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Abstract 
 

Traditional models of route generation are based on choosing routes that 

minimize expected travel-time between origin and destination. The variance of the least-

time path is not included in the path selection. In addition, due to congestion in 

transportation networks, travel times are time-dependent and stochastic in nature. This 

research focuses on the time dependency as well as the stochastic nature of traffic flow.  

Two algorithms are developed for determining a minimum travel time variance 

path and minimum mean-variance path assuming a priori best path routing policy. Under 

this policy, drivers use the path that corresponds to the minimum travel time variance to 

their destination node determined prior to the actual departure time at an origin node. We 

prove that both algorithms reach the optimal solution in finite number of steps but have 

non-polynomial running times. In addition, two algorithms, specialized modified label 

correcting and label setting algorithms, are developed for determining minimum mean-

variance travel time path for time-adaptive routing problem. These algorithms allow the 

travel to define the route as he/she travels from the origin to the destination. Both 

algorithms reach optimal solution in finite number of steps and have polynomial 

computational complexity. 

The computational performance of the algorithms was evaluated through 

numerical experiments using randomly generated networks. A regression curve relating 

the running time to number of nodes, arc density, number of time intervals, and the 

number of discrete arc travel times has been generated for each algorithm. The results 

show that number of nodes and arc density influence the running time worse than linearly. 

The proposed algorithms were illustrated using a real-life network and near-real time 



 xii

travel information between Beverly Hills and Garden Grove in Los Angeles, California. 

The data was generated using the Freeway Performance Measurement System (PaMS) 

run by California Department of Transportation and the University of California at 

Berkeley. The illustration showed that more research is needed in extracting travel time 

information from real-life data which is vast and influenced by several factors such as the 

day of the week, holidays, time of the day, accidents. However, through the illustration 

we were able to demonstrate how the proposed algorithms can be used with near real-

time information. 
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Chapter 1. Introduction 
 

1.1 Motivation 

Time is the essence in today's ever-mobile world. While the time it takes to 

travel long distances is getting shorter each year, daily commuters spend more time just 

to get to work. One main reason for this situation is traffic congestion. Traffic congestion 

is perhaps the most prominent problem of modern society and has both direct and 

indirect impact. As described in the 2005 Urban Mobility Report, by the Texas Institute 

of Transportation: “Despite a slow growth in jobs and travel in 2003, congestion caused 

3.7 billion hours of travel delay and 2.3 billion gallons of wasted fuel, an increase of 79 

million hours and 69 million gallons from 2002 to a total cost of more than $63 billion.” 

To an individual traveler, congestion reduces the quality of life by reducing leisure time, 

increasing anxiety, and wasting personal resources. To firms, congestion reduces the 

work efficiency of employees and increases freight transportation costs. To the society as 

a whole, congestion negatively affects environmental quality by causing more gas 

emissions and noise, and endangers traffic safety by causing stress and fatigue for drivers. 

Adding capacity by building infrastructure is the most common measure taken to 

improve traffic flow. However, the more traditional approach of simply adding more 

infrastructure and capacity is not always possible or desirable. Furthermore, new 

infrastructure will induce more demand, which could affect the increased capacity or 

even make the congestion worse. However, improvements can still be made by 

increasing the efficiency of the existing system. These treatments are particularly 
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effective in three ways. They have a relatively low cost. They can usually be 

implemented quickly and can be tailored to individual situations, making them more 

useful because they are flexible. They are usually a distinct, visible change; it is obvious 

that the operating agencies are reacting to the situation and attempting improvements.  

Measures to relieve traffic congestion are generally based on the concept of 

making the best use of current infrastructure with the advanced information technology, 

which is the underlying idea of Intelligent Transportation Systems (ITS). Advanced 

Traffic Management Systems (ATMS) and Advanced Traveler Information Systems 

(ATIS) are fields of ITS which put congestion management as a major priority. Among 

the various sub-systems of ITS, ATIS aims to provide travelers with updated and useful 

information about network conditions to traveler to aid in making better decision. As 

traffic conditions are stochastic in nature, the information is of even greater importance. 

For example, when an accident happens, a timely notice by ATIS to travelers who plan to 

take the route on which the accident happened would be quite beneficial.  

 All parameters of a real time traffic such as traffic volume and travel time are 

stochastic in nature. The travel time of even commonly undertaken trips like home to 

work differ over day of the week and even time of the day. The randomness can come 

from multiple sources that are both recurrent and non-recurrent. One of the most 

significant sources is the disturbances that cause unpredictable (called non-recurrent) 

congestion, such as accidents and vehicle breakdown. Traffic conditions with predictable 

(recurrent) congestion, on the other hand, are also usually different from day to day, 

largely because of fluctuations in origin-destination (OD) trips. The fluctuations can be in 

both the total number of OD trips and the spread of OD trips over departure times (i.e. 
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traffic flow per unit time). Travelers with non-commuting trip purposes might decide not 

to take a trip on a particular day, due to other personal business, and the no-travel 

decisions collectively result in a random number of OD trips. Travelers may also respond 

to congestion by shifting departure times from day to day, and thus, there exists a random 

pattern in OD trips’ spread. These and more reasons make the traffic flow more 

stochastic and less predictable. 

Travelers make decisions (destination, mode, departure time, route) based on 

their information about the traffic network. The information can be obtained through a 

wide range of means: the travelers’ own experience, word of mouth, radio broadcast, 

variable message signs (VMS), an in-vehicle communication system, and so on. This 

information can be classified as a priori or real time. A priori information is about the 

day-to-day fluctuations of traffic quantities, e.g. the time it takes to travel from Norman 

to OKC is 20 minutes on average, but roughly once in a month, the travel time is 

unusually high, due to various reasons. Real time information is about the traffic 

conditions on a specific day, e.g. an incident just occurred on a route, and thus will 

impact the traffic for the next 30 minutes. This classification is meaningful only when 

there is stochasticity in the network; it is in that way real time information is different 

from a priori information. Destination, departure time and mode decisions are usually 

made only at origins and can rarely be changed en route, while route decisions can be 

changed en route more easily and thus benefit more from real time information. ATIS 

can provide both a priori and real time information. Travelers only have personal 

experience to guide them on their selected routes. In order to obtain a priori information 

about the whole network, they need to go beyond their personal experience, and a good 
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source is ATIS. ATIS can provide travelers with reports of traffic conditions in the past 

and possibly predictions about the future, for the temporal and spatial ranges and in 

formats specified by travelers. Combining all sources of priori information, travelers can 

form their own general pictures about the network. Nevertheless, the benefit of ATIS is 

primarily embodied through the provision of real time information, especially in a 

network disturbed randomly by accidents, vehicle breakdowns, bad weather, work zones, 

special events, and so on. The sensors are, in general, installed on state highways and 

interstates to collect real time traffic data. This real time sensor data can be use to assist 

commuters (passengers, emergency and commercial vehicles) in making the best 

decisions on route selection. 

Travelers’ routing decisions in a stochastic network with real time information is 

conceivably different from those in a deterministic network. It is generally believed that 

adaptive routing will save travel time and enhance travel time reliability. For example, in 

a network with random incidents, if one does not adapt to an incident scenario, he/she 

could be delayed in the incident link for a very long time. However, if adequate real time 

information is available about the incident and the traveler adapts to it by taking an 

alternative route, he/she can save travel time as compared to the non-adaptive case. The 

adaptiveness also ensures that the travel time is not prohibitively high in incident 

scenarios, and thus provides a more reliable travel time.  

It is therefore a very interesting research question how an individual traveler 

makes adaptive routing decisions in a stochastic and time-dependent network. Traditional 

models of route generation are based on choosing routes that minimize expected travel-

time between origin and destination. Such approaches do not account for the fact that 
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travelers often incorporate travel-time variability within their decision making. Thus, a route 

with lower travel-time variability is preferred by some travelers, even if such a route is not 

one with the lowest mean of travel-time. Such traveler behavior is best captured by a multi-

objective model (mean-variance) in which the choice of a route is based on the mean as well 

as the variance of the path’s travel-time. The route planning model developed in this work 

is intended to help travelers with decision making. 

 

1.2 Research Overview 

1.2.1 Problem Statement: Stochastic Time-Dependent Networks 

Travel time between an origin and destination is often the primary criterion in 

routing vehicles such as ambulances, police cars, vehicles carrying hazardous substances, 

and individuals on their way to some activity. Today's traffic routes have ever-changing 

traffic patterns that lead to time-varying dynamic networks. To analyze this dynamic 

situation, one would need to use dynamic algorithms that can take into account time-

dependent behavior. This leads to the concept of dynamic network optimization and real-

time traffic routing. 

There may be some uncertainty associated with the travel times (or travel costs) 

along the arcs as a result of inherent uncertainties in future trip times, incomplete a priori 

information, or inaccurate methods of predicting future trip times. In part, such inherent 

uncertainties in travel times can be attributed to the varying characteristics of drivers and 

vehicles, the amount of interaction between vehicles due to the level of congestion and 

the unexpected delays as a result of automobile failures or accidents, construction or lane 

closures, road hazards, train passings, bus stops, and so on.  In order to optimally route 
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vehicles, both the stochastic and time-dependent nature of the travel times must be 

considered.  Future travel times, as well as other travel costs, can be treated as random 

variables whose probability distribution functions vary with time. 

Two types of algorithms are generally used for routing in networks: (1) shortest 

path based routing algorithms, and (2) optimal routing algorithms based on other 

measures. The efficiency of a routing algorithm depends on how it performs during times 

of congestion in the network. The main tasks that have to be performed by these routing 

algorithms are routing choice and the error-free and reliable delivery of a message.   

The average travel-time that would be experienced by drivers may depend on the 

type of routing policy adopted. In literature, the following two routing policies have been 

considered (Chabini, 2001). 

1) The best path routing policy (Route planning): A minimum of the expected 

travel-time path is determined in this policy during the drivers’ trips from an 

origin node to a destination node.  Because of travel time random variable, 

there can be exist multiple criteria to measure the quality of a path. The expected 

travel time is only one possible criterion.   

2) The best next-arc routing policy (Route guidance): Rather than determining a 

single best path based only on information known before travel begins, routes with 

lower travel times may be obtained by allowing the driver to react en route to 

revealed (actual) arrival times. This is referred to as time-adaptive route choice by 

Hall (1986). A driver recursively selects the best next arc to follow when 

departing from the current node, depending on the actual arrival time at this 

node.  
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These two policies possess the same solution in static or in deterministic problems. 

However, in general stochastic time-dependent networks, the above two policies lead to 

different expected travel-times. There are two results that follow from this interpretation: 

(1) the expected travel time corresponding to the second policy is always less than or 

equal to the expected travel time corresponding to the first policy, and (2) generating a 

solution to the second policy is a less difficult algorithmic task than computing a solution 

to the first one (Chabini, 2001). The aim of the best next arc routing policy is to compute 

an a priori routing strategy that would be repetitively used to guide drivers during their 

trips between a pair of origin-destination nodes. Under the best path routing policy, 

drivers use the same path. Under the best next-arc routing policy, drivers may follow 

different paths. 

 

1.2.3 Solution difficulties and General Approaches 

Many difficulties come up to solve the problem of determining "best" paths in 

stochastic, time-dependent networks that are not present in the deterministic, time-

dependent problem. In problems involving a single objective function, like minimum 

travel times, of deterministic quantities, a single optimal solution can be identified, with 

possible alternate optimal solutions. If alternate optimal solutions exist, the solutions all 

have the same deterministic value; and thus, a solution can be arbitrarily selected without 

regret. A single objective problem of a stochastic quantity may result in multiple non-

dominated solutions because several solutions may have some probability of being best 

for one or more realizations of the random quantity. For this reason, multiple non-

dominated least time (or shortest) paths may exist in stochastic networks where more 
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than one path may have the least time for some realization of the network. 

There are numerous criteria that one uses to select one route over another in 

stochastic time dependent networks. For example, one may prefer the path that has some 

probability of having the least possible time. Miller-Hooks and Mahmassani (1998a) 

proposed efficient procedures for determining the least possible time paths in stochastic 

time dependent networks. In stochastic time dependent networks, paths comparison is 

further complicated by the fact that such comparisons of the path probability distribution 

functions must be made over a time period. Several algorithms for determining a priori 

paths in stochastic time dependent networks that employ such path-comparison 

techniques were proposed by Miller-Hooks and Mahmassani (1998a, 1998b, and 2000). 

Common approaches to stochastic problems that often lead to solutions with the least-

expected value. The determination of the least-expected time paths in stochastic time 

dependent networks is more difficult than in networks where the arc traversal time 

distributions are time-independent. In stochastic time-dependent networks, one cannot 

simply set the random arc traversal times to their expected values and solve for the least 

expected time paths through the use of a deterministic shortest path algorithm, as is 

possible in time-invariant networks. This is because the expected traversal time on an arc 

in stochastic time-varing networks depends on the time of arrival at its origin node. 

Miller-Hooks and Mahmassani (1998a, 2000) and Miller-Hooks (2001) discuss 

approaches for the time-varying and stochastic transportation and data networks. They 

propose label-correcting algorithm and a modified label-correcting algorithm to 

determine a priori least expected time path and a lower bound on least expected time 

path, respectively. They also illustrate how adaptive least expected time hyperpaths can 
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be determined using an extension of the modified label-correcting algorithm to generate 

best routing policies conditioned on the node arrival times. Chabini (2001) proposed a 

dynamic programming approach to determine the least expected travel costs from all 

nodes to a given destination. Gao and Chabini (2001) studied the best routing policy 

problem. They provide a comprehensive taxonomy of the problem, based on information 

access and network statistical dependency. An exact algorithm and four approximations 

are proposed. 

Previous approaches in stochastic time dependent problems do not account for the 

fact that travelers often incorporate travel-time variability in decision making. Thus, a route 

with lower travel-time variability is preferred at certain situations like hazardous material 

shipment, even if such a route is not one with the lowest mean of travel-time. Such traveler 

behavior is best captured by a mean-variance model in which the choice of a route is based 

on the mean as well as the variance of the path’s travel-time. To the best of author’s 

knowledge, there is no papers in the literature that deals with minimum variance and 

mean-variance path problems in stochastic time-dependent networks.  In this study, we 

develop the methodology for minimum variance and mean-variance path that 

accommodates variance and both means and variances within a route guidance model. 

Two procedures presented in this study are specialized modified label correcting 

and efficient specialized label setting algorithms for generating "preferred" paths. The 

first procedure determines a prior minimum variance and mean-variance paths from all 

origins to a single destination for each departure time in the peak period. The second 

procedure determines the “best” next arc routing from all origins to a single destination 

for each departure time in the peak period. In generic label correcting algorithms for 
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time-independent, deterministic shortest path problems, a single label associated with 

each node maintains the current shortest time from the node to the destination. The labels 

are updated until optimality conditions are satisfied. Upon termination, as long as a path 

exists, a single shortest path (which may be tied for shortest) from all origins to the 

destination node and the corresponding distances (or times) are known. In deterministic, 

time-dependent networks, vector labels are associated with each node, maintaining the 

current shortest distance (or time) from the node to the destination for each time interval 

in the peak period (Ziliaskopoulos and Mahmassani, 1993). Unlike label correcting 

algorithms, where the components of all vector labels are temporarily set until 

termination, after each iteration of the label setting algorithm, where the labels are 

updated for a specific deprture time, t, the component of each vector label associated 

with t is permanently set for all i.   

Similarly, in stochastic, time-dependent networks, vector labels are maintained 

from each node to the destination node, the number and contents of which now depend 

on the specific problem that one is solving. If the problem is to determine the least 

expected time paths, then the optimality conditions based on expected times are used. If 

the problem is to determine the least variance paths, then the optimality conditions based 

on the variance of travel times are used. Again multiple vector labels are associated with 

each node (as more than one path may have the least expected time for one or more 

departure time intervals). Each vector label maintains the expected time or variance for 

its associated path from the node to the destination for all t. For each of these problem 

formulations in stochastic, time-varying networks, until termination, the labels of any 

Pareto-optimal, or optimal, paths must be maintained over the entire time period.  
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In this work, problem formulations that permit the use of a single vector label from each 

node, maintaining single deterministic quantities for each departure time, can result in 

polynomial time algorithms with a worst-case performance similar to that of the 

deterministic, time-varying shortest path problem. 

 

1.3 Research summary 

The procedures developed in this dissertation for determining "best" paths in 

stochastic, time-dependent networks are organized in two sets. The first set addresses the 

problems of generating the “best” paths for both a priori best path routing and time-adaptive 

best routing problems. An additional procedure for determining a priori minimum variance 

path and minimum mean-variance paths, and time adaptive minimum mean-variance 

routing is presented. 

 

1.3.1 Path comparison: three dominance criteria 

Three dominance criteria, deterministic dominance, stochastic dominance, and 

expected value dominance, (Miller-Hooks and Mahmassani, 2003) are considered in the 

determination of non-dominated (or efficient) paths, described in detail in Chapter 3. In this 

section, a brief description of the rationale behind each dominance criterion is given. 

The first dominance criterion is deterministic dominance. By this criterion, if for a 

given departure time the highest travel time on the best path is lower than the lowest travel 

time on the second best path, then the second best path has zero-probability of having a 

lower travel time than the first. The first path is said to dominate the second for the given 
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departure time. For this departure time, one can choose the first path with certainty that 

the second path will not be better.  

The second dominance criterion, stochastic dominance, is less conservative than the 

deterministic dominance, possibly resulting in fewer non-dominated (or efficient) paths. 

Here, for a given departure time, the first path dominates second, and if for all possible 

travel time values, the probability that the first path's travel time is less than or equal to that 

value is always greater than the probability that the second path's travel time is less than or 

equal to this same value.  

The third criterion considered uses the expected value to establish dominance. If, 

for all departure time intervals in the peak period, the first path has lower expected time than the 

second, the first path dominates the second. 

In this research, procedures for generating a priori minimum variance time paths, a 

priori minimum mean-variance paths, and time adaptive minimum mean-variance paths are 

developed using the third criteria.  

 

1.3.2 A priori Minimum variance and Mean-Variance routing algorithms 

 A distinctive feature of a traffic network is the link-wise and time-wise 

stochastic dependency of link travel times. However, a comprehensive literature review 

on optimal routing policy problems for minimum variance in stochastic time-dependent 

networks reveals that no research has considered this important feature of a traffic 

network. When faced with travel time uncertainty, travelers are also concerned about the 

reliability of their travel times. Travel time variance is used to represent travel time 

reliability (Sen, et al., 2001). A routing policy with less travel time variance is viewed as 
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more reliable. For commuters, the desired arrival time in the morning might be some 

time around the work starting time. For a traveler trying to catch a plane, the desired 

arrival time might be roughly one hour before the plane’s departure. It is generally 

believed and verified that a constant travel time path is preferred over a high variance 

path, even if it has a shorter travel time. Since expected travel time is the primary 

criterion in routing optimization, and reliability measures (variance) are generally 

secondary, it is necessary to design algorithms that minimize linear combination of 

expected travel time and variance. The detail descriptions are presented in chapter 5. 

 Two algorithms, PMV and PMMV, are developed for determining a minimum 

travel time variance path and minimum mean-variance path for a priori best path routing 

problem. In this routing policy, drivers use the same path that corresponds the minimum 

travel time variance to their destination node depending on their actual departure time at 

an origin node.  

We find the recursive relationship between means and variances of a given 

routing policy starting from two adjacent nodes. The node labels are updated by using the 

recursive formulation. At termination of either algorithm, the final node labels are the 

minimum travel time variance or mean-variance from each node to the destination node 

for departure time t. Both algorithms are similar because both mean and variance 

calculations are required in both procedures. One main difference between these two 

algorithms is the way to update the node labels. Detail descriptions of the algorithms are 

in Chapter 4.  
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1.3.3 Time-adaptive Minimum mean-variance routing algorithms 

Rather than selecting a priori single best path based only on information known 

before travel begins, routes with lower expected travel times and variance may be obtained 

by allowing the driver to react en route to revealed (actual) arrival times.  

Two algorithms, TAMMV1 and TAMMV2, are presented for determining 

minimum mean-variance travel time path for “best” next arc routing problem. The same 

recursive formulations are used for these algorithms. 

The next node is computed like this: a path with a minimum linear combination 

of expected travel time and variance from the current node to the destination is computed, 

and then the first link along this path is followed. When the user arrives at the next node, 

a new minimum linear combination of expected travel time and variance path is 

computed and the first link followed. Note that the new path is not necessarily a subpath 

of the previous one. This routing method is adaptive as a new path is computed each time 

a new decision node is reached, but it is myopic in the sense that it assumes no future 

changes in network conditions when computing the next node to take. 

 

1.4 Contributions 

The contributions of the thesis in stochastic time-dependent networks are 

summarized as follows: 

1. The specific computational steps are developed to find a priori minimum 

variance path in stochastic time-dependent networks.  

2. The specific computational steps are developed to find a priori minimum mean-

variance path in stochastic time-dependent networks.  
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3. Two different computational steps are developed to find minimum mean-

variance paths in stochastic time-dependent networks for a time-adaptive routing 

problem. 

4. Computer programs for these models are prepared, and extensive numerical 

experiments are conducted to assess the average run time.  

5. The proposed algorithms were illustrated using a real-life network and near-real 

time travel information. 

 

1.5 Organization 

The dissertation is arranged in seven chapters. This first chapter describes the 

problems that are addressed and gives an overview of the general approach that is taken 

for solving these problems. This is followed by a brief description of the procedures that 

are developed for solving the problems, the contributions of this work, and finally, the 

organization of this thesis. 

In Chapter 2, we survey the literature on this topic, including deterministic 

shortest path routing problems, k-shortest path routing problems, multi-objective shortest 

path routing problems, routing in stochastic static networks, and routing in stochastic 

time-dependent networks. This survey reveals that there are a number of variants of the 

optimal routing problem in an stochastic time dependent network.  

In Chapter 3, some basic concepts, as they apply to stochastic, time-dependent 

networks, are defined. Techniques for selecting a best path through compromise from the 

set of non-dominated solutions are discussed. Three dominance criteria are presented for 

comparing paths with random travel times whose probability distribution functions vary 
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over time. The conditions are given for comparing two paths at a single departure time 

and multiple paths over the time period for both a priori path selection and time-adaptive 

route choice. 

In Chapter 4, we develop the PMV and the PMMV algorithms to find a priori 

minimum variance path and minimum mean-variance path in stochastic time dependent 

networks. We find the recursive relationship between the mean and the variances of a 

given routing policy starting from two adjacent nodes. The worst-case computational 

complexity of the algorithms are discussed 

In Chapter 5, the TAMMV1 and the TAMMV2 algorithms are developed to find 

a minimum variance path in stochastic time dependent networks for time-adaptive 

routing problem. The worst-case computational complexity of both algorithms is 

discussed. 

In Chapter 6, the procedures of chapters 4 and 5 are implemented and tested on 

numerous randomly generated networks and a more realistic transportation network. The 

tests are intended to estimate the average run time. The procedures are tested on 

randomly generated networks with an average arc density of 2, 4, and 6 with number of 

nodes 50, 100, and 500. The methodologies used for randomly generating the networks 

and time-varying probability distribution functions are described. The results of these 

experiments are presented.  

The procedures presented in Chapters 4 and 5 are illustrated on an example 

problem: the best path selection from Beverly Hills to Garden Grove during rush hours in 

a representation of the Los Angeles traffic network. The travel times of this network are 

collected on Freeway Performance Measurement System (PeMS) based on actual 
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distances and varying travel speeds by traffic sensors. 

Finally, a summary of the dissertation work and future research directions are 

discussed in Chapter 7.  
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Chapter 2. Literature Review 
 

The routing problems in networks have been an important and well researched 

topic for a long time. We first give a brief introduction to the shortest path problem in 

deterministic networks, including the well developed static shortest path (SSP) problem 

and the dynamic shortest path problem. This will be useful to the study of routing 

problems in stochastic networks. We then proceed to stochastic networks. There are 

various ways of defining a stochastic network. Most of the problem variants studied in 

literature assumes that the underlying network is static (not dependent on time). Some 

other variants studied in the literary work with special cases of dynamic stochastic 

networks do not represent time explicitly. A limited number of papers have studied the 

optimal routing in a stochastic time dependent network with specific assumptions. A 

comprehensive study of the problem is not available in the literature.  

 

2.1 Basic Concept and Classification of Shortest Path 
Problems 

 The shortest path problem is one of the most fundamental network optimization 

problems. It is an important problem by itself for its many applications in the real world. 

It also important as a sub-problem in other network flow problems. The minimum cost 

flow and the maximum flow problems all can be solved by finding the shortest paths and 

augmenting flows along such paths. Lawler (1976), Tarjan (1983), and Ahuja et al. 

(1993) provided an excellent review of how the shortest path problems can be used in 

other network problems. 
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Algorithms for solving the shortest path problem have been studied for a long 

time. However, advances in the theory of shortest path algorithms are still being made.  

Let G(N, A) be a network, where N is the set of nodes and A is the set of links. 

Each link (i,j) has a cost c(i, j) and we term a path with minimum cost as the shortest path. 

The SSP is to find the shortest path from a source node s to a destination node d. 

Dijkstra’s algorithm is the most commonly used algorithm to solve the shortest path 

problem for networks with nonnegative arc costs. Various implementations of Dijkstra’s 

algorithm exist. The most straightforward one is based on the array of data structure and 

has a running time of O(n2), where n is the number of nodes. The implementation using a  

Fibonacci heap can achieve a running time of O(m + n log n), where m is the number of 

arcs. This implementation is also currently the best strongly polynomial-time algorithm 

for solving the shortest path problem. If the network has negative arc costs, more 

sophisticated algorithms (such as the label-correcting algorithms) are needed. These 

algorithms basically check whether the optimality conditions 

Ajijdjicid ∈∀≥+ ),(),(),()(  are satisfied, where the label d(i) is the cost for the 

origin to node i. They make necessary changes by changing cost labels until no arc 

violates this condition. A first-in-first-out (FIFO) queue implementation of the label 

correcting algorithm has a running time of O(mn).  

The existing shortest path problems (SPP) and their extensions may be classified 

by various criteria. The first classification may be by the number of routes identified.  

There are two categories: One is a generic shortest path algorithm which identifies a 

single path, and the other is the so-called k shortest path algorithm which identifies k 

shortest paths. These shortest path algorithms and extensions usually consider a single 
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attribute such as time, cost, distance or a combination of attributes that are combined into 

a single generalized cost. 

The second classification may be based on whether a single attribute or multiple 

attributes are considered in the objective function. The majority of the traditional shortest 

path and k-shortest path algorithms belong to the single attribute category, while the 

multi-criteria shortest path problem (MCSPP) belongs to the second category. Table 2.1 

summarizes the classifications of the SPP and gives examples of each type. 

 

Table 2.1. Classifications of shortest path problems 

Number of routes identified Number of attributes in objective 
function Classification 

Single Multiple Single Multiple 

Problems & 
Algorithms 

- Generic shortest 
path algorithm 

- Label setting 
algorithm 

- Label correcting 
algorithm 

- k-shortest 
path 
algorithm 

- Traditional 
shortest path 
algorithm 

- k-shortest path 
algorithm 

 

- Multi-
Criteria 
shortest path 

 

Another classification of the existing SPP and extensions could be based on the 

time-dependency of the link attributes. If the link cost changes with the time of day, 

identifying the shortest path is defined as a dynamic shortest path problem or shortest 

path problem in a dynamic traffic network. Lastly, in many transportation situations, the 

link travel time in a network is not deterministic but is a discrete or continuous stochastic 

process. That is, the cost or travel time on each link may be considered as a random 

variable. There exists a large amount of literature on the SPP in a dynamic and static 

network that require procedures to model those network characteristics. 

The following section focuses on the review of the standard SPP algorithms that 

identify a single route based on a single attribute in a static, deterministic network.   
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2.1.1 Labeling Algorithms for the Shortest Path Problem 

Labeling algorithms are the most popular and efficient algorithms for solving the 

SPP.  These algorithms utilize a label for each node that corresponds to the tentative 

shortest path length pi to that node. The algorithm proceeds in a way so that these labels 

are improved until the shortest path is found. There are two types of labeling algorithms: 

label setting (LS) and label correcting (LC). The LS algorithm sets the label of one node 

permanently at each iteration, thus increasing the shortest path vector by one component 

at each step. The LC algorithm does not set any label permanently. All the components 

of the shortest path vector are obtained simultaneously, after the algorithm terminates. A 

predecessor label is stored for each node that will represent the previous node in the 

shortest path to the current node. This is used to construct the shortest paths to each node 

by backtracking. Table 2.2 gives a comparison of these two algorithms. 

 

Table 2.2. Comparisons between label-setting and label-correcting algorithms 

 Label-setting algorithm Label-correcting algorithm 

Applicable 

- Shortest path problems defined on 
acyclic networks with arbitrary arc 
lengths. 

- Shortest path problems with 
nonnegative arc lengths. 

- More general and applies to all classes 
of problem, including those with 
negative arc lengths. 

- Shortest path problems with arbitrary 
arc lengths. 

Efficiency - Much more efficient. 
- Much better worst-case complexity. 

- More algorithmic flexibility. 

Algorithms 

- Dijkstra algorithm (Dijkstra, 1959). - Bellman-Ford-Moore algorithm 
(Bellman, 1958; Moore, 1957; Ford, 
1956). 

- Incremental-graph algorithm 
(Pape,1974 and Pallottino, 1984). 

- Threshold algorithm (Glover et al., 
1984). 

- Topological ordering (Goldberg and 
Radzik, 1993). 
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2.2 K-Shortest Path Problem and Algorithms 

In many transportation applications, there is a need to identify a multiple number 

of paths. Drivers may wish to make explicit trade-offs between routes, such as taking a 

longer route that has a lower variance or fewer stops. There is currently no algorithm that 

can determine the optimal route in this situation. A possible approach to both of these 

situations is to identify a number of distinct routes that then, using some multiple criteria 

decision making (MCDM) techniques, identify the best route. A common subset of the 

problem to identify a multiple number of routes is the k-shortest path problem (K-SPP) 

Two classes of the k-shortest path problems in static networks have been 

investigated. In the first class, optimal paths are not allowed to contain loops. This class 

of problems was studied by several authors including Bellman (1958), Fox (1975, 1978), 

Lawler (1972, 1977), Minieka and Shier (1973), Perko (1986) and Yen (1971). In the 

second class, paths may contain repeated nodes. Authors who studied the second class of 

problems include Bellman (1958), Dreyfus (1969), Fox (1973), Hoffman and Pavley 

(1959), and Lawler (1972). Minieka and Shier (1973) and Shier (1976, 1979) appear to 

be the first who discovered and exploited algebraic structures that exist between the usual 

shortest path and the k-shortest path problems. The formulation of the k-shortest path 

problem in dynamic networks can be viewed as an adaptation of a static k-shortest 

problem formulation in the time-expanded equivalent network representation of a 

discrete-time dynamic network. 
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2.3 Multi-Criteria Shortest Path Problem 

The previous two sections have provided reviews of the traditional shortest and 

K shortest path algorithms which are concerned with only one route attribute or travel 

time.  However, drivers consider a number of criteria when selecting routes, and may 

have different preferences or utility functions when selecting a best route.  It is therefore 

necessary to take into account various route attributes and the drivers' preferences when 

identifying an optimal route.   

There is a rich source of literature on the multi-criteria shortest path problem 

(MCSPP) in the operations research and management science areas.  The existing 

algorithms for the MCSPP may be classified into two groups.  In general, the first group 

generates all non-dominated paths while the second group focuses on the problem of 

finding the optimal path based on the users' objectives. 

The difficulty in solving the MCSPP may be attributed to the fact that there may 

be no single optimal solution (i.e., path in this dissertation) that satisfies all objectives 

simultaneously. If there were, the solution to the MCSPP would be very straightforward 

because the best path would dominate all other paths in terms of all objectives. Due to 

the non-existence of the overall best solution, a set of non-dominated paths or Pareto 

optimal paths, from which the decision maker must select the most preferred or most 

compromising solution, must be generated. The existing approaches for the MCSPP 

without utility function are broadly classified into two, as follows and they are 

summarized in Table 2.3. 
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Table 2.3. Existing approaches for the MCSPP without a utility function 

Approach Output Advantages 

/disadvantages 
Algorithms 

Exact 
approach 

 

Generate all non-dominated 
paths by  

- modified label setting or 
correcting algorithm  

- k-shortest path algorithms
 

multiple 
paths 

 

• Exponentially 
increasing number 
of non-dominated 
paths (NP-hard )  

 
• Set contains 
optimal path 

Hansen (1980) 
Martins (1984) 
Henig (1985)  
Corley and 
Moon(1985)  
etc. 

Estimate the non-dominated 
path set to some 
predetermined degree of 
accuracy using a scaling and 
rounding technique 

multiple 
paths 

 

Warburton 
(1987) 
 

Approxim
ation 

 
Apply A* search technique multiple 

paths 

• Enhancing 
computational 
efficiency  

 
• Set may not 
contain optimal 
path Stewart and 

White (1989) 

 

A traditionally employed methodology for the MCSPP would be to generate the 

entire set of non-dominated paths. The exact algorithms for generating the entire set of 

Pareto optimal paths may be classified based on their methods: 1) the labeling method 

and 2) the k-shortest path algorithm or linear programming-based approach. Hansen 

(1980), Henig (1994), and Sancho (1988) extended generic label setting shortest path 

algorithms, such as Dijkstra's (1959), into a multiple-labeling scheme, while Loui (1983), 

Corley and Moon (1985), and Brumbaugh-Smith and Shier (1989) extended general label 

correcting algorithms such as Moore's (1957). Brumbaugh-Smith and Shier implemented 

the labeling correcting algorithm in an artificial two-attribute network with varying size 

and varying degree of correlation between the two artificial attributes. Bicriterion 

algorithms of Climaco and Martins (1982) and Henig (1985) are based on the k-shortest 

path algorithm. The algorithm first computes the fastest path and the cheapest path, and 

computes the j-th cheapest paths until the cost of the j-th cheapest path is the same as the 
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cost of the fastest path. 

Aside from the above mentioned generic MCSPP, there have been relatively few 

attempts to incorporate multiple criteria within route choice modeling for transportation 

problems.  

The review by Current and Marsh (1993) describes the various approaches quite 

well. Multiobjective routing of hazardous material shipments is an important application 

of such methods. The reviews by List et al. (1991) and Erkut and Verter (1995) provide 

insight into hazmat applications, and more recent hazmat routing and scheduling efforts 

(e.g., Nozick, List, and Turnquist 1997; Miller-Hooks and Mahmassani 1998b) have 

begun to merge multiobjective routing with time-dependent and stochastic attributes. 

Dial (1996) formulated a bicriterion user equilibrium assignment model based on 

out of pocket costs and trip time based on the previous study which assumes a linear 

utility function (i.e., weighting method). Blue et al. (1997) proposed an algorithm for the 

MCSPP which considers two attributes: travel time and route complexity. The route 

complexity is represented by turning maneuvers. The algorithm is based on the simple 

weighting method and assumes that all members of a particular user class use the same 

value of weight, under the assumption that the nonlinear utility function is known a priori. 

Scott and Bernstein (1998)'s algorithm generates a set of Pareto optimal paths using a 

CSPP and then identifies the best path by evaluating the utility values of the alternative 

paths. It should be stressed that none of the existing MCSPP algorithms discussed above 

are concerned with the route similarity in terms of links used, which is a critical aspect 

for alternative paths from the drivers' point of view. 

The generalization of the stochastic dynamic shortest path problem to multiple 
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objectives, creating the multiobjective stochastic dynamic shortest-path (MSDSP) 

problem, results in a problem that is very difficult to solve. To our knowledge, only two 

studies, Turnquist (1987) and Miller-Hooks and Mahmassani (1998b), have been done on 

the MSDSP problem. Both of these studies focus on applications to hazmat 

transportation. 

 

2.4 Stochastic Shortest Path Problem 

In many transportation applications of the SPP, the travel time of each link is not 

really fixed but is, in fact, a random variable. The problem of determining the optimal 

path in this type of network is known as the stochastic shortest path problem (SSPP). The 

uncertainty of the link travel times is an important factor to be modeled in ITS because 

(1) there is an inherent uncertainty or randomness in link travel times, (2) the route 

optimization is based on the link travel times forecasted over the multiple periods into 

the future and, accordingly, the uncertainty is expected to increase as link arrival time 

increases, and (3) travel time reliability or variance of a route is one of the crucial criteria 

for route choice. 

If the underlying network is assumed to be static (non-time-dependent), the link 

travel times remain unchanged after they are revealed to the travelers. In a time-

dependent network, on the other hand, the travel time of every link at every time period 

is an individual random variable, so travel times revealed at different time periods could 

be different. The study of SSP problems in static networks is useful to the study of its 

time-dependent counterpart.  

Different types of stochastic shortest path problems have been considered with a 



 27

different meaning for the optimal path. One of the most considered criterion for 

determining the optimal path is one that maximizes the decision maker’s expected utility.  

Such a criterion stems from the Von Neumann- Morgenstern formulation of how 

preference judgments are made under uncertainty (Loui, 1983).  Another good 

definition of an optimal path is one that maximizes the probability that its length does not 

exceed a pre-specified threshold value (Frank, 1969). The same criterion has also been 

used by Henig (1990) for the stochastic knapsack problem.  A closely related stochastic 

shortest path problem involves chance constraints. An optimal path minimizes the 

threshold value, while satisfying the constraint that the probability of the path length 

exceeding this threshold value is at most, a pre-specified value α. Such a criteria was 

considered by Henig (1990) for the knapsack problem, and by Ishii et al. (1981) for the 

minimal spanning tree problem.  

One possible way for computing the distribution of shortest length is by 

formulating the problem as a stochastic linear program with random objective 

coefficients. Bereanu (1966) and Eubank (1974) proposed methods for computing the 

distribution of the optimal objective value when the coefficients are continuous random 

variables. These methods require the evaluation of the probability that a given basis is 

optimal. This is a task that requires a complicated partition of the state space of the 

objective function. Frank (1969) and Sigal et al. (1980) presented exact methods, both of 

which rely on the evaluation of multiple integrals. Because of the great complications 

that arise in those evaluations, they suggested Monte-Carlo sampling. Kulkarni (1986) 

presented an analytic method for the exact computation of the distribution of shortest 

distance. It is based on a Markov process with an absorbing state when the arc lengths 
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are independent and on exponentially distributed random variables. He constructed a 

continuous time Markov chain with a single absorbing state from the original network. 

Time until absorption in this absorbing state starting from the initial state is equal to the 

length of the shortest path original network. Algorithms are also developed for 

computing the probability that a given path is the shortest path in the network. This is for 

computing the conditional distribution of the length of a path given that it is the shortest 

path in the network.  

 The issue of arcs being random plays an important role especially in 

communication networks. Two computational tools are often important in the design and 

analysis of the communication networks. One is the method to compute network 

reliability and the other is the method to compute the response time of the system. By 

reliability, it is meant the probability of connectivity between a given source and sink 

node.  By time response, it is meant the expected time delay that a message that 

originates at the source node sustains before it reaches a sink node. Hansler (1972) has 

proposed an interesting algorithm on the reliability of networks based on generating 

mutually exclusive cut sets and calculating probabilities of related events. In the 

literature dealing with reliability of networks (and also in the literature related to 

switching circuits, communication networks, and traffic networks), there are many 

methods that deal with various algorithms dealing with reliability of networks.  

Mircandi (1976) analyzed the calculation of reliability of various emergency 

networks. His approach starts with sorting all (s, t) paths and creating a disjoint 

expression by comparing neighboring paths. This expression is then used for computing 

the probability that there exists an (s, t) path of length less than or equal to a fixed value 
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or the mean of the shortest path length.  

Sigal et al.(1980) introduced the concept of path optimality index as a 

performance measure for selecting a path in a stochastic network.  A path optimality 

index is defined as the probability of a given path being shorter than all other network 

paths.  Uniformly directed cutsets are introduced by them. It was further studied by 

Adlakha (1986) and Kamburowski (1985). Also, Alexopoulos (1997), and Seok and 

Pulat (2000) generated the probability distribution function of path travel times using 

probability axioms, Markov Chains, or simulation and then selected the path with the 

highest probability of being the shortest. 

The theory of analyzing the stochastic shortest path problems, using the 

Markovian decision problems, applies only when the arc costs are non negative or all non 

positive.  The deterministic theory of shortest path problems allows arc lengths that can 

be negative, as well as positive. Bertsekas and Tsitsiklis (1991) provided an analysis of 

the stochastic path problems that generalizes the known results of the deterministic 

counterpart. 

A factoring approach for the stochastic shortest path problem was suggested by 

Hayhurst and Shier (1991). In their work, the authors assumed that the arc lengths are 

discrete random variables assuming a finite number of non-negative integer values. Also, 

the arc lengths are assumed to be statistically independent. Since the arc lengths assume 

random length, the length of the shortest path is a random variable and the authors were 

interested in finding the distribution of the arc lengths. The factoring approach is based 

on the concept of structural factoring, in which a stochastic network is decomposed into 

an equivalent set of smaller, generally less complex sub networks. Several networks are 
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identified and exploited to significantly reduce the computational effort required to solve 

a problem relative to complete enumeration. This algorithm can be applied to two 

important classes of stochastic network problems. One is determining the critical path 

length distribution for acyclic networks and the other, terminal reliability for probabilistic 

networks. 

Bard and Bennett (1991) developed heuristic methods involving Monte-Carlo 

simulation to solve the stochastic shortest path problem with a general non-increasing 

utility function. They showed that their heuristic was able to solve a large number of 

randomly generated test problems, with sizes ranging from 20 to 60 nodes.   

Corea and Kulkarni (1993) proposed a methodology for computing the 

distribution of shortest length and criticality indices of paths. They assumed that the arc 

lengths are integer-valued, replaced each arc with largest possible length m by a sub-

network with 2m arcs, and constructed Markovchains with absorbing state and binary 

transition costs. The above measures are computed by evaluating the distribution of the 

total cost incurred until absorption.  Unfortunately, their construction limits the 

applicability of the methods to problems of small size. 

Cai, Kloks, and Wong (1996) studied the time varying shortest path problems 

with constraints. They studied the problem in which the objective is to study the shortest 

path subject with the constraint that the total traverse time is at most, some number T. In 

this study, the authors addressed the situation where the transit time and the cost to 

traverse an arc that is varying over time, and depending upon the departure time at the 

beginning vertex of the arc. Waiting times at vertices are considered decision variables. 

The problem is to find an optimal path as well as the optimal waiting times at the vertices 
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along the path, subject to the constraint that the total traverse time of the path is, at most, 

T. The authors tested the model for a variety of applications.   

The literature shows a combination of stochastic network concepts with 

interesting concepts of the utility functions. Murthy and Sarkar (1997) considered a 

stochastic shortest path problem of determining a path that maximizes the expected 

utility. The nature of the utility functions used to evaluate paths was of decreasing 

deadline type. Algorithms based on pruning techniques were developed for this case. One 

of the two algorithms makes use of the concept of local preference relations while the 

other type makes use of the relaxations.   

State Space Partitioning methods, developed by Alexopoulas (1997), examine 

discrete arc random lengths. The method is used for developing computing measures for 

shortest paths. The computation measures include the probability that a path exists where 

the length doesn’t exceed a specified value and the probability that a given path is 

shortest. These methods are based on an iterative partition of the network space and 

provide bounds that improve after each iteration and eventually become equal to the 

respective measure. These bounds can also be used for constructing simple variance 

reducing Monte Carlo sampling plans, thus making the algorithm useful for large 

problems. The algorithms can be easily modified to compute performance characteristics 

in stochastic activity networks. 

Andreatta and Romeo (1988) study the problem in a static network where the 

topology is stochastic. A stochastic topology is defined by a deterministic set of nodes N 

and a random set of links. Each possible topology has a positive probability. A random 

link can be either active or not. When it is active, it is included in the network; when it is 
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not active, it is removed from the network. The decision maker (DM) can learn whether a 

link is active or not once he/she reaches the node from which the link emanates. The DM 

can reroute once he/she finds out the next link is inactive. They prove four facts about a 

stochastic shortest path that are different from those about a deterministic shortest path. 

A stochastic dynamic programming formulation of the problem is provided, with the 

definition of “information state” which reveals the active/inactive links of the network to 

the decision maker so far and based on which, the recourse decision is made. It is pointed 

out that the complexity of the algorithm can grow exponentially with the number of links. 

Polychronopoulos and Tsitsiklis (1996) extend the work of Andreatta and 

Romeo (1988). They study the problem both in networks with link travel times that are 

correlated and in networks with independent link travel times. For the dependent case, a 

joint distribution of link travel times is used to represent the stochastic network. We can 

see that the stochastic topology in Andreatta and Romeo (1988) is actually one special 

form of joint distribution of link travel times. It is assumed that the travel time 

realizations of outgoing links of a given node are known and remembered by the traveler 

once he/she arrives at this node, and the realizations remain unchanged afterwards. As 

the traveler moves on the network from the origin to the destination, more link travel 

time realizations are learned, and the network becomes closer to a deterministic one. The 

concept of an information set is introduced to represent the traveler’s knowledge about 

the network. An information set is composed of support points that are consistent with 

the link travel times revealed so far. When the information set becomes a singleton, the 

network becomes deterministic. A similar approach is designed for the independent case, 

with changes in the manner in which the information set is defined. The algorithms, 
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however, have exponential running times: the algorithm for the dependent case has a 

running time exponential in the number of support points, and the algorithm for the 

independent case exponential in the number of links. It is proved that the problem with 

dependent link travel times is NP-complete, and that with independent link travel times is 

NP-hard. Some heuristics are given and the relationships between results from heuristics 

and exact algorithms are studied.  

Cheung (1998) studies the problem with the same independent network 

assumptions as those in Polychronopoulos and Tsitsiklis (1996), except with the 

assumption that two visits to the same node result in two independent realizations of 

outgoing link travel times. This assumption (which is termed as “reset” later by Provan 

(2003)) actually makes ambiguous the statement that the network is static, as the same 

link can take different travel times at different times, although the distribution is the same. 

On the other hand, the reset assumption makes possible a simple recursive equation for 

the expected minimum travel times. An approach that mimics the classical label-

correcting algorithm is presented. Computational tests are carried out to compare 

different implementations of the label-correcting approach. Provan (2003) studies the 

same problem as defined by Cheung (1998) with the extension that the link travel times 

can be dependent. However, this relaxation from independent to dependent networks 

does not make the problem harder. In fact, the reset assumption makes the term 

“dependent” less clear, as one can never make inferences about travel times on links 

other than those going out of the current node. The same recursive equation is presented, 

but a polynomial-time algorithm is designed and its complexity analyzed.  

The shortest path algorithms also have been found to be applicable to compute 
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shortest paths in time-dependent (but not stochastic) networks (Dreyfus, 1969; Orda and 

Rom, 1990; Kaufman and Smith, 1993; Ziliaskopoulos and Mahmassani, 1993; Chabini, 

1997 and 1998). 

Selection of minimum variance paths is studied by Frieze and Grimett (1985). 

Sen et al (2001) present a parametric 0-1 quadratic programming approach to select a 

path with the least mean-variance. A variance-constrained shortest path problem for 

hazardous material transport had been dealt with earlier by Sivakumar and Batta (1994). 

Sen et al (2001) proposed a mean-variance model for route selection assuming time 

independence. They proposed a bicriteria network flow model where the objectives are to 

minimize expected travel time (linear) and minimize variance of the total trip time 

(quadratic). The variance-covariance matrix is assumed to be positive definite to avoid 

cycles during the path selection process. A parametric approach is used to determine the 

set of efficient solutions. For each parameter value, the optimal solution to the 

continuous relaxation of the problem is determined. If the solution contains multiple 

routes, the route with the least objective function value is selected. The method is not 

difficult to implement and includes link dependencies. 

 

2.5 Stochastic Time-Dependent Shortest Path Problems 

In the stochastic time-dependent shortest path problem (STDSPP), the link travel 

times are time varying random variables and are modeled using probability density 

functions and time-dependency.  

Hall (1986) proposed an approach combining branch-and-bound and k-shortest 

paths techniques for determining the least expected time path in a stochastic time-
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dependent network where the path is chosen a priori.  The algorithm required that the 

expected times and least possible times be calculated for each path; however, no 

procedure was given for calculating these values.  There is no guarantee that the 

algorithm will terminate before all paths have been evaluated.  A heuristic method was 

suggested in Kaufman and Smith (1993) for improving the computational time of this 

procedure.  They generalized the rules for the use of LS algorithms for TDSP problems 

by including the stochastic case.  They prescribed the use of expected values instead of 

deterministic values and showed that under the consistency assumption, one may obtain 

results similar to the deterministic case.  

Psaraftis and Tsitsiklis (1993) considered optimal policies for determining the 

least expected cost path between an origin and destination in an acyclic, dynamic and 

stochastic network. The cost of traveling on arcs, leaving each node, is associated with a 

finite-state Markov process, which varies randomly, but independently, of the states of 

the other nodes of the network and is known only upon arrival. Waiting is permitted.  

Koutsopoulos and Xu (1993) have shown that time-dependent link delays can be 

modeled as a Markov process. 

Fu and Rilett (1998) conducted the first study which explicitly estimated route 

mean travel time and variance based on link information typically available in 

transportation networks. Using a Taylor series expansion, they proposed first and second 

order route mean travel time and variance approximation algorithms.  Subsequently, 

they developed a heuristic approach to determine the expected shortest path. Instead of 

enumerating all the possible paths, the heuristic algorithm generates multiple numbers of 

paths using traditional k shortest path algorithm, and identifies a path with a minimum 
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expected route travel time among them.  The tradeoff between the number of paths 

considered and the probability of finding the optimal solution were analyzed. 

Miller-Hooks and Mahmassani (1998) proposed two efficient procedures to 

determine the least possible travel time paths from all origins to a single destination in 

networks where the link travel times are independent, discrete, time-dependent random 

variables that are permitted to operate under non-FIFO conditions. The first algorithm 

determines the least possible time path from each node to a destination node for each 

departure time in the time period and a lower bound on the associated probability of the 

occurrence of this travel time. The second algorithm determines up to k least possible 

time paths, the associated travel times, and the corresponding probability of occurrence 

of the travel times.  Both algorithms are an extension of the label correcting-based SPP. 

The authors proposed several algorithms for determining a priori paths in STD networks 

that employ such path-comparison techniques. In a subsequent study, Miller-Hooks and 

Mahmassani (2000) investigated the all-to-one variant of the problem.  They presented 

two specialized modified label correcting algorithms for the problem of generating least 

expected time paths in stochastic time dependent networks. First, the expected value 

algorithm was presented for generating all a priori least expected time paths with 

associated expected times from all origins to a single destination for each departure time. 

Second, the expected lower bound algorithm was presented as an efficient procedure for 

determining lower bounds on the expected times of the least expected time paths without 

any associated path information. Miller-Hooks (2001) presented a specialized label-

setting algorithm, the stochastic decreasing order of time algorithm, for determining the 

adaptive least expected time hyperpaths in stochastic time dependent networks. The 
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author compared the performance of both label-correcting (expected lower bound) 

algorithms and label-setting algorithms. The results showed that the expected lower 

bound algorithm performed better on average than predicted by worst-case complexity.    

Chabini (2001) developed an efficient solution algorithm based on the concept of 

the decreasing order of time for stochastic networks. This algorithm extends the 

decreasing order of time algorithm developed by Chabini (1997). His algorithm was 

shown to be computationally efficient both in theory and in practice. Gao and Chabini 

(2001) specified the best routing policy based on the availability of information access 

defining which arc travel time realizations are available to the travelers at any given time 

and node. They performed four different approximations techniques: (1) the certainty 

equivalent approximation, (2) the no-information approximation, (3) the open loop 

feedback certainty equivalent approximation, and (4) the open loop feedback with no-

information approximation. There was a trade-off between effectiveness and efficiency 

for all approximations. They could have satisfactory running times, but their results 

could be arbitrarily worse in absolute value than those obtained by running the exact 

algorithm. The computational tests studied the relationship between some parameters and 

the performance of approximations.  
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Chapter 3. Background and Framework 
 

In deterministic networks, the least time path is defined simply and explicitly. 

However the nature and complexity of the least time path is different for a stochastic network. 

In this chapter, several key concepts of stochastic, time-dependent networks are described. 

These concepts are critical to the development of the algorithms presented in Chapter 4 and 5.  

The first two sections of this chapter, notations and some of the concepts of stochastic time-

dependent networks are described. In section 3.3, the basis for selecting one path over another, 

when the path’s travel times are random variables with probability distribution functions that 

vary with time is discussed. 

 

3.1 Notation for Stochastic Time dependent Networks  

Let G = (N, A, T, TI, P) be a directed graph where N is the set of nodes, |N|=n, 

and A is the set of arcs, |A|=m. It is assumed that the travel times along the arcs are 

represented by discrete random variables whose distribution functions are time-

dependent during the period of interest, t0 < t < t0+ (I)δ, referred to as the "peak period", 

and are stationary any time thereafter, t > t0+ (I)δ. This formulation can be generalized 

to travel times with continuous distributions. The network is considered at a set T of 

discrete times {t0+ nδ}, where n is an integer, n = 0, 1,..., I, and δ is the smallest 

increment of time over which a perceptible change in the travel time distributions will 

occur for t∈T.  
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For each departure time t∈T and each arc (i, j)∈A, the set TI(t) of non-negative real 

valued possible travel times )(tk
ijτ for traversing the arc at a given time t is given, k=l,..., Kij(t), 

where Kij(t) is the number of distinct travel time values on arc (i, j) possible at time t. Travel 

time )(tk
ijτ occurs with the probability )(tp k

ij , where )()( tPtp k
ij ∈ t and 
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∈A for all t occurring after the peak period, i.e.∀ t > t0 + Iδ. The set of travel times and the 

corresponding set of probabilities with which each travel time will occur, (TI, P), are assumed 

to be given. 

The arc travel time probability distribution functions are assumed to be 

independent across arcs and over time and no waiting is permitted at any intermediate 

node. The network is assumed to be non-FIFO. Such a network is referred to as a 

stochastic, time-dependent network. This stochastic, time-dependent network definition 

is an expansion of the deterministic, time-dependent network described by 

Ziliaskopoulos and Mahmassani (1993). 

This dissertation addresses the problem of determining "preferred" paths ∀i∈N to 

a given destination, d, for each t∈T in stochastic, time-dependent networks. While this 

problem has some of the same elements as the problem of determining least time paths in 

deterministic, time-dependent networks, where the arc travel times change dynamically 



 40

over time, but occur with probability-one in a given time interval, the added dimension 

of stochasticity dramatically increases the difficulty of the problem.  

3.2 Definitions for Stochastic, Time-Dependent Networks 

3.2.1 The Space-Time Expansion 

 It is common to represent dynamic problems by space-time networks (Powell, 

Jaillet and Odoni, 1995). Consider a street network where the arc travel times are 

deterministic, dynamic quantities. If this network is graphically represented without 

incorporating time as a dimension, the graph, G. will consist of a set of nodes that represent 

intersections, and a set of arcs, that represent the streets. A vector of travel times (or some 

measure of cost) is associated with every link. This vector represents travel time for the 

given departure time. An example network is shown in Figure 3.1 where the arc travel times are 

given by row vectors and time moves from 0, increasing to the right in constant increments of 

time. It is assumed that the travel times are given in the units of these time increments.  

 

 
 

Time (t) 0 1 2 3 

Arc a-b 2 3 1 3 

Arc b-c 3 1 2 5 

Figure 3.1. Deterministic time-dependent network G 

This network is expanded to a space-time representation G', where time increases 

from left to right and each node of G' corresponds to a node in G at a given departure time. 

This graphical representation can be extended for use in dynamic networks with stochastic arc 
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weights. Since there may be more than one possible travel time for each departure time from 

a node in a stochastic network, several arcs may originate from each space-time node. However 

a deterministic network can have only one arc originating from each space time node. If the arc 

weights are continuous random variables, then an infinite number of arcs may emanate from 

each space-time node.  

 

 
Figure 3.2. Space-time expansion of G: G’ 

 
 

 
 

 Arc a-b  Arc b-c 
Time (t) 0 1  0 1 2 
 1 (0.4) 1 (1.0)  1 (0.5) 2 (0.3) 2 (0.1) 
 2 (0.6)   3 (0.5) 4 (0.7) 3 (0.5) 
      4 (0.4) 

Figure 3.3. Stochastic, time-dependent network E 
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Consider the network of Figure 3.3, with discrete random arc times whose 

probability mass functions (PMF) vary with time. For each arc, for the given departure 

time t, the travel times with positive probability are given. For example, for departure 

time 1 from node b, arc (b, c) will have a travel time of two units with the probability 0.3. In 

the figure, the PMF’s for each arc are shown at only a few time intervals, for clarity. The space-

time expansion of this network is shown in Figure 3.4, where the arcs have weights 

corresponding to the associated probability of occurrence. 

 
Figure 3.4. Time-Space network of E: E’ 

 

If the arc travel times are independent, the probability of each arrival time at node c is 

determined from the multiplication of the probabilities associated with the appropriate arcs of E'. 
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For example, the probability of arriving at node c at time 3, if one leaves from node a at time 

0, is 0.4*0.3=0.12. Similarly, the probability of arriving at node c at time 4, if one leaves 

from node a at time 0, is 0.6*0.1=0.06. In the same way, the probability of arriving at node 

c at time 5, if one leaves from node a at time 0 is (0.28 + 0.30) = 0.58. The network in Figure 

3.3 is trivial in that only one topological path exists between nodes a and c; however, if more 

than one path were possible, the path with the least possible travel time could be identified 

directly from the graph, E'.  

 

3.2.2 The Parameters for Path Selection 

The selection of a single "best compromise" path from the set of non-dominated least 

time paths ultimately depends on the decision-maker's preferences, and is likely to be 

situation-specific. For instance, a risk-averse decision-maker may choose the path that has the 

smallest probability of being the longest. On the other hand, a risk seeker may choose the path 

with the highest probability of being the shortest. Typically, the decision-maker considers 

certain trade-offs, between expected travel time and variance. In opting to get the better in 

travel time a decision maker has to compromise in variance. Several measures can be 

considered for selecting the best-compromise solution for a given situation. The list hereafter 

is by no means all inclusive, and is intended to present some examples of the logic and 

preferential basis that a decision-maker employs in order to select one path over another. 

Let )(tLh
i  be the travel time random variable of the hth non-dominated path from node i 

to the destination for departure time t, with the cumulative distribution function F( )(tLh
i ). 

Let t
ip  be the set of non-dominated paths from the node at departure time t. The 

following measures may be considered individually or jointly in the selection among non-
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dominated paths: 

 

Least Expected Value 

Select the path for which E[ )(tLh
i ], h∈ t

ip , is minimized.  Although the expected 

value is a commonly used measure, it may not be the most appropriate for many 

applications. If the application involves a single or only a few trials, other measures 

may provide more appropriate criteria for path selection. 

 

Least Variance 

Variance is often used as a replacement for risk: Var[ )(tLh
i ], h∈ t

ip . 

 

Smallest probability of being longest 

Selecting the path with the smallest probability of being longest may be appropriate 

for the risk-averse decision-makers. Choose the path t
iph∈  that minimizes 

{ }tig
i

h
i phgtLtL ∈≠∀≥ ),()(Pr . Note that this measure does not preclude the 

possibility that the path may be very long.  

 

Largest probability of being shortest 

The truck dispatcher may wish to select the path t
iph∈  that maximizes 

{ }tig
i

h
i phgtLtL ∈≠∀< ),()(Pr . Again, such a path may have some probability of 

being very long. These measures can be used as criteria to select the best-compromise 

path.  

 

3.2.3 Expectation and Paths 

The expected value criterion is of particular interest because it can be used to reduce 

stochastic to a deterministic problem. This can eliminate many complexities associated with 
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comparing random variables. Although the expected value is a commonly used measure, it 

may not be appropriate in all situations. If the probability that a path will take a certain length 

is interpreted as a long-run relative frequency, then the expected value for the random variable 

is defined for an infinitely large number of repetitions (Kalbfleisch, 1985). That is, if a vehicle 

travels over the path with the least expected travel time many times, then in the long run, the 

average travel time over all the trips will be shorter than had another path been selected for 

repeated traversal. Depending on the application, this long-run minimum path may or may not 

be appropriate. If the application involves a single or only a few trials, other measures may 

provide more appropriate criteria for path selection.  

A closely related measure with very different implications is the least expected travel 

time through a stochastic network. This can be determined by computing the sum of the 

arc costs on the least costs path for every realization of the network state weighted by the 

probability of such a realization. A similar method can be used to determine the pmf of the 

minimum travel time. This is most useful if one is interested in finding the expected arrival 

time, or the pmf of the minimum travel time, of a vehicle in a transportation network, or a packet 

in a communication network, to a destination node given that the shortest path at the time of 

departure will be selected. In a reliability framework, Mirchandani (1976) shows that the original 

stochastic network can be transformed to an "emergency equivalent network" from which 

the expected least travel time through the network can be computed. See (Hagstrom, 

1990) for related work on this problem. 

The following example illustrates the difference between determining the least 

expected travel time through a network and the expected time of the least expected travel 

time path. 



 46

 

Figure 3.5. A stochastic network 

From Table 3.1, the probability mass function of the minimum travel time between nodes 1 and 3 

of the network in Figure 3.5 is (4, 6, 7) with the corresponding probability of occurrence of 

(0.28, 0.54, 0.18), respectively. The expected least travel time from node 1 to node 3 is 5.62 

units of time, determined directly from the pmf of the minimum travel time. If the arc travel 

time random variable is set to its expected value, the expected travel time on the least expected 

time path is 6.1 units of time, as shown in Figure 3.6: 

Table 3.1. Determining expected least time through network of Figure 3.5 

Arc (1,2) 
 

Arc (2,3) 
 

Path 
1-2-3 

Arc (1,3) 
 

Least 
Path  

Travel 
Time 

Prob 
 

Travel 
Time 

Prob 
 

Travel 
Time 

Travel 
Time 

Prob 
 

Travel 
Time 

Prob of 
Realization 

2 0.4 2 0.7 4 6 0.4 4 0.112 
4 0.6 2 0.7 6 6 0.4 6 0.168 
2 0.4 5 0.3 7 6 0.4 6 0.048 
4 0.6 5 0.3 9 6 0.4 6 0.072 
2 0.4 2 0.7 4 7 0,6 4 0.170 
4 0.6 2 0.7 6 7 0.6 6 0.252 
2 0.4 5 0.3 7 7 0.6 7 0.072 
4 0.6 5 0.3 9 7 0.6 7 0.108 

 
 Expected least travel time = 5.62  
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Figure 3.6. Expected arc travel time 
 

The expected time of the least expected time path provides an upper bound on the 

expected least travel time through the network. Likewise, the expected least travel time 

through the network is a lower bound on the expected travel time of the least expected 

time path. The expected least travel time through the network is not necessarily the 

expected travel time on any particular path, nor is it necessarily a feasible travel time on 

any path. 

For certain applications, such as routing messages between nodes in a 

communication network, the pmf or expectation of the minimum time between the two 

nodes of a network may be required. However, neither measure provides path 

information as these times come from the composition of more than one path. Some 

applications, on the other hand, require actual path information and thus, these bounds 

would be insufficient. 

In a network where the arc times are random variables with time-independent 

pmfs, one can simply set the random travel times to their expected values and apply a 

deterministic shortest path algorithm to determine the path with the least expected travel 

time, i.e., the path with lowest sum of constituent expected arc times, as shown in the 

previous example. However, in a time-dependent, stochastic network, the least expected 

time (cost) path can no longer be determined by setting each arc time to its expected 
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travel time and solving the equivalent deterministic problem {Hall, 1986), because the 

travel time on an arc now depends on the time of arrival at its origin node. This is further 

explained in Proposition 3.1. 

 

Proposition 3.1. In a network with random arc travel times with time varying pmf’s, the 

least expected time path cannot be determined by setting each arc time random variable 

to its expected value and solving an equivalent deterministic, time-dependent problem. 

 

Proof. Assume that time can be discretized into small time intervals. Within each time 

interval, the pmf’s of the arc travel time random variables are assumed to be constant and 

the travel times are given in multiples of these time intervals. The proof proceeds by 

counter example. 

Suppose a network is given with discrete probability mass functions of the travel 

limes at departure times, 5, as shown in Figure 3.7. For departure time 0, the expected 

travel time on path a-b-c can be calculated. 

 

 

Figure 3.7. Example network with time-dependent pmf 
 

Assume that each arc travel time random variable can be replaced by its expected 

value. Then the expected travel time on arcs a-b and b-c is 5.2 and 7 units of time, 

respectively, and the expected path length is 12.2 time units. 
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Instead of replacing each arc travel time random variable with its expected value, 

the expectation can be calculated directly. Thus, a vehicle departing node a at time zero 

can arrive at node b at either time 4 or time 7. Assuming that no waiting is permitted at 

node b, the vehicle must leave immediately upon arrival. If arrival at node b is at time 4 

then the travel time on path a-b-c is 8 units of time with the probability 0.30 or 9 with the 

probability 0.18, or 10 with the probability 0.12. If arrival at node b is at time 7, then the 

path length for a-b-c is 15 and 17 units with probabilities 0.24 and 0.16 respectively. 

Thus the expected travel time on path a-b-c, given the departure time from node a at time 

zero, is: 

(8 x 0.30)+ (9 x 0.18)+ (10 x 0.12)+ (15 x 0.24)+(17 x0.16)= 11.54 

And hence, there is no guarantee that the expected travel time on a path in a stochastic, 

time-dependent network can be calculated by setting each arc travel time random 

variable to its expected value and solving an equivalent deterministic, time-dependent 

problem. 

 

3.3 Path Comparisons for Stochastic, Time-Dependent 
Networks 

The concepts and methodology required for this comparison depend on the 

decision process along the path and information availability. If the entire path is specified 

before traveling begins, and no deviations en route are permitted, the non-dominated 

paths are selected a priori on the basis of only the time-varying probability distribution 

functions of the arc travel times. This is referred to as a priori path selection. Paths with 

lower actual travel times may be determined by allowing decisions at intermediate nodes, 
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given that the additional information on the actual (revealed) arrival times is given at the 

intermediate nodes. Some of the paths determined a priori may never be "best" in this 

context, and therefore could be eliminated. Strict-comparison rules are presented for 

determining non-dominated paths where such decisions at intermediate nodes are 

permitted.  

 

3.3.1 Criteria for A Priori Path Comparisons 

Three criteria for comparing two paths at a single time interval are explored in this 

section: deterministic dominance, stochastic dominance and comparison via expected value. 

First consider two non-overlapping paths (paths that do not topologically share any arcs) 

between a given origin and destination at a given departure time. Because it is assumed that 

arc travel times are independent, the paths' travel times are independent.  Let the two random 

variables x1 and x2, with distribution functions t)(
1xF  and t)(

2xF , denote the respective 

travel times on the two paths for the given departure time t. Comparing these paths is similar 

to comparing the two distribution functions t)(
1xF  and t)(

2xF . If the travel time along one 

path is at least as short as the other path for all possible realizations of the two paths and is 

shorter than the other for at least one realization, then this path is said to exhibit deterministic 

dominance (see Figures 3.8.a and 3.8.b where Path 1 deterministically dominates Path 2) for 

that time interval. If, on the other hand, neither path deterministically dominates the other 

path for this time interval, i.e. each path has some probability of being shorter than the other, 

then both paths are non-dominated, or efficient for this time interval. Likewise, a path that is 

deterministically dominated is called non-optimal, dominated or inefficient. 
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Figure 3.8.a. Path 1 deterministically dominates Path 2 at timt 

as seen by the non-overlapping density 
functions  

 
Figure 3.8.a. Path 1 deterministically dominates Path 2 at time t 

as seen by the distribution functions 
 

 Consider now two paths (between the same origin and destination) that 

topologically share one or more arcs. In a time-invariant network, the path travel times 

are no longer independent of one another. In a time-varying network, travel time (for the 

same departure time from the origin) on paths that topologically share an arc may still be 

independent if the arcs are not used at the same time intervals (under our assumption of 

the independence of arc travel times across time intervals). 

It is incorrect to directly compare the distribution functions of two over-lapping 

paths via deterministic dominance because certain joint realizations of the respective path 

travel times may be impossible as they would imply different travel time values to hold 

simultaneously on the same shared arc(s). The following is a simple example in the 

stochastic network shown in Figure 3.9. 
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Figure 3.9. The over-lapping paths 1-2-3-4 and 1-2-4 share arc (1, 2) 

 

Consider the probability mass functions for arc (1,2) and for subpaths 2-3-4 and 2-4 

given in Table 3.2. 

 
Table 3.2. PMFs of arcs and subpaths in Figure 3.9 

Travel time (probability) 

Arc 1-2 Subpath 2-3-4 Subpath 2-4 
2 (0.5) 

5 (0.5) 

2 (0.2) 

3 (0.5) 

5 (0.3) 

6 (0.5) 

7 (0.3) 

8 (0.2) 
 

From the pmfs of the subpaths 2-3-4 and 2-4, any realization of subpath 2-3-4 is 

better than subpath 2-4. For any realization of arc (1,2), path 1-2-3-4 dominates path 1-2-4. 

Now consider the marginal (unconditional) pmfs of paths 1-2-3-4 and 1-2-4, given in Table 

3.3. 

Table 3.3. Unconditional pmfs of paths in Figure 3.9 

Travel time (probability) 

Path 1-2-3-4 Path 1-2-4 
4 (0.10) 

5 (0.25) 

7 (0.25) 

8 (0.25) 

10 (0.15) 

8 (0.25) 

9 (0.15) 

10 (0.10) 

11 (0.25) 

12 (0.15) 

13 (0.10)
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From the pmfs of the two paths, it appears that neither path dominates the other. Because 

travel time on path 1-2-4 could be 8 minutes, and path 1-2-3-4 could have a travel time of 8 

minutes, it may be incorrectly concluded that there is some probability that path 1-2-4 will 

be better than path 1-2-3-4. In fact, there is zero probability of a joint realization of the 

respective path travel times where path 1-2-4 is better than 1-2-3-4. Path 1-2-4 can take 9 

minutes only if arc (1, 2) takes 2 minutes, while path 1-2-3-4 can take 10 minutes only if arc 

(1,2) takes 8 minutes. A joint realization where path 1-2-4 is better than path 1-2-3-4 would 

require the travel time on arc (1, 2) to assume a value of 2 minutes and 5 minutes 

simultaneously, an impossible event under the assumptions of this problem. Therefore, it is 

not sufficient to simply compare the marginal distribution functions of two paths that share 

arcs in order to determine if deterministic dominance exists 

Graphically, in Figure 3.10, Path 1 stochastically dominates Path 2 for a given 

time interval. 

 

F(x/t)

0 x

F1(x/t) F2(x/t)

 
Figure 3.10. Path 1 stochastically dominates Path 2 at time t as seen 

by the non-intersecting distribution functions 
 

Unlike deterministic dominance, stochastic dominance is established using full 

information from the distribution functions of the two paths. Even if the paths share one 

or more arcs, stochastic dominance between two paths can be established without 
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conditioning on the travel times of the shared arcs because, unlike deterministic 

dominance, path travel time realizations are not used to compare the path travel time 

distribution functions.  

Consider the example network in Figure 3.11 to illustrate the above argument. 

 
Figure 3.11. Example network 

 

Table 3.4. Travel time pmf’s for Figure 3.11 

Arc a Arc b Arc c 

t=0 t=1 t=2 t=1 t=2 

1(0.5) 3(0.4) 5(0.5) 3(0.38) 5(0.48) 

2(0.5) 4(0.6) 6(0.5) 4(0.62) 6(0.52) 

 

Arc b stochastically dominates arc c at both departure time 1 and 2 (the possible time at 

node 2). The paths’ cdfs are determined and given in Table 3.5: 

 
Table 3.5. Travel time cdf’s of path ab and ac at 

departure time t=0 (cumulative probability) 

Path ab 

t=0 

Path ac 

t=0 

4 (0.2) 4 (0.19) 

5 (0.5) 5 (0.50) 

7 (0.75) 7 (0.74) 

8 (1.0) 8 (1.0) 

 

Path ab dominates path ac. There is no need to condition on the travel times of shared arc 
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a (at common departure time 0) because stochastic dominance is maintained when the 

path travel times cdf’s are constructed using a shared arc. 

Comparing two paths by their expected travel times is simply the comparison of 

two deterministic values. Let E[X1(t)] be the expected time of the random variable for the 

travel time on Path 1, for departure time t; similarly for E[x2(t)].  Then if E[X1(t)] < 

E[x2(t)], then Path 1 has a lower expected time than Path 2 at time interval t. 

Deterministic dominance, stochastic dominance and comparison based on 

expected value are related as follows. By definition, deterministic dominance implies 

stochastic dominance, and stochastic dominance implies a lower expected value of the 

dominating path.  

For a given departure time t, 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Three dominance criteria 

 

3.3.2 Path Comparisons between Multiple Paths over A Time Period 

When several paths exist between a pair of nodes, one or more of these paths 

Path 1 deterministically dominates Path2 
)()()()( min

2
max
1 tTtxtTtx ijij <

 

Path 1 stochastically dominates Path2 
xtFtF xx ∀≥ )()(

21 and 
xtFtF xx ∃> )()(

21

)]([)]([ 21 txEtxE <
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may be dominated by at least one other path for every time interval in the period but by 

no single path for all time intervals. In any paired comparison of these paths, such a path 

will not be dominated. Dominance established by paired comparisons is referred to as 

pair-wise dominance. Pair-wise dominance applied to deterministic dominance, 

stochastic dominance and comparison via expected value is referred to as deterministic 

pair-wise dominance, stochastic pair-wise dominance, and expected value pair-wise 

dominance, respectively. For some applications, paths that are dominated by at least one 

other path for every time interval in the period are poorer paths (they will never be 

selected), even if they are non-dominated for every pairwise comparison. In this case, 

dominance can be determined by pairwise path comparisons at each time interval 

individually, referred to as group dominance. Here a dominated path is one that is 

dominated at each time interval in the period by at least one other path. By definition, the 

paths that are non-dominated by group dominance are all non-dominated by pairwise 

dominance. Deterministic group dominance, stochastic group dominance and expected 

value group dominance refer to dominance that is established by group comparisons for 

each time interval in the period by deterministic dominance, stochastic dominance and 

comparison via expected value, respectively. When multiple paths are compared over a 

time period, non-dominated optimal conditions based on group dominance will eliminate 

at least as many paths as conditions based on pairwise dominance.  

An example is given next to illustrate the use of these dominance concepts for the 

comparison of three independent paths. The path travel times that have nonzero 

probability of occurring for each departure time in the peak period are shown in Table 

3.6. 
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Table 3.6. Possible path travel times at time intervals 1 and 2 

Path A Path B Path C 

Time 1 Time 2 Time 1 Time 2 Time 1 Time 2 
4 

5 

5 

9 

6 

7 

8 

7 

3 

6 

4 

6 
 

 

 
Figure 3.13. Path comparisons at time 1 and 2 

 

It is seen from the Figure 3.13 that Path A deterministically dominates Path B at 

time interval 1 but that neither path deterministically dominates the other at time interval 

2. Likewise, Path C deterministically dominates Path B at time interval 2 but neither path 

deterministically dominates the other at time interval 1. Thus, Path B is not dominated by 

Path A nor by Path C in both time intervals, but Path B is dominated in each time interval 

by one of either Path A or C. Considering all possible realizations of these paths for each 

time interval, it is seen in Tables 3.7.a and 3.7.b that Path B is never the least time path 

for any realization. 
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Table 3.7.a. Possible realizations for time interval 1 

Realization Path A Path B Path C Best Path 

1 4 6 3 C 
2 4 6 6 A 
3 4 7 3 C 
4 4 7 6 A 
5 5 6 3 C 
6 5 6 6 A 
7 5 7 3 C 
8 5 7 6 A 

 

Table 3.7.b. Possible realizations for time interval 2 

Realization Path A Path B Path C Best Path 

1 5 8 4 C 
2 5 8 6 A 
3 5 9 4 C 
4 5 7 6 A 
5 9 7 4 C 
6 9 7 6 C 
7 9 7 4 C 
8 9 7 6 C 

 

As illustrated in this example, a path that is not deterministically dominated by a single 

path over the entire time period, but is dominated at every time interval in the time period 

by at least one path, has zero probability of being the least time path for any realization 

of the network. Group dominance would eliminate those paths that have zero probability 

of being the least time paths for any realization. However, it is shown in Propositions 3.2 

that group dominance is not sufficient for determining all non-dominated paths for a 

priori path selection, because some non-dominated paths may be incorrectly eliminated.  
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Proposition 3.2.  Expected value group dominance is not sufficient for determining all 

least expected time paths in stochastic, time-dependent networks for a priori route 

selection.  

 

Proof. (by counter example) 

Assume that group dominance is sufficient to determine the least expected time path for a 

given departure time. For this given departure time, no dominated path can have a lower 

expected time than the nondominated path selected. A counterexample given in Figure 

3.14 shows that it is possible that, for a given departure time, the least expected time path 

will be dominated if group dominance is permitted. 

 

 
Figure 3.14. Example network 

 

Table 3.8. Table of pmf s of travel times in Figure 3.14. 

Arc a Arc b Arc c Arc d 

t=0 t=l t=3 t=l t=3 t=l t=3 

1 0.5 4 0.6 5 0.4 4 1 9 1 8 0.7 3 1 
3 0.5 6 0.4 7 0.6     12 0.3   

 

From Table 3.8, the expected travel times of all paths from node 1 to node 3 at departure 
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time 0 are: 

E[ab]t=0=(1+4)*(0.5*0.6)+(1+6)*(0.5*0.4)+(3+5)*(0.5*0.4)+(3+7)*(0.5*0.6)=7.5 min 

E[ac]t=0 = (1+4)*0.5+(3+9)*0.5=8.5 min 

E[ad]t=0 = (1+8)*(0.5*0.7)+(1+12)*(0.5*0.3)+(3+3)*0.5=8.1 min. 

The least expected time path from node 1 uses the path with constituent arcs a and b, 

Path ab. If group dominance is used then the path from node 2 to 3 with constituent arc b, 

Path b, would be eliminated because: 

E[b]t=1 = 4*0.6+6*0.4=4.8 minutes 

E[b]t=3 = 5*0.4+7*0.6=6.2 minutes 

E[c]t=1 = 4.0 minutes  

E[c]t=3 = 9.0 minutes  

E[d]t=1 = 8*0.7+12*0.3=9.2 minutes  

E[d]t=3 = 3.0 minutes. 

 

 
Figure 3.15. Arc travel time comparisons at time 1 and 3 

 

Path c has a lower expected time than Path b at time interval 1 but not at time 

interval 2 and Path d has a lower expected time than Path b at time interval 3 but not at 
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time interval 1. Thus, no path dominates Path b at both time intervals but Path b is 

dominated by some path at every time interval. Path b would be omitted from the set of 

solutions at node 2 and Path ab would be dominated, hence, omitting the least expected 

time path from the final solution. Therefore, expected value group dominance is not 

sufficient for determining least expected time paths.  

In a priori path selection the entire route is selected before leaving the origin 

node. No deviations en route are permitted. Since the arc travel times are random 

variables, their actual values do not become known until travel along the arc has been 

completed. A better path can then be selected with this revealed information, referred to 

by Hall (1986) as "time-adaptive route choice." A similar concept arises in solving the 

transit equilibrium assignment problem where transit users have a set of strategies for 

determining which route to take in light of intermediate information, such as the bus 

arrival times at transfer points (Nguyen and Pallottino, 1988; Spiess and Florian, 1989; 

Wu and Florian, 1993; Wu et al., 1994). Such strategies can be represented by an acyclic 

subnetwork, called a hyperpath, that includes the arcs corresponding to these strategies 

with their associated conditional probabilities of being selected (Nguyen and Pallottino, 

1986, 1988). In the context of time-adaptive route selection in stochastic, time-dependent 

networks, for each departure time interval, the set of optimal (for least expected time) 

strategies for selecting the best path between a pair of nodes can be depicted as a 

hyperpath where the conditional probabilities associated with the arcs may be replaced 

by conditional expected travel times or conditional travel time probability distribution 

functions for each departure time interval. 

Using the example in the proof of Proposition 3.2, it is shown that for a given 



 62

departure time interval, the least expected time paths for a priori path selection are not 

necessarily the paths with the least expected time in a time-adaptive route choice 

framework. Consider the expected time on each Path ab, ac and ad, at departure time 0 

from node 1. For departure time 0, the path with the least expected time of 7.5 minutes is 

ab. However, for any possible travel time on arc a, and thus, any possible arrival time at 

node 2, arc b is never on the least expected time path: 

E[ab/a=1 ] = 5.8 minutes and E[ab/a=3] = 9.2 minutes  

E[ac/a=1] = 5 minutes and E[ac/a=3] = 12 minutes  

E[ad/a=1] = 10.2 minutes and E[ad/a=3] = 6.0 minutes. 

For the example problem, for departure time 0 from node 1, the least expected 

time path is Path ac if the driver arrives at node 2 in departure time interval 1 and it is 

Path ad if the driver arrives there in departure time interval 2. Path ab, the a priori least 

expected time path for departure time 0, is not the least expected time path when the 

driver is permitted to react to the actual (revealed) arrival time at node 2. By group 

dominance the a priori least expected time paths that contain subpaths to the destination 

node that are never the least expected time subpaths for any possible arrival times are 

eliminated. For each departure time interval, the set of optimal strategies with the 

associated conditional expected values or pdf’s, respectively, be identified from this 

reduced set of paths. 

 

3.4 Conclusions 

In this chapter, concepts and path selection criteria are described for networks 

where arc times are random variables with time-dependent probability distribution 
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functions. In the next chapter, procedures based on the concepts of expected value 

dominance described in this chapter are presented for determining non-dominated least 

expected time paths in stochastic, time-dependent networks. 
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Chapter 4. A Priori Minimum Variance and Mean-Variance 
Path in Stochastic Time-Dependent Networks 

 
In this chapter, the algorithm for determining a minimum variance travel time 

path in a stochastic time dependent networks for a priori path selection are presented. In 

section 4.1, we present additional notation for stochastic time dependent networks. The 

notation of this subsection complements the notation given in subsection 3.1. A 

mathematical formulation for the problem of computing minimum expected travel time 

and variance travel time from all nodes to a given destination node d were described in 

section 4.2 and 4.3. In section 4.4 and 4.5, procedures, referred to as the PMV and 

PMMV algorithms, are presented for determining a priori minimum variance path and 

minimum mean-variance path from all nodes to a given destination node for all time 

intervals. Concluding remarks are given in Section 4.6. 

 

4.1 Additional Notation for Stochastic Time-Dependent 
Networks  

Assume that link travel times are discrete random variables with time-dependent 

mass probability functions. We assume independence across the arcs and time of all 

random variables. )(tTij  denotes the discrete random variables corresponding to the 

travel time of link (i, j) at time t. The function )(),( tpt k
ij

k
ijτ denotes the probability mass 

function corresponding to the random variable )(tTij , where )(tkij  denotes the number 

of distinct possible values for )(tTij  and { })(...,,2,1 tkk ij∈ . The probability that 
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)(tTij  takes the value )(tk
ijτ  is )(tpk

ij . The maximum range of )(tkij , over (i, j, t) is 

denoted by R. We assume that all possible link travel times are strictly positive and finite.  

In order to ensure the representation of all time-dependent network data within a 

finite computer memory, we impose the common restriction that all such data is only 

specified within the finite time window t ∈ {0, 1, 2, ..., M}. This window must be made 

large enough to capture any relevant time-dependency in link travel time data in a real-

world application. For times after the time horizon, M, all link travel times are assumed 

to be static and equal to the value they are assumed at time M; that is, 

)()( MMt k
ij

k
ij ττ =≥  and )()( MpMtp k

ij
k
ij =≥ . 

In the algorithm of this section, since link travel times are assumed to be positive, 

negative-cost cycles may not arise in the dynamic region of time, corresponding to t<M. 

They may however arise in the static region of time, corresponding to time instant greater 

than or equal to M. We then impose the common restriction that there be no negative-cost 

cycles in the network, for t ≥M. Throughout this study we will treat the entire set of times 

{t: t ≥ M} as an atomic unit. We have assumed that the set of discrete times and link 

travel times are integers. The actual discrete time set however, need not to be the set of 

integers. The adopted discrete-time assumption is common in literature, and includes the 

representation of actual time instants and travel times that are multiples of the value of 

this constant spacing. The value of parameter M can then be viewed as the number of 

time sub-intervals resulting from the discretization of a given time period, such as the 

peak-period in a traffic network, using a given time spacing. A finer time-discretization 

would lead to increased accuracy in a given network model and an increase in the value 



 66

of parameter M.  

 

4.2 Problem Formulation  

4.2.1 Expected Travel Time A Routing Problem 

We are interested in developing a mathematical formulation for the problem of 

computing least expected travel times, and a corresponding solution, from all nodes to a 

given destination node d. Let a random variable )(tLi  denote the travel time from node 

i to destination node d, considering that one departs from node i at time t. Similarly, let 

random variable )(tLij  denote the travel time to destination node d, if one departs at the 

beginning of arc (i, j) at time t. The expected values of )(tLi and )(tLij  are respectively 

denoted )(tei  and )(teij where )]([)( tLEte ii =  and )]([)( tLEte ijij = .  

For all t >= 0, we have the following relation:  

))](([)]([)]([)( tTtLEtTEtLEte ijjijijij ++==   (4-1) 

The expected value of ))(( tTtL ijj +  is given by:  

( )[ ] ( )[ ]

( ) )()(

)()()(
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k
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∑

∑

τ

τ

  (4-2) 

Hence, the minimum expected travel time )(teij  is given by:  
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Note that if t>=M, expression (4-3) changes to:  
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The minimum expected travel times )(tei  then verify the following functional 

equations:  
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Now denote by )(tiπ  a node such that (i, )(tiπ ) is a next “best” arc corresponding to 

minimum expected travel time )(tei . Functions )(tiπ  verify the following equations:  
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Functional equations (4-5)-(4-8) define a formulation to the problem of computing the 

all-to-one minimum expected travel times and an associated both next arcs solution 
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corresponding to the “best” next arc routing policy and a priori best path routing policy.  

 

Remark:  

Deterministic dynamic networks can be viewed as a particular case of stochastic 

dependent networks, where for all (i, j, t) we have: ( ) ( )1),()(),(,1)( ttpttk ij
k
ij

k
ijij ττ == . 

Hence, functional equations (4-5)-(4-6) are equivalent to:  
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Functional equations (4-9)–(4-10) are necessary and sufficient optimality conditions of 

the all-to-one minimum travel-time path problem in deterministic dynamic networks (see 

for instance, Cooke and Halsey (1969) or Chabini (1998) for more details about proving 

this equivalency and developing efficient solution algorithms). We indicated that in 

deterministic time dependent networks, the “best” path routing policy and the “best” next 

arc routing policy are equivalent.  

 

4.2.2 The Optimality Condition for Mean 

Define N(i) as the set of downstream nodes of node i, )(tk
ijτ  as the travel time 

random variable for link (i, j) at time t. We make the assumption that there exists at least 

one path from any node to the destination node d under any possible value of the link 

travel time vector. )(tei  and )(tiπ  are optimal if and only if they are solutions of the 

following system of equations:  
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with the boundary conditions:  

Ttdtte dd ∈∀== ,)(,0)( π  and MtNiMete ii >∈∀= ,),()(  

Note that we assume the outcome of the decision is deterministic, i.e. the traveler will 

end up at node j if he/she chooses node j as his/her next node. Croucher (1978) studies 

the problem where the outcome of the decision itself is stochastic. We do not discuss this 

case, as our motivation in studying the optimal routing problem is for traffic applications, 

where this case rarely arises.  

The proof of the optimality conditions is similar to the proof of Proposition 7.2.1 

in Bertsekas (2000). The problem in Bertsekas (2000) is denoted as a stochastic shortest 

path problem and is viewed as an infinite horizon dynamic programming problem. The 

proof provided uses only the node number as a state, yet we can simply replace the state 

by {i, t} and the proof becomes valid for our case.  

 We will show an illustrative example of how the optimality condition works. 

The topological network is shown at the upper side of Figure 4.1, and the major part of 

the figure represents a time-space representation of the network. In a time-space network, 

time is shown along the vertical axis (the time axis), and the node number is shown along 

the horizontal axis (the space axis).Each point in this network represents a node-time pair 

(i, t), and any link between (i, t1) and (j, t2) indicates that link (i, j) has a travel time of t2 

− t1 if departure time from node i is t1.We are interested in finding the minimum expected 

travel time path from node 1 to node 4 at departure time 0, namely )0(1 =te , and only 
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these node-time pairs and links which are relevant to the computation are shown.  
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Figure 4.1. An Illustrative Example for Optimality Conditions  

 

Figure 4-1 shows the marginal distributions of the link travel time random 

variables. Link (1, 2) at time 0 could have two values of travel time: 4 with probability 

0.5 and 2 with probability 0.5. Link (1, 3) at time 0 could have two values of travel time: 

1 with the probability 0.2 and 3 with the probability 0.8. Link (2, 4) at time 4 could have 

two values of travel times: 3 with probability 0.75 and 4 with probability 0.25. Link (3, 

4) at time 3 could have two values of travel times: 2 with probability 0.3 and 3 with 

probability 0.7. All other link travel times are deterministic.  
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We apply the optimality conditions to obtain the value of )0(1 =te .  

( )( ) ( )( ) ( )( ) ( )( ){ })4(45.0)2(25.0,)3(38.0)1(12.0min)0( 22331 eeeete +∗++∗+∗++∗==
 

It can be easily observed from the figure that )1(3 =te =6 and )1(3π =(node)4, 

)2(2 =te =4 and )1(3π =(node) 4, )5(3 =te = 3 and )5(3π =(node)4, and 

)3(3 =te =2*0.3+4*0.7=3.4 and =)3(3π (node)4.  We apply the optimality condition 

again to obtain )4(2 =te : 

{ } { } 25.325.3,6min375.0425.0),5(1min)4( 32 ==∗+∗+== ete  

and )4(2π =(node)4. With the values of )1(3 =te , )2(2 =te , )3(3 =te , and )4(2 =te  

in hand, we can obtain  

( ) ( )( ) ( )( ) ( )( ){ }25.345.0425.0,4.328.062.0min)0(1 +∗++∗+∗+∗==te =5.52 

and )0(1π = 3.  Therefore, minimum expected travel time for node 1 at time 0 turn out 

to be a path: 1-3-4. 

 

4.2.3 Variance of a Routing Problem  

Before presenting the optimality conditions, we try to find the recursive 

relationship between the variances of a given routing policy starting from two adjacent 

nodes. This relationship is much more involved than that for the expected travel time of a 

routing policy. As we know, the expected travel time of a routing can be decomposed 

into two parts: one is the expected travel time of the next link, and the other is the 

expected travel time from the next state (whose current-node is the next node) to the 

destination.  
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As we have seen in previous section, )(tei denotes the expected travel time from 

i to the given destination node d. We define )(tTij  as a travel time random variable of 

link (i, j) at time t conditional on current travel time information, and ))(( tTtL ijj +  as a 

travel time from node j to destination node d at time )(tTt ij+ , if one departs from node i.  

Then we have  

( )]))(()([)( tTteEtTEte ijjiji ++=  

Next, we develop the recursive equation for the variance of a routing. We define 

additional variables as follows. All routing decisions are made to reach a single 

destination d.  

)(tiν : travel time variance from node i to destination node d at time t 

 )]([)( tLVart ii =ν  

)(tpij : probability that takes the value )(tijτ  

In the following mathematical development, all the calculations are conditional 

on the current travel time information. The major theorem we use is the Law of 

Conditional Variances(Ross, 1989):  

By definition of Var(X/Y), we have that 

]/[]/[]/[2]/[
]/)/()/(2[

]))/([()/(

22

22

2

YXEYXEYXEYXE
YYXEYXXEXE

YXEXEYXVar

+−=

+−=

−=

 (4-11) 

where we the fact that E[X/Y] and E2[X/Y] are functions of Y and thus, given Y, they 

may be treated as constants. 

Therefore, 
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]/[]/[
]/[]/[]/[2]/[)/(

22

22

YXEYXE
YXEYXEYXEYXEYXVar

−=

+−=
 (4-12) 

and taking expectations yields 

]]/[[][
]]/[[]]/[[)]/([

22

22

YXEEXE
YXEEYXEEYXVarE

−=

−=
  (4-13) 

][]]/[[
][][2]]/[[
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]))()/([(

]]))/[(]/[[(])/[(
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222
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2

XEYXEE
XEXEYXEE

XEXEYXEEYXEE
XEYXEE

YXEEYXEEYXEVar

−=

+−=

+−=

−=

−=

 (4-14) 

Hence, from equation (4-13) and (4-14), we arrive at  

)(
][][

][]]/[[]]/[[][])/[()]/([
22

2222

XVar
XEXE

XEYXEEYXEEXEYXEVarYXVarE

=
−=

−+−=+

  (4-15) 

Therefore, the variance of X, given the random variable Y, is defined by  

])/[()]/([)( YXEVarYXVarEXVar +=  

Note that ]/[ YXE  and )/( YXVar are also random variables. ]/[ yXE  is a constant, 

which is the expected value of X given that Y = y. )/( yXVar  is a constant, which is the 

variance of X given that Y = y. 

Since ))(()()( tTtLtTtL ijjiji ++= , we have  

)]](/)([[]/)([)(

)]](/)([[)](/)([[
)]([)(

tTtLEVartLVartp

tTtLEVartTtLVarE
tLVart

ijiiji
k

k
ij

ijiiji

ii

+∗=

+=
=

∑ τ

ν
 (4-16) 

The first equality is according to the definition of )(tiν . The second equality is due to 

the Law of Conditional Variances. The third equality is according to the definitions of 
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expected value and the variance of a random variable.  

Next, we compute the individual components of the right hand side of the last 

line in Equation 4.3 one by one.  

We apply the Law of Conditional Variances again to obtain  

))((
)](([

))](()([)](/)([

tt
ttLVar

ttLtTVarttLVar

ijj

ijj

ijjijiji

τν

τ

ττ

+=

+=

++=

  (4-17) 

The first equality is due to the decomposition of travel time from (i, t) into two parts. The 

second equality is due to the fact that )(tijτ  is a deterministic value and thus, does not 

contribute to the variance of )(tLi . The third equality is by the definition of 

)]([)( tLVart ii =ν . 

Therefore we have  

))(()(

)](/)([)()](/)([[

tttp

ttLVartpttLVarE

ij
k

j
k
ij

iji
k

k
ijiji

τν

ττ

∑

∑
+∗=

∗=
  (4-18) 

Now that we have finished developing the first component of the right hand side of the 

last line of Equation (4-16), let us study the second component.  

))(()(
))](([)()](/)([

ttet
ttLEtttLE

ijjij

ijjijiji

ττ

τττ

++=

++=
  (4-19) 

Therefore the expectation of )](/)([ ttLE iji τ  is evaluated as:  

( )
)(

)(()()()]](/)([[

te

ttettpttLEE

i

k
ijjij

k
ijiji

=

++∗= ∑ τττ
 (4-20)  

and the second component of the right hand side of the last line of Equation (4-16), 
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which is actually the variance of )](/)([ ttLE iji τ , can be evaluated as:  

( )

( )2

2

2

)())(()()(
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   (4-21) 

Substituting Equation (4-18) and (4-21) into Equation (4-16), we obtain the final result:  

( )2)())(()()())(()(

)]](/)([[)](/)([[
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+=
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ν
   (4-22) 

0)( =tdν  

Please note that all calculations are conditional on the current travel time information.  

Intuitively, we can view the first part as the variance from the next node to the 

destination, and the second part as the variance induced by including the next link in the 

routing. 

For the given origin node i and departure time t , the objective of the “minimum 

variance path” problem is to minimize the variance of travel time to a select destination 

given that the path can be determined before travel starts. Let )(tiν  be the minimum 

travel time variance from node i to destination node d at departure time t. The problem is 

then to find the best path routing , that is, the set of paths, for each origin node at each 

departure time in the peak period such that )(tiν  is minimized. As we discussed in 

previous section 4.2, )(tiν  can be computed as follows: 

( )
⎪⎩

⎪
⎨
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,;0
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τττνν  (4-23) 
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⎩
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Now denote by )(tiπ  a node such that (i, )(tiπ ) is a next arc corresponding to 

minimum travel time variance )(tiν . Functions )(tiπ  verify the following equation: 
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⎩
⎨
⎧

≥∀=
≥∀≠=

=
Mtdi
MtdiMt

t i
i ,;0

,;)(
)(

π
π  

Functional equations (4-23) and (4-24) define a formulation to the problem of computing 

the all-to-one minimum travel time variance.  

To the best of the author’s knowledge, there is no paper in the literature that 

deals with minimum variance path (routing) problems in stochastic time dependent 

networks. The study here is a preliminary attempt to tackle the minimum mean-variance 

routing problem.  

 

4.2.4 The optimality Condition for variance 

We make the assumption that there exists at least one path from any node to the 

destination node d under any possible value of the link travel time variance. )(tiν  and 

)(tiπ  are optimal if and only if they are solutions of the following system of equations: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
−++∗++∗= ∑∑

∈

2

)(
)())(()()())(()(min)( tettettptttpt i

k
ijjij

k

k
ij

k
ijj

k

k
ij

iAj
i τττνν  

( )
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
−++∗++∗= ∑∑∈

2

)(
)())(()()())(()(minarg)( tettettptttpt i

k
ijjij

k

k
ij

k
ijj

k

k
ijiAji τττνπ  



 77

with the boundary conditions:  

Ttdtt dd ∈∀== ,)(,0)( πν  and MtNiMt ii >∈∀= ,),()( νν  

Note that we assume the outcome of the decision is deterministic, i.e. the traveler will 

end up at node j if he/she chooses node j as his/her next node.  

 We will show an illustrative example of how the optimality condition works. 

 
Figure 4.2. An Illustrative Example for Optimality Conditions  

 

The topological network is shown at the upper side of Figure 4-1, and the major 

part of the Figure is a time-space representation of the network. In a time-space network, 

time is shown along the vertical axis (the time axis), and the node number is shown along 

the horizontal axis (the space axis).Each point in this network represents a node-time pair 

(i, t), and any link between (i, t1) and (j, t2)indicates that link (i, j) has a travel time of t2 − 

t1 if departure time from node i is t1.We are interested in finding the minimum variance 
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path from node 1 to node 4 at departure time 0, namely )0(1 =tν , and only those node-

time pairs and links relevant to the computation are shown.  

Figure 4.2. shows the marginal distributions of the link travel time random 

variables. Link (1, 2) at time 0 could have two values of travel time: 4 with probability 

0.5 and 2 with probability. 0.5. Link (1, 3) at time 0 could have two values of travel time: 

1 with probability 0.2 and 3 with probability 0.8. Link (2, 4) at time 4 could have two 

values of travel times: 3 with probability 0.75 and 4 with probability 0.25. Link (3, 4) at 

time 3 could have two values of travel times: 2 with probability 0.3 and 3 with 

probability 0.7. All other link travel times are deterministic.  

We apply the optimality conditions to obtain the value of )0(1 =te .  
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It can be easily observed from the Figure that  

)2(1
2 =te =4, )2(1

2 =tv =0 

)4(1
2 =te = 3.25, )4(1

2 =tv =0.1875 

)0(1
1 =te = 6.625 

)2(2
2 =te =5.4, )2(2

2 =tv =0.24 

)4(2
2 =te =3.4, )4(2

2 =tv =0.24 

)0(2
1 =te = 7.4 

)1(1
3 =te =6, )1(1

3 =tv =0 

)3(1
3 =te = 3.4, )3(1

3 =tv =0.84 
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)0(3
1 =te = 6.52 

Therefore, ( ) ( ) ( ){ } 4844.07296.0,24.2,4844.0min)0( 43143214211 === −−−−−−− pathpathpathtv  

and )0(1π = 2, p=1. Therefore, minimum variance of travel time for node 1 at time 0 turn 

out to be a path: 1-2-4. 

 

4.3 An Algorithm for A Priori Minimum Variance Path 
Problems  

In this section, an algorithm to compute minimum variance path routing policies 

with a criterion of travel time reliability (variance) were presented.. We have been 

focusing on the study of minimum expected travel time policies, as expected travel time 

is the primary concern of travelers in making routing decisions. On the other hand, when 

faced with uncertainty, travelers are also concerned about the reliability of their travel 

times. For example, unreliable travel times will cause anxiety or disutility among 

travelers because of the possibility of an unexpected late arrival at their destinations. We 

use travel time variance to represent travel time reliability. A routing policy with less 

travel time variance is viewed as more reliable. For commuters, the desired arrival time 

in the morning might be some time around the work starting time. For a traveler catching 

a plane, the desired arrival time might be roughly one hour before the plane’s departure. 

It is generally believed and verified by some empirical studies that both early and late 

arrivals cause disutility to the user. For example, although late arrival at the workplace 

would cause trouble for a commuter, an arrival too early would also make the commuter 

feel as if it was a waste of time.  

Therefore, we design algorithms that minimize travel time variance from all 

nodes to a given destination node d. We develop formulas that describe the relationship 
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between a variance at a given state (i, t) and the attributes at succeeding nodes. Then we 

present the optimal condition for the policy that minimizes the travel time variance. The 

following two sections provide a theoretical base for the algorithm design in next section. 

The illustrative examples are presented to have good picture of two algorithms.  

 

4.3.1 An Algorithm 

For each node i∈N and each potentially optimal path h to the destination node d, 

a vector label Ttth
i ∈),(ξ  is maintained, where Ttth

i ∈),(ξ  is the expected travel time 

along path h from node i to the destination, leaving node i at time t; i.e., )]([)( tLEt h
i

h
i =ξ . 

Similarly, a vector label Ttth
i ∈),(ω  is maintained for the variance of travel time along 

path h from node i to the destination, leaving node i at time t; i.e., )]([)( tLVart h
i

h
i =ω . 

These labels are called candidate-optimal because each is potentially optimal for 

one or more time intervals. Until the termination of the algorithm, more than one label 

vector is maintained at each node unless a single label is best for all time intervals. Let 

q(i) be the set of candidate-optimal labels at node i. At each iteration of the algorithm, a 

node j is scanned and a temporary label vector is constructed, )()( tet h
i

h
i ←ξ  for 

expected time and )()( ht h
i

h
i νω ←  for variance, from each of its predecessor nodes, 

i∈A(i, j). This temporary label is compared with the candidate-optimal labels at node i, 

jΩ (t), according to the following conditions: 

)(th
iω corresponds to a candidate-optimal path iff ∃ no path )(iqh∈  
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such that Tttt h
ii ∈∀≤Ω )()( ω ,otherwise the path is dominated. 

Even if a temporary label is dominated by any currently candidate-optimal path, this 

temporary label can be a part of another candidate-optimal path. Therefore, all temporary 

labels need to be kept for future path variance calculations. This is major difference 

between a priori least expected time path algorithm and minimum variance path 

algorithm. 

Two pointers are required for each label c at each node i to store the candidate-

optimal paths efficiently: a pointer, h
iπ (t), from the hth label at node i to the next node on 

the path and a pointer, )(th
iθ , to indicate the appropriate path label at the next node. 

Note that temp
iπ  and temp

iθ  hold the path information of a temporary label until that 

label is determined to be non-dominated solution or is discarded. 

 

Algorithm PMV 

begin 

Procedure Initialization  

begin  

 create the NODE_LIST, SA 

put all nodes i to NODE_LIST  

set SA=Ø 

set each node i,  

{ }PhTtdNith
i ,...,2,1,,,)( ∈∈−∈∀∞=ξ  

where P is a large enough number to permit as many 
candidate-optimal path at any node as might be required 

Ttth
d ∈∀= ,0)(ξ  

{ }PhTtdNith
i ,...,2,1,,,)( ∈∈−∈∀∞=ω  

Ttth
d ∈∀= ,0)(ω  
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{ }PhTtdNiti ,...,2,1,,,)( ∈∈−∈∀∞=Ω  

Tttd ∈∀=Ω ,0)(  

{ }PhTtNith
i ,...,2,1,,,)( ∈∈∈∀∞=π  

{ }PhTtth
i ,...,2,1,,)( ∈∈∀∞=θ  

   q(d) = 1 (put the first path label at node d) 

Insert destination node and path label pair (d, 1) to set SA list 

end 

while SA≠Ø do 

begin  

select the first node and path label from the set SA 

call this node the current node, j  

scan the current node, j 

begin 

 for each i unlabeled do 

if succ(i)=j, (i,j)∈A, then 

begin  

 mark node i labeled 

end 

 

procedure Update Node Labels 

   For all i labeled   

   begin  

   update the vector [ ] Tt
h
i

h
i

h
i

h
i tttt ∈)(),(),(),( θπωξ  

Temporary label Creation: calculate the expected time  

and variance for the newly constructed path from node i  

   calculate Tttte h
i

h
i ∈∀)(),( ν  as follows 

    ( )( )[ ]∑ ⋅++=
k

k
ij

k
ij

h
i

k
ij

h
i ttttte )()(()()( ρτξτ  
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k
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h
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    ptjt h
i

h
i == )(,)( θπ  

  where k is the set of indices of possible travel 

times on arc(i,j) at time t. 

  )()( tet h
i

h
i =ξ  

  )()( tt h
i

h
i νω =  

Label comparisons 

    Compare )(th
iω with )(tdΩ , for all h 

    if )()( tt i
h
i Ω<ω  then  

     )()( tt h
ii ω=Ω , ptjt h

i
h
i == )(,)( θπ  

    otherwise keep previous information 

If )(th
iω  is candidate-optimal, add the path 

information p into q(i) and put this node-path label 
pair in the SA list.  
Check if all h∈q(i) are still candidate-optimal and 
remove the non- candidate-optimal, labels from q(i). 

     

    if SApi ∉),( then  

     put (i,p) in set SA list 

   end 

 

 Remove (j, p) from SA 

Unlabeled all nodes 

 end 

end 
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4.3.2 Discussion of Algorithm PMV 

The PMV can be viewed as an efficient specialized modified label correcting algorithm 

for determining the minimum variance path from all i to a select destination, d. Similar to the 

Time-dependent Least-time Problem (TDLTP) algorithm of Ziliaskopoulos and Mahmassani 

(1993) for determining least-time paths in deterministic, time-varying networks, the PMV 

algorithm employs a vector label at each node, each component of which is associated with a 

given departure time interval. In the TDLTP algorithm, each component maintains the least 

time known thus far from the associated node to the destination node, for the given 

departure time. Similarly, each component of the vector label used in the PMV algorithm 

maintains the minimum variance travel time known thus far from the associated node to the 

destination node for the corresponding departure time. A vector label associated with node 1 is 

depicted in Table 4.1. In this example, the peak period consists of six time intervals (t0 

through t5). For each departure time interval, the minimum variance of travel time (denoted by 

( )tΩ ) from this node to the destination is given in the vector label component and the associated 

successor node and subpath is given to the right of the component. For example, at time 3, the 

minimum variance path has a variance value of 2.8 units of time, and the next node of this path 

at time 4 is node 2 and subpath from this node 2 is 1.  

 

Table 4.1. Example of vector label with five time intervals 

Departure 
Time 

Minimum Variance 
)(1 tΩ  

next node 
routing 

Subpath 
routing 

0 2.4 2 1 

1 1.9 3 1 

2 4.7 3 2 

3 2.8 2 1 
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4 5.4 4 2 

t>5 5.4 4 2 

 

Lemma 4.1. The PMV algorithm terminates with the set of minimum variance of travel time 

paths. The following relation holds for every label at every t∈T:  

( )[ ] ( )( )[ ] { }PhTttettetttttt
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h
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ij

h
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j

k
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∈∈∀−++∗++∗≤Ω ∑∑ ττρτνρ  

Proof.  At the end of each iteration, 
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as required in Update Node Labels of the algorithm. Thus, there can be no j (j=secc(i)) 

such that  

( )[ ] ( )( )[ ]∑∑ −++∗++∗>Ω
k

h
i

k
ij

h
j

k
ij

k
ij

k

k
ij

h
j

k
iji tettetttttt 2)()()()()()()( ττρτνρ . 

Since the label components corresponding to a particular departure’s time interval are 

permanently set once all labels at the same departure time have been determined, the 

proposed relation must hold. 

 

Proposition 4.1. The PMV algorithm terminates in a finite number of steps. 

Proof. The algorithm terminates in a finite number of steps if the SA list is empty in a finite 

number of steps. Suppose that the SA list does not get empty in a finite number of steps, then 

at least one node-label pair must be inserted in the SA an infinite number of times. This 

implies that the label at the node has improved by at least a positive real-value of travel time. If 

the improvement at the node continues an infinite number of times, then the variance of travel 
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time on the path would eventually become negative, which contradicts the positive variance 

of travel times. This contradicts the supposition that the SA list is not empty in a finite 

number of steps and hence shows that the PMV algorithm terminates in a finite number 

of steps. 

 

The actual number of paths that may have the minimum variance for one or more 

departure time intervals must be no greater than TI, because at most, one path has the 

minimum variance for each departure time (ties broken arbitrarily). However, an 

arbitrarily large (but finite) number of labels may need to be maintained at each node. 

Therefore, in a worst-case scenario, this algorithm can perform very poorly - 

nonpolynomially. This is shown in Proposition 4.2. 

 

Proposition 4.2. The PMV algorithm have a worst-case computational complexity that 

grows exponentially with the number of nodes if TI > 1, where TI is the number of time 

intervals. 

 

Proof. Assume TI = 2. A label for every possible path from a node to the destination 

node may need to be maintained, because no label may beat another label over all time 

intervals. Assume δ > 0, then the following may occur: 

Path 1 Path 2 Path 3 Path 4 ……. 

Time=l 

Time=2 
5 
3 

5+δ 

3-δ 

5+2δ 

3-2δ 

5+3δ 

3-3δ 

……. 

……. 

 

No path listed above is better than any other for both time intervals. Thus, all paths must 
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be maintained. This applies to TI > 2. 

 

4.4 Algorithm for A Priori Minimum Mean-Variance path 
Problems: Implementation of PMV Algorithms 

Since expected travel time is the primary criterion in routing optimization, and 

variance is secondary, it is necessary to design algorithms that minimize expected travel 

time and variance. In this section, we design algorithms that minimize a linear 

combination of expected travel time and travel time variance. Therefore, the algorithm, 

PMMV, is developed for a priori mean-variance path routing. Since the PMMV 

algorithm has very similar procedures with the algorithm PMV, the algorithm PMV is 

easily extended for determining a priori minimum mean-variance paths in networks 

where the arc travel times are random variables with time-dependent probability 

distribution functions. In a PMV algorithm, the node vector label )(th
iΩ  is maintained 

for the variance of travel time along path h from node i to the destination at time t. The 

new vector label )(th
iΔ  is maintained for the mean-variance combination along path h 

for a PMV algorithm.   

 

4.4.1 An Algorithms 

For each node i∈N and each potentially optimal path h to the destination node d, 

a vector label Ttth
i ∈),(δ  is maintained, where Ttth

i ∈),(δ  is the mean-variance 

combination along path h from node i to the destination, leaving node i at time t; i.e., 

[ ] Ttttet h
i

h
i

h
i ∈∀∗+= ,)()()( ναδ . These labels are called candidate-optimal because 



 88

each is potentially optimal for one or more time intervals. At each iteration of the 

algorithm, a node j is scanned and a temporary label vector is constructed, 

[ ])()()( ttet h
i

h
i

h
i ναδ ∗+← , from each of its predecessor nodes, i∈A(i, j). This 

temporary label is compared with the candidate-optimal labels at node i, jΔ (t), 

according to the following conditions: 

)(th
iδ corresponds to a candidate-optimal path if ∃ no path )(iqh∈  

such that Tttt h
i

h
i ∈∀≤Δ )()( δ ,otherwise the path is dominated. 

This approach that we adopt will allow us to study trade-offs between mean and variance. 

Our route guidance model is intended to help travelers make choices that reflect their 

decision-making process better. A flow chart the basic procedure steps of the TAMMV2 

algorithm is presented in Figure 5.4. 

 

Algorithm PMMV 

begin 

Procedure Initialization  

begin  

 create the NODE_LIST, SA_LIST 

put all nodes i to NODE_LIST  

set SA=Ø 

set each node i,  

{ }PhTtdNith
i ,...,2,1,,,)( ∈∈−∈∀∞=ξ  

where P is a large enough number to permit as many 
candidate-optimal path at any node as might be required 

Ttth
d ∈∀= ,0)(ξ  

{ }PhTtdNith
i ,...,2,1,,,)( ∈∈−∈∀∞=ω  
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Ttth
d ∈∀= ,0)(ω  

{ }PhTtdNiti ,...,2,1,,,)( ∈∈−∈∀∞=Δ  

Tttd ∈∀=Δ ,0)(  

{ }PhTtNith
i ,...,2,1,,,)( ∈∈∈∀∞=π  

{ }PhTtth
i ,...,2,1,,)( ∈∈∀∞=θ  

   q(d) = 1 (put the first path label at node d) 

Insert destination node and path label pair (d, 1) to set SA list 

end 

while SA≠Ø do 

begin  

select the first node and path label from the set SA 

call this node the current node, j  

scan the current node, j 

begin 

 for each i unlabeled do 

if succ(i)=j, (i,j)∈A, then 

begin  

 mark node i labeled 

end 

 

procedure Update Node Labels 

   For all i labeled   

   begin  

    update the vector [ ] Tt
h
i

h
i

h
i

h
i tttt ∈)(),(),(),( θπωξ  

    calculate Tttte h
i

h
i ∈∀)(),( ν  as follows 

    ( )( )[ ]∑ ⋅++=
k

k
ij

k
ij

h
i

k
ij

h
i ttttte )()(()()( ρτξτ  
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( )[ ]

( )( )[ ]∑

∑

−++∗+

+∗=

k

h
i

k
ij

h
i

k
ij

k
ij

k

k
ij

h
i

k
ij

h
i

tetttt

tttt

2)()()()(

)()()(

τξτρ

τωρν

 

    ptjt h
i

h
i == )(,)( θπ  

  where k is the set of indices of possible travel 

times on arc(i,j) at time t. 

  )()( tet h
i

h
i =ξ  

  )()( tt h
i

h
i νω =  

  [ ])()()( ttt h
i

h
i

h
i ωαξδ ∗+=  

 Label comparisons 

    Compare )(th
iδ with )(tiΔ , for all h 

    if )()( tt i
h
i Δ<δ  then  

     )()( tt h
ii δ=Δ , ptjt h

i
h
i == )(,)( θπ  

    otherwise keep previous information 

If )(th
iδ  is candidate-optimal, then add the path information 

p into q(i) and put this node-path label pair on the SA list.  
Check if all h∈q(i) are still candidate-optimal and remove the 
non- candidate-optimal labels from q(i). 

     

    if SApi ∉),( then  

     put (i,p) in set SA list 

   end 

 

Remove (j, p) from SA 

Unlabeled all nodes 

 end 

end 
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4.4.2 Discussion of Algorithm PMMV 

The PMMV also can be viewed as an efficient specialized modified label correcting 

algorithm for determining the minimum mean-variance path from all i to a select destination, 

d. Similar to the PMV algorithm, the PMMV algorithm employs a vector label at each node, 

each component of which is associated with a given departure time interval. In the PMV 

algorithm, each component maintains the least variance travel time path from the associated 

node to the destination node, for the given departure time. Similarly, each component of 

the vector label used in the PMMV algorithm maintains the minimum mean-variance travel 

time path from the associated node to the destination node for the corresponding departure 

time. Proposition 4.1 and 4.2 are also applied for the PMMV algorithm. 

 

Lemma 4.2. The PMMV algorithm terminates with the set of minimum mean-variance of travel 

time paths. The following relation holds for every label at every t∈T:  

( ) TtphNittet h
i

h
ii ∈∀∈∈∀∗+≤Δ },...,,2,1{,,)()()( να  

Proof. As we verify the principle of optimality of minimum expected travel time and 

minimum variance, we can say that the principle of optimality holds for the minimization 

of linear combination of mean-variance routing policy. Linear combination of above two 

equation is )()( tte h
i

h
i να ∗+ . The optimality conditions are: 

[ ] ( )[ ] TtNitpttetptte
k

k
ij

k
ijj

k

k
ij

k
ij

h
i ∈∀∈∀⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∗++∗= ∑∑ ,,)()()()()( ττ  

( ) TtNitettettptttpt i
k
ijjij

k

k
ij

k
ijj

k

k
ij

h
i ∈∀∈∀⎟

⎠

⎞
⎜
⎝

⎛
−++∗++∗= ∑∑ ,,)())(()()())(()()( 2

τττνν

( ) }...,,2,1{,,,)()(min)(
)(

phTtNittet h
i

h
i

iAj

h
i ∈∈∀∈∀∗+=

∈
ναδ  

 

At the end of each iteration, 
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[ ] ( )[ ]

( ) ⎪
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⎪
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⎩
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⎛
−++∗++∗

+⎟⎟
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⎞
⎜⎜
⎝

⎛
∗++∗

=Δ

∑∑

∑∑
∈ 2)(

)())(()()())(()(*

)()()()(

min)(

tettettptttp

tpttetpt

t
h
j

k
ij

h
jij

k

k
ij

k
ij

h
j

k

k
ij

k

k
ij

k
ijj

k

k
ij

k
ij

iAj
i

τττνα

ττ
 

as required in Update Node Labels of the algorithm. Thus, there can be no j (j=secc(i)) 

such that  

[ ] ( )[ ]

( ) ⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎠

⎞
⎜
⎝

⎛
−++∗++∗

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗++∗

>Δ

∑∑

∑∑

2)())(()()())(()(*

)()()()(

)(

tettettptttp

tpttetpt

t
h
j

k
ij

h
jij

k

k
ij

k
ij

h
j

k

k
ij

k

k
ij

k
ijj

k

k
ij

k
ij

i

τττνα

ττ
 

Since the label components corresponding to a particular departure’s time interval are 

permanently set once all labels at the same departure time have been determined, the 

proposed relation must hold. 

 

4.5 Illustrative Example 

In this section, both the PMV and PMMV algorithms are illustrated on the 

example problem.  The network is shown in Figure 4.2.  

 
Figure 4.3. Example network 

 
Table 4.2. Table of pmfs of travel times in Figure 4.2 

Arc a Arc b Arc c Arc d Arc e 
t=0 t=0 t=2 t=3 t=2 t=3 t=4 t=5 t=6 t=7 

2 0.5 5 0.4 4 0.8 1 0.3 3 0.8 6 0.4 4 0.2 5 0.3 1 0.9 3 0.3 

3 0.5 7 0.6 5 0.2 3 0.7 7 0.2 7 0.6 6 0.8 8 0.7 2 0.1 4 0.7 
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PMV algorithm 
 
Initialization 
 
Node_List   N = {1,2,3,4} 
Arc_List     A = {a, b, c, d, e} 
Time_space T = {0,1,2,3,4,5,6,7} 
Destination_Node d = 4 
 
Scan_Available List  SA = φ  
 
Set each node i,  
 ( ) { } { } { }3,2,1,7,6,5,4,3,2,1,0,3,2,1, ∈∈∈∀∞= htith

iξ  
( ) { } { }3,2,1,7,6,5,4,3,2,1,0,04 ∈∈∀= htthξ  
( ) { } { } { }3,2,1,7,6,5,4,3,2,1,0,3,2,1, ∈∈∈∀∞= htith

iω  
( ) { } { }3,2,1,7,6,5,4,3,2,1,0,04 ∈∈∀= htthω  

{ } { } { }3,2,1,7,6,5,4,3,2,1,0,4,3,2,1,)( ∈∈∈∀∞=Ω hTtiti  
{ } { }3,2,1,7,6,5,4,3,2,1,0,0)(4 ∈∈∀=Ω htt  

( ) { } { } { }1,2,3h,7,6,5,4,3,2,1,0,4,3,2,1, ∈∈∈∀∞= tith
iπ  
( ) { } { } { }1,2,3h,7,6,5,4,3,2,1,0,4,3,2,1, ∈∈∈∀∞= tith

iθ  
 

q(4) = 1 
 
Insert the pair of destination node d and path label 1, (4,1) 

 
SA = {(d,1)} 
 

Step 1 
Select the first pair (4, 1) from the SA list 
Call this is current node, j = 4 and path h=1 

 
Step 2 

 
For each i, ),( jiAi∈  

 i =  {2, 3} 
 

Select node 2 , i = 2, h=1 
t = 2 
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 Temporary label 8.3)2()2( 1
2

1
2 ==== tetξ  

56.2)2()2( 1
2

1
2 ==== tt νω  

 
 Since ( ) ∞==Ω<== 256.2)2( 2 ttiω , 
 Update )2(2Ω =2.56,  4)2(1

2 =π , 1)2(1
2 =θ  

 
t = 3 
( ) ( )( )[ ] ( )( )[ ]

( ) ( )

6.6
6.0*)07(4.0*)06(
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 Temporary label )3()3( 1
2

1
2 === tetξ =6.6 

)3()3( 1
2

1
2 === tt νω =0.24 

 
 Since )3( =tiω =0.24 < ( )32 =Ω t =∞ , 
 Update )3(2Ω =0.24, 4)3(1

2 =π , 1)3(1
2 =θ  

 
q(2)=1 
If i is not in SA list,  Put i and h=1in SA list, (2,1) 
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 SA = {(2,1)} 
 

Select node 3 , i = 3, h=1 
t = 4 

( ) 6.541
3 ==te  
( ) 64.041

3 ==tν  
)4()4( 1

3
1
3 === tetξ =5.6 

)4()4( 1
3

1
3 === tt νω =0.64 

 
 Update )4(3Ω =0.64, 4)4(1

3 =π , 1)4(1
3 =θ  

 
t = 5 

( ) 1.751
3 ==te  
( ) 89.151

3 ==tν  
)5()5( 1

3
1
3 === tetξ =7.1 

)5()5( 1
3

1
3 === tt νω =1.89 

 
 Update )5(3Ω =1.89, 4)5(1

3 =π , 1)5(1
3 =θ  

 
t = 6 

( ) 1.161
3 ==te  
( ) 09.061

3 ==tν  
)6()6( 1

3
1
3 === tetξ =1.1 

)6()6( 1
3

1
3 === tt νω =0.09 

 
 Update )6(3Ω =0.09, 4)6(1

3 =π , 1)6(1
3 =θ  

 
t=7 
( ) 7.371

3 ==te  
( ) 21.071

3 ==tν  
)7()7( 1

3
1
3 === tetξ =3.7 

)7()7( 1
3

1
3 === tt νω =0.21 

 
 Update )4(3Ω =0.21, 4)4(1

3 =π , 1)3(1
3 =θ  

 
q(3)=1 
If i is not in SA list,  Put node 3 and label 1 pair in SA list 
SA = {(2,1),(3,1)} 
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GO TO STEP 1 
Step 1 

Select the first pair (2,1) from the SA list 
Call this is current pair, j = 2, h=1 

Step 2 
 

For each i, Aji ∈),(  
 i =  {1} 

 
Select node 1,  i = 1, j=2, h=1 
t = 0 

( )01
1 =te =7.7 
( )01

1 =tν =5.01 
 

)0()0( 1
1

1
1 === tetξ =7.7 

)0()0( 1
1

1
1 === tt νω =5.01 

 
Since )0(1

1 =tω =5.01 < ( )01 =Ω t =∞ , 
Update )0(1Ω =5.01, 2)0(1

1 =π , 1)0(1
1 =θ  

 
q(1)=1 
 
Node label pair(1,1) is not in SA list,  Put (1,1)in SA list 
 SA = {(3,1), (1.1)} 
 

GO TO STEP 1 
Step 1 

Select the first pair (3,1) from the SA list 
Call this is current pair, j = 3, h=1,  SA ={(1.1)} 

 
Step 2 

 
For each i, Aji ∈),(  
 i =  {1, 2} 
 

Select node 1,  i = 1, j=3, h=1 
t = 0 
( ) == 01

1 te 11.26 
( )01

1 =tν =1.35 
 

)0()0( 1
1

2
1 === tetξ =11.26 

)0()0( 1
1

2
1 === tt νω =1.35 
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 Since )0(2

1 =tω =1.35 < ( )01 =Ω t  = 5.01   
 Update )0(1Ω =1.35, 3)0(2

1 =π , 1)0(2
1 =θ  

 
q(1)=2 
Pair (1,2) is already in SA list, 
 SA = {(1,1) (1,2)} 
 
 
Select node 2,  i = 2 (j = 3), h=1 

t = 2 
( )21

2 =te =5.82 
( )21

2 =tν =2.188 
 

)2()2( 1
2

2
2 === tetξ =5.82 

)2()2( 1
2

2
2 === tt νω =2.188 

 
 Since )2(2

2 =tω =2.188 < ( )22 =Ω t  = 2.56   
 Update )2(2Ω =2.188, 3)2(2

2 =π , 2)2(2
2 =θ  

 
t = 3 
( )31

2 =te =4.85 
( )31

2 =tν =1.568 
 

)3()3( 1
2

2
2 === tetξ =4.85 

)3()3( 1
2

2
2 === tt νω =1.568 

 
Since ( ) 24.0)3(568.13 2

2
2 ==Ω>== ttω  

Keep )3(2Ω =0.24,  4)3(1
2 =π , 1)3(1

2 =θ  
 
node 1 is available and h=3, pair (1,2) in SA list, SA = {(1,1) (1,2), (2, 2)} 
 
q(2)=2 

  
GO TO STEP 1 

Select the first pair (1,1) from the SA list 
Call this is current node, j = 1,  SA ={(2,2)} 

 
Step 2 
 
For each i, Aji ∈),(  
 i =  φ  
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GO TO STEP 1 

Select the first pair (1,2) from the SA list 
Call this is current node, j = 1,  SA ={(2,2)} 

 
Step 2 
 
For each i, Aji ∈),(  
 i =  φ  

 
GO TO STEP 1 

 
Select the pair (2,2) from the SA list 
Call this is current node, j = 2,  SA ={  }, h=2 

 
Select node 1,  i = 1 

t = 0 
( )02

1 =te =6.825 
( )02

1 =tν =5.6 
)0()0( 2

1
3

1 === tetξ =4.85 
)0()0( 2

1
3
1 === tt νω =1.568 

 
 Since  ( )03

1 =tω =5.6  > )0(1 =Ω t = 1.35     
Keep  )0(1Ω =1.35,  )0(3

1π = 3, 2)0(3
1 =θ  

 
SA = {  } 
 
STOP 
 

 
Figure 4.4. Resulting minimum variance path for departure 

time 0 at node1 for the example problem 
 

 

PMMV algorithm 
Node 2 
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 j=4, h=1 
 t=2 

Temporary label 8.3)2(1
2 ==tξ  

56.2)2(1
2 ==tω  

[ ] 4.556.218.3)2( =∗+==th
iδ  

 Since ( ) ∞==Δ<== 24.5)2( 2
1
2 ttδ  

 Update )2(2Δ =5.4, 8.3)2(1
2 =ξ  56.2)2(1

2 =ω 4)2(1
2 =π , 1)2(1

2 =θ  
 
t = 3 

 Temporary label )3(1
2 =tξ =6.6 

)3(1
2 =tω =0.24 

[ ] 1.724.016.6)3(1
2 =∗+==tδ  

 
 
 Since ( ) ∞==Δ<== 31.7)3( 2

1
2 ttδ  

 Update )3(2Δ =7.1, 8.3)3(1
2 =ξ  56.2)3(1

2 =ω 4)3(1
2 =π , 1)3(1

2 =θ  
 

Node 3 

j=4, h=1 
t = 4 

)4()4( 1
3

1
3 === tetξ =5.6 

)4()4( 1
3

1
3 === tt νω =0.64 

[ ] 4.664.016.5)4(1
3 =∗+==tδ  

 Update )4(3Δ =6.4, 4)4(1
3 =π , 1)4(1

3 =θ  
 

t = 5 
)5()5( 1

3
1
3 === tetξ =7.1 

)5()5( 1
3

1
3 === tt νω =1.89 

[ ] 44.889.111.7)5(1
3 =∗+==tδ  

 Update )5(3Δ =8.44, 4)5(1
3 =π , 1)5(1

3 =θ  
 

t = 6 
)6()6( 1

3
1
3 === tetξ =1.1 

)6()6( 1
3

1
3 === tt νω =0.09 

[ ] 4.109.011.1)6(1
3 =∗+==tδ  

 Update )6(3Δ =0.09, 4)6(1
3 =π , 1)6(1

3 =θ  
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t=7 
)7()7( 1

3
1
3 === tetξ =3.7 

)7()7( 1
3

1
3 === tt νω =0.21 

[ ] 16.421.017.3)7(1
3 =∗+==tδ  

 Update )4(3Δ =4.16, 4)4(1
3 =π , 1)3(1

3 =θ  
 

Node 1 

j=2, h=1 
t = 0 

)0()0( 1
1

1
1 === tetξ =7.7 

)0()0( 1
1

1
1 === tt νω =5.01 

[ ] 94.901.517.7)0(1
1 =∗+==tδ  

 Since )0(1
1 =tω =9.94 < ( )01 =Ω t =∞ , 

 Update )0(1Δ =9.94, 2)0(1
1 =π , 1)0(1

1 =θ  
 
Node 1 

j=3, h=1 
t = 0 

)0()0( 1
1

2
1 === tetξ =11.26 

)0()0( 1
1

2
1 === tt νω =1.35 

[ ]35.1126.11)0(2
1 ∗+==tδ  =12.16 

 Since )0(2
1 =tδ =12.16 > ( )01 =Δ t = 9.94   

 Keep )0(1Δ =9.94, 2)0(1
1 =π , 1)0(1

1 =θ  
 

Node 2 

 j=3, h=1 
 t=2 

Temporary label )2()2( 2
2

2
2 === tetξ =5.82 

 )2()2( 2
2

2
2 === tt νω =2.188 

[ ]188.2182.5)2(2
2 ∗+==tδ  = 7.30 

 Since )2(2
2 =tδ =7.30 > ( )22 =Δ t  = 5.4   

 Keep )2(2Δ =5.4, 4)2(1
2 =π , 1)2(1

2 =θ  
 
t = 3 

 Temporary label )3(2
2 =tξ =4.85 

)3(2
2 =tω =1.568 

[ ]568.1185.4)3(2
2 ∗+==tδ  = 6.10 
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 Since ( ) 1.7310.6)3( 2

2
2 ==Δ<== ttδ  

 Update )3(2Δ =6.1, 85.4)3(2
2 =ξ  568.1)3(2

2 =ω 3)3(2
2 =π , 1)3(1

2 =θ  
 
Node 1 

j=2, h=2 
t = 0 

)0()0( 2
1

3
1 === tetξ =6.825 

)0()0( 2
1

3
1 === tt νω =5.6 

[ ]6.51825.6)0(3
1 ∗+==tδ  =9.19 

 Since )0(3
1 =tδ =9.19 < ( )01 =Δ t = 9.94   

 Update )0(1Δ =9.94, 2)0(3
1 =π , 2)0(3

1 =θ  
 

 

 
 

Figure 4.5. Resulting minimum mean-variance path for departure 
time 0 at node1 for the example problem 
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4.6 Concluding Remarks 

In this chapter, two specialized modified label correcting algorithms are 

presented for generating all of the a priori minimum variance paths and minimum mean-

variance paths, and from all nodes to a single destination for all departure times in the 

peak period in a network with stochastic, time-dependent arc times.  

Both PMV and PMMV algorithms have nonpolynomial worst-case complexity 

because the number of labels required determining a priori minimum variance paths may 

grow exponentially with the size of the network. 

The two algorithms are complicated by the need to maintain the minimum 

variance or minimum mean-variance values for every time interval of every path. 

Intuitively, it seems possible that only the best label for each departure time interval, with 

individual pointers for each, needs to be maintained, as required of the deterministic, 

time-dependent shortest path problem (Ziliaskopoulos and Mahmassani, 1993). 

Unfortunately, if the two labels are compared, one must dominate the other over all 

departure times in the peak period in order to eliminate a path from future consideration. 

In order to maintain the path information, one must keep a separate label for each path 

that is non-dominated for at least one departure time. This is because it is possible to 

arrive at the origin of a subpath in more than one time interval, and therefore, the 

subpath's labels at more than one time interval may contribute to the construction of the 

label of the path containing this subpath. Only upon termination of the algorithm can the 

non-dominated optimal paths, or optimal paths, be evaluated at specific time intervals; 

and thus, for each time interval, the number of non-dominated solutions may be smaller 

than is found for the entire time period. 



 103

The two algorithms are presented specifically for a priori path selection, 

assuming that the user is unable to dynamically change course en route. In reality, as a 

vehicle travels along a selected route, the travel time from the origin to the current 

location of the vehicle is no longer uncertain because it has already occurred. In Chapter 

5, the PMMV algorithms are extended for generating the paths for use in a time-adaptive 

route choice framework where the vehicle selects the path on which it would continue 

based on the revealed (actual) arrival time at each node. 

 



 104

Chapter 5. Time-Adaptive Minimum Mean-Variance 
Algorithms 

 

In both transportation and data communication systems, stochastic time-

dependent network provides a more realistic representation of actual travel conditions on 

which to base critical routing decisions (e.g., for emergency response or priority data 

transfers) than commonly used deterministic or static models. Optimal routes with 

respect to deterministic network attributes (such as distance) may be chosen before travel 

begins, because the optimal path on which to continue does not change as a motorist or 

packet traverses the network. However, in transportation and data networks, where future 

arc traversal times are uncertain and conditions are changing over time, one can make 

improved routing decisions en route as travel times on traveled arcs are revealed. The 

selection of a route prior to travel is referred to as a priori best path routing, because it is 

assumed that the path is chosen in its entirety before travel begins. The selection of a 

route where arc traversal times are revealed en route once the arc is traversed can be 

viewed as a multistage recourse problem, where recourse decisions can be taken in 

response to realizations of arc traversal time outcomes that are not known a priori. This 

type of route selection is the focus of this Chapter and is referred as “best” next arc 

routing or time-adaptive routing.  

In this context, for a given origin-destination pair at a specific departure time, a 

single path may not provide an adequate solution, because the optimal path depends on 

intermediate information concerning experienced travel times on traveled arcs. Therefore, 

attention should be focused on finding a set of 'non-dominated' or 'efficient' routes. 
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Furthermore, travel time measures for routing are highly uncertain. When the measures 

are uncertain, choosing among routes becomes even more difficult because the tradeoffs 

among measures are less precise - the decision maker is forced to choose one probability 

distribution over another, rather than choosing one value over another. A method for 

comparing probability distributions which is less strict than the classical stochastic 

dominance was presented in section 5.1. This method has important practical application 

in determining a set of non-dominated routes in a network when there are multiple, 

uncertain measures which form the basis for route evaluation.   

In section 5.2, two efficient algorithms, TAMMV1 and TAMMV2, are described for 

determining time-adaptive minimum mean-variance routing in stochastic time-dependent 

networks. We design algorithms that minimize a linear combination of mean and variance 

of travel times from origin to destination. In the previous chapter, it provides a theoretical 

base for the algorithms in section 5.2. Concluding remarks are given in section 4.6. Our 

route guidance model is intended to help travelers make choices that reflect their decision-

making process better.   

 

5.1 Non-Dominated Path Selection for Mean-Variance Routing  

In this section, path comparisons for a priori and time-adaptive decisions in stochastic, 

time-dependent networks are studied, and a method for comparing probability distributions 

which is less strict than the classical stochastic dominance is described. The method 

includes a probability parameter which permits control of the degree to which the comparison 

deviates from the classical stochastic dominance. This method has important practical 

application in determining a set of non-dominated routes in a network when there are 
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multiple, uncertain measures which form the basis for route evaluation. 

Consider paths starting at node i and ending at node d. A path attribute k
iL  is 

the summation of link attributes along the path k
iR  where k is the path index. Therefore,  

ndim
k
i llL ++= ...  

where ndim ll ...,,  designate the representative attributes of links (i, m),...,(n, d) 

belonging to path k
iR . Hence, k

iL  is also a random variable with mean k
iμ  and 

variance k
iν . The following criterion is proposed to choose one path over another.  

Consider two paths 1
iR  and 2

iR  from node i to destination node. (Note: when 

several paths to the same departure node are considered, the subscript i will be dropped 

for simplicity in notation) 

Path 1R  is preferred to path 2R  if attribute 1L  is stochastically 

(in distribution) smaller than 2L  (i.e., 1L < 2L ).  

Path 1L  is indifferent to path 2L  if 1L  is not stochastically 

smaller than 2L , and 2L  is not stochastically smaller than 1L  

(i.e., 1L < 2L  and 1L > 2L ). 

The comparison of path attributes 1L  and 2L  can be carried out in two stages. 

 

5.1.1 Primary Comparison Rule 

Let random variable 1
iL  denote the travel time from node i to destination node d 

using path 1. The expected value and variance of 1
iL  are denoted as 1

iμ  and 1
iν  

respectively. 2
iL  also denotes the travel time from node i to destination node d using 
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path 2 with expected value 2
iμ  and variance 2

iν , respectively.  

It is claimed that (approximately) 21
ii LL <  if  

21
ii μμ <  and 21

ii νν ≤    (5-1) 

or 
21
ii μμ ≤  and 21

ii νν <    (5-2) 

The validity of this approximate comparison rule for path attributes should be examined 

based on the classical definition for stochastic comparison of random variables. 

 

 

 
Figure 5.1. Comparison of stochastic path attributes 1

iL  
and 2

iL  where 21
ii μμ <  and 21

ii νν <  
 

As shown in Figure 5.1, there is some value of t, denoted tc, where the 

cumulative distribution functions cross. That is: 

)()( 12 tFtF
LL

> for t<tc  

and  
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)()( 21 tFtF LL > for t>tc  

For values of t greater than tc, the probability that path attribute 1L  is less than t exceeds 

the probability that path attribute 2L  is less than t. Also, if conditions (3) or (4) hold, the 

following can be observed: 

21
iict μμ << ,  (5-3) 

5.0)()( 21 ≤= cLcL tFtF   (5-4) 

Therefore, the approximate rule would choose paths which may not satisfy the classical 

definition of stochastic dominance for comparison of random variables at small values of 

the path attribute (t < tc). In applications to hazardous materials routing, this is not a 

significant issue since we are mainly concerned about the possible realization of large 

values of the path attribute. 

The primary comparison rule can be implemented using a multiobjective shortest 

path algorithm. Each stochastic link attribute lij is transformed to two deterministic 

attributes ijμ  and ijν . Then the multiobjective algorithm produces a set of non-

dominated paths from node j to the destination node. Paths belonging to the set Sj are 

paths that do not satisfy conditions (5-1) or (5-2). That is, suppose the set Sj, contains the 

r non-dominated paths: 

{ }r
j RRRRS ...,,,, 321=  

If these paths are ordered by the increasing mean value, 

rμμμμ <<< .....321  

then, they must also be ordered in decreasing variance: 

rνννν >>> .....321  

Equations (5-1) and (5-2), which form the basis the primary comparison rule, allow some 
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choices to be made among alternative routes. Routes which are clearly dominated in both 

mean and variance of attribute distributions are discarded by the primary comparison rule. 

However, through closer examination of the attribute distributions for the remaining set 

of routes, Sj, we may be able to further reduce the set of non-dominated routes. 

 

5.1.2 Secondary Comparison Rule 

Consider any two routes R1 and R2 from the set Sj with 21 μμ <  and 21 νν > . 

As shown in Figure 5.2, there is some t, denoted tc, where the cumulative distribution 

functions cross. That is, 

)()( 12 tFtF LL > for all values of t<tc   (5-5) 

We can also see that 
12 μμ >>ct    (5-6) 

and 

5.0)()( 21 >= cLcL tFtF   (5-7) 

That is, tc is greater than the larger mean, and the probability that either of the path 

attributes will take a value greater than tc is less than 0.5. Therefore, L1, is stochastically 

smaller than L2 for 'most' values of the attribute (i.e., with probability greater than 0.5). 

The question addressed by the secondary comparison rule is whether or not the range in 

which L1, is smaller than L2 is large enough that we can conclude that route 1 should be 

preferred to route 2. 

We propose the following comparison rule. Since we know 

)()( 21 tFtF LL > for all t<tc, 

and if the value of tc is such that 

α−>= 1)()( 21 cLcL
tFtF , 
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then we will prefer R1 to R2 (L1 < L2). This concept is illustrated in Figure 5.2. 

 

Figure 5.2. Comparison of two path travel time 1
iL  and 2

iL  
where 21

ii μμ <  and 21
ii νν >  

 

The distribution of L1 is preferred (for the purpose of choosing routes) to the distribution 

of L2 as long as the classical comparison rule is satisfied for all values of t, except 

extremely large values which have a small probability of exceedance. This probability is 

controlled by specifying a small value for α. 

The value of α will determine the level of error in the path attribute comparison. 

As we allow α to increase, we are accepting a larger probability of error in the 

comparison of stochastic path attributes. Since α is a parameter that is specified by the 

analyst, the secondary comparison rule can be used to compare paths based on the level 
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of accuracy necessary for a specific routing problem. As α is made smaller, the 

secondary comparison rule becomes less powerful as a means of differentiating among 

alternative paths because we are insisting on a higher level of conformance to the 

classical notion of stochastic dominance. As α is allowed to increase, the secondary 

comparison rule becomes efficient at reducing the size of the possible solution set, but 

may discard a path which would have been of interest. 

 

5.1.3 Algorithm TAMMV-ND 

This algorithm is a specialized modified label-correcting algorithm for 

generating non-dominated minimum mean-variance routing. Because of the secondary 

comparison rule, this algorithm is not efficient for computations. Two efficient 

algorithms are developed in the next section. The detailed description of this algorithm is 

presented in the next section. 

 
begin 

Procedure Initialization  
                begin  
   create the NODE_LIST, SA_LIST 

put all nodes i to NODE_LIST  
set SA_LIST=Ø 
set each node i,  

TtdNiti ∈−∈∀∞= ,,)(ξ  
Tttd ∈∀= ,0)(ξ  

TtdNiti ∈−∈∀∞= ,,)(ω  
Tttd ∈∀= ,0)(ω  

TtdNiti ∈−∈∀∞= ,,)(π  
Tttd ∈∀= ,)( φπ  

   Insert destination node, d to set SA_LIST 
                end           
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while SA_LIST≠Ø do 

         begin  
                select the first node of the set SA_LIST 

call this node the current node, j  
scan the current node, j 
begin 
 for each i unlabeled do 

if succ(i)=j, (i,j)∈A, then 
begin  

 mark node i labeled 
end 
 
procedure Update Node Labels 

   For all i labeled   
   begin      
    update the vector [ ] Ttiii ttt ∈)(),(),( πωξ  

    calculate Tttte ii ∈∀)(),( ν  as follows 
 
    ( )( )[ ]∑ ⋅++=

k

k
ij

k
ijj

k
iji ttttte )()(()()( ρτξτ  

    

( )[ ]

( )( )[ ]∑

∑

−++∗+

+∗=

k
i

k
ijj

k
ij

k
ij

k

k
ijj

k
iji

tetttt

tttt

2)()()()(

)()()(

τξτρ

τωρν

 

 
where k is the set of indices of possible travel times  
on arc(i,j) at time t. 

     
if )()( tte ii ξ<  and )()( tt ii ωυ < then  

     jttttet iiiii === )(),()(),()( πυωξ  
    
    if [ )()( tte ii ξ<  and )()( tt ii ωυ > ]  or  
     [ )()( tte ii ξ>  and )()( tt ii ωυ < ] then 
    apply secondary comparison rule 
    

otherwise keep all paths as a nondominated path 
    
    if LISTSAi _∉ then  
     put i in SA_LIST 
   end 
   

end 
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Secondary comparison rule 

 This secondary comparison between paths h1 and h2 is done for which 21 hh μμ < , 

but 21 hh νν >  (or 21 hh μμ > , but 21 hh νν < ). Because path h1 has a smaller mean value 

than does path h2, but a larger variance, the two path specific cumulative distribution 

functions intersect each other. As a result, under the stochastic dominance, it is not 

possible to say that 21 hh μμ < . However, if the difference in the mean values is relatively 

large and the difference in the variances is relatively small, one might still be willing to 

assert a preference for path h1 over path h2, even though neither the mean–variance 

comparison nor the stochastic dominance is satisfied. This can be formalized by saying 

that the CDF’s of path h1 and h2 are equal at time tc (i.e., )()( 21 cLcL
tFtF = ), and tc is 

large enough so that α−>= 1)()( 21 cLcL
tFtF , then we can assert a preference for path h1 

over path h2. The quantity α is a probability parameter that controls the degree to which 

the comparison deviates from the stochastic dominance.  That is, as 0→α , this 

comparison rule converges to a standard stochastic dominance comparison, but for values 

of 0>α , it is a relaxation. 

 
5.1.4 Illustrative Example 

In this section, the TAMMV-ND algorithm is illustrated on an example network 

shown in Figure 4.2. Since the initialization procedures are same as previous algorithm 

PMV, we present only the major part of the algorithm.  

 

Initialization 
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Node_List   N = {1,2,3,4} 
Arc_List    A = {a, b, c, d, e} 
Time_space T =  {0,1,2,3,4,5,6,7} 
Destination_Node d = 4 
 
Scan_Available List  SA_LIST = φ  
 
Set each node i,  
 ( ) { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiξ  

( ) { }7,6,5,4,3,2,1,0,04 ∈∀= ttξ  
( ) { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiω  
( ) { }7,6,5,4,3,2,1,0,04 ∈∀= ttω  
( ) { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiπ  
( ) { }7,6,5,4,3,2,1,0,4 ∈∀= tt φπ  

 
Create the Scan_Avabable list, SA_LIST, and insert the destination node d 
 
SA_LIST = {4} 
 

Step 1 
Select the first node 4 from the SA_LIST list 
Call this is current node, j = 4, 

 
Step 2 

 
For each i, Aji ∈),(  

 i =  {2, 3} 
 

Select node 2 , i = 2,  h=1 
t = 2 

( )21
2 =te =3.8 
( )21

2 =tν =2.56 
Update Label  
 If )()(),()( ttandtte h

i
h
i

h
i

h
i ωνξ <<  

  Then  ),()(),()(),()( jitandttandtet h
i

h
i

h
i

h
i

h
i === πνωξ  

 Since  ( ) ∞==<== )2(8.32 1
2

1
2 tte ξ ,      

  ( ) ∞==<== )2(56.22 1
2

1
2 tt ων  

 Update 8.3)2(1
2 =ξ ,  56.2)2(1

2 =ω ,  d=)2(1
2π , 1=h  

 
t = 3 

( )31
2 =te =6.6 
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( )32 =tν =0.24 
 Since  ( ) ∞==<== )3(6.63 1

2
1
2 tte ξ ,      

  ( ) ∞==<== )3(24.03 1
2

1
2 tt ων  

 Update 6.6)3(1
2 =ξ ,  24.0)3(1

2 =ω ,  d=)3(1
2π   1=h  

 
If i is not in SA_LIST list,  Put i in SA_LIST list 
 SA_LIST = {2} 
 

Select node 3 , i = 3, h=1 
t = 4 

( ) ( )( )[ ] ( )( )[ ]
( ) ( )

6.5
8.0*)06(2.0*)04(

8.0)62(62.0)42(4

)4()4(4()4()4()4(4()4(4
1
4

1
4

2
34

2
34

1
4

2
34

1
34

1
34

1
4

1
34

1
3

=
+++=

∗+++∗++=

∗+++∗++==

ξξ

ρτξτρτξτte

 

( ) [ ] [ ]
64.0

)6.506(*8.0)6.504(*2.00*8.00*2.04 221
3

=
−++−+++==tν

 

 
 Since  ( ) ∞==<== )4(6.64 1

2
1
3 tte ξ  
( ) ∞==<== )4(64.04 1

3
1
3 tt ων  

 Update 6.5)4(1
3 =ξ ,  64.0)4(1

3 =ω ,  e=)4(1
3π  

 
t = 5 

( ) 1.751
3 ==te  
( ) 89.151

3 ==tν  
 
Since  ( ) ∞==<== )5(6.65 1

2
1
3 tte ξ  

( ) ∞==<== )5(89.15 1
3

1
3 tt ων  

Update )5(1
3ξ =7.1, )5(1

3ω =1.89, )5(1
3π = e 

 
t = 6 

( ) ∞==<== )6(1.16 1
2

1
3 tte ξ  
( ) 09.061

3 ==tν  
 
 Since ( )61

3 =tν =0.09  < )6(1
3 =tω = ∞   

 Update )6(1
3ξ =1.1,  )6(1

3ω =0.09,  )6(1
3π = e 

 
t = 7 

( ) ∞==<== )7(6.67 1
2

1
3 tte ξ  
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( ) 21.071
3 ==tν  

 
Since ( )71

3 =tν =0.21 < )7(1
3 =tω = ∞   

 Update )7(1
3ξ =3.7, )7(1

3ω =0.21,  )7(1
3π = e 

 
If i is not in SA_LIST,  Put node 3 in SA_LIST 
 SA_LIST = {2, 3} 
 

GO TO STEP 1 
 

Select the first node 2 from the SA_LIST 
Call this is current node, j = 2,   SA_LIST ={3} 

 
Step 2 

 
For each i, Aji ∈),(  

 i =  {1} 
 
Select node 1,  i = 1, h=1 
t = 0 

( )01
1 =te =7.7 
( )01

1 =tν =5.01 
 Since  ( ) ∞==<== )2(7.70 1

1
1
1 tte ξ ,      

  ( )01
1 =tν =5.01 < )0(1

1 =tω = ∞   
 Update )0(1

1ξ =7.7, )0(1
1ω =5.01,  )0(1

1π = a 
 
Node 1 is not in SA_LIST,  Put node 1 in SA_LIST  
 SA_LIST = {3,1} 
 

GO TO STEP 1 
 

Select the first node 3 from the SA 
Call this is current node, j = 3,  SA_LIST ={1} 

 
Step 2 

 
For each i, Aji ∈),(  
 i =  {1, 2} 
 

Select node 1,  i = 1, 
t = 0 
( )01

1 =te =11.26 
( )01

1 =tν =1.3524 
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 Since  ( ) 7.7)0(26.110 1
1

1
1 ==>== tte ξ ,      
( )01

1 =tν =1.35 < )0(1
1 =tω = 5.01   

 Apply secondary comparison rule 
 

CDF calculation 
 
 
 
 
 
 
 

CDF comparison

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20
Time

Pr
ob

ab
ilit

y

Prev
Curr

 
 
Find tc, where ( )( ) ( ))(1

1
1
1 cc tFteF ξ=   

tc is large enough, this case tc is around 10. 
Also, if α=0.5,  ( )( ) ( ) 5.05.01)(1

1
1
1 =−>= cc tFteF ξ  

 
Therefore, Keep previous node label  

b=== )0(,01.5)0(,7.7)0( 1
1

1
1

1
1 πωξ  

 
Node 1 is already in SA_LIST , 
 SA_LIST = {3} 
 
Select node 2,  i = 2 (j = 3) 

t = 2 
( )21

2 =te =5.82 
( )21

2 =tν =2.188 
 
Update Label  
 Since  ( ) 8.3)0(82.52 1

2
1
2 ==>== tte ξ ,      
( )21

2 =tν =2.188 < )2(1
2 =tω = 2.56   

 

Path (Prev) Path(Curr) 

time prob time prob 

5 0.4 10 0.3 

9 0.7 11 0.72 

10 1 13 1 
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 Apply secondary comparison rule 
 

CDF calculation 
 
 
 
 

Path (Prev) Path(Curr) 

time prob time prob 

5 0.4 5 0.72 

9 0.7 6 0.8 

10 1 8 0.86 

    9 1 
 

CDF comparison

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12
Time

Pr
ob

ab
ili

ty

Prev
Curr

 
Find tc, where ( )( ) ( ))(1

1
1
1 cc tFteF ξ=   

tc is large enough, this case tc is around 9. 
Also, ifα=0.5,  ( )( ) ( ) 5.05.01)(1

1
1
1 =−>= cc tFteF ξ  

 
Therefore, Keep previous node label  

d=== )2(,56.2)2(,8.3)2( 1
2

1
2

1
2 πωξ  

 
t = 3 
( )31

2 =te =4.85 
( )31

2 =tν =1.568 
 Since  ( ) 6.6)3(85.43 1

2
1
2 ==<== tte ξ ,      

  ( )31
2 =tν =1.568 > )3(1

2 =tω = 0.24   
 Apply secondary comparison rule 

 
Path (Prev) Path(Curr) 



 119

time prob time prob 

6 0.4 5 0.72 

7 0.7 6 0.8 

10 1 8 0.86 

    9 1 
 
 

CDF comparison

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12
Time

Pr
ob

ab
ili

ty

Prev
Curr

 
 
Find tc, where ( )( ) ( ))(1

1
1
1 cc tFteF ξ=   

tc is large enough, this case tc is around 7. 
Also, if α=0.5,  ( )( ) ( ) 5.05.01)(1

1
1
1 =−>= cc tFteF ξ  

 
Therefore, Update c=== )3(,568.1)3(,85.4)3( 1

2
1
2

1
2 πωξ  

 
If i is not in SA_LIST,  Put node 2 in SA_LIST 
 SA_LIST = {1, 2} 
 

GO TO STEP 1 
 

Select the first node 1 from the SA_LIST 
Call this is current node, j = 1,  SA_LIST ={2} 

 
Step 2 
 
For each i, Aji ∈),(  
 i =  φ  

 
GO TO STEP 1 

 
Select the first node 2 from the SA_LIST 
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Call this is current node, j = 2,  SA_LIST ={  } 
 
Select node 1,  i = 1 

t = 0 
( )01

1 =te =6.825 
( )01

1 =tν =3.1146 
 
 Since  ( ) 7.7)0(825.60 1

1
1
1 ==<== tte ξ  
( )01

1 =tν =3.115 < )0(1
1 =tω = 5.01     

Update  )0(1
1ξ =6.825,  )0(1

1ω =3.115,  )0(1
1π = b 

 
 
SA_LIST = {  } 
 
STOP 
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5.2 Time-Adaptive Mean-Variance Algorithms  

 
As we know, we treat the link travel time as a random variable; the trip time 

from one node to another is also a random variable. It is assumed that travel times on the 

network can be treated as a multivariate random variable for which links may have 

correlated travel-times.  Our goal is to devise an algorithm which allows a traveler to 

select a route by examining the mean and variance of travel time. We present an 

algorithm for selecting the “best” next arc routing using two comparison rules. The first 

comparison rule is described in the primary comparison rule from the previous chapter. 

The second comparison rule is a linear combination of relevant attributes of a routing 

policy. The problem of optimal routing policy with minimum mean and minimum 

variance (from the first comparison rule) and minimum linear combination of expected 

travel time and variance (from second comparison rule) problem in a stochastic time-

dependent network with one destination node d is to find )(tiπ  such that,  

( ) TtNittArgt ii
iAj

i ∈∈∀=
∈

,,)(),(min)(
)(

ωξπ  

or 

( ) TtNittArgt ii
iAj

i ∈∈∀∗+=
∈

,,)()(min)(
)(

ωαξπ  

The reasons for designing an algorithm for the minimization of a linear combination 

policy attributes rather than only for specific attributes criterion, like the minimize mean 

and variance, are three-folded. First, the linear combination problem is more realistic, as 

the expected travel time is usually the primary concern of travelers in a stochastic time-

dependent network, while the reliability criteria are secondary. Second, a linear 

combination is a reasonable way of combining multiple objectives. Third, a linear 
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combination is algorithmically easy to control in the decision making process. 

In this chapter, two computationally efficient algorithms are presented for determining 

the minimum mean-variance paths for all origins to a single destination in networks where the 

arc weights are discrete random variables whose probability distribution functions vary with time. 

At termination of the algorithm, efficient solutions (or non-dominated solutions) are 

generated. Such efficient solutions can be presented to the traveler, who may then make 

the appropriate choice. For the multiobjective routing problem, an efficient solution 

provides a route which is such that no other route provides a lower mean travel time and 

a lower variance 

 

5.2.1 The TAMMV1 Algorithm 

The TAMMV1 algorithm, like the PMV algorithm, is a specialized label 

correcting algorithm.  Here, the two label vectors, [ )(),( tt ii ωξ ]t∈T, are associated with 

every node. At termination of the algorithm, the “best” next arc is generated for any node 

to the destination node for time t using the two label vectors, [ )(),( tt ii ωξ ]t∈T. These arcs 

are not necessarily associated with a single path, and thus, the paths cannot be 

reconstructed upon termination.  

Let the vector [ )(),( tte ii ν ]t∈T be the temporary label from node i. Denoted by 

)(),( tt ii ωξ , the current label at the end of the kth iteration. Since we have a clear 

understanding about the first comparison rule, we present the recursive equation to 

compute the linear combination of the mean and variance of a routing. From the previous 

chapter, we know the following recursive equation for the mean and variance of the 
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travel time 

[ ] ( )[ ] TtNitpttetptte
k

k
ij

k
ijj

k

k
ij

k
iji ∈∀∈∀∗++∗= ∑∑ ,,)()()()()( ττ  

As we verify the principle of optimality of the minimum expected travel time and the 

minimum variance in Chapter 4, we can say that the principle of optimality holds for the 

minimization of the linear combination of the mean and variance routing policy. The 

linear combination of the above two equations is )()( tte ii να ∗+ . The optimality 

conditions are: 

[ ] ( )[ ] TtNitpttetptte
k

k
ij

k
ijj

k

k
ij

k
ijiAji ∈∀∈∀⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∗++∗= ∑∑∈

,,)()()()(min)(
)(

ττ

( ) TtNitettettptttpt i
k
ijjij

k

k
ij

k
ijj

k

k
ij

iAj
i ∈∀∈∀⎟

⎠

⎞
⎜
⎝

⎛
−++∗++∗= ∑∑

∈
,,)())(()()())(()(min)( 2

)(
τττνν

( ) TtNittette ii
iAj

ii ∈∀∈∀∗+=
∈

,,)()(min)(),(
)(

ναν
 

In this linear combination, the parameter α is selected by a traveler. If a traveler chooses 

α=0, his selection of the “best” next arc is based on only the expected travel time. 

However, selecting a large α is for concerning more variance than expected travel time. 

A flow chart the basic procedure steps of the TAMMV1 algorithm is presented 

in Figure 5.3. An example problem in figure 4.2 is shown in section 5.5 to illustrate this 

procedure. 
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Figure 5.3. Flow chart of the TAMMV1 algorithm steps 
 
 
 
Algorithm TAMMV1 
 
begin 

Procedure Initialization  
  begin  
   create the NODE_LIST, SA_LIST 

put all nodes i to NODE_LIST  
set SA_LIST=Ø 
set each node i,  

TtdNiti ∈−∈∀∞= ,,)(ξ  
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Tttd ∈∀= ,0)(ξ  
TtdNiti ∈−∈∀∞= ,,)(ω  

Tttd ∈∀= ,0)(ω  
TtdNiti ∈−∈∀∞= ,,)(π  

Tttd ∈∀= ,)( φπ  
   Insert destination node, d to set SA_LIST 
  end 

 
while SA_LIST≠Ø do 

 begin  
  select the first node of the set SA_LIST 

call this node the current node, j  
scan the current node, j 
begin 
 for each i unlabeled do 

if succ(i)=j, (i,j)∈A, then 
begin  

 mark node i labeled 
end 
 
procedure Update Node Labels 

   For all i labeled   
   begin  
    update the vector [ ] Ttiii ttt ∈)(),(),( πωξ  

    calculate Tttte ii ∈∀)(),( ν  as follows 

    ( )( )[ ]∑ ⋅++=
k

k
ij

k
ijj

k
iji ttttte )()(()()( ρτξτ  

    
( )[ ]

( )( )[ ]∑

∑

−++∗+

+∗=

k
i

k
ijj

k
ij

k
ij

k

k
ijj

k
iji

tetttt

tttt

2)()()()(

)()()(

τξτρ

τωρν
 

     
  where k is the set of indices of possible travel 

times on arc(i,j) at time t. 
 

    if )()( tt ii ξμ <  and )()( tt ii ωυ < then  
    ),()(),()(),()( jittttt iiiii === πυωμξ  
    
    if [ )()( tt ii ξμ <  and )()( tt ii ωυ > ]  or  
     [ )()( tt ii ξμ >  and )()( tt ii ωυ < ] then 
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    compare )()()()( tttt iiii ωαξναμ ∗+<∗+  then 
     ),()(),()(),()( jittttt iiiii === πυωμξ  
    otherwise keep previous information 
          
    if LISTSAi _∉ then  
    put i in set SA_LIST 
   end 

 
  Remove j from SA_LIST 

Unlabeled all nodes 
 end 
end 
 

 
Proposition 5.1. The TAMMV1 algorithm terminates in a finite number of steps. 

Proof. The algorithm terminates in a finite number of steps if the SA_LIST is empty in a finite 

number of steps. Suppose the SA_LIST is not empty in a finite number of steps, then at least 

one node must be inserted in the SA_LIST an infinite number of times. This implies that the 

label at the node has improved by at least a positive real-value of travel time. If the 

improvement at the node continues an infinite number of times, then the travel time on the path 

would eventually become negative, which contradicts the assumption of the positive travel 

times. This contradicts the supposition that the SA_LIST is not empty in a finite number of 

steps, and hence, shows that the TAMMV1 algorithm terminates in a finite number of 

steps. 

 

Proposition 5.2  The TAMMV1 algorithm with a basic FIFO  SA_LIST structure has the 

worst-case computational complexity )( 32 nTIk ⋅⋅Ο , where TI is the number of time intervals 

into which the peck period is discretized, n is the number of nodes in the network, and k is the 

maximum number of possible values of the arc travel time random variable for the time interval. 
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Proof.  Once the destination node is removed from the SA_LIST, it will never again be updated.  

All of its predecessor nodes are added to the SA_LIST for updating. Thus, the SA_LIST contains 

at most the n-1 nodes.  From all the nodes initially inserted in the SA_LIST, the one with the least 

label for a given departure time will be updated permanently. This is repeated for the remaining n-

1 nodes.  Since there are at most TI(n-1) labels that can be improved, at most TI(n-1)2 will be 

inserted in the SA_LIST. The procedure “Update Node Labels” requires a maximum of 

(TI)(k)(n-1) computations for every node that is scanned because in the worst case, each node 

can be reached by n-1 nodes and each nod has TI labels, requiring k computations.  Thus, the 

complexity of this algorithm is ( ))1()()()1()( 2 −⋅⋅⋅−⋅Ο nkTInTI , or )(~ 32 nTIk ⋅⋅Ο . 

 

5.2.2 The TAMMV2 Algorithm 

The TAMMV2 algorithm can be viewed as an efficient specialized label-setting 

algorithm for determining the “best” next arc routing hyperpaths from all i to a select 

destination, d. Similar to the TAMMV1 algorithm, a vector label is associated with each 

node, the components of which correspond to mean and variance of traversal times from 

the associated nodes to d, at a given departure time. The iterative structure of this 

procedure is based on that of the DOT (Decreasing Order of Time) algorithm of Chabini 

(1997) for determining least-time paths in deterministic, time-varying networks. 

However, the computation and interpretation of the label values in the TAMMV2 

algorithm account for the stochastic nature of the arc traversal times. Unlike the 

TAMMV1 algorithm, where the components of all vector labels are temporarily set until 

termination (at which time all vector label components become permanently set), after 

each iteration of the main loop of the TAMMV2 algorithm, where the labels are updated 
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for a specific departure time, t, the component of each vector label associated with t is 

permanently set for all i. 

Since all possible arc travel times are strictly positive, )(tei  and )(tiν  may be 

determined entirely from )(sei  and )(siν  for later values of time s>t. Therefore, if we 

first compute ei(M) for all i∈N as a base case, we can proceed to compute ei(M-1), ei(M-

2),..., ei(0), in a decreasing order of time, until a complete solution is found. A flow chart 

the basic procedure steps of the TAMMV2 algorithm is presented in Figure 5.4. 

 

 

Figure 5.4. Flow chart of the steps of TAMMV2 algorithm 
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Algorithm TAMMV2 
 
begin  
 Procedure Initialization 

begin  
  create the NODE_LIST, SA_LIST 

put all nodes i to NODE_LIST  
set time space T = {1, 2, …., M} 
set SA_LIST=Ø 
set each node i,  

TtdNiti ∈−∈∀∞= ,,)(ξ  
Tttd ∈∀= ,0)(ξ  

TtdNiti ∈−∈∀∞= ,,)(ω  
Tttd ∈∀= ,0)(ω  

TtNiti ∈∈∀∞= ,,)(π  
Tttd ∈∀= ,)( φπ  

   Insert destination node, d to set SA_LIST 
  end 
 
  While φ≠LISTSA_  do 
  begin 

  select the first node of the S 
call this node the current node, j  
scan the current node 
begin 

  for each i unlabeled do 
if succ(i)=j, (i,j)∈A, then 
begin  

mark node i labeled 
end 

   end 
   for all i labeled update the vector [ ] Mtiii ttt =)(),(),( πωξ  
   begin 

   ( ) ( )( )[ ]∑ ++==
k

k
ij

p
ijj

k
iji MMMMMte )(*)(()( ρτξτ  

   
( ) ( )[ ]

( )( )[ ]∑

∑

−+++

+==

k
i

k
ijj

k
ij

k
ij

k

k
ijj

k
iji

MeMMMM

MMMMt

2)()()(*)(

)(*)(

τξτρ

τνρν
 

 



 130

   if )()( MMe ii ξ<  and )()( MM ii ων < then  
    ),()(),()(),()( jiMMMMeM iiiii === πνωξ  
    
   if [ )()( MMe ii ξ<  and )()( MM ii ων > ]  or  
    [ )()( MMe ii ξ>  and )()( MM ii ων < ] then 
    
   compare  )()()()( MMMMe iiii ωαξνα ∗+<∗+  then 
     jMMMMeM iiiii === )(),()(),()( πνωξ  
   otherwise keep previous information 
 
   if LISTSAi _∉ then  
    put i in set SA_LIST 
    
   end 

 

Procedure Main Loop 
begin 

set each node i,  
MtdNiti <−∈∀∞= ,,)(ξ  

Mttd <∀= ,0)(ξ  
MtdNiti <−∈∀∞= ,,)(ω  

Mttd <∀= ,0)(ω  
MtdNiti <−∈∀∞= ,,)(π  

Mttd <∀= ,)( φπ  
 

for t = M - 1 to 0 
for all links (i, j) ∈ A 

    update the vector [ ] Ttiii ttt ∈)(),(),( πωξ  

    ( )( )[ ]∑ ⋅++=
k

k
ij

k
ijj

k
iji ttttte )()(()()( ρτξτ  
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    if )()( tte ii ξ<  and )()( tt ii ων < then  
    ),()(),()(),()( jittttet iiiii === πνωξ  
    
    if [ )()( tte ii ξ<  and )()( tt ii ων > ]  or  
    [ )()( tte ii ξ>  and )()( tt ii ων < ] then 
    
    compare  )()()()( tttte iiii ωαξνα ∗+<∗+  then 
     ),()(),()(),()( jittttet iiiii === πνωξ  
    otherwise keep previous information 
  end 

 
  
Proposition 5.3  The TAMMV2 algorithm terminates in a finite number of steps. 

Proof.  The proof is a straightforward extension of that given in proposition 6 for the 

TAMMV1 algorithm with the difference that only selected TMt ∈= )( is considered in the 

initialization procedure.  Therefore, we only need to show the main loop of the algorithm. In 

the main loop, all node labels are updated at each time interval.  Since the number of nodes 

and travel times are finite, all node labels are updated to the finite number of times with 

)1()1( −∗− TIn . This shows that the TAMMV2 algorithm terminates in a finite number 

of steps. 

 

Proposition 5.4  The worst-case computational complexity of the TAMMV2 algorithm 

is )( 3 kTImnk ⋅⋅+⋅Ο . 

Proof.  The complexity of Algorithm TAMMV2 is straightforward. At initialization of 

this algorithm, the running time is )( 3nk ⋅Ο  because the node label can be updated for 

only a selected travel time t=M. In the main loop, at each time period of the dynamic 

period (i.e. t < M), each arc is visited exactly once with the k mathematic operations. At 

the end of each such iteration, where labels are updated at a specific departure time, t, and the 
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component of each vector label associated with t is permanently set for all nodes. Thus, 

there are TI-1 iterations of the main loop resulting in kTIm ⋅−⋅ )1(  computations. 

Therefore the running time of the main loop is )( kTIm ⋅⋅Ο . To sum up, the worst-case 

computational complexity of the TAMMV2 algorithm is )( 3 kTImnk ⋅⋅+⋅Ο ). 

 

An example problem is shown in section 5.3 to illustrate this procedure. 

 

5.3 Conclusions 

In this chapter, a method for comparing probability distributions which is less 

strict than the classical stochastic dominance is presented. This method has an important 

practical application in determining a set of non-dominated routes in a network when 

there are uncertain measures. Also, two efficient algorithms for determining the time-

adaptive minimum mean-variance hyperpaths were presented. An example was given to 

show that the adaptive strategies can lead to improved routing decisions over a priori path 

selection. Such a procedure is applicable to many problems that can be represented as 

stochastic time-dependent networks and is of particular interest in the transportation and 

data communication systems. An understanding of these two algorithms provides an 

important step in developing efficient techniques for real-time routing of vehicles in 

Intelligent Transportation Systems and real-time routing protocols for packets in data 

networks. 

 

 
Example for TAMMV1 
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Initialization 
 
Node_List   N = {1,2,3,4} 
Arc_List      A = {a, b, c, d, e} 
Time_space T =  {0,1,2,3,4,5,6,7} 
Destination_Node D = 4 
 
Scan_Available List  SA = φ  
 
Set each node i,  
 ( ) { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiξ  

( ) { }7,6,5,4,3,2,1,0,04 ∈∀= ttξ  
)(tiξ is label of node i, at time t, where until termination of the 

algorithm ( the expected travel time from node i to the destination 
at time t ) 

( ) { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiω  
( ) { }7,6,5,4,3,2,1,0,04 ∈∀= ttω  

)(tiω is label of node i, at time t, where until termination of the 
algorithm ( the variance of travel time from node i to the 
destination at time t ) 

( ) { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiπ  
( ) { }7,6,5,4,3,2,1,0,4 ∈∀= tt φπ  

)(tiπ indicates the arc to be followed from node i at time t  
 
Create the Scan_Avabable list, SA, and insert the destination node D 
 
SA = {4} 
 
Step 1 
 
If SA list is empty, go to step 3 
Otherwise, 

Select the first node 4 from the SA list 
Call this is current node, j = 4 

 
Step 2 
 
For each i, Aji ∈),(  
 i =  {2, 3} 

Determine the lower bound on the expected time and 
variance to node 4 
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Update the vector ( )tiξ  and ( )tiω  
Select node 2  
Calculate  

Expected time : 
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t = 2 
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)()()( ttt iii ναμλ ∗+=  
 
Update Label  
 If )()(),()( ttandtt iiii ωνξμ <<  
  Then  ),()(),()(),()( jitandttandtt iiiii === πνωμξ  

If )()(),()( ttandtt iiii ωνξμ ><  

 Compare )()()()( tttt iiii ωαξναμ ∗+<∗+  
  Then  ),()(),()(),()( jitandttandtt iiiii === πνωμξ  

If )()(),()( ttandtt iiii ωνξμ <>  
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 Compare )()()()( tttt iiii ωαξναμ ∗+<∗+  
  Then  ),()(),()(),()( jitandttandtt iiiii === πνωμξ  
 Otherwise Keep previous Value 
 
 
 Since   ( ) ∞==<== )2(8.32 22 tt ξμ ,      
  ( ) ∞==<== )2(56.222 tt iων  
  Update 8.3)2(2 =ξ ,  56.2)2(2 =ω ,  d=)2(2π  
 
t = 3 
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)()()( ttt iii ναμλ ∗+=  
 
Update Label  
 Since   ( ) ∞==<== )3(6.63 22 tt ξμ ,      
  ( ) ∞==<== )3(24.032 tt iων  
  Update 6.6)3(2 =ξ ,  24.0)3(2 =ω ,  d=)3(2π  
 
If i is not in SA list,  Put i in SA list 
 SA = {2} 
 
 
Select node 3  
i = 3 
t = 4 
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Update Label  
 
 Since   ( ) ∞==<== )4(6.54 33 tt ξμ ,      
  ( ) ∞==<== )4(64.04 33 tt ων  
  Update 6.5)4(3 =ξ ,  64.0)4(3 =ω ,  e=)2(2π  
 
t = 5 
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)1.708(*7.0)1.705(*3.0

)5()85(8*7.0)5()55(5*3.0

85*7.055*3.05

22

2
34

2
34

443

=
−++−+=

−+++−+++

+++==

μμμμ

ννν t

 

 
Update Label  
 Since   ( ) ∞==<== )5(1.75 33 tt ξμ ,      
  ( ) ∞==<== )5(89.15 33 tt ων  
  Update )5(3ξ =7.1,  )5(3ω =1.89,  )5(3π = e 
 
t = 6 
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( ) ( ) ( )

1.1
1.0*)02(9.0*)01(

1.0)26(29.0)16(16 443

=
+++=

∗+++∗++== ξξμ t
 

 
( ) ( )[ ] ( )[ ]

( ) ( )[ ]
( ) ( )

09.0
)1.102(*1.0)1.101(*9.0

)6()26(2*1.0)6()16(1*9.0

26*1.016*9.06

22

2
34

2
34

443

=
−++−+=

−+++−+++

+++==

μμμμ

ννν t

 

 
Update Label  
 Since   ( )63 =tμ =1.1 < )6(3 =tξ = ∞   
  ( )63 =tν =0.09 < )6(3 =tω = ∞   
  Update )6(3ξ =1.1,  )6(3ω =0.09,  )6(3π = e 
 
t = 7 

( ) ( ) ( )

7.3
7.0*)04(3.0*)03(

7.0)47(43.0)37(37 443

=
+++=

∗+++∗++== ξξμ t
 

( ) ( )[ ] ( )[ ]
( ) ( )[ ]

( ) ( )
21.0

)7.304(*7.0)7.303(*3.0

)7()47(4*7.0)7()37(3*3.0

47*7.037*3.07

22

2
34

2
34

443

=
−++−+=

−+++−+++

+++==

μμμμ

ννν t

 

 
Update Label  
 Since   ( )73 =tμ =3.7  < )7(3 =tξ = ∞   
  ( )73 =tν =0.21  < )7(3 =tω = ∞   
  Update )7(3ξ =3.7,  )7(3ω =0.21,  )7(3π = e 
 
If i is not in SA list,  Put node 3 in SA list 
 SA = {2, 3} 
 

GO TO STEP 1 
 

Select the first node 2 from the SA list 
Call this is current node, j = 2,  SA ={3} 

 
Step 2 
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For each i, Aji ∈),(  
 i =  {1} 

Determine the lower bound on the expected time and 
variance  
Update the vector ( )tiξ  and ( )tiω  

Select node 1  
 

i = 1 
t = 0 

( ) ( )( )[ ] ( )( )[ ]
( ) ( )

7.7
5.0*)6.67(5.0*)8.33(

5.0)30(35.0)20(2
)0()0(0()0()0()0(0()0(0

22

2
12

2
122

2
12

1
12

1
122

1
121

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

 

( ) ( )[ ] ( )[ ]
( )( )[ ]
( )( )[ ]

( )[ ] ( )[ ]
( ) ( )[ ]

( ) ( ) ( ) ( )

01.5
805.1805.112.028.1

)7.76.63(*5.0)7.78.32(*5.0)24.0*5.056.2*5.0

)0()30(3*5.0)0()20(2*5.0

30*5.020*5.0
)0()0(3)0(*)0(

)0()0(2)0(*)0(

)0(0*)0()0(0*)0(0

22

2
12

2
12

22

2
1

2
122

2
12

2
12

2
1

1
122

1
12

1
12

2
122

2
12

1
122

1
121

=
+++=

−++−+++=

−+++−+++

+++=
−+++

−+++

+++==

μμμμ

νν
μτμτρ

μτμτρ

τνρτνρν t

 

 
Update Label  
 Since   ( )01 =tμ =7.7  < )0(1 =tξ = ∞   
  ( )01 =tν =5.01  < )0(1 =tω = ∞   
  Update )0(1ξ =7.7,  )0(1ω =5.01,  )0(1π = a 
 
Node 1 is not in SA list,  Put node 1 in SA list 
 SA = {3,1} 
 

GO TO STEP 1 
 

Select the first node 3 from the SA list 
Call this is current node, j = 3,  SA ={1} 

 
Step 2 
 
For each i, Aji ∈),(  
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 i =  {1, 2} 
Determine the lower bound on the expected time and variance  
Update the vector ( )tiξ  and ( )tiω  

 
Select node 1  
i = 1 
t = 0 

( ) ( )( )[ ] ( )( )[ ]
( ) ( )

26.11
6.0*)7.37(4.0*)1.75(

6.0)70(74.0)50(5
)0()0(0()0()0()0(0()0(0

33

2
13

2
133

2
13

1
13

1
133

1
131

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

 

( ) ( )[ ] ( )[ ]
( )( )[ ]
( )( )[ ]

( )[ ] ( )[ ]
( ) ( )[ ]

( ) ( ) ( ) ( )

3524.1
4704.0882.0

)26.117.37(*6.0)26.111.75(*4.0)21.0*6.089.1*4.0

)0()70(7*6.0)0()50(5*4.0

70*6.050*4.0
)0()0(7)0(*)0(

)0()0(5)0(*)0(

)0(0*)0()0(0*)0(0

22

2
13

2
13

33

2
1

2
133

2
13

2
13

2
1

1
133

1
13

1
13

2
133

2
13

1
133

1
131

=
+=

−++−+++=

−+++−+++

+++=
−+++

−+++

+++==

μμμμ

νν
μτμτρ

μτμτρ

τνρτνρν t

 

Update Label  
 Since   ( )01 =tμ =11.26  > )0(1 =tξ = 7.7   
  ( )01 =tν =1.35  < )0(1 =tω = 5.01   
  Let 1=α , Compare 

42.1235.1*126.11)()()( =+=∗+= ttt iii ναμλ  

94.901.5*17.7)()(42.12)()( =+=∗+>=∗+ tttt iiii ωαξναμ  
  So,  Keep )0(1ξ =7.7,  )0(1ω =5.01,  )0(1π = b 
 

Node 1 is already in SA list, 
  SA = {3} 
 
Select node 2  
i = 2 (j = 3) 
t = 2 
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( ) ( )( )[ ] ( )( )[ ]
( ) ( )

82.5
2.0*)7.35(8.0*)1.14(

2.0)52(58.0)42(4
)2()2(2()2()2()2(2()2(2

33

2
23

2
233

2
23

1
23

1
233

1
232

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

 

( ) 188.222 ==tν
 

 
Update Label  
 Since   ( )22 =tμ =5.82  > )2(2 =tξ = 3.8   
  ( )22 =tν =2.19  < )2(2 =tω = 2.56   
  Let 1=α , Compare 

30.719.2*182.5)()()( =+=∗+= ttt iii ναμλ  

4.556.2*18.3)()(30.7)()( =+=∗+>=∗+ tttt iiii ωαξναμ  
  So,  Keep )2(2ξ =3.8,  )2(2ω =2.56,  )2(2π = d 
 
t = 3 
 

( ) ( )( )[ ] ( )( )[ ]
( ) ( )

85.4
7.0*)1.13(3.0*)6.51(

7.0)33(33.0)13(1
)3()3(3()3()3()3(3()3(3

33

2
23

2
233

2
23

1
23

1
233

1
232

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

 

( ) 57.132 ==tν  
 
Update Label  
 Since   ( )32 =tμ =4.85  < )3(2 =tξ = 6.6   
  ( )32 =tν =1.57  > )3(2 =tω = 0.24   
  Let 1=α , Compare 

08.657.1*185.4)()()( =+=∗+= ttt iii ναμλ  

09.724.0*16.6)()(08.6)()( =+=∗+<=∗+ tttt iiii ωαξναμ  
  So,  Updata  )3(2ξ =4.85,  )3(2ω =1.57,  )3(2π = c 
 
If i is not in SA list,  Put node 2 in SA list 
 SA = {1, 2} 
 
 

GO TO STEP 1 
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Select the first node 1 from the SA list 
Call this is current node, j = 1,  SA ={2} 

 
Step 2 
 
For each i, Aji ∈),(  
 i =  φ  

 
GO TO STEP 1 

 
Select the first node 2 from the SA list 
Call this is current node, j = 2,  SA ={  } 

Determine the lower bound on the expected time and variance  
Update the vector ( )tiξ  and ( )tiω  

Select node 1  
 

i = 1 
t = 0 

( ) ( )( )[ ] ( )( )[ ]
( ) ( )

825.6
5.0*)85.43(5.0*)8.32(

5.0)30(35.0)20(2
)0()0(0()0()0()0(0()0(0

22

2
12

2
122

2
12

1
12

1
122

1
121

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

 

( ) ( )[ ] ( )[ ]
( )( )[ ]
( )( )[ ]

( )[ ] ( )[ ]
( ) ( )[ ]

( ) ( ) ( ) ( )

11.3
5253.05253.0785.028.1

)825.685.43(*5.0)825.68.32(*5.0)57.1*5.056.2*5.0

)0()30(3*5.0)0()20(2*5.0

30*5.020*5.0
)0()0(3)0(*)0(

)0()0(2)0(*)0(

)0(0*)0()0(0*)0(0

22

2
12

2
12

22

2
1

2
122

2
12

2
12

2
1

1
122

1
12

1
12

2
122

2
12

1
122

1
121

=
+++=

−++−+++=

−+++−+++

+++=
−+++

−+++

+++==

μμμμ

νν
μτμτρ

μτμτρ

τνρτνρν t

 

Update Label  
 Since   ( )01 =tμ =6.825  < )0(1 =tξ = 7.7   
  ( )01 =tν =3.11  < )0(1 =tω = 5.01     
  Update )0(1ξ =6.825,  )0(1ω =3.11,  )0(1π = a 
 
SA = {  } 
 
STOP 
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Figure 5.5. Resulting hyperpaths for departure time t=0 from node 1 

 
 
 
Example for TAMMV2 
 
Consider the example network in figure 4.2.  
 
 

arc (1,2) arc (1,3) arc (2,3) arc (2,4) arc (2,5) TI 
(t) T 

time Prob. T 
time Prob. T 

time Prob. T 
time Prob. T 

time Prob.

4 0.31  7 0.26 1 0.86 3 0.21  8 0.65 0 5 0.69  2 0.74 7 0.14 4 0.79  1 0.35 
1 0.14  7 0.34 4 0.60 2 0.48  4 0.40 1 6 0.86  8 0.66 2 0.40 4 0.52  6 0.60 
4 0.33  4 0.60 3 0.66 8 0.05  2 0.11 2 8 0.67  6 0.40 7 0.34 7 0.95  1 0.89 
2 0.20  7 0.27 5 0.39 9 0.55  7 0.88 3 8 0.80  8 0.73 8 0.61 5 0.45  3 0.12 
3 0.43  1 0.70 6 0.90 3 0.69  6 0.62 4 4 0.57  8 0.30 7 0.10 1 0.31  8 0.38 
1 0.17  9 0.41 6 0.64 7 0.98  2 0.85 5 5 0.83  5 0.59 4 0.36 4 0.02  5 0.15 

 
Initialization 
 
Node_List   N = {1,2,3,4} 
Arc_List      A = {a, b, c, d, e} 
Time_space T =  {0,1,2,3,4,5} , If t > 6,  t=5 
Destination_Node D = 4 
Scan_Available List  SA = φ  
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Set each node i,  
 ( ) { }3,2,1,51 ∈∀∞==−= iMtiξ  

( ) 0514 ==−= Mtξ  
)(tiξ is label of node i, at time t, where until termination of the 

algorithm ( the expected travel time from node i to the destination 
at time t ) 

( ) { }3,2,1,51 ∈∀∞==−= iMtiω  
( ) 0514 ==−= Mtω  

)(tiω is label of node i, at time t, where until termination of the 
algorithm ( the variance of travel time from node i to the 
destination at time t ) 

( ) { }3,2,1,51 ∈∀∞==−= iMtiπ  
( ) φπ ==−= 514 Mt  

)(tiπ indicates the arc to be followed from node i at time t  
 

 
Set   

 ( ) 0514 ==−= Mte  ,  ( ) ( )55 44 ==> tete , ( ) ( ) Nitete ii ∈∀==> 55  
( ) 0514 ==−= Mtγ   ( ) ( )55 44 ==> tt γγ , ( ) ( ) Nitt ii ∈∀==> 55 γγ   

 
For all (i, j), Aji ∈),(  
Calculate  

Expected travel time when t=M-1=5: 

( ) ( )[ ] Ajit
p

p
ij

p
ijij ∈∀== ∑ ),(,)5(*)5(5 ρτμ  

Variance when t=M-1=5:  
( ) ( )[ ] Ajit

p
ij

p
ij

p
ijij ∈∀−=∑ ),(,)5()5(*)5( 2

μτρν  

 

 ( ) ( )[ ]∑==
p

ppt )5(*)5(5 121212 ρτμ =(1*0.17)+(5*0.83) = 4.32 

( ) ( )[ ]∑==
p

ppt )5(*)5(5 131313 ρτμ =(9*0.41)+(5*0.59) = 6.64 

( ) ( )[ ]∑==
p

ppt )5(*)5(5 232323 ρτμ =(6*0.64)+(4*0.36) = 5.28 

( ) ( )[ ]∑==
p

ppt )5(*)5(5 242424 ρτμ =(7*0.98)+(4*0.02) = 6.94 
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( ) ( )[ ]∑==
p

ppt )5(*)5(5 343434 ρτμ =(2*0.85)+(5*0.15) = 2.45 

 
( ) ( )[ ]∑ −=

p

ppt 2
12121212 )5()5(*)5( μτρν =(1-4.32)2*0.17+(5-4.32)2*0.83 = 2.26 

( ) ( )[ ]∑ −=
p

ppt 2
13131313 )5()5(*)5( μτρν =(9-6.64)2*0.417+(5-6.64)2*0.59 = 3.87 

( ) ( )[ ]∑ −=
p

ppt 2
23232323 )5()5(*)5( μτρν =(6-5.28)2*0.64+(6-5.28)2*0.36 = 0.92 

( ) ( )[ ]∑ −=
p

ppt 2
24242424 )5()5(*)5( μτρν =(7-6.94)2*0.98+(4-6.94)2*0.02 = 0.18 

( ) ( )[ ]∑ −=
p

ppt 2
34343434 )5()5(*)5( μτρν =(2-2.45)2*0.85+(5-2.45)2*0.15 = 1.15 

 
Create the Scan_Avabable list, SA, and insert the destination node d 
 
SA = {4} 
 
Step 1 
 
If SA list is empty, go to step 3 
Otherwise, 

Select the first node 4 from the SA list 
Call this is current node, j = 4 

 
Step 2 
 
For each i, Aji ∈),(  
 i =  {2, 3} 

Determine the lower bound on the expected time and 
variance to node 4 
Update the vector ( )51=−= Mtiξ  and 

( )51=−= Mtiω  
 
Select node 2, i =2  
Calculate  
 

Expected time : 

( ) ( )( )[ ]∑ ++=
p

p
ij

p
ijj

p
iji ttttte )(*)(()( ρτξτ  

{ })1()1(min)1(
)(

−+−=−
∈

MMMe jijiAji ξμ  

{ })5()5(min)5( 424)(2 ξμ +=
∈ iAj

e =6.94 + 0 = 6.94 
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Variance :  

( ) ( )[ ]

( )( )[ ]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
22442424

244242

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ
 

( ) ( )
( )( ) ( )( )224

2
24

44

)5(454*02.0)5(757*98.0

45*02.075*98.0

ξξξξ

ωω

−+++−+++

+++=
 

= (0.98*0) + (0.02*0)+ 
(0.98*(7+0-6.94)2+(0.02*(4+0-6.94) 2 

= 0.18 
Update Label  
 If )()(),()( ttandtte iiii ωγξ <<  
  Then  ),()(),()(),()( jitandttandtt iiiii === πνωμξ  

If )()(),()( ttandtte iiii ωγξ ><  

 Compare )()()()( tttte iiii ωαξγα ∗+<∗+  
  Then  ),()(),()(),()( jitandttandtt iiiii === πνωμξ  

If )()(),()( ttandtte iiii ωγξ <>  

 Compare )()()()( tttte iiii ωαξγα ∗+<∗+  
  Then  ),()(),()(),()( jitandttandtt iiiii === πνωμξ  
 Otherwise Keep previous Value 
 
 
 Since   ( ) ∞==<== )5(94.65 22 tte ξ ,      
  ( ) ∞==<== )5(18.052 tt iωγ  
  Update 94.6)5(2 =ξ ,  18.0)5(2 =ω ,  d=)5(2π  
 
If i is not in SA list,  Put i in SA list 
 SA = {2} 

 
Select node 3 
i = 3 
 

{ })5()5(min)5( 434)(3 ξμ +=
∈ iAj

e =2.45 + 0 = 2.45 

( ) ( )[ ]

( )( )[ ]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
33443434

344343

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ
 

 = (0.85*0)+(0.15*0)+(0.85*(2-2.45) 2+0.15*(5-2.45) 2) 
 = 1.15 
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Since   ( ) ∞==<== )5(45.25 33 tte ξ ,      

  ( ) ∞==<== )5(15.15 33 tt ωγ  
  Update 45.2)5(3 =ξ ,  15.1)5(3 =ω ,  e=)5(3π  
 
 
If i is not in SA list,  Put node 3 in SA list 
 SA = {2, 3} 
 
 

GO TO STEP 1 
 

Select the first node 2 from the SA list 
Call this is current node, j = 2,  SA ={3} 

 
Step 2 
 
For each i, Aji ∈),(  
 Select node 1 ,  i =  1 
 

{ })5()5(min)5( 212)(1 ξμ +=
∈ iAj

e =4.32 + 6.94 = 11.26 

( ) ( )[ ]

( )( )[ ]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
11221212

122121

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ
 

 = (0.17*0.18)+(0.83*0.18) 
+(0.17*(1+6.94-11.26) 2+0.83*(5+6.94-11.26) 2) 

 = 2.44 
 
Update node label 

( ) ∞==<= )5(26.115 11 te ξ ,      
  ( ) ∞==<== )5(44.25 33 tt ωγ  
  Update 26.11)5(1 =ξ ,  44.2)5(1 =ω ,  a=)5(1π  
 
 
Node 1 is not in SA list,  Put node 1 in SA list 
 SA = {3,1} 
 
 

GO TO STEP 1 
 

Select the first node 3 from the SA list 
Call this is current node, j = 3,  SA ={1} 
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Step 2 
 
For each i, Aji ∈),(  
 i =  {1, 2} 
 
Select node 1 ,  i =  1 
 

{ })5()5(min)5( 313)(1 ξμ +=
∈ iAj

e =6.64 + 2.45 = 9.09 

( ) ( )[ ]

( )( )[ ]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
11331313

133131

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ
 

 = (0.41*1.15)+(0.59*1.15) 
+(0.41*(9+2.45-9.09) 2+0.59*(5+2.45-9.09) 2) 

 = 5.02 
 
Update node label 

( ) 26.11)5(09.95 11 ==<= te ξ ,      
  ( ) 44.2)5(02.55 11 ==>== tt ωγ  
   
  Let 1=α , Compare 

33.1102.5*109.9)()()( =+=∗+= ttet iii γαλ  

82.1244.2*126.11)()(33.11)()( =+=∗+<=∗+ tttt iiii ωαξναμ  
  So,  Update )5(1ξ =9.09,  )5(1ω =5.02,  )5(1π = b 

 
Node 1 is already in SA list, 

  SA = {1} 
 
 
Select node 2 , i = 2 (j = 3) 
 

{ })5()5(min)5( 323)(2 ξμ +=
∈ iAj

e =5.28 + 2.45 = 7.73 

 
Variance :  

( ) ( )[ ]

( )( )[ ]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
22332323

233232

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ
 

( ) ( )
( )( ) ( )( )223

2
23

33

)5(454*36.0)5(656*64.0

45*36.065*64.0

ξξξξ

ωω

−+++−+++

+++=
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= (0.64*1.15) + (0.36*1.15)+ 
(0.64*(6+2.45-7.73)2+(0.36*(4+2.45-7.73) 2 

= 2.07 
 

Update node label 
( ) 94.6)5(73.75 22 ==>= te ξ ,      

  ( ) 18.0)5(07.25 22 ==>== tt ωγ  
   
  So,  keep the )5(2ξ =6.94,  )5(2ω =0.18,  )5(2π = d 

 
If i is not in SA list,  Put node 2 in SA list 
 SA = {1, 2} 
 
 

GO TO STEP 1 
 

Select the first node 1 from the SA list 
Call this is current node, j = 1,  SA ={2} 

 
Step 2 
 
For each i, Aji ∈),(  
 i =  φ  

 
GO TO STEP 1 

 
Select the first node 2 from the SA list 
Call this is current node, j = 2,  SA ={  } 

 
Select node 1, i = 1 
 

{ })5()5(min)5( 212)(1 ξμ +=
∈ iAj

e =4.32 + 6.94 = 11.26 

( ) ( )[ ]

( )( )[ ]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
11221212

122121

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ
 

 = (0.17*0.18)+(0.83*0.18) 
+(0.17*(1+6.94-11.26) 2+0.83*(5+6.94-11.26) 2) 

 = 2.44 
 
Compare 

82.1244.2*126.11)()()( =+=∗+= ttet iii γαλ  

33.1102.5*109.9)()(82.12)()( =+=∗+<=∗+ tttt iiii ωαξναμ  
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  So,  Keep )5(1ξ =9.09,  )5(1ω =5.02,  )5(1π = b 
 

SA = {  } 
 
End  Initialization 
 

)5(1ξ =9.09,  )5(1ω =5.02,  )5(1π = b 
)5(2ξ =6.94,  )5(2ω =0.18,  )5(2π = d 
)5(3ξ =2.45,  )5(3ω =1.15,  )5(3π = e 

 

 
Main Loop 

 for t = 4 
 
for all links (i, j) ∈ A,  (1,2), (1,3), (2,3), (2,4), (3,4) 
 
(1,2) 

[ ] ( )[ ]∑∑ ∗++∗=
)(

12122

)(

12121 )4()4(4)4()4()4(
tk

k

kk
tk

k

kk
ijij

ppe τξτ  

 = (3*0.43)+(4*0.57)+(6.94*0.43)+(6.94*0.57) 
 = 10.51 

( ) ( )[ ] ( )( )[ ]∑∑ −++++=
k

kkk

k

kk e 2
11221212122121 )4()4(4)4(*)4()4(4*)4(4 τξτρτωργ  

 = (0.43*0.18) + (0.57*0.18)  
+ (0.43*(3+6.94-10.51)2+0.57*(4+6.94-10.51)2) 

= 0.42 
 

)4(1e =10.51< )4(1ξ =∞ ,  )4(1γ =0.42< )4(1ω =∞  
  Update 
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)4()4( 11 e=ξ =10.51, )4()4( 11 γω = =0.42, =)4(1π (1,2)=a 
 
(1, 3) 

[ ] ( )[ ]∑∑ ∗++∗=
)(

13133

)(

13131 )4()4(4)4()4()4(
tk

k

kk
tk

k

kk
ijij

ppe τξτ  

 = (1*0.70)+(8*0.30)+(2.45*0.70)+(2.45*0.30) 
 = 5.55 

( ) ( )[ ] ( )( )[ ]∑∑ −++++=
k

kkk

k

kk e 2
11331313133131 )4()4(4)4(*)4()4(4*)4(4 τξτρτωργ  

  = (0.70*1.15) + (0.30*1.15)  
+ (0.70*(1+2.45-5.55)2+0.30*(8+2.45-5.55)2) 

= 11.44 
 

)4(1e =5.55< )4(1ξ =10.51,  )4(1γ =11.44> )4(1ω =0.42 
   

Compare )4(1)4( 11 γ∗+e =5.55+3.38 =8.93 < 

)4(1)4( 11 ωξ ∗+ =10.51+0.64 =11.15 
Update 

)4()4( 11 e=ξ =5.55, )4()4( 11 γω = =11.44, =)4(1π (1,3)=b 
 
 
(2, 3) 

[ ] ( )[ ]∑∑ ∗++∗=
)(

23233

)(

23232 )4()4(4)4()4()4(
tk

k

kk
tk

k

kk
ijij

ppe τξτ  

 = (6*0.90)+(7*0.10)+(2.45*0.90)+(2.45*0.10) 
 = 8.55 

( ) ( )[ ] ( )( )[ ]∑∑ −++++=
k

kkk

k

kk e 2
22332323233232 )4()4(4)4(*)4()4(4*)4(4 τξτρτωργ

  = (0.90*1.15) + (0.10*1.15)  
+ (0.90*(6+2.45-8.55)2+0.10*(7+2.45-8.55)2) 

= 1.24 
 

)4(2e =8.55< )4(2ξ =∞ ,  )4(2γ =1.24> )4(2ω =∞  
 
Update 

)4()4( 22 e=ξ =8.55, )4()4( 22 γω = =1.24, =)4(2π (2,3)=c 
 
 

(2, 4) 

[ ] ( )[ ]∑∑ ∗++∗=
)(

24244

)(

24242 )4()4(4)4()4()4(
tk

k

kk
tk

k

kk
ijij

ppe τξτ  
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 = (3*0.69)+(1*0.31)+(0*0.69)+(0*0.31) 
 = 2.38 

( ) ( )[ ] ( )( )[ ]∑∑ −++++=
k

kkk

k

kk e 2
22442424244242 )4()4(4)4(*)4()4(4*)4(4 τξτρτωργ

  = (0.69*0) + (0.31*0)  
+ (0.69*(3+0-2.38)2+0.31*(1+0-2.38)2) 

= 0.856 
 

)4(2e =2.38 < )4(2ξ =8.55,  )4(2γ =0.856 < )4(2ω =1.24 
 
Update 

)4()4( 22 e=ξ =2.38, )4()4( 22 γω = =0.865, =)4(2π (2,4)=d 
 

 
(3, 4) 

[ ] ( )[ ]∑∑ ∗++∗=
)(

34343

)(

34343 )4()4(4)4()4()4(
tk

k

kk
tk

k

kk
ijij

ppe τξτ  

 = (6*0.62)+(8*0.38)+(0*0.62)+(0*0.38) 
 = 6.76 

( ) ( )[ ] ( )( )[ ]∑∑ −++++=
k

kkk

k

kk e 2
33443434344343 )4()4(4)4(*)4()4(4*)4(4 τξτρτωργ

  = (0.62*0) + (0.38*0)  
+ (0.62*(6+0-6.76)2+0.38*(8+0-6.76)2) 

= 0.94 
 

)4(3e =6.76 < )4(3ξ =∞ ,  )4(3γ =0.94 < )4(3ω =∞  
 
Update 

)4()4( 33 e=ξ =6.67, )4()4( 33 γω = =0.94, =)4(3π (3,4)=e 
 
 

)4()4( 11 e=ξ =5.55, )4()4( 11 γω = =11.44, =)4(1π (1,3)=b 
)4()4( 22 e=ξ =2.38, )4()4( 22 γω = =0.865, =)4(2π (2,4)=d 
)4()4( 33 e=ξ =6.67, )4()4( 33 γω = =0.94, =)4(3π (3,4)=e 

 
for t = 3 

 
for all links (i, j) ∈ A,  (1,2), (1,3), (2,3), (2,4), (3,4) 
 
(1,2) 

[ ] ( )[ ]∑∑ ∗++∗=
)(

12122

)(

12121 )3()3(3)3()3()3(
tk

k

kk
tk

k

kk
ijij

ppe τξτ  
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 = (2*0.2)+(8*0.8)+(6.94*0.2)+(6.94*0.8) 
 = 13.74 

( ) ( )[ ] ( )( )[ ]∑∑ −++++=
k

kkk

k

kk e 2
11221212122121 )3()3(3)3(*)3()3(3*)3(3 τξτρτωργ  

 = (0.2*0.18) + (0.8*0.18)  
+ (0.2*(2+6.94-13.74)2+0.8*(8+6.94-13.74)2) 

= 5.94 
 

)3(1e =13.74< )3(1ξ =∞ ,  )3(1γ =5.94< )3(1ω =∞  
 Update 

)3()3( 11 e=ξ =13.74, )3()3( 11 γω = =5.94, =)3(1π (1,2)=a 
 
(1, 3) 

[ ] ( )[ ]∑∑ ∗++∗=
)(

13133

)(

13131 )3()3(3)3()3()3(
tk

k

kk
tk

k

kk
ijij

ppe τξτ  

 = (7*0.27)+(8*0.73)+(2.45*0.27)+(2.45*0.78) 
 = 10.30 

( ) ( )[ ] ( )( )[ ]∑∑ −++++=
k

kkk

k

kk e 2
11331313133131 )3()3(3)3(*)3()3(3*)3(3 τξτρτωργ

  = (0.27*1.15) + (0.73*1.15)  
+ (0.27*(7+2.45-10.30)2+0.73*(8+2.45-10.30)2) 

= 1.36 
 

)3(1e =10.30< )3(1ξ =13.74,  )3(1γ =1.36< )3(1ω =5.94 
   

Update 
)3()3( 11 e=ξ =10.30, )3()3( 11 γω = =1.36, =)3(1π (1,3)=b 

 
 
(2, 3) 

[ ] ( )[ ]∑∑ ∗++∗=
)(

23233

)(

23232 )3()3(3)3()3()3(
tk

k

kk
tk

k

kk
ijij

ppe τξτ  

 = (5*0.39)+(8*0.61)+(2.45*0.39)+(2.45*0.61) 
 = 9.28 

( ) ( )[ ] ( )( )[ ]∑∑ −++++=
k

kkk

k

kk e 2
22332323233232 )3()3(3)3(*)3()3(3*)3(3 τξτρτωργ

  = (0.39*1.15) + (0.61*1.15)  
+ (0.39*(5+2.45-9.28)2+0.61*(8+2.45-9.28)2) 

= 3.29 
 

)3(2e =3.29< )3(2ξ =∞ ,  )3(2γ =3.29> )3(2ω =∞  
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Update 
)3()3( 22 e=ξ =9.28, )3()3( 22 γω = =3.29, =)3(2π (2, 3)=c 

 
 

(2, 4) 

[ ] ( )[ ]∑∑ ∗++∗=
)(

24244

)(

24242 )3()3(3)3()3()3(
tk

k

kk
tk

k

kk
ijij

ppe τξτ  

 = (9*0.55)+(5*0.45)+(0*0.55)+(0*0.45) 
 = 7.20 

( ) ( )[ ] ( )( )[ ]∑∑ −++++=
k

kkk

k

kk e 2
22442424244242 )3()3(3)3(*)3()3(3*)3(3 τξτρτωργ

  = (0.55*0) + (0.45*0)  
+ (0.55*(9+0-7.2)2+0.45*(5+0-7.2)2) 

= 3.96 
 

)3(2e =7.20 < )3(2ξ =9.28,  )3(2γ =3.96 > )3(2ω =3.29 
 
Compare )3(1)3( 22 γ∗+e =7.20+1.99 =9.19 < 

)3(1)3( 22 ωξ ∗+ =9.28+1.81 =11.09 
Update 

)3()3( 22 e=ξ =7.20, )3()3( 22 γω = =3.96, =)3(2π (2,4)=d 
 

 
(3, 4) 

[ ] ( )[ ]∑∑ ∗++∗=
)(

34343

)(

34343 )3()3(3)3()3()3(
tk

k

kk
tk

k

kk
ijij

ppe τξτ  

 =6.52 

( ) ( )[ ] ( )( )[ ]∑∑ −++++=
k

kkk

k

kk e 2
33443434344343 )3()3(3)3(*)3()3(3*)3(3 τξτρτωργ

  = (0.88*0) + (0.12*0)  
+ (0.88*(7+0-6.52)2+0.12*(3+0-6.52)2) 

= 1.69 
 

)3(3e =6.52 < )3(3ξ =∞ ,  )3(3γ =1.69 < )3(3ω =∞  
 
Update 

)3()3( 33 e=ξ =6.52, )3()3( 33 γω = =1.69, =)3(3π (3,4)=e 
for t =3 

)3(1ξ =10.30, )3(1ω =1.36, =)3(1π (1,3)=b 
))3(2ξ =7.20, )3(2ω =3.96, =)3(2π (2,4)=d 
)3(3ξ =6.52, )3(3ω =1.69, =)3(3π (3,4)=e 
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for t = 2 
  

)2(1ξ =7.25, )2(1ω =2.11, =)2(1π (1,3)=b 
)2(2ξ =7.05, )2(2ω =0.048, =)2(2π (2,4)=d 
)2(3ξ =1.11, )2(3ω =0.098, =)2(3π (3,4)=e 

 
for t = 1 

 
)1(1ξ =12.22, )1(1ω =9.927, =)1(1π (1,2)=a 
)1(2ξ =3.04, )1(2ω =0.998, =)1(2π (2,4)=d 
)1(3ξ =5.20, )1(3ω =0.96, =)1(3π (3,4)=e 

 
for t = 0 
   

)0(1ξ =9.69, )0(1ω =4.06, =)0(1π (1,3)=b 
)0(2ξ =3.79, )0(2ω =0.17, =)0(2π (2,4)=d 
)0(3ξ =5.15, )0(3ω =11.31, =)0(3π (3,4)=e 

End 
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Chapter 6. Computational Testing 
 

In this chapter, the performance of the algorithms, PMM, PMV, PMMV, and 

TAMMV1 are evaluated through numerical experiments, which are intended to assess the 

computational performance on randomly generated networks as well as representations of 

an actual Los Angeles highway network. The objectives of the computational test are 

multiple: 

 Check the validity of the minimum mean-variance model 

 Comparison of computational complexity for TAMMV1 and TAMMV2 

algorithm 

 Apply the model to real world traffic problem 

This chapter is organized as follows. Firstly, in Section 6.1, the methodology for generating 

the networks with their stochastic, time-dependent arc travel times is described and the 

experimental design is given. In Section 6.2, the results of the tests are presented and 

analyzed. In Section 6.3, the problem of selecting a "best" route during afternoon rush 

hour between two points in LA area is used to illustrate the results of the algorithms 

developed in Chapters 4 and 5. Finally, in Section 6.4, a discussion of the results and 

conclusions is presented. 

 

6.1 Experimental Design 

The experiments described in this chapter are conducted on twenty seven 

randomly generated networks with randomly generated time-dependent probability 
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distribution functions of the arc travel time random variables. The methodologies to 

generate these networks and distribution functions are described in Subsections 6.1.1 and 

6.1.2, respectively. In Subsection 6.1.3, the design of the experiments is described in 

detail. 

 

6.1.1 Generating the Networks 

A GT Internetwork Topology Models (GT-ITM) is used to randomly generate the 

networks for these experiments. For each network that is generated, the number of nodes, 

and the probability of edge between each pair of nodes is specified. All generated networks 

are directed graphs and no arcs are duplicated.  

Since the primary concern of this study is in the application of these algorithms to 

transportation systems, the networks have been generated such that their average connection 

probabilities of each node are 0.2(density 2), 0.4(density 4), and 0.6(density 6). The 

generated network with same connection probability ensures that the networks with the same 

number of nodes will have nearly the same number of arcs. 

 

6.1.2 Generating the Arc Travel Time Random Variables 

Once the topology of a network is specified, the arc weights can be determined. 

The arc weights are random variables with time-varying probability distribution 

functions. The probability mass functions of the arc weight random variables are 

randomly generated, corresponding to either discrete random variables or approximations 

of continuously distributed random variables. The arc travel times are assumed to be 

independent across time and space. Their pmfs are generated for each arc at each time 
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interval as follows: 

Given the number of elements in the pmfs, P (assumed constant across arcs and departure 

times): 

Step 1: Generate P pairs of scaled uniform random variants. The first random 

variant of the pair will represent a possible travel time. This random 

variant is scaled between 1 and 10 units. If the same number is generated, it 

will be discarded.  

Step 2: The second random variant, the probability of the occurrence of such a 

travel time, will be generated as follows. First, generate P numbers of 

random numbers between 1 and 100. Find the proportions of each 

generated value (divide each value by sum of all generated values) so that 

their sum is equal to 1.  

Step 3: Sort the pairs of random variants in ascending order of the first element 

of the pair (corresponding to increasing travel time).  

 

6.1.3 Design of the Experiments 

Four factors must be specified in order to generate the network topology and the 

pmfs of the arc travel time random variables: the number of nodes, probability of arcs, 

the duration of travel time intervals, and the number of elements in the; pmf’s. (The 

duration of a time interval is constant over all the tests). The number of elements in the 

pmfs is nearly constant across arcs and time intervals as explained previously. 

Three levels of the number of nodes are considered: 50, 100, and 500 nodes. Also, 

three levels of arc densities are considered: 2, 4, and 6. Three topological networks of 
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each level are generated, for a total of 27 networks. The time interval size is one time 

unit in duration and is constant over all the experiments. Three levels of the duration of 

the peak period are considered: 10, 30, and 60 units of time (time intervals) in size. For 

example, a peak period of 10 minutes will consist of 10 one minute time intervals and a 

peak period of 60 minutes will consist of 60 one minute time intervals. Finally, two 

levels of the constant number of elements in the probability mass functions are 

considered: 2and 5. This result in 162 different combinations, as every combination of 

the number of time intervals and number of elements in the pmfs are considered for each 

of the 27 networks. 

The algorithms of TAMMV1 and TAMMV2 determine one path from all origin nodes 

to a pre-specified destination node for each departure time interval, these algorithms are 

implemented in C programming language. The experiments are done on Sun 

UltraSPARC-IIi Workstations (360 MHz of clock speed and 128 MB RAM) running 

Solaris 8. An Ethernet communication speed of 100Mbits/sec was assumed for the 

communication of data. This forms a common speed of an Ethernet cable.  

The run times of the procedures are recorded. Because three topological networks 

of each level are tested under same condition (edge probability, time interval and the number 

of pmfs), we record the average running time for each topological network. The runtime does 

not include input/output time. 

 

6.2 Experimental Results 

The results of the experiments on twenty seven randomly generated networks are 

summarized in Tables 6.1 through 6.4 in Section 6.2.1. The number of nodes in the 
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networks is indicated by the heading “Nodes”, arc density “ArcD”, the number of time 

intervals “TI”, and the number of elements in the pmf s by “Prob”. For the networks that 

can be specified by the same (n, a, t, p) (equivalent “Nodes”, “ArcD”, “TI” and “Prob”) 

the results are averaged.  

 

6.2.1 Performance on Randomly Generated Networks 

In all of the tests, the SA list of each algorithm is implemented as a deque list. A 

node or node-label pair always enters the SA list at the back although it has been entered 

in the SA list previously or not. The tests of this chapter are not intended to test the 

performance of the procedures under a variety of SA list structures.  

The actual average running times for the PMV and PMMV procedures are given 

in Table 6.1 for networks with two sizes of the nodes n=50 and 100, three values of the 

time interval TI=10, 30, and 60, two values of the PMFs p=2 and 5, and fixed arc density 

a=4 . The run time of the two algorithms are very similar because algorithmic procedures 

are almost same except updating rule of node label (for PMV-variance, for PMMV-mean 

and variance).  

Table 6.2 shows the PMMV algorithm running time results for different values of the arc 

density a=2, 4, and 6 for same number of n, t, and p. To describe the performance of this 

algorithm, the natural log of the run time, given as RTPMMV for the PMMV algorithms, in 

CPU milliseconds is regressed against the natural log of the number of nodes(n), arc 

density(a), number of time intervals(t), and the number of elements in the PMFs(p), 

resulting in the equations with an R2 value of 94.47%: 

95.004.109.275.0)0000033.0( tanpRTPMMV ∗∗∗∗=  
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This regressing model is provided without testing of large number of nodes.  Therefore, 

it is difficult to apply for networks of large size. This remaining testing job can be done 

in the future. 

 

Table 6.1. Comparison of run times in c.p.u seconds for PMV and PMMV algorithms 

TI 

10 30 60 

p=2 p=5 p=2 p=5 p=2 p=4 Nod

es A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 

50 0.61 0.69 1.27 1.32 1.88 2.06 3.75 3.95 3.77 4.07 7.56 7.97 

100 3.00 3.10 5.38 5.53 7.35 7.67 14.6
2 

15.8
2 

13.5
4 

14.5
3 

28.6
6 

29.5
8 

 

Table 6.2. Run times in c.p.u seconds for PMMV algorithm 

TI 
10 30 60 

Nodes Arc D. Prob=2 Prob=5 Prob=2 Prob=5 Prob=2 Prob=4 
2 0.55 0.85 1.57 1.89 3.66 4.97 

4 0.78 1.41 2.27 3.66 5.19 8.97 50 

6 1.03 1.99 2.96 4.85 6.59 12.10 

2 1.48 2.57 4.18 7.42 9.49 16.87 

4 3.21 5.80 8.14 15.46 17.00 32.11 100 

6 8.98 13.61 27.34 19.48 29.90 77.04 

 

The average run times for the TAMMV1 and TAMMV2 algorithms are given in 

Tables 6.3 and 6.4, respectively. The run times refer to the average time for each 

experiment over all networks with similar (n, a, t, p) representation.  For example, the 

first value 0.162 in Table 6.3, corresponding to n of 50, a 0.2, t of 10, p of 2, gives the 
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average run time (in CPU seconds) resulting from experiments conducted on all three 50 

node networks with arc density 2 (which is edge connecting probability of 0.2) with (50, 

2, 10, 2). Recall that each experiment is tested with given a starting and a destination 

node. 

 

Table 6.3. Run times in c.p.u seconds for TAMMV1 algorithm 

TI 
10 30 60 

Nodes Arc D. Prob=2 Prob=5 Prob=2 Prob=5 Prob=2 Prob=4 
2 0.162 0.45 0.47 1.27 0.95 2.50 
4 0.37 0.94 1.16 2.79 2.16 5.73 50 

6 0.60 1.50 1.84 4.40 3.45 8.90 
2 0.75 1.89 2.20 5.56 4.32 11.17 
4 2.62 5.32 6.04 14.10 11.22 27.64 100 

6 8.04 12.82 14.06 26.55 22.49 48.40 
2 1433 1460 1512 1803 1700 1990 
4 10100 10390 10540 11532 12105 12785 500 

6 32236 33009 34592 36476 37041 39069 
 

Table 6.4. Run times in c.p.u seconds for TAMMV2 algorithm 

TI 
10 30 60 

Nodes Arc D. Prob=2 Prob=5 Prob=2 Prob=5 Prob=2 Prob=5 
2 0.15 0.43 0.45 1.20 0.89 2.30 
4 0.34 0.92 1.08 2.66 2.13 5.30 50 
6 0.56 1.45 1.69 4.52 3.25 8.18 
2 0.74 2.81 2.17 5.98 4.78 10.78 
4 3.07 4.67 6.35 12.51 14.89 28.56 100 
6 5.18 13.18 21.53 27.57 40.11 61.15 
2 1744 1783 2674 2781 4068 4446 
4 11961 12673 15024 16190 17260 18472 500 
6 38095 39145 40972 43895 45193 48709 

 

To characterize the performance of two algorithms, the natural log of the run time, given 
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as RTTA1 and RTTA2 for the TAMMV1 and TAMMV2 algorithms respectively, in CPU 

milliseconds is regressed against the natural log of the number of nodes(n), arc density(a), 

number of time intervals(t), and the number of elements in the PMFs(p), resulting in the 

equations with an R2 value of 97.50% and 97.89%, respectively: 

64.086.189.366.0
1 )000000001.0( tanpRTTA ∗∗∗∗=  

73.076.105.465.0
2 )000000001.0( tanpRTTA ∗∗∗∗=  

From the regression analyses, it is shown that the average run time of the TAMMV1 and the 

TAMMV2 algorithms increases much worse than linearly with the number of nodes (power 

of 3.89 and 4.05) in the network, arc density(power of 1.86 and 1.76). The run time increase 

well than linearly with the number of elements in the PMFs and the number of time intervals in 

the peak period.  In a direct comparison of the average run times of the TAMMV1 and 

TAMMV2 algorithms shown in Tables 6.5, it appears that the TAMMV1 algorithm is often 

faster than is the TAMMV2 algorithm for the majority of the larger-size networks, while the 

TAMMV1 algorithm appears to be faster for the smaller networks and small number of PMFs. 
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Figures 6.1 and 6.2 show the variation of the running time of the algorithms with the 

network size. The running time increases steeply for larger value of network size in both 

algorithms. Figures 6.3 and 6.4 illustrate the variation of the running time of the algorithms 

with the number of arcs. Again, the running time varies increases steeply for larger value of arc 

size. The running times are increased with exponentially. 

 

 
Figure 6.1. Running time of Algorithm TAMMV1 as a function of the number of the 

nodes, n. Tests are performed for time interval 10, 30, and 60 
 

 
Figure 6.2. Running time of Algorithm TAMMV2 as a function of the number of the 

nodes, n. Tests are performed for time interval 10, 30, and 60. 
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Figure 6.3. Running time of Algorithm TAMMV1 with the number of the arcs, m. Tests 

are performed for time interval 10, 30, and 60 
 

 
Figure 6.4. Running time of Algorithm TAMMV-STD2 with the number of the arcs, m. 

Tests are performed for time interval 10, 30, and 60 
 

Figure 6.5 contains the running time results for different values of the time interval t, 

for n = 500, a = 6. This figure depicts the variation of the running time of Algorithm as a 

function of the time interval t. The running time increases sharply for smaller values of t, but 

tends to slow increasing for large values of t. 
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Figure 6.5. Running time of Algorithm TAMMV-STD1and TAMMV-STD 2 as a 

function of the time Horizon, TI  
 

The tests were run on a Sun UltraSPARC-IIi Workstations which is a server based 

system with multiple users. In such systems, maintenance activities of the operating 

system, as well as activities of other users (often many other jobs by other users were run 

simultaneously with these tests), precludes the possibility of getting very accurate user 

c.p.u. times. Thus, the exact runs times are not likely to be reproduced, and in many cases, 

may be overestimated. 

 

6.3 Applications and Extensions 

6.3.1 Introduction 

Traffic congestion is particularly relevant in urban routing systems. During rush 

hours in LA, the travel time increases dramatically in most urban areas. This implies that 

the travel time over a road depends upon the time at which a vehicle travels along the 

road. Assad (1988) addressed the issue of traffic congestion in travel time determination.  

In this chapter, the problem of selecting a "best" route on which to transport 

hazardous subjects between two specific points in LA area is used to illustrate the results 

of the algorithms developed in chapter 5. Several problem formulations are addressed, 
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including: (1) determination of a priori least expected time paths (2) determination of a 

priori minimum variance paths, (3) determination of a priori minimum mean-variance 

paths, (4) determination of the “best” nest arc routing using previous two algorithms.  

The Freeway Performance Measurement System (PeMS) is a joint project 

between California Department of Transportation and university of California, Berkeley. 

The intent of this project is to collect historical and real-time freeway data from freeways 

in the State of California in order to compute freeway performance measures. Because of 

availability of real time transportation data and high probability of congestion, we select 

LA urban area to apply our algorithms. In Section 6.3.2, the LA network is described and 

a specific freeway section is analyzed based on morning and afternoon rush hour. Also, 

the method to convert speed data to travel time data is presented. In section 6.3.3, the 

least expected time paths, minimum variance paths, minimum mean-variance paths, and 

time adaptive minimum mean-variance paths procedures are generated between two 

given points in LA. The concluding remarks are given in section 6.3.4. 

 

6.3.2 LA area Traffic Data analysis  

 The traffic sensor is designed for permanent or temporary installation into or 

onto the road surface for the collection of traffic data. These sensors are geographically 

distributed and capable of communication and computation. The fixed sensors collect 

traffic information at the location where they are placed while the sensors on vehicles 

provide vehicle specific speed and location information etc,. As shown in figure 6.6, the 

traffic sensors are placed on all major Interstate and highway in LA area. Among the 

available sensor information, we only need to collect vehicles speed and analyze these 
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speed data to convert travel time data for the given section.  

 

 
 

Figure 6.6. Major highway sensor location map in LA area 

 

Every five minutes, PeMS aggregate the lane-by-lane 30 second data to compute 

one number that represents the 5-minute aggregate over all lanes at that vehicle detector 

station. The results are placed on the FTP site. In order to download the data, a simple 

client program need to write for periodically grab the data over the Internet from our FTP 

server. To analyze this sensor data, we select a specific section (from node 24 to 25) and 

collect data from all sensors on the highway, as shown in figure 6.6. Because the travel 

time from home to work on a Monday morning could be different from that on a Tuesday 

morning or Friday morning, we collect the data every five minutes for Monday only. 
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There are 9 sensors on the highway and read vehicle speed of all 4 lanes. Figures 6.8a 

through 6.8d shows this result, and its average speed is given in figures 6.9a and 6.9b. As 

you can see the figures 6.8 and 6.9, there are two congestions, morning and afternoon, on 

this arc 24-25. These figures show that the duration of morning rush hour is around one 

hour start form about 5:50am end 7:00am and the afternoon rush hour start around 

4:00pm end around 8:00pm. Also, during afternoon rush hours in this section, the traffic 

congestions are much severe and travel time of this highway section increases 

dramatically.  

 

 
Figure 6.7. A section 24-25 in Interstate highway 5S 

 

24 

25
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Figure 6.8a. Lane 1 speed for all sensors in arc 24-25 

 
Lane 2 Speed comparison for all Sensors in Arc 24- 25(5S)
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Figure 6.8b. Lane 2 speed for all sensors in arc 24-25 

 
Lane 3 Speed comparison for all Sensors in Arc 24- 25(5S)
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Figure 6.8c. Lane 3 speed for all sensors in arc 24-25 
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Lane 4 Speed comparison for all Sensors in Arc 24- 25(5S)
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Figure 6.8d. Lane 4 speed for all sensors in arc 24-25 
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Figure 6.9a. Mean speed for all sensors in arc 24-25 
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Figure 6.9b. Mean of all 4 lanes speed for all sensors in arc 24-25 

 

This speed data can be transformed to travel time data with distance information.  
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Since the travel times can be treated as random variables whose probability distribution 

functions vary with time, probability distribution functions were constructed using these 

travel time data. Therefore, we converted this every 5 minutes data to every 30 minutes 

data, as shown in figure 6.11. If the travel time accordance is less than 5% then it can be 

combined with nearest neighbor travel time. For example, if the frequency of travel time 

7 for arc a1 is 141 out of 145 and the frequency of travel time 8 for arc a1 is 4 out of 145, 

the probability of being travel time 8 is only 4/145 = 2.7%, so we can assume the travel 

time of arc a1 is 7 with 100%. Table 6.6 shows the example of PMFs for this arc. 
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Figure 6.10. Travel time from node 24 to 25  

 
Travel time analysis for Arc24- 25(30min)
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Figure 6.11. Travel time data for every 30 minutes for arc 24-25.  
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Table 6.6. Example of PMFs for the arc a1. 

Time interval Travel 
time Probability 

7 0.06 
8 0.15 
9 0.29 
10 0.21 

16:00 ~ 16:30 

16 0.29 
7 0.21  
9 0.17  
12 0.39  16:30 ~ 17:00 

18 0.23  
10  0.11  
14  0.19  
20  0.33  17:00 ~ 17:30 

26  0.37  
 

6.3.3 Problem Description 

The Los Angeles highway traffic network is pictured in Figure 6.12.  This 

highway system is represented by a graph with 31 nodes (representing intersections in 

LA) 53 arcs (representing links of highways between intersections). As shown in 

previous section, this area has serious traffic congestion problems during afternoon rush 

hours. Therefore the primary focus of this study is apply the four routing algorithms, 

PMM, PMV, PMMV, and TAMMV1, to assist commuters (passengers, emergency and 

commercial vehicles) in making the best decisions on route selection. The routing 

analysis is based on minimizing two attributes: (a) expected travel time, and (b) Variance 

of the travel time.   
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Figure 6.12. The LA traffic Network 

 

In this case study, the starting node and destination node are given: starting node 

is 4, destination node is 41. No waiting times are allowed during the trip. The trip is 

scheduled to start from node 4 at 4:00p.m, which is close to the start of rush hour. In 

Figure 6.11, it was shown that the afternoon peak period lasts for approximately 4 hours 

on the arcs emanating from each of the nodes. Each routing policy finds the best next 

node and path information based on the mean or variance or mean-variance of travel time.  

The travel times along a route are random variables and vehicle speeds are 

collected by the traffic sensors on the road. The eleven Mondays (from February 1 to 

April 31, 2005, except Feb. 21) data were collected for this study. The data contains all 

lanes speed for every 5 minutes. In many cases, the first lane reserved as a “HOV” lane 
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during the rush hour. Therefore this lane data were discarded to obtain the average lane 

speed on the specific sensor. Converted travel time data for every arc were generated 

after averaging vehicle speed with distance of each arc. Probability distribution functions 

of each arc were generated by EXCEL Macro and stored as a input data file. Detailed 

descriptions are in previous section.  

 

6.3.4 Results Of The Case Study 

A priori minimum expected path: PMM aalgorithm 

Using the PMM algorithm, three non-dominated paths out of ten paths are determined: 

 Path 1: 4-18-26-37-38-39-41 

 Path 3: 4-18-19-24-25-32-33-41 

 Path 4: 4-18-19-27-37-38-39-41 

The minimum mean travel time and paths information for the given departure times are 

shown in Table 6.7 and Figure 6.13.  

 

Table 6.7. Minimum mean travel time and paths for MMV algorithm 

Departure time Mean Next Node Path 

0 73.25795 18 1 
30 79.23531 18 1 
60 81.14811 18 1 
90 83.11905 18 4 
120 78.12215 18 3 
150 73.38336 18 3 
180 71.84217 18 3 
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Figure 6.13. Minimum mean travel times for departure time varying 

 

For 180 time interval, 35% for path 1, 50% for path 3, and 15% for path 4 were selected 

for the minimum mean travel time path from node 4 to node 41. The path 1 was selected 

for most of the early time interval. If traveler start trip after 5pm to 5:30pm, the path4 

became the preferred path. After 5:30pm, path3 is the minimum mean path. 

 

A priori minimum Variance path: PMV algorithm 

Using the PMv algorithm, four non-dominated paths are determined: 

Path 6: 4-18-19-24-28-31-32-33-41 

Path 1: 4-18-26-37-38-39-41 

Path 3: 4-18-19-24-25-32-33-41 

Path 4: 4-18-19-27-37-38-39-41 

The minimum variance and paths information for the given departure times are shown in 

Table 6.8 and Figure 6.14.  
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Table 6.8. Minimum variance and paths for PMV algorithm 

Departure time Variance Next Node Path 
0 46.669945 18 6 

30 92.095512 18 1 
60 81.028198 18 4 
90 66.332283 18 3 

120 47.764866 18 3 
150 53.012543 18 3 
180 53.99812 18 3 
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Figure 6.14. Minimum variance of travel times for departure time varying 

 

For 180 time interval, 20% for path 1, 8% for path 6, 53% for path 3, and 19% for path 4 

were selected for the minimum variance travel time path from node 4 to node 41. The 

path 6 was selected for most of the early time interval. The path 3 became the preferred 

path after 5:30pm.  

 

A priori minimum Mean-Variance path: PMV algorithm 

Using the PMv algorithm, two non-dominated paths are determined: 

Path 1: 4-18-26-37-38-39-41 

 Path 3: 4-18-19-24-25-32-33-41 



 178

 The minimum mean-variance paths information for the given departure times are 

shown in Table 6.9 and Figure 6.15.  

 

Table 6.9. Minimum mean, variance and paths for PMMV algorithm 

Departure time Mean Variance Next Node Path 

0 73.25795 74.955673 18 1 
30 79.235306 92.095512 18 1 
60 81.148109 107.00051 18 1 
90 83.119049 66.332283 18 3 

120 78.122154 47.764866 18 3 
150 73.383362 53.012543 18 3 
180 71.842171 53.998116 18 3 
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Figure 6.15. Minimum mean-variance for departure time varying 

 

For 180 time interval, 34% for path 1, 50% for path 3, and 16% for path 4 were selected 

for the minimum mean travel time path from node 4 to node 41. This result was similar 

with minimum mean path output because expected travel time is the primary decision 

criterion for selecting the best path. Again, the path 3 was selected for 50% of time 
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interval.  

 

Time-adaptive Mean-Variance path: TAMMV1 algorithm 

 The resulting hyperpaths for this problem were given in the form of a tree as 

shown in Figure 6.13. The result was shown that next best node from starting node 4 was 

node 18 for all travel time interval. The time adaptive minimum mean-variance routing 

information for the given departure times are shown in Table 6.10 and Figure 6.16.  

Table  

Table 6.10. Minimum mean, variance and next node for TAMMV1 
Departure time Mean Variance Next Node 

0 65.000572 51.88723 18 
30 67.173195 66.133377 18 
60 67.817574 72.658424 18 
90 69.390167 76.070457 18 
120 67.76239 71.286751 18 
150 63.138004 63.080559 18 
180 61.665833 67.629845 18 
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Figure 6.16. Minimum mean-variance for departure time varying 
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Figure 6.17. Resulting hyperpaths as shown through conditional tree structure 

 

Finally, the path 3 (4-18-19-24-25-32-33-41) is selected as a best compromise path 

during afternoon rush hours from 4:00 to 7:00pm, considering both travel time and 

variance. 

 

6.4 Conclusions 

 In this chapter, the computational tests on randomly generated networks were 

conducted to assess and compare the average performance of four algorithms, PMV, 

PMMV, TAMMV1, and TAMMV2. In a direct comparison of the average run times of 

the TAMMV1and TAMMV2 algorithms, it appeared that the TAMMV2 algorithm was 
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often faster than TAMMV1 algorithm for the small networks, while the TAMMV1 

algorithm appeared to be faster for the larger networks. For very large networks, or dense 

networks, the number of paths that may be examined can grow quite large, and, thus, 

PMV and PMMV algorithm may perform rather poorly. These two algorithms’ worst-

case computational complexity is non-polynomial. Therefore, these time adaptive routing 

algorithms, TAMMV1, and TAMMV2, are more applicable to stochastic time-dependent 

network problems.  

The problem of selecting a “best” routing on which to travel between two points 

in Los Angeles area in California is used to illustrate the results of the algorithms. The 

LA network is described and a specific freeway section is analyzed based on morning 

and afternoon rush hour. Four algorithms are applied to find the minimum expected time 

paths, minimum variance paths, minimum mean-variance paths, and time adaptive 

minimum mean-variance paths. 

The LA area traffic routing problem is only one of numerous applications for 

which the procedures of all developed algorithms in this study. Other applications 

include routing of emergency vehicles to (or from) the scene of a medical emergency, 

fire fighters to a fire, police officers to a request for service or scene of a crime, 

commercial trucks to pickups and deliveries, service vehicles to downed power lines, or 

wreckage from a natural disaster, as well as military applications, and other applications 

where response time is critical. 
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Chapter 7. Conclusions and Future Research 
 

7.1 Research Summary 

Transportation is a critical component of our lives. Electrical networks bring 

lights, national highway networks cross distances, manufacturing and distribution 

networks allow access to consumer products, and computer networks share information 

globally.  In all networking situations we move some entity from one point to another 

through path as efficiently as possible. Routing (finding path) problems have broad 

applications in transportation engineering, computer science, operations research, and 

neurophysiology. They are of importance for passenger and goods movement, message 

delivery, and more general system control.  

Travel time between an origin and destination is often the primary criterion in 

optimally routing vehicles such as ambulances, police cars, vehicles carrying hazardous 

substances.  Travel times in congested transportation networks are naturally time-

dependent and stochastic in nature. In order to optimally route vehicles, both the 

stochastic and time-dependent nature of the travel times must be considered.  Future 

travel times can be treated as random variables whose probability distribution functions 

vary with time.  

Previous approaches in stochastic time-dependent problems do not account for the 

fact that travelers often incorporate travel-time variability in decision making. Thus, a route 

with lower travel-time variability is preferred at certain situations like hazardous material 

shipment, even if such a route is not one with the lowest mean of travel-time. We recognize 
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the fact that travelers choice not necessarily depend on the least expected time path 

(LET) but also consider the time variability while choosing a path during the planning 

stage. This approach is referred in this work as the mean-variance model in which the 

choice of a route is based on the mean as well as the variance of the path’s travel-time. In 

the current work a methodology for minimum variance and minimum mean-variance path 

within a route guidance model is presented.  

In general stochastic time-dependent networks, two types of routing policies are 

used for routing in networks: a priori “best” path routing policy and time-adaptive 

routing policy. For the priori best path routing problem, two algorithms, PMV(a priori 

minimum variance algorithm) and PMMV(a priori minimum mean-variance algorithm) 

were developed for determining a minimum variance path and minimum mean-variance 

path. In both these routing methods it was assumed that drivers use the same path that 

corresponds the minimum variance or minimum mean-variance to their destination node 

depending on their actual departure time at an origin node. We found the recursive 

relationship between means and variances of a given routing policy starting from two 

adjacent nodes. The node labels are updated by using the recursive formulation. At 

termination of either algorithm, the final node labels are the minimum variance path and 

minimum mean-variance path from each node to the destination node for all departure 

time.  

The PMV and PMMV procedures are both specialized modified label correcting 

algorithms for determining “preferred” paths in stochastic time-dependent networks from 

all origins to a selected destination, for all departure times in the peak period. Both 

algorithms are similar because both mean and variance calculations are required in both 
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procedures.  The multiple vector labels are required, each containing the variance or 

mean-variance of path travel time for each departure time. These labels are growing 

exponentially with network size, resulting in nonpolynomial worst-case performance. 

Extensions of these algorithms for determining paths in a time-adaptive routing 

where a driver is permitted to react to revealed information such as arrival time at 

intermediate nodes were also discussed. Rather than selecting a priori single best path 

before travel begins, routes with minimum mean-variance were obtained by allowing the 

driver to react en route to revealed (actual) arrival times. Two computationally efficient 

algorithms, TAMMV1(time-adaptive minimum mean-variance algorithm1) and 

TAMMV2(time adaptive minimum mean-variance algorithm2) presented for 

determining minimum mean-variance travel time path for all origins to a single destination 

in a networks where the arc weights were discrete random variables whose probability 

distribution functions varied a priori minimum variance algorithm  with time. At 

termination of the algorithm, efficient solutions (or non-dominated solutions) were 

generated.  The research proposes that such efficient solutions can be presented to the 

traveler, who may then make the appropriate choice. 

The performance of the algorithms, PMV, PMMV, TAMMV1 and TAMMV2 were 

evaluated through numerical experiments, which were intended to assess the 

computational performance on randomly generated networks. The results of these tests 

showed that the TAMMV1 algorithm is often faster than is the TAMMV2 algorithm for the 

majority of the larger-size networks, while the TAMMV2 algorithm appears to be faster for the 

smaller networks. It was shown that while the TAMMV1 algorithm outperforms the 

TAMMV2 algorithm in dense networks (such as data networks) the TAMMV2 algorithm 
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often outperforms the TAMMV1 algorithm in sparse networks (such as transportation 

networks). 

The proposed algorithms were shown to perform successfully in real-life network 

of best path between Beverly Hills and Garden Grove in LA. The data used for this 

purpose was real-time data obtained from California DOT. 

 

7.2 Future Research Directions 

In this research, several assumptions are made to solve the stochastic time-

dependent network problems. First, the travel times are discredited into small time 

increment. For more realistic approach, continuous-time framework should be considered. 

The travel times of arcs are assumed as discrete random variables. Such discrete 

representations of continuous random variables can result in wrong path selections. 

Therefore, the solution algorithms need to develop for continuous-time dynamic network 

optimization problem. Second, waiting times are not allowing during the trip. However, 

most travelers are very flexible for their trip. To more accurately represent traffic or data 

network, waiting time should not have the limitation.  

The computational tests on this study provide valuable insights into the problem 

for the first time. However, since the research is still in a very early stage, many 

interesting tests are not performed and are desired for future research. Specifically, more 

tests on a real-world network with actual data is recommended. Such tests can provide 

researchers with an idea how the model and algorithms will perform in a realistic 

network.  

Reliability is another important criterion besides expected travel time and 
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variance, when traveler makes routing decision in stochastic networks. With the real-time 

traffic sensor information, routing decisions can be made in order to help commuters to 

minimize delay.  This minimum delay (on-time arrival) routing problem can be solved 

by minimization of linear combination of expected travel time, expected early arrival , 

and expected late arrival.  

In communication and other networks, node failures may be common. In this 

study, node failures are not explicitly considered. The determination of "best" paths 

given the probability of node failures is an area for future research. Some of the insight 

gained though the development of this work may be useful for developing procedures for 

computing the pdf of the minimum time, or least expected time, between two nodes in a 

stochastic, time-dependent network. 

The constrained optimal routing problems in stochastic time-dependent networks 

are another area of the future research. With the time window constraints, travelers need 

to arrive some specific point within given time window during the routing. These routing 

problems have enormous real-world applications. 
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