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CHAPTER I 
 

 

INTRODUCTION 

 

Mankind has learned to observe and record information around us in minute details 

overtime, and the enormity of data we have in any specific field today that it can even 

overwhelm experts.  In order to learn and generalize information from these data, 

computer science has ventured into the realm of experts without the prerequisite 

expertise on specific subjects thanks to the help of machine learning.  In the realm of 

short term forecasting, popular linear models such as the Box and Jenkins’ ARIMA [1] 

(Autoregressive Integrated Moving Average) and Engle’s ARCH [2] (Autoregressive 

Conditional Hetroskedasticity) have been adopted by many including the US Census 

Bureau.    As we are living in a highly integrated and globalized world, the “butterfly 

effect” is no longer limited to describing our weather system; economic and social 

changes in one part of the world would have inevitable effect on all the rest.  These 

complicated relationships make nonlinear methods such as varieties of artificial neural 

networks an attractive alternative.   Furthermore, the proposal of the Support Vector 

Regression (SVR) [3], SVR has also been studied and applied to short term forecasting 

with success.   

 

Empirical studies have shown that Back Propagation Neural Networks (BPNN) can  
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achieve better results than ARIMA in forecasting [4], and SVR can give better results 

than BPNN [5].  However, as learning and generalization performance of SVR for time 

series data is greatly affected by the hyper parameters it used and the proper formation 

of the time series into relationship matrixes, it became important to select a set of 

optimal parameters and to properly transform the time series.   

 

Objective  

 

The objective of this study is to obtain good performance on short term forecasting with 

time series using Least Squares Support Vector Regression (LSSVR) [11].  In order to 

do so, one will need to select an optimal input data set for the SVR and optimal kernel 

parameters /hyper-parameters for SVR.  As there are no known methods that can 

calculate these values, a novel method is proposed here to optimize both input data set 

and hyper-parameters for SVR at the same time with a hyper version of PSO -- 

Regrouping Particle Swarm Optimization (RegPSO) [6].  Real world data will be used to 

determine the performance of the proposed method versus that of a known model that 

uses LSSVR with standard Particle Swarm Optimization (PSO) [12] for LSSVM hyper-

parameters and Average Mutual information (AMI) [9] for lag selection.  A third model 

that uses AMI for lag selection, and grid search for hyper-parameters selection is also 

included for the purpose of establishing a baseline.
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CHAPTER II 
 

 

BACKGROUND 

 

One can treat the hyper-parameters’ fine tuning of support vector like a constrained 

optimizing problem.  There have been many different approaches in resolving this 

problem; they range from grid search or random walks to gradient search or population 

base search algorithms like  genetic algorithm [7],  and in this case particle swarm 

optimization [8].  Among all these methods, PSO has been found to be more accurate 

and less computationally intensive [10].  However, Standard PSO does have a drawback 

as premature coverage on local minimum, and various versions of PSO have been 

proposed to resolve this problem.  Among those variants, Regrouping PSO (Reg-PSO) 

has been shown to have better performance over others with synthetic data [6].  Taking 

this advancement into consideration, this study hopes to investigate the applicability of 

combing of REG-PSO with LSSVR method on real world data.     

The principal methodologies that are employed in this paper are Regrouping Particle 

Swarm Optimization (RegPSO) and Least Squares Support Vector Regression 

(LSSVR), both of which will be explained briefly in this chapter. 
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Least Squares Support Vector Regression  
 

LSSVR is a least square variant of the standard support vector regression (SVR) [3], and 

it was credited to Suykens [11].  LSSVR introduces an equality constraint to reduce the 

computational complexity and enhance the generalization performance over SVR for 

large databases.  Detailed theory and proof of these algorithms are listed in reference [6] 

and [11]. 

 

Given a training set of N data points  

N
ii

m
iii RyRxyxs 1},|),{( =∈∈=   

Then one will need to construct the best regression of the following form: 

bxxf T += )(),( ϕωω                                 (1) 

Taking the structural risk under consideration, LSSVR uses the squared loss function, 

and then the original problem can be reformulated as optimizing the following function: 

����,�,� �	�, �
 � 12 ��� � 12 � � ���
�

���                                	2
 

 

Subject to:   �� � ���	��
 � � � ��, i �  1, … , N                  (3) 

where � is a positive constant.  One can then obtain a corresponding Lagrange function 
as: 
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where iα are the Lagrange multipliers; the optimal conditions per Karush-Kuhn-Tucker 

(KKT) are defined as: 
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After eliminating � and ω from (5), and applying Mercer’s condition of

)()(),( xx j

T

ijiij xxK ϕϕ==Ω ,  

the solution is given by the following linear equations: 

,0 1./�1./ Ω � �1�23 4�$5 � 60�7     (6) 

where � � 8��, … , ��9�, $ � 8$�, … , $�9�and  1./ � 81, … , 19. 
The regression function for LSSVR model will take the form as follows: 

bxxKxf i

N

i
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=

),()(
1

α
    (7)

 

Let    : � Ω � �1�2, then α i and b can be obtained with the following equations: 

 � � �../;<=>?�../;<=>�../  , 

$ � :1�	� % �1
..../ , 
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),( ixxK represents the kernel function that maps the input space into high-dimensional 

feature space.  Since Radial Basis Function (RBF) is adopted as kernel function for this 

study, then it will be represented as: 

@	�, ��
 � exp D% EF1FGEH
�IH J    (8) 

 

Regrouping Particle Swarm Optimization 

 RegPSO is an improved version of the original PSO, which was credited to Kennedy, 

Eberhart and Shi back in 1995 [12] [13].   Owing to its origin in simulation of social 

behaviors, PSO is a population based algorithm just like other evolutionary algorithms.  

However, the initial populations in PSO are constituent particles that not only represent 

the initial population in n-dimensional search space, but each particle is also 

representing a candidate solution to the n-dimensional problem.    Each particle 

flies/searches through the n-dimensional space in search of an optimal solution to the 

problem, while sharing their current best known solution among the constituents; after 

each iteration, each particle will attempt to update their internal velocity and location 

based on the its current position in the search space with respect to the best known 

solution.    Unlike most genetic algorithms, PSO doesn’t have genetic operations such as 

crossover and mutation, which makes PSO an inexpensive heuristic optimizer.    

However, due to the lack of interaction between particles, the algorithm does have a 

tendency for premature convergence.   In order to overcome this problem, many 

methods had been exploited and adopted to improve standard PSO, RegPSO is one of 

the recent techniques in doing so; it is based on the standard PSO with embedded auto-

regrouping mechanism to reorganize the particles into a new search space when 
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particles are found to be prematurely converged.  RegPSO not only adopted F. Van den 

Bergh’s maximum swarm radius convergence detection technique [14] to address the 

premature convergence problem of stand PSO, but also kept the required computation 

to a minimum.  Hence, this method is chosen for the selection of LSSVR parameters γ 

and σ. 

Given a cost function f(x), then search space for the solution vector �/ K LM  is defined by 

Ω � 8��N ��O9 P 8��N ��O9 P … P 8�MN �MO9 K L                   (9) 

where �QN �QO are the upper and lower limits of the search space along dimension k. 

 

With a swarm of size s, the i-th particle has a position vector of �R.../ and a velocity vector 

of SR.../;  Let � be the static inertia weight chosen between [0,1], T�be the cognitive 

acceleration coefficient, T� be the social acceleration coefficient;  U�.../ and  U�.../ be the 

random column vector that’s between [0,1]; VR.../ be the personal best position vector and  

W/ be the global best position vector of the swarm, � be the user defined stagnation 

threshold, and  X be the velocity clamping factor between [0.1, 0.5] 

Then the algorithm can be described as: 

For each new group do 

• For each dimension k = 1, …, n do 

UYZW[Q	Ω\
  � ]^Z	UYZW[Q	Ω_
, ` max�cd�,…,ef |��,Q\1�WQ\1�|
     	10
 

SQhiF,\ � X · UYZW[Q	Ω\
                                  (11) 

where ` � 6/	5�
,  
For each particle i = 1, ..., S  do 
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Initialized velocities where S�,Q c 8%SQhiF,\, SQhiF,\9 
• For each particle I = 1, …, S do  

o Initialize the particle's position �R.../ to be within boundaries defined by 

Ω\ 

o Initialize the particle's personal best known position to its initial 

position: VR.../ � �R.../ 
• If r = 0 (e.g., prior to any regrouping) 

 W/	n
 � arg minrG	s
 c r	s
 t	V/�	n

 

• For each iteration j = 1, …,max iteration defined by user  do 

o For each particle I = 1, …, S do  

� Update velocity as  

SR.../	n � 1
 � �SR.../	n
 � T�U�.../ u 	VR.../	n
 % �R.../	n

 � T�U�.../ u 	W/	n
 % �R.../	n

 

� Clamp velocity if needed 

� Update positions as 

�R.../	n � 1
 � �R.../	n
 � SR.../	n � 1
 

� Update particle best known position as 

VR.../	n
 � v�R.../	n
                  if t	�R.../	n

 x t	VR.../	n % 1

VR.../	n % 1
          if t	�R.../	n

 y t	VR.../	n % 1

+ 
o Update best known position for swarm as 

W/	n
 � arg minrG	s
 c r	s
 t	V/�	n

 

o Find the swarm radius as 
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z	n
 � max�cd�,…,ef { �R.../	n
 % W/	n
 { 

where ||.|| is the Euclidean norm.  

o If user-defined number of function evaluation is reached  or          

|	s
{\iM}~............../	Ω
{ x � (premature convergence is found) 

� regroup the swarm by updating 

• range of the search space 

rangeQ	Ω\
 � min �rangeQ	Ω_
, ` max�cd�,…,ef���,Q\1� % WQ\1��� 

UYZW[............/	Ω\
 � 8UYZW[�	Ω\
, UYZW[�	Ω\
, … , UYZW[h	Ω\
9 
• re-initialize the particle positions around the global best 

�R.../	n
 � W/\1� � UYZ�........../ u UYZW[	Ω\
 % 12 UYZW[............/	Ω\
 

where UYZ�........../ is a random vector 

• maximum velocity for the new group is updated as 

SQhiF,\ � X � UYZW[Q	Ω\
 

Terminate if maximum function evaluation for all groups is reached or the solution for the 

function is found. 
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CHAPTER III 
 

 

METHODOLOGY AND PROPOSAL 

 
In this study, the proposed model adopts RegPSO for parameter selection of the support 

vector – specifically, the Least Squares Support Vector.  The parameters γ and σ of the 

LSSVR will become the first and second dimensions of the RegPSO model.   Since the 

time series only contain observed values, the series must be reformatted into a matrix of 

features that contain enough resolution to infer the series while generating minimum 

amount of interference.  In this paper, the number of feature selections of series is 

known as number of lags. While there are no known methods that can be applied to all 

series in selecting the optimal time lag value, many opted for a simple trial and error 

method [15].  Others employed average mutual information (AMI) [9]. For this study, the 

time series will be transformed according to 

 t�	�
 �  t�t�	�
, t�1�	�
, t�1�	�
 … , t�1M	�
� 
where n is the lag size of the series.  Instead of looking for n with trial and error or AMI, it 

will become the last dimension of the RegPSO model.  Hence each particle of the swarm 

will be represented by a three dimensional vector [γ, �, lag ], and the cost function for 

RegPSO will be the root mean squared error(RMSE) of the LSSVM obtained under 

cross-validation.   As RegPSO has been proven to outperform other PSO methods with 

simulated data [6], it’s reasonable to expect the proposed model to perform well even 
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with real world data. The following figure 1 shows the flow chart of the proposed model 

in detail. 

 

 Figure 1:  RegPSO+LSSVR model 
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CHAPTER IV 
 

 

EXPERIMENTAL FINDINGS  

 

In order to evaluate the proposed RegPSO+LSSVR model, two other models are also 

constructed for comparison purposes.  The first model is LSSVR with AMI for lags 

selection and grid search algorithm for hyper-parameters selection 

(AMI+GRID+LSSVR).  The second model is as follows; LSSVR uses AMI for lags 

selection and uses standard PSO to find hyper-parameters (AMI+PSO+LSSVR).  

AMI+GRID+LSSVR is constructed mainly using LSSVMLAB 1.7 [11], AMI+PSO+LSSVR 

and RegPSO+LSSVR are constructed using the combination of LSSVMLAB 1.7 [11] and 

G. Evers’ MATLAB PSO Research Toolbox [6].   The experiments were run under a PC 

with AMD Phenom II 2.8 GHZ as processors and 8 GB of RAM.  The Operating system 

is Windows 7, and the development platform is MATLAB 7.11.0.   The detail parameters 

setting and the results of each model are listed in appendix. 

 

Two real world datasets were used in this study.  The first dataset was the monthly 

production of sulfuric acid in Australia from January 1956 to July 1994 [16]; out of the 

462 samples, the first 323 were used as training samples, and the testing samples are 

the remaining 139; their values ranged from 42 to 228 in thousands of tons.  The second 

dataset was the annual sunspot numbers from the Royal Observatory of Belgium from 
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1700 to 2011 [17]; it contains 311 samples; the first 233 are treated as training samples, 

and the remaining 78 samples were used for testing purposes; the sample value ranged 

from 0 to 190.2.  

 

In this paper, time series were pretreated by copying ‘lags’ number of next data points 

into a matrix, and the traditional K-fold cross-validation method that randomly partitions 

the data into K complementary subsets, will cause the some of the validating data being 

used as part of the training data.  In order to segregate the training from validating data 

sets, an adaptation of Monte Carlo cross-validation method is used in this paper.    For 

example, during one round of a 10% cross-validation, the size of the validation block will 

be 10% �  �^�[ �t �UY^Z^ZW �[� �  2 � �YW ; and the validation block will be randomly 

selected from the training set as a whole.  

 

 

Figure 2: selecting validation set from the left (when the size of validation set is less than 

the selected index) 
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Figure 3: selection of validation set from right (when the size of validation set is greater 

than the selected index). 

 

As illustrated above, there were ‘lag’ number of extra points selected before and after 

the actual validation set.  These extra points were excluded during the comparison for 

test results.  In order to measure the errors on an even scale, the entire training set were 

standardized by zero mean and unit variant before given to LSSVR for training and 

cross-validation.  Three types of errors were measured for each model; namely, mean 

absolute errors (MAE), Maximum errors (MAX), the root mean squared errors (RMSE).  

They are defined as follows: 

�:� �  ∑ |t	��
 % ��|���� �  

L��� �  �∑ 	t	��
 % ��
����� �  

�:� � ��V�|t	��
 % ��| 
where t	��
  is the standardized value obtained from the current model, and �� is the 

standardized observed value.  The search criteria for all models were based on RMSE 

obtained under cross-validation of the training sets.   Three sets of errors were 



 

15 

 

measured across the models based on one-step look-ahead prediction on training sets; 

one-step look-ahead prediction for testing sets; and lastly recursive prediction on 1st 12 

steps of the testing set after the solutions had been found.   

 

  Results of errors on each model 

Dataset Error 
type 

Dataset RegPSO + 
LSSVM 

AMI + PSO + 
LSSVM 

AMI + Grid 
Search + 
LSSVM 

 

 

Training 

 
(one step 

ahead 
prediction) 

MAX Sulfuric acid 1.1745 1.5131 1.5229 

Sun spots 1.2916 1.6298 1.7992 

RMSE Sulfuric acid 0.331 0.4252 0.4296 

Sun spots 0.3087 0.3611 0.3885 

MAE Sulfuric acid 0.2511 0.3165 0.3191 

Sun spots 0.2281 0.2736 0.2929 

 

 

Testing 

(One step 
ahead 

prediction) 

MAX Sulfuric acid 1.372 1.5545 1.5554 

Sun spots 2.708 2.188 2.1998 

RMSE Sulfuric acid 0.5201 0.4665 0.4691 

Sun spots 0.7994 0.7237 0.6271 

MAE Sulfuric acid 0.4232 0.3638 0.3665 

Sun spots 0.5926 0.5317 0.4675 

Testing 
(recursive 
prediction 

1st 12 
steps) 

MAX Sulfuric acid 0.8084 1.3628 1.3895 

Sun spots 0.5854 1.1973 1.3897 

RMSE Sulfuric acid 0.2886 0.6026 0.6144 

Sun spots 0.4112 0.6969 0.707 

MAE Sulfuric acid 0.2081 0.4901 0.499 
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Sun spots 0.3657 0.6022 0.5702 

Table I: errors collected for each model with respect to training and testing sets 

 

Comparison of results 

From the above errors table, all models perform reasonably well under 1-step ahead 

prediction.  The proposed model obtained smaller errors than the other two models on 

training data with one-step ahead prediction; it also obtained better results on  recursive 

short term prediction (first 12 steps) for testing data as well.   Figure 2 -9 plots the errors 

in table I for illustration purposes.  The plotted short-term testing results (figure I and 

figure IV from the appendix) confirmed the views drawn from the training error table. 

 

 

Figure 4: RMSE with respect to each model for sunspot dataset set 
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Figure 5: MAE with respect to each model for sunspots dataset 

 

Figure 6: MAX with respect to each model for sunspot dataset  
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Figure 7: RMSEs with respect to. each model for sulfuric acid dataset 

 

Figure 8: Maximum errors with respect to each model for sulfuric acid dataset 
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Figure 9: MAE with respect to each model for sulfuric acid data set 
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CHAPTER V 
 

 

 
CONCLUSION 

 

 

Based on the empirical results, the proposed model consistently performs well across 

both real world datasets.  One can conclude that the proposed RegPSO + LSSVR model 

indeed can be used as an alternative approach for short term time series forecasting.   

Since the cost of evaluating the fitness of each particle at any location is the same as 

constructing and evaluating a LSSVR at that given setting, it is no doubt that a faster 

SVM approach would greatly speed up this type of parameter optimization approach.  It 

would be interesting to see the effect of extending this approach to algorithms such as 

the fast sparse approximation for least squares support vector machine (FSALSSVM) 

[16]. 
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APPPENDICES 
 

 

Table I 

Model  parameter settings  
 Datasets Standard 

PSO 

Regrouping 

PSO 

Grid 

search 

Maximum number of function 

evaluations (total) 

Sulfuric acid 4000 4000 4000 

Sun spots 4000 4000 4000 

Maximum function evaluations 

per grouping 

Sulfuric acid N/A 400 N/A 

Sun spots N/A 400 N/A 

Population size for PSO / step 

division for grids 

Sulfuric acid 20 20 25/25 

Sun spots 20 20 25/25 

The minimum inertia weight Sulfuric acid 0.4 0.4 N/A 

Sun spots 0.4 0.4 N/A 

The maximum inertia weight Sulfuric acid 0.9 0.9 N/A 

Sun spots 0.9 0.9 N/A 

Gamma search range Sulfuric acid 0-5000 0-5000 0-5000 

Sun spots 0-5000 0-5000 0-5000 

Sig2 search range Sulfuric acid 0-5000 0-5000 0-5000 

Sun spots 0-5000 0-5000 0-5000 

Lag search range Sulfuric acid N/A 0-30 N/A 

Sun spots N/A 0-30 N/A 

Stagnation thresholds Sulfuric acid N/A 0.00011 N/A 

 Sun spots N/A 0.00011 N/A 
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Table II 

  Results obtained for each model  

Model Dataset RegPSO + 
LSSVM 

AMI + PSO + 
LSSVM 

AMI + Grid Search 
+ LSSVM 

lags Sulfuric acid 22 6 6 

Sun spots 7 4 4 

gamma Sulfuric acid 3233.2 2133.4 4194 

Sun spots 953.6 3230.3 3028.1 

Sig2 Sulfuric acid 1596.6 560.98 1101.4 

Sun spots 1313.1 144.12 953.6 
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Figure I: next 12 monthly sulfuric acid production forecasting on testing dataset 

 

Figure II: plots of all testing points for sulfuric acid dataset 
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Figure III: plot of all training data for sulfuric acid production dataset 

  

Figure IV:  next 12 years of sun spots number forecasting on testing dataset. 
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Figure V: plot of all testing points for sunspots dataset 

 

Figure VI: plot of all training points for sunspots dataset 
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