
GENISTEIN REDUCES PRODUCTION OF 

PROINFLAMMATORY MOLECULES IN HUMAN 

CHONDROCYTES

By

SHIRIN HOOSHMAND

Bachelor of Science in Nutritional Sciences 

Shahi d Beheshti University of Medical Sciences

Tehran, Iran

2004

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE 
May, 2006



ii

GENISTEIN REDUCES PRODUCTION OF 

PROINFLAMMATORY MOLECULES IN HUMAN 

CHONDROCYTES

   Thesis Approved:

Dr. Bahram H. Arjmandi

   Thesis Adviser

  Dr. Edralin A. Lucas

   Dr. Sundar V. Madihally

Dr. A. Gordon Emslie
   Dean of the Graduate College



iii

ACKNOWLEDGMENTS

I wish to express my deepest gratitude and sincere appreciation to my major advisor, Dr. 

Bahram H. Arjmandi, for his encouragement and guidance throughout the course of my 

study. Working with him has been a tremendous learning process for me. I will never be 

able to thank him enough for his support. 

I would also like to extend my appreciation to the members of my graduate committee, 

Dr. Edralin A. Lucas, for showing interest in this work and providing me with useful 

suggestions and Dr. Sundar V. Madihally, for sharing his knowledge and guidance. I will 

always be grateful to them.

In addition to my committee, I would like to acknowledge the time and efforts that Dr. 

Do Yu Soung contributed to this study. I would also like to thank Dr. Latha Devareddy, 

for her guidance and contribution to the success of my thesis in many ways. Without all 

of you, this goal would have not become a reality. 

A final thank you is given to my family who has always loved and encouraged me. To 

my wonderful mother, for her endless love and confidence towards me; she has made my 

goals possible and my future bright, to my sisters, Shadi and Shiva, for their never-ending 

support and unconditional love. I have dedicated this to you! 



iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION

Hypothesis and specific aims...................................................................................2

II. REVIEW OF LITERATURE

Osteoarthritis............................................................................................................4
Epidemiology and prevalence.............................................................................4

Incidence of osteoarthritis........................................................................................5
Primary and secondary osteoarthritis ......................................................................6
Biology of articular cartilage ...................................................................................7
     Composition of cartilage.....................................................................................7

           Chondrocytes ......................................................................................................7
     Structural organization of cartilage.....................................................................8
Pathogenesis, clinical features, and risk factors of osteoarthritis ............................9

     Changes in the diseased joint..................................................................................10
            Morphological changes....................................................................................10
     Stages of joint degradation......................................................................................11
     Proposed role of estrogen in osteoarthritis..............................................................12
     Estrogen receptors and selective estrogen receptor modulators .............................14
            Estrogen receptor .............................................................................................14
            Tissue specific action of SERM.......................................................................15
     Role of cytokines and growth factors in OA ..........................................................15
          Catabolic cytokines...........................................................................................17
     Markers of cartilage degradation ............................................................................18
     Current treatment and therapies for OA-medications.............................................18
           Class of non-steroidal anti-inflammatory agents ..............................................18

      Celecoxib and rofecoxib ...................................................................................19
Role of soy isoflavones in OA................................................................................20

III. RESEARCH DESIGN AND METHODS

Experimental design...............................................................................................22
Cell viability assay.................................................................................................23
Western Immunobloting ........................................................................................23



v

Nitric oxide assay...................................................................................................24
Assessment of IL-1β ..............................................................................................25
YKL-40 EIA kit .....................................................................................................26
Statistical Analysis.................................................................................................26

IV. RESULTS

Cell viability...........................................................................................................28
Protein level of COX-2 and COX-1.......................................................................28
Nitric oxide production ..........................................................................................29
Interleukin -1β production .....................................................................................29
YKL-40 production................................................................................................29

V.  DISCUSSION ........................................................................................................30

REFERENCES ............................................................................................................40



vi

LIST OF FIGURES

Figure Page

1. Cell viability of chondrocytes ...........................................................................34

      2. COX-2 protein level of cytosolic fraction of chondrocytes ..............................35

3. COX-1 protein level of cytosolic fraction of chondrocytes ..............................36

      4. NO level in culture supernatant .........................................................................37

5. IL-1β level in culture supernatant .....................................................................38

      6. YKL-40 level in culture supernatant .................................................................39



vii

NOMENCLATURE

CON Control

COX Cyclooxygenase

EIA Enzyme immunoassay

ELISA Enzyme immunosorbent assay

ER Estrogen receptor

ERT Estrogen replacement therapy

HRP Horse radish peroxidase

IL-1β Interleukin-1 beta

LOX Lipoxygenase

LPS Lipopolysaccharide

MMP Metalloproteinase

NF-κB Nuclear factor kappa B

NO Nitric oxide

NSAID Nonestradiol antiinflammatory drug

OA Osteoarthritis

PVDF Polyvinylidene diflouride

RA Rheumatoid arthritis 

SERM Selective estrogen receptor modulator

SDS Sodium dodecyl sulfate

TNF-α Tumor necrosis factor alpha



1

CHAPTER I

INTRODUCTION

Osteoarthritis (OA) is the most common joint disorder and its etiology is 

relatively unknown. After age 45, women experience a more dramatic increase in the 

incidence of OA compare to men. The gender difference in prevalence of OA has been 

linked to ovarian hormone deficiency. Intraarticular injections of estradiol has been 

shown to upregulate both estrogen receptors in condylar cartilage at early stages of OA in 

ovariectomized rabbits(1;2). A recent ex vivo study (3) indicated that postmenopausal 

women with knee OA had elevated estrogen levels in knee synovial fluid without notable 

differences in circulating estrogen levels. 

Although the etiology of OA is not completely known, it is believed that 

production of proinflammatory cytokines in the joints may play a crucial role in the 

pathogenesis of OA. Management of OA’s symptoms is currently focused on reducing 

pain and inflammation through nonestradiol antiinflammatory drugs (NSAIDs) or other 

agents. The findings of some recent studies (4;5) have suggested that plant flavonoids 

attenuate inflammation and the immune response through their inhibition of important 

regulatory enzymes in arachidonic acid metabolism. Flavonoids are powerful inhibitors 

of cyclooxygenase-2 (COX-2) activity (5;6) . These antiinflammatory properties of 

flavonoids provide the rationale for investigating the role of isoflavones in conditions 

such as OA. A recent clinical study by Arjmandi and colleagues (7) indicated that soy 
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protein supplementation delivering 88 mg isoflavons mainly in the form of genistein, a 

naturally-occurring selective estrogen receptor modulator (SERM), was effective in 

alleviating overall OA symptoms and reducing pain medication use. The major 

isoflavone in soy is genistein, which has been referred to as naturally occurring selective 

estrogen receptor modulator with resemblance to synthetic SERMs such as tamoxifen, 

raloxifene, and ipriflavone.  Tamoxifen (8), raloxifene (9) and ipriflavone (10) have been 

shown to have beneficial effect on cartilage metabolism and alleviate OA symptoms. The 

purpose of the present study was to determine whether genistein inhibits the production 

of proinflammatory molecules in lipopolysaccharide (LPS)-stimulated chondrocytes. 

Hypothesis

The hypothesis of this study was that genistein dose-dependently suppresses the 

production of LPS-induced proinflammatory molecules in human chondrocytes. 

The specific aims of this research were as follows: 

1. To investigate the extent to which genistein reduces LPS-induced production of

proinflammatory molecule, i.e. COX-2, nitric oxide (NO), tumor necrosis factor-

alpha (TNF-α), and interleukin-1 beta (IL-1β). 

2. To explore whether the antiinflammatory properties of genistein in chondrocytes, 

in part, is through estrogen receptors. For this purpose ICI-182,780, an estrogen 

receptor (ER) antagonist, was used.

3. To compare the antiinflammatory properties of genistein against a known 

selective inhibitor of COX-2.  
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4. To examine whether genistein restore formation of glycoprotein synthesis in LPS-

stilmulated chondrocytes by measuring, YKL-40, a marker of cartilage 

degradation.
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CHAPTER II

REVIEW OF LITERATURE

Osteoarthritis

Epidemiology and Prevalence

Osteoarthritis (OA) is the leading cause of disability in the elderly population. In 

the United States, it afflicts 13% of individuals between the ages of 55 and 64 and 17% of 

those 65 to 74 years old (11). Currently, 20 million people in the U.S. are affected by OA 

and this number is predicted to exceed 59 million by the year 2020 (12). Increasing 

prevalence of OA with age is further aggravated by the lack of treatment to reduce the 

overall cause of OA. It is the most common joint disorder, both in the U.S. and 

throughout the world, with relatively unknown etiology. Exhausting a major proportion 

of health care dollars, OA ranks second in health care problems of the developed world

(13). The relative economic impact of musculoskeletal conditions is growing rapidly with 

the passage of time, having reached 2.5% of the gross national product in 1992. The 

prevalence of OA is higher in men than in women up to approximately age 45, however, 

after age 45 the reverse is true (14). The epidemiologic definition of OA encompasses 

symptoms, disability, and structural changes associated with this disorder. 

Epidemiological data focus not only on the structural disease but also characterizes the 

radiographical definition with the presence and absence of symptoms. The most widely 

used system for grading the severity of the radiograph is known as the Kellgren-
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Lawrence grading system (14). This grading defines the degree of osteophyte formation 

from 0 to 4 but is unclear on the issue of grading the knee with joint space narrowing 

without the presence of osteophytes.

Incidence of Osteoarthritis

Reports on the percentage of people who have been diagnosed with osteoarthritis 

based on medical history, examination, or radiographic evaluation confirm a striking 

increase in the prevalence of OA of the hand, foot, knee, and hip joints with increasing 

age (15;16). In the Framingham study population, it was found that the percentage of 

people who have mild, moderate, or severe radiographic changes indicative of 

osteoarthritis in at least one joint increases progressively from less than 5% in individuals 

younger than 25 years of age to more than 80% in individuals more than 75 years of age 

(17;18). More specifically, those with moderate or severe radiographic changes in 

relation to OA in at least one joint increases dramatically from 5% in individuals younger 

than 45 years of age to 40% in those 75 years and older (15). Regardless of the 

relationship between age and OA, the widespread view is that osteoarthritis results from 

normal wear and tear.  

Unlike the joint destruction seen in other rheumatic joint diseases with major 

systemic inflammatory components such as rheumatoid arthritis (RA), OA consists of a 

regressive sequence of changes in the cells and matrix that results in the loss of structure 

and function of articular cartilage accompanied by attempts at cartilage repair and the 

remodeling of underlying bones (19;20). Because of these repair and remodeling 

processes, the degeneration of the articular surface in OA is not uniformly progressive, 

and the rate of degeneration varies among individuals and among joints (21;22). On 



6

occasions, this degeneration may occur rapidly, but in most joints it progresses slowly 

over many years. However, in some cases, this process may stabilize or even decrease 

spontaneously with partial restoration of the articular surface and a resulting decrease in 

symptoms.

Primary and Secondary Osteoarthritis

Primary or idiopathic osteoarthritis is the degeneration of articular cartilage and 

alterations in single or multiple joints due primarily to aging and wear and tear of the 

tissue. This results in the loss of structure and function of the articular cartilage causing 

pain and loss of motion (23). In an increasing number of individuals, OA is classified as 

secondary on the basis that the joint degeneration is mainly as a result of traumatic joint 

injury or from developmental, metabolic, and systemic disorders which destroy the 

articular surface (23). This generally progressive loss of articular cartilage is 

accompanied by attempted repair of the cartilage, remodeling and sclerosis of the 

underlying subchondral bone, and in many cases the formation of bone cysts and 

marginal osteophytes. The diagnosis of OA requires the presence of symptoms and signs 

that may include; joint pain, restriction of motion, crepitus with motion, joint effusions, 

and deformity (24). Although OA is most prevalent in the foot, knee, hip, spine, and hand 

joints (25-27), it can affect any synovial joint as well. 

Osteoarthritis develops most frequently in the absence of a known cause (primary 

OA) and less often it develops as a result of a joint injury, infection or one of a variety of 

hereditary, developmental, metabolic and neurologic disorders (secondary OA). The age 

of onset associated with secondary OA depends on the underlying cause, thus, it may 

develop in young adults and even children as well as the elderly (28). In contrast, there is 
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a strong association between the prevalence of primary osteoarthritis and increasing age. 

The tools to assess the prevalence of osteoarthritis have numerous limitations, including 

difficulty in defining and establishing the diagnosis and in evaluating more than a few 

synovial joints in each individual (25-27). 

Biology of Articular Cartilage

Composition of Cartilage

Articular cartilage appears histologically to be a simple inert tissue and has a firm 

slick surface that resists deformation (29). Under the light microscope, the articular 

cartilage consists primarily of extracellular matrix, with only one type of cell, known as 

chondrocytes. Cartilage is a non-vascular tissue as it lacks blood vessels, lymphatic 

vessels, and nerves. In comparison with tissues such as muscle and bone, it has a low 

level of metabolic activity and appears to be less responsive to changes in loading or to 

injury (30-32). The morphology of articular cartilage shows that it has a highly intricate 

and ordered structure and that a variety of complex interactions between the chondrocytes 

and the protein matrix actively maintain the integrity of the tissue. The articular cartilage 

is composed of cells, water, and a matrix macromolecular framework, and it is this 

framework that provides the cartilage its mechanical properties (30;32). Chondrocytes 

make up about two percent of total volume of cartilage and hence they are considered a 

small part of the total volume of cartilage (33).  

Chondrocytes

Within the articular cartilage, there is only one specialized type of cell known as 

chondrocyte (29;33). Chondrocytes from different locations of the articular cartilage 
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differ in size, shape and activity (34). These cells contain organelles necessary for matrix 

synthesis and in some cases have short cilia extensions, which may play a role in sensing 

mechanical changes in the matrix. Chondrocytes are surrounded by extracellular matrix 

and do not form cell-to-cell contacts. These cells in their mature stage are spheroidal in 

shape and synthesize type II collagen, large aggregating proteoglycan, and specific non-

collagenous proteins to form cartilaginous matrix (34;35). Individual chondrocytes are 

quite active metabolically but the total activity of the cartilage tissue is quite low due to 

the low cell density (33;35;36).

In relation to the mechano-structural properties of the articular cartilage, 

chondrocytes appear to remain unchanged in location, appearance, and activity. The type 

of macromolecules that form the matrix and the concentration of water are important to 

the structural response of this tissue (37). Maintenance of the articular surface requires 

turnover of the matrix macromolecules, which involves the continuous replacement of 

degraded matrix components and alteration in the macromolecular framework of the

matrix in response to the use of the joint (37). To achieve these activities, the 

chondrocytes must sense the changes in the matrix due to degradation as well as changes 

in macromolecules in relation to the demands placed on the articular surface (38). The 

cells respond by synthesizing appropriate types and amounts of the macromolecules (30). 

Structural Organization of Cartilage

The primary function of the chondrocytes is to synthesize and organize collagens, 

proteoglycans and the non-collagenous proteins into unique and highly ordered matrix 

structure to form articular cartilage (30;32). The composition, organization, and 

mechanical properties of this matrix as well as the chondrocyte morphology and function 
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vary according to the depth of the articular surface. These changes are identified in layers 

called zones and there are four zones known as superficial, transitional, middle (radial), 

and a zone of calcified cartilage (29). The zones differ in respect to their concentration of 

water, proteoglycan, and collagen including the size of the aggregates. Cells in these 

zones also differ in size, shape, and orientation relative to the articular surface (29). This 

also causes a variation in the degree of metabolic activity between the zones. 

Chondrocytes respond differently to mechanical loading which suggests that the 

development and maintenance of articular cartilage under normal conditions depends 

partly on the differentiation of the distinct populations of these cells across the zones 

(30;32).

Pathogenesis, Clinical Features, and Risk Factors of OA
Osteoarthritis is generally viewed as a degenerative disorder involving cartilage 

degradation in aging (39;40). Typically, the degenerative changes are accompanied by a 

local inflammatory component that may accelerate joint destruction (39;41). Hyaline 

articular cartilage is made up of a matrix of type II collagen fibers and proteoglycans, as 

well as the chondrocytes that produce the matrix, and water (39;42). In OA, the 

proteoglycan content of the cartilage is gradually depleted, leading to an initial increase 

in water content and a loss of compressibility and shock absorption, and culminating in 

fibrillation and breakdown (42).

The main clinical features of OA are pain, stiffness, loss of function, and 

ultimately joint deformity. Any of the joints may be affected in isolation or as part of 

primary generalized OA. The most common joints involved in OA include those of the 

knee, hands, feet, hips, and the apophyseal joints of the spine. OA is primarily a disorder 
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of the hyaline articular cartilage that coats the bony surface of all synovial joints and the 

meniscus (43).

In addition to age, a number of other factors have been suggested as risk factors 

for the development of OA including: genetics, obesity, joint hypermobility, joint trauma, 

immobilization, peripheral neuropathy, crystals in joint fluid or cartilage, and repetitive 

joint overuse (13). The pathological processes and the radiological features vary to some 

degree across the different joints. Therefore, OA is generally considered to be a 

heterogeneous disorder and no two joints may be afflicted equally in the same individual. 

Predominance of generalized OA in women suggests that changes in production and 

nature of estrogens may be risk factors in the development of OA.

Changes in the Diseased Joint

Morphological Changes

Osteoarthritis involves all of the tissues that form the synovial joint, including 

articular cartilage, subchondral and metaphyseal bone, synovial tissue and ligaments, 

joint capsule, and muscles that surround the joint (44). However, the primary changes 

consist of loss of articular cartilage, remodeling of subchondral bone, and formation of 

osteophytes (45;46). The earliest histological changes in OA include the superficial zone 

of the articular cartilage and extend into the transitional zone (47;48). There is decreased 

staining for proteoglycans in these regions and protrusion of blood vessels from 

subchondral bone as a result of increased remodeling. Investigators suggest that the 

stiffening of subchondral bone due to this remodeling causes the degeneration of articular 

cartilage (47). Alternatively, the loss of articular cartilage could increase the level of 

mechanical stress on the underlying bone, causing aggressive bone remodeling to occur 
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(47). However, it is not certain as to what is the correct order of these events. But in most 

instances, the degeneration of articular cartilage and the remodeling of subchondral bone 

are both present when symptoms develop and it is this loss of cartilage that leads to the 

direct loss of joint function. 

Stages of Joint Degradation

Many of the mechanisms responsible for the progressive loss of cartilage in 

degenerative joint disease remain unknown. However, this process can be divided into 

three overlapping stages which include disruption or alteration of the cartilage matrix, the 

chondrocyte response to tissue damage, and the decline of the chondrocytic response to 

restore or maintain tissue leading to loss of articular cartilage (21;49) The first stage is 

when there is an overall disruption of the matrix framework and an associated increase in 

the concentration of water (50). The collagen meshwork may also be damaged and the 

degree of proteoglycan aggregation decreases (21). These changes proceed to the 

response of the chondrocytes in the second stage by increasing synthesis and decreasing 

the degradation of the matrix. Rate of degradation is controlled by the balance in activity 

between both anabolic and catabolic growth factors and cytokines (46). 

In this second stage of the development of OA, the repair mechanisms may 

increase the synthesis of matrix macromolecules and to a lesser extent cell proliferation 

which can counter the catabolic effects and stabilize or in some instances restore the 

tissue (21). This repair response may continue for years and in some individuals reverse 

the course of osteoarthritis at least temporarily. The failure to stabilize or restore the 

tissue leads to the third stage in the development of OA (46;50). In the third stage, there 

is a progressive loss of articular cartilage as well as a notable decline in the anabolic 
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response of the chondrocytes (51). This decline can result from mechanical insults and 

chondrocyte death which no longer can be supported by a stable and functional matrix 

(21). There is also a down-regulation of the chondrocytic response to anabolic growth 

factors and cytokines and an increase in synthesis and accumulation of molecules in the 

matrix such as catabolic cytokines and growth factor-binding proteins which decrease the 

overall anabolic effect (51). The loss of articular cartilage leads to the symptoms of pain 

and joint dysfunction associated with OA. This loss occurs most frequently with 

increasing age, possibly because age related changes in the cartilage matrix and the 

decrease in the chondrocytic anabolic response compromise the ability of the tissue to 

maintain and restore itself (12;21;32).

Proposed Role of Estrogen in Osteoarthritis

Epidemiologic studies have indicated that women over the age of 50 are the most 

vulnerable to joint disorders, especially OA. Sex hormones may play a role in the 

development of OA in women (52). The prevalence of OA increases in women following 

menopause and rises faster with age in women then in men (53-55). Tsai and colleagues 

(8) have suggested that excessive levels of synovial fluid estrogen are responsible for the 

development of OA in humans. In some animal studies, when estrogen was administered 

directly to the knee joint, it resulted in an increased frequency and severity of OA (1;2). 

Furthermore, Tsai and Lui (2) have shown that intraarticular injections of estradiol to 

ovariectomized rabbits induced an up-regulation of estrogen receptors in condylar 

cartilage at an early stage of OA and cartilage degeneration and erosion at the late stage. 

In OA, looser matrix might be synthesized in the medial compartment, allowing 
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molecules in the synovial fluid, including estrogens to be taken up by the chondrocytes, 

and therefore resulting in cell death and cartilage erosion (2). Estrogen may affect 

articular cartilage by modulating the synthesis of the cartilage matrix and the production 

of matrix enzymes (56). Estrogen receptors are found in articular cartilage (3;57), but 

estrogen may also influence cartilage metabolism via cytokines (58). Estrogen has also 

been suggested to influence the development of OA through its effects on bone 

metabolism (59;60). 

In partially menisectomized rabbits, estrogen accentuates the frequency and 

severity of OA. Estradiol also modulated articular cartilage metabolism by suppression of 

DNA and proteoglycan synthesis (56). Furthermore, intraarticular injection of estradiol to 

the knee joint impaired lactate dehydrogenase resulting in an overall disruption of matrix 

collagen (56) in cartilage tissue. These observations imply that estrogen can affect 

chondrocyte metabolism and proliferation, possibly through a receptor-mediated 

mechanism (56).  

There are a number of epidemiological studies that have examined the possible 

relationship between estrogen replacement therapy (ERT) and risk of OA. Several 

investigators reported that women who at one time have been on ERT have a lower than 

expected risk of knee or hip OA (61-65). Prospective cohort investigation of the 

Framingham study indicated that the use of ERT had a moderate protective effect against 

worsening of radiographic knee OA among elderly women (66). Although evidence from 

these studies may suggest that estrogen protects against OA, there are important 

limitations to be considered. Women on ERT tend to be generally healthier, thinner and 

more active, as well as better educated than non-users. These characteristics as well 
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others may benefit the estrogen users and make them less prediposed to have OA than the 

non-users. Currently there are no published clinical trials on ERT in OA. Longitudinal 

studies are needed in which estrogen users and non-users can be followed and carefully 

characterized for OA.

Estrogen may also play an important role in male OA. Higher synovial estradiol 

and higher estrogen receptor levels in cartilage of individuals with OA compared to non-

OA may be primary reasons for the incidence of OA in males as well (8;57). The 

negative effects of estradiol in synovial fluid may be counterbalanced by endogenous 

testosterone, resulting in a lower estrogen/testosterone ratio or a lower unopposed, free 

estradiol to interact with cartilage. 

Estrogen Receptors and Selective Estrogen Receptor Modulators (SERM)

Estrogen Receptors 

Estrogen has been shown to act genomically by coupling with the estrogen 

receptor and its coactivators to induce changes in gene expression. 17β-estradiol (E2) and 

the estrogen receptors have been shown to form a ligand-estrogen receptor complex (67). 

The challenge in understanding the mechanisms by which estrogen exerts its effects is 

due to the existence of its two receptor subtypes, estrogen receptor (ER)-α and ERβ. The 

two receptors share considerable homology but differ in the C-terminal ligand binding 

domain and its N-terminal transactivation domain (68). Paech and colleagues (67) have 

demonstrated that the transcriptional effects elicited by E2 are determined by whether or 

not it interacts with ERα or ERβ. The two receptors exhibit different responses to drugs 

such as tamoxifen and raloxifene which are categorized as either anti-estrogens or 

SERM. While estrogen induces negative transcription regulation, SERM induce positive 
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regulatory sequences when interacting with ERβ. This may explain, in part, how SERM 

are able to induce beneficial estrogenic effects on bone and cardiovascular without 

dramatically increasing the risk of cancer of the reproductive organs.

Tissue Specific Actions of SERM

The levels of expression for each ER subtype vary from organ to organ, and bind 

estrogen with varying affinity. The ratio of ERα to ERβ in different vascular beds vary 

and this may explain the different responses exerted by SERM in various tissues (69). 

The two well known SERM, tamoxifen and raloxifene, are non-steroidal phenylethylene 

derivatives that have been shown to bind to ERβ with higher affinity than ERα (70). In 

some cases, SERM mimic the effects of estrogen, while in other cases, antiestrogenic 

effects are observed (70). They were first characterized as antagonists/partial agonists on 

the basis of their binding to ERα. However since then they have been shown to act as full 

estrogen agonists in bone through their interaction with ERβ. The differential estrogenic 

effects of SERM vary, as tamoxifen has been shown to have estrogenic actions in the 

uterus, while raloxifene does not (70). Thus the acronym SERM takes into account the 

selective modulations of the ER in specific tissues (70). The selective action of both 

natural and synthetic SERM and their interaction with each of the ER subtype across 

different tissues needs to be further investigated. 

Role of Cytokines and Growth Factors in OA

Function

Cytokines and growth factors are released by cells in response to specific signals 
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and influence the function of target cells by exerting a positive or negative effect on gene 

expression (71). Because they have a relatively short half-life, they usually exert their 

influence on cells in the local environment. Cytokine production and its effects on target 

cells are regulated in several ways. Homeostasis is maintained as a balance between a 

particular cytokine and various naturally occurring molecules that function as cytokine 

inhibitors (71). The cartilage tissue is maintained by the equilibrium between the effects 

of catabolic cytokines (e.g. IL-1α and β, TNF-α) which induce the production of specific 

matrix degrading metalloproteases, and anabolic growth factors such as insulin-like 

growth factor and transforming growth factor-β which induce the production of building 

blocks of cartilage such as collagen and proteoglycans (71).

In osteoarthritis, the breakdown of the joint tissue occurs in several phases (72).

This depletion suggests an overall failure in the cytokine-controlled matrix homeostasis, 

with a shift in equilibrium between synthesis and degradation favoring catabolic 

processes. In the earlier stages of OA, the chondrocytes attempt to repair the cartilage by 

increasing the synthesis of matrix macromolecules (50). The increased presence of 

anabolic growth factors presumably activates the chondrocytes to stimulate the matrix 

synthesis. However, compositional change in the matrix molecules may interfere with 

this process by reducing their capacity to aggregrate properly with hyaluronic acid (73). 

Over time, the matrix losses its resiliency and fails to withstand the mechanical stress 

placed on the joints. In the later stages of the disease process, enhanced cartilage 

degradation far exceeds the ability of the chondrocytes to synthesize new matrix. 

Furthermore, there is increased presence of catabolic cytokines such as IL-1β and TNF-

α that potentiate the expression of matrix metalloproteinases causing proteolysis of the 
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cartilage matrix (74). These factors can also inhibit cartilage matrix biosynthesis (75). 

Evidence is accruing to implicate cytokines in the pathogenesis of joint diseases 

with major inflammatory and autoimmune components (76). However the mechanisms 

that initiate and cause cartilage destruction in osteoarthritis remain unclear. The profile 

for cytokines and growth factors based on quantitative rather than qualitative differences 

as indicated by fewer cells being recruited for their production in osteoarthritis. This may 

suggest that other processes are involved in cartilage destruction, and that cytokines are 

merely indicators of the disease activity. However, the involvement of cytokines and 

growth factors is a topic of interest in relation to their function in cartilage integrity.

Catabolic Cytokines

Interleukin-1 (IL-1β) was first identified as an inflammatory mediator capable of 

tissue damage. Its importance in cartilage metabolism appears to be a result of its ability 

to suppress the synthesis of type II collagen, the predominant form of collagen found in 

articular cartilage (72). Furthermore, IL-1β is shown to stimulate synthesis of type I 

collagen, which is predominant in fibroblasts (77;78). The increased presence of IL-1β
and the formation of fibroblasts suppresses the ability of chondrocytes to synthesize new 

proteoglycan, a building block in cartilage formation (79). For cartilage degradation to 

occur, catabolic cytokines such as IL-1β must act at specific receptors on the target cells 

(77;79). In osteoarthritis, there is increased presence and sensitivity of  IL-1β receptors to 

interact with IL-1β and trigger the joint destruction processes.

The potency for cartilage breakdown is 10-fold less in the case of tumor necrosis 

factor (72). Apparently, both IL-1β and TNF-α are produced by the same cells under the 
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same stimuli. However, in osteoarthritis, the two cytokines are not significantly 

correlated during active disease(72). 

Markers of Cartilage Degradation

A specific marker for cartilage metabolism that is secreted by cultured 

chondrocytes is human cartilage glycoprotein 39 (YKL-40). The name is derived from its 

40 kilodalton molecular weight and the one-letter code for its 3-N-terminal amino acids; 

tyrosine, lysine, and leucine (80). YKL-40 is synthesized by articular chondrocytes (81-

83) and synovial cells (84) in patients with both RA and OA. Histological specimens 

obtained from patients with OA have shown positive staining for YKL-40 in 

chondrocytes mainly in the superficial and middle zones of the cartilage whereas it was 

low or undetectable in normal cartilage samples (83). Elevated levels of both serum and 

synovial fluid YKL-40 are seen in patients with active RA or severe knee OA in 

comparison to normal subjects (80). Johansen and colleagues (80;85) demonstrated that 

YKL-40 was produced in response to removal of chondrocytes from their native 

extracellular matrix environment related to joint injury and disruption of the cartilage 

framework. YKL-40 production may be mediated by cytokines and growth factors that 

have a regulatory effect on chondrocyte function, especially in inflammatory conditions 

of the joints such as OA.

Current Treatments and Therapies for OA-Medications

Classes of Non-Steroidal Anti-Inflammatory Agents

The choice of effective treatments for individuals with OA is quite a challenge.  

The consensus recommendation for patients with OA has been to use acetaminophen 
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(86). Study by Fries and colleagues (87), compared the effects of various doses of 

acetaminophen with ibuprofen in patient with RA and OA. Overall, their finding 

indicated that those who took acetaminophen had better tolerability less pain and less 

gastrointestinal distress in comparison with ibuprofen. Acetaminophen is an excellent 

analgesic but does not possess any anti-inflammatory activity (86;87). Its mechanism of 

action is not clearly known but it has been shown to inhibit prostaglandin synthesis at 

higher doses (88).  The adverse effects with the use of acetaminophen have been due to 

acute overdose which is associated with liver damage.  Furthermore, in a case-controlled 

study, chronic use can lead to kidney failure in some individuals (27).

Celecoxib and Rofecoxib

The new class of non-steroidal anti-inflammatory drugs (NSAIDs) has shown 

vastly improved function in OA and rheumatoid arthritis patients with similar efficacy to 

their predecessors but with significantly decreased gastrointestinal and platelet effects 

(89;90). Americans use these agents on a daily basis and according to the projected 

statistics by the US Center for Disease Control and Prevention, it is likely that a 

significant increase in the prevalence of painful and degenerative conditions will likely 

increase the use of NSAIDs (91). The newer class of NSAIDs selectively inhibit COX-2 

more so then COX-1. This makes them more potent anti-inflammatory agents for 

degenerative joint conditions such as OA without causing detrimental effects on the 

gastrointestinal tract. 

The most commonly used therapeutic compounds for OA in this class are called 

celecoxib and rofecoxib (92). Both of these compounds are selective COX-2 inhibitors 
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and have been shown to be effective in reducing or alleviating OA pain and inflammation 

associated with rheumatoid arthritis (90;93-96). These studies also presented clear 

evidence of no endoscopic gastroduodenal damage and no adverse effect on platelet 

aggregation (89; 90;92-96). However, many of these studies have left the renal effects of 

these potent COX-2 inhibitors unanswered. Several mechanisms being proposed for these 

anti-inflammatory compounds include their in vitro inhibition of inducible nitric oxide 

synthase which subsequently decreases the production of nitrite (49;97). It has also been 

suggested that NSAIDs, by inhibiting prostaglandin production could also be responsible 

in reestablishing a more normal cell cycle response which is inhibited by prostaglandins 

(98-100). Longer-term effects of these agents are not yet fully understood in context of 

their toxic load on the liver as well as their adverse effects on other tissues and organ 

systems.

Role of Soy Isoflavones in OA

 There is evidence that flavonoids (10), in particular isoflavones, may exert beneficial 

effects on cartilage metabolism. Soy isoflavones have been shown to exert positive 

effects on cardiovascular (101)and skeletal health (102). These beneficial effects of 

isoflavones, in part, may be mediated through their anti-inflammatory properties(6). 

Studies (6)  have suggested that plant flavonoids attenuate inflammation and the immune 

response through their inhibition of important regulatory enzymes involved in 

arachidonic acid metabolism. Flavonoids are powerful inhibitors of both lipoxygenase 

(LOX) and COX-2 activities (6). Lin and colleagues reported that flavonoids are 

inhibitors of IL-1β, IL-6, TNF-α, and COX-2. They also found that flavonoids 

downregulated matrix metalloproteinases (MMP), while upregulating MMP inhibitor in 
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human synovial fibroblasts. Flavonoids may thus inhibit the inflammation response 

through these modes of action, suggesting that this class of molecules may be effective in 

conditions such as OA. 

Genistein, the prominent soy isoflavone, is structurally similar to tamoxifen and 

ipriflavone, a synthetic isoflavone(10). Tamoxifen (6) and ipriflavone (10) have both 

been shown to influence cartilage metabolism and reduce or alleviate the symptoms 

associated with OA. 
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CHAPTER III

MATERIALS AND METHODS

Experimental Design

Pure human chondrocytes were purchased from PromoCell Bioscience Alive 

(Heidelberg, Germany). Chondrocytes were recovered and plated in complete 

chondrocyte growth medium (PromoCell, Heidelberg, Germany) with 10% fetal calf 

serum at 37 °C in a 5 % CO2 humidified incubator in 6 well plates (n=3). Genistein 

(Sigma, St Louis, MO) and, ICI 182,780 (Tocris, Northpoint, UK) were dissolved in 

dimethylsulfoxide and added directly to the culture media in various doses of genistein

(0, 50, and 100 µM)  and 100 µM ICI when cells were 80% confluent. Control cells were 

treated only with solvent. After one hour, 1 µg/ml LPS (Sigma Diagnostics, St Louis, 

MO) was added to all treated, except the control (CON) cells. Nitric oxide production in 

cell culture medium and protein levels of COX-2 and COX-1 in cytosolic fraction were

measured. 

To compare the effect of genistein to that of  NS-398 (Cayman chemical, Ann 

Arbor, MI, U.S.A.), a COX-2 inhibitor, chondrocytes were plated in 6 well plates (n=4) 

and treated with different doses  of genistein (0, 50 and, 100 µM) and 10 µM NS-398 

when cells were 80% confluent. After one hour, 1 µg/ml LPS was added to all the 

treatment groups, except the control (CON) group. IL-1β and YKL-40 was measured in 

cell culture medium.



23

Cell Viability Assay 

Chondrocytes were plated in 96 wells in density of 15,000 cells/well in phenol red 

free medium and kept overnight. Cells were treated with different doses of genistein (0, 

25, 50, 100 and 200 µM) and one dose of NS-398 (10 µM). After one hour incubation at 

37°C in 5% CO2, chondrocytes were treated with 1 µg/ml LPS for 24 hours. Culture 

medium was removed and 200 µL culture medium containing 10% resazurin (Sigma, 

Saint Louis, MO) was added to wells. Cells were incubated at 37°C in 5% CO2  for 4 

hours. The absorbance was measured at reference wavelength of 690 nm and subtracted

from the 600 nm measurement. The number of cells was determind as a function of 

metabolic activity using the dye resazurin according to the manufacture’s directions.

Western Immunoblotting 

Chondrocytes cultures when reached 80% confluency were washed with 

phosphate buffer saline (PBS) twice. 300 µL of lysing buffer (100mmol/L HEPES, pH 

7.9; 100 mmol/L KCL; 100 mmol/L EDTA, 100 mmol/L DTT, protease inhibitor 

cocktail and 10% IGEPAL) was added to each plate then plate was incubated on ice and 

shook at 150 rpm on a rocking platform for 10 min. Cells were then collected and 

centrifuged at 15000×g for 3 minutes at 4 °C.  Supernatant of cytosolic fraction was 

collected and stored at -80 °C. For protein concentration measurement, 200 µL mixture of  

bicinchoninic acid and copper (49:1) was added into 5 µL cytosolic fraction using a 96 

well-plate. Plate was then covered by an aluminum foil and incubated at room 

temperature for 20 minutes mildly being shaken using a belly dancer (Stovall Life 

Science, Greensboro, NS). Absorbance was measured at wavelength of 570 nm. Equal 
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amounts of protein (20 µg) was brought to volume of 12 µL by adding autoclave water, 

mixed with 12 µL loading buffer (0.125 mol/LTris, 4 % sodium dodecyl sulfate (SDS) , 

20 % glycerol, 10% 2-mercaptoethanol, 0.003% bromophenol blue pH 6.8)  and heated at 

95-100 °C for 5 minutes. Protein was separated on 8% SDS-polyacrylamide gel for 2 hrs 

(100v), and transferred to polyvinylidene diflouride (PVDF) membrane (Millipore, 

Bedford, MA) by using a semi-dry blotting apparatus for one hour (15v).  Membrane was

blocked with Tris-buffered saline (TBS, 8mmol/L Tris HCL, 16mmol/L Tris-base, 

150mmol/LNaCl) containing 5% skim milk for one hour. After washing in TBS, blots 

were incubated overnight with a 1:200 dilution of COX-2 and COX-1 (Santa Cruz 

Biotechnology, CA) antibody overnight. This was followed by a 2-hour incubation with 

1:2000 dilution of goat polyclonal antibody and rabbit polyclonal antibody (Santa Cruz 

Biotechnology, CA) in blocking buffer. The protein bands were visualized using an 

Immun-Star HRP substrate kit (Bio-Rad laboratories, Hercules, CA). Membrane was 

covered by 2 mL of immuno-star HRP peroxide buffer mixed by 2 mL immuno-star 

horse radish peroxidase (HRP) enhancer and visualized using VersaDoc Imaging System 

(Bio-Rad laboratories, Hercules, CA). 

Nitric Oxide Assay 

Nitric oxide (NO), an important physiological messenger in local inflammation, 

was measured by Griess reagent system (Promega Co. Madison, WI) in culture medium . 

This reagent can measure nitrite (NO2
- ), which is one of the two primary, stable and 

nonvolatile breakdown products of NO. Chondrocytes were plated in 96 wells in density 

of 15000 cells/well in phenol red free medium and kept overnight at 37ºC incubator
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under 95% O2, 5% CO2. Cells were treated with different doses of genistein (0, 50 and, 

100 µmol/ml medium) and one dose of ICI (100 µmol/ml medium). After one hour 

incubation at 37°C in 5% CO2, chondrocytes were treated with 1 µg/ml LPS for 24 hours. 

Fifty µL of each collected culture supernatant and nitrate standards (0, 0.0935, 0.187, 

0.375, 0.75, 1.5 and, 3 µM) were added to 96 well plates. 50 µL medium containing 10% 

sulfanilamide was added into each well and then incubated for 10 minutes at room 

temperature away from light. Then 50 µL of 0.1 % N-1-napthylethylenediamine 

dihydrochloride was added to each well and incubated 10 minutess at room temperature 

in dark. Absorbance was measured within 30 mins in a plate reader with a filter between 

250-550 nm.  

Aseessement of  IL-1β

Interleukin-1β was measured in culture medium with enzyme-linked 

immunosorbent assay (ELISA) ( PromoKine Bioscience Alive, Germany) which is 

designed to measure free cytokines in tissue cell culture supernatants. Standards (1000, 

500, 125, 31.25, 7.81 and, 0.0 pg/mL) and samples were added to monoclonal antibodies 

precoated microtiter plates in quantity of 100 µL. Twenty five µl of rabbit anti-human IL-

1β polyclonal antibody were added into each well. After 3 hours incubation at room 

temperature, plate was washed with phosphate buffer saline buffer four times. Fifty µL 

goat anti-rabbit conjugated alkaline phosphatase was added into wells followed by 45 

minutes incubation at room temperature. Plate was washed 4 times with buffer and then 

200 µL of color reagent solution was dispensed into each well. The reaction was stopped 

after 15 minutes incubation at room temperature by adding 50 µL stop solution into each 
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well. Absorbance was read at 492 nm and values were reported as pg/mL.

YKL-40 EIA Kit

YKL-40, also known as human cartilage glycoprotein 39, a marker of tissue 

remodeling , produced by chondrcoyets (Hakala BE et al., 1993) was measured by 

enzyme immunoassay (EIA) kit ( Metra, Quidel Co., San Diego, CA) using aliquots of 

cell culture supernatant. This is a sandwich enzyme immunoassay in a microtiter 

stripwell format. Twenty µL of cell culture media and standard (0.0, 50, 100, 200 and 

300 ng/mL) was added to each streptavidin coated well. The fabricate’s fragments of a 

monoclonal anti-YKL-40 antibody conjugated to biotin binds to striptavidin on the strip 

and captures YKL-40 in standards and samples. After one hour of incubation at room 

temperature, the plate was washed with a buffer containing sodium azide (0.05%). 100 

µL of  polyclonal anti YKL-40 antibody conjugated to alkaline phosphatase was added to 

each well to bind to the captured YKL-40, followed by one hour incubation at room 

temperature and washing with buffer containing sodium azide (0.05%). Then 100 µL of a 

diethanolamine and magnesium chloride solution containing sodium azide (0.05%) and 

p-nitrophenyl phosphate was added to each well and incubated at room temperature for 

another hour. Bound enzyme activity was detected with p-nitrophenyl phosphate as 

substrate and the reaction was stopped with 100 µL 1 mol/L NaOH. The absorbance was 

read at 405 nm with a microplate reader and values were reported as ng/mL.

Statistical Analysis 

Data were analyzed using Student t-test, SAS Version 8.2 ( SAS Institute, Cary, 
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NC)  and are presented as mean ± standard error (SE). Significant differences were 

determined using alpha level of 0.05.
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CHAPTER IV

RESULTS

Cell Viability

Treatment with LPS (1µg/ml), genistein in doses of 0, 25, 50, 100, 200 µM, and 

NS-398 (10 µM) did not negatively affect the viability of chondrocytes (Figure I). Data 

are presented as percent of viable cells. 

Protein Level of COX-2 and COX-1

LPS significantly increased the protein level of COX -2 in chondrocytes while 

genistein decreased the protein level of COX-2 by 8.36% in 50 µM dose and significantly

(P< 0.05) decreased the COX-2 level protein by 31.8% in 100 µM dose. ICI 182,780 

decreased COX-2 protein level but not significantly (Figure II). Genistein treatment had 

no effect on COX-1 protein level (Figure III). 

Nitric Oxide Production

Nitric oxide level in cell culture supernatant tended to increase as a result of LPS 

treatment (Figure IV). Interestingly, LG50  was more effective in reducing NO 

production than LG100 (42% vs. 28%) in comparison with LPS-treated control cells. ICI 

had no effect on NO production.
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Interleukin-I Beta Production 

IL-1β mean values were numerically lower in genistein-treatment groups by 36.4 

% and 48% for both doses of 50 and 100 µmol/ml genistein, respectively  in comparison 

with LPS-treated group. Overall, there were no significant differences among the 

treatment groups (Figure V). These findings indicate that larger sample sizes may be 

necessary in order to detect significant differences as a result of treatments which were 

applied in the present study. 

YKL-40 Production 

YKL-40, a marker of human cartilage glycoprotein degradation, increased in LPS-treated

group. Both doses of genistein were able to suppress its levels in cell supernatant by 18.6 

% and 29.3% respectively for LG50 and LG100 compared to LPS-treated group but not 

significantly. Viox  had no effect on YKL-40 production (Figure VI).
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CHAPTER V

DISCUSSION

The finding of the present study indicate that genistein, a soy isoflavone, suppress 

the production of proinflammatory molecules such as COX-2, NO and IL-1β in LPS-

induced chondrocytes while it has no effect on COX-1 production. These findings 

supporting our earlier study (7) which shows that 40 g soy protein containing 88 mg 

isoflavone daily for three months improved OA associated symptoms such as range of 

motion of the knee joint and several factors associated with pain and quality of life. 

Isoflavones are thought to act similar to estrogen, possibly through estrogen-receptor-

mediated events. Soy isoflavones are referred to as natural SERMs (6) because of their 

conformational ability to bind to estrogen receptor s (ERs), particularly the beta subtypes 

(68), in a manner similar to other SERMs such as raloxifene. To test this hypothesis we 

used ICI-182, 780, an estrogen receptor anatagonist, to block the estrogen receptor and 

inhibit the action of genistein through estrogen receptors. Results showed that genistein 

suppresses the protein level of COX-2, in part, through estrogen receptors. However, 

several discrete signaling pathways have been implicated in the genesis of COX-2 

synthesis that is dependent on the stimulus imposed on cells. Several studies have shown 

that COX-2 is partly controlled by nuclear factor kappa B (NF-κB)(6).  Largo et al. (103)

have shown that inhibition of NF-κB activation was related to the down regulation of the 

expression and synthesis of COX-2. COX is a critical proinflammatory enzyme that 



31

converts arachidonic acid to prostaglandins. Although prostaglandins have been 

implicated in the pain and inflammation associated with osteoarthritis (104), they may 

not fully explain either joint inflammation nor OA symptoms. Nonsteroidal anti-

inflammatory drugs (NSAIDs) or COX- inhibitors have been extensively used in the 

treatment of OA (105;106). It has been suggested that the antiinflammatory action of 

NSAIDs are due to inhibition of COX-2, a cytokine-induced isoenzyme that mediate pain 

and inflammation, whereas the unwanted side effects such as the risk of significant injury 

to the upper gastrointestinal tract and lining of kidneys (107) are due to inhibition of 

COX-1 (106). Interestingly, in the present study genistein dose-dependently decreased 

the production of COX-2 protein level while it had no such an effect on COX- 1. 

Other proinflammatory cytokines such as IL-1β and TNF-α, are believed to cause 

damage to cartilage by inducing matrix metalloproteinase (MMP) expression in 

chondrocytes (73;108;109). Both cytokines activate synthesis and release of MMPs 

which leads to matrix breakdown (46). Elevated levels of IL-1β are also found in OA 

synovial fluid and gene expression of IL-1β has similarly been reported to be up-

regulated in cartilage obtained from patients with knee OA (50).

While the findings of the present study indicate that genistein non-significantly

reduces LPS-induced IL-1 β  in chondrocytes in a dose-dependent manner, these 

reductions can not be due to cytotoxicity  as any  of the doses of genistein had no effect 

on cell viability.  Interleukin-1β has been shown to induce production of NO in synovial 

cells and chondrocytes, which leads to increased vasodilation, permeability, and cartilage 

resorption in arthritic joints (110). Additionally, NO inhibits proteoglycan synthesis, 

modulates the activity of metalloproteines, and induce apoptosis in human chondrocytes 
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(111). Although in non cell cultural experimental models of inflammation and arthritis

NO has been shown to either promote or prevent tissue injury (110),  in chondcrocytes 

NO has been demonstrated to inhibit collagen and proteoglycan synthesis (110) and 

induce apoptosis (112). Hence, our finding that genistein suppresses the production of  

NO should viewed as a positive finding. 

YKL-40, a marker of cartilage degradation, was numerically increased in LPS-

treated chondrocytes, albeit not significantly, in the present study . Elevated serum YKL-

40 levels are associated with increased cartilage breakdown (85), which is often triggered 

by inflammation. Immunohistochemical analysis of articular cartilage biopsy samples 

from the hip joint of patients with OA have shown positive staining for YKL-40 in 

chondrocytes. YKL-40 is synthesized by articular chondrocytes (81) of patients with OA 

or RA. The findings of a study by Volck B. et al. (83) indicated that YKL-40 expression 

in chondrocytes from normal cartilage was low or not detectable in comparison with 

patients with OA. In another study by Volck et al., (85) YKL-40 was detected in the 

inflamed synovial membrane and the number of YKL-40 positive cells were associated

with the degree of synovial inflammation.

Athough both doses of 50 and 100 µM genistein numerically decreased the YKL-

40 levels in LPS-induced chondrocytes by 18.56 % and 29.31%, respectively, in 

comparison with LPS-treated cells, these values did not reach significance. It can be 

speculated that if our sample size was larger the differences would have become 

significant. The notion of anti-inflammatory effect of genistein can be indirectly 

supported by observations of Volck et al. (85) who injected human arthritic joints with 

glucocorticoid and noticed remission in joint inflammation followed by a decrease in 
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serum YKL-40.

In summary, the results of the present study show that genistein selectively 

decreases the production of LPS- induced COX-2 protein level in chondrocytes without 

affecting COX-1. If the results are shown to be reproducible, genistein can be of 

particular interest to individuals who suffer from chronic inflammatory conditions such 

OA. As discussed earlier, there are no pharmaceutical agents that selectively can inhibit 

COX-2 production without having serious side effects. Therefore,  Genistein decreased 

LPS-induced NO production in chondrocytes though not in a dose-dependent manner. 

Genistein also numerically decreased IL-1β and YKL-40. 
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Figure 1. Represents cell viablelity which was measured via resazurin method. CON, 

control without added lipopolysaccharide; LPS, 1µg/mL; LG25,  25 µM genistein; LG50, 

50 µM genistein; LG100, 100 µM genistein; LG200, 200 µM genistein; and LNS10, 10 

µM Viox. All treatment groups were treated with 1µg/mL LPS.  Bars represent mean ± 

SE, n = 4 per treatment group.
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Figure 2.  Represent protein level of COX-2 in cytosolic fraction of chondrocytes which 

was measured via westernblot method. CON, control without added lipopolysaccharide; 

LPS, 1µg/mL; LG25,  25 µM genistein; LG50, 50 µM genistein; LG100, 100 µM 

genistein; LG200, 200 µM genistein; and ICI-100, 100 µM. All treatment groups were 

treated with 1µg/mL LPS.  Bars represent mean ± SE, n = 3 per treatment group. Bars 

with different letters are significantly different (P< 0.05).
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Figure 3. Represent protein level of COX-1 in cytosolic fraction of chondrocytes which 

was measured via westernblot method. CON, control without added lipopolysaccharide; 

LPS, 1µg/mL; LG25,  25 µM genistein; LG50, 50 µM genistein; LG100, 100 µM 

genistein; LG200, 200 µM genistein; and ICI-100, 100 µM. All treatment groups were 

treated with 1µg/mL LPS.  Bars represent mean ± SE, n = 3 per treatment group.
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Figure 4. Represents NO level in culture supernatant which was measured via griess 

reagent. CON, control without added lipopolysaccharide; LPS, 1µg/mL; LG25,  25 µM 

genistein; LG50, 50 µM genistein; LG100, 100 µM genistein; LG200, 200 µM genistein; 

and LNS10, 10 µM Viox. All treatment groups were treated with 1µg/mL LPS.  Bars 

represent mean ± SE, n = 3 per treatment group. Bars with different letters are 

significantly different (P< 0.05).
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Figure 5. Represents IL-1β level in culture supernatant which was measured via ELISA 

kit. CON, control without added lipopolysaccharide; LPS, 1µg/mL; LG25,  25 µM 

genistein; LG50, 50 µM genistein; LG100, 100 µM genistein; LG200, 200 µM genistein; 

and LNS10, 10 µM Viox. All treatment groups were treated with 1µg/mL LPS.  Bars 

represent mean ± SE, n = 4 per treatment group. 
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Figure 6. Represents YKL-40 level in culture supernatant which was measured via EIA 

kit. CON, control without added lipopolysaccharide; LPS, 1µg/mL; LG25,  25 µM 

genistein; LG50, 50 µM genistein; LG100, 100 µM genistein; LG200, 200 µM genistein; 

and LNS10, 10 µM Viox. All treatment groups were treated with 1µg/mL LPS.  Bars 

represent mean ± SE, n = 4 per treatment group.
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COX-1 and COX-2 protein levels using Western blot technique. Nitric oxide (NO), 
interleukin-I Beta (IL-1β), and YKL-40 productions were also measured in cell culture 
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was assessed as a marker of cartilage catabolism. Interestingly, LG50 was more effective 
in reducing NO production than LG100 (42% vs. 28%) in comparison with LPS-treatred 
control cells. Genistein had no significant effect on either YKL-40 or IL-1β levels. Our 
data indicate that the LPS-stimulated increases in COX-2 protein level and NO in 
supernatant are reduced by pretreatment of genistein, whereas COX-1 protein level is not 
affected by genistein. 
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