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CHAPTER I 
 

 

INTRODUCTION 

 

The Menderes Massif of the Western Anatolian Extended Terrain is one of several 

metamorphic core complexes located in the Aegean region (Figure 1) and is part of the Alpine-

Himalayan belt which experienced a series of continental collisions from the late Cretaceous to 

the Eocene (Şengör and Yılmaz, 1981; Tankut et. al., 1998; Dilek et. al., 1999; Stampli, 2000; 

Çemen et. al., 2006). It covers an area greater than 50,000 km2 of exposed metamorphic and 

igneous rocks of the Menderes Massif (Bozkurt and Park, 1994; Hetzel et. al., 1995a,b; Emre and 

Sözbilir, 1997; Işık and Tekeli, 2001; Çemen et. al., 2006), and is bound by the North Anatolian 

Fault Zone to the north, the Lycian Nappes to the south and the Southwest Anatolian Shear Zone 

to the east and southeast (Çemen et. al., 2006). Some of the models proposed in order to explain 

the evolution of the region are (1) tectonic escape in which the collision of the Arabian and 

Eurasion Plates caused the Anatolian Plate to move westward along the North and East Anatolian 

Faults (Dewey and Şengör, 1979; Şengör, 1979; Şengör and Yılmaz, 1981; Şengör et. al., 1985; 

Çemen et. al., 1993, 1999); (2) back-arc extension caused by subduction along the Hellenic Arc 

(McKenzie, 1978; Le Pichon and Angelier, 1979, 1981; Muelenkamp et. al., 1988; Spakman et. 

al., 1988); and (3) orogenic collapse caused by Paleogene compression experienced over 

thermally weakened lithosphere (Dewey, 1988; Seyitoğlu and Scott, 1996; Dilek and Whitney, 

2000). All of these proposed models infer to different timing for the initiation of extension
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along the Western Anatolian Extended Terrain.  

The Menderes Massif was exhumed due to post-collisional extension experienced in the 

region (Çemen et. al., 2006). It is bound by the Izmir-Ankara Suture Zone to the north and The 

Southwest Anatolian Shear Zone (SWASZ) to the south and east. The exhumation process caused 

several basin-forming graben like structures to form which are bounded by detachment surfaces 

and their antithetics. The most prominent features within the massif from north to south are the E-

W trending basins called The Alaşehir, Küçük Menderes and Büyük Menderes Basins. The 

timing involved in the exhumation of the Menderes Massif and the formation of the various 

structures within the massif have been proposed to be episodic (Koçyiğit et. al., 1999; Yılmaz et. 

al., 2000; Bozkurt & Sözbilir, 2004, 2006; Beccaletto & Steiner, 2005; Bozkurt & Mittwede, 

2005; Bozkurt & Rojay, 2005; Purvis & Robertson, 2005a, b; Emre & Sözbilir, 2007) and 

continuous by (Seyitoğlu et. al., 2000,2002,2004; Glodny & Hetzel, 2007, Çemen et. al., 2006).  

Over the last decade there have been many field oriented studies within the Menderes 

Massif focused on the understanding of the age and structural relationships within the Massif. 

The timing, evolution and geometries of these structures within the massif remain a subject of 

controversy. In order to clarify the ages involved with the initiation of extension, radiometric 

dating studies have been conducted over the various stratigraphic units found around the 

Menderes Massif by Hetzel et. al., (1995a,b) and Catlos and Çemen (2005).  A better 

understanding of the subsurface structures and structural relationships of the major structures 

within the massif can help us gain insights into the evolution of the Menderes Massif. Due to the 

hydrocarbon and hydrothermal potential within the Menderes Massif, the Turkish Petroleum 

Corporation (TPAO) has conducted several two dimensional seismic surveys over the Alaşehir 

and Büyük Menderes Basins. Details and results of these surveys are reported in Çiftçi et. al., 

(2010) and Çiftçi & Bozkurt, (2011). These studies cover only the Alaşehir and Büyük Menderes 

Basins. Results from Çiftçi et. al., (2010) study over the Büyük Menderes Basin indicates that the 
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structural features are driven by a complex extensional fault system bound by a low angle south 

dipping detachment and its synthetic and antithetic faults. Results from the studies of Çiftçi & 

Bozkurt, (2011) over the Alaşehir Basin indicate a north dipping detachment surface with a flat 

ramp low dipping shallow segment a steep middle segment and a deep low angle segment. Çiftçi 

& Bozkurt, (2011) suggest that the graben containing the Alaşehir Basin (Gediz Graben) forms 

two sub basins the Salihli Basin and the Alaşehir Basin with a shallow middle section. Çiftçi & 

Bozkurt, (2011) indicate that thickness of sedimentary rocks within the Gediz Graben average 

around 4 km. 

Very little is known about the subsurface geometry of structures within the Denizli Basin 

and the relationship of these structures to the Alaşehir and Büyük Menderes basins. In this study 

we extend the work of Çiftçi et. al., (2010) and Çiftçi & Bozkurt, (2011) and include the Denizli 

Basin in our study area. We use Bouguer gravity data together with Shuttle Radar Topography 

Mission Digital Elevation Model (SRTM-DEM) data over the Western Anatolian extended 

terrain to provide insights into the surface and sub-surface structures in the area.  

Our specific objectives include: (1) investigate the geometry of the faults bounding the 

Alaşehir, Büyük Menderes and Denizli basins, (2) Delineate the extents of the Southwest 

Anatolian Shear Zone and (3) investigate the relationship between the Southwest Anatolian Shear 

Zone and the faults associated with these basins.
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CHAPTER II 
 

 

GEOLOGIC AND TECTONIC SETTING 

 

The Menderes Massif metamorphic core complex is one of several metamorphic 

complexes located in the Aegean region (Figure 1). It contains several basins that are bounded in 

the north by the Izmir-Ankara suture zone and by the Southwest Anatolian shear zone to the south 

and east (Figure 2). The Menderes Massif is divided up into three sections: the northern section 

called the Northern Menderes Massif containing the north to south trending Gördes, Demirci and 

Uşak-Selendi basins, the Central Menderes Massif covering the area between the Alaşehir and 

Büyük Menderes basins and the Southern Menderes Massif covering the areas south of the Büyük 

Menderes basin containing the ENE trending Gökova and Kale-Tavas basins (Çemen et. al., 

2006) (Figures 1 & 2). Field-oriented geological studies in the Central Menderes massif indicate 

that the E-W trending grabens are bounded by low angle detachment surfaces, which are the 

north-dipping Alaşehir and the south-dipping Büyük Menderes detachment surfaces (Hetzel et. 

al., 1995b; Emre, 1996; Seyitoğlu et. al., 2002; Gessner et. al., 2001a). 

The footwall of the Alaşehir detachment contains the Salihli granitoid which is comprised 

of gneiss, schist, quartzite, marble and igneous rocks (Hetzel et. al., 1995a). The southern margin 

of the Alaşehir graben (Figure 2) is locally bounded by the Horzum Turtleback fault surface 

(Çemen et. al., 2005). The Büyük Menderes detachment surface separates high-grade 

metamorphic gneisses and a lower Miocene sedimentary rock succession in its hanging wall from  
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the marble-intercalated mylonitized schists in its footwall (Göğüs, 2004). 

The stratigraphic sequence within the massif consists of core material composed of augen 

gneisses, migmatites, and gabbros with some granulite and eclogite relics with medium to high 

grade metamorphic schists along with a cover sequence consisting of a Paleozoic schist envelope 

overlain by a Cenozoic marble envelope (Dürr, 1975; Akkök, 1983; Ashworth & Evirgen, 1984a; 

Şengör et. al., 1984; Satir & Friedrichsen, 1986; Konak et. al., 1987; Bozkurt, 1996; Oberhänsli et 

al., 1997; Hetzel et. al., 1998; Candan et al., 2001; Whitney & Bozkurt, 2002; Régnier et. al., 

2003; Rimmelé et. al., 2005). 

The Lycian Nappes contain the Karaova Formation (Upper Permian to Lower Triassic 

reddish to greenish metapelits) overlain by a thick succession of limestones and dolomites 

(Middle Triassic to Middle Jurassic) that grades upwards into cherty limestones (Upper Jurassic 

to Upper Cretaceous) with the upper layers containing calcite forming Rosetta limestones which 

in turn is overlain by the Campanian to Maastrichtian  Karaböğürtlen wildflysch (Phillippson 

(1910–1915), de Graciansky, 1972; Bernoulli et. al., 1974; Çakmakoğlu, 1985; Okay, 1989; 

Rimmelé et. al., 2005). 

The Denizli Basin is bounded by the south dipping Pammukkale fault zone to the north 

and the north dipping Babadağ fault zone to the south. The Denizli Basin contains Quaternary 

sedimentary units along with Neogene sedimentary units and volcanics with low-grade 

metamorphics. 

The Menderes Massif is bound by a fault zone to the south that has an ENE trend termed 

the Southwest Anatolian Shear Zone (SWASZ) (Çemen et. al., 2006). Çemen et. al. (2006) 

suggests that SWASZ contains mostly normal faults in the vicinity of the Gulf of Gökova, but its 

movement is mostly oblique slip from the vicinity of Tavas toward Lake Acigöl where it makes a 

northward bend and possibly joins the Eskişehir fault zone north of the city of Afyon (Figure 2).  
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The Menderes Massif is believed to have been exhumed due to postcollisional extension 

during the Cenozoic (Bozkurt and Park, 1994; Hetzel et. al., 1995a,b; Emre and Sözbilir, 1997; 

Gessner et. al., 2001a; Ring and Collins, 2005; Çemen et. al., 2006). Studies suggest that the 

Alaşehir and Büyük Menderes detachment surfaces where initiated as high-angle normal faults 

during the early Miocene and due to footwall rotation became low-angle normal faults as 

Cenozoic extension continued (Seyitoğlu, 2002, 2004).  

Çemen et. al., (2006) proposed a 3D model for Cenozoic extensional tectonics evolution 

of the western Anatolia extended terrain in order to clarify some of the confusion involved with 

the evolution of the Menderes Massif (Figure 3). The 3D model proposed by Çemen et. al., 

(2006), suggests that the Cenozoic extension in the western part of Turkey is a product of a 

continuous north directed extension. Çemen et al. (2006) proposed a three stage extensional 

deformation model of the region with each stage triggered by different mechanism (Figure 3). 

The first stage of extension was possibly triggered as the same time as the formation of the 

Southwest Anatolian Shear Zone during the late Oligocene, followed by the formation of the 

Büyük and Alaşehir detachment surfaces during the early Miocene and continuing with the third 

stage of extension initiated in the late Miocene which produced continuous extension along the 

Alaşehir, Büyük Menderes, Simav detachment surfaces and the oblique slip movement along the 

Southwest Anatolian Shear Zone (Çemen et. al., 2006). This extension was probably also 

responsible for the formation of the Küçük Menderes Graben and the second- and third-order-

normal faults (Seyitoğlu et. al., 2000; Seyitoglu et al., 2002; Çemen et. al., 2006). 
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CHAPTER III 
 

 

METHODS 

 

3.1 SRTM-DEM 

 Shuttle Radar Topography Mission Digital Elevation Model (SRTM-DEM) data over the 

Menderes Massif was obtained from Geosoft’s Dapple Servers. The data were gridded using 

Geosoft’s Oasis Montaj software. In addition, a density slice map was produced of the 

topography using Environment for Visualizing Images (ENVI) software and an elevation range of 

0 to 500m, with a 50m contour interval. 

3.2 Gravity Data 

 The data were gridded using the minimum curvature technique (Briggs, 1974; Swain, 

1976). Minimum curvature gridding is accomplished by fitting the smoothest possible surface to 

data values.  Additionally, derivative filters were applied to the gravity data in order to enhance 

shallow subsurface structures.  First order derivatives enable us to enhance shallow anomalies 

with high contrasts from their surroundings. Both the horizontal and vertical derivatives of 

potential fields are useful; horizontal derivatives enhance edges, whereas vertical derivatives 

narrow the width of anomalies and so calculate the source bodies more accurately (Cooper and 

Cowan, 2004). Variable order derivatives of potential fields are dependant on the amplitude and 

are a type of high pass filter. As a result, they enhance any noise within the data making it 
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difficult to interpret structures (Miller and Singh, 1994).  

In addition, the tilt derivative technique first proposed by Miller and Singh (1994) was 

applied to the gravity data. This method is useful in enhancing edges of anomalies for both 

shallow and deep sources because it is independent of amplitude. The tilt angle is the ratio of the 

first vertical derivative of the potential field to the horizontal gradient of the field. The tilt angle is 

positive over a source and negative elsewhere.  When compared to other edge enhancement 

techniques such as the horizontal gradient, the second vertical derivative, and the analytical 

signal, the tilt angle is found to have the added advantage of responding well to both shallow and 

deep sources (Miller and Singh, 1994)  

The upward continuation method is useful in removing shallow sourced anomalies from 

potential field data enhancing deep seated anomalies. Several upward continuation maps where 

created at different elevations (5km, 10km, and 20km) in order to gain an understanding of the 

deep structure of the anomalies. 

Finally, 2-D Forward models of the Büyük Menderes, Alaşehir, and Denizli basins where 

created using GM-SYS by Geosoft. We assumed a very simple subsurface model consisting of 

two layers, the sedimentary rocks filling the basin and the basement rock of the metamorphic core 

complex. An average density value of 2.7 g/cm3 was used for the basement metamorphic rocks 

observed within the metamorphic core complex, which mainly are gneisses and schists. For the 

sediments within the basins, an average density value of 2.4 g/cm3 was used to represent the 

Quaternary and Neogene deposits. Depths observed in seismic sections interpreted by Çiftçi et. al. 

(2010) and (2011) over the Alaşehir and Büyük Menderes basins were used to constrain the initial 

models. Thickness of sediments within the Alaşehir and Büyük Menderes basins ranged from 2 to 

4 km depending on the location of the seismic survey. For the profiles perpendicular to strike a 

depth of 4 km was used as a constraint due to the location of profiles, corresponding to the deeper 
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sections of the basins. GM-SYS profiles taken along strike where drawn along shallower sections 

of the basins, therefore a depth constraint of 2-3 km was applied. Due to a lack of seismic data 

from within the Denizli basin, we applied similar depth constraints from the Alaşehir and Büyük 

Menderes basins for the initial starting models.
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CHAPTER IV 
 

 

RESULTS OF INVESTIGATION 

 

The Bouguer gravity map, vertical derivative, tilt derivative and upward continued maps 

are shown in Figures 4 through 9. In addition the SRTM-DEM and SRTM density slice maps are 

shown on Figures 10 and 11. The GM-SYS 2-D profiles are shown on Figures 12 through 20. 

4.1 Bouguer gravity and filtered maps  

The Bouguer gravity values over the study area range from -80 to 3 mGals (Figure 4). 

These variations in the Bouguer Gravity map reflect the relative composition of the metamorphic 

core complex and sediments. In general three main ranges are observed, -60 to -80 mGals; -40 to 

-60 mGals and 3 to -40 mGals. The -80 to -60 mGals is observed over Lycian Nappes, whereas 

the -60 to -40 mGals is associated with the Eocene, Neogene, Pliocene and Quaternary deposits. 

Finally the most positive anomalous Bouguer values (-40 to 3 mGals) are associated with the 

high-grade metamorphics and granitoids from within the massif. The various basins within the 

massif indicate a Bouguer gravity range of -40 to -60 mGal and correspond to the Quaternary 

alluvium and Neogene sediments as seen on Figure 2. 

The Bouguer gravity map (Figure 4) does not effectively resolve all structural features 

associated with the massif. The Küçük Menderes basin, the N-S trending Gördes, Demirci, Uşak 

and Selendi Basins and the SWASZ are barely visible on the Bouguer gravity map.
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The first vertical derivative map (Figure 5) of the Western Anatolian extended terrain 

gives a clear image of the edges of structures of the massif. The Küçük Menderes Basin is better 

defined on this map and the juncture of the Alaşehir and Büyük Menderes basins with the Denizli 

Basin is evident. Along the southeastern edge of the Denizli basin we observe the Southwest 

Anatolian Shear Zone bordering this basin. The Southwest Anatolian Shear Zone (SWASZ) is 

well defined and the most eastward edge of the anomaly representing the Denizli Basin is curved. 

This curve is possibly due to right lateral shearing associated with the SWASZ.  

The tilt derivative map (Figure 6) contains much better resolved edges for the anomalies 

observed. The edges of the anomalies representing the basins connected to the Alaşehir 

Detachment surface are better resolved in comparison to the vertical derivative map (Figure 5). 

The anomalies representing Alaşehir, Büyük and Küçük basins are also better resolved in the tilt 

derivative map. In the tilt derivative map (Figure 6) we observe that the SWASZ begins to curve 

towards the northwest past the Denizli basin and possibly continues westward following the 

northern edges of the N-S trending Uşak, Güre, Selendi, Demirci and Gördes Basins continuing 

outside of our dataset.  

The edges for N-S trending Uşak, Güre, Selendi, Demirci and Gördes Basins are clearly 

delineated in both the vertical derivative (Figure 5) and tilt derivative maps. The Uşak-Güre 

Basin is clearly resolved as two separate basins with an edge separating both anomalies. Another 

noticeable anomaly within both filtered maps is an anomaly representing a buried basin located to 

the northwest of the Denizli Basin. 

The major structures associated with the Central Menderes Massif are deep seated 

structures. Anomalies observed in the three upward continued maps (Figures 7, 8, 9), which 

correspond to the Alaşehir, Büyük Menderes and Denizli basins indicate anomalies at elevations 

greater than 20km which indicates that structures associated with the massif are very deep seated. 
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4.2 SRTM-DEM Maps 

The Shuttle Radar Topography Mission Digital Elevation map (Figure 10) indicates the 

various ranges of elevations observed within the region. Elevations within the massif and 

surrounding areas range from 35m within the sedimentary basins to >1730 m over the Lycian 

Nappes. The Alaşehir, Büyük Menderes, Denizli, Uşak, Güre, Selendi, Demirci and Gördes 

Basins are well delineated. The SRTM-DEM density slice map (Figure 11) suggests a NW trend 

between the Alaşehir and Denizli Basins, whereas the Büyük Menderes Basin trends to the west 

of the Denizli Basin. The Denizli basin appears to be a segmented section of the Alaşehir basin 

with an elevation high separating them.  

4.3 2-D Gravity Models 

Several GM-SYS profiles where created along the Alaşehir, Büyük Menderes and Denizli 

basins. The locations of the profiles are shown on Figure 4. Profiles A-A’ through D-D’ 

(Figures12-15) cover the Alaşehir Basin. The southern edge of the basin indicates the location of 

the low angle detachment surface known as the Alaşehir detachment. Profiles over the Alaşehir 

Basin indicate low angle fault surfaces that steepen with depth. The basins are wider at the top 

and get narrower at depth. Faults bounding both sides of the basin are near symmetrical 

representing a full graben structure. Depths within the Alaşehir Basin range from 2.6 to 4.2 km. 

The along strike profile (Figure 15) suggests a basement high separating it into two sub basins. 

Profiles E-E’ through G-G’ (Figures16-18) cover the Büyük Menderes basin. The 

northern part of the Büyük Menderes basin contains the Büyük Menderes detachment surface 

which is a low angle detachment surface. The fault surfaces bounding the basin indicate low 

angle fault surfaces that get steeper with depth. The geometries of the faults are near symmetrical 

on both ends indicating a full graben structure. Depths within the basin range from 3.8 to 4.8 km. 

The along strike profile (Figure 18) suggest that the basin depths increase to the east. 
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The Denizli Basin is bounded by the Pammukkale Fault Zone to the north of the basin 

and the Babadağ Fault Zone to the south. The profile created over the northwest section of the 

Denizli basin H-H’ (Figure 19) indicate low angle normal faults on either side of the basin 

suggesting full graben structure. When investigating the profile I-I’ (Figure 20) we observe a 

change from low angle faults to steep faults at depth. Depths within the Denizli Basin range from 

4.2 to 9km.
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CHAPTER V 
 

 

DISCUSSION 

 

Results from our study indicate that Bouguer gravity values over the basins range from -

40 to -60 mGals and correspond to a thick package of Quaternary sedimentary rocks with a 3-4 

km thickness for the Alaşehir and Büyük Menderes basins. Thickness for sedimentary units 

within the Denizli Basin range between 7-9 km along the southeast part of the basin closest to the 

SWASZ and up to 4km in the northwest part. 

5.1 Basin Geometry 

The geometries of the basins indicate a low angle detachment surface with a 

corresponding low angle antithetic fault for the Alaşehir and Büyük Menderes Basins. This 

correlates well with results from interpreted seismic sections from Çiftçi et. al., (2010) and Çiftçi 

& Bozkurt, (2011). The faults bounding the Alaşehir and Büyük Menderes Basins have a shallow 

angle near the surface and become steeper with depth suggesting that high angle normal faults 

bounding the Alaşehir and Büyük Menderes basins where rotated due to the initiation of 

extension during the Cenozoic (Seyitoglu et. al., 2002, 2004).  

The southeast section of the Denizli Basin contains almost flat ramp geometries that 

become very steep at depth as indicated in Figure 20. Sedimentary rock thicknesses within the 

basin vary from 4-8 km however due to the ambiguity of potential field data such as gravity it is 

possible that thicknesses of sedimentary rocks may be less. The profiles are dependant on density 

constraints and because there isn’t enough information from well data, it is not possible to create 

a model with exact densities of the various units within the basin. However, the profiles do 
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suggest that sedimentary rock thicknesses within the southeast section are greater than the 

northwest margin. Filtered gravity maps suggest curvature along the southeast margin of the 

Denizli Basin where it comes into contact with the SWASZ. This shearing may have influenced 

the geometries of the faults bounding the Denizli Basin along the southeast margin which can be 

observed in Figure 20.  

 

5.2 Gravity and SRTM-DEM  

Investigating the SRTM-DEM 30m elevation and Bouguer gravity maps we noticed that 

the high elevations located to the east and southeast of the massif correspond to low mGal values 

that are attributed to the low density units associated with the Lycian Nappes. Another notable 

feature is the presence of a buried basin located to the northwest of the Denizli Basin. When 

comparing elevations observed on the SRTM-DEM data over the area indicates high elevations 

where the buried basin is located within the filtered maps. The results from the SRTM-DEM 

density slice map (Figure 6) are interpreted to suggest that the Denizli Basin appears to be a 

segmented continuation of the Alaşehir Basin. The break observed between these two basins 

correlates to Neogene sedimentary units and and volcanics observed on the surface in this area. 

However this covered area also corresponds to the location of the buried basin.  

5.3 The Southwest Anatolian Shear Zone 

The shear zone located to the south and east of the Menderes Massif was termed the 

Southwest Anatolian Shear Zone (SWASZ) by Çemen et. al., (2006). No detailed studies or 

mention of the SWASZ are discussed in previous studies of the massif. Therefore, analyzing the 

vertical derivative and tilt derivative map to delineate the extent of the SWASZ and recognize 

shear sense indicators was an important objective for this study. Results from the filtered maps 

indicate that the SWASZ is characterized by en echelon step patterns and the shear sense is 
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evidenced by the curved margin of the southeast extent of the Denizli basin as pointed out with an 

arrow in the vertical derivative map (Figure 5). As mentioned in the tectonic settings section of 

this paper, Çemen et. al., (2006) stated that the SWASZ has an ENE trend and possibly joins the 

Eskişehir fault zone north of the city of Afyon. Observations from the tilt derivative map (Figure 

6) indicate a slightly different pattern as the SWASZ curves towards the northwest past the 

Denizli Basin continues along the edges of the N-S trending Gördes, Demirci, Uşak and Güre 

Basins.
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CHAPTER VI 
 

 

CONCLUSION 

 

The Menderes Massif of the Western Anatolian extended terrain is one of several 

metamorphic core complexes located in the Aegean region. Various field oriented studies 

conducted over the years have resulted in conflicting ideas as to the origin, timing, and evolution 

of the structural elements of the massif. Bouguer gravity data along with SRTM-DEM data from 

the Western Anatolian Extended Terrain has proven to be crucial in deciphering the subsurface 

geometries of the faults bounding the Alaşehir, Büyük Menderes and Denizli basins, delineating 

the extent of the SWASZ and understanding the structural relationships between the SWASZ and 

the faults associated with these basins.  

 Bouguer gravity maps along with profiles generated using GM-SYS have indicated that 

the Alaşehir, Büyük Menderes and Denizli Basins contain gravity anomaly values within a range 

between -30 to -60 mGals corresponding to a Quaternary and Neogene sediment thicknesses of 3- 

4 km with the thickest (~7-8 km) sediments modeled over the eastern part of the Denizli basin. 

The southeastern part of the Denizli Basin contains steep high angle faults caused by the shearing 

of the SWASZ and may be the reason for earthquake activity in the area. The Alaşehir, Büyük 

Menderes Basins are bound by low angle detachment surfaces and their corresponding antithetic 

faults. The SRTM-DEM density slice image suggests that the Denizli Basin is possibly a 

segmented portion of the Alaşehir Basin. Various filtered maps suggest that the SWASZ is 

characterized by right-stepping en echelon faults with a shear sense to them. The SWASZ extends 

past the Denizli Basin where it begins to curve in a NW direction and possibly continues along 

the edges of the N-S trending faults forming the Gördes, Demirci and Uşak-Güre Basins. 
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FIGURES 
 

 

 

Figure 1. Map of the Aegian region indicating the locations of the various metamorphic core 
complexes located in the region. The red box outlines the Menderes massif in western 
Anatolia, Turkey (see Figure 2). Abbreviations: Towns: D-Denizli; I-Izmir. Structural 
elements: AG - Alasehir graben; BMG - Büyük Menderes graben; CMM - Central 
Menderes massif; DF -  Datça fault; HA - Hellenic arc; IAS - Izmir-Ankara suture; IPS -
Intra-Pontide suture; LN - Lycian nappes; NAFZ - North Anatolian fault zone, NMM - 
Northern Menderes massif; SMM - Southern Menderes massif; SWASZ - Southwest 
Anatolian shear zone (from Çemen et. al., 2006).
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Figure 2. Simplified geologic map showing the sedimentary basins and the Southwestern 
Anatolian shear zone in the Büyük Menderes Massif. Abbreviations: Towns: D- Denizli; I- 
Izmir; K- Kale; M- Mu ğla. Structural elements: AFZ- Acigöl fault zone; AG- Alaşehir 
graben; BMG- Büyük Menderes graben; DB-  Denizli Basin; DFZ- Datça fault zone; KFZ- 
Kale fault zone; KMG- Küçük Menderes graben; KTB- Kale-Tavas basin; OB- Ören Basin; 
SWASZ- Southwest Anatolian shear zone; YB- Yatağan Basin (from Çemen et. al., 2006).  
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Figure 3. 3D blocks emphasizing the role of the Southwest Anatolian shear zone (SWASZ) 
in the structural evolution of the Western Anatolia extended terrain in (A) the Eocene, (B) 
the Late Oligocene, (C) the early-middle Miocene, and (D) the late Miocene or the Pliocene 
to the present. They do not include the Simav detachment area. The 3D blocks are not 
drawn to scale and do not indicate the amount of extension in each stage. Abbreviations: 
AG– Alaşehir Graben, BMG– Büyük Menderes Graben, OB/KTB – Ören and Kale-Tavaş 
basins, LN– Lycian Nappes, KMG– Küçük Menderes Graben, LP– lower plate, SG– Simav 
Graben, SWASZ– Southwest Anatolian Shear Zone, UP– upper plate (from Çemen et. al. 
2006). 
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Figure 4.  Bouguer gravity map of the Menderes Massif with locations of GM-SYS profiles. 
Abbreviations: AB- Alaşehir Basin,  BMB- Büyük Menderes Basin, DB- Demirci Basin, GB- 
Gördes Basin, SB- Selendi Basin, UB- Uşak Basin, GUB- Güre Basin. 
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Figure 5. First vertical Derivative map of the Menderes Massif. Location of the buried basin 
is circled on the map. Abbreviations: AB- Alaşehir Basin, KMB- Küçük Menderes Basin, 
BMB- Büyük Menderes Basin, DB- Demirci Basin, GB- Gördes Basin, SB- Selendi Basin, 
UB- Uşak Basin, GUB- Güre Basin, SWASZ- Southwest Anatolian Shear Zone. 
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Figure 6. Tilt Derivative map of Menderes Massif. Abbreviations: AB- Alaşehir Basin, 
KMB- Küçük Menderes Basin, BMB- Büyük Menderes Basin, DB- Demirci Basin, GB- 
Güre Basin, SB- Selendi Basin, UB- Uşak Basin, GUB- Güre basin, SWASZ- Southwest 
Anatolian Shear Zone. 
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Figure 7. 5 km Upward continuation map of Menderes Massif. Abbreviations: AB- Alaşehir 
Basin, BMB- Büyük Menderes Basin, DB- Denizli Basin. 
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Figure 8. 10 km Upward continuation map of Menderes Massif. Abbreviations: AB- 
Alaşehir Basin, BMB- Büyük Menderes Basin, DB- Denizli Basin. 
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Figure 9. 20 km Upward continuation map of Menderes Massif. Abbreviations: AB- 
Alaşehir Basin, BMB- Büyük Menderes Basin, DB- Denizli Basin. 
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Figure 10. Shuttle Radar Topography Mission Digital Elevation Model (SRTM-DEM) 30m 
map of the Menderes Massif. Abbreviations: AB- Alaşehir Basin, KMB- Küçük Menderes 
Basin, BMB- Büyük Menderes Basin, DB- Denizli Basin. 
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Figure 11. Shuttle Radar Topography Model Digital Elevation Model (SRTM-DEM) 
density slice map. 
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Figure 12. GM-SYS 2D model created from profile line A-A’ over the Alaşehir basin. 
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Figure 13. GM-SYS 2D model created from profile line B-B’ over the Alaşehir basin. 
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Figure 14. GM-SYS 2D model created from profile line C-C’ over the Alaşehir basin. 
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Figure 15. GM-SYS 2D model created from profile line D-D’ over the Alaşehir basin. 
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Figure 16. GM-SYS 2D model created from profile line E-E’ over the Büyük Menderes 
basin. 



42 

 

 

Figure 17. GM-SYS 2D model created from profile line F-F’ over the Büyük Menderes 
basin. 
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Figure 18. GM-SYS 2D model created from profile line G-G’ over the Büyük Menderes 
basin. 
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Figure 19. GM-SYS 2D model created from profile line H-H’ over the Denizli basin. 
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Figure 20. GM-SYS 2D model created from profile line I-I’ over the Denizli basin. 
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