

THE UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

A MEAN-VARIANCE MODEL
FOR STOCHASTIC TIME-DEPENDENT NETWORKS

A Dissertation

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

JAEJIN SEOK
Norman, Oklahoma

2005

UMI Number: 3203320

3203320
2006

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

ⓒ Copyright by JAEJIN SEOK 2005
All Rights Reserved.

Acknowledgements

Praise God from whom all blessings flow! First, I would like to thank God for

the constant inspiration, spirit, and faith which have provided me with what I most

needed to complete this study. With God all things are possible and thus it has been so

for me. Amen.

This dissertation would not have been possible without many people who have

contributed to my life and research. I owe them all my sincerest gratitude. My advisor,

Dr. Pulat has provided me with the thoughtful guidance support, and direction for this

dissertation. She has been a guide when I felt confused in a maze of details, always and

consistently keeping perspectives on the bigger picture. She will always be appreciated

and remembered. I would like to express my appreciation to the other committee

members, Dr. Landers, Dr. Radhakrishnan, Dr. Rhoads, and Dr. Trafalis for their

valuable insights and comments during the progress of this research.

This work is dedicated to my parents and all family members who supported

and encouraged me not only during my study at OU but throughout my life. Specially, I

thank my wife, Hyunsook, and my beautiful daughters, Jisun and Hayoung, for their

patience and understanding for the many hours I have stolen from their lives. Without

their sacrifice, I would never have completed my research.

I give special thanks to my brother in law’s family who truly have helped my

family in many way. I also would like to express my appreciation to all of church

members for their prayer support.

 iv

 v

Table of Contents

LIST OF FIGURES ... viii

LIST OF TABLES ... x

ABSTRACT .. xi

CHAPTER 1. INTRODUCTION ... 1
1.1 MOTIVATION ... 1
1.2 RESEARCH OVERVIEW... 5

1.2.1 PROBLEM STATEMENT: STOCHASTIC TIME-DEPENDENT NETWORKS... 5
1.2.3 SOLUTION DIFFICULTIES AND GENERAL APPROACHES... 7

1.3 RESEARCH SUMMARY.. 11
1.3.1 PATH COMPARISON: THREE DOMINANCE CRITERIA .. 11
1.3.2 A PRIORI MINIMUM VARIANCE AND MEAN-VARIANCE ROUTING ALGORITHMS 12
1.3.3 TIME-ADAPTIVE MINIMUM MEAN-VARIANCE ROUTING ALGORITHMS .. 14

1.4 CONTRIBUTIONS .. 14
1.5 ORGANIZATION .. 15

CHAPTER 2. LITERATURE REVIEW ... 18
2.1 BASIC CONCEPT AND CLASSIFICATION OF SHORTEST PATH PROBLEMS............... 18

2.1.1 LABELING ALGORITHMS FOR THE SHORTEST PATH PROBLEM ... 21

2.2 K-SHORTEST PATH PROBLEM AND ALGORITHMS... 22
2.3 MULTI-CRITERIA SHORTEST PATH PROBLEM .. 23
2.4 STOCHASTIC SHORTEST PATH PROBLEM... 26
2.5 STOCHASTIC TIME-DEPENDENT SHORTEST PATH PROBLEMS 34

CHAPTER 3. BACKGROUND AND FRAMEWORK.. 38
3.1 NOTATION FOR STOCHASTIC TIME DEPENDENT NETWORKS..................................... 38
3.2 DEFINITIONS FOR STOCHASTIC, TIME-DEPENDENT NETWORKS............................... 40

3.2.1 THE SPACE-TIME EXPANSION .. 40
3.2.2 THE PARAMETERS FOR PATH SELECTION... 43
3.2.3 EXPECTATION AND PATHS ... 44

3.3 PATH COMPARISONS FOR STOCHASTIC, TIME-DEPENDENT NETWORKS 49
3.3.1 CRITERIA FOR A PRIORI PATH COMPARISONS.. 50
3.3.2 PATH COMPARISONS BETWEEN MULTIPLE PATHS OVER A TIME PERIOD................................... 55

3.4 CONCLUSIONS ... 62

 vi

CHAPTER 4. A PRIORI MINIMUM VARIANCE AND MEAN-VARIANCE PATH IN
STOCHASTIC TIME-DEPENDENT NETWORKS.. 64
4.1 ADDITIONAL NOTATION FOR STOCHASTIC TIME-DEPENDENT NETWORKS.......... 64
4.2 PROBLEM FORMULATION .. 66

4.2.1 EXPECTED TRAVEL TIME A ROUTING PROBLEM.. 66
4.2.2 THE OPTIMALITY CONDITION FOR MEAN .. 68
4.2.3 VARIANCE OF A ROUTING PROBLEM.. 71
4.2.4 THE OPTIMALITY CONDITION FOR VARIANCE... 76

4.3 AN ALGORITHM FOR A PRIORI MINIMUM VARIANCE PATH PROBLEMS................. 79
4.3.1 AN ALGORITHM ... 80
4.3.2 DISCUSSION OF ALGORITHM PMV... 84

4.4 ALGORITHM FOR A PRIORI MINIMUM MEAN-VARIANCE PATH PROBLEMS:
IMPLEMENTATION OF PMV ALGORITHMS .. 87

4.4.1 AN ALGORITHMS ... 87
4.4.2 DISCUSSION OF ALGORITHM PMMV ... 91

4.5 ILLUSTRATIVE EXAMPLE ... 92
4.6 CONCLUDING REMARKS ... 102

CHAPTER 5. TIME-ADAPTIVE MINIMUM MEAN-VARIANCE ALGORITHMS................. 104
5.1 NON-DOMINATED PATH SELECTION FOR MEAN-VARIANCE ROUTING.................. 105

5.1.1 PRIMARY COMPARISON RULE .. 106
5.1.2 SECONDARY COMPARISON RULE ... 109
5.1.3 ALGORITHM TAMMV-ND.. 111
5.1.4 ILLUSTRATIVE EXAMPLE.. 113

5.2 TIME-ADAPTIVE MEAN-VARIANCE ALGORITHMS... 121
5.2.1 THE TAMMV1 ALGORITHM.. 122
5.2.2 THE TAMMV2 ALGORITHM.. 127

5.3 CONCLUSIONS ... 132

CHAPTER 6. COMPUTATIONAL TESTING .. 155
6.1 EXPERIMENTAL DESIGN.. 155

6.1.1 GENERATING THE NETWORKS.. 156
6.1.2 GENERATING THE ARC TRAVEL TIME RANDOM VARIABLES ... 156
6.1.3 DESIGN OF THE EXPERIMENTS ... 157

6.2 EXPERIMENTAL RESULTS... 158
6.2.1 PERFORMANCE ON RANDOMLY GENERATED NETWORKS .. 159

6.3 APPLICATIONS AND EXTENSIONS.. 166
6.3.1 INTRODUCTION .. 166
6.3.2 LA AREA TRAFFIC DATA ANALYSIS ... 167
6.3.3 PROBLEM DESCRIPTION ... 173
6.3.4 RESULTS OF THE CASE STUDY .. 175

6.4 CONCLUSIONS ... 180

 vii

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH .. 182
7.1 RESEARCH SUMMARY.. 182
7.2 FUTURE RESEARCH DIRECTIONS... 185

REFERENCES... 187

 viii

List of Figures

Figure 3.1 Deterministic time-dependent network G...40

Figure 3.2 Space-time expansion of G: G’ ..41

Figure 3.3 Stochastic, time-dependent network H...41

Figure 3.4 Time-Space network of H: H’ ..42

Figure 3.5 A stochastic network ..46

Figure 3.6 Expected arc travel time ...47

Figure 3.7 Example network with time-dependent pmf ..48

Figure 3.8.a Path 1 deterministically dominates Path 2 at time t as seen by the

 non-overlapping density functions ..51

Figure 3.8.b Path 1 deterministically dominates Path 2 at time t as seen by the

 distribution functions...51

Figure 3.9 The over-lapping paths 1-2-3-4 and 1-2-4 share arc (1, 2).....................................52

Figure 3.10 Path 1 stochastically dominates Path 2 at time t as seen by the

 non-intersecting distribution functions ..53

Figure 3.11 Example network..54

Figure 3.12. Three dominance criteria ...55

Figure 3.13 Path comparisons at time 1 and 2 ...57

Figure 3.14 Example network..59

Figure 3.15 Arc travel time comparisons at time 1 and 2 ..60

Figure 4.1 An Illustrative Example for Optimality Conditions Mean70

Figure 4.2 An Illustrative Example for Optimality Conditions Variance77

Figure 4.3 Example network..92

Figure 4.4 Resulting minimum variance path for departure time 0 at node1 for the

example problem ...98

Figure 4.5 Resulting minimum mean-variance path for departure time 0 at node1

for the example problem..101

Figure 5.1 Comparison of stochastic path attributes 1
iL and 2

iL where 21
ii μμ < and

21
ii νν < ...107

Figure 5.2. Comparison of two path travel time 1
iL and 2

iL where
21
ii μμ < and 21

ii νν > ..110

 ix

Figure 5.3 Flow chart for algorithm TAMMV1 ..124

Figure 5.4 Flow chart for algorithm TAMMV2 ..128

Figure 5.5 Resulting hyperpaths for departure time t=0 from node 1......................................142

Figure 6.1 Running time of Algorithm TAMMV1 as a function of the number of the

nodes, n. Tests are performed for time interval 10, 30, and 60164

Figure 6.2 Running time of Algorithm TAMMV2 as a function of the number of the

nodes, n. Tests are performed for time interval 10, 30, and 60.164

Figure 6.3 Running time of Algorithm TAMMV1 with the number of the arcs, m.

Tests are performed for time interval 10, 30, and 60...165

Figure 6.4 Running time of Algorithm TAMMV-STD2 with the number of the arcs, m.

Tests are performed for time interval 10, 30, and 60...165

Figure 6.5 Running time of Algorithm TAMMV-STD1and TAMMV-STD 2

 as a function of the time Horizon, TI ...166

Figure 6.6 Major highway sensor location map in LA area...168

Figure 6.7 A section 24-25 in Interstate highway 5S...169

Figure 6.8.a Lane 1 speed for all sensors in arc 24-25...170

Figure 6.8.b Lane 2 speed for all sensors in arc 24-25 ..170

Figure 6.8.c Lane 3 speed for all sensors in arc 24-25...170

Figure 6.8.d Lane 4 speed for all sensors in arc 24-25 ..171

Figure 6.9.a Mean speed for all sensors in arc 24-25 ..171

Figure 6.9.b Mean of all 4 lanes speed for all sensors in arc 24-25...171

Figure 6.10 Travel time from node 24 to 25 ..172

Figure 6.11 Travel time data for every 30 minutes for arc 24-25 ..172

Figure 6.12 The LA traffic Network..174

Figure 6.13 Minimum mean travel times for departure time varing..176

Figure 6.14 Minimum variance routing for departure time varing ..177

Figure 6.15 Minimum mean-variance routing for departure time varing-PMMV...................178

Figure 6.16 Minimum mean-variance routing for departure time varing-TAMMV1..............179

Figure 6.17 Resulting hyperpaths as shown through conditional tree structure180

 x

List of Tables

Table 2.1 Classifications of shortest path problems ..20

Tabe 2.2 Comparisons between label-setting and label-correcting algorithms21

Table 2.3 Existing approaches for the MCSPP without a utility function24

Table 3.1 Determining expected least time through network of Figure 3.5.............................46

Table 3.2 PMFs of arcs and subpaths in Figure 3.9...52

Table 3.3 Unconditional pmfs of paths in Figure 3.9 ..52

Table 3.4 Travel time pmf’s for Figure 3.11..54

Table 3.5 Travel time cdf’s of path ab and ac at departure time t=054

Table 3.6 Possible path travel times at time intervals 1 and 2 ...57

Table 3.7.a Possible realizations for time interval 1 ..58

Table 3.7.b Possible realizations for time interval 2..58

Table 3.8 Table of pmf s of travel times in Figure 3.5 ..59

Table 4.1 Example of vector label with five time intervals ...84

Table 4.2 Table of pmfs of travel times in Figure 4.3 ...92

Table 6.1 Comparison of run times in CPU seconds for PMV & PMMV algorithms.............160

Table 6.2 Run times in c.p.u seconds for PMMV algorithm ...160

Table 6.3 Run times in c.p.u seconds for TAMMV1 algorithm ..161

Table 6.4 Run times in c.p.u seconds for TAMMV2 algorithm ..162

Table 6.5 Running time in c.p.u seconds for TAMMV1 and TAMMV2 algorithms163

Table 6.6 Example of PMFs for the arc a1 ..173

Table 6.7 Minimum mean travel time and paths for MMV algorithm175

Table 6.8 Minimum variance and paths for PMV algorithm...177

Table 6.9 Minimum mean, variance and paths for PMMV algorithm.....................................178

Table 6.10 Minimum mean, variance and next node for TAMMV1 algorithm.......................179

 xi

Abstract

Traditional models of route generation are based on choosing routes that

minimize expected travel-time between origin and destination. The variance of the least-

time path is not included in the path selection. In addition, due to congestion in

transportation networks, travel times are time-dependent and stochastic in nature. This

research focuses on the time dependency as well as the stochastic nature of traffic flow.

Two algorithms are developed for determining a minimum travel time variance

path and minimum mean-variance path assuming a priori best path routing policy. Under

this policy, drivers use the path that corresponds to the minimum travel time variance to

their destination node determined prior to the actual departure time at an origin node. We

prove that both algorithms reach the optimal solution in finite number of steps but have

non-polynomial running times. In addition, two algorithms, specialized modified label

correcting and label setting algorithms, are developed for determining minimum mean-

variance travel time path for time-adaptive routing problem. These algorithms allow the

travel to define the route as he/she travels from the origin to the destination. Both

algorithms reach optimal solution in finite number of steps and have polynomial

computational complexity.

The computational performance of the algorithms was evaluated through

numerical experiments using randomly generated networks. A regression curve relating

the running time to number of nodes, arc density, number of time intervals, and the

number of discrete arc travel times has been generated for each algorithm. The results

show that number of nodes and arc density influence the running time worse than linearly.

The proposed algorithms were illustrated using a real-life network and near-real time

 xii

travel information between Beverly Hills and Garden Grove in Los Angeles, California.

The data was generated using the Freeway Performance Measurement System (PaMS)

run by California Department of Transportation and the University of California at

Berkeley. The illustration showed that more research is needed in extracting travel time

information from real-life data which is vast and influenced by several factors such as the

day of the week, holidays, time of the day, accidents. However, through the illustration

we were able to demonstrate how the proposed algorithms can be used with near real-

time information.

 1

Chapter 1. Introduction

1.1 Motivation

Time is the essence in today's ever-mobile world. While the time it takes to

travel long distances is getting shorter each year, daily commuters spend more time just

to get to work. One main reason for this situation is traffic congestion. Traffic congestion

is perhaps the most prominent problem of modern society and has both direct and

indirect impact. As described in the 2005 Urban Mobility Report, by the Texas Institute

of Transportation: “Despite a slow growth in jobs and travel in 2003, congestion caused

3.7 billion hours of travel delay and 2.3 billion gallons of wasted fuel, an increase of 79

million hours and 69 million gallons from 2002 to a total cost of more than $63 billion.”

To an individual traveler, congestion reduces the quality of life by reducing leisure time,

increasing anxiety, and wasting personal resources. To firms, congestion reduces the

work efficiency of employees and increases freight transportation costs. To the society as

a whole, congestion negatively affects environmental quality by causing more gas

emissions and noise, and endangers traffic safety by causing stress and fatigue for drivers.

Adding capacity by building infrastructure is the most common measure taken to

improve traffic flow. However, the more traditional approach of simply adding more

infrastructure and capacity is not always possible or desirable. Furthermore, new

infrastructure will induce more demand, which could affect the increased capacity or

even make the congestion worse. However, improvements can still be made by

increasing the efficiency of the existing system. These treatments are particularly

 2

effective in three ways. They have a relatively low cost. They can usually be

implemented quickly and can be tailored to individual situations, making them more

useful because they are flexible. They are usually a distinct, visible change; it is obvious

that the operating agencies are reacting to the situation and attempting improvements.

Measures to relieve traffic congestion are generally based on the concept of

making the best use of current infrastructure with the advanced information technology,

which is the underlying idea of Intelligent Transportation Systems (ITS). Advanced

Traffic Management Systems (ATMS) and Advanced Traveler Information Systems

(ATIS) are fields of ITS which put congestion management as a major priority. Among

the various sub-systems of ITS, ATIS aims to provide travelers with updated and useful

information about network conditions to traveler to aid in making better decision. As

traffic conditions are stochastic in nature, the information is of even greater importance.

For example, when an accident happens, a timely notice by ATIS to travelers who plan to

take the route on which the accident happened would be quite beneficial.

 All parameters of a real time traffic such as traffic volume and travel time are

stochastic in nature. The travel time of even commonly undertaken trips like home to

work differ over day of the week and even time of the day. The randomness can come

from multiple sources that are both recurrent and non-recurrent. One of the most

significant sources is the disturbances that cause unpredictable (called non-recurrent)

congestion, such as accidents and vehicle breakdown. Traffic conditions with predictable

(recurrent) congestion, on the other hand, are also usually different from day to day,

largely because of fluctuations in origin-destination (OD) trips. The fluctuations can be in

both the total number of OD trips and the spread of OD trips over departure times (i.e.

 3

traffic flow per unit time). Travelers with non-commuting trip purposes might decide not

to take a trip on a particular day, due to other personal business, and the no-travel

decisions collectively result in a random number of OD trips. Travelers may also respond

to congestion by shifting departure times from day to day, and thus, there exists a random

pattern in OD trips’ spread. These and more reasons make the traffic flow more

stochastic and less predictable.

Travelers make decisions (destination, mode, departure time, route) based on

their information about the traffic network. The information can be obtained through a

wide range of means: the travelers’ own experience, word of mouth, radio broadcast,

variable message signs (VMS), an in-vehicle communication system, and so on. This

information can be classified as a priori or real time. A priori information is about the

day-to-day fluctuations of traffic quantities, e.g. the time it takes to travel from Norman

to OKC is 20 minutes on average, but roughly once in a month, the travel time is

unusually high, due to various reasons. Real time information is about the traffic

conditions on a specific day, e.g. an incident just occurred on a route, and thus will

impact the traffic for the next 30 minutes. This classification is meaningful only when

there is stochasticity in the network; it is in that way real time information is different

from a priori information. Destination, departure time and mode decisions are usually

made only at origins and can rarely be changed en route, while route decisions can be

changed en route more easily and thus benefit more from real time information. ATIS

can provide both a priori and real time information. Travelers only have personal

experience to guide them on their selected routes. In order to obtain a priori information

about the whole network, they need to go beyond their personal experience, and a good

 4

source is ATIS. ATIS can provide travelers with reports of traffic conditions in the past

and possibly predictions about the future, for the temporal and spatial ranges and in

formats specified by travelers. Combining all sources of priori information, travelers can

form their own general pictures about the network. Nevertheless, the benefit of ATIS is

primarily embodied through the provision of real time information, especially in a

network disturbed randomly by accidents, vehicle breakdowns, bad weather, work zones,

special events, and so on. The sensors are, in general, installed on state highways and

interstates to collect real time traffic data. This real time sensor data can be use to assist

commuters (passengers, emergency and commercial vehicles) in making the best

decisions on route selection.

Travelers’ routing decisions in a stochastic network with real time information is

conceivably different from those in a deterministic network. It is generally believed that

adaptive routing will save travel time and enhance travel time reliability. For example, in

a network with random incidents, if one does not adapt to an incident scenario, he/she

could be delayed in the incident link for a very long time. However, if adequate real time

information is available about the incident and the traveler adapts to it by taking an

alternative route, he/she can save travel time as compared to the non-adaptive case. The

adaptiveness also ensures that the travel time is not prohibitively high in incident

scenarios, and thus provides a more reliable travel time.

It is therefore a very interesting research question how an individual traveler

makes adaptive routing decisions in a stochastic and time-dependent network. Traditional

models of route generation are based on choosing routes that minimize expected travel-

time between origin and destination. Such approaches do not account for the fact that

 5

travelers often incorporate travel-time variability within their decision making. Thus, a route

with lower travel-time variability is preferred by some travelers, even if such a route is not

one with the lowest mean of travel-time. Such traveler behavior is best captured by a multi-

objective model (mean-variance) in which the choice of a route is based on the mean as well

as the variance of the path’s travel-time. The route planning model developed in this work

is intended to help travelers with decision making.

1.2 Research Overview

1.2.1 Problem Statement: Stochastic Time-Dependent Networks

Travel time between an origin and destination is often the primary criterion in

routing vehicles such as ambulances, police cars, vehicles carrying hazardous substances,

and individuals on their way to some activity. Today's traffic routes have ever-changing

traffic patterns that lead to time-varying dynamic networks. To analyze this dynamic

situation, one would need to use dynamic algorithms that can take into account time-

dependent behavior. This leads to the concept of dynamic network optimization and real-

time traffic routing.

There may be some uncertainty associated with the travel times (or travel costs)

along the arcs as a result of inherent uncertainties in future trip times, incomplete a priori

information, or inaccurate methods of predicting future trip times. In part, such inherent

uncertainties in travel times can be attributed to the varying characteristics of drivers and

vehicles, the amount of interaction between vehicles due to the level of congestion and

the unexpected delays as a result of automobile failures or accidents, construction or lane

closures, road hazards, train passings, bus stops, and so on. In order to optimally route

 6

vehicles, both the stochastic and time-dependent nature of the travel times must be

considered. Future travel times, as well as other travel costs, can be treated as random

variables whose probability distribution functions vary with time.

Two types of algorithms are generally used for routing in networks: (1) shortest

path based routing algorithms, and (2) optimal routing algorithms based on other

measures. The efficiency of a routing algorithm depends on how it performs during times

of congestion in the network. The main tasks that have to be performed by these routing

algorithms are routing choice and the error-free and reliable delivery of a message.

The average travel-time that would be experienced by drivers may depend on the

type of routing policy adopted. In literature, the following two routing policies have been

considered (Chabini, 2001).

1) The best path routing policy (Route planning): A minimum of the expected

travel-time path is determined in this policy during the drivers’ trips from an

origin node to a destination node. Because of travel time random variable,

there can be exist multiple criteria to measure the quality of a path. The expected

travel time is only one possible criterion.

2) The best next-arc routing policy (Route guidance): Rather than determining a

single best path based only on information known before travel begins, routes with

lower travel times may be obtained by allowing the driver to react en route to

revealed (actual) arrival times. This is referred to as time-adaptive route choice by

Hall (1986). A driver recursively selects the best next arc to follow when

departing from the current node, depending on the actual arrival time at this

node.

 7

These two policies possess the same solution in static or in deterministic problems.

However, in general stochastic time-dependent networks, the above two policies lead to

different expected travel-times. There are two results that follow from this interpretation:

(1) the expected travel time corresponding to the second policy is always less than or

equal to the expected travel time corresponding to the first policy, and (2) generating a

solution to the second policy is a less difficult algorithmic task than computing a solution

to the first one (Chabini, 2001). The aim of the best next arc routing policy is to compute

an a priori routing strategy that would be repetitively used to guide drivers during their

trips between a pair of origin-destination nodes. Under the best path routing policy,

drivers use the same path. Under the best next-arc routing policy, drivers may follow

different paths.

1.2.3 Solution difficulties and General Approaches

Many difficulties come up to solve the problem of determining "best" paths in

stochastic, time-dependent networks that are not present in the deterministic, time-

dependent problem. In problems involving a single objective function, like minimum

travel times, of deterministic quantities, a single optimal solution can be identified, with

possible alternate optimal solutions. If alternate optimal solutions exist, the solutions all

have the same deterministic value; and thus, a solution can be arbitrarily selected without

regret. A single objective problem of a stochastic quantity may result in multiple non-

dominated solutions because several solutions may have some probability of being best

for one or more realizations of the random quantity. For this reason, multiple non-

dominated least time (or shortest) paths may exist in stochastic networks where more

 8

than one path may have the least time for some realization of the network.

There are numerous criteria that one uses to select one route over another in

stochastic time dependent networks. For example, one may prefer the path that has some

probability of having the least possible time. Miller-Hooks and Mahmassani (1998a)

proposed efficient procedures for determining the least possible time paths in stochastic

time dependent networks. In stochastic time dependent networks, paths comparison is

further complicated by the fact that such comparisons of the path probability distribution

functions must be made over a time period. Several algorithms for determining a priori

paths in stochastic time dependent networks that employ such path-comparison

techniques were proposed by Miller-Hooks and Mahmassani (1998a, 1998b, and 2000).

Common approaches to stochastic problems that often lead to solutions with the least-

expected value. The determination of the least-expected time paths in stochastic time

dependent networks is more difficult than in networks where the arc traversal time

distributions are time-independent. In stochastic time-dependent networks, one cannot

simply set the random arc traversal times to their expected values and solve for the least

expected time paths through the use of a deterministic shortest path algorithm, as is

possible in time-invariant networks. This is because the expected traversal time on an arc

in stochastic time-varing networks depends on the time of arrival at its origin node.

Miller-Hooks and Mahmassani (1998a, 2000) and Miller-Hooks (2001) discuss

approaches for the time-varying and stochastic transportation and data networks. They

propose label-correcting algorithm and a modified label-correcting algorithm to

determine a priori least expected time path and a lower bound on least expected time

path, respectively. They also illustrate how adaptive least expected time hyperpaths can

 9

be determined using an extension of the modified label-correcting algorithm to generate

best routing policies conditioned on the node arrival times. Chabini (2001) proposed a

dynamic programming approach to determine the least expected travel costs from all

nodes to a given destination. Gao and Chabini (2001) studied the best routing policy

problem. They provide a comprehensive taxonomy of the problem, based on information

access and network statistical dependency. An exact algorithm and four approximations

are proposed.

Previous approaches in stochastic time dependent problems do not account for the

fact that travelers often incorporate travel-time variability in decision making. Thus, a route

with lower travel-time variability is preferred at certain situations like hazardous material

shipment, even if such a route is not one with the lowest mean of travel-time. Such traveler

behavior is best captured by a mean-variance model in which the choice of a route is based

on the mean as well as the variance of the path’s travel-time. To the best of author’s

knowledge, there is no papers in the literature that deals with minimum variance and

mean-variance path problems in stochastic time-dependent networks. In this study, we

develop the methodology for minimum variance and mean-variance path that

accommodates variance and both means and variances within a route guidance model.

Two procedures presented in this study are specialized modified label correcting

and efficient specialized label setting algorithms for generating "preferred" paths. The

first procedure determines a prior minimum variance and mean-variance paths from all

origins to a single destination for each departure time in the peak period. The second

procedure determines the “best” next arc routing from all origins to a single destination

for each departure time in the peak period. In generic label correcting algorithms for

 10

time-independent, deterministic shortest path problems, a single label associated with

each node maintains the current shortest time from the node to the destination. The labels

are updated until optimality conditions are satisfied. Upon termination, as long as a path

exists, a single shortest path (which may be tied for shortest) from all origins to the

destination node and the corresponding distances (or times) are known. In deterministic,

time-dependent networks, vector labels are associated with each node, maintaining the

current shortest distance (or time) from the node to the destination for each time interval

in the peak period (Ziliaskopoulos and Mahmassani, 1993). Unlike label correcting

algorithms, where the components of all vector labels are temporarily set until

termination, after each iteration of the label setting algorithm, where the labels are

updated for a specific deprture time, t, the component of each vector label associated

with t is permanently set for all i.

Similarly, in stochastic, time-dependent networks, vector labels are maintained

from each node to the destination node, the number and contents of which now depend

on the specific problem that one is solving. If the problem is to determine the least

expected time paths, then the optimality conditions based on expected times are used. If

the problem is to determine the least variance paths, then the optimality conditions based

on the variance of travel times are used. Again multiple vector labels are associated with

each node (as more than one path may have the least expected time for one or more

departure time intervals). Each vector label maintains the expected time or variance for

its associated path from the node to the destination for all t. For each of these problem

formulations in stochastic, time-varying networks, until termination, the labels of any

Pareto-optimal, or optimal, paths must be maintained over the entire time period.

 11

In this work, problem formulations that permit the use of a single vector label from each

node, maintaining single deterministic quantities for each departure time, can result in

polynomial time algorithms with a worst-case performance similar to that of the

deterministic, time-varying shortest path problem.

1.3 Research summary

The procedures developed in this dissertation for determining "best" paths in

stochastic, time-dependent networks are organized in two sets. The first set addresses the

problems of generating the “best” paths for both a priori best path routing and time-adaptive

best routing problems. An additional procedure for determining a priori minimum variance

path and minimum mean-variance paths, and time adaptive minimum mean-variance

routing is presented.

1.3.1 Path comparison: three dominance criteria

Three dominance criteria, deterministic dominance, stochastic dominance, and

expected value dominance, (Miller-Hooks and Mahmassani, 2003) are considered in the

determination of non-dominated (or efficient) paths, described in detail in Chapter 3. In this

section, a brief description of the rationale behind each dominance criterion is given.

The first dominance criterion is deterministic dominance. By this criterion, if for a

given departure time the highest travel time on the best path is lower than the lowest travel

time on the second best path, then the second best path has zero-probability of having a

lower travel time than the first. The first path is said to dominate the second for the given

 12

departure time. For this departure time, one can choose the first path with certainty that

the second path will not be better.

The second dominance criterion, stochastic dominance, is less conservative than the

deterministic dominance, possibly resulting in fewer non-dominated (or efficient) paths.

Here, for a given departure time, the first path dominates second, and if for all possible

travel time values, the probability that the first path's travel time is less than or equal to that

value is always greater than the probability that the second path's travel time is less than or

equal to this same value.

The third criterion considered uses the expected value to establish dominance. If,

for all departure time intervals in the peak period, the first path has lower expected time than the

second, the first path dominates the second.

In this research, procedures for generating a priori minimum variance time paths, a

priori minimum mean-variance paths, and time adaptive minimum mean-variance paths are

developed using the third criteria.

1.3.2 A priori Minimum variance and Mean-Variance routing algorithms

 A distinctive feature of a traffic network is the link-wise and time-wise

stochastic dependency of link travel times. However, a comprehensive literature review

on optimal routing policy problems for minimum variance in stochastic time-dependent

networks reveals that no research has considered this important feature of a traffic

network. When faced with travel time uncertainty, travelers are also concerned about the

reliability of their travel times. Travel time variance is used to represent travel time

reliability (Sen, et al., 2001). A routing policy with less travel time variance is viewed as

 13

more reliable. For commuters, the desired arrival time in the morning might be some

time around the work starting time. For a traveler trying to catch a plane, the desired

arrival time might be roughly one hour before the plane’s departure. It is generally

believed and verified that a constant travel time path is preferred over a high variance

path, even if it has a shorter travel time. Since expected travel time is the primary

criterion in routing optimization, and reliability measures (variance) are generally

secondary, it is necessary to design algorithms that minimize linear combination of

expected travel time and variance. The detail descriptions are presented in chapter 5.

 Two algorithms, PMV and PMMV, are developed for determining a minimum

travel time variance path and minimum mean-variance path for a priori best path routing

problem. In this routing policy, drivers use the same path that corresponds the minimum

travel time variance to their destination node depending on their actual departure time at

an origin node.

We find the recursive relationship between means and variances of a given

routing policy starting from two adjacent nodes. The node labels are updated by using the

recursive formulation. At termination of either algorithm, the final node labels are the

minimum travel time variance or mean-variance from each node to the destination node

for departure time t. Both algorithms are similar because both mean and variance

calculations are required in both procedures. One main difference between these two

algorithms is the way to update the node labels. Detail descriptions of the algorithms are

in Chapter 4.

 14

1.3.3 Time-adaptive Minimum mean-variance routing algorithms

Rather than selecting a priori single best path based only on information known

before travel begins, routes with lower expected travel times and variance may be obtained

by allowing the driver to react en route to revealed (actual) arrival times.

Two algorithms, TAMMV1 and TAMMV2, are presented for determining

minimum mean-variance travel time path for “best” next arc routing problem. The same

recursive formulations are used for these algorithms.

The next node is computed like this: a path with a minimum linear combination

of expected travel time and variance from the current node to the destination is computed,

and then the first link along this path is followed. When the user arrives at the next node,

a new minimum linear combination of expected travel time and variance path is

computed and the first link followed. Note that the new path is not necessarily a subpath

of the previous one. This routing method is adaptive as a new path is computed each time

a new decision node is reached, but it is myopic in the sense that it assumes no future

changes in network conditions when computing the next node to take.

1.4 Contributions

The contributions of the thesis in stochastic time-dependent networks are

summarized as follows:

1. The specific computational steps are developed to find a priori minimum

variance path in stochastic time-dependent networks.

2. The specific computational steps are developed to find a priori minimum mean-

variance path in stochastic time-dependent networks.

 15

3. Two different computational steps are developed to find minimum mean-

variance paths in stochastic time-dependent networks for a time-adaptive routing

problem.

4. Computer programs for these models are prepared, and extensive numerical

experiments are conducted to assess the average run time.

5. The proposed algorithms were illustrated using a real-life network and near-real

time travel information.

1.5 Organization

The dissertation is arranged in seven chapters. This first chapter describes the

problems that are addressed and gives an overview of the general approach that is taken

for solving these problems. This is followed by a brief description of the procedures that

are developed for solving the problems, the contributions of this work, and finally, the

organization of this thesis.

In Chapter 2, we survey the literature on this topic, including deterministic

shortest path routing problems, k-shortest path routing problems, multi-objective shortest

path routing problems, routing in stochastic static networks, and routing in stochastic

time-dependent networks. This survey reveals that there are a number of variants of the

optimal routing problem in an stochastic time dependent network.

In Chapter 3, some basic concepts, as they apply to stochastic, time-dependent

networks, are defined. Techniques for selecting a best path through compromise from the

set of non-dominated solutions are discussed. Three dominance criteria are presented for

comparing paths with random travel times whose probability distribution functions vary

 16

over time. The conditions are given for comparing two paths at a single departure time

and multiple paths over the time period for both a priori path selection and time-adaptive

route choice.

In Chapter 4, we develop the PMV and the PMMV algorithms to find a priori

minimum variance path and minimum mean-variance path in stochastic time dependent

networks. We find the recursive relationship between the mean and the variances of a

given routing policy starting from two adjacent nodes. The worst-case computational

complexity of the algorithms are discussed

In Chapter 5, the TAMMV1 and the TAMMV2 algorithms are developed to find

a minimum variance path in stochastic time dependent networks for time-adaptive

routing problem. The worst-case computational complexity of both algorithms is

discussed.

In Chapter 6, the procedures of chapters 4 and 5 are implemented and tested on

numerous randomly generated networks and a more realistic transportation network. The

tests are intended to estimate the average run time. The procedures are tested on

randomly generated networks with an average arc density of 2, 4, and 6 with number of

nodes 50, 100, and 500. The methodologies used for randomly generating the networks

and time-varying probability distribution functions are described. The results of these

experiments are presented.

The procedures presented in Chapters 4 and 5 are illustrated on an example

problem: the best path selection from Beverly Hills to Garden Grove during rush hours in

a representation of the Los Angeles traffic network. The travel times of this network are

collected on Freeway Performance Measurement System (PeMS) based on actual

 17

distances and varying travel speeds by traffic sensors.

Finally, a summary of the dissertation work and future research directions are

discussed in Chapter 7.

 18

Chapter 2. Literature Review

The routing problems in networks have been an important and well researched

topic for a long time. We first give a brief introduction to the shortest path problem in

deterministic networks, including the well developed static shortest path (SSP) problem

and the dynamic shortest path problem. This will be useful to the study of routing

problems in stochastic networks. We then proceed to stochastic networks. There are

various ways of defining a stochastic network. Most of the problem variants studied in

literature assumes that the underlying network is static (not dependent on time). Some

other variants studied in the literary work with special cases of dynamic stochastic

networks do not represent time explicitly. A limited number of papers have studied the

optimal routing in a stochastic time dependent network with specific assumptions. A

comprehensive study of the problem is not available in the literature.

2.1 Basic Concept and Classification of Shortest Path
Problems

 The shortest path problem is one of the most fundamental network optimization

problems. It is an important problem by itself for its many applications in the real world.

It also important as a sub-problem in other network flow problems. The minimum cost

flow and the maximum flow problems all can be solved by finding the shortest paths and

augmenting flows along such paths. Lawler (1976), Tarjan (1983), and Ahuja et al.

(1993) provided an excellent review of how the shortest path problems can be used in

other network problems.

 19

Algorithms for solving the shortest path problem have been studied for a long

time. However, advances in the theory of shortest path algorithms are still being made.

Let G(N, A) be a network, where N is the set of nodes and A is the set of links.

Each link (i,j) has a cost c(i, j) and we term a path with minimum cost as the shortest path.

The SSP is to find the shortest path from a source node s to a destination node d.

Dijkstra’s algorithm is the most commonly used algorithm to solve the shortest path

problem for networks with nonnegative arc costs. Various implementations of Dijkstra’s

algorithm exist. The most straightforward one is based on the array of data structure and

has a running time of O(n2), where n is the number of nodes. The implementation using a

Fibonacci heap can achieve a running time of O(m + n log n), where m is the number of

arcs. This implementation is also currently the best strongly polynomial-time algorithm

for solving the shortest path problem. If the network has negative arc costs, more

sophisticated algorithms (such as the label-correcting algorithms) are needed. These

algorithms basically check whether the optimality conditions

Ajijdjicid ∈∀≥+),(),(),()(are satisfied, where the label d(i) is the cost for the

origin to node i. They make necessary changes by changing cost labels until no arc

violates this condition. A first-in-first-out (FIFO) queue implementation of the label

correcting algorithm has a running time of O(mn).

The existing shortest path problems (SPP) and their extensions may be classified

by various criteria. The first classification may be by the number of routes identified.

There are two categories: One is a generic shortest path algorithm which identifies a

single path, and the other is the so-called k shortest path algorithm which identifies k

shortest paths. These shortest path algorithms and extensions usually consider a single

 20

attribute such as time, cost, distance or a combination of attributes that are combined into

a single generalized cost.

The second classification may be based on whether a single attribute or multiple

attributes are considered in the objective function. The majority of the traditional shortest

path and k-shortest path algorithms belong to the single attribute category, while the

multi-criteria shortest path problem (MCSPP) belongs to the second category. Table 2.1

summarizes the classifications of the SPP and gives examples of each type.

Table 2.1. Classifications of shortest path problems

Number of routes identified Number of attributes in objective
function Classification

Single Multiple Single Multiple

Problems &
Algorithms

- Generic shortest
path algorithm

- Label setting
algorithm

- Label correcting
algorithm

- k-shortest
path
algorithm

- Traditional
shortest path
algorithm

- k-shortest path
algorithm

- Multi-
Criteria
shortest path

Another classification of the existing SPP and extensions could be based on the

time-dependency of the link attributes. If the link cost changes with the time of day,

identifying the shortest path is defined as a dynamic shortest path problem or shortest

path problem in a dynamic traffic network. Lastly, in many transportation situations, the

link travel time in a network is not deterministic but is a discrete or continuous stochastic

process. That is, the cost or travel time on each link may be considered as a random

variable. There exists a large amount of literature on the SPP in a dynamic and static

network that require procedures to model those network characteristics.

The following section focuses on the review of the standard SPP algorithms that

identify a single route based on a single attribute in a static, deterministic network.

 21

2.1.1 Labeling Algorithms for the Shortest Path Problem

Labeling algorithms are the most popular and efficient algorithms for solving the

SPP. These algorithms utilize a label for each node that corresponds to the tentative

shortest path length pi to that node. The algorithm proceeds in a way so that these labels

are improved until the shortest path is found. There are two types of labeling algorithms:

label setting (LS) and label correcting (LC). The LS algorithm sets the label of one node

permanently at each iteration, thus increasing the shortest path vector by one component

at each step. The LC algorithm does not set any label permanently. All the components

of the shortest path vector are obtained simultaneously, after the algorithm terminates. A

predecessor label is stored for each node that will represent the previous node in the

shortest path to the current node. This is used to construct the shortest paths to each node

by backtracking. Table 2.2 gives a comparison of these two algorithms.

Table 2.2. Comparisons between label-setting and label-correcting algorithms

 Label-setting algorithm Label-correcting algorithm

Applicable

- Shortest path problems defined on
acyclic networks with arbitrary arc
lengths.

- Shortest path problems with
nonnegative arc lengths.

- More general and applies to all classes
of problem, including those with
negative arc lengths.

- Shortest path problems with arbitrary
arc lengths.

Efficiency - Much more efficient.
- Much better worst-case complexity.

- More algorithmic flexibility.

Algorithms

- Dijkstra algorithm (Dijkstra, 1959). - Bellman-Ford-Moore algorithm
(Bellman, 1958; Moore, 1957; Ford,
1956).

- Incremental-graph algorithm
(Pape,1974 and Pallottino, 1984).

- Threshold algorithm (Glover et al.,
1984).

- Topological ordering (Goldberg and
Radzik, 1993).

 22

2.2 K-Shortest Path Problem and Algorithms

In many transportation applications, there is a need to identify a multiple number

of paths. Drivers may wish to make explicit trade-offs between routes, such as taking a

longer route that has a lower variance or fewer stops. There is currently no algorithm that

can determine the optimal route in this situation. A possible approach to both of these

situations is to identify a number of distinct routes that then, using some multiple criteria

decision making (MCDM) techniques, identify the best route. A common subset of the

problem to identify a multiple number of routes is the k-shortest path problem (K-SPP)

Two classes of the k-shortest path problems in static networks have been

investigated. In the first class, optimal paths are not allowed to contain loops. This class

of problems was studied by several authors including Bellman (1958), Fox (1975, 1978),

Lawler (1972, 1977), Minieka and Shier (1973), Perko (1986) and Yen (1971). In the

second class, paths may contain repeated nodes. Authors who studied the second class of

problems include Bellman (1958), Dreyfus (1969), Fox (1973), Hoffman and Pavley

(1959), and Lawler (1972). Minieka and Shier (1973) and Shier (1976, 1979) appear to

be the first who discovered and exploited algebraic structures that exist between the usual

shortest path and the k-shortest path problems. The formulation of the k-shortest path

problem in dynamic networks can be viewed as an adaptation of a static k-shortest

problem formulation in the time-expanded equivalent network representation of a

discrete-time dynamic network.

 23

2.3 Multi-Criteria Shortest Path Problem

The previous two sections have provided reviews of the traditional shortest and

K shortest path algorithms which are concerned with only one route attribute or travel

time. However, drivers consider a number of criteria when selecting routes, and may

have different preferences or utility functions when selecting a best route. It is therefore

necessary to take into account various route attributes and the drivers' preferences when

identifying an optimal route.

There is a rich source of literature on the multi-criteria shortest path problem

(MCSPP) in the operations research and management science areas. The existing

algorithms for the MCSPP may be classified into two groups. In general, the first group

generates all non-dominated paths while the second group focuses on the problem of

finding the optimal path based on the users' objectives.

The difficulty in solving the MCSPP may be attributed to the fact that there may

be no single optimal solution (i.e., path in this dissertation) that satisfies all objectives

simultaneously. If there were, the solution to the MCSPP would be very straightforward

because the best path would dominate all other paths in terms of all objectives. Due to

the non-existence of the overall best solution, a set of non-dominated paths or Pareto

optimal paths, from which the decision maker must select the most preferred or most

compromising solution, must be generated. The existing approaches for the MCSPP

without utility function are broadly classified into two, as follows and they are

summarized in Table 2.3.

 24

Table 2.3. Existing approaches for the MCSPP without a utility function

Approach Output Advantages

/disadvantages
Algorithms

Exact
approach

Generate all non-dominated
paths by

- modified label setting or
correcting algorithm

- k-shortest path algorithms

multiple
paths

• Exponentially
increasing number
of non-dominated
paths (NP-hard)

• Set contains
optimal path

Hansen (1980)
Martins (1984)
Henig (1985)
Corley and
Moon(1985)
etc.

Estimate the non-dominated
path set to some
predetermined degree of
accuracy using a scaling and
rounding technique

multiple
paths

Warburton
(1987)

Approxim
ation

Apply A* search technique multiple

paths

• Enhancing
computational
efficiency

• Set may not
contain optimal
path Stewart and

White (1989)

A traditionally employed methodology for the MCSPP would be to generate the

entire set of non-dominated paths. The exact algorithms for generating the entire set of

Pareto optimal paths may be classified based on their methods: 1) the labeling method

and 2) the k-shortest path algorithm or linear programming-based approach. Hansen

(1980), Henig (1994), and Sancho (1988) extended generic label setting shortest path

algorithms, such as Dijkstra's (1959), into a multiple-labeling scheme, while Loui (1983),

Corley and Moon (1985), and Brumbaugh-Smith and Shier (1989) extended general label

correcting algorithms such as Moore's (1957). Brumbaugh-Smith and Shier implemented

the labeling correcting algorithm in an artificial two-attribute network with varying size

and varying degree of correlation between the two artificial attributes. Bicriterion

algorithms of Climaco and Martins (1982) and Henig (1985) are based on the k-shortest

path algorithm. The algorithm first computes the fastest path and the cheapest path, and

computes the j-th cheapest paths until the cost of the j-th cheapest path is the same as the

 25

cost of the fastest path.

Aside from the above mentioned generic MCSPP, there have been relatively few

attempts to incorporate multiple criteria within route choice modeling for transportation

problems.

The review by Current and Marsh (1993) describes the various approaches quite

well. Multiobjective routing of hazardous material shipments is an important application

of such methods. The reviews by List et al. (1991) and Erkut and Verter (1995) provide

insight into hazmat applications, and more recent hazmat routing and scheduling efforts

(e.g., Nozick, List, and Turnquist 1997; Miller-Hooks and Mahmassani 1998b) have

begun to merge multiobjective routing with time-dependent and stochastic attributes.

Dial (1996) formulated a bicriterion user equilibrium assignment model based on

out of pocket costs and trip time based on the previous study which assumes a linear

utility function (i.e., weighting method). Blue et al. (1997) proposed an algorithm for the

MCSPP which considers two attributes: travel time and route complexity. The route

complexity is represented by turning maneuvers. The algorithm is based on the simple

weighting method and assumes that all members of a particular user class use the same

value of weight, under the assumption that the nonlinear utility function is known a priori.

Scott and Bernstein (1998)'s algorithm generates a set of Pareto optimal paths using a

CSPP and then identifies the best path by evaluating the utility values of the alternative

paths. It should be stressed that none of the existing MCSPP algorithms discussed above

are concerned with the route similarity in terms of links used, which is a critical aspect

for alternative paths from the drivers' point of view.

The generalization of the stochastic dynamic shortest path problem to multiple

 26

objectives, creating the multiobjective stochastic dynamic shortest-path (MSDSP)

problem, results in a problem that is very difficult to solve. To our knowledge, only two

studies, Turnquist (1987) and Miller-Hooks and Mahmassani (1998b), have been done on

the MSDSP problem. Both of these studies focus on applications to hazmat

transportation.

2.4 Stochastic Shortest Path Problem

In many transportation applications of the SPP, the travel time of each link is not

really fixed but is, in fact, a random variable. The problem of determining the optimal

path in this type of network is known as the stochastic shortest path problem (SSPP). The

uncertainty of the link travel times is an important factor to be modeled in ITS because

(1) there is an inherent uncertainty or randomness in link travel times, (2) the route

optimization is based on the link travel times forecasted over the multiple periods into

the future and, accordingly, the uncertainty is expected to increase as link arrival time

increases, and (3) travel time reliability or variance of a route is one of the crucial criteria

for route choice.

If the underlying network is assumed to be static (non-time-dependent), the link

travel times remain unchanged after they are revealed to the travelers. In a time-

dependent network, on the other hand, the travel time of every link at every time period

is an individual random variable, so travel times revealed at different time periods could

be different. The study of SSP problems in static networks is useful to the study of its

time-dependent counterpart.

Different types of stochastic shortest path problems have been considered with a

 27

different meaning for the optimal path. One of the most considered criterion for

determining the optimal path is one that maximizes the decision maker’s expected utility.

Such a criterion stems from the Von Neumann- Morgenstern formulation of how

preference judgments are made under uncertainty (Loui, 1983). Another good

definition of an optimal path is one that maximizes the probability that its length does not

exceed a pre-specified threshold value (Frank, 1969). The same criterion has also been

used by Henig (1990) for the stochastic knapsack problem. A closely related stochastic

shortest path problem involves chance constraints. An optimal path minimizes the

threshold value, while satisfying the constraint that the probability of the path length

exceeding this threshold value is at most, a pre-specified value α. Such a criteria was

considered by Henig (1990) for the knapsack problem, and by Ishii et al. (1981) for the

minimal spanning tree problem.

One possible way for computing the distribution of shortest length is by

formulating the problem as a stochastic linear program with random objective

coefficients. Bereanu (1966) and Eubank (1974) proposed methods for computing the

distribution of the optimal objective value when the coefficients are continuous random

variables. These methods require the evaluation of the probability that a given basis is

optimal. This is a task that requires a complicated partition of the state space of the

objective function. Frank (1969) and Sigal et al. (1980) presented exact methods, both of

which rely on the evaluation of multiple integrals. Because of the great complications

that arise in those evaluations, they suggested Monte-Carlo sampling. Kulkarni (1986)

presented an analytic method for the exact computation of the distribution of shortest

distance. It is based on a Markov process with an absorbing state when the arc lengths

 28

are independent and on exponentially distributed random variables. He constructed a

continuous time Markov chain with a single absorbing state from the original network.

Time until absorption in this absorbing state starting from the initial state is equal to the

length of the shortest path original network. Algorithms are also developed for

computing the probability that a given path is the shortest path in the network. This is for

computing the conditional distribution of the length of a path given that it is the shortest

path in the network.

 The issue of arcs being random plays an important role especially in

communication networks. Two computational tools are often important in the design and

analysis of the communication networks. One is the method to compute network

reliability and the other is the method to compute the response time of the system. By

reliability, it is meant the probability of connectivity between a given source and sink

node. By time response, it is meant the expected time delay that a message that

originates at the source node sustains before it reaches a sink node. Hansler (1972) has

proposed an interesting algorithm on the reliability of networks based on generating

mutually exclusive cut sets and calculating probabilities of related events. In the

literature dealing with reliability of networks (and also in the literature related to

switching circuits, communication networks, and traffic networks), there are many

methods that deal with various algorithms dealing with reliability of networks.

Mircandi (1976) analyzed the calculation of reliability of various emergency

networks. His approach starts with sorting all (s, t) paths and creating a disjoint

expression by comparing neighboring paths. This expression is then used for computing

the probability that there exists an (s, t) path of length less than or equal to a fixed value

 29

or the mean of the shortest path length.

Sigal et al.(1980) introduced the concept of path optimality index as a

performance measure for selecting a path in a stochastic network. A path optimality

index is defined as the probability of a given path being shorter than all other network

paths. Uniformly directed cutsets are introduced by them. It was further studied by

Adlakha (1986) and Kamburowski (1985). Also, Alexopoulos (1997), and Seok and

Pulat (2000) generated the probability distribution function of path travel times using

probability axioms, Markov Chains, or simulation and then selected the path with the

highest probability of being the shortest.

The theory of analyzing the stochastic shortest path problems, using the

Markovian decision problems, applies only when the arc costs are non negative or all non

positive. The deterministic theory of shortest path problems allows arc lengths that can

be negative, as well as positive. Bertsekas and Tsitsiklis (1991) provided an analysis of

the stochastic path problems that generalizes the known results of the deterministic

counterpart.

A factoring approach for the stochastic shortest path problem was suggested by

Hayhurst and Shier (1991). In their work, the authors assumed that the arc lengths are

discrete random variables assuming a finite number of non-negative integer values. Also,

the arc lengths are assumed to be statistically independent. Since the arc lengths assume

random length, the length of the shortest path is a random variable and the authors were

interested in finding the distribution of the arc lengths. The factoring approach is based

on the concept of structural factoring, in which a stochastic network is decomposed into

an equivalent set of smaller, generally less complex sub networks. Several networks are

 30

identified and exploited to significantly reduce the computational effort required to solve

a problem relative to complete enumeration. This algorithm can be applied to two

important classes of stochastic network problems. One is determining the critical path

length distribution for acyclic networks and the other, terminal reliability for probabilistic

networks.

Bard and Bennett (1991) developed heuristic methods involving Monte-Carlo

simulation to solve the stochastic shortest path problem with a general non-increasing

utility function. They showed that their heuristic was able to solve a large number of

randomly generated test problems, with sizes ranging from 20 to 60 nodes.

Corea and Kulkarni (1993) proposed a methodology for computing the

distribution of shortest length and criticality indices of paths. They assumed that the arc

lengths are integer-valued, replaced each arc with largest possible length m by a sub-

network with 2m arcs, and constructed Markovchains with absorbing state and binary

transition costs. The above measures are computed by evaluating the distribution of the

total cost incurred until absorption. Unfortunately, their construction limits the

applicability of the methods to problems of small size.

Cai, Kloks, and Wong (1996) studied the time varying shortest path problems

with constraints. They studied the problem in which the objective is to study the shortest

path subject with the constraint that the total traverse time is at most, some number T. In

this study, the authors addressed the situation where the transit time and the cost to

traverse an arc that is varying over time, and depending upon the departure time at the

beginning vertex of the arc. Waiting times at vertices are considered decision variables.

The problem is to find an optimal path as well as the optimal waiting times at the vertices

 31

along the path, subject to the constraint that the total traverse time of the path is, at most,

T. The authors tested the model for a variety of applications.

The literature shows a combination of stochastic network concepts with

interesting concepts of the utility functions. Murthy and Sarkar (1997) considered a

stochastic shortest path problem of determining a path that maximizes the expected

utility. The nature of the utility functions used to evaluate paths was of decreasing

deadline type. Algorithms based on pruning techniques were developed for this case. One

of the two algorithms makes use of the concept of local preference relations while the

other type makes use of the relaxations.

State Space Partitioning methods, developed by Alexopoulas (1997), examine

discrete arc random lengths. The method is used for developing computing measures for

shortest paths. The computation measures include the probability that a path exists where

the length doesn’t exceed a specified value and the probability that a given path is

shortest. These methods are based on an iterative partition of the network space and

provide bounds that improve after each iteration and eventually become equal to the

respective measure. These bounds can also be used for constructing simple variance

reducing Monte Carlo sampling plans, thus making the algorithm useful for large

problems. The algorithms can be easily modified to compute performance characteristics

in stochastic activity networks.

Andreatta and Romeo (1988) study the problem in a static network where the

topology is stochastic. A stochastic topology is defined by a deterministic set of nodes N

and a random set of links. Each possible topology has a positive probability. A random

link can be either active or not. When it is active, it is included in the network; when it is

 32

not active, it is removed from the network. The decision maker (DM) can learn whether a

link is active or not once he/she reaches the node from which the link emanates. The DM

can reroute once he/she finds out the next link is inactive. They prove four facts about a

stochastic shortest path that are different from those about a deterministic shortest path.

A stochastic dynamic programming formulation of the problem is provided, with the

definition of “information state” which reveals the active/inactive links of the network to

the decision maker so far and based on which, the recourse decision is made. It is pointed

out that the complexity of the algorithm can grow exponentially with the number of links.

Polychronopoulos and Tsitsiklis (1996) extend the work of Andreatta and

Romeo (1988). They study the problem both in networks with link travel times that are

correlated and in networks with independent link travel times. For the dependent case, a

joint distribution of link travel times is used to represent the stochastic network. We can

see that the stochastic topology in Andreatta and Romeo (1988) is actually one special

form of joint distribution of link travel times. It is assumed that the travel time

realizations of outgoing links of a given node are known and remembered by the traveler

once he/she arrives at this node, and the realizations remain unchanged afterwards. As

the traveler moves on the network from the origin to the destination, more link travel

time realizations are learned, and the network becomes closer to a deterministic one. The

concept of an information set is introduced to represent the traveler’s knowledge about

the network. An information set is composed of support points that are consistent with

the link travel times revealed so far. When the information set becomes a singleton, the

network becomes deterministic. A similar approach is designed for the independent case,

with changes in the manner in which the information set is defined. The algorithms,

 33

however, have exponential running times: the algorithm for the dependent case has a

running time exponential in the number of support points, and the algorithm for the

independent case exponential in the number of links. It is proved that the problem with

dependent link travel times is NP-complete, and that with independent link travel times is

NP-hard. Some heuristics are given and the relationships between results from heuristics

and exact algorithms are studied.

Cheung (1998) studies the problem with the same independent network

assumptions as those in Polychronopoulos and Tsitsiklis (1996), except with the

assumption that two visits to the same node result in two independent realizations of

outgoing link travel times. This assumption (which is termed as “reset” later by Provan

(2003)) actually makes ambiguous the statement that the network is static, as the same

link can take different travel times at different times, although the distribution is the same.

On the other hand, the reset assumption makes possible a simple recursive equation for

the expected minimum travel times. An approach that mimics the classical label-

correcting algorithm is presented. Computational tests are carried out to compare

different implementations of the label-correcting approach. Provan (2003) studies the

same problem as defined by Cheung (1998) with the extension that the link travel times

can be dependent. However, this relaxation from independent to dependent networks

does not make the problem harder. In fact, the reset assumption makes the term

“dependent” less clear, as one can never make inferences about travel times on links

other than those going out of the current node. The same recursive equation is presented,

but a polynomial-time algorithm is designed and its complexity analyzed.

The shortest path algorithms also have been found to be applicable to compute

 34

shortest paths in time-dependent (but not stochastic) networks (Dreyfus, 1969; Orda and

Rom, 1990; Kaufman and Smith, 1993; Ziliaskopoulos and Mahmassani, 1993; Chabini,

1997 and 1998).

Selection of minimum variance paths is studied by Frieze and Grimett (1985).

Sen et al (2001) present a parametric 0-1 quadratic programming approach to select a

path with the least mean-variance. A variance-constrained shortest path problem for

hazardous material transport had been dealt with earlier by Sivakumar and Batta (1994).

Sen et al (2001) proposed a mean-variance model for route selection assuming time

independence. They proposed a bicriteria network flow model where the objectives are to

minimize expected travel time (linear) and minimize variance of the total trip time

(quadratic). The variance-covariance matrix is assumed to be positive definite to avoid

cycles during the path selection process. A parametric approach is used to determine the

set of efficient solutions. For each parameter value, the optimal solution to the

continuous relaxation of the problem is determined. If the solution contains multiple

routes, the route with the least objective function value is selected. The method is not

difficult to implement and includes link dependencies.

2.5 Stochastic Time-Dependent Shortest Path Problems

In the stochastic time-dependent shortest path problem (STDSPP), the link travel

times are time varying random variables and are modeled using probability density

functions and time-dependency.

Hall (1986) proposed an approach combining branch-and-bound and k-shortest

paths techniques for determining the least expected time path in a stochastic time-

 35

dependent network where the path is chosen a priori. The algorithm required that the

expected times and least possible times be calculated for each path; however, no

procedure was given for calculating these values. There is no guarantee that the

algorithm will terminate before all paths have been evaluated. A heuristic method was

suggested in Kaufman and Smith (1993) for improving the computational time of this

procedure. They generalized the rules for the use of LS algorithms for TDSP problems

by including the stochastic case. They prescribed the use of expected values instead of

deterministic values and showed that under the consistency assumption, one may obtain

results similar to the deterministic case.

Psaraftis and Tsitsiklis (1993) considered optimal policies for determining the

least expected cost path between an origin and destination in an acyclic, dynamic and

stochastic network. The cost of traveling on arcs, leaving each node, is associated with a

finite-state Markov process, which varies randomly, but independently, of the states of

the other nodes of the network and is known only upon arrival. Waiting is permitted.

Koutsopoulos and Xu (1993) have shown that time-dependent link delays can be

modeled as a Markov process.

Fu and Rilett (1998) conducted the first study which explicitly estimated route

mean travel time and variance based on link information typically available in

transportation networks. Using a Taylor series expansion, they proposed first and second

order route mean travel time and variance approximation algorithms. Subsequently,

they developed a heuristic approach to determine the expected shortest path. Instead of

enumerating all the possible paths, the heuristic algorithm generates multiple numbers of

paths using traditional k shortest path algorithm, and identifies a path with a minimum

 36

expected route travel time among them. The tradeoff between the number of paths

considered and the probability of finding the optimal solution were analyzed.

Miller-Hooks and Mahmassani (1998) proposed two efficient procedures to

determine the least possible travel time paths from all origins to a single destination in

networks where the link travel times are independent, discrete, time-dependent random

variables that are permitted to operate under non-FIFO conditions. The first algorithm

determines the least possible time path from each node to a destination node for each

departure time in the time period and a lower bound on the associated probability of the

occurrence of this travel time. The second algorithm determines up to k least possible

time paths, the associated travel times, and the corresponding probability of occurrence

of the travel times. Both algorithms are an extension of the label correcting-based SPP.

The authors proposed several algorithms for determining a priori paths in STD networks

that employ such path-comparison techniques. In a subsequent study, Miller-Hooks and

Mahmassani (2000) investigated the all-to-one variant of the problem. They presented

two specialized modified label correcting algorithms for the problem of generating least

expected time paths in stochastic time dependent networks. First, the expected value

algorithm was presented for generating all a priori least expected time paths with

associated expected times from all origins to a single destination for each departure time.

Second, the expected lower bound algorithm was presented as an efficient procedure for

determining lower bounds on the expected times of the least expected time paths without

any associated path information. Miller-Hooks (2001) presented a specialized label-

setting algorithm, the stochastic decreasing order of time algorithm, for determining the

adaptive least expected time hyperpaths in stochastic time dependent networks. The

 37

author compared the performance of both label-correcting (expected lower bound)

algorithms and label-setting algorithms. The results showed that the expected lower

bound algorithm performed better on average than predicted by worst-case complexity.

Chabini (2001) developed an efficient solution algorithm based on the concept of

the decreasing order of time for stochastic networks. This algorithm extends the

decreasing order of time algorithm developed by Chabini (1997). His algorithm was

shown to be computationally efficient both in theory and in practice. Gao and Chabini

(2001) specified the best routing policy based on the availability of information access

defining which arc travel time realizations are available to the travelers at any given time

and node. They performed four different approximations techniques: (1) the certainty

equivalent approximation, (2) the no-information approximation, (3) the open loop

feedback certainty equivalent approximation, and (4) the open loop feedback with no-

information approximation. There was a trade-off between effectiveness and efficiency

for all approximations. They could have satisfactory running times, but their results

could be arbitrarily worse in absolute value than those obtained by running the exact

algorithm. The computational tests studied the relationship between some parameters and

the performance of approximations.

 38

Chapter 3. Background and Framework

In deterministic networks, the least time path is defined simply and explicitly.

However the nature and complexity of the least time path is different for a stochastic network.

In this chapter, several key concepts of stochastic, time-dependent networks are described.

These concepts are critical to the development of the algorithms presented in Chapter 4 and 5.

The first two sections of this chapter, notations and some of the concepts of stochastic time-

dependent networks are described. In section 3.3, the basis for selecting one path over another,

when the path’s travel times are random variables with probability distribution functions that

vary with time is discussed.

3.1 Notation for Stochastic Time dependent Networks

Let G = (N, A, T, TI, P) be a directed graph where N is the set of nodes, |N|=n,

and A is the set of arcs, |A|=m. It is assumed that the travel times along the arcs are

represented by discrete random variables whose distribution functions are time-

dependent during the period of interest, t0 < t < t0+ (I)δ, referred to as the "peak period",

and are stationary any time thereafter, t > t0+ (I)δ. This formulation can be generalized

to travel times with continuous distributions. The network is considered at a set T of

discrete times {t0+ nδ}, where n is an integer, n = 0, 1,..., I, and δ is the smallest

increment of time over which a perceptible change in the travel time distributions will

occur for t∈T.

 39

For each departure time t∈T and each arc (i, j)∈A, the set TI(t) of non-negative real

valued possible travel times)(tk
ijτ for traversing the arc at a given time t is given, k=l,..., Kij(t),

where Kij(t) is the number of distinct travel time values on arc (i, j) possible at time t. Travel

time)(tk
ijτ occurs with the probability)(tp k

ij , where)()(tPtp k
ij ∈ t and

∑
=

∈∀=
)(

1
,1)(

tK

k

k
ij

ij

Tttp

It is assumed that)()(0 δττ Itt k
ij

k
ij += and)(,....,1)()(0 tKkItptp ij

k
ij

k
ij =∀+= δ and (i,j)

∈A for all t occurring after the peak period, i.e.∀ t > t0 + Iδ. The set of travel times and the

corresponding set of probabilities with which each travel time will occur, (TI, P), are assumed

to be given.

The arc travel time probability distribution functions are assumed to be

independent across arcs and over time and no waiting is permitted at any intermediate

node. The network is assumed to be non-FIFO. Such a network is referred to as a

stochastic, time-dependent network. This stochastic, time-dependent network definition

is an expansion of the deterministic, time-dependent network described by

Ziliaskopoulos and Mahmassani (1993).

This dissertation addresses the problem of determining "preferred" paths ∀i∈N to

a given destination, d, for each t∈T in stochastic, time-dependent networks. While this

problem has some of the same elements as the problem of determining least time paths in

deterministic, time-dependent networks, where the arc travel times change dynamically

 40

over time, but occur with probability-one in a given time interval, the added dimension

of stochasticity dramatically increases the difficulty of the problem.

3.2 Definitions for Stochastic, Time-Dependent Networks

3.2.1 The Space-Time Expansion

 It is common to represent dynamic problems by space-time networks (Powell,

Jaillet and Odoni, 1995). Consider a street network where the arc travel times are

deterministic, dynamic quantities. If this network is graphically represented without

incorporating time as a dimension, the graph, G. will consist of a set of nodes that represent

intersections, and a set of arcs, that represent the streets. A vector of travel times (or some

measure of cost) is associated with every link. This vector represents travel time for the

given departure time. An example network is shown in Figure 3.1 where the arc travel times are

given by row vectors and time moves from 0, increasing to the right in constant increments of

time. It is assumed that the travel times are given in the units of these time increments.

Time (t) 0 1 2 3

Arc a-b 2 3 1 3

Arc b-c 3 1 2 5

Figure 3.1. Deterministic time-dependent network G

This network is expanded to a space-time representation G', where time increases

from left to right and each node of G' corresponds to a node in G at a given departure time.

This graphical representation can be extended for use in dynamic networks with stochastic arc

 41

weights. Since there may be more than one possible travel time for each departure time from

a node in a stochastic network, several arcs may originate from each space-time node. However

a deterministic network can have only one arc originating from each space time node. If the arc

weights are continuous random variables, then an infinite number of arcs may emanate from

each space-time node.

Figure 3.2. Space-time expansion of G: G’

 Arc a-b Arc b-c
Time (t) 0 1 0 1 2
 1 (0.4) 1 (1.0) 1 (0.5) 2 (0.3) 2 (0.1)
 2 (0.6) 3 (0.5) 4 (0.7) 3 (0.5)
 4 (0.4)

Figure 3.3. Stochastic, time-dependent network E

 42

Consider the network of Figure 3.3, with discrete random arc times whose

probability mass functions (PMF) vary with time. For each arc, for the given departure

time t, the travel times with positive probability are given. For example, for departure

time 1 from node b, arc (b, c) will have a travel time of two units with the probability 0.3. In

the figure, the PMF’s for each arc are shown at only a few time intervals, for clarity. The space-

time expansion of this network is shown in Figure 3.4, where the arcs have weights

corresponding to the associated probability of occurrence.

Figure 3.4. Time-Space network of E: E’

If the arc travel times are independent, the probability of each arrival time at node c is

determined from the multiplication of the probabilities associated with the appropriate arcs of E'.

 43

For example, the probability of arriving at node c at time 3, if one leaves from node a at time

0, is 0.4*0.3=0.12. Similarly, the probability of arriving at node c at time 4, if one leaves

from node a at time 0, is 0.6*0.1=0.06. In the same way, the probability of arriving at node

c at time 5, if one leaves from node a at time 0 is (0.28 + 0.30) = 0.58. The network in Figure

3.3 is trivial in that only one topological path exists between nodes a and c; however, if more

than one path were possible, the path with the least possible travel time could be identified

directly from the graph, E'.

3.2.2 The Parameters for Path Selection

The selection of a single "best compromise" path from the set of non-dominated least

time paths ultimately depends on the decision-maker's preferences, and is likely to be

situation-specific. For instance, a risk-averse decision-maker may choose the path that has the

smallest probability of being the longest. On the other hand, a risk seeker may choose the path

with the highest probability of being the shortest. Typically, the decision-maker considers

certain trade-offs, between expected travel time and variance. In opting to get the better in

travel time a decision maker has to compromise in variance. Several measures can be

considered for selecting the best-compromise solution for a given situation. The list hereafter

is by no means all inclusive, and is intended to present some examples of the logic and

preferential basis that a decision-maker employs in order to select one path over another.

Let)(tLh
i be the travel time random variable of the hth non-dominated path from node i

to the destination for departure time t, with the cumulative distribution function F()(tLh
i).

Let t
ip be the set of non-dominated paths from the node at departure time t. The

following measures may be considered individually or jointly in the selection among non-

 44

dominated paths:

Least Expected Value

Select the path for which E[)(tLh
i], h∈ t

ip , is minimized. Although the expected

value is a commonly used measure, it may not be the most appropriate for many

applications. If the application involves a single or only a few trials, other measures

may provide more appropriate criteria for path selection.

Least Variance

Variance is often used as a replacement for risk: Var[)(tLh
i], h∈ t

ip .

Smallest probability of being longest

Selecting the path with the smallest probability of being longest may be appropriate

for the risk-averse decision-makers. Choose the path t
iph∈ that minimizes

{ }tig
i

h
i phgtLtL ∈≠∀≥),()(Pr . Note that this measure does not preclude the

possibility that the path may be very long.

Largest probability of being shortest

The truck dispatcher may wish to select the path t
iph∈ that maximizes

{ }tig
i

h
i phgtLtL ∈≠∀<),()(Pr . Again, such a path may have some probability of

being very long. These measures can be used as criteria to select the best-compromise

path.

3.2.3 Expectation and Paths

The expected value criterion is of particular interest because it can be used to reduce

stochastic to a deterministic problem. This can eliminate many complexities associated with

 45

comparing random variables. Although the expected value is a commonly used measure, it

may not be appropriate in all situations. If the probability that a path will take a certain length

is interpreted as a long-run relative frequency, then the expected value for the random variable

is defined for an infinitely large number of repetitions (Kalbfleisch, 1985). That is, if a vehicle

travels over the path with the least expected travel time many times, then in the long run, the

average travel time over all the trips will be shorter than had another path been selected for

repeated traversal. Depending on the application, this long-run minimum path may or may not

be appropriate. If the application involves a single or only a few trials, other measures may

provide more appropriate criteria for path selection.

A closely related measure with very different implications is the least expected travel

time through a stochastic network. This can be determined by computing the sum of the

arc costs on the least costs path for every realization of the network state weighted by the

probability of such a realization. A similar method can be used to determine the pmf of the

minimum travel time. This is most useful if one is interested in finding the expected arrival

time, or the pmf of the minimum travel time, of a vehicle in a transportation network, or a packet

in a communication network, to a destination node given that the shortest path at the time of

departure will be selected. In a reliability framework, Mirchandani (1976) shows that the original

stochastic network can be transformed to an "emergency equivalent network" from which

the expected least travel time through the network can be computed. See (Hagstrom,

1990) for related work on this problem.

The following example illustrates the difference between determining the least

expected travel time through a network and the expected time of the least expected travel

time path.

 46

Figure 3.5. A stochastic network

From Table 3.1, the probability mass function of the minimum travel time between nodes 1 and 3

of the network in Figure 3.5 is (4, 6, 7) with the corresponding probability of occurrence of

(0.28, 0.54, 0.18), respectively. The expected least travel time from node 1 to node 3 is 5.62

units of time, determined directly from the pmf of the minimum travel time. If the arc travel

time random variable is set to its expected value, the expected travel time on the least expected

time path is 6.1 units of time, as shown in Figure 3.6:

Table 3.1. Determining expected least time through network of Figure 3.5

Arc (1,2)

Arc (2,3)

Path
1-2-3

Arc (1,3)

Least
Path

Travel
Time

Prob

Travel
Time

Prob

Travel
Time

Travel
Time

Prob

Travel
Time

Prob of
Realization

2 0.4 2 0.7 4 6 0.4 4 0.112
4 0.6 2 0.7 6 6 0.4 6 0.168
2 0.4 5 0.3 7 6 0.4 6 0.048
4 0.6 5 0.3 9 6 0.4 6 0.072
2 0.4 2 0.7 4 7 0,6 4 0.170
4 0.6 2 0.7 6 7 0.6 6 0.252
2 0.4 5 0.3 7 7 0.6 7 0.072
4 0.6 5 0.3 9 7 0.6 7 0.108

 Expected least travel time = 5.62

 47

Figure 3.6. Expected arc travel time

The expected time of the least expected time path provides an upper bound on the

expected least travel time through the network. Likewise, the expected least travel time

through the network is a lower bound on the expected travel time of the least expected

time path. The expected least travel time through the network is not necessarily the

expected travel time on any particular path, nor is it necessarily a feasible travel time on

any path.

For certain applications, such as routing messages between nodes in a

communication network, the pmf or expectation of the minimum time between the two

nodes of a network may be required. However, neither measure provides path

information as these times come from the composition of more than one path. Some

applications, on the other hand, require actual path information and thus, these bounds

would be insufficient.

In a network where the arc times are random variables with time-independent

pmfs, one can simply set the random travel times to their expected values and apply a

deterministic shortest path algorithm to determine the path with the least expected travel

time, i.e., the path with lowest sum of constituent expected arc times, as shown in the

previous example. However, in a time-dependent, stochastic network, the least expected

time (cost) path can no longer be determined by setting each arc time to its expected

 48

travel time and solving the equivalent deterministic problem {Hall, 1986), because the

travel time on an arc now depends on the time of arrival at its origin node. This is further

explained in Proposition 3.1.

Proposition 3.1. In a network with random arc travel times with time varying pmf’s, the

least expected time path cannot be determined by setting each arc time random variable

to its expected value and solving an equivalent deterministic, time-dependent problem.

Proof. Assume that time can be discretized into small time intervals. Within each time

interval, the pmf’s of the arc travel time random variables are assumed to be constant and

the travel times are given in multiples of these time intervals. The proof proceeds by

counter example.

Suppose a network is given with discrete probability mass functions of the travel

limes at departure times, 5, as shown in Figure 3.7. For departure time 0, the expected

travel time on path a-b-c can be calculated.

Figure 3.7. Example network with time-dependent pmf

Assume that each arc travel time random variable can be replaced by its expected

value. Then the expected travel time on arcs a-b and b-c is 5.2 and 7 units of time,

respectively, and the expected path length is 12.2 time units.

 49

Instead of replacing each arc travel time random variable with its expected value,

the expectation can be calculated directly. Thus, a vehicle departing node a at time zero

can arrive at node b at either time 4 or time 7. Assuming that no waiting is permitted at

node b, the vehicle must leave immediately upon arrival. If arrival at node b is at time 4

then the travel time on path a-b-c is 8 units of time with the probability 0.30 or 9 with the

probability 0.18, or 10 with the probability 0.12. If arrival at node b is at time 7, then the

path length for a-b-c is 15 and 17 units with probabilities 0.24 and 0.16 respectively.

Thus the expected travel time on path a-b-c, given the departure time from node a at time

zero, is:

(8 x 0.30)+ (9 x 0.18)+ (10 x 0.12)+ (15 x 0.24)+(17 x0.16)= 11.54

And hence, there is no guarantee that the expected travel time on a path in a stochastic,

time-dependent network can be calculated by setting each arc travel time random

variable to its expected value and solving an equivalent deterministic, time-dependent

problem.

3.3 Path Comparisons for Stochastic, Time-Dependent
Networks

The concepts and methodology required for this comparison depend on the

decision process along the path and information availability. If the entire path is specified

before traveling begins, and no deviations en route are permitted, the non-dominated

paths are selected a priori on the basis of only the time-varying probability distribution

functions of the arc travel times. This is referred to as a priori path selection. Paths with

lower actual travel times may be determined by allowing decisions at intermediate nodes,

 50

given that the additional information on the actual (revealed) arrival times is given at the

intermediate nodes. Some of the paths determined a priori may never be "best" in this

context, and therefore could be eliminated. Strict-comparison rules are presented for

determining non-dominated paths where such decisions at intermediate nodes are

permitted.

3.3.1 Criteria for A Priori Path Comparisons

Three criteria for comparing two paths at a single time interval are explored in this

section: deterministic dominance, stochastic dominance and comparison via expected value.

First consider two non-overlapping paths (paths that do not topologically share any arcs)

between a given origin and destination at a given departure time. Because it is assumed that

arc travel times are independent, the paths' travel times are independent. Let the two random

variables x1 and x2, with distribution functions t)(
1xF and t)(

2xF , denote the respective

travel times on the two paths for the given departure time t. Comparing these paths is similar

to comparing the two distribution functions t)(
1xF and t)(

2xF . If the travel time along one

path is at least as short as the other path for all possible realizations of the two paths and is

shorter than the other for at least one realization, then this path is said to exhibit deterministic

dominance (see Figures 3.8.a and 3.8.b where Path 1 deterministically dominates Path 2) for

that time interval. If, on the other hand, neither path deterministically dominates the other

path for this time interval, i.e. each path has some probability of being shorter than the other,

then both paths are non-dominated, or efficient for this time interval. Likewise, a path that is

deterministically dominated is called non-optimal, dominated or inefficient.

 51

Figure 3.8.a. Path 1 deterministically dominates Path 2 at timt

as seen by the non-overlapping density
functions

Figure 3.8.a. Path 1 deterministically dominates Path 2 at time t

as seen by the distribution functions

 Consider now two paths (between the same origin and destination) that

topologically share one or more arcs. In a time-invariant network, the path travel times

are no longer independent of one another. In a time-varying network, travel time (for the

same departure time from the origin) on paths that topologically share an arc may still be

independent if the arcs are not used at the same time intervals (under our assumption of

the independence of arc travel times across time intervals).

It is incorrect to directly compare the distribution functions of two over-lapping

paths via deterministic dominance because certain joint realizations of the respective path

travel times may be impossible as they would imply different travel time values to hold

simultaneously on the same shared arc(s). The following is a simple example in the

stochastic network shown in Figure 3.9.

 52

Figure 3.9. The over-lapping paths 1-2-3-4 and 1-2-4 share arc (1, 2)

Consider the probability mass functions for arc (1,2) and for subpaths 2-3-4 and 2-4

given in Table 3.2.

Table 3.2. PMFs of arcs and subpaths in Figure 3.9

Travel time (probability)

Arc 1-2 Subpath 2-3-4 Subpath 2-4
2 (0.5)

5 (0.5)

2 (0.2)

3 (0.5)

5 (0.3)

6 (0.5)

7 (0.3)

8 (0.2)

From the pmfs of the subpaths 2-3-4 and 2-4, any realization of subpath 2-3-4 is

better than subpath 2-4. For any realization of arc (1,2), path 1-2-3-4 dominates path 1-2-4.

Now consider the marginal (unconditional) pmfs of paths 1-2-3-4 and 1-2-4, given in Table

3.3.

Table 3.3. Unconditional pmfs of paths in Figure 3.9

Travel time (probability)

Path 1-2-3-4 Path 1-2-4
4 (0.10)

5 (0.25)

7 (0.25)

8 (0.25)

10 (0.15)

8 (0.25)

9 (0.15)

10 (0.10)

11 (0.25)

12 (0.15)

13 (0.10)

 53

From the pmfs of the two paths, it appears that neither path dominates the other. Because

travel time on path 1-2-4 could be 8 minutes, and path 1-2-3-4 could have a travel time of 8

minutes, it may be incorrectly concluded that there is some probability that path 1-2-4 will

be better than path 1-2-3-4. In fact, there is zero probability of a joint realization of the

respective path travel times where path 1-2-4 is better than 1-2-3-4. Path 1-2-4 can take 9

minutes only if arc (1, 2) takes 2 minutes, while path 1-2-3-4 can take 10 minutes only if arc

(1,2) takes 8 minutes. A joint realization where path 1-2-4 is better than path 1-2-3-4 would

require the travel time on arc (1, 2) to assume a value of 2 minutes and 5 minutes

simultaneously, an impossible event under the assumptions of this problem. Therefore, it is

not sufficient to simply compare the marginal distribution functions of two paths that share

arcs in order to determine if deterministic dominance exists

Graphically, in Figure 3.10, Path 1 stochastically dominates Path 2 for a given

time interval.

F(x/t)

0 x

F1(x/t) F2(x/t)

Figure 3.10. Path 1 stochastically dominates Path 2 at time t as seen

by the non-intersecting distribution functions

Unlike deterministic dominance, stochastic dominance is established using full

information from the distribution functions of the two paths. Even if the paths share one

or more arcs, stochastic dominance between two paths can be established without

 54

conditioning on the travel times of the shared arcs because, unlike deterministic

dominance, path travel time realizations are not used to compare the path travel time

distribution functions.

Consider the example network in Figure 3.11 to illustrate the above argument.

Figure 3.11. Example network

Table 3.4. Travel time pmf’s for Figure 3.11

Arc a Arc b Arc c

t=0 t=1 t=2 t=1 t=2

1(0.5) 3(0.4) 5(0.5) 3(0.38) 5(0.48)

2(0.5) 4(0.6) 6(0.5) 4(0.62) 6(0.52)

Arc b stochastically dominates arc c at both departure time 1 and 2 (the possible time at

node 2). The paths’ cdfs are determined and given in Table 3.5:

Table 3.5. Travel time cdf’s of path ab and ac at

departure time t=0 (cumulative probability)

Path ab

t=0

Path ac

t=0

4 (0.2) 4 (0.19)

5 (0.5) 5 (0.50)

7 (0.75) 7 (0.74)

8 (1.0) 8 (1.0)

Path ab dominates path ac. There is no need to condition on the travel times of shared arc

 55

a (at common departure time 0) because stochastic dominance is maintained when the

path travel times cdf’s are constructed using a shared arc.

Comparing two paths by their expected travel times is simply the comparison of

two deterministic values. Let E[X1(t)] be the expected time of the random variable for the

travel time on Path 1, for departure time t; similarly for E[x2(t)]. Then if E[X1(t)] <

E[x2(t)], then Path 1 has a lower expected time than Path 2 at time interval t.

Deterministic dominance, stochastic dominance and comparison based on

expected value are related as follows. By definition, deterministic dominance implies

stochastic dominance, and stochastic dominance implies a lower expected value of the

dominating path.

For a given departure time t,

Figure 3.12. Three dominance criteria

3.3.2 Path Comparisons between Multiple Paths over A Time Period

When several paths exist between a pair of nodes, one or more of these paths

Path 1 deterministically dominates Path2
)()()()(min

2
max
1 tTtxtTtx ijij <

Path 1 stochastically dominates Path2
xtFtF xx ∀≥)()(

21 and
xtFtF xx ∃>)()(

21

)]([)]([21 txEtxE <

 56

may be dominated by at least one other path for every time interval in the period but by

no single path for all time intervals. In any paired comparison of these paths, such a path

will not be dominated. Dominance established by paired comparisons is referred to as

pair-wise dominance. Pair-wise dominance applied to deterministic dominance,

stochastic dominance and comparison via expected value is referred to as deterministic

pair-wise dominance, stochastic pair-wise dominance, and expected value pair-wise

dominance, respectively. For some applications, paths that are dominated by at least one

other path for every time interval in the period are poorer paths (they will never be

selected), even if they are non-dominated for every pairwise comparison. In this case,

dominance can be determined by pairwise path comparisons at each time interval

individually, referred to as group dominance. Here a dominated path is one that is

dominated at each time interval in the period by at least one other path. By definition, the

paths that are non-dominated by group dominance are all non-dominated by pairwise

dominance. Deterministic group dominance, stochastic group dominance and expected

value group dominance refer to dominance that is established by group comparisons for

each time interval in the period by deterministic dominance, stochastic dominance and

comparison via expected value, respectively. When multiple paths are compared over a

time period, non-dominated optimal conditions based on group dominance will eliminate

at least as many paths as conditions based on pairwise dominance.

An example is given next to illustrate the use of these dominance concepts for the

comparison of three independent paths. The path travel times that have nonzero

probability of occurring for each departure time in the peak period are shown in Table

3.6.

 57

Table 3.6. Possible path travel times at time intervals 1 and 2

Path A Path B Path C

Time 1 Time 2 Time 1 Time 2 Time 1 Time 2
4

5

5

9

6

7

8

7

3

6

4

6

Figure 3.13. Path comparisons at time 1 and 2

It is seen from the Figure 3.13 that Path A deterministically dominates Path B at

time interval 1 but that neither path deterministically dominates the other at time interval

2. Likewise, Path C deterministically dominates Path B at time interval 2 but neither path

deterministically dominates the other at time interval 1. Thus, Path B is not dominated by

Path A nor by Path C in both time intervals, but Path B is dominated in each time interval

by one of either Path A or C. Considering all possible realizations of these paths for each

time interval, it is seen in Tables 3.7.a and 3.7.b that Path B is never the least time path

for any realization.

0

2

4

6

8

10

Path A Path B Path C

 Time 1

Tr
av

el
 T

im
e

0

2

4

6

8

10

Path A Path B Path C

 Time 2

Tr
av

el
 ti

m
e

 58

Table 3.7.a. Possible realizations for time interval 1

Realization Path A Path B Path C Best Path

1 4 6 3 C
2 4 6 6 A
3 4 7 3 C
4 4 7 6 A
5 5 6 3 C
6 5 6 6 A
7 5 7 3 C
8 5 7 6 A

Table 3.7.b. Possible realizations for time interval 2

Realization Path A Path B Path C Best Path

1 5 8 4 C
2 5 8 6 A
3 5 9 4 C
4 5 7 6 A
5 9 7 4 C
6 9 7 6 C
7 9 7 4 C
8 9 7 6 C

As illustrated in this example, a path that is not deterministically dominated by a single

path over the entire time period, but is dominated at every time interval in the time period

by at least one path, has zero probability of being the least time path for any realization

of the network. Group dominance would eliminate those paths that have zero probability

of being the least time paths for any realization. However, it is shown in Propositions 3.2

that group dominance is not sufficient for determining all non-dominated paths for a

priori path selection, because some non-dominated paths may be incorrectly eliminated.

 59

Proposition 3.2. Expected value group dominance is not sufficient for determining all

least expected time paths in stochastic, time-dependent networks for a priori route

selection.

Proof. (by counter example)

Assume that group dominance is sufficient to determine the least expected time path for a

given departure time. For this given departure time, no dominated path can have a lower

expected time than the nondominated path selected. A counterexample given in Figure

3.14 shows that it is possible that, for a given departure time, the least expected time path

will be dominated if group dominance is permitted.

Figure 3.14. Example network

Table 3.8. Table of pmf s of travel times in Figure 3.14.

Arc a Arc b Arc c Arc d

t=0 t=l t=3 t=l t=3 t=l t=3

1 0.5 4 0.6 5 0.4 4 1 9 1 8 0.7 3 1
3 0.5 6 0.4 7 0.6 12 0.3

From Table 3.8, the expected travel times of all paths from node 1 to node 3 at departure

 60

time 0 are:

E[ab]t=0=(1+4)*(0.5*0.6)+(1+6)*(0.5*0.4)+(3+5)*(0.5*0.4)+(3+7)*(0.5*0.6)=7.5 min

E[ac]t=0 = (1+4)*0.5+(3+9)*0.5=8.5 min

E[ad]t=0 = (1+8)*(0.5*0.7)+(1+12)*(0.5*0.3)+(3+3)*0.5=8.1 min.

The least expected time path from node 1 uses the path with constituent arcs a and b,

Path ab. If group dominance is used then the path from node 2 to 3 with constituent arc b,

Path b, would be eliminated because:

E[b]t=1 = 4*0.6+6*0.4=4.8 minutes

E[b]t=3 = 5*0.4+7*0.6=6.2 minutes

E[c]t=1 = 4.0 minutes

E[c]t=3 = 9.0 minutes

E[d]t=1 = 8*0.7+12*0.3=9.2 minutes

E[d]t=3 = 3.0 minutes.

Figure 3.15. Arc travel time comparisons at time 1 and 3

Path c has a lower expected time than Path b at time interval 1 but not at time

interval 2 and Path d has a lower expected time than Path b at time interval 3 but not at

0

2

4

6

8

10

E[b] E[c] E[d]

Time 1

Tr
av

el
 ti

m
e

0

2

4

6

8

10

E[b] E[c] E[d]

Time 3

Tr
av

el
 ti

m
e

 61

time interval 1. Thus, no path dominates Path b at both time intervals but Path b is

dominated by some path at every time interval. Path b would be omitted from the set of

solutions at node 2 and Path ab would be dominated, hence, omitting the least expected

time path from the final solution. Therefore, expected value group dominance is not

sufficient for determining least expected time paths.

In a priori path selection the entire route is selected before leaving the origin

node. No deviations en route are permitted. Since the arc travel times are random

variables, their actual values do not become known until travel along the arc has been

completed. A better path can then be selected with this revealed information, referred to

by Hall (1986) as "time-adaptive route choice." A similar concept arises in solving the

transit equilibrium assignment problem where transit users have a set of strategies for

determining which route to take in light of intermediate information, such as the bus

arrival times at transfer points (Nguyen and Pallottino, 1988; Spiess and Florian, 1989;

Wu and Florian, 1993; Wu et al., 1994). Such strategies can be represented by an acyclic

subnetwork, called a hyperpath, that includes the arcs corresponding to these strategies

with their associated conditional probabilities of being selected (Nguyen and Pallottino,

1986, 1988). In the context of time-adaptive route selection in stochastic, time-dependent

networks, for each departure time interval, the set of optimal (for least expected time)

strategies for selecting the best path between a pair of nodes can be depicted as a

hyperpath where the conditional probabilities associated with the arcs may be replaced

by conditional expected travel times or conditional travel time probability distribution

functions for each departure time interval.

Using the example in the proof of Proposition 3.2, it is shown that for a given

 62

departure time interval, the least expected time paths for a priori path selection are not

necessarily the paths with the least expected time in a time-adaptive route choice

framework. Consider the expected time on each Path ab, ac and ad, at departure time 0

from node 1. For departure time 0, the path with the least expected time of 7.5 minutes is

ab. However, for any possible travel time on arc a, and thus, any possible arrival time at

node 2, arc b is never on the least expected time path:

E[ab/a=1] = 5.8 minutes and E[ab/a=3] = 9.2 minutes

E[ac/a=1] = 5 minutes and E[ac/a=3] = 12 minutes

E[ad/a=1] = 10.2 minutes and E[ad/a=3] = 6.0 minutes.

For the example problem, for departure time 0 from node 1, the least expected

time path is Path ac if the driver arrives at node 2 in departure time interval 1 and it is

Path ad if the driver arrives there in departure time interval 2. Path ab, the a priori least

expected time path for departure time 0, is not the least expected time path when the

driver is permitted to react to the actual (revealed) arrival time at node 2. By group

dominance the a priori least expected time paths that contain subpaths to the destination

node that are never the least expected time subpaths for any possible arrival times are

eliminated. For each departure time interval, the set of optimal strategies with the

associated conditional expected values or pdf’s, respectively, be identified from this

reduced set of paths.

3.4 Conclusions

In this chapter, concepts and path selection criteria are described for networks

where arc times are random variables with time-dependent probability distribution

 63

functions. In the next chapter, procedures based on the concepts of expected value

dominance described in this chapter are presented for determining non-dominated least

expected time paths in stochastic, time-dependent networks.

 64

Chapter 4. A Priori Minimum Variance and Mean-Variance
Path in Stochastic Time-Dependent Networks

In this chapter, the algorithm for determining a minimum variance travel time

path in a stochastic time dependent networks for a priori path selection are presented. In

section 4.1, we present additional notation for stochastic time dependent networks. The

notation of this subsection complements the notation given in subsection 3.1. A

mathematical formulation for the problem of computing minimum expected travel time

and variance travel time from all nodes to a given destination node d were described in

section 4.2 and 4.3. In section 4.4 and 4.5, procedures, referred to as the PMV and

PMMV algorithms, are presented for determining a priori minimum variance path and

minimum mean-variance path from all nodes to a given destination node for all time

intervals. Concluding remarks are given in Section 4.6.

4.1 Additional Notation for Stochastic Time-Dependent
Networks

Assume that link travel times are discrete random variables with time-dependent

mass probability functions. We assume independence across the arcs and time of all

random variables.)(tTij denotes the discrete random variables corresponding to the

travel time of link (i, j) at time t. The function)(),(tpt k
ij

k
ijτ denotes the probability mass

function corresponding to the random variable)(tTij , where)(tkij denotes the number

of distinct possible values for)(tTij and { })(...,,2,1 tkk ij∈ . The probability that

 65

)(tTij takes the value)(tk
ijτ is)(tpk

ij . The maximum range of)(tkij , over (i, j, t) is

denoted by R. We assume that all possible link travel times are strictly positive and finite.

In order to ensure the representation of all time-dependent network data within a

finite computer memory, we impose the common restriction that all such data is only

specified within the finite time window t ∈ {0, 1, 2, ..., M}. This window must be made

large enough to capture any relevant time-dependency in link travel time data in a real-

world application. For times after the time horizon, M, all link travel times are assumed

to be static and equal to the value they are assumed at time M; that is,

)()(MMt k
ij

k
ij ττ =≥ and)()(MpMtp k

ij
k
ij =≥ .

In the algorithm of this section, since link travel times are assumed to be positive,

negative-cost cycles may not arise in the dynamic region of time, corresponding to t<M.

They may however arise in the static region of time, corresponding to time instant greater

than or equal to M. We then impose the common restriction that there be no negative-cost

cycles in the network, for t ≥M. Throughout this study we will treat the entire set of times

{t: t ≥ M} as an atomic unit. We have assumed that the set of discrete times and link

travel times are integers. The actual discrete time set however, need not to be the set of

integers. The adopted discrete-time assumption is common in literature, and includes the

representation of actual time instants and travel times that are multiples of the value of

this constant spacing. The value of parameter M can then be viewed as the number of

time sub-intervals resulting from the discretization of a given time period, such as the

peak-period in a traffic network, using a given time spacing. A finer time-discretization

would lead to increased accuracy in a given network model and an increase in the value

 66

of parameter M.

4.2 Problem Formulation

4.2.1 Expected Travel Time A Routing Problem

We are interested in developing a mathematical formulation for the problem of

computing least expected travel times, and a corresponding solution, from all nodes to a

given destination node d. Let a random variable)(tLi denote the travel time from node

i to destination node d, considering that one departs from node i at time t. Similarly, let

random variable)(tLij denote the travel time to destination node d, if one departs at the

beginning of arc (i, j) at time t. The expected values of)(tLi and)(tLij are respectively

denoted)(tei and)(teij where)]([)(tLEte ii = and)]([)(tLEte ijij = .

For all t >= 0, we have the following relation:

))](([)]([)]([)(tTtLEtTEtLEte ijjijijij ++== (4-1)

The expected value of))((tTtL ijj + is given by:

()[] ()[]

())()(

)()()(

)(

)(

tptte

tpttLEtTtLE

k
ij

tk

k

k
ijj

k
ij

tk

k

k
ijiijj

ij

ij

∗+=

∗+=+

∑

∑

τ

τ

 (4-2)

Hence, the minimum expected travel time)(teij is given by:

 67

[] []
[] ()[]
[]))(()(

)()()()(

))(()())(()(
)()(

ttetE

tpttetpt

tTtLEtTEtLEte

k
ijj

k
ij

tk

k

k
ij

k
ijj

tk

k

k
ij

k
ij

ijjijijij

ijij

ττ

ττ

++=

∗++∗=

++==

∑∑ (4-3)

Note that if t>=M, expression (4-3) changes to:

[] ()[]
[])()(

)()()()(
)()(

MeMTE

MpMeMpMte

jij

tk

k

k
ijj

tk

k

k
ij

k
ijij

ijij

+=

∗+∗= ∑∑ τ

 (4-4)

The minimum expected travel times)(tei then verify the following functional

equations:

[]()
⎩
⎨
⎧

=

≠+
==≥ ∈

di
diMeMTE

MeMte jijiAj
ii 0

)()(min
)()()((4-5)

[] ()[]
⎪
⎩

⎪
⎨

⎧

<∀=

<∀≠⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∗++∗= ∑∑∈

Mtdi

Mtditpttetptte

tk

k

k
ij

k
ijj

tk

k

k
ij

k
ijiAji

ijij

,0

,)()()()(min)(

)()(

)(
ττ (4-6)

Now denote by)(tiπ a node such that (i,)(tiπ) is a next “best” arc corresponding to

minimum expected travel time)(tei . Functions)(tiπ verify the following equations:

[]()
⎩
⎨
⎧

=

≠+
==≥ ∈

di
diMeMTEArg

MMt jijiAj
ii 0

)()(min
)()()(ππ (4-7)

[] ()[]
⎪
⎩

⎪
⎨

⎧

<∀=

<∀≠⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∗++∗= ∑∑∈

Mtdi

MtditpttetptArgtN

tk

k

k
ij

k
ijj

tk

k

k
ij

k
ijiAji

ijij

,0

,)()()()(min)(

)()(

)(
ττ (4-8)

Functional equations (4-5)-(4-8) define a formulation to the problem of computing the

all-to-one minimum expected travel times and an associated both next arcs solution

 68

corresponding to the “best” next arc routing policy and a priori best path routing policy.

Remark:

Deterministic dynamic networks can be viewed as a particular case of stochastic

dependent networks, where for all (i, j, t) we have: () ()1),()(),(,1)(ttpttk ij
k
ij

k
ijij ττ == .

Hence, functional equations (4-5)-(4-6) are equivalent to:

()
⎩
⎨
⎧

=

≠+
==≥ ∈

di
diMeMT

MeMte jijiAj
ii 0

)()(min
)()()((4-9)

()()
⎩
⎨
⎧

<∀=

<∀≠++
= ∈

Mtdi
Mtdittet

te ijjijiAj
i ,0

,)()(min
)()(

ττ
 (4-10)

Functional equations (4-9)–(4-10) are necessary and sufficient optimality conditions of

the all-to-one minimum travel-time path problem in deterministic dynamic networks (see

for instance, Cooke and Halsey (1969) or Chabini (1998) for more details about proving

this equivalency and developing efficient solution algorithms). We indicated that in

deterministic time dependent networks, the “best” path routing policy and the “best” next

arc routing policy are equivalent.

4.2.2 The Optimality Condition for Mean

Define N(i) as the set of downstream nodes of node i,)(tk
ijτ as the travel time

random variable for link (i, j) at time t. We make the assumption that there exists at least

one path from any node to the destination node d under any possible value of the link

travel time vector.)(tei and)(tiπ are optimal if and only if they are solutions of the

following system of equations:

 69

[]{ }))(()(min)(
)(

ttetEte ijjijiAji ττ ++=
∈

[]{ }))(()(minarg)(
)(

ttetEt ijjijiAji ττπ ++=
∈

with the boundary conditions:

Ttdtte dd ∈∀== ,)(,0)(π and MtNiMete ii >∈∀= ,),()(

Note that we assume the outcome of the decision is deterministic, i.e. the traveler will

end up at node j if he/she chooses node j as his/her next node. Croucher (1978) studies

the problem where the outcome of the decision itself is stochastic. We do not discuss this

case, as our motivation in studying the optimal routing problem is for traffic applications,

where this case rarely arises.

The proof of the optimality conditions is similar to the proof of Proposition 7.2.1

in Bertsekas (2000). The problem in Bertsekas (2000) is denoted as a stochastic shortest

path problem and is viewed as an infinite horizon dynamic programming problem. The

proof provided uses only the node number as a state, yet we can simply replace the state

by {i, t} and the proof becomes valid for our case.

 We will show an illustrative example of how the optimality condition works.

The topological network is shown at the upper side of Figure 4.1, and the major part of

the figure represents a time-space representation of the network. In a time-space network,

time is shown along the vertical axis (the time axis), and the node number is shown along

the horizontal axis (the space axis).Each point in this network represents a node-time pair

(i, t), and any link between (i, t1) and (j, t2) indicates that link (i, j) has a travel time of t2

− t1 if departure time from node i is t1.We are interested in finding the minimum expected

travel time path from node 1 to node 4 at departure time 0, namely)0(1 =te , and only

 70

these node-time pairs and links which are relevant to the computation are shown.

1

3

t=0

2

4

2

4

4

t=1

t=2

t=3

t=4

t=5

2 0.5

6

3

1

t=7

t=6

t=8

3

3

1 0.2

3 0.8

4 0.5

t=0

t=1

t=2

t=3

t=4

t=5

t=7

t=6

t=8

3 0.75

4

2 0.3
4 0.7

4 0.25

3

4

1

2

4

3

Figure 4.1. An Illustrative Example for Optimality Conditions

Figure 4-1 shows the marginal distributions of the link travel time random

variables. Link (1, 2) at time 0 could have two values of travel time: 4 with probability

0.5 and 2 with probability 0.5. Link (1, 3) at time 0 could have two values of travel time:

1 with the probability 0.2 and 3 with the probability 0.8. Link (2, 4) at time 4 could have

two values of travel times: 3 with probability 0.75 and 4 with probability 0.25. Link (3,

4) at time 3 could have two values of travel times: 2 with probability 0.3 and 3 with

probability 0.7. All other link travel times are deterministic.

 71

We apply the optimality conditions to obtain the value of)0(1 =te .

()() ()() ()() ()(){ })4(45.0)2(25.0,)3(38.0)1(12.0min)0(22331 eeeete +∗++∗+∗++∗==

It can be easily observed from the figure that)1(3 =te =6 and)1(3π =(node)4,

)2(2 =te =4 and)1(3π =(node) 4,)5(3 =te = 3 and)5(3π =(node)4, and

)3(3 =te =2*0.3+4*0.7=3.4 and =)3(3π (node)4. We apply the optimality condition

again to obtain)4(2 =te :

{ } { } 25.325.3,6min375.0425.0),5(1min)4(32 ==∗+∗+== ete

and)4(2π =(node)4. With the values of)1(3 =te ,)2(2 =te ,)3(3 =te , and)4(2 =te

in hand, we can obtain

() ()() ()() ()(){ }25.345.0425.0,4.328.062.0min)0(1 +∗++∗+∗+∗==te =5.52

and)0(1π = 3. Therefore, minimum expected travel time for node 1 at time 0 turn out

to be a path: 1-3-4.

4.2.3 Variance of a Routing Problem

Before presenting the optimality conditions, we try to find the recursive

relationship between the variances of a given routing policy starting from two adjacent

nodes. This relationship is much more involved than that for the expected travel time of a

routing policy. As we know, the expected travel time of a routing can be decomposed

into two parts: one is the expected travel time of the next link, and the other is the

expected travel time from the next state (whose current-node is the next node) to the

destination.

 72

As we have seen in previous section,)(tei denotes the expected travel time from

i to the given destination node d. We define)(tTij as a travel time random variable of

link (i, j) at time t conditional on current travel time information, and))((tTtL ijj + as a

travel time from node j to destination node d at time)(tTt ij+ , if one departs from node i.

Then we have

()]))(()([)(tTteEtTEte ijjiji ++=

Next, we develop the recursive equation for the variance of a routing. We define

additional variables as follows. All routing decisions are made to reach a single

destination d.

)(tiν : travel time variance from node i to destination node d at time t

)]([)(tLVart ii =ν

)(tpij : probability that takes the value)(tijτ

In the following mathematical development, all the calculations are conditional

on the current travel time information. The major theorem we use is the Law of

Conditional Variances(Ross, 1989):

By definition of Var(X/Y), we have that

]/[]/[]/[2]/[
]/)/()/(2[

]))/([()/(

22

22

2

YXEYXEYXEYXE
YYXEYXXEXE

YXEXEYXVar

+−=

+−=

−=

 (4-11)

where we the fact that E[X/Y] and E2[X/Y] are functions of Y and thus, given Y, they

may be treated as constants.

Therefore,

 73

]/[]/[
]/[]/[]/[2]/[)/(

22

22

YXEYXE
YXEYXEYXEYXEYXVar

−=

+−=
 (4-12)

and taking expectations yields

]]/[[][
]]/[[]]/[[)]/([

22

22

YXEEXE
YXEEYXEEYXVarE

−=

−=
 (4-13)

][]]/[[
][][2]]/[[

][][]]/[[2]]/[[
]))()/([(

]]))/[(]/[[(])/[(

22

222

22

2

2

XEYXEE
XEXEYXEE

XEXEYXEEYXEE
XEYXEE

YXEEYXEEYXEVar

−=

+−=

+−=

−=

−=

 (4-14)

Hence, from equation (4-13) and (4-14), we arrive at

)(
][][

][]]/[[]]/[[][])/[()]/([
22

2222

XVar
XEXE

XEYXEEYXEEXEYXEVarYXVarE

=
−=

−+−=+

 (4-15)

Therefore, the variance of X, given the random variable Y, is defined by

])/[()]/([)(YXEVarYXVarEXVar +=

Note that]/[YXE and)/(YXVar are also random variables.]/[yXE is a constant,

which is the expected value of X given that Y = y.)/(yXVar is a constant, which is the

variance of X given that Y = y.

Since))(()()(tTtLtTtL ijjiji ++= , we have

)]](/)([[]/)([)(

)]](/)([[)](/)([[
)]([)(

tTtLEVartLVartp

tTtLEVartTtLVarE
tLVart

ijiiji
k

k
ij

ijiiji

ii

+∗=

+=
=

∑ τ

ν
 (4-16)

The first equality is according to the definition of)(tiν . The second equality is due to

the Law of Conditional Variances. The third equality is according to the definitions of

 74

expected value and the variance of a random variable.

Next, we compute the individual components of the right hand side of the last

line in Equation 4.3 one by one.

We apply the Law of Conditional Variances again to obtain

))((
)](([

))](()([)](/)([

tt
ttLVar

ttLtTVarttLVar

ijj

ijj

ijjijiji

τν

τ

ττ

+=

+=

++=

 (4-17)

The first equality is due to the decomposition of travel time from (i, t) into two parts. The

second equality is due to the fact that)(tijτ is a deterministic value and thus, does not

contribute to the variance of)(tLi . The third equality is by the definition of

)]([)(tLVart ii =ν .

Therefore we have

))(()(

)](/)([)()](/)([[

tttp

ttLVartpttLVarE

ij
k

j
k
ij

iji
k

k
ijiji

τν

ττ

∑

∑
+∗=

∗=
 (4-18)

Now that we have finished developing the first component of the right hand side of the

last line of Equation (4-16), let us study the second component.

))(()(
))](([)()](/)([

ttet
ttLEtttLE

ijjij

ijjijiji

ττ

τττ

++=

++=
 (4-19)

Therefore the expectation of)](/)([ttLE iji τ is evaluated as:

()
)(

)(()()()]](/)([[

te

ttettpttLEE

i

k
ijjij

k
ijiji

=

++∗= ∑ τττ
 (4-20)

and the second component of the right hand side of the last line of Equation (4-16),

 75

which is actually the variance of)](/)([ttLE iji τ , can be evaluated as:

()

()2

2

2

)())(()()(

)]](/)([[)](/)([)(

)]]](/)([[)](/)([[)]](/)([[

tettettp

tTtLEEtTtLEtp

tTtLEEtTtLEEtTtLEVar

iijjij
k

k
ij

k
ijiiji

k
ij

ijiijiiji

−++∗=

−∗=

−=

∑

∑
ττ

 (4-21)

Substituting Equation (4-18) and (4-21) into Equation (4-16), we obtain the final result:

()2)())(()()())(()(

)]](/)([[)](/)([[
)]([)(

tettettptttp

tTtLEVartTtLVarE
tLVart

iijjij
k

k
ijijj

k

k
ij

ijiiji

ii

−++∗++∗=

+=
=

∑∑ τττν

ν
 (4-22)

0)(=tdν

Please note that all calculations are conditional on the current travel time information.

Intuitively, we can view the first part as the variance from the next node to the

destination, and the second part as the variance induced by including the next link in the

routing.

For the given origin node i and departure time t , the objective of the “minimum

variance path” problem is to minimize the variance of travel time to a select destination

given that the path can be determined before travel starts. Let)(tiν be the minimum

travel time variance from node i to destination node d at departure time t. The problem is

then to find the best path routing , that is, the set of paths, for each origin node at each

departure time in the peak period such that)(tiν is minimized. As we discussed in

previous section 4.2,)(tiν can be computed as follows:

()
⎪⎩

⎪
⎨
⎧

<∀=

<∀≠⎟
⎠

⎞
⎜
⎝

⎛
−++∗++∗= ∑∑

∈

Mtdi

Mtditettettptttpt i
k
ijjij

k

k
ij

k
ijj

k

k
ij

iAji

,;0

,;)())(()()())(()(min)(
2

)(
τττνν (4-23)

 76

⎩
⎨
⎧

≥∀=
≥∀≠=

=≥
Mtdi
MtdiMt

Mt i
i ,;0

,;)(
)(

ν
ν

Now denote by)(tiπ a node such that (i,)(tiπ) is a next arc corresponding to

minimum travel time variance)(tiν . Functions)(tiπ verify the following equation:

()
⎪⎩

⎪
⎨
⎧

<∀=

<∀≠⎟
⎠

⎞
⎜
⎝

⎛
−++∗++∗= ∑∑

∈

Mtdi

MtditettettptttpArgt i
k
ijjij

k

k
ij

k
ijj

k

k
ij

iAji

,;0

,;)())(()()())(()(min)(
2

)(
τττνπ (4-24)

⎩
⎨
⎧

≥∀=
≥∀≠=

=
Mtdi
MtdiMt

t i
i ,;0

,;)(
)(

π
π

Functional equations (4-23) and (4-24) define a formulation to the problem of computing

the all-to-one minimum travel time variance.

To the best of the author’s knowledge, there is no paper in the literature that

deals with minimum variance path (routing) problems in stochastic time dependent

networks. The study here is a preliminary attempt to tackle the minimum mean-variance

routing problem.

4.2.4 The optimality Condition for variance

We make the assumption that there exists at least one path from any node to the

destination node d under any possible value of the link travel time variance.)(tiν and

)(tiπ are optimal if and only if they are solutions of the following system of equations:

() ⎟
⎠

⎞
⎜
⎝

⎛
−++∗++∗= ∑∑

∈

2

)(
)())(()()())(()(min)(tettettptttpt i

k
ijjij

k

k
ij

k
ijj

k

k
ij

iAj
i τττνν

()
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠

⎞
⎜
⎝

⎛
−++∗++∗= ∑∑∈

2

)(
)())(()()())(()(minarg)(tettettptttpt i

k
ijjij

k

k
ij

k
ijj

k

k
ijiAji τττνπ

 77

with the boundary conditions:

Ttdtt dd ∈∀== ,)(,0)(πν and MtNiMt ii >∈∀= ,),()(νν

Note that we assume the outcome of the decision is deterministic, i.e. the traveler will

end up at node j if he/she chooses node j as his/her next node.

 We will show an illustrative example of how the optimality condition works.

Figure 4.2. An Illustrative Example for Optimality Conditions

The topological network is shown at the upper side of Figure 4-1, and the major

part of the Figure is a time-space representation of the network. In a time-space network,

time is shown along the vertical axis (the time axis), and the node number is shown along

the horizontal axis (the space axis).Each point in this network represents a node-time pair

(i, t), and any link between (i, t1) and (j, t2)indicates that link (i, j) has a travel time of t2 −

t1 if departure time from node i is t1.We are interested in finding the minimum variance

 78

path from node 1 to node 4 at departure time 0, namely)0(1 =tν , and only those node-

time pairs and links relevant to the computation are shown.

Figure 4.2. shows the marginal distributions of the link travel time random

variables. Link (1, 2) at time 0 could have two values of travel time: 4 with probability

0.5 and 2 with probability. 0.5. Link (1, 3) at time 0 could have two values of travel time:

1 with probability 0.2 and 3 with probability 0.8. Link (2, 4) at time 4 could have two

values of travel times: 3 with probability 0.75 and 4 with probability 0.25. Link (3, 4) at

time 3 could have two values of travel times: 2 with probability 0.3 and 3 with

probability 0.7. All other link travel times are deterministic.

We apply the optimality conditions to obtain the value of)0(1 =te .

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+∗∗+∗+

−+∗∗+∗

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+∗+∗+

−+∗+∗

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+∗+∗+

−+∗+∗

==

−−

−−−

−−

431
23

1
1
3

1
3

23
1

1
3

1
3

4321
22

1
2
2

2
2

22
1

2
2

2
2

42121
1

1
2

1
2

21
1

1
2

1
2

1

))0()3(4()8.03()3()8.0(

))0()1(1()2.01()1()2.0(

))0()4(4()5.0()4()5.0(

))0()2(2(5.0()2(5.0(

,
))0()4(4(5.0())4(5.0(

))0()2(2(5.0())2(5.0(

min)0(

path

path

path

ee

ee

ee

ee

ee

ee

te

ν

ν

ν

ν

ν

ν

It can be easily observed from the Figure that

)2(1
2 =te =4,)2(1

2 =tv =0

)4(1
2 =te = 3.25,)4(1

2 =tv =0.1875

)0(1
1 =te = 6.625

)2(2
2 =te =5.4,)2(2

2 =tv =0.24

)4(2
2 =te =3.4,)4(2

2 =tv =0.24

)0(2
1 =te = 7.4

)1(1
3 =te =6,)1(1

3 =tv =0

)3(1
3 =te = 3.4,)3(1

3 =tv =0.84

 79

)0(3
1 =te = 6.52

Therefore, () () (){ } 4844.07296.0,24.2,4844.0min)0(43143214211 === −−−−−−− pathpathpathtv

and)0(1π = 2, p=1. Therefore, minimum variance of travel time for node 1 at time 0 turn

out to be a path: 1-2-4.

4.3 An Algorithm for A Priori Minimum Variance Path
Problems

In this section, an algorithm to compute minimum variance path routing policies

with a criterion of travel time reliability (variance) were presented.. We have been

focusing on the study of minimum expected travel time policies, as expected travel time

is the primary concern of travelers in making routing decisions. On the other hand, when

faced with uncertainty, travelers are also concerned about the reliability of their travel

times. For example, unreliable travel times will cause anxiety or disutility among

travelers because of the possibility of an unexpected late arrival at their destinations. We

use travel time variance to represent travel time reliability. A routing policy with less

travel time variance is viewed as more reliable. For commuters, the desired arrival time

in the morning might be some time around the work starting time. For a traveler catching

a plane, the desired arrival time might be roughly one hour before the plane’s departure.

It is generally believed and verified by some empirical studies that both early and late

arrivals cause disutility to the user. For example, although late arrival at the workplace

would cause trouble for a commuter, an arrival too early would also make the commuter

feel as if it was a waste of time.

Therefore, we design algorithms that minimize travel time variance from all

nodes to a given destination node d. We develop formulas that describe the relationship

 80

between a variance at a given state (i, t) and the attributes at succeeding nodes. Then we

present the optimal condition for the policy that minimizes the travel time variance. The

following two sections provide a theoretical base for the algorithm design in next section.

The illustrative examples are presented to have good picture of two algorithms.

4.3.1 An Algorithm

For each node i∈N and each potentially optimal path h to the destination node d,

a vector label Ttth
i ∈),(ξ is maintained, where Ttth

i ∈),(ξ is the expected travel time

along path h from node i to the destination, leaving node i at time t; i.e.,)]([)(tLEt h
i

h
i =ξ .

Similarly, a vector label Ttth
i ∈),(ω is maintained for the variance of travel time along

path h from node i to the destination, leaving node i at time t; i.e.,)]([)(tLVart h
i

h
i =ω .

These labels are called candidate-optimal because each is potentially optimal for

one or more time intervals. Until the termination of the algorithm, more than one label

vector is maintained at each node unless a single label is best for all time intervals. Let

q(i) be the set of candidate-optimal labels at node i. At each iteration of the algorithm, a

node j is scanned and a temporary label vector is constructed,)()(tet h
i

h
i ←ξ for

expected time and)()(ht h
i

h
i νω ← for variance, from each of its predecessor nodes,

i∈A(i, j). This temporary label is compared with the candidate-optimal labels at node i,

jΩ (t), according to the following conditions:

)(th
iω corresponds to a candidate-optimal path iff ∃ no path)(iqh∈

 81

such that Tttt h
ii ∈∀≤Ω)()(ω ,otherwise the path is dominated.

Even if a temporary label is dominated by any currently candidate-optimal path, this

temporary label can be a part of another candidate-optimal path. Therefore, all temporary

labels need to be kept for future path variance calculations. This is major difference

between a priori least expected time path algorithm and minimum variance path

algorithm.

Two pointers are required for each label c at each node i to store the candidate-

optimal paths efficiently: a pointer, h
iπ (t), from the hth label at node i to the next node on

the path and a pointer,)(th
iθ , to indicate the appropriate path label at the next node.

Note that temp
iπ and temp

iθ hold the path information of a temporary label until that

label is determined to be non-dominated solution or is discarded.

Algorithm PMV

begin

Procedure Initialization

begin

 create the NODE_LIST, SA

put all nodes i to NODE_LIST

set SA=Ø

set each node i,

{ }PhTtdNith
i ,...,2,1,,,)(∈∈−∈∀∞=ξ

where P is a large enough number to permit as many
candidate-optimal path at any node as might be required

Ttth
d ∈∀= ,0)(ξ

{ }PhTtdNith
i ,...,2,1,,,)(∈∈−∈∀∞=ω

Ttth
d ∈∀= ,0)(ω

 82

{ }PhTtdNiti ,...,2,1,,,)(∈∈−∈∀∞=Ω

Tttd ∈∀=Ω ,0)(

{ }PhTtNith
i ,...,2,1,,,)(∈∈∈∀∞=π

{ }PhTtth
i ,...,2,1,,)(∈∈∀∞=θ

 q(d) = 1 (put the first path label at node d)

Insert destination node and path label pair (d, 1) to set SA list

end

while SA≠Ø do

begin

select the first node and path label from the set SA

call this node the current node, j

scan the current node, j

begin

 for each i unlabeled do

if succ(i)=j, (i,j)∈A, then

begin

 mark node i labeled

end

procedure Update Node Labels

 For all i labeled

 begin

 update the vector [] Tt
h
i

h
i

h
i

h
i tttt ∈)(),(),(),(θπωξ

Temporary label Creation: calculate the expected time

and variance for the newly constructed path from node i

 calculate Tttte h
i

h
i ∈∀)(),(ν as follows

 ()()[]∑ ⋅++=
k

k
ij

k
ij

h
i

k
ij

h
i ttttte)()(()()(ρτξτ

 83

()[]

()()[]∑

∑

−++∗+

+∗=

k

h
i

k
ij

h
i

k
ij

k
ij

k

k
ij

h
i

k
ij

h
i

tetttt

tttt

2)()()()(

)()()(

τξτρ

τωρν

 ptjt h
i

h
i ==)(,)(θπ

 where k is the set of indices of possible travel

times on arc(i,j) at time t.

)()(tet h
i

h
i =ξ

)()(tt h
i

h
i νω =

Label comparisons

 Compare)(th
iω with)(tdΩ , for all h

 if)()(tt i
h
i Ω<ω then

)()(tt h
ii ω=Ω , ptjt h

i
h
i ==)(,)(θπ

 otherwise keep previous information

If)(th
iω is candidate-optimal, add the path

information p into q(i) and put this node-path label
pair in the SA list.
Check if all h∈q(i) are still candidate-optimal and
remove the non- candidate-optimal, labels from q(i).

 if SApi ∉),(then

 put (i,p) in set SA list

 end

 Remove (j, p) from SA

Unlabeled all nodes

 end

end

 84

4.3.2 Discussion of Algorithm PMV

The PMV can be viewed as an efficient specialized modified label correcting algorithm

for determining the minimum variance path from all i to a select destination, d. Similar to the

Time-dependent Least-time Problem (TDLTP) algorithm of Ziliaskopoulos and Mahmassani

(1993) for determining least-time paths in deterministic, time-varying networks, the PMV

algorithm employs a vector label at each node, each component of which is associated with a

given departure time interval. In the TDLTP algorithm, each component maintains the least

time known thus far from the associated node to the destination node, for the given

departure time. Similarly, each component of the vector label used in the PMV algorithm

maintains the minimum variance travel time known thus far from the associated node to the

destination node for the corresponding departure time. A vector label associated with node 1 is

depicted in Table 4.1. In this example, the peak period consists of six time intervals (t0

through t5). For each departure time interval, the minimum variance of travel time (denoted by

()tΩ) from this node to the destination is given in the vector label component and the associated

successor node and subpath is given to the right of the component. For example, at time 3, the

minimum variance path has a variance value of 2.8 units of time, and the next node of this path

at time 4 is node 2 and subpath from this node 2 is 1.

Table 4.1. Example of vector label with five time intervals

Departure
Time

Minimum Variance
)(1 tΩ

next node
routing

Subpath
routing

0 2.4 2 1

1 1.9 3 1

2 4.7 3 2

3 2.8 2 1

 85

4 5.4 4 2

t>5 5.4 4 2

Lemma 4.1. The PMV algorithm terminates with the set of minimum variance of travel time

paths. The following relation holds for every label at every t∈T:

()[] ()()[] { }PhTttettetttttt
k

h
i

k
ij

h
j

k
ij

k
ij

k

k
ij

h
j

k
iji ...,,2,1,,)()()()()()()(2

∈∈∀−++∗++∗≤Ω ∑∑ ττρτνρ

Proof. At the end of each iteration,

()[] ()()[]
⎭
⎬
⎫

⎩
⎨
⎧

−++∗++∗===Ω ∑∑
∈ k

h
i

k
ij

h
j

k
ij

k
ij

k

k
ij

h
j

k
ij

h
i

h
i

iAj
i tettetttttttt 2

)(
)()()()()()()()(min)(ττρτνρνω

as required in Update Node Labels of the algorithm. Thus, there can be no j (j=secc(i))

such that

()[] ()()[]∑∑ −++∗++∗>Ω
k

h
i

k
ij

h
j

k
ij

k
ij

k

k
ij

h
j

k
iji tettetttttt 2)()()()()()()(ττρτνρ .

Since the label components corresponding to a particular departure’s time interval are

permanently set once all labels at the same departure time have been determined, the

proposed relation must hold.

Proposition 4.1. The PMV algorithm terminates in a finite number of steps.

Proof. The algorithm terminates in a finite number of steps if the SA list is empty in a finite

number of steps. Suppose that the SA list does not get empty in a finite number of steps, then

at least one node-label pair must be inserted in the SA an infinite number of times. This

implies that the label at the node has improved by at least a positive real-value of travel time. If

the improvement at the node continues an infinite number of times, then the variance of travel

 86

time on the path would eventually become negative, which contradicts the positive variance

of travel times. This contradicts the supposition that the SA list is not empty in a finite

number of steps and hence shows that the PMV algorithm terminates in a finite number

of steps.

The actual number of paths that may have the minimum variance for one or more

departure time intervals must be no greater than TI, because at most, one path has the

minimum variance for each departure time (ties broken arbitrarily). However, an

arbitrarily large (but finite) number of labels may need to be maintained at each node.

Therefore, in a worst-case scenario, this algorithm can perform very poorly -

nonpolynomially. This is shown in Proposition 4.2.

Proposition 4.2. The PMV algorithm have a worst-case computational complexity that

grows exponentially with the number of nodes if TI > 1, where TI is the number of time

intervals.

Proof. Assume TI = 2. A label for every possible path from a node to the destination

node may need to be maintained, because no label may beat another label over all time

intervals. Assume δ > 0, then the following may occur:

Path 1 Path 2 Path 3 Path 4 …….

Time=l

Time=2
5
3

5+δ

3-δ

5+2δ

3-2δ

5+3δ

3-3δ

…….

…….

No path listed above is better than any other for both time intervals. Thus, all paths must

 87

be maintained. This applies to TI > 2.

4.4 Algorithm for A Priori Minimum Mean-Variance path
Problems: Implementation of PMV Algorithms

Since expected travel time is the primary criterion in routing optimization, and

variance is secondary, it is necessary to design algorithms that minimize expected travel

time and variance. In this section, we design algorithms that minimize a linear

combination of expected travel time and travel time variance. Therefore, the algorithm,

PMMV, is developed for a priori mean-variance path routing. Since the PMMV

algorithm has very similar procedures with the algorithm PMV, the algorithm PMV is

easily extended for determining a priori minimum mean-variance paths in networks

where the arc travel times are random variables with time-dependent probability

distribution functions. In a PMV algorithm, the node vector label)(th
iΩ is maintained

for the variance of travel time along path h from node i to the destination at time t. The

new vector label)(th
iΔ is maintained for the mean-variance combination along path h

for a PMV algorithm.

4.4.1 An Algorithms

For each node i∈N and each potentially optimal path h to the destination node d,

a vector label Ttth
i ∈),(δ is maintained, where Ttth

i ∈),(δ is the mean-variance

combination along path h from node i to the destination, leaving node i at time t; i.e.,

[] Ttttet h
i

h
i

h
i ∈∀∗+= ,)()()(ναδ . These labels are called candidate-optimal because

 88

each is potentially optimal for one or more time intervals. At each iteration of the

algorithm, a node j is scanned and a temporary label vector is constructed,

[])()()(ttet h
i

h
i

h
i ναδ ∗+← , from each of its predecessor nodes, i∈A(i, j). This

temporary label is compared with the candidate-optimal labels at node i, jΔ (t),

according to the following conditions:

)(th
iδ corresponds to a candidate-optimal path if ∃ no path)(iqh∈

such that Tttt h
i

h
i ∈∀≤Δ)()(δ ,otherwise the path is dominated.

This approach that we adopt will allow us to study trade-offs between mean and variance.

Our route guidance model is intended to help travelers make choices that reflect their

decision-making process better. A flow chart the basic procedure steps of the TAMMV2

algorithm is presented in Figure 5.4.

Algorithm PMMV

begin

Procedure Initialization

begin

 create the NODE_LIST, SA_LIST

put all nodes i to NODE_LIST

set SA=Ø

set each node i,

{ }PhTtdNith
i ,...,2,1,,,)(∈∈−∈∀∞=ξ

where P is a large enough number to permit as many
candidate-optimal path at any node as might be required

Ttth
d ∈∀= ,0)(ξ

{ }PhTtdNith
i ,...,2,1,,,)(∈∈−∈∀∞=ω

 89

Ttth
d ∈∀= ,0)(ω

{ }PhTtdNiti ,...,2,1,,,)(∈∈−∈∀∞=Δ

Tttd ∈∀=Δ ,0)(

{ }PhTtNith
i ,...,2,1,,,)(∈∈∈∀∞=π

{ }PhTtth
i ,...,2,1,,)(∈∈∀∞=θ

 q(d) = 1 (put the first path label at node d)

Insert destination node and path label pair (d, 1) to set SA list

end

while SA≠Ø do

begin

select the first node and path label from the set SA

call this node the current node, j

scan the current node, j

begin

 for each i unlabeled do

if succ(i)=j, (i,j)∈A, then

begin

 mark node i labeled

end

procedure Update Node Labels

 For all i labeled

 begin

 update the vector [] Tt
h
i

h
i

h
i

h
i tttt ∈)(),(),(),(θπωξ

 calculate Tttte h
i

h
i ∈∀)(),(ν as follows

 ()()[]∑ ⋅++=
k

k
ij

k
ij

h
i

k
ij

h
i ttttte)()(()()(ρτξτ

 90

()[]

()()[]∑

∑

−++∗+

+∗=

k

h
i

k
ij

h
i

k
ij

k
ij

k

k
ij

h
i

k
ij

h
i

tetttt

tttt

2)()()()(

)()()(

τξτρ

τωρν

 ptjt h
i

h
i ==)(,)(θπ

 where k is the set of indices of possible travel

times on arc(i,j) at time t.

)()(tet h
i

h
i =ξ

)()(tt h
i

h
i νω =

 [])()()(ttt h
i

h
i

h
i ωαξδ ∗+=

 Label comparisons

 Compare)(th
iδ with)(tiΔ , for all h

 if)()(tt i
h
i Δ<δ then

)()(tt h
ii δ=Δ , ptjt h

i
h
i ==)(,)(θπ

 otherwise keep previous information

If)(th
iδ is candidate-optimal, then add the path information

p into q(i) and put this node-path label pair on the SA list.
Check if all h∈q(i) are still candidate-optimal and remove the
non- candidate-optimal labels from q(i).

 if SApi ∉),(then

 put (i,p) in set SA list

 end

Remove (j, p) from SA

Unlabeled all nodes

 end

end

 91

4.4.2 Discussion of Algorithm PMMV

The PMMV also can be viewed as an efficient specialized modified label correcting

algorithm for determining the minimum mean-variance path from all i to a select destination,

d. Similar to the PMV algorithm, the PMMV algorithm employs a vector label at each node,

each component of which is associated with a given departure time interval. In the PMV

algorithm, each component maintains the least variance travel time path from the associated

node to the destination node, for the given departure time. Similarly, each component of

the vector label used in the PMMV algorithm maintains the minimum mean-variance travel

time path from the associated node to the destination node for the corresponding departure

time. Proposition 4.1 and 4.2 are also applied for the PMMV algorithm.

Lemma 4.2. The PMMV algorithm terminates with the set of minimum mean-variance of travel

time paths. The following relation holds for every label at every t∈T:

() TtphNittet h
i

h
ii ∈∀∈∈∀∗+≤Δ },...,,2,1{,,)()()(να

Proof. As we verify the principle of optimality of minimum expected travel time and

minimum variance, we can say that the principle of optimality holds for the minimization

of linear combination of mean-variance routing policy. Linear combination of above two

equation is)()(tte h
i

h
i να ∗+ . The optimality conditions are:

[] ()[] TtNitpttetptte
k

k
ij

k
ijj

k

k
ij

k
ij

h
i ∈∀∈∀⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∗++∗= ∑∑ ,,)()()()()(ττ

() TtNitettettptttpt i
k
ijjij

k

k
ij

k
ijj

k

k
ij

h
i ∈∀∈∀⎟

⎠

⎞
⎜
⎝

⎛
−++∗++∗= ∑∑ ,,)())(()()())(()()(2

τττνν

() }...,,2,1{,,,)()(min)(
)(

phTtNittet h
i

h
i

iAj

h
i ∈∈∀∈∀∗+=

∈
ναδ

At the end of each iteration,

 92

[] ()[]

() ⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎠

⎞
⎜
⎝

⎛
−++∗++∗

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗++∗

=Δ

∑∑

∑∑
∈ 2)(

)())(()()())(()(*

)()()()(

min)(

tettettptttp

tpttetpt

t
h
j

k
ij

h
jij

k

k
ij

k
ij

h
j

k

k
ij

k

k
ij

k
ijj

k

k
ij

k
ij

iAj
i

τττνα

ττ

as required in Update Node Labels of the algorithm. Thus, there can be no j (j=secc(i))

such that

[] ()[]

() ⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎠

⎞
⎜
⎝

⎛
−++∗++∗

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗++∗

>Δ

∑∑

∑∑

2)())(()()())(()(*

)()()()(

)(

tettettptttp

tpttetpt

t
h
j

k
ij

h
jij

k

k
ij

k
ij

h
j

k

k
ij

k

k
ij

k
ijj

k

k
ij

k
ij

i

τττνα

ττ

Since the label components corresponding to a particular departure’s time interval are

permanently set once all labels at the same departure time have been determined, the

proposed relation must hold.

4.5 Illustrative Example

In this section, both the PMV and PMMV algorithms are illustrated on the

example problem. The network is shown in Figure 4.2.

Figure 4.3. Example network

Table 4.2. Table of pmfs of travel times in Figure 4.2

Arc a Arc b Arc c Arc d Arc e
t=0 t=0 t=2 t=3 t=2 t=3 t=4 t=5 t=6 t=7

2 0.5 5 0.4 4 0.8 1 0.3 3 0.8 6 0.4 4 0.2 5 0.3 1 0.9 3 0.3

3 0.5 7 0.6 5 0.2 3 0.7 7 0.2 7 0.6 6 0.8 8 0.7 2 0.1 4 0.7

 93

PMV algorithm

Initialization

Node_List N = {1,2,3,4}
Arc_List A = {a, b, c, d, e}
Time_space T = {0,1,2,3,4,5,6,7}
Destination_Node d = 4

Scan_Available List SA = φ

Set each node i,
 () { } { } { }3,2,1,7,6,5,4,3,2,1,0,3,2,1, ∈∈∈∀∞= htith

iξ
() { } { }3,2,1,7,6,5,4,3,2,1,0,04 ∈∈∀= htthξ
() { } { } { }3,2,1,7,6,5,4,3,2,1,0,3,2,1, ∈∈∈∀∞= htith

iω
() { } { }3,2,1,7,6,5,4,3,2,1,0,04 ∈∈∀= htthω

{ } { } { }3,2,1,7,6,5,4,3,2,1,0,4,3,2,1,)(∈∈∈∀∞=Ω hTtiti
{ } { }3,2,1,7,6,5,4,3,2,1,0,0)(4 ∈∈∀=Ω htt

() { } { } { }1,2,3h,7,6,5,4,3,2,1,0,4,3,2,1, ∈∈∈∀∞= tith
iπ
() { } { } { }1,2,3h,7,6,5,4,3,2,1,0,4,3,2,1, ∈∈∈∀∞= tith

iθ

q(4) = 1

Insert the pair of destination node d and path label 1, (4,1)

SA = {(d,1)}

Step 1
Select the first pair (4, 1) from the SA list
Call this is current node, j = 4 and path h=1

Step 2

For each i,),(jiAi∈

 i = {2, 3}

Select node 2 , i = 2, h=1
t = 2

 94

() ()()[] ()()[]
() ()

8.3
2.0*)07(8.0*)03(

2.0)72(78.0)32(3

)2()2(2()2()2()2(2()2(2
1
4

1
4

2
24

2
24

1
4

2
24

1
24

1
24

1
4

1
24

1
2

=
+++=

∗+++∗++=

∗+++∗++==

ee

eete ρττρττ

() () ()[]
()
()

[] []
56.2

)8.307(*2.0)8.303(*8.00*2.00*8.0

)2())2(2()2(*)2(

)2())2(2()2(*)2(

)2(2*)2()2(2*)2(2

22

21
2

2
24

1
4

2
24

2
24

21
2

1
24

1
4

1
24

1
24

2
24

1
4

2
24

1
24

1
4

1
24

1
2

=
−++−+++=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+++

−++
+

+++==

ee

ee

t

ττρ

ττρ

τνρτνρν

 Temporary label 8.3)2()2(1
2

1
2 ==== tetξ

56.2)2()2(1
2

1
2 ==== tt νω

 Since () ∞==Ω<== 256.2)2(2 ttiω ,
 Update)2(2Ω =2.56, 4)2(1

2 =π , 1)2(1
2 =θ

t = 3
() ()()[] ()()[]

() ()

6.6
6.0*)07(4.0*)06(

6.0)72(74.0)32(6
)3()3(3()3()3()3(3()3(3

1
4

1
4

2
24

2
24

1
4

2
24

1
24

1
24

1
4

1
24

1
2

=
+++=

∗+++∗++=

∗+++∗++==

ee
eete ρττρττ

() () ()[]
()
()

24.0
)3())3(3()3(*)3(

)3())3(3()3(*)3(

)3(3*)3()3(3*)3(3

21
2

2
24

1
4

2
24

2
24

21
2

1
24

1
4

1
24

1
24

2
24

1
4

2
24

1
24

1
4

1
24

1
2

=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+++

−++
+

+++==

ee

ee

t

ττρ

ττρ

τνρτνρν

 Temporary label)3()3(1
2

1
2 === tetξ =6.6

)3()3(1
2

1
2 === tt νω =0.24

 Since)3(=tiω =0.24 < ()32 =Ω t =∞ ,
 Update)3(2Ω =0.24, 4)3(1

2 =π , 1)3(1
2 =θ

q(2)=1
If i is not in SA list, Put i and h=1in SA list, (2,1)

 95

 SA = {(2,1)}

Select node 3 , i = 3, h=1
t = 4

() 6.541
3 ==te
() 64.041

3 ==tν
)4()4(1

3
1
3 === tetξ =5.6

)4()4(1
3

1
3 === tt νω =0.64

 Update)4(3Ω =0.64, 4)4(1

3 =π , 1)4(1
3 =θ

t = 5

() 1.751
3 ==te
() 89.151

3 ==tν
)5()5(1

3
1
3 === tetξ =7.1

)5()5(1
3

1
3 === tt νω =1.89

 Update)5(3Ω =1.89, 4)5(1

3 =π , 1)5(1
3 =θ

t = 6

() 1.161
3 ==te
() 09.061

3 ==tν
)6()6(1

3
1
3 === tetξ =1.1

)6()6(1
3

1
3 === tt νω =0.09

 Update)6(3Ω =0.09, 4)6(1

3 =π , 1)6(1
3 =θ

t=7
() 7.371

3 ==te
() 21.071

3 ==tν
)7()7(1

3
1
3 === tetξ =3.7

)7()7(1
3

1
3 === tt νω =0.21

 Update)4(3Ω =0.21, 4)4(1

3 =π , 1)3(1
3 =θ

q(3)=1
If i is not in SA list, Put node 3 and label 1 pair in SA list
SA = {(2,1),(3,1)}

 96

GO TO STEP 1
Step 1

Select the first pair (2,1) from the SA list
Call this is current pair, j = 2, h=1

Step 2

For each i, Aji ∈),(
 i = {1}

Select node 1, i = 1, j=2, h=1
t = 0

()01
1 =te =7.7
()01

1 =tν =5.01

)0()0(1
1

1
1 === tetξ =7.7

)0()0(1
1

1
1 === tt νω =5.01

Since)0(1

1 =tω =5.01 < ()01 =Ω t =∞ ,
Update)0(1Ω =5.01, 2)0(1

1 =π , 1)0(1
1 =θ

q(1)=1

Node label pair(1,1) is not in SA list, Put (1,1)in SA list
 SA = {(3,1), (1.1)}

GO TO STEP 1
Step 1

Select the first pair (3,1) from the SA list
Call this is current pair, j = 3, h=1, SA ={(1.1)}

Step 2

For each i, Aji ∈),(
 i = {1, 2}

Select node 1, i = 1, j=3, h=1
t = 0
() == 01

1 te 11.26
()01

1 =tν =1.35

)0()0(1
1

2
1 === tetξ =11.26

)0()0(1
1

2
1 === tt νω =1.35

 97

 Since)0(2

1 =tω =1.35 < ()01 =Ω t = 5.01
 Update)0(1Ω =1.35, 3)0(2

1 =π , 1)0(2
1 =θ

q(1)=2
Pair (1,2) is already in SA list,
 SA = {(1,1) (1,2)}

Select node 2, i = 2 (j = 3), h=1

t = 2
()21

2 =te =5.82
()21

2 =tν =2.188

)2()2(1
2

2
2 === tetξ =5.82

)2()2(1
2

2
2 === tt νω =2.188

 Since)2(2

2 =tω =2.188 < ()22 =Ω t = 2.56
 Update)2(2Ω =2.188, 3)2(2

2 =π , 2)2(2
2 =θ

t = 3
()31

2 =te =4.85
()31

2 =tν =1.568

)3()3(1
2

2
2 === tetξ =4.85

)3()3(1
2

2
2 === tt νω =1.568

Since () 24.0)3(568.13 2

2
2 ==Ω>== ttω

Keep)3(2Ω =0.24, 4)3(1
2 =π , 1)3(1

2 =θ

node 1 is available and h=3, pair (1,2) in SA list, SA = {(1,1) (1,2), (2, 2)}

q(2)=2

GO TO STEP 1

Select the first pair (1,1) from the SA list
Call this is current node, j = 1, SA ={(2,2)}

Step 2

For each i, Aji ∈),(
 i = φ

 98

GO TO STEP 1

Select the first pair (1,2) from the SA list
Call this is current node, j = 1, SA ={(2,2)}

Step 2

For each i, Aji ∈),(
 i = φ

GO TO STEP 1

Select the pair (2,2) from the SA list
Call this is current node, j = 2, SA ={ }, h=2

Select node 1, i = 1

t = 0
()02

1 =te =6.825
()02

1 =tν =5.6
)0()0(2

1
3

1 === tetξ =4.85
)0()0(2

1
3
1 === tt νω =1.568

 Since ()03

1 =tω =5.6 >)0(1 =Ω t = 1.35
Keep)0(1Ω =1.35,)0(3

1π = 3, 2)0(3
1 =θ

SA = { }

STOP

Figure 4.4. Resulting minimum variance path for departure

time 0 at node1 for the example problem

PMMV algorithm
Node 2

 99

 j=4, h=1
 t=2

Temporary label 8.3)2(1
2 ==tξ

56.2)2(1
2 ==tω

[] 4.556.218.3)2(=∗+==th
iδ

 Since () ∞==Δ<== 24.5)2(2
1
2 ttδ

 Update)2(2Δ =5.4, 8.3)2(1
2 =ξ 56.2)2(1

2 =ω 4)2(1
2 =π , 1)2(1

2 =θ

t = 3

 Temporary label)3(1
2 =tξ =6.6

)3(1
2 =tω =0.24

[] 1.724.016.6)3(1
2 =∗+==tδ

 Since () ∞==Δ<== 31.7)3(2

1
2 ttδ

 Update)3(2Δ =7.1, 8.3)3(1
2 =ξ 56.2)3(1

2 =ω 4)3(1
2 =π , 1)3(1

2 =θ

Node 3

j=4, h=1
t = 4

)4()4(1
3

1
3 === tetξ =5.6

)4()4(1
3

1
3 === tt νω =0.64

[] 4.664.016.5)4(1
3 =∗+==tδ

 Update)4(3Δ =6.4, 4)4(1
3 =π , 1)4(1

3 =θ

t = 5
)5()5(1

3
1
3 === tetξ =7.1

)5()5(1
3

1
3 === tt νω =1.89

[] 44.889.111.7)5(1
3 =∗+==tδ

 Update)5(3Δ =8.44, 4)5(1
3 =π , 1)5(1

3 =θ

t = 6
)6()6(1

3
1
3 === tetξ =1.1

)6()6(1
3

1
3 === tt νω =0.09

[] 4.109.011.1)6(1
3 =∗+==tδ

 Update)6(3Δ =0.09, 4)6(1
3 =π , 1)6(1

3 =θ

 100

t=7
)7()7(1

3
1
3 === tetξ =3.7

)7()7(1
3

1
3 === tt νω =0.21

[] 16.421.017.3)7(1
3 =∗+==tδ

 Update)4(3Δ =4.16, 4)4(1
3 =π , 1)3(1

3 =θ

Node 1

j=2, h=1
t = 0

)0()0(1
1

1
1 === tetξ =7.7

)0()0(1
1

1
1 === tt νω =5.01

[] 94.901.517.7)0(1
1 =∗+==tδ

 Since)0(1
1 =tω =9.94 < ()01 =Ω t =∞ ,

 Update)0(1Δ =9.94, 2)0(1
1 =π , 1)0(1

1 =θ

Node 1

j=3, h=1
t = 0

)0()0(1
1

2
1 === tetξ =11.26

)0()0(1
1

2
1 === tt νω =1.35

[]35.1126.11)0(2
1 ∗+==tδ =12.16

 Since)0(2
1 =tδ =12.16 > ()01 =Δ t = 9.94

 Keep)0(1Δ =9.94, 2)0(1
1 =π , 1)0(1

1 =θ

Node 2

 j=3, h=1
 t=2

Temporary label)2()2(2
2

2
2 === tetξ =5.82

)2()2(2
2

2
2 === tt νω =2.188

[]188.2182.5)2(2
2 ∗+==tδ = 7.30

 Since)2(2
2 =tδ =7.30 > ()22 =Δ t = 5.4

 Keep)2(2Δ =5.4, 4)2(1
2 =π , 1)2(1

2 =θ

t = 3

 Temporary label)3(2
2 =tξ =4.85

)3(2
2 =tω =1.568

[]568.1185.4)3(2
2 ∗+==tδ = 6.10

 101

 Since () 1.7310.6)3(2

2
2 ==Δ<== ttδ

 Update)3(2Δ =6.1, 85.4)3(2
2 =ξ 568.1)3(2

2 =ω 3)3(2
2 =π , 1)3(1

2 =θ

Node 1

j=2, h=2
t = 0

)0()0(2
1

3
1 === tetξ =6.825

)0()0(2
1

3
1 === tt νω =5.6

[]6.51825.6)0(3
1 ∗+==tδ =9.19

 Since)0(3
1 =tδ =9.19 < ()01 =Δ t = 9.94

 Update)0(1Δ =9.94, 2)0(3
1 =π , 2)0(3

1 =θ

Figure 4.5. Resulting minimum mean-variance path for departure
time 0 at node1 for the example problem

 102

4.6 Concluding Remarks

In this chapter, two specialized modified label correcting algorithms are

presented for generating all of the a priori minimum variance paths and minimum mean-

variance paths, and from all nodes to a single destination for all departure times in the

peak period in a network with stochastic, time-dependent arc times.

Both PMV and PMMV algorithms have nonpolynomial worst-case complexity

because the number of labels required determining a priori minimum variance paths may

grow exponentially with the size of the network.

The two algorithms are complicated by the need to maintain the minimum

variance or minimum mean-variance values for every time interval of every path.

Intuitively, it seems possible that only the best label for each departure time interval, with

individual pointers for each, needs to be maintained, as required of the deterministic,

time-dependent shortest path problem (Ziliaskopoulos and Mahmassani, 1993).

Unfortunately, if the two labels are compared, one must dominate the other over all

departure times in the peak period in order to eliminate a path from future consideration.

In order to maintain the path information, one must keep a separate label for each path

that is non-dominated for at least one departure time. This is because it is possible to

arrive at the origin of a subpath in more than one time interval, and therefore, the

subpath's labels at more than one time interval may contribute to the construction of the

label of the path containing this subpath. Only upon termination of the algorithm can the

non-dominated optimal paths, or optimal paths, be evaluated at specific time intervals;

and thus, for each time interval, the number of non-dominated solutions may be smaller

than is found for the entire time period.

 103

The two algorithms are presented specifically for a priori path selection,

assuming that the user is unable to dynamically change course en route. In reality, as a

vehicle travels along a selected route, the travel time from the origin to the current

location of the vehicle is no longer uncertain because it has already occurred. In Chapter

5, the PMMV algorithms are extended for generating the paths for use in a time-adaptive

route choice framework where the vehicle selects the path on which it would continue

based on the revealed (actual) arrival time at each node.

 104

Chapter 5. Time-Adaptive Minimum Mean-Variance
Algorithms

In both transportation and data communication systems, stochastic time-

dependent network provides a more realistic representation of actual travel conditions on

which to base critical routing decisions (e.g., for emergency response or priority data

transfers) than commonly used deterministic or static models. Optimal routes with

respect to deterministic network attributes (such as distance) may be chosen before travel

begins, because the optimal path on which to continue does not change as a motorist or

packet traverses the network. However, in transportation and data networks, where future

arc traversal times are uncertain and conditions are changing over time, one can make

improved routing decisions en route as travel times on traveled arcs are revealed. The

selection of a route prior to travel is referred to as a priori best path routing, because it is

assumed that the path is chosen in its entirety before travel begins. The selection of a

route where arc traversal times are revealed en route once the arc is traversed can be

viewed as a multistage recourse problem, where recourse decisions can be taken in

response to realizations of arc traversal time outcomes that are not known a priori. This

type of route selection is the focus of this Chapter and is referred as “best” next arc

routing or time-adaptive routing.

In this context, for a given origin-destination pair at a specific departure time, a

single path may not provide an adequate solution, because the optimal path depends on

intermediate information concerning experienced travel times on traveled arcs. Therefore,

attention should be focused on finding a set of 'non-dominated' or 'efficient' routes.

 105

Furthermore, travel time measures for routing are highly uncertain. When the measures

are uncertain, choosing among routes becomes even more difficult because the tradeoffs

among measures are less precise - the decision maker is forced to choose one probability

distribution over another, rather than choosing one value over another. A method for

comparing probability distributions which is less strict than the classical stochastic

dominance was presented in section 5.1. This method has important practical application

in determining a set of non-dominated routes in a network when there are multiple,

uncertain measures which form the basis for route evaluation.

In section 5.2, two efficient algorithms, TAMMV1 and TAMMV2, are described for

determining time-adaptive minimum mean-variance routing in stochastic time-dependent

networks. We design algorithms that minimize a linear combination of mean and variance

of travel times from origin to destination. In the previous chapter, it provides a theoretical

base for the algorithms in section 5.2. Concluding remarks are given in section 4.6. Our

route guidance model is intended to help travelers make choices that reflect their decision-

making process better.

5.1 Non-Dominated Path Selection for Mean-Variance Routing

In this section, path comparisons for a priori and time-adaptive decisions in stochastic,

time-dependent networks are studied, and a method for comparing probability distributions

which is less strict than the classical stochastic dominance is described. The method

includes a probability parameter which permits control of the degree to which the comparison

deviates from the classical stochastic dominance. This method has important practical

application in determining a set of non-dominated routes in a network when there are

 106

multiple, uncertain measures which form the basis for route evaluation.

Consider paths starting at node i and ending at node d. A path attribute k
iL is

the summation of link attributes along the path k
iR where k is the path index. Therefore,

ndim
k
i llL ++= ...

where ndim ll ...,, designate the representative attributes of links (i, m),...,(n, d)

belonging to path k
iR . Hence, k

iL is also a random variable with mean k
iμ and

variance k
iν . The following criterion is proposed to choose one path over another.

Consider two paths 1
iR and 2

iR from node i to destination node. (Note: when

several paths to the same departure node are considered, the subscript i will be dropped

for simplicity in notation)

Path 1R is preferred to path 2R if attribute 1L is stochastically

(in distribution) smaller than 2L (i.e., 1L < 2L).

Path 1L is indifferent to path 2L if 1L is not stochastically

smaller than 2L , and 2L is not stochastically smaller than 1L

(i.e., 1L < 2L and 1L > 2L).

The comparison of path attributes 1L and 2L can be carried out in two stages.

5.1.1 Primary Comparison Rule

Let random variable 1
iL denote the travel time from node i to destination node d

using path 1. The expected value and variance of 1
iL are denoted as 1

iμ and 1
iν

respectively. 2
iL also denotes the travel time from node i to destination node d using

 107

path 2 with expected value 2
iμ and variance 2

iν , respectively.

It is claimed that (approximately) 21
ii LL < if

21
ii μμ < and 21

ii νν ≤ (5-1)

or
21
ii μμ ≤ and 21

ii νν < (5-2)

The validity of this approximate comparison rule for path attributes should be examined

based on the classical definition for stochastic comparison of random variables.

Figure 5.1. Comparison of stochastic path attributes 1

iL
and 2

iL where 21
ii μμ < and 21

ii νν <

As shown in Figure 5.1, there is some value of t, denoted tc, where the

cumulative distribution functions cross. That is:

)()(12 tFtF
LL

> for t<tc

and

 108

)()(21 tFtF LL > for t>tc

For values of t greater than tc, the probability that path attribute 1L is less than t exceeds

the probability that path attribute 2L is less than t. Also, if conditions (3) or (4) hold, the

following can be observed:

21
iict μμ << , (5-3)

5.0)()(21 ≤= cLcL tFtF (5-4)

Therefore, the approximate rule would choose paths which may not satisfy the classical

definition of stochastic dominance for comparison of random variables at small values of

the path attribute (t < tc). In applications to hazardous materials routing, this is not a

significant issue since we are mainly concerned about the possible realization of large

values of the path attribute.

The primary comparison rule can be implemented using a multiobjective shortest

path algorithm. Each stochastic link attribute lij is transformed to two deterministic

attributes ijμ and ijν . Then the multiobjective algorithm produces a set of non-

dominated paths from node j to the destination node. Paths belonging to the set Sj are

paths that do not satisfy conditions (5-1) or (5-2). That is, suppose the set Sj, contains the

r non-dominated paths:

{ }r
j RRRRS ...,,,, 321=

If these paths are ordered by the increasing mean value,

rμμμμ <<<321

then, they must also be ordered in decreasing variance:

rνννν >>>321

Equations (5-1) and (5-2), which form the basis the primary comparison rule, allow some

 109

choices to be made among alternative routes. Routes which are clearly dominated in both

mean and variance of attribute distributions are discarded by the primary comparison rule.

However, through closer examination of the attribute distributions for the remaining set

of routes, Sj, we may be able to further reduce the set of non-dominated routes.

5.1.2 Secondary Comparison Rule

Consider any two routes R1 and R2 from the set Sj with 21 μμ < and 21 νν > .

As shown in Figure 5.2, there is some t, denoted tc, where the cumulative distribution

functions cross. That is,

)()(12 tFtF LL > for all values of t<tc (5-5)

We can also see that
12 μμ >>ct (5-6)

and

5.0)()(21 >= cLcL tFtF (5-7)

That is, tc is greater than the larger mean, and the probability that either of the path

attributes will take a value greater than tc is less than 0.5. Therefore, L1, is stochastically

smaller than L2 for 'most' values of the attribute (i.e., with probability greater than 0.5).

The question addressed by the secondary comparison rule is whether or not the range in

which L1, is smaller than L2 is large enough that we can conclude that route 1 should be

preferred to route 2.

We propose the following comparison rule. Since we know

)()(21 tFtF LL > for all t<tc,

and if the value of tc is such that

α−>= 1)()(21 cLcL
tFtF ,

 110

then we will prefer R1 to R2 (L1 < L2). This concept is illustrated in Figure 5.2.

Figure 5.2. Comparison of two path travel time 1
iL and 2

iL
where 21

ii μμ < and 21
ii νν >

The distribution of L1 is preferred (for the purpose of choosing routes) to the distribution

of L2 as long as the classical comparison rule is satisfied for all values of t, except

extremely large values which have a small probability of exceedance. This probability is

controlled by specifying a small value for α.

The value of α will determine the level of error in the path attribute comparison.

As we allow α to increase, we are accepting a larger probability of error in the

comparison of stochastic path attributes. Since α is a parameter that is specified by the

analyst, the secondary comparison rule can be used to compare paths based on the level

 111

of accuracy necessary for a specific routing problem. As α is made smaller, the

secondary comparison rule becomes less powerful as a means of differentiating among

alternative paths because we are insisting on a higher level of conformance to the

classical notion of stochastic dominance. As α is allowed to increase, the secondary

comparison rule becomes efficient at reducing the size of the possible solution set, but

may discard a path which would have been of interest.

5.1.3 Algorithm TAMMV-ND

This algorithm is a specialized modified label-correcting algorithm for

generating non-dominated minimum mean-variance routing. Because of the secondary

comparison rule, this algorithm is not efficient for computations. Two efficient

algorithms are developed in the next section. The detailed description of this algorithm is

presented in the next section.

begin

Procedure Initialization
 begin
 create the NODE_LIST, SA_LIST

put all nodes i to NODE_LIST
set SA_LIST=Ø
set each node i,

TtdNiti ∈−∈∀∞= ,,)(ξ
Tttd ∈∀= ,0)(ξ

TtdNiti ∈−∈∀∞= ,,)(ω
Tttd ∈∀= ,0)(ω

TtdNiti ∈−∈∀∞= ,,)(π
Tttd ∈∀= ,)(φπ

 Insert destination node, d to set SA_LIST
 end

 112

while SA_LIST≠Ø do

 begin
 select the first node of the set SA_LIST

call this node the current node, j
scan the current node, j
begin
 for each i unlabeled do

if succ(i)=j, (i,j)∈A, then
begin

 mark node i labeled
end

procedure Update Node Labels

 For all i labeled
 begin
 update the vector [] Ttiii ttt ∈)(),(),(πωξ

 calculate Tttte ii ∈∀)(),(ν as follows

 ()()[]∑ ⋅++=

k

k
ij

k
ijj

k
iji ttttte)()(()()(ρτξτ

()[]

()()[]∑

∑

−++∗+

+∗=

k
i

k
ijj

k
ij

k
ij

k

k
ijj

k
iji

tetttt

tttt

2)()()()(

)()()(

τξτρ

τωρν

where k is the set of indices of possible travel times
on arc(i,j) at time t.

if)()(tte ii ξ< and)()(tt ii ωυ < then

 jttttet iiiii ===)(),()(),()(πυωξ

 if [)()(tte ii ξ< and)()(tt ii ωυ >] or
 [)()(tte ii ξ> and)()(tt ii ωυ <] then
 apply secondary comparison rule

otherwise keep all paths as a nondominated path

 if LISTSAi _∉ then
 put i in SA_LIST
 end

end

 113

Secondary comparison rule

 This secondary comparison between paths h1 and h2 is done for which 21 hh μμ < ,

but 21 hh νν > (or 21 hh μμ > , but 21 hh νν <). Because path h1 has a smaller mean value

than does path h2, but a larger variance, the two path specific cumulative distribution

functions intersect each other. As a result, under the stochastic dominance, it is not

possible to say that 21 hh μμ < . However, if the difference in the mean values is relatively

large and the difference in the variances is relatively small, one might still be willing to

assert a preference for path h1 over path h2, even though neither the mean–variance

comparison nor the stochastic dominance is satisfied. This can be formalized by saying

that the CDF’s of path h1 and h2 are equal at time tc (i.e.,)()(21 cLcL
tFtF =), and tc is

large enough so that α−>= 1)()(21 cLcL
tFtF , then we can assert a preference for path h1

over path h2. The quantity α is a probability parameter that controls the degree to which

the comparison deviates from the stochastic dominance. That is, as 0→α , this

comparison rule converges to a standard stochastic dominance comparison, but for values

of 0>α , it is a relaxation.

5.1.4 Illustrative Example

In this section, the TAMMV-ND algorithm is illustrated on an example network

shown in Figure 4.2. Since the initialization procedures are same as previous algorithm

PMV, we present only the major part of the algorithm.

Initialization

 114

Node_List N = {1,2,3,4}
Arc_List A = {a, b, c, d, e}
Time_space T = {0,1,2,3,4,5,6,7}
Destination_Node d = 4

Scan_Available List SA_LIST = φ

Set each node i,
 () { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiξ

() { }7,6,5,4,3,2,1,0,04 ∈∀= ttξ
() { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiω
() { }7,6,5,4,3,2,1,0,04 ∈∀= ttω
() { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiπ
() { }7,6,5,4,3,2,1,0,4 ∈∀= tt φπ

Create the Scan_Avabable list, SA_LIST, and insert the destination node d

SA_LIST = {4}

Step 1
Select the first node 4 from the SA_LIST list
Call this is current node, j = 4,

Step 2

For each i, Aji ∈),(

 i = {2, 3}

Select node 2 , i = 2, h=1
t = 2

()21
2 =te =3.8
()21

2 =tν =2.56
Update Label
 If)()(),()(ttandtte h

i
h
i

h
i

h
i ωνξ <<

 Then),()(),()(),()(jitandttandtet h
i

h
i

h
i

h
i

h
i === πνωξ

 Since () ∞==<==)2(8.32 1
2

1
2 tte ξ ,

 () ∞==<==)2(56.22 1
2

1
2 tt ων

 Update 8.3)2(1
2 =ξ , 56.2)2(1

2 =ω , d=)2(1
2π , 1=h

t = 3

()31
2 =te =6.6

 115

()32 =tν =0.24
 Since () ∞==<==)3(6.63 1

2
1
2 tte ξ ,

 () ∞==<==)3(24.03 1
2

1
2 tt ων

 Update 6.6)3(1
2 =ξ , 24.0)3(1

2 =ω , d=)3(1
2π 1=h

If i is not in SA_LIST list, Put i in SA_LIST list
 SA_LIST = {2}

Select node 3 , i = 3, h=1
t = 4

() ()()[] ()()[]
() ()

6.5
8.0*)06(2.0*)04(

8.0)62(62.0)42(4

)4()4(4()4()4()4(4()4(4
1
4

1
4

2
34

2
34

1
4

2
34

1
34

1
34

1
4

1
34

1
3

=
+++=

∗+++∗++=

∗+++∗++==

ξξ

ρτξτρτξτte

() [] []
64.0

)6.506(*8.0)6.504(*2.00*8.00*2.04 221
3

=
−++−+++==tν

 Since () ∞==<==)4(6.64 1

2
1
3 tte ξ
() ∞==<==)4(64.04 1

3
1
3 tt ων

 Update 6.5)4(1
3 =ξ , 64.0)4(1

3 =ω , e=)4(1
3π

t = 5

() 1.751
3 ==te
() 89.151

3 ==tν

Since () ∞==<==)5(6.65 1

2
1
3 tte ξ

() ∞==<==)5(89.15 1
3

1
3 tt ων

Update)5(1
3ξ =7.1,)5(1

3ω =1.89,)5(1
3π = e

t = 6

() ∞==<==)6(1.16 1
2

1
3 tte ξ
() 09.061

3 ==tν

 Since ()61

3 =tν =0.09 <)6(1
3 =tω = ∞

 Update)6(1
3ξ =1.1,)6(1

3ω =0.09,)6(1
3π = e

t = 7

() ∞==<==)7(6.67 1
2

1
3 tte ξ

 116

() 21.071
3 ==tν

Since ()71

3 =tν =0.21 <)7(1
3 =tω = ∞

 Update)7(1
3ξ =3.7,)7(1

3ω =0.21,)7(1
3π = e

If i is not in SA_LIST, Put node 3 in SA_LIST
 SA_LIST = {2, 3}

GO TO STEP 1

Select the first node 2 from the SA_LIST
Call this is current node, j = 2, SA_LIST ={3}

Step 2

For each i, Aji ∈),(

 i = {1}

Select node 1, i = 1, h=1
t = 0

()01
1 =te =7.7
()01

1 =tν =5.01
 Since () ∞==<==)2(7.70 1

1
1
1 tte ξ ,

 ()01
1 =tν =5.01 <)0(1

1 =tω = ∞
 Update)0(1

1ξ =7.7,)0(1
1ω =5.01,)0(1

1π = a

Node 1 is not in SA_LIST, Put node 1 in SA_LIST
 SA_LIST = {3,1}

GO TO STEP 1

Select the first node 3 from the SA
Call this is current node, j = 3, SA_LIST ={1}

Step 2

For each i, Aji ∈),(
 i = {1, 2}

Select node 1, i = 1,
t = 0
()01

1 =te =11.26
()01

1 =tν =1.3524

 117

 Since () 7.7)0(26.110 1
1

1
1 ==>== tte ξ ,
()01

1 =tν =1.35 <)0(1
1 =tω = 5.01

 Apply secondary comparison rule

CDF calculation

CDF comparison

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20
Time

Pr
ob

ab
ilit

y

Prev
Curr

Find tc, where ()() ())(1

1
1
1 cc tFteF ξ=

tc is large enough, this case tc is around 10.
Also, if α=0.5, ()() () 5.05.01)(1

1
1
1 =−>= cc tFteF ξ

Therefore, Keep previous node label

b===)0(,01.5)0(,7.7)0(1
1

1
1

1
1 πωξ

Node 1 is already in SA_LIST ,
 SA_LIST = {3}

Select node 2, i = 2 (j = 3)

t = 2
()21

2 =te =5.82
()21

2 =tν =2.188

Update Label
 Since () 8.3)0(82.52 1

2
1
2 ==>== tte ξ ,
()21

2 =tν =2.188 <)2(1
2 =tω = 2.56

Path (Prev) Path(Curr)

time prob time prob

5 0.4 10 0.3

9 0.7 11 0.72

10 1 13 1

 118

 Apply secondary comparison rule

CDF calculation

Path (Prev) Path(Curr)

time prob time prob

5 0.4 5 0.72

9 0.7 6 0.8

10 1 8 0.86

 9 1

CDF comparison

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12
Time

Pr
ob

ab
ili

ty

Prev
Curr

Find tc, where ()() ())(1

1
1
1 cc tFteF ξ=

tc is large enough, this case tc is around 9.
Also, ifα=0.5, ()() () 5.05.01)(1

1
1
1 =−>= cc tFteF ξ

Therefore, Keep previous node label

d===)2(,56.2)2(,8.3)2(1
2

1
2

1
2 πωξ

t = 3
()31

2 =te =4.85
()31

2 =tν =1.568
 Since () 6.6)3(85.43 1

2
1
2 ==<== tte ξ ,

 ()31
2 =tν =1.568 >)3(1

2 =tω = 0.24
 Apply secondary comparison rule

Path (Prev) Path(Curr)

 119

time prob time prob

6 0.4 5 0.72

7 0.7 6 0.8

10 1 8 0.86

 9 1

CDF comparison

0

0.2

0.4

0.6

0.8

1

1.2

0 2 4 6 8 10 12
Time

Pr
ob

ab
ili

ty

Prev
Curr

Find tc, where ()() ())(1

1
1
1 cc tFteF ξ=

tc is large enough, this case tc is around 7.
Also, if α=0.5, ()() () 5.05.01)(1

1
1
1 =−>= cc tFteF ξ

Therefore, Update c===)3(,568.1)3(,85.4)3(1

2
1
2

1
2 πωξ

If i is not in SA_LIST, Put node 2 in SA_LIST
 SA_LIST = {1, 2}

GO TO STEP 1

Select the first node 1 from the SA_LIST
Call this is current node, j = 1, SA_LIST ={2}

Step 2

For each i, Aji ∈),(
 i = φ

GO TO STEP 1

Select the first node 2 from the SA_LIST

 120

Call this is current node, j = 2, SA_LIST ={ }

Select node 1, i = 1

t = 0
()01

1 =te =6.825
()01

1 =tν =3.1146

 Since () 7.7)0(825.60 1

1
1
1 ==<== tte ξ
()01

1 =tν =3.115 <)0(1
1 =tω = 5.01

Update)0(1
1ξ =6.825,)0(1

1ω =3.115,)0(1
1π = b

SA_LIST = { }

STOP

 121

5.2 Time-Adaptive Mean-Variance Algorithms

As we know, we treat the link travel time as a random variable; the trip time

from one node to another is also a random variable. It is assumed that travel times on the

network can be treated as a multivariate random variable for which links may have

correlated travel-times. Our goal is to devise an algorithm which allows a traveler to

select a route by examining the mean and variance of travel time. We present an

algorithm for selecting the “best” next arc routing using two comparison rules. The first

comparison rule is described in the primary comparison rule from the previous chapter.

The second comparison rule is a linear combination of relevant attributes of a routing

policy. The problem of optimal routing policy with minimum mean and minimum

variance (from the first comparison rule) and minimum linear combination of expected

travel time and variance (from second comparison rule) problem in a stochastic time-

dependent network with one destination node d is to find)(tiπ such that,

() TtNittArgt ii
iAj

i ∈∈∀=
∈

,,)(),(min)(
)(

ωξπ

or

() TtNittArgt ii
iAj

i ∈∈∀∗+=
∈

,,)()(min)(
)(

ωαξπ

The reasons for designing an algorithm for the minimization of a linear combination

policy attributes rather than only for specific attributes criterion, like the minimize mean

and variance, are three-folded. First, the linear combination problem is more realistic, as

the expected travel time is usually the primary concern of travelers in a stochastic time-

dependent network, while the reliability criteria are secondary. Second, a linear

combination is a reasonable way of combining multiple objectives. Third, a linear

 122

combination is algorithmically easy to control in the decision making process.

In this chapter, two computationally efficient algorithms are presented for determining

the minimum mean-variance paths for all origins to a single destination in networks where the

arc weights are discrete random variables whose probability distribution functions vary with time.

At termination of the algorithm, efficient solutions (or non-dominated solutions) are

generated. Such efficient solutions can be presented to the traveler, who may then make

the appropriate choice. For the multiobjective routing problem, an efficient solution

provides a route which is such that no other route provides a lower mean travel time and

a lower variance

5.2.1 The TAMMV1 Algorithm

The TAMMV1 algorithm, like the PMV algorithm, is a specialized label

correcting algorithm. Here, the two label vectors, [)(),(tt ii ωξ]t∈T, are associated with

every node. At termination of the algorithm, the “best” next arc is generated for any node

to the destination node for time t using the two label vectors, [)(),(tt ii ωξ]t∈T. These arcs

are not necessarily associated with a single path, and thus, the paths cannot be

reconstructed upon termination.

Let the vector [)(),(tte ii ν]t∈T be the temporary label from node i. Denoted by

)(),(tt ii ωξ , the current label at the end of the kth iteration. Since we have a clear

understanding about the first comparison rule, we present the recursive equation to

compute the linear combination of the mean and variance of a routing. From the previous

chapter, we know the following recursive equation for the mean and variance of the

 123

travel time

[] ()[] TtNitpttetptte
k

k
ij

k
ijj

k

k
ij

k
iji ∈∀∈∀∗++∗= ∑∑ ,,)()()()()(ττ

As we verify the principle of optimality of the minimum expected travel time and the

minimum variance in Chapter 4, we can say that the principle of optimality holds for the

minimization of the linear combination of the mean and variance routing policy. The

linear combination of the above two equations is)()(tte ii να ∗+ . The optimality

conditions are:

[] ()[] TtNitpttetptte
k

k
ij

k
ijj

k

k
ij

k
ijiAji ∈∀∈∀⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∗++∗= ∑∑∈

,,)()()()(min)(
)(

ττ

() TtNitettettptttpt i
k
ijjij

k

k
ij

k
ijj

k

k
ij

iAj
i ∈∀∈∀⎟

⎠

⎞
⎜
⎝

⎛
−++∗++∗= ∑∑

∈
,,)())(()()())(()(min)(2

)(
τττνν

() TtNittette ii
iAj

ii ∈∀∈∀∗+=
∈

,,)()(min)(),(
)(

ναν

In this linear combination, the parameter α is selected by a traveler. If a traveler chooses

α=0, his selection of the “best” next arc is based on only the expected travel time.

However, selecting a large α is for concerning more variance than expected travel time.

A flow chart the basic procedure steps of the TAMMV1 algorithm is presented

in Figure 5.3. An example problem in figure 4.2 is shown in section 5.5 to illustrate this

procedure.

 124

Figure 5.3. Flow chart of the TAMMV1 algorithm steps

Algorithm TAMMV1

begin

Procedure Initialization
 begin
 create the NODE_LIST, SA_LIST

put all nodes i to NODE_LIST
set SA_LIST=Ø
set each node i,

TtdNiti ∈−∈∀∞= ,,)(ξ

 125

Tttd ∈∀= ,0)(ξ
TtdNiti ∈−∈∀∞= ,,)(ω

Tttd ∈∀= ,0)(ω
TtdNiti ∈−∈∀∞= ,,)(π

Tttd ∈∀= ,)(φπ
 Insert destination node, d to set SA_LIST
 end

while SA_LIST≠Ø do

 begin
 select the first node of the set SA_LIST

call this node the current node, j
scan the current node, j
begin
 for each i unlabeled do

if succ(i)=j, (i,j)∈A, then
begin

 mark node i labeled
end

procedure Update Node Labels

 For all i labeled
 begin
 update the vector [] Ttiii ttt ∈)(),(),(πωξ

 calculate Tttte ii ∈∀)(),(ν as follows

 ()()[]∑ ⋅++=
k

k
ij

k
ijj

k
iji ttttte)()(()()(ρτξτ

()[]

()()[]∑

∑

−++∗+

+∗=

k
i

k
ijj

k
ij

k
ij

k

k
ijj

k
iji

tetttt

tttt

2)()()()(

)()()(

τξτρ

τωρν

 where k is the set of indices of possible travel

times on arc(i,j) at time t.

 if)()(tt ii ξμ < and)()(tt ii ωυ < then
),()(),()(),()(jittttt iiiii === πυωμξ

 if [)()(tt ii ξμ < and)()(tt ii ωυ >] or
 [)()(tt ii ξμ > and)()(tt ii ωυ <] then

 126

 compare)()()()(tttt iiii ωαξναμ ∗+<∗+ then
),()(),()(),()(jittttt iiiii === πυωμξ
 otherwise keep previous information

 if LISTSAi _∉ then
 put i in set SA_LIST
 end

 Remove j from SA_LIST

Unlabeled all nodes
 end
end

Proposition 5.1. The TAMMV1 algorithm terminates in a finite number of steps.

Proof. The algorithm terminates in a finite number of steps if the SA_LIST is empty in a finite

number of steps. Suppose the SA_LIST is not empty in a finite number of steps, then at least

one node must be inserted in the SA_LIST an infinite number of times. This implies that the

label at the node has improved by at least a positive real-value of travel time. If the

improvement at the node continues an infinite number of times, then the travel time on the path

would eventually become negative, which contradicts the assumption of the positive travel

times. This contradicts the supposition that the SA_LIST is not empty in a finite number of

steps, and hence, shows that the TAMMV1 algorithm terminates in a finite number of

steps.

Proposition 5.2 The TAMMV1 algorithm with a basic FIFO SA_LIST structure has the

worst-case computational complexity)(32 nTIk ⋅⋅Ο , where TI is the number of time intervals

into which the peck period is discretized, n is the number of nodes in the network, and k is the

maximum number of possible values of the arc travel time random variable for the time interval.

 127

Proof. Once the destination node is removed from the SA_LIST, it will never again be updated.

All of its predecessor nodes are added to the SA_LIST for updating. Thus, the SA_LIST contains

at most the n-1 nodes. From all the nodes initially inserted in the SA_LIST, the one with the least

label for a given departure time will be updated permanently. This is repeated for the remaining n-

1 nodes. Since there are at most TI(n-1) labels that can be improved, at most TI(n-1)2 will be

inserted in the SA_LIST. The procedure “Update Node Labels” requires a maximum of

(TI)(k)(n-1) computations for every node that is scanned because in the worst case, each node

can be reached by n-1 nodes and each nod has TI labels, requiring k computations. Thus, the

complexity of this algorithm is ())1()()()1()(2 −⋅⋅⋅−⋅Ο nkTInTI , or)(~ 32 nTIk ⋅⋅Ο .

5.2.2 The TAMMV2 Algorithm

The TAMMV2 algorithm can be viewed as an efficient specialized label-setting

algorithm for determining the “best” next arc routing hyperpaths from all i to a select

destination, d. Similar to the TAMMV1 algorithm, a vector label is associated with each

node, the components of which correspond to mean and variance of traversal times from

the associated nodes to d, at a given departure time. The iterative structure of this

procedure is based on that of the DOT (Decreasing Order of Time) algorithm of Chabini

(1997) for determining least-time paths in deterministic, time-varying networks.

However, the computation and interpretation of the label values in the TAMMV2

algorithm account for the stochastic nature of the arc traversal times. Unlike the

TAMMV1 algorithm, where the components of all vector labels are temporarily set until

termination (at which time all vector label components become permanently set), after

each iteration of the main loop of the TAMMV2 algorithm, where the labels are updated

 128

for a specific departure time, t, the component of each vector label associated with t is

permanently set for all i.

Since all possible arc travel times are strictly positive,)(tei and)(tiν may be

determined entirely from)(sei and)(siν for later values of time s>t. Therefore, if we

first compute ei(M) for all i∈N as a base case, we can proceed to compute ei(M-1), ei(M-

2),..., ei(0), in a decreasing order of time, until a complete solution is found. A flow chart

the basic procedure steps of the TAMMV2 algorithm is presented in Figure 5.4.

Figure 5.4. Flow chart of the steps of TAMMV2 algorithm

 129

Algorithm TAMMV2

begin
 Procedure Initialization

begin
 create the NODE_LIST, SA_LIST

put all nodes i to NODE_LIST
set time space T = {1, 2, …., M}
set SA_LIST=Ø
set each node i,

TtdNiti ∈−∈∀∞= ,,)(ξ
Tttd ∈∀= ,0)(ξ

TtdNiti ∈−∈∀∞= ,,)(ω
Tttd ∈∀= ,0)(ω

TtNiti ∈∈∀∞= ,,)(π
Tttd ∈∀= ,)(φπ

 Insert destination node, d to set SA_LIST
 end

 While φ≠LISTSA_ do
 begin

 select the first node of the S
call this node the current node, j
scan the current node
begin

 for each i unlabeled do
if succ(i)=j, (i,j)∈A, then
begin

mark node i labeled
end

 end
 for all i labeled update the vector [] Mtiii ttt =)(),(),(πωξ
 begin

 () ()()[]∑ ++==
k

k
ij

p
ijj

k
iji MMMMMte)(*)(()(ρτξτ

() ()[]

()()[]∑

∑

−+++

+==

k
i

k
ijj

k
ij

k
ij

k

k
ijj

k
iji

MeMMMM

MMMMt

2)()()(*)(

)(*)(

τξτρ

τνρν

 130

 if)()(MMe ii ξ< and)()(MM ii ων < then
),()(),()(),()(jiMMMMeM iiiii === πνωξ

 if [)()(MMe ii ξ< and)()(MM ii ων >] or
 [)()(MMe ii ξ> and)()(MM ii ων <] then

 compare)()()()(MMMMe iiii ωαξνα ∗+<∗+ then
 jMMMMeM iiiii ===)(),()(),()(πνωξ
 otherwise keep previous information

 if LISTSAi _∉ then
 put i in set SA_LIST

 end

Procedure Main Loop
begin

set each node i,
MtdNiti <−∈∀∞= ,,)(ξ

Mttd <∀= ,0)(ξ
MtdNiti <−∈∀∞= ,,)(ω

Mttd <∀= ,0)(ω
MtdNiti <−∈∀∞= ,,)(π

Mttd <∀= ,)(φπ

for t = M - 1 to 0
for all links (i, j) ∈ A

 update the vector [] Ttiii ttt ∈)(),(),(πωξ

 ()()[]∑ ⋅++=
k

k
ij

k
ijj

k
iji ttttte)()(()()(ρτξτ

()[]

()()[]∑

∑

−++∗+

+∗=

k
i

k
ijj

k
ij

k
ij

k

k
ijj

k
iji

tetttt

tttt

2)()()()(

)()()(

τξτρ

τωρν

()[]

()()[]
⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

−+++

+
=

∑

∑
∈

k
i

k
ijj

k
ij

k
ij

k

k
ijj

k
ij

iAji

tetttt

ttt
Argt

2)(
)()()(*)(

)(*)(
min)(

τξτρ

τνρ
π

 131

 if)()(tte ii ξ< and)()(tt ii ων < then
),()(),()(),()(jittttet iiiii === πνωξ

 if [)()(tte ii ξ< and)()(tt ii ων >] or
 [)()(tte ii ξ> and)()(tt ii ων <] then

 compare)()()()(tttte iiii ωαξνα ∗+<∗+ then
),()(),()(),()(jittttet iiiii === πνωξ
 otherwise keep previous information
 end

Proposition 5.3 The TAMMV2 algorithm terminates in a finite number of steps.

Proof. The proof is a straightforward extension of that given in proposition 6 for the

TAMMV1 algorithm with the difference that only selected TMt ∈=)(is considered in the

initialization procedure. Therefore, we only need to show the main loop of the algorithm. In

the main loop, all node labels are updated at each time interval. Since the number of nodes

and travel times are finite, all node labels are updated to the finite number of times with

)1()1(−∗− TIn . This shows that the TAMMV2 algorithm terminates in a finite number

of steps.

Proposition 5.4 The worst-case computational complexity of the TAMMV2 algorithm

is)(3 kTImnk ⋅⋅+⋅Ο .

Proof. The complexity of Algorithm TAMMV2 is straightforward. At initialization of

this algorithm, the running time is)(3nk ⋅Ο because the node label can be updated for

only a selected travel time t=M. In the main loop, at each time period of the dynamic

period (i.e. t < M), each arc is visited exactly once with the k mathematic operations. At

the end of each such iteration, where labels are updated at a specific departure time, t, and the

 132

component of each vector label associated with t is permanently set for all nodes. Thus,

there are TI-1 iterations of the main loop resulting in kTIm ⋅−⋅)1(computations.

Therefore the running time of the main loop is)(kTIm ⋅⋅Ο . To sum up, the worst-case

computational complexity of the TAMMV2 algorithm is)(3 kTImnk ⋅⋅+⋅Ο).

An example problem is shown in section 5.3 to illustrate this procedure.

5.3 Conclusions

In this chapter, a method for comparing probability distributions which is less

strict than the classical stochastic dominance is presented. This method has an important

practical application in determining a set of non-dominated routes in a network when

there are uncertain measures. Also, two efficient algorithms for determining the time-

adaptive minimum mean-variance hyperpaths were presented. An example was given to

show that the adaptive strategies can lead to improved routing decisions over a priori path

selection. Such a procedure is applicable to many problems that can be represented as

stochastic time-dependent networks and is of particular interest in the transportation and

data communication systems. An understanding of these two algorithms provides an

important step in developing efficient techniques for real-time routing of vehicles in

Intelligent Transportation Systems and real-time routing protocols for packets in data

networks.

Example for TAMMV1

 133

Initialization

Node_List N = {1,2,3,4}
Arc_List A = {a, b, c, d, e}
Time_space T = {0,1,2,3,4,5,6,7}
Destination_Node D = 4

Scan_Available List SA = φ

Set each node i,
 () { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiξ

() { }7,6,5,4,3,2,1,0,04 ∈∀= ttξ
)(tiξ is label of node i, at time t, where until termination of the

algorithm (the expected travel time from node i to the destination
at time t)

() { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiω
() { }7,6,5,4,3,2,1,0,04 ∈∀= ttω

)(tiω is label of node i, at time t, where until termination of the
algorithm (the variance of travel time from node i to the
destination at time t)

() { } { }7,6,5,4,3,2,1,0,3,2,1, ∈∈∀∞= titiπ
() { }7,6,5,4,3,2,1,0,4 ∈∀= tt φπ

)(tiπ indicates the arc to be followed from node i at time t

Create the Scan_Avabable list, SA, and insert the destination node D

SA = {4}

Step 1

If SA list is empty, go to step 3
Otherwise,

Select the first node 4 from the SA list
Call this is current node, j = 4

Step 2

For each i, Aji ∈),(
 i = {2, 3}

Determine the lower bound on the expected time and
variance to node 4

 134

Update the vector ()tiξ and ()tiω
Select node 2
Calculate

Expected time :

() ()()[]∑ ++=
p

p
ij

p
ijj

p
iji ttttt)(*)(()(ρτξτμ

Variance :

() ()[]

()()[]∑

∑

−+++

+=

p
i

p
ijj

p
ij

p
ij

p

p
ijj

p
iji

ttttt

tttt

2)()()(*)(

)(*)(

μτξτρ

τνρν

i = 2
t = 2

() ()()[] ()()[]
() ()

8.3
2.0*)07(8.0*)03(

2.0)72(78.0)32(3
)2()2(2()2()2()2(2()2(2

44

2
24

2
244

2
24

1
24

1
244

1
242

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

() ()[] ()[]
() ()

56.2
2.0*)8.37(8.0*)8.33(

)2(*)2()2()2(*)2()2(2
22

2
24

2
2

2
24

1
24

2
2

1
242

=
−+−=

−+−== ρμτρμτν t

() ()[] ()[]
()()[]
()()[]

()[] ()[]
() ()[]

() () () ()
56.2

)8.307(*2.0)8.303(*8.0)0*2.00*8.0

)2()72(7*2.0)2()32(3*8.0

72*2.032*8.0
)2()2(2)2(*)2(

)2()2(2)2(*)2(

)2(2*)2()2(2*)2(2

22

2
24

2
24

44

2
2

2
244

2
24

2
24

2
2

1
244

1
24

1
24

2
244

2
24

1
244

1
242

=
−++−+++=

−+++−+++

+++=
−+++

−+++

+++==

μμμμ

νν
μτμτρ

μτμτρ

τνρτνρν t

)()()(ttt iii ναμλ ∗+=

Update Label
 If)()(),()(ttandtt iiii ωνξμ <<
 Then),()(),()(),()(jitandttandtt iiiii === πνωμξ

If)()(),()(ttandtt iiii ωνξμ ><

 Compare)()()()(tttt iiii ωαξναμ ∗+<∗+
 Then),()(),()(),()(jitandttandtt iiiii === πνωμξ

If)()(),()(ttandtt iiii ωνξμ <>

 135

 Compare)()()()(tttt iiii ωαξναμ ∗+<∗+
 Then),()(),()(),()(jitandttandtt iiiii === πνωμξ
 Otherwise Keep previous Value

 Since () ∞==<==)2(8.32 22 tt ξμ ,
 () ∞==<==)2(56.222 tt iων
 Update 8.3)2(2 =ξ , 56.2)2(2 =ω , d=)2(2π

t = 3

() ()()[] ()()[]
() ()

6.6
6.0*)07(4.0*)06(

6.0)72(74.0)62(6
)3()3(3()3()3()3(3()3(3

44

2
24

2
244

2
24

1
24

1
244

1
242

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

() ()[] ()[]
()()[]
()()[]

()[] ()[]
() ()[]

() () () ()
24.0

)6.607(*6.0)6.606(*4.0)0*6.00*4.0

)3()73(7*6.0)3()63(6*4.0

73*6.063*4.0
)3()3(3)3(*)3(

)3()3(3)3(*)3(

)3(3*)3()3(3*)3(3

22

2
24

2
24

44

2
2

2
244

2
24

2
24

2
2

1
244

1
24

1
24

2
244

2
24

1
244

1
242

=
−++−+++=

−+++−+++

+++=
−+++

−+++

+++==

μμμμ

νν
μτμτρ

μτμτρ

τνρτνρν t

)()()(ttt iii ναμλ ∗+=

Update Label
 Since () ∞==<==)3(6.63 22 tt ξμ ,
 () ∞==<==)3(24.032 tt iων
 Update 6.6)3(2 =ξ , 24.0)3(2 =ω , d=)3(2π

If i is not in SA list, Put i in SA list
 SA = {2}

Select node 3
i = 3
t = 4

 136

() ()()[] ()()[]
() ()

6.5
8.0*)06(2.0*)04(

8.0)62(62.0)42(4
)4()4(4()4()4()4(4()4(4

44

2
34

2
344

2
34

1
34

1
344

1
343

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

() ()[] ()[]
()()[]
()()[]

()[] ()[]
() ()[]

() () () ()
64.0

)6.506(*8.0)6.504(*2.0)0*8.00*2.0

)4()64(6*8.0)4()44(4*2.0

64*8.044*2.0
)4()4(6)4(*)4(

)4()4(4)4(*)4(

)4(4*)4()4(4*)4(4

22

2
34

2
34

44

2
3

2
344

2
34

2
34

2
3

1
344

1
34

1
34

2
344

2
34

1
344

1
343

=
−++−+++=

−+++−+++

+++=
−+++

−+++

+++==

μμμμ

νν
μτμτρ

μτμτρ

τνρτνρν t

)()()(ttt iii ναμλ ∗+=

Update Label

 Since () ∞==<==)4(6.54 33 tt ξμ ,
 () ∞==<==)4(64.04 33 tt ων
 Update 6.5)4(3 =ξ , 64.0)4(3 =ω , e=)2(2π

t = 5

() () ()

1.7
7.0*)08(3.0*)05(

7.0)85(83.0)55(55 443

=
+++=

∗+++∗++== ξξμ t

() ()[] ()[]

() ()[]
() ()

89.1
)1.708(*7.0)1.705(*3.0

)5()85(8*7.0)5()55(5*3.0

85*7.055*3.05

22

2
34

2
34

443

=
−++−+=

−+++−+++

+++==

μμμμ

ννν t

Update Label
 Since () ∞==<==)5(1.75 33 tt ξμ ,
 () ∞==<==)5(89.15 33 tt ων
 Update)5(3ξ =7.1,)5(3ω =1.89,)5(3π = e

t = 6

 137

() () ()

1.1
1.0*)02(9.0*)01(

1.0)26(29.0)16(16 443

=
+++=

∗+++∗++== ξξμ t

() ()[] ()[]

() ()[]
() ()

09.0
)1.102(*1.0)1.101(*9.0

)6()26(2*1.0)6()16(1*9.0

26*1.016*9.06

22

2
34

2
34

443

=
−++−+=

−+++−+++

+++==

μμμμ

ννν t

Update Label
 Since ()63 =tμ =1.1 <)6(3 =tξ = ∞
 ()63 =tν =0.09 <)6(3 =tω = ∞
 Update)6(3ξ =1.1,)6(3ω =0.09,)6(3π = e

t = 7

() () ()

7.3
7.0*)04(3.0*)03(

7.0)47(43.0)37(37 443

=
+++=

∗+++∗++== ξξμ t

() ()[] ()[]
() ()[]

() ()
21.0

)7.304(*7.0)7.303(*3.0

)7()47(4*7.0)7()37(3*3.0

47*7.037*3.07

22

2
34

2
34

443

=
−++−+=

−+++−+++

+++==

μμμμ

ννν t

Update Label
 Since ()73 =tμ =3.7 <)7(3 =tξ = ∞
 ()73 =tν =0.21 <)7(3 =tω = ∞
 Update)7(3ξ =3.7,)7(3ω =0.21,)7(3π = e

If i is not in SA list, Put node 3 in SA list
 SA = {2, 3}

GO TO STEP 1

Select the first node 2 from the SA list
Call this is current node, j = 2, SA ={3}

Step 2

 138

For each i, Aji ∈),(
 i = {1}

Determine the lower bound on the expected time and
variance
Update the vector ()tiξ and ()tiω

Select node 1

i = 1
t = 0

() ()()[] ()()[]
() ()

7.7
5.0*)6.67(5.0*)8.33(

5.0)30(35.0)20(2
)0()0(0()0()0()0(0()0(0

22

2
12

2
122

2
12

1
12

1
122

1
121

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

() ()[] ()[]
()()[]
()()[]

()[] ()[]
() ()[]

() () () ()

01.5
805.1805.112.028.1

)7.76.63(*5.0)7.78.32(*5.0)24.0*5.056.2*5.0

)0()30(3*5.0)0()20(2*5.0

30*5.020*5.0
)0()0(3)0(*)0(

)0()0(2)0(*)0(

)0(0*)0()0(0*)0(0

22

2
12

2
12

22

2
1

2
122

2
12

2
12

2
1

1
122

1
12

1
12

2
122

2
12

1
122

1
121

=
+++=

−++−+++=

−+++−+++

+++=
−+++

−+++

+++==

μμμμ

νν
μτμτρ

μτμτρ

τνρτνρν t

Update Label
 Since ()01 =tμ =7.7 <)0(1 =tξ = ∞
 ()01 =tν =5.01 <)0(1 =tω = ∞
 Update)0(1ξ =7.7,)0(1ω =5.01,)0(1π = a

Node 1 is not in SA list, Put node 1 in SA list
 SA = {3,1}

GO TO STEP 1

Select the first node 3 from the SA list
Call this is current node, j = 3, SA ={1}

Step 2

For each i, Aji ∈),(

 139

 i = {1, 2}
Determine the lower bound on the expected time and variance
Update the vector ()tiξ and ()tiω

Select node 1
i = 1
t = 0

() ()()[] ()()[]
() ()

26.11
6.0*)7.37(4.0*)1.75(

6.0)70(74.0)50(5
)0()0(0()0()0()0(0()0(0

33

2
13

2
133

2
13

1
13

1
133

1
131

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

() ()[] ()[]
()()[]
()()[]

()[] ()[]
() ()[]

() () () ()

3524.1
4704.0882.0

)26.117.37(*6.0)26.111.75(*4.0)21.0*6.089.1*4.0

)0()70(7*6.0)0()50(5*4.0

70*6.050*4.0
)0()0(7)0(*)0(

)0()0(5)0(*)0(

)0(0*)0()0(0*)0(0

22

2
13

2
13

33

2
1

2
133

2
13

2
13

2
1

1
133

1
13

1
13

2
133

2
13

1
133

1
131

=
+=

−++−+++=

−+++−+++

+++=
−+++

−+++

+++==

μμμμ

νν
μτμτρ

μτμτρ

τνρτνρν t

Update Label
 Since ()01 =tμ =11.26 >)0(1 =tξ = 7.7
 ()01 =tν =1.35 <)0(1 =tω = 5.01
 Let 1=α , Compare

42.1235.1*126.11)()()(=+=∗+= ttt iii ναμλ

94.901.5*17.7)()(42.12)()(=+=∗+>=∗+ tttt iiii ωαξναμ
 So, Keep)0(1ξ =7.7,)0(1ω =5.01,)0(1π = b

Node 1 is already in SA list,
 SA = {3}

Select node 2
i = 2 (j = 3)
t = 2

 140

() ()()[] ()()[]
() ()

82.5
2.0*)7.35(8.0*)1.14(

2.0)52(58.0)42(4
)2()2(2()2()2()2(2()2(2

33

2
23

2
233

2
23

1
23

1
233

1
232

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

() 188.222 ==tν

Update Label
 Since ()22 =tμ =5.82 >)2(2 =tξ = 3.8
 ()22 =tν =2.19 <)2(2 =tω = 2.56
 Let 1=α , Compare

30.719.2*182.5)()()(=+=∗+= ttt iii ναμλ

4.556.2*18.3)()(30.7)()(=+=∗+>=∗+ tttt iiii ωαξναμ
 So, Keep)2(2ξ =3.8,)2(2ω =2.56,)2(2π = d

t = 3

() ()()[] ()()[]
() ()

85.4
7.0*)1.13(3.0*)6.51(

7.0)33(33.0)13(1
)3()3(3()3()3()3(3()3(3

33

2
23

2
233

2
23

1
23

1
233

1
232

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

() 57.132 ==tν

Update Label
 Since ()32 =tμ =4.85 <)3(2 =tξ = 6.6
 ()32 =tν =1.57 >)3(2 =tω = 0.24
 Let 1=α , Compare

08.657.1*185.4)()()(=+=∗+= ttt iii ναμλ

09.724.0*16.6)()(08.6)()(=+=∗+<=∗+ tttt iiii ωαξναμ
 So, Updata)3(2ξ =4.85,)3(2ω =1.57,)3(2π = c

If i is not in SA list, Put node 2 in SA list
 SA = {1, 2}

GO TO STEP 1

 141

Select the first node 1 from the SA list
Call this is current node, j = 1, SA ={2}

Step 2

For each i, Aji ∈),(
 i = φ

GO TO STEP 1

Select the first node 2 from the SA list
Call this is current node, j = 2, SA ={ }

Determine the lower bound on the expected time and variance
Update the vector ()tiξ and ()tiω

Select node 1

i = 1
t = 0

() ()()[] ()()[]
() ()

825.6
5.0*)85.43(5.0*)8.32(

5.0)30(35.0)20(2
)0()0(0()0()0()0(0()0(0

22

2
12

2
122

2
12

1
12

1
122

1
121

=
+++=

∗+++∗++=
∗+++∗++==

ξξ
ρτξτρτξτμ t

() ()[] ()[]
()()[]
()()[]

()[] ()[]
() ()[]

() () () ()

11.3
5253.05253.0785.028.1

)825.685.43(*5.0)825.68.32(*5.0)57.1*5.056.2*5.0

)0()30(3*5.0)0()20(2*5.0

30*5.020*5.0
)0()0(3)0(*)0(

)0()0(2)0(*)0(

)0(0*)0()0(0*)0(0

22

2
12

2
12

22

2
1

2
122

2
12

2
12

2
1

1
122

1
12

1
12

2
122

2
12

1
122

1
121

=
+++=

−++−+++=

−+++−+++

+++=
−+++

−+++

+++==

μμμμ

νν
μτμτρ

μτμτρ

τνρτνρν t

Update Label
 Since ()01 =tμ =6.825 <)0(1 =tξ = 7.7
 ()01 =tν =3.11 <)0(1 =tω = 5.01
 Update)0(1ξ =6.825,)0(1ω =3.11,)0(1π = a

SA = { }

STOP

 142

Figure 5.5. Resulting hyperpaths for departure time t=0 from node 1

Example for TAMMV2

Consider the example network in figure 4.2.

arc (1,2) arc (1,3) arc (2,3) arc (2,4) arc (2,5) TI
(t) T

time Prob. T
time Prob. T

time Prob. T
time Prob. T

time Prob.

4 0.31 7 0.26 1 0.86 3 0.21 8 0.65 0 5 0.69 2 0.74 7 0.14 4 0.79 1 0.35
1 0.14 7 0.34 4 0.60 2 0.48 4 0.40 1 6 0.86 8 0.66 2 0.40 4 0.52 6 0.60
4 0.33 4 0.60 3 0.66 8 0.05 2 0.11 2 8 0.67 6 0.40 7 0.34 7 0.95 1 0.89
2 0.20 7 0.27 5 0.39 9 0.55 7 0.88 3 8 0.80 8 0.73 8 0.61 5 0.45 3 0.12
3 0.43 1 0.70 6 0.90 3 0.69 6 0.62 4 4 0.57 8 0.30 7 0.10 1 0.31 8 0.38
1 0.17 9 0.41 6 0.64 7 0.98 2 0.85 5 5 0.83 5 0.59 4 0.36 4 0.02 5 0.15

Initialization

Node_List N = {1,2,3,4}
Arc_List A = {a, b, c, d, e}
Time_space T = {0,1,2,3,4,5} , If t > 6, t=5
Destination_Node D = 4
Scan_Available List SA = φ

 143

Set each node i,
 () { }3,2,1,51 ∈∀∞==−= iMtiξ

() 0514 ==−= Mtξ
)(tiξ is label of node i, at time t, where until termination of the

algorithm (the expected travel time from node i to the destination
at time t)

() { }3,2,1,51 ∈∀∞==−= iMtiω
() 0514 ==−= Mtω

)(tiω is label of node i, at time t, where until termination of the
algorithm (the variance of travel time from node i to the
destination at time t)

() { }3,2,1,51 ∈∀∞==−= iMtiπ
() φπ ==−= 514 Mt

)(tiπ indicates the arc to be followed from node i at time t

Set

 () 0514 ==−= Mte , () ()55 44 ==> tete , () () Nitete ii ∈∀==> 55
() 0514 ==−= Mtγ () ()55 44 ==> tt γγ , () () Nitt ii ∈∀==> 55 γγ

For all (i, j), Aji ∈),(
Calculate

Expected travel time when t=M-1=5:

() ()[] Ajit
p

p
ij

p
ijij ∈∀== ∑),(,)5(*)5(5 ρτμ

Variance when t=M-1=5:
() ()[] Ajit

p
ij

p
ij

p
ijij ∈∀−=∑),(,)5()5(*)5(2

μτρν

 () ()[]∑==
p

ppt)5(*)5(5 121212 ρτμ =(1*0.17)+(5*0.83) = 4.32

() ()[]∑==
p

ppt)5(*)5(5 131313 ρτμ =(9*0.41)+(5*0.59) = 6.64

() ()[]∑==
p

ppt)5(*)5(5 232323 ρτμ =(6*0.64)+(4*0.36) = 5.28

() ()[]∑==
p

ppt)5(*)5(5 242424 ρτμ =(7*0.98)+(4*0.02) = 6.94

 144

() ()[]∑==
p

ppt)5(*)5(5 343434 ρτμ =(2*0.85)+(5*0.15) = 2.45

() ()[]∑ −=

p

ppt 2
12121212)5()5(*)5(μτρν =(1-4.32)2*0.17+(5-4.32)2*0.83 = 2.26

() ()[]∑ −=
p

ppt 2
13131313)5()5(*)5(μτρν =(9-6.64)2*0.417+(5-6.64)2*0.59 = 3.87

() ()[]∑ −=
p

ppt 2
23232323)5()5(*)5(μτρν =(6-5.28)2*0.64+(6-5.28)2*0.36 = 0.92

() ()[]∑ −=
p

ppt 2
24242424)5()5(*)5(μτρν =(7-6.94)2*0.98+(4-6.94)2*0.02 = 0.18

() ()[]∑ −=
p

ppt 2
34343434)5()5(*)5(μτρν =(2-2.45)2*0.85+(5-2.45)2*0.15 = 1.15

Create the Scan_Avabable list, SA, and insert the destination node d

SA = {4}

Step 1

If SA list is empty, go to step 3
Otherwise,

Select the first node 4 from the SA list
Call this is current node, j = 4

Step 2

For each i, Aji ∈),(
 i = {2, 3}

Determine the lower bound on the expected time and
variance to node 4
Update the vector ()51=−= Mtiξ and

()51=−= Mtiω

Select node 2, i =2
Calculate

Expected time :

() ()()[]∑ ++=
p

p
ij

p
ijj

p
iji ttttte)(*)(()(ρτξτ

{ })1()1(min)1(
)(

−+−=−
∈

MMMe jijiAji ξμ

{ })5()5(min)5(424)(2 ξμ +=
∈ iAj

e =6.94 + 0 = 6.94

 145

Variance :

() ()[]

()()[]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
22442424

244242

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ

() ()
()() ()()224

2
24

44

)5(454*02.0)5(757*98.0

45*02.075*98.0

ξξξξ

ωω

−+++−+++

+++=

= (0.98*0) + (0.02*0)+
(0.98*(7+0-6.94)2+(0.02*(4+0-6.94) 2

= 0.18
Update Label
 If)()(),()(ttandtte iiii ωγξ <<
 Then),()(),()(),()(jitandttandtt iiiii === πνωμξ

If)()(),()(ttandtte iiii ωγξ ><

 Compare)()()()(tttte iiii ωαξγα ∗+<∗+
 Then),()(),()(),()(jitandttandtt iiiii === πνωμξ

If)()(),()(ttandtte iiii ωγξ <>

 Compare)()()()(tttte iiii ωαξγα ∗+<∗+
 Then),()(),()(),()(jitandttandtt iiiii === πνωμξ
 Otherwise Keep previous Value

 Since () ∞==<==)5(94.65 22 tte ξ ,
 () ∞==<==)5(18.052 tt iωγ
 Update 94.6)5(2 =ξ , 18.0)5(2 =ω , d=)5(2π

If i is not in SA list, Put i in SA list
 SA = {2}

Select node 3
i = 3

{ })5()5(min)5(434)(3 ξμ +=
∈ iAj

e =2.45 + 0 = 2.45

() ()[]

()()[]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
33443434

344343

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ

 = (0.85*0)+(0.15*0)+(0.85*(2-2.45) 2+0.15*(5-2.45) 2)
 = 1.15

 146

Since () ∞==<==)5(45.25 33 tte ξ ,

 () ∞==<==)5(15.15 33 tt ωγ
 Update 45.2)5(3 =ξ , 15.1)5(3 =ω , e=)5(3π

If i is not in SA list, Put node 3 in SA list
 SA = {2, 3}

GO TO STEP 1

Select the first node 2 from the SA list
Call this is current node, j = 2, SA ={3}

Step 2

For each i, Aji ∈),(
 Select node 1 , i = 1

{ })5()5(min)5(212)(1 ξμ +=
∈ iAj

e =4.32 + 6.94 = 11.26

() ()[]

()()[]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
11221212

122121

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ

 = (0.17*0.18)+(0.83*0.18)
+(0.17*(1+6.94-11.26) 2+0.83*(5+6.94-11.26) 2)

 = 2.44

Update node label

() ∞==<=)5(26.115 11 te ξ ,
 () ∞==<==)5(44.25 33 tt ωγ
 Update 26.11)5(1 =ξ , 44.2)5(1 =ω , a=)5(1π

Node 1 is not in SA list, Put node 1 in SA list
 SA = {3,1}

GO TO STEP 1

Select the first node 3 from the SA list
Call this is current node, j = 3, SA ={1}

 147

Step 2

For each i, Aji ∈),(
 i = {1, 2}

Select node 1 , i = 1

{ })5()5(min)5(313)(1 ξμ +=
∈ iAj

e =6.64 + 2.45 = 9.09

() ()[]

()()[]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
11331313

133131

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ

 = (0.41*1.15)+(0.59*1.15)
+(0.41*(9+2.45-9.09) 2+0.59*(5+2.45-9.09) 2)

 = 5.02

Update node label

() 26.11)5(09.95 11 ==<= te ξ ,
 () 44.2)5(02.55 11 ==>== tt ωγ

 Let 1=α , Compare

33.1102.5*109.9)()()(=+=∗+= ttet iii γαλ

82.1244.2*126.11)()(33.11)()(=+=∗+<=∗+ tttt iiii ωαξναμ
 So, Update)5(1ξ =9.09,)5(1ω =5.02,)5(1π = b

Node 1 is already in SA list,

 SA = {1}

Select node 2 , i = 2 (j = 3)

{ })5()5(min)5(323)(2 ξμ +=
∈ iAj

e =5.28 + 2.45 = 7.73

Variance :

() ()[]

()()[]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
22332323

233232

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ

() ()
()() ()()223

2
23

33

)5(454*36.0)5(656*64.0

45*36.065*64.0

ξξξξ

ωω

−+++−+++

+++=

 148

= (0.64*1.15) + (0.36*1.15)+
(0.64*(6+2.45-7.73)2+(0.36*(4+2.45-7.73) 2

= 2.07

Update node label
() 94.6)5(73.75 22 ==>= te ξ ,

 () 18.0)5(07.25 22 ==>== tt ωγ

 So, keep the)5(2ξ =6.94,)5(2ω =0.18,)5(2π = d

If i is not in SA list, Put node 2 in SA list
 SA = {1, 2}

GO TO STEP 1

Select the first node 1 from the SA list
Call this is current node, j = 1, SA ={2}

Step 2

For each i, Aji ∈),(
 i = φ

GO TO STEP 1

Select the first node 2 from the SA list
Call this is current node, j = 2, SA ={ }

Select node 1, i = 1

{ })5()5(min)5(212)(1 ξμ +=
∈ iAj

e =4.32 + 6.94 = 11.26

() ()[]

()()[]∑

∑

−+++

+=

k

kkk

k

kk

ee 2
11221212

122121

)5()5(5)5(*)5(

)5(5*)5(5

ττρ

τωργ

 = (0.17*0.18)+(0.83*0.18)
+(0.17*(1+6.94-11.26) 2+0.83*(5+6.94-11.26) 2)

 = 2.44

Compare

82.1244.2*126.11)()()(=+=∗+= ttet iii γαλ

33.1102.5*109.9)()(82.12)()(=+=∗+<=∗+ tttt iiii ωαξναμ

 149

 So, Keep)5(1ξ =9.09,)5(1ω =5.02,)5(1π = b

SA = { }

End Initialization

)5(1ξ =9.09,)5(1ω =5.02,)5(1π = b
)5(2ξ =6.94,)5(2ω =0.18,)5(2π = d
)5(3ξ =2.45,)5(3ω =1.15,)5(3π = e

Main Loop

 for t = 4

for all links (i, j) ∈ A, (1,2), (1,3), (2,3), (2,4), (3,4)

(1,2)

[] ()[]∑∑ ∗++∗=
)(

12122

)(

12121)4()4(4)4()4()4(
tk

k

kk
tk

k

kk
ijij

ppe τξτ

 = (3*0.43)+(4*0.57)+(6.94*0.43)+(6.94*0.57)
 = 10.51

() ()[] ()()[]∑∑ −++++=
k

kkk

k

kk e 2
11221212122121)4()4(4)4(*)4()4(4*)4(4 τξτρτωργ

 = (0.43*0.18) + (0.57*0.18)
+ (0.43*(3+6.94-10.51)2+0.57*(4+6.94-10.51)2)

= 0.42

)4(1e =10.51<)4(1ξ =∞ ,)4(1γ =0.42<)4(1ω =∞
 Update

 150

)4()4(11 e=ξ =10.51,)4()4(11 γω = =0.42, =)4(1π (1,2)=a

(1, 3)

[] ()[]∑∑ ∗++∗=
)(

13133

)(

13131)4()4(4)4()4()4(
tk

k

kk
tk

k

kk
ijij

ppe τξτ

 = (1*0.70)+(8*0.30)+(2.45*0.70)+(2.45*0.30)
 = 5.55

() ()[] ()()[]∑∑ −++++=
k

kkk

k

kk e 2
11331313133131)4()4(4)4(*)4()4(4*)4(4 τξτρτωργ

 = (0.70*1.15) + (0.30*1.15)
+ (0.70*(1+2.45-5.55)2+0.30*(8+2.45-5.55)2)

= 11.44

)4(1e =5.55<)4(1ξ =10.51,)4(1γ =11.44>)4(1ω =0.42

Compare)4(1)4(11 γ∗+e =5.55+3.38 =8.93 <

)4(1)4(11 ωξ ∗+ =10.51+0.64 =11.15
Update

)4()4(11 e=ξ =5.55,)4()4(11 γω = =11.44, =)4(1π (1,3)=b

(2, 3)

[] ()[]∑∑ ∗++∗=
)(

23233

)(

23232)4()4(4)4()4()4(
tk

k

kk
tk

k

kk
ijij

ppe τξτ

 = (6*0.90)+(7*0.10)+(2.45*0.90)+(2.45*0.10)
 = 8.55

() ()[] ()()[]∑∑ −++++=
k

kkk

k

kk e 2
22332323233232)4()4(4)4(*)4()4(4*)4(4 τξτρτωργ

 = (0.90*1.15) + (0.10*1.15)
+ (0.90*(6+2.45-8.55)2+0.10*(7+2.45-8.55)2)

= 1.24

)4(2e =8.55<)4(2ξ =∞ ,)4(2γ =1.24>)4(2ω =∞

Update

)4()4(22 e=ξ =8.55,)4()4(22 γω = =1.24, =)4(2π (2,3)=c

(2, 4)

[] ()[]∑∑ ∗++∗=
)(

24244

)(

24242)4()4(4)4()4()4(
tk

k

kk
tk

k

kk
ijij

ppe τξτ

 151

 = (3*0.69)+(1*0.31)+(0*0.69)+(0*0.31)
 = 2.38

() ()[] ()()[]∑∑ −++++=
k

kkk

k

kk e 2
22442424244242)4()4(4)4(*)4()4(4*)4(4 τξτρτωργ

 = (0.69*0) + (0.31*0)
+ (0.69*(3+0-2.38)2+0.31*(1+0-2.38)2)

= 0.856

)4(2e =2.38 <)4(2ξ =8.55,)4(2γ =0.856 <)4(2ω =1.24

Update

)4()4(22 e=ξ =2.38,)4()4(22 γω = =0.865, =)4(2π (2,4)=d

(3, 4)

[] ()[]∑∑ ∗++∗=
)(

34343

)(

34343)4()4(4)4()4()4(
tk

k

kk
tk

k

kk
ijij

ppe τξτ

 = (6*0.62)+(8*0.38)+(0*0.62)+(0*0.38)
 = 6.76

() ()[] ()()[]∑∑ −++++=
k

kkk

k

kk e 2
33443434344343)4()4(4)4(*)4()4(4*)4(4 τξτρτωργ

 = (0.62*0) + (0.38*0)
+ (0.62*(6+0-6.76)2+0.38*(8+0-6.76)2)

= 0.94

)4(3e =6.76 <)4(3ξ =∞ ,)4(3γ =0.94 <)4(3ω =∞

Update

)4()4(33 e=ξ =6.67,)4()4(33 γω = =0.94, =)4(3π (3,4)=e

)4()4(11 e=ξ =5.55,)4()4(11 γω = =11.44, =)4(1π (1,3)=b
)4()4(22 e=ξ =2.38,)4()4(22 γω = =0.865, =)4(2π (2,4)=d
)4()4(33 e=ξ =6.67,)4()4(33 γω = =0.94, =)4(3π (3,4)=e

for t = 3

for all links (i, j) ∈ A, (1,2), (1,3), (2,3), (2,4), (3,4)

(1,2)

[] ()[]∑∑ ∗++∗=
)(

12122

)(

12121)3()3(3)3()3()3(
tk

k

kk
tk

k

kk
ijij

ppe τξτ

 152

 = (2*0.2)+(8*0.8)+(6.94*0.2)+(6.94*0.8)
 = 13.74

() ()[] ()()[]∑∑ −++++=
k

kkk

k

kk e 2
11221212122121)3()3(3)3(*)3()3(3*)3(3 τξτρτωργ

 = (0.2*0.18) + (0.8*0.18)
+ (0.2*(2+6.94-13.74)2+0.8*(8+6.94-13.74)2)

= 5.94

)3(1e =13.74<)3(1ξ =∞ ,)3(1γ =5.94<)3(1ω =∞
 Update

)3()3(11 e=ξ =13.74,)3()3(11 γω = =5.94, =)3(1π (1,2)=a

(1, 3)

[] ()[]∑∑ ∗++∗=
)(

13133

)(

13131)3()3(3)3()3()3(
tk

k

kk
tk

k

kk
ijij

ppe τξτ

 = (7*0.27)+(8*0.73)+(2.45*0.27)+(2.45*0.78)
 = 10.30

() ()[] ()()[]∑∑ −++++=
k

kkk

k

kk e 2
11331313133131)3()3(3)3(*)3()3(3*)3(3 τξτρτωργ

 = (0.27*1.15) + (0.73*1.15)
+ (0.27*(7+2.45-10.30)2+0.73*(8+2.45-10.30)2)

= 1.36

)3(1e =10.30<)3(1ξ =13.74,)3(1γ =1.36<)3(1ω =5.94

Update
)3()3(11 e=ξ =10.30,)3()3(11 γω = =1.36, =)3(1π (1,3)=b

(2, 3)

[] ()[]∑∑ ∗++∗=
)(

23233

)(

23232)3()3(3)3()3()3(
tk

k

kk
tk

k

kk
ijij

ppe τξτ

 = (5*0.39)+(8*0.61)+(2.45*0.39)+(2.45*0.61)
 = 9.28

() ()[] ()()[]∑∑ −++++=
k

kkk

k

kk e 2
22332323233232)3()3(3)3(*)3()3(3*)3(3 τξτρτωργ

 = (0.39*1.15) + (0.61*1.15)
+ (0.39*(5+2.45-9.28)2+0.61*(8+2.45-9.28)2)

= 3.29

)3(2e =3.29<)3(2ξ =∞ ,)3(2γ =3.29>)3(2ω =∞

 153

Update
)3()3(22 e=ξ =9.28,)3()3(22 γω = =3.29, =)3(2π (2, 3)=c

(2, 4)

[] ()[]∑∑ ∗++∗=
)(

24244

)(

24242)3()3(3)3()3()3(
tk

k

kk
tk

k

kk
ijij

ppe τξτ

 = (9*0.55)+(5*0.45)+(0*0.55)+(0*0.45)
 = 7.20

() ()[] ()()[]∑∑ −++++=
k

kkk

k

kk e 2
22442424244242)3()3(3)3(*)3()3(3*)3(3 τξτρτωργ

 = (0.55*0) + (0.45*0)
+ (0.55*(9+0-7.2)2+0.45*(5+0-7.2)2)

= 3.96

)3(2e =7.20 <)3(2ξ =9.28,)3(2γ =3.96 >)3(2ω =3.29

Compare)3(1)3(22 γ∗+e =7.20+1.99 =9.19 <

)3(1)3(22 ωξ ∗+ =9.28+1.81 =11.09
Update

)3()3(22 e=ξ =7.20,)3()3(22 γω = =3.96, =)3(2π (2,4)=d

(3, 4)

[] ()[]∑∑ ∗++∗=
)(

34343

)(

34343)3()3(3)3()3()3(
tk

k

kk
tk

k

kk
ijij

ppe τξτ

 =6.52

() ()[] ()()[]∑∑ −++++=
k

kkk

k

kk e 2
33443434344343)3()3(3)3(*)3()3(3*)3(3 τξτρτωργ

 = (0.88*0) + (0.12*0)
+ (0.88*(7+0-6.52)2+0.12*(3+0-6.52)2)

= 1.69

)3(3e =6.52 <)3(3ξ =∞ ,)3(3γ =1.69 <)3(3ω =∞

Update

)3()3(33 e=ξ =6.52,)3()3(33 γω = =1.69, =)3(3π (3,4)=e
for t =3

)3(1ξ =10.30,)3(1ω =1.36, =)3(1π (1,3)=b
))3(2ξ =7.20,)3(2ω =3.96, =)3(2π (2,4)=d
)3(3ξ =6.52,)3(3ω =1.69, =)3(3π (3,4)=e

 154

for t = 2

)2(1ξ =7.25,)2(1ω =2.11, =)2(1π (1,3)=b
)2(2ξ =7.05,)2(2ω =0.048, =)2(2π (2,4)=d
)2(3ξ =1.11,)2(3ω =0.098, =)2(3π (3,4)=e

for t = 1

)1(1ξ =12.22,)1(1ω =9.927, =)1(1π (1,2)=a
)1(2ξ =3.04,)1(2ω =0.998, =)1(2π (2,4)=d
)1(3ξ =5.20,)1(3ω =0.96, =)1(3π (3,4)=e

for t = 0

)0(1ξ =9.69,)0(1ω =4.06, =)0(1π (1,3)=b
)0(2ξ =3.79,)0(2ω =0.17, =)0(2π (2,4)=d
)0(3ξ =5.15,)0(3ω =11.31, =)0(3π (3,4)=e

End

 155

Chapter 6. Computational Testing

In this chapter, the performance of the algorithms, PMM, PMV, PMMV, and

TAMMV1 are evaluated through numerical experiments, which are intended to assess the

computational performance on randomly generated networks as well as representations of

an actual Los Angeles highway network. The objectives of the computational test are

multiple:

 Check the validity of the minimum mean-variance model

 Comparison of computational complexity for TAMMV1 and TAMMV2

algorithm

 Apply the model to real world traffic problem

This chapter is organized as follows. Firstly, in Section 6.1, the methodology for generating

the networks with their stochastic, time-dependent arc travel times is described and the

experimental design is given. In Section 6.2, the results of the tests are presented and

analyzed. In Section 6.3, the problem of selecting a "best" route during afternoon rush

hour between two points in LA area is used to illustrate the results of the algorithms

developed in Chapters 4 and 5. Finally, in Section 6.4, a discussion of the results and

conclusions is presented.

6.1 Experimental Design

The experiments described in this chapter are conducted on twenty seven

randomly generated networks with randomly generated time-dependent probability

 156

distribution functions of the arc travel time random variables. The methodologies to

generate these networks and distribution functions are described in Subsections 6.1.1 and

6.1.2, respectively. In Subsection 6.1.3, the design of the experiments is described in

detail.

6.1.1 Generating the Networks

A GT Internetwork Topology Models (GT-ITM) is used to randomly generate the

networks for these experiments. For each network that is generated, the number of nodes,

and the probability of edge between each pair of nodes is specified. All generated networks

are directed graphs and no arcs are duplicated.

Since the primary concern of this study is in the application of these algorithms to

transportation systems, the networks have been generated such that their average connection

probabilities of each node are 0.2(density 2), 0.4(density 4), and 0.6(density 6). The

generated network with same connection probability ensures that the networks with the same

number of nodes will have nearly the same number of arcs.

6.1.2 Generating the Arc Travel Time Random Variables

Once the topology of a network is specified, the arc weights can be determined.

The arc weights are random variables with time-varying probability distribution

functions. The probability mass functions of the arc weight random variables are

randomly generated, corresponding to either discrete random variables or approximations

of continuously distributed random variables. The arc travel times are assumed to be

independent across time and space. Their pmfs are generated for each arc at each time

 157

interval as follows:

Given the number of elements in the pmfs, P (assumed constant across arcs and departure

times):

Step 1: Generate P pairs of scaled uniform random variants. The first random

variant of the pair will represent a possible travel time. This random

variant is scaled between 1 and 10 units. If the same number is generated, it

will be discarded.

Step 2: The second random variant, the probability of the occurrence of such a

travel time, will be generated as follows. First, generate P numbers of

random numbers between 1 and 100. Find the proportions of each

generated value (divide each value by sum of all generated values) so that

their sum is equal to 1.

Step 3: Sort the pairs of random variants in ascending order of the first element

of the pair (corresponding to increasing travel time).

6.1.3 Design of the Experiments

Four factors must be specified in order to generate the network topology and the

pmfs of the arc travel time random variables: the number of nodes, probability of arcs,

the duration of travel time intervals, and the number of elements in the; pmf’s. (The

duration of a time interval is constant over all the tests). The number of elements in the

pmfs is nearly constant across arcs and time intervals as explained previously.

Three levels of the number of nodes are considered: 50, 100, and 500 nodes. Also,

three levels of arc densities are considered: 2, 4, and 6. Three topological networks of

 158

each level are generated, for a total of 27 networks. The time interval size is one time

unit in duration and is constant over all the experiments. Three levels of the duration of

the peak period are considered: 10, 30, and 60 units of time (time intervals) in size. For

example, a peak period of 10 minutes will consist of 10 one minute time intervals and a

peak period of 60 minutes will consist of 60 one minute time intervals. Finally, two

levels of the constant number of elements in the probability mass functions are

considered: 2and 5. This result in 162 different combinations, as every combination of

the number of time intervals and number of elements in the pmfs are considered for each

of the 27 networks.

The algorithms of TAMMV1 and TAMMV2 determine one path from all origin nodes

to a pre-specified destination node for each departure time interval, these algorithms are

implemented in C programming language. The experiments are done on Sun

UltraSPARC-IIi Workstations (360 MHz of clock speed and 128 MB RAM) running

Solaris 8. An Ethernet communication speed of 100Mbits/sec was assumed for the

communication of data. This forms a common speed of an Ethernet cable.

The run times of the procedures are recorded. Because three topological networks

of each level are tested under same condition (edge probability, time interval and the number

of pmfs), we record the average running time for each topological network. The runtime does

not include input/output time.

6.2 Experimental Results

The results of the experiments on twenty seven randomly generated networks are

summarized in Tables 6.1 through 6.4 in Section 6.2.1. The number of nodes in the

 159

networks is indicated by the heading “Nodes”, arc density “ArcD”, the number of time

intervals “TI”, and the number of elements in the pmf s by “Prob”. For the networks that

can be specified by the same (n, a, t, p) (equivalent “Nodes”, “ArcD”, “TI” and “Prob”)

the results are averaged.

6.2.1 Performance on Randomly Generated Networks

In all of the tests, the SA list of each algorithm is implemented as a deque list. A

node or node-label pair always enters the SA list at the back although it has been entered

in the SA list previously or not. The tests of this chapter are not intended to test the

performance of the procedures under a variety of SA list structures.

The actual average running times for the PMV and PMMV procedures are given

in Table 6.1 for networks with two sizes of the nodes n=50 and 100, three values of the

time interval TI=10, 30, and 60, two values of the PMFs p=2 and 5, and fixed arc density

a=4 . The run time of the two algorithms are very similar because algorithmic procedures

are almost same except updating rule of node label (for PMV-variance, for PMMV-mean

and variance).

Table 6.2 shows the PMMV algorithm running time results for different values of the arc

density a=2, 4, and 6 for same number of n, t, and p. To describe the performance of this

algorithm, the natural log of the run time, given as RTPMMV for the PMMV algorithms, in

CPU milliseconds is regressed against the natural log of the number of nodes(n), arc

density(a), number of time intervals(t), and the number of elements in the PMFs(p),

resulting in the equations with an R2 value of 94.47%:

95.004.109.275.0)0000033.0(tanpRTPMMV ∗∗∗∗=

 160

This regressing model is provided without testing of large number of nodes. Therefore,

it is difficult to apply for networks of large size. This remaining testing job can be done

in the future.

Table 6.1. Comparison of run times in c.p.u seconds for PMV and PMMV algorithms

TI

10 30 60

p=2 p=5 p=2 p=5 p=2 p=4 Nod

es A1 A2 A1 A2 A1 A2 A1 A2 A1 A2 A1 A2

50 0.61 0.69 1.27 1.32 1.88 2.06 3.75 3.95 3.77 4.07 7.56 7.97

100 3.00 3.10 5.38 5.53 7.35 7.67 14.6
2

15.8
2

13.5
4

14.5
3

28.6
6

29.5
8

Table 6.2. Run times in c.p.u seconds for PMMV algorithm

TI
10 30 60

Nodes Arc D. Prob=2 Prob=5 Prob=2 Prob=5 Prob=2 Prob=4
2 0.55 0.85 1.57 1.89 3.66 4.97

4 0.78 1.41 2.27 3.66 5.19 8.97 50

6 1.03 1.99 2.96 4.85 6.59 12.10

2 1.48 2.57 4.18 7.42 9.49 16.87

4 3.21 5.80 8.14 15.46 17.00 32.11 100

6 8.98 13.61 27.34 19.48 29.90 77.04

The average run times for the TAMMV1 and TAMMV2 algorithms are given in

Tables 6.3 and 6.4, respectively. The run times refer to the average time for each

experiment over all networks with similar (n, a, t, p) representation. For example, the

first value 0.162 in Table 6.3, corresponding to n of 50, a 0.2, t of 10, p of 2, gives the

 161

average run time (in CPU seconds) resulting from experiments conducted on all three 50

node networks with arc density 2 (which is edge connecting probability of 0.2) with (50,

2, 10, 2). Recall that each experiment is tested with given a starting and a destination

node.

Table 6.3. Run times in c.p.u seconds for TAMMV1 algorithm

TI
10 30 60

Nodes Arc D. Prob=2 Prob=5 Prob=2 Prob=5 Prob=2 Prob=4
2 0.162 0.45 0.47 1.27 0.95 2.50
4 0.37 0.94 1.16 2.79 2.16 5.73 50

6 0.60 1.50 1.84 4.40 3.45 8.90
2 0.75 1.89 2.20 5.56 4.32 11.17
4 2.62 5.32 6.04 14.10 11.22 27.64 100

6 8.04 12.82 14.06 26.55 22.49 48.40
2 1433 1460 1512 1803 1700 1990
4 10100 10390 10540 11532 12105 12785 500

6 32236 33009 34592 36476 37041 39069

Table 6.4. Run times in c.p.u seconds for TAMMV2 algorithm

TI
10 30 60

Nodes Arc D. Prob=2 Prob=5 Prob=2 Prob=5 Prob=2 Prob=5
2 0.15 0.43 0.45 1.20 0.89 2.30
4 0.34 0.92 1.08 2.66 2.13 5.30 50
6 0.56 1.45 1.69 4.52 3.25 8.18
2 0.74 2.81 2.17 5.98 4.78 10.78
4 3.07 4.67 6.35 12.51 14.89 28.56 100
6 5.18 13.18 21.53 27.57 40.11 61.15
2 1744 1783 2674 2781 4068 4446
4 11961 12673 15024 16190 17260 18472 500
6 38095 39145 40972 43895 45193 48709

To characterize the performance of two algorithms, the natural log of the run time, given

 162

as RTTA1 and RTTA2 for the TAMMV1 and TAMMV2 algorithms respectively, in CPU

milliseconds is regressed against the natural log of the number of nodes(n), arc density(a),

number of time intervals(t), and the number of elements in the PMFs(p), resulting in the

equations with an R2 value of 97.50% and 97.89%, respectively:

64.086.189.366.0
1)000000001.0(tanpRTTA ∗∗∗∗=

73.076.105.465.0
2)000000001.0(tanpRTTA ∗∗∗∗=

From the regression analyses, it is shown that the average run time of the TAMMV1 and the

TAMMV2 algorithms increases much worse than linearly with the number of nodes (power

of 3.89 and 4.05) in the network, arc density(power of 1.86 and 1.76). The run time increase

well than linearly with the number of elements in the PMFs and the number of time intervals in

the peak period. In a direct comparison of the average run times of the TAMMV1 and

TAMMV2 algorithms shown in Tables 6.5, it appears that the TAMMV1 algorithm is often

faster than is the TAMMV2 algorithm for the majority of the larger-size networks, while the

TAMMV1 algorithm appears to be faster for the smaller networks and small number of PMFs.

 163

 164

Figures 6.1 and 6.2 show the variation of the running time of the algorithms with the

network size. The running time increases steeply for larger value of network size in both

algorithms. Figures 6.3 and 6.4 illustrate the variation of the running time of the algorithms

with the number of arcs. Again, the running time varies increases steeply for larger value of arc

size. The running times are increased with exponentially.

Figure 6.1. Running time of Algorithm TAMMV1 as a function of the number of the

nodes, n. Tests are performed for time interval 10, 30, and 60

Figure 6.2. Running time of Algorithm TAMMV2 as a function of the number of the

nodes, n. Tests are performed for time interval 10, 30, and 60.

Effect of "nodes" on running times (pmf=2, Arc=4)- TA1

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600
Number of nodes (n)

R
un

ni
ng

 ti
m

e
in

 m
se

cs

Time interval=10
Time interval=30
Time interval=60

Effect of "nodes" on running times (pmf=5, Arc=4)- TA1

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600
Number of nodes (n)

Ru
nn

in
g

tim
e

in
 m

se
cs Time interval=10

Time interval=30
Time interval=60

Effect of "nodes" on running times (pmf=2, Arc=4)- TA2

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600
Number of nodes (n)

R
un

ni
ng

 ti
m

e
in

 m
se

cs

Time interval=10
Time interval=30
Time interval=60

Effect of "nodes" on running times (pmf=5, Arc=4)- TA2

0

2000

4000

6000

8000

10000

12000

14000

0 100 200 300 400 500 600
Number of nodes (n)

Ru
nn

in
g

tim
e

in
 m

se
cs Time interval=10

Time interval=30
Time interval=60

 165

Figure 6.3. Running time of Algorithm TAMMV1 with the number of the arcs, m. Tests

are performed for time interval 10, 30, and 60

Figure 6.4. Running time of Algorithm TAMMV-STD2 with the number of the arcs, m.

Tests are performed for time interval 10, 30, and 60

Figure 6.5 contains the running time results for different values of the time interval t,

for n = 500, a = 6. This figure depicts the variation of the running time of Algorithm as a

function of the time interval t. The running time increases sharply for smaller values of t, but

tends to slow increasing for large values of t.

Effect of "Arcs" on running times (pmf=2, Nodes=100)- TA1

0

10

20

30

40

50

0 500 1000 1500 2000 2500 3000 3500
Number of arcs (n)

Ru
nn

in
g

tim
e

in
 m

se
cs

Time interval=10
Time interval=30
Time interval=60

Effect of "Arcs" on running times (pmf=5, Nodes=100)- TA1

0

10

20

30

40

50

0 500 1000 1500 2000 2500 3000 3500
Number of arcs (n)

Ru
nn

in
g

tim
e

in
 m

se
cs

Time interval=10
Time interval=30
Time interval=60

Effect of "Arcs" on running times (pmf=2, Nodes=100)- TA2

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500
Number of arcs (n)

Ru
nn

in
g

tim
e

in
 m

se
cs

Time interval=10
Time interval=30
Time interval=60

Effect of "arcs" on running times (pmf=5, Nodes=100)- TA2

0

10

20

30

40

50

60

70

0 500 1000 1500 2000 2500 3000 3500
Number of arcs (n)

Ru
nn

in
g

tim
e

in
 m

se
cs

Time interval=10
Time interval=30
Time interval=60

 166

Figure 6.5. Running time of Algorithm TAMMV-STD1and TAMMV-STD 2 as a

function of the time Horizon, TI

The tests were run on a Sun UltraSPARC-IIi Workstations which is a server based

system with multiple users. In such systems, maintenance activities of the operating

system, as well as activities of other users (often many other jobs by other users were run

simultaneously with these tests), precludes the possibility of getting very accurate user

c.p.u. times. Thus, the exact runs times are not likely to be reproduced, and in many cases,

may be overestimated.

6.3 Applications and Extensions

6.3.1 Introduction

Traffic congestion is particularly relevant in urban routing systems. During rush

hours in LA, the travel time increases dramatically in most urban areas. This implies that

the travel time over a road depends upon the time at which a vehicle travels along the

road. Assad (1988) addressed the issue of traffic congestion in travel time determination.

In this chapter, the problem of selecting a "best" route on which to transport

hazardous subjects between two specific points in LA area is used to illustrate the results

of the algorithms developed in chapter 5. Several problem formulations are addressed,

Effect of "Time Interval" on running times
(Nodes=500, ArcD=6)- TA1

30000
32000
34000
36000
38000
40000
42000
44000
46000
48000
50000

0 10 20 30 40 50 60 70
Number of Travel t ime

Ru
nn

in
g

tim
e

in
 m

se
cs PMF = 2

PMF = 5

Effect of "Time Interval" on running times
(Nodes=500, ArcD=6)- TA2

30000
32000
34000
36000
38000
40000
42000
44000
46000
48000
50000

0 10 20 30 40 50 60 70
Number of Travel t ime

Ru
nn

in
g

tim
e

in
 m

se
cs PMF = 2

PMF = 5

 167

including: (1) determination of a priori least expected time paths (2) determination of a

priori minimum variance paths, (3) determination of a priori minimum mean-variance

paths, (4) determination of the “best” nest arc routing using previous two algorithms.

The Freeway Performance Measurement System (PeMS) is a joint project

between California Department of Transportation and university of California, Berkeley.

The intent of this project is to collect historical and real-time freeway data from freeways

in the State of California in order to compute freeway performance measures. Because of

availability of real time transportation data and high probability of congestion, we select

LA urban area to apply our algorithms. In Section 6.3.2, the LA network is described and

a specific freeway section is analyzed based on morning and afternoon rush hour. Also,

the method to convert speed data to travel time data is presented. In section 6.3.3, the

least expected time paths, minimum variance paths, minimum mean-variance paths, and

time adaptive minimum mean-variance paths procedures are generated between two

given points in LA. The concluding remarks are given in section 6.3.4.

6.3.2 LA area Traffic Data analysis

 The traffic sensor is designed for permanent or temporary installation into or

onto the road surface for the collection of traffic data. These sensors are geographically

distributed and capable of communication and computation. The fixed sensors collect

traffic information at the location where they are placed while the sensors on vehicles

provide vehicle specific speed and location information etc,. As shown in figure 6.6, the

traffic sensors are placed on all major Interstate and highway in LA area. Among the

available sensor information, we only need to collect vehicles speed and analyze these

 168

speed data to convert travel time data for the given section.

Figure 6.6. Major highway sensor location map in LA area

Every five minutes, PeMS aggregate the lane-by-lane 30 second data to compute

one number that represents the 5-minute aggregate over all lanes at that vehicle detector

station. The results are placed on the FTP site. In order to download the data, a simple

client program need to write for periodically grab the data over the Internet from our FTP

server. To analyze this sensor data, we select a specific section (from node 24 to 25) and

collect data from all sensors on the highway, as shown in figure 6.6. Because the travel

time from home to work on a Monday morning could be different from that on a Tuesday

morning or Friday morning, we collect the data every five minutes for Monday only.

 169

There are 9 sensors on the highway and read vehicle speed of all 4 lanes. Figures 6.8a

through 6.8d shows this result, and its average speed is given in figures 6.9a and 6.9b. As

you can see the figures 6.8 and 6.9, there are two congestions, morning and afternoon, on

this arc 24-25. These figures show that the duration of morning rush hour is around one

hour start form about 5:50am end 7:00am and the afternoon rush hour start around

4:00pm end around 8:00pm. Also, during afternoon rush hours in this section, the traffic

congestions are much severe and travel time of this highway section increases

dramatically.

Figure 6.7. A section 24-25 in Interstate highway 5S

24

25

 170

Lane 1 Speed comparison for all Sensors in Arc 24- 25(5S)

0
10
20
30
40
50
60
70
80
90

0:00 4:48 9:36 14:24 19:12 0:00
Time

Sp
ee

d

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8
Sensor 9

Figure 6.8a. Lane 1 speed for all sensors in arc 24-25

Lane 2 Speed comparison for all Sensors in Arc 24- 25(5S)

0
10
20
30
40
50
60
70
80
90

0:00 4:48 9:36 14:24 19:12 0:00
Time

Sp
ee

d

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8
Sensor 9

Figure 6.8b. Lane 2 speed for all sensors in arc 24-25

Lane 3 Speed comparison for all Sensors in Arc 24- 25(5S)

0
10
20
30
40
50
60
70
80
90

0:00 4:48 9:36 14:24 19:12 0:00
Time

Sp
ee

d

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8
Sensor 9

Figure 6.8c. Lane 3 speed for all sensors in arc 24-25

 171

Lane 4 Speed comparison for all Sensors in Arc 24- 25(5S)

0
10
20
30
40
50
60
70
80
90

0:00 4:48 9:36 14:24 19:12 0:00
Time

Sp
ee

d

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8
Sensor 9

Figure 6.8d. Lane 4 speed for all sensors in arc 24-25

Mean speed for all Sensors

0
10
20
30
40
50
60
70
80
90

0:
00

1:
20

2:
40

4:
00

5:
20

6:
40

8:
00

9:
20

10
:4

0

12
:0

0

13
:2

0

14
:4

0

16
:0

0

17
:2

0

18
:4

0

20
:0

21
:2

0

22
:4

0

Time

Sp
ee

d

Sensor 1
Sensor 2
Sensor 3
Sensor 4
Sensor 5
Sensor 6
Sensor 7
Sensor 8
Sensor 9

Figure 6.9a. Mean speed for all sensors in arc 24-25

Mean of Speed

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0:
00

1:
35

3:
10

4:
45

6:
20

7:
55

9:
30

11
:0
5

12
:4
0

14
:1
5

15
:5
0

17
:2
5

19
:0
0

20
:3
5

22
:1
0

23
:4
5

Time

Sp
ee

d

Mean of Mean
Min
Max

Figure 6.9b. Mean of all 4 lanes speed for all sensors in arc 24-25

This speed data can be transformed to travel time data with distance information.

 172

Since the travel times can be treated as random variables whose probability distribution

functions vary with time, probability distribution functions were constructed using these

travel time data. Therefore, we converted this every 5 minutes data to every 30 minutes

data, as shown in figure 6.11. If the travel time accordance is less than 5% then it can be

combined with nearest neighbor travel time. For example, if the frequency of travel time

7 for arc a1 is 141 out of 145 and the frequency of travel time 8 for arc a1 is 4 out of 145,

the probability of being travel time 8 is only 4/145 = 2.7%, so we can assume the travel

time of arc a1 is 7 with 100%. Table 6.6 shows the example of PMFs for this arc.

Travel time analysis for Arc24- 25

0
5

10
15
20
25
30
35
40
45

0:
00

1:
35

3:
10

4:
45

6:
20

7:
55

9:
30

11
:0

5

12
:4

0

14
:1

5

15
:5

0

17
:2

5

19
:0

0

20
:3

5

22
:1

0

23
:4

5

Time

M
in
ut

e

Average Travel times
Maximum TT
Minimum TT

Figure 6.10. Travel time from node 24 to 25

Travel time analysis for Arc24- 25(30min)

0

5

10

15

20

25

30

35

40

0:
00

2:
00

4:
00

6:
00

8:
00

10
:0
0

12
:0
0

14
:0
0

16
:0
0

18
:0
0

20
:0
0

22
:0
0

Time

M
in
ut

e

Average Travel times
Maximum TT
Minimum TT

Figure 6.11. Travel time data for every 30 minutes for arc 24-25.

 173

Table 6.6. Example of PMFs for the arc a1.

Time interval Travel
time Probability

7 0.06
8 0.15
9 0.29
10 0.21

16:00 ~ 16:30

16 0.29
7 0.21
9 0.17
12 0.39 16:30 ~ 17:00

18 0.23
10 0.11
14 0.19
20 0.33 17:00 ~ 17:30

26 0.37

6.3.3 Problem Description

The Los Angeles highway traffic network is pictured in Figure 6.12. This

highway system is represented by a graph with 31 nodes (representing intersections in

LA) 53 arcs (representing links of highways between intersections). As shown in

previous section, this area has serious traffic congestion problems during afternoon rush

hours. Therefore the primary focus of this study is apply the four routing algorithms,

PMM, PMV, PMMV, and TAMMV1, to assist commuters (passengers, emergency and

commercial vehicles) in making the best decisions on route selection. The routing

analysis is based on minimizing two attributes: (a) expected travel time, and (b) Variance

of the travel time.

 174

Figure 6.12. The LA traffic Network

In this case study, the starting node and destination node are given: starting node

is 4, destination node is 41. No waiting times are allowed during the trip. The trip is

scheduled to start from node 4 at 4:00p.m, which is close to the start of rush hour. In

Figure 6.11, it was shown that the afternoon peak period lasts for approximately 4 hours

on the arcs emanating from each of the nodes. Each routing policy finds the best next

node and path information based on the mean or variance or mean-variance of travel time.

The travel times along a route are random variables and vehicle speeds are

collected by the traffic sensors on the road. The eleven Mondays (from February 1 to

April 31, 2005, except Feb. 21) data were collected for this study. The data contains all

lanes speed for every 5 minutes. In many cases, the first lane reserved as a “HOV” lane

 175

during the rush hour. Therefore this lane data were discarded to obtain the average lane

speed on the specific sensor. Converted travel time data for every arc were generated

after averaging vehicle speed with distance of each arc. Probability distribution functions

of each arc were generated by EXCEL Macro and stored as a input data file. Detailed

descriptions are in previous section.

6.3.4 Results Of The Case Study

A priori minimum expected path: PMM aalgorithm

Using the PMM algorithm, three non-dominated paths out of ten paths are determined:

 Path 1: 4-18-26-37-38-39-41

 Path 3: 4-18-19-24-25-32-33-41

 Path 4: 4-18-19-27-37-38-39-41

The minimum mean travel time and paths information for the given departure times are

shown in Table 6.7 and Figure 6.13.

Table 6.7. Minimum mean travel time and paths for MMV algorithm

Departure time Mean Next Node Path

0 73.25795 18 1
30 79.23531 18 1
60 81.14811 18 1
90 83.11905 18 4
120 78.12215 18 3
150 73.38336 18 3
180 71.84217 18 3

 176

A priori minimum mean routing

70

72

74

76

78

80

82

84

0 50 100 150 200

departure time

M
ea

n
Tr

av
el

 ti
m

e

Figure 6.13. Minimum mean travel times for departure time varying

For 180 time interval, 35% for path 1, 50% for path 3, and 15% for path 4 were selected

for the minimum mean travel time path from node 4 to node 41. The path 1 was selected

for most of the early time interval. If traveler start trip after 5pm to 5:30pm, the path4

became the preferred path. After 5:30pm, path3 is the minimum mean path.

A priori minimum Variance path: PMV algorithm

Using the PMv algorithm, four non-dominated paths are determined:

Path 6: 4-18-19-24-28-31-32-33-41

Path 1: 4-18-26-37-38-39-41

Path 3: 4-18-19-24-25-32-33-41

Path 4: 4-18-19-27-37-38-39-41

The minimum variance and paths information for the given departure times are shown in

Table 6.8 and Figure 6.14.

 177

Table 6.8. Minimum variance and paths for PMV algorithm

Departure time Variance Next Node Path
0 46.669945 18 6

30 92.095512 18 1
60 81.028198 18 4
90 66.332283 18 3

120 47.764866 18 3
150 53.012543 18 3
180 53.99812 18 3

A priori minimum variance path

0
10
20
30
40
50
60
70
80
90

100

0 50 100 150 200

departure time

Va
ria

nc
e

Figure 6.14. Minimum variance of travel times for departure time varying

For 180 time interval, 20% for path 1, 8% for path 6, 53% for path 3, and 19% for path 4

were selected for the minimum variance travel time path from node 4 to node 41. The

path 6 was selected for most of the early time interval. The path 3 became the preferred

path after 5:30pm.

A priori minimum Mean-Variance path: PMV algorithm

Using the PMv algorithm, two non-dominated paths are determined:

Path 1: 4-18-26-37-38-39-41

 Path 3: 4-18-19-24-25-32-33-41

 178

 The minimum mean-variance paths information for the given departure times are

shown in Table 6.9 and Figure 6.15.

Table 6.9. Minimum mean, variance and paths for PMMV algorithm

Departure time Mean Variance Next Node Path

0 73.25795 74.955673 18 1
30 79.235306 92.095512 18 1
60 81.148109 107.00051 18 1
90 83.119049 66.332283 18 3

120 78.122154 47.764866 18 3
150 73.383362 53.012543 18 3
180 71.842171 53.998116 18 3

A priori minimum mean- variance path

0

20

40

60

80

100

120

0 50 100 150 200
departure time

M
ea

n
Tr

av
el

 ti
m

e

Mean
V arianc e

Figure 6.15. Minimum mean-variance for departure time varying

For 180 time interval, 34% for path 1, 50% for path 3, and 16% for path 4 were selected

for the minimum mean travel time path from node 4 to node 41. This result was similar

with minimum mean path output because expected travel time is the primary decision

criterion for selecting the best path. Again, the path 3 was selected for 50% of time

 179

interval.

Time-adaptive Mean-Variance path: TAMMV1 algorithm

 The resulting hyperpaths for this problem were given in the form of a tree as

shown in Figure 6.13. The result was shown that next best node from starting node 4 was

node 18 for all travel time interval. The time adaptive minimum mean-variance routing

information for the given departure times are shown in Table 6.10 and Figure 6.16.

Table

Table 6.10. Minimum mean, variance and next node for TAMMV1
Departure time Mean Variance Next Node

0 65.000572 51.88723 18
30 67.173195 66.133377 18
60 67.817574 72.658424 18
90 69.390167 76.070457 18
120 67.76239 71.286751 18
150 63.138004 63.080559 18
180 61.665833 67.629845 18

minimum mean- variance path

0

20

40

60

80

100

120

0 50 100 150 200

departure time

M
ea

n
Tr

av
el

 ti
m

e

AP- Mean
AP- V ar
TA- Mean
TA- V ar

Figure 6.16. Minimum mean-variance for departure time varying

 180

4

2219

37

26

11

8

13
18

6
5

T>90

T>20

28

15

16

9

25

24

T<20

T<25

T>25

38

32
31

27

T<90

T>140

T<140

41
39

33

Figure 6.17. Resulting hyperpaths as shown through conditional tree structure

Finally, the path 3 (4-18-19-24-25-32-33-41) is selected as a best compromise path

during afternoon rush hours from 4:00 to 7:00pm, considering both travel time and

variance.

6.4 Conclusions

 In this chapter, the computational tests on randomly generated networks were

conducted to assess and compare the average performance of four algorithms, PMV,

PMMV, TAMMV1, and TAMMV2. In a direct comparison of the average run times of

the TAMMV1and TAMMV2 algorithms, it appeared that the TAMMV2 algorithm was

 181

often faster than TAMMV1 algorithm for the small networks, while the TAMMV1

algorithm appeared to be faster for the larger networks. For very large networks, or dense

networks, the number of paths that may be examined can grow quite large, and, thus,

PMV and PMMV algorithm may perform rather poorly. These two algorithms’ worst-

case computational complexity is non-polynomial. Therefore, these time adaptive routing

algorithms, TAMMV1, and TAMMV2, are more applicable to stochastic time-dependent

network problems.

The problem of selecting a “best” routing on which to travel between two points

in Los Angeles area in California is used to illustrate the results of the algorithms. The

LA network is described and a specific freeway section is analyzed based on morning

and afternoon rush hour. Four algorithms are applied to find the minimum expected time

paths, minimum variance paths, minimum mean-variance paths, and time adaptive

minimum mean-variance paths.

The LA area traffic routing problem is only one of numerous applications for

which the procedures of all developed algorithms in this study. Other applications

include routing of emergency vehicles to (or from) the scene of a medical emergency,

fire fighters to a fire, police officers to a request for service or scene of a crime,

commercial trucks to pickups and deliveries, service vehicles to downed power lines, or

wreckage from a natural disaster, as well as military applications, and other applications

where response time is critical.

 182

Chapter 7. Conclusions and Future Research

7.1 Research Summary

Transportation is a critical component of our lives. Electrical networks bring

lights, national highway networks cross distances, manufacturing and distribution

networks allow access to consumer products, and computer networks share information

globally. In all networking situations we move some entity from one point to another

through path as efficiently as possible. Routing (finding path) problems have broad

applications in transportation engineering, computer science, operations research, and

neurophysiology. They are of importance for passenger and goods movement, message

delivery, and more general system control.

Travel time between an origin and destination is often the primary criterion in

optimally routing vehicles such as ambulances, police cars, vehicles carrying hazardous

substances. Travel times in congested transportation networks are naturally time-

dependent and stochastic in nature. In order to optimally route vehicles, both the

stochastic and time-dependent nature of the travel times must be considered. Future

travel times can be treated as random variables whose probability distribution functions

vary with time.

Previous approaches in stochastic time-dependent problems do not account for the

fact that travelers often incorporate travel-time variability in decision making. Thus, a route

with lower travel-time variability is preferred at certain situations like hazardous material

shipment, even if such a route is not one with the lowest mean of travel-time. We recognize

 183

the fact that travelers choice not necessarily depend on the least expected time path

(LET) but also consider the time variability while choosing a path during the planning

stage. This approach is referred in this work as the mean-variance model in which the

choice of a route is based on the mean as well as the variance of the path’s travel-time. In

the current work a methodology for minimum variance and minimum mean-variance path

within a route guidance model is presented.

In general stochastic time-dependent networks, two types of routing policies are

used for routing in networks: a priori “best” path routing policy and time-adaptive

routing policy. For the priori best path routing problem, two algorithms, PMV(a priori

minimum variance algorithm) and PMMV(a priori minimum mean-variance algorithm)

were developed for determining a minimum variance path and minimum mean-variance

path. In both these routing methods it was assumed that drivers use the same path that

corresponds the minimum variance or minimum mean-variance to their destination node

depending on their actual departure time at an origin node. We found the recursive

relationship between means and variances of a given routing policy starting from two

adjacent nodes. The node labels are updated by using the recursive formulation. At

termination of either algorithm, the final node labels are the minimum variance path and

minimum mean-variance path from each node to the destination node for all departure

time.

The PMV and PMMV procedures are both specialized modified label correcting

algorithms for determining “preferred” paths in stochastic time-dependent networks from

all origins to a selected destination, for all departure times in the peak period. Both

algorithms are similar because both mean and variance calculations are required in both

 184

procedures. The multiple vector labels are required, each containing the variance or

mean-variance of path travel time for each departure time. These labels are growing

exponentially with network size, resulting in nonpolynomial worst-case performance.

Extensions of these algorithms for determining paths in a time-adaptive routing

where a driver is permitted to react to revealed information such as arrival time at

intermediate nodes were also discussed. Rather than selecting a priori single best path

before travel begins, routes with minimum mean-variance were obtained by allowing the

driver to react en route to revealed (actual) arrival times. Two computationally efficient

algorithms, TAMMV1(time-adaptive minimum mean-variance algorithm1) and

TAMMV2(time adaptive minimum mean-variance algorithm2) presented for

determining minimum mean-variance travel time path for all origins to a single destination

in a networks where the arc weights were discrete random variables whose probability

distribution functions varied a priori minimum variance algorithm with time. At

termination of the algorithm, efficient solutions (or non-dominated solutions) were

generated. The research proposes that such efficient solutions can be presented to the

traveler, who may then make the appropriate choice.

The performance of the algorithms, PMV, PMMV, TAMMV1 and TAMMV2 were

evaluated through numerical experiments, which were intended to assess the

computational performance on randomly generated networks. The results of these tests

showed that the TAMMV1 algorithm is often faster than is the TAMMV2 algorithm for the

majority of the larger-size networks, while the TAMMV2 algorithm appears to be faster for the

smaller networks. It was shown that while the TAMMV1 algorithm outperforms the

TAMMV2 algorithm in dense networks (such as data networks) the TAMMV2 algorithm

 185

often outperforms the TAMMV1 algorithm in sparse networks (such as transportation

networks).

The proposed algorithms were shown to perform successfully in real-life network

of best path between Beverly Hills and Garden Grove in LA. The data used for this

purpose was real-time data obtained from California DOT.

7.2 Future Research Directions

In this research, several assumptions are made to solve the stochastic time-

dependent network problems. First, the travel times are discredited into small time

increment. For more realistic approach, continuous-time framework should be considered.

The travel times of arcs are assumed as discrete random variables. Such discrete

representations of continuous random variables can result in wrong path selections.

Therefore, the solution algorithms need to develop for continuous-time dynamic network

optimization problem. Second, waiting times are not allowing during the trip. However,

most travelers are very flexible for their trip. To more accurately represent traffic or data

network, waiting time should not have the limitation.

The computational tests on this study provide valuable insights into the problem

for the first time. However, since the research is still in a very early stage, many

interesting tests are not performed and are desired for future research. Specifically, more

tests on a real-world network with actual data is recommended. Such tests can provide

researchers with an idea how the model and algorithms will perform in a realistic

network.

Reliability is another important criterion besides expected travel time and

 186

variance, when traveler makes routing decision in stochastic networks. With the real-time

traffic sensor information, routing decisions can be made in order to help commuters to

minimize delay. This minimum delay (on-time arrival) routing problem can be solved

by minimization of linear combination of expected travel time, expected early arrival ,

and expected late arrival.

In communication and other networks, node failures may be common. In this

study, node failures are not explicitly considered. The determination of "best" paths

given the probability of node failures is an area for future research. Some of the insight

gained though the development of this work may be useful for developing procedures for

computing the pdf of the minimum time, or least expected time, between two nodes in a

stochastic, time-dependent network.

The constrained optimal routing problems in stochastic time-dependent networks

are another area of the future research. With the time window constraints, travelers need

to arrive some specific point within given time window during the routing. These routing

problems have enormous real-world applications.

 187

References

Adlakha, V.G., (1986), "An Improved Conditional Monte Carlo Technique for Stochastic

Shortest Route Problem", Management Science, 32, 10, 1860-1367.

Ahuja, R.K., Magnanti, T.L., and Orlin, J.B., (1993), Network Flows: Theory, Algorithms,

and Applications, Prentice-Hall, Englewood Cliffs, NJ.

Alexopoulos, C., (1997), “State Space Partitioning Methods for Stochastic Shortest Path

Problem,” Networks, 30, 9-21.

Andreatta, G., Romeo, L., (1988), "Stochastic Shortest Paths with Recourse," Networks,

18, 193-204.

Bard, J. F., and Bennett, J. E., (1991), “Arc Reduction and Path Preference in Stochastic

Acyclic Networks”, Management Science, 37, 198-215.

Bard, J. F., Bennett, J. E. (1991), “Arc reduction and path preference in stochastic acyclic

networks”, Management Science 37/2, 198-215.

Bellman, R., (1958), “On a routing problem”, Quarterly of Applied Mathematics, 16, 87-

90.

Bereanu, B., (1966), “On Stochastic Linear Programming: The Laplace transform of the

distribution of the optimum and applications”, Journal of Mathematical Analysis

and Application, 15, 280-294.

Bertsekas, D. P., (2000), Dynamic Programming and Optimal Control, volume 1.

Athena Scientific, Belmont, Massachusetts, 2nd edition.

Bertsekas, D.P., and Tsitsiklis, J.N., (1991), “An analysis of Stochastic Shortest Path

Problems”, Mathematics of Operations Research, 16, 3, 580-595.

 188

Blue, V.J., Adler, J.L., and List, G.F., (1997), “Real-time multiple-objective path search

for in vehicle route guidance systems”, Transportation Research Records, 1588,

10-17.

Brumbaugh-Smith, J. and Shier, D., (1989), “An Empirical Investigation of Some

Bicriterion Shortest Path Algorithms”, European Journal of Operational

Research, 43, 2 16-224.

Cai, X., Kloks, T., and Wong, C. K., (1997), “Time-Varying Shortest Path Problems with

Constraints”, Networks, 29, 141-149.

Chabini, I. (1998), "Discrete Dynamic Shortest Path Problems in Transportation

Applications: Complexity and Algorithms with Optimal Run Time".

Transportation Research Record 1645, 170-175.

Chabini, I., (1997), "A new algorithm for shortest paths in discrete dynamic networks",

Proceedings of the 8th IFAC Symposium on Transport systems, China, Greece,

551-556

Chabini, I., (2001), "Algorithms for k-shortest paths and other routing problems in time-

dependent networks”, NSF report.

Cheung, R. K., (1998), “Iterative methods for dynamic stochastic shortest path

problems,” Naval Research Logistics, 45, 769–789.

Climaco, J.C. N. and Martins, E.Q.V., (1982), “A Bicriterion Shortest Path Algorithm,”

European Journal of Operational Research, 11, 399-404.

Cook, K. L., and E. Halsey, (1969), “The Shortest Route Through a Network with Time-

Dependent Internodal Transit Times’, Journal of Mathematical Analysis and

Applications 14, 492-498.

Corea, G. A., and Kulkarni, V. G., (1993), “Shortest paths in stochastic networks with

discrete arc lengths”, Networks, 23, 175-183.

 189

Corley, H.W. and Moon, I.D., (1985), “Shortest Paths in Networks with Vector

Weights,” Journal of Optimization Theory and Applications, 46, 79-86.

Croucher, J., (1978), “A note on the stochastic shortest-route problem,” Naval Research

Logistics Quarterly, 25, 729–732.

Current, J., Marsh, M., (1993), “Multiobjective transportation network design and

routing problems: Taxonomy and annotation”, European Journal of Operational

Research, 65, 4-19.

Dial, B.R., (1969), “Algorithm 360: Shortest Path Forest with Topological Ordering”,

Journal of the Association for Computing Machinery, 12, 632-633.

Dial, R.B., (1996), “Bicriterion Traffic Assignment: Basic Theory and Elementary

Algorithms”, Transportation Science, 30, 2, 93-111.

Dijkstra, E. W., (1959), “A note on two problems in connection with graphs”, Numeriche

Mathematics, 1, 269-271.

Dreyfus, (1969), "An Appraisal of Some Shortest-Path Algorithms", Operations

Research, 17, 395-412.

Erkut, E. and V. Verter (1995), "Hazardous Materials Logistics," in Facility Location: A

Survey of Applications and Methods, a Springer-Verlag book edited by Zvi

Drezner.

Eubank, J. B., and Kumin, H. J., (1974), “A method for the solution of the distribution

problem of stochastic linear programming”, SIAM Journal Applied Mathematics,

26, 225-238.

Ford, L.R., (1956), “Network flow theory”, Report P-923, Rand Corp., Santa Monica,

CA.

 190

Fox, B.L., (1973), “Calculating kth shortest paths,” INFOR-Canada, Journal of

Operational Research and Information Processing, 11, 66-70.

Fox, B.L., (1975), “More on kth shortest paths,” Communications of the ACM, 18, 279.

Fox, B.L., (1978), “Data Structures and Computer Science Techniques in Operations

Research”, Operations Research, 26, 686-717.

Frank, H., (1969), “Shortest paths in probabilistic graphs”, Operations Research, 17, 83-

599.

Fu, L., and Rilett, L.R., (1998), “Expected Shortest Paths in Dynamic and Stochastic

Traffic Networks”, Transportation Research-Part B, 32, 7, 499-511.

Gao, S., and Chabini, I., (2001), “The best routing policy problem in a stochastic time-

dependent network”, NSF report.

Glover, F., Glover, R., and Klingman, D., (1984), “Computational study of an improved

shortest paths algorithm”, Network, 14, 25-37.

Goldberg, A. V., Radzik, T., (1993), “A heuristic improvement of the Bellman-Ford

algorithm”, Applied Mathematical Letter, 6, 3-6.

Hagstrom, J., (1990), “Computing the Probability Distribution of Project Duration in a

PERT Network”, Networks, 10, 231-244.

Hall, R. W., (1986), “The fastest path through a network with random time-dependent

travel times”, Transportation Science, 20, 182-188.

Hansen, P., (1980), “Bicriterion Path Problems, In G. Fandel and T. Gal (Eds): Multiple

Criteria Decision Making”, Springer, Berlin, 109-127.

Hansler, E., (1972), “A fast recursive algorithm to calculate the reliability of

communication network”, IEEE Transportation Communications, 20, 637-640.

 191

Hayhurst, G. B., and Shier, D. R., (1991), “A factoring approach for the Stochastic

Shortest Path Problem”, Operations Research Letters, 10, 329-334.

Henig, M. I., (1990), "Risk Criteria in a Stochastic Knapsack Problem", Operations

Research, 38, 820-825.

Henig, M.I., (1985), “The Shortest Path Problem with Two Objective Functions,”

European Journal of Operations Research, 25, 281-291.

Henig, M.I., (1994), “Efficient Interactive Methods for a Class of Multiattribute Shortest

Path Problems,” Management Science, 40, 7, 891-897.

Hoffman, W. and Pavley, R., (1959), “A method for the solution of the n-th best path

problem,” Journal of the Association for Computing Machinery, 6, 506-514.

Ishii, H., Shiod, S., Nishtida, T., and Namasuya, Y., (1981), “Stochastic spanning tree

problem”, Discrete Applied Mathematics, 3, 263-273.

Kalbfleisch, J., (1985), Probability and Statistical Inference: Volume 1: Probability,

Springer-Verlag, New York, Chapter 5.

Kamburowski, J., (1985), "A Note on the Stochastic Shortest Route Problem",

Operations Research, 33, 696-698.

Kaufman, D. E., and Smith, R. J., (1993), “Fastest paths in time-dependent networks for

IVHS application”, IVHS Journal, 1, 1-11.

Kulkarni, V. G., (1986), “Shortest Paths in networks with exponentially distributed arc

lengths”, Networks, 16, 255-274.

Lawler, E. L., (1976), “Combinatorial Optimization: Networks and Matroids, Holt,

Rinehart & Winston, New York, NY.

Lawler, E.L., (1972), “A procedure for computing the K best solutions to discrete

optimization problems and its application to the shortest path problem,”

 192

Management Science, 18, 401-405.

Lawler, E.L., (1977), “Comment on computing the k shortest path in a graph,”

Communications of the ACM, 20, 603-604.

List, G. F., Mirchandani, P.B., Turnquist, M. A., Zografos K. G., (1991), “Modeling and

analysis for hazardous materials transportation: Risk analysis, routing/scheduling

and facility location”, Transportation Sci. 25 100-114

Loui, R. P., (1983), “Optimal Paths in Graphs with Stochastic or Multidimensional

Weights”, Communications of the ACM, 26, 670-676.

Martins, E.Q.V., (1984), “An Algorithm for Ranking Paths that May Contain Cycles”,

European Journal of Operations Research, 18, 123-130.

Miller-Hooks, E. D., (2001), “Adaptive Least-Expected Time Paths in Stochastic, Time-

Varying Transportation and data networks”, Networks, 37, 1, 35-52.

Miller-Hooks, E. D., and H. S. Mahmassani (2003), “Path comparisons for a priori and

time-adaptive decisions in stochastic, time-varying networks”, European Journal

of Operational Research, Vol. 146, pp. 67-82.

Miller-Hooks, E. D., Mahmassani, H. S. (1998a), “Least possible time paths in stochastic,

time-varying networks”, Compututations Operational Research, 25, 1107–1125

Miller-Hooks, E. D., Mahmassani, H. S. (1998b), “Optimal routing of hazardous

materials in stochastic, time-varying transportation networks”, Transportation

Research Records. 1645, 143–151.

Miller-Hooks, E. D., Mahmassani, H. S., (2000), “Least expected time paths in stochastic,

time-varying transportation networks”, Transportation Science. 34(2), 198-215.

Miller-Hooks, E., Mahmassani, H., (1998), “Least possible time paths in stochastic, time-

varing networks,” Computers operations research, 25, 12, 1107-1125.

 193

Minieka, E. and Shier, D.R., (1973), “A note on an algebra for the k best routes in a

network,” Journal of the society for Industral and Applied mathematics, 145-

149.

Mirchandani, P. B., (1976), “Shortest distance and reliability of probabilistic networks”,

Computers & Operations Research, 3, 347-355.

Moore, E.F. (1959), “The shortest path through a maze”, Proceedings of an International

Synposium on the Theory of Switching (Cambridge, Massachusetts, 2-5 April,

1957), Harvard University Press, Cambridge, 285-292.

Murthy, I., Sarkar, S., (1997), “Exact Algorithms for the Stochastic Shortest Path

Problem with a decreasing deadline utility function”, European Journal of

Operational Research, 103, 209-229.

Nguyen, S., Pallottino, S., (1986). “Hyperpaths and Shortest Hyperpaths”, Combinatorial

Optimization, Lecture Notes in Mathematics, 1403, Springer-Verlag, Berlin, 258-

271.

Nguyen, S., Pallottino, S., (1988), “Equilibrium Traffic Assignment for Large Scale

Transit Networks”, European Journal of Operational Research, 37, 176-186.

Nozick, L. K., List. G. F.,and Turnquist M. A., (1997), “Integrated routing and

scheduling in hazardous materials transportation”, Transportation Science. 31

200-215

Orda, A., Rom, (1990), “Shortest-path and minimum-delay algorithms in networks with

time-dependent edge-lengths”, Journal of the Association for Computing

Machinery. l. 37, 603-625.

Pallottino, S., (1984), “Shortest path methods: Complexity, interrelations and new

propositions”, Networks, 14, 257-267.

Pape, U., (1974), “Implementation and efficiency of Moore-algorithms for the shortest

 194

route problem”, Mathematical Programming, 7, 212-222.

Perko, A., (1986), “Implementation of algorithms for K shortest loopless paths,”

Networks, 16, 149-160.

Polychronopoulos, G. H., Tsitsiklis, J. N., (1996), “Stochastic Shortest Path Problems

with Recourse”, Networks, 27, 133-143.

Powell, W. B., Jaillet, P., and Odoni, A. (1995), Stochastic and Dynamic Networks and

Routing, Handbook in Operations Research and Management Science, Vol. 4,

Networks, (M.O. Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser, eds.),

pp. 141-295, 1995.

Provan., J.S. (2003). “A polynomial-time algorithm to find shortest paths with recourse”.

Networks, 41(2):115–125,

Psaraftis, H. E., and Tsitsiklis, J. N., (1993), “Dynamic Shortest Path in acyclic networks

with Markovian arc costs”, Operations Research, 41, 1, 91-101.

Ross, S. M., (1993), Introduction to Probability Models, Academic Press, Inc. Processes

Sancho, N.G. F., (1988), “A New Type of Multi Objective Routing Problem,”

Engineering Optimization, 14, 115-119.

Schrank, D., and Lomax, R., (2005, May). The 2005 Urban Mobility Report, Texas

Transportation Institute, The Texas A&M University System,

http://mobility.tamu.edu

Scott, K. G., and D. Bernstein, (1998), “Solving a Best Path Problem when the Value of

Time Function is Nonlinear”, Presented at the 77th Transportation Research

Board Annual Meeting, January 11-15, Washington, D.C.,

Sen, S., Pillai, R., Joshi, S., and Rathi, K., (2001) “A mean-variance model for route

guidance in advanced traveler information systems”, Transportation Science, 35,

 195

1, 37-39.

Seok, J. and S. Pulat (2001), “On the stochastic shortest path problem and its promise as

a project management tool”, Master thesis.

Shier, D.R., (1976), “Iterative methods for determining the k shortest paths in a

network,” Networks, 6, 205-229.

Shier, D.R., (1979), “On algorithms for finding the k shortest paths in a network,”

Networks, 9, 195-214.

Sigal, L. E., Pritsker, A. A. B., and Solberg J. J., (1980), “ The use of cutsets in Monte

Carlo analysis of stochastic networks”, Mathematics Computer Simulation, 21

376-384.

Sivakumar, R. A. and Batta R. (1994), “The variance-constrained shortest path problem”,

Transportation Science, 28, 309-316.

Spiess, H., Florian, M., (1989), “Optimal Strategies: A new Assignment Model for

Transit Networks,” Transportation Research B 23B, 83-102.

Stewart, B.S., and White, C.C., (1989), “Three Solution Procedures for Multi Objective

Path Problems,” Control Theory and Advanced Technology, 5, 4, 101-107.

Tarjan, R. E., (1983), Data structures and Network Algorithms, SIAM, Philadelphia, Pa.

Turnquist , M. A., (1987), “Routes, schedules, and risks in transportation of hazardous

materials”, B. Lev, J. A. Bloom, A. S. Gleit, F. H. Murphy, C. A. Shoemaker, eds.

Strategic Planning in Energy and Natural Resources. North Holland, Amsterdam,

The Netherlands, 289–302.

Warburton, A., (1987), “Approximation of Pareto Optima in Multiple-Objective,

Shortest-Path Problems”, Operational Research, 35 1, 70-79.

 196

Wu, J., Florian, M., (1993), “ A Simplical Decomposition Method for the Transit

Equilibrium Assignment Problem”, Annals of Operations Research, 44, 245-260.

Wu, J., Florian, M., and Marcotte, P., (1994), “Transit Equilibrium Assignment: A

Model and Solution Algorithms”, Transportation Science 28, 193-203.

Yen, J.Y., (1971), “Finding the K shortest loopless paths in a network,” Management

Science, 17, 712-716.

Yen, J.Y., (1971), “Finding the K shortest Loopless Paths in a Network”, Management

Science, 17, 711-715.

Ziliaskopoulos, A., Mahmassani, H. S.,(1993), “Time-dependent, shortest-path algorithm

for real-time intelligent vehicle highway system applications”, Transportation

Research 1408, 94-100.

