USE OF GRAVITY MODELLING TO DETERMINE THE
GEOMETRY OF FAULTS BOUNDING THE ALAEHIR,
BUYUK MENDERES AND DENIZLI BASINS, WESTERN

TURKEY

By
MEHMET ISIK KALDIRIM
Bachelor of Science in Geology
Sam Houston State University
Huntsville, Texas

2008

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE

May, 2012



USE OF GRAVITY MODELLING TO DETERMINE THE
GEOMETRY OF FAULTS BOUNDING THE ALAEHIR,
BUYUK MENDERES AND DENIZLI BASINS, WESTERN

TURKEY

Thesis Approved:

Dr. Estella Atekwana

Thesis Adviser

Dr. Ibrahim Cemen

Dr. James Puckette

Dr. Darwin Boardman

Dr. Sheryl A. Tucker

Dean of the Graduate College



TABLE OF CONTENTS

Chapter Page

O NV I 1 O N [0 ] 1

[I. GEOLOGIC AND TECTONIC SETTING ....uuiiiiiii e 4

I METHODS ..o e e e e e e e et e e e et e e e aa e e e aa e e eennns 7
S.LSRTM-DEM .. e et e e e e e e ea 7
T €] = 1Y/ 14V - | - 7

V. RESULTS OF INVESTIGATION ...ttt 10
4.1 Bouguer Gravity and Filtered Maps ..........cuuueueiiiiiiieiieeeeeeeee e 10
S o Y B T Y = o 12
G R €11 BN S o (0] 1= 12

V. DISCUSSION ...ttt e e et et e e e e e aaeaaeeeeassaaanannne 14
N I S T= 1S3 I T =] 0 1= 1Y/ 14
5.2 Gravity and SRTM-DEM ........uuuiiiiiiiiiiie e eeeeeeeaneees 15
5.3 The Southwest Anatolian Shear ZONe.........ccccovviiiiiiiiiiiiii e 15

V1. CONCLUSION. ...ttt e e e et e e e e e e e e e e e e e e e s aaaaannes 17

REFERENGCES ..ottt ettt r e e e e e e e aeeens 19

FIGURES ...ttt et e e et e e e e e e e e e e e e e e e s e naannes 25



LIST OF FIGURES

Figure Page

1. Map of the Aegian region indicating the locations of the various metamorphic core
complexes located in the region. The red box outlines the Menderes massif imwester
Anatolia, Turkey (see Figure 2). Abbreviations: Towns: D—Denizli; I—lz&fructural
elements: AG—Alasehir graben; BMG—BJuyik Menderes graben; CMM—Central
Menderes massif;, DF—Datca fault; HA—Hellenic arc; IAS—Izikara suture;
IPS—Intra-Pontide suture; LN—Lycian nappes; NAFZ—North Anatolian feare,
NMM—Northern Menderes massif, SMM—Southern Menderes massif; SWASZ—
Southwest Anatolian shear zone (from Ceraeal., 2006). 26

2. Simplified geologic map showing the sedimentary basins and the Southwestern
Anatolian shear zone in the Buyuk Menderes Massif. Abbreviations: Towns: D4iDeniz
I- 1zmir; K- Kale; M- Mugla. Structural elements: AFZ- Acigdl fault zone; AG- #dhir
graben; BMG- Buyuk Menderes graben; DB- Denizli Basin; DFZ- DatcaZank;

KFZ- Kale fault zone; KMG- Kiicik Menderes graben; KTB- Kale-Tavash&s-
Oren Basin; SWASZ- Southwest Anatolian shear zone; YB-géat8asin (from Cemen
< = B 010 ) PP PPPPPPPPPPPPRN 27

3. 3D blocks emphasizing the role of the Southwest Anatolian shear zone (SWASZ) in
the structural evolution of the Western Anatolia extended terrain in (A) the E¢Bgne
the Late Oligocene, (C) the early-middle Miocene, and (D) the late Micmetne
Pliocene to the present. They do not include the Simav detachment area. The 3D blocks
are not drawn to scale and do not indicate the amount of extension in each stage.
Abbreviations: AG — Algehir Graben, BMG — Blyuk Menderes Graben, OB/KTB —
Oren and Kale-Tawsabasins, LN — Lycian Nappes, KMG — Kiiciik Menderes Graben, LP
— lower plate, SG — Simav Graben, SWASZ — Southwest Anatolian Shear Zone, UP —
upper plate (from Cemeat. al. 2006). ...........ceeuririiiiiiiiie e 28

4. Bouguer gravity map of the Menderes Massif with locations of GM-SYS profiles.
Abbreviations: AB- Algehir Basin, BMB- Buyik Menderes Basin, DB- Demirci Basin,
GB- Gordes Basin, SB- Simav Basin, UBsdld Basin, GUB- Glre Basin.. ............. 29

5. First vertical Derivative map of the Menderes Massif. Location dbtined basin is
circled on the map. Abbreviations: AB- Akhir Basin, KMB- Kuguk Menderes Basin,
BMB- Buyuk Menderes Basin, DB- Demirci Basin, GB- Gordes Basin, SBaGBasin,
UB- Usak Basin, GUB- Glre Basin, SWASZ- Southwest Anatolian Shear Zone......30

6. Tilt Derivative map of Menderes Massif. Abbreviations: AG-sakar Graben,
KMG- Kuciuk Menderes Graben, BMG- Blyik Menderes Graben, DB- DemiranBas
GB- Gure Basin, SB- Simav Basin, UBsak Basin, GUB- Gure basin, SWASZ-
Southwest Anatolian Shear ZONE. ........ccoovvii i 31



Figure Page

7.5 km Upward continuation map of Menderes Massif. Abbreviations: ABelila
Basin, BMB- Buyuk Menderes Basin, DB- Denizli Basin. ..........ccccceeeeeiviiveveeeiiiiinnns 32

8. 10 km Upward continuation map of Menderes Massif. Abbreviations: ABelita
Basin, BMB- Buyuk Menderes Basin, DB- Denizli Basin. ........ccccccoooeevviiiiiiieevennnnnnn. 33

9. 20 km Upward continuation map of Menderes Massif. Abbreviations: ABelAita
Basin, BMB- Buyiuk Menderes Basin, DB- Denizli Basin. ..........ccccceeeeeevvvieieeeeiiininns 34

10. Shuttle Radar Topography Mission Digital Elevation Model (SRTM-DEM) 30m
map of the Menderes Massif. Abbreviations: AB-gglair Basin, KMB- Kuguk
Menderes Basin, BMB- Buyuk Menderes Basin, DB- Denizli Basin. ....................... 35

11. Shuttle Radar Topography Model Digital Elevation Model (SRTM-DEM) density
K] [T 0 1= o 1TSS 36

12. GM-SYS 2D model created from profile line A-A’ over thes@lar basin. ....37
13. GM-SYS 2D model created from profile line B-B’ over thes@har basin......38
14. GM-SYS 2D model created from profile line C-C’ over thesélhar basin......39
15. GM-SYS 2D model created from profile line D-D’ over thes@har basin. ....40

16. GM-SYS 2D model created from profile line E-E’ over the Blyuk Mendereas bas

19. GM-SYS 2D model created from profile line H-H’ over the Denizli basi4.....

20. GM-SYS 2D model created from profile line I-I" over the Denizli basin. ........ 45



CHAPTER |

INTRODUCTION

The Menderes Massif of the Western Anatolian Extended Terrain is cesefl
metamorphic core complexes located in the Aegean region (Figure 1)@artia$ the Alpine-
Himalayan belt which experienced a series of continental collifionsthe late Cretaceous to
the Eocenef§eng6r and Yilmaz, 1981; Tankeit al., 1998; Dileket. al., 1999; Stampli, 2000;
Cemeret. al., 2006). It covers an area greater than 50,000dérexposed metamorphic and
igneous rocks of the Menderes Massif (Bozkurt and Park, 1994, tdetake) 1995a,b; Emre and
Sozbilir, 1997; ik and Tekeli, 2001; Cemesh. al., 2006), and is bound by the North Anatolian
Fault Zone to the north, the Lycian Nappes to the south and the Southwest Andtetiad @e
to the east and southeast (Cereeal., 2006). Some of the models proposed in order to explain
the evolution of the region are (1) tectonic escape in which thisioolbf the Arabian and
Eurasion Plates caused the Anatolian Plate to move westward alongthembEast Anatolian
Faults (Dewey anfengdr, 1979Sengdr, 1979Seng6r and Yilmaz, 198Kengoret. al., 1985;
Cemenet. al., 1993, 1999); (2) back-arc extension caused by subduction along the Hellenic Arc
(McKenzie, 1978; Le Pichon and Angelier, 1979, 1981; Muelenleingb., 1988; Spakmast.
al., 1988); and (3) orogenic collapse caused by Paleogene compression experienced over
thermally weakened lithosphere (Dewey, 1988; Sglitand Scott, 1996; Dilek and Whitney,

2000). All of these proposed models infer to different timing for the fiuitiaof extension



along the Western Anatolian Extended Terrain.

The Menderes Massif was exhumed due to post-collisional extension expeiietoe
region (Cememt. al., 2006). It is bound by the Izmir-Ankara Suture Zone to the north and The
Southwest Anatolian Shear Zone (SWASZ) to the south and east. The exhumatss peased
several basin-forming graben like structures to form which are boundedaajisent surfaces
and their antithetics. The most prominent features within the frfiamsi north to south are the E-
W trending basins called The A&hir, Kiicik Menderes and Bilyik Menderes Basins. The
timing involved in the exhumation of the Menderes Massif and the formétibe garious
structures within the massif have been proposed to be episodic gKatyal., 1999; Yilmazet.
al., 2000; Bozkurt & Sozbilir, 2004, 2006; Beccaletto & Steiner, 2005; Bozkurt & Mittwede
2005; Bozkurt & Rojay, 2005; Purvis & Robertson, 2005a, b; Emre & S6zbilir, 2007) and

continuous by (Seyifgu et. al., 2000,2002,2004; Glodny & Hetzel, 2007, Cereeral., 2006).

Over the last decade there have been many field oriented studies dtMienderes
Massif focused on the understanding of the age and structural relationghipgive Massif.
The timing, evolution and geometries of these structures within the merssiin a subject of
controversy. In order to clarify the ages involved with the initiatiorxt#resion, radiometric
dating studies have been conducted over the various stratigraphiouniisaround the
Menderes Massif by Hetzel et. al., (1995a,b) and Catlos and Cemen (2005). A better
understanding of the subsurface structures and structural relationstipswdjor structures
within the massif can help us gain insights into the evolution of the dlesd/iassif. Due to the
hydrocarbon and hydrothermal potential within the Menderes Massif, thesfidr&troleum
Corporation (TPAQO) has conducted several two dimensional seismic suwerythe Algehir
and Buyuk Menderes Basins. Details and results of these surveypateden Ciftci et. al.,
(2010) and Ciftci & Bozkurt, (2011). These studies cover only thgeAlaand Blylk Menderes

Basins. Results from Ciftci et. al., (2010) study over the Blyik Mendesds Bdicates that the



structural features are driven by a complex extensional fault system bounoWbgragle south
dipping detachment and its synthetic and antithetic faults. Results frastuthes of Cift¢i &
Bozkurt, (2011) over the Adehir Basin indicate a north dipping detachment surface with a flat
ramp low dipping shallow segment a steep middle segment and a deep low angle safjgient. C
& Bozkurt, (2011) suggest that the graben containing thgehAlaBasin (Gediz Graben) forms

two sub basins the Salihli Basin and thesAtdr Basin with a shallow middle section. Ciftci &
Bozkurt, (2011) indicate that thickness of sedimentary rockamiihe Gediz Graben average

around 4 km.

Very little is known about the subsurface geometry of structures withibénizli Basin
and the relationship of these structures to thgelim and Blytk Menderes basins. In this study
we extend the work of Ciftci et. al., (2010) and Cift¢i & Bozkurt, (2011) and inclieBémizli
Basin in our study area. We use Bouguer gravity data together with Shutde Rgpography
Mission Digital Elevation Model (SRTM-DEM) data over the Westenatlian extended

terrain to provide insights into the surface and sub-surface structuhesarea.

Our specific objectives include: (1) investigate the geometry datlies bounding the
Alasehir, Buyuk Menderes and Denizli basins, (2) Delineate the extents $bthbwest
Anatolian Shear Zone and (3) investigate the relationship between the Siviimatolian Shear

Zone and the faults associated with these basins.



CHAPTER Il

GEOLOGIC AND TECTONIC SETTING

The Menderes Massif metamorphic core complex is one of several mglaenor
complexes located in the Aegean region (Figure 1). It contains seasiias bhat are bounded in
the north by the Izmir-Ankara suture zone and by the Southwest Anatolian shedo zhe south
and east (Figure 2). The Menderes Massif is divided up into thegerse the northern section
called the Northern Menderes Massif containing the north to soutltingeGordes, Demirci and
Usak-Selendi basins, the Central Menderes Massif covering theetveeelm the Algehir and
Blyuk Menderes basins and the Southern Menderes Massif covering theautteof the Buyuk
Menderes basin containing the ENE trending Gokova and Kale-Tavas basimengfeal .,

2006) (Figures 1 & 2). Field-oriented geological studies in the Central Veshdwssif indicate
that the E-W trending grabens are bounded by low angle detachment surfacesyavttieh
north-dipping Algehir and the south-dipping Buyuk Menderes detachment surfaces (&letzel

al., 1995b; Emre, 1996; Seyghu et. al., 2002; Gessneat. al., 2001a).

The footwall of the Alsehir detachment contains the Salihli granitoid which is comprised
of gneiss, schist, quartzite, marble and igneous rocks (Hetakl 1995a). The southern margin
of the Algehir graben (Figure 2) is locally bounded by the Horzum Turtleback faudtcgurf
(Cemeret. al., 2005). The Buyluk Menderes detachment surface separates high-grade

metamorphic gneisses and a lower Miocene sedimentary rock successidrangitey wall from



the marble-intercalated mylonitized schists in its footwallgi@ 2004).

The stratigraphic sequence within the massif consists of caegiah@omposed of augen
gneisses, migmatites, and gabbros with some granulite and eclogiteviglicsedium to high
grade metamorphic schists along with a cover sequence consistinglebadic schist envelope
overlain by a Cenozoic marble envelope (Durr, 1975; Akkok, 1983; Ashworth & Evirgen,;1984a
Sengdr et. al., 1984; Satir & Friedrichsen, 1986; Konak et. al., 1987; Bozkurt, 1996A@4eet
al., 1997; Hetzel et. al., 1998; Candan et al., 2001; Whitney & Bozkurt, 2002; Régalier et

2003; Rimmelé et. al., 2005).

The Lycian Nappes contain the Karaova Formation (Upper Permian to Loassi®
reddish to greenish metapelits) overlain by a thick succession aftdimes and dolomites
(Middle Triassic to Middle Jurassic) that grades upwards intoychertstones (Upper Jurassic
to Upper Cretaceous) with the upper layers containing calcite formingt&bseistones which
in turn is overlain by the Campanian to Maastrichtian Kataftten wildflysch (Phillippson
(1910-1915), de Graciansky, 1972; Bernoulli et. al., 1974; Cakghgk®985; Okay, 1989;

Rimmelé et. al., 2005).

The Denizli Basin is bounded by the south dipping Pammukkale fault zone to tine nor
and the north dipping Babaglfault zone to the south. The Denizli Basin contains Quaternary
sedimentary units along with Neogene sedimentary units and volcanics witinddes

metamorphics.

The Menderes Massif is bound by a fault zone to the south that has an ENErnmee t
the Southwest Anatolian Shear Zone (SWASZ) (Cemen et. al., 2006). Cenle(2606)
suggests that SWASZ contains mostly normal faults in the vicinity dbthieof Gokova, but its
movement is mostly oblique slip from the vicinity of Tavas toward Lakg#avhere it makes a

northward bend and possibly joins the kekir fault zone north of the city of Afyon (Figure 2).



The Menderes Massif is believed to have been exhumed due to postcollisionabextens
during the Cenozoic (Bozkurt and Park, 1994; Hetzel et. al., 1995a,b; Emre and Si&dilir
Gessner et. al., 2001a; Ring and Collins, 2005; Cemen et. al., 2006). Studies sugtest that
Alasehir and Blylk Menderes detachment surfaces where initiated as highranghl faults
during the early Miocene and due to footwall rotation became low-angle niauitalas

Cenozoic extension continued (Segltg 2002, 2004).

Cemen et. al., (2006) proposed a 3D model for Cenozoic extensional tectonit®rvol
of the western Anatolia extended terrain in order to clarify some obtifesion involved with
the evolution of the Menderes Massif (Figure 3). The 3D model proposed byn@erag,
(2006), suggests that the Cenozoic extension in the western part of ®uakeroduct of a
continuous north directed extension. Cemen et al. (2006) proposed a three stasjerext
deformation model of the region with each stage triggered by differeitamism (Figure 3).
The first stage of extension was possibly triggered as the samaditne formation of the
Southwest Anatolian Shear Zone during the late Oligocene, followed by thditorméthe
Biyik and Alaehir detachment surfaces during the early Miocene and continuing withirthe
stage of extension initiated in the late Miocene which produced continuonsiertalong the
Alasehir, Buyik Menderes, Simav detachment surfaces and the oblique slip emb\vaomg the
Southwest Anatolian Shear Zone (Cemen et. al., 2006). This extension was patéxably
responsible for the formation of the Kiicik Menderes Graben and the saodrtiird-order-

normal faults (Seyitglu et. al., 2000; Seyitoglu et al., 2002; Cemen et. al., 2006).



CHAPTER Il

METHODS

3.1 SRTM-DEM

Shuttle Radar Topography Mission Digital Elevation Model (SRTM-DEM d&er the
Menderes Massif was obtained from Geosoft's Dapple Servers. The datgndeled using
Geosoft's Oasis Montaj software. In addition, a density slice map was produbed o
topography using Environment for Visualizing Images (ENVI) softwareaanelevation range of

0 to 500m, with a 50m contour interval.

3.2 Gravity Data

The data were gridded using the minimum curvature technique (Briggs, 1974; Swai
1976). Minimum curvature gridding is accomplished by fitting the smoothesibp®surface to
data values. Additionally, derivative filters were applied to tlawigr data in order to enhance
shallow subsurface structureBirst order derivatives enable us to enhance shallow anomalies
with high contrasts from their surroundings. Both the horizontal and vedgcahtives of
potential fields are useful; horizontal derivatives enhance eddeeseas vertical derivatives
narrow the width of anomalies and so calculate the source bodies moreedg¢@@oper and
Cowan, 2004). Variable order derivatives of potential fields are depeaddhe amplitude and

are a type of high pass filter. As a result, they enhance any noige tivitldata making it



difficult to interpret structures (Miller and Singh, 1994).

In addition, the tilt derivative technique first proposed by Miller and Sifh§B4) was
applied to the gravity data. This method is useful in enhancing edges ddlasofor both
shallow and deep sources because it is independent of amplitude. &hgldilis the ratio of the
first vertical derivative of the potential field to the horizontal geatlof the field. The tilt angle is
positive over a source and negative elsewhere. When compared tadgihenbancement
techniques such as the haorizontal gradient, the second vertical detieaiil the analytical
signal, the tilt angle is found to have the added advantage of responding bath shallow and

deep sources (Miller and Singh, 1994)

The upward continuation method is useful in removing shallow sourced anomalies f
potential field data enhancing deep seated anomalies. Several upwandation maps where
created at different elevations (5km, 10km, and 20km) in order to gain an undirgtaf the

deep structure of the anomalies.

Finally, 2-D Forward models of the Bllyik Menderes,sAkar, and Denizli basins where
created using GM-SYS by Geosoft. We assumed a very simple subsurfaceonsiting of
two layers, the sedimentary rocks filling the basin and the basement rihekraEtamorphic core
complex. An average density value of 2.7 g/evas used for the basement metamorphic rocks
observed within the metamorphic core complex, which mainly are gseassl schists. For the
sediments within the basins, an average density value of 2.4 \gAswsed to represent the
Quaternary and Neogene deposits. Depths observed in seismic setémgreted by Ciftci et. al.
(2010) and (2011) over the Akhir and Blyluk Menderes basins were used to constrain the initial
models. Thickness of sediments within thes&kdir and Blyuk Menderes basins ranged from 2 to
4 km depending on the location of the seismic survey. For the profiles perpanticitike a

depth of 4 km was used as a constraint due to the location of profiles, corieggoritie deeper



sections of the basins. GM-SYS profiles taken along strike where drawnshlaltmver sections
of the basins, therefore a depth constraint of 2-3 km was applied. Dugctoat seismic data

from within the Denizli basin, we applied similar depth constranots the Algehir and Blylk

Menderes basins for the initial starting models.



CHAPTER IV

RESULTS OF INVESTIGATION

The Bouguer gravity map, vertical derivative, tilt derivative and ugwantinued maps
are shown in Figures 4 through 9. In addition the SRTM-DEM and SRTM density s|iseanga

shown on Figures 10 and 11. The GM-SYS 2-D profiles are shown on Figures 12 through 20.

4.1 Bouguer gravity and filtered maps

The Bouguer gravity values over the study area range from -80 to 3 mgai® (#).
These variations in the Bouguer Gravity map reflect the relatwgposition of the metamorphic
core complex and sediments. In general three main ranges are ob€fhted80 mGals; -40 to
-60 mGals and 3 to -40 mGals. The -80 to -60 mGals is observed over LyciarsNabpeeas
the -60 to -40 mGals is associated with the Eocene, Neogene, Pliocene arddyaleposits.
Finally the most positive anomalous Bouguer values (-40 to 3 mGals) aragesbadth the
high-grade metamorphics and granitoids from within the massif. The véasuss within the
massif indicate a Bouguer gravity range of -40 to -60 mGal and correspond}oatexnary

alluvium and Neogene sediments as seen on Figure 2.

The Bouguer gravity map (Figure 4) does not effectively resdistractural features
associated with the massif. The Klcuk Menderes basin, the N-S trending Gdedsrci, ak

and Selendi Basins and the SWASZ are barely visible on the Bouguey gnayit

10



The first vertical derivative map (Figure 5) of the Western Aratadixtended terrain
gives a clear image of the edges of structures of the massif. (ifikk Klenderes Basin is better
defined on this map and the juncture of thes@hér and Blyik Menderes basins with the Denizli
Basin is evident. Along the southeastern edge of the Deniiti va@sobserve the Southwest
Anatolian Shear Zone bordering this basin. The Southwest Anatolian Sirea(RAWASZ) is
well defined and the most eastward edge of the anomaly representingntbié Beesin is curved.

This curve is possibly due to right lateral shearing associatedhgitBWASZ.

The tilt derivative map (Figure 6) contains much better resolved edgénefanomalies
observed. The edges of the anomalies representing the basins cotmtdwedaehir
Detachment surface are better resolved in comparison to the vertigatidermap (Figure 5).
The anomalies representing Adhir, Blyitk and Kiguk basins are also better resolved in the tilt
derivative map. In the tilt derivative map (Figure 6) we observe the8WASZ begins to curve
towards the northwest past the Denizli basin and possibly continues wegtik@aving the
northern edges of the N-S trendingald, Glre, Selendi, Demirci and Gdérdes Basins continuing

outside of our dataset.

The edges for N-S trendingsék, Gire, Selendi, Demirci and Goérdes Basins are clearly
delineated in both the vertical derivative (Figure 5) and tilt dévieanaps. The khk-Glre
Basin is clearly resolved as two separate basins with an egigrateg both anomalies. Another
noticeable anomaly within both filtered maps is an anomaly repregenburied basin located to

the northwest of the Denizli Basin.

The major structures associated with the Central Menderesdfasdeep seated
structures. Anomalies observed in the three upward continued maps (Figdire¥y which
correspond to the Ajehir, Buylik Menderes and Denizli basins indicate anomalies atieleva

greater than 20km which indicates that structures associated witlatlsé are very deep seated.

11



4.2 SRTM-DEM Maps

The Shuttle Radar Topography Mission Digital Elevation map (Figurendiizates the
various ranges of elevations observed within the region. Elevatioms Wit massif and
surrounding areas range from 35m within the sedimentary basins to >1730 m dwagidhe
Nappes. The Algehir, Blyik Menderes, Denizli,sdk, Gire, Selendi, Demirci and Goérdes
Basins are well delineated. The SRTM-DEM density slice map (Figurai@dests a NW trend
between the Algehir and Denizli Basins, whereas the Blyik Menderes Basin trendsweshe
of the Denizli Basin. The Denizli basin appears to be a segmentazhsgittine Algehir basin

with an elevation high separating them.

4.3 2-D Gravity Models

Several GM-SYS profiles where created along theeXa, Biylik Menderes and Denizli
basins. The locations of the profiles are shown on Figure 4. Profiles A-A’ thiouRj
(Figures12-15) cover the Ajehir Basin. The southern edge of the basin indicates the location of
the low angle detachment surface known as thgehladetachment. Profiles over the gdair
Basin indicate low angle fault surfaces that steepen with depth.abivestare wider at the top
and get narrower at depth. Faults bounding both sides of the basin are near isgnmetr
representing a full graben structure. Depths within thgeXia Basin range from 2.6 to 4.2 km.

The along strike profile (Figure 15) suggests a basement high separatiogwio sub basins.

Profiles E-E’ through G-G’ (Figures16-18) cover the Blylk Menderes basin. The
northern part of the Blylk Menderes basin contains the Buyuk Menderesuismtashirface
which is a low angle detachment surface. The fault surfaces boundirastherulicate low
angle fault surfaces that get steeper with depth. The geomettiesfafilts are near symmetrical
on both ends indicating a full graben structure. Depths within the bagje filom 3.8 to 4.8 km.

The along strike profile (Figure 18) suggest that the basin depths mtoethe east.

12



The Denizli Basin is bounded by the Pammukkale Fault Zone to the north afsine b
and the BabadgFault Zone to the south. The profile created over the northwest secti@n of th
Denizli basin H-H’ (Figure 19) indicate low angle normal faults on eitigier af the basin
suggesting full graben structure. When investigating the profiléRidure 20) we observe a
change from low angle faults to steep faults at depth. Depths withiretmelCBasin range from

4.2 to 9km.

13



CHAPTER V

DISCUSSION

Results from our study indicate that Bouguer gravity values over the lbasgesfrom -
40 to -60 mGals and correspond to a thick package of Quaternary sedimentavyittoek3-4
km thickness for the Alghir and Blyik Menderes basins. Thickness for sedimentary units
within the Denizli Basin range between 7-9 km along the southeasifihet basin closest to the

SWASZ and up to 4km in the northwest part.

5.1 Basin Geometry

The geometries of the basins indicate a low angle detachment switlace
corresponding low angle antithetic fault for the g&llair and Buyiuk Menderes Basins. This
correlates well with results from interpreted seismic secfiams Ciftci et. al., (2010) and Ciftci
& Bozkurt, (2011). The faults bounding the 4dhir and Blyik Menderes Basins have a shallow
angle near the surface and become steeper with depth suggesting thatleigiorengl faults
bounding the Algehir and Blyuk Menderes basins where rotated due to the initiation of

extension during the Cenozoic (Seyitoglual., 2002, 2004).

The southeast section of the Denizli Basin contains almost flat raonpegiges that
become very steep at depth as indicated in Figure 20. Sedimentary renksbis within the
basin vary from 4-8 km however due to the ambiguity of potential field dataas gravity it is
possible that thicknesses of sedimentary rocks may be less. Thespaddildependant on density
constraints and because there isn’t enough information from well datagit possible to create

a model with exact densities of the various units within the basin. Howtheeprofiles do

14



suggest that sedimentary rock thicknesses within the southeast sextipeader than the
northwest margin. Filtered gravity maps suggest curvature alorsptiieeast margin of the
Denizli Basin where it comes into contact with the SWASZ. This shearigdenee influenced
the geometries of the faults bounding the Denizli Basin along the souteast which can be

observed in Figure 20.

5.2 Gravity and SRTM-DEM

Investigating the SRTM-DEM 30m elevation and Bouguer gravity maps weeddtiat
the high elevations located to the east and southeast of the magsipoad to low mGal values
that are attributed to the low density units associated with thamy¢appes. Another notable
feature is the presence of a buried basin located to the northwest afiaé Basin. When
comparing elevations observed on the SRTM-DEM data over the areat@sdmgh elevations
where the buried basin is located within the filtered maps. Thdgsdsuh the SRTM-DEM
density slice map (Figure 6) are interpreted to suggest that thglilBasin appears to be a
segmented continuation of the Addir Basin. The break observed between these two basins
correlates to Neogene sedimentary units and and volcanics observed on tlestiniaarea.

However this covered area also corresponds to the location of the bugiied ba

5.3 The Southwest Anatolian Shear Zone

The shear zone located to the south and east of the Menderes Massimedsie
Southwest Anatolian Shear Zone (SWASZ) by Cemen et. al., (2006). No detailed studie
mention of the SWASZ are discussed in previous studies of the masséforaeanalyzing the
vertical derivative and tilt derivative map to delineate therf the SWASZ and recognize
shear sense indicators was an important objective for this stadylt®from the filtered maps
indicate that the SWASZ is characterized by en echelon step patterns ahdaheense is
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evidenced by the curved margin of the southeast extent of the Denialalsgminted out with an
arrow in the vertical derivative map (Figure 5). As mentioned in thertecsettings section of
this paper, Cemen et. al., (2006) stated that the SWASZ has an ENE trend abiy joassithe
Eskisehir fault zone north of the city of Afyon. Observations from the tilt déviganap (Figure
6) indicate a slightly different pattern as the SWASZ curves towhaedsorthwest past the
Denizli Basin continues along the edges of the N-S trending Gordes,d)dsgak and Gure

Basins.
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CHAPTER VI

CONCLUSION

The Menderes Massif of the Western Anatolian extended terrain if seeaval
metamorphic core complexes located in the Aegean region. Variousrimhded studies
conducted over the years have resulted in conflicting ideas asddgdhme timing, and evolution
of the structural elements of the massif. Bouguer gravity data além&GRTM-DEM data from
the Western Anatolian Extended Terrain has proven to be crucial phdeoig the subsurface
geometries of the faults bounding the gdlir, Blylk Menderes and Denizli basins, delineating
the extent of the SWASZ and understanding the structural relationshipebehgeSWASZ and

the faults associated with these basins.

Bouguer gravity maps along with profiles generated using GM-SY&ihdicated that
the Alsehir, Bluylk Menderes and Denizli Basins contain gravity anomaly valities & range
between -30 to -60 mGals corresponding to a Quaternary and Neogene sedikeetsdbi of 3-
4 km with the thickest (~7-8 km) sediments modeled over the eastern gaetlnizli basin.
The southeastern part of the Denizli Basin contains steep high angieckuded by the shearing
of the SWASZ and may be the reason for earthquake activity in the arealagélkeir, Blyuk
Menderes Basins are bound by low angle detachment surfaces and tespamiing antithetic
faults. The SRTM-DEM density slice image suggests that the D®&aigih is possibly a
segmented portion of the Alehir Basin. Various filtered maps suggest that the SWASZ is
characterized by right-stepping en echelon faults with a shear seéhsentalhe SWASZ extends
past the Denizli Basin where it begins to curve in a NW direction and posseiftinues along

the edges of the N-S trending faults forming the Gérdes, Demirci sald@Glire Basins.
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FIGURES

Mediterranean Sea

Figure 1. Map of the Aegian region indicating the locations of the varimimetamorphic core
complexes located in the region. The red box outlines the Mendem@sissif in western
Anatolia, Turkey (see Figure 2). Abbreviations: Towns: D-Denizlij-lzmir. Structural
elements: AG - Alasehir graben; BMG - Blytk Menderes grabe CMM - Central
Menderes massif; DF - Datca fault; HA - Hellenic arc; IAS Izmir-Ankara suture; IPS -
Intra-Pontide suture; LN - Lycian nappes; NAFZ - North Anatolian fault zone, NMM -
Northern Menderes massif; SMM - Southern Menderes massiSWASZ - Southwest
Anatolian shear zone (from Cemergt. al., 2006).
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Figure 2. Simplified geologic map showing the sedimentary basiasid the Southwestern
Anatolian shear zone in the Blyik Menderes Massif. Abbreviations: Tens: D- Denizli; I-
Izmir; K- Kale; M- Mu gla. Structural elements: AFZ- Acig6l fault zone; AG- Algehir
graben; BMG- Blyuk Menderes graben; DB- Denizli Basin; DFZ-Datca fault zone; KFZ-
Kale fault zone; KMG- Kiigiik Menderes graben; KTB- Kale-Tavas bai; OB- Oren Basin;
SWASZ- Southwest Anatolian shear zone; YB- Yagan Basin (from Cemenet. al., 2006).
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Figure 3. 3D blocks emphasizing the role of the Southwest Anditn shear zone (SWASZ)
in the structural evolution of the Western Anatolia extended terram in (A) the Eocene, (B)
the Late Oligocene, (C) the early-middle Miocene, and (D) the late ibtene or the Pliocene
to the present. They do not include the Simav detachment area. The 3bks are not
drawn to scale and do not indicate the amount of extension in each stagdbreviations:
AG- Alasehir Graben, BMG- Bilyilk Menderes Graben, OB/KTB — Oren and KaleTavas
basins, LN- Lycian Nappes, KMG- Kig¢uk Menderes Graben, LP— loweplate, SG— Simav
Graben, SWASZ- Southwest Anatolian Shear Zone, UP— upper plate (fro@emenet. al.
2006).
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Figure 4. Bouguer gravity map of the Menderes Massif with locations of K8-SYS profiles.
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Figure 5. First vertical Derivative map of the Menderes MassifLocation of the buried basin
is circled on the map. Abbreviations: AB- Algehir Basin, KMB- Klc¢uk Menderes Basin,
BMB- Blyuk Menderes Basin, DB- Demirci Basin, GB- Gordes Bas, SB- Selendi Basin,
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Figure 7. 5 km Upward continuation map of Menderes Massif. Abbrevigons: AB- Alasehir
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