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Chapter 1  

 

1.1 Introduction 

 

Power electronics is a basic and ever demanding field in the electrical engineering 

domain. Electric power conditioning at various stages: generation, transmission or 

utilization is inevitable. The input parameters and the requirements from the system vary 

based on the stage where the electronics is involved. A wide variety of power 

conditioning has emerged based on various applications. Figure 1-1 shows a pictorial 

view of the power electronics at a basic level and its branches in the dc-dc conversion 

domain. DC-DC conversion is a dc transformation mechanism similar to that of ac 

transformers [1-5]. The depth of development of dc-dc converter is clearly evident from 

the complex tree structure. 

 

 
Figure 1-1. Hierarchy of power converters with emphasis on dc-dc conversion. 
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1.2 High temperature electronics 

 

High temperature electronics is strongly a market driven technology [6-13].  Based on 

operating temperature the electronics are classified as commercial (<80°C), industrial or 

automotive (<125°C), military/aerospace (<200°C) and deep space and downhole 

(>250°C) [14]. The automotive and military electronic parts often used for downhole 

applications are protected by the use of appropriate Environmental Control Systems 

(ECS). ECS maintains the ambient temperature of the electronics by providing proper 

housing and cooling to maintain the enclosed electronics within their specified limit. 

However the development of ECS itself is very expensive in terms of both area and 

power. 

 

The circuits designed for extended temperature operation includes some level of design 

complexity to adjust the operating characteristics at elevated temperatures to sustain 

acceptable performance. However as temperature increases above 200°C most 

commercial designs suffer from their physical limits and a minimal performance can no 

longer be satisfied. Hence a need for alternate materials for circuit design is critical for 

high temperature operation. Silicon on Insulator (SOI) based designs and silicon carbide 

(SiC) power technology have been a viable alternatives for harsh environment circuit 

design. In addition to elevated temperature, the vibration, shocks, wear and tear, pressure 

and radiation hazard makes the working environment hostile and hence increase the 

vulnerability of any electronic system. Both SOI and SIC devices satisfy these extreme 

requirements posed for the harsh environment systems. 

 

A wide range of discrete products are now commercially available for high temperature 

operation through vendors like Honeywell [15] and Sissoid [16]. With increasing 

interests in deep space missions and interest in deeper oil and geothermal well planning, 

the role of high/extreme temperature electronics is more critical than ever before. The 

market growth for high temperature electronics have also been in a better phase for 

several decades. 
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1.3 Research objective 

 

The objective of this research work is to demonstrate a solution for power supply used in 

extreme temperature applications. Operating temperature of electronics involved in deep 

space explorations easily extend from -150°C to +250°C and in case of deep natural 

resource wells like geothermal and oil well, the ambient temperature exceeds 300°C. As 

present generation electronic systems are highly dependent on extensive thermos packing 

and cooling for reliable operation in these hostile environments, a high temperature 

sustainable electronics would greatly reduce the cooling required for extended 

temperature operation and hence reduce the operating costs of these systems.  

 

In this research the focus is to develop a DC to DC Switched Mode Power Supply 

(SMPS) capable of 275°C operation. This SMPS is proposed to be a power source for all 

the electronics incorporated in the drill string for Measuring While Drilling (MWD).  

More importantly it is desired to make the system a commercial off the shelf (COTS) 

product. A step down converter known as a buck converter is chosen based on the 

requirement [17]. The design parameters and the expected performance characteristics of 

the converter are shown in Table 1-1. 

 

Table 1-1. Specifications of the dc-dc buck converter design. 
 

Specification Value 

Operating 
temperature  

≤ 275°C 

Input voltage range 15 to 25V 

Output voltage 
range 

1.5 to 18V 

Output Watts  > 2 Watts 

Regulation 2% 

Efficiency 80-90% 

Stability (phase 
margin) >75° 
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1.4 Dissertation organization 

 

This dissertation contains 9 chapters including the current one. The literature review and 

the basics on the dc-dc synchronous buck conversion are discussed in chapter 2. The 

basic classes of buck converter are briefly described and the characteristic equations of 

the buck converter are derived.  

 

Chapter 3 discusses the role of silicon carbide electronics in this work. The advantages of 

using silicon carbide devices are pointed out and the concept of enhancement mode 

Junction Field Effect Transistors (JFETs) is introduced. The ‘in-house’ measured 

characteristics of the silicon carbide JFETs are disclosed. 

 

Various control schemes used for controlling the ON/OFF state of the power switches are 

discussed in chapter 4. This is followed by explaining the advantages of vee-square (V2) 

control scheme over the conventional control mechanisms. The issues with control loop 

stability and modeling of vee-square controller are discussed. 

 

Chapter 5 discusses the role of gate drive involved in the control circuitry. The 

transformer coupled gate drive mechanism adapted in this research is given an extensive 

review with a detailed description provided in this chapter. 

 

The design of the dc-dc buck converters starting from their basic building blocks is 

discussed in chapter 6. The house keeping electronic circuits are also presented. The 

simulated and measured performance characteristics of the blocks are provided. 

 

The discrete components like capacitor, resistor and inductors are key parts in electronics 

design. The challenges in obtaining these passive components for this work and the 

procedures followed are discussed in chapter 7. Also as mentioned previously, for 

making the product a COTS component, the issues with packaging technology have to be 

dealt with. Chapter 7 also present the solutions proposed for packaging the design. 
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The results obtained from various prototypes of dc-dc buck converters are presented in 

chapter 8. The startup and transient characteristics of the converter is discussed here.  

 

Chapter 9 provides the conclusion of the work. The data sheets for the first and second 

generation control IC are provided. The commercialization plans are given consideration 

by providing a rough estimate for SMPS using V2 control IC. 

 

And finally the future work and bibliographic references are provided. Several important 

design factors are provided as a supplementary in the appendix section. 
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Chapter 2  

 

2.1  Literature Review 

 

As any other field of electrical engineering, digging through the work done by various 

people in the dc-dc conversion circuits is impossible in a short period of time. After an 

exhaustive search a brief summary of the work is brought out here with appropriate 

acknowledgements.  

 

Linear conversion that does not involve any switching was the earliest mode of dc-dc 

conversion. These are based on pre-referenced Zener diodes at the output node to clamp 

the output voltage to a required level [18]. But Zener diodes for high temperature 

operation are not commercial. Also the Zener regulators are not readily capable of 

producing custom required output voltages and were eventually replaced by linear 

regulators [14].  

 

In linear regulators, the Zener diode is replaced by a transistor whose conductivity is 

controlled by an error amplifier. Linear regulators are simple in construction and 

operation, and provide excellent transient response for load variations. However due to 

the inherent nature of their operation, efficiency is very low at lighter loads. Low dropout 

regulators (LDO) which are evolved adjustable linear regulators are gaining popularity 

since they tackle the drawback of light load efficiency of conventional linear regulators. 

Also they are able to provide a custom required output voltage based on a feedback 

element. 
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Recently, the linear regulators are being replaced by switching regulators which provide 

higher efficiency [19]. Several circuit configurations of switching regulators evolved 

based on custom applications [20]. Reports of dc-dc converter designs for operation at 

elevated temperature can be found in literatures. These include various other dc-dc 

conversion types like boost and buck-boost converters in additions to buck converters 

[21, 22]. 

 

A control loop acts like a brain of the switch mode dc-dc converter. Conventionally 

voltage mode and current mode control were used for controlling the switching transistor 

in a dc-dc converter. Research on improvement of control mechanism for switching 

converters is of high interest. The method of control used in this work is the vee-square 

control, which presents the advantages of both voltage mode and current mode control. 

Modeling and advantages of vee-square control over conventional control methods have 

been previously reported in various literatures [23-34].  

 

The use of silicon carbide and silicon on insulator technologies for high temperature 

design were proved in various instances [15, 35-43]. The power handling capacity of 

silicon carbide devices are of high merit for high temperature design. Also the high 

reliability of silicon on insulator control circuits suitable for harsh environments has been 

taken advantage of in high temperature designs. 

 

Exhaustive information on gate drive requirements of a switch mode power supply is 

widely available for commercial applications. However none of the available information 

is directly applicable in current work due to temperature limitation. Commercially 

available photo couplers are limited to 150°C operation. An optocoupler circuit based on 

SiC UV photodiodes and the planar transformers with integrated rectifiers are the novelty 

of this work applied to gate drive application.  

 

Applications of planar transformers in pulse circuits have also been previously analyzed 

[44-61]. Practical design basics on pulse transformers can be obtained from the video 

amplifier designs. A high fidelity pulse transformers such as the ones used in video 
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amplifier designs are extremely difficult to design and hence very challenging given a 

planar structural constraint. However by use of an intelligent on chip rectifier 

combination, the challenge is easily tackled in this work. 

 

All the above fundamental concepts are discussed in detail in the appropriate chapter 

sections of this work. This work differs from the previous work in the sense that the 

control circuitry is implemented in a silicon-on-insulator technology for 275° C 

operations. Also silicon carbide power switches are used. A hybrid design using silicon-

on-insulator and silicon carbide with relatively inexpensive packaging techniques is the 

key attraction for this research work. This is the first and only demonstration of a SMPS 

as a completely integrated solution for 275°C. 

 

2.2 Silicon-on-insulator 

 

Conventionally, transistors have been fabricated on a bulk silicon substrate where the 

thickness of the substrate is in order of several hundred micrometers. Silicon-on-insulator 

(SOI) technology is based on development of a thin film of silicon on an insulator layer. 

The devices are fabricated on the thin silicon films and do not have any “well process” as 

in bulk substrates. Figure 2-1 illustrates the transistors fabrication in bulk and SOI 

process. By eliminating a bulky leaky body, the leakage current in SOI transistor circuits 

are significantly smaller than the bulk counterparts. This phenomenon is explained by 

schematics presented in Figure 2-2. Also by reducing the silicon thickness to few hundred 

microns the radiation induced damage is minimum. The radiation hardened property of 

SOI is one of its biggest advantages for space applications.  Therefore SOI is the 

preferred technology for high temperature harsh environment circuit design. Silicon-on-

sapphire technology is used in this work. 

 

Peregrine 0.5µm SOI CMOS process is used for fabrication the control circuit. The 

characteristics of this process have been well established. The circuits fabricated on this 

process are functional up to 275°C with very low leakage current[62]. In comparison, the 
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circuits designed on bulk silicon substrate are limited to 200°C operation at the expense 

of high leakage currents and power dissipation. 

 

 
Figure 2-1. Cross sectional view of NMOS transistors in SOI and bulk fabrication process. 

 

 
Figure 2-2. Comparison of leakage components in silicon-on-insulator and bulk process technology. 
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2.3 Modulation techniques  

 

2.3.1 Pulse width modulation 

 

Modulation of switches in a switching regulator is a key for obtained the required output 

characteristics. Several modulation techniques have evolved based on various 

applications. The modes of operation of dc-dc converters based on its control loop 

modulation are  

• Pulse width modulation mode (PWM) 

• Pulse frequency modulation mode (PFM) 

• All Digital mode 

• Delta Sigma 

 
Of these control modes, pulse width modulation is widely used because of its simplicity. 

Pulse width modulation is duty cycle modulation of a constant period waveform based on 

an error signal and a reference signal. The duty cycle is the ratio between a switch on 

time to a predefined switching cycle period. Based on its operation PWM controllers are 

also known as ‘constant frequency variable time’ controllers. 

 

In this work the pulse width modulation (PWM) technique is adopted. A system clock in 

a suitable wave shape (saw tooth, triangular or square pulse) and a comparator form a 

basis for pulse width modulation. A conventional PWM scenario commonly used in 

switching converters is shown in Figure 2-3. The figure shows an error signal and ramp 

signal superimposed. A comparator compares the two signals to generate a pulse width 

modulated output as shown in Figure 2-3. As a general rule, the greater the error signal, 

wider the pulse width. The resulting PWM output can be inverted based on the logic 

required to turn ON/OFF the corresponding switch by interchanging the inputs to the 

comparator.  
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Figure 2-3. Principle of pulse width modulation. 

 

2.3.2 Pulse frequency modulation mode (PFM) 

 

While PWM control is efficient for high power, longer duty cycle cases, the efficiency of 

the system is significantly reduced at lighter loads. Pulse frequency modulation is 

adopted for low power designs especially in cases where the duty cycle in case of PWM 

is small. PFM is a ‘constant time variable frequency’ control also known as gated control. 

Figure 2-4 illustrates the pulse frequency modulation for 3 different levels of load 

current.  

 
Figure 2-4. Pulse frequency modulation with respect to load current variation. 

 

In case of random load fluctuations, a continuous change in the control frequency results 

in higher harmonic distortions in PFM controllers. PFM is usually avoided due to its 

complexity and higher electromagnetic interference (EMI). 
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2.3.3 All Digital mode 

 

Recently, digital controls of converters are gaining popularity due to widespread use of 

digital designs and their inherent advantages. The transistor cost per functionality has 

been drastically reduced as a result of dynamic shrinking of the transistor size. Also from 

a general perspective digital designs are less sensitive to noise when compared to analog 

circuitries and also consume fairly lesser area and power when similar functionality is 

feasible. The simplicity of digital designs based on their behavioral descriptions and 

simulations eases implementation of multiple algorithms in a single controller. Hence 

digital control offers a hybrid approach where the choice of control strategy is dependent 

on the load and hence provides the potential for optimal controller operation. However, 

the transition from long established and well understood analog control mechanisms to 

digital domain is yet to happen. In case of high temperature designs it is preferred to keep 

the transistors channel length notably larger than the minimum permissible limit of the 

process to avoid excessive leakage at higher temperatures. For instance in this research 

work even though the controller was implemented in 0.5 µm technology, based on our 

previous  understanding about the leakage current of the transistors at high temperature, 

the minimum gate length of the transistors for digital circuitries are limited to 0.8 µm for 

PMOS and 1.4µm for NMOS. This choice limits the full utilization of semiconductor 

process bandwidth and additionally results in area penalties. 

 

2.3.4 Delta Sigma modulation 

 

Delta-sigma modulation is an advanced mixed signal implementation of PWM control. 

Figure 2-5 shows the operation of delta-sigma controllers. The PWM signal shown in the 

middle plot (pink) is subtracted from the reference signal (green) shown in the top to 

generate an error signal (top-blue). The error signal is then integrated and compared with 

preset threshold limits. Delta-sigma modulators oversample the system at much higher 

frequency. In ADCs the digital output is later decimated in the follow on stages.  
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Figure 2-5. Illustrating the delta sigma PWM (Source: Wikipedia.com). 

 
 
In this way delta sigma modulators provide noise shaping characteristics which reduce 

the noise power in the output spectrum of interest. Applications of these complex 

modulation techniques are where there is a need to remove the noise in certain spectral 

range of the converter. 

 

As mentioned earlier PWM based control is of interest in this work and shall be used 

throughout the fore coming chapters. However it must be pointed out that with shrinking 

channel lengths, the transistor models impose statistical design of circuits and hence a 

transition to digital control design over analog circuitries shall soon will likely be 

inevitable. 

 

2.4 Buck converters 

 

Buck converters are the simplest and most widely used converters in dc-dc conversion. 

Buck converters are dc-dc transformers that produce an output lower than the input. By 

their nature of operation they are also referred to as step-down converters. Figure 2-6 

shows a basic dc-dc buck converter. The ‘Vin’ represents a dc input voltage and ‘Vout’ 

represents a stepped down output voltage. The ‘PS’ is the power switch that connects the 

input to output and ‘D’ is the catch diode. The inductor ‘L’ and capacitor ‘C’ form the 
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output filter network. The passive LC network also serves as energy storage elements 

with inductor and capacitor energy given by equations 2-1 and 2-2, respectively. 

 

2

2

1
LIEl =      [2-1] 

 

2

2

1
CVEc =      [2-2] 

 

 
Figure 2-6. Basic switch mode power supply with catch diode. 

 

2.4.1 Operation of PWM buck converter 

 

The basis of operation of any PWM switching converter can be explained by analyzing 

their behavior at different periods in a switching cycle. An asynchronous buck converter 

as shown in Figure 2-6 is chosen to keep the explanation simple. When the power switch 

(PS) is switched ON the output voltage increases linearly as current flows through the 

inductor, into the capacitor. During this time the diode (D) is reverse biased and does not 

affect the circuit. When a preset threshold is reached at the output (Vout), a control 

circuitry (not shown in the figure) switches off the power device. A basic characteristic of 

an inductor is that “the current flowing through an inductor cannot change 

instantaneously”. This phenomenon reverses the polarity of voltage at the node ‘x’; 

driving it to a voltage lower than the ground (zero volts), thereby forward biasing the 

diode (D). Therefore the diode “catches” the circuit and provides a path for current flow. 
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Hence the diode is called a catch diode and since the turn on time of the diode is not well 

defined with respect to system clock, the process is referred to as asynchronous 

switching. As the voltage at the output falls below a preset threshold the control circuitry 

repeats turning ON the power switch and hence the process continues.  

 

2.5 Synchronous rectification 

 

In case of asynchronous rectification described in previous section, based on the forward 

voltage of the diode and steady state operating current, a considerable voltage drop across 

the diode is required to keep and the current circulating through the inductor. This results 

in significant power loss across the diode during the OFF time of the every switching 

cycle. The worst case condition is the ‘no load’ (no power delivered to load) case when 

the duty cycle is at its minimum and the diode is ON for longer time in a switching cycle. 

To reduce the power loss due to this forward voltage drop, a semiconductor switch is 

used as a synchronous switch. Since the operation of this switch is synchronized with the 

system clock and is complimentary to the power switch the converter is called 

‘synchronous switching’ converter.  

 

An ideal synchronous switch possesses zero ‘on-resistance’ and infinite ‘off-resistance’ 

thereby resulting in zero power loss. This largely minimizes the conduction loss and 

thereby improves the overall efficiency of the system. The control circuitry is however 

made more complicated to ensure “timely turn ON” of the synchronous switch 

complimentary to the power switch. Proper firing of the two switches with appropriate 

dead times is a challenge and discussed in later chapters. Moreover the practical switches 

implemented using transistors presents finite ON resistance and OFF resistance that 

results in power dissipation during the ON and OFF state, respectively. These parasitic 

resistances are taken in to account in system analysis in later sections. Figure 2-7 shows a 

synchronous rectifier.  
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Figure 2-7. Synchronous buck converter. 

 

2.6 Transfer function of PWM buck converter 

 

A mathematical model of a PWM buck converter is of interest for analyzing its behavior 

and a better understanding of the system dynamics. The effect of duty cycle on the output 

voltage for a given input voltage is described by the transfer function of the system. The 

transfer function obtained here is on the basis of energy balance in inductor. The energy 

balance in the inductor during steady state operation states that the average current 

through the inductor in a single switching cycle (Ts) is zero. Figure 2-8 gives a pictorial 

representation of steady state operation of PWM buck converter. During the ON time 

(Ton) the inductor current (IL) and the output voltage (Vout) increases linearly and during 

OFF time (Toff) IL and Vout fall linearly. Mathematically this can be described by equation 

2-3 where relatively large charge and discharge time constants are assumed. Rearranging 

the equation the expression for transfer function (Vout/V in) is obtained to be the duty cycle 

(D). 
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Figure 2-8. Inductor current and output voltage during steady state operation of buck converter. 

 

2.7 Transfer function of output filter 

 

The LC filter network at the output of the converter acts like a second order system as 

shown in Figure 2-9.  Even though the transistor acts like a switch, the on resistance of 

the transistor is a non-zero value. Particularly at elevated temperature the on resistance 

maybe significantly higher and cannot be neglected. The dc resistance of the wire used in 

the inductor also affects the system performance. To account for these factors, the on 

resistance of the transistor is represented by Ron and the dc resistance of the coil is 

represented by Rdc in the circuit model. The load resistance Rl also plays a significant role 

in the transfer function. The mathematical analysis of the system in frequency (Laplace) 

domain is as follows. 

 

 
Figure 2-9. Second order RLC representation of buck converter. 
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Using KCL, 
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Further simplification of equation 2-6 to obtain the transfer function yields, 
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The transfer function analysis is later used in designing compensation network for the 

control loop. The equivalent series resistance (ESR) of the capacitor is not considered in 

this analysis. However the stability of the control loop is dependent upon the ESR and is 

discussed in detail in section 4.2.1. 
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Chapter 3  

 

3.1 Silicon carbide electronics 

 
 
Power switches in the dc-dc converters are the primary cause of failure or limitation of 

the systems at high temperatures. Many power semiconductor manufacturers integrate 

control circuitry on the power die resulting in smart power converters. However, high 

power dissipation across these switches demands tolerating capabilities (high voltage and 

current stress) of the semiconductor and hence integration of power switches to the SOI 

control chip is not efficient for high temperature operation. Silicon carbide as a wide 

band gap semiconductor will play a major role in high temperature electronics design [19, 

63-73]. It possesses some exceptional properties making it well suited for high 

temperature applications. Silicon carbide exists in various polytypes of which the 4H type 

is most popular.  

  

It can be observed that the silicon carbide outperforms silicon except for the carrier 

mobility and production cost. However when we consider that for power devices that 

breakdown voltage, thermal conductivity are more significant as a result of greater power 

dissipation at the drain terminal, SiC has an advantage by a factor of 30.  The mobility is 

less of an issue for a power device compared to the cost penalty. With increasing interest 

in SiC the commercial cost is expected to reduce significantly. 
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Table 3-1. Comparison of properties of silicon and silicon carbide. 
 

Property Silicon 4H-SiC 

Material Bandgap (eV) 1.12 3.2 

Thermal conductivity (W cm-1 K-1) 1.3 4.9 

Breakdown field (V cm-1) 3 × 105 2 × 106 

Relative permittivity 11.7 9.7 

Hole mobility (cm2 V-1 s-1) 450 120 

Electron mobility (cm2 V-1 s-1) 1400 950 

Saturation electron velocity (cm s-1) 1.0 × 107 2.0 × 107 

Commercial wafer size (cm) 15 10 

Maximum operating temperature (°C) 300+ 600+ 

 

3.2 Characterization of silicon carbide JFET 

 

To understand the operational behavior of the junction field effect transistors it is 

necessary to obtain their electrical characteristics. Several parameters are required to 

completely model a device for all operating conditions. Threshold voltage, leakage 

current, ON resistance and transconductance are the few basic parameters to predict the 

switching characteristics of the device. In addition the device terminal capacitances are 

required to model the transient behavior of the device. A junction field effect transistor 

can be modeled using diodes, resistors, capacitors and transconductor as shown in Figure 

3-1. The diodes are used to model the leakage currents in the device. Within normal 

operating conditions the voltage across the gate-source diode is below its knee voltage to 

keep it in OFF state. Similarly the gate drain diode is reverse biased and does not 

conduct. The Cgs and Cgd are the terminal capacitances that determine the switching 

performance of the device. 
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Figure 3-1. Equivalent circuit model of a junction field effect transistor. 

 

3.2.1 Enhancement mode JFET 

 

JFETs are commonly used as depletion mode device. The absence of an oxide interface 

as in MOSFET results in better noise performance of JFETs and because of its depletion 

mode characteristics and the defects associated with the oxide interface; it’s a preferred 

choice of input transistors of low noise amplifiers. However the disadvantage of 

depletion mode operation of a device over enhancement mode is the requirement of 

negative gate source voltage to turn off the transistor. This greatly complicates the 

requirements of the system operating under unipolar supply voltage. Enhancement mode 

operation of JFETs in conventional silicon is limited to less than 0.7 volts however, with 

excessive gate leakage. This limit is due to the presence of a p-n junction diode between 

gate and source terminal which forward biases as the gate-source voltage increases above 

the diode turn on voltage. Due to the wide bandgap nature of silicon carbide, the turn on 

voltage of the gate source diode in SiC JFETs is above 2.7V. This lends itself to 

facilitating operation and use of SiC JFETs in the enhancement mode of operation. 

Further, buried gate technology is used to create enhancement mode operation in vertical 

JFETs which enables lower positive threshold voltage while attaining high overdrive 

capabilities. The JFETs used in this research work are procured from Semisouth 
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laboratories inc., USA [14]. The cross-sectional view of the enhancement mode JFETs 

based on buried gate technology is shown in Figure 3-2. The die snapshot of a packaged 

device is shown in Figure 3-3. 

 

 
Figure 3-2. Cross section of a silicon carbide JFET on a 4H substrate. 

 

    
3-3.Snapshot of the enhancement mode JFET in a TO package  

(Gold pads –left; Aluminum pads – right.) 
 

3.2.2 Gate source characteristics 

 

The gate source characteristics also known as input characteristics gives information 

about the threshold voltage, off state leakage current and transconductance of the device. 

Figure 3-4 shows the turn on characteristic of a SiC JFET measured using a Keithley 

4200 semiconductor characterization system. The different curves show the varying 

behavior of device at corresponding temperatures. The threshold voltage is extracted 

from the gate source characteristics. In order to measure the leakage current of the device 



23 
 

which is similar to the reverse biased current of a gate source diode the measured data are 

plotted in semi-logarithmic scale. Figure 3-5 shows the leakage characteristics of four 

different SiC JFETs. It can be seen that device ‘J25’ behaves like an ideal device whereas 

others show increased or excessive gate-source leakage current. This type of increased 

leakage can be explained as a fault in the fabrication of these devices with this behavior 

expected to be absent in commercially available devices. Higher leakage current indicates 

the need for an increased drive current requirement from gate drive circuitry at around the 

2V “turn on” point. 

 

 
Figure 3-4. Gate characteristics of E-mode SiC JFET. 

 

 
Figure 3-5. Gate source diode characteristics of E-mode SiC JFET. 
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3.2.3 Output characteristics 

 

The effect of drain voltage on drain current for various gate voltages is the output 

characteristics of a transistor. The on-resistance of a switch affects the efficiency of a 

SMPS since considerable power can be wasted across the switch as I2R loss. On- 

resistance is measured from the Id-Vd characteristics of the transistor. The Id-Vd 

characteristics measured in the laboratory is shown in Figure 3-6. Behavior of the device 

at elevated temperatures (125°C and 275°C) is shown in the figure.  

 

 
Figure 3-6. Drain characteristics of E-mode SiC JFET. 
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An improved device is made available to succeed the older generation SiC devices, with 

the goal of lower threshold voltage and higher breakdown voltage. The characteristics of 

an improved version of these devices are shown in Figure 3-7 and 3-8. Significant 

lowering of threshold voltage and improvement in the device current can be seen from 

the figure. Both these improve the device performance and hence are beneficial. 

 

 
3-7. Gate source characteristics of the second generation SiC JFETs. 

 

 
3-8. Drain source characteristics of second generation SiC JFETs. 
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3.2.4 Pulsed measurements 

 
Continuous operation of JFETs at higher currents leads to self heating at the device 

junctions. This reduces the conductivity of a transistor and hence degrades its 

performance.  Figure 3-9 shows such an effect on a silicon carbide device for gate drive 

voltages of 2.0V and 2.5V.  

 

 
Figure 3-9. Drain characteristics of an E-mode SiC JFET illustrating the self heating effect. 

 
 

To avoid self heating and to get the normal characteristics of the device, pulsed 

measurements are used. In pulsed measurements the device under test (DUT) is 

electrically stressed for a limited time over a pre-determined switching cycle. Therefore 

by keeping the duty cycle lower the internal temperature of the DUT can be maintained at 

nominal ambient value and actual characteristics can be obtained. In this work the drain 

characteristics as shown in Figure 3-6 is obtained by pulsing the gate at 4 Hz with 20% 

duty cycle. The measured RMS current is converted to the peak current using the formula 

given by equation 3-1. 

 

)(2 2DD

I
I rms

p −×
=      [3-1] 

where Ip – peak current 

 Irms – rms current 
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 D – duty cycle 

 

The calculated peak current is cross checked for its consistency with DC spot 

measurement. Agilent E3236A power supply and 33250a signal generator is used as 

drain voltage source and gate pulse generator. Agilent 34401 multimeter is used to 

measure drain current. The instruments are virtually controlled using the labview virtual 

instrumentation (VI) interface as shown in Figure 3-10. 
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Figure 3-10. Labview VI interface for pulsed power characterization of SiC devices. 
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3.2.5 Capacitance measurements 

 

The transient behavior and the frequency response of the devices are dominated by the 

junction capacitance of a device. “Keithley 510 CV analyzer” is used to measure the two 

terminal capacitance of JFET. The third terminal is left open during the measurements. 

The Figure 3-11 shows the gate-source (Cgs), gate-drain (Cgd) and drain to source (Cds) 

capacitances as a function of voltage across those terminals. The voltage sweep across the 

terminal is shown in x-axis and the measured value of capacitance is plotted on the y-

axis. The third terminal is kept open while measuring the capacitance. As seen from the 

figure the Cgs and Cgd raises exponentially after a certain positive voltage, indicating the 

turn on of the forward biased diodes. Commercial power devices datasheets specify the 

input, output and reverse capacitance of the device, which are related to the two terminal 

capacitances as given by the following equations. 

 

Input capacitance   GgdCgsCiss +=      [3-2] 

Output capacitance   GgdCdsCoss +=      [3-3] 

Reverse capacitance   CgdCrss =       [3-4] 

 

The input capacitance (Ciss) dominates over the output and reverse capacitances and 

hence a consideration in the gate drive design.  

 
 

Figure 3-11. Two terminal capacitances of the JFET. 
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3.2.6 Verilog model of SiC JFET 

 

Based on gate and drain characteristics and capacitance measurements, the extracted 

parameters are used to describe the behavior of the device in simulations. Verilog 

hardware description language is then used to model the behavior of the device and use in 

simulation of the SMPS design. A summary of parameters extracted from the measured 

characteristics with their temperature coefficients are given in Table 3-2. The Verilog 

mode file used in simulations is given in the appendix section. 

 

Table 3-2. Basic model parameters of SiC E-mode JFET. 
 

Parameter Value Units Comment 
Threshold  
voltage 

1.1 V At 25°C 

Vt – temp coeff -1.6 mV/ºC  

On resistance <250 mΩ 
Vgs = 2.5 V; 
25ºC 

Rds – temp coeff +3  mΩ/°C  

Ciss 450 pF 
Vgs = -1.0V; 
27ºC 

Crss 50 pF 
Vgs = -1.0V; 
27ºC 

Conductance 
5ms 
4ms 

 

Vgs = 2.0V; 
27ºC 
Vgs = 2.5V; 
275ºC 

 

It must be noted that the model file given here is based on measurements from four 

devices. The JFET technology in silicon carbide is ever improving and the characteristics 

of the devices are expected to change and improve with every generation for the near 

term. It must also be stated that the modeling strategy for enhancement mode devices are 

carried out in similar to the (n-channel) MOSFETs. This is in contrast with the textbook 

equations for the JFETs which are usually applicable only for depletion mode devices. 

The simulated characteristics of the JFET based on the Verilog model are shown in 

Figure 3-12 and Figure 3-13. The Verilog model file used for simulation is provided in 

appendix section.11.1. 
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Figure 3-12. Simulated gate and drain current characteristics of the JFET based on Verilog model. 
 
 

 
Figure 3-13. Simulated Id-Vd characteristics of the JFET based on Verilog model.



32 
 

Chapter 4  

 

4.1 Control circuitry 

 

The on/off control of the power and synchronous switches is provided by control 

circuitry. The control unit forms the feedback part of the dc-dc conversion system. There 

are several different types of control mechanism adopted for various applications. The 

more common control modes are as follows.  

 

• Voltage mode  

• Current mode  

• Vee-square (V2) mode  

• V2I mode 

• Hysteretic  

 

A brief discussion about the individual mechanism is presented in following sections. 

 

4.1.1 Voltage mode control 

 

Voltage mode control of dc-dc converters is the earliest and easiest form and is still 

widely used. A simple block diagram for voltage mode control is given in Figure 4-1. In 

this mechanism an error amplifier produces an error voltage by comparing the output 

voltage with a preset reference voltage. The error voltage sets the threshold limit for the 

comparator which compares it to an artificial ramp (or sawtooth) and produces a pulse 
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width modulated output. An inverter is used to generate the complementary control 

signals for controlling the power and synchronous switch. The advantage of voltage 

mode control is its simplicity and fast transient response to load variations, limited by the 

control loop bandwidth. However the compensation scheme needed for stable operation 

of control loop is more complex.  

 

L
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Figure 4-1. Voltage mode control of PWM converters. 

 

The double pole response of the buck converter results in sharp phase drop near the 

natural resonant frequency. To obtain a required phase margin for the system, 

compensations schemes are required. The three commonly used compensation schemes 

for error amplifier are as follows: 

 

• Type I compensation 

• Type II compensation 

• Type III compensation 

 

 

 



34 
 

4.1.2 Current mode control 

 

Similar to voltage mode control a current mode control produces an error voltage based 

on the output voltage and a preset reference voltage. However instead of artificially 

generating a ramp waveform, the inherent ramp nature of inductor or transistor current is 

sensed and used. Figure 4-2 shows the block diagram of current mode control. The 

placement of sense resistor to monitor current is complicated as well as have a modest 

effect on the overall efficiency of the control scheme. An isolation transformer is used to 

sense the current in high power applications where a sense resistor is not efficient. 

Current mode control provides fast transient response to line variations and inherently 

protects from over currents. However the associated control circuitry is complicated and 

EMI problems were reported in the past. 
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Figure 4-2. Current mode control of PWM converters. 

 

The behavior of the error amplifier in current mode control is similar to voltage mode 

control and hence the compensation mechanisms are also same. A brief discussion of 

compensation schemes is later discussed in section 4.2.1.3.  
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4.1.3 Vee-square mode control 

 

Vee-square (V2) control is used in this research work. This is a two loop control method 

that derives the ramp from equivalent series resistance (ESR) of load capacitor. Since the 

ramp is generated via the output voltage the dc output level is available in the ramp. This 

makes the transient response of V2 control loop much faster to load variations compared 

to voltage and current mode control, in particular to rising load demands. The operation 

of V2 control loop is explained using Figure 4-3.   

 

  
Figure 4-3. Vee-square mode control of PWM converters. 

 

The outer loop that involves the error amplifier is in a slow feedback (SFB) mode that 

sets the dc accuracy of the output. The inner loop acts as a fast feedback (FFB) loop to 

address the transients in load. The reset dominant flip-flop logic is used to override the 

system clock based on the comparator output. In this way any sudden change in the load 

is more immediately addressed thereby provided a much smoother output voltage to 

transient changes in the load. Transient response is bound by the sum of the delay of 

comparator, logic and power switches, where the logic delay may typically be neglected. 
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In case of voltage and current mode control the error amplifier is required to have a larger 

bandwidth to track the transient changes in output. As a result controller power 

consumption is higher. In case of V2 control, the transients in load are directly monitored 

by the comparator and hence ease the bandwidth requirement of error amplifier. The 

resulting PWM is also significantly different from the conventional scheme described in 

section 2.3. Nevertheless the operation of the control is similar to the one previously 

discussed. A detailed operation of the system is later described in chapter 7. 

 

4.1.4 Other control methods 

 

In addition to the above mentioned control methods hysteretic control is another mode of 

control. Hysteretic control is also known as bang-bang control where a hysteretic 

comparator is used as a controller. The minimum hysteretic window that could be set 

using the comparator and the speed at which loop responds determines the output voltage 

ripple. Hysteretic converters do not have a fixed system clock and as a result generate 

greater Electro Magnetic Interference (EMI) related issues.  

 

The EMI issues related to hysteretic control and PFM (described earlier) can be 

illustrated by considering load transients and corresponding output spectrum. Figure 4-4 

illustrates the EMI issues of non PWM mode controllers. Different current levels shown 

in trace (a), represents 3 different loading conditions, I1, I2 and I3. The pulse modulation 

characteristics of PFM and hysteretic controller are shown in trace (b) and trace (d) 

respectively. As mentioned before the pulse frequency increases proportional to the load 

current in PFM. In hysteresis mode, both pulse width and frequency changes with respect 

to load. The pulse width (both high and low) is limited by the loop (component) delay 

and largely depends on the load condition. This change in pulse frequency in these 

controller results in introducing spikes (noise) in the frequency domain based on its 

operating condition. Traces (c) and (e) shown the spurs introduced due to different 

operating conditions for PFM and hysteresis mode controllers. On comparison with 
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PWM control, where the spike occurs only at the (fixed) switching frequency, this 

distribution of spikes over frequency spectrum results in EMI issues. 

 

 
Figure 4-4. EMI issues with non PWM mode controls. 

 

 

Recently V2I (Vee square I) mode control is proposed which combines a current mode 

converter to a V2 mode control. The performance of V2I control is comparable to V2 

control with minor advantages in transient response. 

 

4.2 Compensation in control loop 

 

The goal for any control loop is to automatically adjust the system parameters to obtain 

the required output without any issue of instability. In circuit design, the control loop 

stability is characterized by observing the loop transfer function roll off in the frequency 

domain. It is desirable to have one dominant pole to provide -20dB/decade roll off at 
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unity gain cross over point and have the non dominant poles and zeros out of the 

spectrum of interest (at least 10 times away from switching frequency). This ensures the 

phase margin of a system is adequate enough for system stability. Often the natural 

response of the system has to be explicitly compensated to achieve this required response. 

General control systems theory discusses the various compensations schemes as 

 

• Lag compensation 

• Lead compensation 

• Lag-Lead compensation 

 

The same approaches in circuit design are commonly referred to  

 

• Dominant pole compensation 

• Feed forward compensation 

• Pole-zero compensation 

 

The feed-forward loop of the inductor-capacitor (LC) buck converter resembles a second 

order system that inherently provides a double pole at the output at a resonant frequency 

(ωr) given by equation 4-1. This double pole provides a 180 degree phase shift of the 

input signal. In the feedback loop an additional 180 degree phase shift is introduced by 

the error amplifier or the comparator. This results in the total phase shift being potentially 

in excess of 360 degrees when error amplifier or comparator are considered and hence 

creates a potential oscillatory circuit rather than a stable control system. A properly 

compensation scheme is required to ensure the stability of the system. A general rule of 

thumb is to provide at least 75 degrees of phase margin for both good stability and a 

reasonable settling time (critically damped system). 

 

CL
r

⋅
=

1
ω      [4-1] 

The frequency domain analysis of the control loop is analyzed in the following section to 

illustrate the need and effect of compensation. 
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4.2.1 Frequency domain analysis 

 

Frequency domain analysis of control loops using the magnitude and phase plots (BODE 

plots) is the most popular technique and is discussed in the following section.  The 

analysis is based on the frequency response of the individual blocks as given below. It 

must be noted the ideal expected behavior of the block / components are discussed here. 

A numerical illustration is provided in later sections to correlate the theory and design. 

 

4.2.1.1 Output filter 

 
The LC low pass filter in the forward path of the converter including the parasitic 

elements is shown in Figure 4-5. The schematic represents a second order system. The 

transfer function of this output filter is earlier derived in section 2.7. The equivalent series 

resistance of the output capacitor is included here since it plays a significant role in the 

control loop.  

 
Figure 4-5. Schematic of feed forward path of buck converter including parasitic elements. 

 

The modified second order system can be described by equation 4-2. It can be noted that 

the numerator of the transfer function introduces a zero. The zero frequency is introduced 

via the output capacitance and its equivalent series resistance (ESR), Rc. Most dc-dc 

converters depend upon the equivalent series resistance of the capacitor for stable 

operation of converters. The ESR zero cancels the effect of double pole thereby resulting 

in a -20 dB/decade roll off beyond the ESR frequency. This can be easily observed from 

the magnitude bode plot as shown in Figure 4-6. The gain rolls off at -40 dB/decade past 
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the natural resonance frequency (ωLC) of the LC network. The zero introduced by the 

ESR at ωESR, gives a gain and phase boost reducing the gain roll off to -20 dB/decade. 

The phase plot is not explicitly shown here. 
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Figure 4-6. Magnitude response of second order LC system with ESR effiect. 

 

4.2.1.2 Feedback loop 

 

In the V2 feedback loop the cascade connection of error amplifier and comparator are the 

dominant blocks and their transfer functions are analyzed. The ideal magnitude response 

of the error amplifier based on its transfer function described by equation 4-3 is given in 

Figure 4-7. The expected response of the comparator is also shown in the same figure. 

The dominant pole of the error amplifier and its unity gain cross over frequency based on 

the transfer function is given by equation 4-4 and 4-5, where ‘rO’ is the output resistance 
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of error amplifier, ‘gm’ is the transconductance of error amplifier and ‘C’ is the effective 

load capacitance.  
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Figure 4-7. Frequency response of comparator and error amplifier blocks. 

 

With the frequency response characteristics of the individual blocks the overall ‘control 

to output voltage’ response can be obtained by adding their gains in the log scale (dB). 

The Bode magnitude plot of the overall system is demonstrated or estimated in Figure 

4-8. As it can be seen the roll off at unity gain is -40dB/decade. Except for the case with 

extremely high dc gain the double pole roll off would yield poor phase margin (almost 

close to zero) and hence causes potential instability.  
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Figure 4-8. Magnitude response of loop transfer function versus frequency. 

 

4.2.1.3 Compensation 

 
In order to compensate the system and obtain a -20dB /decade roll off a capacitor is used 

at the output of the error amplifier as a compensation element. The selection of a 

capacitor is such that it reduces or moves the dominant pole of the error amplifier to a 

very low frequency. In other words addition of compensation capacitor limits the speed 

of the error amplifier such that the transient response is only controlled by the feedback 

through comparator. Considering the error amplifier individually, adding a compensation 

capacitor reduces the bandwidth of the error amplifier and moves its dominant poles to a 

lower frequency in the spectrum. This reduced bandwidth results in slower response time 

for the error amplifier. Hence the error amplifier path is referred to ‘slow feedback path’ 

and is not responsive to the transients at the load. Also the cascade configuration of 

comparator and error amplifier provides a very high DC gain for better accuracy of 

output voltage. The effect of capacitor on the magnitude response is shown in Figure 4-9. 

The modified dominant pole and gain crossover frequency of the error amplifier after 

compensation is given by equation 4-6 and 4-7, respectively (details in section 4.2.4). 
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CO
rc Cr ×
=

1
ω       [4-6] 
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gm
=0ω       [4-7] 

 

where Cc is the compensation capacitor 

 

 
Figure 4-9. Effect of compensation capacitor on error amplifier. 

 

The selection of compensation capacitor is such that the frequency where zero is 

introduced is 1/10th of the LC double pole frequency. This concept is further expanded in 

the error amplifier design discussed in chapter 6. 

 

The overall response of the loop with the compensation capacitor can be obtained by 

adding the response of individual blocks. Figure 4-10 shows the overall open loop 

magnitude response. It can be observed that the roll off at unity gain is -20 dB/decade.  
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Figure 4-10. Compensated magnitude response of the control to output loop. 

 

A higher loop bandwidth reduces the settling time for the output and hence improves 

transient response. However the total control system is based on the sampled data system 

controlled via the loop clock. Hence the maximum operation frequency of the control 

loop has to be a considerable factor (usually greater than two) of the loop bandwidth 

(ωmax) to satisfy the Nyquist sampling rate. 

 

In order to illustrate the simplicity of the compensation mechanism in vee-square control, 

a brief analysis of type I, type II and type III compensations used in conventional control 

methods are described below. 

 

1. Type 1 compensation 

 

Type 1 compensation is the simplest dominant pole compensation of the error amplifer as 

shown in Figure 4-11. It resembles the transfer function of a simple integrator represented 

by equation 4-8. 
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Figure 4-11. Type 1 compensation of error amplifier. 

 
 

2. Type 2 compensation 

 

Type 1 compensation is seldom used in practical applications since the bandwidth of 

error amplifier is strictly limited in this case. For wider bandwidth, type 2 compensation 

as shown in Figure 4-12 is used. Here using additional components in feedback a pole 

zero pair is introduced to extend the dominant pole of error amplifier. Hence by adding a 

second degree of freedom, type 2 compensation provides wider bandwidth for error 

amplifier compared to type 1. The transfer function of type 2 compensation is given by 4-

9. 
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Figure 4-12. Type 2 compensation of error amplifier. 
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3. Type 3 compensation 

 

Similar to type 2compensation, type 3 compensation introduces more components in the 

system as shown in Figure 4-13 to allow higher degree of freedom. In reality it introduces 

two pole-zero pairs to extend the bandwidth of the error amplifier to very high value. The 

transfer function of the type 3 compensation network is given by 4-10. 

 

 
Figure 4-13. Type 3 compensation of error amplifier. 
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It must be evident that the complexity in compensation required for error amplifier to run 

as fast as system clock as system clock frequency increases is tremendous. On the other 

hand the compensation for error amplifier in vee-square control requires one simple 

capacitor since the error amplifier is in slow feedback path. The reduced component 

count increases reliability of vee-square control particularly at elevated temperature 

operations. 

 

Understanding and design of system based on classical control theory has been a wide 

spread practice among engineers. However the modern control theory design based on 

state space yield more mathematical insights towards the system and is described in the 

following section. 
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4.2.2 State space analysis 

 

The state space analysis provides the transfer function of the system to model its 

behavior. A state space model is required to determine the transient behavior of the 

system. While the frequency domain analysis discussed in the previous section ensures 

stability in frequency domain under steady state condition, the transient response can be 

obtained using the complete transfer function representation. The stability of a system 

can also be determined from the state matrices of the system. Above all, the state space 

analysis is useful in describing the effect of individual elements of the control loop and 

hence the most appropriate procedure to follow for the controller design. 

 

The general state equations and output equations of any system is described by equations 

4-11 and 4-12, respectively.  

BuAxx +=
•

     [4-11] 

    

EuCxy +=      [4-12] 

 

Where X is the state variable, Y is the output variable, U is the input variable and A, B, C 

and E are co-efficient matrices. (The variable E is used since D is used to represent the 

duty cycle of the converter, later in the analysis). The inductor current and capacitor 

voltages are commonly used as the state variables of the system. For PWM based 

converters the system can be analyzed independently using the ON time and OFF time 

equivalent circuits. The ON-time equivalent circuit is shown in Figure 4-14. The parasitic 

components are included to obtain a more accurate model; Ron represents the on 

resistance of the transistor and the RL represents the inductor series resistance. 
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Figure 4-14. ON time equivalent circuit of the buck converter. 

 

4.2.2.1 ON time analysis 

 

For the ON time equivalent circuit, the basic equations using the KVL and KCL are given 

by equation 4-13 and 4-14, respectively. The state equation in terms of inductor current 

and capacitor voltage is given by 4-15 through 4-18.  
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From 4-15 and 4-16, 
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After few steps of algebra, 
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Substituting for iL(t) from 4-20 in 4-18 and after some algebraic manipulations, 

 










+

×
++×−









+

×
×−=

C

C
LonL

C

C
Cg

L

RR

RR
RRti

RR

RR
tvtv

dt

tdi
)()()(

)(
 [4-21] 

 

 
From equations 4-20 and 4-21 the state equations for the on-time equivalent circuit is 
given as follows 
 

[ ])(
0

1

)(

)(

1)(

)(

0

0
tv

tv

ti

RRRR

R

RR

R

RR

RR
RR

dt

tdv
dt

tdi

C

L
g

C

L

CC

CC

C
lon

C

L









+





























+
−

+

+
−









+

×
++−

=



























 [4-22] 

 
The output equation derivation is as follows: 
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C

C
CCCCO R

dt

tdv
CtvRtitvtv ××+=×+=

)(
)()()()(    [4-23] 

 

Substituting for 
dt

tdvC )(
 from 4-20 and solving for )(tvO , 
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Therefore the output equation is given by, 
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The state and output matrices (ABCE) for ON state equivalent circuit are given by 4-26 

through 4-29. 
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01=E          [4-29] 

 

4.2.2.2 OFF time analysis 

 

The off state equivalent circuit of the buck converter is shown in Figure 4-15. During off 

state the equivalent circuit is similar to ON state, except that the generator voltage is zero. 

Therefore the only change in the state equation is that the matrix B is zero. The output 

equation remains the same. 
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Figure 4-15.OFF time equivalent circuit of buck converter. 

 

As the ON state and OFF state representation of the buck converter are individually 

obtained, based on an state space averaging technique reported by Middlebrook and Cuk 

[74], the coefficient matrices of the averaged system can be computed as given below. 

The variable ‘d’ represents the duty cycle. The state and output matrices are weighted 

(time averaged) based on the duty cycle where the multiplication by represents ON time 

weighting and (1-d) represented OFF time weighting. 

 

)1(*2*1 dAdAA −+=     [4-30] 

 

)1(*2*1 dBdBB −+=     [4-31] 

 

)1(*2*1 dCdCC −+=     [4-32] 

 

)1(*2*1 dEdEE −+=     [4-33] 

 

Equation 4-30 through 4-33 represents the state and output matrices of the time averaged 

buck converter. For a buck converter the steady state output voltage (Vo) and input 

voltage (Vg) are related to duty cycle (d) as given by equation 4-34.  

 

� �
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      [4-34] 
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Therefore a change in output load of the power supply translates into a change in output 

voltage and a corresponding change in duty cycle to maintain the steady state output. 

This requires analysis of output voltage to duty cycle transfer function also known as 

control to output transfer function in order to determine the stability of the system.  

 

4.2.3 Small signal analysis 

 

Small signal analysis is used to obtain control to output transfer function of the buck 

converter. The small signal analysis is performed by perturbing the system variables 

around the dc operating point. The state matrix, output matrix and duty cycle can be 

represented by the steady state parameter plus a small signal values is given by equations 

4-35 to 4-37. 

 

∧

+= xXx      [4-35] 

 

∧

+= yYy      [4-36] 

 

∧

+= dDd      [4-37] 

 

Where the upper case letters represent steady state DC parameters and lower case letters 

with ‘hat’ represent small signal values. Recognizing that the derivatives of steady state 

parameters are zero, the state equation can be described in terms of coefficient matrices 

and small signal parameters as given below (4-38). 

 

From 4-11, 4-30 and 4-31, 
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We know that the matrix A1 = A2 and B2 = 0. Further assuming that the input voltage is 

constant yields,  

 

   ])][(1][1[ VgdDBxXAx
∧∧
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+++⋅=    [4-39] 

 

Since the duty cycle is modulated and presents itself as an input to the system, the above 

equation is non linear. The equation can be linearized by small signal restriction and 

omitting the product of ac terms [75, 76]. This result in small signal state equation as 

given below, 
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Taking the Laplace transform of the functions and rearranging,  
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where I is the identity matrix and s is Laplace operator.  

  

The relation between the output voltage and the duty cycle is obtained as  
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The above equation gives the effect of small signal duty cycle on the output voltage. 

After substituting the coefficient matrices and algebraic manipulations the standard form 

of transfer function is given as in 4-43. 
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In similar fashion the load current to duty cycle, output voltage to input voltage and the 

output voltage to output current transfer functions can also be derived. Since these are not 

of major interest at this juncture, they are not explicitly discussed [77]. 

 

4.2.4 Loop transfer function 

 

The control to output transfer functions is obtained from the small signal analysis of the 

buck converter as detailed in previous section. In his section the compensator transfer 

function is obtained. The compensator transfer function represents the feedback 

characteristics that show the effect of change in output voltage on the duty cycle. The 

overall block diagram is shown in Figure 4-16. The closed loop system is analyzed by 

breaking the loop at the output node and applying a small signal perturbation. 

 

 
Figure 4-16. Block diagram of V2 control buck converter. 

 



55 
 

The analysis of the cascaded compensation network and the PWM circuit is observed 

initially. This is later added to the control to output buck converter part to obtain the 

overall loop transfer function of the system. 

 

Considering the circuit model of the compensation network (error amplifier and 

capacitor) and the PWM (comparator) individually as shown in Figure 4-17 the equation 

for the output voltage Vo can be expressed as given by equation 4-44.  

 

 
Figure 4-17. Equivalent circuit for analysis of compensation network, 
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where Ac and Ae are the open loop gain of comparator and error amplifier, respectively. 

Through the following discussion we have justifiably assumed that bandwidth if the OTA 

is much less than that of the comparator. Rearranging the equation, 
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where gm and ro are the transconductance and output resistance of the error amplifier. Cc 

is the value of compensation capacitor. 
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where the ωp and ωz is the pole and zero frequency of feedback path. 
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Therefore the overall (open) ‘loop transfer function’ that includes the control to output 

and output to duty cycle transfer blocks can be obtained from 4-49 and 4-43 as given 

below 4-52. 
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[4-52] 

 
The transfer function yields information about the low frequency or DC gain and the pole 

and zero locations of the buck converter including the parasitics. This transfer function 

remains valid as long as the phase delay of the comparator, logic and power switches 

remains small relative to the OTA. This is readily observed via the previous Bode 

analysis.  

 

4.3 Effect of components 

 
The transfer function derived in the previous section provides a more accurate 

representation of the system since the parasitic are included in the model. It should be 

noted that not every parameter affects the system performance equally in all domains. 

Assumptions need to be made to simplify the system for better understating. To facilitate 

this task, the estimated operating values of the individual parameters for a 5V converter 

are summarized in Table 4-1. The comments has been made to indicate the effect of the 

parameter in the feedback loop using the bode analysis. 
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Table 4-1. Estimated values of components of SMPS. 
 

Symbol Parameter 
Expected 

value 

Temperature 

coefficient 
Remarks 

Ac 
Comparator DC 

gain 
≥ 50 Positive 

Higher gains 

reduces systematic 

offset but introduce 

stability issues 
Ae 

Error amplifier 

DC gain 
≥ 100 Positive 

Rc 
ESR of 

capacitor 
≥ 20 mΩ Positive 

Plays significant 

role in 

compensation 

Ron 
Transistor ON 

resistance 
≤ 2 Ω Positive 

Higher resistance 

implies higher loss 
Rl 

DC resistance of 

inductor wire 
≤ 2 Ω Positive 

L 
Output 

inductance 
> 65µH Negative 

Changes affects the 

required value of 

compensation 

capacitor 
C 

Output 

capacitance 
> 220µF Positive 

Vin Input voltage ≥ 10 V -  

R Load resistance 1Ω -  

Cc 
Compensation 

capacitor 
>1nF Negative - 

 

To summarize, a high dc gain in error amplifier reduces the systemic offset, and loop 

gain is the product of comparator gain by error amplifier gain in the feedback loop.  

Comparator gain must be adequate to convert ripple error to a valid logic level i.e. 

VDD/V ripple > 50+ for 2% regulation. However high gain systems are difficult to 

compensate for a fixed switching frequency since it requires larger filter components to 

roll off the gain. As discussed before the ESR of the output capacitor plays a major role 

in compensation and hence must be carefully chosen. The value of output capacitor and 

inductor depends on the system requirement. The methods to select these components are 
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discussed in later chapters; however the value of compensation capacitor is based on the 

output filter and hence has to be considered in parallel. Any dc parasitic resistance 

contributes to loss and hence must be minimized.  

 

4.3.1 Effect of parasitics 

 

The parasitic elements in the design components has significant role on the system 

stability. A bode analysis of the transfer function with different (Equivalent Series 

Resistance) ESR values is shown in Figure 4-18. The figure shows the effect of ESR on 

the control loop stability. The blue curves show represents a zero ESR condition where 

the phase margin is lesser than 20 degrees. The green curve represents a 20 mΩ ESR 

which introduces a zero in the transfer function. The zero provides phase and gain boost, 

resulting in 65 degrees of phase margin. Similarly the effect of the parasitic resistances is 

shown in Figure 4-19. 

 

 
Figure 4-18. Effect of ESR on the phase margin of the control loop. 
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Figure 4-19. Effect of parasitic resistances on the control loop. 

 

As it can be seen from the Figure 4-19 the DC gain is severely attenuated by the parasitic 

resistances however the bandwidth and gain cross over frequencies remains unaffected. 

The difficulties in compensating high gain systems can also be observed from the figure 

as the top (red) curve marginally passes the phase margin requirement (45 degrees).  A 

larger ESR is required in such cases to compensate the system. The plot indicates the 

importance role that parasitic can in the system design since a zero parasitic provides 

lower phase margin than the actual system for given ESR. This actually eases the 

compensation design and enhances system performance.  

 

4.3.2 Robust control design 

 

Detailed analysis of the control theory presented above is based on the assumption of 

linear model of the equivalent circuit. Exact values of components used in system must 

be known to guarantee the system stability. However in practice, the components values 

vary a wide range over the operating temperature, and it is necessary to analyze the 

robust stability of the system. 

 

An exhaustive analysis of stability of any control system can be analyzed using 

Kharitonov polynomials [78, 79]. The Kharitonov theorem states that for an interval 

polynomial as shown in equation 4-53 whose coefficients ai  has a real boundary limit 
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[x imin, ximax], the interval polynomial is stable if and only if the four Kharitonov 

polynomials are stable. The Kharitonov polynomials are given by 4-54 through 4-57. 

Since the stability of the interval polynomial is dependent upon the stability of the four 

Kharitonov polynomials, this method is widely used to establish the robustness of a 

control system. 

 

P(s) = a0 + a1s
1 + a2s

2 +…+ ans
n     [4-53] 

 

where, ℜ∈ia ; ximin ≤ ai ≤ ximax 

 

F1(s) = x0min + x1mins
1 + x2maxs

2 + x3maxs
3 + x4mins

4 + x5mins
5 + x6maxs

6 +…  [4-54] 

 

F2(s) = x0min + x1maxs
1 + x2maxs

2 + x3mins
3 + x4mins

4 + x5maxs
5 + x6maxs

6 +…  [4-55] 

 

F3(s) = x0max + x1mins
1 + x2mins

2 + x3maxs
3 + x4maxs

4 + x5mins
5 + x6mins

6 +…  [4-56] 

 

F1(s) = x0max + x1maxs
1 + x2mins

2 + x3mins
3 + x4maxs

4 + x5maxs
5 + x6mins

6 +…  [4-57] 

 

A worksheet to analyze the robust stability using Kharitonov theorem is shown in Table 

4-2. The analysis is based on the maximum and minimum values of the components 

(capacitors and inductors) described later in Chapter 7. The process is to analyze the 

stability of Kharitonov polynomials which are formed by the coefficients obtained from 

the maximum and minimum value of the system components.  
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Table 4-2. Worksheet to analyze Kharitonov robust stability analysis of buck converter. 
 

max min
c 1.00E-03 1.00E-04
l 1.00E-04 1.00E-05
r 1.00E+03 1.00E+00
rc 1.00E-01 5.00E-03
rl 2.00E+00 1.00E-01
ron 2.00E+00 3.00E-01
vg 2.50E+01 5.00E+00
ae 1.00E+03 1.00E+03
ac 1.00E+03 1.00E+01
ro 5.00E+05 5.00E+05
gm 3.00E-05 1.00E-05
cc 1.00E-06 1.00E-11
wz 3.00E+01 1.00E+06
wp 2.00E+00 2.00E+05

MAX (yi) MIN (xi)
a1 3.00E-03 1.01E-03
a2 5.00E+06 3.10E+05
a3 5.02E+10 1.54E+10
a4 1.50E+12 1.00E+16

F1 3.00E-03 5.00E+06 1.54E+10 1.50E+12 F1 F3
F2 1.01E-03 5.00E+06 5.02E+10 1.50E+12 3.00E-03 1.54E+10 1.01E-03 5.00E+06
F3 3.00E-03 3.10E+05 1.54E+10 1.00E+16 5.00E+06 1.50E+12 5.02E+10 1.50E+12
F4 1.01E-03 3.10E+05 5.02E+10 1.00E+16 1.54E+10 0 5.00E+06 0

1.50E+12 1.50E+12
F2 F4

3.00E-03 1.54E+10 1.01E-03 5.02E+10
3.10E+05 1.00E+16 3.10E+05 1.00E+16
1.53E+10 0 5.01E+10 0
1.00E+16 1.00E+16

Coefficients
Routh Hurwitz Stability

Range of coeffecients

Kharitonov polynomials

stable

output capacitance
output inductance
load resistance
ESR of output capacitance
ESR of output inductance
On resistance of switch

zero frequency
pole frequency

Input raw voltage
Error amplifier gain
Comparator gain
Output resistance of error amp.
Transconductance of error amp.
Compernsation capacitor

 
 

The range of maximum and minimum values of the components are provided as input 

and the excel sheet is programmed to obtain the coefficients of the control to output 

transfer function. The maximum and minimum coefficients are used to create the 

Kharitonov polynomials. The stability of these four polynomials is analyzed using the 

Routh Hurwitz stability criterion. A sign change in the Routh stability analysis would 

indicate instability in the system. 

 

In order to handle multiple variables a matlab program is developed and provided in the 

appendix section 11.2. Here the output capacitance and the ESR of the capacitance are 

considered the critical parameters that changes widely over temperature and hence are 

used in the stability analysis. 
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Chapter 5  

 

5.1 Gate drive electronics 

 

An isolated or floating voltage supply is required to turn on the high side switch of 

switching converters. Various mechanism exits to achieve this operation. They are as 

follows 

 

• Bootstrap 

• Switched capacitor 

• Optocoupler 

• Transformer coupled gate drive 

 

Of these techniques bootstrapping and switched capacitor gate drives are more 

competitive for low power, commercial applications. For higher drive power, optocoupler 

gate drives are commonly used in the commercial market. Only transformer coupled gate 

drives are applicable for high temperature switch mode power supply. 

 

5.2 Transformer coupled gate drive 

 

A typical block diagram of a transformer coupled gate drive is shown in Figure 5-1. A 

differential driving circuit in the primary side helps to minimize the saturation of 

transformer core. NP and NS are the number of turns of coil in primary and secondary. 

The mutual coupling between the primary and secondary is represented by the coupling 
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coefficient ‘K’. The switching frequency of the control loop is usually set at a few 

hundred KHz. Direct switching of the power switches (turn ON and OFF) with respect to 

control loop switching cycle is less efficient as this would require larger transformer size. 

For this reason higher switching frequency is used for the gate drive circuit and an 

auxiliary dc supply is generated at the secondary using a full wave rectifier. This type of 

gate drive mechanism is described as a transformer coupled gate drive with control and 

signal transfer. The gate drive buffers are turned ON (enabled) based on a control signal 

proportional to the switching frequency. During this period, the power is transferred from 

primary to secondary. In the secondary side the received signal is rectified to produce a 

DC voltage for turning ON the high side load switch, which in this case is a MOS or SiC 

transistor. When the control signal disables the buffer, the voltage at the secondary side is 

allowed to bleed down or discharge to zero based on the natural decay response of RLC 

circuit or by adding an active discharge circuit. 

 
Figure 5-1. Transformer coupled gate drive - differential mode; followed by a full wave rectifier and 

load circuit 
 

5.3 Pulse transformer 

 

Unlike a sinusoidal voltage source as shown in Figure 5-1 the electronic circuits often 

require pulse voltages for digital (binary) operation for simplicity. A square wave is 

hence dominant in electronic circuits rather than sine wave. Conventional transformer 

theories are mainly based on single input frequency characteristic of a sine wave; 

whereas a pulse waveform is mathematically an infinite or at least a broadband sum of 
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sine waves with multiples of fundamental frequency. The fundamental frequency 

corresponds to the pulse period.  

Pulse transformers are those specifically designed to operate in electronic circuits where 

pulse inputs are encountered. These are conventionally referred to wide band 

transformers or video transformers. The rise time of the input pulse determines the 

bandwidth required in the transformer for efficient pulse reproduction in secondary. As a 

transformer itself is a band pass network with attenuation at lower and higher frequency, 

the resonant frequency of a transformer is then given by equation 5-1. 

 

fuflfr ×=      [5-1] 

 

where the fl and fh are the lower and upper cut-off frequency, respectively. The lower 

cut-off frequency is dominated by the source resistance and the mutual inductance of the 

circuit. The higher cut-off frequency is dominated by the leakage inductance and load 

capacitance of the transformer.  

It must be noted that the presence of a rectifier at the secondary eases the strict 

requirement of square pulses at the secondary. The final output available after 

rectification is based on the sum of the power transferred in individual pulse cycles. 

Hence unlike a normal pulse transformer where the fidelity of the output is important, the 

objective here is to transfer maximum energy in each cycle. This concept is applied later 

in selecting the operating frequency for the gate drive transformers.  

 

5.4 Coreless Planar transformers (CPT) 

 

Conventional core type transformers are bulky and are not volume efficient. Planar 

transformers based on printed circuit board (PCB) technology and on-chip processes are 

much more efficient for certain applications. In niche applications the planar transformers 

are made on a magnetic substrate for higher quality factor and coupling. However this 

requires exotic processing steps and is not cost effective in our application. Therefore in 

most cases planar windings are fabricated on a highly resistivity substrate and hence 
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known as coreless transformers. In this work coreless planar transformer based on PCB 

technology is adopted.  

 

5.4.1 Characteristics of planar transformer 

 

The factors affecting the characteristic of a planar transformer are as follows: 
 

• Physical Area 

• Metal lines 

• Metal spacing 

• Substrate 

• Operating frequency 

• Orientation of primary and secondary windings 

 

5.4.1.1 Physical area of transformer 

 

As the goal is reduce the volume occupied by the transformer, usually a comfortable 

minimum area is picked to work with. In this study a 10 square centimeter area is 

considered for the transformer. A larger area could incorporate increased number of 

windings and hence improves the coupling. However it also decreases the bandwidth of 

the transformer since capacitance increases proportional to area. It is desirable to have the 

bandwidth of the transformer to be at least 10 times higher than the maximum switching 

frequency. For instance, a minimum of 60 MHz bandwidth is desirable for better 

reproduction of pulse at the secondary for a switching frequency of 6 MHz. 

 

5.4.1.2 Metal lines 

 

The width and thickness of the metal lines affect the resistance of the conductors. Wider 

width and thicker conductors are preferred for reducing the resistance and thereby 
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improving the quality factor. The inductance of a metal strip is logarithmically 

proportional to metal thickness and width and linearly proportional to its length. For a 

given area, increasing the metal width reduces the number of turns in the transformer and 

in turn the coupling as well as increasing capacitance and reducing bandwidth. Since the 

inductance is proportional to the square of number of turns, it is important to optimize the 

width of the conductors to obtain maximum inductance.  

 

5.4.1.3 Metal spacing 

 

The spacing between the adjacent conductors of primary and second windings directly 

affect the coupling between the lines. Also for a fixed area, increasing the spacing 

reduces the number of turns in the winding. The metal spacing affects the bandwidth of 

the system as it controls the inter-winding and intra-winding capacitances. 

 

5.4.1.4 Substrate 

 

The substrate on which the metal tracks are fabricated determines the losses and 

bandwidth of the transformer. High resistivity substrates are preferred for lower electrical 

losses and lower dielectric constant enables wider bandwidth for the system. In MEMS 

post-process flow the substrate underneath the metal layers is removed to improve the 

quality factor of on-chip inductors and transformers. In VLSI circuits, upper layers of 

metal are used along with thicker metals. 

 

5.4.1.5 Frequency of operation 

 

The frequency of operation of the transformer largely determines the physical size of the 

transformer along with the secondary loading. The reactance of inductor and capacitor is 

given by equation 5-2 and 5-3 respectively.   Higher frequency operation helps in 

reducing the component size to meet required impedance. 
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Inductive reactance, LfLXL ×××== πω 2     [5-2] 

 

Capacitive reactance, 
C

XC ×
=
ω

1
      [5-3] 

 

5.4.1.6 Orientation of windings 

 

There are several different types of orientations of primary and secondary windings of a 

transformer. Figure 5-2 shows the most popular types of conductor winding. The planar 

type windings are also known as “Frlan” transformers result in negligible interwinding 

capacitances and hence are highly preferred for wide band operation. On the other hand 

the stacked type transformers provide good coupling and more turns for a given area.  

However due to large coupling area the capacitance is significantly increased. Often a 

modified stacked transformer known as diagonally stacked transformers are used as a 

trade-off between coupling and capacitance. 

 

 
Figure 5-2. Common layouts of planar transformer structure: Frlan (left) in a single plane, 

“diagonally” stacked (right) in two planes. 
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5.5 Pulse transformer design 

 

As seen in the previous section various factors affect the design and performance of the 

transformer and there exists no unique solution to satisfy all design constraints. An effort 

to modify a parameter during design results in automatic change in another, typically 

resulting in undesired response. The best example would be the increase in inductance by 

increasing the number of turns also increases the capacitance and hence decreases 

bandwidth. The suggested starting point is to start with a maximum permissible area for 

the transformer based on operating frequency and use a software based approach to verify 

the performance. A systematic design flowchart is presented in section 5.9. A design 

approach based on fundamental understanding of CPT and simulations is presented in 

following section. 

 

5.5.1 Mathematical Analysis of CPT 

 

Mathematical analysis of the transformer provides insights that help to design the CPT. 

The turns ratio in the transformer is assumed to be unity in following analysis. This 

simplifies the analysis to some extent while being extendable to transformers with non 

unity transformation ratio. The transformers can be represented using a T or π equivalent 

circuit. For simplicity the ‘T’ equivalent circuit of the transformer used for the 

mathematical analysis is shown in Figure 5-3.  The model includes the parasitic 

capacitances and resistance of the transformer winding. The behavior of the transformer 

is also dependent upon the source and load characteristics and thus are included in the 

model. Applying nodal analysis in the s domain, the transfer function of the equivalent 

circuit in Figure 5-3 is obtained. Since the overall transfer function is very complicated 

with fourth order terms in numerator and denominator, suitable simplifying assumptions 

are made to reduce the complexity. 
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Figure 5-3. Equivalent circuit model of the transformer including parasitic, source and load 

components. 
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[5-4] 

 

It is reasonable to assume the leakage inductance of the primary and secondary windings 

and their dc resistances are equal for a 1:1 transformer. Though this does not reduce the 

order of the system, it greatly reduces the number of parameters. The simplified transfer 

function is given in 5-4. With use of Matlab®, the frequency response of the transfer 

function is observed for nominal values of the components. The values are based on 

previous reports on CPT and given source and load specifications for this work . Figure 

5-4 shows the magnitude and phase response of 1) simplified system (blue curves 

Rlp=Rls=1000 ohms, Rg = 2ohms), 2) simplified system with Rlp=Rls=0 (green curves), 

and 3) simplified system with Rlp=Rls=Rg=0 (red curves).   
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Figure 5-4. Bode plots of the complete system with several approximations. 

 

It can be clearly seen that the dc resistance of the primary and secondary coils along with 

the generator resistance influence the low frequency gain of the system. The response for 

an ideal source with zero source resistance is largely different from a practical source. 

Hence the parasitic resistances of the windings along with the generator resistance are the 

limiting factors that set the lower operating frequency for transformer. 

 
Conventionally the gate drive transformers referred as pulse/video/broadband 

transformers are analyzed with the rise time, top of the pulse and fall time of the input 

pulse in mind. Based on the different pulse parameter subsections, corresponding 

equivalent circuits are developed by elimination of non-dominant components. This 

typically results in low and high frequency models. 

 

5.5.1.1 Rise time analysis 

 
A high frequency equivalent circuit model is considered for the rise time analysis of the 

transformer. Figure 5-5 shows the equivalent circuit corresponding to pulse rise time.  
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Figure 5-5. Equivalent circuit for the rise time of the input pulse. 
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Applying nodal analysis the transfer function of the system is obtained and presented in 

5-5. It is reasonable to assume that the load resistance is much greater than source 

resistance, as in the case of typical high side switch being a FET. Further assumptions are 

made such as equal leakage inductance in primary and secondary (1:1 turns ratio) and 

negligible resistance for the windings, to represent the transfer function as a standard 

second order system. 

Comparing the derived transfer function with standard second order system, the natural 

resonance frequency of the system and the damping ratio are given by equations 5-6 and 

5-7  respectively. The rise time is given by equation 5-8. 
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The load capacitance, load resistance and rise time are usually specified as design inputs. 

It is also desirable to obtain a damping coefficient less than 0.707 to satisfy a critical 

damping requirement. Therefore using the given values in the equations 9-1 and 9-2 a 

relation between the leakage inductance and source resistance can be obtained. For a load 

capacitance of 200 pF in parallel with 2KΩ and a rise time of less than 50nS, leakage 

inductance and source resistance requirements are as given in equation 5-9 and 5-10. 

 

HLl
7105.50 −×≤≤      [5-9] 

 

)10510414.1( 65
llg LLR ⋅⋅−⋅⋅=    [5-10] 

 
In the application under consideration for this work the source resistance of the drivers is 

fixed to the lowest possible value while avoiding under-damping. As seen from the 

previous section an ideal source with zero resistance provides excellent low frequency 

response. In the current work the generator resistance is given to be 2 ohms. Therefore to 

satisfy the critical damping constraint with this source resistance, the leakage inductance 

has to be lower than 0.2 nH. This is a very small value and cannot be obtained in practice. 

Hence it is not possible to obtain the desired rise time for given conditions with a 

critically damped system. However the damping requirement shall be relaxed. The 

resulting low damping coefficient results in oscillatory behavior for a unit step input. The 

step response of the rise time equivalent circuit (red curve) and the complete equivalent 

circuit (blue and green curves) are shown in Figure 5-6. The overshoot value is much 

higher in approximated rise time equivalent circuit response compared to the complete 

system. This is an indicator of the trade off in accuracy due to various assumptions made 

in the rise time transfer function derivation. 

 



74 
 

  
Figure 5-6. Step response of the transfer function representing  
the rise time equivalent circuit and complete equivalent circuit. 

 

Therefore a suitable option is to limit the leakage inductance to meet the required rise 

time and trade off the low damping. In special cases an external series resistance can be 

added between the source and the primary windings to improve damping. It should also 

be noted that the second cycle representing the oscillation in the figure should not be 

considered since the model is only valid for the rise time duration. 

 

5.5.1.2 Pulse top analysis 

 

In contrast to pulse transformers the gate drive circuitry includes a rectifier at the 

secondary side. The use of rectifiers in the secondary side reduces the constraints in the 

pulse top period. The approximated equivalent circuit for the pulse top duration is shown 

in Figure 5-7. It must be noted load capacitance is considered, ignoring the load 

resistance since the MOSFETs or JFETs provide a capacitive loading to the transformer. 

A complete transfer function of this circuit yields a 5th order system as given by equation 

5-11.  
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A simplified expression obtained by assuming equal leakage inductances and negligible 

dc winding resistance is given in section 5-11. Further assuming that the source resistance 

is greater than the impedance due to leakage inductance, the following relationship is 

obtained. 
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Figure 5-7. Equivalent circuit for the pulse top duration. 

 
 
Equation 5-12 indicates that the response of the system during pulse top duration is 

dominated by the mutual inductance and dictates a low source resistance. Hence a high 

mutual inductance and a low source resistance are preferred. 

The time constant of the primary side series RL circuit imposes a minimum required self 

inductance to keep the power dissipation lower. The droop in secondary voltage is 

proportional to the pulse duration. As a rule of thumb the on time of the circuit has to be 

lower than 10% of the time constant. Hence for a given operating frequency, the 

minimum required self inductance is given by equation 5-13, where Ton=1/f and Rp is 

the sum of the source and primary winding resistance.  
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For a given operating frequency, it is recommended to use a differential buffer to drive 

the transformer since it provides symmetry and twice the gain of single ended circuit. 

Also due to differential switching, the fall and rise time analysis are identical. 

 

5.5.2 Finite element analysis 

 

Finite element analysis (FEA) is useful to analyze the properties of a structure by 

breaking up into smaller pieces. It also helps to understand the behavior of a hardware 

model in less time and cost. Various FEA softwares are used to analyze the behavior of 

inductor and transformers in the literatures. In this study the FEA analysis were carried 

out using “sonnet” software. Based on the simplicity, efficiency and previous reports[44-

61], stacked transformers are selected for use in this work.  

 

For study, a two layer PCB structure with an equal number of turns in the primary and 

secondary winding is considered. A symmetric structure is preferred for reducing the 

FEA time and it also makes the primary and secondary interchangeable. A three 

dimensional view of the stacked transformer structure used in the study is shown in 

Figure 5-8.  A summary of transformer specification is provided in Table 5-1. 
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Figure 5-8. Three-dimensional view of stacked transformer structure. 

 
 

Table 5-1. Specification summary of stacked transformer. 
 

Parameter Specification 

Number of turns – primary 9 

Number of turns – secondary 9 

Width of metal conductor 10 mil* 

Spacing between metal conductors 6 mil 

Dielectric thickness 13.4 mil 

First and second lengths 400 mil 

Relative permittivity 3.4 

Relative permeability 1 

Copper weight 1 ounce 

*1 mil = 25.4 micrometers 

 

The different layers represent the layers of a printed circuit board. The top winding 

(shown in red) is connected to push-pull ports (2,-2) and the bottom winding (pink) is 

connected to ports (1,-1). The power transfer characteristic of the transformer is analyzed 

over the frequency range of 100 KHz to 100 MHz.  

Push –Pull 
ports of 
primary 
winding Push –Pull 

ports of 
secondary 
winding 

Via’s 

Ground 
plane 

PCB layers 
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For validation the \simulated design is sent out for physical fabrication. Roger’s 4350 

dielectric material with one ounce copper trace is used for printing the circuit. The 

selection of PCB material is based on the previous evaluation of 4350 dielectric for 

elevated temperature operation. The high temperature characteristics of these copper clad 

laminates are presented in the appendix section, 11.1 

 

5.6 S-parameter measurements 

 

Scattering parameters, commonly known as s-parameters provide information about the 

transmission and reflection characteristics of an electrical port when a signal is 

transmitted or observed at its terminal. The s-parameter measurements of the fabricated 

structure are obtained using Agilent 8753ES network analyzer. The transmission and 

reflection characteristic as given by the FEA and the s-parameter measurements are given 

in Figure 5-9. In both cases (simulation and measurement) the de-embedded data is being 

shown. The frequency response of the test setup has been calibrated and removed by 

performing the SOLT (Short Open Load Thru) calibration . The figure shows a close 

agreement between the simulated and measured response. 

 

 
Figure 5-9. S-parameters (Transmission S21 and Reflection S11) of the stacked transformer. 

Measurement result versus finite element analysis. 
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5.6.1 Voltage gain versus power gain 

 

The individual circuit parameters of the transformer can be extracted from the measure s-

parameters based on some assumptions. Assuming the inductive impedance is 

significantly larger than the capacitive reactance the inductance of primary and secondary 

winding can be obtained using equations 5-14. Similarly assuming the coupling between 

the primary and secondary is dominated by mutual inductance the mutual inductance of 

the transformer can be obtained using equation 5-15.  
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The coupling co-efficient can be calculated from the total inductance and mutual 

inductance using the equations 5-16.  The extracted values versus frequency is plotted 

and shown in Figure 5-10. 

 

21 LLLK M ××=      [5-16] 

 

[ ] [ ]22 11 KLKLLL PSPLK −=−=    [5-17] 

 

It must be noted that the transmission co-efficient obtained by the parametric extraction 

and the transmission coefficient (S21) measured using the network analyzer are different. 

The calculated coupling co-efficient is the voltage gain whereas the S21 is the power gain 

of the two port network. The power gain highly depends on the source and load 

impedance and is maximized when the load impedance is matched to the source 

impedance. In case of matched load and source impedance the power gain is same and  
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Figure 5-10. Extracted values of primary and secondary inductance (Lp, Ls), mutual inductance 

(Lm) and leakage inductance (Llp, Lls). 
 

equivalent to voltage gain. The comparison between the voltage gain and power gain is 

shown in Figure 5-11. The figure illustrates the wide band coupling capacity of the 

transformer. For pulse inputs, which has only half the input in the fundamental frequency 

and the remaining half in the higher odd harmonics, it is recommended to select the 

fundamental closer to lower cut off frequency. For instance a fundamental frequency of 

1MHz is preferred for transferring higher harmonics. However considering the power 

loss associated with lower switching frequency (power lost in primary is inversely  

 

 
Figure 5-11. Comparison of measured transmission coefficient (S21) and the calculated coupling 

coefficient (k). 
 



81 
 

proportional to square of the switching frequency), it is wiser to choose a higher 

fundamental frequency. We have chosen 10 MHz as the fundamental frequency as this 

minimizes the power dissipation and at the same time allows energy from harmonics (3rd, 

5th and 7th) to couple to secondary. 

 

It must be noted that for sinusoidal inputs, transformers with narrow band and high Q 

characteristics are commonly used for maximum efficiency. In such cases the bandwidth 

of the transformer shall be tuned such that the center frequency is the fundamental 

operating frequency. 

 

Mathematical relationship between the power gain and the voltage gain are as follows. 
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For matched load and source resistance, the power gain (Gdb) in decibels is given by 
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where AdB is the voltage gain of the system. 

 

The maximum power transfer theorem states that “maximum power is delivered to load 

when the load impedance is matched to the source impedance”. This can be observed 
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from Figure 5-11 where the S21 exhibit peak value around 20 MHz indicating the match 

between the load and source impedance (50 ohms). 

 

However the maximum power transfer is not essentially same as maximum efficiency in 

most cases. The impedance offered by the primary inductance is directly proportional to 

the switching frequency. Hence a higher switching frequency reduces the peak current in 

the primary side in every switching cycle. Therefore, selecting a switching frequency 

marginally higher than the maximum power transfer frequency is advantageous. The 

higher limit is based on the switching looses in buffer (driver). The CV2f losses in the 

differential buffers sets a point of minimum return as further increase in frequency results 

in reduced efficiency due to switching losses. It must be noted the above argument is only 

valid for gate drives involving FETs that require low input current (voltage controlled 

devices). For high current drive requirements the design has to be correspondingly 

modified. 

 

5.7 High side buffer 

 

Efficient design of buffers for transformer coupled gate drive, driving a non linear load is 

a challenging task. The source and load impedances must be considered to meet a 

critically damped system requirement. The design strategy proposed in Figure 5-13 

illustrates the trade off in rise time, droop and damping due to low buffer resistance. In 

this work the design of high side buffer is based on minimum possible source resistance. 

The output resistance is set to be 3 ohms. This is not the optimum design, however based 

on transformer characteristics external manipulation of source impedance is possible in 

this method.  

 

 

 



83 
 

5.8 Full wave rectifier 

 

As mentioned before a full wave rectifier is used in the secondary side of the transformer 

to rectify the differential output of secondary. The conventional method of using diodes 

for rectification results in considerable forward drop across the diodes and is not efficient. 

Alternative rectification techniques using MOS transistors have been demonstrated in the 

past [80, 81]. In this work a MOS switch based rectifier is used. Figure 5-12 shows the 

method of incorporating MOS switches as full wave rectifiers. The inductive link 

represents a RF power receptor or a secondary of a transformer. The differential signal at 

the transformer secondary provides current to the load through the switches that 

complementarily alternate between each cycle. The current flow corresponding to the 

polarity of input voltage is shown in the figure. The MOS transistors size must be 

optimized for lowest on resistance while minimizing the gate capacitance loading. 

 

LOAD

Inductive 

link
MP1

MP2

MN1

MN2

5.6/

1.4

@32

5.6/

1.4

@32

5.6/

0.7

@32

5.6/

0.7

@32
 

Figure 5-12. Full wave rectifier in CMOS process. 
 

In this work the design of FWR is based on minimum voltage drop (minimum ON 

resistance) across the transistors and a fast rise time. However increasing the size of 

transistors increases the load capacitance at the secondary of the transformer and hence 

can reduce the bandwidth of the system. This results in the typical trade-off between load 
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capacitance and on resistance. Eight (8) parallel instances of the CMOS rectifier shown in 

Figure 5-12 is used as the rectification block. 

 

5.9 Summary of gate drive transformer 

 
Based on these requirements of a system, detailed mathematical analysis and design of 

planar transformer is discussed in the appendix section 5.5.1 There is more than one 

method to design CPT based on the tradeoffs made by designer. One such design flow is 

given in the flowchart shown in Figure 5-13. 

 

The design flow begins with the given parameters like the load capacitance (Cl), load 

resistance (Rl), pulse rise time (Tr), switching frequency (f) etc. The first step is to 

calculate the maximum permissible leakage inductance to satisfy the rise time constraint. 

An alternate approach which satisfies a critical damping requirement is provided where 

the designer is able to custom design the buffer. Second, the minimum required self 

inductance is calculated using the natural time constant of ‘RL’ circuit. As a rule of 

thumb the time constant is chosen to be at least 10 times the switching period. Third, 

based on an assumed coupling factor, for the calculated self inductance in step 2, verify 

that the leakage inductance is not more than the maximum value calculated in step 1. As 

a final check, verify that the impedance due to mutual inductance is much higher than the 

source resistance. The final design involves an iterative selection process. Adjusting the 

switching frequency is the easy method to satisfy many design constraints. 

 



85 
 

 
Figure 5-13. Design flowchart for gate drive transformer design. 
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5.9.1 Simulation results 

 

The gate drive circuitry is simulated prior to fabrication. Figure 5-14 shows the schematic 

setup for gate drive verification. Experimentally obtained two port parameters of the 

planar transfer is used as a two port network in simulation. The oscillator, buffer, FWR 

and discharge circuits are also the circuits designed for this work. The simulated 

waveforms related to the gate drive circuitries are presented in Figure 5-15. The figure 

shows the (differential) voltage across the primary and secondary windings, the fall and 

rise characteristics of the rectified voltage with the control signal. The source resistance is 

about 3Ω and load capacitance and resistance are 200 pF and 2KΩ respectively. The 

switching frequency is 10 MHz. The average value of rectified voltage is about 2.9V 

which is sufficient to drive the power JFET in deep triode. The rise and fall times are 

lesser than 50 nS. 

 

 
Figure 5-14. Schematic setup for the high side gate drive simulation. 
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Figure 5-15. Waveforms at various stages in the high side switching Circuit. 

Top- Primary and secondary voltages, Middle- Differential secondary voltage,  
Bottom – Control and rectified voltage. 

 
 

5.9.2 On chip - gate drive transformer 

 
Transformers integrated on silicon chips were previously reported for RF applications 

[82-100]. With generation 2.0 control chip, a diagonally stacked transformer is fabricated 

on the same chip as controller to experimentally observe its characteristics. The 

fabricated control chip and the on chip transformers are illustrated in Figure 5-16. The 

transformer’s primary and secondary are formed by planar spiral “metal 3” and “metal 1” 

windings, respectively. “Metal 2” is used to bring out the inner winding to G-S-G pad 

termination. The design parameters of the transformer are summarized in Table 5-2. 
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Figure 5-16. Generation 2.0 control chip with integrated gate drive transformer. 
 

Table 5-2. Design parameters of on chip gate drive transformer. 
Parameter Remarks 

Physical size ~ 05 mm Χ 2.8 mm 

 Primary Secondary 

Metal layer Thick metal MT Metal 1 

Conductor width 30 µm 30 µm 

Conductor spacing 30 µm 30 µm 

Sheet resistance 9 mΩ/□ 48 mΩ/□ 

No of turns 3 3 

Physical length ~ 11.2 mm ~ 11.2 mm 

 

Raw measurement of the inductance and quality factor of these inductors are performed 

using network analyzer. The observed inductance and the quality factor for a range of 

frequencies are shown in Figure 5-17. The value of inductance is as expected and the 

quality factor is troublesomely lower due to high resistance conductors. Significant 

improvements to the quality factor can be achieved by using multilayer routing. The 

mutual coupling between the windings is of greater importance. However, the self 
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inductance limits the minimum frequency of operation. The coupling factor can also be 

improved by a more symmetric structure and utilizing more physical area. 

 

  
Figure 5-17. Measured inductance (right) and quality factor (left) 

of the on chip gate drive transformers. 
 

To obtain the performance characteristic of the integrated transformer, the control chip is 

packaged on an 8 pin cerdip. The control signals are manipulated to produce the required 

drive functionality. The gate drive transformers are driven by the differential buffers. The 

input frequency is varied from 50MHz to 300MHz using VCO. The test circuit is shown 

in Figure 5-18. The differential output voltage can be seen from the top trace of Figure 

5-19. The duty clamp functionality cannot be bypassed in the controller and hence is 

present in the system. 

 
Figure 5-18. Protoboard developed to demonstrate the functionality of on chip gate drive. 
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Figure 5-19. Gate drive characteristic waveforms of the on chip gate drive prototype.  

(Right: a zoomed-in view of the rising edge of the waveform) 
 

In order to verify the functionality of integrated gate drive in real system a proto board is 

built using the integrated transformer instead of the PCB transformer. Packaged SiC 

JFETs are used as high side switch and the controlled is programmed for 3.3V output 

voltage. The demonstration board is shown in Figure 5-20.  

 

 
Figure 5-20. SMPS prototype using integrated gate drive transformer. 

 

Clamped gate drive signal 

gate 

source 

clamp 
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The measured results for no load operation are show in Figure 5-21. The output voltage 

(1) controller voltage VCC (2), the error amplifier output voltage (3) and the voltage at 

the gate terminal (4) are shown in the figure. It can be observed that a clean output 

voltage is obtained using the gate drive and hence presents as an attractive solution for 

the future designs. 

 

 
Figure 5-21. Performance of the SMPS using integrated gate drive. 

4) Gate voltage 

2) VCC 
1) 3.3V Output 

3) Error amp output  
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5.9.3 Measured results 

 
The fabricated gate drive circuitry is experimentally tested and its characteristics are 

observed. Figure 5-22. The input frequency is selected to be 10MHz. The voltage 

observed at the source terminal (Vsource) and the gate terminal (Vgate) is represented by 

the bottom traces respectively. The effective gate source voltage is represented by Vgs. 

The timing functionality of the duty clamp circuit is represented by Vramp. The duty 

clamp circuitry ensures a preset maximum duty cycle operation and is discussed in detail 

in section 6.3.7 

 

 
Figure 5-22. Measured characteristics of the gate drive circuitry.
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Chapter 6  

 

6.1 DC-DC Buck converter design 

 

An overall system block diagram of a dc-dc synchronous buck converter is shown in 

Figure 6-1. As mentioned before the feed forward switch and filter network and the V2 

control loop can be noted in the figure. In addition to these primary blocks the auxiliary 

house-keeping units like the over temperature monitor, under voltage lockout are also 

shown.  

 

 
Figure 6-1. Detailed block diagram of synchronous buck converter with v2 control mechanism. 
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A non-overlapping clock generator provides input signal to the high side and low side 

switches (HS and LS), based on the control block output. The control block monitors the 

inputs from the V2 control and the auxiliary control circuits. A duty clamp circuit is used 

to limit the duty cycle to the switches to a preset amount. Other than the discrete 

semiconductor switches and passive L-C filter components analog building blocks are the 

basis of control loop and the auxiliary electronics. These building blocks and the house-

keeping circuits are discusses in the following sections. 

 

6.2 Analog building blocks 

 

6.2.1 Voltage reference 

 

The steady state dc output voltage of the voltage regulator is based on a reference 

voltage. This internally developed or externally applied reference voltage is expected to 

be independent of temperature, semiconductor process and supply voltage to obtain a 

stable required voltage at output. Designing a voltage reference for wide temperature 

range is a challenging task. Highly compliant model files and good knowledge on analog 

circuit layout techniques are important. In this work a voltage reference based on MOS-

gated diodes is adopted. The schematic of the voltage reference is shown in Figure 6-2.  
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Figure 6-2. Schematic of a voltage reference circuit. 

 

The operation of the circuit is based on the development of a PTAT (Proportional to 

Absolute Temperature) current and a CTAT (Complementary to Absolute Temperature) 

current. The resulting zero temperature co-efficient current is passed through a resistor to 

develop a required reference voltage(s). An important design strategy is to maintain the 

operating current for the diode legs (branches) in log-linear characteristic regime. In 

addition the areas of the resistors and diodes must be adequate to achieve the desired 

matching. The design equations are given by 6-1 through 6-6. 

 

( )
R

kVn
I T

PTAT

ln××
=        [6-1] 

 

RL

V
I D

CTAT ×
= 1         [6-2] 

 

( ) 1DREF V
L

N
NVTnV ×+××=      [6-3] 

 



96 
 

( ) 







∂

∂
×××

∂

∂

=

T

V
kNn

T

V

L
T

D

ln

1

      [6-4] 

 

( ) 






+××
=

L

V
kVn

V
N

D
T

reqREF

1

,

ln
      [6-5] 

 

( ) 







∂

∂
×+








∂

∂
×××=

∂

∂

T

V

L

N

T

V
kNn

T

V DTREF 1ln    [6-6] 

 

 

In this study, a 400 mV reference voltage is chosen based on previous measurement of 

diodes. The measure reference voltage across the temperature range of 27 to 275°C is 

shown in Figure 6-3. 

 

 
Figure 6-3. Measured value of reference voltage at various temperatures. 
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6.2.2 Comparator 

 

A comparator circuit compares the two signals at its input and provides a digital output. 

The reference voltage of 400 mV demands PMOS input design for proper operation. The 

schematic of the comparator is given in Figure 6-4. The RP and RN transistor represents 

regular high threshold voltage (Vt) devices. The PL and NL devices are low Vt devices 

that are used in series with high Vt devices. This novel stacking of high Vt and low a Vt 

transistor yield higher early voltage and also control the kink effect. As the comparator is 

used in the fast feedback loop, the bandwidth of the comparator must be as fast as 

possible at it will set the switching or clock frequency of the system. The cascaded 

configuration of error amplifier and comparator affects the feedback loop gain and hence 

the stability of the system. The extracted value of open loop gain of the comparator at 

elevated temperatures is given in Figure 6-5. In case of transient response the intrinsic 

and transition time are major factors that decide the system performance. The measured 

values of delays are given in Figure 6-6. 

 

 
Figure 6-4. Schematic of comparator. 
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Figure 6-5. Open loop gain of comparator at elevated temperatures. 

 

 
Figure 6-6. Transient characteristics of comparator at elevated temperature. 

 

6.2.3 Hysteretic comparator 

 

A hysteretic comparator is a special type of comparator with a memory. The memory of 

the comparator is called the hysteretic window. Unlike a normal comparator with two 

inputs, the hysteretic comparator consists of single input and two reference inputs. The 

reference inputs set the hysteretic window of the comparator. The upper threshold and 
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lower threshold determines the transition of the state at the output. In this work the 

hysteretic comparator is realized using dual comparators and a digital logic as shown in 

Figure 6-7. The performance of the hysteretic comparator at various temperatures is 

shown in Figure 6-8. A hysteretic comparator is a building block for the under voltage 

lockout circuitry discussed in section 6.3.5 

 

 
Figure 6-7. Block diagram illustrating the implementation of hysteresis using dual comparators. 

 

 
Figure 6-8. Memory window of hysteretic comparator over temperature range of 27°C to 275°C. 

 

6.2.4 Amplifier 

 

An error amplifier is required to amplify the error signal between the instantaneous 

output voltage and the reference voltage. Since the output and gain of the error amplifier 

sets the dc accuracy, the input offset at the error amplifier inputs must be considered. As 
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mentioned before, the error amplifier is used in the slow feedback loop and hence its 

bandwidth is not of limited concern. 

 

In this design long channel transistors with considerable area are used for designing the 

input and mirroring transistors to obtain better matching and higher open loop gain. This 

helps in reducing the input offset voltage, 1/f noise and control  the kink effect of the 

OTA. The transconductance of the error amplifier is chosen based on the availability of 

high temperature compensation capacitors . This is previously discussed in section 4-2. 

The schematic of the error amplifier is shown in Figure 6-9. 

 

 

Figure 6-9. Schematic of the error amplifier circuit. 
 

6.3 Supporting blocks 

 

In addition to the basic building blocks several other digital gates and oscillators are 

required for the complete system. With use of the basic building blocks discussed in the 
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previous section several supporting blocks are also developed for use in the design. These 

are discussed in the following section. 

 

1. System oscillator 

2. Gate drive oscillator 

3. Low side buffer 

4. Shunt regulator 

5. Zener regulator 

6. Non overlap clock generator 

7. Under voltage protection 

8. Over current protection / Startup circuit 

9. Duty clamp circuit 

10. Power on reset 

 

6.3.1 Oscillators 

 

6.3.1.1 System oscillator 

 

A system oscillator sets the operating frequency of the PWM converter during normal 

operation. Various methods exist to implement oscillator circuits. In order to improve the 

versatility of the control system to various converters, a voltage controlled oscillator 

(VCO) is implemented in this work. As suggested by the name, the oscillation frequency 

of a voltage controlled oscillator is a function of a control voltage. In this work a Schmitt 

trigger based design is adapted. The schematic of the oscillator is shown in Figure 6-10.  
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Figure 6-10. Schematic of the Schmitt trigger based oscillator circuit. 

 

A current starved inverter circuit charges and discharges the input capacitor of the 

Schmitt trigger. The current is set by the externally applied control voltage. The trip 

points of the Schmitt trigger are based on the device dimensions. The oscillation 

frequency is given by equation 6-7. The design is based on 100 KHz oscillation 

frequency for 0.8 V control input. 

 

( )LH
OSC VVC

I
f

−××
=

2
    [6-7] 

 

where,  I – Controlled current; function of control voltage. 

 C – Capacitance at input of Schmitt trigger 

 VH – Upper trip point of Schmitt trigger 

 VL – Lower trip point of Schmitt trigger 

 

It must be mentioned that the issues associated with oscillator clock jitter is considered to 

be negligible in this case. Also due to device mismatches, a non 50% duty cycle is 

expected. The measured frequency characteristic of VCO at various temperatures is 

shown in Figure 6-11. The oscillator has a near linear frequency response between 100 

KHz and 200 KHz at all temperatures and hence satisfies the design requirement. 
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Figure 6-11. Control voltage versus oscillating frequency of VCO at different temperatures. 

 

6.3.1.2 Gate drive oscillator 

 

Gate drive oscillator is used to provide differential clock for the high side gate drive 

transformer. The gate drive transformers are driven by the clock buffers as described in 

previous chapter, 5.7It is desirable that the frequency of operation of gate drive circuitry 

is orders of magnitude higher than the control loop frequency by at least 20 times to 

minimize the turn on delay of high side gate drive. This requires a standalone oscillator 

for its operation. In this work the system oscillator is reused without the capacitor at the 

input of Schmitt trigger. The absence of capacitor makes the rise and fall delays shorter 

and in turn makes the switching frequency higher and in turn the frequency if oscillation 

greater . This replaces the value of ‘C’ in equation  

 

( )LH
OS C VVC

I
f

−××
=

2

    [6-7 ] 

 

with the parasitic capacitance present in the node. The voltage control mode provides a 

convenient means of selecting the operating frequency to match the transformer 

characteristics to obtain maximum efficiency if desired. The design is capable of 

switching from few KHZ to 50 MHz. It is not possible to explicitly measure the output 
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waveform since addition of probe pads to the node adds parasitic capacitance. This along 

with use of long probing leads result in instability and or loading of the circuit at high 

frequencies. 

 

6.3.2 Low side buffer 

 

Low side buffer is used to drive the gate capacitance of the synchronous switch at the 

system clock frequency. The design of buffers for low side switch is relatively straight 

forward. The design is based on the capacitive load (CISS) the silicon carbide JFET and 

the required switching rise/fall times. The input capacitance of the low side JFETs vary 

with their capabilities and process. A worst case capacitance of 200 pF is assumed in this 

design based on measured data presented in chapter 3. If the value of CISS is found to be 

great, multiple buffers can be  paralleled to achieve the desired specification. The current 

required for a known capacitor load, CISS and a predetermined slew rate is given by 

equation 6-8. 

 

dt

dV
Ci ISS×=       [6-8] 

 

For a 200 pF capacitance and a 3V/50nS slew rate, the current required is greater than 12 

mA. A capacitive loaded buffer circuit is also equivalent to a RC delay. The time 

constant of the circuit is given by equation 6-9. Using a load capacitance value of 200 pF 

and a rise / fall time requirement of 50nS, the requirement of ON resistance of the 

transistor, from measurements is found to be less than 115 ohms. This criterion is easily 

met with the buffer designed using capacitive equation. 

 

CR××= .2.2τ      [6-9] 

 

From peregrine data sheet, ‘50/0.5’ device provides 16 mA of current for typical model 

and at 25°C. Assuming a pessimistic ‘4 X’ degradation for 275°C and 1.6 device length, 

the final dimension required is approximately, ‘600/1.6’. Starting with ‘1 X’ inverter of 
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‘2.8/0.8’ and ‘2.8/1.6’ and keeping the lengths constant, the tapering of buffers is as 

follows 

 

Tapering – 3@3/, 5@6/, 5@20/, 20@15/1.6 

 

The transistor level schematic and the simulated characteristics are shown in Figure 6-12. 

The performance of the buffer circuit at elevated temperatures and various process model 

files are given in Figure 6-13. 

 

 
Figure 6-12. Schematic of the low side buffer 
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Figure 6-13. Input and Output waveforms of the low side buffer across typical, slow and fast corner 

at 25, 150 and 275°C 
 

6.3.3 Internal voltage generator 

 

6.3.3.1 Shunt regulator 

 

The input voltage to the dc-dc converter can be arbitrary and is usually limited by the 

power switches via either the standoff voltage or the on resistance. The control circuitries 

operate under a 3.3 volts supply voltage. This power is derived by using an on-chip shunt 

regulator. Since the circuitry is on-chip the maximum input voltage is limited by the 

breakdown strength of the substrate. Proper layout care has to be taken to avoid excessive 

field strengths between adjacent diffusion regions in transistors. The schematic of the 

internally implemented voltage reference is shown in Figure 6-14. The physical size of 

this block is determined by the maximum load current and the input voltage. Higher load 

current requires wider pass gates in voltage absorber (reducing Ron) at lower operating 
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voltage. Lower load current requires wider shunt gates in voltage limiter at highest input 

voltage. The performance of the raw voltage shunt regulator is shown in Figure 6-15. A 

trade-off between the two is chosen here. It is important to note that the stability of the 

circuit is dependent upon the capacitors C1 and C2. The value of C2 has to be much 

larger than C1 to avoid instability and to prevent oscillations at output. 

 

 
Figure 6-14. Internal power generation using shunt regulator. 

 

 
Figure 6-15. Characteristics of the shunt regulator circuit for various load currents. 
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As shown in the figure there are 3 main sections in the regulator. The first section is the 

voltage absorbing section where the high voltage is input is dropped to a lower voltage in 

a cascading fashion. The number of cascaded stages imposes a lower limit on the input 

voltage. The middle section is an internal reference generation part. The final section 

comprises a comparator unit and a shunt arm. The comparator compares the reference 

voltage with the instantaneous output voltage and controls the shunt transistors 

accordingly. The shunt transistors vary the output impedance in order to maintain the 

output voltage at required level. 

 

6.3.3.2 Zener regulator assisted startup 

 

The shunt regulator discussed above suffers from a basic limitation of power dissipation. 

The power lost in the shunt path to maintain a stable operating voltage increases 

proportionally to the input voltage and hence is not desirable. An alternate approach is 

proposed using Zener behavior of transistors is shown in Figure 6-16. Rather than a 

continuous power supply generator the proposed circuit kick-starts an auxiliary power 

supply that powers the main system. The operation of the circuit is described as follows. 

 

The peregrine semiconductor fabrication process used in this work does not provide 

Zener diodes. The reverse transistors breakdown of the transistors mimics the operation 

of a Zener diode and hence adopted as substitute. However unlike a Zener diode where 

the reverse breakdown voltage is limited by process, the breakdown voltage of the 

transistor is dependent upon the channel length of the device.  
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Figure 6-16. Zener based startup circuit for internal voltage generation. 

 

The transistors M1s and M2l provide a gate source voltage for a discrete high voltage 

(HV) JFET/ MOSFET device. The gate-source voltage developed is due to difference in 

breakdown voltage of the short channel and long channel NMOS. The diode D1 and D2 

feeds the internal power supply line to start the auxiliary control power supply. The 

control power supply develops the required voltage which is feed into the internal power 

line through diode d3. A power on reset circuit operating under the main power rail shuts 

down the startup circuit preventing continuous power dissipation. 

 

The inherent drawback of the design is the requirement of an external discrete transistor 

(i.e. SiC JFET) to absorb the high voltage after start up cycle. From experimental results 

the breakdown voltage of the long channel and short channel devices are measured at 

different ambient temperatures. Figure 6-17 shows the obtained results. Since the 

breakdown voltage of the M1s is between 4 V to 6 V the series connected diodes D1 and 

D2 helps to reduce the voltage level applied to control power supply.  
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Figure 6-17. Breakdown characteristics of short channel (10 µm / 0.8 µm, left)  

and long channel (10 µm / 1.0 µm, right) NMOS 
 

6.3.4 Non overlap clock generator 

 

Non overlap drive signals are a must for high side and low side switch control. 

Overlapping clocks create “shoot through” and the input supply is shorted to ground. This 

highly degrades the performance of a converter. Designing non overlapping clocks with 

automatic delay control is of great interest. In this work a preset delay time is fixed based 

on the turn off times of the silicon carbide JFETs. The delay is based on a “RC” time 

constant. Additional pins are provided to increase this delay by externally addition 

capacitance to the RC network. The schematic of the non overlap clock generation circuit 

is shown in Figure 6-18. It must be noted that the turn of the switch is delayed whereas 

turn off is immediately applied by use of an “AND” gate. 

 

 
Figure 6-18. Generation of non overlapping drive signals. 
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6.3.5 Under voltage protection 

 

The control loop circuitries require a stable input voltage for its operation. The under 

voltage lock out (UVLO) circuitry continuously monitor the supply voltage to the 

controller. In case of a droop in the supply voltage below a preset limit the switching 

operation is stopped. The schematic of the UVLO circuitry is shown in Figure 6-19. In 

order to avoid noises a range window has been set using a hysteretic comparator. The set 

voltage and trip voltage are set to be 2.7 V and 3.0 V. The selection of these voltage 

levels is based on the measured characteristics of individual analog blocks and their 

power supply rejection ratios. A more important factor is the gate drive circuitry which 

requires a worst case voltage of 2.7 V (at low temperature) at primary side to achieve a 

minimum required turn on voltage (2.1 V for SiC JFET) on the secondary side. Reference 

voltages corresponding to these set and trip voltages are derived from the system 

reference voltage using the resistive divider networks as shown in the figure. The 

operation of the circuit is shown in Figure 6-20. 

 

 
Figure 6-19. Under voltage lock out circuitry. 

 
 



 

Figure 
 
The measured characteristic of the under voltage lockout circuitry is shown in 

6-21. The input supply voltage (VDD) is swept up and down and the response of the 

UVLO circuitry is observed. The result shows a wider hysteresis window for high 

temperature (275°C). 

 

Figure 6-21. Measured characteristics of UVLO circuitry at room temperature and 275°C.
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Figure 6-20 Operation of under voltage lock out circuitry. 

The measured characteristic of the under voltage lockout circuitry is shown in 

. The input supply voltage (VDD) is swept up and down and the response of the 

UVLO circuitry is observed. The result shows a wider hysteresis window for high 

. Measured characteristics of UVLO circuitry at room temperature and 275°C.

 

The measured characteristic of the under voltage lockout circuitry is shown in Figure 

. The input supply voltage (VDD) is swept up and down and the response of the 

UVLO circuitry is observed. The result shows a wider hysteresis window for high 

 
. Measured characteristics of UVLO circuitry at room temperature and 275°C. 
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6.3.6 Over current protection 

 

A startup circuit is implemented to prevent the sudden inrush of current through the 

system when it is turned on. Theoretically V2 controller does not require a startup since 

the switching is based on the dc reference voltage set by the error amplifier. The RC 

charging of the compensation capacitor determines the startup characteristics. In this 

study an independent startup circuit is implemented using a controlled current source. 

The compensation capacitor is charged using this current source until a preset level is 

reached after which the start up circuit is disabled and normal operation is started. The 

block diagram of startup circuit is shown in Figure 6-22. 

 

 
Figure 6-22. Startup implementation. 

 

6.3.7 Duty clamp circuitry 

 

In order to set a maximum ON time in a switching cycle, a duty clamp circuitry is 

implemented. As mentioned before the V2 control enables turn on of power switch to 100 

percent duty cycle which is a continuous ON state. This will cause self heating of the 

power switches as described in chapter 3 and hence would severely affect the system 

performance. The schematic view of the implemented duty clamp circuitry is shown in 

Figure 6-23. The duty clamp operation is based on a RC time constant. The RC charging 

waveforms and output waveforms of the circuit is given in Figure 6-24. 
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Figure 6-23. Schematic of the duty clamp circuit. 

 

 
Figure 6-24. Duty clamped output waveform and the voltage across the capacitor. 

 

6.3.8 Power on reset 

 
A power on reset signal is a control signal to start the operation of various blocks of the 

control system. Normally in a digital design a power on reset circuit is used to reset 

(initialize) the state of flip-flops (registers) to a required binary level. The voltage 

reference block serves as a basic unit in the feedback loop. In order to hold the controller 

operation until a stable reference voltage is obtained from the voltage reference block a 

power on reset signal is used. A power on reset signal places the controller in reset mode 
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for long enough to ensure a stable reference voltage. The schematic of the power on reset 

circuit is shown in Figure 6-25. The characteristic operation of the power on reset circuit 

is based on the rise time of the raw input power (VDD). Typical rise time for modern 

electronics circuits are in order of sever hundred µS to few mS. The response of the POR 

circuit for a 10 mS rise time at room temperature and 275°C is given in Figure 6-26 and 

Figure 6-27, respectively. 

 

 
Figure 6-25. Schematic of the on chip power on reset circuitry. 
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Figure 6-26. Transient response of power on reset circit for 10 mS VDD rise time at room 

temperature. 
 

 
Figure 6-27. Transient response of power on reset circuit for 10 mS VDD rise time at 275°C. 
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6.4 Layout 

 

The complete control circuitry that includes the auxiliary electronics is implemented in 

the Peregrine 0.5 micron SOI (FC) process. The pin configuration of the controller is 

shown in Figure 6-28. The overall layout view including the input-output pad frame is 

shown in Figure 6-29. The total die size is 3 mm × 2 mm. The individual circuits are 

pointed out in the figure. The layout of the controller is shown in. The die snapshot of the 

fabricated V2 controller is shown in Figure 6-30. 

 

 
Figure 6-28. Pin configuration of V2 control chip. 



118 
 

 
Figure 6-29. Layout snapshot of the V2 controller chip. 

 

 
Figure 6-30. Fabricated dice of the controller chip. 
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Chapter 7  

7.1 Passive devices 

 

Inductors and capacitors are inevitable in power supply designs. Effort to integrate these 

components on chip has been limited to extremely low power applications. Medium and 

high power converters require off chip, discrete components for filtering the output. 

Identification of passive components for high temperature design is not a trivial task. 

Commercially available passives are tested only up to 125°C for military and automobile 

market and in some cased to 200°C for niche applications. The selection of inductors and 

capacitors used in this work is discussed in the following sections. 

 

7.1.1 Inductors 

 

Molybdenum Permalloy power (MPP) cores are adopted for use in the output filter. The 

selection is based on the previous reports of high temperature behavior of MPP cores 

[101-103]. Selection of inductors is much less of a hassle compared to the other 

components. MPP cores are commercially available at various sizes from several 

vendors. The size of the core depends on the inductance requirement and the permeability 

of the core. The formula for computing inductance of a coil is given by equation 7-1. 

 

Inductance of coil,   
l

AN
L ro ×××
=

2µµ
     [7-1] 

 

Where,    

µ0 – permeability of free space = 4π × 10-7 H/m
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µr – relative permeability of core material 

N – number of turns 

A – area of cross-section of the coil (m2) 

l – length of coil (m) 

The performance of MPP core inductors evaluated for use in the design is shown in 

Figure 7-1. A nearly independent characteristic with temperature is evident from the 

result. The quality factor of the inductor is also given in secondary axis of the figure. 

 

 
Figure 7-1. Performance of MPP core inductors over the temperature range of 25 to 275°C. 

 

7.1.1.1 Calculation of load inductance 

 
The value of load inductance required for the buck converter can be computed from the 

switching frequency, required load current ripple, input and output voltage. The transient 

current through an inductor and voltage across the inductor can be described by equation 

7-2. By rearranging the equations, the inductance is given by equation 7-3.  

 

dt

dI
Le ×=        [7-2] 

 

I

TVV
L ONoutin

∆

×−
=

)(
      [7-3] 
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The equation is rewritten in terms of duty cycle (Vout/V in) and switching frequency (fsw). 

Hence the final equation for calculating the inductance is given by 7-4. 
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    [7-4] 

 

where RF is the ripple factor (usually around 30 percent).  

The above equation yields a minimum required value of inductance to keep the controller 

in continuous conduction mode.  

 

7.1.2 Capacitors 

 
 

Capacitors are the primary limitations for high temperature electronics. Capacitor 

solutions available for high temperature operation are extremely expensive and often 

dominate the overall system cost. Overcoming the cost issues is only one issue. High 

capacitance value capacitors rated for 275°C do not exist commercially. Exhaustive 

efforts were made in this case to find the suitable parts. Commercially available ceramic 

capacitors of COG and NPO type do not satisfy the capacitance requirement of the output 

capacitor. As alternatives tantalum and conductive polymers are tested for their 

performance at elevated temperature. Figure 7-2 shows the capacitance of 47 µF 

conductive polymer and 220 µF tantalum capacitors at various temperatures. It must be 

stated that these capacitors are significantly expensive and hence contribute a major 

fraction of total system cost. 
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Figure 7-2. Performance characteristics of high capacitance capacitors at elevated temperatures. 

 

 

The ESR of the capacitor can be obtained from the dissipation factor of the capacitor 

using equation 7-5. The measured dissipation factor for the high valued storage 

capacitors are shown in shown in Figure 7-3. 

 

C

DF
ESR

×
=
ω

     [7-5] 

 

 

 
Figure 7-3. Dissipation factor of conductive polymer and tantalum capacitor. 
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7.1.2.1 Calculation of load capacitance 

 

The value of load capacitance is based on energy transfer between the inductor and the 

transient load with the capacitor. In order to provide a “switching noise” free output the 

capacitor has to compensate for the transient disturbance caused by the inductor current 

and the load changes. For instance a microcontroller (load) going into a reset mode after a 

complex computation would put the power supply from a near full load to no load 

transient. This could result in output voltage overshoots with output voltage potentially 

reaching destructive levels. To avoid such effects the maximum energy capacity of the 

capacitor should be larger than that of the inductor. The following equations describe the 

transient effects and the minimum required value of capacitance for a given specification. 

 

The r.m.s value of the overshoot voltage above the nominal output voltage is given by 

equation 7-6. 

 

 VoutVosVoutVoutVosVoutrmsVos −+=−= 22),(   [7-6] 

 

Based on the energy balance, during transient change from full load to no load, the 

voltage across the capacitor has to increase to sustain the flow of current through the 

inductor. This results in a charge (energy) balance between the inductor current and 

capacitor voltage as given by equation 7-7. 
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Rearranging,   
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Vos     [7-8] 

 

Substituting 7-8 in 7-6, we get 
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The required value of capacitance is given by  
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Choosing the maximum tolerable overshoot and using the pre-calculated inductance, the 

minimum required capacitance is obtained from equation 7-10. 

 

7.1.2.2  Equivalent series resistance 

 

ESR of the load capacitor is an important factor for stability of the control loop. This has 

been previously discussed in section 4-2. In case of transient response the ESR of the 

load capacitor sets the lower limit on the ripple in the output voltage. For a given current, 

the ESR ripple is given by equation 7-11. In cases where lower ripple is required, a 

parallel combination of capacitors is used. 

 

ESRIV
ESROUT ×∆=      [7-11] 

 

7.1.2.3 Compensation capacitor 

 

In addition to the load capacitor the V2 controller requires a compensation capacitor for 

stable operation of the system. The capacitance values of compensation capacitor are 

relatively lower than the load capacitor and hence COG and NPO type dielectrics are best 

suited for high temperature operation. Though these capacitors are relatively expensive, 
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they are readily available commercially [104]. The performance of a COG type capacitor 

at elevated temperatures is shown in Figure 7-4.  

 

 
Figure 7-4. Performance of ceramic (COG) type capacitors for high temperature applications. 

 

7.2 Hybrid packaging techniques 

 

This study involves integration of silicon carbide JFETs, SOS control dice and handful of 

passive components for a complete buck converter design. Making an off the shelf 

components involves a major task of packaging the device for commercial use. The 

packaging issues are often overlooked especially for high temperature designs. In these 

cases packaging solutions have to be custom designed.  

 

The starting point of the packaging issue is the substrate to be used. The commonly used 

ceramic packages are not good for high temperature designs as the package material. The 

commercially available alumina (Al2O3) is not an efficient thermal conductor. To reduce 

the thermal stress at the junctions of the power switches, aluminum nitride is commonly 

used. The thermal conductivity of aluminum nitride is 200 W/m-K whereas the same for 

96% alumina package is only 24 W/m-K. This relatively high thermal conductivity of 

aluminum nitride helps in spreading the junction temperature of the power switches and 

hence improves the reliability and lifetime of the system.  
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In this work a custom made aluminum nitride planar board with metal (Gold) routing in 

top and bottom layer is used as substrate. In order to provide hermetic sealing of the 

semiconductor devices, an aluminum nitride window frame assembly is custom made. 

The window frame acts like a wall that encloses the semiconductors and a metallic lid is 

used to hermetically seal the system. This results in a three step hybrid packaging 

technique.  

 

• Eutectic / epoxy bonding of SiC JFETs and SOS IC’s and passive components to 

an AlN motherboard/substrate.  

• Eutectic attachment of AlN window frame.  

• Finally metallic capping of window frame.  

 

A three dimensional perspective of packaging is given in Figure 7-5 . 
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Figure 7-5. Proposed packaging method for dc-dc converter. 
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7.2.1 Eutectic bonding 

 

Eutectic bonding is a process of attaching die to the substrate using a solder perform. This 

method of die bonding is applicable only for bonding similar metals. In this study the 

gold plated silicon carbide dices are bonded to the planar board using gold-germanium 

(Au-Ge) eutectic solder. Westbond 7200 ES eutectic/epoxy bonder is used to achieve the 

task. 

7.2.2 Epoxy bonding 

 

Epoxy bonding is the most commonly used type of bonding process that uses an epoxy 

material to glue two components. The SOS control chip is bonded to AlN substrate using 

thermally conductive, electrically non conductive epoxy. To attach the bulky inductors 

and capacitors to the substrate, electrically conductive, thermally stable silver filled 

epoxy is used. 

 

7.2.3 Wire bonding 

 
The bare dices of silicon carbide and control circuitry are bonded using gold bond wires 

to the planar board. K&S wire bonder is used for this task. Gold wire of two mil 

thickness is used for power switches to reduce the resistance. 

 

The CAD layout out the aluminum nitride planar board is shown in Figure 7-6.  
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Figure 7-6. AutoCAD layout of the two layer AlN planar board. 
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Chapter 8  

 

8.1 SMPS Testing Results 

 

8.1.1 Circuit board assembly 

 
A prototype of the SMPS was assembled on Aluminum Nitride (AlN) mother board using 

eutectic, epoxy and wire bonding methods. Figure 8-1 shows the assembled components 

on board. The output capacitor, compensation capacitor, gate drive PCB (Printed Circuit 

Board) transformer and inductors are attached to substrate using high temperature 

conductive epoxy. The Silicon-on-Sapphire (SOS) control IC is attached to the substrate 

and wire bonded to bring connections out from IC pads to substrate traces. The silicon 

carbide power devices are eutectically attached to base pads and wire bonded to top side 

terminals. Connecting leads are twisted through the ‘via’ holes in the substrate.  

 

 
Figure 8-1. 1.8” × 1.8”Assembled 275°C SMPS circuit board with testing connections



130 
 

8.1.2 Test setup 

 
Figure 8-2 shows the test setup and the list of equipment used for the purpose. The 

assembled circuit board is mounted on a hot plate for elevated temperature testing. Power 

supply 1 (0.8 V and 0.9 V) is used for biasing the voltage control oscillators. Power 

supply 2 is used for powering the control IC (3.3 V) and provide high voltage raw input 

supply (>10 V). The oscilloscope is used to observe the output waveform during startup, 

standby and loading conditions. A signal generator is used for applying step inputs above 

and below the dc reference level to characterize loop stability. 

 
 

 
Figure 8-2. Test setup for SMPS verification. Insert shows the circuit board on hot plate. 

 

8.1.3 Test results 

 

8.1.3.1 3.3V converter 

 

3.3V output operation is set by either an internal or external resistor divider. The transient 

startup and steady state characteristic of the prototype at room temperature under no load 

conditions and for a 47 ohm load are disclosed in Figure 8-3 and Figure 8-4 respectively.  
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Figure 8-3. Transient output voltage plot of the 3.3V converter showing a 3 V overshoot at start up 

and the steady-state value under no load conditions. 
 

 
Figure 8-4. Transient output voltage plot of the 3.3V converter showing the overshoot and state-state 

value with 47 ohms resistive load. 
  
The startup and steady state output observed under no load at 275°C is shown in Figure 

8-5. When compared to the no load room temperature measurement result of Figure 8-3 

and Figure 8-4, the plot has no overshoot and reduced output voltage ripple. Voltage 

ripple at normal temperature is somewhat excessive at 400mV due to inadequate on 

board decoupling.  The AlN board was fabricated with less than adequate space for 

decoupling capacitors. The better response at 275°C is due to reduced intrinsic switching 

speed of the transistors at elevated temperature that eases the decoupling requirement. As 
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a result the decoupling provided is much effective at elevated temperature than at room 

temperature. 

 
 

  
Figure 8-5. Transient output voltage plot of the 3.3 V converter. 

 
 
The startup and steady state characteristic of the converter for 47 ohms and 8.2 ohms real 

loads are shown in Figure 8-6 and Figure 8-7, respectively.  The absence of overshoot 

and ripple is readily observed at elevated temperatures. This is a direct result of the 

reduced switching speed of both the CMOS and SiC devices by roughly a factor of 3 as 

temperature goes from room temperature to at 275°C. A tripling of the decoupling 

capacitors should serve solve future ripple problems. 
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Figure 8-6. Startup characteristic of the 3V converter with 47 ohm resistive load - 275°C. 

 

 
Figure 8-7.  Startup characteristic of the 3V converter with 8.2 ohm resistive load - 275°C.  

 
  

8.1.4 Control loop stability 

 
The stability of the control loop can be measured indirectly by application of a step 

function at the reference input. From network system theory and superposition it can be 

shown that the application of a step change in load or a voltage step change at the 

reference input are equivalent. Applying a voltage at the input is both simpler and does 

not require power devices. By observing control loop response to a step change in input 
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loop stability is evaluated. A signal source is used to apply a +/-50mV step amplitude 

centered at 400mV to reference voltage input. This is the input to the error amplifier. This 

corresponds to a +/- 12.5% change in load at the output. An excellent or nearly ideal 

response is observed at the output as shown in Figure 8-8. This demonstrates that the 

control loop phase margin is greater than 75 degrees. Figure 8-8 is for no load conditions. 

Note that the rise time is the loop’s response to an increase in load demands and responds 

without overshoot while the fall time is limited by the no load RC time constant. 

 
  

 
(a) 

 
Figure 8-8. Simplified control loop with equivalent circuit (a) and output transient response to a 

12.5% output referred change by pulsing the 400mV voltage reference with a 350 to 450 mV pulse 
train.  
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8.1.4.1 The 5V module 

 
Similar to the 3.3 V module, a 5V module was also developed and tested. The output 

voltage in this case is set by the pre-designed internal resistor dividers. Due an 

undetermined error in the resistance divider value, the obtained output level is lower than 

the desired level. Externally added resistors demonstrated proper SMPS operation as 

noted above. The start up and steady state response of the converter under no load and 

with 47 ohm load is shown in Figure 8-9 and Figure 8-10 respectively. Again at room 

temperature an overshoot is observed at start up. In the 5V case slightly greater than 2 

volts. 

 

  

  
Figure 8-9. Transient output voltage plot of the 5 V converter showing a 2 V overshoot at start up 

and the steady-state value under no load conditions. 
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Figure 8-10. Transient output voltage plot of the 5 V converter showing a 2 V overshoot at start up 

and the steady-state value under a load of 47 ohms. 
  
 
  
The control loop stability is tested for and observed using the same technique described 

above for the 3.3 V converter. A response somewhat less than a critically damped loop 

response is shown in Figure 8-11. Note that for the test of Figure 8-11 is under no load 

conditions and again from the rise response we observe that the loop is stable and phase 

margin is greater than 75 degrees. The fall response is dictated by the no load RC time 

constant.  
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Figure 8-11. Control loop behavior for step +/- 100 mV step change applied at the reference input of 

the 5V SMPS module under no load conditions. 
 

8.2 V2 controller: generation 2.0 

 
Based on testing results and observations from the preliminary control die, few changes 

to the first version of the controller are applied. The performed improvements are as 

follows. The improvements in the performance in discussed in following sections. 

 

8.2.1 Decoupling 

 

Due to high frequency switching of gate buffers and overdesigned (low impedance) 

rectifier, the circulating currents in the chip largely affected the performance. Particularly 

at lower temperatures, the high ‘di/dt’ of transistors resulted in excessive noise in the 

power supply. Also the output of the high frequency oscillator was padded out through a 

pad driver for monitoring purpose. Ultimately these factors resulted in higher output 

noise and poor voltage regulation of the SMPS.  

 

In the revised design, additional decoupling capacitors are provided to address to the need 

of high frequency currents due to gate drive buffer. The rectifier circuit design has been 

scaled down for optimum on resistance for 50 nS delay and reduced power. Also the gate 
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drive buffers are scaled down but provided with more decoupling. The on chip 

decoupling provided is estimated to be more than 1 nF. 

8.2.2 Low side duty clamp 

 
The duty clamp circuit which prevents 100% duty cycle operation is applied to both high 

side and low side switches in the initial design. However, a low side switch does not 

require a duty clamp circuit and hence has been removed in the second trial.  

8.2.3 Global bias generator 

 
The bias circuits used for individual comparators, amplifiers and voltage reference is 

grouped into a single master bias generator to make the design more robust and also save 

area. The schematic of the global bias generator is shown in Figure 8-12. 

 
Figure 8-12. Schematic of master bias with startup circuit. 
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8.2.4 Modified layout 

 
By eliminating the low side gate drive, combining bias generators and reducing buffer 

and rectifier sizes, the area has been reduced from 3mm Χ 2mm to 2 square mm. The 

second generator controller is laid out and fabricated. Figure 8-13 shows the layout 

snapshot and the corresponding pad out details. The fabricated dice is shown in Figure 

8-14 

 
Figure 8-13. Layout snapshot of the second generation V2 control chip. 
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Figure 8-14. Fabrication dice of the controller chip - Generation 2.0 

8.2.5 Bard layout 

 
A modified mother board with provisions for more decoupling capacitors, power planes 

and ground planes is implemented. The revised board of dimension 1.8 sq. inches is 

fabricated on the FR4 - PCB technology. In the four layer board, the top and bottom 

layers are used for power and ground planes. Board level interconnects are implemented 

using layer 2 and 3. Figure 8-16 shows the top layer layout of the motherboard. The 

board is designed to be versatile, to adopt commercial MOSFETs or JFETs. Unlike the 

AlN motherboard the updated board integrated the gate drive transformer during 

fabrication and hence is much efficient in assembly. 
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Figure 8-15. 
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Gen 2. Test Results 
 
The second generation V2 control IC is fabricated and mounted on the PCB motherboard 

for testing. Figure 8-16 shows the assembled board ready and compatible for commercial 

distribution. Commercial MOSFETs are used as switches in the board. Added decoupling 

capacitors and the easily accessible board terminal through header pins are the major 

advantages of the updated board.  

 

 
Figure 8-16. A complete SMPS prototyped on a FR4 based 4-layer board. 

 

The start up, steady state and transient response of the SMPS based on the second 

generation V2 controller were experimentally verified. Figure 8-17 shows the startup 

characteristics of a 3.3V prototype and its steady state voltage. Unlike the earlier version 

a linear start up characteristic and a very low noise DC steady state output voltage can be 

observed from the figure. The peak-peak ripple voltage is lesser than 50mV. This 

illustrates the proper working of startup circuit and the slow feedback path of the 

controller that sets the dc output voltage. 
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Figure 8-17. Startup and steady state characteristic of gen. 2 controller SMPS. 

 
 
The transient response of the prototype is observed by switching an 8 ohm load using a 

MOSFET. The MOSFET gate control voltage and its transient effect on the output 

voltage are shown in Figure 8-18.  

 
Figure 8-18. Transient response of the SMPS. 

Top trace - Load current step, Bottom trace - Ac coupled output voltage. 
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Chapter 9  

9.1 Conclusion 

 
For the first time, a switch mode power supply capable of operating at 275 degree 

centigrade as a standalone component is demonstrated. The performance of the V2 

controller implemented in SOS substrate is verified with the silicon carbide power 

switches and passive high temperature components, L and C’s. Prototype converters for 

3.3 V and 5 V output were developed and their performances measured under startup and 

loaded conditions are disclosed at room temperature and at 275°C. The prototypes are 

built on custom 1.8 sq. inch aluminum nitride substrates with thin film gold metallization. 

Excellent performance is obtained at higher temperatures.  A summary of performance is 

provided in Table 9-1. External control of the duty cycle limit and non overlapping 

periods are provided to the user. Several other user programmable and debugging options 

such as over current protection, high temperature indicator, controller status indicator etc. 

are provided. With minor improvements to the preliminary design the results from the 

generation 2.0 controller are also presented. A demonstration of more commercially 

viable module is presented using the generation 2 circuitry and FR4 mother board. The 

complete converter can be made commercially available for an estimated cost as given in 

Table 9-2.  
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Table 9-1. Performance summary of V2 controller. 
Specification Expected Obtained Remarks 

Operating  

temperature 
≤ 275°C > 275°C 

High temperature limited by available 

capacitors 

Input voltage  

range 
15 to 25V > 18 V 

Higher limit is dependent on the JFET 

(In this case < 600V) 

Output voltage  

range 
1.5 to 18V 

3.3, 5V, 

6.6, and 

10V 

Limited by internal resistor divider net 

work and voltage reference. Extendable 

to any voltage from 1.5 to 18 V by the 

use of a external resistor divider 

network. 

Output Watts > 2 W >1 W 

Limited by layout and heat removal from 

the SiC JFETs and limited high side 

gated drive. Failure to adequately 

remove heat from JFET will result in 

SMPS V2  shut down at 300 °C.  

Regulation 2% <5% 

- at elevated temperature. Generally 

limited by value of output capacitor and 

layout area. 

Efficiency 80-90% .>80% 
Dependent on load current.  

~ 81% at 3.3V, 300mA output, 275°C 

Stability  

(phase margin) 
>75° >75° 

Indirectly measured validating 

simulations carried out in Cadence and 

Matlab. Additionally stability was 

observed by power switching with 8Ω 

load (1.4 Watts) 
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Table 9-2. Cost estimation for commercial 275°C SMPS 

Component Estimated Cost (USD) Vendor 

SOS control IC 200 
Peregrine 

semiconductors 

AlN package 300 Stellar Industries 

Capacitor 100 Kemet Inc. 

Bonding accessories 100 Cotronics Corp. 

Gate drive transformer 10 4PCB / Kingcircuits 

Inductor 5 
MWS wire 

Arnold Magnetics 

   

Sub total 715  

   

SiC devices 300 
Semisouth 

Laboratories 

Overhead 200 OSU 

   

Total 1215  
 

The estimated cost is based on the prototype fabrication cost and NOT on the commercial 

scale production cost. Even at this cost the system is competitive to the supplies offered 

by the commercial vendors. Nevertheless the versatility and 275°C operation is the 

unique features of the developed system. 
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9.2 V2 controller data sheet 

 
The pin characteristics and performance specifications of the V2 controller is 

summarized in the following tables. 

 
Table 9-3. Datasheet for V2 controller. 

 

Available pins Functionality Min Typ Max

vdd power supply 3 3.3 3.6

vss ground 0 0 0

vlow low side switch driver

vhigh1 drive signal for transformer

vhigh2
complementary drive signal for 
transformer

vs1 transformer secondary input to rectifier - - -

vs2
complementary transformer secondary 
input to rectifier

- - -

vgate
rectified positive voltage for high side 
switch gate

2 V 2.6V -

vsource
rectified reference voltage for high side 
switch source

- - -

vo output voltage feedback for control - - 5 V

vref2
buffered voltage reference output (400 
mV)

370 mV 400 mV 420 mV

vref1
buffered voltage reference output (800 
mV)

770 mV 800 mV 820 mV

vrefin reference voltage for the controller - 400 mV -

vo_res_in
down scaled output voltage wrt vref for 
comparator

ccext
external compensation capacitor 
terminal

10 nF 15 nF 25 nF

vctrl1 control voltage for system oscillator 0.75 0.8 V 1 V

vctrl2 control voltage for gate drive oscillator 0.8 V 1 V 1.1 V

ocp
external terminal for over current 
protection

flag indicates the status of controller

force
force the controller to operation (high - 
force)

tie low

high

tie low

3.3V, 8 ohms, 50 ns @100 
pF

3.3V, 1.5 ohms, 5 ns @ 
100pF

3.3V, 1.5 ohms, 5 ns @ 
100pF

400 mV @ desired vo
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Table 9-4. Pin configuration of generation 2 controller 
 

Pin 
No. 

Name Functionality Min Typ Max 

1 vdd* power supply 3 3.3 3.6 

2 vss ground 0 0 0 

3 vo output voltage feedback for control - - 5 V 

4 vctrl1 control voltage for system oscillator 0.8 1.1 V 1.6 V 

 
5 

vctrl2 control voltage for gate drive oscillator 
0.8 v 1.1 v 1.6 v 

10 MHz at 1.1V @ RT 

6 vref_out* buffered voltage reference output (400 mV) 370 mV 400 mV 420 mV 

7 vref_in reference voltage for the controller - 400mV - 

8 vo_res_in down scaled output voltage wrt. vref for comparator 400 mV @ desired vo 

9 flag indicates the status of controller High- normal 

10 force Force the controller to operation High - force 

11 ocp external terminal for over current protection tie low 

12 vddb3 vdd divided by 3 1.1V control voltage 

13 cduty duty cycle limit capacitor > 50pF  

14 cdly_hi sets turn on delay for high side switch 
Default to 50ns non overlap 

15 cdly_lo sets turn on delay for low side switch 

16 vo_3v internal resistor divider output for 3.3V 0.4V 

17 vo_5v internal resistor divider output for 5V 0.4V 

 
 

9.3  Future work 

 
Commercialization is the next major task of this research work. The SMPS and the vee-

square controller are ready as it is for the end user market. The controller chip can also be 

packaged in commercial IC packages or ceramic packages for use in common power 

supply applications. The system efficiency and performance can be improved by 

optimizing the circuits for lower power. 
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Chapter 11  Appendices 

 

11.1 Verilog A model of SiC JFET 

 
The following Verilog code is used as the model deck for silicon carbide JFET for use in 

simulations 

 

`include "constants.vams" 

`include "disciplines.vams" 

 

module Tail (D, G, S);  

inout D, G, S; 

electrical D, G, S; 

 parameter real area=1 from (0:inf); 

 parameter real vto1= 2.1;   // Threshold voltage 

 parameter real beta=2.0 from (0:inf);   // A/V^2 

 parameter real lambda=0.001;  //Channel length modulation 

 parameter real is=1e-12 from [0:inf);  //reverse diode leakage current  

 parameter real gmin=1p from (0:inf);  

 parameter real cjs=1e-10 from [0:inf);  

 parameter real cgd=1e-10 from [0:inf); //Gate-Drain capacitance 

 parameter real m=0.5 from (0:1); 

 parameter real phi=1 from (0:inf); 

 parameter real fc=0.5 from (0:1); 

parameter real temp=25; 

parameter real vttempco=-0.00174;



157 
 

real vto, Vgs, Vgd, Vds; 
 real Id, Igs, Igd;   

real Qgs, Qgd; 
 real f1, f2, f3, fcp; 

 analog begin 

vto=vto1-((25-temp)*(vttempco)); 

 @ (initial_step or initial_step("static")) begin 

f1 = (phi/(1 - m))*(1 - pow((1 - fc), m)); 

 f2 = pow((1 - fc), (1 + m)); 

  f3 = 1 - fc*(1 + m); 

  fcp = fc*phi; 

 end 

  Vgs = V(G, S); Vgd = V(G, D); Vds = V(D, S); 

 

  if (Vds >= 0) begin 

// forward active. 

   if (Vgs - vto <= 0) begin 

    Id = 0; 

   end else if (Vgs - vto <= Vds) begin 

    Id = beta*(1 + lambda*Vds)*pow((Vgs - vto), 2); 

   end else begin 

    Id = beta*Vds*(1 + lambda*Vds)*(2*(Vgs - vto) - Vds); 

   end 

  end else begin 

// reverse active. 

   if (Vgd - vto <= 0) begin 

    Id = 0; 

   end else if (Vgd - vto <= -Vds) begin 

    Id = -beta*(1 - lambda*Vds)*pow((Vgd - vto), 2); 

   end else begin 

    Id = beta*Vds*(1 - lambda*Vds)*(2*(Vgd - vto) + Vds); 

   end 
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  end 

 

// parasitic diodes. 

if (Vgs < 1) begin 

 Igs = is*(exp(Vgs/(3*$vt)) - 1) + Vgs*gmin; end 

else  begin Igs = is*(exp(Vgs/(5*$vt)) - 1) + Vgs*gmin; 

end 

   Igd = is*(exp(Vgd/(5*$vt)) - 1) + Vgd*gmin; 

// charge storage. 

  if (Vgs < fcp) begin 

   Qgs = area*2*phi*cjs*(1 - sqrt(1 - Vgs/phi)); 

  end else begin 

   Qgs = area*cjs*(f1 + (1/f2)*(f3*(Vgs - fcp) + (Vgs*Vgs - 

fcp*fcp)/(4*phi))); 

  end 

  if (Vgd < fcp) begin 

   Qgd = area*2*phi*cgd*(1 - sqrt(1 - Vgd/phi)); 

  end else begin 

   Qgd = area*cgd*(f1 + (1/f2)*(f3*(Vgd - fcp) + (Vgd*Vgd - 

fcp*fcp)/(4*phi))); 

  end 

  I(D, S) <+ Id; 

  I(G, S) <+ Igs + ddt( Qgs ); 

   I(G, D) <+ Igd + ddt( Qgd ); 

 end 

 

endmodule 
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11.2 Matlab program for Kharitonov analysis 

 
The following code is used to analyze the robust stability of the controller using 

Kharitonov analysis. Based on experimental results, only the interval values of output 

capacitance and its equivalent series resistance are considered to be dominating factor 

over temperature and hence are included in the analysis. However it is possible to extend 

the program to include other parameter variations at the expense of processing time. The 

programs includes Routh  stability analysis of the Kharitonov polynomials and displays 

either ‘good’ or ‘bad’  based on the results. 

 
% code begins 
clear all;  format long; clc 
close all; 
  
c = logspace(-5,-3,100);      rc = [0.05:0.01:0.1]; 
l = 1e-4;       rl = 2; 
r = 10;        ron = 2; 
vg = 10;        ae = 1000;      ac = 1000; 
ro = 1e5;       gm = 30e-6;     cc = 19e-9; 
  
wz  = gm/cc;    wp = 1/(ro*cc); 
  
len1=size(c); len2=size(rc); 
  
for i = 1:len1(2) 
    for j = 1:len2(2) 
    cs3(i,j) = l*c(i)*(r+rc(j)); 
    cs2(i,j) = l*(c(i)*wp*(r+rc(j))+1)+c(i)*(r*(rl+rc(j)+ron)+rc(j)*(rl+ron)); 
    cs1(i,j) = (rl+rc(j)+ron)*(1+wp*c(i)*r)+wp*c(i)*rc(j)*(rl+ron)+l; 
    cs0(i,j) = wp*(rl+rc(j)+ron); 
    end 
end 
  
p1 = [min(min(cs3)) min(min(cs2)) max(max(cs1)) max(max(cs0))]; 
p2 = [min(min(cs3)) max(max(cs2)) max(max(cs1)) min(min(cs0))]; 
p3 = [max(max(cs3)) min(min(cs2)) min(min(cs1)) max(max(cs0))]; 
p4 = [max(max(cs3)) max(max(cs2)) min(min(cs1)) min(min(cs0))]; 
  
poly = [p1; p2; p3 ;p4]; 
% % % % % % Routh stability analysis begins % % % % % % 
for z=1:4 
    m=4; n=round(m/2); q=1; k=0; 
for p = 1:length(poly(z,:))  
    if rem(p,2)==0 
        c_even(k)=poly(z,p);  
    else 
        c_odd(q)=poly(z,p);  
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        k=k+1; 
        q=q+1; 
    end 
end 
a=zeros(m,n);  
  
if m/2 ~= round(m/2) 
    c_even(n)=0; 
end 
a(1,:)=c_odd; 
a(2,:)=c_even; 
if a(2,1)==0 
    a(2,1)=0.01; 
end 
for i=3:m 
    for j=1:n-1 
        x=a(i-1,1); 
        if x==0 
            x=0.01; 
        end 
  
        a(i,j)=((a(i-1,1)*a(i-2,j+1))-(a(i-2,1)*a(i-1,j+1)))/x; 
  
    end 
    if a(i,:)==0 
        order=(m-i+1); 
        c=0; 
        d=1; 
        for j=1:n-1 
            a(i,j)=(order-c)*(a(i-1,d)); 
            d=d+1; 
            c=c+2; 
        end 
    end 
    if a(i,1)==0 
        a(i,1)=0.01; 
    end 
end 
Right_poles=0; 
for i=1:m-1 
    if sign(a(i,1))*sign(a(i+1,1))==-1 
        Right_poles =Right_poles+1; 
    end 
end 
Rt_poles(z)=Right_poles; 
% fprintf('\n Routh-Hurwitz Table:\n') 
% a 
end 
if (Rt_poles == 0) 
    display('good') 
else 
    display('bad') 
end 
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11.3 High temperature characteristics of copper clad laminates 

 

The gate drive transformer is implemented on the copper laminates. The performance of 

commercially available 1 ounce copper laminates with RO4350B and RT6202 dielectric 

materials are evaluated at elevated temperatures. The test coupons used for testing is 

shown in Figure 11-1. The harsh effects of elevated temperature can be readily seen from 

the oxidation and carbon deposit on the conductor surface. The performance of the test 

material is evaluated by measuring the capacitance and dissipation factor of the materials. 

The measured results at various input frequencies are shown in Figure 11-2.  

 

 
Figure 11-1. Test coupons for high temperature testing of copper laminates. 
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Figure 11-2. Capacitance and Dissipation factor of test coupons for various frequencies at different 

temperatures. 
 
 
From Figure 11-2 it can be observed that the dissipation factor for the RO4350B material 

is significantly lower compared to RT6202 dielectric and is preferred for substrate.
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11.4 Validation of high capacitance capacitors 

 

In addition to the conductive polymer and tantalum capacitor, X5R dielectric based 

capacitors are also evaluated. Unlike the previously disclosed characteristics, negative 

temperature coefficient characteristics of the X5R capacitors can be observed from the 

plot. The decrease in capacitance at elevated temperature is an undesirable characteristic, 

however compared to polymer capacitors the dissipation factor of X5R capacitors are 

significantly less which yields lower ESR. The lower ESR is preferred to minimize the 

output ripple and the power loss. 

 

 
Figure 11-3. Change in capacitance of X5R capacitors with temperature 

 
 

 
Figure 11-4. X5R capacitors: Dissipation factor versus temperature 
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11.5 Validation of PCB transformer gate drive 

 

To verify the functionality and performance of various transformer structures, different 

layouts are fabricated on a four layer FR4 printed circuit board. The transmission and 

reflection characteristics are obtained by s-parameter measurements (S11, S21) using 

vector network analyzer (VNA). 

 

 
Figure 11-5. Photograph of fabricated PCB transformers 

 
To verify the functionality of the gate drive transformer a custom test coupon is 

developed as shown in Figure 11-6 (left). The design is based on board implementation 

of a switching buffer and a full wave rectifier. This is required to minimize the effect of 

leakage inductance of the connecting wires. The selection of drive is either differential or 

single ended. A differential driver is used as a buffer to isolate the input signal source and 

to provide a differential drive for the transformer. The synchronous drivers are used to 

individually drive the transformer as a single ended input or as synchronized differential 

input. The fabricated transformer is diced and solder in the board as shown in Figure 

11-6(right). A discrete full wave rectifier chip is used to generate the dc voltage from the 

switching (ac) input. The rectified output voltage is shown in Figure 11-7. The input to 

buffer is 3.3V amplitude at 10MHz frequency. The result obtained is consistent with the 

expected voltage gain for the transformer structure. 

 
 
 
  



 

Figure 11
 
 
 

Figure 11-7
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11-6. Custom test fixture for testing PCB transformers 

7. Rectified output from onboard setup for 10MHz input.

 
 

 
Rectified output from onboard setup for 10MHz input. 
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11.6 Alternative gate drive methodology 

 
 
The selection of transformer coupled gate drive for high temperature operation is biased 

due to the availability of previous reports on this principle. A novel alternative principle 

is the use of silicon carbide ultraviolet (UV) photodiodes. Use of commercially available 

SiC UV for flame monitoring in aircraft engines was demonstrated earlier. The UV 

diodes on SiC technology are found to be stable for temperatures over 300°C. A reverse 

biased operation of the diode in detector mode, in conjunction with the forward biased 

emitter mode can be used to mimic the operation of a optocoupler mechanism. The 

proposed system is presented in Figure 11-8. Though this method seems to be promising, 

the added complexity of the detector – emitter assembly and the requirement of floating 

supply limits is practical use. 

 

 
Figure 11-8. Optocoupler based gate drive mechanism suitable for high temperature operation; 

based on silicon carbide UV photodiodes. 
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11.7 Mathematical calculations – Buck converter 

 

The following is an excel worksheet insert to calculate the inductor and capacitor based 

on the input parameters. Various frequencies that determine the frequency characteristics 

of the converter are also shown. 

 
Table 11-1. Worksheet to calculate the inductance and capacitance for switching converter. 

 

vin 25
vo 3.3

Switch freq 200000
Power 5

Max current 1.5
Ct. ripple factor 0.3

Regulation 0.02
Volt. Ripple 0.066

ESR 0.05

ro-ea 3.00E+04
gm-ea 3.00E-05

cc 1.00E-08

L 3.183E-05 (C3-C4)*(C4/C3)*(1/C5)*1/(C7*C8)
c 2.751E-04 (C19*(C7+C8*C7)^2)/((C4+C10)^2-C4^2)

f-lc-2p 1.702E+03 1/(2*3.14*SQRT(C19*C20))
f-ea-p 5.308E+02 1/(2*3.14*C13*C15)
f-cc-z 4.777E+02 C14/(2*3.14*C15)
f-esr-z 1.158E+04 1/(2*3.14*C20*C11)

esr-req 1.701E-01 1/(C22*2*6.28*C20)
cc-req 2.807E-08 C14/(6.28*C22/10)

esr-err 1.201E-01 C29-C11

INPUT

OUTPUT

Design
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11.8 Mathematical calculations – Inductance of a micro strip 

 
The SOS IC and gate drive transformer is connected through the printed wires. These 

transmission lines affect the performance of the gate drive. The trace inductance adds to 

the leakage inductance of the transformer and hence has to be minimized. The 

mathematical expressions used to calculate the inductance of microstrip is applied in 

excel worksheet and is presented in Table 11-2. The cross-sectional view of the 

microstrip is shown in Figure 11-9. 

 

 
Figure 11-9. Cross-sectional view of a micro strip transmission line over a ground plane. 

 

Table 11-2.  Worksheet to calculate inductance and capacitance of a micro strip. 
 

Inductance of microstrip (skinny w<h)

Conductor Length l = 0.86
Conductor Thickness t = 0.000176378
Conductor Width w = 0.06
Dielectric Height h = 0.02499995
Dielectric Constant er = 9

((C8+1)/2+(C8-1)/2*(POWER(1+12*C7/C6,-0.5)
Eff permitivity e_skny = 6.946596673 +0.04*POWER(1-C6/C7,2)))
Eff perm inc thickness eeff = 6.938676578 C11-((C8-1)*C5/C7)/(4.6*POWER(C6/C7,0.5))
Propagation delay pd = 2.23164E-10 84.72*POWER(10, -12)*POWER(C12,0.5)
Effective width weff = 0.060657202 C6+(1.25*C5/3.14)*(1+LN(4*3.14*C6/C5))
Characteristic Imp z = 82.16915118 60*LN((8*C7/C6)+(C6/(4*C7)))

Inductance L = 1.577E-08 C13*C15*C4
Capacitance C = 2.33568E-12 C13*C4/C15

User Input

Calculations

Result
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