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1. INTRODUCTION 

Many scientific, engineering and commercial applications call for operations with real 

numbers. In many cases, a fixed-point numerical representation can be used. 

Nevertheless, this approach is not always feasible since the range that may be required 

is not always attainable with this method. Instead, floating-point numbers have proven to 

be an effective approach as they have the advantage of a dynamic range, but are more 

difficult to implement, less precise for the same number of digits, and include round-off 

errors. 

The floating-point numerical representation is similar to scientific notation differing in that 

the radix point location is fixed usually to the right of the leftmost (most significant) digit. 

The location of the represented number’s radix point, however, is indicated by an 

exponent field. Since it can be assigned to be anywhere within the given number of bits, 

numbers with a “floating” radix point have a wide dynamic range of magnitudes that can 

be handled while maintaining a suitable precision. 

The IEEE standardized the floating-point numerical representation for computers in 1985 

with the IEEE-754 standard [1]. This specific encoding of the bits is provided and the 

behavior of arithmetic operations is precisely defined. This IEEE format minimizes 

calculation anomalies, while permitting different implementation possibilities. Since the 

1950’s binary arithmetic has become predominantly used in computer operations given 

its simplicity for implementation in electronic circuits. Consequently, the heavy utilization 

of binary floating-point numbers mandates the IEEE binary floating-point standard to be 
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required for all existing computer architectures, since it simplifies the implementation. 

More importantly, it allows architectures to efficiently communicate with one another, 

since numbers adhere to the same IEEE standard. 

Although binary encoding in computer systems is prevalent, decimal arithmetic is 

becoming increasingly important and indispensable as binary arithmetic can not always 

satisfy the necessities of many current applications in terms of robustness and precision. 

Unfortunately, many architectures still resort to software routines to emulate operations 

on decimal numbers or, worse yet, rely on binary arithmetic and then convert to the 

necessary precision. When this happens, many software routines and binary 

approximations could potentially leave off crucial bits to represent the value necessary 

and potentially cause severe harm to many applications. 

1.1 Importance of Decimal Arithmetic 

Decimal operations are essential in financial, commercial and many different Internet 

based applications. Decimal numbers are common in everyday life and are essential 

when data calculation results must match operations that would otherwise be performed 

by hand [2]. Some conventions even require an explicit decimal approximation. A study 

presented in [3] shows that numeric data in commercial applications, like banking, 

insurance and airlines is predominantly decimal well up to 98%. Furthermore, another 

study discussed in [4] shows that decimal calculations can incur a 50% to 90% 

processing overhead. 

One of the main causes for decimal’s performance cost is that binary numbers cannot 

represent most decimal numbers exactly. A number like 0.1, for example, would require 

an infinite recurring binary number, whereas, it can be accurately represented with a 
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decimal representation. This implies that it is not always possible to guarantee the same 

results between binary floating point and decimal arithmetic. This is further illustrated in 

the following table where the number 0.9 is continuously divided by 10. 

Table 1. Numerical differences between decimal 
and binary floating-point numbers. 

Decimal Binary
0.9 0.9
0.09 0.089999996
0.009 0.009
0.0009 9.0E-4
0.00009 9.0E-5
0.000009 9.0E-6
9E-7 9.0000003E-7
9E-8 9.0E-8
9E-9 9.0E-9
9E-10 8.9999996E-10  

It is, therefore, considerably difficult to develop and test applications that require this 

type of calculations and that use exact real-world data like commercial or financial 

values. Even legal requirements, like the Euro (€) currency regulations, dictate the 

working precision and rounding method to be used for calculations in decimal digits 

[5]Error! Reference source not found.. These requirements can only be met by 

working in base 10, using an arithmetic which preserves precision. 

Typically, decimal computations are performed on binary hardware through software 

emulation and mathematical approximations, since requirements specific to decimal 

numbers cannot always be met in pure binary form. These requirements may include 

arithmetic that preserves the number of decimal places (including trailing zeroes or 

unnormalized coefficients) and decimal rounding among others. In all cases, any scaling, 

rounding, or exponent has to be handled explicitly by the applications or the 

programmer, a complex and very error-prone task. Since binary computations for 

decimal arithmetic tend to be slow, significant performance improvements may result 
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from using decimal floating-point hardware. Native (hardware) decimal floating-point 

arithmetic will make programming far simpler and more robust, and produce a 

significantly better performance in computer applications. The impact of this type of 

hardware can improve decimal floating-point calculations speed by two or three orders 

of magnitude compared to a software approach and is further highlighted with IBM’s 

release of the Power6 processor, the first UNIX microprocessor able to calculate decimal 

floating-point arithmetic in hardware [7]. 

As an example, shown in [4], division of a JIT (Java Just-In-Time compiled) 9-digit 

BigDecimal number type, takes more than 13,000 clock cycles on an Intel® Pentium™ 

processor, while a 9-digit decimal addition requires more than 1,100 clock cycles.  On 

the other hand, binary arithmetic takes 41 cycles for integer division and 3 cycles for an 

addition on the same processor.   Dedicated decimal hardware would be comparable to 

these values, if available. 

1.2 The Decimal Floating-Point Standard 

The increasing importance of decimal arithmetic is highlighted by the specifications 

being included in the current revision draft of the IEEE-754 standard for floating-point 

arithmetic or IEEE-754R [8]. Decimal floating-point numbers are in a format similar to 

scientific notation: 

(-1)S x Coefficient x 10 (Exponent – Bias), 

where S is either 1 or 0 and determines the sign of the number. The exponent is biased 

to avoid negative representations. In other words, all exponents are represented in 

relation to a known value given to exponent zero. For example, if the bias is 127 

numbers below 127 are negative and above 127 are positive. To illustrate a specific 
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example, suppose an exponent of 125 is utilized with a bias of 127, this exponent 

represents a value of -2 according to the IEEE standard. 

The current draft specifies the representation of three decimal number types: decimal32, 

decimal64 and decimal128 encoded in 32, 64 and 128-bits respectively. The value of the 

number is encoded in four different fields. An illustration of this representation for 

decimal64 numbers is shown in Table 2, taken from [9]. 

Table 2. Decimal floating-point format 

Length (bits) 1 5 8 50

Description Sign Combination 
Field

Exponent 
Continuation

Coefficient 
Continuation  

Decimal64 numbers are comprised of a 16 digit coefficient and a 10-bit biased exponent. 

The sign bit indicates the sign of the number as indicated earlier, in the same way as 

binary floating-point numbers. Both exponent and coefficient are encoded with part of 

their value given in the combination field: the two Most Significant Bits (MSBs) for the 

exponent and the Most Significant Digit (MSD) of the coefficient. The combination field 

also determines if the number represented is a finite number, an infinite number or a 

NaN (Not-a-Number). Quiet and signaling NaNs (in which case an exception is triggered 

or signaled) are determined by the first bit of the exponent continuation field. Table 3, 

shown in [9], illustrates the combination field which depends if the number is Infinity, a 

NaN or a finite number. The combination field is encoded differently as well if the finite 

number’s MSD is greater than or equal to 8 or if the number is less as illustrated in the 

first two entries of the table. The exponent is therefore a biased unsigned 10-bit binary 

number and the coefficient is given by a specific 10-bit per 3 decimal-digits encoding 

representing a 16 decimal digits number. An additional important characteristic of 
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decimal floating-point numbers is that they are not normalized, as opposed to binary 

floating-point numbers.  

Table 3. Decimal FP Combination Field 

Combination Exponent Coefficient
Field (5 Bits) MSBs (2-bits) MSD (4-bits)

a b c d e Finite < 8 a b 0 c d e
1 1 c d e Finite > 7 c d 1 0 0 e
1 1 1 1 0 Infinity - - - - - -
1 1 1 1 1 NaN - - - - - -

Type

 

For example, suppose a programmer wants to encode the number -8.35 into decimal64. 

The first step is to break the number into its coefficient and exponent, which produces 

835 (with 13 leading zero decimal digits given that coefficients are 16 digits long) and –2 

respectively, i.e. –835x10–2. For decimal64 numbers, where the bias value is of 39810, an 

exponent of –2 becomes 39610 (01 1000 11002). The combination field for –835x10–2 

contains the two most significant bits or MSBs of the exponent (01 in this example) and 

the most significant digit (MSD) of the coefficient (4-bits, 0000 in this case since the 

MSD is zero). According to Table 3, for finite numbers with the most significant digit 

value below 8, the 5-bit combination field abcde decodes ab as the Exponent’s MSBs 

and 0cde as the MSD. To illustrate an example, the number –8.35 becomes 01 | 000. 

The remaining 8-bits of the exponent, 0x8C, are arranged in the exponent continuation 

field.  Finally, the coefficient is given in the coefficient continuation field using Densely 

Packed Decimal (DPD) encoding [10]. DPD encoding provides an efficient method of 

storing and translating 10-bit / 3 decimal digits into BCD representation and vice versa 

by using simple Boolean expressions. A more detailed explanation of DPD can be found 

in the Appendix. 
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The DPD codification of the three BCD decimal digits into 10-bits is called compression 

and it depends on the size of each digit, small or large (3-bit for less than or equal to 7, 

and 4-bits for greater than 7). A specific mapping is used in each situation: when all 

digits are small, left digit is small, middle digit is large, etc [10]. The three digits 835 are 

given in BCD as bits abcd efgh ijkm (1000 0011 0101)2. Bits a, e and i are used to 

indicate if the numbers are large or small. For this specific case, in which left digit is a 

large number, the mapping used for the encoding has the form [jkd fgh 1 10 m] or 0x23D 

(see second table in Appendix A). Therefore, the decimal64 representation for –8.35 is, 

in hexadecimal, A2 30 00 00 00 00 02 3D. 

 

Figure 1. Example: decimal floating-point representation of number -8.35. 

 

1.3 A case for Decimal Arithmetic in General-Purpose Computer Architectures 

Decimal arithmetic has long been studied in computer architectures, however, most 

silicon implementations of digital logic suffered due to area requirements. By the year 

-8.35 

- 835 x 10-2 

39610 = 01 1000 835 = 23Dhex 

Separate in 
Coefficient and 

Biasing with 39810 
DPD encoding 

Combination field: 
exp. MSBs = 012 
coeff. MSD = 00002 

01000

with 13 leading zeroes 

Table row 1 abcde 

1 01000 10001100 0000 … 0010 0011 1101

sign 

Combination 
Field 

Exponent 
Continuation 

Coefficient 
Continuation 

A2 30 00 00 00 00 02 3D HEX =  -8.35 in decimal64 
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2010, processors with 2 billion transistors are expected to be developed [11]. Therefore, 

the large number of transistors available within silicon implementations and the 

increased sophistication of design tools gives designers the ability to include new and 

important features, such as decimal arithmetic. Previous implementations in decimal 

arithmetic include high-speed multipliers [12][13][14], algorithms for decimal adders 

[15][16][17] and multi-operand addition [18][19], and algorithms for decimal partial 

product generation [14][19][20]. Although there has been a large amount of interest and 

research interest into decimal arithmetic architectures, many of the architectures fail to 

produce designs that are targeted at real implementations, especially at designs below 

180nm. This dissertation attempts to study these designs by offering possible solutions 

and implementations in decimal arithmetic and, in some cases, how they possibly can be 

combined with binary arithmetic to produce combined binary/decimal arithmetic units. 
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2. BACKGROUND 

Decimal arithmetic operations were significantly researched in the 1950’s and the latter 

part of the 20th century, but nonetheless binary arithmetic hardware took over computer 

calculations. The reasoning behind this came after Burks, Goldstine, and von Neumann 

published a preliminary study on computer design [12]. They argued that for scientific 

research, simplicity was the major advantage of binary hardware and therefore 

increasing its performance and reliability. Furthermore, decimal numbers would need to 

be stored in binary form requiring extra storage space (bits) to maintain the same 

precision as binaries and require more circuitry than operations performed in pure binary 

form. Nevertheless if conversions from decimal to binary and vice-versa are needed then 

it is significantly more efficient to perform operations in decimal hardware [4]. 

In many cases, techniques developed for binary arithmetic hardware can be applied to 

some extent to decimal hardware. It is therefore important to explore relevant 

approaches and research for binary arithmetic since an invaluable insight into solving 

decimal arithmetic problems can be gained. 

2.1 Binary Comparison 

An important element in general purpose and application specific architectures is the 

comparator [22]. The design of high speed and efficient comparators aids in the 

performance of these architectures. The idea of designing efficient comparators however 

is not new as seen from previous studies in [23], [23], [23], [25]. Nevertheless further 
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gains in area usage and power can be obtained by designing a comparator that can 

handle different data-types using an efficient compatible comparison method. 

The work on [26] presents the design and implementation of a high performance 

comparator capable of handling 32-bit and 64-bit two’s complement numbers and single 

and double precision binary floating-point numbers. This type of design is especially 

useful to reduce costs in processors, since it allows the same hardware to be used to 

compare multiple data types. A novel approach to the magnitude comparison problem 

was utilized with a comparator module that has logarithmic delay. This design can also 

be easily extended to support 128-bit binary floating point numbers and can 

accommodate pipelining to improve throughput. 

The IEEE 754 standard [1] specifies floating-point comparisons where the relation 

between two numbers is given greater than, less than, equal or unordered. When either 

of the operands compared are Not-a-Number or NaN the result of the comparison is 

unordered. If the NaN is a signaling NaN then an Invalid exception flag bit is asserted. 

The result of the comparison is represented by Floating-point Condition Codes or FCC 

[27]. 

Table 4 shows the FCC representation of the comparison result in this design. Note that 

bit FCC[1] is analogous to a greater than flag (GT) and FCC[0] is analogous to a less 

than flag (LT). When both flags are zero the numbers are equal and when both are one 

the numbers are unordered. 
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Table 4. Floating-point Condition Codes. 

FCC [1] FCC [0]
(GT) (LT)

0 0 A = B
0 1 A < B
1 0 A > B
1 1 Unordered

Relation

 

As illustrated in [26], the combined comparator is composed of three blocks. The 2-bit 

Sel signal indicates the type of operands being compared. The first block converts 32-bit 

operands to 64-bit operands so that all operand sizes are handled by the same 

hardware. Like most floating-point implementations, 32-bit numbers are converted to 64-

bit numbers to simplify the logic. The second block performs a magnitude comparison. 

Finally, the third block takes care of exceptions and special cases according to the IEEE 

754 standard. It also correctly handles the signs of the input operands. 

2.1.1 Magnitude Comparator Design 

The magnitude comparator devised in [26], and shown in Figure 2, is the core of the 

comparator module. The two operands A and B are compared in stages. The first stage 

compares corresponding 2-bit pairs from each operand. Two output bits, GT (greater 

than) and LT (less than), from each element indicate if the result of the compared pair is 

greater than, less than or equal as shown in Table 5. If the bit pairs of A and B are 

denoted by A[2i+1, 2i] and B[2i+1, 2i] then the values for GT[i]1 and LT[i]1 (where the 

subscript 1 indicates the first stage of the comparison) are given by: 

⋅⋅+++⋅+= ]2[]12[]12[]12[][ 1 iAiAiBiAiGT ]2[]12[]2[]2[ iBiBiAiB ⋅+⋅+ , 

⋅+++⋅+= ]12[]12[]12[][ 1 iAiBiAiLT ]2[]12[]2[]2[]2[ iBiBiAiBiA ⋅+⋅+⋅ . 
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for ( ⎡ ⎤ 12/0 −≤≤ ni ) where n is the operand size, in this case 64. 

Figure 2. Block diagram of the binary portion of the comparator, taken from [26]. 

 

In subsequent stages the same process is used except the GT[i]j signals replace the A[i] 

signals and LT[i]j replace B[i] where j denotes the comparator stage. There is however 

an additional reduction possible in subsequent stages since GT and LT can not be equal 

to 1 at the same time and therefore for j > 1 the equations are simplified to: 

jjjj iLTiGTiGTiGT ]12[]2[]12[][ 1 +⋅++=+ , 

jjjj iLTiGTiLTiLT ]2[]12[]12[][ 1 ⋅+++=+ . 

A total of ⎡ ⎤)(log2 nk = stages are required to obtain the final result given by GT[0]k and 

LT[0]k. In the case of this implementation with 64-bits, n = 64 and k = 6 stages are 

required. 

 

 

A B 
64 64 

Input Conversion 

64 64 

Magnitude 
Comparator 

LT, GT 

2 

Exception Handling 

2 

Sel 

2 

LT, GT 

Floating-point / two’s 
complement. 
32-bit / 64-bit. 
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Table 5. BCD Magnitude Comparison 

GT[i] LT[i] Result
0 0 A[2i+1,2i] = B[2i+1,2i]
0 1 A[2i+1,2i] < B[2i+1,2i]
1 0 A[2i+1,2i] > B[2i+1,2i]
1 1 invalid  

 

CMP AB
G

10
LT

CMP AB
G

01
LT

CMP AB 
G

00 
LT

Result :     0    1         A < B 

CMP AB
G

10
LT

10 00 11 01 

10 01 00 11 

Top number  A: 8Dhex 
Bot. number  B: 93hex 

0001

CMP AB
G LT

1001

CMP AB
G LT

0110

CMP AB
G LT

0 1 1 0 

 

Figure 3. Magnitude comparator example, A = 0x8D and B = 0x93. n= 8, k = 3 stages 

necessary. 

 

Figure 3 illustrates an example using this logarithmic tree magnitude comparator. The 

operand size in this case is 8-bits and therefore only 3 stages are necessary (k=3). The 

comparison to be computed is A to B where A = 0x8D and B = 0x93. Each number is 

separated in bit pairs and each corresponding pair is compared individually. Subsequent 

stages group LT and GT signals together as shown. The final stage yields GT = 0 and 

LT = 1 as expected giving A < B. 
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2.1.2 Two’s complement and binary floating-point comparator 

The magnitude of the operands however is not the only characteristic considered when 

comparing numbers. To compare two’s complement or floating-point numbers the sign 

should also be considered. The third stage shown in Figure 2 sets the LT output to one 

in any of the following four cases: 

1) A is negative and B is positive. 

2) A and B are positive and the magnitude of A is less than the magnitude of B. 

3) A and B are negative two’s complement numbers and the magnitude of A is less 

than the magnitude of B. 

4) A and B are negative floating point numbers and the magnitude of A is greater 

than the magnitude of B. 

To minimize the complexity of the other predicates like Greater Than (GT) and Equal to 

(EQ), logic is asserted based on whether the input operands are LT or not LT given that 

LT, GT, and EQ cannot all be asserted simultaneously. This translates to simple logic for 

both 32 and 64-bit numbers. In order to make sure the values for the cases listed above 

are produced correctly for the implementation presented in this paper, only LT[0]6 and 

GT[0]6 are computed utilizing the logic since EQ[0]6 can be produced by the following 

equation: 

666 ]0[]0[]0[ GTLTEQ +=  

The subindex 6 denotes the sixth level of the magnitude comparator, or the final stage 

given that the operands considered are 64-bits, i.e. LT[0]6 and GT[0]6 are the outputs of 

the magnitude comparator module. 
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Consequently, the values of LT, EQ, or GT for the whole design can be produced for 

two’s complement numbers as: 

)]63[]63[]63[]63[(]0[ 6 BABAEQEQ ⋅+⋅⋅=  

6]0[]63[]63[]63[( LTBBALT ⋅+⋅= EQLTA ⋅⋅+ )]0[]63[ 6  

EQLTGT +=  

Floating-point comparisons on the other hand are complicated because of the 

incorporation of exceptions which are mandated by the IEEE 754 standard. The major 

exception that should be detected with comparisons is if the operands are Unordered. 

According to the IEEE 754 standard, values are unordered if either operand is a NaN 

and a floating-point comparison is being performed. The hardware for detecting 

unordered may vary from one processor to the next, because the standard allows 

discretion in defining specific signaling and quiet NaN’s bit patterns. The IEEE 754 

standard also states that comparisons must also output an Invalid Operation exception if 

either operand is a signaling NaN [1]. Furthermore, a final test must be performed to 

make sure +0 and −0 compare Equal, regardless of the sign. 

In summary, the floating-point comparisons must be able to handle Invalid operations, 

both types of NaN’s, and not differentiate between both types of zeroes. As with two’s 

complement numbers, the comparator is simplified by computing whether the two 

operands are Equal or Less than each other. Once these two outputs are known, it is 

simple to produce Greater than output. For the combined unit, the Less than comparison 

utilizes the same cases tabulated previously accounting for a floating-point operation. On 

the other hand, floating-point comparisons for Equal need to be modified to account for 
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either equal operands or the comparison of zeroes. Therefore, the combined comparator 

(two’s complement and floating-point) handles two cases for determining whether the 

operands are Equal: 

1) The operand magnitudes are equal AND the operands’ signs are equal. 

2) The operand magnitudes are zero AND the operands are floating point numbers. 

The final equations for the combined comparator are given below, where Azero 

represents a literal testing of whether A is +0 or −0, fp represents a literal specifying a 

floating-point operation and UO represents a literal indicating unordered operands: 

fpBAUO NaNNaN ⋅+= )(   

]63[]63[]63[]63[(]0[ 6 BABAEQEQ ⋅+⋅⋅= UOfpAzero ⋅⋅+ )  

6]0[]63[]63[]63[]63[( LTBABALT ⋅⋅+⋅= fpLTBA ⋅⋅⋅+ 6]0[]63[]63[  

UOEQfpLTBA ⋅⋅⋅⋅⋅+ )]0[]63[]63[ 6  

UOEQLTGT ++=  

For these equations, logic is saved by only testing whether A is zero since EQ[0]6 

already indicates if the operands are equal making a test of B equal to zero redundant. 

Sign extension for 32-bit two’s complement numbers is implemented by sign extending 

the 32nd bit into the upper 32-bits of the comparator. IEEE single-precision numbers do 

not need to be converted to double-precision numbers, since the two formats have the 

same basic structure and the exponents are biased integers. The logic to detect NaNs 

and zeros for the two floating-point formats differs slightly, since single precision 

numbers have smaller significands and exponents than double precision numbers. 
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2.2 Addition 

Addition is a fundamental arithmetic operation and the design of efficient adders aids as 

well in the performance and efficiency of other operation units like multipliers and 

dividers. Decimal addition has been researched but not as heavily as binary addition and 

only a handful of research papers can be found on the topic. Nevertheless, binary 

arithmetic is important for the decimal case since decimal numbers are represented in 

binary and many concepts and techniques developed for binary can be applied to some 

extent as well. An overview of some relevant binary addition concepts is therefore 

necessary. 

2.2.1 Binary addition 

One of the most basic elements in addition is the Full Adder (FA) or 3:2 counter. Adders 

are sometimes called counters, because they technically count the number of inputs that 

are presented at their input [28]. The FA takes three single bit inputs, xi, yi and ci and 

produces two single bit outputs si and ci+1 corresponding to [29]: 

xi + yi + ci = 2·ci+1 + si , 

where ci is commonly referred to as the carry-in and ci+1 the carry-out. The logic 

equations for the Full Adder cell are given by: 

si = xi ⊕ yi ⊕ ci 

and  ci = xi yi + xi ci + yi ci . 
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Figure 4. Full adder cell and Truth Table. 

 

The full adder cell can be utilized to create n-bit operand adders as shown in the next 

figure. This simple approach, called Ripple Carry Adder or Carry Propagate addition 

(RCA/CPA), has the disadvantage of a significant time-consuming delay due to the long 

carry chain as the carry propagates from c0 to c1 all the way until the MSB, in this case 

s3. 

 

Figure 5. 4-bit Ripple Carry Adder. 

 

In order to speed up this process, certain aspects of the addition in each cell can be 

exploited, as is the case for the Carry Look-ahead Adder (CLA). If a carry is present at 

the FA’s carry-in from the previous significant bit it is said to propagate if either xi or yi 
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are equal to 1. On the other hand if a carry is generated within the FA cell, when both xi 

and yi are 1, the cell is said to generate a carry-out. Logic equations for generate and 

propagate signals (g and p) as well as an equation describing when a carry-out takes 

place can therefore be determined from the inputs: 

g = xi · yi , 

p = xi + yi , 

ci+1 = gi + ci · pi 

The last equation can be utilized to determine the carry-out of the next significant bit FA: 

ci+2 = gi+1 + ci+1 · pi+1 = gi+1 + (gi + ci · pi)·pi+1 . 

Showing that ci+2 can be obtained exclusively with the operands inputs without the need 

of the carry ci+1 as in Figure 5. This provides a method of obtaining the carry-out result 

for each bit position without the need of a carry chain and hence speeding up 

significantly the process. 

As the operand size is increased, however, the complexity of each new bit’s carry-out 

logic grows significantly making the method impractical for operands of more than 4-bits, 

depending on the technology used. In this case, further techniques allow carry generate 

and propagate signals to be obtained for an n-bit block and improve the adder’s 

implementation. 

2.2.2 Carry save addition (CSA) 

Carry-save addition is the idea of utilizing addition without carries connected in series as 

in the Ripple Carry Adder but instead to count and hence avoid the ripple carry chain. In 
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this way multi-operand additions can be carried out without the excessive delay resulting 

from long carry chains. The following example shows how a 4-bit CSA accepts three 4-

bit numbers and generates a 4-bit partial sum and 4-bit carry vector, avoiding the 

connection of each bit adder’s carry-out to the carry-in of the next adder. 

 

Figure 6. Full adder cells used for carry-save addition. 

 

The example shown demonstrates how performing addition in a given array (each 

column in the figure) produces an output with a smaller number of bits; in this case form 

3 bits to 2. This process is called reduction and is very useful during multiplication. 

2.2.3 4:2 Compressors 

One particular useful carry-save adder is the 4:2 compressor presented in [30]. The 

main reason for using compressors is that their carry-out (cout) is no longer dependent on 

the cin, as shown in Figure 7. This gives compressors a significant advantage over 

traditional carry-save adder trees implemented with 3:2 counters in that it can expedite 

processing the carry chain while still maintaining a regular structure. 
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Figure 7. Weinberger 4:2 Binary Compressor. 

2.2.4 Decimal excess-3 addition 

As stated earlier, usually decimal numbers are stored as Binary Coded Decimals (BCD). 

BCD numbers have 6 unused combinations, from 10102 to 11112, and this complicates 

addition and subtraction for the decimal case. Furthermore, negative numbers can not 

be represented in two’s complement fashion which is a common method for subtraction 

for the binary case. 

A different coding for decimal numbers, called Excess-3, is important since it has many 

useful properties for subtraction and addition. Excess-3 code can be generated by just 

adding a binary 3 to the common BCD code, as shown in Table 6. 

Table 6. Excess-3 Code. 

Decimal Value Excess-3 Code
0 0011
1 0100
2 0101
3 0110
4 0111
5 1000
6 1001
7 1010
8 1011
9 1100  
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Except for some corrections necessary during addition/subtraction, common binary 

techniques can be applied for arithmetic operations. Most importantly the addition of two 

numbers creates a decimal carry which is available by using the carry output of the most 

significant binary bit. This occurs because the addition of two excess-3 digits creates a 

result in excess-6 which already eliminates the unwanted 6 binary combinations. 

Furthermore, the code is self-complementing [31]. This implies that a subtraction or 

negative number addition can be obtained by inverting all bits of the digit and adding a 

binary ulp, in the same way as two’s complement binary numbers. 

The following equation, taken from [31], shows the operation result of two Excess-3 

numbers added together, where the underline represents a digit in BCD: 

SUM = D1 + D2 = D1 + 3 + D2 + 3 = D1 + D2 + 6 

There are two possibilities to consider for the sum result. When D1 + D2 < 10 then no 

carry to the next higher digit is needed and the Excess-6 result can be corrected by just 

subtracting 3 from the sum. This can be easily accomplished by adding 13 and ignoring 

the carry output, which effectively subtracts 16. When D1 + D2 ≥  10 a decimal carry 

should be signaled to the digit in the next place. This can be accomplished by sending 

the Carry out signal of the most significant bit. Nevertheless this sends a carry of 16 (6 

too much) and hence by adding 3 the result is restored into Excess-3 code. Note that in 

both cases the correction requires the addition of 3 or 13 which can be accomplished by 

a simple inverter on the LSB output. Figure 8 shows an implementation of an Excess-3 

adder. 
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Figure 8. Adder for Excess-3 code, taken from [31]. 

 

2.2.5 Direct decimal addition 

The use of Excess-3 code permits the addition of two decimal numbers by using a 

correction method to that corrects the six unwanted values in BCD code after the 

operation takes place (10102 to 11112). Regardless, a different approach proposed in 

[15] presents logic that performs direct decimal addition where a combinational element 

has as inputs two 4-bit BCD numbers xi and yi and a carry-in ci[0] and outputs a 4-bit 

BCD digit si and a 1-bit carry-out ci+1[0] satisfying: 

(ci+1, si) = xi + yi + ci[0] , 

where ci+1 represents ten times the weight of si . The following are the logic equations 

that describe the direct decimal adder [12]: 
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][][][ jyjxjp iii +=  30 ≤≤ j  “propagate” 

][][][ jyjxjh iii ⊕=  30 ≤≤ j  “addition” 

 

])0[]0[(]0[]1[
])1[]2[(]2[]3[

])1[]2[(])1[]3[(])2[]3[(]3[

iiii

iiiii

iiiiiiii

cpgc
gpgpl

pgppppgk

⋅+=
⋅++=

⋅+⋅+⋅+=
 

 

])1[)]1[(()]1[)]1[((]1[

]0[]0[]0[

iiiiiii

iii

clhckhs

chs

⋅⊕+⋅⊕=

⊕=
 

)]1[]))1[]2[(]3[(()]1[]2[]3[(])1[]2[(]2[ iiiiiiiiii chhgphpgps ⋅⋅++⋅⋅+⋅=  

])1[]))2[]3[(])1[]2[(])1[]2[]3[((( iiiiiiii cppggppp ⋅⋅+⋅+⋅⋅  

])1[(]0[
])1[]))1[]2[]3[()]3[]3[((()]1[)((]3[

1 iiii

iiiiiiiiii

clkc
chhhhgclks

⋅+=
⋅⋅⋅+⋅+⋅⋅=

+

 

 

These equations describe a decimal full adder that can be utilized for either carry-save 

or carry propagate addition. 

2.2.6 Decimal Floating-Point Adder 

To the author’s knowledge the only published work to date of an arithmetic module 

compliant with the IEEE-754 current revision draft is the decimal floating-point adder 

published by Thompson, Karra and Schulte in [16] and hence its inclusion in this section 

is of significance. This design differs from previous decimal adders in that it is fully 

compliant with the standard including special value cases and exception handling, and 
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that it is capable of generating a complete result in a single cycle instead of a single digit 

per cycle. 

 

Figure 9. Decimal Floating-Point adder, from [16]. 

 

Figure 9 shows a block diagram of the adder design. Initially the two IEEE-754 decimal 

numbers are decoded into their sign bits, coefficient (BCD) and Exponent fields (two’s 

complement binary). The operand exchange block orders the coefficients according to 

which number’s exponent is greater followed by the operation unit which determines the 

actual operation to be performed (addition or subtraction) depending on the signs of the 

operands. The coefficients, or significands, are aligned and a conversion into Excess-3 

format follows for their respective binary addition and flag bits determination. The result 

is finally corrected, depending on the previously set flags, shifted and rounded allowing it 

to be encoded back into IEEE-754 decimal format. The adder presented in this work also 
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allows up to 5 stages of pipelining which improves its critical path delay. Also it is of 

importance since it explores the advantage of using Excess-3 coding for decimal 

addition. 

2.3 Binary Multiplication 

Since decimal operations are performed on binary circuits, understanding how binary 

multiplication is achieved aids in the application and development of new techniques for 

the decimal case. A brief overview on its most significant implementations is given in this 

Section for that purpose. 

The multiplication of two binary numbers, multiplier X (xN-1, xN-2, …, x1, x0) and 

multiplicand Y (yM-1, yM-2, …, y1, y0) is determined by the following equation [32]: 
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This is illustrated in Figure 10 for the case of 6-bit operands: 

 

 

Figure 10. Partial products during multiplication, taken from [32]. 
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Each partial product bit position can be generated by a simple AND gate between 

corresponding positions of the multiplier and multiplicand bits as shown in figure 3. All 

partial products are reduced or “compressed” by addition into a single product result. 

A direct implementation of this method is given in the Carry Save Array Multiplier or 

CSAM. In this type of multiplier the partial product array shown in Figure 10 is skewed 

into a square shape so that its implementation is more efficient for VLSI. The 

compression is performed by the use of full adders (FAs / 3:2 counters) and half adders 

(HAs). Figure 11 shows this array for the multiplication of two 8-bit operands. MFA and 

MHA cells represent full adders and half adders with an additional AND gate input to 

generate the partial product. The highlighted arrow shows the critical path of the circuit, 

the longest carry propagation chain. In Figure 10, which has 6-bit operands instead of 8, 

this would correspond to the addition of the 6th column (partial products x0y5 to x5y0) plus 

the carry propagation through the last adder that generates the product, from p5 to p11. 

This long carry chain limits significantly the performance of the multiplier and is even 

more considerable as the operand size is incremented. 

One of the most significant works that addressed this problem was proposed by Wallace 

[33]. Wallace suggested the use full adders and half adders in a recursive fashion 

adding three elements at a time in a carry propagate free way. In this manner, the partial 

product array can be reduced in stages subsequently to two numbers without carry 

propagation. When the resulting two numbers are obtained, a Carry Propagate Addition 

(CPA) takes place to obtain the final result [34]. 
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Figure 11. Carry Save Array Multiplier, CSAM. 

 

This is shown in the example in Figure 12. The diagram illustrates a 4-bit multiplication 

where the resulting partial products are shown at the top, analogous to the 6-bit 

multiplication of Figure 10. Each dot represents a partial product bit position (e.g. x0y5, 

x3y2, etc.) The second step shows the partial product array reorganized in a triangular 

shape where the oval around the dots represents a full adder (3 inputs) or a half adder 

(2 inputs). The result of each addition produces two elements, a sum and a carry-out to 

its next significant bit position (column to its left). The process is repeated again until at 

the final stage only two bit array numbers are left, and a reduced size carry propagate 

addition is required to produce the final result. 
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Figure 12. Wallace Tree multiplier reduction for two 4-bit operands.  
Carry and sum bits for the Half Adder shown. 

 

Figure 13 illustrates how a Wallace tree for 6-bit operands is implemented using FAs 

and HAs. In this case the partial products corresponding to the 5th column are detailed. A 

partial product column array of 5-bits feeds a FA and a HA. The carry-out bits produced 

are the inputs for the 2nd stage FA on the next column. The output sum bits are passed 

directly to the next stage FA, within the same column. In this manner a partial product 

reduction tree can be formed. 

 

Figure 13. Implementation detail for Wallace tree, 5th column (only 2 stages are shown). 
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As can be seen from the example shown in Figure 13, the resulting Wallace reduction 

tree is not regular and hence causes difficulties when the circuit layout is implemented. 

Nevertheless, the use of 4:2 compressors (exposed in Section 2.2.3), can be organized 

into efficient interconnection networks for reducing the partial product matrix in a matter 

that is regular and more suitable for implementation. However, careful attention has to 

be placed when organizing these compressor trees, because the carry terms within the 

4:2 compressor have a weight that is one more than its sum, corresponding to the next 

significant bit (column to its left). This means that compressor trees must be built 

according to the following: 

- The column sum output sum for any compressor tree utilizes the current weight 
of its column. 

 

- The column carry output for any compressor tree must utilize the previous weight 
of the current column. 

 

Therefore, although compressor trees are traditionally drawn as binary trees, they must 

be organized carefully so that the counter outputs are summed together properly. Figure 

14 shows an example of an 8-bit compressor tree for three columns. It can be seen that 

the carry-in for each element comes from its previous column. 

2.4 Decimal Multiplication 

Decimal multiplication is considerably more involved and has not being researched as 

heavily as its binary counterpart. There are however certain studies and ideas from the 

1950’s, when decimal arithmetic was researched significantly, that are worth mentioning 
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and that sometimes have aided in more modern developments but nevertheless there 

are only a very few modern papers on the topic. 

 

Figure 14. Three column 8-bit 4:2 binary compressor tree 

 

One of the main difficulties lies in the generation of the partial products. In the binary 

case this could be accomplished by a simple AND gate which produced a single bit per 

digit result. In the decimal case however the inputs are not single bits but decimal 

numbers usually coded in BCD which implies two 4-bit inputs per digit multiplication. The 

result is in decimal as well and therefore a 4-bit output is produced. 

One possible form of implementing the multiplication algorithm is to follow the pencil-

and-paper approach, as shown in [31]. In this method a multiplication table is known 

beforehand and the result of the multiplication of each multiplicand digit with a multiplier 

can be determined by table lookup or combinational logic. A performance improvement 



 32

might be obtained if the resulting number is considered separately and divided into left 

digit (tens) and right digit (units). An addition accumulator can be used for each digit and 

the final result computed at then end. Table 7 shows the decimal multiplication table 

used for each component and Figure 15 shows an example of the algorithm. 

Table 7. Decimal Multiplication Table, from [31]. 

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 1 0 1 2 3 4 5 6 7 8 9
2 0 0 0 0 0 1 1 1 1 1 2 0 2 4 6 8 0 2 4 6 8
3 0 0 0 0 1 1 1 2 2 2 3 0 3 6 9 2 5 8 1 4 7
4 0 0 0 1 1 2 2 2 3 3 4 0 4 8 2 6 0 4 8 2 6
5 0 0 1 1 2 2 3 3 4 4 5 0 5 0 5 0 5 0 5 0 5
6 0 0 1 1 2 3 3 4 4 5 6 0 6 2 8 4 0 6 2 8 4
7 0 0 1 2 2 3 4 4 5 6 7 0 7 4 1 8 5 2 9 6 3
8 0 0 1 2 3 4 4 5 6 7 8 0 8 6 4 2 0 8 6 4 2
9 0 0 1 2 3 4 5 6 7 8 9 0 9 8 7 6 5 4 3 2 1

Left Digit Component Right Digit Component

 

 

Nevertheless, with this approach a performance constraint is that the number of 

additions required to perform multiplication is one greater than the number of digits in the 

multiplier and hence slow when compared to other methods. 

An alternative approach, proposed on [31] as well, attempts to generate the partial 

product digits by addition instead of a table lookup. This is accomplished by over-and-

over addition where the digits of the multiplier are checked one by one and the 

multiplicand is added an equivalent number of times to an accumulator. This approach 

however can be very time consuming as the number of additions required is significant. 
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 916 Multiplicand 
  93 Multiplier 

 
Left-Components Right-Components 
  Accumulator    Accumulator 

    2010 
    80500    738 

    1940 
       82510         

2678          2678 
 
       85188 

 

Figure 15. Decimal multiplication table Left and Right algorithm example, taken from [31]. 

 

To reduce the number of additions and speed up the multiplication a technique called 

Doubling and Quintupling can be used. With Doubling the value of twice the multiplicand 

is calculated before the actual accumulation takes place. This allows a faster 

accumulation as it reduces the number of additions necessary. If the multiplier digit is 5 

for example the number of additions required is 3 (2+2+1) instead of 5. The value of 

twice the multiplicand can be obtained by adding the number to itself with a decimal 

adder. An important speedup can be accomplished however since the number is only 

added to itself and some combinations are never present which simplifies significantly 

the functions for the output result and does not require a full decimal adder. Quintupling 

on the other hand can also be used and it consists on calculating five times the 

multiplicand, 5M, before hand. This can be accomplished by noting that a multiplication 

by 5 can be performed by a multiplication by 10 (decimal left shifting) and a division by 2 

(binary right sift) with certain corrections. In this way a value of 5M can be used for the 

accumulation and further reduce the number of additions required for the multiplication. 
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The discussed ideas have been implemented utilizing mostly a serial or sequential 

approach as shown in [35], [36], [37] and [38]. Two proposals however are significant 

and are detailed below. 

2.4.1 High frequency decimal multiplier 

One of the recent research papers on decimal multiplication worth mentioning is the one 

by Kenney, Schulte and Erle in [13]. The design proposed presents an iterative 

multiplication that uses some of the ideas exposed above, doubling and quintupling. In 

this design a set of multiplicand multiples are computed using combinational logic. In this 

way the values of 2M, 4M, and 5M are obtained and then divided into two sets of 

multiples: {0M, 1M, 4M, 5M} and {0M, 2M, 4M}. Depending on the value of the multiplier 

digit, a selector picks a multiple from each set and in that way their addition produces 

any value from 0M to 9M in a single operation. The design is further improved by 

allowing a two stage pipeline increasing its operating frequency and by utilizing a new 

decimal representation for intermediate products which speeds up the process. This 

representation, called overloaded decimal, permits the complete use of all 4-bits 

comprising the decimal digit and hence the numbers from A16 to F16 are allowed. In this 

way the correction back into decimal is avoided in each iteration’s addition. The process 

continues until all digits in the multiplier operand are consumed. In the final product each 

digit is corrected from overloaded decimal back into BCD by adding 610 when a digit lies 

in the range of A16 - F16, which is easily accomplished with two level logic. A carry of 

value 1 is also added to the next order digit. 
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2.4.2 Multiplication with efficient partial product generation 

A different iterative multiplication approach is proposed by Erle, Schwarz and Schulte in 

[14]. In this design the partial products are calculated in a digit-by-digit multiplier creating 

a digit-by-word (multiplicand multiple) signed-digit partial product. 

The multiplier operand is examined digit by digit from least significant digit to the most 

significant digit and as each partial product is obtained it is accumulated with previous 

results to obtain the product. The most significant characteristic in this design is the 

recoding of the multiplier and restricting the range of each digit by utilizing a redundant 

representation from -510 to 510. In this way the digit multiplier is simplified since there are 

no longer two input numbers with ten possibilities each but two inputs with values 

ranging from 0 to 5. The sign of the product is obtained simply by looking at the signs of 

the input digits. The multiples of 0 and 1 correspond to trivial multiplication results and 

therefore the range of input digits considered is virtually restricted to just the numbers 

from 2 to 5. This significantly speeds up the process since the possible input 

combinations are reduced from 100 to only 16 but nevertheless complicates the final 

product calculation since the result needs to be recoded back into BCD from a 

redundant representation. Table 8 shows the multiplication table for the recoded 

operand digit values. 

Table 8. Restricted range, signed magnitude products, from [14]. 
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The problem however with these two last propositions, [13] and [14], is that they have 

limited parallelization and hence are difficult to use in a pipelined system. In other words, 

the computation of the multiplication in both cases is highly sequential since the partial 

products are added by accumulation one by one as they are obtained. This forces the 

multiplier to be busy and unavailable for further computations in a pipeline until a result 

is computed. Only then it can accept a new operation which is unacceptable in most of 

today’s floating-point units. It is therefore desirable to research methodologies which 

allow multiplication to be as parallel as possible as, for example, the CSA Multiplier and 

the Wallace tree for the binary case. 
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3. DECIMAL FLOATING-POINT COMPARATOR 

As stated earlier, a comparator is an important element in general purpose and 

application specific architectures. The design of an efficient and high speed decimal 

comparator aids in the performance of these architectures. This design proposes a high 

performance 64-bit decimal floating point comparator, compliant with the current draft of 

the IEEE-754R standard for floating-point arithmetic. This is the first implementation of a 

decimal floating-point comparator compliant with the draft standard. The design can also 

be easily extended to support 128-bit decimal floating point numbers and even though it 

is not pipelined, it can accommodate pipelining to improve throughput. 

3.1 Decimal floating-point comparison 

Floating point comparisons are specified by the IEEE 754 standard [1]. The comparator 

proposed accepts two 64-bit decimal floating point numbers. In the same way as binary 

comparisons, the relation between the two numbers is given by four mutually exclusive 

conditions: greater than, less than, equal and unordered. The numbers are unordered 

when either one or both operands compared are Not-a-Number or NaN. If the NaN is 

specified as a signaling NaN then an Invalid exception flag bit is asserted. The result of 

the comparison is represented by Floating-point Condition Codes or FCC and presented 

in Table 4. Again, bit FCC[1] is analogous to a greater than flag (GT) and FCC[0] is 

analogous to a less than flag (LT). 
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The design however differs significantly from its binary counterpart mainly because the 

current IEEE 754 revision specifies that decimal floating-point numbers are not 

normalized and, therefore, the representation is redundant in nature. This implies for 

example that numbers 125 x 10-5 and 1250 x 10-6 are both representable and should be 

recognized as equal during comparison. Binary floating-point numbers on the other 

hand do not allow redundancy. Without redundancy numbers can be compared as pure 

binary integer numbers (since biased exponents are used) without the necessity of 

separating exponent and coefficient and perform alignment as proposed in [26]. 

The core of the comparison lies on the magnitude comparator used for the coefficients. 

A usual scheme to approach the comparison of the two coefficients is to subtract them. 

Taking into account the signs of the operands, the sign of the result determines if the 

comparison is greater than, less than or equal when the subtraction result is zero. This 

type of approach is advantageous in a system in the sense that the existing decimal 

floating-point adder/subtractor hardware can be utilized also for this purpose without an 

area increment. 

A decimal comparator however is only reasonable if it provides a significant speed 

improvement at the cost of a small area overhead when compared to a floating-point 

subtraction approach. To its advantage, however, the comparator can benefit from the 

fact that the difference between both numbers is not required and that the result of the 

subtraction does not need to be rounded and recoded into decimal floating-point 

standard again. Furthermore, an adder/subtractor requires a greater working digit 

precision (extra guard bits for example) than what can be represented in the format to 

account for rounding and normalization [29]. 
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Before subtraction takes place, since the floating-point numbers to be compared may 

have different exponents, their coefficients need to be aligned. Once alignment is 

performed, and taking into account the signs of the operands, the sign of the subtraction 

result determines if the comparison is greater than, less than or equal when the 

subtraction result is zero. This type of approach is advantageous in a system in the 

sense that the existing addition/subtraction hardware can be utilized also for this 

purpose without an area increment. The example in Figure 16 illustrates the classic 

approach to comparison where the number 3149 x 1023 is compared to 90201 x 1016. 

 

Figure 16. Classic approach to floating-point comparison. 
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The comparator proposed however utilizes a scheme that avoids subtraction for the 

coefficient comparison and instead uses a faster approach. It also avoids the use of 

extra digits. Only a working precision of 16 decimal digits, as in the standard, is used. 

3.2 Comparator Design 

An overview of the design of the decimal floating-point comparator is given in Figure 17. 

A decoding module, IEEE 754 decoder, converts the decimal64 operands (A and B) into 

a format that can be utilized for comparison.  The combination field is processed and the 

IEEE 754 decoder outputs the number sign, exponent in unsigned 10-bit binary form, 

coefficient as a 64-bit BCD encoded number and tells if the number is infinite, a quiet 

NaN or a signaling NaN. 

Since alignment is needed, the value of the difference between the operands’ exponents 

is necessary and subtraction is, therefore, required. The 10-bit unsigned binary 

exponents are compared in the Exponent Comparison module. This module contains a 

10-bit Carry Look-ahead Adder for fast operation and performs subtraction to determine 

which exponent is smaller or if they are equal and the amount of shifting necessary for 

the coefficient alignment. This amount is passed to the Coefficient Alignment module. 

Alignment is performed by left shifting the coefficient of the number with the greatest 

exponent and, thus, reduce its exponent magnitude. Since the representation allows for 

16 digits, shifting is limited from 0 (or no shift) to 15 digits. Larger alignment needs are 

evaded by treating them as special case scenarios. Consequently, this aids in 

maintaining the coefficient digit size (i.e. working precision) restricted to 16 digits 

allowing the coefficient magnitude comparison module to yield a result faster given that 
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its delay and complexity grows logarithmically (log4). These special cases or scenarios 

will be treated in the following subsections. 
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4

2x16 
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Figure 17. Decimal floating-point comparator design. 

 

Figure 18. Coefficient Aligner, logarithmic barrel shifter. 
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3.3 Coefficient magnitude comparison 

Once the 64-bit/16-digit coefficients are correctly aligned their magnitude can be 

compared. The magnitude comparator designed is based on the comparator proposed in 

[26] and exposed in Section 2.1 with significant performance modifications tailored 

specifically for BCD number comparison. 

The two operands A and B are compared in stages. The first stage compares 

corresponding 4-bits BCD digits from each operand. Sixteen of these elements are used 

in parallel to process the complete 16-digit coefficients. Two output bits (GT and LT) 

from each of these elements indicate the result as greater than, less than or equal.Table 

9 shows the magnitude comparison where GT[i]j and LT[i]j represent greater than and 

less than flags respectively as in Section 2.1 and A[i] and B[i] represent the digit i of the 

operand coefficients. The subscript j indicates the stage of the comparison. 

Table 9. BCD Magnitude Comparison 

GT[i] LT[i] Result
0 0 A[i] = B[i]
0 1 A[i] < B[i]
1 0 A[i] > B[i]
1 1 invalid  

The first stage’s elements (one per digit pair compared) have 8 input bits (two BCDs) 

and 2 single bit outputs each, producing a truth table of 256 possibilities per output. 

Since the numbers compared are BCD encoded, and not binary, the truth table is 

simplified by ignoring all entries where the 4-bit BCD numbers are greater than 9. This 

reduces the cases to be considered from 256 to 100 (the rest are don’t cares) and 

reduces significantly the minimized sum-of-products expressions for LT[i] 1 and GT[i] 1. 
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Subsequent stages compare the results of the previous stage in the same manner 

forming a logarithmic tree, comparing 4-bit GT[i]j sets to corresponding LT[i]j sets of the 

result where GT[i]j  replaces A[i] and LT[i]j replace B[i] signals. These elements are 

further optimized given that GT[i]j and LT[i]j are never both asserted at the same time as 

shown in Table 9. The truth table cases are further reduced from 100 to 82 producing 

fast and simplified minimized sum-of-products expressions for LT[i]j+1 and GT[i]j+1 

considering it is a 4-bit 2 number comparison: 

LT[i]j+1 = LT[i+3]j + (GT[i+3] j’ • LT[i+2] j) + (GT[i+3] j • GT[i+2]j’ • LT[i+1] j) + (GT[i+3] j’ • 

GT[i+2] j’ • GT[i+1] j’ • LT[i] j) 

GT[i]j+1 = GT[i+3]j + (GT[i+2] j • LT[i+3] j’) + (GT[i+1] j • LT[i+3]j’ • LT[i+2] j’) + (GT[i] j • 

LT[i+3] j’ • LT[i+2] j’ • LT[i+1] j’) 

The number of comparator stages is given by k = log4(4n) where n is the coefficient digit 

size. With n = 16 digits a total of log4 (4x16) = 3 stages are needed to yield the resulting 

LT and GT for the magnitude comparison of the coefficients. 

Figure 19 illustrates an example using this logarithmic tree magnitude comparator. The 

operand size is reduced to 4 digits instead of 16 for clarity. The comparison to be 

computed is A to B where A = 271310 and B = 219510. Each number is separated in digits 

and each corresponding digit pair is compared individually. Subsequent stages group LT 

and GT signals together as shown. The final stage yields GT = 1 and LT = 0 as expected 

giving A > B. 
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Figure 19. BCD magnitude comparator. 

3.4 Special case scenarios 

The result of the comparison of the two operands cannot always be obtained by a 

magnitude comparison of the aligned coefficients. It is possible for either of the operands 

to be a NaN (in which case the result should be unordered), plus/negative infinity or 

plus/negative zero which are both representable. These possibilities are treated as 

special cases and can be determined early in the decoding phase.  

The coefficients of the operands cannot always be correctly aligned within the 16-digit 

working precision for the magnitude compare module. There are two possibilities that 

can arise that are also considered as special cases. The first one occurs when the 

absolute value of the exponent difference between operands is greater than 15 and the 

second when the alignment of the coefficient produces a digit shifted out (overflow). This 

is treated along with the cases for NaNs, infinities and zeros and their respective 

signaling flags. 
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Each of the possible comparison scenario cases sets its own output signals LT and GT 

which affect the FCC comparison result. Five different mutually exclusive enable flag bits 

are used to indicate when each scenario occurs. The special case handling module, at 

the bottom of Figure 17, is the one responsible for determining the result according to 

the given situation. 

3.4.1 One or both numbers is infinite 

If one or both numbers are infinite the comparison result can be obtained right away by 

examining the sign of the operands. If the operands are A and B then: A is less than B if 

A is negative infinity and B is positive infinity OR if A is negative infinity and B is not 

infinity OR if B is positive infinity and A is not infinity. 

LT_inf = (inf_A · sign_A  · sign_B’) + (inf_A · sign_A · inf_B’ ) + (inf_A’ · inf_B · sign_B’) 

A is greater than B if A is positive infinity and B is negative OR if A is positive infinity and 

B is not infinity OR if A is not infinity and B is negative infinity. 

GT_inf = (inf_A · sign_A’ · sign_B) + (inf_A · sign_A’ · inf_B’) + (inf_A’ · inf_B · sign_B); 

Note that if both numbers are positive infinite or negative infinite the result is 1-1 for 

GT_inf and LT_inf signaling an unordered comparison. The signaling flag that indicates 

this scenario is given by: 

infinite_flag = infinity_A + infinity_B 

where infinity_A/B is 0 if numbers are finite and 1 if infinite. 
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3.4.2 Both operands are zero 

In the IEEE-754 current draft the value of zero in decimal is indicated by a zero value for 

the number coefficient as opposed to a zero exponent in binary floating-point. If both 

operands are zero then both numbers are always equal regardless of their sign taking 

into account that +0 and -0 are both equivalent as specified by the standard. 

The bits LT and GT remain unmodified (both are zero indicating equality) guarded by the 

flag enable bit zero_flag which prevents all other scenario modules to affect the result 

(except for infinite numbers). This flag is given by: 

zero_flag = (A_zero · B_zero) & infinite_flag’ 

where A/B_zero is 0 if the number is non-zero and 1 if it is zero. 

3.4.3 Exponent difference off-range 

If the absolute value of the exponent difference between operands is greater than 15 

(indicated by the signal shift_off-range in Figure 17) then the coefficients cannot be 

aligned since the working precision allows 16 digits. This means that one of the numbers 

is evidently greater in magnitude than the other (e.g. 512 x 1040 and 123 x 10-3). The 

comparison result can be obtained by knowing which of the number’s exponent is 

greater and by examining the signs of the numbers. The signal greater_exp indicates 

which exponent is greater. 

A is less than B if exponent B is greater than exponent A (greater_exp = 1) and both 

numbers are positive OR if A is negative and B is a positive number OR if both numbers 

are negative and exponent A is greater, (greater_exp = 0). Numbers are never equal. 
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LT_off-range = (greater_exp · sign_A’ · sign_B’) + (sign_A · sign_B’) 

+ (sign_A · sign_B · greater_exp’). 

 

A is greater than B if both numbers are positive and exponent A is greater than 

exponent B (greater_exp = 0) OR if A is positive and B is negative OR if both numbers 

are negative and exponent B is greater (greater_exp = 1). 

GT_off-range = (greater_exp’ · sign_A’ · sign_B’) + (sign_A’ ·sign_B) 

+ (sign_A · sign_B · greater_exp) 

The signaling flag for this case is: 

exp_flag = shift_offrange • zero_flag’ • infinite_flag’, 

where shift_offrange is determined by calculating the exponents difference in the 

exponent compare module (>15). 

3.4.4 Alignment shift-out, overflow 

If the exponent difference is within range (<15), alignment of the coefficient takes place 

by left shifting. If a digit is shifted out (shift_overflow) then the comparison result can be 

determined by knowing the signs of the numbers. 

The greatest exponent determines which of the two numbers compared is the one being 

aligned with respect to the other. When greater_exp = 0, exponent A is the one aligned 

and vice-versa. If alignment overflow occurs A is less than B if: A is negative and B is 

positive OR if A alignment overflows (magnitude of number A is greater) and it is 

negative OR if B alignment overflows (magnitude of number B is greater) and B is 

positive. 
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LT_of = (sign_A · sign_B’) + (greater_exp’ · sign_A) + (greater_exp · sign_B’) 

A is greater than B if: A is positive and B is negative OR if A alignment overflows and it 

is positive OR if B alignment overflows and it is negative. 

GT_of = (sign_A’ · sign_B) + (greater_exp’ ·sign_A’) + (greater_exp · sign_B) 

The equation for the signaling flag of this scenario is: 

align_flag = shift_overflow · exp_flag’ · zero_flag’ · infinite_flag’ 

where shift_overflow is asserted during alignment if a digit is shifted out. 

3.4.5 Coefficient comparison 

If the exponent difference is within range and no shift overflow occurs after alignment 

then this indicates that the coefficients are correctly aligned and their comparison can be 

executed by the dedicated coefficient magnitude comparator module discussed in 

Section 3.3. The output signals from this module (LT and GT) are renamed to avoid 

confusion as LT_mag and GT_mag. Nevertheless, the final result of the comparison is 

not yet determined as the relationships of greater than, less than or equal do not only 

depend on which number’s magnitude is greater but also on their signs. The result of the 

comparison in this scenario is then given by the following conditions. 

A is less than B if: A is negative and B is positive OR A and B are positive and the 

magnitude of A is less than the magnitude of B OR A and B are negative and the 

magnitude of A is greater than the magnitude of B. 

LT_cmp = (sign_A · sign_B’) + (sign_A’ · sign_B’ · LT_mag) + (sign_A · sign_B · GT_mag) 
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A is greater than B if: A is positive and B is negative OR if A and B are both positive and 

the magnitude of A is greater than B OR if both numbers are negative and the 

magnitude of A is less than B. 

GT_cmp = (sign_A’ · sign_B) + (sign_A’ · sign_B’ · GT_mag) + (sign_A · sign_B · LT_mag) 

Mag_flag determines if the outputs GT_cmp and LT_cmp should affect the final result 

and it is given by: 

mag_flag = align_flag’ · exp_flag’ · zero_flag’ · inifinite_flag’ 

In other words, the magnitude comparison of the coefficients is only valid (through 

mag_flag) if none of the previous enable flags was triggered. 

The final equations for the comparator considering all possible scenarios are: 

GT = unordered + ( (GT_inf · infinite_flag) + (GT_off-range · exp_flag) 

+ (GT_of · align_flag) + (GT_cmp · mag_flag) ), 

 

LT = unordered + ( (LT_inf • infinite_flag) + (LT_off-range • exp_flag) 

 + (LT_of • align_flag) + (LT_cmp • mag_flag) ). 

The signal unordered is asserted when either of the operands is a NaN. If this occurs the 

result is overridden and is always unordered (GT=1, LT=1) as specified in Table 4. 

The signals GT and LT are finally produced in the special case handling module. It is the 

one that receives the flags indicating the different scenarios and is responsible for the 

handling of the different comparison cases described in this section. 
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3.5 Combined binary floating-point, two’s complement and decimal floating-

point comparator 

Given the similarity of approaches of the decimal comparator described and its binary 

counterpart exposed in Section 2.1, a single design capable of handling 32-bit and 64-bit 

two’s complement numbers, single and double precision binary floating-point and 64-bit 

decimal floating-point numbers is interesting since it would result especially useful to 

reduce costs in processors, by allowing the same hardware to be used to compare all 

three data types. 

The main difference between the binary and the decimal comparator schemes is that 

decimal floating-point representation is redundant, as stated before, and therefore 

requires alignment while binary does not. Binary 32-bit floating-point numbers only 

require a sign extension given that 32-bit and 64-bit number formats can both be 

handled by the same hardware. The logic that can be shared between both cases 

however is the core of the comparators, the magnitude comparison module which, in the 

decimal case, comes into effect after alignment. 

The magnitude comparator logarithmic tree for the decimal case is composed of 

comparator elements that handle 4-bit BCD digits. Each element had two digit inputs 

(two 4-bit BCDs) as opposed to handling 2-bit pairs as in the binary case (Section 2.1). 

Optimization of the BCD element was possible since in BCD no numbers are encoded 

after 9hex and hence Ahex, Bhex, Chex, Dhex, Ehex and Fhex can be ignored providing further 

simplification. An additional benefit is the fewer number of stages necessary since 4-bit 

digits are compared instead of 2-bit pairs. Nevertheless the binary pair comparator 

element can be used for the decimal case instead of the BCD and provide a way of 

saving hardware since it would be used by both formats. Tests and simulations were run 
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however to see the impact of using the bit pair comparison module from the previous 

section for the decimal comparator and the results justified the joint design of the module 

proposed. Furthermore, less area would be required when implemented on a system 

since the decoding of the IEEE 754 decimal floating-point can be handled by the decimal 

floating-point unit potentially already existent in the system. 

An overview of this combined design is shown in Figure 20. The 3-bit signal Sel 

determines the format type of the operands, 32-bit or 64-bit two’s complement, binary 

floating-point or decimal floating-point. If the operands are binary then the sign extension 

module sign extends 32-bit numbers into 64-bit so that the same hardware can be 

utilized. In the decimal case the input for the magnitude comparator is obtained after 

decoding and coefficient alignment. The exception and special case module handles the 

result of the magnitude comparator taking into account the signs of the numbers, the 

data type and the flags for overflow, off-range and others exposed in Section 3.4, for the 

decimal case. 
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Figure 20. Combined two’s complement, binary and decimal floating-point comparator. 
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4. EXPERIMENTS FOR DECIMAL FLOATING-POINT DIVISION BY 

RECURRENCE 

One method widely used for division is performed by recurrence or sequentially. In this 

method, the quotient is represented by a chosen radix and a digit is produced after each 

iteration. The quotient digit can also be selected from a redundant digit set as this 

approach has noteworthy speed and cost advantages.  

The main difficulty using a digit recurrence algorithm lies in the quotient digit selection 

function or QDS. Several studies have been made to simplify or improve this function. 

The Kornerup study presented in [40] shows an accepted analytical approach to 

determine a minimum number of digits required for the QDS function. This theory, 

however, is specific to the binary case and, hence, requires modification to be applied to 

the decimal case. This study attempts to provide an insight into the implementation 

feasibility of a decimal digit recurrence divider utilizing the recurrence division theory. 

4.1 Decimal Division by Digit Recurrence Theory 

As discussed previously, when implementing division by recurrence, the quotient digit of 

radix r lies within a symmetric redundant selection set of consecutive integers given by:  

2
  },...,1,0,1,...,{ raaaDq j ≥∀=∈ ,    (1)
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such that ā  =  – a.    The redundancy factor or measure of redundancy for a digit set is 

defined by: 

1−
=

r
aρ  with 1        

2
1

≤< ρ .    (2) 

The main equation when implementing division by recurrence for a dividend, x, and 

divisor, d, is given by [41]: 

w[j+1] = rw[j] – dqj+1 ,    (3) 

where r denotes the quotient radix, qj+1 the selected quotient digit and w[j] the partial 

remainder in iteration j. Naturally, in our case, the radix is decimal or r = 10. 

In order for the recurrence in (3) to be valid through all iterations and guarantee a result, 

two basic conditions for the QDS should be met: containment and continuity.  And, the 

value of the quotient digit qj+1 is given by the selection function: 

qj+1 = SEL(rw[ j ], d).     (4) 

The containment condition specifies that the quotient digit selected must maintain the 

next partial remainder bounded to satisfy convergence of the algorithm, or: 

djwd ⋅≤≤⋅− ρρ ][ .       (5) 

This is summarized in Robertson’s diagram, shown in Figure 21, where the limits on the 

vertical axis for w[j+1] are noted by the horizontal doted lines. The selection interval of 

rw[j] for which it is possible to select qj+1 = k and keep the next residual bounded is 

defined as [Lk (d), Uk (d)]. Each interval, as shown in Figure 21, defines a specific interval 

for a given quotient digit (e.g. qj+1 = k–1 produces the interval given by [Lk-1 (d), Uk-1 (d)]).  
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Expressions for Lk (d) and Uk (d) can be obtained from Robertson’s diagram defined by 

[41][29]: 

dkdLk ⋅−= )()( ρ  and dkdUk ⋅+= )()( ρ .   (5) 

 

Figure 21. Robertson's diagram showing selection intervals for q=k-1 and k. 

 

The continuity condition ensures that for any possible rw[j] (horizontal axis in 

Robertson’s diagram) there exists a selectable quotient digit k (i.e. rw[j] lies always 

within a selection interval [Lk,Uk]), otherwise a quotient digit would not be selectable. 

Therefore, the overlap present between two consecutive intervals must exist or be equal 

to zero, at minimum, or Lk ≤ Uk–1. This condition is imposed by: 

1−≤≤ kkk USL ,     (6) 

where Sk denotes the partition points within the selection interval [Lk ,Uk-1] such that the 

QDS returning qj+1 may be defined by [40]: 

kqSjrwS jkk =⇒<≤ ++ 11][ .    (7) 
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4.2 Quotient Digit Selection 

The overlap is critically important, since it allows an inexact value of the divisor and the 

partial remainder to determine a suitable quotient digit. In this sense, only a limited 

number of leading digits of both divisor and partial remainder are required.  With this 

consideration, the truncated partial remainder, rŵ[j], is defined as: 

rwjrwjwr ε+= ][][ˆ      (8) 

where εrw denotes the truncation error. Carry-save representations are often utilized for 

division by recurrence algorithms when computing (3), because carry-propagate adders 

would lengthen the critical path excessively.  The truncation error, using a carry-save 

representation, is defined by [40]: 

])[ˆ(20 jwrulprw ⋅<≤ ε .     (9) 

In a similar way, the truncated divisor is given by: 

ddd ε+= ˆ  with )ˆ(0 dulpd <≤ ε .    (10) 

 

Figure 22. Truncated inputs to the QDS function. 
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Figure 22 illustrates the truncation of both divisor and partial remainder. The number of 

digits to the right of the radix point is given by u and t, respectively.  Since both divisor 

and partial remainder utilize decimal representations or radix 10, it follows that: 

t
iwrulp −= 10)ˆ( ,    (11) 

udulp −= 10)ˆ( ,     (12) 

where ulp indicates unit in the last place (less significant digit). Therefore, the truncated 

divisor can be represented as an integer multiple m of an )ˆ(dulp : 

umd −×= 10ˆ .     (13) 

Division by digit recurrence theory is often implemented for fractional normalized divisors 

[41]. Figure 23 illustrates the reasoning behind this, since a non-normalized divisor 

would require an infinite precision as d approaches zero. Hence, the values of d are 

normalized and bounded by: 

110
1 <≤ d ,     (14) 

which implies, due to (13), that: 

uu m 1010 1 <≤− .    (15) 

Following the analysis approach in [40], Figure 23 shows the partition of the interval [Lk 

,Uk-1] by Sk, defined in (6), as a function of d̂ and not d. Below Sk, the value of the 

selected quotient digit is q = k–1, and above Sk, q = k. )ˆ(dSk  is now a staircase function 

due to the truncation of both divisor and partial remainder and indicates rectangles 
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where a given quotient digit can be selected due to quantization.  The value of )ˆ(dSk
 can 

also be expressed as an integer multiple of ulp(rŵi) by constants given by k and m, or 

sk,m: 

t
mkk sdS −×= 10)ˆ( , .     (16) 

 

Figure 23. PD Diagram, Sk selection points as a function of truncated d, [40]. 

 

The dotted rectangle in Figure 23 has its lower left hand corner at ))ˆ(,ˆ( dSd k  and is limited 

by: 

)ˆ(ˆˆ dulpddd +<≤      (17) 

and  )ˆ(2)ˆ()ˆ( ikik wrulpdSrwdS ⋅+<≤ .          (18) 

The study by Kornerup defines boundary conditions on this rectangle to determine the 

minimum amount of digits after truncation for the partial remainder and the divisor; t and 

u respectively. The rectangle should lie above Sk and, therefore, the boundary condition 

on its right hand corner yields: 

d 

rw[j] 
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Lk
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.
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)ˆ())ˆ(ˆ)(())ˆ(ˆ( dSdulpdkdulpdL kk ≤+−=+ ρ .   (19) 

It follows, using (5), (12) and (16): 

⎡ ⎤ t
mk

uu smk −−− ×=+⋅− 10)1010)(( ,ρ ,   (20) 

⎡ ⎤ mk
ut smk ,)1)((10 =+−− ρ .     (21) 

The height of the rectangle is of 2·ulp(rŵi). Nevertheless, consecutive rectangles aligned 

vertically are spaced by one ulp(rŵi) (resolution of Sk). Overlapping rectangles from the 

bottom should have a value of k – 1 and, therefore, the midpoint on the left edge should 

lie under Uk-1. This boundary condition, combined with (5), yields: 

dkdUwrulpdS kik
ˆ)1()ˆ()ˆ()ˆ( 1 ⋅+−=≤+ − ρ .   (22) 

Again, using (11) and (16) on this inequality gives: 

⎣ ⎦1)1(10, −+−≤ − mks ut
mk ρ .     (23) 

Combining (21) and (23) yields floor and ceiling expressions for the possible values of 

Sk: 

⎡ ⎤ ⎣ ⎦1)1(10)1)((10 −+−≤+− −− mkmk utut ρρ .   (24) 

Rearranging terms results in an expression of the form: 

 

⎡ ⎤ ⎣ ⎦mCABAm )( +≤+ ,     (25) 
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with  A = 10 t–u (k – ρ),  B = 10 t–u (k – ρ) + 1  and  C = 10 t–u (2ρ –1).  For the nontrivial 

solution, where the quotient selected is zero and given condition (2), it is seen that A ≥ 0, 

B ≥ 1 and C > 0 for k  ≥ 1.  For condition (25) to withstand, it is necessary that C·m ≥ B. 

Nevertheless, the stronger condition C·m – B ≥ 1 allows a minimum of one integer 

between the floor and ceiling functions yielding: 

11)(10)12(10 ≥−−−− −− ρρ km utut .    (26) 

This condition should hold at the extreme case for the values of m and k in order for (25) 

to be valid. This occurs at the maximum value for the quotient digit k = a and, due to 

(15), at the minimum case when m = 10u–1. Rearranging terms gives: 

2
)(10)12(1010

1 ρρ −−−
≤

−−
− au

t ,    (27) 

which produces a minimal value for t for a known u. Furthermore, it is clearly seen that 

the numerator in (27) should be positive enabling a minimum u to be obtained as: 

)(10
1210
ρ

ρ
−
−

<−

a
u ,     (28) 

4.3 Considerations for the IEEE-754 Decimal Case 

The application of the previous analysis, with radix = 10, to the IEEE 754 revision draft 

for decimal floating-point requires some considerations.  Most significantly, the revision 

draft specifies that decimal floating-point numbers are not normalized and, therefore, the 

representation is redundant in nature. This implies for example that numbers 125 x 10-5 

and 1250 x 10-6 are both representable and are equal in magnitude. The standard also 

specifies that the mantissa is represented as an integer and not a fraction with a leading 
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binary 1, as in the binary case (i.e. 0.1xxxx…2). This complicates the algorithm 

application, since both the divisor and dividend operands in the binary case are limited in 

range to 0.12 ≤ x < 12.  

Unsigned integer division has operands 0 ≤ x < rn – 1 and 0 ≤ d < rn – 1. The division 

result produces a quotient q such that [41][29]: 

⎣ ⎦dxq /= .     (29) 

As mentioned previously, basic integer division algorithms require full-precision for the 

QDS function. To apply fractional division theory, the divisor d should first be normalized, 

by shifting, so that the most-significant bit is a nonzero digit. With a shift of p digits, the 

normalized divisor d* is: 

dd p10* = .      (30) 

Consequently, the resulting quotient is: 

⎣ ⎦ ⎣ ⎦*/10/ dxdxq p== .    (31) 

To use the algorithm, fractional operands are modified as defined by: 

n
f rxx −×= ,      (32) 

n
f rdd −×= * .      (33) 

Expressions (27) and (28) can be used to obtain minimum bounds for the number of 

decimal digits of the partial remainder and divisor, t and u respectively. There is a 
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choice, however, in the value of a, or the amount of redundancy as shown in (1).   In the 

decimal case a can vary from 6 to 9.  

As redundancy is incremented (a increases), the overlap described in (6) is augmented 

thus simplifying the QDS function by allowing for selection of the quotient digit and 

consequently a smaller look-up table. On the other hand, a greater value of a 

complicates the generation of the quotient digit multiples ( qj+1d ) needed for the  iterative 

algorithm (3). For example, with a = 9 the possible divisor multiples required are (–9d, –

8d, …, –1d, 0, 1d, …, 8d, 9d).  Nevertheless, as a is decremented and the possible 

quotient multiples are reduced, the additional digit inputs to the QDS function are 

incremented as more precision is required. Since each digit is a decimal digit the size of 

a look-up table for the QDS would increase by an order of magnitude with each 

additional digit required.  Therefore, the smallest look-up table size is achieved with a = 

9 and, hence, a maximum redundant digit set with ρ = 1, from (2). In this case, (28) and 

(27) yield: u ≥ 2 and t ≥ 2 implying that only 2 decimal digits are required for the divisor 

and the partial remainder. 

The shifted partial remainder, however, can still be within the allowed boundary (5) but 

be greater than 1 in which case integer digits are needed. Since the divisor is normalized 

(30) its range is limited to 1/10 ≤ d < 1, this observation is also shown in Figure 23 with 

the vertical line at 1/r. The possible range for the shifted partial remainder is then given 

by: 

1010][10][ <⋅≤⋅= djwjrw ρ ,    (34) 

due to the containment condition given in (5). This implies that at most a single integer 

digit is required. The total number of digit inputs to the QDS function is 5 digits, 2 
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decimals for the divisor (. xx) and 2 decimals and an integer for the partial remainder (x. 

xx). A table based QDS function will then have 5 decimal inputs and a decimal output. 

Considering a 5-bit encoding for the signed decimal quotient digit output the total 

number of QDS entries in the table would be: 

105 × 5 bits = 100,000 × 5 bits. 

The division by recurrence algorithm requires a subtraction and a multiplication of the 

truncated divisor by the quotient digit which can be positive or negative. Since the 

numbers treated are decimal this complicates significantly the arithmetic operations 

involved. 

Furthermore, a significant complication of using a maximal redundant quotient digit set is 

the generation of extra divisor multiples (–9d, …, 0, …, 9d), as discussed previously. 

The proposed scheme utilizes ideas from decimal multiplication presented in [31]. The 

divisor multiples (qj+1d product) generation starts by computing a priori the multiples 0, d, 

2d, 4d and 5d which can be added in combination to create all possible divisor multiples 

from 1d to 9d.  Figure 24 shows an overall scheme of the decimal division by recurrence 

design. 
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Figure 24. Decimal division by digit recurrence implementation. 
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5. DECIMAL PARTIAL PRODUCT REDUCTION 

A few of the approaches to decimal multiplication were described in Section 2.4. The 

different methods discussed included serial or iterative accumulate addition to obtain the 

multiplication result. Parallel multiplication however is used extensively in binary floating-

point hardware ([42], [43]) and is of importance if performance is to be extended to the 

decimal case. 

 

Figure 25. Multiplication Algorithm 

 

Parallel multiplication can be divided in three main steps, as illustrated in Figure 25. The 

first step entails partial product generation where the multiplicand multiples are obtained.  

Then, partial product reduction occurs using a fast addition scheme to reduce the partial 

products to two. Finally, a carry propagate addition is necessary to obtain the final result. 

The overall performance of the multiplier, therefore, is closely related to the individual 

performance for these stages. However, improvement in partial product 
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reduction for example, often increases complexity in partial product generation. This is 

the reasoning behind binary methods, like Booth encoding, where the number of partial 

products to be added is reduced at the expense of more complex multiplicand multiple 

generation through recoding [44][45]. Unfortunately, this condition can offset the gains in 

performance of the resulting multiplier. 

As discussed in Section 2.3, binary multiplication with tree multipliers typically use carry-

save adders to repeatedly reduce the partial product matrix until only two rows remain 

which are then added using a fast carry-propagate adder to form the final product. 

Although tree multipliers are typically much faster algorithmically than array multipliers 

(see Section 2.3), they produce an irregular structure which can affect their performance. 

Traditional decimal codes are different than binary codes in that more information per bit 

has to be coded into the digital logic. The most common decimal encoding is 4-bit Binary 

Coded Decimal (BCD) which represents decimal codes 0 through 9. This code is also 

referred to as BCD-8421 where the numbers 8421 represent the weight of each bit in the 

encoding. BCD-8421 has the advantage that each decimal number is represented in a 

common binary number system and, hence, some of the binary operations can be 

performed with regular binary logic structures [31]. 

Although BCD-8421 codes are straightforward, they have two distinct disadvantages. 

First, the binary representation of ten through fifteen has no meaning and must be 

eliminated. Another major disadvantage is that BCD-8421 is not self-complementing, 

whereas, a self-complementing BCD code is one where the 9's complement of the 

decimal digit may be obtained by changing the 1's to 0's and 0's to 1's (bit inversion) 

[31]. The 9's complement operation is necessary to perform subtraction in much the 
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same way as two’s complement numbers are used to perform subtraction with binary 

numbers. 

Although these two disadvantages make BCD-8421 more challenging to work with, 

simple Boolean logic can be used to obtain its 9’s complement: 

00 TC =  

11 TC =  

21212 TTTTC +=  

3213 TTTC ++=  

where the letters T and C refer to true and complement digit, respectively. 

Efficient addition of decimal numbers is an interesting topic since it is not only used as a 

standalone operation but also required in other calculations like multiplication and 

division. Multi-operand addition, where more than two numbers are added, is of 

particular importance since it can be used to reduce the partial products that occur in a 

multiplication operation (see Figure 10). To avoid the time consuming carry propagation 

in multi-operand addition, two different schemes used in binary radix numbers are also 

applicable to the decimal case. These are signed-digit addition and carry-save addition, 

explored in this work. 
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5.1 Decimal Carry-Save Addition 

One of the most common elements within partial product reduction is the full adder cell 

or the 3:2 counter, as stated in Section 2.2.1. As with the binary case, decimal partial 

product reduction can also utilize 3:2 counters except that each digit is 4-bits long to 

accommodate the BCD-8421 encoding. In this case, four 3:2 counters are used for each 

bit of the BCD digit as shown in Figure 26. Figure 27 shows how this scheme would be 

implemented with a block level diagram. 

 

Figure 26. Binary full adder cells used for decimal carry-save addition. 

 

The result of the addition is obtained by adding the sum and the shifted carry vector. 

Each carry bit in H, in Figure 26, represents the carry input for the next significant bit. 

The addition of both vectors assumes that H is shifted left one bit or, in binary, multiplied 

by two. 
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Figure 27. Block diagram for full adder cells used for decimal Carry-Save addition. 

 

The function of the 3:2 counter or full adder can be summarized using the following 

equation: 

A + B + C = S + 2 x H 

where A, B, C, S and H are decimal numbers with 

∑
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3

0i
ii raA  

such that ai is the bit value of A at position i and ri the corresponding weight (r3r2r1r0 = 

8421 for BCD-8421). Although using binary 3:2 counters is relatively simple, it has one 

major disadvantage for BCD-8421 coding. As seen in Figure 28, the sum vector S is out 

of range since the sum S = 1100BCD is not a valid decimal representation and the 

addition of S and H yields a result in binary as opposed to correctly displaying a valid 
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BCD-8421 number. Consequently, the conversion to BCD would require additional logic 

and, hence, it is not efficient. 

 

Figure 28. Result of the addition, carry vector shifted left. 

 

One solution can be obtained by using a different weighted BCD representation during 

the summation process. That is, the bits are recoded to another valid decimal 

representation which allows the carries to be generated correctly when a shift occurs. To 

find the best BCD representation to utilize for the recoding, it is important to look at an 

important property of adding two numbers. In order to avoid the out of range result, 

decimal codes are employed such that the sum of the weights of each 4-bit decimal 

code is equal to 9. In the previous example, since the code BCD-8421 was used, it was 

possible to represent digits with a value greater than 9 (10 through 15, since we had 4-

bits BCD). If the maximum possible value was 9 instead (since the sum of the weights of 

all 4-bits is 9) then the result will never be out of range. This property is also utilized with 

binary signed digit adders to avoid carry-propagation [29]. 

The following BCD codes: 5211, 4311, 4221, and 3321 can satisfy this condition. 

Additionally, an advantage of these encodings is that they are self-complementing, 

meaning that the 9's complement of the number can be obtained by a simple bit 

inversion of each of the 4-bits [31]. Using this trivial simplification allows the ten's 
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complement of the number to easily be obtained in much the same way as the two's 

complement for binary numbers is performed. Table 10 shows some of the mentioned 

codes. 

Table 10. 8421, 4221 and 5211 BCD representations. 

Decimal BCD-8421 BCD-4221 BCD-5211
0 0000 0000 0000
1 0001 0001 0001 | 0010
2 0010 0010 | 0100 0100 | 0011
3 0011 0011 | 0101 0101 | 0110
4 0100 1000 | 0110 0111
5 0101 1001 | 0111 1000
6 0110 1010 | 1100 1001 | 1010
7 0111 1011 | 1101 1100 | 1011
8 1000 1110 1110 | 1101
9 1001 1111 1111  

Furthermore, since the value of 2xH (the carry vector) is required to obtain the final sum, 

a BCD coding that facilitates a multiplication by 2 is desirable to use. This is because, in 

binary, a multiplication by 2 is easily accomplished by a bitwise left shift. However, in the 

self-complementing codes shown above the weights do not increase in powers of two 

and, hence, shifting cannot be applied directly. Nevertheless, if the number is re-

encoded this might be accomplished in a simpler way. 

 

 

Figure 29. Multiplication by 2, recoded result. 
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One potential solution for recoding the carries into a self-complementing output is to use 

the 5211 code, shown in Table 10. By using this code, a multiplication by 2 would result 

in a 10, 4, 2, 2 encoding, as seen in Figure 29 without the need to even modify the bits. 

Although this encoding is not useful, since it does not satisfy the two conditions 

described earlier (self-complementing and sum in-range), the most-significant bit can be 

passed to the next significant digit or column. The resulting BCD code will be 4221 as 

illustrated in Figure 30. 

In summary, if a BCD-5211 recoding is utilized, a shift asserts a carry-out for the 10-

weight and allows the decimal code to be transformed to BCD-4221, which is self-

complementing. The bit shifted out is the carry out to the next decimal digit and the 

space opened in the least significant bit position after the shift would be available to 

receive a carry input from the previous significant digit. For the least-significant decimal 

digit, it is assumed that this value is 0. 

 

 

Figure 30. Multiplication by 2, result in BCD-4221. 
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Figure 31. Decimal 3:2 counter with BCD recoding example. 

 

Figure 31 also shows the multiplication by 2 operation on H. H is shifted left after 

recoding allowing a carry-in to be accepted (“-” in the example) and generating a carry-

out (“1” in the figure). The value of 2xH is then composed of a decimal digit and a single 

bit decimal carry-out. The decimal digit is W with a value of 1000BCD-4221 or 410 

considering a carry-in of zero to its LSB. The single bit carry-out of 1 represents a value 

of 1 in the tens place and, together with W = 4, represents 14. W has the same 

arithmetic weight as S. The operation is summarized as: 

A + B + C = S + 2 x H = S + (Carry-out x 10) + W + Carry-in. 

The following figure shows the implementation of the decimal 3:2 counter: 
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Figure 32. Block diagram for decimal 3:2 counter [44]. 
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sum vector S and a carry vector H, both in BCD-4221. When H is recoded into BCD-

5211, this allows the left shift to obtain the correct decimal value in BCD-4221. 

It is important to see that by using recoding the correct result is obtained. Previously, 

without recoding, binary counters produced an incorrect result. By using a scheme that 

allows the carry-out to be in the correct notation (i.e. BCD-4211 code) the result is 

produced correctly. 

Recoding from BCD-4221 to BCD-5211 can be accomplished using the following 

Boolean logic expressions, derived from Table 10 [44]: 

]0[]1[]2[])0[]1[]2[(]3[]3[ hhhhhhhw ⋅⋅+++⋅=  

]1[]2[)]0[]3[(])0[3(]1[]2[]2[ hhhhhhhhw ⊕⊕⋅+⊕⋅⋅=  

])1[]2[(]0[]3[])0[]3[(]1[]2[]1[ hhhhhhhhw ⊕⋅⋅+⊕⋅⋅=  

]0[]3[])1[]2[(]0[ hhhhw ⊕⊕⋅= , 

where w3w2w1w0 represent the BCD-5211 digit and h3h2h1h0 the digit in BCD-4221. This 

logic is implemented in the block that performs the multiplication of the carry vector by 

two (“x2” in Figure 32). 

5.2 Delay analysis of the decimal 3:2 counter by recoding 

An insight to the performance and flow structure of the 3:2 decimal counter proposed in 

[44] (shown in Figure 32) can gained by utilizing the ∆  delay model frequently used for 

binary arithmetic delay analysis. The use of ∆  delays aid in considering design trade-
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offs in a circuit. Consider the case of a regular 1-bit Full Adder or 3:2 counter. Typically a 

3:2 counter can be implemented using nine logic gates as shown in the following figure: 

 

Figure 33. Nine gates Full Adder / 3:2 counter cell. 

 

If the delay through a logic AND or OR gate is estimated to be of 2 ∆ delays and the 

delay through an inverter gate of 1 ∆  then we have the delay of the paths, from inputs to 

outputs: 
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i.e. it takes 10 ∆  delays for the signal to propagate from A or B to the Sum output for 

example. In the same way, the delay through the “x2” block can be obtained by looking 

at the logic equations used to implement it. This block consists of a recoding from BCD-

4221 to BCD-5211 and a single bit hardwired left shift. The left shift does not incur a 

delay while the BCD recoding can be implemented using simple two level logic. Its delay 

therefore consists of 2 gate delays and an inverter delay used to create the logic 

predicates, resulting in 5 ∆ . Consequently the delay of the complete decimal 3:2 counter 
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of Figure 32, and considering the delay model for the binary 3:2 counter shown above, it 

requires: 

∆=→ 10, SBA     

∆=∆+∆=→ 1459, WBA   

∆=→ 5SC ,   through carry-in path, 

∆=∆+∆=→ 954WC , through carry-in path. 

This analysis can be used to evaluate the feasibility of the proposed partial product 

reduction scheme described in the next section, using decimal 4:2 compressors. 

5.3 Decimal 4:2 Compressor Trees 

Decimal partial product reduction trees that use the BCD recoding technique are 

different than their binary counterpart in the way the weights are handled. Binary partial 

product reduction trees always take the carry and pass it onto the next column as shown 

in Figure 14. This occurs because the carry-out is at a more significant weight than the 

sum. However, using the coding discussed in the previous section, it is apparent that for 

the decimal case this is completely different as it produces a carry-out digit at the same 

weight as the sum and a carry-out bit to the next significant digit. 

The use 3:2 counters for partial product reduction is common in binary arithmetic. In [44], 

partial product reduction is handled by using a tree of decimal 3:2 counters, in a similar 

fashion to a Dadda tree [46]. This is shown in Figure 34 where the X2 block represents 

the recoding logic discussed earlier. 
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Figure 34. Decimal 9:2 counter, adapted from [44]. 

 

In [44], partial product reduction is handled by using a tree of decimal 3:2 counters, in a 

similar fashion to a Dadda tree [46]. This is shown in Figure 34 where the X2 block 

represents the recoding logic discussed earlier where a multiplication by 2 is obtained 

through BCD recoding. It is apparent however from Figure 34 that the resulting circuit is 

very irregular difficulting its implementation as its interconnection is complex and most 

likely affecting its performance and area consumption, in part due to unpredictable long 

wiring and its general layout. 

Regularity is one of the reasons why in binary arithmetic the Weinberger 4:2 compressor 

[30] is used for partial product reduction. Its extension to the decimal case is therefore 

an interesting problem as it can provide performance enhancements for partial product 

reduction. 
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Apart from its improved regular structure, the proposed decimal 4:2 compressor has the 

advantage that the carry-in is no longer dependent on the carry-out, as shown in Figure 

35, breaking the carry chain path. This gives compressors a significant advantage over 

traditional carry-save adder trees in that it can expedite processing the carry chain while 

still maintaining a regular structure. Although compressor trees are different than 

traditional counters, they can be organized into efficient interconnection networks for 

reducing the partial product matrix. This allows partial product reduction trees to be built 

easily and with regularity. 

 

Figure 35. Proposed decimal 4:2 compressor. All signals are decimal (4-bits). 
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weight corresponds to the next significant bit, unlike S. In decimal however both Cout and 

W are composed of 2-digits, a “tens” digit and a “units” digit where a BCD number 
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in is accepted from the previous column. Figure 35 does not show the “tens” single bit 

generated at the X2 blocks for clarity (carry-out) or the single bit carry-in. 

Utilizing the delay statements shown in Section 5.2 allows ∆  delay analysis of the 

decimal compressor: 

∆=∆+∆=→ 201010,,, 0123 SDDDD   

∆=∆+∆=→ 241410,,, 0123 WDDDD   

∆=→ 14,,, 0123 outCDDDD  

∆=→ 5SCin  

∆=∆+∆=→ 954WCin  

This model is important since it determines the feasibility of higher order compressors 

that use this block since, as opposed to the binary case, the Cout and the W signals incur 

an additional delay due to the X2 block logic. 

 

 

Figure 36. Decimal 8:2 compressor, all signals are decimal (4-bits). 
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Figure 36 shows an 8:2 compressor tree that performs the same function as Figure 34 

yet is regular. Assuming that the inputs are given in time 0, and using the ∆  delay 

expressions determined for the 4:2 compressor the ∆  delay for each path can be 

determined. The time when the corresponding signal is available is shown in the 

following figure for the 8:2 compressor. 

 

Figure 37. Decimal 8:2 compressor. Critical path and ∆  delays for signals are shown. 

 

The Cout signal only requires 14 ∆  as shown and is fast enough that it does not delay 

further the subsequent 4:2 compressor where its carry-out is attached. In other words, 

the delay is determined by the 24 ∆  alone required for the W signal in each compressor. 

If this was not the case, it will imply that the delay will accumulate with each stage 

affecting performance, even more significantly as the size of the compressor is 

increased (Ex: 16:2, 32:2, etc). 

Subsequent column heights (digits) compressors can easily be built with log4(n) levels, 

where n represents the number of digits to be compressed (8 digits as shown, 16, etc). 
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Figure 38 illustrates a 16-digit (64-bit) decimal compressor tree using the same 

technique used to build the 8-digit tree from Figure 36. 

  

Figure 38. Decimal 16:2 compressor, all signals are decimal (4-bits). 
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6. PARTIAL PRODUCT GENERATION SCHEMES 

Due to its complexity, decimal multiplication was previously implemented using 

sequential methods [31]. These designs generally required the iteration of each of the 

multiplier digits and, depending on its value, the addition of the corresponding multiple of 

the multiplicand to the result.  This value has to be pre-computed and stored before the 

process takes place and is typically performed through costly lookup tables [12].  

Enhancements to this approach included the reduction of the multiplier digit range 

through recoding to reduce the number of combinations, a method similar to Booth 

multiplication. Digit recoding allows the computation on the fly of multiplicand multiples to 

avoid their storage and the use of decimal carry save or sign-magnitude addition to 

speed the partial product reduction process [13], [14]. 

Currently there are only two propositions in the literature of decimal parallel multipliers, 

[44] and [20], with similar implementation architectures but significantly different 

multiplicand multiple generation schemes. Although these implementations are 

noteworthy, there are still many enhancements that require clarification which this 

section addresses. 

6.1 Multiplier Recoding 

As stated above typical decimal multiplication is more involved than binary requiring the 

need to generate the radix-10 multiplicand multiples 0x, 1x, 2x, …, 9x, as shown in 

Figure 39 (copied from Section 5 for clarity). Multiples like 3x and 7x are considered 
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“hard multiples”, since their generation with binary logic is not straight forward and 

usually require a carry propagate addition which is slow. Previous methods for 

generating multiples utilized either this approach or costly look-up tables. 

 

Figure 39. Multiplication Algorithm 

 

The common multiplication algorithm is given by: 

∑
−

=
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i ryxyxp , 

where x and y denote an n digit BCD multiplicand and multiplier, respectively, and r =10 

denotes the radix and yi ∈ [0, 9]. Recoding of the multiplier is an efficient technique for 

reducing its implementation since it permits a different set of multiples to be utilized 

avoiding the need for generating “hard multiples”. One method recodes each multiplier 

digit yi ∈ [0, 9] to yi = yHi + yLi where yHi ∈ {0, 5, 10} and yLi ∈ {-2, -1, 0, 1, 2}. In this 

manner only the multiples 2x and 5x, which can be generated without excessive 

overhead, are required to create all other decimal multiples. This is illustrated in Table 

11 in the radix-5 columns. Similarly, multiple 10x is produced with a simple 4-bit wired 

left shift (1-digit shift). 
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In [44], a radix-5 multiplier using this approach is described. A block diagram of this digit-

recoding scheme is shown in Figure 40. Hot-one coded multiplexors are used avoiding 

the need of an extra ‘0x’ input. The selection signals are determined directly from BCD-

8421 input digits, yi: 

]3[10 iHi yxy =  

]0[]1[]2[5 iiiHi yyyxy ⋅+=  

]0[]1[]0[]3[]1[]2[2 iiiiiiLi yyyyyyxy ⋅+⋅+⋅=  

]0[]1[]2[]0[]2[1 iiiiiLi yyyyyxy ⋅⋅+⋅=  

]0[]1[]2[]0[]1[]2[]3[ iiiiiii yyyyyyysign ⋅⋅+⋅⋅+= . 

 

Table 11. Radix 5/4 digit recoding. 

Decimal
y i y Hi y Li y Hi y Li
0 0 0 0 0
1 0 1 0 1
2 0 2 0 2
3 5 -2 4 -1
4 5 -1 4 0
5 5 0 4 1
6 5 1 4 2
7 5 2 8 -1
8 10 -2 8 0
9 10 -1 8 1

Radix-5 Radix-4
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Figure 40. Digit recoding for radix-5, [44]. 

 

The second recoding approach, similar to the radix-5 case, recodes each multiplier digit 

yi ∈ [0, 9] to yi = yHi + yLi where yHi ∈ {0, 4, 8} and yLi ∈ {-2, -1, 0, 1, 2}. It is named radix-4 

recoding in [19] and is also shown in Table 11. In this approach, the hard multiples are 

avoided and instead 2x, 4x and 8x are required to generate all others. The multiple 4x 

can be generated by cascading two consecutive 2x modules. An additional 2x module 

yields 8x implying a latency three times as large to that required to obtain 2x. The logic 

equations for the digit recoding of yi are: 

])0[]1[]2[(]3[8 iiiiHi yyyyxy ⋅⋅+=  
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]0[1 iLi yxy =  
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6.2 Multiplicand Multiples Generation 

The recoding schemes discussed in the previous section avoid the computation of 

complicated multiples of x. Instead, in the case of radix-5, only 2x and 5x modules are 

required as all other multiples can be generated from them. Two main approaches for 

the generation of these multiples can be identified in available literature. The first method 

for obtaining 2x and 5x is studied in [31] with a conventional binary logic approach and 

utilized in [12] and [20]. A more recent technique proposed in [19] utilizes BCD recoding 

and shifting instead. 

6.2.1 2x and 5x with Conventional Binary Logic 

The multiples 2x and 5x can be produced rapidly as opposed to other multiples since in 

both doubling and quintupling of BCD-8421 numbers no carry is generated beyond the 

next significant digit. Logic equations for doubling and quintupling of BCDs are given in 

[12]. When doubling takes place, the Least Significant Bit (LSB) of each decimal BCD 

digit is initially zero. When the digit value is in the range of [5-9] a carry-out of at most 

one is produced (9 x 2 = 18). Therefore, it will not further propagate since the LSB of the 

next digit zero as well. The equations for doubling each multiplicand digit can be formed 

as follows: 

])3[])0[]2[()]0[]1[]2[(]0[2 111111 −−−−−− +⋅+⋅⋅= iiiiiii aaaaaax   

)]0[]3[()]0[]1[]2[(])0[]2[]3[(]1[2 iiiiiiiii aaaaaaaax ⋅+⋅⋅+⋅⋅=   

)]0[]3[(])1[]2[(])0[]1[(]2[2 iiiiiii aaaaaax ⋅+⋅+⋅=   

])0[]3[()]0[]1[]2[(]3[2 iiiiii aaaaax ⋅+⋅⋅=   



 88

On the other hand, when a number is odd and quintupling takes place, its value 

becomes initially five and when the number is even it becomes zero. Quintupling 

produces a carry out of at most four (9 x 5 = 45). Since the initial value is zero or five, 

adding the carry results in at most 9, preventing the carry to propagate any further. 

Therefore, by checking the next significant digit LSB (ai[0]) to check if the digit is 0 or 5, 

equations for 5x can be determined as follows: 

 
])3[]0[(])1[]0[()]1[]3[]0[(]0[5 1111 −−−− ⋅+⋅+⋅⋅= iiiiiiii aaaaaaax  

)]1[]2[(])1[]2[]0[(])2[]0[(]1[5 11111 −−−−− ⋅+⋅⋅+⋅= iiiiiiii aaaaaaax  

+⋅⋅+⋅⋅= −−−− ])1[]2[]0[()]1[]3[]0[(]2[5 1111 iiiiiii aaaaaax ])3[]0[(])1[]2[]0[( 111 −−− ⋅+⋅⋅ iiiii aaaaa   

])3[]0[(])1[]2[]0[(]3[5 111 −−− ⋅+⋅⋅= iiiiii aaaaax  

The generation of the remaining “hard multiples”, as described in the previous section 

and Table 11, requires the addition of negative 1x or 2x which can be implemented by 

obtaining the nine’s complement of the number. As stated in Section 5, the nine’s 

complement of a BCD-8421 digit can be determined from simple two-level logic. This 

allows the complete multiple digit set to be obtained. 

6.2.2 2x and 5x using BCD recoding 

In [19], doubling and quintupling are performed using BCD recoding. Doubling or 

multiplying by 2 is explained in Section 5.1 and Figure 30 and is implemented for 

multiple generation in the same way. 

Quintupling is performed in a similar fashion in [19]. In this case, the digit starts in BCD-

8421 code, as shown in Figure 41. A simple 3-bit hardwired left shift performs the 

multiplication assuming the result to be in BCD-5421 code. 



 89

 

 

Figure 41. Quintupling through BCD recoding. 

 

As opposed to BCD-8421 code, an advantage of using BCD-4221 is that, since the sum 

of the weights of all 4-bits is equal to 9, the representation is self-complementing as 

shown in Chapter 5. This means that the 9’s complement of the number can be obtained 

by a simple bit inversion of each of the bits. In this manner, the ten’s complement of the 

number for subtraction can be obtained in much the same way as the two’s complement 

for binary numbers, a bit inversion followed by an addition of a unit or one in the least 

significant place (ulp) without requiring additional logic. 

The BCD recoding approach is convenient as well as simple, since the partial product 

reduction technique presented in Section 5 receives the partial products in BCD-4221 

code and hence no recoding back from BCD-4221 to BCD-8421 is required in the 

doubling scheme. One disadvantage, however, is that the conversion from BCD-8421 to 

5211 for doubling and from BCD-5421 back to 4221 after quintupling is not straight 

forward and requires dedicated logic that incurs a slight overhead. Its latency, however, 

is comparable with the doubling and quintupling logic equations presented earlier in 

Section 6.2.1. 
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6.3 Partial Product Generation Architectures 

Partial product generation schemes for parallel multipliers were proposed in [19] and 

[20]. In [20], a radix-5 multiplier is implemented using the binary techniques discussed in 

Section 6.2.1. An overview of this architecture is shown in  

Figure 42. A BCD digit input recoder determines the appropriate multiple selection 

signals for the multiplexors and binary logic is used to implement the logic equations 

described for doubling and quintupling. Since the code used, BCD-8421, is not self-

complementing a dedicated 9’s complement unit is required to create the negative 

multiples. Complementing modules, containing the logic to perform the equations given 

at the beginning of Chapter 5, are hence required as shown in the diagram. 

The design also includes a specialized radix-10 carry-save adder that is used to add 

both multiples to generate the corresponding partial product before the reduction tree. 

This procedure effectively halves the number of partial products and simplifies the partial 

product reduction tree. In the case of 16 digits multiplier operands the number of partial 

products would be reduced from 32 to 16. The equations for the radix-10 carry-save 

adder are detailed in Section 2.2.5. Nevertheless the cost in area and delay of 

performing this addition during partial product generation is significant and outweighs the 

benefits when utilizing a reduction scheme like the one proposed in Chapter 5. This is 

explored in Chapter 7 where implementations for different architectures possibilities are 

explored. 

A similar architecture to Figure 42 is presented in [19] for the radix-5 case but instead 

BCD recoding is utilized for multiplicand doubling and quintupling. Additionally, hot-one 

logic for digit recoding and for the multiplexors is used, saving digital logic as shown in 
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Figure 43. The radix-4 case utilizes the same architecture, but instead the multiples 4x 

and 8x are created with consecutive 2X BCD recoding modules. In both cases, radix-4 

and radix-5, two partial products per multiplier digit are produced (refer to Table 11).  For 

the case of 16 digit operands, as is the case for decimal64 numbers in the IEEE-754R, 

this translates into 32 partial products requiring a 32 level partial product reduction tree. 

 

 
Figure 42. Lang-Nannarelli radix-10 partial product generation. 

 

An additional enhancement is that since the BCD code utilized is self-complementing a 

dedicated 9’s complement unit, like shown in Figure 42, is not necessary. A simple bit 
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saving logic. The resulting architecture is fast and efficient; each multiplicand digit is 
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recoded to select the appropriate multiple and two (d+1) digits operands are produced 

as shown in Figure 43. For operands of 16 decimal digits in size the resulting number of 

partial products is 32. 

 

 

Figure 43. Vásquez-Antelo radix-5 partial product generation. 

 

An additional insight into the performance of these architectures propositions can be 

obtained by combining the methods discussed previously for doubling and quintupling, 

specifically through direct Boolean logic or through BCD digit recoding. For this reason 
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7. Results 

As technology improves and microchip minimum feature size is reduced more 

functionality can be included in a single chip. However, with CMOS designs moving to 

90nm, 45nm and smaller technologies, a number of new physical effects have to be 

considered by the designer due to the short-channel nature of the transistor. This work 

utilized these technologies to portray the nature of decimal arithmetic and its impact 

upon different measures of performance. Consequently, the results will allow designers 

as well to choose the best suitable decimal units for nanometer-scale integration, rather 

than to extrapolate the results of research performed with older technologies. This 

chapter presents the results of the different implementations and comparisons of the 

proposed arithmetic hardware: the decimal floating-point comparator, the combined 

decimal/binary floating point comparator, the partial product generation architectures and 

the partial product reduction schemes for decimal multiplication. 

One of the goals of this work was to create high-quality professional nanometer 

implementations. Therefore, having a well-defined design flow or sequence of steps 

within design tools that utilizes the maximum degree of design automation is of great 

importance. To help illustrate the designs within this dissertation, several commercially 

developed Electronic Design Automation (EDA) tools are used with VLSI design flows, 

including OSU’s TSMC 180nm Standard Cell Library [47], Cadence Design Systems 

GPDK 90nm and NCSU/OSU FreePDK 45nm [48]. Many of this flows and libraries, such 

as the OSU 180nm and FreePDK 45nm are developed for use in this dissertation. 
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Specifically, the FreePDK 45nm is developed with Synopsys’ Cadabra to create a full 

standard cell library with automatic transistor layout (ATL) to generate the library 

automatically. Figure 44 shows the design flow utilized for the arithmetic hardware 

presented in this work. 

 

Figure 44. Design Flow methodology. 

 

Each unit was first modeled using Verilog hardware descriptive language (HDL). 

Extensive testing of each functional unit was done to verify its correct operation using a 

copious number of test vectors in each design. Synthesis optimized for delay was 

performed using one of different tools: Cadence Design Systems Build Gates, RTL 

Compiler or Synopsys Design Compiler. The placement of cells and the routing of 

interconnect was performed with Cadence Encounter SoC which provides area, power 

and delay estimates using back-annotated layout. 
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7.1 Decimal comparator design 

Since there are no other previous decimal floating-point comparators published, the 

delay and area results cannot be compared against other designs. An insight to how 

good the decimal comparatorproposed performs can be gained by comparing it to the 

only IEEE-754R [8] draft compliant decimal floating-point adder found, published in [16], 

even though the delay and area results for this design are given for a different 

implementation technology. Table 12 gives the post-synthesis area and delay results for 

both designs. 

Table 12. Area and delay estimates 

Technology Area Delay
of implementation (mm^2) (ns)

Decimal FP Comparator TSMC 0.18um 0.070 2.73
Decimal FP Adder LSI Logic 0.11um 0.148 3.83

Design

 

Given that a common approach to comparison is to subtract both numbers and check 

the result’s sign (if result is zero the numbers are equal, if result is negative then the first 

operand is less than the second) a dedicated floating-point comparator is only justifiable 

if its performance enhancement is considerable and its implementation does not incur in 

a significant area overhead. 

The delay estimate presented is faster than that of the floating point adder and the area 

utilized is significantly smaller despite larger feature size of the implementation (0.18µm 

as opposed to 0.11µm). A rough estimate of scaling this design to 0.11µm technology by 

1/S2 yields a ~5 times smaller area requirement than the adder and about twice the 

speed with a factor of 1/S. The delay and area estimates after place and routing were 

4.328ns and 0.073mm2 respectively. 
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The performance difference can also be in part attributed to the adder’s necessity for a 

precise rounded result as opposed to the comparator. On the other hand, a decimal 

floating-point comparator would generally only be added to an architecture with decimal 

floating-point hardware. The presented implementation included decimal floating-point 

decoding logic and hence this portion would be removed making its area impact even 

smaller than the results shown. 

7.2 Decimal/Binary Combined Comparator 

Again, just as in the decimal floating-point comparator from the previous section an 

important step to validate the proposed combined comparator is to weigh it against the 

common approach method for comparisons in which an adder/subtractor scheme is 

used. For this purpose a combined comparator was implemented using a high speed 64-

bit Carry Look-Ahead adder (CLA) to compare the operands’ magnitudes instead of the 

proposed logarithmic tree described in Chapter 3. This is illustrated in Figure 45. 

 

Figure 45. Concept block diagram for implementation comparison. 
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Synthesis was performed using Synopsys Design Compiler and the Carry Look-Ahead 

adder, DW01_add1, was implemented using Synopsys’ DesignWare Intellectual 

Property library [50]. Previous designs, the combined two’s complement and binary 

floating-point comparator given in [26] and the decimal floating-point comparator 

presented in this work in chapter 3 and implemented in section 7.1, were also 

synthesized and Place and Routed under the same conditions and included for 

comparison purposes in terms of area, delay and power consumption. Dynamic power 

figures were obtained using Encounter’s power analysis through simulation utilizing a set 

of 10000 random generated input test vectors for each device under test. Figure 46-48 

illustrate the results. 
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Figure 46. Delay estimates for comparator designs. 
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Figure 47. Area estimates for comparator designs. 
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Figure 48. Dynamic power consumption for comparator designs. 
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As expected, the performance figures are generally improved as the technology utilized 

progresses, from 180nm to 45nm. 

The results suggest an efficient method for comparisons with a small area requirement, 

improved speed and significant power reduction when weighed against comparators 

based on the addition/subtraction hardware approach. The design is also comparable in 

performance with the decimal only design making it an attractive solution since it can 

handle binary, two’s complement and binary and decimal floating-point numbers. 

7.3 Partial Product Reduction Schemes 

In [19], the results presented for the partial product reduction using 9:2, 16:2 and 32:2 

counter trees were determined using an area-delay model for CMOS based on logical 

effort [51]. Delay is given in terms of FO4 units (delay of a 1x sized inverter driving four 

1x inverters) and area in minimum area NAND gate units. This method however is 

inaccurate and does not present the results of a real implementation. Furthermore, it 

makes comparison of their design against new proposals difficult. This is the reason why 

the Váquez - Antelo - Montuschi counter tress in [19], or VAM trees, were implemented 

in Verilog and went through the same design flow process as the proposed compressor 

trees to obtain accurate comparison results between the two architectures. 

Figure 49 through 51 document the results for the proposed 8:2, 16:2 and 32:2 decimal 

compressor trees compared to the counter based trees in terms of area, delay and 

power. For small operand size inputs, the delay figures for both counter and compressor 

style reduction trees are similar and do not provide a substantial benefit. As the operand 

size increases, however, the compressor outperforms comparable counter trees in delay 

but sometimes gains a small area overhead in comparison. It is important however to 
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notice that the design proposed, shown in Figure 36 and Figure 38, is highly regular 

when compared to the counter tree in Figure 34. This facilitates its implementation and 

improves its performance but this characteristic can mainly be exploited through a 

custom-layout implementation. Nevertheless a standard cell layout implementation as 

developed provides an insight into the compressor trees performance although the 

benefits of regularity are not fully exploited. 
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Figure 49. Delay estimates for compressor trees vs. counter trees designs. 
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Figure 50. Area estimates for compressor trees vs. counter trees designs. 
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Figure 51. Dynamic power estimates for compressor trees vs. counter trees designs. 
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7.4 Partial Product Generation Architectures 

The radix-5 and radix-4 Vásquez-Antelo-Montuschi (VAM) architectures proposed in 

[19], and shown in Figure 43, were implemented and its results given in the first two 

entries of Figure 52 through 54. The implementations are based on a 16-digit operand 

size, corresponding to decimal64 numbers (64-bit decimal floating-point). In the results 

presented, each partial product generation scheme handles a single digit of the multiplier 

operand, yi, (see Figure 43) times the 16 digits of the multiplicand, X in this case. For a 

complete 16 digit multiplier, the partial product generation architecture would be 

replicated 16 times to scan over all 16 digits of the multiplier operand yi, with i ∈ {0, 15}. 

The proposed radix-5 design from Lang-Nannarelli in [20] (LN Radix-5) shows a 

significant delay overhead when compared to the first two implementations. This occurs 

mainly due to the radix-10 CSA adder included in the design, shown in Figure 42. To 

provide a fair comparison to the previous schemes this adder is removed and, hence, 

the partial product generator outputs 2 partial products per multiplier digit, in the same 

manner as the VAM generators. This is shown in the third and fourth entries in the tables 

where, without the radix-10 CSA the LN design presents attractive performance 

estimates. 

As stated in section 6.3, two hybrid versions were implemented combining elements of 

both propositions: the radix-5 VAM using binary logic for the 2x and 5x modules instead 

of the BCD recoding and the LN radix-5 replacing the doubling and quintupling modules 

for their BCD recoding counterparts. Results for these two new designs are presented in 

the last two entries of  Figure 52 through 54 and demonstrate and attractive alternative 

for decimal partial product generation. 



 103

 

 

Delay Comparison

0

0.5

1

1.5

2

2.5

3

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Technology

D
el

ay
 [n

s]

VAM Radix-4
VAM Radix-5
LN Radix-5
LN Radix-5 no Adder
VAM with binary HYBRID, proposed
LN with BCD recoding, proposed

 

Figure 52. Delay results, partial product generation architectures. 
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Figure 53. Area comparison for partial product generation architectures. 
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Figure 54. Dynamic power comparison, partial product generation. 
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8. CONCLUSIONS 

The increasing importance of decimal arithmetic is evident from the current ongoing 

research in this field and the efforts to establish the IEEE-754R standard draft for 

floating-point arithmetic with specifications for the decimal case. Even more with IBM’s 

new Power6 processor, the first of its kind to include decimal floating-point hardware, 

[52][53]. 

Multiple designs for decimal arithmetic were presented throughout this work. The 

comparator results suggest an efficient method for comparisons with a small area 

requirement, improved speed and significant power reduction when weighed against 

comparators based on the addition/subtraction hardware approach. The combined 

comparator, capable of handling decimal and binary floating-point numbers, two’s 

complement numbers and binary numbers also presents performance improvements 

with a slight area overhead making it an attractive option for the comparison operation. 

Table 13 and Table 14 present the results. 

 

Table 13. Area and delay results for comparator designs. 

Technology
Area Delay Area Delay Area Delay

[um^2] [ns] [um^2] [ns] [um^2] [ns]
Combined proposed 66033 3.21 10556 2.87 8525 1.25
Combined Adder/Subtractor based DW 95766 3.30 12271 3.16 9815 1.34
Decimal FP Comparator 57520 2.81 9253 2.65 7356 1.07
Binary, 2's, FP Comparator 14270 1.53 2020 1.17 1716 0.52

Design
FreePDK 45nmTSMC 180nm Cadence GPDK 90nm



 106

Table 14. Dynamic and Static power results for comparator designs. 

 

An analytical study was developed for the design of a decimal division by recurrence 

functional unit. Utilizing previous formalizations of finding a minimal digit set and 

appropriate QDS unit, it was demonstrated that the design of such a unit is viable. 

In decimal multiplication a previously proposed specialized recoding structure is studied 

and integrated within a compressor tree allowing decimal reduction to occur efficiently. 

Moreover, the decimal compressor trees proposed have structures which lend 

themselves better to custom-level VLSI designs. Results in a submicron standard cell 

library indicate high performance efficient designs. However, for low operand sizes, 

decimal compressor trees perform similarly than previously proposed decimal counter 

trees. Table 15 and Table 16 show the results summarized in Figure 49 to 51. 

Table 15. Comparison results for proposed compressor trees vs. counter trees in [19]. 

Technology
Area Delay Area Delay Area Delay

[um^2] [ns] [um^2] [ns] [um^2] [ns]
Counter 9:2 VAM 12059 3.03 1888 2.46 1046 1.10
Compressor 8:2, proposed 11729 3.09 1873 2.50 1089 1.10
Counter 16:2 VAM 23832 4.61 3465 3.86 2196 1.62
Compressor 16:2, proposed 25030 4.38 3686 3.73 2209 1.57
Counter 32:2 VAM 32189 6.39 5222 5.51 4297 2.95
Compressor 32:2, proposed 32007 6.03 5702 5.63 4228 2.91

FreePDK 45nm

Design
TSMC 180nm Cadence GPDK 90nm

 

An interesting degrading outcome however of technology scaling is the increasing 

importance that static power presents increasing by one or two orders of magnitude, as 

shown in Table 14. This is due to the important effects present in deep sub-micron 

Technology
Dynamic Static Dynamic Static Dynamic Static

[mW] [uW] [mW] [uW] [mW] [uW]
Combined proposed 127.8 0.12 6.36 42.44 10.27 33.83
Combined Adder/Subtractor based DW 182.8 0.18 7.86 52.64 12.43 42.25
Decimal FP Comparator 115.1 0.11 6.31 40.68 9.51 30.50
Binary, 2's, FP Comparator 22.3 0.03 1.01 8.21 1.71 6.42

Design
TSMC 180nm Cadence GPDK 90nm FreePDK 45nm
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technologies that could be previously ignored like leakage current due to sub-threshold 

conduction, gate oxide tunneling and Gate Induced Drain Leakage (GIDL). 

Table 16. Dynamic and static power comparison results for proposed 
compressor trees vs. counter trees in [19]. 

 

Technology
Dynamic Static Dynamic Static Dynamic Static

[mW] [uW] [mW] [uW] [mW] [uW]
Counter 9:2 VAM 0.738 0.024 0.045 11.9 0.223 6.2
Compressor 8:2, proposed 0.734 0.023 0.044 10.1 0.256 6.3
Counter 16:2 VAM 1.453 0.047 0.076 21.6 0.634 11.9
Compressor 16:2, proposed 1.540 0.050 0.079 22.3 0.767 12.3
Counter 32:2 VAM 0.085 0.064 0.424 25.1 0.038 21.6
Compressor 32:2, proposed 0.107 0.065 0.440 26.3 0.043 21.3

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Design

 

This work also presents comparisons for two recent approaches of decimal partial 

product generation in terms of delay, area and power consumption. Two additional 

hybrid architectures are developed and present attractive performance metrics versus 

previous designs. Table 17 and Table 18 present the results of these implementations, 

given in the last two entries, and contrast them with previous designs. 

 

Table 17. Area and delay results for VAM [19], LN [20] architectures 
and hybrid partial product generation architectures. 

 

 

 

 

 

Technology
Area Delay Area Delay Area Delay

[um^2] [ns] [um^2] [ns] [um^2] [ns]
VAM Radix-4 33286 1.75 4482 1.56 4015 1.30
VAM Radix-5 20465 1.96 2813 1.31 2836 0.89
LN Radix-5 44108 2.64 5652 2.22 5047 1.17
LN Radix-5 no Adder 25453 1.91 3202 1.65 3178 0.82
VAM with binary HYBRID, proposed 23253 1.40 3019 1.52 2981 0.80
LN with BCD recoding, proposed 21400 1.49 2688 1.55 2972 0.70

FreePDK 45nm

Design
TSMC 180nm Cadence GPDK 90nm
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Table 18. Dynamic and static power consumption for partial 
product generation architectures. 

 

 

Future work beyond the scope of this dissertation can be focused in different areas 

pertaining decimal arithmetic. One of these areas includes further research of complex 

multiple generation (2x, 5x, etc.) to improve partial product generation. Digit recoding 

can also be explored and the possibility of applying a Booth’s style algorithm to reduce 

the number of partial products generated. Reduction and compressor trees can be 

further explored through the use of recoding, with emphasis on the applicability of binary 

techniques for Carry-Save addition to the decimal case. For division, on the other hand, 

an implementation and analysis of a quotient digit by recurrence divider utilizing the 

results of the study developed would produce further insight into its architecture. Another 

area that could be researched is the decimal operation Fused Multiply Add (FMA) or  f = 

A x B + C utilizing the principles developed for partial product generation and reduction. 

Finally, the implementation of an architecture study to combine both decimal and binary 

arithmetic in one unit and assess the speedup and penalties from having such a 

capability. 

Technology
Dynamic Static Dynamic Static Dynamic Static

[mW] [uW] [mW] [uW] [mW] [uW]
VAM Radix-4 2.525 0.071 0.091 21.8 0.224 19.7
VAM Radix-5 1.542 0.043 0.053 17.0 0.159 14.5
LN Radix-5 3.278 0.086 0.125 27.8 0.264 23.1
LN Radix-5 no Adder 1.941 0.049 0.067 15.3 0.168 13.6
VAM with binary HYBRID, proposed 1.766 0.044 0.063 17.0 0.159 12.9
LN with BCD recoding, proposed 1.582 0.043 0.056 11.6 0.162 14.1

TSMC 180nm Cadence GPDK 90nm FreePDK 45nm

Design
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9. APPENDICES 

9.1 APPENDIX A – DENSELY PACKED DECIMAL ENCODING 

Densely Packed Decimal encoding or DPD is a lossless compression technique based 

on the Chen-Ho binary encoding of decimal numbers [54]. It provides an efficient method 

of encoding three BCD digits into 10-bits and back. 

DPD encoding or compression of the three BCD digits depends on the size of each digit. 

Numbers less than or equal to 7 (3-bits) are considered small and large if greater than 7 

(4-bits). In this manner, a specific mapping is used in each situation: when all digits are 

small, when left digit is small, when middle digit is large and so on. The following table 

illustrates DPD compression where the three BCD digits are abcd, efgh and ijkm 

respectively and the encoded 10-bits DPD pqr stu v wx y. The letter l is not used to 

avoid confusion with the letter i and 1. 

 
Table 19. DPD Encoding / Compression, taken from [10]. 

aei pqr stu v wx y Comments
000 bcd fgh 0 jk m All digits are small
001 bcd fgh 1 00 m Right digit is large (0-9 are unchanged)
010 bcd jkh 1 01 m Middle digit is large
100 jkd fgh 1 10 m Left digit is large
110 jkd 00h 1 11 m Right digit is small (left and middle are large)
101 fgd 01h 1 11 m Middle digit is small (left and right are large)
011 bcd 10h 1 11 m Left digit is small (middle and right are large)
111 00d 11h 1 11 m All digits are large; two bits are unused  
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DPD decoding or expansion on the other hand converts the DPD 10-bits back to three 

BCD digits. The digits vwxst are used as indicators and used with the mappings shown 

in the next table: 

Table 20. DPD Decoding / Expansion, taken from [10]. 

vwxst abcd efgh ijkm
0---- 0pqr 0stu 0wxy
100-- 0pqr 0stu 100y
101-- 0pqr 100u 0sty
110-- 100r 0stu 0pqy
11100 100r 100u 0pqy
11101 100r 0pqu 100y
11110 0pqr 100u 100y
11111 100r 100u 100y  

 
For example, if the encoded bits pqr stu v wx y are 100 011 1 10 1 the indicator bits 

vwxst are 11001 and these are matched in the fourth row of the table. Consequently the 

three BCDs represented are given by the input bits mapped to output bits as: 1000 0011 

0101, or 835. 

As another example, if the encoded bits pqr stu v wx y are 011 101 1 11 1 then vwxst is 

11110 which matches row 7 in the table. The BCD digits represented are then: 0011 

1001 1001, or 399. 

Boolean expressions can also be used instead of the direct mappings shown in the 

previous tables for encoding and decoding. For encoding/compression these results in: 

 
)()()( ieafiajabp ⋅⋅⋅+⋅⋅+⋅=  

)()()( ieagiakacq ⋅⋅⋅+⋅⋅+⋅=  
dr =  

)())(())(( ieieajiaefs ⋅+⋅⋅⋅+⋅⋅⋅=  

)())(())(( iaieakiaegt ⋅+⋅⋅⋅+⋅⋅⋅=  
hu =  

ieav ++=  
)  ()i ( iejeaw ⋅⋅+⋅+=  
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)  ()i ( iakaex ⋅⋅+⋅+=  
my =  

 

For decoding/expansion the Boolean expressions are: 

))(()( tssxwva ⋅++⋅⋅=  
))(( tsxwvpb ⋅⋅++⋅=  
))(( tsxwvqc ⋅⋅++⋅=  

rd =  
)))(()(( tsxwxwve +⋅⋅+⋅⋅=  

)()))((( tsxwvpxvvsf ⋅⋅⋅⋅⋅+⋅+⋅=  
)()))((( tsxwvqxvvtg ⋅⋅⋅⋅⋅+⋅+⋅=  

uh =  
)))(()(( tsxwxwvi +⋅⋅+⋅⋅=  

)))((()()( tsxwvpxwvsvwj ⋅+⋅⋅⋅+⋅⋅⋅+⋅=  
)))((()()( tsxwvqxwvtvxk ⋅+⋅⋅⋅+⋅⋅⋅+⋅=  

ym =  
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