11.26

@’ (t=0)=v](t=0)=1.35
S(t=0)=[1126+1/135] =12.16
Since 2(t=0)=12.16> A, (r=0) =9.94
Keep A,(0)=9.94, 7/(0)=2, 6/(0)=1

Node 2

=3, h=1

t=2

Temporary label & (¢t =2)=e(t=2)=5.82
wl(t=2)=vI(t=2)=2.188
S(t=2)=[582+1+2184 =7.30

Since &7 (t=2)=7.30> A,(t=2) =54

Keep A,(2) =54, m,(2)=4, 6,(2)=1

t=3
Temporary label & (¢ =3) =4.85
w; (t=3)=1.568

S(=3)=|485+1+J156§ =6.10

100

Since &;(t=3)=6.10<A,(t=3) =7.1
Update A,(3) =6.1, & (3)=4.85 w;(3)=1.568 7;(3)=3, 6i(3)=1

EN(t=0)=e](t =0)=6.825
 (t=0)=v](t=0)=5.6
5 (=0)=|6825+1%456] =9.19
Since &7(t=0)=9.19< A,(t=0) =9.94
Update A, (0)=9.94, z’(0)=2, 67(0)=2

Mean= 6.825

Variance= 5.6
t=0

Figure 4.5. Resulting minimum mean-variance path for departure
time 0 at nodel for the example problem

101

4.6 Concluding Remarks

In this chapter, two specialized modified label correcting algorithms are
presented for generating all of the a priori minimum variance paths and minimum mean-
variance paths, and from all nodes to a single destination for all departure times in the
peak period in a network with stochastic, time-dependent arc times.

Both PMV and PMMYV algorithms have nonpolynomial worst-case complexity
because the number of labels required determining a priori minimum variance paths may
grow exponentially with the size of the network.

The two algorithms are complicated by the need to maintain the minimum
variance or minimum mean-variance values for every time interval of every path.
Intuitively, it seems possible that only the best label for each departure time interval, with
individual pointers for each, needs to be maintained, as required of the deterministic,
time-dependent shortest path problem (Ziliaskopoulos and Mahmassani, 1993).
Unfortunately, if the two labels are compared, one must dominate the other over all
departure times in the peak period in order to eliminate a path from future consideration.
In order to maintain the path information, one must keep a separate label for each path
that is non-dominated for at least one departure time. This is because it is possible to
arrive at the origin of a subpath in more than one time interval, and therefore, the
subpath's labels at more than one time interval may contribute to the construction of the
label of the path containing this subpath. Only upon termination of the algorithm can the
non-dominated optimal paths, or optimal paths, be evaluated at specific time intervals;
and thus, for each time interval, the number of non-dominated solutions may be smaller

than is found for the entire time period.

102

The two algorithms are presented specifically for a priori path selection,
assuming that the user is unable to dynamically change course en route. In reality, as a
vehicle travels along a selected route, the travel time from the origin to the current
location of the vehicle is no longer uncertain because it has already occurred. In Chapter
5, the PMMYV algorithms are extended for generating the paths for use in a time-adaptive
route choice framework where the vehicle selects the path on which it would continue

based on the revealed (actual) arrival time at each node.

103

Chapter 5. Time-Adaptive Minimum Mean-Variance

Algorithms

In both transportation and data communication systems, stochastic time-
dependent network provides a more realistic representation of actual travel conditions on
which to base critical routing decisions (e.g., for emergency response or priority data
transfers) than commonly used deterministic or static models. Optimal routes with
respect to deterministic network attributes (such as distance) may be chosen before travel
begins, because the optimal path on which to continue does not change as a motorist or
packet traverses the network. However, in transportation and data networks, where future
arc traversal times are uncertain and conditions are changing over time, one can make
improved routing decisions en route as travel times on traveled arcs are revealed. The
selection of a route prior to travel is referred to as a priori best path routing, because it is
assumed that the path is chosen in its entirety before travel begins. The selection of a
route where arc traversal times are revealed en route once the arc is traversed can be
viewed as a multistage recourse problem, where recourse decisions can be taken in
response to realizations of arc traversal time outcomes that are not known a priori. This
type of route selection is the focus of this Chapter and is referred as “best” next arc
routing or time-adaptive routing.

In this context, for a given origin-destination pair at a specific departure time, a
single path may not provide an adequate solution, because the optimal path depends on
intermediate information concerning experienced travel times on traveled arcs. Therefore,

attention should be focused on finding a set of 'mon-dominated' or 'efficient' routes.

104

Furthermore, travel time measures for routing are highly uncertain. When the measures
are uncertain, choosing among routes becomes even more difficult because the tradeoffs
among measures are less precise - the decision maker is forced to choose one probability
distribution over another, rather than choosing one value over another. A method for
comparing probability distributions which is less strict than the classical stochastic
dominance was presented in section 5.1. This method has important practical application
in determining a set of non-dominated routes in a network when there are multiple,
uncertain measures which form the basis for route evaluation.

In section 5.2, two efficient algorithms, TAMMV1 and TAMMYV?2, are described for
determining time-adaptive minimum mean-variance routing in stochastic time-dependent
networks. We design algorithms that minimize a linear combination of mean and variance
of travel times from origin to destination. In the previous chapter, it provides a theoretical
base for the algorithms in section 5.2. Concluding remarks are given in section 4.6. Our
route guidance model is intended to help travelers make choices that reflect their decision-

making process better.

5.1 Non-Dominated Path Selection for Mean-Variance Routing

In this section, path comparisons for a priori and time-adaptive decisions in stochastic,
time-dependent networks are studied, and a method for comparing probability distributions
which is less strict than the classical stochastic dominance is described. The method
includes a probability parameter which permits control of the degree to which the comparison
deviates from the classical stochastic dominance. This method has important practical

application in determining a set of non-dominated routes in a network when there are

105

multiple, uncertain measures which form the basis for route evaluation.

Consider paths starting at node i and ending at node d. A path attribute L' is
the summation of link attributes along the path R/ where k is the path index. Therefore,
L=l +..+1,
where [, ,..., [, designate the representative attributes of links (i, m),...,(n, d)
belonging to path R'. Hence, L' is also a random variable with mean x' and
variance v . The following criterion is proposed to choose one path over another.

Consider two paths R/ and R’ from node i to destination node. (Note: when

several paths to the same departure node are considered, the subscript i will be dropped
for simplicity in notation)
Path R' is preferred to path R® if attribute L' is stochastically
(in distribution) smaller than L* (i.e., L' <L?).
Path L' is indifferent to path L* if L' is not stochastically
smaller than L*, and L’ is not stochastically smaller than L'
(i.e., L'<L’ and L'>1L%).

The comparison of path attributes L' and L* can be carried out in two stages.

5.1.1 Primary Comparison Rule

Let random variable L, denote the travel time from node i to destination node d
using path 1. The expected value and variance of L are denoted as ' and v/

respectively. L7 also denotes the travel time from node i to destination node d using

106

path 2 with expected value x’ and variance v}, respectively.

It is claimed that (approximately) L; < L} if

'<u’ and v <! 5-1
ﬂl /Lll 1 1

or
u <p’oand v <v? (5-2)

The validity of this approximate comparison rule for path attributes should be examined

based on the classical definition for stochastic comparison of random variables.

f(f) &
I Density Functions
I
1 | 2
I
I
I I
I I
| . ,
7 78 t
F(z_} -
1.0 f---mnmv e S -
|
0.5 ! |
I
1

|
|
I Distribution Funections
I
|

2

0 i
i u H ¢

Figure 5.1. Comparison of stochastic path attributes L

2 1 2 1 2
and L; where g, <y’ and v, <v,

As shown in Figure 5.1, there is some value of t, denoted t.,, where the
cumulative distribution functions cross. That is:
F.(@)>F, () fort<t

and

107

F,(0)>F,(t) fort>t

For values of t greater than t., the probability that path attribute L' is less than t exceeds

the probability that path attribute L* is less than t. Also, if conditions (3) or (4) hold, the

following can be observed:
t. < yil < ,ui2 , (5-3)
F,(t)=F,()<05 (5-4)
Therefore, the approximate rule would choose paths which may not satisfy the classical
definition of stochastic dominance for comparison of random variables at small values of
the path attribute (t < t;). In applications to hazardous materials routing, this is not a
significant issue since we are mainly concerned about the possible realization of large
values of the path attribute.
The primary comparison rule can be implemented using a multiobjective shortest

path algorithm. Each stochastic link attribute /; is transformed to two deterministic

attributes z;, and v, . Then the multiobjective algorithm produces a set of non-

dominated paths from node j to the destination node. Paths belonging to the set S; are
paths that do not satisfy conditions (5-1) or (5-2). That is, suppose the set S;, contains the
r non-dominated paths:
1 2 3 r
S, ={R\, R*, R*,.., R'}

If these paths are ordered by the increasing mean value,

Equations (5-1) and (5-2), which form the basis the primary comparison rule, allow some

108

choices to be made among alternative routes. Routes which are clearly dominated in both
mean and variance of attribute distributions are discarded by the primary comparison rule.
However, through closer examination of the attribute distributions for the remaining set

of routes, S;, we may be able to further reduce the set of non-dominated routes.

5.1.2 Secondary Comparison Rule
Consider any two routes R' and R? from the set S; with ' < g* and v' >v7.
As shown in Figure 5.2, there is some t, denoted t.,, where the cumulative distribution

functions cross. That is,

F,()>F,(t) forall values of t<t (5-5)

We can also see that

to> > (5-6)
and
F,(t,)=F,(t)>05 (5-7)

That is, t. is greater than the larger mean, and the probability that either of the path
attributes will take a value greater than t. is less than 0.5. Therefore, L', is stochastically
smaller than L? for 'most' values of the attribute (i.e., with probability greater than 0.5).
The question addressed by the secondary comparison rule is whether or not the range in
which L', is smaller than L? is large enough that we can conclude that route 1 should be
preferred to route 2.
We propose the following comparison rule. Since we know
F,(t)>F,(¢) forall t<t,

and if the value of t. is such that

F,(t)=F,(t)>1-a,

109

then we will prefer R' to R* (L' <L?). This concept is illustrated in Figure 5.2.

Fitly

Fo) |
1.0
(1-2)

0.5

Figure 5.2. Comparison of two path travel time L, and L

where ' <’ and v} >v]

The distribution of L' is preferred (for the purpose of choosing routes) to the distribution
of L? as long as the classical comparison rule is satisfied for all values of t, except

extremely large values which have a small probability of exceedance. This probability is

controlled by specifying a small value for a.

The value of @ will determine the level of error in the path attribute comparison.

As we allow @ to increase, we are accepting a larger probability of error in the

comparison of stochastic path attributes. Since @ is a parameter that is specified by the
analyst, the secondary comparison rule can be used to compare paths based on the level

110

of accuracy necessary for a specific routing problem. As a is made smaller, the

secondary comparison rule becomes less powerful as a means of differentiating among

alternative paths because we are insisting on a higher level of conformance to the

classical notion of stochastic dominance. As @ is allowed to increase, the secondary

comparison rule becomes efficient at reducing the size of the possible solution set, but

may discard a path which would have been of interest.

5.1.3 Algorithm TAMMV-ND

This algorithm is a specialized modified label-correcting algorithm for
generating non-dominated minimum mean-variance routing. Because of the secondary
comparison rule, this algorithm is not efficient for computations. Two efficient
algorithms are developed in the next section. The detailed description of this algorithm is

presented in the next section.

begin
Procedure Initialization
begin

create the NODE_LIST, SA LIST

put all nodes i to NODE LIST

set SA_ LIST=0

set each node i,
()=, VieN-d,teT
E,()=0,VteT
w,(t)=wo, VieN-d,teT
w,(t)=0, VteT
. (t)y=w, VieN—-d,teT
n,(t)=¢, VteT

Insert destination node, d to set SA_LIST

end

111

while SA_LIST#0 do

begin

end

select the first node of the set SA LIST
call this node the current node, j
scan the current node, j
begin
for each i unlabeled do
if succ(i)=j, (i,j)€A, then
begin
mark node i labeled
end

procedure Update Node Labels
For all i labeled
begin
update the vector [fl (1), w,(), 7, (Z)] or

calculate e,(?), v,(t) VteT asfollows
&(0= 27 0 +& ¢+ 70))- 2 0)
v.(f) = ;[p;; O o,lt+750))

+ ;[plf Ok @+ & [+ @)-e, (z))z]
where k is the set of indices of possible travel times
on arc(i,j) at time t.

if e (r)<é,(t) and v, (t) < w,(¢) then
Sgi(t) = ei(t)a 2 (1) = b, @), ﬁi(t) =]
if [e,(t)<&,(t) and v, (t) > w,(t)] or

[e,(t)>¢,(t) and v,(f) < w,(t)] then
apply secondary comparison rule

otherwise keep all paths as a nondominated path

ifi ¢ SA LIST then
putiin SA LIST
end

112

Secondary comparison rule

This secondary comparison between paths h; and h, is done for which " < 1™,

"> 4", but v" <v™). Because path h; has a smaller mean value

but v >v" (or u
than does path h,, but a larger variance, the two path specific cumulative distribution
functions intersect each other. As a result, under the stochastic dominance, it is not
possible to say that " < "> . However, if the difference in the mean values is relatively
large and the difference in the variances is relatively small, one might still be willing to
assert a preference for path h; over path hy, even though neither the mean—variance

comparison nor the stochastic dominance is satisfied. This can be formalized by saying

that the CDF’s of path h; and h, are equal at time t. (i.e., F,(7,)=F,(,)), and t. is
large enough so that F, (z,) = F,(,) >1—a, then we can assert a preference for path h;

over path h,. The quantity « is a probability parameter that controls the degree to which
the comparison deviates from the stochastic dominance. That is, as o — 0, this
comparison rule converges to a standard stochastic dominance comparison, but for values

of a >0, itis arelaxation.

5.1.4 lllustrative Example
In this section, the TAMMYV-ND algorithm is illustrated on an example network
shown in Figure 4.2. Since the initialization procedures are same as previous algorithm

PMV, we present only the major part of the algorithm.

Initialization

113

Node List N={1,2,3,4}

Arc List A=1{a,b,c,d e}
Time space T= {0,1,2,3,4,5,6,7}
Destination Node d =4

Scan_Available List SA LIST= ¢

Set each node 1,
E(t)=o, Viell,2,3},1{0,1,2,3,4,5,6,7}
E,(t)=0, V1e10,1,2,3,4,5,6,7}
t)=o0, Viell, 2 3} 1e{0,1,2,3,4,5,6,7}
t)=0, Vte{0,1,2,3,4,5,6,7}
()=, Viell, 2,3}, 1te{0,1,2,3,4,5,6,7}
z,(t)=¢, V1e{0,1,2,3,4,5,6,7}

e

X
a’4(

Create the Scan_Avabable list, SA LIST, and insert the destination node d
SA_LIST = {4}

Step 1
Select the first node 4 from the SA LIST list

Call this is current node, j = 4,

Step 2

Foreachi, (i,j)e 4
i= {2,3}

Selectnode 2,i=2, h=1
t=2
es(t=2)=3.8
vi(t=2)=2.56
Update Label
If e (1)< & (1), and v! (1) < 0! (1)
Then &' (t)=e!(t), and @' (t)=Vv!(t),and x| (¢) = (i,)
Since €j(r=2) =3.8<&(t=2)=0,
Wi(t=2) =256 <l (t=2)=0
Update &(2)=3.8, @,(2)=2.56, m,(2)=d, h=1

114

v,(t =3)=0.24
Since €)(r=3) =6.6 <& (t=3)=00,
Vi (t=3) =024 <) (t=3)=0
Update &(3)=6.6, ,(3)=0.24, m,3)=d h=1

Ifiisnotin SA LIST list, Putiin SA LIST list
SA_LIST = {2}

Select node 3,1 =3, h=1
t=4

&t =4)=[(ch @+ @+ 7L @) pl @]+ @+ @+ 22, @)) o2 @)
=4+ Q4402+ (6+&(2+6))%08
— (4+0)%02 + (6+0)*0.8
~56

vi(t=4)=[02%0+0.8*0]+ [0.2%(4+0-5.6)> +0.8*(6+0-5.6)
~0.64

Since el(t=4) =6.6 <& (t=4)=
Vi(t=4) =0.64<ai(t=4)=o
Update &)(4)=5.6, o}(4)=0.64, rm(4)=e

t=35
1

eit=5) =71
vi(t=5) =1.89

Since e(t=5) =6.6< & (t=5)=w
vi(t=35) =1.89<wi(t=5)=0
Update &,(5) =7.1, @,(5) =1.89, m,(5)=e

t=6
elt=6) =1.1< & =6)=0
vi(t=6) =0.09

Since Vj(t=6) =0.09 < @i(t=6)=o0
Update £1(6) =1.1, @}(6) =0.09, 7z(6)=e

t=7
et=7) =6.6<&E(t=T)=w

115

vi(t=7)= 021

Since Vi(t=7) =0.21 < @i(t=7)= o
Update &(7)=3.7, @l(7) =021, x!(T)=e

Ifiisnotin SA LIST, Putnode3inSA LIST
SA_LIST ={2, 3}

GO TOSTEP1

Select the first node 2 from the SA_LIST
Call this is current node, j =2, SA_LIST ={3}

Step 2

Foreachi, (i,j)e 4
i= {1}
Selectnode 1, i=1,h=1
t=0
el(t=0)=7.7
v, (t=0)=5.01
Since €/(t=0) =7.7 <& (t=2)=w,
Vi(t=0) =5.01 < @ (t =0)= oo
Update &'(0) =7.7, @}(0) =5.01, 7z/(0)=a

Node I is notin SA_LIST, Putnode I in SA LIST
SA LIST = {3,1}

GO TOSTEP1

Select the first node 3 from the SA
Call this is current node, j =3, SA_LIST ={1}

Step 2

Foreachi, (i,j)e 4
i= {1,2}

Selectnode 1, i=1,
t=0
el(t=0)=11.26
v/ (t=0)=1.3524

116

Since €/(t=0) =1126> & (t=0)=77,
v (t=0) =135 < @ (t=0)=5.01
=> Apply secondary comparison rule

CDF calculation

Path (Prev) Path(Curr)
time | prob | time | prob
5 0.4 10 0.3
9 0.7 11 0.72
10 1 CIDF 001;|1153arison 1
1.2
1
£0s8 /
% | Prev
g 06 — Curr
04
0.2
O L
0 5 10 15 2
Time

Find t., where F (el1 (tc)) =F (511 (tc))
t. is large enough, this case t. is around 10.

Also, if a=0.5, Fle!(t.)) = F[&'(,))>1-05=05

Therefore, Keep previous node label
E(0)=7.7,w (0)=5.01, 7, (0)=b

Node 1 is already in SA_LIST ,
SA_LIST = {3}

Selectnode 2, i=2(G=3)
t=2

ei(t=2)=5.82

vi(t=2)=2.188

Update Label
Since €)(r=2) =582>&(t=0)=338,
Vi(t=2) =2.188 < @} (t =2)=2.56

117

= Apply secondary comparison rule

CDF calculation

— Prev
Curr

Path (Prev) Path(Curr)
time prob time prob
5 0.4 5 0.72
9 0.7 6 0.8
10 1 8 0.86
9 1
CDF comparison
1.2
> 1 //
£08 [
g 0.6
T 04
0.2
0
0 2 4 6 8 10
Time

12

Find t., where Fle!(t.)) = F£'(.))
t. is large enough, this case t. is around 9.

Also, ifa=0.5, Flel(c)) = F(& (t,))>1-05=0.5

Therefore, Keep previous node label
£(2)=3.8,0y(2)=2.56, 13(2)=d

t=3
ey(t=3)=4.85
vi(t=3)=1.568
Since €)(r=3) =4.85< & (t=3)=6.6,
Vi(t=3) =1.568 > wi(t=3)=0.24
=> Apply secondary comparison rule

Path (Prev) Path(Curr)

118

time prob time prob
6 0.4 5 0.72
7 0.7 6 0.8
10 1 8 0.86
9 1

— Prev
Curr

CDF comparison
1.2
1 A
208
/
806 / -
e
Q04
0.2 [
0
0 2 4 6 8 10
Time

Find t, where Flel(,)) = F(£'))
t. is large enough, this case t. is around 7.
Also, if a=0.5, Fle!(t,)) = F[&(t))>1-05=05

Therefore, Update &) (3)=4.85,w,(3)=1.568, 7,(3)=c

Ifiisnotin SA LIST, Putnode?2in SA LIST
SA_LIST ={1, 2}

GO TOSTEP1

Select the first node 1 from the SA LIST
Call this is current node, j =1, SA_LIST ={2}

Step 2

Foreachi, (i,j)e 4
i= ¢

GO TOSTEP1

Select the first node 2 from the SA LIST

119

Call this is current node, j =2, SA_LIST={ }
Selectnode 1, i=1
t=0
el (1 =0)=6.825
v (t=0)=3.1146

Since ¢/ (t=0) =6.825< & (t=0)=77
vi(t=0) =3.115 < @ (t=0)=5.01
Update £&'(0) =6.825, /(0) =3.115, 7z,(0)=h

SA LIST={ !

STOP

120

5.2 Time-Adaptive Mean-Variance Algorithms

As we know, we treat the link travel time as a random variable; the trip time
from one node to another is also a random variable. It is assumed that travel times on the
network can be treated as a multivariate random variable for which links may have
correlated travel-times. Our goal is to devise an algorithm which allows a traveler to
select a route by examining the mean and variance of travel time. We present an
algorithm for selecting the “best” next arc routing using two comparison rules. The first
comparison rule is described in the primary comparison rule from the previous chapter.
The second comparison rule is a linear combination of relevant attributes of a routing
policy. The problem of optimal routing policy with minimum mean and minimum
variance (from the first comparison rule) and minimum linear combination of expected
travel time and variance (from second comparison rule) problem in a stochastic time-

dependent network with one destination node d is to find r,(¢) such that,

7.(t)= Argmin (&.(1), .(1)), VieN,teT

JeA(i)
or
7,(t) = Argmin (&) +a* Jo,(1)) VieN,ieT
JeA(i)

The reasons for designing an algorithm for the minimization of a linear combination
policy attributes rather than only for specific attributes criterion, like the minimize mean
and variance, are three-folded. First, the linear combination problem is more realistic, as
the expected travel time is usually the primary concern of travelers in a stochastic time-
dependent network, while the reliability criteria are secondary. Second, a linear

combination is a reasonable way of combining multiple objectives. Third, a linear

121

combination is algorithmically easy to control in the decision making process.

In this chapter, two computationally efficient algorithms are presented for determining
the minimum mean-variance paths for all origins to a single destination in networks where the
arc weights are discrete random variables whose probability distribution functions vary with time.
At termination of the algorithm, efficient solutions (or non-dominated solutions) are
generated. Such efficient solutions can be presented to the traveler, who may then make
the appropriate choice. For the multiobjective routing problem, an efficient solution
provides a route which is such that no other route provides a lower mean travel time and

a lower variance

5.2.1 The TAMMV1 Algorithm

The TAMMVI1 algorithm, like the PMV algorithm, is a specialized label

correcting algorithm. Here, the two label vectors, [&.(¢), @.(¢) Jiet, are associated with

every node. At termination of the algorithm, the “best” next arc is generated for any node
to the destination node for time t using the two label vectors, [£ (¢), @,(¢) Jier. These arcs
are not necessarily associated with a single path, and thus, the paths cannot be
reconstructed upon termination.

Let the vector [e;(¢), v,(?) Jier be the temporary label from node i. Denoted by

&.(t), o(t), the current label at the end of the k™ iteration. Since we have a clear

understanding about the first comparison rule, we present the recursive equation to
compute the linear combination of the mean and variance of a routing. From the previous

chapter, we know the following recursive equation for the mean and variance of the

122

travel time
o)=Y [cr @ pt O]+ Xle, e+ k@) i} VieN, vier

As we verify the principle of optimality of the minimum expected travel time and the
minimum variance in Chapter 4, we can say that the principle of optimality holds for the

minimization of the linear combination of the mean and variance routing policy. The
linear combination of the above two equations ise (¢)+a*,/v,(¢) . The optimality

conditions are:
e ()= }%{;[r’; 0% pL O]+ ;[ej (e+25) pl (z)]j, VieN, VieT

v.(f) = min [ij; O v, (+7-)+ ph) e, (1) et + 75 0) e, (t))zj, VieN, VieT
JeA)_ k k
e(t), v,(t)=minle,(t) +a*v,(t)} VieN, VieT

JeA(@)

In this linear combination, the parameter @ is selected by a traveler. If a traveler chooses
a=0, his selection of the “best” next arc is based on only the expected travel time.

However, selecting a large @ is for concerning more variance than expected travel time.

A flow chart the basic procedure steps of the TAMMYV1 algorithm is presented
in Figure 5.3. An example problem in figure 4.2 is shown in section 5.5 to illustrate this

procedure.

123

Initialization

¥

Destination node d
to SA list

< SA list
Stop)<—Ye Empty.?

No
\ 4

Select node j from SA

A

Scan j

Calculate node label ‘All predecessors

considered ?

(mean-variance)

Update current label

New label

Yes— and —
enter the node in SA

No

Discard new label

Figure 5.3. Flow chart of the TAMMYV 1 algorithm steps

Algorithm TAMMV1

begin
Procedure Initialization
begin
create the NODE LIST, SA LIST
put all nodes i to NODE_LIST
set SA LIST=0
set each node i,
()=, VieN—-d,teT

124

E,)=0,VteT
w,(t)=w, VieN-d,teT
w,t)=0, VteT
7w, (ty=0w, VieN-d,teT
n,(t)=¢, VteT

Insert destination node, d to set SA_ LIST
end

while SA_LIST#0 do

begin

select the first node of the set SA LIST
call this node the current node, j
scan the current node, j
begin
for each i unlabeled do
if succ(i)=j, (i,j)€A, then
begin
mark node i labeled
end

procedure Update Node Labels
For all i labeled
begin
update the vector [fl (1), w,(), 7, (Z)] or

calculate e,(?), v,(t) VteT as follows

e)= et) +(g a7k 0))- ot ()]
v()=S Pl 0o+ 0)
+ Z[p;f Ok @+ & (+74 @) e, (t))z]

where £ is the set of indices of possible travel
times on arc(i,j) at time .

if w(@)<<&(t) and o,(¢) < w,(t)then
S () = p; (1), (1) = v, (1), 7, (1) = (i,)

if [1) <&@ and 0,(1)>w,()] or
[4,(t)> £(1) and v,(1) < ,(r)] then

125

compare u,(t)+a*4v,(t) <& () +a*,o,(t) then
S/() = p, (1), 0, (t) = v,(1), 7, (1) = (@,)

otherwise keep previous information

ifi ¢ SA_LIST then

put i in set SA LIST
end

Remove j from SA_ LIST
Unlabeled all nodes

end
end

Proposition 5.1. The TAMMV 1 algorithm terminates in a finite number of steps.

Proof. The algorithm terminates in a finite number of steps if the SA_LIST is empty in a finite
number of steps. Suppose the SA_ LIST is not empty in a finite number of steps, then at least
one node must be inserted in the SA_ LIST an infinite number of times. This implies that the
label at the node has improved by at least a positive real-value of travel time. If the
improvement at the node continues an infinite number of times, then the travel time on the path
would eventually become negative, which contradicts the assumption of the positive travel
times. This contradicts the supposition that the SA_ LIST is not empty in a finite number of
steps, and hence, shows that the TAMMV1 algorithm terminates in a finite number of

steps.

Proposition 5.2 The TAMMVI1 algorithm with a basic FIFO SA LIST structure has the
worst-case computational complexity O(k - 71> - n’), where TI is the number of time intervals

into which the peck period is discretized, n is the number of nodes in the network, and k is the

maximum number of possible values of the arc travel time random variable for the time interval.

126

Proof. Once the destination node is removed from the SA_LIST, it will never again be updated.
All of its predecessor nodes are added to the SA_ LIST for updating. Thus, the SA_ LIST contains
at most the n-1 nodes. From all the nodes initially inserted in the SA_LIST, the one with the least
label for a given departure time will be updated permanently. This is repeated for the remaining n-
1 nodes. Since there are at most TI(n-1) labels that can be improved, at most TI(n-1)* will be
inserted in the SA LIST. The procedure “Update Node Labels” requires a maximum of
(TDH(k)(n-1) computations for every node that is scanned because in the worst case, each node

can be reached by n-1 nodes and each nod has TI labels, requiring k computations. Thus, the

complexity of this algorithm is O((TI) -(n=1)*-(TI)-(k)-(n— 1)), or ~O(k-TI* -n’).

5.2.2 The TAMMV2 Algorithm

The TAMMYV?2 algorithm can be viewed as an efficient specialized label-setting
algorithm for determining the “best” next arc routing hyperpaths from all i to a select
destination, d. Similar to the TAMMYV 1 algorithm, a vector label is associated with each
node, the components of which correspond to mean and variance of traversal times from
the associated nodes to d, at a given departure time. The iterative structure of this
procedure is based on that of the DOT (Decreasing Order of Time) algorithm of Chabini
(1997) for determining least-time paths in deterministic, time-varying networks.
However, the computation and interpretation of the label values in the TAMMYV?2
algorithm account for the stochastic nature of the arc traversal times. Unlike the
TAMMYV1 algorithm, where the components of all vector labels are temporarily set until
termination (at which time all vector label components become permanently set), after

each iteration of the main loop of the TAMMYV?2 algorithm, where the labels are updated

127

for a specific departure time, t, the component of each vector label associated with t is
permanently set for all i.

Since all possible arc travel times are strictly positive, e,(f) and v,(f) may be

determined entirely from e;(s) and v,(s) for later values of time s>¢. Therefore, if we

first compute e;(M) for all ieN as a base case, we can proceed to compute e;,(M-1), e;(M-

2),..., ei(0), in a decreasing order of time, until a complete solution is found. A flow chart

the basic procedure steps of the TAMMYV?2 algorithm is presented in Figure 5.4.

Initialization

v

Destination node d
to SA list

—»] Decrement t Ye
loop

No
A 4
No o Select node j from SA
Yes

Yes
A 4

Yes

A

Edge list Scan j
= All edges in the graph

!

y
- dge lis
empty ?

No

All predecessors
considered ?

v
Take one edge
from the Edge list Calculate node label
No l when t=M

Calculate node label

Update current

New label Yes label and
better ? enter the node
in SA

Y'es Discard new label

Update current label

Figure 5.4. Flow chart of the steps of TAMMV2 algorithm

128

Algorithm TAMMYV2

begin
Procedure Initialization

begin

create the NODE LIST, SA LIST
put all nodes i to NODE_LIST
set time space T = {1, 2,, M}
set SA_ LIST=0
set each node i,

()=, VieN-d,teT
E,()=0, VteT
w,(t)y=0w, VieN—-d,teT
w,t)=0, VteT
()=, VieN,teT
,t)=¢, VteT

Insert destination node, d to set SA_ LIST
end

While SA LIST #¢ do
begin
select the first node of the S
call this node the current node, j
scan the current node
begin
for each i unlabeled do
if succ(i)=j, (i,j)€A, then
begin
mark node 1 labeled

end
end
for all i labeled update the vector [fl ®), w,(2), 7, (t)] Y
begin

e,(t=M)=Y [cF)+ (&, (M + 7 00) pl a0)]

vi(e=M)=3[pf M) v (M +2E (M)

k

Loty * ety & (b1 47) -)

129

if e(M)<& (M) and v,(M)<w,(M)then
é:i(M)zei(M)’ wi(M):Vi(M)a”i(M):(iaj)

if[e(M)<& (M) and v,(M)>w,(M)] or
[e,(M)>& (M) and v, (M) <w,(M)]then

compare e,(M)+a*.v,(M)<&M)+a* o (M) then
S(M)=e,(M), 0.(M)=v,(M), 7,(M) = j
otherwise keep previous information

ifi ¢ SA_LIST then
put i in set SA_ LIST

end

Procedure Main Loop
begin
set each node i,
S ()=, VieN-d,t <M
E,()=0, Vi<M
w,(t)y=0w, VieN—-d,t<M
w,(t)=0, V<M
7w, (t)y=0w, VieN—-d,t<M
7,t)=¢, V<M

fort=M-1t00
for all links (i, j) € 4
update the vector [fl (), o.(t),x, (t)] teT

¢ = | +(g, ¢+ @) ot)]
v, =Ylp 0 *o,lt+70)
b Yl x4 & 47 0)-e 0
P AORA SZAG)

()= Argming *

JjeA(D) +Z[pzl;) *(TII; (H)+ g‘gj (I + T; (t))_ei (t))z]

130

if e()<&(t) and v,(¢) < @, (t)then
é:i(t) = ei(t)a a)i(t) = Vi(t)7 ”i(t) = (i,j)

if[e,(t)<&(t) and v, (1) >w, ()] or
[e,(t)>&.(1) and v, (1)< w,(t)] then

compare e, (1) +a*v,(t) <& (O +a* o) then
S =e), w,)=v,(), 7,(1)=(,))
otherwise keep previous information
end
Proposition 5.3 The TAMMYV?2 algorithm terminates in a finite number of steps.
Proof. The proof is a straightforward extension of that given in proposition 6 for the
TAMMV1 algorithm with the difference that only selected #(= M) e T is considered in the
initialization procedure. Therefore, we only need to show the main loop of the algorithm. In
the main loop, all node labels are updated at each time interval. Since the number of nodes

and travel times are finite, all node labels are updated to the finite number of times with

(n—1)*(TI —1). This shows that the TAMMV2 algorithm terminates in a finite number

of steps.

Proposition 5.4 The worst-case computational complexity of the TAMMV?2 algorithm
is O(k-n* +m-TI -k).

Proof. The complexity of Algorithm TAMMYV?2 is straightforward. At initialization of
this algorithm, the running time is O(k-n’) because the node label can be updated for

only a selected travel time t=M. In the main loop, at each time period of the dynamic
period (i.e. t < M), each arc is visited exactly once with the k mathematic operations. At

the end of each such iteration, where labels are updated at a specific departure time, t, and the

131

component of each vector label associated with ¢ is permanently set for all nodes. Thus,

there are TI-1 iterations of the main loop resulting in m-(7]—1)-k computations.

Therefore the running time of the main loop is O(m-77-k). To sum up, the worst-case

computational complexity of the TAMMV?2 algorithm is O(k-n’ +m-TI - k)).

An example problem is shown in section 5.3 to illustrate this procedure.

5.3 Conclusions

In this chapter, a method for comparing probability distributions which is less
strict than the classical stochastic dominance is presented. This method has an important
practical application in determining a set of non-dominated routes in a network when
there are uncertain measures. Also, two efficient algorithms for determining the time-
adaptive minimum mean-variance hyperpaths were presented. An example was given to
show that the adaptive strategies can lead to improved routing decisions over a priori path
selection. Such a procedure is applicable to many problems that can be represented as
stochastic time-dependent networks and is of particular interest in the transportation and
data communication systems. An understanding of these two algorithms provides an
important step in developing efficient techniques for real-time routing of vehicles in
Intelligent Transportation Systems and real-time routing protocols for packets in data

networks.

Example for TAMMV1

132

Initialization

Node List N={1,2,34}

Arc List A={ab,c,d, e}
Time space T= {0,1,2,3,4,5,6,7}
Destination Node D =4

Scan_Available List SA= ¢

Set each node 1,

E(t)=o, Viell,2,3},t€{0,1,2,3,4,5,6,7}

E,(t)=0, V1e{0,1,2,3,4,5,6,7}
&, (t)is label of node i, at time ¢, where until termination of the
algorithm (the expected travel time from node i to the destination
at time ¢)

o, (t)=o, Viell,2,3},1{0,1,2,3,4,5,6,7}

w,(t)=0, V1e{0,1,2,3,4,5,6,7}
o, (t)is label of node i, at time ¢, where until termination of the

algorithm (the variance of travel time from node i to the
destination at time ¢)
z(t)=w, Yiell, 2 3}te{0,1,2,3,4,56,7}

7, (t)=9, V1e{0,1,2,3,4,5,6,7}
7, (t) indicates the arc to be followed from node i at time ¢

Create the Scan_Avabable list, SA, and insert the destination node D
SA = {4}

Step 1

If SA list is empty, go to step 3

Otherwise,
Select the first node 4 from the SA list
Call this is current node, j = 4

Step 2

For eachi, (i,j)e 4

i= {2,3}
Determine the lower bound on the expected time and
variance to node 4

133

Update the vector & (1) and o, (¢)

Select node 2
Calculate
Expected time :

1w ()= (2 @)+ & e+ 22 @0)* p2)]
Variance :

v()=Ylpr v (t+22)]

+ Z[p,-j»’ O* 2 @)+ & t+220)-1 (z))z]
i=2
t=2
w(t=2)=|r2 @+ +2,) pL @+ @+ 2+ 2 @) 2]
=(3+&,(2+3)%0.8 + (7+&,(2+7))*0.2
= (3+0)*0.8 + (7+0)*0.2
=38
v,(1=2)= | @ - 1@ * P @ @) - i@ * 2 2)]
=((3-3.8)2*0.8)+((7-3.8)>*0.2)
~2.56
Vi (t = 2) = [p;4 (2)*v, (2 +17, (2))]"' [;0224 (2)*v, (2 +7, (2))]
o @* (ke @+ 1,2+ 73,(2)- 1, D)
+ p224 (2)* (7224 2)+u, (2 + 7224 (2))_ Hy (2))2
=[0.8%v,(2+3)]+[0.2%v,(2+7)]
+0.8% G+ 1,243 - @)F +02%(7+ 1,2+ 7 - i, DY |
= (0.8%0)+(0.2%0))+(0.8*(3+0-3.8)*)+ (0.2%(7+0-3.8))
~2.56
A1) = (0 + ax v, ()

Update Label
If w,(t)<&.(2), and v,(t) < o,(t)
Then &,(t) = p,(t), and w,(t)=v,(1),and 7,(1) = (i,)
If w,(t)<&.(2), and v,(t) > w,(t)
Compare u,(¢)+« *W <&M +a *m
Then &(1) = 4,(t), and w,(t)=v,(0),and 7,(t) = (i.)
If 4,(t)> &), and v, (1) < o, (1)

134

Compare u, (1) +a*,v,(t) <& () +a* o ()
Then &(1) = ,(t), and @,(t)=v,(t).and 7,(t) = (i,])
Otherwise Keep previous Value

Since ,(1=2) =3.8< & (t=2)=0,
v,(t=2) =256 < (t=2)=o
Update &,(2)=3.8, ®,(2)=2.56, 7x,(2)=d

t=3
1t =3)=|r4 3 +(&GB+ 2,3 pL B[+ (& B+2.3)* 12,3
=(6+&,2+6))%0.4 + (7+&,(2+7))*0.6
=(6+0)*0.4 + (7+0)*0.6
=6.6
vo(t=3)=[p} 3 v, B+ L B+ [p2 3,3+ 73,0)
1oL) (L 3+ 1,3+ 74 3))- 1 B)f
23 (2, 3)+ 1,3+ 7243))- 1 B)f
=[0.4*v,(3+6)]+[0.6%v,(3+7)]
0456+ 1,3+ 6) = 1, +0.6*(T+ 1,3+ T) - 1,)]
= (0.4%0)+(0.6%0))+(0.4*(6+0-6.6)*)+(0.6*(7+0-6.6))

=0.24
A (1) = p; (1) + v, (1)
Update Label

Since ,(t=3) =6.6< & (t=3)=w,
v,(t=3) =024 <@ (t=3)=w
Update &,(3)=6.6, ®,(3)=024, 7z,(3)=d

If i is not in SA list, Putiin SA list
SA = {2}

Select node 3
i=3
t=4

135

w1 =4)=[lrL, (@) + (£, + 7L @) * oL @]+ (2@ + (&, @+ 22, @) 02, @)
=(4+&,2+4)*%02 + (6+&,(2+6))%0.8
— (4+0)%02 + (6+0)*0.8
=56
vi(t=4)=[oL @ v, @+l @)+ [0k @ v+ 22 @)
+ p314 4* (7314 4+ u, (4 + 7314 (4))_ H (4))2
oA @* (2@ + 1,6+ 72@)- 1D
=[02%v,(4+4)]+[0.8*v,(4+6)]
P02 (@4 1y (459 11, @) +0.8%(6:+ 11, (4+6)— 11,(4))]
= (0.2%0)+(0.8%0))+(0.2*(4+0-5.6)* }+(0.8*(6+0-5.6))
—0.64
A (8) = p; (1) + a *\Jv, ()

Update Label

Since u,(t=4) =56 <& (t=4) =,
v,(t=4) =0.64<w,(t=4)=w
Update &,(4)=5.6, ®,(4)=0.64, =,2)=e

t=35

1,(t=5)=(5+&,(5+5)%03 + (8+&,(5+8))*0.7
=(5+0)*0.3 + (8+0)*0.7
=7.1

v,(t=5)=[0.3*v,(5+5)]+[0.7*v,(5+8)]
+[0.3%(5 4 12,(5+5) — 11,)Y +0.7%(8+ 11, (5+8) - 11, (5))]
=(0.3*(5+0-7.1*)+(0.7*8+0-7.1)*)
~1.89

Update Label
Since ,(r=5) =7.1< & (=5 =00,
v,(t=5) =1.89 <@, (t=5)=00
Update &,(5) =7.1, ,(5) =1.89, m,(5)=e

136

w(t=6)=(1+&,(6+1))%0.9 + (2+&,(6+2))*0.1
=(1+0)*0.9 + 2+0)*0.1
=1.1

v,(t=6)=[0.9%v,(6+1)]+[0.1%v,(6+2)]
+[O.9*(1+,u4(6+1)—,u3(6))2 +O.1*(2+,u4(6+2)—,u3(6))2]
=(0.9*1+0-1.1*)+(0.1*(2+0-1.1)?)
=0.09

Update Label
Since u,(t=6) =1.1< &(t=6)=
v,(t=6) =0.09 < @, (t=6)= o0
Update &,(6) =1.1, ,(6) =0.09, 7m,(6)=e

t=7

w(t=7)=(3+&,(7+3))%03 + (4+&,(7+4)*0.7
= (3+0)*03 + (4+0)*0.7
=37
v,(t=7)=[03%v,(7+3)]+[0.7*v,(7+4)]
03% B4 i, T+3) = 1 (D +0.7% (44 1,7+ = 1, (DY]
=(03*(3+0-3.7)*)+(0.7%(4+0-3.7)*)
=021

Update Label
Since u,(t=7) =3.7 < &@=T) =
vi(1=7) =021 < a,(t=7)=w
Update &,(7) =3.7, w,(7) =021, =n,(7)=e

If i is not in SA list, Put node 3 in SA list
SA={2,3}

GO TOSTEP1

Select the first node 2 from the SA list
Call this is current node, j = 2, SA ={3}

Step 2

137

For eachi, (i,j)e 4
i= {1}

Determine the lower bound on the expected time and
variance
Update the vector ¢, (t) and o, (t)

Select node 1

=1
t:

1,(1=0)=[7,0) + (& 0+ 2,) oL, O]+ [0 + (&, 0 + 22,) £2,0)]
= (2+&,(0+2))%0.5 + (3+&,(0+3))%0.5
= (3+3.8)*0.5 + (7+6.6)*0.5
=77

v, (1=0)=[p,0)*v,(0+ 21,0+ [(0 *v,(0+ 25, (0))]

+ 1ok (0)* (7, (0) + 41,2+ 71,(0))~ 11,(0))

+ P2 (0)* (7300 + 11,3+ 72(0))- 14, (0))
=[0.5%v,(0+2)]+[0.5%v,(0+3)]

0.5 24 1,042~ 1, (0)) +0.5%(3+ 11, (0+3) - 11, ()]
= (0.5%2.56)+(0.5%0.24))+(0.5%(2+3.8-7.7)*)+ (0.5* 3+ 6.6-7.7)*)
=1.28+0.12+1.805+1.805
=5.01

Update Label
Since 4(t=0) =77 < &(t=0)=oo
v (t=0) =5.01 < @ (t=0)=o
Update &,(0) =7.7, ,(0)=5.01, 7z,(0)=a

Node 1 is not in SA list, Put node I in SA list
SA = {3,1}

GO TOSTEP1

Select the first node 3 from the SA list
Call this is current node, j =3, SA ={1}

Step 2

For each i, (i,j)e 4

138

i= {1,2}
Determine the lower bound on the expected time and variance
Update the vector & () and o, (¢)

Select node 1
i=1
t=0

14t =0)=[(130 + (& 0+ 75,)) % o, O]+ [72.©) + (& 0+ 72.(0) * o2 (0)]
= (5+&,(0+5)%04 + (7+&,0+7))*06
=05+7.1)*04 + (7+3.7)*0.6
=11.26

Vi (t = 0) = [,0113 0)*v, (O+ 75 (O))]+ [;0123 0)*v, (O+ 7 (O))]
o0 (300 + 21,5+ 25, (0)) - 14, (O))
RO (7300 + 247+ 73(0)- 1, (0)f
=[0.4%v,(0+5)]+[0.6%v,(0+7)]
+04%(5+ 11,045~ 11,(0)) +0.6(7+ 11,0+ 7)— 14, (O) |
= (0.4*1.89)+(0.6%0.21))+(0.4*(5+7.1-11.26)*)+ (0.6*(7+3.7-11.26)*)
~0.882+0.4704
~1.3524
Update Label
Since 4 (¢r=0) =1126 > £(=0)=7.7
v (t=0) =135 < @(t=0)=5.01
Let o =1, Compare
A = () +ax v (@) =1126+1% /135 =12.42
1 () +ax v () =12.42 > () +a*Jo (1) =7.7+1%4/5.01 =9.94
So, Keep &(0)=7.7, @,(0)=501, 7z,(0)=b

Node 1 is already in SA list,
SA = {3}

Select node 2
i=2(G=3)
t=2

139

w(1=2)=[L@+ (& + L @) oL @)+ 2@ + e 2+ 2@) P2)
=(4+&2+4)%08 + (5+&,(2+5))*02
=(4+1.1)*0.8 + (5+3.7)*0.2
=582

v,(r=2)=12.188

Update Label
Since p,(r=2) =5.82 > &,(t=2)=3.8
v,(t=2) =2.19 < @,(t=2)=2.56
Let o =1, Compare
A.(8) = () +ax v, (t) =5.82+1%/2.19 =730

) +ax\v.(t) =730> & () +ax o (t) =3.8+1*%y2.56 =54
So, Keep &,(2) =3.8, w,(2)=2.56, =m,(2)=d

-
Il
(98]

1(=3)=[(c3,3)+ (& G+ 2L @) P 3]+ [2,0) + 6, G+ 2,3 p2)
=(1+&@+1D)*03 + (3+&,(3+3))*0.7
= (1+5.6)*03 + 3+1.1)*0.7
= 4385

v,(t=3)=1.57

Update Label

Since w,(t=3) =4.85 < &(t=3)=6.6
v,(t=3) =1.57 > w,(t=3)=0.24
Let a =1, Compare

A= (t)+a* v (1) =4.85+1%,/1.57 =6.08

M (D) +axv,(t) =608 <& (H)+a*,w(t) =6.6+1%0.24 =7.09
So, Updata &,(3) =4.85, w,(3) =1.57, =,(3)=c
If i is not in SA list, Put node 2 in SA list
SA={1, 2}

GO TOSTEP1

140

Select the first node 1 from the SA list
Call this is current node, j =1, SA ={2}

Step 2

For eachi, (i,j)e 4
i= ¢

GO TOSTEP1

Select the first node 2 from the SA list
Call this is current node, j =2, SA={ }
Determine the lower bound on the expected time and variance

Update the vector ¢, (t) and o, (t)
Select node 1

=1

(71,0)+ (& 0+ 7,,0))% O]+ [(e2,0) + (& 0+ 720)))* o 0)]
=(24+&,(042))%0.5 + (3+&,(0+3))%0.5

=(2+3.8)*0.5 + (3+4.85)*0.5

=6.825

v (t=0)=|pL0)*v,(0+7,0))+|7.(0) 1, (0+ 73 0))
+ 105042, (0)+ 11,2+ 71,(0))- 14, (O

RO * (20 + 11,3+ 22.0) -4 (O
=[0.5%v,(0+2)]+[0.5%1,(0+3)]

+[0.5%(2 4+ 1,(04+2) - 4, (O)F +05%(3+ 1,0+ 3)~ 4 O]
=(0.5%2.56)+(0.5%1.57))+(0.5%(2+3.8-6.825))+ (0.5*(3+ 4.85-6.825)’)
~1.28+0.785+0.5253+0.5253

=3.11
Update Label
Since 4 (t=0) =6.825 < &(t=0)=7.7

v(t=0) =3.11 < @, (=0)=5.01

Update & (0) =6.825, ,(0) =3.11, 7z,(0)=a

Ay (t = 0)

SA={ }

STOP

141

t=2 3.8 '@

C 256
6.825/'@
b s t=6 1.1 »| : >

1126
116 t=4 56

N 0.64 @
t=5 N
oS
1
R
= 0.21

Figure 5.5. Resulting hyperpaths for departure time t=0 from node 1

Example for TAMMV2

Consider the example network in figure 4.2.

arc (1,2) arc (1,3) arc (2,3) arc (2,4) arc (2,5)
T T T T T T
(9] . Prob. | .. Prob. | .. Prob. | .. Prob. | .. Prob.
time time time time time
0 4 0.31 7 0.26 1 0.86 3 0.21 8 0.65
5 0.69 2 0.74 7 0.14 4 0.79 1 0.35
1 1 0.14 7 0.34 4 0.60 2 0.48 4 0.40
6 0.86 8 0.66 2 0.40 4 0.52 6 0.60
) 4 0.33 4 0.60 3 0.66 8 0.05 2 0.11
8 0.67 6 0.40 7 0.34 7 0.95 1 0.89
3 2 0.20 7 0.27 5 0.39 9 0.55 7 0.88
8 0.80 8 0.73 8 0.61 5 0.45 3 0.12
4 3 043 1 0.70 6 0.90 3 0.69 6 0.62
4 0.57 8 0.30 7 0.10 1 0.31 8 0.38
5 1 0.17 9 041 6 0.64 7 0.98 2 0.85
5 0.83 5 0.59 4 0.36 4 0.02 5 0.15
Initialization

Node List N={1,2,3,4}

Arc List A=1{a,b,c,d e}

Time space T= {0,1,2,3,4,5} ,1ft>6, t=5
Destination Node D =4

Scan_Available List SA= ¢

142

Set each node 1,
E(t=M-1=5)=c0, Vie{l, 2, 3}
Et=M-1=5)=0
&, (t)is label of node i, at time ¢, where until termination of the
algorithm (the expected travel time from node i to the destination

at time ¢)
w,(t=M —-1=5)=c0, Vie{l, 2,3}
w,(t=M-1=5)=0
o, (t)1s label of node i, at time ¢, where until termination of the
algorithm (the variance of travel time from node i to the
destination at time ¢)
zt=M—-1=5)=w, Vie{l, 2,3}
r(t=M-1=5)=¢
7r; (t) indicates the arc to be followed from node i at time ¢
Set
e,t=M-1=5)=0 , e,(t>5)=e,(t=5), ¢, (t>5)=¢ (t=5) VieN
74(t:M_1:5):O }/4(t>5)=}/4(t=5), Vi (t>5)=7i (tZS) VieN

Forall (i,j), (i,j)e 4
Calculate
Expected travel time when t=M-1=5:

(e Z[(;(S)) pL(} VG, j)ed
Variance when t=M-1=5:
Z[py &) *(e25) -1,) | ¥y e 4
1,(0=5) Z[(ru@) PL(S)|=(1%0.17)(5%0.83) = 4.32
p1,(t=5) Z[(TB(S)) 1 (5)]=(9%0.41)+(5%0.59) = 6.64
(1 =5 Z[(r23(5>) PL(5)](6%0.64+(4%0.36) = 5.28

1t Z[(m (5))* P4 (5)]=(7+0.98)+(4*0.02) = 6.94

143

11, (6=5)= Y [4.(9)* p11.(5)|=(2%0.85)+(5%0.15) = 2.45

()= X o5 5) *(e5.(5) - 1, 5)) J=(1-4.32)2*0.17+(5-4.32)2*0.83 =226
via(6)= 3 | (5 * (e5(5) — s 5)) J=(9-6.64)2*0.417+(5-6.64)2*0.59 ~3.87
v ()= [P (5) * (c2(5) - 1, (5)f J=(6-5.28)2*0.64+(6-5.28)2*0.36 ~0.92

vau(t) =D |ph(5) * (4 (5) - w4 (5))2 J=(7—6.94)2*0.98+(4—6.94)2*O.02 =0.18

()= |53 * (74(5) - 11, 5)) J=(2-2.45)2*0.85+(5-2.45)2*0.15 ~ 115

p
Create the Scan_Avabable list, SA, and insert the destination node d
SA = {4}

Step 1

If SA list is empty, go to step 3

Otherwise,
Select the first node 4 from the SA list
Call this is current node, j = 4

Step 2

Foreachi, (i,j)e 4
i= {2,3}
Determine the lower bound on the expected time and
variance to node 4

Update the vector & (=M —1=5) and
o (t=M-1=5)

Select node 2, i =2
Calculate

Expected time :
e(t)=X[ler)+ (& e+ 2 @) o)]
e,(M 1) =min s, (M ~1)+&,(M ~1)
e,(5) = ;IlA;(;l){y24 (5)+£,(5)}=6.94 +0=6.94

144

Variance :

V2 (5) = z [/D;) * o, (5 + 12(4 (5))]

+Z[p§4 (5)* (4 (5) +e, 5+, (5))—e2<5>)2]
=0.98%,(5+7)+0.02* e, (5+4)

+0.98*(7+&,(5+7)-&,(5)) +0.02%(4+&,(5+4)-&,5))

= (0.98*0) + (0.02*0)+

(0.98%(7+0-6.94)*+(0.02*(4+0-6.94) >

=0.18
Update Label
If ¢,(t)< &), and y,(t) < ,(t)
Then & (#) = p,(t), and o,(t)=v,(¢),and 7,(t) = (@i,)
If ¢,(t) <& (0), and y,(t) > (1)
Compare e, (t)+a *W <& +a *m
Then &(1) = 4,(t), and w,(t)=v,(0),and z,(t) = (i.))
If €(0)> &), and y,(t) < (1)
Compare e, (t)+a *W <& +a *m
Then & (¢) = p,(t), and o,(t)=v,(¢),and 7,(t) = (@i,)
Otherwise Keep previous Value

Since e,(t=5) =6.94< &, (t=5)=0,
7,(t=5) =0.18<w (t=5)=o
Update &,(5)=6.94, w,(5)=0.18, x,(5)=d

If i is not in SA list, Putiin SA list
SA = {2}

Select node 3
i=3

e,(5) = }2}}}){#34 (5)+&,(5)}=2.45+0=2.45

7,(5)=S[ph(5)*m,(5+ 755

ek () ey 5+74.(5)-es(9)f]

= (0.85*0)+(0.15%0)+(0.85%(2-2.45) >+0.15%(5-2.45)?)
=1.15

145

Since e(t=5) =245<&,(t=5) =,
7,(t=5) =1.15<a,(t=5)=0
Update &,(5)=2.45, o,(5)=1.15, =n,(5)=e

If i is not in SA list, Put node 3 in SA list
SA={2, 3}

GO TOSTEP1

Select the first node 2 from the SA list
Call this is current node, j = 2, SA ={3}

Step 2

Foreachi, (i,j)e 4
Selectnodel, i= 1

e (5) = }g}%{ylz(s) +&,(5)}=4.32+6.94=11.26

7 (5)= Z[plkz (5)* o, (5 + lez (5))]

() o5+ 74 5)-a G

— (0.17*0.18)+(0.83%0.18)
+0.17%(1+6.94-11.26) +0.83*%(5+6.94-11.26) %)
=2.44

Update node label
e(5) =1126<&(1=5) =0,
7,(t=5) =244<a,(t=5)=o
Update &(5)=11.26, ,(5)=2.44, =5 =a

Node 1 is not in SA list, Put node I in SA list
SA = {3,1}

GO TOSTEP1

Select the first node 3 from the SA list
Call this is current node, j = 3, SA ={1}

146

Step 2

For eachi, (i,j)e 4
i= {1,2}

Selectnodel, i= 1

e(5) = g%{yl3(5) +&,(5)}=6.64 +2.45=9.09

7(5)=S [k 5)* o, (5+75(9))

+Z[pf3 5)*(eh(5)+e,(5+75(9)-¢, (5))2]

= (0.41%1.15)+(0.59%1.15)
+0.41%(9+2.45-9.09) +0.59%(5+2.45-9.09) 2
=5.02

Update node label
61(5) =9.09< & (t=5)=11.26,
i (t = 5) =5.02>w,(t=5)=2.44

Let a =1, Compare
AM)=e () +a=*\y () =9.09+1*%,/5.02 =11.33

w@)+ax v () =1133<E () +ax* o) =11.26+1%1/2.44 =12.82
So, Update & (5) =9.09, o,(5) =5.02, 7=,(5)=b

Node 1 is already in SA list,
SA = {1}

Selectnode 2 ,i=2 (j=3)
e,(5) = ;rlAj(r;){ﬂ23 (5)+&,(5)}=5.28+2.45="7.73
JjeA(i
Variance :
V2 (5) = z [,0;3 (5)* o, (5 + T§3 (5))]
k

+ Z [p; (5)* (TZ (5) +e, (5 + 7?3 (5))_ € (5))2]
=0.64* w,(5+6)+0.36* w,(5+4)
+0.64%(6+&£,(5+6)-&,(5) +036%(4+&,(5+4)-&,0))

147

= (0.64*1.15) + (0.36*1.15)+
(0.64%(6+2.45-7.73)+(0.36%(4+2.45-7.73) 2
=2.07

Update node label
e,(5) =7.73> &,(t=5)=6.94,
7,(t=5) =2.07>0,(t=5)=0.18

So, keepthe &,(5) =6.94, o,(5) =0.18, ~,(5)=d
If i is not in SA list, Put node 2 in SA list
SA={1, 2}
GO TOSTEP1

Select the first node 1 from the SA list
Call this is current node, j =1, SA ={2}

Step 2

Foreachi, (i,j)e 4
i= ¢

GO TOSTEP1

Select the first node 2 from the SA list
Call this is current node, j =2, SA={ }

Selectnode 1,i=1

e (5) = g%{ylz(s) +&,(5)}=4.32+6.94=11.26

71 (5) = Z [plk2 5 *w, (5 + lez (5))]

+Z[p{; 5)*(ch(5)+e,(5+75(5))-e, (5))2]

= (0.17*0.18)+(0.83%0.18)
+0.17%(1+6.94-11.26) +0.83*%(5+6.94-11.26) %)
=244

Compare
AM)=e () +axy () =11.26+1*/2.44 =12.82

() +a* v (6) =12.82 < E (1) + a*Jw (1) =9.09+1%4/5.02 =11.33

148

So, Keep &/(5) =9.09, o,(5) =5.02, =, (5)=b
SA={ }
End Initialization

&(5) =9.09, o,(5)=5.02, =,(5=b
£,(5) =6.94, ,(5=0.18, =,(5)=d
& (5) =245, w,(5)=1.15, m,(5)=e

0.18

=5 11.26/7@
2.44 7.73

2.45
=5 9.09

5.02 t=5 1.15 @
t=5
2.45

1.15 @

Main Loop
fort=4

foralllinks (G, /) e 4, (1,2), (1.3), (2.3), (2.4), (3.4)

1.2)

ky (1) Ky (6)

a@ =Y i@ ph @)+ Y& [4+ 7)x ()]

= (3*0.43)+(4*0.57)+(6.94*0.43)+(6.94*0.57)
=10.51

7@) =[P @ o4 @)+ Lot @@+ & (4 74 @) e @)

=(0.43*0.18) + (0.57*0.18)

+ (0.43%(3+6.94-10.51)2+0.57%(4+6.94-10.51)?)
=0.42

e, (4)=10.51<{,(4)=w, y,(4)=0.42<w,(4)=o0
Update

149

5(4)=¢(4)=1051, @, (4)=y,4)=0.42, =,(4)=(1,2)=a

1.3
ky (1) ki (1)
o@) = [@ pt @+ Y[z (@+75 @) pl ()]

= (1*%0.70)+(8*0.30)+(2.45%0.70)+(2.45%0.30)
=5.55

7@ =St @* @]+ Y@ @+ &+ @) e @]

k
— (0.70%1.15) + (0.30%1.15)
+(0.70%(142.45-5.55)>+0.30*(8+2.45-5.55)?)
=11.44

€,(4)=5.55<&,(4)=10.51, y,(4)=11.44>w,(4)=0.42

Compare e, (4)+1%*,/y,(4) =5.55+3.38 =8.93 <

&) +1*w,(4)=10.51+0.64 =11.15
Update
5(4)=e(4)=5.55 o @)=y, @)=11.44, =,(4)=(1,3)=b

2.3)
Ky (6) ky(6)
;@)= Y [k @ ph @]+ Y[@+ h@)x ph@)]

= (6%0.90)+(7*0.10)+(2.45%0.90)+(2.45%0.10)
=8.55

7> (4) = Z[p; 4)* w, (4 + T§3 (4))] + Z [p§3 4)* (T; (4)+¢&, (4 + T§3 (4))_) (4))2]

k
= (0.90%1.15) + (0.10%1.15)
+ (0.90%(6+2.45-8.55)+0.10%(7+2.45-8.55)?)
=1.24

e,(4)=8.55<¢,(4)=o, y,(4)=124>w,(4)=x
Update

& (4)=e,(4)=8.55, w,(4)=y,(4)=1.24, 7,(4)=(2,3)=c

@.4)
Ky (1) Ky (1)
e =Y [ch @ pt @]+ Y[, (4425, @) p (@)

150

= (3*0.69)+(1*0.31)+(0*0.69)+(0%0.3 1)
~2.38

7,(@)= S [k *ala+ @]+ oty + £ 0+ 24) - es @

= (0.69*0) + (0.31*0)
+(0.69*(3+0-2.38)*+0.31*(1+0-2.38)%)
=0.856

e,(4)=238< &,(4)=8.55, 7,(4)=0.856< w,(4)=124

Update
& (4)=e,(4)=238, w,(4)=y,(4)=0.865, =x,(4)=(2,4)=d

(3.4)
k; (1) ey (£)
e, = [ch@# pl @]+ S[e @+ @) pl (@]
= (6*0.62)+(8*0.38)+(0*0.62)+(0*0.38)
=6.76
7 (@)=Yt @* o4+ @)+ 3ot @ * (@ &, 4+ @) ey @]

— (0.62*0) + (0.38*0)
+ (0.62%(6+0-6.76)+0.38%(8+0-6.76)%)
= 0.94

e,(4)=6.76 < &£,(4) =, 7,(4)=094< w,(4)=x
Update

&(4)=e,(4)=6.67, w;(4)=y;(4)=094, =,(4)=(3.4)=¢

E(#)=¢,(4)=555, o,(4)=7,(4)=11.44, 7,(4)=(L3)=b
£(4)=e,(4)=238, w,(4)=y,(4)=0.865, =,(4)=(2,4)=d
E(4)=e,(4)=6.67, 0,(4)=7,(4)=094, 7,(4)=(34)=e

fort=3

foralllinks (G, /) e 4, (1,2), (1.3), (2.3), (2.4), (3.4)

1.2
k(1) ky (1)
a3 =Y [k @ pk B+ Y& B+h3)* ph3)]

151

— (2%0.2)+(8*0.8)+(6.94%0.2)+(6.94*0.8)
— 13.74

7B)= @ aB+ @] + Tl * D+ £6+ A B)-aB)f]

= (0.2%0.18) + (0.8*0.18)
+ (0.2%(2+6.94-13.74)™+0.8%(8+6.94-13.74)?)
=5.94

e,(3)=13.74<EB3)=0, 7,(3)=5.94<® (3)=w
Update
£B)=¢3)=13.74, @,3)=y,3)=5.94, 7,(3)=(1,2)=a
(1.3)
Ky (£) ki (1)
a3 = [t * ph 3]+ Y [eB+753)* pii3)]

= (7%0.27)+(8%0.73)+(2.45%0.27)+(2.45%0.78)
=10.30

70)=Y ot @ * 0,3+ @)+ Tlot @ D+ &6+ 3) e O)F
= (0.27*1.15) + (0.73*1.15)
+(0.27%(7+2.45-10.30)>+0.73*(8+2.45-10.30)?)

=1.36
e,(3)=10.30<&,(3)=13.74, 7,(3)=1.36<w,(3)=5.94

Update
£03)=¢3)=1030, ®,03)=y,3)=1.36, 7,3)=(1,3)=b

2.3)
ky () ky (1)
e,3) =Y [t ph 3]+ Y[, B+753))* pi3)]

= (5%0.39)+(8*0.61)+(2.45%0.39)+(2.45%0.61)
=928

70)= Y[k 0B+ o)+ Zlh b+ &6+ 0)-)
=(0.39%1.15) + (0.61*1.15)

+(0.39%(5+2.45-9.28)™+0.61%(8+2.45-9.28)?)
=3.29

e,(3)=3.29<&,(3)=0, 7,(3)=3.29>w,(3)=

152

Update
£03)=¢,3)=9.28, w,3)=y,(3)=3.29, 7,(3)=(2,3)=c

(2.4)
k; (1) k; (1)

e,3) =Y [* pl]+ Y[B+ 3) p4)]

— (9%0.55)+(5%0.45)+(0%0.55)+(0*0.45)
=720

7,0)= Sk @ 0,8+ 4]+ SO+ &6+ 2 B)-ao)f]

= (0.55*0) + (0.45*0)
+(0.55%(9+0-7.2)*+0.45%(5+0-7.2)%)
=3.96

e,(3)=720< &,(3)=9.28, 7,(3)=3.96> w,(3)=3.29

Compare e, (3) +1%*./7,(3) =7.20+1.99 =9.19 <
&03)+1*w,(3)=9.28+1.81 =11.09
Update
£03)=e,(3)=7.20, ®,3)=y,(3)=3.96, 7,(3)=(2,4)=d

3.4
k; (1) Ky (1)

e,3)= Y [3)* 3]+ Y [& B+ 75 3)) p4,3)]
=6.52

7,0)= Sk 0,8+ @]+ Tt * (3 + £6+43) - e f

k k
= (0.88*0) + (0.12*0)
+(0.88*(7+0-6.52)*+0.12*(3+0-6.52)")
=1.69

e,(3)=6.52< £B3)=», 7,(3)=1.69< @,(3)=o

Update

£B3)=e,3)=6.52, w,3)=y;(3)=1.69, 7,(3)=(3.4)=¢
fort=3

£,(3)=10.30, w,(3) =1.36, 7,(3)=(1,3)=b

£,(3)=7.20, w,(3)=3.96, =,(3)=(2,4)=d

£,(3)=6.52, w,(3)=1.69, 7,(3)=(3.4)=¢

153

fort=2

&(2)=17.25,

&,(2)=7.05,
£,(2)=1.11,

fort=1

& (1)=12.22,

&,(1)=3.04,
&,(1)=5.20,

fort=20

£,(0)=9.69,
&,(0)=3.79,
£,(0)=5.15,
End

0, (2) =2.11, 7,(2)=(1,3)=b
0,(2) =0.048, 1,(2)=(2,4)=d
w,(2) =0.098, 7,(2)=(3,4)=

D

o (1) =9.927, 7,(1)=(1.2)=a
w,(1) =0.998, ,(1)=(2,4)=d
w,(1) =0.96, 7,(1)=(3,4)=e

,(0) =4.06, 7,(0)=(1,3)=b
®,(0) =0.17, ,(0)=(2,4)=d
w,(0) =11.31, 7,(0)=(3,4)=e

154

Chapter 6. Computational Testing

In this chapter, the performance of the algorithms, PMM, PMV, PMMV, and
TAMMVI1 are evaluated through numerical experiments, which are intended to assess the
computational performance on randomly generated networks as well as representations of

an actual Los Angeles highway network. The objectives of the computational test are

multiple:
. Check the validity of the minimum mean-variance model
. Comparison of computational complexity for TAMMVI1 and TAMMV2
algorithm
. Apply the model to real world traffic problem

This chapter is organized as follows. Firstly, in Section 6.1, the methodology for generating
the networks with their stochastic, time-dependent arc travel times is described and the
experimental design is given. In Section 6.2, the results of the tests are presented and
analyzed. In Section 6.3, the problem of selecting a "best" route during afternoon rush
hour between two points in LA area is used to illustrate the results of the algorithms
developed in Chapters 4 and 5. Finally, in Section 6.4, a discussion of the results and

conclusions is presented.

6.1 Experimental Design

The experiments described in this chapter are conducted on twenty seven

randomly generated networks with randomly generated time-dependent probability

155

distribution functions of the arc travel time random variables. The methodologies to
generate these networks and distribution functions are described in Subsections 6.1.1 and
6.1.2, respectively. In Subsection 6.1.3, the design of the experiments is described in

detail.

6.1.1 Generating the Networks

A GT Internetwork Topology Models (GT-ITM) is used to randomly generate the

networks for these experiments. For each network that is generated, the number of nodes,
and the probability of edge between each pair of nodes is specified. All generated networks
are directed graphs and no arcs are duplicated.

Since the primary concern of this study is in the application of these algorithms to
transportation systems, the networks have been generated such that their average connection
probabilities of each node are 0.2(density 2), 0.4(density 4), and 0.6(density 6). The
generated network with same connection probability ensures that the networks with the same

number of nodes will have nearly the same number of arcs.

6.1.2 Generating the Arc Travel Time Random Variables

Once the topology of a network is specified, the arc weights can be determined.
The arc weights are random variables with time-varying probability distribution
functions. The probability mass functions of the arc weight random variables are
randomly generated, corresponding to either discrete random variables or approximations
of continuously distributed random variables. The arc travel times are assumed to be

independent across time and space. Their pmfs are generated for each arc at each time

156

interval as follows:
Given the number of elements in the pmfs, P (assumed constant across arcs and departure
times):

Step 1: Generate P pairs of scaled uniform random variants. The first random
variant of the pair will represent a possible travel time. This random
variant is scaled between 1 and 10 units. If the same number is generated, it
will be discarded.

Step 2: The second random variant, the probability of the occurrence of such a
travel time, will be generated as follows. First, generate P numbers of
random numbers between 1 and 100. Find the proportions of each
generated value (divide each value by sum of all generated values) so that
their sum is equal to 1.

Step 3: Sort the pairs of random variants in ascending order of the first element

of the pair (corresponding to increasing travel time).

6.1.3 Design of the Experiments

Four factors must be specified in order to generate the network topology and the
pmfs of the arc travel time random variables: the number of nodes, probability of arcs,
the duration of travel time intervals, and the number of elements in the; pmf’s. (The
duration of a time interval is constant over all the tests). The number of elements in the
pmfs is nearly constant across arcs and time intervals as explained previously.

Three levels of the number of nodes are considered: 50, 100, and 500 nodes. Also,

three levels of arc densities are considered: 2, 4, and 6. Three topological networks of

157

each level are generated, for a total of 27 networks. The time interval size is one time
unit in duration and is constant over all the experiments. Three levels of the duration of
the peak period are considered: 10, 30, and 60 units of time (time intervals) in size. For
example, a peak period of 10 minutes will consist of 10 one minute time intervals and a
peak period of 60 minutes will consist of 60 one minute time intervals. Finally, two
levels of the constant number of elements in the probability mass functions are
considered: 2and 5. This result in 162 different combinations, as every combination of
the number of time intervals and number of elements in the pmfs are considered for each
of the 27 networks.

The algorithms of TAMMYV1 and TAMMYV?2 determine one path from all origin nodes
to a pre-specified destination node for each departure time interval, these algorithms are
implemented in C programming language. The experiments are done on Sun
UltraSPARC-IIi Workstations (360 MHz of clock speed and 128 MB RAM) running
Solaris 8. An Ethernet communication speed of 100Mbits/sec was assumed for the
communication of data. This forms a common speed of an Ethernet cable.

The run times of the procedures are recorded. Because three topological networks
of each level are tested under same condition (edge probability, time interval and the number
of pmfs), we record the average running time for each topological network. The runtime does

not include input/output time.

6.2 Experimental Results

The results of the experiments on twenty seven randomly generated networks are

summarized in Tables 6.1 through 6.4 in Section 6.2.1. The number of nodes in the

158

networks is indicated by the heading ‘“Nodes”, arc density “ArcD”, the number of time
intervals “TI”, and the number of elements in the pmf s by “Prob”. For the networks that
can be specified by the same (n, a, t, p) (equivalent “Nodes”, “ArcD”, “TI” and “Prob™)

the results are averaged.

6.2.1 Performance on Randomly Generated Networks

In all of the tests, the SA list of each algorithm is implemented as a deque list. A
node or node-label pair always enters the SA list at the back although it has been entered
in the SA list previously or not. The tests of this chapter are not intended to test the
performance of the procedures under a variety of SA list structures.

The actual average running times for the PMV and PMMYV procedures are given
in Table 6.1 for networks with two sizes of the nodes n=50 and 100, three values of the
time interval TI=10, 30, and 60, two values of the PMFs p=2 and 5, and fixed arc density
a=4 . The run time of the two algorithms are very similar because algorithmic procedures
are almost same except updating rule of node label (for PMV-variance, for PMMV-mean
and variance).

Table 6.2 shows the PMMYV algorithm running time results for different values of the arc
density a=2, 4, and 6 for same number of n, t, and p. To describe the performance of this
algorithm, the natural log of the run time, given as RTpymy for the PMMYV algorithms, in
CPU milliseconds is regressed against the natural log of the number of nodes(n), arc
density(a), number of time intervals(t), and the number of elements in the PMFs(p),

resulting in the equations with an R2 value of 94.47%:

RT,,,y =(0.0000033) % p*7 5> % q' % %"

159

This regressing model is provided without testing of large number of nodes. Therefore,
it is difficult to apply for networks of large size. This remaining testing job can be done

in the future.

Table 6.1. Comparison of run times in c.p.u seconds for PMV and PMMYV algorithms

TI
10 30 60
Nod | p=> p=>5 p=2 p=>5 p=2 p=
es | Al |A2 | Al |A2 | Al |A2 | Al |A2 | Al |A2 | Al |A2
50 0.61 | 0.69 | 1.27 | 1.32 | 1.88 | 2.06 | 3.75 | 3.95 | 3.77 | 4.07 | 7.56 | 7.97
146 | 158 | 13.5 | 145 | 28.6 | 29.5
100 | 3.00 | 3.10 | 538 | 5.53 | 7.35 | 7.67)) 4 3 6 3
Table 6.2. Run times in c.p.u seconds for PMMYV algorithm
TI
10 30 60
Nodes | ArcD. | prop— Prob=5 Prob=2 Prob=5 Prob=2 Prob=4
2 0.55 0.85 1.57 1.89 3.66 4.97
50 4 0.78 1.41 2.27 3.66 5.19 8.97
6 1.03 1.99 2.96 4.85 6.59 12.10
2 1.48 2.57 4.18 7.42 9.49 16.87
100 4 3.21 5.80 8.14 15.46 17.00 32.11
6 8.98 13.61 27.34 19.48 29.90 77.04

The average run times for the TAMMV1 and TAMMYV?2 algorithms are given in
Tables 6.3 and 6.4, respectively. The run times refer to the average time for each
For example, the

experiment over all networks with similar (n, a, t, p) representation.

first value 0.162 in Table 6.3, corresponding to n of 50, a 0.2, t of 10, p of 2, gives the

160

average run time (in CPU seconds) resulting from experiments conducted on all three 50
node networks with arc density 2 (which is edge connecting probability of 0.2) with (50,

2, 10, 2). Recall that each experiment is tested with given a starting and a destination

node.

Table 6.3. Run times in c.p.u seconds for TAMMYV 1 algorithm

TI
10 30 60

Nodes Arc D. Prob=2 Prob=5 Prob=2 Prob=5 Prob=2 Prob=4

2 0.162 0.45 0.47 1.27 0.95 2.50

50 4 0.37 0.94 1.16 2.79 2.16 5.73

6 0.60 1.50 1.84 4.40 3.45 8.90

2 0.75 1.89 2.20 5.56 4.32 11.17

100 4 2.62 5.32 6.04 14.10 1122 | 27.64
6 8.04 12.82 1406 | 26.55 22.49 48.40

2 1433 1460 1512 1803 1700 1990

500 4 10100 | 10390 | 10540 | 11532 | 12105 | 12785
6 32236 | 33009 | 34592 | 36476 | 37041 | 39069

Table 6.4. Run times in c.p.u seconds for TAMMYV?2 algorithm
TI
10 30 60

Nodes | AreD. 75 0 T Prob=5 | Prob=2 | Prob=5 | Prob=2 | Prob=s

2 0.15 0.43 0.45 1.20 0.89 2.30

50 4 0.34 0.92 1.08 2.66 2.13 5.30

6 0.56 1.45 1.69 4.52 3.25 8.18

2 0.74 2.81 2.17 5.98 4.78 10.78

100 4 3.07 4.67 6.35 12.51 14.89 28.56
6 5.18 13.18 21.53 2757 | 40.11 61.15

2 1744 1783 2674 2781 4068 4446
500 4 11961 | 12673 | 15024 | 16190 | 17260 | 18472
6 38095 | 39145 | 40972 | 43895 | 45193 | 48709

To characterize the performance of two algorithms, the natural log of the run time, given

161

as RTra; and RTra, for the TAMMV1 and TAMMV?2 algorithms respectively, in CPU
milliseconds is regressed against the natural log of the number of nodes(n), arc density(a),
number of time intervals(t), and the number of elements in the PMFs(p), resulting in the

equations with an R* value of 97.50% and 97.89%, respectively:

RT,,, =(0.000000001) 5 OO0 s 39 5 186 5 064

RTTA2 = (0000000001) ES p0‘65 * n4-05 * a1,7() *t0'73

From the regression analyses, it is shown that the average run time of the TAMMV1 and the
TAMMYV?2 algorithms increases much worse than linearly with the number of nodes (power
of 3.89 and 4.05) in the network, arc density(power of 1.86 and 1.76). The run time increase
well than linearly with the number of elements in the PMFs and the number of time intervals in
the peak period. In a direct comparison of the average run times of the TAMMV1 and
TAMMYV?2 algorithms shown in Tables 6.5, it appears that the TAMMV1 algorithm is often
faster than is the TAMMYV?2 algorithm for the majority of the larger-size networks, while the

TAMMV1 algorithm appears to be faster for the smaller networks and small number of PMFs.

162

60LEF | 0LOAE | Ealedk | ERFOLE | ©62Er | LApPQE | TL60F | FackE | CFI6E | GO0DEE | CA0BE | QEEEL ¥
FIFEL | BELFT [E8LT | E0TFT O&aT191 EECTD | €70CT | ORCOT | ELQET | O&EDT [8611 | 00107 ¥ oo
BFrF Taal 69 0F 0oLt FELE EOET FLOT ETCT EELT 09F1 Fril FLFIT £

c1IY OF & 1T af FF L LE LiOE EIE Q0F] a1kl FEEl are FOE ¥

o G2 ¥l gy [a1vl FED PO LOF [LOE Tor ¥ aat
2407 LTT1 LY N B ooy LTE [T TE'F R Fil £L0 £

21 0% FEE CFE CEr 0Ft 631 FE1 ! Ik Qi Y0 ¥

oee ELC ETE 91e ooy Gl e a0l GT1 el Fal FED LET ¥ 0s
QLe ase GE0 el 01 LT tF0 LF tra tF0 10 2orn £

oYL I¥L oyl I¥L LA AN I¥L LA 7L oYL I¥L oL 7L I | FpoR]

= ¢=d = F=d = 7 =
0y 113 01
L

SURPISOETE TAINIATY L PUR TAJNINTY L 30 SPU003S (1) U1 SU0F) BUmuny ¢ 0 S[que]

163

Figures 6.1 and 6.2 show the variation of the running time of the algorithms with the
network size. The running time increases steeply for larger value of network size in both
algorithms. Figures 6.3 and 6.4 illustrate the variation of the running time of the algorithms
with the number of arcs. Again, the running time varies increases steeply for larger value of arc

size. The running times are increased with exponentially.

Effect of "nodes" on running times (pmf=2, Arc=4)-TA1 Effect of "nodes" on running times (pmf=5, Arc=4)-TA1
14000 14000
12000 [|—*— Time interval=10 P 12000 [|—®—Time interval=10
£ 10000 [Time interval=30 @ 10000 | ®— Time interval=30
¢ —A— Time interval=60 £ —&— Time interval=60
< 8000 | £ 8000 |
£ o
2 6000 [g 6000 [
< o
€ 4000 | £ 4000 T
c
2000 [@ 2000 [
o o
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Number of nodes (n) Number of nodes (n)

Figure 6.1. Running time of Algorithm TAMMYV1 as a function of the number of the
nodes, n. Tests are performed for time interval 10, 30, and 60

Effect of "nodes" on running times (pmf=2, Arc=4)-TA2 Effect of "nodes" on running times (pmf=5, Arc=4)-TA2
14000 14000
12000 [|—*— Time interval=10 2 12000 [|—®—Time interval=10
£ 10000 [Time interval=30 @ 10000 | ®— Time interval=30
¢ —A— Time interval=60 £ —&— Time interval=60
< 8000 | £ 8000 |
£ o
2 6000 | g 6000 [
< o
€ 4000 | £ 4000 T
c
2000 [@ 2000 [
o o
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Number of nodes (n) Number of nodes (n)

Figure 6.2. Running time of Algorithm TAMMV?2 as a function of the number of the
nodes, n. Tests are performed for time interval 10, 30, and 60.

164

Effect of "Arcs" on running times (pmf=2, Nodes=100)- TA1
50 [T——Time interval=10
@40 ®— Time interval=30
§ —4&— Time interval=60
£
£ 30
o
£
=20
2
£ 10
2
0
0 500 1000 1500 2000 2500 3000 3500
Number of arcs (n)

= N w N o
S) =] S o =]

Running time in msecs

o

Effect of "Arcs" on running times (pmf=5, Nodes=100)- TA1

—*— Time interval=10
L | ™ Time interval=30
—&— Time interval=60

1000

0 500 1500 2000

Number of arcs (n)

2500 3000 3500

Figure 6.3. Running time of Algorithm TAMMYV1 with the number of the arcs, m. Tests
are performed for time interval 10, 30, and 60

Effect of "Arcs" on running times (pmf=2, Nodes=100)- TA2
70
L —— Time interval=10
3 60 ®— Time interval=30
g 50 [—4&— Time interval=60
£40 |
o
Ea |
2
£ 20
c
@ 10
0
0 500 1000 1500 2000 2500 3000 3500
Number of arcs (n)

Effect of "arcs" on running times (pmf=5, Nodes=100)- TA2

—*— Time interval=10
®— Time interval=30
—*— Time interval=60

Z/

1000

0 500 1500 2000

Number of arcs (n)

2500 3000 3500

Figure 6.4. Running time of Algorithm TAMMYV-STD2 with the number of the arcs, m.
Tests are performed for time interval 10, 30, and 60

Figure 6.5 contains the running time results for different values of the time interval t,

for n = 500, a = 6. This figure depicts the variation of the running time of Algorithm as a

function of the time interval t. The running time increases sharply for smaller values of t, but

tends to slow increasing for large values of t.

165

Effect of "Time Interval" on running times Effect of "Time Interval” on running times
(Nodes=500, ArcD=6)- TA1 (Nodes=500, ArcD=6)- TA2

50000 50000

48000 | ——PMF =2 « 48000 [——PME =2

@ 46000 - - & 46000 [- -

2 | PMF =5 o PMF =5

E 44000 £ 44000 [

£ 42000 | £ 42000 |

£ 40000 [£ 40000 [

= 38000 | = 38000 |
£ r 236000 [
€ 34000 | € 34000 [
& 32000 | r

@ 32000

30000 ‘ ' ' ’ ’ ‘ 30000

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Number of Travel time Number of Travel time

Figure 6.5. Running time of Algorithm TAMMV-STDland TAMMV-STD 2 as a
function of the time Horizon, TI

The tests were run on a Sun UltraSPARC-IIi Workstations which is a server based

system with multiple users. In such systems, maintenance activities of the operating

system, as well as activities of other users (often many other jobs by other users were run

simultaneously with these tests), precludes the possibility of getting very accurate user

c.p.u. times. Thus, the exact runs times are not likely to be reproduced, and in many cases,

may be overestimated.

6.3 Applications and Extensions

6.3.1 Introduction
Traffic congestion is particularly relevant in urban routing systems. During rush
hours in LA, the travel time increases dramatically in most urban areas. This implies that
the travel time over a road depends upon the time at which a vehicle travels along the
road. Assad (1988) addressed the issue of traffic congestion in travel time determination.
In this chapter, the problem of selecting a "best" route on which to transport
hazardous subjects between two specific points in LA area is used to illustrate the results

of the algorithms developed in chapter 5. Several problem formulations are addressed,

166

including: (1) determination of a priori least expected time paths (2) determination of a
priori minimum variance paths, (3) determination of a priori minimum mean-variance
paths, (4) determination of the “best” nest arc routing using previous two algorithms.

The Freeway Performance Measurement System (PeMS) is a joint project
between California Department of Transportation and university of California, Berkeley.
The intent of this project is to collect historical and real-time freeway data from freeways
in the State of California in order to compute freeway performance measures. Because of
availability of real time transportation data and high probability of congestion, we select
LA urban area to apply our algorithms. In Section 6.3.2, the LA network is described and
a specific freeway section is analyzed based on morning and afternoon rush hour. Also,
the method to convert speed data to travel time data is presented. In section 6.3.3, the
least expected time paths, minimum variance paths, minimum mean-variance paths, and
time adaptive minimum mean-variance paths procedures are generated between two

given points in LA. The concluding remarks are given in section 6.3.4.

6.3.2 LA area Traffic Data analysis

The traffic sensor is designed for permanent or temporary installation into or
onto the road surface for the collection of traffic data. These sensors are geographically
distributed and capable of communication and computation. The fixed sensors collect
traffic information at the location where they are placed while the sensors on vehicles
provide vehicle specific speed and location information etc,. As shown in figure 6.6, the
traffic sensors are placed on all major Interstate and highway in LA area. Among the

available sensor information, we only need to collect vehicles speed and analyze these

167

speed data to convert travel time data for the given section.

1355 Image Generated: 11/26/2200502:14

TFEETAE Speed as of 112602003 02:00

TATHES peay

717355

B{ T17EES

TB3A90
S T17EEL
Zafita Fe SErings -«
TAETET

716300

H3

S05995

508 10 T

oToE Ty P
<L g
2

I et (
L L
5% v .'.’;.C%.J Fns
TEALTL g TITAE: e FEESES O =]
T X Te A5 AL B3 _sireer TR
Hiaiiei g T1 G0TES 0 CEEE 0T
FATFEE S014517E 01445 O 4

T L

1202594 1

71szan

01464 b
FEETR- e

A 1211555

: T : bfre 144 e
R ATAERAE D i e v e e L Al 121 1471
TedEIZ o EE UT oo r R R, i) 1 1455
i R B S %)
WY b resqas Sresd0s 12 01555 T dRakn, 1201
a15 I
1201505 ¥ __‘?;,“» s
Huntington Belgﬂgﬁssg 3
(] @Wo
1 e L
Mewport Beaclzl;u-t?s *#j‘i‘,jb.g)
Hoinsge =g
1210718
1z 10610
171035 1,
Laguna iy iy s
© 2005 BTS, Th Sl & mi
. Thomas Brothers, and PATH 1211078 T RaElZ 045 1e

Figure 6.6. Major highway sensor location map in LA area

Every five minutes, PeMS aggregate the lane-by-lane 30 second data to compute
one number that represents the 5S-minute aggregate over all lanes at that vehicle detector
station. The results are placed on the FTP site. In order to download the data, a simple
client program need to write for periodically grab the data over the Internet from our FTP
server. To analyze this sensor data, we select a specific section (from node 24 to 25) and
collect data from all sensors on the highway, as shown in figure 6.6. Because the travel
time from home to work on a Monday morning could be different from that on a Tuesday

morning or Friday morning, we collect the data every five minutes for Monday only.

168

There are 9 sensors on the highway and read vehicle speed of all 4 lanes. Figures 6.8a
through 6.8d shows this result, and its average speed is given in figures 6.9a and 6.9b. As
you can see the figures 6.8 and 6.9, there are two congestions, morning and afternoon, on
this arc 24-25. These figures show that the duration of morning rush hour is around one
hour start form about 5:50am end 7:00am and the afternoon rush hour start around
4:00pm end around 8:00pm. Also, during afternoon rush hours in this section, the traffic
congestions are much severe and travel time of this highway section increases

dramatically.

B B 50 ¥
&0 — ark

o

24 i S 52 i 19 9 =

T z
% 72

il
£

19

i LRI

SIUIEE ‘_@;_:__I

s =E = s =

Rio
FE) Fire : = 2

a
)
%

an

T

25

Sy : : oo L Bpti L |18
; ; : i o [||Lakeland Rid [
T
; e 27 ' : T
Copyright.® 2003 Mcrosoft) Coplandionits suppliers Al rights reseryed: 1 L -|' o

Figure 6.7. A section 24-25 in Interstate highway 5S

169

Lane 1 Speed comparison for all Sensors in Arc 24- 25(5S)

Yoy

~— Sensor 1
— Sensor 2
Sensor 3
Sensor 4
~— Sensor 5
— Sensor 6
~— Sensor 7
— Sensor 8
~ Sensor 9
0]
0:00 4:48 9:36 14:24 19:12 0:00
Time
Figure 6.8a. Lane 1 speed for all sensors in arc 24-25
Lane 2 Speed comparison for all Sensors in Arc 24- 25(5S)
90
80 [. J] \ — Sensor 1
70 RAFAREVY o ‘ RN ~ Sensor 2
60 b Sensor 3
§ oo 1 | | ~Semeers
40
30 \\V}] ~— Sensor 6
| \/ ~— Sensor 7
20 — Sensor 8
10 | ~ Sensor 9
0]
0:00 4:48 9:36 14:24 19:12 0:00
Time
Figure 6.8b. Lane 2 speed for all sensors in arc 24-25
Lane 3 Speed comparison for all Sensors in Arc 24- 25(5S)
90
80 |- ; | — Sensor 1
70 i A ATV N A - Sensor2
A At , A o a1 7 ‘ Sensor 3
60 ‘ , T
g 50 A = A ATAN L Sensor 4
‘ Ak ~— Sensor 5
40 \/) V \N\ v//y ~— Sensor 6
30 M %U ~ Sensor 7
20 \f\WJ — Sensor 8
10 ~— Sensor 9
0
0:00 4:48 9:36 14:24 19:12 0:00
Time

Figure 6.8c. Lane 3 speed for all sensors in arc 24-25

170

Lane 4 Speed comparison for all Sensors in Arc 24- 25(5S)
— Sensor 1
~ Sensor 2
Sensor 3
Sensor 4
— Sensor 5
— Sensor 6
~— Sensor 7
— Sensor 8
Sensor 9
0
0:00 4:48 9:36 14:24 19:12 0:00
Time
Figure 6.8d. Lane 4 speed for all sensors in arc 24-25
Mean speed for all Sensors
90
80 / — Sensor 1
70 DA j\ ‘ ‘R\Q‘i“’\’\mﬁj\ f\\ — Sensor 2
60 KRR o Sensor 3
50 Sensor 4
40 — Sensor 5
— Sensor 6
30 ~— Sensor 7
20 — Sensor 8
10 Sensor 9
O LT RN TN TR AT T R TR TRV JITH ISR TR
88888888888%88%9_, 7
S+ N § 6 6 @ 9 § 6 & &R g §
Time
Figure 6.9a. Mean speed for all sensors in arc 24-25
Mean of Speed — Mean of Mean
- Min
90.00
80.00
70.00 w
WAVENALY mmmmm 7Sm\ON
60.00 Wv V 7 \/
g 50.00
40.00
30.00 U
20.00 T v
10.00
0.00
g8 B @ ¢ 3 B 8 8B ¢ ¢ B K 8 B € 8
c ¥ o ¥ 0o &~ O £ Q ¢ @ & @ f N &
Time

Figure 6.9b. Mean of all 4 lanes speed for all sensors in arc 24-25

This speed data can be transformed to travel time data with distance information.

171

Since the travel times can be treated as random variables whose probability distribution
functions vary with time, probability distribution functions were constructed using these
travel time data. Therefore, we converted this every 5 minutes data to every 30 minutes
data, as shown in figure 6.11. If the travel time accordance is less than 5% then it can be
combined with nearest neighbor travel time. For example, if the frequency of travel time
7 for arc al is 141 out of 145 and the frequency of travel time 8 for arc a/ is 4 out of 145,
the probability of being travel time 8 is only 4/145 = 2.7%, so we can assume the travel

time of arc al is 7 with 100%. Table 6.6 shows the example of PMFs for this arc.

Travel time analysis for Arc24- 25 — Average Travel times
— Maximum TT
45 Minimum TT
40
e AUM
, = | i
25
R N
15 i
o [, JUA L
Y WA S AU N NSV A\ VARSI
5 =
°g B 2 ¥ QBB B ¢ LB KRB B Y
S v @8 ¥ 6 N 0 £ N ¥ 0 & 8 g § 4
Time

Figure 6.10. Travel time from node 24 to 25

Travel time analysis for Arc24-25(30min) — Average Travel times

— Maximum TT
40 Minimum TT

35 A
[

30
25
20 [
15 |
10 [

5

i U
R

MLte

& & 5

Time

Figure 6.11. Travel time data for every 30 minutes for arc 24-25.

172

Table 6.6. Example of PMFs for the arc a/.

Time interval Tr.avel Probability
time
7 0.06
8 0.15
16:00 ~ 16:30 9 0.29
10 0.21
16 0.29
7 0.21
9 0.17
16:30 ~ 17:00 2 0.39
18 0.23
10 0.11
14 0.19
17:00 ~ 17:30 20 033
26 0.37

6.3.3 Problem Description

The Los Angeles highway traffic network is pictured in Figure 6.12. This
highway system is represented by a graph with 31 nodes (representing intersections in
LA) 53 arcs (representing links of highways between intersections). As shown in
previous section, this area has serious traffic congestion problems during afternoon rush
hours. Therefore the primary focus of this study is apply the four routing algorithms,
PMM, PMV, PMMV, and TAMMV1, to assist commuters (passengers, emergency and
commercial vehicles) in making the best decisions on route selection. The routing
analysis is based on minimizing two attributes: (a) expected travel time, and (b) Variance

of the travel time.

173

San

/7~ San Fernando Gabhbriel San

: o Wilderness Mount San I
iR = 100648
& Blad - 1 CALIFORNMNIA i
Altadena -
01} Sierra Madre

Azusa Rancho

yne_- Gl.._gl:a_mnngae

110 aSuu%h ﬂc

| ----a\ G

i :::‘___'_ 10 @ﬁ\m\.‘\.—_

: f Onta
’ ‘@‘J I's -»@... ' _Angele '@ linda | Coutpi Pomnna =
inta T Chl
hica . I . intebello (B s ho
Iﬂgl'wa J: II'I‘B' ¥ Whlﬂmr nﬂuwlhanﬁ \Chll‘lﬂ H"l
2iq ts L
lith “La Habra ALY
ca Bay
Garden a
dondo Beac
Mo (]
Torrance

Lomita’ ELF
o
ancho Palos” (3
Verdes

Pacific Ocean

‘Beach
Figure 6.12. The LA traffic Network

In this case study, the starting node and destination node are given: starting node

is 4, destination node is 41. No waiting times are allowed during the trip. The trip is
scheduled to start from node 4 at 4:00p.m, which is close to the start of rush hour. In
Figure 6.11, it was shown that the afternoon peak period lasts for approximately 4 hours
on the arcs emanating from each of the nodes. Each routing policy finds the best next

node and path information based on the mean or variance or mean-variance of travel time.

The travel times along a route are random variables and vehicle speeds are

collected by the traffic sensors on the road. The eleven Mondays (from February 1 to
April 31, 2005, except Feb. 21) data were collected for this study. The data contains all

lanes speed for every 5 minutes. In many cases, the first lane reserved as a “HOV” lane

174

during the rush hour. Therefore this lane data were discarded to obtain the average lane
speed on the specific sensor. Converted travel time data for every arc were generated
after averaging vehicle speed with distance of each arc. Probability distribution functions
of each arc were generated by EXCEL Macro and stored as a input data file. Detailed

descriptions are in previous section.

6.3.4 Results Of The Case Study

A priori minimum expected path: PMM aalgorithm

Using the PMM algorithm, three non-dominated paths out of ten paths are determined:
Path 1: 4-18-26-37-38-39-41
Path 3: 4-18-19-24-25-32-33-41
Path 4: 4-18-19-27-37-38-39-41

The minimum mean travel time and paths information for the given departure times are

shown in Table 6.7 and Figure 6.13.

Table 6.7. Minimum mean travel time and paths for MMV algorithm

Departure time Mean Next Node Path

0 73.25795 18 1
30 79.23531 18 1
60 81.14811 18 1
90 83.11905 18 4
120 78.12215 18 3
150 73.38336 18 3
180 71.84217 18 3

175

A priori minimum mean routing

Mean Travel time

0 50 100 150 200
departure time

Figure 6.13. Minimum mean travel times for departure time varying

For 180 time interval, 35% for path 1, 50% for path 3, and 15% for path 4 were selected
for the minimum mean travel time path from node 4 to node 41. The path 1 was selected
for most of the early time interval. If traveler start trip after Spm to 5:30pm, the path4

became the preferred path. After 5:30pm, path3 is the minimum mean path.

A priori minimum Variance path: PMV algorithm

Using the PMv algorithm, four non-dominated paths are determined:
Path 6: 4-18-19-24-28-31-32-33-41
Path 1: 4-18-26-37-38-39-41
Path 3: 4-18-19-24-25-32-33-41
Path 4: 4-18-19-27-37-38-39-41
The minimum variance and paths information for the given departure times are shown in

Table 6.8 and Figure 6.14.

176

Table 6.8. Minimum variance and paths for PMV algorithm

Departure time | Variance | Next Node | Path

0 46.669945 18 6
30 92.095512 18 1
60 81.028198 18 4
90 66.332283 18 3
120 47.764866 18 3
150 53.012543 18 3
180 53.99812 18 3

A priori minimum variance path

100

Variance

0 50 100 150 200
departure time

Figure 6.14. Minimum variance of travel times for departure time varying

For 180 time interval, 20% for path 1, 8% for path 6, 53% for path 3, and 19% for path 4
were selected for the minimum variance travel time path from node 4 to node 41. The
path 6 was selected for most of the early time interval. The path 3 became the preferred

path after 5:30pm.

A priori minimum Mean-Variance path: PMV algorithm

Using the PMv algorithm, two non-dominated paths are determined:
Path 1: 4-18-26-37-38-39-41

Path 3: 4-18-19-24-25-32-33-41

177

The minimum mean-variance paths information for the given departure times are

shown in Table 6.9 and Figure 6.15.

Table 6.9. Minimum mean, variance and paths for PMMV algorithm

Departure time Mean Variance | Next Node Path
0 73.25795 | 74.955673 18 1
30 79.235306 | 92.095512 18 1
60 81.148109 | 107.00051 18 1
90 83.119049 | 66.332283 18 3
120 78.122154 | 47.764866 18 3
150 73.383362 | 53.012543 18 3
180 71.842171 | 53.998116 18 3

A priori minimum mean- variance path

| —®—Mean
100 —®— variance

Mean Travel time
o 8 8 8 &

0 50 100 150 200
departure time

Figure 6.15. Minimum mean-variance for departure time varying

For 180 time interval, 34% for path 1, 50% for path 3, and 16% for path 4 were selected
for the minimum mean travel time path from node 4 to node 41. This result was similar
with minimum mean path output because expected travel time is the primary decision

criterion for selecting the best path. Again, the path 3 was selected for 50% of time

178

interval.

Time-adaptive Mean-Variance path: TAMMYV1 algorithm

The resulting hyperpaths for this problem were given in the form of a tree as
shown in Figure 6.13. The result was shown that next best node from starting node 4 was
node 18 for all travel time interval. The time adaptive minimum mean-variance routing

information for the given departure times are shown in Table 6.10 and Figure 6.16.

Table
Table 6.10. Minimum mean, variance and next node for TAMMV 1
Departure time Mean Variance Next Node
0 65.000572 | 51.88723 18
30 67.173195 | 66.133377 18
60 67.817574 | 72.658424 18
90 69.390167 | 76.070457 18
120 67.76239 | 71.286751 18
150 63.138004 | 63.080559 18
180 61.665833 | 67.629845 18
minimum mean- variance path
120 —®— AP-Mean|]
—®—AP-Var
100 | TA-Mean
o 80 o TA-Var
£
= 60 ["‘1 mpe—
©
=40 |
S 20|
=
0
0 50 100 150 200

departure time

Figure 6.16. Minimum mean-variance for departure time varying

179

Figure 6.17. Resulting hyperpaths as shown through conditional tree structure

Finally, the path 3 (4-18-19-24-25-32-33-41) is selected as a best compromise path
during afternoon rush hours from 4:00 to 7:00pm, considering both travel time and

variance.

6.4 Conclusions

In this chapter, the computational tests on randomly generated networks were
conducted to assess and compare the average performance of four algorithms, PMV,
PMMV, TAMMV1, and TAMMV?2. In a direct comparison of the average run times of

the TAMMV1and TAMMYV?2 algorithms, it appeared that the TAMMYV?2 algorithm was

180

often faster than TAMMV1 algorithm for the small networks, while the TAMMV1
algorithm appeared to be faster for the larger networks. For very large networks, or dense
networks, the number of paths that may be examined can grow quite large, and, thus,
PMV and PMMYV algorithm may perform rather poorly. These two algorithms’ worst-
case computational complexity is non-polynomial. Therefore, these time adaptive routing
algorithms, TAMMV1, and TAMMYV?2, are more applicable to stochastic time-dependent
network problems.

The problem of selecting a “best” routing on which to travel between two points
in Los Angeles area in California is used to illustrate the results of the algorithms. The
LA network is described and a specific freeway section is analyzed based on morning
and afternoon rush hour. Four algorithms are applied to find the minimum expected time
paths, minimum variance paths, minimum mean-variance paths, and time adaptive
minimum mean-variance paths.

The LA area traffic routing problem is only one of numerous applications for
which the procedures of all developed algorithms in this study. Other applications
include routing of emergency vehicles to (or from) the scene of a medical emergency,
fire fighters to a fire, police officers to a request for service or scene of a crime,
commercial trucks to pickups and deliveries, service vehicles to downed power lines, or
wreckage from a natural disaster, as well as military applications, and other applications

where response time is critical.

181

Chapter 7. Conclusions and Future Research

7.1 Research Summary

Transportation is a critical component of our lives. Electrical networks bring
lights, national highway networks cross distances, manufacturing and distribution
networks allow access to consumer products, and computer networks share information
globally. In all networking situations we move some entity from one point to another
through path as efficiently as possible. Routing (finding path) problems have broad
applications in transportation engineering, computer science, operations research, and
neurophysiology. They are of importance for passenger and goods movement, message
delivery, and more general system control.

Travel time between an origin and destination is often the primary criterion in
optimally routing vehicles such as ambulances, police cars, vehicles carrying hazardous
substances. Travel times in congested transportation networks are naturally time-
dependent and stochastic in nature. In order to optimally route vehicles, both the
stochastic and time-dependent nature of the travel times must be considered. Future
travel times can be treated as random variables whose probability distribution functions
vary with time.

Previous approaches in stochastic time-dependent problems do not account for the
fact that travelers often incorporate travel-time variability in decision making. Thus, a route
with lower travel-time variability is preferred at certain situations like hazardous material

shipment, even if such a route is not one with the lowest mean of travel-time. We recognize

182

the fact that travelers choice not necessarily depend on the least expected time path
(LET) but also consider the time variability while choosing a path during the planning
stage. This approach is referred in this work as the mean-variance model in which the
choice of a route is based on the mean as well as the variance of the path’s travel-time. In
the current work a methodology for minimum variance and minimum mean-variance path
within a route guidance model is presented.

In general stochastic time-dependent networks, two types of routing policies are
used for routing in networks: a priori “best” path routing policy and time-adaptive
routing policy. For the priori best path routing problem, two algorithms, PMV(a priori
minimum variance algorithm) and PMMV(a priori minimum mean-variance algorithm)
were developed for determining a minimum variance path and minimum mean-variance
path. In both these routing methods it was assumed that drivers use the same path that
corresponds the minimum variance or minimum mean-variance to their destination node
depending on their actual departure time at an origin node. We found the recursive
relationship between means and variances of a given routing policy starting from two
adjacent nodes. The node labels are updated by using the recursive formulation. At
termination of either algorithm, the final node labels are the minimum variance path and
minimum mean-variance path from each node to the destination node for all departure
time.

The PMV and PMMYV procedures are both specialized modified label correcting
algorithms for determining “preferred” paths in stochastic time-dependent networks from
all origins to a selected destination, for all departure times in the peak period. Both

algorithms are similar because both mean and variance calculations are required in both

183

procedures. The multiple vector labels are required, each containing the variance or
mean-variance of path travel time for each departure time. These labels are growing
exponentially with network size, resulting in nonpolynomial worst-case performance.

Extensions of these algorithms for determining paths in a time-adaptive routing
where a driver is permitted to react to revealed information such as arrival time at
intermediate nodes were also discussed. Rather than selecting a priori single best path
before travel begins, routes with minimum mean-variance were obtained by allowing the
driver to react en route to revealed (actual) arrival times. Two computationally efficient
algorithms, TAMMYV1(time-adaptive minimum mean-variance algorithml) and
TAMMV2(time adaptive minimum mean-variance algorithm2) presented for
determining minimum mean-variance travel time path for all origins to a single destination
in a networks where the arc weights were discrete random variables whose probability
distribution functions varied a priori minimum variance algorithm with time. At
termination of the algorithm, efficient solutions (or non-dominated solutions) were
generated. The research proposes that such efficient solutions can be presented to the
traveler, who may then make the appropriate choice.

The performance of the algorithms, PMV, PMMV, TAMMV1 and TAMMYV2 were
evaluated through numerical experiments, which were intended to assess the
computational performance on randomly generated networks. The results of these tests
showed that the TAMMYV1 algorithm is often faster than is the TAMMYV2 algorithm for the
majority of the larger-size networks, while the TAMMV?2 algorithm appears to be faster for the
smaller networks. It was shown that while the TAMMV1 algorithm outperforms the

TAMMV?2 algorithm in dense networks (such as data networks) the TAMMV?2 algorithm

184

often outperforms the TAMMYV1 algorithm in sparse networks (such as transportation
networks).

The proposed algorithms were shown to perform successfully in real-life network
of best path between Beverly Hills and Garden Grove in LA. The data used for this

purpose was real-time data obtained from California DOT.

7.2 Future Research Directions

In this research, several assumptions are made to solve the stochastic time-
dependent network problems. First, the travel times are discredited into small time
increment. For more realistic approach, continuous-time framework should be considered.
The travel times of arcs are assumed as discrete random variables. Such discrete
representations of continuous random variables can result in wrong path selections.
Therefore, the solution algorithms need to develop for continuous-time dynamic network
optimization problem. Second, waiting times are not allowing during the trip. However,
most travelers are very flexible for their trip. To more accurately represent traffic or data
network, waiting time should not have the limitation.

The computational tests on this study provide valuable insights into the problem
for the first time. However, since the research is still in a very early stage, many
interesting tests are not performed and are desired for future research. Specifically, more
tests on a real-world network with actual data is recommended. Such tests can provide
researchers with an idea how the model and algorithms will perform in a realistic
network.

Reliability is another important criterion besides expected travel time and

185

variance, when traveler makes routing decision in stochastic networks. With the real-time
traffic sensor information, routing decisions can be made in order to help commuters to
minimize delay. This minimum delay (on-time arrival) routing problem can be solved
by minimization of linear combination of expected travel time, expected early arrival ,
and expected late arrival.

In communication and other networks, node failures may be common. In this
study, node failures are not explicitly considered. The determination of "best" paths
given the probability of node failures is an area for future research. Some of the insight
gained though the development of this work may be useful for developing procedures for
computing the pdf of the minimum time, or least expected time, between two nodes in a
stochastic, time-dependent network.

The constrained optimal routing problems in stochastic time-dependent networks
are another area of the future research. With the time window constraints, travelers need
to arrive some specific point within given time window during the routing. These routing

problems have enormous real-world applications.

186

References

Adlakha, V.G., (1986), "An Improved Conditional Monte Carlo Technique for Stochastic
Shortest Route Problem", Management Science, 32, 10, 1860-1367.

Ahuja, R.K., Magnanti, T.L., and Orlin, J.B., (1993), Network Flows: Theory, Algorithms,
and Applications, Prentice-Hall, Englewood Cliffs, NJ.

Alexopoulos, C., (1997), “State Space Partitioning Methods for Stochastic Shortest Path
Problem,” Networks, 30, 9-21.

Andreatta, G., Romeo, L., (1988), "Stochastic Shortest Paths with Recourse," Networks,
18, 193-204.

Bard, J. F., and Bennett, J. E., (1991), “Arc Reduction and Path Preference in Stochastic

Acyclic Networks”, Management Science, 37, 198-215.

Bard, J. F., Bennett, J. E. (1991), “Arc reduction and path preference in stochastic acyclic
networks”, Management Science 37/2, 198-215.

Bellman, R., (1958), “On a routing problem”, Quarterly of Applied Mathematics, 16, 87-
90.

Bereanu, B., (1966), “On Stochastic Linear Programming: The Laplace transform of the
distribution of the optimum and applications”, Journal of Mathematical Analysis

and Application, 15, 280-294.

Bertsekas, D. P., (2000), Dynamic Programming and Optimal Control, volume 1.

Athena Scientific, Belmont, Massachusetts, 2nd edition.

Bertsekas, D.P., and Tsitsiklis, J.N., (1991), “An analysis of Stochastic Shortest Path
Problems”, Mathematics of Operations Research, 16, 3, 580-595.

187

Blue, V.J., Adler, J.L., and List, G.F., (1997), “Real-time multiple-objective path search
for in vehicle route guidance systems”, Transportation Research Records, 1588,

10-17.

Brumbaugh-Smith, J. and Shier, D., (1989), “An Empirical Investigation of Some
Bicriterion Shortest Path Algorithms”, European Journal of Operational
Research, 43, 2 16-224.

Cai, X., Kloks, T., and Wong, C. K., (1997), “Time-Varying Shortest Path Problems with
Constraints”, Networks, 29, 141-149.

Chabini, 1. (1998), "Discrete Dynamic Shortest Path Problems in Transportation
Applications: Complexity and Algorithms with Optimal Run Time".
Transportation Research Record 1645, 170-175.

Chabini, 1., (1997), "A new algorithm for shortest paths in discrete dynamic networks",
Proceedings of the 8" IFAC Symposium on Transport systems, China, Greece,
551-556

Chabini, 1., (2001), "Algorithms for k-shortest paths and other routing problems in time-
dependent networks”, NSF report.

Cheung, R. K., (1998), “Iterative methods for dynamic stochastic shortest path
problems,” Naval Research Logistics, 45, 769-789.

Climaco, J.C. N. and Martins, E.Q.V., (1982), “A Bicriterion Shortest Path Algorithm,”
European Journal of Operational Research, 11,399-404.

Cook, K. L., and E. Halsey, (1969), “The Shortest Route Through a Network with Time-
Dependent Internodal Transit Times’, Journal of Mathematical Analysis and

Applications 14, 492-498.

Corea, G. A., and Kulkarni, V. G., (1993), “Shortest paths in stochastic networks with
discrete arc lengths”, Networks, 23, 175-183.

188

Corley, HW. and Moon, 1.D., (1985), “Shortest Paths in Networks with Vector
Weights,” Journal of Optimization Theory and Applications, 46, 79-86.

Croucher, J., (1978), “A note on the stochastic shortest-route problem,” Naval Research

Logistics Quarterly, 25, 729-732.

Current, J., Marsh, M., (1993), “Multiobjective transportation network design and
routing problems: Taxonomy and annotation”, European Journal of Operational

Research, 65, 4-19.

Dial, B.R., (1969), “Algorithm 360: Shortest Path Forest with Topological Ordering”,
Journal of the Association for Computing Machinery, 12, 632-633.

Dial, R.B., (1996), “Bicriterion Traffic Assignment: Basic Theory and Elementary
Algorithms”, Transportation Science, 30, 2, 93-111.

Dijkstra, E. W., (1959), “A note on two problems in connection with graphs”, Numeriche

Mathematics, 1,269-271.

Dreyfus, (1969), "An Appraisal of Some Shortest-Path Algorithms", Operations
Research, 17, 395-412.

Erkut, E. and V. Verter (1995), "Hazardous Materials Logistics," in Facility Location: A
Survey of Applications and Methods, a Springer-Verlag book edited by Zvi

Drezner.

Eubank, J. B., and Kumin, H. J., (1974), “A method for the solution of the distribution
problem of stochastic linear programming”, SIAM Journal Applied Mathematics,
26, 225-238.

Ford, L.R., (1956), “Network flow theory”, Report P-923, Rand Corp., Santa Monica,
CA.

189

Fox, B.L., (1973), “Calculating kth shortest paths,” INFOR-Canada, Journal of

Operational Research and Information Processing, 11, 66-70.

Fox, B.L., (1975), “More on kth shortest paths,” Communications of the ACM, 18, 279.

Fox, B.L., (1978), “Data Structures and Computer Science Techniques in Operations

Research”, Operations Research, 26, 686-717.

Frank, H., (1969), “Shortest paths in probabilistic graphs”, Operations Research, 17, 83-
599.

Fu, L., and Rilett, L.R., (1998), “Expected Shortest Paths in Dynamic and Stochastic
Traffic Networks”, Transportation Research-Part B, 32,7, 499-511.

Gao, S., and Chabini, I., (2001), “The best routing policy problem in a stochastic time-
dependent network”, NSF report.

Glover, F., Glover, R., and Klingman, D., (1984), “Computational study of an improved
shortest paths algorithm”, Network, 14, 25-37.

Goldberg, A. V., Radzik, T., (1993), “A heuristic improvement of the Bellman-Ford
algorithm”, Applied Mathematical Letter, 6, 3-6.

Hagstrom, J., (1990), “Computing the Probability Distribution of Project Duration in a
PERT Network”, Networks, 10, 231-244.

Hall, R. W., (1986), “The fastest path through a network with random time-dependent

travel times”, Transportation Science, 20, 182-188.

Hansen, P., (1980), “Bicriterion Path Problems, In G. Fandel and T. Gal (Eds): Multiple
Criteria Decision Making”, Springer, Berlin, 109-127.

Hansler, E., (1972), “A fast recursive algorithm to calculate the reliability of

communication network”, IEEE Transportation Communications, 20, 637-640.

190

Hayhurst, G. B., and Shier, D. R., (1991), “A factoring approach for the Stochastic
Shortest Path Problem”, Operations Research Letters, 10, 329-334.

Henig, M. L., (1990), "Risk Criteria in a Stochastic Knapsack Problem", Operations
Research, 38, 820-825.

Henig, M.L., (1985), “The Shortest Path Problem with Two Objective Functions,”
European Journal of Operations Research, 25, 281-291.

Henig, M1, (1994), “Efficient Interactive Methods for a Class of Multiattribute Shortest
Path Problems,” Management Science, 40, 7, 891-897.

Hoffman, W. and Pavley, R., (1959), “A method for the solution of the n-th best path
problem,” Journal of the Association for Computing Machinery, 6, 506-514.

Ishii, H., Shiod, S., Nishtida, T., and Namasuya, Y., (1981), “Stochastic spanning tree
problem”, Discrete Applied Mathematics, 3, 263-273.

Kalbfleisch, J., (1985), Probability and Statistical Inference: Volume 1: Probability,
Springer-Verlag, New York, Chapter 5.

Kamburowski, J., (1985), "A Note on the Stochastic Shortest Route Problem",
Operations Research, 33, 696-698.

Kaufman, D. E., and Smith, R. J., (1993), “Fastest paths in time-dependent networks for
IVHS application”, IVHS Journal, 1, 1-11.

Kulkarni, V. G., (1986), “Shortest Paths in networks with exponentially distributed arc
lengths”, Networks, 16, 255-274.

Lawler, E. L., (1976), “Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart & Winston, New York, NY.

Lawler, E.L., (1972), “A procedure for computing the K best solutions to discrete

optimization problems and its application to the shortest path problem,”

191

Management Science, 18, 401-405.

Lawler, E.L., (1977), “Comment on computing the k shortest path in a graph,”
Communications of the ACM, 20, 603-604.

List, G. F., Mirchandani, P.B., Turnquist, M. A., Zografos K. G., (1991), “Modeling and
analysis for hazardous materials transportation: Risk analysis, routing/scheduling

and facility location”, Transportation Sci. 25 100-114

Loui, R. P, (1983), “Optimal Paths in Graphs with Stochastic or Multidimensional
Weights”, Communications of the ACM, 26, 670-676.

Martins, E.Q.V., (1984), “An Algorithm for Ranking Paths that May Contain Cycles”,
European Journal of Operations Research, 18, 123-130.

Miller-Hooks, E. D., (2001), “Adaptive Least-Expected Time Paths in Stochastic, Time-
Varying Transportation and data networks”, Networks, 37, 1, 35-52.

Miller-Hooks, E. D., and H. S. Mahmassani (2003), “Path comparisons for a priori and
time-adaptive decisions in stochastic, time-varying networks”, European Journal

of Operational Research, Vol. 146, pp. 67-82.

Miller-Hooks, E. D., Mahmassani, H. S. (1998a), “Least possible time paths in stochastic,
time-varying networks”, Compututations Operational Research, 25, 1107-1125

Miller-Hooks, E. D., Mahmassani, H. S. (1998b), “Optimal routing of hazardous
materials in stochastic, time-varying transportation networks”, Transportation

Research Records. 1645, 143—151.

Miller-Hooks, E. D., Mahmassani, H. S., (2000), “Least expected time paths in stochastic,

time-varying transportation networks”, Transportation Science. 34(2), 198-215.

Miller-Hooks, E., Mahmassani, H., (1998), “Least possible time paths in stochastic, time-

varing networks,” Computers operations research, 25, 12, 1107-1125.

192

Minieka, E. and Shier, D.R., (1973), “A note on an algebra for the k best routes in a
network,” Journal of the society for Industral and Applied mathematics, 145-
149.

Mirchandani, P. B., (1976), “Shortest distance and reliability of probabilistic networks”,

Computers & Operations Research, 3, 347-355.

Moore, E.F. (1959), “The shortest path through a maze”, Proceedings of an International
Synposium on the Theory of Switching (Cambridge, Massachusetts, 2-5 April,
1957), Harvard University Press, Cambridge, 285-292.

Murthy, 1., Sarkar, S., (1997), “Exact Algorithms for the Stochastic Shortest Path
Problem with a decreasing deadline utility function”, European Journal of

Operational Research, 103, 209-229.

Nguyen, S., Pallottino, S., (1986). “Hyperpaths and Shortest Hyperpaths”, Combinatorial
Optimization, Lecture Notes in Mathematics, 1403, Springer-Verlag, Berlin, 258-
271.

Nguyen, S., Pallottino, S., (1988), “Equilibrium Traffic Assignment for Large Scale
Transit Networks”, European Journal of Operational Research, 37, 176-186.

Nozick, L. K., List. G. F.,and Turnquist M. A., (1997), “Integrated routing and
scheduling in hazardous materials transportation”, Transportation Science. 31

200-215

Orda, A., Rom, (1990), “Shortest-path and minimum-delay algorithms in networks with
time-dependent edge-lengths”, Journal of the Association for Computing

Machinery. 1. 37, 603-625.

Pallottino, S., (1984), “Shortest path methods: Complexity, interrelations and new
propositions”, Networks, 14, 257-267.

Pape, U., (1974), “Implementation and efficiency of Moore-algorithms for the shortest

193

route problem”, Mathematical Programming, 7,212-222.

Perko, A., (1986), “Implementation of algorithms for K shortest loopless paths,”
Networks, 16, 149-160.

Polychronopoulos, G. H., Tsitsiklis, J. N., (1996), “Stochastic Shortest Path Problems
with Recourse”, Networks, 27, 133-143.

Powell, W. B., Jaillet, P., and Odoni, A. (1995), Stochastic and Dynamic Networks and
Routing, Handbook in Operations Research and Management Science, Vol. 4,
Networks, (M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser, eds.),
pp. 141-295, 1995.

Provan., J.S. (2003). “A polynomial-time algorithm to find shortest paths with recourse”.
Networks, 41(2):115-125,

Psaraftis, H. E., and Tsitsiklis, J. N., (1993), “Dynamic Shortest Path in acyclic networks

with Markovian arc costs”, Operations Research, 41, 1, 91-101.
Ross, S. M., (1993), Introduction to Probability Models, Academic Press, Inc. Processes

Sancho, N.G. F., (1988), “A New Type of Multi Objective Routing Problem,”
Engineering Optimization, 14, 115-119.

Schrank, D., and Lomax, R., (2005, May). The 2005 Urban Mobility Report, Texas
Transportation Institute, The Texas A&M University System,
http://mobility.tamu.edu

Scott, K. G., and D. Bernstein, (1998), “Solving a Best Path Problem when the Value of
Time Function is Nonlinear”, Presented at the 77" Transportation Research

Board Annual Meeting, January 11-15, Washington, D.C.,

Sen, S., Pillai, R., Joshi, S., and Rathi, K., (2001) “A mean-variance model for route

guidance in advanced traveler information systems”, Transportation Science, 35,

194

1, 37-39.

Seok, J. and S. Pulat (2001), “On the stochastic shortest path problem and its promise as

a project management tool”, Master thesis.

Shier, D.R., (1976), “Iterative methods for determining the k shortest paths in a
network,” Networks, 6, 205-229.

Shier, D.R., (1979), “On algorithms for finding the k shortest paths in a network,”
Networks, 9, 195-214.

Sigal, L. E., Pritsker, A. A. B., and Solberg J. J., (1980), “ The use of cutsets in Monte
Carlo analysis of stochastic networks”, Mathematics Computer Simulation, 21

376-384.

Sivakumar, R. A. and Batta R. (1994), “The variance-constrained shortest path problem”,
Transportation Science, 28, 309-316.

Spiess, H., Florian, M., (1989), “Optimal Strategies: A new Assignment Model for
Transit Networks,” Transportation Research B 23B, 83-102.

Stewart, B.S., and White, C.C., (1989), “Three Solution Procedures for Multi Objective
Path Problems,” Control Theory and Advanced Technology, 5, 4, 101-107.

Tarjan, R. E., (1983), Data structures and Network Algorithms, SIAM, Philadelphia, Pa.

Turnquist , M. A., (1987), “Routes, schedules, and risks in transportation of hazardous
materials”, B. Lev, J. A. Bloom, A. S. Gleit, F. H. Murphy, C. A. Shoemaker, eds.
Strategic Planning in Energy and Natural Resources. North Holland, Amsterdam,
The Netherlands, 289-302.

Warburton, A., (1987), “Approximation of Pareto Optima in Multiple-Objective,
Shortest-Path Problems”, Operational Research, 35 1, 70-79.

195

Wu, J., Florian, M., (1993), “ A Simplical Decomposition Method for the Transit
Equilibrium Assignment Problem”, Annals of Operations Research, 44, 245-260.

Wu, J., Florian, M., and Marcotte, P., (1994), “Transit Equilibrium Assignment: A
Model and Solution Algorithms”, Transportation Science 28, 193-203.

Yen, J.Y., (1971), “Finding the K shortest loopless paths in a network,” Management
Science, 17, 712-716.

Yen, J.Y., (1971), “Finding the K shortest Loopless Paths in a Network”, Management
Science, 17, 711-715.

Ziliaskopoulos, A., Mahmassani, H. S.,(1993), “Time-dependent, shortest-path algorithm
for real-time intelligent vehicle highway system applications”, Transportation

Research 1408, 94-100.

196

