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PREFACE 

Higher density nano-devices and more metallization layers in microelectronic 

chips are unceasing goals to the present semiconductor industry. However, topological 

imperfections (higher non-uniformity) on the wafer surfaces and lower material removal 

rates (MRR) seriously hamper these pursuing motivations. Since’90, industry has been 

using chemical mechanical planarization/polishing (CMP) to overcome these obstacles 

for fabricating integrated circuits (IC) with interconnect geometries of < 0.18 μm.  

Obviously, the much needed understanding of this new technique is derived 

basically on the ancient lapping process. Modeling and simulation are critical to transfer 

CMP from an engineering 'art' to an engineering 'science'. Many efforts in CMP modeling 

have been made in the last decade, but the available analytical MRR and surface 

uniformity models cannot precisely describe this highly complicated process, involving 

simultaneous chemical reactions (and etching), and mechanical abrasion.  

In this investigation, neural networks (NN), adaptive-based-network fuzzy 

inference system (ANFIS), and evolutionary algorithms (EA) techniques were applied to 

successfully overcome the aforementioned modeling and simulation problems. In addition, 

fine-tuning techniques for re-modifying ANFIS models for sparse-data case using are 

developed. Furthermore, multi-objective evolutionary algorithms (MOEA) are firstly 

applied to search for the optimal input settings for CMP process to trade-off the higher 

MRR and lower non-Uniformity by using the previously constructed models. The results 

also show the simulation of MOEA optimization can certainly provide accurate guidance 
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to search the optimal input settings for CMP process to produce lower non-uniform wafer 

surfaces under higher MRR.  
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CHAPTER I     

 

INTRODUCTION 

1.1 Market Demands in the Semiconductor Industry 

Undoubtedly, the electronics industry has become one of the fastest-growing 

industries in the past three decades. Currently, there have already been 108 or more nano-

devices that can be fabricated on a chip in semiconductor wafers by the technique of 

Ultra Large Scale Integrated (ULSI) circuits to reduce the cost and to increase the 

performance of electronic products. According to the Semiconductor Industry 

Association (SIA) roadmap, the 0.25μm design rule (line width) of integrate circuit (IC) 

devices in production in 1997 has rapidly shrunk to ~ 75 nm in 2005. Substantial 

technical innovations in photo-lithography and interconnect technologies are among the 

efforts being made to reach lower than 20 nm ranges.  

As the feature size of the IC chip keeps shrinking, the shorter wavelength of 

ultraviolet light is becoming a necessity, and the depth of focus of lithography tools is 

decreasing. Therefore, the topography of the wafer surface becomes a severe barrier in 

focusing for circuit pattern transfer. Furthermore, the increasing number of multi-layer 

films in IC chips brings numerous technological challenges in interconnects. The major 

challenges encountered in the interconnect technology are associated with the material 

changes from (SiO2 and Al to low-k dielectrics and Cu) and the requirement of new 

process architectures (such as damascene process) [30]. On the other hand, the 

complexity of microchip design and fabrication has increased continuously with 

integration and miniaturization. Extremely high degree of repeatability and uniformity 
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are required in wafer fabrication for high production yield. 

 Since the beginning of ’80, Chemical Mechanical Planarization (CMP) process has 

gradually become one of the most widely used planarization techniques to overcome the 

crucial challenge of the global surface planarity for semiconductor wafers in the 

fabrication of interlevel dielectric (ILD) planarization, shallow trench isolation (STI), and 

metal damascene processes in the semiconductor industry. Additionally, new materials 

such as Cu, W, and low-k dielectric materials, are introduced in ULSI fabrication, 

requiring extensive use of CMP process to form inlaid interconnect structures.   

 

1.2 Motivation and Objectives 

A fundamental understanding of the CMP process is essential to improve process 

optimization and control, and to increase the process yield and throughput in the 

continuous integration and miniaturization in the semiconductor industry. In the past two 

decades, as a fundamental study on CMP, mechanical aspects of the material removal 

mechanism in CMP where investigated both analytically and experimentally. Among the 

many important variables, the role of consumables (polishing pad and abrasive particles 

in the slurry, for example) in CMP performance was evaluated, and tribological 

characteristic (lubrication, friction, and wear) features in CMP were also analyzed. To 

evaluate the role of slurry, the influence of chemistry on mechanical removal in material 

removal mechanism is examined. The mechanical and chemical contributions to material 

removal are studied to determine key mechanism of material removal in CMP. The whole 

theoretical development in CMP has to be advanced significantly if we were to advance 

the CMP technology. 
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Briefly, due to highly complicated interactions between mechanical abrasion, and 

chemical interactions (etching) during the polishing process, current analytical models 

and analyses cannot sufficiently provide more accurate process prediction for better 

quality control and higher throughput. With continuous shrinkage of feature size, the 

demand for more precise process models keeps increasing. In this thesis, three novel 

modeling techniques were applied for material removal rate (MRR) and within wafer 

non-uniformity (WIWNU) using neural networks (NN), adaptive-based-network fuzzy 

inference systems (ANFIS), and genetic algorithms (GA) are discussed in the following 

chapters. Also, the multi-objective evolutionary algorithms (MOEA) optimization 

technique is applied for searching the most suitable combination of input process 

variables to reach the optimal polishing process. 

The overall goal of this research is to develop a new process modeling and 

optimization methodologies for highly non-linear and complex manufacturing processes, 

in particular CMP. Also, this methodology can be applied especially under sparse-data 

conditions. These newly-developed modeling methods can be applied not only to the 

current CMP practice or manufacturing processes but also to other fields, such as 

financial, risk analysis, behavior analysis in psychology, and recognition system. 

 

1.3 Scope of the Dissertation 

This dissertation is divided into the following chapters: 

1. Fundamentals of CMP in Chapter II 

2. Overview of CMP process in Chapter III 

 3



 

3. Fundamentals of Neural Networks, ANFIS, and Evolutionary Algorithms in Chapter 

IV. 

4. Modeling and optimization of CMP process in Chapter V. 

5. Results and Analysis in Chapter VI. 

6. Conclusions and Future Work in Chapter VII. 

Chapter II describes the general background and developments in CMP process. 

Chapter III presents material removal mechanisms of the CMP process. Some important 

process models introduced by the pioneers showing those relationships between 

significant process parameters and main performance variables are discussed. Chapter IV 

presents the applications of Neural Networks (NN) and Fuzzy Inference Systems (FIS) to 

the process modeling of the CMP process. The newly-developed models using Adaptive-

based-Network Fuzzy Inference System (ANFIS) which is based on Subtractive 

Clustering (SC) method is emphasized, especially for the case of sparse available data. 

The simulation results are shown in Chapter VI. Chapter VII covers conclusions and 

future work, including process modeling and multi-objective optimization in CMP 

process by using genetic and evolutionary algorithms, and the later application of 

multisensor-fusion techniques to enhance the process models, can be expanded and 

employed to real-time process monitoring, such as endpoint detection in CMP, and 

chatter detection, prediction of surface finish in ultra precision machining (UPM), etc. 

As initially discussed in Sections 2.2 and 2.3, CMP process involves highly 

dynamical and non-linear interactions between chemical reaction and mechanical 

abrasion. The potential of planarization capability and perspective market competition 

have motivated extensive research in industry and academia. Figure1.1 shows a research 
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methodology, including necessary steps for a deeper understanding and optimization of 

the various manufacturing processes. In this dissertation, steps involving performance 

variables, process parameters, analysis of results, process modeling and model testing are 

emphasized and discussed in detail in the following chapters. Certainly, the same ideas 

also can work on other manufacturing processes, such as Ultra Precision Machining 

(UPM). 

Figure1.1 Research methodology for optimizing manufacturing process 

Demands,
Markets

Manufacturing
Process

Performance
variables

Process
Control

Process
Parameters

Design of
Experiment

Analysis of
Results

Process
Modeling

Model
Testing
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CHAPTER II      
 

Fundamentals of the CMP Process 

2.1 CMP in Semiconductor Manufacturing 

2.1.1 Markets and Demands 

Over a period of five-year from 2003, the research house expects the semiconductor 

market to grow at a compounded annual growth rate of 12.5 percent, with revenues seen 

rising to $282 billion in 2008 from $160 billion in 2003 (Bussiness Times Dec. 31, 2003). 

The CMP process is ready to make a positive impact on 30% of the global semiconductor 

market [25]. Simply speaking, CMP has become one of the major core technologies in 

the semiconductor manufacturing industry. 

The relentless and never failing capability to fabricate integrated circuits (IC) on 

silicon wafers in a manner that continuously meets or exceeds Moore’s law [31] is the 

physical basis for the hugely successful microelectronics industry. To drive that 

processing engine, critical advancements in IC fabrication processing must be available 

in a timely fashion. Further, as the demand for high density and high performance IC 

chips increases (Figure 2.1), multi-level wiring and metallization technologies, and the 

demands of smaller feature size (or pitch size) are widely used for new IC fabrication 

(Figure 2.2 and Table 2.1), a new planarization technique for lower non-uniformity and 

less defect density on wafer surface is simultaneously needed. Additionally, as low-k 

dielectrics and Cu are replacing with traditional dielectric materials and Al, respectively, 

more understanding and novel process modeling techniques will be absolutely necessary 

for next-generation planarization technologies 

 6



 

103

104

105

106

107

108

109

1010

1011

# 
of

 n
an

o-
de

vi
ce

s 
(tr

an
si

st
or

, c
ap

ac
ito

rs
, e

tc
.) 

pe
r c

hi
p

1980 1990 2000 2010

0.1

1.0

10

M
in

im
um

 F
ea

tu
re

 S
iz

e 
(L

in
e 

W
id

th
) (

μ
m

)

16K

256K

4M

64M

1G

16G

Year

MEMORY DENSITY

LOGIC DENSITY

30MHz

60MHz

150MHz

300MHz

600MHz

1GHz

LITHOGOPHY

 

Figure 2.1 Trends in Logic, Memory Device and Lithography Technology [6] 

(redrawn by Lih) 
 

 
Figure 2.2 Cross-section of Hierarchical Scaling – Microprocessor (MPU) Device [6]
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Table 2.1 MPU Interconnect Technology Requirements – Near-term Years [6] 

 

2.1.2 Ultra Large Scale Integrated circuit (ULSI) 

The new technology for Ultra Large Scale Integrated circuit (ULSI) was 

successfully developed in mid-90s. This technology can produce integrated circuits 

(Figure 2.3) with smaller feature size (e.g. width of microelectronic wire ~ 70 nm in 

2005), more multi-layer metallization (> 9), and higher density (> 108) nano-devices (e.g. 

transistors, resistors, and capacitors) in a chip. However, the more stringent requirements 

for the ULSI, such as higher flatness or uniformity of wafer surface topography for 

providing sufficient depth-of-focus (or -field) ranges for sequential photo-lithography 

process (Figure 2.4) must be met, as depicted in Figure 2.5. 

 

Figure 2.3 3D Structure of Integrated Circuits (IC) - different levels of metal 
interconnects without showing dielectric (www.me.gatech.edu/eml/cmp.htm) 
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Figure 2.4 Schematic of Photo-lithography Process for IC Fabrication [9]

 

 

Figure 2.5 Schematics of Planarization and Non-planarization on Wafers [22] 
(redrawn by Lih) 
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2.1.3 Stringent Requirements of Lower Non-uniform Wafer Surface for ULSI 

As circuits get more complex, we increasingly need to remove the effects of high 

topography. Routing challenges increase very rapidly with increasing numbers of 

transistors as mentioned in the previous paragraph. The simplest solution is to stack extra 

layers on top of each other to increase the interconnect routes available to the circuit. 

Each layer adds its own topography problems, compounded by the surface variations 

existing from the layers below. Within four or five layers, as shown in Figure 2.4, the 

problems become insurmountable, and planarization of the surface is required for 

reliability and yield. 

Shrinking transistor size demands pattern definition tools that can print increasingly 

smaller features. However, increasing resolution for smaller features is obtained at the 

expense of the depth of focus. Depth of focus is the vertical range over which the image 

will be in acceptable focus (i.e. the image will adequately print). If the mask feature 

cannot be adequately imaged on the wafer surface (Figure 2.4), the image size will be 

distorted, and some of the circuit elements will have positions and spacing different from 

their design values. It will be up to the tolerances built into the circuit design whether the 

transistor element will work at all, or work with degraded performance. 

Besides, many of the circuit elements are current-carrying conductors, and as such 

they need to have sufficient sectional area to transport the current efficiently around the 

circuit. As the surface dimensional features (e.g. width) shrink for greater circuit 

compaction, the only dimension left to support a sufficient cross-section is the vertical 

height of the current-carrying conductors. This means that while the circuit size shrinks 

from generation to generation, the height of the vertical steps continues to be significant. 
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The combination of these effects demands some form of planarization to reduce the 

circuit topography within the required depth of focus for accurate circuit imaging. 

Using the Rayleigh criterion and depth of focus formula gives an expression for 

depth of focus, σ as shown in Equation (2.1). Table 2.2 gives the requirements for the 

depth of focus for smaller feature sizes. From Figure 2.5, reducing the increased 

cumulated surface non-planarity resulting from multi-level interconnect metallization in 

current ULSI is the major mission of the CMP process. Non-planarized surface 

topography also causes a hindrance in conformal coating of photo-resist and efficient 

pattern transfer with contact photo-lithography. Further, the irregular surface causes the 

(2.1)

Table 2.2 Minimum Feature Size and the Requirements of Depth of Focus [14]

Mercuryfor  nm 365 here
light projection ofh  wavelengt:

size feature minimum:

75.10
2

=

⋅=

λ
λ

λ
σ

b

b

96572008

124652007

144702006

188802005

239902004

2951002003

Requirement of Depth 
of Focus (nm)

Minimum Feature 
Size (nm)Year

96572008

124652007

144702006

188802005

239902004

2951002003
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of Focus (nm)

Minimum Feature 
Size (nm)Year
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variation of the thickness in fine wire widths, difficulties in Post-CMP cleaning process, 

and undesired erosion by residual chemical slurry or contamination. Obviously, this 

uncontrollable thickness leads to poor quality in microelectronic device.  

 

2.1.4 Planarization Capacity of CMP 

In addition to CMP, several other methods are known to enable achievement of 

higher level of planarization, such as laser reflow, coating with spin-on glasses (SOG), 

thermally reflowing material, and flowable oxide. However, CMP is the most economic 

process that meets the stringent requirements of local and global planarization in the 

semiconductor industry. By virtue of the ability of CMP to provide local and global flat 

surfaces of semiconductor wafers (as shown in Figure 2.6) [32], it has enabled chip 

designers to make use of advanced photo-lithographic patterning techniques, providing 

the continuous ability to shrink chips to smaller dimensions and seamlessly adding 

additional levels of wiring. 

 

Figure 2.6 Planarization Achievable by Different Techniques 
(www.icknowledge.com) 
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2.1.5 CMP Applications in IC Fabrication 

Conclusively, there are two major applications of CMP in ULSI manufacturing: (1) 

to smooth surface topography of inter-level dielectrics (ILD, usually silicon dioxide) and 

(2) to remove excess material to produce inlaid metal structure or isolation trenches. 

Currently, CMP is primarily applied in three areas of IC fabrications: (1) inter-level 

dielectric (ILD) and inter-metal dielectric (IMD) planarization, (2) Cu damascene process, 

and (3) shallow trench isolation (STI). 

The ILD CMP is applied to conventional Al metallization, where Al is deposited on 

the oxide ILD layer, patterned, and etched to form interconnects. Another layer of oxide 

is then deposited to insulate the Al interconnects. Thus, three-dimensional microelectrical

 as resistors, capacitors, and transistors are 

conne

 

wiring is constructed. Device elements, such

cted to build up ICs. Figure 2.7 is a schematic of the CMP for the ILD. The desired 

process endpoint is determined based on the surface planarity and thickness of the ILD 

layer required for electrical isolation of the Al wire. 

The CMP for copper damascene process (Figure 2.8) and STI (Figure 2.9) are 

SiO2 deposition layer

Figure 2.7 Schematic of Silicon Oxide ILD-CMP [9] (drawn by Lih) 

Overburden oxide
Needs to be removed

Si SubstrateUnderlying Metal
Ideal Endpoint
removed by CMP
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employed to remove excess deposit covered on the trench. The underlying oxide (or other 

ILD material) layer is trenched by photo-lithography and etching. A thin Cu layer is 

deposited or electroplated to fill the trenches. The CMP process removes excess Cu and 

forms isolated Cu wirings. The process is stopped while the Cu layer and diffusion 

barrier layer (usually a thin layer of Ta, TaN, Ti, or TiN to prevent Cu diffusion into the 

oxide

 

 and “poisoning” the underlying devices) are completely polished through and the 

oxide is exposed. 

Si Substrate

Excess Cu deposition layer needs to be rem oved

Cu deposition

Ideal Endpoint
by CMP

SiO 2 layer

Barrier layer

 

Figure 2.9 Schematic of Cu STI CMP [9] (drawn by Lih) 

Si Substrate

Excessive CVD Oxide deposition layer needs to be removedCVD SiO 2 deposition

Ideal Endpoint
by CMP Active Region Nitride (w ill be stripped off later)

Finished wafer

Si Substrate

Figure 2.8 Schematic of Cu Damascene CMP [9] (drawn by Lih) 
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2.1.6 CMP in Cu Damascene and ULSI Manufacturing 

Presently, Cu has begun to replace Al as the interconnect metal in IC in the new 

generation chips with interconnect critical dimensions below 0.25 μm. Not only has Cu 

the ability to reduce the resistance-capacitance (RC) delay due to its lower resistivity, but 

also increase the circuit reliability because of its higher electromigration resistance 

(electromigration is the phenomenon of metal atoms diffusing as electrical current 

carrying electrons “hit” them, which causing metal thinning) [33-35]. The conventional 

use of reactive ion etching (RIE) to pattern Cu is impractical because volatile Cu 

compounds form only at elevated temperatures [36]. The Cu damascene approach 

and economical solution for 

ULSI

sent oxide ILD layer (to reduce the 

combined with extensive use of CMP provides a useful 

 manufacturing [32, 37, 38]. In addition, Cu techniques require 20% to 30% fewer 

steps than conventional aluminum patterning due to new damascene approach and higher 

packing density of the smaller feature size [39].  

For the above-mentioned reasons, major chipmakers, including IBM, Motorola, 

Texas Instruments separately announced in 1997 aggressive plans to put Cu into 

production in 1998. The main challenges, however, for Cu CMP is to control the 

uniformity of the surface topography while the interconnect layers increase to meet the 

more stringent die-level planarity requirements. Moreover, the non-uniformity must be 

reduced to prevent the retardation of signal transmission in interconnects, if the 

remaining copper wires and the variation of local surface topography due to dishing and 

over-polishing (or erosion). In addition, the difference between polishing rate of Cu and 

low-k materials, being replacing with the pre
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capacitance loss and increase the signal transmission rate of the circuits), is also another 

barrier for the new generation CMP technology. 

 

2.1.7 Summary 

 CMP has been one of the major core technologies in the semiconductor IC industry. 

 ULSI demands higher flatness of wafer surface for providing sufficient depth-of-

focus. 

 CMP is the most economical process for attaining the stringent requirements of local 

and global planarization in the semiconductor industry. 

 aller feature size of microelectronic circuits, smaller clear ranges of depth-of-

wer non-uniformity on the wafer surface. 

 

 hallenges in Cu CMP process include dishing, erosion, uniform planarization 

 

2.2.1

(CM  used to polish plate glass. Differently, 

Section 2.1, CMP is commonly used to polish-off high spots on the wafers or films 

eposited on wafers, flattening the film or wafer, referred to as planarization.  

Sm

focus, and lo

 CMP technology has been widely applied in planarizing Cu and low-k materials for

deep-submicron (< 0.18 µm) IC fabrication. 

Major c

of low-k dielectric materials. 

2.2 Schematic of the CMP Process and Equipment 

 Schematic of the CMP Process 

Chemical Mechanical Planarization, also known as Chemical Mechanical Polishing 

P) is an adaptation of the lapping technology

chemical reaction aids in the mechanical removal rate during polishing. As stated in 

d
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Figure 2.10 is a schematic of the CMP process. A wafer to be polished is mounted 

 surface tension by wetting its back surface. This on a wafer carrier via back pressure or

Figure 2.10 Schematic Diagram of rotary CMP Process (www.icknowledge.com)  

wafer is pressed down against a rotating platen, which holds a compliant polishing pad. 

The wafer slides on the pad surface with a relative velocity generated by the rotation of 

the carrier and the platen. Concurrently, the abrasive slurry drips onto the platen surface 

and dispenses through the wafer and the pad contact interface. The chemical slurry and 

abrasive particles retained on the porous pad surface remove the material on the wafer 

surface as shown in Figure 2.11. The pressures (down pressure and back pressure) and 

velocity provide the mechanical force and velocity fields to push abrasive particles to 

abrade the chemically-reacted (or weakened) wafer surface by chemical slurry [16, 40]. 

During wafer polishing, the down pressure presses the wafer down onto the pad 

surface, back pressure provides uniform force distribution on the wafer surface. The 

abrasive slurry typically is dispensed onto the polishing pad upstream form the wafer 

carrier and centrifugal force causing abrasive slurry to move radially outward. As above-

mentioned, the wafer is polished by the interaction of the wafer surface with the chemical 
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slurry, abrasive particles, and the polishing pad. During wafer polishing, the pad surface 

structure is also planarized. The protruding pad material is compresses by contact with 

the wafer and is abraded by the interaction with the abrasive slurry and the wafer surface. 

Residual pad material, abrasive particles, and re-deposited material from the wafer 

surface are deposited into pad pores, thus filling up the pores, causing a glazed 

appearance and diminished polishing performance. This is one of the key issues that 

2.2.2 CMP Equipment 

Figure 2.12 show the first-generation polisher, typically using a single robot to move 

wafers through the tool, and this robot also holds the wafer on the carrier head. The main 

system of the CMP polisher include platen, wafer carrier, slurry pump, down pressure 

control, back pressure control, spindle driving motors, temperature control, spindle speed 

control, and endpoint detection device. The removal rate on this first-generation polisher 

can be improved by simply increasing the rotational rate. However, the non-uniformity 

results in the variation of material removal rate (MRR) and change in the material 

removal mechanisms.  

Figure 2.11 Contact Interfaces between Abrasive Particles and Porous Pad Surface 
[16] (drawn by Lih) 
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can s

 
2.2.3 Advanced Features in CMP Polisher 

 cleaning system for dry-in and dry-out features 

uffer if the platen run-out is not controlled. Platen run-out is a measure of a wobble 

which a platen undergoes during rotation and must be kept to a minimum to ensure good 

performance. Undoubtedly, this is one of the challenges in the development of CMP 

technology.  

The advanced features involved in the newly-developed CMP polishers are listed as 

the following:   

 Automatic robotic handling of the wafers for high precision control and processing 

stability. 

 Multiple wafer-carrier spindles for higher throughput (> 70 wafers per hour or WPH) 

 Built-in post CMP

Figure 2.12 Schematic Diagram of a CMP Equipment (www.icknowledge.com) 
(redrawn by Lih) 
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 Advanced endpoint detection systems involving optical, change of motor current of 

e CMP Polisher

spindles, eddy current, stop-layer coating, chemical potentiometer. 

 Advanced wafer carriers with variables back-pressure distribution for reducing 

within wafer non-uniformity (WIWNU) by uniform pressure distribution. 

 Sophisticated slurry delivery system for less slurry consumption, uniform slurry 

thickness 

 Built-in temperature control system for effectively cooling processing temperature 

to prevent undesired thermal deformation on polisher and wafers. 

 

2.2.4 Non-traditional CMP Polishers – Examples 

1. Linear-typ  (developed by LAM Research Corporation) as shown in 

Figure 2.13. 

 Reducing normal force – causing undesired pad deformation and leading to larger 

WIWNU. 

 Increasing lateral force – causing larger lateral shear force for planarizing the 

wafer surface and increasing the material removal without influencing the 

WIWNU. 

Figure 2.13 Linear-type CMP Polisher (www.lamrc.com) 
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2. Rotary Inverted CMP Polisher (developed by Nikon Inc.) as shown in Figure 2.14. 

Good for low-k materials and copper CMP. 

g down WIWNU and increasing efficiency of slurry uniform distribution. 

 

 Pad-feed (or Web-type) CMP Polisher

 Face-up polishing using small pads applied at very low-pressure and high-speed 

rotation. 

 Compact pad with light-weight and less pad deformation features. Good for 

lowerin

 Enabling continuous optical or other non-contact endpoint detection techniques 

for more accurately monitoring the polishing process. 

Figure 2.14 Rotary inverted CMP Polisher  

(www.nikon.co.jp/main/eng/products/cmp_e.htm) 

3.  (developed by Applied Materials, Inc.) as 

 

 

aximizes the equipment utilization time. 

shown in Figure 2.15 

Roll-type polishing pad replacing the conventional circular-fixed pad is 

continuously fed onto platen.  

No need to condition and no need to frequently shut down the machine for 

changing polishing pad which m
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 Easy to combine with the new Fixed-Abrasive Polishing Pad (developed by 3M) 

2.2

 Th cles to abrade the 

 Ad

rface topography. 

 Non-traditional CMP polisher can planarize wafers under wider ranges of pressure 

and relative velocity for new materials (e.g. low-k dielectrics, Cu) in IC fabrication, 

and provide more advantageous options without declining output performance. 

 

Figure 2.15 Pad-feed (Web-type) CMP Polisher (www.appliedmaterials.com) 

 

.5 Summary 

e pressures and relative velocity “push” abrasive parti

chemically-reacted wafer surface by chemical slurry. 

vanced features in newly-developed CMP polisher provides higher precision in 

wafer handling, endpoint detection, slurry delivery, thermal control, and higher 

fer throughput with fewer defects and more uniform suwa
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2.3 Challenges, Goals and Complexity of the CMP Process 

2.3.1 Current Challenges 

The year 2005 has marked over 20 years since the initial CMP patents were filed by 

IBM [41]. Opportunities for expanding the use of CMP in existing IC fabrication 

continue to flourish. In addition, the challenges (Table 2.3) ahead for CMP process to 

keep pace are formidable in this third wave of the evolution of the technology. Increasing 

concern about the challenges listed in Table 2.3 are all requirements for advanced 

microelectronic devices. Moreover, there is increasing attention to the overall cost of 

ownership (CoO) and logistics as the total number of CMP operations increases 

dram

 

atically. 

Table 2.3 Current Challenges of CMP Process [6] (arranged by Lih) 

Challenges

To effectively and accurately predict or capture the 
dynamic behavior during the polishing process, and 
improve the efficiency of process control.

Accurate processing 
models

To decrease overall costs for treating chemical waste, and 
potentially harmful to the environment and the ecological 
systems.

Harmless abrasive 
slurry

To improve the rate of high quality and reduce the 
production costs.

Real-time Process 
Control

Novel in-situ monitoring system for accurate endpoint 
detection, defect detection.

In-situ Process 
Monitoring System

Less dishing, erosion, over-polishing, under-polishing, 
chemical residual, micro/nano-scratch, residual stress, etc. 

Less defect density 
and contamination

S l

Remarks

Smaller non-uniformity surface topography (< 3%) on 
larger size wafers (≧300 mm or 12 in)

ma ler WIWNU and 
higher MRR

To effectively and accurately predict or capture the 
dynamic behavior during the polishing process, and 
improve the efficiency of process control.

Accurate processing 
models

To decrease overall costs for treating chemical waste, and 
potentially harmful to the environment and the ecological 
systems.

Harmless abrasive 
slurry

To improve the rate of high quality and reduce the 
production costs.

Real-time Process 
Control

Novel in-situ monitoring system for accurate endpoint 
detection, defect detection.

In-situ Process 
Monitoring System

Less dishing, erosion, over-polishing, under-polishing, 
chemical residual, micro/nano-scratch, residual stress, etc. 

Less defect density 
and contamination

S l

Remarks

Smaller non-uniformity surface topography (< 3%) on 
larger size wafers (≧300 mm or 12 in)

ma ler WIWNU and 
higher MRR

Challenges
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2.3.2 Achieving Goals 

Initially, except for the consideration of CoO, two more key issues affecting 

industry use of CMP semiconductor chip manufacturing are the lack of industry-wide 

CMP technology and integration knowledge, and the less than thorough understanding of 

the underlying science behind CMP. Presently, the leading CMP equipment suppliers not 

only sell CMP tools, but they also offer CMP process implementation and integration 

support as well. Five paramount short-term goals as listed in Table 2.4 are being quickly 

achieved. Obviously, CMP technology has been evolving and maturing to meet the 

above-mentioned challenges. 

 
Currently, new-generation polishers involving novel machine tool designs (i.e. high 

precision spindles, vibration-absorbing systems and automated robot systems), precision 

g, 
novel finer abrasive particles and higher slurry selectivity.

S
Finish

the integration of Post-CMP cleaning for minimum Integrated dry-in and 
dry

the integrated sensor systems for endpoint detection and 
ing 

process.

Advances in 
E

detection techniques

 been successfully integrated I

the new-generation polisher with multi-polishing heads 
l Higher throughput 

an

Due toGoals

the less agglomeration of abrasive particles during polishinuperior Surface 

defectivity and reduction of wafer transport time.-out configuration

development of stop-layer deposit accurately halt polishndpoint stop and  

into CMP tool, which greatly reduces or eliminates lost 
productivity due to test wafer queuing delays.

Film thickness 
metrology

the film thickness metrology hasntegration of the 

(carriers), higher material removal rate (MRR), and nove
polishing pads and polisher design.d lower WIWNU

the less agglomeration of abrasive particles during polishinuperior Surface 

defectivity and reduction of wafer transport time.-out configuration

g, 
novel finer abrasive particles and higher slurry selectivity.

S
Finish

the integration of Post-CMP cleaning for minimum Integrated dry-in and 
dry

the integrated sensor systems for endpoint detection and 
ing 

process.

Advances in 
E

detection techniques

 been successfully integrated I

the new-generation polisher with multi-polishing heads 
l Higher throughput 

an

Due toGoals

development of stop-layer deposit accurately halt polishndpoint stop and  

into CMP tool, which greatly reduces or eliminates lost 
productivity due to test wafer queuing delays.

Film thickness 
metrology

the film thickness metrology hasntegration of the 

(carriers), higher material removal rate (MRR), and nove
polishing pads and polisher design.d lower WIWNU

Table 2.4 Short-term Goals of CMP for ULSI in Semiconductor Manufacturing [25]
(arranged by Lih) 
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control systems, advanced sensing systems, temperature control systems, and integrated 

g post-CMP cleaning process), also known dry-in and dry-out 

capab

evolving optical exposure tools. Even this technique, derived from an age-

old machining process, namely, glass lapping and metallographic finishing, has 

unexpectedly enabled optical lithography to work.  

 

2.3.3 Complexity of the CMP Process 

Inherently, chemical reactions and mechanical abrasion during CMP polishing lead 

to high non-linearity and complex material removal mechanisms. Their interactions at the 

interfaces between polishing pad, abrasive particles, slurry chemicals, and wafer 

materials bear complicated patterns of temperature, vibration, material distribution, forces, 

pressure, and fluid flow [20]. More than 30 variables and their coupled spatio-temporal 

dynamics are known to affect CMP process performance (Table 2.5). The current 

analytical CMP models with various assumptions can not sufficiently capture the 

incessant drift of complex behaviors, interactions, and relationships. At present, the 

statistical phenomenological models and experimental optimization are other approaches 

widely used for process design in industry [25]. However, these approaches, largely 

configuration (i.e. combinin

ility are available. Apparently, these evolutions greatly improve the CMP process 

for higher throughput (i.e. production rate) and better quality control (e.g. lower WIWNU 

and fewer defects on the polished wafer). 

Through incessant improvement, CMP has become a required semiconductor 

processing module used in sub-micron integrated circuit (IC) fabrication worldwide in 

the last fifteen years or so. As previously mentioned, CMP provides an extendable 

processing technology that enables chip makers to stay ahead of the depth-of-focus 

limitations in 
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rooted in linear statistics, are unable to provide satisfactory prediction or estimation. With 

the h

 

2.3.4 Summary 

 For deep-submicron (< 0.18 μm) IC fabrication, there still exist many challenges in 

CMP technology, such as machine tool design, defect density depression, slurry 

ingredients, accurate processing modeling. 

 Due to high non-linearity and complexity of material removal mechanisms in CMP 

Surface Finish : Roughness, 
Waviness, Form Accuracy

Direct Contact, Semi- Contact, 
Hydroplaning

Size, Curvature, Properties of Coating  
(E, ν, H), Initial Coating Thickness, 
Coating Thickness Variation, Pattern 
Geometry

Wafer

Defects : Dishing, Erosion, Micro-
scratch, Pits, etc.

Size Distribution, Aggregation, 
Agglomeration, Concentration, 
Debris

Size, Shape, Hardness, Chemistry, 
Density, Oversized Particles

Abrasive 
Particles

Planarity : Within Wafer Non-
uniformity (WIWNU), Wafer to 
Wafer Non-uniformity, Within Die 
Non-uniformity (WIDNU)

pH drifts, Concentration, 
Temperature Rise, Slurry 
Thickness

Oxidizers, pH, pH Stabilizer, 
Complexing Agents, Dispersants, 
Selectivity ratio, Temperature

Slurry

Pattern, etc.
P

pad

Endpoint Control (Remaining 
Thickness Control)

Stress Distribution, Velocity 
Distribution

Down Pressure, Back Pressure, Platen 
illation 
c.

uge market potential, as above-mentioned, an effort to develop novel modeling 

methodology for polishing mechanisms and process control is essential to effectively 

keep improving the CMP technology. 

 

Speed, Wafer Carrier Speed, Osc
Speed, Slurry Flow, Vibration, et

Machine

Performance VariablesState VariablesProcess Parameters

Material Removal Rate (Å/min)Condition, Wet Hardness, 
Degradation, Temperature 

Stiffness (or Hardness), Macrostructure, 
Microstructure, Porosity, Topography, olishing 

Distribution

Surface Finish : Roughness, 
Waviness, Form Accuracy

Direct Contact, Semi- Contact, 
Hydroplaning

Size, Curvature, Properties of Coating  
(E, ν, H), Initial Coating Thickness, 
Coating Thickness Variation, Pattern 
Geometry

Wafer

Defects : Dishing, Erosion, Micro-
scratch, Pits, etc.

Size Distribution, Aggregation, 
Agglomeration, Concentration, 
Debris

Size, Shape, Hardness, Chemistry, 
Density, Oversized Particles

Abrasive 
Particles

Planarity : Within Wafer Non-
uniformity (WIWNU), Wafer to 
Wafer Non-uniformity, Within Die 
Non-uniformity (WIDNU)

pH drifts, Concentration, 
Temperature Rise, Slurry 
Thickness

Oxidizers, pH, pH Stabilizer, 
Complexing Agents, Dispersants, 
Selectivity ratio, Temperature

Slurry

Pattern, etc.
P

pad

Endpoint Control (Remaining 
Thickness Control)

Stress Distribution, Velocity 
Distribution

Down Pressure, Back Pressure, Platen 
illation 
c.

Material Removal Rate (Å/min)Condition, Wet Hardness, 
Degradation, Temperature 

Stiffness (or Hardness), Macrostructure, 
Microstructure, Porosity, Topography, olishing 

Distribution

Speed, Wafer Carrier Speed, Osc
Speed, Slurry Flow, Vibration, et

Machine

Performance VariablesState VariablesProcess Parameters

Table 2.5 Various parameters and variables involved in the complex CMP process 
[9, 25] (arranged by Lih) 

processes, novel and effective approaches for modeling the removal mechanisms are 

essential to improve the predictive capacity for the performance variables. 
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2.4 New Developments for CMP Process 

In order to overcome the gigantic challenges ahead of the CMP process, a number 

of new techniques, for improving the polishing process, increasing the planarization 

quality, decreasing defect density, and reducing the harmfulness to the environment and 

the ecological system

 

 heights in feature-scale 

 

Abrasive-free Polishing (AFP) 

Electrochemical Mechanical Polishing (ECMP)  

s, have been continuously proposed in the past several years.  Four 

main categories are divided in the following:  

 

Machine Tool Design 

 New design concepts for the next-generation CMP polisher 

 Wafer carrier design 

Fix-abrasive Polishing 

Higher selectivity of step 

 Lower WIWNU 

 Lower down pressure for Cu-CMP and low-k materials 

 Fewer defects 

 

 Fewer defects 

 Lower WIWNU for 60 nm-process for lower 
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CHAPTER III   

 

OVERVIEW OF THE CMP PROCESS 

3.1 Introduction 

Although CMP has been widely applied in the IC fabrication, it is still a process of 

trial and error. Understanding the basic mechanisms of the process has initiated research 

efforts from both industry and academia over a decade. As mentioned in Chapter I, CMP 

appears to contain two cooperating physical mechanisms [16, 40]. First, chemical 

interaction of the slurry with the material at the surface of the wafer weakens the surface 

to be polished. Second, the weakened surface is mechanically removed by a combination 

of abrasive particles, asperities of polishing pad, and hydrodynamic effects (Figure 3.1). 

The extent of each component is not well known. The individual contributions of the 

chemical and mechanical actions to material removal are dependent on the process 

parameters and consumables used.  

Figure 3.1 Schematic of Particle-scale Material Removal in CMP 
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The mechanical actions during CMP include indentation, scratching, sliding, and 

rollin g 

ical 

 

 

(Figure 3.2, particle-level schematic of the 

hemo-mechanical polishing [20]). Both chemical and mechanical actions are coupled 

val of the wafer surface material. 

 

, polishing pad and wafer materials. 

ta ix interactions among these four elements, namely, abrasive-wafer, 

ras , and slurry-wafer. These interactions 

individually contribute some extent to the material removal. Further, some interactions 

might be helpful to the mechanical action, but may reduce or slow down the effect of 

chemical actions. All of these questions will need more insightful analyses to get answers. 

atic of Chemo-mechanical Polishing [20] 

g of the abrasive particles that are held between the wafer surface and the polishin

pad under the applied down-pressure (P) and relative velocity (Vr). The chem

influences include surface passivation and etching of the film materials by the slurry

chemistry [40] and in some cases direct interaction between the abrasives and the surface

that is required to be polished and planarized 

c

together during the remo

Figure 3.2 Particle-level Schem

Furthermore, the four most important elements in the CMP material removal 

process are the abrasive particles, slurry chemicals

To lly, there are s

ab ive-pad, pad-wafer, slurry-abrasive, slurry-pad
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On the basis of performance variables in Table 3.1, CMP models are categorized into 

four types depending on the scale of observation as -, feature-, die-, and wafer- 

models, from several ten nanometer to 300 mm (or larger) ranges.  

In a typical modeling approach, the performance variables (e.g. MRR) are models 

as functions of easily controllable process parameters (e.g. down pressure, platen speed, 

etc.). The most basic model is one that predicts the bulk rate of material removal in a 

macroscopic fashion. An empirical model as depicted in Equation (3.1) developed by 

Preston [42] is widely accepted, in which the rate of material thickness reduction is 

proportional to the product of (1) the relative velocity between the wafer and the 

polishing pad, and (2) the applied pressure on the wafer surface:  

Within die non-uniformity (WIDNU), etc.Die-scale

surface roughness, micro-defects, etc.

particle

 

3.2 Preston’s Polishing Model 

Within wafer non-uniformity (WIWNU), MRR.Wafer-scale

Step height reduction rate, dishing, erosion,  
delamination, etc.Feature-scale

MRR at each single point, micro-scratch, Particle-scale

Output Performance VariablesModel Scales

Within wafer non-uniformity (WIWNU), MRR.Wafer-scale

Step height reduction rate, dishing, erosion,  
delamination, etc.Feature-scale

MRR at each single point, micro-scratch, Particle-scale

Output Performance VariablesModel Scales

Within die non-uniformity (WIDNU), etc.Die-scale

surface roughness, micro-defects, etc.

Table 3.1 CMP performance variables at different scales [15]  
(arranged by Lih) 
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dt
ds

A
NK

dt
dz

⋅⋅=                                                    (3.1) 

where z  is wafer thickness, t  is time, 
A

 is the pressure due to normal force N N  on the 

area A , and s  is the distance some point on the wafer travels in contact with the pad. 

Preston’s model in Equation (3.1) also conventionally appears as  

VPKMRR rp ⋅⋅=                                                   (3.2) 

pwhere  is the material removal rate K  an all-purpose coefficient,  the down 

pressure and  the relative velocity between wafer and pad. Preston’s model includes all 

effects of slurry chemicals, abrasive particles and polishing pads into the empirical 

constant . It provides a linear dependence of MRR on the pressure and relative 

velocity. Its prediction of first order dependence on pressure and relative velocity is a 

good approximation and is the starting point for a majority of the mechanical CMP 

models proposed in literature. An equivalent model is the Archard’s model [43] in area of 

wear. Even though Preston’s model in Equation (3.1) is widely used in the CMP industry

for a 

MRR , P

 rV

pK

 

long time, because this model was created purely from mechanical actions, other 

actions such as chemical reactions were lumped into an all-purpose coefficient, pK , also 

know as Preston coefficient. This model does not explicitly include the consumable and 

wafer parameters in this model. 

Practically, experimental study at very low pressures and relative velocities appear 

to indicate a slightly nonlinear or different behavior (also known as non-Preston’s effect) 

in these regimes. In addition, not all experimental MRR data in CMP, specially, in metal 



 

CMP, supports the linear dependency. Maury et al. [44] introduces a fitting parameter 

0MRR  into Preston’s model: 

0MRRVPKMRR re +⋅⋅=                                           (3.3) 

Later,  Wrschka et al. [45] proposed the nonlinear experimental equation to get a better 

fit of the experimental data. 

                                                (3.4) 

where 

βα
rVPKeMRR ⋅⋅=

βα  ,  are two fitting parameters.  

Current approach towards modeling CMP processes can be divided into three 

different starting fields, such as micro contact mechanics, thin-film fluid dynamics, and 

tribological lubrication. Some newly proposed models cover two of them at a time. In 

other words, it is obvious that the material removal mechanisms of CMP processes is 

complicated and can not be simply explained by only one of above-mentioned theories. 

 Process 

 

3.3 Microscopic Views of CMP

The proposed particle-scale models were reviewed in this section. As given in the 

Table 3.1, the two most important issues at the particle-scale are the material removal rate 

(MRR) and the surface quality, e.g., surface roughness and micro-scratches (Figure 3.3).  

The MRR determines the production rate of the process. Moreover, it is most sensible to 

process conditions, and therefore an output which is most of interest in process 

optimization. An understanding of the MRR first requires an understanding how the 

MRR varies with the process conditions.  
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scratchesscratches

broken device

 

scratches dim ility and reflectivity as well as the endurance of the surface. 

With the surface scratches, which are more or a concern in metal CMP than oxide CMP, 

the corros  resistance in the thin film may be lowered and a short circuit was caused 

easily by electromigration. Therefore, an understanding of the formation mechanism of 

scratches and means for their reduction is needed. With low-k dielectrics replacing oxide 

dielectrics as the primary dielectric materials, the delamination (Figure 3.4) of the 

dielectrics and interconnect metals during CMP is becoming a critical surface quality 

issue as well.  

Figure 3.3 SEM photos of Micro-scratches in IC [11] 

In addition, surface qualities determine the yield of the process. The micro-

inish the reliab

ion

Figure 3.4 Delamination of low-k dielectrics on Cu wafer [23] 

No Delamination
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3.3.1 Interactions between Abrasive Particles and Wafer Materials 

he interaction betweenT  an abrasive particle and the wafer surface is proposed as a 

Hertzian elastic penetration [46] of a spherical particle under uniform pressure P  into the 

wafer surface, sliding along the surface with a relative velocity rV  and removing wafer 

volume proportional to the penetration (Figures 3.5 and 3.6). Cook [16] proposed a MRR 

formulation as: 

⋅⋅−1)2(                                               (3.5) 

wher

MRR = rw VPE

e wE  is the Young’s modulus of the wafer material. This model is taken as a 

theoretical verification of the Preston’s model since it supports the linear dependency of 

MRR  on pressure P  and relative velocity rV .. 

P

abrasive particle

Vr removed material

Wafer

 
A similar model was developed by Liu et al. [47] based on the statistical method 

and Hertzian elastic penetration. Except for the wafer material parameters, including 

wafer hardness wH  and wafer Young’s Modulus wE , this model also includes pad 

hardness pH  and Young’s Modulus aE  of the abrasive particles: 

Figure 3.5 Mechanics of Abrasive Particle-Wafer Contact  [16] 
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where  is a coefficient to account for the effect of slurry chemicals and other 

consumable parameters. This model, similar to Cook’s model, suggests that material 

removal is proportional to the applied pressure and relative velocity. 

The advantages of Cook’s and Liu’s models over Preston’s model are that they 

provide insights into the role and interactions of the consumable parameters (i.e. 

hardn

eC

esses of abrasive particle and wafer, etc.). The mechanical removal by abrasive 

particles is the dominant mechanism in these two models. 

Runnel et al. [48] assume that there exists a fluid film between the wafer and the 

pad interface, which affects the erosion/material removal rates at each single point 

through fluid stress tensors: 

nteCMRR σσ ⋅⋅=                                                  (3.7) 

where Ce is an all-purpose coefficient , σt is the shear stress due to the slurry flow and 

σ  the normal stress. They consider the material removal is due to mechanically n

enhanced erosion. Tseng and Wang [49] attributed the normal stress at the particle-wafer 

contact to the elastic indentation of the normal stress into wafer surface and calculated the 

normal stress over the wafer-particle interface as  
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where F  is force acting on the spherical particles, which is proportional to the pressure 

P . cr  is the radius of wafer-particle contact, x  is the diameter of abrasive particle, wν  

and aν  the Poisson’s ratios of wafer surface and abrasive particles, and E  and aE  

Young’s moduli of the wafer and abrasive particles, respectively. The shear stress due to 

the slurry flow can be approximated as  

w

0APVC ret ⋅⋅⋅= μσ                                             (3.9) 

where μ  is the dynamic viscosity of the slurry and A0 is the area of the wafer surface. 

tion ofSubstitu  Equations (3.8) and (3.9) into Equation (3.7) yields: 

2
1

6
5 VPKMRR ⋅⋅=                                              (3.10) re

where Ke is the parameter to account for material properties, slurry abrasive concentration 

and chemical processes. 

Zhang and Busnaina [50] estimated the contact pressure between the particle and 

the contact surface and found that it is larger than the yield stress of the polished 

materials. Therefore, they proposed that plastic deformation is a more likely deformation 

mechanism of polishing surfaces. The contact pressure over the particle-wafer interfaces 

is suggested to be equal to the hardness Hw of the wafer materials. Replacing the normal 

stress in Equation (3.8) with the hardness Hw yields: 

( ) 2
1

VPKMRR e

where eK  is the parameter to account for ma erties, slurry abrasive 

concentratio ical processes. 

⋅⋅=                                             (3.11) 

terial prop

n and chem
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Moreover, it is noted that besides the external force applied on the abrasive particles 

from the pad, Zhang and Busnaina [50] also proposed that adhesion force, either van der 

 the above analytic 

mode

from time to time (three-body 

abras

loped (Figure 3.9 on page 43). 

 

Waals force and electrostatic force depending on the separation distance between the 

particle and the wafer, contributes to the indentation [51]. Ahmadi and Xia [52] also 

consider the adhesion wear of wafer in their model. In addition to

ls, several particle-wafer interaction models based on molecular dynamics (MD) 

simulation have been developed for both silicon and Cu CMP. 

The above models imply that abrasive particles are embedded into the pad and 

particles float in the slurry and impact the wafer surface 

ion). Models attributing the material removal to the erosion enhanced by the three-

body abrasive impact, instead of a two-body indentation similar to that given by Tseng 

and Wang [49], may be deve

Figure 3.6 Schematic of Interactions between Abrasive Particles and Wafer [15] 



 

3.3.2 Interactions of Polishing Pad and Wafer Materials 

t has been observed that the pad topography and pad material play an important 

role in the material removal process. The MRR increases with the pad surface roughness 

[22] and softer pad yields a larger MRR [22]. Without conditioning of the polishing pad, 

the MRR decreases exponentially with 

I

polishing time [53, 54]. Li, et al. [54] reported 

MRR initially decreases almost linearly and then stays at a low value during polishing Si-

Oxide without pad conditioning. They have suggested that the pad surface roughness is 

responsible for the imperfect planarization, especially for deep, narrow features. In 

reduction per unit oxide removed at the “up feature” 

les over the contact area as shown in Figure 3.6. In other words, 

the ca

 

contrast, they also proposed the planarization efficiency, defined as the step-height 

region, increases linearly with the 

polishing time. Steigerwald et al. [27] proposed that the MRR is proportional to the 

number of abrasive partic

pacity of holding abrasive particles of the polishing pad is greatly decreased under 

the worn-out (or increasing of flattened portion) status (Figure 3.7), reducing the two-

body mechanically abrasion actions. 

Figure 3.7 SEM Photos of Polishing Pad Surfaces [11] 
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Yu et al. [18] approximated the peaks on the pad surface by hemispherical 

asperities of constant radius and the asperity height was assumed to follow a Gaussian 

distribution (Figure 3.8). On the basis of this model, the real contact area is smaller than 

the nominal contact area and proportional to the down pressure. Combining Yu’s model 

[18] with Steigerwald argument [27] yields a linear dependency of MRR on down 

pressure. This agrees with Preston’s model. 

Zhao and Shi [55] also proposed a model based on pad asperity-wafer contact 

without considering the Gaussian distribution of asperity heights. The contact area 

between an asperity and the wafer surface is given by 3
2PA∝  based on Hertz elastic 

contact theory. Similarly, combining Steigerwald’s argument [27], the MRR can be 

obtained as: 

3
2)( PVKMRR re ⋅=                                                  (3.12) 

 is a function of the relative velocity Vr and other CMP parameters. Further, 

Zhao and Shi [55] also considered that when the particles are rolling against the wafer 

surface, their contribution to MRR will be negligible. They argued that whether the 

particle is rolling or not is determined by the surface friction between the particles and 

the wafer, and only when the down pressure P is larger than a threshold down pressure 

Pth, pure rolling can be avoided. This leads to the following MRR formulation: 

where )( re VK

⎭
⎬
⎫

⎩
⎨
⎧

<
≥−⋅

=
th

ththre

PP
PPPPVK

MRR
                                0

   )()( 3
2

3
2

                         (3.13) 
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Besides the above analytical models, the numerical models (by Bastawros et al. [56] 

and Seok et al.[57]) based on the finite element method have been developed and used to 

investigate the wafer –pad contact as well.  

 
3.3.3  Interactions of Slurry Chemicals and Wafer Materials 

In the models developed initially, the contribution of slurry chemicals to the 

material removal is neglected or represented by an all-purposed coefficient. Cook [16] 

suggested a complete scenario of the chemical effects. He proposed that the surface 

removal during polishing should include the following five chemical processes: (i) slurry 

chemicals diffusion into the wafer surface; (ii) the subsequent wafer material dissolution 

under the load imposed by the abrasive particles; (iii) the absorption of the dissolution 

product onto the surface of the polishing grain; (iv) the re-deposition of the polishing 

materials back onto the wafer surface; and (v) the corrosion rate between particle impacts. 

Figure 3.8 Wafer-pad contact model of Yu et al.[18]  
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Due to complicated chemical reactions and difficulty in property’s quantitative 

description, and a small contribution by chemical mechanism to the whole material 

removal processes, believed by most researchers, most early CMP models did not take 

this interaction into account.  

In the Tungsten CMP model proposed by Kaufman et al. [40], they used the 

following formulation to describe the formation of a tungsten passivation layer in 

presence of ferricyanide: 

              (3.14) 

They consider the pavissivation layer to be removed by the abrasive particles and fresh 

tungsten surfaces are exposed, which is subsequently passivated and removed. This 

mechanism of passivation-removal-repasivation can be used to explain aluminum, copper 

and o

ass transfer model based on the lubrication 

theor

ics of the flow. Similarly,  the model of Subramanian et al. 

+++→++ 8H  6Fe(CN)   WO O3H 6Fe(CN) W -4
632

3
6

ther metal CMP as well. A similar mechanism of surface modification-removal-

remodification is supposed to work on silicon, silicon oxide and low-k dielectric CMP. 

Paul [58] and Zhao et al. [59] have presented detailed surface kinetics models to connect 

the slurry chemical concentrations and fresh metal sites available to the formation rate of 

the surface layer.  

Sundararajan et al. [60]  proposed m

y to predict the polishing rate of copper CMP as a function of operating conditions 

and slurry composition. The dissolved copper species is convectively diffused and forms 

a concentration boundary layer in the slurry between the wafer and the polishing pad. 

This mass transfer model takes into account the slurry chemistry, the effect of abrasive 

particles and the hydrodynam
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[61] accommodates transport phenomena coupled w

which are decoupled from the chemistry, as well as comprehensive models which couple 

into their transport model.  Recently, Osseo-Asare [28] proposed a notice that considers 

In addition, Borst et al. [62] proposed a five-step model for CMP of SiLK 

dielectrics: (1) mass transport of the reactant from the slurry to the 

(2) adsorp

aterial to the bulk slurry. In their work, 

formulations to cover the steps (1), (2) and (3), which relate to the mass transportation, 

slurry chemical concentration and reaction rate to the formation of surface layer were 

included. 

 

3.3.4 Interactions of Abrasive Particles and Polishing Pad 

Several contact modes between the particles and pad exist [26]. The first model is 

that a slurry film is formed over the wafer-pad interface and therefore the particles are 

never embedded into the polishing pad but impact the pad body only. In this case, the pad 

contributes to the force through the slurry film. A detailed fluid mechanics model 

considering the topography and deformation of the pad is needed to evaluate the force 

ith chemical reactions may consider 

competing chemical processes, such as the formation of passivating films (Kaufman et al. 

[40]) and phenomena such as dishing and erosion. Besides, simple models of abrasion 

abrasion with chemical weakening of the surface of the film, also can be accommodated 

the adsorption rate of the dissolution product onto the surface of the polishing abrasives.  

slurry/wafer interface; 

tion of reactant to available surface site; (3) reaction between the absorbed 

reactant and specific wafer surface layer; (4) mechanical removal of altered wafer surface 

layer; and (5) mass transport of removed m
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supporting the abrasive particles. Te models proposed by Runnel et al. [48] and Su [63] 

may be helpful in this respect.  

The second possible model is that the abrasives are embedded into the polishing pad. 

This is the case of the “two-body” removal of materials (Figure 3.9). Cook’s model [16] 

suggested a close packing  of spherical abrasive particle into the pad. It assumes that the 

wafer and the pad are separated completely by the abrasive particles and no pad-wafer 

direct contact exists. The force applied on a single abrasive particle under these 

assumptions is given by  

k
rP 232 ⋅⋅

where P is the polishing pressure, r the abrasive size and k the particle fill fraction on the 

pad. 

F =                                                (3.15) 

down pressure + back pressure

polishing pad

wafer

Figure 3.9 Schematic of interactions between wafer, abrasives, chemicals and pad [26, 
27] (drawn by Lih) 

Abrasive Particles
(2-Body Abrasion) Abrasive particles

(3-Body Abrasion)

chemicals

Inactive
Abrasive
particles
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This particle-pad interaction model has been integrated into the material removal model 

of Cook [16]. It is also used by Ahmadi and Xia [52] to evaluate the force on an abrasive 

particle, in their case a hard pad and larger concentration of abrasive particle.   

Zhao

 

by a 

 and Shi [55] presented that when the pad is soft enough, the abrasive particles will 

be embedded into the pad deeply and the force from the wafer is supported by the pad 

and abrasive particles together. Luo and Dornfeld [26, 64, 65] and Fu et al. [29] applied 

the same ideas in their material removal model.  

Luo and Dornfeld  [26, 64, 65] suggested that this contact force as shown in 

Equation (3.15) is proportional to the contact pressure times the abrasive size, by 

assuming that the abrasive particles are closely packed to each other and these closely 

packed abrasive particles are enwrapped by the pads so that the effective contact area 

between wafer and pad is equal to that without abrasive particles. Moreover, the size of 

the abrasive particles that may be captured by the pad is a function of abrasive size 

distribution and pad properties (such as wet or dry hardness). Fu et al. [29] assumed that 

the abrasive particles are dispersed evenly over the pad surface and used a beam model to 

evaluate the wafer-pad direct contact between each abrasive particle. The force supported

single abrasive particle can be obtained form the beam model and is a function of 

abrasive particle size, down pressure and pad material properties (Figure 3.10). 

In addition to the contact forces between pad and the abrasive particles, the 

fractions of “two-body” abrasion, “three-body” abrasion and so on (as shown in Figure 

3.9) are also important factors, which contribute different material removal mechanisms 

to the polishing process. Luo and Dornfeld [26, 64, 65] suggested that only a portion of 
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abrasive particles are involved in the material removal process, and this portion is also a 

function of the size of abrasive particles, pad topography and material properties. 

 

where 

Figure 3.10 Equivalent beam model for a span of the pad pressure against two abrasive 
particles [26, 29] 

P  is polishing pressure, A  wafer surface area, N  the numbers of abrasive 

particles on the wafer surface, the distance between the neighboring particles, and t  

thickness of the pad. 

 

3.3.5 Interactions between Slurry Chemicals, Abrasive Particles and Polishing Pad 

The slurry chemicals affect not only the wafer but also the abrasive particles and the 

polishing pad, such as the alteration of the abrasiv

g’s modulus) of the pad). Mazaheri and Ahmadi [66] proposed that the indentation 

of abrasives into the wafer surface is determined not only by the load from the polishing 

pad, but also by the double layer forces, which are a function of abrasive size and 

l  p

e particle and pad properties (the 

abrasive shape, abrasive size (e.g., aggregation or agglomeration), and hardness (or 

Youn
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abrasive zeta potential. They proposed experimental equations of abrasive zeta potential 

as a function of slurry pH values for three different abrasive materials, namely, tantalum 

pentoxide, alumina and slica. The zeta potential value can be substituted into the 

formulation of double layer forces to evaluate the material removed by a single abrasive 

particle by using the indentation model. Castillo-Mejia et al. [67] reported that a wafer 

can plasticize the polishing pad and reduce its elastic modulus. A formulation on the ratio 

of the Young’s modulus of the wet pad to the dry pad is proposed. Also, this Young’s 

modulus is then used in wafer-pad contact model to evaluate the material removal. 

Besides the above models, another slurry chemical and pad interaction model by treating 

the pad as a sort of catalyst has been proposed by Chen et al. [68]. 

 

3.4 Macroscopic Views of CMP Process 

The macroscopic modeling of polishing effects in CMP begins with two key issues: 

what are the process-related dependencies in the rate of removal of exposed surface 

material during polishing, and on what does the wafer-scale uniformity of that polish 

depend? In this section, it will begin with the effects of pressure distribution, velocity 

distribution, and abrasive solid content (or abrasive particle concentration) that impact the 

material removal rate (MRR) and then consider the commonly observed non-uniformity, 

such as within wafer non-uniformity (WIWNU) in polish across the wafer. 
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3.4.1 Definitions of MRR and WIWNU 

In the case of wafer-scale models as tabularized in Table 3.1, MRR and WIWNU 

are two primary CMP output performance variables of interest. The modeling effects 

presented in this thesis pertain to the wafer scale. The mathematical definitions of MRR 

and WIWNU are listed in Equations (3.16a and 3.16b). The schematic of the variations of 

wafer thickness before and after CMP is shown as Figure 3.11. 

 ( )minÅMRR 21

T
hh

Δ
−

=                                      (3.16a) 

%100WIWNU 2 ×= h

h _2 ave

σ
                                        (3.16b) 

( ) 2 ofdeviation  Standard,min  timePolishing
2h hT =Δ σ =  

At the wafer-scale, the major factors influencing the MRR and WIWNU mainly 

include the pressure distribution, velocity distribution, abrasive solid content in the slurry, 

pad surface hardness, and abrasive particle size [69]. Among these, the distributions of 

pressure, velocity, and abrasive solid content are considered to have significant influence 

on MRR and WIWNU. A concise description on the influence of each of these 

parameters on CMP performance is detailed in the following three subsections. 

where, 21  thickness difference of wafer substrate before and after CMP. =Δ=− hhh
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h1 

h2 

Removed Part 
∆h 

Wafer 

h1 = average thickness before CMP 
h2 = average thickness after CMP 

 

3.4.2 Effect of Pressure Distribution 

Preston’s model in Equation (3.1) indicates a pressure dependency. Runnels et al. 

[70] report a model incorporating pressure dependencies to account for wafer scale non-

uniformity. Wafer surface pressure distribution during CMP process depends on the 

applied down pressure, back pressure, and interfacial friction forces between the wafer 

and the polishing pad. Among them, the distribution of down pressure and back pressure 

across the wafer surface is highly dependent on the wafer carrier design (Figure 3.12). 

Significant innovation in carrier design to achieve either uniform or controllable pressure 

Figure 3.11 Schematic of variations of wafer thickness before and after CMP 
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Figure 3.12 Example of Novel Design of Wafer Carrier on CMP Polisher [13] 

distri

ave significant impact on 

the polish performance. Certainly, they will influence t

dynamic balance of all active applied forces, which subsequently impact on the wafer-

scale polish performance.  

The interfacial contact conditions are characterized as direct-contact, semi-contact, 

and hydroplaning modes. The friction coefficient values tend to have different order 

ranges [14] depending on the contact mode as illustrated in Figure 3.13. The edge effects 

in direct-contact m

butions is an important area of development.  

Except for the wafer carrier, the other related issues, such as wafer thickness, wafer 

warp and bow, thickness of slurry film across the wafer surface, uniformity of stress in 

such thin film across the wafer, have to do with the initial wafer-level uniformity. Zhang 

et al. [71] present the initial warpage (or warp and bow) can h

he pressure distributions and 

ode [72] and negative fluid pressure in semi-contact mode [73] cause 
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variations in friction forces across the wafer surface. Also, Wang et al. [72] have 

considered inherent variation due to the Von Mises stress concentrations at the edge of 

the wafer (conceptually, a downward pressure on the wafer causes lateral stress buildup 

near the edge of the wafer). Consequently, the average normal pressure profile is changed. 

In addition, the consideration and modeling of local pressure differences near the 

edge of the wafer has also been reported. These approaches examine discontinuities in the 

pad compression due to the edge of the wafer (either statically or dynamically including 

leading and trailing edge issues) to understand such effects as slow or fast polish in the 

several millimeters long “edge exclusion” at the wafer edge [74]. These explorations 

have contributed to the design of “active retaining ring” heads, where the wafer carrier 

 

Polishing pad

Polishing pad

Polishing pad

Semi-contact Mode
friction coefficient ~ order of 0.01 to 0.1

Contact Mode
friction coefficient ~ order of 0.1

Hydroplaning Mode
friction coefficient ~ order of 0.001 to 0.01

Slurry + Abrasives

Slurry + Abrasives

Slurry + Abrasives

wafer

wafer

wafer

Figure 3.13 Wafer-Pad Contact Modes [14] (drawn by Lih) 
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has a separately pressurized or controlled retaining ring to pre-compress the polish pad 

and enable uniform pressure distribution further out on the edge of the wafer. Moreover, 

the use of suitable back pressure can also help alleviate the pressure distribution across 

wafer surface, but do not completely eliminate the differences. 

 arising from rotary or platen based 

polish

3.4.3 Effect of Velocity Distribution 

As stated in Section 3.3, the Preston’s relationship provides a “pointwise” 

dependency of MRR based on the relative velocity and applied pressure within some 

region of the wafer. A straightforward application of Preston’s model as shown in 

Equation (2.2) is to study the wafer-level non-uniformity due to dependencies in the 

relative velocity (Vr) arising from machine configuration. Indeed, Preston’s original work 

[42] contains an analysis of the relative velocity

ing apparatus. Figure 3.14 shows a typical rotary polishing machine configuration 

Figure 3.14 Schematic of platen and wafer carrier rotational motion [9] (drawn by Lih)

e

ω p

ω c

Platen

R

y

p(r,θ)

φ X
A B

Wafer carrier
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commonly used for CMP.  

In above figure, A is the center of the polish platen and B is the axis of rotation of 

the wafer carrier. The circle of radius r centered at B is a ring of points on the wafer. The 

wafer carrier usually oscillates along AB to ensure even polishing pad degradation and 

improved uniformity. The relative velocity  at point p on the wafer can be determined 

as Equation (3.17). 

)
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If the oscillation velocity (Voscillation) is simply set to be equal to zero, the relative velocity 

at point p can be described as Equation (3.18) 
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Given pV  at any point on the ring with radius r, the effective (time-averaged) relative 

velocity at any point at a distance r from the center B can be determined as Equation 

(3.19).  

( ) θθ
π

πv
effective

2
1

0
dxxrV s 2 cos21)( ∫ ++⋅=                              (3.19) 

 of the wafer carrier and platen are synchronized, 

the re

 

In conclusion, if the rotational speeds

lative speed is constant across the entire wafer surface. On the other hand, when the 

speeds of the platen and wafer carrier are mismatched, the center of the always 

experiences a reduced velocity compared to the outer edges of the wafer, as shown in 

Figure 3.15.  

Figure 3.15 Relative Velocity Dependence on Wafer Carrier and Platen Speeds 
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The platen speed pω  is close to the wafer carrier speed cω , the velocity distribution is 

more

id synchronized polishing. In addition, to accommodate incoming 

profile variations across the wafer surface and to increase the MRR, the speeds of the 

platen and the wafer carrier are varied significantly. In a typical CMP process, the carrier 

is also swept along the surface of the polishing pad to enable effective slurry transport 

underneath the wafer, removal of debris generated during polishing, and to exp

wafer to different areas along the pad radius [76]. 

 

3.4.4 Effect of Abrasive Particle Concentration 

nly holds for a limited range of abrasive 

weight concentrations as shown in Figure 3.16. When there are no or a few abrasives in 

the slurry, the MRR is close to zero and dominate by isotropic wet etching and 

dissolution. Therefore, there is no planarization that can be realized in this range. A small 

increase in abrasive content in this region usually leads to a rapid increas

Conversely, when the abrasive solid content is larger than a certain value, the MRR will 

reach a constant value [78]. This phenomenon of material removal saturation is shown 

schematically in Figure 3.16 where the total contact area between the wafer and the pad 

 uniform [75], resulting in evenly distributed abrasive particles over the contact 

interface between the wafer and polishing pad, and more uniform MRR across the wafer 

surface, i.e., more planar wafer surface or lower WIWNU. In fact, there is, however, 

always a small offset maintained between the rotational speeds of the platen and the 

wafer carrier to avo

ose the 

The MRR in solid contact mode usually increases linearly with the abrasive solid 

content [77]. However, this linear increase o

e in MRR. 
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surface is fully occupied by the active abrasives. A further increase in abrasive solid 

content cannot increase the number of abrasives in the contact area [26, 64]. Figure 3.16 

shows three regions of MRR with increase in abrasive solid content. 

 

In addition to these, other parameters, such as the polishing time, wafer, and 

abrasive properties also have a significant influence on MRR and WIWNU. Not only are 

the relationships nonlinear, but also the interactive effects of a combination of these 

parameters are significant. Apparently, these problems increase a great amount of 

hindrance to construct accurate process models for CMP.  

 

Figure 3.16 Three regimes of MRR variation relative to abrasive solid content [27, 28] 
(drawn by Lih) 
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3.5 Non-Analytical Modeling for CMP Process 

Wang et al. [79-81] proposed a Neural-Taguchi method combining neural networks 

Taguchi array for experimental designs to seek the best parameter set for maximum MRR 

and minimum WIWNU. Five input parameters (i.e., solid content or abrasive 

concentration, down pressure, back pressure, platen speed, and polishing time) and two 

out performances (i.e., MRR and WIWNU) were chosen to explore the unknown 

dynamic relationships between inputs and outputs. In addition, the ANOVA was applied 

to estimate contributing degree of each input parameter to two outputs. Signal/Noise (S/N) 

ratio analysis was used to indicate the quality of output. CMP experiments on the basis of 

L25 Taguchi array was conducted, and 25 input-output pairs of experiment data were 

generated.  

Furthermore, neural network models were constructed using the above 25 data sets 

rid performance index as shown in 

Equa

for modeling MRR and WIWNU. Next, a hyb

tion (3.20) was applied to find out the optimal process input setting.  

)/()/( NSWIWNUbNSMRRaJ ×+×=                             (3.20) 

Non-analytical neural network models were expected to obtain accurate simulation 

results of MRR and WIWNU. Additionally, two process outputs were combined together 

in Equation (3.20) to form a single-objective optimization problem (SOOP). 

 

3.6 Predicaments of Analytical Modeling for CMP Process 

With unceasingly increase of the customers’ demands form the global markets and 

the relentless competitions from the business competitors, the higher product quality and 
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the higher production rate become the most crucial survival requirements to the 

manufacturing industry. In particular, it is more severe in global semiconductor 

manufacturing. Form Chapter II, the CMP process combining with the ULSI has become 

a core technology to the fabrication of current semiconductor wafers. Meanwhile, new 

materials for next-generation deep sub-micron processes, such as copper, low-k 

dielectrics, are rapidly replacing with old materials.  Comparing with so quick evolutions 

in semiconductor industry, the development of analytical models for CMP process is still 

trapped in a number of dilemmas.  

Modeling and simulation are critical to transfer CMP from an engineering ‘art’ to 

an engineering ‘science’. Numerous research efforts in CMP modeling have been made 

in the last decade (also as shown in Figure 3.17) but the available analytical MRR and 

surface non-uniformity models as reviewed in the previous Sections cannot precisely 

provide accurate prediction or estimation during the polishing process. Novel modeling 

ideas and methods are urgently needed. Further, the new modeling tools should be able to 

fully combine with the current advanced monitoring and control systems. Through

conti

highly dynamic complexity of 

MP processes. 

 

 

nuously online learning, new CMP models should be rapidly self-adjusted for 

making the best decisions to increase production rate and improve product quality. 

Obviously, current analytical CMP models cannot achieve above goals. Hence, the 

use of Neural Networks (NN) [79-81], ANFIS [82] and other Evolutionary Algorithms 

(EA) become deserved ways for precisely capturing the 

C
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Process Mo

 

3.7 Our Approaches to CMP Process Modeling 

In this investigation, more accurate process models and optimization of CMP 

process were emphasized. Well-trained neural networks can accur

nonli

ides another 

ption for modeling CMP process. Also, given suitable membership function and fuzzy 

een inputs and outputs. 

More

ately capture the highly 

near dynamic relationships between input and output spaces of unknown systems. 

Several MRR and WIWNU models constructed using feedforward neural networks were 

proposed. ANFIS (Adaptive-based-Network Fuzzy Inference Systems) prov

o

rules, ANFIS can vividly emulate complex behaviors betw

over, real-value Genetic Algorithms (GA) from the Evolutionary Algorithms (EA) 

was applied to entirely search unknown relationships between inputs and outputs. Lastly, 

Figure 3.17 Other Relevant Literature in CMP 
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the concepts from Multi-objective Evolutionary Algorithms (MOEA) combined most 

accurate models of MRR and WIWNU constructed by the above-mentioned methods 

were used to optimizing the CMP process for obtaining optimal input settings to arrive at 

higher MRR and lower WIWNU. 
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CHAPTER IV  

 

NEURAL NETWORKS, ANFIS, AND EVOLUTIONARY 

ALGORITHMS 

4.1 Introduction 

In 1959, the Rockefeller Foundation sponsored a conference at Dartmouth College 

that had as its scope – The potential use of computers and simulation in every aspect of 

learning and any other feature of intelligence. After that conference, the term “artificial 

intelligence” came into common use.  

The term “artificial intelligence” (AI), in its broadest sense, encompasses a number 

of technologies that includes, but is not limited to, expert systems (ES), neural networks

nce systems (FIS), cellular automata, 

chaot

 

(NN), evolutionary algorithms (EA), fuzzy infere

ic systems, and anticipatory systems. Most of these technologies have their origins 

in biological or behavioral phenomena related to humans or animals, and many of these 

technologies are simple analogs of human and animal systems. Hybrid intelligent systems 

generally involve two, three or more of these individual AI technologies that are either 

used in series or integrated in a way to produce advantageous results through synergetic 

interactions. In this thesis the emphasis is placed on using neural networks and fuzzy 

inference systems to build process models.  

In data or information processing, the objective is generally to gain an 

understanding of the phenomena involved and to evaluate relevant parameters 
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quantitatively. This is usually accomplished through “modeling” of the systems, either 

experimentally or analytically (using mathematical and physical principles). As stated in 

Chapter II, all CMP models are developed to date analytical. Practically, most hybrid 

systems relate experimental data to systems or models. Once the model of a system is 

constructed, there are various procedures (e.g., statistical regression, sensitivity analysis) 

that can be carried out to gain a better understanding of the system. Such experimentally 

derived models give insight into the nature of the system behavior that can be used to 

enhance mathematical and physical models. 

There are, however, many situations in which the phenomena involved are very 

complex, such as the CMP process, and often not well understood and for which first 

principle models are not possible. Even more often, physical measurements (e.g., 

endpoint detection in the CMP process) of the pertinent quantities are very difficult and 

expensive. These difficulties lead us to explore the use of neural network and fuzzy 

inference systems as a way of obtaining models based on experimental measurements. 

Multi-objective evolutionary algorithms are used to search optimal process 

parameter sets, and provide useful guidance to redesign the relative experiments for re-

training the models constructed by using neural networks and fuzzy inference systems. 

Neural networks and fuzzy inference systems represent two distinct methodologies 

that deal with uncertainty. Uncertainties that are important include both those in the 

model or description of the systems involved as well as those in the variables. These 

uncertainties usually arise from system complexity (often including nonlinearities). 

Neural networks approach the modeling representation by using precise inputs and 
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outputs which are used to “train” a generic model which has sufficient degrees of 

freedom to formulate a good approximation of the complex relationship between the 

inputs and the outputs.  

In les are 

encoded in “fuzzy” representation ationships take the form of well-

rules. Zadeh [83] observed that the uncritical pursuit of precision may 

not o

4.2.1

 back-propagation learning algorithm for 

multi

fuzzy systems, the reverse situation prevails. The input and output variab

s, while their interrel

defined IF-THEN 

nly be unnecessary but actually a source of error that led him to the notion of a fuzzy 

set. 

 

4.2 Fundamentals of Neural Networks  

 Introduction 
Research in neural networks has experienced three consecutive cycles of 

enthusiasm and skepticism. The first peak, dating back to the 1940’s is due to 

McCullough and Pitt’s pioneering work [84]. The second period of intense activity 

occurred in the 1960’s which featured Rosenblatt’s perceptron convergence theorem [85]. 

Because Minsky and Papert [86] pointed out that perceptrons were limited to learning in 

linearly separable classes, the interests in neural networks have been diminished for 

almost 20 years. Since the early 1980’s, neural networks have received considerable 

renewed interest. The major development behind this resurgence include Hopfield’s 

energy approach [87] in 1982, and the

layer perceptrons (multilayer feed-forward networks) which was first proposed by 

Werbos [88], reinvented several times, and popularized by Rumelhart et al. [89]. He 
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discovered a method of enabling a network to learn to discriminate between classes of 

patterns that are not linearly separable. They called the method “backward propagation of 

error” (currently, called back-propagation learning algorithm), which is based on the 

gradient descent method. Neural networks have the learning capability of adapting its 

parameters based on the desired input-output pairs. 

 

4.2.2 Biological and Artificial Neurons 
A biological neuron (Figure 4.1) is the fundamental cellular unit of the brain’s 

nervo

stron

us system. It is a simple processing element that receives and combines signals 

from other neurons through input paths called dendrites. If the combined input signal is 

Dendrites
Synapse

Axon

Cell body

Nucleus

Figure 4.1 Sketch of a Biological Neuron [4] 

g enough, the neuron “fires”, producing an output signal along the axon that 

connects to the dendrites of many other neurons. Biologically, each signal coming into a 

neuron along a dendrite passes through a synapse or synaptic junction. This junction is an 

infinitesimal gap in the dendrite that is filled with neurotransmitter fluid that either 

accelerates or retards the flow of electrical charges. The fundamental actions of the 
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neuron are chemical in nature, and this neurotransmitter fluid produces electrical signals 

that go to the nucleus or soma of the neuron. The adjustment of the impedance or 

conductance of the synaptic gap is a critically important process. Indeed, these 

adjus

cial neuron. The input signals are represented by . These signals are 

continuous variables, not the discrete electrical pulses that occur in the brain. Each of 

tments lead to memory and learning. As the synaptic strengths of the neurons are 

adjusted, the brain “learns” and stores information. 

An artificial neuron is a model whose components have direct analogs to the 

components of an actual neuron. Figure 4.2 shows the schematic representation of an 

artifi nxxxx ,,,, 210 K

these inputs is modified by a weight (also called the synaptic weight) whose function is 

analogous to that of the synaptic junction in a biological neuron. These weights can be 

Figure 4.2 Schematic Representation of an Artificial Neuron [10] 
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either positive or negative. Each processing element consists of two parts. The first part 

simply aggregates (sums) the weighted inputs resulting in a quantity I; the second part is 

effectively a nonlinear filter, usually called the activation function (or transfer function), 

through which the combined signal flows. 

An obvious generalization in an artificial neuron is to use activation function other 

than the threshold function, e.g., a piecewise linear, sigmoid, or Gaussian, shown in 

r example, it is by far the most frequently used 

funct

Figure 4.3. Taking the sigmoid function fo

ion in neural networks. Also, this function is strictly an increasing function that 

exhibits smoothness and has the desired asymptotic properties. The standard sigmoid 

function is the logistic function, defined by  

( )( ) 1exp1)( −⋅−+= xxg β                                             (4.1) 

where β  is the slope parameter. 

 
Figure 4.3 Examples of different types of Activation Functions [10] 
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4.2.3 Architectures of Artificial Neural Networks 

An assembly of artificial neurons is called an artificial neural network (in short, 

called neural network in this research) which is thought by many to loosely model the 

biological nervous system. Like our brains, neural networks have the following attributes 

[90]:  

 

 Can deal with information that is fuzzy, probabilistic, noisy or inconsistent. 

 Store knowledge or information in its connections.  

For these reasons the field of neural networks has also been given such names as 

Connectionism, Parallel Distributed Processing (PDP), and Computational Neurobiology. 

Although inspired by the neuroscience, neural network are in reality an alternative 

computational paradigm that operates according to some relatively simple mathematical 

constructs. 

Neural networks can be viewed as weighted directed graphs in which nodes are 

artificial neurons and directed edges (with weights) are connections from the outputs of 

some neurons to the inputs of the other neurons. On the basis of connection pattern (or 

architecture), neural networks can be grouped into two major categories [10] as shown in 

Made up of highly interconnected nodes (also neurons or units) that are capable of 

high speed parallel processing. 

 Robust and fault tolerant. 

 Flexible and can adjust to new environments through learning. 

Figure 4.4: (1) feedforward networks in which no loop exists in the network architecture, 

and (2) feedback (or recurrent) networks in which loops exist because of feedback 
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connections. The most common family of feedforward networks is a layered network in 

which neurons are organized into layers with connections strictly in one direction from 

one layer to another. Figure 4.4 also shows typical networks of each category.  

Different connectivities yield different network behaviors. Generally speaking, 

feedf

neuron are then modified, which leads the 

network to enter a new state.  

 

A neural network can be defined as – a data processing system consisting of a large 

number of simple, highly interconnected processing elements (i.e., artificial neurons) in 

orward networks are static networks, i.e., given an input, they produce only one set 

of output values, not a sequence of values. Feedforward networks are memoryless in the 

sense that the response of a feedforward network to an input is independent of the 

previous state of the network. Feedback or recurrent networks are dynamic systems. 

Upon presenting a new input pattern, the outputs of the neurons are computed. Because 

of the feedback paths, the inputs to each 

Figure 4.4 Taxonomy of network architectures [17] 
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an architecture inspired by the structure of the cerebral cortex of the brain. These 

proce

ken by this research effort are restricted to neural networks that are used for 

feedf tion trained artificial neural network. The essential 

re his paradigm are summarized in Subsection 4.2.5 and 

ful at classification of phenomena into pre-selected categories used in the 

traini

ssing elements are usually organized into a sequence of layers or slabs with full or 

random connections between the layers as shown in Figure 4.4.  

The neural network models for modeling highly complicated CMP processes 

underta

prediction purpose only. The neural network paradigm chosen for this research is the 

orward multilayer backpropaga

ing dients to understanding t

Section 5.2. 

 

4.2.4 Applications of Neural Networks [4, 10] 

Neural networks, inspired by biological nervous systems, are composed of many 

simple elements, with adjustable weights, connecting and operating in parallel. By 

adjusting the values of weights and connections between elements, neural networks can 

represent or model complex nonlinear relationships or specific functions, and they are 

very power

ng process. In brief, there exist many important applications of neural network to 

the following classes of challenging problems of interest to industry and academia.  

 Pattern classification: This task is to assign an input pattern (e.g. speech waveform 

or handwritten symbol) represented by a feature vector to one of pre-specified classes 

(Figure 4.5). Well-known applications of pattern classification are character 
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recognition, speech recognition, ECG, EEG waveform classification, blood cell 

classification, and printed circuit board inspection. 

 

 Clustering / categorization:

Figure 4.5 Pattern Classification [17] 

 Also known as unsupervised pattern classification. 

There are no training data with known class labels. A clustering algorithm explores 

the similarity between the patterns and places similar patterns in a cluster (Figure 4.6). 

Well-known clustering applications include data mining, data compression, and 

exploratory data analysis. 

Figure 4.6 Clustering and Categorization [17] 
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 Function approximation: Given a set of training patterns (input-output pairs), this 

task is to find an estimate outputs after training this neural network (Figure 4.7). 

Various engineering and scientific modeling problems require function approximation.  

 

 Prediction / forecasting: Given a set of samples in a time sequence, this task is to 

predict the sample at the future time interval (Figure 4.8). Prediction/forecasting has a 

significant impact on decision-m

market prediction and weather forecasting are typical application of prediction 

 

Figure 4.7 Function Approximation [17] 

aking in business, science, and engineering. Stock 

/forecasting techniques. 

 

Figure 4.8 Prediction and forecasting [17] 
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 is maximized or minimized. A 

 

 

 

Optimization: The goal of an optimization algorithm is to find a solution satisfying a 

set of constraints such that an objective function

classical optimization problem is the Traveling Salesman Problem (TSP) as shown in 

Figure 4.9. 

 

Content-addressable memory: The content in the memory can be recalled by a 

partial input or distorted content (Figure 4.10) 

Figure 4.9 Optimization [17] 

Airplane partially 
occluded by clouds

Retrieved airplane

Associate

Memory

Figure 4.10 Content-addressable Memory [17] 
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 Control: in model-reference adaptive control, the goal is to generate a control inputs 

such that the system follows a desired trajectory determined by the reference model. 

An example of model reference adaptive control is the engine idling speed control 

(Figure 4.11). 

Even a large number of approaches have been proposed for solving the problems 

described above, the field of neural networks has provided alternative approaches for 

solving these problems. 

As stated above, neural networks have been successfully applied to a variety of 

function approximation or classification problems (quality inspection, weather 

Load torque
Idle

speed
EngineThrottle

angle

Controller

Figure 4.11 Control System [17] 

 

forecasting, speech/image understanding, automatic control and robot systems, character 

recognition, sonar classification, etc.). Problems that are characteristically sparse and 

noisy with highly complex nonlinear relationship are good candidates for neural network 

applications.  

Multilayer feedforward networks have been shown to belong to the class of 

nonparametric estimators of unknown mappings; that is, multilayer feedforward networks 
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provide a particular form of function f ; where f  describes the relationship between x  

 and y ,  yxf →: , so that y  may be determined for any given value of x . Because they 

nonparametric, they do not require distributional or model assumptions. are 

 

4.2.5 Multilayer Feedforward Neural Networks 

Since Rosebblatt [85] first introduced single layer perceptrons, many neural 

network models have been proposed and investigated. These models can be classified 

according to various criteria, such as supervised or unsupervised learning algorithms, 

binary or continuous node values, feedforward or recurrent network architectures, 

adjustable or fixed parameters, and uniform or hybrid node functions. 

A single neuron (or node), or a single layer of neurons can only solve problems that 

have linear solutions. But, if the problems are limited and more complex, they will 

require nonlinear partitioning. As stated in Section 4.2.2, a typical neural network 

consists of three or more layers of neurons. The first or input layer receives external 

signals or information from the environment. The output layer transmits to environment, 

the network’s response to the input. Between the input and output layers are one or more 

hidden layers.  

In this research, the focus is on modeling problems associated with desired input-

output data sets; so the relevant neural networks should have adjustable parameters that 

are updated by a supervised learning rule. Since the primary goal of these networks is to 

achieve a desired input-output mapping, they are often called mapping networks. 
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Weights (or adjustable parameters) connect neurons to neurons. For this class of 

orks, nodes are connected between layers and not within layers. Learning or training 

rs through iterative adjustments of the weights, where the network evolves from an 

lly random stat

netw

occu

initia e to equilibrium. Supervised learning requires a teacher, i.e., a known 

input-output pair. During training, the network’s output is compared to the target or 

desired output. The weights are adjusted to reduce the error or difference between the 

network’s output and target. The goal of all learning procedures is to ultimately minimize 

the error. Once trained, the input to the network is fed-forward through its neurons and 

weights to produce an output. Cybenko [91], Funahashi [92] and Hornik et al. [93] have 

shown that the multilayer feedforward sigmoidal logistic architecture can approximate 

any continuous function, given a sufficient number of hidden neurons.   

out feedback connections between layers. For simplicity, this 

netwo

Figure 4.12 shows a typical four-layer feedforward networks whose layers are 

successively connected in a feedforward fashion without connections between neurons in 

the same layer and with

rk will be referred to as a [5-6-7-2] structure according to the number of neurons in 

each layer, i.e., five neurons in the first input layer, six neurons in the first hidden layer, 

seven neurons in the second hidden layer, and two neurons in the last output layer. 
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The most popular class of multilayer feedforward networks is multilayer 

perceptrons in which each computational unit employs either the threshold function or 

the si

and sufficiently trained. A learning process in the context of neural 

netwo

ting the 

weights in the network. Instead of having to specify a set of rules such as fuzzy systems, 

gmoid function. Multilayer perceptrons are capable of forming arbitrarily complex 

decision boundaries and can represent any Boolean function [86]. 

 

4.2.6 Learning Algorithms 

Fundamental characters and important applications of neural networks are 

mentioned in prevision sections. They will be, however, useless before neural networks 

are effectively 

rks can be viewed as the problem of updating network architecture and connection 

weights so that a network can efficiently perform a specific task. Most of the time, the 

network must learn the connection weights from the available training patterns (or data 

sets). Improvement in performance is achieved over time through iteratively upda

Figure 4.12 Multilayer feedforward network of [5-6-7-2] structure [10] 
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In contrast, unsupervised learning, as illustrated in Figure 4.14, does not require any 

correct answer associated with each input pattern in the training data set. It explores the 

underlying structure in the data, or correlations between patterns in the data, and 

organizes patterns into categories from these correlations. Hybrid learning combines 

supervised learning and unsupervised learning. Typically, a portion of weights in the 

l networks appear to learn from the given collection of representative examples. 

This is one of the major advantages of neural networks over traditional expert systems. 

In order to understand or design a learning process, one must first have a model of 

the environment in which a neural network operates, i.e., what information is available to 

the neural network. Second, one must understand how weights in the network are updated, 

i.e., what are the learning rules which govern the updating process. There are three main 

learning paradigms, namely, (1) supervised, (2) unsupervised, and (3) hybrid leaning. 

In supervised learning as depicted in Figure 4.13, the network is provided with a 

correct answer to every input pattern. Weights are determined so that the network can 

produce answers as close as possible to the known correct answers.  

Figure 4.13 Supervised Learning Network [4] 

Neural
Networknput Output

Target

I

Error
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network are determined using supervised learning, while the others are obtained from 

unsupervised learning.  

Furthermore, learning theory must address three fundamental and practical issues 

associated with learning from samples [10]: (1) capacity, (2) sample complexity, and (3)

time 

 the network performs 

well on the training data set, but poorly on independent test patterns drawn from the same 

atterns as shown in Figure 4.7. Computation complexity 

refers

Neural
NetworkInput Output

Organization

Figure 4.14 Unsupervised learning network [4] 

 

complexity. Capacity concerns how many patterns can be stored, and what functions 

and decision boundaries can be formed by a network. Sample complexity determined the 

number of training patterns needed to train the network in order to guarantee a valid 

generalization. Too few patterns may cause “over-fitting”, wherein

distribution as the training p

 to the time requirement for learning algorithm to estimate a solution from the 

training patterns. Currently, many existing learning algorithms have high computational 

complexity. Designing efficient algorithms for neural network learning is still a very 

active research topic. Basically, there are four fundamental types of learning rules: (1) 

error-correction, (2) Boltzmann, (3) Hebbian, and (4) competitive learning. The well-

known backpropagation learning algorithm used in the backpropagation neural networks 

(or BPNN described in Section 4.2.8), which is the main neural network in this research, 
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is based on the error-correction principle. The learning rule of error-correction is 

mentioned in detail in next section. 

 

4.2.7 Error-correction Rules 

In the supervised learning paradigm, the network is given a desired output for each 

input pattern. During the learning process, the actual output, y , generated by the network 

may not equal to the desired output, d . The basic principle of error-correction learning 

rules is to use the error signal ( )yd −  to modify the correction weights such that this 

error will be gradually reduced. The well-known perceptron learning rule is based on this 

error-correction principle. A perceptron consists of a single neuron with adjustable 

weights, , anjw j  , ,2,1 , K= nd threshold value μ  in threshold activation function, as 

shown in Figure 4.15. Given an input column vector [ ]   x nxx, 21x ,,K= , the net input to 

the neuron (before applying the threshold function) is given by 

                                                (4.2) 

The output 

μ−⋅= ∑
=

j

n

j
j xwv

1

y  of the perceptron is 1+  if , and  otherwise. In a two-class 

classification problem, the perceptron assigns an input pattern to one class if , and to

=−⋅∑

0>v 0

1=y  

the other class if 0=y . The linear equation given by 

1
0

=

μxw                                                 (4.3) j

n

j
j

defines the decision boundary (a hyperplane in the n-dimensional input space) which 

divides the space into two halves. 
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x1

x2

xj-1

 

Rosenblatt [85] developed a learning procedure to determine the weights and 

threshold in a perceptron, given a set of training  patterns. The perceptron learning 

procedure can be described as follows. 

1. Initialize the weights and threshold to small random numbers. 

2. Present a pattern vector ] , ,,[x 21 jxxx K= , and evaluate the output of the neuron. 

3. Update the weights according to ( ) ( ) ( ) jiijij xydnwnw ⋅−⋅+=+ η1 , where d  is 

the desired output, n  is iteration number, and ( )0100 .η. << η  is the gain (step 

size). 

Rosenblatt proved that if the training patterns are drawn from two linearly-separable 

classes, then the perceptron learning procedure will coverage after a finite number of 

iterations (also called perceptron convergence theorem). Other activation functions can 

also be used, which lead to different learning characteristics. However, a single layer 

Figure 4.15  Perceptron Neuron of Threshold Activation Function [10] 
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perceptron can only separate linearly separable patterns, as long as a monotonic 

activation function is used.  

 

ing Algorithm 

, classi

 of a number of 

each of which performs a summing and nonlinear mapping function (activation or 

transfer function) in a parallel manner.  

The most commonly used activation functions are of sigmoidal and hyperbolic 

tangent type that approximates the threshold funct

with respect to input sig

These functions are describes as: 

0   0

0   1

x

x
                                  (4.4) 

4.2.8 Backpropagation Learn

The development of the backpropagation learning algorithm (or backpropagation 

algorithm), based on the above-mentioned error-correction rules, for determining 

weights in a multilayer perceptron has made these networks more successful in the 

applications of process modeling fication, etc.  

In this research, this multilayer feedforward network, by using the backpropagation 

learning algorithm, is simply called “backpropagation neural network (BPNN)” which is 

composed interconnected computing units (i.e. neurons, or simply nodes), 

ion (also known as signum, step 

function or hard-limiter) and yet provides differentiability nals. 

=)sgn(     :function Threshold x
⎪⎩

⎪
⎨
⎧

<

≥

)exp(1
1)sig(     :function  Sigmoid

x
x

−+
=                                  (4.5) 

)exp()exp(
)exp()exp()     tanh(:function  tangent Hyperbolic

xx
xxx

−+
−−

=                      (4.6) 
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The backpropagation algorithm is a procedure for adjusting the weights of any 

feedforawrd network such that the network learns the functional mapping of a set of 

inputs to the desired outputs or targets. In other words, BPNN is a supervised neural 

network. This learning algorithm was first derived by Werbos [88] as “dynamic 

feedback” in his Harvard dissertation in statistics. It was not popularized until it was 

published by Rumelhart et al. [89].  

This backrpopagation approach to learning is a myopic optimization procedure 

based on the gradient (or steepest) descent method. The objective is to find a set of 

weights that will minimize the squared error over all training patterns (i.e., samples of 

input-output pairs). There are two phases included in this algorithm: a forward pass

follow

culated error signals propagate backward through 

the n n of the output is 

carried out, layer by layer, in the forward direction

the next layer. In the reverse pass, the weights of the output layer are adjus in

the target value of each output node is available to guide the adjustment of the associated 

weights. Next, the weights of middle layers (or hidden layers) are sequentially adjusted. 

Accordingly, the backpropagation learning algorithm [89], by using a gradient 

descent method is to minimize the square-error cost function in Equations (4.9) and 

(4.10), and is given by the following steps and flow chart as illustrated in Figure 4.16 [4]: 

Step 1: Initialize the weights to small random values. 

 

ed by a reverse pass depicted in detail in Sections 4.2.8.1 and 4.2.8.2.  

In the forward pass, the input signals propagate from the network input layer to the 

output layer. In the reverse pass, the cal

etwork, where they are used to adjust the weights. The calculatio

. The output of one layer is the input to 

ted first s ce 
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Step 2 : Input a training pair from the training sets. 

Step 3 : Calculate the network output. 

tep 4 : Calculate the error between the network output and the target value. 

ht and each bias. 

ut-output vectors in the training set 

 

S

Step 5 : Calculate the change of each weig

Step 6 : Adjust the weights and biases of the network layer in a way that minimizes 

this error, calculated in Step 5. 

Step 7 : Input new training pair from the training sets 

Step 8 : Repeat steps 2 ~ 7 for each pair of inp

until the error for the entire system is acceptably low. 

In step 1, initializing the weights to small random values is to ensure that the network is 

not saturated by large values of weights. If all weights start at equal values, and the 

desired performance requires unequal weights, the network would not train at all. 

Calculate errors 
between network 
output and target

Calculate

Figure 4.16 Flow chart of Backpropagation Learning Algorithm [4] 

Initialize 
weights
& biases

Input
a training 

data

Calculate
outputs of hidden

& output layers 

ijij bw ΔΔ  and 

Adjust weights and 
biases of each layer

More training 
data

Yes

Training 
stop

No

Yes

No

Start

Stop

 82



 

4.2.8

⎜
⎝

+⋅== ∑
=j

rkjjkkkkk vwFnetFy
1

 θ                                    (4.7) 

wher

 = the weight of the j-th input to the k-th node in the layer r 

.1 Calculation of Weights for the Output-layer Nodes [10] 

Before discussing further, recalling the net input of a node which is defined as the 

weighted sum of the incoming signals plus a threshold or bias. For instance, the output of 

node k in Figures 4.17 and Figure 4.18 is given by 

( ) ⎞
⎜
⎛ Nq

⎟⎟
⎠

e  ( )•kF  is the activation function (see Equations (4.4) to (4.6)) 

knet  = the weighted sum of the incoming signals 

v  = the j-th input to the k-th node in the layer r 

kj

j

w

rkθ  = the bias (or threshold value) of the k-th node in the layer r 

ky  = the output to the k-th node in the layer r 

 
Figure 4.17 Forward and Backward Pass of Multi-layered Neural Network [10] 
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The n d Nr, respectively. The [ui] and 

[vj] v en layer p and q. The [yk] is the output vector 

of the

 

Taking input-output ( ) mapping for example and denoting  as the 

weight on the connection between the j-th node in the layer  to i-th node in layer , let 

umbers of nodes in layers p, q, and r are Np, Nq, an

ectors are the output vectors of the hidd

 output layer r. The [θqj] and  [θrk] are the bias vectors of the layers q and k.  

Figure 4.18 Multiple-input of Node k in Figure 4.16 [10] 

NrNp RR → jiw

q p

( ) ( ) ( ){ })()()2(2)1()1( , , ,,,, MM)( txtxtx K  

where MmRx Npm L1  ,)( =∈  

and MmRt Nrm L1 ,)( =∈  

After n learning circulations, the er

the k-th node in the output layer r

be a set of M training patterns (input-output pairs), 

is the input vector in the Np-dimensional pattern space, 

is the output vector in the Nr-dimensional objective space. 

ror function and instantaneous square error value of 

 can be defined as below: 

, and  ( )nek
2

2
1( ) ( ) ( )nyntne kkk −=                                  (4.8) 
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 r  The summation of instantaneous square error values of all nodes in the output layer

can be described as: 

( ) ( ) ( ) ( ){ }∑∑
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−==
Nr

k

Nr

k
nyntnenE

1

2

1

2

2
1

2
1                               (4.9) kkk

where Nr is the number of nodes in the output layer .  

Further, the average error function of a set of M training patter

r

ns is defined as follow: 

( ) ( )∑=
M

ave nEnE 1                        
=nM 1

                       (4.10) 

From Equations (4.7), (4.9) and (4.10), both ( )nE  and  are functions of 

weights,  and can be represented as the square-error cost functions of network 

learni  these two error 

functions  one is called as 

batch lear  networks is to minimize the 

( )nEave

ijw

ng from the training data sets. The only difference between

is that first one is called as pattern learning, and the second

( )nE  ning. Again, the major objective of training

or . 

For simplicity, is used as the cost function for the following derivation. The 

input of node k in the layer r is  

                                       (4.11) 

The output of this node is 

                               (4.7) 

If  is the si moid function as depicted in Equation (4.5), the can be expressed as: 

( )nEave

( )nE  
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j
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From Equation (4.9), the square error cost function (or error function) after n 

learning circulations can be described as the function of weights and biases:  
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Usually, the biases, ( )[ ]nrkθ , are constants. 

According to the least-mean-square error algorithm and gradient descent method, 

the change in weight, , is proportional to the negative of the rate of change of the 

square error with respec eight, 

( )nwkjΔ

t to that w ( )
( )nw
nE

kj∂
∂

− . Using the change rule, ( )
( )nw
nE

kj∂
∂  can 

be derived as Equation (4.14) 
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Applying Equation (4.1), we get  
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Now, we can define the gradient function, ( )nkδ , as 
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Then, the change of weights after n learning circul can be ations written as 

( ) ( ) ( ) ( ){ } ( )( ) (nvnnetFnyntnvnnw jkkkkqjkqkj ⋅⋅−⋅=⋅⋅=Δ ')(ηδη )          (4.17) 

where, qη  is the learning rate which can determine the modification amplitude for the 

gradient descent method. Usually, qη  is set as a small positive value between 0 and 1. 

The adjusted weights can be obtained by the Equation (4.18). 

( ) ( ) ( ) ( ) ( ) (nvnn )jkqkjkjkjkj ⋅wnwnwnw ⋅+=Δ+=+ η1 δ                 (4. 18) 

According to Equation (4.17), it is required to calculate the ( )nkδ  first for obtaining 

. 

he o layer r

network, including the nonlinear functions, layer by layer. 

 

4.2.8.2 Calculation of Weights for the Hidden-layer Nodes [4] 

ent, according to the least-mean-square error 

algorithm and gradient descent method, the change in a weight in the hidden layer, 

Δ , is proportional to the negative of the rate of change of the square error with 

( )nwkjΔ

Obviously, in the reverse pass, the weights of t utput  are adjusted first 

since the target value of each output node is available to guide the adjustment of the 

associated weights. Next, the weights of the hidden layers p and q will be adjusted, 

respectively. The problem is that the hidden-layer nodes have no target values. Hence, the 

training is more complicated because the error must be back propagated through the 

Similar to the previous statem

( )nw ji
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res to that weight, pect ( )
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Equation (4.14) 
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Similarly from Equation (4.11), we get 
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Now, we can define the gradient function, ( )njδ , as 
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From
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 Equation (4.7), we can derive the following expression. 
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From the equation (4.11), we can derive Equation (4.23). 
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Combining Equations (4.16), (4.22), and (4.23), we can arrive at Equation (4.24). 
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Therefore, the change of weights in the hidden layer can be written as 

nEnE )( ⎤⎡ ∂∂

 (4.24) 
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es through the 

network, layer by layer to the input, adjusting the weights as it goes. When

 

4.2.9 Limitations of Neural Networks 

Unlike fuzzy inference systems (see Section 4.3), it is difficult to give physical 

outputs is sometimes limited because the variables are effectively treated as analog 

varia

not exist. Identifying the best 

ombination of parameters for a particular application is usually done empirically and is 

network

If there are more than one hidden layers of nodes, this process mov

 finished, a 

new training input is applied and the process starts all over again till an acceptable error 

is reached. At that point, the network is trained. 

meaning to each connection weight in the neural networks. Also, the precision of the 

bles (even when implemented on a digital computer), and “minimization of least 

squares errors” does not mean “zero error”.  

Furthermore, the performance of a neural network is controlled by a number of 

design parameters, such as the network topology, type of transfer function, learning 

coefficients, moment parameter, and so on. In practice, a fixed combination of these 

parameters which can be applied to every problem does 

c

an ongoing area of neural network research activities. 

Choosing the network size is a critical step in the network model building. A 

network with too few nodes may not be capable of learning the training data, while a 

 with too many nodes will memorize the training examples and generalize poorly 
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(i.e., overfitting) [90]. S the optimal network size and architecture (i.e., the 

uncertainties and

electing 

number of hidden layers and nodes, transfer functions, etc.), which will capture the 

 structures of the data, is an initial obstacle needed to be overcome.  

Besides, “the Achilles heel” of neural networks is the ne

are representative and cover the entire range over which different variables are expected 

to change. If the number of free parameters, or weights, in a network is equal to or exceed 

the number of training examples, or exemplars, that are available to be used in the 

training phase to determine the appropriate weight values. This is analogous to the 

problem of an underdetermined system, where the number of unknown variables exceed 

the numbers of equations and cannot be determined or one or more of these variab

have multiple, ambiguous values that may not satisfy an additional equation that is 

subsequently introduced. In a neural network, this situation results in sparse training of 

the network weights. Such a sparsely trained network may perform adequately in training, 

but may fail when subsequently presented with new inputs that result in mappings to 

high-dimensional areas of the weight space that were determined by only a few training 

exemplars.  

meaningful results. In order to avoid this problem, a common rule-of-thumb among 

neural network designers is to assume the ratio of training exemplars to network weights 

a minimum of 10:1. 

 

ed for substantial data that 

les will 

The resulting output of the network from these sparse mappings is unlikely to yield 
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4.3 Fundamentals of Fuzzy Inference Systems 

4.3.1 Introduction 

troduced in order to obtain a reasonable, 

yet trackable model. 

on era, human knowledge becomes increasingly 

ry as an independent branch in engineering 

fields

system designs. To achieve this 

comb

In the literature, there are two kinds of justification for fuzzy inference systems (or 

fuzzy system for short) theory [7]: 

 The real world is too complicated to obtain the precise descriptions; therefore 

approximation (or fuzziness) must be in

 Living in the current informati

important. There needs a theory to formulate human knowledge in a systematic 

manner and put it into engineering system, together with other information such 

as mathematical models and sensory measurements. 

The above two justifications characterizes the unique features of fuzzy system theory and 

justifies the existence of fuzzy systems theo

. 

For many practical systems, the important information comes from two major 

sources: the first source is human experts who describe their knowledge about the system 

in natural languages. The second source is sensory measurements and mathematical 

models that are derived according to the physical laws. An important task, therefore, is to 

combine these two types of information into the 

ination, a key problem is how to formulate human knowledge into a similar 

framework used to formulate sensory measurements and mathematical models. 

Essentially, fuzzy systems can effectively perform this transformation. 
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Fuzzy systems based on fuzzy numbers, fuzzy sets and fuzzy IF-THEN rules, have 

emerged as one of the most active and fruitful areas for research, because of the 

capability of capturing the approximate qualitative aspects of human knowledge and 

reasoning. Moreover, fuzzy systems are also called knowledge-based or rule-based 

systems. A fuzzy IF-THEN rule is an IF-THEN statement in which some words are 

characterized by continuous membership functions as the example given below – human 

drivers usually use the following type of rule to drive a car in normal situations: 

IF the speed of a car is high, THEN apply less force to the accelerator        (4.26) 

where the words  “high” and “less” are characterized by the two membership functions 

shown in Figure 4.26. Of course, more rules will be needed for more complicated and 

real situations. A fuzzy system is constructed from a collection of all fuzzy IF-THEN 

rules.  

In Figure 4.19, im  and in  (i =1, 2, 3) are membership values; is  and if  (i =1, 2, 3) 

are car speeds and forces to the accelerator. Different rules may have different 

membership functions, which precisely translates the fuzzy linguistic descriptions to non-

fuzzy membership values.  
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s can address the imprecision of the input and output 

ng them with the aforementioned fuzzy numbers and fuzzy 

Figure 4.19 Membership Functions of Fuzzy IF-THEN Rules 

Besides, fuzzy system

variables directly by defini

rsimony and the accuracy and efficiency of a 

description. This m

e. Obviously, 

precision descriptions cannot truly express the emergent situation as shown in Figure 

sets that can be expressed in linguistic terms (e.g. cold, warm, and hot). They also allow 

far greater flexibility in formulating system descriptions at the appropriate level of detail. 

Hence, fuzziness has a lot to do with the pa

eans that complex process behavior can be described in general terms 

without precisely defining the complex (usually nonlinear) phenomena involved. 

Parapharsing the law of Occam’s Razor, the philosophical principle holding that more 

parsimonious description are more representative of nature. We may say that fuzzy 

descriptions are more parsimonious and hence easier to formulate and modify, more 

tractable, and perhaps more tolerant of change and even failure.  

Figure 4.20 shows an example of trade-off between precision and significance 

which are something that humans have been managing for a very long tim
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4.20.

“So far the laws of mathematics refer to reality, they are not certain. And so far as 

they are certain, they do not refer to reality” – Albert Einstein. 

 

4.3.2 Fuzzy Sets 

A classical set is a set with a crisp boundary. For example, a classical set N of real 

numbers greater than 100 can be expressed as  

 On the contrary, parsimonious linguistic descriptions can fully and accurately 

deliver the emergency and significance.  

Figure 4.20 Precision and Significance in the Real World [2] 

 

{ } RxxxN ∈>= ,100|                                                (4.27) 

where there is a clear, unambiguous boundary 100 such that if x is greater than this 

number, then x belongs to the set N; otherwise x does not belong to this set. Although 
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classical sets (or crisp sets) are suitable for various applications and have proven to be an 

important tool for mathematics and computer science, as mentioned in Subsection 4.3.1, 

they can not fully or accurately reflect the nature of human concepts and thoughts, which 

tend to be abstract and imprecise. 

In contrast to a classical set, a fuzzy set, as the name implies, is a set without a crisp 

boundary. That is, the transition from “belong to a set” to “not belong to a set” is gradual, 

and this smooth transition is characterized by membership functions that give fuzzy sets 

flexibility in modeling the commonly used linguistic expressions, such as “the water is 

hot” or “the temperature is high.” Zadeh [83] pointed out such imprecisely defined sets or 

classes play an important role in human thinking, particularly in the domains of pattern 

recognition, communication of information, and abstraction. 

If X is a collection of objects denoted generically by x, then a fuzzy set A in X is 

defined as a set of ordered pairs: 

( )( ){ }XxxxA A ∈= |,μ                                         (4.28) 

( )xAμ  

a

where is called the membership function  for the fuzzy set A. This membership 

function m ps each element of X to a membership grade (or membership value) between 

0 and 1. If the value of the membership function ( )xAμ  is restricted to either 0 or 1, then 

A is reduced to a classical set and ( )xAμ  is the characteristic function of A. Obviously, 

the definition of a fuzzy set is a simple extension of the definition of a classical set in 

which

discrete (ordered or non-ordered) objects or continuous space. 

 the characteristic function is permitted to have any value between 0 and 1. Usually, 

X is referred to as the universe of discourse (or simply the universe), and it may consist of 
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4.3.3 Fuzzy Inference Systems 

There are three types of fuzzy inference systems that are commonly used in practice. 

They are (1) pure fuzzy systems, (2) Takagi-Sugeno-Kang (TSK) fuzzy systems [94, 95], 

and (3) fuzzy systems with fuzzifier and defuzzifizer.  

The basic configuration of a pure fuzzy system is shown in Figure 4.21. The fuzzy 

rule-base represents the collection of fuzzy IF-THEN rules. The fuzzy inference engine 

(or decision-making unit) combines these fuzzy IF-THEN rules into a mapping from 

fuzzy sets in the input space U to fuzzy sets in the output space V. The main problem of 

this fuzzy system is that its inputs and outputs are fuzzy sets (i.e., words in natural 

languages), whereas in engineering systems the inputs and outputs are real-value 

variables. 

 

whose inputs and outputs are real-valued 

variables. The problems of previous pure fuzzy system

ure 4.21 Basic Configuration of pure fuzzy systems [7] 

Knowledge Base

Fuzzy Inference
Engine

fuzzy sets
in U

fuzzy sets
in V

Fig

Takagi and Sugeno [95] and Sugeno and Kang [94] proposed another fuzzy system, 

namely, Takagi-Sugeno-Kang fuzzy system, 

 can be solved by considering the 
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TSK systems use rules in the following form, instead of considering the fuzzy IF-THEN 

rules in the form of Equation (4.26). 

IF the speed x  of a car is high, THEN the force to the accelerator is xcy ⋅=     (4.29) 

where the word “high” has the same meaning as in Equation (4.26), and c is a constant. 

Comparing Equation (4.26) with Equation (4.29), the THEN part of the rule changes 

from a description using words in natural languages to a simple mathematical formula. 

This change makes it easier to combine the rules. In fact, the TSK fuzzy system, as 

shown in Figure 4.22, is a weighted average of the values in the THEN parts of the rules. 

However, there exist two main problems in TSK fuzzy system: (1) because of the 

mathematical expression in the THEN part, there may not provide a natural framework to 

represent human knowledge, and (2) there is not much freedom left to apply different 

principles in fuzzy logic, so that the versatility of fuzzy systems is not well-represented in 

this framework. 

Knowledge Base

Weighted
Averagex in U y in V

 

In order to solve the problems of TSK fuzzy system, adding the fuzzifier and 

defuzzifizer into this system will be required. The fuzzifizer can transform the real-

Figure 4.22 Basic configuration of Takagi-Sugeno-Kang fuzzy system [7] 
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valued variables into the fuzzy sets to the inputs; on the contrary, the defuzzifizer can 

transform the fuzzy sets back to the real-values variables to the outputs, as shown in 

ansformations, the knowledge-based fuzzy systems can 

be w

sequently, the analysis and design 

of the

 

Conclusively, combining with the above three systems, fuzzy inference systems 

(FIS) are also known as fuzzy-rule-based systems or fuzzy controllers when used as 

controllers. Basically a fuzzy inference system is composed of five functional blocks as 

shown in Figure 4.24 

Figure 4.23. Because of these tr

idely used in engineering applications (e.g. control, signal processing, process 

modeling, communication systems) in the same manner as the performances of 

mathematical models and sensory measurements. Con

 resulting combined systems can be performed in a mathematically rigorous fashion. 

Knowledge Base

 Rule base – containing a number of fuzzy if-then rules. 

Figure 4.23 Basic Configuration of fuzzy systems with fuzzifier and defuzzifizer [7]

X in U Y in VFuzzifizer Defuzzifizer

Fuzzy Inference
Engine

fuzzy sets
in U

fuzzy sets
in V
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 Database – defining the membership functions of the fuzzy sets used in the 

fuzzy rules. 

 Decision-making unit – performing the inference operations on the rules. 

 

4.3.4 Fuzzy Reasoning Mechanisms [8] 

Fuzzy reasoning, also known as approximate reasoning, is an inference procedure 

that derives conclusions from a set of fuzzy IF-THEN rules and known facts. The steps of 

fuzzy reasoning performed by fuzzy inference systems are: 

 Fuzzification interface – transforming the crisp inputs into degrees of match 

with linguistic values. 

 Defuzzification interface – transforming the fuzzy results of the inference into 

a crisp output. 

Usually, the rule base and the database are jointly referred to as the knowledge base 

Knowledge Base

Figure 4.24 Fuzzy Inference System [7] 

Fuzzy Inference Engine
(Decision-making Unit)

(crisp)
Input
(crisp)

Outputfuzzification
interface

defuzzification
interface

database rule base

fuzzy fuzzy
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1. Fuzzification – comparing the input variables with the membership functions on 

the premise part to obtain the membership values (or compatibility measures) of 

each linguistic label. 

2. Product – combining the membership values on the premise part to get the firing 

strength (weight) of each rule through a specific T-norm operator, usually 

multiplication or minimum. 

3. Generating the qualified consequent (either fuzzy or crisp) of each rule 

depending on the firing strength. 

4. Defuzzification – aggregating the qualified consequents to produce a crisp 

output. 

In past years, several types of fuzzy rule reasoning have been proposed and most 

fuzzy inference systems can be classified into three types, according to the types of fuzzy 

reasoning and fuzzy IF-THEN rules employed: 

Type 1 :  The final output is the weighted average of each rule’s crisp output, induced by 

the rule’s firing strength and output membership functions. However, the output 

membership functions used in this type must be monotonically non-decreasing 

(Figure 4.25) 

Type 2 :  The final output is obtained by applying the maximum operation to the qualified

ter of area, bisector of area, or mean of maximum) (Figure 4.26). 

 

fuzzy outputs, each of which is derived by the minimum of firing strength and 

the output membership function of each rule. Various schemes have been 

proposed to choose the final crisp output based on the overall fuzzy output (for 

example, cen
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Type : ts plus a constant term, 

Figures 4.25, to 4.27 show different types of fuzzy rules and fuzzy reasoning mechanisms 

by ut i

 

 3  The output of each rule is a linear combination of inpu

and the final output is the weighted average of each rule’s output (Figure 4.27). 

iliz ng a two-input fuzzy inference system. 

Figure 4.25 Type 1 – Fuzzy Reasoning Mechanisms [24] 
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Figure 4.26 Type 2 – Fuzzy Reasoning Mechanisms  [24] 



 

Figure 4.27 Type 3 - Fuzzy Reasoning Mechanisms [24] 

 

4.3.5 Limitations in Fuzzy Inference Systems 

There are some drawbacks in the fuzzy inference systems. For example, the rules of 

combining membership functions, such as the minimum-maximum (min-max) rule for 

conjunctive (AND) and disjunctive (OR) reasoning is not robust at all.  Simply speaking, 

this min-max rule is definitely not the way to imitate human reasoning. Another 

disadvantage includes that fuzzy systems give the same importance to all factors that are 

to be combined. For example, it is possible that the role of soil depth or rock permeability 

is not of the same importance to soil erosion as the role of slope. Consequently, they 
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4.4 Adaptive-based -Networks Fuzzy Inference System (ANFIS) 

4.4.1 Introduction  

ANFIS is a class of adaptive feedforward network which is functionally equivalent 

to a fuzzy inference system and focuses on the learning capability of neural networks. 

That is, ANFIS uses the strategy of fuzzy systems to tune the neural network model in an 

adaptive manner. Thus all the design methodologies for neural network models become 

applicable to fuzzy inference models. The learning rule combines backpropagation and 

create some useless fuzzy rules. As such, effectively building the complete and robust 

fuzzy rules is a predestinate challenge.   

In brief, neural networks and fuzzy inference systems are quite different, and each 

has unique capabilities that are useful in information processing. Yet, they often can be 

used to accomplish the same results in different ways. For instant, they can speed the 

unraveling and specifying the mathematical relationships among the numerous variables 

in a complex dynamic process. Both can be used to control nonlinear systems to a degree 

not possible with conventional linear control systems. Prevailingly, the unique

advantages and capabilities of these two technologies can also be combined in a 

synergistic way, such as Adaptive-based-Network Fuzzy Inference System or Adaptive 

Neuro-Fuzzy Inference System (ANFIS) [24] is a very successful example.  

In the following sections, the basic concepts, operations and structures of fuzzy 

inference systems are presented, followed by an introduction of ANFIS and its off-line 

training and on-line learning algorithms. 
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the Kalman Filter algorithm which can speed up the learning process. Combining the 

advantages of neural networks and fuzzy inference systems, ANFIS can construct 

nonlinear process models based on consideration of the human-knowledge (represented 

as fuzzy IF-THEN rules, membership functions) with input-output data pairs for neural 

network training.  

 

4.4.2 Types of ANFIS 

ANFIS can be classified into two main types based on the input space partitioning 

method: grid and scatter partition [24]. Grid partition (GP) generates rules by 

enumerating all possible combinations of membership functions of all input parameters. 

This leads to an exponential explosion even when the number of inputs is moderately 

large. For instance, for ANFIS with 7 inputs, each of which has 3 membership functions 

(or divided by 3 levels), the GP creates 37 (=2187) rules. Conversely, scatter partition 

(also known as subtractive clustering (SC)) generates minimal number of rules equal to 

the same number of membership functions (or levels) for each input. As previously 

mentioned, these two partitioning methods are used in this thesis. 

 

4.4.3 Adaptive Feedforward Networks  

As stated in the beginning of Section 4.4.1, ANFIS is an adaptive feedforward 

network. An adaptive feedforward network is a network structure consisting of a number 

of nodes (or neurons) connected through directional links. Each node represents a process 

unit, and the links between nodes specify the causal relationship between the connected 
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nodes. All or parts of the nodes are “adaptive”, which means the outputs of these nodes 

depend on modifiable parameters pertaining to these nodes. Different from the adjustable 

parameters, or weights, used in previous neural networks, they are located between the 

nodes. Usually, a node function (or neuron function) is a parameterized function with 

modifiable parameters. By changing these parameters, we can change the node function 

as well as the overall behavior of the adaptive network.  

These parameters of an adaptive network are distributed into its nodes, so each node 

has a local parameter set. In Figure 4.28, if a node’s parameter set is not empty, then its 

node function depends on the parameter values; a square shape is used to represent this 

kind of adaptive node. On the other hand, if a node has an empty parameter set, then its 

function is fixed; a circle is used to denote this type of fixed node. 

 

Conceptually, an adaptive feedforward network is actually a static mapping 

between its input and output spaces. This mapping may be either a simple linear 

relationship or a highly nonlinear one, depending on the network structure (arrangement 

A

D

B

E G
C

F y1

y

x1

x
22

Input
layer Layer 1

OutputLayer 2
layer

Figure 4.28 Feedforward Adaptive Network [4] 
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of nodes, connections, and so on) and the functionality for each node. The goal is to 

construct a network for achieving a desired nonlinear mapping that is regulated by a data 

set co

 

 ANFIS-GP and ANFIS-SC architectures 

]. Both have the same two inputs, each of which has three membership functions, and 

odel has three fuzzy 

 4.2 list the fuzzy, if-then, rules for these two examples. These rules, 

origin

nsisting of desired input-output pairs of a target system (also called training data set) 

to be modeled.  

The procedures which are followed in adjusting the parameters to improve the 

network’s performance are often referred to as the learning rules, learning algorithms, or 

adaptation algorithms. Usually, a network’s performance is measured as the discrepancy 

between the desired output and the networks’ output under the same input conditions. 

This discrepancy is called the error measure and it can be assumed in different forms for 

different applications. Generally, a learning rule is derived by applying a specific 

optimization technique to a given error measure. 

4.4.4 Fuzzy Rules and ANFIS Architectures 

Figures 4.29  and 4.30 show examples of

[8

one output. ANFIS-GP model has nine fuzzy rules and ANFIS-SC m

rules. Tables 4.1 and

ally proposed by Takagi and Sugeno [96], have fuzzy sets involved only in the 

premise parts. The consequent parts are described by non-fuzzy equations of the input 

variables (e.g., electric current) as follows: 

If current is high, then power = (current)2 × (resistance)                (4.30) 

where “high” in the premise part is a linguistic label characterized by appropriate 
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membership functions. The premise part of a rule delineates a fuzzy space, while the 

consequent part specifies the output within this fuzzy space. As summarized in Tables 4.1 

and 4.2, the format of a generic fuzzy rule is given as 

If x  is iA  and y  is iB , then  iiii ryqxpf +⋅+⋅=

Figure 4.29 Architecture of AN
(designed an

FIS-GP with nine Fuzzy Rules [24] 
d redrawn by Lih) 
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Figure 4.30 Architecture of ANFIS-SC with three Fuzzy Rules [24]  
(designed and redrawn by Lih) 
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If Then 

Table 4.1 Fuzzy, IF-THEN, rules of ANFIS 
Grid Partition (GP) Model 

Rules 

Rule # x y f 
1 A1 B1 f1=p1 x+q1 y+r1

2 A1 B2 f2=p2 x+q2 y+r2

3 A1 B3 f3=p3 x+q3 y+r3

4 A B f =p x+q y+r2 1 4 4 4 4

5 A2 BB2 f5=p5 x+q5 y+r5

6 A2 B3B f6=p6 x+q6 y+r6

7 A3 BB1 f7=p7 x+q7 y+r7

8 A3 B2B f8=p8 x+q8 y+r8

9 A3 BB

f9=p9 x+q9 y+r93

*  and  are linguistic descriptions in premise part, characterized by relative iA iB
membership functions 

** ip , iq  and ir  are consequent constants decided during training process  

 

Table 4.2 Fuzzy, IF-THEN, Rules of ANFIS 

If Then 

Scatter Partition (SC) Model 

Rules 

Rule # x y f 
1 A1 BB1 f1=p1 x+q1 y+r1

2 A2 B2B f2=p2 x+q2 y+r2

A3 B3 B3 f3=p3 x+q3 y+r3



 

4.

 model (as illustrated in Figure 4.30) 

an a e l he functions of each layer as described below: 

 

Layer 1: Transferring input data to fuzzifized values through membership functions. 

 

4.5 ANFIS Transfer Functions 

Five network layers are used in ANFIS to perform the following fuzzy inference 

steps: (1) fuzzification, (2) product, (3) normalization, (4) defuzzification, and (5) 

summation output. For simplicity, we take ANFIS-SC

 ex mpl to exp ain t

[ ] [ ]
[ ] ( )[ ] [ ] ( )[ ]    and   

321 ,  and  datainput 

functions membership are  

yyxx

,,iyx

,

ii

ii

BA

BA

μμ

μμ

⇒⇒

=
                        (4.31) 

  

Consider, for example, a bell-shaped membership function. 

 
( )

( )
 

1

1
2 i

i
i

i b

a
cx

A x

⎥⎦
⎤

⎢⎣
⎡+

=
−

μ
                                     (4.32) 

 where [ai, bi, ci ] is the premise parameter set. As the values of these parameters 

are changed, the bell-shaped functions will vary accordingly. 

 

Layer 2:  Multiplying the incoming signals and sending the products out. 

 ( ) ( ) 321 , ,,iyxw
ii BAi =×= μμ                                (4.33) 

 Each node output represents the firing strength of a rule. 
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Layer 3:  Normalizing the firing strengths. 

 321 , ,,i
w

ww

i
i

i
i =

∑
=                                           (4.34) 

 

Layer 4:  Defuzzification 

( ) 321 , ,,iryqxpwfw iiiiii =+⋅+⋅⋅=⋅                        (4.35) 

 where ( pi, qi, ri ) is the consequent parameter set, which is determined during 

the training process. If pi and qi are zeros (i.e. fi = constant), this FIS is called 

zero-order-Sugeno model; alternatively, first-order-Sugeno model. 

 

Layer 5:  Summation of all incoming signals. 

321 , ,,i
w

fw
fwoutputoverall

i
i

i
ii

i
ii =

∑

∑ ⋅
=∑ ⋅=    (4.36) 

mbination of input variables plus a constant term and 

the final output is the weighted average of each rule’s output. 

Similar to NN, ANFIS modeling starts by partitioning the data sets (input-output 

airs) into training and testing (or validating) data. The training data set is used to 

find the initial premise parameters for fuzzy membership functions by equally spacing 

embership function. When the values of the premise parameters are fixed, the 

overall predicted MRR or WIWNU can be expressed as a linear combination of 

consequent parameters [24] 

The output of each rule is a linear co

data p

each m
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4.4.6 Adaptive Netwo

An ANFIS architecture  as illustrated in Figure 4.28 

which is a multilayer feedforw ork. As previously mentioned in Section 4.4.2, 

each node in an adap e network performs a particular function (node function) on 

incoming signals as well as a set of parameters pertaining to this node. The formulae for 

the node functions ma  node to node, and the choice of each node function 

depends on the overall input-output function which the adaptive network is required to 

carry ote that the links in an adaptive network only i f irection of 

signals between nodes; no weights are a ciated with the lin

To reflect different adaptive capabilities, we use both circle and square nodes in an 

adaptive network. A square node (adaptive node) has param ode (fixed 

node) has none. The parameter set of a daptive network i parameter 

ts o h a

pa ccording to a given training data and a gradient-based learning 

The primary training rule for an ANFIS is the error backpropagation algorithm 

based upon the gradie ses the same method 

that is used in neural networks. The essence of the error backpropagation algorithm is the 

evaluation of the contribution of each parameter in each layer to the output error measure 

(or energy function) function. However, the error back backpropagation algorithm suffers 

from slow convergence speed due to random initial cond

rks and Basic Learning Rule [8] 

is a typical adaptive network

ard netw

tiv

y vary from

out. N ndicate the low d

sso ks.  

eters while circle n

n a s the union of the 

se f eac daptive node. In order to achieve a desired input-output mapping, these 

rameters are updated a

procedure is described in the following. 

nt descent (steepest descent) theory which u

itions and the possibility of 
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trapping in local minima. Jang [97] proposed a hybrid learning method which combines 

error backpropagation and the least square estimate (LSE) to overcome the problems 

Suppose that a given adaptive feedforward network in the layered representation 

has L layers and the l-th layer ( 0 ; ,   2, 1, ,0 == lLl K  represents the input layer) has N(l) 

nodes. Then the output and function of node i [i=1, …, N(l)] in layer l can be represented 

as  and 31. Since a node output depends on its l
iX l

if  respectively, as shown in Figure 4. 

incoming signals and its parameter set, we have 

( )( )KK ,,,,, 1
1

1
1 γβα−

−
−= l

lN
ll

i
l
i XXfX                                    (4.37) 

where γβα  , , , etc. are the parameters pertaining to this node.  

 

 As r measure for the p-th 

1 ) entry of a training data set can be defined as the sum of squared errors: 

Figure 4.31 Layered Representation of Adaptive Network [8] (redrawn by Lih) 

 

sume that the given data set has P entries; then the erro

( Pp ≤≤
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( )
( )

m

L
pmpmp OTE                                               (4.38) 

where  is the -th component of p-th target outpu

component of actual output vector produced by the p-th input vector. Hence, the overall 

                             

are possible for specific situations

To use the steepest descent m  

vector. Before calculating the gradient vector, we should observe 

the following casual relationships: 

er words, a small change in 

a para

2

1
,,∑

=

−=
LN

m t vector, and L
pmO ,  is the m-th pmT ,

error measure is  

∑
=

=
P

p
pEE

1
                         (4.39) 

Actually, the definition of pE in Equation (4.38) is not universal; other definitions of pE  

 or applications. In this thesis, Equation (4.38) is used. 

ethod for minimizing the error measure, first we have

to obtain the gradient 

 

where the arrows ( ) indicate the casual relationships. In oth

change in 
parameter 

change in 
outputs of nodes 

containing 

change in 
network’s 

outputs 

change in 
error 

measure  

meter α  will affect the output of the node containing α ; this in turn will affect the 

output of the final layer and thus the error measure. Therefore, the basic concept in 

calculating the gradient vector is to pass a form of derivative information starting from 

the output layer and going to the backward layer by layer until the input layer is reached. 

α  α  
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In order to develop a learning procedure that implements gradient descent in E over 

the parameter space, first the error signal (or error rate), L
pi,ε , for a p-th training data with 

respect to the output of node i and layer l is calculated as: 

l
pi

pi O
E

,
, ∂

∂+

Werbos called this expression, the ordered derivative [88]. The difference between the 

ordered derivative and the ordinary partial derivative lies in the way the function is to be 

differentiated viewed. For an internal node output l
piO , (where Ll ≠ ), the partial 

pl =ε                                                      (4.40) 

derivative l
piO ,∂

 is equal to zero, since pE  does not depend on piO ,  directly. However, it 

is obvious that E  does depend on lO  indirectly, since a change in lO  will propagate 

through indirect paths to the output layer and thus produce a corresponding change in the 

l

p

,

value of . Therefore, can be viewed as the ratio of these two changes when they 

are made infinitesimal. 

Consider here, a simple adaptive network as shown in Figure 4.32, where z is a 

function of x and y, and y is in turn a function of x: 

⎧

=

=

)(

),(

xfy

yxgz

E∂ l

p pi pi,

pE pi,ε  

⎪⎩

⎪
⎨                                                      (4.41) 

For the ordinary partial derivative z
x∂
∂ , assume that all the other input variables (in this 

case, y) are constant: 
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x
yxgz

x ∂
∂

=
∂
∂ ),(                                                     (4.42) 

In other words, we assume that the inputs x and y to the function g are independent, 

y is actually a f

derivative, we take this indirect casual relationship into consideration: 

without paying attention to the fact that unction of x. For the ordered 

( )
xyxxx xfyxfy ∂∂

+
∂

=
∂

=
∂ == )()(                 (4.43) xfyxgyxgxfxgz ∂∂∂∂∂+ )(),(),()(,

 

Therefore, the ordered derivative takes into consideration both the direct and indirect 

paths that lead to the casual relationship. 

As the above derivation, the error signal for the i-th output node (at layer L) can be 

calculated directly: 

Figure 4.32 Simple Adaptive Network for Ordered Derivative and Ordinary Partial 
Derivative [8] (redrawn by Lih) 

L
pi

p
L

pi

pL
pi O

E
O
E

,,
, ∂

∂
=

∂
∂

=
+

ε                                                    (4.44) 

Applying the definition in the Equation (4.20), we have: 

( )L
pipi

L
pi OT ,,, 2 −−=ε                                                    (4.45) 

For the internal node at (l, i), the error signal can be derived by the chain rule: 



 

( )

l
pm

O
,                                        (4.46) 
pi

llN

m

 signalerror

l
pm

p

 signalerror

k
pi

pl
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O
O
E

O
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1
1

,,
, ∂

∂
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∂

=
∂
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=
++

=
+∑
321321

ε

where . That is, the error rate of an internal node can be expressed as a linear 

combination of the error rate of the nodes in the next layer. Therefore, for all l and i 

 and ), we can find 

1l layer at l layer at +

10 −≤≤ Ll

( Ll ≤≤0 ( )lNi ≤≤1 l
pip

l
pi OE ,, ∂∂= +ε  by first applying Equation 

(4.44) once to get the error rates at the output layer, and then applying Equation (4.46) 

k-

 

the in

y the chain rule again to find the gradient vector. Now, 

if

iteratively until we reach the desired layer l. The underlying procedure is called bac

propagation, since the error rates are obtained sequentially from the output layer back to

put layer.  

The gradient vector is defined as the derivative of the error measure with respect to 

each parameter. So we have to appl

 α  is an adjustable parameter of the i-th node at layer k, we have: 

α
ε

αα ∂
∂

=
∂
∂

∂
∂

=
∂
∂ ++ l

pil
pi

l
pi,

l
pi

pp fO
O
EE ,

,
,

                                       (4.47) 

Note that if the parameter α  is allowed to be shared between different nodes, then 

Equation (4.47) should be changed to a more general form: 

∑ ∂
∂

∂
∂

=
∂
∂ pp f

O
EE

* αα
                                              (4.48) 

∈

++

SO*

*

where S is the set of nodes containing α  as a parameter;  and are the output and 

function, respectively, of a generic node in S. 

The derivative of the overall error measure E with respect to

*x  *f  

α  is 
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∑
=

=                                                    (4.49) 

Accordingly, for simple steepest descent without line minimization, the update 

formula for the generic parameter 

++

∂
∂

∂
∂ P

p

pEE
1 αα

α  is given by 

α
ηα
∂
∂

−=Δ
+E                                                     (4.50) 

in which η  is the learning rate. The effectiveness and convergence of the gradient 

descent m thod depend significantly on the value of the learning rate. In general, there is 

no signal learning rate suitable for different training cases. However, some common rules, 

se g

gradient values, then a larger value of 

e

such as tho iven in the following still apply: (1) when broad minima yield small 

η  

a

will result in a more rapid convergence; (2) for 

problems with steep and narrow minim , a small value of η  must be chosen to avoid 

overshooting the solution. This leads the learning rate that can be expressed as Equation 

(4.51) to satisfy the common rules.  

∑ ⎟
⎠
⎞

⎜
⎝
⎛ ∂
∂

=

α α

κη                                                  (4.51) 

where 

2E

κ  is the step size, the length of each transition along the gradient direction in the 

parameter space. Usually, we can change the step 

 

4.4.7 The Hybrid Learning Algorithm: Off-Line Learning [24] 

arlier, though the gradient method can be applied to identify the 

parameters in an adaptive network, the method is generally slow and likely to become 

size to vary the speed of convergence. 

As mentioned e
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trapped in local minima. The following explains h

by Jang [97], overcomes the problems of implementation. 

For simplicity, assume that the network has only one output 

ow the hybrid learning rule, proposed 

( )S,IFoutput =                                                    (4.51) 

where I  is the input set and S is the parameter set. The parameter set S can be 

decomposed into two sets, 

21 SSS ⊕=                                                          (4.52) 

where represents the direct sum,  is a nonlinear parameter set, and  is a linear 

parameter set. For given values of element of , we can incorporate the P training data 

into Equation (4.51) and obtain a matrix representation: 

⊕   1S 2S

1S

BAX =                                                         (4.53) 

where X is an unknown vector whose elements are parameters in . Let 2S M=2S ; then 

the dimensions of A, X, and B are 1, ×× MMP  , and 1×P , respectively. Since P 

(number of training data set) is usually greater than M (num ar parameters), we 

have 

E) of X, , is sought to minimize the square error 

ber of line

an over-determined problem and generally there is no exact solution. Instead, a least 

squares estimate (LS *X 2BAX − . The 

most well-known form of uses the pseudo-inver*X  se of A: 

( ) BAAAX =          TT 1* −                                           (4.54) 

where is the transpose of A, and TA  ( ) TT AAA 1−  is the pseudo-inverse of A, if ( )AAT  is 

nonsingular. Equation (4.54) is computationally intensive because of the matrix inverse 
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operation; moreover, it is ill-defined if ( )AAT  is singular. As a res

are employed to compute the LSE of X. A recursive method is more efficient (especially 

when M is small) and can be easily modified for an on-line version for systems with 

changing characteristics. Specifically, let the i-th row vector of matrix A be a  and the i-

ent of  be ; then

ult, recursive formulas 

T
i

th elem B  X can be calculated iteratively using the recursive formulas: T
ib

( )

⎪
⎪

⎪⎪
⎫

−=
+

−=

−+=

−−
−

−−−−−

    
aSa
SaaSSS

XabaSXX

1,,1,0,
1

11
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11111

PiT
iiii

ii

i
T
i

T
iiiii

K

i

⎭

⎬

−− 11 iii

T                                 (4.55) 

where is called the covariance matrix and the least squares estimate is equal to 

The initial condition of Equation (4.55) is

S  *X  PX . 

00 =X  and I S γ=0 , where γ  is a positive 

large number and I is the identity matrix of dimension MM × . When dealing with multi-

output adaptive networks (the output in Equation (4.53) is a column vector). Equation 

(4.55) can still be applied except that  is the B. 

The recursive least squares estimate of X can be interpreted as a Kalman Filter for 

the pr

T
ib i-th row of matrix 

ocess 

( ) ( )kk =+

( ) ( ) ( ) noisekkk +=+ XAY 1
                                           (4.56) 

where , , and

XX 1

( ) kk XX = ( ) kk bY = ( ) kk aA = . For this reason, Equation (4.55) is 

a . 

e least squares estimate can be combined to 

updat f  hybrid learning 

sometimes loosely referred to as the Kalm n Filter algorithm

Now the gradient descent method and th

e the parameters in an adaptive network. Each epoch o this

 121



 

procedure is composed of a forward pass and a backward pass. In the forward pass, input 

data is supplied and functional signals go forward to calculate each node output until the 

matri

.55). After identifying the parameters in 

, the functional signals are generated in a forw

of the error measure with respect to each node output) propagate from the output end 

space in the gradient method, but also, in general, cut down substantially the convergence 

time. 

 

4.4.8 The Hybrid Learning Algorithm: On-Line Learning  

The learning paradigm is vital for the on-line 

with changing or unknown characteristics. To modify the batch learning rule to its on-line 

 

will approximate this minimization if the learning rate is small. 

 to be reduced as new 

data 

ces A and B in Equation (4.53) are obtained. The parameters in 2S  are identified by 

the recursive least squares formula in Equation (4

2S ard direction until the complete error 

measure is calculated. In the backward pass, the error signals (or error rate, the derivative 

toward the input end and the parameters in 1S  are updated by the gradient descent of 

Equation (4.48). 

Not only can this hybrid learning algorithm decrease the dimension of the search 

parameter identification for systems 

version, the gradient descent method should be based on pE , instead of E. Strictly 

speaking, this is not a truly gradient search procedure that minimizes E; yet the approach

For the recursive formulas, the effects of old data pairs need

pairs become available. One simple method for doing this is to add a forgetting 

factor λ  to the original recursive formulas: 
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where the value of 

⎠⎝ + −− aSa1 11 iiiλ

λ  is between 0 and 1. The smaller the value of λ  is, the faster the 

effect of old data decay. But a value of λ  that is too small may sometimes cause 

numerical instability and thus should be avoided [24]. 

 

4.4.9 Summary 

e types according to the types of 

fuzzy reasoning and fuzzy IF-THEN rules em

f five layers n i

 of a

pass, the linear parameters are identified by the recursive least squares estimate while the 

nonlinear parameters are fixed. In the backward pass, the linear parameters are fixed and 

the nonlinear parameters are obtained by the gradie

 ANFIS m r the o

A fuzzy inference system is composed of five functional blocks – rule base, 

database, decision-making unit, fuzzification interface, and defuzzification interface. 

Fuzzy inference systems are generally classified into thre

ployed. Figures 4.25 to 4.27 show the 

commonly used fuzzy IF-THEN rules and fuzzy reasoning mechanisms. 

The ANFIS architecture consists o  as show n Figures 4.29 and 4.30. 

The layer functions are described by Equations (4.30) to (4.31). In order to use the 

ANFIS for modeling, a set of data is first collected for off-line training. The off-line 

training procedure is composed  forward pass and a backward pass. In the forward 

nt descent method. Then a new set of 

data is collected on-line for testing the odel using on-line learning. Fo n-
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line learning algorithm, a forgetting factor is added to the original recursive formulas and 

the gradient descent method is used based on the error measure at each epoch. 

 

4.5 Fundamentals of Evolutionary Algorithms (EA) 

4.5.1 Introduction 

Different schools of evolutionary algorithms have evolved during the last 30 years: 

genetic algorithms (GA), mainly developed in the USA by Holland [98], evolutionary 

strategies (ES), developed in Germany by Rechenberg [99] and Schwefel [100], and 

evolutionary programming (EP) by Fogel et al.[101]. Each of these constitutes a different 

approach; however, they are inspired by the same principles of natural evolution. 

More clearly, the EA are a stochastic global search method that mimics the 

f approximations is 

create

ain and breeding them together using operators borrowed from natural 

genetics. This process leads to the evolution of populations of individua

suited to their environment than the individuals that they were created from, just as in 

tation

tion, mutation, reinsertion, 

migra

metaphor of natural biological evolution. EA operate on a population of potential 

solutions applying the principle of survival of the fittest to produce (hopefully) better and 

better approximations to a solution. At each generation, a new set o

d by the process of selecting individuals according to their level of fitness in the 

problem dom

ls that are better 

natural adap . 

EA model natural processes, such as selection, recombina

tion, locality, and neighborhood. Figure 4.33 shows the structure of a simple 
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evolutionary algorithm. EA work on populations of individuals instead of single solutions. 

In this way the search is performed in a parallel manner. 

 

At the beginning of the computation a number of individuals (the population) are 

randomly initialized. The objective function is then evaluated for these individuals. The 

first generation is produced. If the optimization criteria are not met by the creation of a 

new generation, a new cycle will keep starting as follows. Individuals are selected 

according to their fitness for the production of offspring. Parents are recombined to 

produce offspring. All offsprings will be mutated with a certain probability. The fitness 

of the offspring is then computed. The offspring are inserted into the population replacing 

the parents, producing a new generation. This cycle is performed until optimization 

criteria are reached. 

A single population evolutionary algorithm is powerful and performs well on a 

Figure 4.33 Structure of a Single Population Evolutionary Algorithm [1] 
(redrawn by Lih) 
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wide variety of problems. However, better results can be obtained by introducing 

multiple subpopulations. Every subpopulation evolves over a few

(like the single population evolutionary algorithms) before one or more individuals are 

t

 the structure of such an extended 

multi-population evolutionary algorithm.  

From the above discussion, it can be seen that evolutionary algorithms differ 

 

significant differences are:  

 Evolutionary algorithms search a population of points in parallel, not just a single 

 generations isolated 

exchanged between the subpopulation. The multi-population evolu ionary algorithm 

models the evolution of a species in a way more similar to nature than the single 

population evolutionary algorithm. Figure 4.34 shows

 

substantially from more traditional search and optimization methods. The most

Figure 4.34 Structure of an Extend Multi-population Evolutionary Algorithm [1] 
(redrawn by Lih) 



 

point.  

 Evolutionary algorithms do not require derivative information or other auxiliary 

owledge; only the objective function and corresponding fitness levels influence 

gorithms use probabilistic transition rules, not deterministic rules. 

 

olution, 

for e

kn

the directions of search. 

 Evolutionary al

Evolutionary algorithms are generally more straightforward to apply because no 

restrictions for the definition of the objective function exist. 

 Evolutionary algorithms can provide a number of potential solutions to a given 

problem. The final choice is left to the user. 

Thus, in cases where the particular problem does not have one individual s

xample, a family of Pareto-optimal solutions, as in the case of multi-objective 

optimization and scheduling problems, then the evolutionary algorithms are potentially 

useful for identifying these alternative solutions simultaneously, as stated in the following 

Section 4.6. Figure 4.35 shows the problem solution using evolutionary algorithms.  
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Figure 4.35 Problem Solution using Evolutionary Algorithms [1] (redrawn by Lih) 

In this research, genetic algorithms are used to model the CMP process as the neural

networks and ANFIS, and also to search the best input settings for obtaining the optimal 

output performances i.e., higher MRR and lower WIWNU. 

 

4.5.2 Genetic Algorithms (GA) 

As the name suggests, genetic algorithms (GA) borrow their working principle from 

natural genetics. According to the classification in the previous subsection, GA belong to 

EA. Clearly, GA search and optimize the procedures that are motivated by the principles 

of natural genetics and natural selection. GA use operators that are analogous to the 

evolutionary processes of mating (or “crossover” at the gene level), mutation and natural 

selection to explore multi-dimensional parameter spaces. In principal, GA can be applied 
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to any problem where the variables to be optimized (“genes”) can be encoded to form a 

string (“chromosome”) - as shown in Figure 4.36.  

 

Each string represents a trial solution of the problem. By analogy with biology, the 

values of the individual variables are known as “alleles”. The working principles of GA 

are very different from that of most classical optimization techniques. Over the last 

decade, GA have been extensively used as search and optimization tools in various 

problem domains, including sciences, commerce, and engineering. The primary reasons 

for their success are their broad applicability, ease of use, and global perspective [5]. 

As stated above, GA are search algorithms for optimization on the basis of the 

mechanics of natural selection and genetics. The power of these algorithms is derived 

from a very simple heuristic assumption that the best solution will be found in the regions 

of solution space containing high proposition of good solutions, and that these regions 

can be identified by judicious and robust sampling of the solution space. 

Figure 4.36 Gene, Allele and Chromosome in GA [3] 

 

4.5.2.1 Genotypes (Chromosome Values) and Phenotypes (Decision Variables) 

Individuals, or current approximations are encoded as strings, chromosomes, 
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composed over some alphabet(s), so that the genotypes (chromosome values) are 

4.37.

re in 

the following way:  

uniquely mapped onto the decision variable (phenotypic) domain as depicted in Figure 

 

Genotype space = {0,1}Phenotype space
Encoding 

The most commonly used representation in GA is the binary alphabet [0, 1], although 

other representations can be used, e.g. ternary, integer, real-valued etc. For example, a 

problem with two variables, x1 and x2, may be mapped onto the chromosome structu

 

where x1 is encoded with 10 bits and x2 with 15 bits, possibly reflecting the level of 

accuracy or range of the individual decision variables. Examining the chromosome string 

in isolation yields no information about the problem we are trying to solve. It is only with 

the decoding of the chromosome into its phenotypic values that any meaning can be 

applied to the representation. However, as described below, the search process will 

Figure 4.37 Phenotype space and genotype space [3] (redrawn by Lih) 

(representation) 10010001

10010010
010001001

011101001
Decoding

(inverse representation)
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operate on this encoding of the decision variables, rather than the decision variables 

themselves, except, of course, where real-valued genes are used. 

Basically, the mechanics of GA are simple, involving copying of binary strings and 

the swapping of the binary strings (or chromosomes). The simplicity of operation and 

computational efficiency are the two main attractions of the GA approach. The 

computations are carried out in three stages to get a result in one generation or iteration. 

The three stages are (1) Reproduction (or selection operator), (2) Recombination (or 

Crossover), (3) Mutation. These will be briefly discussed in the following.  

 

4.5.2.2 Reproduction and Fitness 

Reproduction (or selection operator) is the first procedure of the genetic operators. 

It is a process in which some of the chromosomes are copied into a separate place called

the mating pool, in proportional to their fitness values. Having decoded the chromosome 

representation into the decision variable domain, it is possible to assess the performance, 

or fitness, of individual members of a population. This is done through an objective 

function that characterizes an individual’s performance in the problem domain. In the 

natural world, this would be an individual’s ability to survive in its present environment. 

Thus, the objective function establishes the basis for selection of pairs of individuals that 

will be mated together during reproduction.  

During the reproduction phase, each individual is assigned a fitness value derived 

from its raw performance measure given by the objective function. This value is used in 

the selection to bias towards more fit individuals. Highly fit individuals, relative to the 
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whole population, have a high probability of being selected for mating, whereas less fit 

individuals have a correspondingly low probability of being selected. This implies that 

strings with higher fitness values will have a higher probability of contributing more 

strings as the search progresses. 

 

4.5.2.3 Recombination (or Crossover) 

This operator, second among the genetic operators, is mostly responsible for the 

progress of the search. Once the individuals have been assigned a fitness value, they can

be ch

ted. 

In thi

P2 = 1 0 1 1 1 0 0 0 

gth, l, 

minu

 

osen from the population, with a probability according to their relative fitness, and 

recombined to produce the next generation. Genetic operators manipulate the characters 

(genes) of the chromosomes directly, using the assumption that certain individual’s gene 

codes, on average, produce fitter individuals. The recombination operator is used to 

exchange genetic information between pairs, or larger groups, of individuals. In other 

words, it may swap the parent chromosomes partially, causing offspring to be genera

s, a crossover site along the length of the chromosome is selected randomly, and the 

portions of the chromosomes beyond the crossover site are swapped. The simplest 

recombination operator is a single-point crossover. 

Consider the two parent binary strings: 

P1 = 1 0 0 1 0 1 1 0 

If an integer position, i, is selected uniformly at random between 1 and the string len

s one [1, l-1], and the genetic information exchanged between the individuals about 
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this point, then two new offspring strings are produced. The two offsprings below are 

produced when the crossover point i = 5 is selected, 

O1 = 1 0 0 1 0 0 0 0 

O2 = 1 0 1 1 1 1 1 0 

This crossover operation is not necessarily performed on all strings in the population. 

Instead, it is applied with a probability, Pc, when the pairs are chosen for breeding.  

 

4.5.2.4 Mutation 

A further genetic operator, called mutation, is then applied to the new chromosomes, 

again with a set probability, Pm. It is usually the last operator in GA, and this is the 

occasional random alteration (with small probability) of the value of a chromosome 

position. Mutation causes the individual genetic representation to be changed according 

to some probabilistic rule. In the binary string representation, mutation will cause a single 

bit to change its state from 1 to 0, or vice versa. So, for example, mutating the fourth bit 

of O1 leads to the new string, 

O1m = 1 0 0 0 0 0 0 0 

Mutation is generally considered to be a background operator that ensures that the 

probability of searching a particular subspace of the problem space is never zero. This 

individuals selected for mating according to their fitness, and so the process continues 

has the effect of tending to inhibit the possibility of converging to a local optimum, rather 

than the global optimum.  

After recombination and mutation, the individual strings are then, if necessary, 

decoded, the objective function evaluated, a fitness value assigned to each individual and 
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through subsequent generations. In this way, the average performance of individuals in a 

population is expected to increase, as good individuals are preserved and bred with one 

another and the less fit individuals die out. The operations of GA are terminated when 

some

pulation size 

constant. This is achieved by performing the following tasks: 

rage) solutions in a population. 

 M

 pool. Two other solutions are picked again 

and a

 criteria are satisfied, e.g., a certain number of generations, a mean deviation in the 

population, or when a particular point in the search space is encountered. 

 

4.5.3 Reproduction 

The primary objective of the reproduction operator is to make duplicates of good 

solutions and eliminate bad solutions in a population, while keeping the po

 Identify good (usually above-ave

ake multiple copies of good populations. 

 Eliminate bad solutions from the population so that multiple copies of good solutions 

can be placed in the population. 

There exists a number of ways to achieve the above tasks. Some common methods 

include tournament selection, proportionate selection, ranking selection and Elitism [21]. 

 

4.5.3.1 Tournament Selection 

In the tournament selection, tournaments are played between two solutions and the 

better one is chosen and placed in the mating

nother slot in the mating pool is filled with a better solution. If carried out 

systematically, each solution can be made to participate in exactly two tournaments. The 
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best solution in a population will win both times, thereby making two copies of it in the 

new population. Using a similar argument, the worst solution will lose in both 

tournaments and will be eliminated from the population. In this way, any solution in a 

population will have zero, one, or two copies in the new population. 

 

4.5.3.2 Proportionate Selection 

od, solutions are assigned copies, the number of 

whic

In the proportionate selection meth

h is proportional to their fitness values. The average fitness of all population 

members is avgf , a solution with a fitness if  gets an expected 
avg

i
f

f  number of copies. 

The implementation of this selection operator can be thought of as roulette-wheel 

mechanism, where the wheel is divided into N (population size) divisions, where the size 

of each is marked in proportion to the fitness of each population member. Thereafter the 

wheel is spun N times, each time choosing the solution indicated by the pointer, as shown 

in Figure 4.38. This figure shows a roulette wheel for six individuals having different 

fitness values. Since the fifth individual has a higher fitness value (or larger division area) 

than any other, it is expected that the roulette wheel selection (RWS) will choose the fifth 

solution more often than any other solution. 
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4.5.3.3 Ranking Selection 

The previous type of selection will have problems when there are large differences 

between the fitness values. For example, if the best chromosome fitness is 90% of the 

sum of all fitnesses then the other chromosomes will have very few chances to be 

selected. Rank selection ranks the population first and then every chromosome receives 

fitness value determined by th

Figure 4.38 Roulette-wheel Selection for GA [5] 

is ranking. The worst will have the fitness 1, the second 

worst 2 etc. and the best will h romosomes in population). 

ter changing the fitness to the numbers 

determ

ave fitness N (number of ch

Each member in the sorted list is assigned a fitness value equals to the rank of the 

solution in the list. Thereafter, the proportionate selection operator as previously stated is 

applied with the ranked fitness values, and N solutions are chosen for the mating pool. 

Figure 4.39 shows how the situation changes af

ined by the ranking.  
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Figure 4.39 Ranking Selection for GA  

(a) Situation before Ranking (Graph of Fitness)  

(b) Situation after ranking (Graph of Order Number) 

1 2 3 4 5 6mosomesChro

Chromosomes 1 2 3 4 5 6



 

Now all the chromosomes have a chance to be selected. However, this method can 

lead to slower convergence because the best chromosomes do not differ so much from the 

other ones. 

 

4.5.3.4 Elitism 

As the name suggests, the elitism is to use an elite-preserving operator which favors 

 them an opportunity to be directly carried over to the 

next 

world problems because it eliminates the computational penalties incurred by translating 

test solutions into and out of the binary format. In this research, real-valued encoding was 

applied to the GA for modeling and optimizing the CMP process. 

the elites of a population to give

generation. When creating a new population by crossover and mutation, there exists 

a big chance, that the best chromosome might be lost. Elitism is the name of the method 

that first copies the best chromosome (or few best chromosomes) to the new population. 

The rest of the population is constructed in ways described above. Elitism can rapidly 

increase the performance of GA, because it prevents a loss of the best found solution. 

 

4.5.4 Binary-coded and Real-parameter Recombination (or Crossover) 

In 1975, Holland [98] proposed the binary-coded representation (such as stings 

01111010 and 10000111) in the very first application in GA and still remains popular to 

the present. Until 1989, Antonisse [102] demonstrated the real-parameter representation 

for GA. Real-parameter (or real-valued encoding) GA open a new attractive way to real 
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When binary-coded GA needs to be used to handle problems having a continuous 

search space, a number of difficulties arise. For example, one of the difficulties is the 

inability to achieve any arbitrary precision in the optimal solution. In binary-coded GA, 

the string length must be chosen a priori to enable it to achieve a certain precision in the 

solution. More the required precision, the longer is the string length. For longer strings, 

the population size requirement should be also large, thereby increasing the 

computational complexity of the algorithm. Since a fixed coding scheme is used to code 

the decision variables, variable bounds must be such that they bracket the optimum 

variable values. Since in many problems this information is not usually known a priori, 

this may cause some difficulty in using binary-coded GA in such problems. 

 are used directly (without any string coding), solving real-

param

exists a number of crossover operators in the GA literature 

Since real parameters

eter optimization problems is step easier when compared to the binary-coded GA. 

Unlike in the binary-coded GA, decision variables can be directly used to compute the 

fitness values. Since the selection operator works with the fitness values, any selection 

operator used with the binary-coded GA can also be used in real-parameter GA. However, 

the difficulty arises with the search operators (i.e. crossover and mutation procedures) 

for real-parameter GA. 

A recombination (or crossover) operator is applied next to the strings of the mating 

pool. The reproduction operator cannot create any new solution in the population. It only 

makes more copies of good solutions at the expense of not-so-good solutions. The 

creation of new solutions is performed by crossover and mutation operators. Like the 

reproduction operator, there 
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[103], but in almost all crossover operators, two strings are picked from the mating pool 

at random and some portion of the strings are exchanged between the strings to create 

two new strings.  

 

4.5.4.1 Binary-coded Crossover 

As an example in Section 4.5.1, a single-point crossover operator is shown in 

Figure 4.40. This is performed by randomly choosing a crossover site along the string and 

by exchanging all bits on the right side of the crossing site  

Single-point Binary Crossover 

 

Multi-point Binary Crossover 

Figure 4.41 shows an example of n-point crossover mechanisms in which n random 

crossover points are chosen and the parents’ chromosomes are split along these points. 

Figure 4.40 Single-point Binary Crossover Operator  

 140



 

There

ilarly, Figure 4.42 exhibits the uniform crossover mechanism. 

 

after, the split parts are alternated between parents and then glued together to form 

two new children chromosomes. 

 

Uniform Binary Crossover 

Figure 4.41 n-point Binary Crossover Mechanism 

Sim

Figure 4.42 Uniform Binary Crossover Mechanism [21] 
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4.5.4

asic types of 

recom

 in the following paragraphs are taken for explorations. 

.2 Real-parameter Recombination 

In the above binary-coded crossover for GA, decision variables are coded in finite-

length strings and exchanging portions of two parent string is easier to implement and 

visualize. Simply flipping a bit to perform mutation is also convenient and resembles a 

natural mutation event. In real-parameter GA, the main challenge is how to use a pair of 

real-parameter decision variable vectors to create a new pair of offspring vectors or how 

to perturb a decision variable vector to a mutated vector in a meaningful manner. As in 

such cases the term “crossover” is not that meaningful, they can be best described as 

blending operators. Herrara et al. [104] provided a good overview of many real-

parameter crossover and mutation operators. Generally, there exist two b

bination rules used in real-parameter GA: line and intermediate recombination 

rules. 

Line Recombination 

Figure 4.43 shows that line recombination can generate any point on the line 

defined by the parents within the limits of the perturbation, α, for a recombination in 

two variables. Three line recombination rules (Linear, BLX-αand Fine-adjusting 

recombination) as stated
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One of the earliest implementations was reported by Wright [105], where a linear 

ollowing three solutions: 

Linear Recombination 

recombination operator created the f

( ) ( )( )t
i

t
i xx ,2,15.0 +                                              (4.58a) 

( ) ( )( )t
i

t
i xx ,2,1 5.05.1 ⋅−⋅                                         (4.58b) 

( ) ( )( )t
i

t
i xx ,2,1 5.15.0 ⋅+⋅−                                        (4.58c) 

from two parent solutions ( )t
ix ,1  and ( )t

ix ,2  at generation t with the best two solutions 

being chosen as offspring as shown in Figure 4.44. 

 

Blend Crossover (or BLX-α Recombination) 

Figure 4.43 Geometric Effect of Line Recombination [21] 

Figure 4.44 Linear Recombination for real-parameter GA [19] (redrawn by Lih) 
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Goldberg [21] and Eshelman and Schaffer [106] suggested a blend crossover (BLX-

α) operator for real-parameter GA. For two parent solutions ( )t
ix ,1 and t generation 

t (assuming < ), the BLX-α randomly picks a solution in the range 

( )t
ix ,2 a

( )t
ix ,1 ( )t

ix ,2

( ) ( ) ( )( ) ( ) ( ) ( )( )[ ]t
i

t
i

t
i

t
i

t
i

t
i xxxxxx ,1,2,2,1,2,1  , −⋅+−⋅− αα

Figure 4.45. Thus, if iu  is a random numb

. This crossover operator is illustrated in 

er between 0 and 1, the following is an 

offspring: 

( ) ( ) ( ) ( )t
ii

t
ii

t
i xxx ,2,11,2 1 ⋅+⋅−=+ γγ                                    (4.59) 

where ( ) ααγ −⋅+= ii u21 .

( ) ( )

 If α is zero, this crossover creates a random solution in the 

range ( )t
i

t
i xx ,2,1  , . Usually, the BLX-0.5 (with α = 0.5) can perform better than BLX 

operators with any other α value, and the fact iγ  is uniformly distributed for a fixed 

value

 

Fine-adjusting Recombination 

As previously mentioned, the chromosomes of the offspring are usually very similar 

to those of their parents to keep the good genes in the next generation. In this subsection,

 of α. 

 

Figure 4.45 Blend Crossover (BLX-α) for real-parameter GA [19] (redrawn by Lih)
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a new real-parameter crossover namely, a fine-adjusting recombination, is developed 

throu

Putting closer  

gh the fine-tuning parents’ chromosomes to generate the new chromosomes of their 

offspring according to a following rules: 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )txtxtxtx

txtxtxtx

212
'
2

211
'
1

1

1

−−=+

−+=+

σ

σ
                        (4.60) 

Pulling away  
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )txtxtxtx

txtxtxtx

122
'
2

121
'
1

1

1

−−=+

−+=+

σ

σ

where ( )tx and ( )tx  are parents for crossover to generate the offspring, ( )1' +tx  and 

( )'

                        (4.61) 

2 +tx  are two new generated offsprings, and 

1 2 1

1 σ  (scaling factor) is a small random 

number between 0 and 1.  

In other words, according to the previous reproduction procedure, good solutions 

with the high fitness values were chosen to put into the mating pool. After the operations 

of Equations (4.60) and (4.61), two new slightly-changed offspring were generated from 

two randomly-picked parents in the mating pool. Further, Equations (4.60) and (4.61) can 

be combined as  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )txtxtxtx 212

'
2

'

cos1 −⋅⋅−=+ θσ
                         (4.62) 

txtxtxtx 2111 cos1 −⋅⋅+=+ θσ

where θ  is limited between π−  and π , and σ  is randomly taken from [-0. 5, 0.5]. In 

reality, the term “ θcos ” is used to randomly generate small positive or negative values. 

The rules of the Equation (4.62) are used in this research for CMP process modeling. 

Consider the following two parents with 3 variables each: 

Parent 1          12         25        5 
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Parent 2        123         4          34 

The chosen θσ cos⋅  for this example are (the same for all variables of parents): 

Sample 1         0.5        

Sample 2         0.1        

The new individuals are calculated as: 

Offspring 1       67.5         14.5        19.5 

Offspring 2       23.1         22.9        7.9 

Intermediate Recombination 

Intermediate recombination is a method only applicable to real variables (and not 

binary variables). Given a real-valued encoding of the chromosome structure, 

intermediate recombination is a method of producing new phenotypes around and 

between the values of the parents’ phenotypes. Offspring are produced

following rules,  

 according to the 

( ) ( ) ( ) ( )( )

( ) ( ) (xtxtx

txtxx

2
'
2

21

1

1

⋅−=+

−⋅+=

β

β

( ) ( ))txt

txt

21

1
'
1

−

+
                                (4.63) 

where β  is a scaling factor usually chosen uniformly at random over some interval, 

typica  and lly [ ]dd +− 1 , ( )tx1  and ( )tx2  are parent chromosomes. The value of the 

parameter  ( ) defines the size of the area for possible offspring. Each variable 

in the offs sult of combining the variables in the parents according to the 

d [ ]1 , 0∈d

pring is the re

above expression with a new β  chosen for each pair of parent genes.  

Consider the following two parents with 3 variables each: 

Parent 1          12         25        5 
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Parent 2        123         4          34 

The chosen β  for this example are (different for variables of p ts): 

Samp

Offspring 1       67.5         1.9        2.1 

O

aren

le 1         0.5        1.1      -0.1 

Sample 2         0.1        0.8       0.5 

The new individuals are calculated as: 

ffspring 2       23.1         8.2        19.5 

In geometric terms, intermediate recombination is capable of producing new 

s within a slightly 

range of

variable larger hypercube than that defined by parents but constrained 

by the  β  as shown in Figure 4.46 

 

4.5.5 Mutation 

In natural evolution, mutation is a random process where one allele of a gene is 

replaced by another to produce a new genetic structure. In GA, mutation is randomly 

applied with

Figure 4.46 Geometric Effect of Intermediate Recombination [21] 

 low probability, mutationP , typically in the range 0.001 and 0.01, and modifies 

elements in the chromosomes. Usually considered as a background operator, the role of 

 147



 

mutation is often seen as providing a guarantee that the probability of searching any 

given string will never be zero and acting as a safety net to recover good genetic material 

that may be lost through the action of selection and crossover. Videlicet, the need of 

mutation is to keep diversity in the population and prevent from trapping in the local 

minima. The same as the previous recombination, the binary-coded and real-parameter 

mutations demonstrates the different rules to generate the offspring. 

 

Single-point Mutation 

The effects of mutation on a binary string are illustrated in Figure 4.47.  Figure 4.47 

(a) shows a 10-bit chromosome representing a real value decoded over the interval [0, 10] 

using both standard and gray coding and a mutation point of 3 in the binary string. Here, 

binary mutation flips the value of the bit at the loci selected to be the mutation point. 

Given that mutation is generally applied uniformly to an entire population of strings, it is 

possible that a given binary string may be mutated at more than one point. Figure 4.47 (a) 

is a typical example of single-point mutation. 

4.5.5.1 Binary Mutation 
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(a) Single-point mutation [19] 

(b) Swap mutation 

(c) Inversion mutation 

 

Swap Mutation 

In Figure 4.47 (b), two alleles were picked at random and

the string. This method can preserve most of adjacency information.  

Inversion Mutation 

o alleles were pi

e een them

ly rearranged 

the alleles in those positions in this subset. 

 swapped their positions in 

In Figure 4.47 (c), tw cked at random and then inverted the 

substring b tw . This method can preserve most adjacency information (only 

breaks two links) but disruptive of order information. 

Scramble Mutation 

In Figure 4.47 (d), a subset of genes was picked at random and random

(d) Scramble mutation 

Figure 4.47 Binary Mutation 
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Alt  instances of a mutation operation to generate 

obability is not a 

random o ias for creating only a few solutions in the 

search sp

4.5.5.2 R

As eant to have a local perturbation. In real-

param

the gene values or random selection of new 

values within the allowed range. In the following, some of the most commonly used real-

parameter mutation operators are presented. 

Random Mutation 

Equation (4.64) shows the rule of this simplest mutation which creates a solution 

randomly from the entire search space [107]: 

hough it may not happen in all the

some better solutions than original, mutating a string with a small pr

peration since the process has a b

ace. 

 

eal-parameter Mutation 

in the binary-coded GA a mutation is m

eter GA a local perturbation in a predefined manner can also be useful in 

maintaining diversity in a population. With real-parameter (or non-binary) representation, 

mutation is achieved by either perturbing 

( ) ( )L
i

U
ii

t
i xxry −⋅=+1,1                                           (4.64) 

where is a random number in [0 , 1]. Figure 4.48 shows this probability distribution

with a continuous line. This operator is independent of the parent solution and is 

equivalent to a random initialization. Instead of creating a solution from the entire search 

space, a solution in the vicinity of the parent solution with a uniform probability 

distribution (shown with a dashed line in Figure 4.48) can also be chosen: 

ir  

( ) ( ) ( )tt rxy Δ⋅−+=+ 5.0,11,1                               (4.65) ii ii
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where iΔ  is the user-defined maximum perturbation allowed in the i-th decision variable. 

 

tion is the easiest way, but uncontrollable results reduce the 

appli

Figure 4.48 Random Mutation Operator for Real-parameter GA [19] 

Non-uniform Mutation 

The random muta

cability. Figure 4.48 demonstrates the probability of creating a solution closer to the 

parent is more than the probability of creating one away from it. However, as the 

generations (t) proceed, this probability of creating solutions closer to the parent gets 

higher and higher [107]. 

( ) ( ) ( ) ( )( ) ( )
⎟⎞⎜⎛ −⋅−⋅+= −++

b
t

t

i
L

i
U

i
t

i
t

i rxxxy max
11,11,1 1τ                    (4.66) 

⎠⎝

Here, τ  takes a Boolean value, -1 or 1, each with a probability of 0.5. The parameter 

 is the maximum number of allowed generations, while b is a user-defined parameter. 

In this way, from early on, the above mutation scheme acts like a uniform distribution, 

while in later generation it acts like Dirac’s function, thus allowing a focused search. 

Normally Distributed Mutation 

A simple and popular method is to use a zero-mean Gaussian probability 

distribution: 

maxt
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( ) ( ) ( )i
t

i
t

i Νxy σ , 01,11,1 += ++                                 (4.67) 

Here, the parameter iσ  is a fixed, user-defined parameter. This parameter is important 

and must be correctly set in a problem. Such a parameter can also be adaptively changed 

in every generation by some predefined rule.  

Polynomial Mutation 

The probability distribution can also be a polynomial function, instead of a normal 

distribution [19] 

( ) ( ) ( ) ( )( ) i
L

i
U

i
t

i
t

i xxxy δ⋅−+= ++ 1,11,1                          (4.68) 

where the parameter iδ  is calculated from the polynomial probability distribution 

( ) ( )( ) m

mP ηδηδ −+⋅= 115.0 : 

( ) ( )

( )[ ] ( )⎪⎩

⎪
⎨
⎧

≥−−

<−
=

+

+

5.0 if    ,121

5.0 if           ,12

1
1

1
1

ii

ii

i

rr

rr

m

m

η

η

δ                                (4.69) 

This distribution is similar to the non-uniform mutation operator, although a fixed value 

of the parameter mη  is suggested here. The mutation operator is modified for two regions, 

i.e., ( )[ ]i
L

i xx  ,  and [ ( ) ]U
ix , , very similar to the previous non-uniform mutation operator. 

The

ix

 difference is that in this mutation operator the shape of the probability distribution is 

directly controlled by an external parameter mη  and the distribution is not dynamically 

changed with generations. 

Novel Random Mutation 



 

The novel mutation rules used in this research are analogous to Equation (4.62) (for 

fine-adjusting recombination) as shown in Equation (4.70). 

( ) ( ) ( ) ( )( )txtxtxtx 211
'
1 cos1 −⋅⋅+=+ θϕ

( ) ( ) ( ) ( )( )txtxtxtx 212
'
2 cos1 −⋅⋅−=+ θϕ

                          (4.70) 

where ϕ  is also a scaling factor, but whose range, [-0.5 , 0.5], is usually larger than σ  in 

much smaller than recombination (or c er) rate,  (0.1 ~0.5). However, 

Wright [105] and Janikow and Michalewicz [108] demonstrate how real-parameter GA 

may take advantage of higher mutation rates than binary-coded GA, increasing the level 

of possible exploration of the search space without adversely affecting the convergence 

characteristics. Indeed, Tate and Smith [109] argue that for codings more complex than 

binary, high mutation rates can be both desirable and necessary and show how, for a 

complex combinational optimization problem, high mutation and non-binary coding 

yielded significantly better solutions than the normal approach. 

 

the population 

convergence [111].  

Equation (4.62).  

Additionally, the mutation rate, mutationP , which is typically from 0.001 to 0.01,  is 

rossov crossoverP

Summary 

Currently, many other variations on the mutation operator have being proposed. For 

example, biasing the mutation towards individuals with lower fitness values to increase 

the exploration in the search without losing information from the fitter individuals [110] 

or parameterizing the mutation such that the mutation rate decreases with 
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Mühlenbein [112] introduced a mutation operator for the real-parameter GA that 

uses a non-linear term for the distribution of the range of mutation applied to gene values. 

It was claimed that by biasing mutation towards smaller changes in the gene values, 

mutation can be used in conjunction with recombination as a foreground search process.  

Additionally, other mutation operations include that of trade mutation [113], 

whereby the contribution of individual genes in a chromosome is used to direct mutation 

towards weaker terms, and reorder (or swap) mutation [113], that swaps the positions of

se diversity in the decision variable space. 

is when not all offsprings are to be used at each generation or if 

more offsprings are generated than need be. By a reinsertion scheme 

should be inserted into the new population and which individuals of the population will 

be replaced by offspring are to be determined.  

The selection algorithm used determines the reinsertion scheme including: 

 

 

the bits or genes to increa

 

4.5.6 Reinsertion 

After producing offsprings they must be inserted into the population. This is 

especially important, if fewer offsprings are produced than the size of the original 

population. Another case 

which individuals 

 Global reinsertion for all population based selection algorithm (such as roulette-

wheel selection, stochastic universal sampling, truncation selection). 

 Local reinsertion for local selection

 

4.5.7 Termination Criteria 
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Because the GA is a stochastic search method, it is dif

mon practice is to terminate the GA 

mber of generations and then test the quality of the best members 

of the population agains

a fresh search initiated. 

 

4.6 Applications of Multi-objective Optimization to CMP 

A multi-objective optim lem (MOOP) implies simultaneous dealing with 

more than one objective function. In most practical decision-making problems, multiple 

objectives or multiple criteria are evident. In engineering practi

to formulate a design when there are several criteria or design objectives to be met at the 

same time. In this research, higher MRR and lower WIWNU are two main objectives in 

the CMP process. Obviously, this is a typical MOOP. If the objectives are conflicting, 

es one of finding th

et

-objective optimization problem in the past. However, there 

tal differences between the working principles of single and 

multi-objective optimization algorithms. In a single-objective optimization problem, the 

ficult to formally specify 

convergence criteria. As the fitness of a population may remain static for a number of 

generations before a superior individual is found, the application of conventional 

termination criteria becomes problematic. A com

after a pre-specified nu

t the problem definition. If no acceptable solutions are found, the 

GA may be restarted or 

4.6.1 Multi-objective Optimization Problems (MOOP) in CMP 

ization prob

ces, it is often a challenge 

then the problem becom e best possible designs that satisfies the 

conflicting objectives under different trade-off scenarios. 

Because of a lack of suitable solution m hodologies, an MOOP has been mostly 

cast and solved as a single

exist a number of fundamen
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task i

ly assumed that the task in a 

multi-objective optimization is to find an optimal solution corresponding to each 

objective function. 

mizes a set of objective functions. The set of decision variables that 

produ d to be

 poss

which we may choose the desired values of the design variables. 

 are many process inputs (or decision variables) which affect these 

s to find one solution which optimizes the sole objective function. Extending the 

same idea to multi-objective optimization, it may be wrong

In reality, to a MOOP, it is usually possible to find a set of values for the decision 

variables that opti

ces the optimal result is designate  the optimal set. This optimal set is referred 

to as the Pareto optimal set (Figure 4.49) and it yields a set of ible answers from 

 

As stated earlier, higher MRR and lower WIWNU are two main objectives in the 

CMP process. There

Figure 4.49 Definition of the Pareto Optimality for Two Conflicting Objectives [12]
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two c

4.6.2

m its current optimal 

value. Note that, on the basis of this concept, blue points in the Figure 4.48 are not Pareto 

onflicting objectives. Except for constructing the accurate process models for MRR 

and WIWNU, searching the optimal set of process inputs to satisfy these two objectives 

is also necessary for advancements of semiconductor industry. 

 

 Concepts of Pareto Optimum 

As shown in Figure 4.49, a set of points is said to be Pareto optimal (i.e., the red 

diamond points in the figure), if any movements of these red points not along the Pareto 

front will cause at least one of the other objectives to deteriorate fro

optimal. 

A more formal definition of Pareto optimality is given by [114]. Consider, without 

the loss of generality, the minimization of the n components nkf κ ,,2,1 , K= , of a vector 

function F of a vector variable x in a universe μ , where 

( ) ( ) ( ) ( )( )xfxfxfxF ,,, K n21=                                   (4.71) 

μμ ∈xThen a decision vector is said to be Pareto-optimal if and only if there is no 

μν ∈x  for which ( ) ( ) ( ) ( )uuxFU ,,=nv 1 K vvxFV ,,==  dominates = nu 1 K , i.e., 

there is no μν ∈x  such that 

{ } ii uvni ≤∈∀  ,,1 K  and { } ii uvni <∈∃  ,,1 K  

The set of all Pareto-optimal decision vectors is called the Pareto-optimal set of the 

problem. The corresponding set of objective vectors is called the non-dominated set, or 

 Pareto front dominates all other possible solutions and in Pareto front. Apparently, the
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most 

ethod are the most representative ones. 

Although, these conventional algorithms have some differences in their design 

gle-

ys directed by the 

prefe

its single, perfect solution. 

Instea

cases, it is located on the boundary of the objective vector space as shown in Figure 

4.49 for a two-objective optimization problem. 

 

4.6.3 Problems in Conventional Methods for MOOP 

Several methods have been recognized as popular decision-making methods for 

solving MOOP. Among all of these methods, weighting objective method, goal 

programming method, and min-max optimum m

procedures, they all are based on a similar spirit that converts a MOOP into a sin

objective optimization problem. These conversions are alwa

rences of the decision-maker. Meanwhile, gradient-based or simplex-based 

optimization techniques are usually applied as a searching tool for the optimal solution, 

which may result in a local optimum solution for complicated optimization problems. 

In many real-world multi-objective optimization problems, however, a suitable 

solution for the overall problem can hardly be found via the previously mentioned 

methods since the objectives are different, sometimes even conflicting. Generally 

speaking, the simultaneous optimization of multiple, possibly competing, and conflicting 

objective functions are more attractive in that it seldom adm

d, multi-objective optimization problems tend to be characterized by a family of 

alternatives that must be considered equivalent in the absence of information concerning 

the importance of each objective relative to others.  
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From the definition of the Pareto optimality [114], “an MOOP tends to be 

characterized by a family of trade-off solutions, which must be considered equivalent in 

the absence of the information of the relevance of each objective relative to the others” 

[114]. Therefore, with this spirit in mind, Multi-objective Evolutionary Algorithms 

(MOE

MRR and WIWNU, the 

objectives often conflict across a high-dimensional problem space and may also require 

extensive computational resources. General multi-objective optimization problem 

(MOOP) solution methods range from linear objective function aggregation to Pareto-

based techniques. In an attempt to stochastically solve problems of this generic class in 

an acceptable timeframe, specific multi-objective evolutionary algorithms (MOEA) were 

initially developed in the mid-eighties for application to the MOP domain. Since then, a 

forty-fold increase in the number of MOEA publications has been found for various 

solution techniques proposed, along with applications in numerous scientific and 

engineering disciplines [115]. 

In their early development, Evolutionary Algorithms (EA), a class of population-

based optimization approaches, have been recognized to be well suited for multi-

objective optimization. In EA, multiple individuals search for multiple solutions in

parallel, advantageously producing a fa

A) have drawn more and more attention form researchers in this field. 

 

4.6.4 Multi-objective Evolutionary Algorithms (MOEA) 

Solving multi-objective scientific and engineering problems is generally a very 

difficult goal. In those particular optimization problems, such as 

 

mily of feasible solutions to the problem. The 
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ability to handle complex problems involving features, such as discontinuities, multi-

modality and disjoint objective vector spaces reinforces the potential effectiveness of EA 

in multi-objective search and optimization, which is perhaps the problem area where EA 

most distinguish themselves from other algorithms [114]. 

A have been proposed as listed in Table 4.3 and 

appli

 to be maximized [117]. For the first objective, a Pareto-based fitness 

assig

diversity. In addition, several other techniques have also be

scheme [117, 118], corwded comparison [118], archive truncation [117]. 

Although all of these techniques are very important for MOEA, the fitness 

assignment scheme, population density preservation method and elitism archive are 

the m approaches, which have been applied in all of the most 

successful MOEA. 

Since the 1980’s, several MOE

ed [116]. These algorithms share the same purpose – approximate a uniformly 

distributed, near-optimal and near-complete Pareto front for a given MOOP. Generally, 

the approximation of the Pareto-optimal set involves two conflicting objectives: the 

distance to the true Pareto front is to be minimized while the diversity of the evolved 

solutions is

nment (ranking scheme) is usually designed in some state-of-the-art MOEA [116] in 

order to guide the search towards the ideal Pareto optimal front. For the second objective, 

some successful MOEA provide a density estimation method to preserve the population 

en adopted, such as elitism 

considered ost crucial 

A conceptual framework for MOEA is shown in Figure 4.50 [1] 
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Figure 4.50 Conceptual Framework for MOEA [1] (redrawn by Lih) 

In Table 4.3 a list commonly used MOEA in current MOOP is given. The biggest 

differences between MOEA listed in Table 4.3 are the blocks, “Individual assessment” 

and “Elitism”. In order to evolve an evenly distributed population along Pareto front or to 

distribute the population at multiple optima in the search space, many methods have been 

Individual assessment Elitism fitness 

sharing [119], fitness scaling [5], sequential niching [120], dynamic niching [121], 

immune system [122], ecological GA [123], standard crowding [124], deterministic 

crowding [125], restricted tournament selection [126], and clearing [127]. 

proposed for the “ ” and “ ” procedures, including 
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Table 4.3 Common MOEA used for MOOP [12] 

Niched Pareto Genetic Algorithm (NPGA1994Horn et al.

Multi-objective Genetic Algorithm (MOGA)1993
Fonseca &
Fleming

Vector Evaluated Genetic Algorithm (VEGA)1985Schaffer

MOEAsYearInventors

 

In this research, the Elitist Non-Dominated Sorting Genetic Algorithms (NSGA-II), 

described in the Section 4.5.6 is used for solving the higher MRR and lower WIWNU in 

CMP process to find out the optimal process setting range. 

 

4.6.5 Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) 

In NSGA-II, the offspring population  is first created by using the parent 

popu

 tQ

lation tP . However, instead of finding the non-dominated front of tQ  only, the first 

two populations are combined to form R  of size t N2 . Then, a non-dominated sorting is 

used to cl y the entire population inated sorting is over, the 

new population is filled by solutions of different non-dominated fronts, one at a time. The 

assif tR . Once the non-dom

Elitist Nondominated Sorting Genetic Algorithm (NSGA-II)2002Deb et al.

(SPEA 2)
2001Zitzler et al.

Dynamic Multi-objective Evolutionary Algorithm (DMOEA)2002Lu & Yen

Elitist Strength Pareto Evolutionary Algorithm 

Strength Pareto Evolutionary Algorithm (SPEA)1999Zitzler & Thiele

Rank-Density based Genetic Algorithm (RDGA)2002Lu & Yen

ion Strategy (PAES)

Nondominated Sorting Genetic Algorithm (NSGA)1994Sr ivas & Deb

)

in

Pareto Archived Evolut1999Knowles & Corne

Elitist Nondominated Sorting Genetic Algorithm (NSGA-II)2002Deb et al.

(SPEA 2)
2001Zitzler et al.

Dynamic Multi-objective Evolutionary Algorithm (DMOEA)2002Lu & Yen

Elitist Strength Pareto Evolutionary Algorithm 

Strength Pareto Evolutionary Algorithm (SPEA)1999Zitzler & Thiele

Rank-Density based Genetic Algorithm (RDGA)2002Lu & Yen

ion Strategy (PAES)

Nondominated Sorting Genetic Algorithm (NSGA)1994Sr ivas & Deb

)

in

Pareto Archived Evolut1999Knowles & Corne

Niched Pareto Genetic Algorithm (NPGA1994Horn et al.

Multi-objective Genetic Algorithm (MOGA)1993
Fonseca &
Fleming

Vector Evaluated Genetic Algorithm (VEGA)1985Schaffer

MOEAsYearInventors
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filling starts with the best non-dominated front and continues with solutions of the second 

non-dominated front, followed by the third non-dominated front, and so on. Since the 

overall population size of tR  is N2 , not all fronts may be accommodated in N  slots 

available in the new population. All fronts which could not be accommodated are simply 

delete

 

d. When the last allowed front is being considered, there may exist more solutions 

in the last front than the remaining slots in the new population. This scenario is illustrated 

in Figure 4.51. Instead of arbitrarily discarding some members from the last front, it 

would be wise to use a niching strategy to choose the members of the last front, which 

reside in the least crowded region in that front. 

Figure 4.51 Schematic of the NSGA-II Procedure 
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In the following, the algorithm in a step by step format is outlined. Initially, a 

random population is created. The population is sorted into different non-domination 

levels. Each solution is assigned a fitness which is equal to its non-domination level. 

Thereafter, the selection for reproduction, recombination, mutation, and reinsertion 

procedures are used to create an offspring population  of size N. The NSGA-II 

procedure is outlined in the following:  

Step 1 Combine parent and offspring populations and create . Perform a 

non-dominated sorting to  and identify different fornts: etc. 

Step 2 Set new population 

tP  

tQ

ttt QPR ∪=

tR  ,,2,1 , K=iFront i

01 =+tP . Until NFrontP it <++1. Set a counter 1=i , 

perform  and  itt FrontPP ∪= ++ 11 1+= ii . 

Step 3 Perform the crowding-sort procedure and include the most widely spread 

( )

i 1+t

Step 4 Create offspring population 1+tQ  form 1+tP  by using the crowded tournament 

selection, recombination, and mutation operators. 

In Step 3, the crowding-sort of the solutions of the front i  is performed by using a 

crowding distance metric. The population is arranged in descending order

1+− tPN  solutions by using the crowding distance values in the sorted 

 to . 

 of magnitude 

of the crowding distance values. In Step 4, a crowding tournament selection operator, 

which also uses the crowding distance, is used. 

 

4.6.5.1 Crowding Distance 

Front P
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In order to evolve an evenly distributed population along Pareto front or to 

distribute the population at multiple optima in the search space, crowding distant is 

another important issue. More crowded parts should assign lower fitness values to each 

solution involved.  

To get an estimate of the density of solution surrounding a particular solution  in 

the population, the average distance of two solutions is taken on either side of the 

solution  along each of the objectives. This quantity serves as an estimate of the 

perimeter of the cuboid formed by using th the vertices. In the 

Figure 4.52, the crowding distance of the -th solution in its front is the average side-

length of the cuboid (shown by a dashed box) [1].  

i

 i id

e nearest neighbors as 

i

 
Figure 4.52 Calculation of Crowding Distance for NSGA-II [1] (drawn by Lih) 
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The following algorithm is used to calculate the crowding distance of each point in 

the Front. 

Crowding Distance As gnm  Procedures for the i -th solution in Figure 4.52: 

Step 1 Initially, set the crowding distance of the solution i , 0

si ent

=id . 

Step 2 For the objective function, 1f , calculate the 1A  and 1a . Then calculate the id  

using Equation (4.71): 

1

1

A
a

ii dd +=                                                   (4.71) 

11

11

A
a

Ai =  

Step 3 For the objection function, , calculate the  and . Then calculate th

again using Equation (4.71): 

0
a

d +=⇒

2f 2A 2a e id  

21

2112

2

2

1

1

AA
aAaA

A
a

A
a

d i ⋅
⋅+⋅

=+=⇒  

The larger the crowding distance of the solution is, the higher the fitness will be 

assigned. In other words, the solution will have the higher probability to be copied to 

the next generation. 

 

4.6.5.2 Crowded Tournament Selection Operator 

The crowded comparison operator compares two solutions and returns the winner of 

the tournament. It assumes that every solution  has two attributes: 

1. A non-domination rank  in the population. 

i  

i  

i

ir
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2. A

 with another solution , if any of the following 

1. 

 local crowding distance, id  in the population. 

As explained in the previous paragraphs, the crowding distance id  of the solution i  

is a measure of the search space around i  which is not occupied by any other solution in 

the population. Based on these two attributes, the crowded tournament selection operator 

can be defined as follows: 

The solution i  wins a tournament  j

conditions are true: 

If solution i  has a better rank, i.e., ji rr < . 

2. If they have the sam  but the solution s a large e 

than solu j

e rank ha r crowding distanc

tion , that is, 

i  

j i rr =  and j .  i dd >

dominated front. Th

same non-dominated front by deciding on their crowded distance. The one residing in a 

less crowded area (with a larger crowding distance ) wins. 

 

 

 

The first condition makes sure that the chosen solution lies on a better non-

e second condition resolves the tie of both solutions being on the 

id
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CHAPTER V  

MODELING AND OPTIMIZATION OF CMP PROCESS 

ulti-objective evolutionary 

algorithms (MOEA) is also introduced.  

In this investigation, three cases of CMP experiments are used to model the CMP 

process. The experiment data sets for Case I and II were taken from those reported by 

Wang et al. [30, 79-81]. The experimental data sets for Case III were conducted by this 

author. Except for modeling CMP process, searching for the suitable input settings for 

process optimization is another main topic in this investigation. 

In addition, three-stage CMP experiments in Case III is provided, each with 1875, 

125, and 16 data sets respectively for constructing the CMP models, testing the models 

and verifying the input settings for process optimization.  

 

 

5.1 Introduction 

In this chapter, modeling of the CMP process (i.e., MRR and WIWNU) using 

Neural Networks (NN), ANFIS (GP and SC), and Genetic Algorithms (GA) is described 

in detail. Further, searching the setting ranges of input variables for the optimization of 

CMP (i.e., higher MRR and lower WIWNU) using m
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5.2 C

 I Experiments 

 of 

r training the NN and ANFIS 

in

 

5.2.2 Case II Experiments 

The 54 source data sets for Case II [79-81] are given in Table A-5 of Appendix III.  

Of this, the 45 data sets were randomly chosen, (similar to the Case I) for training the NN 

and ANFIS models, and the other 9 data sets for testing the trained models. 

5.2.3 C

As discussed in Chapter III and referring to the experim nts and conclusions from 

Wang et al.[30, 79-81] for Cases I and II,  5 main input variables (i.e., abrasive 

conce ,

thin wafer non-uniformity (WIWNU)) for designing these CMP 

experiments were selected. 

 via 49-point inspection as shown in 

Figur

tandard deviation of 

f

MP Experiments 

5.2.1 Case

The 27 source data sets for Case I [79, 81] are summarized in Table A-4

Appendix III . Of this, 22 data sets were randomly chosen fo

(GP and SC) models, and the other 5 data sets for testing the tra ed models. 

 

ase III Experiments 

e

ntration or solid content (Sc), down pressure (Pd)  back pressure (Pb), platen speed, 

(Vp), and polishing time (T)) and 2 important output performances (i.e., material removal 

rate (MRR) and wi

The average thickness of a wafer was measured

e 5.1 before and after CMP. Then, Equations (3.16a) and (3.16b) in the Section 

3.4.1 are used to calculate the MRR and WIWNU. Usually, the s

wa er thickness before CMP is larger than that after CMP.  
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24 points at R where R s  i
the edge exclusion boundary

16 points at ⅔R

1 points at 
the center

8 points at ⅓R

Table 5.1 lists other experiment conditions used for Case III experiments. 

 

Table 5.1 Experiment Conditions for Case III Experiments 

Primary 20 ~30 nm, Secondary 0.1 ~1 μm, average 0.25 μmParticle sizes

Carrier Speed = 25 rpm, Oscillation Speed = 2 mm/sec, Flow rate = 100 ml/min 

Cabot SS25 (Fume silica 12 wt%, KOH formulated at pH 10.5)Slurry

6” with Silicon Oxide coatingWaf r

Fujibo Polypas #FP85Polishing Pad

IPEC/ Westech Avanti 372M Oxide CMP systemsMachine

e

Primary 20 ~30 nm, Secondary 0.1 ~1 μm, average 0.25 μmParticle sizes

Carrier Speed = 25 rpm, Oscillation Speed = 2 mm/sec, Flow rate = 100 ml/min 

Cabot SS25 (Fume silica 12 wt%, KOH formulated at pH 10.5)Slurry

6” with Silicon Oxide coatingWaf r

Fujibo Polypas #FP85Polishing Pad

IPEC/ Westech Avanti 372M Oxide CMP systemsMachine

e

Figure 5.1 49-point Inspection to Measure Thickness Change of Wafer 
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5.2.3.1 First-stage Experiments – Training data sets 

For the requirements of highly accurate m  NN, the substantial 

experimental data sets for modeling construction is necessary. Therefore, the factorial 

design of experiment (DOE) is chosen to design the first-stage of the CMP experiments. 

The major reason for choosing the factorial DOE is to make an attempt to cover the entire 

anges for providing complete processing information, and to greatly 

incre

odeling using

input and output r

ase the accuracy for process modeling. The experimental design includes 5 levels in 

Sc, Pd, Pb and Vp, and 3 levels in T. Totally, there consist of 1875 (= 35555 ×××× ) 

trials are involved in the first-stage experiment. 

Table 5.2 gives the defined range of each input variable used in this investigation. 

 

5.2.3.2 Second-stage Experiment – Testing data sets 

6041225Level 5

5031020Level 4

5030

60402815Level 3

1610Level 2

4020045Level 1

Polishing
Time
(T)
sec

Platen
Speed
(Vp)
rpm

Back
Pressure

(Pb)
psi

Down
Pressure

(Pd)
psi

Solid
Content

(Sc)
weight %

6041225Level 5

5031020Level 4

5030

60402815Level 3

1610Level 2

4020045Level 1

Polishing
Time
(T)
sec

Platen
Speed
(Vp)
rpm

Back
Pressure

(Pb)
psi

Down
Pressure

(Pd)
psi

Solid
Content

(Sc)
weight %

Table 5.2 Defined Ranges of Input Variables 
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For validating the trained models using NN, ANFIS (GP and SC), and GA the 

second-stage experiments provide 125 testing data sets for testing the trained models. The 

settin

or maintaining accuracy and less uncontrollable deviation in the CMP experiments, 

the first- and second-stages are blended together during the 

polish

wo main objectives of the experiments in this stage are to verify the predictions 

rch for suitable settings of 5 input variables for process 

optim

ayer Feedforward Neural Networks 

5.3.1

 and output layers. 

gs of 5 input variables for each testing experiment are randomly chosen between 

their defined ranges. For example, the defined range of Sc ([5 , 25]) by weight percent is 

listed in Table 5.2. 

F

the experimental settings of 

ing experiments. 

 

5.2.3.3 Third-stage Experiments – Optimal Input Settings 

T

from the MOEA and to sea

ization via the guidance from the MOEA. In other words, the experiments of this 

stage are guided by the simulation results from the MOEA. The comparisons between the 

simulation and experimental results are listed in Chapter VI. Totally, 16 extra trial data 

sets are utilized to verify this idea. 

 

5.3 Modeling Using Multil

 Difficulties Encountered prior to Neural Network Modeling 

In training of the NN, the following four difficulties are usually encountered:  

1. Deciding the portions of training data and testing data. 

2.  Deciding the transfer functions of neurons in the hidden
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3. Deciding the training methods. 

4. Deciding the number of layers and neurons in the hidden level.  

As a matter of fact, the first problem can be solved using the approach mentioned in 

the previous section. The training and testing data can be simultaneously obtained from 

the first- and second-stages of experiments. Due to high nonlinearity of the CMP process, 

the non-linear type transfer functions (such as “tansig”) are expected to perform better in 

learning during the training period.  

For obtaining good generalization, the Bayesian regulation method [128] which can 

minimize a combination of squared errors and weights and determine a correct 

combination was adopted to train the NN. Additionally, for faster learning, the 

Levenberg-Marquardt optimization will be also used. Under the Matlab programming 

platforms, the command “trainbr” [128] which covers these two methods will be 

employed to design the NN models. 

 

5.3.2 Determining the Optimal Neural Network Architectures 

Based on a common rule-of-thumb used among the experienced NN designers the 

ratio of training exemplars to network weights shows a minimum of 10:1 (as stated in 

Section 4.2.9). Taking Case III experiments as an example, the number of weights should 

be no more than 187 from the 1875 training data sets. Taking the [5-15-7-1] NN 

architecture for example, the number of weights can be calculated as 

[ ]
18717715155 

 rearchitertu NN 1-7-15-5 of  WeightsofNumber  Total

=×+×+×=
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which means 5 neurons in the input layer, 1 neuron in the output layer, 15 and 7 neurons 

in th

ement. In brie

ematically expressed as Equations (5.1) 

and ( e 

ideas learned from the multi-objective evolutionary algorithms (MOEA) can be very 

helpful to find out the optimal NN architecture. 

e two hidden layers, respectively. Actually, because we use Bayesian regulation 

method for training NN, a slightly larger ratio (5:1) replaces the aforementioned rule-of-

thumb for finding more potential NN architectures 

Before determining the number of hidden layers and hidden neurons, “what is the 

best NN architecture” should be first defined. Undoubtedly, smaller training error 

( trainE _ ) and smaller testing error ( testE _ ) are two of the most important indices. 

Additionally, the capacity of the generalization is another important requir f, 

both the aforementioned concepts can be math

5.2). Typically, it can be viewed as a multi-objective optimization problem. Th

testEtrainEtotalE ___ +=  ,  smaller is better               (5.1) totalE _

  
_
_
trainE
testEG =  ,   G  smaller is better                       (5.2) 

According to the previous explanations in Section 5.3.1, only the problem 4 remains 

to be determined. Assume that there are at most two hidden layers to be used for our NN 

architecture. On the basis of the characteristics of this problem, we can use the real-

parameter GA to form the following chromosomes shown in Figure 5.2: 
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1hn 2hn

in the hidden layer 1 in the hidden layer 2

N N

number of neurons number of neurons

11Step size

0~301 ~ 30Ranges

11Step size

0~301 ~ 30Ranges

1hnN 2hnNGenes
Parameters

 

ber of neurons in the input layer is fixed at 5 for 5 input variables and only 

IWNU. That is, the NN 

architectures

architecture. Any chosen NN architecture should meet the requirements of the above-

mentioned designer’s rule first. The number of training cycles was set at 200, using the 

command “trainbr” under Matlab programming environment.  

All combinations trained using 1875 training data sets and listed in Table 5.3 are 

qualified candidates, meeting the requirements of Equations (5.1) and (5.2). Fewer 

number of weights are preferred if they are undefeated by each other because fewer 

weights means shorter training time consuming. 

In this example, the combination of # 18 as shown in Table 5.3 was preferred to be 

Figure 5.2 Real-parameter Chromosome of NN Architecture 

The num

one neuron is setup in the output layer for MRR or W

 of MRR and WIWNU models should possess the format of 

[ ]15 . If is zero, that means only one hidden layer exists in this NN 21 −−− hnhn NN 2hnN  

chosen to construct an NN model used. 
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5.4 Modeling Using ANFIS 

0.5789 0.0030 0.00110.00191711

5.4.1 Grid Partition (GP) Method 

ts) in the training data 

can b

 

5.4.2 Subtractive Clustering (SC) Method 

Each pair of experiment data set (including inputs and outpu

e viewed as a fuzzy rule. As described in Section 4.4.2, GP generates rules by 

enumerating all possible combinations of membership functions of all input parameters. 

For example, if the number of levels for each input variable used is the same as in Table 

5.2, then some 1875 fuzzy rules are involved in the ANFIS-GP models for MRR and 

WIWNU, respectively.  

615518

0.6471 0.0028 0.00110.00171631713517

0.5789 0.0030 0.00110.00191631911516

0.6471 0.0028 0.00110.00171571417515

0.6000 0.0032 0.00120.0021771813514

0.7059 0.0029 0.00120.001717718135

0.7059 0.0029 0.00120.00171571

13

417512

0.7333 0.0026 0.001100150.1071313511

0.5357 0.0043 0.00150.00282991141559

0.4706 0.0050 0.00160.00343011131658

0.4737 0.0056 0.00180.0038535185557

0.4651 0.0063 0.0020.0043 440184452

0.5357 0.0043 0.00150.0028 3011131651

Generalization 
(E_test / E_train)E_train + E_test

Mean Square 
Testing Error 

Mean Squre
Training Error Total 

weightsBest NN Architectures
(E_test)(E_train)

0.5789 0.0030 0.00110.00191711615518

0.6471 0.0028 0.00110.00171631713517

0.5789 0.0030 0.00110.00191631911516

0.6471 0.0028 0.00110.00171571417515

0.6000 0.0032 0.00120.0021771813514

0.7059 0.0029 0.00120.001717718135

0.7059 0.0029 0.00120.00171571

13

417512

0.7333 0.0026 0.001100150.1071313511

0.5357 0.0043 0.00150.00282991141559

0.4706 0.0050 0.00160.00343011131658

0.4737 0.0056 0.00180.0038535185557

0.4651 0.0063 0.0020.0043 440184452

0.5357 0.0043 0.00150.0028 3011131651

Generalization 
(E_test / E_train)E_train + E_test

Mean Square 
Testing Error 

Mean Squre
Training Error Total 

weightsBest NN Architectures
(E_test)(E_train)

Table 5.3 Optimal NN Architectures for Modeling MRR 
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In contrast to the GP method described in the previous subsection, the subtractive 

clustering (SC) (or scattering partition) generates minimal number of rules equal to the 

same number of membership functions (or levels) pre-determined in each input. How 

many rules are needed to describe an unknown system depends on the size and 

distri

se dilem

NFIS-SC models. Investigators in this 

research community are still attempting to find  efficien

Besides, each constructed model should be check if “fragmental” situation occurred. 

 

5.4.3 

 influence with 

minimal number of tests. Obviously, this will result in sparse data. Such sparse data sets 

can only provide fewer or fragmental process information for constructing models. 

Through correction rules during the training process, a model with very small training 

bution of the given data in the entire input space. For Cases I and II, obviously, the 

size and distribution of the given data relative to the dimensions of the inputs and the 

outputs are sparse and non-uniform. The mas increase the degree of difficulties to 

obtain accurate modeling results. Too few fuzzy rules assigned for the sparse-data case 

might result in the “fragmental model” as shown in Appendix II. Conversely, too many 

fuzzy rules used can lead to “overfitting-like” (i.e., small training error but much larger 

testing error) situation. For the sake of above-mentioned factors, the trial-and-error 

method is currently used to construct the A

 the t model-constructing methods. 

Newly-developed ANFIS-SC Modeling for the Case of Sparse-data 

5.4.3.1 Origin 

In many CMP polishing situations only sparse data is available. For example, if new 

slurry chemicals are introduced, the Fabs would like to know of its
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error can be obtained, but this model usually cannot precisely portray the real features of 

the entire unknown system, namely, CMP problems. Clearly, the testing error appears as 

an important index from the present state to the real target. Our objective is to reduce the 

testing error step by step to the acceptable ranges as a sculpturing course. This is the core 

spirit behind the fine-tuning technique which will be introduced here. 

CMP process is influenced by several process variables, some of which wield a 

significant influence on MRR and WIWNU, while the others might not influence at all. 

In other words, significant variables and insignificant variables provide different 

contributions to improve the accuracy of process modeling, and simultaneously to 

Figure 5.3 shows two curve-fitting results. After training, the errors at points 4 and 

minimize simulation errors (e.g., testing error).  

9 are large. But with a slight change of slopes of the fitted curve around points 3 and 8, 

the errors can be greatly reduced or changed almost without changes in the other points. 

In other words, if we can effect these fairy local, slight changes, we can effectively 

reduce or change the testing errors with almost no change in the training errors. 
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5.4.3.2 Theoretical Concepts 

As discussed in Section 4.4.2, the ANFIS-SC model generates a much small 

number of fuzzy rules compared to ANFIS-GP. Here, the number of rules is equal to the 

number of membership functions in each input. In other words, there is the minimal 

number of parameters in the consequent part (i.e., linear parameters), but maximal 

number of the parameters in the premise part (i.e., nonlinear parameters). Moreover, 

because more membership functions are applied to describe the input space, the influence 

of each membership function is much smaller than that in the ANFIS-GP model. 

Likewise, the varieties of training errors in the ANFIS-SC model will be substantially 

smaller than those in the ANFIS-GP model, for slight changes in the membership 

functions in the premise part. Now, if the input variables, whose membership functions 

Figure 5.3 Influence of Slight Change on Testing Errors 
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are t

Step 1 Determining the significance of process inputs used in CMP experiments: The 

termine the 

nce of each input parameter used in the CMP process. 

Step 

o be slightly adjusted, are insignificant compared to the other important input 

variables, the training errors can be almost kept the same.  

The parameters in the consequent part, however, vary following the trade-off of 

both forward-pass and backward-pass training processes as described in Sections 4.4.7 

and 4.4.8. Consequently, the testing errors will still fluctuate, even though the change of 

the training errors is very small.  

In conclusion, it is possible to continuously fine-tune the membership functions of 

insignificant input variables to keep infinitesimal variation in training errors, and, 

conversely, gradually reduce the testing errors. Also, because of the fewer number of 

fuzzy rules created in ANFIS-SC model, it is very advantageous to the sparse-data cases. 

 

5.4.3.3 Training Procedures of ANFIS-SC Modeling 

There are four major steps for training ANFIS-SC model for sparse-data case as 

follows: 

conventional statistical analysis (e.g. ANOVA) can be used to de

significa

2 Choosing a suitable number of membership functions and fuzzy rules: A larger 

number of membership functions and fuzzy rules usually lead to smaller training 

errors, but that is not likely to happen for testing errors. Principally, the choice of 

the number of rules should be such that the resulting training errors and testing 

errors are both minimal and close to each other as possible as they can. 
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Step 3 Adjusting the ANFIS-SC network parameters: A two-step procedure is used to 

adjust the consequent parameters p, q, and r (as shown in Tables 4.1 and 4.2), as 

well as the premise parameters (i.e., weights w). 

Step 4 Fine-tuning rules and membership functions: Adjusting the premise parameter 

sets of membership functions of the statistically insignificant process inputs or re-

imulation 

models. It is noteworthy that fewer membership functions and fuzzy rules selected are 

easy to implement fine-tuning adjustments but it may create a fragmentary simulation 

model (as shown in Appendix II). Conversely, fewer membership functions are involved 

in more fuzzy rules used in the ANFIS-GP model with greatly increase their individual 

influences on the overall output. In other words, slight adjustments even in each 

membership function of insignificant process inputs usually lead to large fluctuations of 

both training and testing errors. 

choosing the suitable membership functions to gradually reduce the testing errors. 

When premise parameter sets are adjusted, the fuzzified values (μ), firing 

strengths (wi) and overall outputs will be sequentially and automatically varied. 

Step 4 needs to be repeated until the acceptable testing errors are reached.  

 

During this tuning process, model errors (including training and testing errors) will 

either increase or decrease. The novel finding here is that when we adjust the 

membership functions of insignificant process inputs, it has little or no effects on the 

training errors. However, slight changes can constructively shrink the testing errors. In 

other words, this method can greatly improve the predictability of ANFIS s
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5.5 Modeling Using Genetic Algorithms (GA) 

5.5.1 Introduction 

Process modeling is actually a search procedure to find the optimal (or most 

accurate) representation to describe or predict the behavior of an unknown system. 

Usually, some experiments and statistical analyses are needed to obtain an initial 

understanding of the relationships between the input variables and output performances. 

On the basis of discussions in the previous sections, it can be stated that neural networks 

and ANFIS models provide powerful methods, especially, if sufficient training data sets 

are available. In this section, an important development for another novel modeling 

method by GA is introduced here. 

 

5.5.2 Modeling Methods Using GA 

ethods for constructing CMP models are presented in this 

section. Fir

2121

21221121 LKKLL

nn

nmnnni

fx =•=

Two newly-developed m

st, the pre-determined mathematical expression for process models is used in 

Method I. No pre-determined expression is proposed in Method II. 

5.5.2.1 Procedures for Method I 

1. Assuming a mathematical expression for the CMP model as Equation (5.1). 
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 ,,, ,,   tscoefficienunknown  

functions  objective  the    iables,input  var  where

⋅++⋅++⋅+⋅=

 (5.1) 

2. Form all unknown coefficients and exponents as real-parameter chromosomes. 
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3. Sequentially put each pair of training data set (i.e., nxxx K , , 21  and if ) into Equation 

(5.1) to calculate the error from each chromosome. The chromosome of smaller 

su

cal minima. 

7. El

 

data, …] together to randomly form reasonable mathematical expression, for example 

mmation of errors is assigned to hold higher fitness value. 

4. Reproduce the chromosome with high fitness values into the mating pool. 

5. Recombination (or crossover) to generate new offspring. 

6. Mutation to escape from the lo

ite-preservation strategy to keep the optimal chromosomes in each generation. 

 

5.5.2.2 Procedures for Method II 

1. Involve symbol genes [+, -, *, /, ^, …] and terminal genes [constants, pairs of input

as 

234.0+−⋅+
⋅

=
xy

xx
y

fi                              (5.2) 

 After 

errors s

5.5.2.3 

N

may be

the gen or special 

zzx

2. Except for no mutation, rest of the steps are the same as those used in method 1 

generation by generation, the optimal process model with minimal summation 

hould be generated. 

 

Differences between ANFIS, NN and GA Models 

o matter what method is used, an explicit and reasonable mathematical formula 

 generated to describe an unknown system which we want to model. According to 

erated mathematical expression, some important physical meanings 
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relationships between the input variables and output performances can be explained or 

if the generated GA model is accurate (i.e., training error and testing error are 

nough). Undoubtedly, it is one of the most important advantages of GA which 

found, 

small e

valuabl

C

“formu

method

modeli ents to 

arch the best or optimal combination sets.  

deserves to be emphasized. Even accurate ANFIS or NN models cannot provide this 

e information. 

learly, to a GA modeling mentioned here, the need for a reliable pre-determined 

la” is a key requirement to Method I. In other words, if the other analyzing 

s, such as statistical analysis, can provide a useful basic format first, what GA 

ng does can be viewed as a fine-tuning process for all adjustable coeffici

se

 

5.6 Process Optimization Using NSGA-II 

After successfully modeling a complicated system, such as the CMP process, one 

immediate problem that follows is “what are the available ranges of input settings to 

create optimal output performances (i.e., higher MRR and lower WIWNU)?” Obviously, 

it is also a typical multi-objective optimization problem (MOOP). The models of NN and 

ANFIS are “black boxes” (as depicted in Figure 5.4), devoid of explicit mathematical 

expressions between inputs and outputs. Therefore, if those models are used as the 

objective functions, we cannot employ traditional methods (e.g. gradient-based methods, 

etc.) to solve multi-objective optimization problems (MOOP). Multi-Objective 

Evolutionary Algorithms (MOEA) are the best choices. Simulation results from these 
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techniques can guide us to search the available ranges of input settings for optimal output 

 

In this investigation, the  (Elitist Non-dominated Sorting Genetic 

for the optimal input settings. Initially, a 

number of (e.g., 50 ~ 100) chromosomes, each with the format as shown in Figure 5.5, 

pulation. To some modeling tools (e.g., NN or 

GA), the genes in each chromosome should be scaled to a specific range, such as [-1 , 1]. 

points along the Pareto front in Figure 4.51) are identified. According to these simulation 

 

undertaken to verify the optimal input settings. 

performance. 

Figure 5.4 Black Box between Input Space and Output Space [2] 

NSGA-II

Algorithm) in MOEA was employed to search 

were randomly generated form an initial po

To ANFIS, this step is not necessary. Thereafter, through the evolutionary operations 

detained in Section 4.6.5, a set of Pareto-optimal solutions (shown as the red diamond 

solutions, confirmation experiments (i.e., the third-stage experiment in Case III) can be
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Genes – Input Variables

AC DP BP PS PT MRR

Figure 5.5 Chromosome Format for NSGA-II 

AC DP BP PS PT WIWNU

omesChromos

Genes – Output Performance



 

CHAPTER VI  

 ANFIS-SC, and GA. Each of these models was constructed using 

the tr

es discussion and summary of results from 

the above three sections. Comparison results, plots of MRR and WIWNU models are 

w.  

ANFIS-SC models for both MRR and WIWNU used 20 fuzzy rules (i.e., 20 

EXPERIMENT RESULTS AND ANALYSES 

In this chapter, MRR and WIWNU in CMP process ware modeled and simulated 

using NN, ANFIS-GP,

aining data sets, and tested (with testing data sets) to investigate their accuracy and 

generalization capacities. The results from three different CMP experimental data cases 

(described in the Section 5.2) are presented in Sections 6.1 through 6.3 in this chapter. A 

fine-tuning technique for ANFIS-SC, models specifically suited for sparse data sets, is 

presented in Section 6.3.5. Section 6.4 includ

shown in the sections that subsequently follo

 

6.1 MRR and WIWNU Models and Optimization of Process Parameters Using Case 

I Experimental Data 

6.1.1 NN, ANFIS-GP, and ANFIS-SC Modeling 

From the 27 source data sets [79, 81] (as summarized in Table A-4 of Appendix III), 

22 data sets were randomly chosen as training data sets for obtaining NN and ANFIS 

models for capturing MRR and WIWNU characteristics. The remaining 5 data sets were 

used for testing the respective trained models. As described in the Section 5.4.3, fine-

tuning procedures for membership functions were employed in the ANFIS-SC models  
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membership functions in each input variable.) The prediction results are summarized in 

Tables 6.1 and 6.2 for MRR and WIWNU models, respectively. The results show that 

ANFIS-SC models for both MRR and WIWNU are more accurate compared to NN 

models as exemplified by a 50% reduction in testing errors compared to NN models and 

over three orders of magnitude reductions in the training errors. Figures 6.1 to 6.8 show 

the variations of model predictions relative to actual experimental prediction of MRR and 

WIWNU, respectively, with NN, ANFIS-GP and ANFIS-SC modeling. 

 

Table 6.1 Statistical Mean and Standard Deviations of Training and Testing Errors 
from NN and ANFIS Models for MRR in CMP Process (Case I Experiment)

Standard

5

Error %

~ 0 %7.34%7.04%11.83%

22

Error %

20 RulesTypes

3.47%8.33%8.25%9.88%deviation

4.07%6.71%11.99%14.25%Mean

Testing 

Standard
deviation

~ 0 %5.17%7. 70%14.55%Mean

Training 

ANFIS-SCANFIS-
GP

2-2-2-2-2

NN
5-3-1
tansig

NN
5-3-1

purelin

NN and ANFIS 
Model

Results

3.47%8.33%8.25%9.88%deviation

4.07%6.71%11.99%14.25%Mean

Testing 

Standard
deviation

~ 0 %5.17%7. 70%14.55%Mean

Training 

ANFIS-SCANFIS-
GP

2-2-2-2-2

NN
5-3-1
tansig

NN
5-3-1

purelin

NN and ANFIS 
Model

Results

Standard

5

Error %

~ 0 %7.34%7.04%11.83%

22

Error %

20 RulesTypes
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Figure 6.2 Results of NN 5-3-1 tansig Model of MRR (Case I Experiment) 
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Figure 6.1 Results of NN 5-3-1 purelin Model of MRR (Case I Experiment) 
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Figure 6.4 Results of ANFIS-SC 20 Rules Model of MRR (Case I Experiment) 
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Figure 6.3 Results of ANFIS-GP 2-2-2-2-2 Model of MRR (Case I Experiment) 

0
0 1000 2000 3000

MRR from Experiments (Ǻ/min)

M
R

R
om

 A
FI

S
 

P
 2

-2
-

1000

2000

3000

 fr
N

G
2-

/m
in

)
2-

2 
(Ǻ

Training Data
Testing Data

MRR from Experiments (Å/min)

M
R

R
 f

om
 A

N
FI

S
G

P
 2

-
r

-
2-

2 
 (Å

/m
in

)
2-

2-



 

 191

 

 
Figure 6.5 Results of NN 5-4-1 purelin Model of WIWNU (Case I Experiment) 
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Table 6.2 Statistical Mean and Standard Deviations of Training and Testing Errors 
from NN and ANFIS Models for WIWNU in CMP Process (Case I Experiments) 



 

0

100

200

300

0 100 200 300

WIWNU from Experiments (Ǻ)

W
IW

N
U

 fr
om

 N
N

 5
-4

-1
 ta

ns
ig

 (Ǻ
)

W
IW

N
U

 fr
om

 N
N

 5
-4

-1
 ta

ns
ig

(Å
)

Training Data
Testing Data

WIWNU from Experiments (Å)

Figure 6.6 Results of NN 5-4-1 tansig Model of WIWNU (Case I Experiment) 

 

 

Figure 6.7 Results of ANFIS-GP 2-2-2-2-2 Model of WIWNU (Case I Experiment) 
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6.1.2 GA Modeling from Case I Experimental Data 

6.1.2.1 MRR Models 

GA model for MRR was trained using 25 training data sets (as summarized in Table 

A-4 of Appendix III, row No. 1 ~ 25). The results are summarized in Figures 6.9 and 6.10. 

The minimum average error of 9.69% resulted after 1601 iterations and the GA Model 

for MRR is given by  

Figure 6.8 Results of ANFIS-SC 20 Rules Model of WIWNU (Case I Experiment)

0453.00230.0

3485.04957.02938.09547.0         

constant

TPb
VpPdSc

TPbVpPdScMRR edcba

⋅
⋅⋅⋅

=

⋅⋅⋅⋅⋅=

                   (6.1) 

It may be noted that inputs were linearly coded between 1 and 3. Their results match with 

the analytical explanations of CMP process given in Chapter III. Consequently, solid 

content (Sc), down pressure (Pd), and platen speed (Vp) are dominant factors in the 

 193



 

pol

 

ishing process. 

Figure 6.9 Comparisons of Simulation Results and Experimental Data for MRR 

 
Figure 6.10 Minimal Average Training Errors for MRR – GA Model  
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6.1.2.2 WIWNU Models 

Two WIWNU GA models were trained using the same 25 training data sets used in 

the previous MRR case. The results are summarized in Figures 6.11 to 6.14. The 

minimum average errors of 20.11% and 11.66% resulted, respectively. Both GA models I 

and II for WIWNU are given by Equations (6.2) and (6.3). Inputs were again linearly 

coded between 1 and 3. The results in Equation (6.2) show increasing the back pressure 

(Pb) can significantly decrease WIWNU. 

4322.0

1264.01624.01100.0569803057.1               

constant

Pb
TVpPdSc

TVpPbPdScWIWNU
.

edcba

⋅⋅⋅⋅
=

⋅⋅⋅⋅⋅=

             (6.2) 

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++++

⋅⋅⋅
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=

68524.04038.06463.02761.15989.1

4905.03180.05099.02153.1

5214.0
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TVpPbPdSc
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PbWIWNU jihgf
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(6.3) 
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Figure 6.11 Comparison of Simulation Results and Experimental Data for 
WIWNU – Model I 

Figure 6.12 Minimal Average Training Errors for WIWNU – GA Model I 
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Figure 6.13 Comparisons of Simulation Results and Experimental Data for 
WIWNU – GA Model II 

Figure 6.14 Minimal Average Training Errors for WIWNU – GA Model II 

 



 

6.1.3 Optimal MRR and WIWNU in CMP Processes 

 previous section, will be used as the objective 

functions and simultaneously apply MOEA techniques to search for the non-dominated 

output results. On the basis of searched results and ranges of input settings, 

experimental plan can be re-designed to focus on the finer ranges for all input variables to 

obtain the optimal output performance of MRR and WIWNU. Also, new robust process 

models can be created. 

In the case of MRR and WIWNU , the NSGA-II (Elitist Non-Dominated Sorting 

Genetic Algorithms) [1, 12, 129-131] was applied to search for the optimal solutions for 

these two objectives. Equations (6.3) and (6.4) are used as the objective functions for this 

multi-objective evolutionary optimization. Figure 6.15 shows the Pareto-front (non-

dominated solutions) after 1000 iterations. The optimal input-and-output solutions (41 

red points in Figure 6.15) along with the Pareto-front are given in Table 6.3 (including 20 

Pareto-optimal input settings). These points can be viewed as the guidance to re-design 

the advanced experiments to search for the real optimal input settings and then verify the 

real output performance. 

 

The MRR and WIWNU discussed above are typical multi-objective optimization 

problems. Usually, higher MRR (or higher production rate) often conflicts with lower 

WIWNU (or higher quality assurance) in the CMP process. In fact, this is an unsolved 

challenge to the current semiconductor industry. Apart from how to precisely model them, 

how to find the balance points is the other critical issue. In this research, the process 

models, constructed by GA as stated in the

the advanced 
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Figure 6.15 Pareto-front of Optimal MRR and Uniformity (or Lower WIWNU) 
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6.2 NN and ANFIS Models of MRR & WIWNU Using Case II Experimental Data 

From 54 source data sets [79-81] (as tabulated in Table A-5 of Appendix III), 45 

data sets were randomly chosen to be the training data for training NN and ANFIS 

Table 6.3 Optimal Input-and Output Results for CMP Processes Using NSGA-II 
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models and the remaining 9 data sets for testing the trained models. Two NN models (i.e., 

purel

 

in and tansig) and two ANFIS models (i.e., grid partition (GP) and subtractive 

clustering (SC)) were used to develop models for MRR and WIWNU, respectively. 

Comparison of results and plots of MRR and WIWNU models are given in Tables 6.4 

and Table 6.5, and Figure 6.16 to Figure 6.23. 

Fine-tuning procedures for membership functions were employed for ANFIS-SC 

models for MRR and WIWNU. Here, 45 fuzzy rules in ANFIS-SC models for MRR and 

48 rules for WIWNU models were used. Again, ANFIS-SC models for both MRR and 

WIWNU perform much more accurately than other ANFIS and NN models. 

 

6.2.1 MRR Models 

Table 6.4 Statistical Mean and Standard Deviations of Training and Testing Errors 
from NN and ANFIS Models for MRR in CMP Process (Case II Experiment) 
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Figure 6.16 Results of NN 7-4-1 purelin Model of MRR (Case II Experiment) 
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Figure 6.17 Results of NN 7-3-1 tansig Model of MRR (Case II Experiment) 
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Figure 6.18 Results of ANFIS-GP 2-2-1-3-1-1-2 Model of MRR (Case II Experiment)
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6.2.2 WIWNU Models 

Table 6.5 Statistical Mean and Standard Deviations of Training and Testing Errors 

ANFIS-SC  GP   NN 7-4-1 NN 7-4-1 Model Types

Results

from NN and ANFIS Models for WIWNU in CMP Process (Case II Experiment) 
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Figure 6.20 Results of NN 7-4-1 purelin Model of WIWNU (Case II Experiment)
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Figure 6.21 Results of NN 7-4-1 tansig Model of WIWNU (Case II Experiment)
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Figure 6.22 Results of ANFIS-GP 2-2-2-3-2-2-2 Model of WIWNU (Case II 
Experiment) 
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6.3 MRR and WIWNU Models and Process Optimization Using Case III 

Experimental Data 

As reported in Section 5.2.3, 1875 training data sets and 125 testing data sets 

generated via a factorial design of experiments (DOE), were used for MRR and WIWNU 

modeling to investigate the influence of the size of training data sets on the generalization 

of trained models, four different groups (I, II, III and IV) of training data sets were used 

to construct the MRR and WIWNU models.  

Group I contains all the 1875 training data sets. Group II contains 512 data sets 

from the original 1875 training data sets as shown in the Table 6.6. 

Figure 6.23 Results of ANFIS-SC 48 Rules Model of WIWNU (Case II Experiment)
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Group III consists of only 162 out of the original 1875 data sets for training as 

shown in Table 6.7. Finally, to these three groups, the same testing data sets were 

employed to test the established models. The 25 training data sets in Group IV were 

picked from the 1875 original training data sets based on Taguchi array. The resulting

data sets are identical to the ones in Case I experiment and listed in Table A-6 in the 

Appendix IV. 
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Table 6.7 Factorial DOE for Group III case 
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Table 6.6 Factorial DOE for Group II Case 
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Since the smallest training and testing errors resulted with the ANFIS-GP models of 

MRR and WIWNU, these models were chosen to generate the objective functions for 

NSGA-II. The third-stage confirmation experiments were implemented to verify the 

optimal results obtained using NSGA-II. Furthermore, an improved ANFIS-SC fine-

tuning technique was applied to Group IV data sets to develop a new MRR model. 

Similarly, the original 125 testing data sets were used to test this new model.  
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6.3.1 Models Using ANFIS-GP 

6.3.1.1 Results with Group I Data 

Models of MRR Using ANFIS-GP 2-2-2-2-3 Linear for Group I Data 

Architecture # 6 (as summarized in Table 6.8) was chosen to construct an ANFIS-

GP model for Group I MRR case because the smallest E_total value and Error ratio 

values resulted for this case. The training and testing results are shown in Figures 6.24 

and 6.25 and the percentage errors as follows. 
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Standard deviaton of testing error (%) = 1.5322 %
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Table 6.8 Comparisons of Different ANFIS-GP MRR Models (Group I) 
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Figure 6.24 Training Results for MRR ANFIS-GP 2-2-2-2-3 Linear Model (Group I)
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Figure 6.25 Testing Results for MRR ANFIS-GP 2-2-2-2-3 Linear Model (Group I) 
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Testing error (%)  = 9.6952 %

Standard deviation of training error (%)  = 7.3268 %

Standard deviation of testing error (%) = 6.7805 %

els of WIWNU Using ANFIS-GP 2-2-2-3-2 Linear for Group I Data 

Architecture # 5 (as summarized in Table 6.9) was chosen to construct an ANFIS-

GP model for Group I WIWNU case, because of the smaller E_total value and Error 

ratio values resulted for this case. The training and testing results are summarized in 

Figures 6.26 and 6.27 and the percentage errors as follows.  
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Table 6.9 Comparisons of Different ANFIS-GP WIWNU Models (Group I) 

 211



 

 212

 

 

Figure 6.26 Training Results for WIWNU ANFIS-GP 2-2-2-2-3 Linear Model (Group I) 

Figure 6.27 Testing Results for WIWNU ANFIS-GP 2-2-2-2-3 Linear Model (Group I) 



 

6.3.1.2 R

Models of MRR Using ANFIS-GP 2-2-2-2-2 Linear for Group II Data 

Architecture # 1 (as summarized in Table 6.10) was chosen to construct an ANFIS-

GP model for Group II MRR case, because of the smallest E_total value and Error ratio 

values resulted for this case. The training and testing results are summarized in Figures 

6.28 and 6.29 and the percentage errors as follows. 

 

 

Training error (%)  = 1.8051 %

Testing error (%)  = 2.3884 %

Standard deviaton of training error (%) = 1.3543 %

Standard deviaton of testing error (%) = 1.7358 %

esults with Group II Data 

10001.599 110.48 67.97 42.51 Constant2-4-4-2-312

10002.305 142.89 99.65 43.24 Constant2-3-4-3-211

10002.477 150.40 107.14 43.26 Constant4-3-2-2-210

10001.151 105.10 56.25 48.85 Constant2-2-2-2-29

10001.194 105.79 57.56 48.23 Constant3-2-2-2-28

10002.419 150.41 106.42 43.99 Constant3-3-2-2-27

3018.597 704.22 668.28 35.94 Linear2-2-2-2-36

302.514 116.95 83.67 33.28 Linear2-2-2-3-25

301.586 86.46 53.02 33.44 Linear2-2-3-2-24

303.021 131.90 99.10 32.80 Linear2-3-2-2-23

301.832 94.43 61.08 33.35 Linear3-2-2-2-22

301.363 84.93 48.99 35.94 Linear2-2-2-2-21

EpochsError Ratio 
(E_test/E_train)E_total

Testing 
Error 

(E_test)

Training 
Error 

(E_train)

Type of 
Consequent 

part

Structure 
(gaussian)

MRR  
512

10001.599 110.48 67.97 42.51 Constant2-4-4-2-312

10002.305 142.89 99.65 43.24 Constant2-3-4-3-211

10002.477 150.40 107.14 43.26 Constant4-3-2-2-210

10001.151 105.10 56.25 48.85 Constant2-2-2-2-29

10001.194 105.79 57.56 48.23 Constant3-2-2-2-28

10002.419 150.41 106.42 43.99 Constant3-3-2-2-27

3018.597 704.22 668.28 35.94 Linear2-2-2-2-36

302.514 116.95 83.67 33.28 Linear2-2-2-3-25

301.586 86.46 53.02 33.44 Linear2-2-3-2-24

303.021 131.90 99.10 32.80 Linear2-3-2-2-23

301.832 94.43 61.08 33.35 Linear3-2-2-2-22

301.363 84.93 48.99 35.94 Linear2-2-2-2-21

EpochsError Ratio 
(E_test/E_train)E_total

Testing 
Error 

(E_test)

Training 
Error 

(E_train)

Type of 
Consequent 

part

Structure 
(gaussian)

MRR  
512

Table 6.10 Comparisons of Different ANFIS-GP MRR Models (Group II) 
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Figure 6.28 Training Results for MRR ANFIS-GP 2-2-2-2-2 Linear Model (Group II)
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Figure 6.29 Testing Results for MRR ANFIS-GP 2-2-2-2-2 Linear Model (Group II)
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Models of WIWNU Using ANFIS-GP 2-2-2-3-2 Linear for Group II Data 

 

 

Training error (%)  = 7.1631 %

Testing error (%)  = 10.3907 %

Standard deviation of training error (%)  = 5.5523 %

Standard deviation of testing error (%) = 7.8027 %

Architecture # 5 (as summarized in Table 6.11) was chosen to construct an ANFIS-

GP model for Group II WIWNU case, because of the smallest E_total value and smaller 

Error ratio values resulted for this case. The training and testing results are summarized 

Figures 6.30 and 6.31 and the percentage errors as follows. 

 

Table 6.11 Comparisons of Different ANFIS-GP WIWNU Models (Group II) 
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5001.106 0.62 0.33 0.29Constant2-2-3-2-210
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Figure 6.30 Training Results of WIWNU ANFIS-GP 2-2-2-3-2 Linear Model (Group II)  

 
Figure 6.31 Testing Results of WIWNU ANFIS-GP 2-2-2-3-2 Linear Mode (Group II)
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6.3.1.3 Results with Group III Data 

 

3. 

Training error (%)  = 1.2973 %

Testing error (%)  = 2.4711 %

Standard deviaton of training error (%) = 1.0517 %

Standard deviaton of testing error (%) = 2.0272 %

Models of MRR Using ANFIS-GP 2-2-2-3-2 Linear for Group III Data

Architecture # 5 (as summarized in Table 6.12) was chosen to construct an ANFIS-

GP model for Group III MRR case, because of the smallest E_total value and smaller 

Error ratio values resulted for this case. The training and testing results are illustrated in 

the below block and following Figure 6.32 and 6.3.3
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Table 6.12 Comparisons of Different ANFIS-GP MRR Models (Group III)
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Figure 6.32 Training Results for MRR ANFIS-GP 2-2-2-3-2 Linear Model (Group III)
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Figure 6.33 Testing Results for MRR ANFIS-GP 2-2-2-3-2 Linear Model (Group III)
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Models of WIWNU Using ANFIS-GP 2-2-2-3-2 Linear for Group III Data 

r 

 

s. 

 

 

Training error (%)  = 4.2443 %

Testing error (%)  = 9.9340 %

Standard deviation of training error (%)  = 3.6380 %

Standard deviation of testing error (%) = 7.2834 %

Architecture # 5 (as summarized in Table 6.13) was chosen to construct an ANFIS-

GP model for Group III MRR case, because of the smallest E_total value and smalle

Error ratio values resulted for this case. The training and testing results are summarized

in Figures 6.34 and 6.35 and the percentage errors as follow
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Table 6.13 Comparisons of Different ANFIS-GP WIWNU Models (Group III) 
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Figure 6.34 Training Results for WIWNU ANFIS-GP 2-2-2-3-2 Linear Model (Group III) 
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Figure 6.35 Testing Results for WIWNU ANFIS-GP 2-2-2-3-2 Linear Model (Group III) 

 220



 

6.3.2 Models Using ANFIS-SC 

6.3.2.1 Results with Group I Data 

Mode

esting results are summarized in 

Figure 6.36 and 6.37 and the percentage errors as follows. 

 

 

 

 Training error (%)  = 2.2104 %

Testing error (%)  = 2.2359 %

Standard deviation of training error (%) = 1.5837 %

Standard deviation of testing error (%) = 1.4431 %

ls of MRR Using ANFIS-SC 12-Rule for Group I Data 

Architecture # 6 (as summarized in Table 6.140 was chosen to construct an ANFIS-

SC model for Group I MRR case, because of the smallest E_total value and smaller Error 

ratio values resulted for this case. The training and t
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Table 6.14 Comparisons of Different ANFIS-SC MRR Models (Group I) 
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Figure 6.36 Training Results for MRR ANFIS-SC 12-Rule Model (Group I) 
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Figure 6.37 Testing Results for MRR ANFIS-SC 12-Rule Model (Group I) 
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Models of WIWNU Using ANFIS-SC 7-Rule for Group I Data 

Architecture # 6 (as summarized in Table 6.15) was chosen to construct an ANFIS-

SC model for Group I WIWNU case, because of the smaller E_total value and smallest 

Error ratio values resulted for this case. The training and testing are shown in Figures 

6.38 and 6.39 and the percentage errors are tabulated in the following. 
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Standard deviation of training error (%)  = 7.7639 %

Standard deviation of testing error (%)  = 6.1387 %
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Table 6.15 Comparisons of Different ANFIS-SC WIWNU Models (Group I)
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Figure 6.38 Training Results for WIWNU ANFIS-SC 7-Rule Model (Group I) 
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Figure 6.39 Testing Results for WIWNU ANFIS-SC 7-Rule Model (Group I) 



 

6.3.2.2 Results with Group II Data 

Models of MRR Using ANFIS-SC 12-Rule for Group II Data 

Architecture # 5 (as summarized in Table 6.16) was chosen to construct an ANFIS-

SC model for Group II MRR case, because of the smallest E_total value and second 

smallest Error ratio values resulted for this case. The training and testing results are 

summarized in Figures 6.40 and 6.41 and the percentage errors are tabulated in the 

following. 

 

 

Training error (%)  = 2.1449 %

Testing error (%)  = 2.3880 %

Standard deviation of training error (%) = 1.6009 %

Standard deviation of testing error (%) = 1.6098 %
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Table 6.16 Comparisons of Different ANFIS-SC MRR Models (Group II) 
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Figure 6.40 Training Results for MRR ANFIS-SC 12-Rule Model (Group II) 
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Figure 6.41 Testing Results for MRR ANFIS-SC 12-Rule Model (Group II) 



 

Models of WIWNU Using ANFIS-SC 5-Rule for Group II Data 

Architecture # 5 (as summarized in Table 6.17) was chosen to construct an ANFIS-

SC model for Group II WIWNU case, because of the second smallest E_total value and 

smallest Error ratio values resulted for this case. The training and testing results are 

summarized in Figures 6.42 and 6.43 and the percentage errors as follows. 
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Table 6.17 Comparisons of Different ANFIS-SC WIWNU Models (Group II) 
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Figure 6.42 Training Results for WIWNU ANFIS-SC 5-Rule Model (Group II) 
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Figure 6.43 Testing Results for WIWNU ANFIS-SC 5-Rule Model (Group II) 



 

6.3.2.3 Results with Group III Data 

Models of MRR Using ANFIS-SC 24-Rule for Group III Data 

Architecture # 7 (as summarized in Table 6.18) was chosen to construct an ANFIS-

SC model for Group III MRR case, because of the second smallest E_total value and 

smallest Error ratio values resulted for this. The training and testing results are 

summarized in Figures 6.44 and 6.45 and the percentage errors as follows. 

 

 

 

Training error (%)  = 2.0228 %

Testing error (%)  = 2.5703 %

Standard deviation of training error (%) = 1.5624 %

Standard deviation of testing error (%) = 1.9065 %
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Reject 
Ratio

Accept 
Ratio

Squash 
Factor

Range of 
Influence

MRR 
162

Table 6.18 Comparisons of Different ANFIS-SC MRR Models (Group III) 
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Figure 6.3.44 Training Results for MRR ANFIS-SC 24-Rule Model (Group III) 
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Figure 6.45 Testing Results for MRR ANFIS-SC 24-Rule Model (Group III) 



 

Models of WIWNU Using ANFIS-SC 3-Rule for Group III Data 

Architecture # 3 (as summarized in Table 6.19) was chosen to construct an ANFIS-

SC model for Group III MRR case, because of the smallest E_total value and Error ratio 

values resulted for this case. The training and testing results are summarized in Figures 

6.46 and 6.47 and the percentage errors as follows. 

 

 

 

Training error (%)  = 9.3914 %

Testing error (%) = 9.8541 %

Standard deviation of training error (%)  = 7.1057 %

Standard deviation of testing error (%)  = 6.6393 %

203.91 1.5501341.2347 0.3154 60.150.50.24 8.2 8

203.79 1.5267951.2077 0.3191 50.150.50.26 8.0 7

202.97 1.2760520.9547 0.3213 40.150.50.28 8.0 6

201.00 0.6492740.3244 0.3248 30.150.50.38 7.0 5

202.49 1.1177720.7979 0.3198 40.150.50.40 5.0 4

200.94 0.6296670.3052 0.3245 30.150.50.40 6.0 3

200.99 0.6441090.3198 0.3243 30.150.50.50 5.1 2

200.99 0.6450320.3207 0.3243 30.150.50.50 5.0 1

EpochsError Ratio  
E_test/E_trainE_total

Testing 
Error 

(E_test)

Training 
Error 

(E_train)

Rule 
numbers

Reject 
Ratio

Accept 
Ratio

Squash 
Factor

Range of 
Influence

WIWNU 
162

203.91 1.5501341.2347 0.3154 60.150.50.24 8.2 8

203.79 1.5267951.2077 0.3191 50.150.50.26 8.0 7

202.97 1.2760520.9547 0.3213 40.150.50.28 8.0 6

201.00 0.6492740.3244 0.3248 30.150.50.38 7.0 5

202.49 1.1177720.7979 0.3198 40.150.50.40 5.0 4

200.94 0.6296670.3052 0.3245 30.150.50.40 6.0 3

200.99 0.6441090.3198 0.3243 30.150.50.50 5.1 2

200.99 0.6450320.3207 0.3243 30.150.50.50 5.0 1

EpochsError Ratio  
E_test/E_trainE_total

Testing 
Error 

(E_test)

Training 
Error 

(E_train)

Rule 
numbers

Reject 
Ratio

Accept 
Ratio

Squash 
Factor

Range of 
Influence

WIWNU 
162

Table 6.19 Comparisons of Different ANFIS-SC WIWNU Models (Group III) 
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Figure 6.46 Training Results for WIWNU ANFIS-SC 5-Rule Model (Group III) 
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Figure 6.47 Testing Results for WIWNU ANFIS-SC 5-Rule Model (Group III) 



 

6.3.3 Models Using Neural Networks 

6.3.3.1 Results with Group I Data 

Models of MRR Using NN 5-15-6-1 for Group I Data 

Architecture # 18 (as summarized in Table 6.20) was chosen to construct an NN 

model for Group I MRR case, because of the smallest E_total value and Error ratio 

values resulted for this case. The training and testing results are summarized in Figures 

6.48 and 6.49 and the percentage errors as follows. 

Training error (%)  = 2.1219 %

Testing error (%)  = 2.2389 %

Standard deviation of training error (%) = 1.5413 %

Standard deviation of testing error (%) = 1.5272 %  

 
0.5789 0.0030 0.00110.00191711615518

0.6471 0.0028 0.00110.00171631713517

0.5789 0.0030 0.00110.00191631911516

0.6471 0.0028 0.00110.00171571417515

0.6000 0.0032 0.00120.0021771813514

0.7059 0.0029 0.00120.00171771813513

0.7059 0.0029 0.00120.00171571417512

0.7333 0.0026 0.00110.00151071313511

0.5357 0.0043 0.00150.00282991141559

0.4706 0.0050 0.00160.00343011131658

0.4737 0.0056 0.00180.0038535185557

0.4651 0.0063 0.0020.0043 440184452

0.5357 0.0043 0.00150.0028 3011131651

Error Ratio 
(E_test / E_train)E_total

M ean Square 
Testing Error 

(E_test)

M ean Squre
Training Error 

(E_train)

Total 
W eightsBest NN ArchitecturesM RR 

1875

0.5789 0.0030 0.00110.00191711615518

0.6471 0.0028 0.00110.00171631713517

0.5789 0.0030 0.00110.00191631911516

0.6471 0.0028 0.00110.00171571417515

0.6000 0.0032 0.00120.0021771813514

0.7059 0.0029 0.00120.00171771813513

0.7059 0.0029 0.00120.00171571417512

0.7333 0.0026 0.00110.00151071313511

0.5357 0.0043 0.00150.00282991141559

0.4706 0.0050 0.00160.00343011131658

0.4737 0.0056 0.00180.0038535185557

0.4651 0.0063 0.0020.0043 440184452

0.5357 0.0043 0.00150.0028 3011131651

Error Ratio 
(E_test / E_train)E_total

M ean Square 
Testing Error 

(E_test)

M ean Squre
Training Error 

(E_train)

Total 
W eightsBest NN ArchitecturesM RR 

1875

Table 6.20 Comparisons of Different NN MRR Models (Group I) 
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Figure 6.48 Training Results for MRR NN 5-15-6-1 Model (Group I) 
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Figure 6.49 Testing Results for WIWNU NN 5-15-6-1 Model (Group I) 



 

Models of WIWNU Using NN 5-15-13-1 for Group I Data 

Architecture # 1 (as summarized in Table 6.21) was chosen to construct an NN 

model for Group I WIWNU case, because of the second smallest E_total value and 

smaller Error ratio values resulted for this case. The training and testing results were 

summarized in Figure 6.50 and 6.51 and the percentage errors as follows. 

 

Training error (%) = 9.5851 %

Testing error (%) = 9.0600 %

Standard deviation of training error (%) = 7.7486 %

Standard deviation of testing error (%) = 6.0803 %

 

 

Table 6.21 Comparisons of Different NN WIWNU Models (Group I) 

0.7202 0.0289 0.01210.0168157141758

0.7202 0.0289 0.01210.0168131131657

0.7101 0.0289 0.0120.0169125102556

0.7485 0.0285 0.01220.0163107121555

0.5357 0.0043 0.00150.0028 2991141554

0.4737 0.0056 0.00180.0038 535185553

0.4651 0.0063 0.0020.0043 440184452

0.5357 0.0043 0.00150.0028 3011131651

Error Ratio 
(E_test / E_train)E_total

Mean Square 
Testing Error 

(E_test)

Mean Squre
Training Error 

(E_train)

Total 
WeightsBest NN ArchitecturesWIWNU

1875

0.7202 0.0289 0.01210.0168157141758

0.7202 0.0289 0.01210.0168131131657

0.7101 0.0289 0.0120.0169125102556

0.7485 0.0285 0.01220.0163107121555

0.5357 0.0043 0.00150.0028 2991141554

0.4737 0.0056 0.00180.0038 535185553

0.4651 0.0063 0.0020.0043 440184452

0.5357 0.0043 0.00150.0028 3011135 161

Error Ratio 
(E_test / E_train)E_total

Mean Square 
Testing Error 

(E_test)

Mean Squre
Training Error 

(E_train)

Total 
WeightsBest NN ArchitecturesWIWNU

1875
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Figure 6.50 Training Results for WIWNU NN 5-16-13-1 Model (Group I) 
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Figure 6.51 Testing Results for WIWNU NN 5-16-13-1 Model (Group I) 



 

6.3.3.2 Results with Group II Data 

Models of MRR Using NN 5-9-7-1 for Group II Data 

Architecture # 1 (as summarized in Table 6.22) was chosen to construct an NN 

model for Group II MRR case, because of the smaller E_total value and Error ratio 

values resulted for this case. The training and testing results are summarized in Figures 

6.52 and 6.53 and the percentage errors as follows. 

 

Training error (%)  = 2.5199 %

Testing error (%)  = 2.3992 %

Standard deviation of training error (%) = 2.1664 %

Standard deviation of testing error (%) = 1.5359 %

 
0.3731 0.0092 0.00250.0067671111520

0.4474 0.0055 0.00170.00381151511519

0.4231 0.0074 0.00220.005216011010518

0.3684 0.0078 0.00210.005775139517

0.5625 0.0150 0.00540.00961481128516

0.4773 0.0065 0.00210.0044107197515

0.4043 0.0066 0.00190.004775157514

0.2931 0.0075 0.00170.005843117513

0.3774 0.0073 0.0020.005367175512

0.3958 0.0067 0.00190.004843135511

0.4054 0.0104 0.0030.00745119359

0.3607 0.0083 0.00220.00613515358

0.4130 0.0065 0.00190.00461911357

0.3774 0.0073 0.0020.00536717552

0.3542 0.0065 0.00170.004811517951

Error Ratio 
(E_test / E_train)E_total

Mean Square 
Testing Error 

(E_test)

Mean Squre
Training Error 

(E_train)

Total 
weightsBest NN ArchitecturesMRR 

512

0.3731 0.0092 0.00250.0067671111520

0.4474 0.0055 0.00170.00381151511519

0.4231 0.0074 0.00220.005216011010518

0.3684 0.0078 0.00210.005775139517

0.5625 0.0150 0.00540.00961481128516

0.4773 0.0065 0.00210.0044107197515

0.4043 0.0066 0.00190.004775157514

0.2931 0.0075 0.00170.005843117513

0.3774 0.0073 0.0020.005367175512

0.3958 0.0067 0.00190.004843135511

0.4054 0.0104 0.0030.00745119359

0.3607 0.0083 0.00220.00613515358

0.4130 0.0065 0.00190.00461911357

0.3774 0.0073 0.0020.00536717552

0.3542 0.0065 0.00170.004811517951

Error Ratio 
(E_test / E_train)E_total

Mean Square 
Testing Error 

(E_test)

Mean Squre
Training Error 

(E_train)

Total 
weightsBest NN ArchitecturesMRR 

512

Table 6.22 Comparisons of Different NN MRR Models (Group II) 
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Figure 6.52 Training Results for MRR NN 5-9-7-1 Model (Group II) 
 

Figure 6.53 Testing Results for WIWNU NN 5-9-7-1 Model (Group II) 
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Models of WIWNU Using NN 5-2-5-1 for Group II Data 

Architecture # 1 (as summarized in Table 6.23) was chosen to construct an NN 

model for Group II MRR case, because of the smallest E_total value and Error ratio 

values resulted for this case. The training and testing results are summarized in Figures 

6.54 and 6.55 and the percentage errors as follows. 

 

 

 

Training error (%) = 9.1370 %

Testing error (%) = 10.9449 %

Standard deviation of training error (%) = 7.1590 %

Standard deviation of testing error (%) = 7.7574 %

Table 6.23 Comparisons of Different NN WIWNU Models (Group II) 

1.7670 0.0570 0.03640.02061391123518

1.7670 0.0570 0.03640.02061271121517

1.7670 0.0570 0.03640.02061151119516

1.1963 0.0470 0.02560.021419132515

1.1916 0.0469 0.02550.021425152514

1.1916 0.0469 0.02550.021431172513

1.1179 0.0449 0.02370.021261165512

0.9906 0.0424 0.02110.021335134511

0.9859 0.0423 0.0210.021355174510

0.9859 0.0423 0.0210.0213110102259

0.9859 0.0423 0.0210.02135517458

0.9859 0.0423 0.0210.02134515457

0.9531 0.0416 0.02030.02133916356

0.9531 0.0416 0.02030.02133114355

0.8767 0.0411 0.01920.02191314154

0.8767 0.0411 0.01920.02191601101053

0.8767 0.0411 0.01920.02191716152

0.7767 0.0382 0.01670.02152515251

Error Ratio 
(E_test / E_train)E_total

Mean Square 
Testing Error 

(E_test)

Mean Squre
Training Error 

(E_train)

Total 
WeightsBest NN ArchitecturesWIWNU 

512

1.7670 0.0570 0.03640.02061391123518

1.7670 0.0570 0.03640.02061271121517

1.7670 0.0570 0.03640.02061151119516

1.1963 0.0470 0.02560.021419132515

1.1916 0.0469 0.02550.021425152514

1.1916 0.0469 0.02550.021431172513

1.1179 0.0449 0.02370.021261165512

0.9906 0.0424 0.02110.021335134511

0.9859 0.0423 0.0210.021355174510

0.9859 0.0423 0.0210.0213110102259

0.9859 0.0423 0.0210.02135517458

0.9859 0.0423 0.0210.02134515457

0.9531 0.0416 0.02030.02133916356

0.9531 0.0416 0.02030.02133114355

0.8767 0.0411 0.01920.02191314154

0.8767 0.0411 0.01920.02191601101053

0.8767 0.0411 0.01920.02191716152

0.7767 0.0382 0.01670.021525155 21

Error Ratio 
(E_test / E_train)E_total

Mean Square 
Testing Error 

(E_test)

Mean Squre
Training Error 

(E_train)

Total 
WeightsBest NN ArchitecturesWIWNU 

512
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Figure 6.54 Training Results for WIWNU NN 5-2-5-1 Model (Group II) 
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Figure 6.55 Testing Results for WIWNU NN 5-2-5-1 Model (Group II) 



 

6.3.3.3 Results with Group III Data 

Models of MRR Using NN 5-6-2-1 for Group III Data 

Architecture # 1 (as summarized in Table 6.24) was chosen to construct an NN 

model for Group III MRR case, because of the second smallest E_total value and Error 

ratio values resulted for this case. The training and testing results are summarized in 

Figures 6.56 and 6.57 and the percentage errors as follows. 

 

Training error (%)  = 5.4786 %

Testing error (%)  = 3.4925 %

Standard deviation of training error (%) = 6.1808 %

Standard deviation of testing error (%) = 2.7797 %

Table 6.24 Comparisons of Different NN MRR Models (Group III) 

 

 

1.1563 0.0621 0.0333 0.0288 2816257

0.3281 0.0085 0.0021 0.0064 4010856

0.2921 0.0115 0.0026 0.0089 4014455

0.2577 0.0122 0.0025 0.0097 2010454

0.2577 0.0122 0.0025 0.0097 1601101053

0.2577 0.0122 0.0025 0.0097 1612252

0.2899 0.0089 0.0020 0.0069 4412651

Error Ratio 
(E_test / E_train)E_total

Mean Square 
Testing Error 

(E_test)

Mean Squre
Training Error 

(E_train)

Total 
WeightsBest NN ArchitecturesMRR 

162

1.1563 0.0621 0.0333 0.0288 2816257

0.3281 0.0085 0.0021 0.0064 4010856

0.2921 0.0115 0.0026 0.0089 4014455

0.2577 0.0122 0.0025 0.0097 2010454

0.2577 0.0122 0.0025 0.0097 1601101053

0.2577 0.0122 0.0025 0.0097 1612252

0.2899 0.0089 0.0020 0.0069 4412651

Error Ratio 
(E_test / E_train)E_total

Mean Square 
Testing Error 

(E_test)

Mean Squre
Training Error 

(E_train)

Total 
WeightsBest NN ArchitecturesMRR 

162
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Figure 6.56 Training Results for MRR NN 5-6-2-1 Model (Group III) 
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Figure 6.57 Testing Results for WIWNU NN 5-6-2-1 Model (Group III) 



 

Models of WIWNU Using NN 5-2-3-1 for Group III Data 

Architecture # 1 (as summarized in Table 6.25) was chosen to construct an NN 

model for Group III WIWNU case, because of the smallest E_total value and smaller 

Error ratio values resulted for this case. The training and testing results are summarized 

in Figures 6.58 and 6.59 and the percentage errors are tabulated in the following. 

 

 

 

Training error (%) = 9.5333 %

Testing error (%) = 11.0140 %

Standard deviation of training error (%) = 7.0761 %

Standard deviation of testing error (%) = 7.4818 %

1.4248 0.0371 0.02180.01533114356

1.1840 0.0356 0.01930.01631510355

1.1840 0.0356 0.01930.01631311254

1.0839 0.0323 0.01680.01552312353

0.9565 0.0315 0.01540.01612515252

0.9625 0.0314 0.01540.0161913251

Error Ratio 
(E_test / E_train)E_total

Mean Square 
Testing Error 

(E_test)

Mean Squre
Training Error 

(E_train)

Total 
WeightsBest NN ArchitecturesWIWNU

162

1.4248 0.0371 0.02180.01533114356

1.1840 0.0356 0.01930.01631510355

1.1840 0.0356 0.01930.01631311254

1.0839 0.0323 0.01680.01552312353

0.9565 0.0315 0.01540.01612515252

0.9625 0.0314 0.01540.0161913251

Error Ratio 
(E_test / E_train)E_total

Mean Square 
Testing Error 

(E_test)

Mean Squre
Training Error 

(E_train)

Total 
WeightsBest NN ArchitecturesWIWNU

162

Table 6.25 Comparisons of Different NN WIWNU Models (Group III) 
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Figure 6.58 Training Results for WIWNU NN 5-2-3-1 Model (Group III) 
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Figure 6.59 Testing Results for WIWNU NN 5-2-3-1 Model (Group III) 
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6.3.4 Models Using Genetic Algorithms 

6.3.4

 

Initially, the MRR model structure was assumed to be of the form  

                             (6.1) 

 Here 50 chromosomes with different values for 

.1 Results with Group I Data 

GA Models of MRR with Using Group I Data 

yxwvu TVpPbPdScCMRR ⋅⋅⋅⋅⋅=

[ ]u v w x yC  were randomly generated 

to for an initial population. All the input parameters are coded between [1 , 3]. Through 

evolutionary operations, using a GA, a search for the best or optimal chromosomes (or 

solutions) was performed through a number of iterations ranging from 700 to 1200. 

Figure 6.60 Training results for MRR using GA Model (Group I) 
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After 701 iterations, the training and testing errors have both converged to 0.034 as 

 

 

 

shown in the above Figure 6.60. The best solution, and the training and testing errors are 

tabulated in the following. The training and testing results are given in Figures 6.61 and 

6.62. 

 

 

The final MRR model is as follows: 

# of generations = 701

Best solution = [1.2256   0.0106   0.4069   -0.0429   0.3781   -0.0821]

Training error (%)  = 2.7357 %

Testing error (%) = 2.2633 %

Standard deviation of training error (%) = 2.1455 %

Standard deviation of testing error (%) =1.6690 %

0821.00429.0

3781.04069.00106.02256.1
TBp

VpDpScMRR
⋅

⋅⋅⋅
=
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Figure 6.61 Training results for MRR using the GA model (Group I) 
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Figure 6.62 Testing Results for MRR using the GA Model (Group I) 
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GA Models of WIWNU with Using Group I Data 

 

Initially, the WIWNU model structure was assumed to be of the form 

                             (6.2) 

 Here 50 chromosomes with different values for 

yxwvu TVpPbPdScCWIWNU ⋅⋅⋅⋅⋅=

[ ]u v w x yC  were randomly generated 

to for an initial population. All the input parameters are coded between [1 , 3]. Through 

evolutionary operations, using a GA, a search for the best or optimal chromosomes (or 

solutions) was performed through a number of iterations ranging from 700 to 1200. 

After 801 iterations, the training and testing errors have both converged to 0.1035 

as shown in the above Figure 6.63. The best solution, and the training and testing errors 

are tabulated in the following. The training and testing results are given in Figures 6.63 

and 6.64.  

Figure 6.63 Training for GA WIWNU Model (Group I) 
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The final MRR model is as follows: 

 

Figures 6.64 and 6.65 show the training and testing results for this case. 

 

# of generations = 801

Best solution = [1.2026   0.0062   0.0210   -0.1121   0.0562   0.5219 ]

Training error (%)  = 10.5739 %

Testing error (%) = 10.6734 %

Standard deviation of training error (%) = 8.4020 %

Standard deviation of testing error (%) = 8.3962 %

1121.0

5219.00562.00210.00062.02026.1
Pb

TVpPdScWIWNU ⋅⋅⋅⋅
=

(%)

(%
)

Figure 6.64 Training Results for WIWNU GA Model (Group I) 
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Figure 6.65 Testing Results for WIWNU GA Model (Group I) 
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6.3.4.2 Results with Group II Data 

GA Models of MRR with Using Group II Data 

 

Figures 6.67 and 6.68 show the training and testing results for this case. 

 

 
0799.00462.0

3790.04057.00119.02282.1
TBp

VpDpScMRR
⋅

⋅⋅⋅
=

Figure 6.66 Training for GA MRR Model (Group II) 

# of generations = 701

Best solution = [1.2282   0.0119   0.4057   -0.0462   0.3790   -0.0799]

Training error (%)  = 2.8178 %

Testing error (%) = 2.3414 %

Standard deviation of training error (%) = 2.3891 %

Standard deviation of testing error (%) =1.7311 %
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Figure 6.67 Training Results for MRR GA Model (Group II) 
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Figure 6.68 Testing Results for MRR GA Model (Group II) 



 

GA M

 

Figures 6.70 and 6.71 show the training and testing results for this case. 

 

 

odels of WIWNU with Using Group II Data 

1313.0

5691.00631.00164.00096.02526.1
Pb

TVpPdScWIWNU ⋅⋅⋅⋅
=

Figure 6.69 Training for GA WIWNU Model (Group II) 

# of generations = 801

Best solution = [1.2526   0.0096   0.0164   -0.1313   0.0631   0.5691 ]

Training error (%)  = 9.2106 %

Testing error (%) = 12.1558 %

Standard deviation of training error (%) = 7.2398 %

Standard deviation of testing error (%) = 9.7696 %
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Figure 6.70 Training Results for WIWNU GA Model (Group II) 
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Figure 6.71 Testing Results for WIWNU GA Model (Group II) 
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6.3.4.3 Results of Group III 

GA Models of MRR with Using Group III Data 

 

 

 
0874.004.0

38.04141.00067.02425.1
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Figure 6.72 Training for GA MRR Model (Group III) 
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Standard deviation of training error (%) = 2.9372 %

# of generations = 701
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Training error (%)  = 3.2752 %
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Figure 6.73 Training Results for MRR GA Model (Group III) 

Figure 6.74 Testing Results for MRR GA Model (Group III) 
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Figures 6.76 and 6.77 show the training and testing results for this case. 

 

 

Figure 6.75 Training for GA WIWNU Model (Group III) 
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Figure 6.76 Training Results of WIWNU GA Model (Group III) 
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Figure 6.77 Testing Results for WIWNU GA Model (Group III) 



 

6.3.5 Summary of Modeling Errors in Group I, II and III 
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Table 6.26 Summary of Modeling Errors in Group I 

 

From Table 6.25, it is evident that the errors for all four models for MRR are very 

small (< 2.8%) and close to each other when adequate training data sets are available as 

in the Group I case. Due to higher non-linearity relationships, the average errors from the 

four WIWNU models are higher than those for MRR and they remain close to 10%.  
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Table 6.3.21 summarizes the model errors in Group II. The results are similar to the 

previous case (Table 6.25) in that, the average training and testing errors from all four 

MRR models and four WIWNU models vary from 2 to 3 % for MRR and 7 to 10 % for

WIWNU, respectively. ANFIS-GP models for both MRR and WIWNU yielded less 

training and testing errors, compared to the other three modeling methods. 
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Table 6.27 Summary of Modeling Errors in Group II 
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Table 6.3.22 summarizes the model errors in Group III. For the case of MRR, 

ANFIS-GP and –SC models the errors are about the same as previous groups (i.e., 

Groups I and II), but the errors from NN increases significantly due apparently to the 

absence of adequate data (sparse data). For the WIWNU case, ANFIS-GP model still 

performed better than the other three modeling methods. This is because, unlike NN, an 

ANFIS-GP linear model possesses more adjustable parameters in the premise part (i.e. 
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Table 6.28 Summary of Modeling Errors in Group III 
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membership function) and consequent part, both of which provide more flexibility to 

ss. 

 

learn the unknown system during the training proce

 
Figure 6.78 Training and Testing Errors for ANFIS-GP MRR Models 

Figure 6.79 Training and Testing Errors for ANFIS-SC MRR Models 
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Figure 6.80 Training and Testing Errors for NN MRR Models 

 
Figure 6.81 Training and Testing Errors for GA MRR Models 
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Figure 6.82 Training and Testing Errors for ANFIS-GP WIWNU Models 

Figure 6.83 Training and Testing Errors for ANFIS-SC WIWNU Models 



 

 
Figure 6.84 Training and Testing Errors for NN WIWNU Models 

 
Figure 6.85 Training and Testing Errors for GA WIWNU Models 
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Figure 6.86 Testing Errors for ALL MRR Models 

Figure 6.87 Testing Errors for ALL WIWNU Models 
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6.3.6 Group IV - Sparse Data for ANFIS-SC and GA Modeling 

6.3.6.1 Fine-tuning Procedures for ANFIS-SC Modeling 

In order to verify the modeling capability of ANFIS-SC to fit sparse-data case, 25 

training data sets (Group IV) were picked based on a Taguchi array. Two fine-tuning 

methods (I and II) were used as described: 

Method I 

 Step1: Choose a suitable ANFIS-SC structure, usually starting from the number of 

fuzzy rules which is no more than the number of training data sets. Under the 

MATLAB GUI programming environment, the range of influence and squash 

factor are two main parameters to control the generated ANFIS-SC structure. 

 Step2: Choose a sufficient training iteration for converging training and testing errors to 

some unchanged values. 

 Step3: Repeatedly adjust or replace the membership functions of statistically 

insignificant input variables and implement re-starting the training process to 

reduce the testing errors to the acceptable ranges. 

If the relationships between the output and input variables which are adjusted are roughly 

linear (usually replacing with linear-type membership functions, such as triangle and

trapezoid-sh

 

aped membership functions). Likewise, replace with nonlinear-type 

membership functions, such as Gaussian- or bell-shaped membership functions for 

nonlinear relationships between an input and the output. 

Method II 

Step 1: The same as Method I.  
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 Step 2: Perform an early stopping of the training process. (no need to check for 

convergence here) 

 Step 3: Repeatedly adjust or replace the membership functions in both 

significant and insignificant input variables, and implement re-starting and 

early stopping the training process to simultaneously reduce the training and 

testing errors. 

Usually, Method II can provide much greater changes (i.e., increase or decrease) in 

training and testing errors, but it always holds higher risk to fail. Sometimes, it will 

effectively shorten the training time to continuously reduce the errors to the acceptable 

ranges. The following example shown in Table 6.29 was fine-tuned using Method II, the 

training and testing errors were shrunk to around 70% and 99% in only six fine tuning 

steps. 
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Table 6.29 Fine-tuning Results of MRR Group IV ANFIS-SC 6-Rule Model 
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6.3.6.2 Results of Modeling Spare-data Case Using GA 

GA Models of MRR with Using Group IV Data 

 

Figures 6.89 and 6.90 show the training and testing results for this case. 
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Figure 6.88 Training for GA MRR Model (Group IV) 

# of generations = 1201

Best solution = [1.0283   0.0129   0.5919   -0.0195   0.4840   -0.1206]

Training error (%)  = 3.0874 %
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Standard deviation of training error (%) = 3.3385 %

Standard deviation of testing error (%) =2.4735 %
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Figure 6.89 Training Results for MRR GA Model (Group IV) 
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Figure 6.90 Testing Results for MRR GA Model (Group IV) 
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Figures 6.92 and 6.93 show the training and testing results for this case. 

 

 

Figure 6.91 Training for GA WIWNU Model (Group IV) 

# of generations = 1501

Best solution = [1.1039   0.0010   0.0696   -0.2665   0.1119   0.7697 ]

Training error (%)  = 10.0224 %
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Standard deviation of testing error (%) = 6.1568 %
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Figure 6.92 Training Results for WIWNU GA Model (Group IV) 
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Figure 6.93 Testing Results for WIWNU GA Model (Group IV) 
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6.3.7 Optimization of CMP Processes Using Multi-Objective Evolutionary 

Algorithms (MOEA) 

In this section, the ANFIS-GP models for MRR and WIWNU from Section 6.3.1.1 

were used as the objective functions for the NSGA-II in MOEA to search the simulation 

results for optimal MRR and WIWNU. The simulation results form NSGA-II were 

validated using confirmation experiments (i.e., third-stage CMP experiments).  

The Pareto-optimal simulation results are shown in Figure 6.94 and are listed in the 

Table 6.29. After 300 iterations, 16 Pareto-optimal points were searched. Theoretically, 

these points should be very crowded along the near-Pareto front, while the discrete 

settings on the CMP machine for each input variable, the optimal CMP processes (i.e., 

red points near the blue fitting curve) should be slightly dispersed away.  

Table 6.29 shows the verification of the model with the experimental results. The 

nd around 12% for WIWNU. 

MOEA can certainly provide a 

odeling using NN, ANFIS and GA, 

ay contribute to improve the quality assurance of CMP process. 

MRR, the average prediction error for MRR is only 2.28% a

very reliable direction to search for the optimal input 

settings for optimal MRR and WIWNU, if the process models used as objective functions 

were sufficiently accurate. Apart from the accurate m

the use of MOEA m
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Figure 6.94 Pareto-optimal Results of MRR and WIWNU 
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Table 6.30 Pareto-optimal Results Simulated by NSGA-II 

Solid content = Sc (weight %), Down pressure = Pd (psi), 
Back pressure = Pb (psi), Platen Speed = Vp (rpm), 
Polishing time = T (sec), 
MRR (Å/min),  WIWNU (%)
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 allow for local 

adjustments of shapes that can significantly lower testing errors without causing many 

variations in the training errors. Also, from the results of GA models for Group IV 

(sparse data) in Sections 6.3.6.1 and 6.3.6.2, the sparseness of the data does not 

significantly affect GA models. This is because GA models with good choice of model 

structures need much fewer exemplar patterns for fitting compared to NN and ANFIS. 

 

 

CONCLUSIONS AND FU

7.1 Conclusions 

7.1.1 Effect of Sparse Training Data on Model Accuracies 

The results in Sections 6.1 and 6.2 for the experiments in Groups I and II provide 

the evidence that the sparse data can severely hamper the performance of NN and 

ANFIS-GP models. The sparseness of training data leave little scope for adjusting the 

weights in NN models, or the relative parameters in premise and consequent parts in 

ANFIS-GP models. Models trained by sparse data certainly cannot perform smaller 

testing errors, even though the training errors are very small. The high risk of overfitting 

situation can easily occur.  

However, through effective fine-tuning steps, the deleterious effects of the sparse 

data can be overcome for ANFIS-SC models as explained in Fine-tuning the membership 

function shapes and supports of insignificant input process parameters
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7.1.2 Influence of Experimental Designs 

Apart from the insufficient size of training data sets for the sparse-data case, the 

distribution of the training data sets is an important issue. If training data sets can cover 

only a fraction of the process parameters space, the generalization capacities of the 

constructed models will be seriously affected. In addition to large testing errors, the 

simulation results might be continuously fluctuating between every training epoch, 

especially in NN model. In other words, the overfitting situations cannot be avoided. 

However, error fluctuations do not happen on the ANFIS cases; instead, the overfitting 

leads to small training errors and large testing errors, but they always keep the same (i.e., 

converge to some fixed values). 

From the summary results shown in Tables 6.26 to 6.28, if the process is stable, the 

training data sets are selected by the factorial DOE and they fully cover the entire ranges 

of input variables, the constructed models can accurately simulate the whole polishing 

process, even with the fewer training-data case as seen in Group III (only 162 training

data sets).  

Thus, the size and uniformity of distribution of training data sets are both significant 

factors to construct the accurate process models, especially for NN, ANFIS and GA. The 

selected training data sets are picked more uniformly up from the whole input ranges, the 

better generalization capacities of the constructed models possess. 

 

7.1.3 Determination of the Architectures for NN and ANFIS Models 

Although for the NN and ANFIS models described in Section 6.3 are able to 
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perform accurate simulations, an inherent problem for these two modeling tools is “what 

architecture is best for a given case?” Definitely, different sizes and distributions of the 

training data sets need different NN and ANFIS architectures.  

The performance of backpropagation NN used in this research is controlled by a 

number of design parameters, such as the network topology, type of transfer function, 

learning coefficients, and momentum parameter. A fixed combination of these parameters 

that can be applied to any specified problem, does not exist. Identifying the best 

combination of NN parameters for a particular application is usually done empirically 

and is an ongoing area of NN research.  The objective in selecting the network size and 

training parameters is to obtain the network with the best generalization capabilities; 

where generalization is a measure of the network’s performance on the data not used in 

training (i.e., testing data). 

In this research, the optimization concepts derived from the GA were successfully 

employed to determine the optimal architectures for NN models. For simplicity, we only 

ers of neurons in each 

 previous 

paragr  GA will be the 

one of

e-

consuming trial and error methods. Surely, GA like optimization of architecture can be 

applied to search for the best ANFIS models. To illustrate this point, the same sizes and 

distribution types of training and testing data sets are used to construct the MRR and 

focused on emphasizing the numbers of hidden layers and the numb

hidden layer using GA. If we can form all NN parameters described in the

aph to a chromosome and determine a suitable objective function,

 best means for optimizing the architecture for the NN models. 

In this research, all ANFIS models are determined based on traditional tim
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WIWNU models in the Section 6.3.2.3, but the number of rules used for WIWNU case is 

21 less than that for the MRR case. In fact, some useless fuzzy rules in MRR models may 

be present. These rules may not deteriorate the model performance, but certainly waste 

the training time. It is anticipated that our future research will focus on establishing 

useful algorithms for optimizing the ANFIS models.

 

7.1.4 Fine-tuning Techniques to Construct ANFIS-SC Models 

Building on the concepts presented in Section 5.4.3, substantial improvements in 

predicting MRR and WIWNU characteristics in CMP are possible from the newly-

developed technique based on fine-tuning the membership functions of ANFIS-SC 

models constructed using sparse experimental data sets used in Groups I and II. Fine-

tuning the membership functions of insignificant input variables seems to be the key 

towards effectively minimizing the predicted errors and greatly improving the suitability

 

only sparse-data sets are available due to the expensive nature of experimental date 

collection physical and/or numerical simulations. 

In reality, the large simulation errors from ANFIS-SC models shown in Tables 6.1, 

6.2, 6.4 and 6.5 are resulted from the so-called overfitting-like results. Nevertheless, after 

useful fine-tuning operations, the testing errors tremendously decreased below 5% or 

lower. Because of the absence of fluctuations as in NN overfitting models, these ANFIS-

SC models are still very reliable.  

According to results shown in the Section 6.3.4, after appropriately fine-tuning 

 

of the established ANFIS-SC modeling methods for applications such as CMP where
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operations, the testing error was apparently lowered by 70%. Comparing with the results 

in Group III, the testing error from the ANFIS-SC fine-tuned model in Group IV has 

reached almost the same levels in Group III listed in Table 6.29. Obviously, this is a 

significant contribution on modeling highly nonlinear unknown systems with highly 

sparse training data sets. 

Notably, one may use more number of fuzzy rules (i.e., more membership functions 

in each input variable) to prevent the occurrence of inconsistent models. However, this 

may increase the difficulty in fine-tuning the membership functions. So far, it is 

somewhat of an art to initially guess and re-shape the membership functions. The fine-

tuning procedures of method I can be rather time-consuming. Nevertheless, the fine-

tuning steps of method II can effectively reduce the adjus ng time. Undoubtedly, how to ti

substantially shorten the fine-tuning time is another significant task for research.  

Theoretically, if we can clearly understand the relationships between the outputs 

and each individual input. It will be very worth choosing or designing the membership 

functions in the fuzzy rules. In other words, the human-base knowledge can be involved 

into the fuzzy rules for ANFIS training.  

 

7.1.5 Contributions to GA Modeling 

From the aforementioned results, it is evident that GA can be successfully applied 

in process modeling, even for highly nonlinear systems, such as the CMP process. The 

process models constructed using the sparse data from the experiment I may not be 

sufficiently robust to represent the real CMP process. However, from the Equation (6.3), 
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a different pre-determined formula for WIWNU case can tremendously reduce the 

modeling error. In other words, GA modeling is very flexible and reliable. Choosing a 

suitab

ery 

close

and WIWNU, it 

is ob

Moreover, except for keeping to trying our proposed Method I in Section 5.5.2.1, 

our future work will attempt to try our Method II as depicted in Section 5.5.2.2

le pre-determined formula is a key behind excellent results for method I of GA 

modeling. It may usually involve several trials to find a better formula. 

Comparing the simulation results of MRR and WIWNU models from the above 

four groups in the Case III experiments, both training and testing errors almost are v

. We can conclude that the size and distribution of the training data sets are not very 

important issues to GA modeling using Method I. Because the pre-determined formula 

provided a reliable frame work, GA operation tries to find the best solution to fit the 

given framework. It is quite different for the other modeling tools.  

According to the procedures for constructing GA models for MRR 

viously not necessary to determine which input features are critical to the output 

performances, i.e., the need for tedious statistical analyses may not be necessary in GA 

modeling. This can be an important advantage in using GA to model highly nonlinear 

systems. Only if we can design evolutionary chromosomes (or solutions) to form the 

initial populations, they can effectively facilitate in finding the optimal chromosomes 

through suitable evolutional generations.  

, which 

should potentially build more precise process models to be able to fit the any highly 

nonlinear systems.  
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From the GA models in Case III experiments, the importance of the solid content is 

much smaller than those of down pressure and platen speed both to MRR and WIWNU. 

This conclusion somewhat contradicts the observations from Experiment I.  While down 

pressure and platen speed greatly affecting the MRR as well as back pressure, platen 

speed and polishing time are significant to WIWNU, all of results from these three 

experiments are similar. 

 

7.1.6 Optimization of CMP Process 

Lastly, on the basis of accurate models constructed using ANFIS-GP in this 

investigation, MOEA can be successfully applied for optimization of CMP process. From 

Table 6.30, the input settings for optimal CMP process can be found through the 

guidance of the simulation results generated from NSGA-II in MOEA. Obviously, it can 

definitely replace the traditional trial-and-error procedures. Even the process models are 

black boxes as NN and ANFIS models used in the Case III experiments, the optimal input

settings can still be precisely found. This should be another useful contribution of this 

investigation. 

 

7.2 Future Work 

Currently, the experiment data sets of CMP used in this research have no real-time 

detecting information during the polishing process. The Ultra Precision Machining UPM 

experiments setup shown in Figures 7.1 and 7.2 involve three sensors (i.e., cutting forces, 

vibrations, and acoustic emission) for collecting the real-time processing situations. More 
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accurate process models (for surface roughness, or chatter detection) should be 

constructed by combining the real-time sensed signals with the process input settings, 

such as the depth of cut, feed rate, and rotational speed. Likewise, chatter detection can 

be achieved using the similar ideas. 

Secondly, some challenges still remain for constructing and improving process 

models using ANFIS, NN and GA, as stated in the Sections 7.1.3 to 7.1.5. Several initial 

ideas were shown in the following Section 7.2.2. Our future work will attempt to 

determine appropriate solutions to these issues. 

 

7.2.1 Multi-Sensor-Fusion and Monitoring Techniques for Modeling Surface 

Roughness for UPM Cases 

Figures 7.1 and 7.2 show the front and side views of sensor setups on the UPM 

machine. The important features extracted from the sensing signals by the principal 

component analysis (PCA) will be used as extra input variables in order to increase the

accuracy for process modeling. Figure 7.3 shows our approach for precisely modeling the 

surface roughness by involving the above-mentioned features. 
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Figure 7.2 Side View of UPM Machine with Sensors System 
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Figure 7.1 Front View of UPM Machine with Sensors System 
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Figure 7.3 Model Design for Surface Roughness Prediction 

Figure 7.4 Model Design for Chatter Prediction 

 

Figure 7.4 illustrates to the model construction a model for predicting chatter during 

the machining process. After PCA analysis, if there appear periodical fluctuations in 

some extracted features, chatter can certainly be recognized. 
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7.2.2 Optimization of ANFIS and NN Models 

Figure 7.5 shows a schematic of the optimizing process. All control parameters, 

such as weights, number of layers and neurons, parameters in membership functions and 

conse

 

quent part, in NN or ANFIS architectures will be formed to represent chromosomes, 

which are gathered to be in the initial population. The appropriate evolutionary 

operations are chosen to find the best chromosomes which can balance the training and 

testing errors. Our objective is to find out the trade-off point of both training and testing 

error. If trade-off point cannot perform better, new architecture will replace old one and 

the evolutionary operations for searching trade-off point will re-start. 

Figure 7.5 Optimization of ANFIS and NN models 
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 The detailed steps are involved in the optimization given in the following: 

 Step1: Choose the architectures for NN or ANFIS. 

 Step2: After analyzing the selected architecture, extract important features from the 

control parameters, such as weights, number of layers, membership functions, , 

to form the chromosomes. 

 Step3: According to the format of constructed chromosome, randomly generate more 

 Ste

rm part of control parameters into a 

chrom

table value of the testing error. 

 

chromosomes to form an initial population. 

p4:  Set the appropriate objective functions or rules, such as smaller training and 

testing errors are better. Further, assign better chromosomes for higher fitness 

values. 

 Step5: Run the selected evolutionary operations to search for the best chromosome. 

 Step6: Check the searched best chromosome whether performance is good or not. 

 Step7: Repeat Steps 1 to Step 6 until optimal architecture is found. 

 

7.2.3 Shortening Fine-tuning Time of ANFIS-SC Models for Sparse Data 

For a given ANFIS-SC model, we can fo

osome. Use the same ideas as described in the previous subsection, but just focus 

on the local search, for example, only on the membership functions of insignificant 

variables. If any new chromosome (i.e., new architecture settings) which can reduce the 

testing error is found, then replace old architecture with new settings. Keep the same 

procedures until reaching the accep

288 



 

7.2.4 Method II for GA Modeling 

Figure 7.6 shows the representation of a chromosome using the method II for GA 

modeling. Recombination operation can be performed through changes in the set 

positions, set values (or types), etc. In this method, no mutation operation will be applied 

for preventing from generating mathematically unreasonable chromosomes. Expectedly, 

this method can generate more accurate models, but it might take longer operation time 

and the generated models may not possess any physical meaning. 

 

There are three rules that should be followed for as modeling: 

Figure 7.6 Method II for GA Modeling 
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 Rule1: All circle symbol sets should connect together.  

 Rule2: Any two square terminal sets can not connect together. 

 Rule3: Any one circle function set can connect at most two square terminal sets.   

All new generated chromosomes (i.e., the new models) should be checked if they are 

mathematically reasonable equations. Similarly, the appropriate evolutionary operations 

can be used to find the best chromosome (i.e., best model). The objective functions or 

rules can also be setup as smaller training and testing errors are better. 
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APPENDIX I 

tatistical Significance of CMP Process Parameters on ANFIS-GP Effect of S

2-2 model is tabulated in Appendix III (Table A-5 from # 1 to #50). Initially, each 

in each  a constant, or 

taking this process input away from simulation model) to calculate the value of each 

trainin rors are 

created. Large training errors have resulted for the process inputs that have statistically 

significan

Figures A-1 and A-2. From these plots, it is evident that the carrier speed and the 

previo

membership functions of process inputs, such as carrier speed, one can effectively reduce 

 

Modeling 

In this analysis, the original data used for constructing the ANFIS-GP 2-2-2-2-2-

process input has two membership functions. Next, the number of membership functions 

 process input was changed to one (i.e. setting this process input as

g error one by one. Consequently, seven different values of training er

significant influence on a performance variable (i.e., MRR or WIWNU). Comparisons of 

ce of process inputs to MRR and WIWNU are illustrated in Table A-1, and 

oscillation speed are insignificant process inputs to both MRR and WIWNU. As 

usly mentioned in the Section 5.6, by adjusting the premise parameters of 

the testing errors. 
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Table A-1 Average Training Error for MRR and WIWNU 

Process Inputs 
MRR Average 
Training Error 

(Å/min) 

WIWNU Average Training 
Error x10-3

 

Down Pressure (P) 196.6773 650.48 

Solid Content ( C) 99.9583 338.04 

Platen Speed (Vp) 95.5078 332.87 

Back Pressure (γ) 50.4104 311.93 
Oscillation Speed 

(Vo) 30.1623 260.37 

Polishing Time (T) 27.2822 1.9501 

Carrier Speed (Vc) 10.8484 0.50728 
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Figure A-1 Relative Effect of Process Parameters on MRR 
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Figure A-1 Relative Effect of Process Parameters on WIWNU 
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APPENDIX II 

An Example of Fragmentary Simulation Model with Insufficient Membership 

Funct

An example of ANFIS-SC Model with 7 rules is shown in Table A-2 and Figure 

A-3. The use of aining and validation errors as the model 

is unable to capture the complexity of the process. On closer observation, it was evident 

the inp tire 

shown in Figure A-4 and Table A-3). 

 

ions and Fuzzy Rules 

 fewer rules can lead to larger tr

that, the results by ANFIS-SC 7 rules yield very good predictions for certain portions of 

ut space. However, the insufficient fuzzy rules could not fully cover the en

range of input settings, leading to undesirable results (e.g. negative value of MRR as 

Table A-2 Prediction of MRR by Neural Network and ANFIS Models 

 

NN and ANFIS 
Model Types NN   NN   A

 7-4-1  
purelin

7-3-1  
tansig 

NFIS-GP  
2-2-1-3- 

1-1-2 

ANFIS-SC 
7 Rules 

ANFIS-SC
45 Rules 

Results 

Means 21.004% 11.026% 13.039% 3.019% ~ 0 % 
45 

Tra
Error %  Standard  

deviations 19.659% 8.420% 16.044% 
ining 

4.827% ~ 0 % 

Means 17.498% 15.228% 15.157% 10.730% 3.705% 
9 

Validation 
Error %  Standard  

deviations 11.420% 11.519% 12.315% 10.055% 1.639% 
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Figure A-4 Simulation of ANFIS-SC 7 Rules by Fuzzy Logic Toolbox in Matlab 6.1

Sc =15 Pd =5 Pb =1 Vp =31 Vc =28 Vo =9 T =42 output = -438

Figure A-3 Results of ANFIS-SC 7 Rules for MRR 
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Solid Down Back Platen Carrier Oscillation Polishing MRR  Content 
(wt%) 

Pressure  
(psi) 

Pressure  
(psi) 

Speed  
(rpm)

Speed  
(rpm)

Speed   
(rpm) 

Time     
(sec) 

 (Å/min)

1 28.0 9.0 42  -438.0 5.0 5.0 1.0 31.0 

Ta ules) ble A-3 Fragmentary Simulation Model Inputs and Output (ANFIS-SC 7 R
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APPENDIX III 

Table A-4 27 Source Data Sets for CMP [79, 81] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Input Data Output Results 

 C P γ VP T VC VO

 
S

Co
(wt%) (psi) (psi) 

aten 
eed   

(rpm)

Polishing 
Time     
(sec) 

Carrier 
Speed   
(rpm)

Oscillation 
Speed   
(rpm) 

MRR 
(Å/min) 

(Variation of 
Thickness 
Std σ, Å) 

olid 
ntent 

Down 
Pressure  

Back 
Pressure  

Pl
Sp

WIWNU 

1 5 4 0 20 40 25 2 548.4 137.54 

2 45 25 2 870 109.591 5 5 1 30 

3 50 25 2 980.4 99.567 5 6 2 40 

4 5 7 3 50 55 25 2 1218.6 128.673 

5 5 8 3.5 60 60 25 2 1233 98.534 

10 4 3 30 50 25 2 965.4 51.999 6 

10 5 3.5 40 55 25 2 1407 152.866 7 

8 25 2 1735.2 298.643 10 6 0 50 60 

9 10 7 1 60 40 25 2 2078.4 88.683 

10 10 8 2 20 45 25 2 1350.6 112.108 

15 4 1 40 60 25 2 1166.4 92.238 11 

12 40 25 2 1660.8 114.126 15 5 2 50 

13 15 6 3 60 45 25 2 2213.4 114.363 

14 15 7 3.5 20 50 25 2 1326.6 55.401 

15 8 0 30 55 25 2 1910.4 110.232 15 

20 4 3.5 50 45 25 2 1226.4 100.058 16 

17 25 2 1753.2 169.638 20 5 0 60 50 

18 20 6 1 20 55 25 2 1102.2 167.419 

19 20 7 2 30 60 25 2 1723.2 114.87 

20 20 8 3 40 40 25 2 2356.8 69.075 

25 4 2 60 55 25 2 1395 113.494 21 

22 5 3 20 60 25 2 1026 46.615 25 

23 25 6 3.5 30 40 25 2 1544.4 52.903 

24 25 7 0 40 45 25 2 2075.4 139.578 

25 25 8 1 50 50 25 2 2646.6 206.076 

26 15 7 3 20 60 25 2 1599 112.2 

27 20 8 3.2 41 42 25 2 2711.4 118 
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Table A-5 54 Source Data Set for CMP [79-81] 

 Input Data Output Data 

 C P γ VP T VC VO

 
Solid 

Content 
(wt%) 

Pressure   
(psi) 

Back 
Pressure   

(psi) 

Platen 
Speed   
(rpm)

Carrier 
Speed   
(rpm)

Oscillation 
Speed   
(rpm) 

Polishing 
Time     
(sec) 

 
MRR 

(Å/min) 

 
WIWNU 

% 
Down 

1 2 40 548.4 2.02 5 4 0 20 25 

2 5 5 1 30 25 2 45 870 1.68 

3 5 6 2 40 25 2 50 980.4 1.76 

5 7 3 50 25 2 55 1218.6 1.61 4 

5 5 8 3.5 60 25 2 60 1233 2 

6 10 4 3 30 25 2 50 965.4 1.37 

7 10 5 3.5 40 25 2 55 1407 0.81 

8 10 6 0 50 25 2 60 1735.2 6.39 

9 10 7 1 60 25 2 40 2078.4 2.56 

10 10 8 2 20 25 2 45 1350.6 2.06 

11 15 4 1 40 25 2 60 1166.4 6.23 

12 15 5 2 50 25 2 40 1660.8 4.9 

13 15 6 3 60 25 2 45 2213.4 6.49 

14 15 7 3.5 20 25 2 50 1326.6 5.54 

15 15 8 0 30 25 2 55 1910.4 7.27 

16 20 4 3.5 50 25 2 45 1226.4 3.12 

17 20 5 0 60 25 2 50 1753.2 8.78 

18 20 6 1 20 25 2 55 1102.2 6.49 

19 20 7 2 30 25 2 60 1723.2 3.59 

20 20 8 3 40 25 2 40 2356.8 4.28 

21 25 4 2 60 25 2 55 1395 6.21 

22 25 5 3 20 25 2 60 1026 4.75 

23 25 6 3.5 30 25 2 40 1544.4 3.81 

24 25 7 0 40 25 2 45 2075.4 6.78 

25 25 8 1 50 25 2 50 2646.6 5.21 

26 5 4 0 20 20 2 60 1062 3.2 

27 5 6 1 30 30 5 60 721 2 

28 5 8 2 40 40 8 60 987 1.8 
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Continued from previous page 
29 5 10 3 50 60 1194 2.6 50 11 

30 5 12 3.5 60 60 14 60 1598 3.1 

31 10 4 3 30 40 14 60 1711 5.26 

32 10 6 3.5 40 50 2 60 1178 2.44 

33 10 8 0 50 60 5 60 1513 4.64 

34 10 10 1 60 20 8 60 1751 5.01 

35 10 12 2 20 30 11 60 1371 2.52 

36 15 4 1 40 60 11 60 2321 3.3 

37 15 6 2 50 20 14 60 1077 2.28 

38 15 8 3 60 30 2 60 1533 4.53 

39 15 10 3.5 20 40 5 60 1277 2.48 

40 15 12 0 30 50 8 60 1854 4.59 

41 20 4 3.5 50 30 8 60 1860 4.25 

42 20 6 0 60 40 11 60 1028 3.86 

43 20 8 1 20 50 14 60 1040 2.19 

44 20 10 2 30 60 2 60 1649 3.59 

45 20 12 3 40 20 5 60 1721 3.87 

46 25 4 2 60 50 5 60 2612 5.51 

47 25 6 3 20 60 8 60 926 1.73 

48 25 8 3.5 30 20 11 60 1288 2.26 

49 25 10 0 40 30 14 60 2318 4.45 

50 25 12 1 50 40 2 60 2535 5.21 

51 15 7 3 20 25 2 60 1599 3.1963 

52 20 8 3.2 41 25 2 42 2711.4 3.7506 

53 15 8 3 20 25 2 60 1533 2.663 

54 25 12 1 60 60 2 60 2633 0.96 
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APPENDIX IV 

 

Solid content Down Pressure
si)

B re Platen Spee
Sc  (wt%) Pd  (p

ack Pressu
Pb  (psi)

d
Vp  (rpm)

Polish g
Tim

MRR
(Å/min)

WIWNU
(%)

1 5 4 0 20 40 786.4 1.55
2 30 1182 2.02
3 8 40 1601.8 3.33
4 0 50 2234.1 2.2
5 60 2388.8 3.77
6 4 40 1274 1.39
7 1 6 50 1473.3 3.92
8 60 2252.4 1.25
9 0 4 20 50 1335.2 2.11
10 2 30 2128.6 1.44
11 15 4 2 60 50 1344 3.06
12 15 6 3 20 60 796 3.1
13 15 8 4 30 50 1438.8 1.88
14 15 10 0 40 60 1870.2 4.36
15 15 12 1 50 40 2613.9 1.46
16 20 4 3 30 60 816.2 2.71
17 20 6 4 40 40 1546.5 1.16
18 20 8 0 50 50 2027.4 2.22
19 20 10 1 60 40 2549.4 1.24
20 20 12 2 20 50 1557.8 1.98
21 25 4 4 50 60 1141.5 2.96
22 25 6 0 60 50 1866.7 3.07
23 25 8 1 20 60 1034.5 3.86
24 25 10 2 30 40 1789.9 1.35
25 25 12 3 40 60 2070 3.3

in
e T  (sec)

5 6 1 50
5
5 1

2
3

60
50

5 12 4 60
10
0

1
2

40
60

10 8
10 1

3 40

10 1 0 40

Table A-6 Gro ntup IV Experime al Training Data 
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