
SCTP MULTI-STREAMING: STUDY OF

TRANSMISSION OF PARTIALLY RELIABLE AND

RELIABLE DATA USING DYNAMIC STREAM

PRIORITIES

By

 TASNEEM YUNUS KANPURWALA

Bachelor of Engineering

University of Madras

Madras, India

2002

Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 May, 2006

ii

SCTP MULTI-STREAMING: STUDY OF

TRANSMISSION OF PARTIALLY RELIABLE AND

RELIABLE DATA USING DYNAMIC STREAM

PRIORITIES

Thesis Approved:

Dr.Venkatesh Sarangan
Thesis Advisor

Dr. Johnson Thomas

Dr. Debao Chen

Dr. A. Gordon Emslie
Dean of the Graduate College

iii

 TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION... 1

TCP Limitations.. 2
UDP Limitations ... 3
SCTP Enhancements over TCP and UDP .. 3
SCTP Packet Format... 6
The DATA chunk ... 8
SCTP Association Phases ... 9
Association Establishment .. 10
Data Transfer .. 11
Association Shutdown .. 13
Partially Reliable SCTP .. 14

II. REVIEW OF LITERATURE... 16

SCTP’s Multi-streaming Feature in Detail ... 18
Adding Priorities to Streams... 20

III. PROPOSED WORK... 22

Dynamic Priority Streams... 22

IV. SIMULATIONS AND FINDINGS.. 24

Figure of Merit .. 25

V. CONCLUSION AND FUTURE WORK ... 32

VI. REFERENCES ... 34

iv

LIST OF FIGURES

Figure Page
Figure 1 - SCTP Multi-homing .. 4
Figure 2 - SCTP Multi-streaming .. 5
Figure 3 - SCTP Packet Format .. 7
Figure 4 - SCTP Data Chunk Format ... 9
Figure 5 - SCTP SACK Chunk Format ... 13
Figure 6 - SCTP Association Establishment and Shutdown .. 14
Figure 7 - Data Transmission using Multiple TCP Connections 17
Figure 8 - Data Transmission using TCP with Application level

Multiplexing/Demultiplexing ... 17
Figure 9 - Data Transmission using UDP .. 18
Figure 10 - A Multi-streamed Association ... 19
Figure 11 - An Instant Messaging Session ... 24

v

LIST OF TABLES

Table Page

I - Comparison between SCTP, TCP and UDP ... 6
II - Simulation Scenario 1 ... 26
III - Simulation Scenario 2.. 28
IV - Simulation Scenario 3 ... 29

1

CHAPTER I

INTRODUCTION

IP technology has successfully relied on both TCP and UDP for years as the workhorses

of data transfer [2]. However as the desire for further exploring IP technology for a wider

range of commercial application grows, researchers have started to feel that the data

transfer services offered by TCP and UDP are inadequate.

One particular application that best exemplifies many of the shortcomings of TCP and

UDP is the transportation of telephony signaling messages (SS7) over IP networks. TCP

has several key weaknesses in dealing with telephone call control. The first realization

came in 1991 when a network broke down while testing and many minutes transpired

before the TCP socket gave an error indication. This was quiet unacceptable and thus

directly motivated the development of the Stream Control Transmission Protocol (SCTP).

SCTP is a reliable, connection oriented transport protocol operating on top of the

connectionless packet service, namely IP, designed to expand the scope beyond TCP and

UDP. It is a proposed Internet Engineering Task Force standard (RFC 2960). Like TCP,

SCTP provides a reliable, full-duplex connection with support for error-free non-

duplicated transfer of messages. Unlike both TCP and UDP, an SCTP connection, called

an association, provides novel services such as multi-homing, which allows the end

points of a single association to have multiple IP addresses, and multi-streaming, which

2

allows for independent delivery of data in separate streams.

TCP Limitations

The following limitations of TCP make it hard to meet the rigid timing and reliability

requirements of telephony signaling:

• TCP provides both reliable as well as strict order-of-transmission delivery of data.

Telephony signaling applications require reliable message transfer with partial

ordering of the data, i.e., maintaining an ordered sequence only within some sub-

flows of the data. This strict sequence maintenance in TCP introduces

unnecessary delay to the overall data transfer service, causing a single lost TCP

segment to block delivery of all subsequent data in the stream, up until the lost

TCP segment is delivered. This condition has been aptly named as head-of-line

blocking, and such excessive delays in telephony signaling may cause service

failures and thereby should be controlled.

• The byte-oriented nature of TCP is often an inconvenience to the message based

telephony signaling. Applications must add their own record markings to

delineate their messages, and they must make explicit use of the push facility to

ensure that a complete message is transferred in a reasonable time.

• Providing highly available data transfer service is one of the primary requirements

of telephony signaling network. TCP has no built-in support for multihomed

hosts. Thus without link or path-level redundancy, the network is vulnerable to

link failures.

3

• For telephony applications, security against malicious attacks that cause failure or

interruptions to the service is a top priority. But TCP is known to be highly

vulnerable to blind denial of service (DoS) attacks by SYN segments.

UDP Limitations

UDP has the following shortcomings when being considered for carrying telephony

signaling data:

• UDP provides an unreliable data transfer service to the application, i.e., an

application using UDP cannot know whether data sent to a peer application is

received or not. Moreover, even if the data is received there is no guarantee on the

ordering of the data, and the reception of duplicated copies.

• Also UDP has no built-in mechanism to detect path congestion and consequently

throttle back its data transmission.

As UDP cannot meet the data reliability requirements it is unsuitable for telephony

signaling applications. However as UDP is message-oriented and considered a

lightweight protocol with small overhead, attempts have been made to make up in the

application what is lacking in UDP in order to meet the stringent timing and data

reliability requirements. This may not be a good solution as the added complexity may

add additional burden on the application.

SCTP Enhancements over TCP and UDP

In order to address the limitations of TCP and UDP, the Signaling Transport

(SIGTRAN) working group of IETF developed SCTP. While the development of SCTP

4

was motivated by the transportation of the Public Switched Telephone Network (PSTN)

signaling messages across the IP network, SIGTRAN ensured that the design is also a

good match for other applications with similar requirements.

The design of SCTP absorbed many of the strengths of TCP, such as error detection,

retransmission and window-based congestion control. Nevertheless, SCTP has

incorporated many new features that are otherwise not available in TCP. Two such new

capabilities are:

• The support for multi-homed hosts which allows a single SCTP association to run

across multiple paths thereby providing path redundancy which enable fast

failover from one path over to another with minimal interruptions to the data

transfer service.

Figure 1 - SCTP Multi-homing [3]

• The support for multi-streaming which alleviates the head-of line blocking

problem of TCP. This feature can be used to divide the overall flow into

independent sub-flows and to enforce ordering only within the sub-flows.

Thereby preventing messages from different sub-flows from blocking one

another.

5

Figure 2 - SCTP Multi-streaming [3]

Besides these two major features there are other enhancements designed into SCTP.

Table 1 gives a more detailed comparison between SCTP, TCP and UDP.

Protocol Features SCTP TCP UDP

Full-duplex data transmission yes yes yes

Connection oriented yes yes no

Reliable data transfer yes yes no

Partially reliable data transfer optional no no

Ordered data delivery yes yes no

Unordered data delivery yes no no

Flow and congestion control yes yes no

Explicit congestion notification support yes yes no

Selective ACKs yes optional no

Preservation of message boundaries yes no yes

Path maximum transmission unit discovery yes yes no

6

Application data fragmentation/bundling yes yes no

Multi-streaming yes no no

Multi-homing yes no no

Protection against SYN flooding attack yes no n/a

Reachability check yes yes no

Half-closed connections no yes n/a

Table I - Comparison between SCTP, TCP and UDP [3]

SCTP Packet Format

An SCTP packet is made up of an SCP common header of 12 bytes and building blocks

called chunks [1].

The fields within the common header provide the following basic functions:

• Source and Destination Ports – These along with the IP addresses in the IP header

help to uniquely identify the association to which an SCTP packet belongs.

• Verification Tag – This value helps to ensure that a particular packet belongs to

the current incarnation of an association and provides protection against a blind

attacker injecting data into an existing association.

• Checksum – This value helps to ensure the data integrity of the entire packet.

The building blocks or chunks constitute the rest of an SCTP packet. Chunks provide

SCTP with the basic structure needed to carry information. They are classified into two

types: control chunk and data chunk. SCTP control chunks transfer information needed

7

for association functionality, while data chunks carry application layer data. The current

specification allows 256 different chunk types of which only 16 are currently defined in

the base SCTP for association establishment, termination, data acknowledgement,

destination failure detection, explicit congestion notification and error detecting, leaving

an additional 240 chunk types that may be defined in the future by the IETF.

Each chunk has a chunk header that consists of three mandatory fields

• Chunk Type – This 8-bit field represents the type of chunk that is present. i.e.,

either data chunk or a type of control chunk.

• Chunk Flags- This 8-bit wide field defines any special flags that the chunk type

may wish to use.

• Chunk Length – This 16-bit field indicates the length of the entire chunk

(including chunk type and flags fields) in bytes.

SCTP has the flexibility to concatenate different chunk types into one data packet. The

only restriction is that the packet size cannot exceed the path’s Maximum Transmission

Unit (MTU) size.

Figure 3 - SCTP Packet Format

8

The DATA chunk

The DATA chunk is the container for the user data transferred in SCTP. Figure – shows

the format of the chunk [1]. The fields of the DATA chunk are described below:

• Chunk type – For the DATA chunk this field is set to 0x00

• A chunk flag – Out of the 8-bit length of this field, the lower 3-bits are used by

the DATA chunk and are named the U, B and E bits. The upper 5-bits are

reserved for future use. The U bit is used for ordered/unordered delivery options

and the B and E bits are used to indicate the first and last part a fragmented user

message.

• Chunk length – This field denotes the length of the user data. As a DATA chunk

is required to have at least one byte of user data, this field should have a value

equal to or greater than 17.

• TSN – This field represents the transmission sequence number for each data

chunk. The TSN is used by both the sender and receiver to ensure that the chunk

arrives at the destination and is also used to keep track of missing data chunks

when a message is fragmented.

• Stream Identifier – This field indicates the stream number to which a data chunk

belongs.

• Stream sequence number – This field helps to maintain message order within one

stream. Stream sequence number remains the same for all the DATA chunks of a

fragmented user message.

• Payload protocol identifier – This field is used by network monitors and packet

filters for screening and viewing data.

9

• User data - This is the payload data. It is of variable length, up to the PMTU of

the network for a particular destination. If the user message is larger than the

PMTU, the sender fragments the message into multiple smaller parts and sends

each part in a separate DATA chunk.

0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 0 | Reserved|U|B|E| Length |

 +-+

 | TSN |

 +-+

 | Stream Identifier S | Stream Sequence Number n |

 +-+

 | Payload Protocol Identifier |

 +-+

 / /

 / User Data (sequence n of Stream S) /

 / /

 +-+

Figure 4 - SCTP Data Chunk Format

SCTP Association Phases

As a connection-oriented protocol, an SCTP association has three phases; association

establishment, data transfer and association shutdown.

10

Association Establishment

SCTP, like TCP is a connection-oriented protocol. Therefore, setting up of an SCTP

association between the two endpoints is the process that will always take place before

any data can be exchanged between the two peers. This process involves the exchange of

four SCTP packets between the endpoints. The exchange is robust enough to detect the

classic TCP-type SYN flooding DOS attack.

The overhead of passing four SCTP packets may seem like a lot when compared to

TCP’s three-way handshake, but two of the of the SCTP packets can be piggy-backed

with other types of information, such as user data. This helps minimize the delay burden

for the application without compromising the improved security.

Figure depicts the typical four-way handshake between the two endpoints A and B. The

process is detailed below in four steps.

1. When the application at host A has data to be transmitted to host B, the SCTP

stack at A formulates an INIT chunk to send off to B and starts an INIT timer.

2. When host B receives the INIT chunk, it responds with an INIT-ACK chunk,

without allocating any memory to maintain state for the requested association.

This is unlike TCP, which is forced to maintain state at this point, making it

highly susceptible to a blind SYN attack. Also host B embeds a cookie in the

INIT-ACK chunk which contains information verifiable only by B regarding the

legitimacy of host A.

11

3. When host A receives the INIT-ACK, it stops the INIT timer, replies with a

COOKIE-ECHO chunk; which essentially echoes the cookie that host B sent and

starts the COOKIE timer.

4. On receiving the COOKIE-ECHO chunk, host B checks the validity of the cookie

and on successful validation allocates resources and sends a COOKIE-ACK

chunk to host A. Upon receiving the COOKIE-ACK, host A stops the COOKIE

timer and an association is established between the two endpoints.

Data Transfer

Once the association is in the ESTABLISHED state normal data transfer can start. User

messages passed from the application to the SCTP layer for transmission will first be

converted into SCTP DATA chunks. This conversion process can take two different

courses, depending on the size of the user message. If the user message is small enough,

the conversion is simply to add a DATA chunk header to the message, forming a single

DATA chunk. If the user message is bigger than the Path Maximum Transmission Unit

(PMTU), it is fragmented into several small parts and then each part is converted into a

separate DATA chunk. Each data chunk is also assigned the stream identifier of the

outbound stream to which the message belongs, a stream sequence number to maintain

the order of messages within each stream and a TSN to permit the receiving peer to

acknowledge its receipt and detect duplicate deliveries. This data chunks is then bundled

together with other data chunks or control chunks and passed to the IP layer for

transmission over the network. After arriving at the SCTP receiver, the SCTP packets

will be unbundled into DATA chunks as well as control chunks and delivered to the

12

application. Finally, the receiver will acknowledge the reception of all the DATA chunks

by sending back SACKs to the message sender.

SCTP maintains reliability through SACKs, retransmissions and the CRC-32 checksum.

SCTP acks carry cumulative (CumAck) and selective (GapAck) information. The

CumAck indicates the last TSN successfully received in sequence. The GapAck blocks

indicate TSN’s received out of order beyond the CumAck. Figure – shows the packet

format for an SCTP SACK control chunk. Network congestion prevention and packet

loss detection and recovery is handled by flow and congestion control and time-out and

fast retransmit mechanisms.

 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Type = 3 |Chunk Flags | Chunk Length |

 +-+

 | Cumulative TSN Ack |

 +-+

 | Advertised Receiver Window Credit (a_rwnd) |

 +-+

 | Number of Gap Ack Blocks = N | Number of Duplicate TSNs = X |

 +-+

 | Gap Ack Block #1 Start | Gap Ack Block #1 End |

 +-+

 / /

\ ... \

 / /

13

 +-+

 | Gap Ack Block #N Start | Gap Ack Block #N End |

 +-+

 | Duplicate TSN 1 |

 +-+

 / /

\ ... \

 / /

 +-+

 | Duplicate TSN X |

 +-+

Figure 5 - SCTP SACK Chunk Format [1]

Association Shutdown

Any reliable protocol needs a methodology not only to bring up a communication but

also to bring that communication to a close. SCTP has two methods for bringing an

association to a CLOSED state, namely graceful and abortive shutdown.

In the graceful shutdown, each peer assures that all data in the queue is delivered and

acknowledged. After this the association enters the CLOSED state. This is pretty much

similar to TCP’s down, with one major exception: while TCP supports a “half-closed”

state, where one end is CLOSED and not accepting new data to transfer, and the other

end is still open and able to send new data; SCTP does not. Figure illustrates SCTP’s

three-message handshake to gracefully close down an association.

14

The abortive shutdown is an unreliable best-effort attempt to tell a peer that the

association is going away. This is simply carried out by the endpoint sending an ABORT

chunk to its peer, removing its TCB and transitioning into the CLOSED state. The peer

on receiving the ABORT chunk follows suit.

Figure 6 - SCTP Association Establishment and Shutdown [3]

Partially Reliable SCTP

Many Internet applications such as real-time multimedia traffic (e.g. VoIP), transmission

of video and other time sensitive material, requires partial reliable transport of messages.

A partially reliable transport service is defined as one which allows the user to specify the

rules governing how persistent the transport service should be in attempting to

transmit/retransmit the message to the receiver.

15

A new IETF draft RFC 3758 specifies the use of SCTP as a partial reliable transport

protocol which can carry both traffic requiring partial reliability as well as traffic

requiring full reliability [4]. PR-SCTP allows an SCTP sender to assign different levels of

reliability to messages so that lost messages may be retransmitted only until the reliability

threshold (or lifetime parameter) for that message is reached. If the reliability threshold is

reached for unsent/un-ACKed messages, the sender abandons those messages and

notifies the receiver to do the same.

In order to provide partial reliable service over an existing SCTP association, two new

parameters have been added to the original protocol.

• A single new chunk type, FORWARD TSN that indicates that the receiver should

move its cumulative ack point forward, possibly skipping past one or more DATA

chunks that may not yet have been received and/or acknowledged.

• A single new parameter in the INIT/INIT-ACK chunk types that indicates

whether the endpoint supports the new partial reliability extension.

16

CHAPTER II

REVIEW OF LITERATURE

In [6] stream priorities are introduced as a method of decreasing delays of important data

during periods of low bandwidth availability. On-line multimedia experiences are often

bandwidth intensive. They require high throughput connections to be comfortable for end

users. While the number of broadband subscribers grows daily, the majority of Internet

users still rely on slower dial-up connections, which are often insufficient for comfortable

viewing of multimedia data. In addition, many pocket devices, such as mobile phones and

Personal Digital Assistants (PDAs), now offer web browsing and streaming video over

low bandwidth, wireless connections. The maximum throughput achieved by these

devices fluctuates depending on signal strength. Moreover current end users want to

request various types of data from application servers. Therefore, the servers must

provide a way to transmit multiple data-types in parallel, and must effectively respond to

periods of insufficient bandwidth

Traditionally, transmitting different types of data in parallel between endpoints relied on

one of three approaches. In all three situations, Host A would like to send three types of

data, labeled Data 1 through Data 3 to Host B. In the first approach, Host A opens three

TCP connections to Host B – one connection per data type.

17

While this approach provides logical separation of data based on type, multiple

connections defeat TCP-friendly congestion control by allowing an application to gain an

unfair portion of available bandwidth at the expense of other data flows in the network.

Figure 7 - Data Transmission using Multiple TCP Connections [6]

In the second approach, Host A multiplexes and demultiplexes the three types of data

over a single connection. Applications using this approach maintain TCP-friendly

congestion control; however, this approach increases complexity for the application

programmer, since the application itself must handle the complicated task of efficiently

and fairly managing data transmission scheduling.

Figure 8 - Data Transmission using TCP with Application level Multiplexing/Demultiplexing [6]

18

The third approach has a multimedia application using UDP. This approach closely

resembles the second approach; however application programmers must supply their own

reliability service as well as their own multiplexing/demultiplexing due to UDP’s

unreliable, connectionless service.

Figure 9 - Data Transmission using UDP [6]

With the introduction of the SCTP’s concept of streams, applications are presented with a

new transport layer solution to transmitting multiple types of data. This new approach

combines advantages of multiple end-to-end connections and application

multiplexing/demultiplexing.

SCTP’s Multi-streaming Feature in Detail

In an SCTP association a stream is a unidirectional logical channel established from one

endpoint to another. Multi-streaming aims to separate flows of logically different data

within a single association. This logical separation of data using streams allows the

transport layer to take up the responsibility of managing the flows, otherwise performed

by the application layer. Within each stream messages are delivered in sequence, except

for those messages that specify an unordered delivery service. During association setup

SCTP end points negotiate the number of streams required at each end. Figure – shows a

19

multi-streamed association between hosts A and B. During this example’s association

setup, host A requested three outbound streams to host B (numbered 0 to 2) and host B

requested only one outbound stream to host A (numbered 0).

Figure 10 - A Multi-streamed Association [3]

To preserve the data order and reliability for each data chunk, within streams, SCTP uses

stream sequence numbers (SSNs). The socket API extension for SCTP provide data

structures and socket calls through which application can indicate or determine the stream

number on which it intends to send or receive data. Between streams, no data order is

preserved. This approach avoids TCP’s head-of-line blocking problem, in which

successfully transmitted segments must wait in the receiver’s queue until a TCP sending

end point retransmits any previously lost segments. This blockage delays delivery of

received data to the receiving application, which is unnecessary and sometimes

unacceptable in signaling and some multimedia applications. In case of SCTP, if data on

stream 1 is lost, only stream 1 is blocked at the receiver while awaiting retransmissions.

The receiving end point can immediately deliver data arriving on other streams to the

application.

20

Adding Priorities to Streams

In order to transmit multiple types of data using SCTP multi-streaming, a scheduling

algorithm that avoids stream starvation must be used [5]. Two of the most commonly

used algorithms are first-come-first-serve and round-robin scheduling.

In the first-come-first-serve scheduling algorithm a Host A transmits each data chunk in

the order in which it is received from the application, irrespective of the streams. In the

round-robin scheduling approach a Host A would select a data chunk from each of the

streams for transmission, for the life of the association.

These algorithms would be highly efficient during periods of high bandwidth availability.

But during periods of poor network conditions, delays would be introduced between

endpoints across all streams. Thus in order to alleviate this situation each stream must be

assigned a priority by the application to specify the relative importance of the data carried

in that stream. This will enable transmission of critical data to gain precedence during

periods of low-quality of service. The SCTP strict-stream priority scheme can be defined

as [6]:

“Data on stream i always have greater priority in relation to

data on stream j, where i < j”

This can be implemented in the SCTP Sockets API as

sctp_enablepriority ()
{

for (i = 0; i < num_streams; i++)
{

streams[i].priority = i;
}

21

}

After assigning priorities, [6] then introduces a fixed priority based scheduling algorithm

which transmits data based on stream priorities. The running time of this algorithm

depends on number of streams and amount of data to be transmitted. As today’s

multimedia applications over the internet involve the transmission of both reliable as well

as partially reliable data such as audio, video and other time-sensitive data, the static

priority algorithm would be inadequate for the stringent lifetime requirements of PR data.

Thus a new scheme where the priorities of PR data dynamically change to accommodate

for the time sensitive PR data is proposed in the next-section.

22

CHAPTER III

PROPOSED WORK

Dynamic Priority Streams

Previous work [6] introduces a static priority scheduling algorithm suitable for only

reliable data. Several applications may benefit from this static-stream priority scheme.

One such widely used general purpose application is Instant Messaging (IM). An IM

software allows a user to connect to the messaging service and communicate with other

users connected to the same service. Current instant messaging clients also support

communication of various types of data such as voice, video and file transfers between

two users. Among these data types audio and video can be grouped as requiring partial

reliability. In other words this data type is time sensitive and thus if not delivered to the

receiver within certain duration, set by the lifetime parameter, would become irrelevant.

The static priority scheme if used for PR data would time-out most of the data and result

in packet drops. In order to alleviate this problem, we propose a scheduling algorithm

which dynamically changes priorities based on the timed-reliability factor of the PR data.

The algorithm is presented below:

while (space exists in SCTP packet) {

while (PR-stream has data to transmit AND PR-stream's lifetime

approaching) {

swap PR data's priority with reliable data's;

23

}

for (j = 0; j < num of streams; j++) {

if (current highest priority has data to transfer)

send all the data;

else

move on to next priority;

}

if (priorities were swapped)

revert priorities;

}

Before this algorithm is called, the priorities of the various streams are set by using the

strict priority algorithm. Also checks for space in the congestion and receiver windows

should be made. This algorithm checks if the lifetime of the PR data is approaching

within the next round-trip time, while there is still enough space in the SCTP message. If

yes, then the priority of the PR data is swapped with that of the higher priority data. If not

then the packet is dropped and the sender sends a Forward-TSN informing the receiver to

move its cumulative-ack forward. To prevent indefinite postponement of the reliable

data, the algorithm also makes sure that the data is transmitted with acceptable delay.

Based on the current priorities, the data for the highest priority stream is added to the

SCTP message until space is available. If the highest priority has no more data to send

then the next highest priority gets a turn at transmission. This algorithm depends on the

number of streams between the end-points, the size of each stream’s packet and the rate

at which the application generates the data.

24

CHAPTER IV

SIMULATIONS AND FINDINGS

The dynamic priority algorithm proposed was applied to a simulation of an instant

messaging scenario by using the popular SCTP module for ns-2, developed by the

Protocol Engineering Lab at the University of Delaware [11]. Our simulation consisted of

an SCTP association with 2 streams in one direction established between two nodes

marked as sender and receiver.

Figure 11 - An Instant Messaging Session

The sender’s stream0 carried packets of 200bytes generated at 40packets/second

representing a high priority, partially-reliable data, such as audio. The sender’s stream1

carried partially reliable packets of 1000bytes generated at 15packets/second with a

timed-reliability factor of 3 seconds, representing the video conferencing data through a

web-camera. We then compared the performance of our algorithm against the static

priority SCTP algorithm, over simulated dial-up (128Kbps)

ReceiverSender

Stream 0 – Audio/Chat

Stream 1 - Video Data

Stream 2 - File Transfer

Stream 0

25

links with a propagation delay of 250ms. Our performance criteria was based on the

number of partially-reliable video packets dropped and the ratio of the number of packets

of each stream transmitted. Our simulations did not consider any network losses due to

congestion. For analysis let us consider the conditions given below. Let:

Ravailable be the rate at which SCTP can send data to the receiver

R0 be the rate of data submitted by the application for transmission over stream0

R1 be the rate of data submitted by the application for transmission over stream1

R2 be the rate of data submitted by the application for transmission over stream2

Condition1 - R0 + R1 + R2 < Ravailable : During this time since enough bandwidth is

available there is no queuing and data is transmitted without any packet drops.

Condition2 – R0 + R1 + R2 > Ravailable : During this time queuing would definitely occur

but the number of packet drops for the partially-reliable data using dynamic priorities

should be lesser than the number of packet drops for the static priority SCTP scheme.

Figure of Merit

Figure of merit (FOM) is defined as a numerical quantity based on one or more

characteristics of a system that represents a measure of efficiency or effectiveness. To

compare the performance of the dynamic priority algorithm with that of the static priority

algorithm we compare the min ratios of the number of packets sent in each stream to the

number of packets generated by each stream. The max of the values helps us prove the

fairness of the scheme.

For static priority:

26

min [no. of stream0 packets sent …., no. of stream n packets sent] � [1]
 no. of stream0 packets generated no. of stream n packets generated

For dynamic priorities:

min [no. of stream0 packets sent …., no. of stream n packets sent] � [2]
 no. of stream0 packets generated no. of stream n packets generated

Fair scheme = algorithm with max ([1], [2])

Simulations were performed with different delay rates. The graphs obtained are depicted

below:

Scenario1: Bandwidth = 128kbps

Stream Delay Bit rate Total
pkts
in

10mins

No.of
pkts

sent in
10mins

(SP)

No. of
pkts

dropped
in 10mins

(SP)

No.of
pkts sent
in 10mins

(DP)

No.of pkts
dropped in
10min(DP)

Stream0 200ms 64Kbps 24000 24000 0 14863 9137
Stream1 3sec 120Kbps 9000 4800 4200 6593 2407

Table II - Simulation Scenario 1

Min. ratio for static priority = 0.53
Min. ratio for dynamic priority = 0.62
Based on our figure of merit, dynamic priority performs better.

27

28

Scenario 2: Bandwidth = 128kbps

Stream Delay Bit rate Total
pkts
in

10mins

No.of
pkts

sent in
10mins

(SP)

No. of
pkts

dropped
in 10mins

(SP)

No.of
pkts sent
in 10mins

(DP)

No.of pkts
dropped in
10min(DP)

Stream0 250ms 64Kbps 24000 24000 0 17965 6035
Stream1 3sec 120Kbps 9000 4800 4200 5943 3057

Table III - Simulation Scenario 2

Min. ratio for static priority = 0.53
Min. ratio for dynamic priority = 0.66
Based on our figure of merit, dynamic priority performs better.

29

Scenario 3: Bandwidth = 128kbps

Stream Delay Bit rate Total
pkts
in

10mins

No.of
pkts

sent in
10mins

(SP)

No. of
pkts

dropped
in 10mins

(SP)

No.of
pkts sent
in 10mins

(DP)

No.of pkts
dropped in
10min(DP)

Stream0 300ms 64Kbps 24000 24000 0 20989 3011
Stream1 3sec 120Kbps 9000 4800 4200 5419 3581

Table IV - Simulation Scenario 3

Min. ratio for static priority = 0.53
Min. ratio for dynamic priority = 0.60
Based on our figure of merit, dynamic priority performs better.

30

31

Thus through the various simulation scenarios we are able to show that the dynamic

priority algorithm performs better for streams transmitting partial-reliable data.

32

CHAPTER V

CONCLUSION AND FUTURE WORK

Initially, we have explained the basic architecture and working of the Stream Control

Transmission Protocol. We have also explained SCTP’s new provision for supporting

partially reliable data. We have then summarized the drawbacks of the three traditional

approaches used for transmitting different types of data in parallel between two end-

points and have then detailed how SCTP’s multi-streaming feature would help overcome

these drawbacks. We have briefly explained the previous work [6] which uses a static

priority schemes for only reliable data. We have then investigated a scenario where there

is both partially reliable data for transmission and have come up with a scheduling

algorithm which dynamically switches the priorities of the partially reliable data based on

its timed-reliability factor. Finally through simulations we have shown that during

periods of low bandwidth availability, the streams are given a fair chance to transmit data

based on their timed-reliability factor, unlike the static priority scheme which gives

preference to the higher priority stream

In this work although the streams are prioritized, because of the sharing of congestion

information among streams, the stream receiving a lower level of service from the

network may experience more losses. These losses in turn influence the entire

transmission and the benefits of priorities among streams are thus lost. Future work

33

should investigate ways in which streams are treated differentially by the network based

on their priorities. And should also explore the various other figures of merits for the

dynamic priority algorithm in scenarios where the streams are of equal priority.

34

REFERENCES

[1] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M.
Kalla, L. Zhang, V. Paxson. “RFC 2960 - Stream Control Transmission Protocol”,
October 2000.

[2] R. Stewart, Q. Xie. “Stream Control Transmission Protocol (SCTP): A Reference
Guide”. New York: Addison-Wesley, 2002.

[3] A. Caro Jr, J. Iyengar, P. Amer, S. Ladha, G. Heinz II, K. Shah. “SCTP: A Proposed
Standard for Robust Internet Data Transport”, 2003.

[4] R. Stewart, M. Ramalho, Q. Xie, M. Tuexen, P. Conrad. “RFC – 3758 Stream Control
Transmission Protocol Partial Reliability Extension”, May 2004

[5] L. Coene. “RFC – 3257 Stream Control Tranmission Applicability Statement”, April
2002.

[6] G. Heinz II. “Priorities in Stream Transmission Control Protocol Multi-streaming”.
2003.

[7] S. Ladha, P. Amer. “Improving File Transfers using SCTP Multi-streaming”.

[8] S. Santani, J. Iyengar, M. Fecko. “SCTP Multi-streaming: Preferential Treatment
among Streams” 2003

[9] A. Balk, M. Sigler, M. Gerla, M. Sanadidi. “Investigation of MPEG – 4 Video
Streaming over SCTP”.

[10] P. Conrad, G. Heinz, A. Caro Jr, P. Amer, J. Fiore. “SCTP in Battlefield Networks”

[11] A.Caro, J. Iyengar. ns-2 SCTP module. http://pel.cis.udel.edu.

VITA

Tasneem Yunus Kanpurwala

Candidate for the Degree of

Master of Science

Thesis: SCTP MULTI-STREAMING: STUDY OF TRANSMISSION OF
PARTIALLY RELIABLE AND RELIABLE DATA USING DYNAMIC
STREAM PRIORITIES

Major Field: Computer Science

Biographical:

Education: Received Bachelor of Engineering degree in Computer Science
from University of Madras, Chennai, India in May 1998. Completed the
requirements for Master of Science degree with major in Computer
Science at Oklahoma State University in May, 2006

Experience: Employed by Oklahoma State University, College of Engineering
Architecture and Technology as a Graduate Assistant, 2004 to Present

Professional Memberships: Association of Computing Machineries

Name: Tasneem Yunus Kanpurwala Date of Degree: May, 2006

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: SCTP MULTI-STREAMING: STUDY OF TRANSMISSION OF
 PARTIALLY RELIABLE AND RELIABLE DATA USING
 DYNAMIC STREAM PRIORITIES

Pages in Study: 34 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: On-line multimedia experiences are often bandwidth-
intensive. The majority of internet users still rely on dial-up modem or DSL
connections which are often inadequate for comfortable viewing of real-time
multimedia data. The application end-points must then provide a way to transmit
multiple data-types in parallel and must effectively respond to periods of
insufficient bandwidth. Using multiple TCP connections for transferring different
data, defeats TCP-friendly congestion control. With the introduction of multi-
streaming in the Stream Control Transmission Protocol, applications such as
instant messaging are now presented with a new transport layer mechanism which
is markedly superior to TCP and UDP for multimedia transmissions. Multi-
streaming provides an aggregation mechanism with logical demarcation of data
for transferring different objects belonging to the same application. Traditional
SCTP makes use of round-robin or FIFO algorithm for scheduling the various
streams. But during periods of low bandwidth availability, transmission of critical
data should gain precedence over non-critical data. Previous work proposes a
static priority scheme suitable for only reliable data. Our work investigates using
dynamic priorities with both partially reliable (PR) and reliable data.

Findings and Conclusions: In this thesis we propose a scheduling algorithm to
dynamically prioritize the streams depending on the timed-reliability factor of the
PR-data. Through ns-2 simulations we compare the dynamic priority SCTP with
static priority SCTP using an application with two streams, one sending a low bit-
rate, short delay, partially reliable data and the second sending a high bit-rate
partially reliable data. During periods of low-bandwidth availability we
demonstrate that with this scheme, both the streams are given a fair chance to
transmit data based on their timed-reliability factor, unlike the static priority
scheme which gives preference to the higher priority stream.

ADVISOR’S APPROVAL:
Dr. Venkatesh Sarangan

