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CHAPTER 1

INTRODUCTION

1.1 STATEMENT OF PROBLEM AND PURPOSE

The Binomial distribution is appropriate when analyzing a fixed number of
independent Bernoulli trials, where the random variable of interest is the number of
successes, or alternatively, p, the proportion of successes. For example, if a fair coin is
tossed » times and the random variable X denotes the number of heads, then Xis a
binomial random variable, and the parameter of interest is often p = proportion of
successes. Many studies in the biological sciences use the binomial distribution. As an
example, consider experiments conducted to determine the effect of new drugs on small
animals. A common design involves 7 populations (treatments, groups, etc.) over which
the probabilities of response, p; (i = I, 2, ...T) are to be compared. Many statistical
methods for analyzing binary data such as this, including confidence intervals and
multiple comparisons, are based on the binomial model.

One of the key elements in a binomial experiment is the assumption of
independence between the » trials. However, in many experiments, additional factors can
induce extra-binomial variability. Hence the binomial sampling assumption of
independence is invalid. In these cases, there is often correlation among the trials which
can lead to overdispersion. To illustrate this, consider a group of highly correlated trials.

If one unit in the group responds, then the probability that another unit in the same group



responds increases. Likewise, if one unit in the group does not respond, then the
probability that another unit in the same group does not respond is higher. This results in
overdispersion. Thus there is increased variability created by the more extreme
probabilities.

A common sampling model for overdispersed zero — one data is the beta-binomial
distribution. The beta-binomial distribution is derived by assuming a beta prior on the
binomial probability p. (Derivation 1.1 in Appendix A) There are several
parameterizations of the beta-binomial distribution. One such parameterization
introduces the parameter @, which measures departure from binomial sampling. Hence,
when @ = 0 there is no overdipersion and binomial sampling is retained. As @
increases there is more correlation or overdispersion in the experiment, and departure
from binomial sampling increases.

In reproductive toxicity studies extra-binomial variability is often present.
Haseman and Piegorsch (1994) note that there are several important statistical issues
associated with this type of data, including proper identification of the experimental unit,
appropriate methodology for data analysis, and sample size considerations. In these
experiments, the experimental unit is the parent that was exposed to some chemical, drug
or treatment. This is typically the female rodent or her entire litter; it is not the
individual conceptus. Thus individual conceptuses represent correlated observations
(Piegorsch, 1993). This correlation within a litter is often referred to as the “litter
effect”, or the intralitter correlation. The beta-binomial model can be reparameterized to

yield this intralitter correlation: p, = @,/ (1 + @, ), where p, is the intralitter

correlation for the i” treatment (or dose). This parameterization can be easily interpreted



in terms of correlation. As @, increases, the correlation approaches one, illustrating that
@, measures departure from binomial sampling. When ®, = 0, the correlation is zero,

implying that we have independence among the trials, hence binomial sampling is
retained.

In most reproductive toxicity experiments, the parameters of interest are the
response rates p;, associated with the i treatment (or dose) level. The researcher is
often interested in determining if there are significant differences in the proportion of
successes at the various treatment (or dose) levels. This can be accomplished via
confidence intervals in the two population case, or via multiple comparisons in the &
population case.

There are several methods for estimating binomial proportion differences via
confidence intervals. In the two population case, the standard textbook method is based
on the maximum likelihood estimators (MLEs). If n; and n, are sufficiently large, then

an approximate 100(1- & )% confidence interval for p; — p> is

A A A A 1/2
p(-p) , b~ p»j

(p,—p,) * Za/Z(
n, n,

where p, and p, arethe MLEs and z_,, is the upper 1 — « /2 percentage point of the

standard normal distribution. There are, however, problems with this interval when the
sample sizes are too small, and also when the proportions are close to zero or one. As a
result, many authors have proposed alternative methods for estimating binomial
proportions. In particular, Beal (1987) considered several intervals based on the
asymptotic properties of the MLEs and compared the results to the standard confidence

interval. He used a reparameterization, a = p, + p,and b = p, — p,, then considered



estimators of @ and b. In one particular interval, a Bayesian approach was used to
develop the Jeffreys-Perks interval. In this case, the estimate of a is the posterior mean
when using a symmetrical prior. This is the approach we will consider for the beta-
binomial case.

If we extend analysis of binomial proportions to the £ population case, a usual
approach is to utilize a multiple comparison procedure. Most textbooks propose using
methods such as Scheffe’s, Tukey’s w, Dunnett’s, or Bonferroni’s to determine if there
are significant differences in the proportions at various levels of the treatment (or dose).

Here, all pairwise comparisons, p; — p;, are considered based on linear contrasts (see

Piegorsch, 1991).

These estimation procedures assume independent trials and do not allow for
correlation among the trials. However, as discussed, in many situations there is
correlation among the trials. The overdispersion brought about by the extra-binomial
variability in the p;’s requires the construction of alternative modes and methods for
analysis of the treatment effects (Piegorsch, 1991).

As a first step, the two population case will be considered. Many authors have
proposed confidence intervals for the difference between two binomial proportions which
correct the small sample problems associated with the interval based on the MLEs. This
paper will examine possible adjustments or changes to these procedures when the
underlying distribution is beta-binomial. In particular, the binomial intervals proposed
by Beal (1987) will be considered. An additional problem for possible future work is to

then extend these ideas to the &k population case by way of multiple comparisons. The



basic idea is to reexamine corrections for the binomial model when the beta-binomial
distribution is utilized.

The purpose of this paper is to determine how these adjusted confidence intervals
perform for a variety of cases. No previous work appears to have been done for this
specific case. However, related work has been done using distribution-free methods
based on ranks and resampling. In addition, many authors have investigated other types

of estimation using the beta-binomial distribution.



1.2 REVIEW OF LITERATURE

Many authors have investigated interval estimation with the binomial distribution.
The standard textbook method is based on the asymptotic properties of the MLEs. This
interval, however, performs poorly when the proportions are close to zero or one and also
when the samples are small. Hence, other approaches are warranted. Beal (1987)
constructed and evaluated several asymptotically-based confidence intervals for the
difference between two binomial parameters and compared them to the standard textbook

method. A reparameterization defined by a = p, + p,and b = p, — p, isused in

each case. Beal finds that intervals presented by Mee (1984) and Miettinen & Nurminen
(1985) (based on the above reparameterization) are good overall choices in that they
provide a significant improvement over the standard textbook method. Beal also notes
however, that these two intervals must be constructed numerically, and in general are
hard to compute. Beal (1987) proposes a simpler approach by defining a Jeffreys-Perks

interval. The Jeffreys-Perks interval uses a Bayesian approach to estimate a = p, + p,.

The Jeffreys-Perks interval proves much easier to compute and provides considerable
improvement over the standard textbook method.

Other authors, such as Vollset (1993) and Peskun (1993), have compared various
intervals with binomial proportions to the standard textbook method. Vollset (1993)
constructs thirteen different binomial confidence intervals. The standard textbook
method is strongly discouraged and exact intervals and score intervals are recommended.
Peskun (1993) constructs a confidence interval based on the normal approximation for
the difference between two binomial probabilities. Newcombe (1998) compares eleven

binomial intervals. These include asymptotic methods with and without continuity



corrections, several numerically intense intervals given by Mee, Miettinen, and
Nurminen, Beal’s Jeffreys-Perks and Haldane intervals, a method combining Wilson
score intervals, and a likelihood method. All are compared in terms of coverage
probability. Agresti and Caffo (2000) construct an interval by adding two successes and

two failures before calculating the MLES of p, and p,.

Piegorsch (1991) extends the idea to simultaneous confidence intervals for
binomial proportions. Several dichotomous response models in which overdispersion
was not present are considered. Construction of simultaneous confidence intervals were
based on the asymptotic normality of the MLEs and these performed poorly for small
samples. Thus, a reformulation of the pairwise comparisons using a construction noted
by Beal (1987) was recommended for use with small-to-moderate sample sizes.

In all of the above cases, the approach taken is based on the binomial model
where the response variates are independent. As stated earlier, the overdispersion
brought on by the extra-binomial variability in many toxicity experiments requires the
construction of alternative models and methods for analysis of the treatment effects.
Piegorsch & Haseman (1991) suggest three possible approaches: 1) Distribution-free
methods based on ranks. These have been investigated by authors such as Fry & Lee
(1988) and Shirley (1987); 2) Resampling methods. Some common resampling
techniques are “jackknifing” [Quenouille (1949), Schucany (1971)] and “bootstrapping”
[Efron (1982)]; and 3) Parametric representations of proportional data that account for
overdispersion. This approach, utilizing the beta-binomial distribution, will be the focus

of this paper.



Several experimental situations where a beta-binomial distribution might be
reasonable have been considered in the literature. For instance, Piegorsch (1993) used a
regression approach to model the dose response, p, under the beta-binomial distribution.
He assumed a logistic model on dose response and used the MLE of f,. Significant
positive departure from S, = 0 would suggest increasing dose response. Kuper, et al.
(1986) also considered a logistic dose-response model that utilized the beta-binomial
distribution. However, he did so by introducing varying degrees of intralitter correlation.

The biases of the MLEs of /S, and S, were examined as a function of intralitter

correlation. Pack (1986) assumed a beta-binomial distribution and examined the
properties of the likelihood ratio test for equality of dose responses under various

assumptions on the @.'s. On a similar note, Paul & Islam (1994) derive two C(« )

[Neyman, (1959) ]statistics, based on the extended beta-binomial model for testing
homogeneity of proportions in the presence of a common over-dispersion or under-
dispersion and show, by simulation, that the size and power of these statistics are similar
to those of the corresponding likelihood ratio test. Lui, et al. (1996) developed a closed-
form interval estimate for the intraclass correlation using the beta-binomial distribution
and showed it to have asymptotically correct coverage. Crowder (1978 & 1979) proposes
a regression analysis of proportions based on the beta-binomial model and also proposes
a technique for inferences about the intraclass correlation in the beta-binomial ANOVA
for proportions. Paul (1982) compares the pseudo-t test, based on the jackknife method,
and the likelihood ratio test, based on the beta-binomial model for testing the equality of
two proportions. The comparison shows no definite advantage of one approach over the

other. Other authors, such as Wypij and Santer (1990), Griftiths (1973), and Smith



(1983) have investigated estimation of the marginal probability of success using the beta-
binomial distribution. Each of these papers lends insight into estimation using the beta-
binomial distribution, but all address slightly different situations than the one of interest.

In addition to procedures for estimating the beta-binomial probabilities, several
authors have presented methods for estimating the intraclass correlation. Ridout,
Demetrio, and Firth (1999) compare several estimators via simulation. Some are specific
estimators, while others are general methods such as pseudo-likelihood and extended
quasi-likelihood. Estimators considered include an analysis of variance estimator, a
moment estimator, and several estimators that are asymptotically equivalent. Lee (2004)
uses an extended quasi-likelihood method to estimate the intraclass correlation for binary
data. Zou (2004) obtains closed-form asymptotic variance formulas for three point
estimators of intraclass correlation. Simulation results indicate that confidence intervals
based on these estimators provide coverage levels close to nominal over a wide range of
parameter combinations. Additionally, Bonett (2002) examines sample size requirements
for estimating intraclass correlation.

As discussed earlier, the beta-binomial distribution is a common underlying
distribution when analyzing correlated binary data. It is a useful distribution because it
introduces a new parameter, @, which measures departure from binomial sampling. The
focus of this paper is to estimate proportion differences when the underlying data is
assumed to be beta-binomial. Many authors have investigated the use of the beta-
binomial in the estimation of proportions and proportion differences. Moore (1997)
investigated the proportion differences for two treatment levels where overdispersion was

present. Confidence intervals were used to estimate the proportion difference p; — p>



using the MLEs from the beta-binomial distribution. The sample sizes required for
standard error rates were determined to be too large for reasonable reproductive toxicity
experiments. Thus an alternate approach seems warranted.

Chen, et al. (2004) developed three closed-form confidence intervals for the
difference between two proportions when overdispersion is present. With all three of
these intervals, the concept of effective sample size is utilized to extend existing methods
for independent data to account for overdispersion. In particular, assuming equal

correlation in the two groups, Pearson’s correlation coefficient was used to estimate p

and then used to determine an estimate of the variance inflation factor. The first method
is an extension of a binomial method presented by Newcombe (1998), the second method
is based on the Jeffreys-Perks interval presented by Beal (1987), and the third method is
an extension of the binomial model presented by Peskun(1993) and later by Feigin and
Lumelskii(2000). Using empirical estimates of coverage bias, Chen, et al. (2004) find
under simulation that each of the three methods utilizing effective sample size and the
variance inflation factor provides significant improvements over the standard method

based on the MLEs.
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1.3 MOTIVATING EXAMPLES

There are many cases in which the analysis of binary data in the presence of
overdipersion is warranted. Two specific examples are considered here. The first is
noted by Haseman & Piegorsch (1994) with data and analysis presented by Chen, et al.
(1991) and the second is presented by Chen, et al. (2004).

The first example is a study on the effects of the drug hydroxyurea. In humans,
hydroxyurea is a drug used in the treatment of sickle cell anemia as well as certain types
of melanoma, but is also known to have harmful effects to an unborn fetus. According to
Chen, et al. (1991), in a study using female rodents, each female is exposed to the
chemical/drug hydroxyurea at various dose levels. The data recorded is the
developmental effect on the fetus. Specifically, the number of dead fetuses, the number
of malformed fetuses, and the number of normal fetuses are recorded. One parameter of
interest 1s the difference in the proportion of dead fetuses between any two dose levels of
hydroxyurea. The beta-binomial model is appropriate here since the experimental unit is
the female rodent and not the individual fetuses. Chen, et al. (1991) provide real data for
the study where the experiment consisted of four treatement groups — control, low dose,
medium dose, and high dose. Maximum likelihood estimates of the parameters are then
obtained by fitting a Dirichlet-trinomial distribution. A likelihood ratio test is then used
to determine if there are significant differences in the dose levels. Using the data given
by Chen, et al. (1991) at high & low dose levels for the study on hydroxyurea, confidence
intervals can be constructed to estimate the difference in the proportions of dead fetuses
at these two dose levels using the statistical procedures based on the beta-binomial

developed in Chapter 2 of this paper.
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The second example is based on a study of two treatment levels and their effect
on lice infestation where the experimental unit is the household. In this example
presented by Chen, et al. (2004), all patients in a household who were lice-infested were
randomly assigned one of two treatments (high dose or low dose). Of interest were the
treatment differences in lice-free rate between the two groups at 2 and 8 days after the
treatment. Chen, Li, & Zhou construct three confidence intervals based on extensions of
binomial cases that account for overdispersion and apply them to the data on lice-
infestation. The confidence intervals constructed and applied to this data are three of the
six intervals compared in Chapter 3 of this paper.

As mentioned earlier, the purpose of this paper is to construct and compare
several intervals for estimating the difference between two proportions in situations
where there is correlation or overdispersion, and thus six confidence intervals will be
constructed. The first part of Chapter 2 addresses the theory in the binomial case,
focusing on the derivation of several binomial intervals presented by Beal(1987). The
second part of Chapter 2 extends the theory to the beta-binomial distribution to derive
two new intervals and discusses four other existing intervals which account for
overdispersion in various ways. Chapter 3 describes the methodology and simulations
used to evaluate the intervals and presents and summarizes the simulation results.
Chapter 4 discusses conclusions, recommendations, and possible extensions of this

research.
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CHAPTER 2

THEORY

2.1 BINOMIAL CASE

We first consider the two population binomial model. Assume that p, and p, are
independent binomial parameters and », and n, are the known samples sizes,
respectively. Now consider a reparameterization of the parameters p, , p, , n, and n,
introduced by Beal (1987):

a=p, + Py

b:pl_pZ’

u = %(l/n1 +1/n,), and

1
v = Z(l/n1 -1/n,).

Let p,, p,, a, and b be the maximum likelihood estimates of P> D,» a,and b,
respectively. Since our goal is to estimate the proportion difference via a confidence
interval, we need to determine the variance of b. By the invariance property of

maximum likelihood estimators, we know that the MLE of b is P, — P,- Soto derive

the variance of b ,
Var(h) = Var(p,- p,)

= Var(p,) + Var(p,), since p, and p, are independent.

13



1- 1-
2d=p) for the Var( p,) and po(=p;)
n, n,

Next we substitute for the Var( p,). This

leads to the following expression for the variance of b:

p,(1-p,) i p,(1=p,)
n, n,

Var(l; ) =

N | —

2p, _2p° |, 2py 2py
n, n, n, n,

(L‘FLJ[pl +p—pi —p22]+(ni_nLJ[P1 -p-p+ pzz]j

n.on 1 2

N | —

Next, we substitute u and v as defined earlier, and rewrite p; and p; in terms of @ and b

and then simplify the result.
» 2 2 2 2
Var(b) = 2u(p1 +P, - P D ) + ZV(p1 — P, — P+ D )
. 2 2 2 2
= ”(2p1 +2p, =P —2pipy =Py — P +2ppy - Py )
+ 2V(p1 - p12_ PPy = Pyt PPyt pzz)

= u(z(pl + pz) - (pl + p2)2 - (p1 - pz)z) + 2v(p, — p)) = p, — p,)
= u(2a Y bz) + 2vb( - a)
= u(2-a)a-b*) + 2v(1-a)b

The above expression for the variance of b , denoted by V(a,b;u,v), is used throughout

the Beal (1987) article. From here, we consider the following equation:

(b -b)* = cV(@,b;u,v) 2.1)

14



where ¢ is the a quantile of the y*(1) distribution, and @ , b are expressions for a and b

(b - b)

w/V(E,Z;;u,v)

represents the true value minus a point estimate over the square root of the variance.

respectively. Equation (2.1) comes from the fact that = z since it

AY
M = z* = y*(1). All the intervals based on the binomial model

Thus, —— =
Via,bsu,v)

suggested by Beal (1987) are constructed by solving equation (2.1) for b.

2.1.1 The Wald Interval

The usual asymptotic interval(Wald Interval) with nominal confidence level « is

constructed by substituting @ = a and b = b into equation (2.1) and then solving for b.

Equation (2.1) is quadratic in b and results in the familiar interval given by

‘b_l;‘ < Z\/(ﬁlél/nl + D2q,/ny)

where z = +/c. This result is the standard binomial confidence interval presented in
many textbooks. (Derivation 2.1.1 in the Appendix A) As Beal (1987) notes, many other
authors have discovered problems with this interval when small samples are utilized, or

in cases were the population parameters p, and p, are close to zero or one.

2.1.2 The Jeffreys-Perks and Haldane Intervals
To address the problems with small samples or cases where the proportions are
near zero or one, Beal considers a class of simple intervals using a Baysian approach.

Good (1965) presents an estimate of a obtained by deriving the posterior mean of a using
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the symmetrical prior density on (p; , p2) proportional to ( P19, P9, )a . To construct this

interval, start with the symmetrical prior distribution given by

kp1a(1_p1)apza(1_p2)a f0<p <1, 0<p,<I
g(p,p,) =
0 otherwise

Next consider the joint density of the data given by

n Xy n —x; n X2 Ny =X
f(pys Pyl ,x, 0 ,n,) = (xljpl (I-p)) (xszz (1-p,) )

1 2
where X, and X, are independent binomial random variables. Thus, the posterior
density is derived as follows:
h(p,, p,|x,x,,n,,n,) =

a a a a n, X n-x n,
kp~(-p) p,” 1-p,) . p, (=p)" ™ X

1

Jpzxz (I=p)"="

2

e a o a a n X, ny — X; n X Ny — X
J-.[kpl (I-p)“p, (A=p,) (xljpl ‘d=-p)" (xszz *(1=-p,)" " dp,dp,
00

1 2

)‘“’”1‘"1 p2‘1+"2 (l_pz)a+n2—xz

1
[ 2 (A=p) ™ p, " (1= py)* ™" dp, dp,
0

p1a+x} (I-p,

© ) —

Now substitute a, = ¢ + x, +1 and b, = a + n, — x; + 1 to obtain

h(p,,p,|x,,x,,n,n,) =

)a+n]—x1 )a+n2—x2

p,"" (-p,

[(a,)T(b,) [ I'(a, +b,) p ! (l_pl)bllJ dp, Ja’p2

p1am (I-p,

(p (1-p,)*

o —

C(a, +b,) § \T(a,)T(b,) "
M

(Beta pdf integrates to 1)
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a+X1 (1 pl a+n1—x] 0!+x2 (1 pz)a+n2_x2

F(a YI'(b,) a+x, yatn
[(a, +b,) 3 I( (=) )dpz

Next, substitute a, = a+x, +1 and b, = a + n, — x, + 1 to obtain
h(p,, p, 1%, %,,n,n,) =

p1a+x, (l_pl)a+n,—x, p2a+xz (l_pz)a’r"z—xz

(a,)T(by) T(a,)T(b,)  T(ay +b,) _
F(a1+bl) r(a2+b2) Ir( )r(b )( ( pz) )dpz
)

(Beta pdf integrates to 1)

2 - (1_p1)b] I p° B (1-p)*"
['(a)T'(h) I'(ay) T'(by)
(e, +b) T(a,+b,)

L(a,+b) 4 RPN [(a,+b) 4 PR
(r(al)r(bl)l% (I-p) J(r(az)r(lb)pz (1-p,) ]

Thus, the posterior is a bi-variate BETA distribution with parameters a;, b;, a,, and b,.

Consequently, the posterior mean is given by

a, a, B a+x+1 a+x, +1
a, +b \a, +b, a+x,+l +a+n—x,+1 \ a+x,+1 + a+n,—x, +1

B a+x +1 a+x, +1
n+2(a+1) \n, +2(a +1

( a+1 j X, j ( a+1 ] ( X, j
= + + +
n, +2(a+1) n, +2(a+1) n, +2(a+1) n, +2(a+1)
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( a +1 ] ( n, jA
= + P
n+2(a+1) n+2(a+1)

a +1 n, A
+ + D, -
n,+2(a +1) n,+2(a +1)

Now, for & > —1, define the following estimate of a:

n n, R a+l n, R a+l1
a(a) = Pyt Pyt ——
n, +2(a+1) n+2(a+l) n,+2(a+l) n, +2(a+1)
Notice that a(—1) = a and as « increases a(«) tends toward one. Using this estimate

of a, each value of « defines a separate confidence interval /(er): namely, use the

substitution @ = a(a) and b =bin equation (2.1). Beal notes that when v = 0, (equal
sample sizes) as « increases, the length of /() also increases, but the center point
remains fixed. Thus for ¢ > -1, I(a) will always have confidence levels larger than
those of 7(—1). Several values of a were tried, and the choice & = —1/2 seemed to
be an overall good choice (Beal, 1987). The interval /(—1/2) will be referred to as the
Jeffreys-Perks interval since the prior with & = —1/2 arises from the invariance

theories of Jeffreys and Perks (Good, 1965). The Jeffreys-Perks interval is evaluated by
Beal(1987) and shows significant improvement over the usual interval. In addition, the

interval /(—1), referred to as the Haldane (1945) interval, is also evaluated by
Beal(1987).

One of the advantages of the intervals /(«a) over the usual interval is that they do
not in general collapse to a single point when p, = p, =0 or p, = p, =1.
Specifically, assuming v > 0, the interval /(—1) is given by [0,2¢v/(1+cu)] when

p, = p, =0 and given by [-2¢v/(1+cu),0]when p, = p, =1. In both of these cases
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however, if v = 0, the intervals are degenerate. However, if p, =1 and p, =0, the

intervals are NOT degenerate.

2.1.3 Other Binomial Intervals
Beal then considers several other binomial intervals proposed by various authors

in which equation (2.1) is used. Anbar (1983) and Mee (1984) constructed intervals in a

similar fashion except that Anbar substituted @ = 2p, — b and b =b and Mee

substituted @ = 2p, + band b = b. These are essentially the “same” substitutions,
both of them derived from the reparameterization a = p, + p, and b = p, — p,.
Anbar took a + b and solved for a in terms of p, and b; Mee took a — b and solved for a

in terms of p, and b. The result, however, is that these give two intervals that are

generally different. Mee (1984) also suggested a more theoretical interval. Use b=>b
and @ = a *(b), where a*(b) is the maximum likelihood estimate of @ when b is
assumed to have known value. Using this substitution, equation (1) is no longer
quadratic in b. However, it can be solved numerically to obtain two roots. The resulting
interval is evaluated in the Beal (1987) article and performs significantly better than the
standard textbook interval. Additionally, Miettinen and Nurminen (1985) describe an

interval very similar to Mee’s, the only difference being that for any given value of b, the

variance of b is estimated by V(a*(b),b;u,v)(LJ where N = n, + n,. This
N -1

interval was also evaluated by Beal (1987) and performed very similarly to the Mee

interval.
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The disadvantage of the intervals presented by Mee (1984), and Miettinen and
Nurminen (1985) is that they are in general hard to compute and much care is needed to

find the numerical solution. A simpler approach can be found by utilizing the

~

substitution @ = a and b = b into equation (2.1). Beal notes that the resulting interval
represents a significant improvement over the usual interval. There are, however, a few
values of p; and p, for which the confidence level is too small.

Other authors have constructed intervals for the difference of two binomial
proportions using approaches different than Beal (1987). Newcombe (1998) constructs
and compares eleven binomial intervals for the difference between two proportions. One

such interval is an asymptotic method with continuity correction given by:

(ﬁl_ﬁz)i{zaﬁl(l—ﬁmﬁz(l—ﬁz) +1(¢¢H

n, n, 2{n, n,

where X, ~ BIN(n,,p,), X, ~BIN(n,,p,), b, :%, D, :z—z. Agresti and Caffo
1 2

(2000) also assume a binomial model and construct an interval by adding two successes

and two failures. The resulting interval is given by:

~ ~ 51(1_51) 52(1_ﬁ2)
- tZ, +
(P =P2) 2\/ n +2 n, +2

where p, =(x, +1)/(n, +1) and p, =(x, +1)/(n, +1). A list of additional binomial

intervals can be found in Appendix C.
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2.2 EXTENSION TO THE BETA-BINOMIAL CASE

Beal’s (1987) article and the other intervals discussed in section 2.1 assume a
binomial model for all cases. However, the beta-binomial model is the focus of this
paper, and thus we will attempt to extend some of the ideas and intervals presented by
Beal and others to the case where we have correlation among the trials. We will again
start with the two population case, where p;, and p, are the population proportions and 7,
and n, are the known sample sizes. We also assume that there is correlation. This will

imply the introduction of two more parameters, ®,and @, , likely unknown. Recall that

p = and measures departure from binomial sampling. As a first step, we will

1+ ®

derive the equivalent of equation (2.1) using the beta-binomial as the underlying
distribution. Once this is accomplished, we can construct intervals similar to those

presented by Beal (1987).

2.2.1 Wald Interval

Consider the two population beta-binomial model and assume that p, and p, are
independent beta-binomial parameters and n, and n, are the known sample sizes,
respectively. Additionally, let the overdispersion parameters for each population be

denoted by @, and @,. Since our goal is to estimate b = p, — p, using the MLEs of

p, and p, we must first derive p,,i = 1,2, assuming the underlying distribution is

beta-binomial. Then we need to derive an expression for the variance of b .
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We begin with the log-likelihood function for a beta-binomial and simplify using
the equality T'(a) = (a — D)I'(a — 1). The resulting log-likelihood is: (Derivation 2.2.1
in the Appendix A)

vyl =Yy~
7 (pi+rcDi) H(l_pi"‘rq)i)
_ - nﬁ r=0 r=0
In(L(p,®,)) = In H( ; ]
JENY [T0+r,)

r=0

To find the MLEs of p,, we recognize that the log-likelihood function is proportional to

the following summation:

J; |yl ny — Yy =1
Z{yZ:ln(pi +r®D,) + Zy:ln(l — p, +r®,) }
r=0 r=0

j=1
Notice that the terms not involving the parameters p, have been ignored since they will

not play a role in the maximization. The MLEs are found by determining the values of

p, that maximize the above summation or by solving the equation

%p (InL(p,,®,)) = 0 for p,. Notice that one of the inner summations of the

1

expression above is not defined when either y, = n, or when y, = 0 as we have

summations from zero to negative one. In these cases it follows that the summation that

is not defined is actually zero. (See derivation 2.2.1a in the Appendix A for details.)
Next we derive the variance of 4. Since the two samples are assumed to be

independent, the variance of b= D,— D, is equal to Var( p,) + Var(p,). We can

determine these quantities by utilizing the Fisher information, which will take on the

. . . —1 . R . ..
form of a variance-covariance matrix [, , with the i™ element on the diagonal giving
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the asymptotic variance of p,, henceforth referred to as var(p,). (Derivation 2.2.2 in

the Appendix) Thus, from the Fisher information we have

& | 0l f (v p @)
W) Z[{ », ”

Unfortunately, this expression depends on p, and @, which are assumed unknown.

However, since the MLEs are consistent estimators, p, converges in probability to p,

and @ . converges in probability to @,. Therefore, substituting the MLEs of p. and @,
into the asymptotic variance expression above results in a consistent estimator of the true
asymptotic variance, leaving the limiting distribution unchanged. This consistent

estimator will be denoted by var(p,).

2
Next we simplify E[{&ln / (g P i’(bi)} } from the above expression in order to
P

derive var(p,). We start with the log of the density function,

V; n,/—yi—l

n. H(pi+r(bi) ‘H(l_piﬁ_rq)i)
1 o . — ij r=0 r=0
n(f(yz’pﬂq)l)) ln (le n; —1
[10+r0,)

r=0
n.. yi—l n; —y; —1 ny -1
= ln( Uj + ZIn(pl. +rCDl.) + Zln(l—pi + rCDl.) — Zln(l +rCDl.)
y[ r=0 r=0 =0

Differentiating with respect to p; gives the following:
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Ji oln f(y;p., @ )T J; *In f(y;p,, ®.
Since ZEH S0P, )} J can be rewritten as ZE[ l: A% zp, l ):H,

j=1 api Jj=1 api

we differentiate a second time with respect to p; and obtain the following:

- n[—y,—l 1

6 |
(/ Jlnf(y””“q” 2 +rc1>> R ey

Thus, from Hogg and Craig (1995) we have:

L JZE[{alnf(y;p,,cbi )H _ JZE[[aZInf(y;f,,cbi )D

var(p,) ‘o op; p;

iE(yf# Zy: +r<I>) j

j= r O r=0

Hence, the asymptotic variance of b is given by:

var(h) = var(p,—p,) = var(p,) + var(p,)

+ {ﬁ;!{é(m} ”"‘Zy;f—l[(l_pz irq)z)z j ]]} _ (2.2)

Thusa (1 - a)100% Wald confidence interval for p, — p,, based on the MLEs is

constructed as follows:

(131 - 132) T Za/22 \/Var(ﬁ1) + Var(p,)
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where z,, isthe (I —a/2) percentile of the standard normal distribution and the

variance expression is given by equation (2.2) above with p, and ) . replacing p, and

@, respectively.

2.2.2 Jeffreys-Perks and Haldane Intervals

To construct extensions of the Jeffreys-Perks and Haldane intervals presented by

Beal from the binomial to the beta-binomial case, we must rewrite the Var(l; ) in terms of
a and b and utilize the beta-binomial as the underlying distribution. Recall Beal’s

reparameterization of ¢ and b givenby a = p, + p, and b = p, — p,. Addinga

and b and solving for p, yields p, = a—;b, while subtracting a and b and solving for

. -b o . . .
p, yields p, = aT. Substituting these expressions into equation (2.2) derived

earlier gives the following expression for the variance of b interms of the parameters a

and b:
- - -1
. Ji n; -1 1 n =y -1 1
var(b) = E > ~ |+ -
=1 =0 [a-i—b chlj =0 (1 _a+b N ”q)lj

31 ES Py . 23)
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Now we need to derive the equivalent of the estimator a(«) . Recall from Beal

that a(«) is the posterior mean of a using the symmetrical prior density on (p; , p>)

proportional to ( P19 P9, )a . This prior density is given by

kp“(1-p) p,“ (1-p,)* f0<p <1, 0<p,<1
g(p,,p,) =
0 otherwise

Here the density of the data is bi-variate beta-binomial, rather than binomial as

previously. Thus the density is given by:

f(yl ’yz |p1’p2’q)1’q)27 nl:nz) =
1 1 2 2

N o 2o [ =2 v, 4 2o |0 2P | r@, " 4y
(I)l (I)l (I)Z (DZ

Therefore, the resulting posterior density is given by:

-1 1- 1 2 -1 1- 2
Jr(yﬁj;‘)r(cbl )r(nl R j ( jr(yﬁq‘j)r(@z )F[nz - +®"j

g(p,p,) f(3,y,) .
[ (P .p2) f1.32)dp, dp,

h(p,,p,| Yysy,, @, @y, n,ny)) =

Consequently, the posterior mean, a(«) is given by:

. lpel
a(a) = [ [ (P + P2)(pys P2l 31532, @, my,my)dp, dp, .

This double integral simplifies to the following: (derivation 2.2.3 in Appendix A)

[P a=p)foodp, [p (= )" £ () dp,
+ .

- - (2.4)
[, =p)fodp, [ " (= P, f(:)dp,

a(a) =
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This estimator a(«) is computed numerically using an IMSL subroutine in FORTRAN.
We will utilize ¢ = —1/2 in equation (2.4) in forming the Jeffreys-Perks interval for the
beta-binomial, and «a = —1 in forming the Haldane interval for the beta-binomial.
Now that a(a) has been computed, we can construct our Jeffreys-Perks and
Haldane intervals for p, — p,. Consider again equation (2.1) from the Beal article,
b - l;)2 = cVar(ﬁ,l;,nl JN,),
where u and v have been suppressed and we now use n, and n, instead. To derive the

Jeffreys-Perks and Haldane intervals for the beta-binomial case we utilize ¢ = a(«),

b =b , and equation (2.3) for the variance of b. After making these substitutions
into equation (2.1) and rewriting, we get the following:

[b—(p, - D))" - z,,° Var(a(e),b) = 0. (2.5)
The confidence interval is then constructed by solving equation (2.5) for b. To do this,
we note that equation (2.5) is not quadratic in b but can be solved numerically to find two
roots, b, and b, on the interval [-1, 1]. To find the upper root, b, , we start by
evaluating equation (2.5) at b = (p, — p,) and note that the left hand side of the

equation should be negative. From hear we search iteratively by evaluating the left hand
side of equation (2.5) for increasing values of b until the left hand side becomes positive.
Once this happens this would indicate that somewhere between these last two values of b
there is a root. From here the IMSL subroutine DZBREN can be utilized to find the
upper root for equation (2.5). Similarly, we search iteratively going down from

b =(p, — p,) to find a sign change and thus an interval for the lower root b,. If we

search iteratively going up and do not find a sign change, then b, is set to 1, likewise if
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no sign change is found searching iteratively downward, b, is set to — 1. These roots, b,
and b, are the upper and lower limits of the confidence interval for p, — p,. Thus we

have constructed the equivalent Jeffreys-Perks and Haldane intervals for p, — p,

assuming the data are beta-binomial.

2.2.3 Beta-Binomial Intervals using a Variance Inflation factor

Three additional intervals, each a direct extension of existing methods for
independent data, are constructed for comparison. The three methods are presented by
Chen, Li, and Zhou (2004). Each method is a direct mapping from independent cases
through the concept of effective sample size and the introduction of a variance inflation

factor. Each of these three confidence intervals constructed for p, — p, are in closed

form and are based on asymptotic normality. Due to the correlation effect, the response
rate inflates the usual variance and hence a variance inflation factor is used. The first
method is an extension of Newcombe’s (1998) method without continuity correction, the
second method is an extension of Beal’s (1987) Jeffreys-Perks method, and the third
method is an extension of Peskun’s (1993) method. Chen, et al. (2004) note that
Peskun’s(1993) original method is conservative and approximately guarantees exact
coverage. The following notation will be used for the three intervals proposed by Chen,

et al. (2004):

J;, = number of litters in treatment group i,

n, = size of litter j in treatment group 7 ,
1 if kth member of litter j, treatment i responded
Yip = . . . . .
’k 0 if kth member of litter j, treatment i did not respond
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ny

Yy = z Y » the number of responses in litter j, treatment i,
Ji

y, = Z Y » the total number of responses in treatment £,
i=1j

Ji
n, = Zn -, the total sample size in treatment i , and

pli = 241 , an estimate of p, (note this is NOT the beta-binomial MLE of p,).
n.

1

For the fixed litter size case with an equal number of litters in each population, the two

groups are assumed to share the same p, which is jointly estimated using Pearson’s
correlation coefficient and denoted by p.

2 I\*2

Z Jn( Zy,,(y,, -1) - p

i=

[p 1(1—p 1) +pa(l-p z)J

where J; = J and n;, = n. Once p is obtained, the variance inflation factor is

estimated by /ii = (I+(n—1))p. For the variable litter size case and/or unequal number
of litters, the variance inflation factor is estimated by

/{i - % J
pid-pi)
nl
* J n ’ D" '2 - *
where v(p i) = JLZ(_ J (J—pll), ni=n/J,and py =y;/n;.
=1 i

Based on /ii , the effective sample size in group i is defined to be 7, = /{;1 n, and the

A

effective number of responders is X, = A4.' x
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Using the above estimators we can now construct the three intervals proposed by
Chen, et al. (2004).

METHOD 1: (extension of Newcombe (1998)) The endpoints of the (1 — &)100%

S

confidence interval are given by d — 6, and d + 6, where d = p, — p, and

él = Zap \/1311(1_1311)/’%1 + py(=py) /0,

A

0, = Za) \/ﬁn(l_ﬁlz)/ﬁl + py(1=py)/ 0,

Here, p,, and p,, are the two closed-form solutions of p from the equation

(p, = p) = 22 p(1— p)/#,, given by

22 2N 2 22
Py = {213#?%\/{—2&1—?} a1t 2| [a1e 2
n, n n, n

2 2 2 2
Pp = |20+ |+ | =20, ——— | — 41+ |p; 211+ —=
n, n, n, n,

(See Derivation 2.3.2 in the Appendix A for details.) Method 1 is a direct extension of
Newcombe’s method without continuity correction and degenerates to Newcombe’s

original method when the data are independent.
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METHOD 2: (extension of Beal (1987)) The endpoints of the (1 — )100% confidence

interval are given by +[c§ +z2,v(l=2w) * z, \/7} , where u, v, w, and f
(I+ 25 ) %2 %)
2

are defined as follows:
u=~1/n, +1/n,)/4,

v =(/h —1/4,)/4,

Y {(fclﬁ 1/2) | ()%2A+ 1/2)}/2’and
(n, +1) (n, +1)

f = u[4w(1 -w) — 32]—1- 2v(l - 2w)c;’ + 4z%u2(l - wWw + z%vz(l —2w)”.

Method 2 is a direct extension of Beal’s method for binomial data and degenerates to
Beal’s original method when the data are independent.

METHOD 3: (extension of Peskun (1993)) The endpoints of the (1 — )100%
confidence interval are given by
zi/ + 7, + A, FE

|:c?+izo/\/§j| where g = 2 _
2

4n, n, n, +n,

n, +n,

1+Z;

2
This method is an extension of Peskun’s method and is conservative, asymptotically
guaranteeing exact coverage in the binomial case. Chen, et al. (2004) note that this

extension preserves this conservative property.

2.2.4 Other Beta-Binomial Intervals
Beal (1987) and other authors have proposed additional methods for the binomial
model that could be extended to the beta-binomial. In a procedure similar to the

construction of the Jeffreys-Perks and Haldane beta-binomial intervals discussed earlier
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in section 2.3.2, Beal considers binomial methods proposed by Anbar (1984), Mee
(1984), and Miettinen and Nurminen (1985). Each of these suggest a slightly different
estimator of @ for use in equation (2.1), yielding a new confidence interval. Beal notes
however, that these methods are numerically intense and hard to compute in general. The
interval by Mee(1984) was investigated for a possible extension to the beta-binomial
case. In this case, Mee suggests substituting b =bandd = a* (b) into equation
(2.1), where a*(b) is the maximum likelihood estimate of @ when b is assumed to have

known value. Equation (2.1) is no longer quadratic but can be solved numerically to find

two roots. For the beta-binomial case however, determining a * (b) would be

computationally intense as each evaluation of equation (2.5) would require the

calculation of a new value for a(«). Thus this extension of the interval by Mee(1984)

was not constructed.
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CHAPTER 3

SIMULATIONS

3.1 INTRODUCTION
In order to compare methods, a simulation program was constructed using
FORTRAN. In the program, a random sample from the beta-binomial distribution is

generated and six confidence intervals for p, — p, are constructed. Coverage

probability and average interval width are computed for each of the six intervals. The six
intervals constructed and compared in the FORTRAN program are:
1) Wald interval — usual asymptotic method based on the MLEs,

2) Jeffreys-Perks interval — Bayesian approach with ¢ = —1/2, and
described in section 2.2.2,

3) Haldane interval — Bayesian approach with & = —1, and described in
section 2.2.2,

4) Extended Beal interval — from Chen, et al. (2004), and described in 2.2.3,

5) Extended Newcombe interval — from Chen, et al. (2004), and described in
2.2.3, and

6) Extended Peskun interval — from Chen, et al. (2004), and described in
2.2.3.

Tables 1 — 23 give coverage probability when the nominal level is .95 and are based on

10,000 simulation runs. The tables are located in section 3.4 and in Appendix D. In
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addition to coverage probability, the program calculates the average interval width for the
six confidence intervals to be compared. The FORTRAN compiler used here is Absoft
Pro Fortran: F90| F77| C/C++ Compilers & Tools, V6.2, © 2000 with IMSL version 4.0.

The parameter values needed for the FORTRAN program are: the number of

litters in each population, J, and J, (denoted by J1, J2 in the program); the litter size,

n, (denoted by N1Vec and N2Vec in the program); the population proportions, p, and

p, (denoted by P1 and P2 in the program); a measure of the correlation or
overdispersion in each population, @, and @, (denoted by PHI1 and PHI2 in the
program); and the nominal probability given by 1 — « =.95. The specific values of the
parameters used are described below and all combinations of these parameter values are
simulated.

For the sample size parameters J, , J,, and n,, we considered the following cases:

a) J,=5and J, =5 d) J,=5and J, =10

b) J,=10and J, =10 e) J,=5and J, =25

c) J,=25and J, =25
For each of the above cases, we ran simulations with 7, =5 and n; = 10. In addition,
three large sample cases were considered. The first is when J, =50, J, =50, and
n, =5, the second uses J, = 150, J, =150, and n, =15, and the third uses J, =250,
J, =250, and n; =15. These cases were done in order to verify the asymptotic

properties of the intervals constructed.

For the population proportions p, and p, we considered the following cases:

34



a) p,=.land p,=.1 g p,=.3and p,=.7

b) p,=.1and p,=23 h) p,=.5and p,=.5
c) p,=.land p,=.7 i) p,=9and p,=.9
d) p,=.land p,=.9 ) p,=9and p, =.01
e) p,=23and p,=.3 k) p,=.05and p, =.05
f) p,=3and p,=.5 l) p,=.05and p, =.01

For the overdispersion parameters @, and @, we considered the following cases:

a) ® =1/9and @, =1/9 e) @, =1/9and @, =3/7
b) ®, =3/7and ®, =3/7 f) ®, =1/9and ©, =1
c) ®,=land ®, =1 g) ®, =1/9and &, =9
d) ® =9and ®, =9 h) ® =3/7and ®, =9

Note that @ values of 1/9, 3/7, 1, and 9 correspond to correlation values of .1, .3, .5, and

@
1+

.9. This can be shown using the equation p =

35



3.2 A RANDOM SAMPLE FROM THE BETA-BINOMIAL

To simulate a random sample from the Beta-Binomial distribution, the probability
integral transform is utilized. According to Bain and Engelhardt (1992) the probability
integral transform states:

“If X is continuous with CDF F(x) then U = F(x) ~UNIF(0,1).”
Furthermore, Bain and Engelhardt state:

“Let F(x) bea CDF and let g(u) = min{x|u < F(x)}. If U~ UNIF(0,1) then

X =GU) ~F(x).”
This is an important result and provides a useful technique for simulating a random
variable from a specified distribution with known distribution F'(x). The procedure is as
follows: first generate U from a UNIF(0,1) and find X by utilizing the formula,
g(u) = min{x |u < F(x) } The result will be a random variable X with distribution
F(x).

To illustrate this with a specific example, consider generating a random variable Y
from a Beta-Binomial distribution with parameters p =.7, ® =1,and n =5. From

Appendix A, the probability distribution function of the Beta-Binomial is given by:

| 1-
F(y+§)F(CD_ )F(n 4 q)pj

r(pjr(l_pjr(q)l +1)
o) o

To use the probability integral transform, we must construct the CDF. This can be done

3l p.@.n) = (;] G.1)

for this specific case by determining the probabilities for each value of Y via the
probability distribution function given in equation (3.1) above. From these calculations

we get the following probabilities for Y=0, 1, 2,3,4,5: f(0) =.106, f(1) =.086,
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f(2) =.089, f(3) =.104, f(4) =.149, f(5) =.466. From this we can
determine the values of the CDF: F(0) =.106, F(I) =.192, F(2) =.281,
F@3) =.385, F(4) =.534, F(5) =1.00. Thus for this specific case, we would
generate U from a UNIF(0,1) and determine Y by the following rule: ¥ = y, if
F(y,,) <U £ F(y,), or specifically,

Y=0if 0 < U < .106,

Y=1if.106 < U £ .192,

Y=2if.192 < U < 281,

Y=3if 281 < U < 385,

Y=4 if 385 < U £ .534, and

Y=5if 534 < U £1.0.

For each simulation run, the Probability Integral Transform technique will be used to
generate a random sample from the Beta-Binomial distribution. The IMSL routines
RNSET, RNOPT, DRUNF will be used to generate a random number from UNIF(0,1).
DRNUNF generates a pseudorandom number from a UNIF(0,1) distribution where
RNOPT and RNSET select the number generator and initialize the seed. In the program,
the seed is set to zero so that a different value of U is computed each time using the

system clock.
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3.3 MAXIMUM LIKLIHOOD ESTIMATORS FOR THE BETA-BINOMIAL

In each of the first three intervals constructed and compared in this paper (Wald,
Jeffreys-Perks, and Haldane), maximum likelihood estimators are utilized. In the
FORTRAN program, an algorithm by Smith (1983) was used to determine the maximum
likelihood estimators of the parameters of the Beta-Binomial Distribution. The

subroutine BBML calculates the MLEs for p and ® using a damped Newton-Raphson

technique as described by Dixon (1972) and uses moment estimates as initial estimators.

Details for the FORTRAN program are in Appendix B.
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3.4 SIMULATION RESULTS

A variety of simulations were performed using FORTRAN. The values of several
parameters were varied in order to simulate many different cases, and the results are
summarized in Tables 1-23. Several tables are presented here in section 3.4 to illustrate
various trends in the data and as a way to compare intervals, while other tables that
provide similar results are found in Appendix D. Each table gives coverage probability
for each of the six intervals constructed assuming a nominal probability level of

1 —a = .95 for various values of the sample size parameters J, , J,, and n,. With

each table, the sample size changes by either changing the number of litters or changing
the litter sizes. In general, increasing the litter size from n; =5 to n,;, = 10 does not
significantly change the results, however, changing the number of litters in each
population does affect the coverage probabilities. This is not surprising as increasing the
litter size essentially amounts to adding more correlated data and does not provide new
information. Since increasing the litter size has little affect on the results, all tables with

n,; = 10 are presented in Appendix D as they provide essentially repeated information
from the corresponding tables with n, = 5. By increasing the number of litters in each

population, however, all six intervals generally improve as the coverage probabilities
become closer to .95.

Within each table there are 48 different combinations of the vectors p and @
discussed in section 3.1. Intervals with coverage probability within 2 standard errors of

the nominal level of .9500 are bold-faced. The standard error here is given by

SE. = , where N = # of simulations. Thus 2 standard errors are equal to

(1-a)@)
N

39



2% | 9125)83) = .0044, and hence, estimated coverage probabilities between .9456 and

.9544 are considered not significantly different than .9500. Using the information in the
tables we can compare and evaluate each of the six intervals constructed.

In general the Wald interval performs poorly in most cases, especially when the
sample sizes are small or the probabilities are close to zero or one. This is illustrated in
Table 1 with J, =5 and J, =5. Here we see coverage probabilities consistently
ranging from around .7300 to .8800. The Wald is a particularly poor choice when the
proportions are close to zero as illustrated by the case when p,=.05and p, =.01in

Table 1. In this case the Wald has coverage probabilities of: .5529, .5840, .6417, and
.8789. Similar results can be seen in other tables when the sample sizes are small and/or
the proportions are near zero or one. Examples include Tables 10, 12, 13, and 19 found
in Appendix D.

The Wald interval generally improves as the sample size (number of litters) is
increased. However, the improvement is somewhat slow, and even for large samples
there are specific cases when the coverage probabilities are still much less than the

desired nominal level of .95. This is illustrated in Table 2 when J, =250, J, =250,

p,=.05,and p,= .05 with equal correlation between the populations. Here we find

coverage probabilities of .8730, .8891, .8991, and .8923. Additional cases can be found
in Tables 22 & 23 in Appendix D that show the Wald interval improving as the sample
size increases, but with specific cases where the coverage probability is significantly less

than the nominal level of .95.
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Tablel: J,=J, =5, n, =5 V,. , a=.05, equal correlation

y LJ

Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval, Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

P P
P1 P2 A 3 S .9 P1 P2 A 3 S .9
1 .1 | .8684 | .8933 | 9183 | .8864 | 3 7676 | 7471 | 7783 | 9028
9397 | .9523 | .9529 | .9844 .8945 | .9083 | .9085 | .9699
9068 | 9131 | .9203 | .9786 .8202 | .8065 | .8267 | .9244
9740 | .9866 | .9826 | .9978 9191 | .9046 | .9017 | 9310
9890 | .9808 | .9834 | 9881 9318 | 9116 | .9082 | 9431
9972 | .9951 | .9875 | 9881 9333 | 9155 | .9144 | 9493
1 3| 7721 | 7267 | 7392 | 8957 | .5 S5 | 8109 | .7983 | .7938 | .8964
9097 | .8997 | .9036 | .9799 9008 | .9046 | .9106 | .9742
.8288 | .8079 | .8033 | .9063 .8350 | .8345 | .8363 | 9413
9397 | 9180 | .9256 | 9811 9209 | .9040 | .9068 | .9667
9368 | .9110 | .9182 | 9722 9212 | .9071 | .9114 | .9693
9559 | .9705 | .9766 | .9935 9222 | .9104 | .9157 | .9753
1 7| 7826 | 7486 | 7765 | 9053 | .9 9 | .8682 | .8879 | 9196 | .8824
.8987 | .8848 | .9085 | .9876 9358 | .9499 | .9660 | .9925
.8309 | .7983 | .8090 | .8929 9078 | .9061 | .9222 | 9725
9234 | .9040 | .8993 | .8814 9626 | .9773 | 9712 | .9965
9262 | .9008 | .8955 | 9115 9685 | .9888 | .9720 | .9968
9409 | 9178 | 9120 | .9244 9770 | .9957 | .9973 | 9991
1 9 | 7786 | 7854 | 7374 | 9049 | 9 .01 |.7708 | .7392 | .7612 | .7787
9055 | 9187 | .9421 | .9844 9008 | .9013 | .9017 | 9191
.8479 | .8466 | .8544 | .8675 .8708 | .8765 | .8621 | .8107
9142 | .8840 | .8435 | .8980 8817 | .7926 | .8239 | .8755
9471 | 9250 | .9031 | .9061 .8950 | .8335 | .9015 | .9090
9539 | 9339 | 9142 | 9132 .8933 | .9124 | .9046 | .9243
3 3 |L7764 | 7395 | 7862 | 9029 | .05 .05 [.9037 | .8590 | .8661 | .8958
8768 | .8928 | .9098 | .9786 9540 | .9796 | .9830 | .9881
.8207 | .8026 | .8295 | .9463 9614 | 9539 | 9631 | .9692
9306 | .9184 | .9353 | .9686 9766 | .9729 | 9980 | .9884
9365 | .9229 | 9388 | .9806 9785 | .9973 | .9882 | 9891
9485 | 9286 | .9521 | .9879 9795 | .9896 | .9992 | 1.000
3 S5 |.8004 | 7719 | 7829 | .8903 | .05 01 | .5529 | .5840 | .6417 | .8789
9076 | .8962 | 9078 | .9724 9799 | .9709 | .9895 | .9682
8518 | .8152 | .8303 | .9223 9694 | 9617 | 9517 | .9653
9241 | .9048 | 9138 | .9517 9895 | .9894 | .9899 | .9898
9265 | .9084 | .9174 | .9563 9895 | .9894 | .9809 | .9891
9314 | 9186 | .9291 | .9638 9995 | .9899 | .9989 | .9981
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Table 2: J, =250, J, =250, n, =15 V,

> a=.05, equal correlation

Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval, Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

2 2
P1 P2 .1 3 5 9 P1 P2 .1 3 5 9
A 1 9180 | .9041 | .9007 | .9198 3 719487 | 9497 | 9397 | L9541
9263 | .9089 | .9454 | .9398 9465 | .9468 | .9462 | .9530
9174 | .8998 | 9112 | .9201 9478 | .9488 | .9358 | .9530
9465 | .9502 | .9500 | .9484 9504 | .9504 | .9464 | .9519
9449 | 9515 | .9539 | .9459 9496 | .9516 | .9461 | .9518
9981 |.9994 | .9991 | .9973 9495 | L9515 | .9466 | .9543
A 3 9501 | .9466 | .9331 | .9470 S S5 9325 | .9501 | .9488 | .9275
9479 | .9469 | .9464 | .9480 9459 | .9497 | .9482 | .9463
9458 | 9458 | 9318 | .9480 9350 | .9497 | .9481 | .9337
9510 | L9532 | .9540 | .9516 .9349 | .9515 | .9530 | .9460
9511 | 9517 | .9530 | .9511 9348 | .9537 | .9522 | .9460
9883 | .9907 | .9906 | .9883 9399 | .9533 | .9519 | .9892
A 719281 | .9245 | .9005 | .9471 9 .9 1.9002 | .8956 | .9059 | .9451
9481 | .9489 | .9457 | .9488 9132 | .9015 | .9459 | .9479
9277 1.9295 | .9094 | .9486 9067 | .9001 | .9198 | .9230
.9329 | .9500 | .9330 | .9497 9464 | 9478 | .9555 | .9561
9330 | .9525 | .9317 | .9500 9464 | 9465 | .9567 | .9549
9484 | .9506 | .9461 | .9506 9997 | .9973 | .9993 | .9977
A .9 9333 | .9256 | .8997 | .9331 .9 .01 |.9200 | .8940 | .8891 | .9239
9503 | .9466 | .9494 | .9468 9470 | 9109 | .9505 | .9469
.9345 | .9280 | .9005 | .9321 9183 | .9006 | .9156 | .9331
29526 | .9540 | .9484 | .9467 9540 | .9523 | .9464 | .9575
9526 | L9533 | .9486 | .9459 9506 | .9533 | .9461 | .9547
9536 | .9536 | .9487 | .9466 9539 | .9540 | .9481 | .9542
3 3 29523 | L9511 | .9478 | 9463 | .05 .05 [ .8730 | .8891 | .8991 | .8923
9498 | .9491 | .9485 | .9492 9170 | .9225 | .9501 | .9474
9475 | L9466 | .9481 | .9482 9056 | .9122 | .9090 | .9236
9531 | .9510 | 9505 | .9540 9500 | .9469 | .9467 | .9487
9533 | .9534 | .9516 | .9531 9500 | .9480 | .9468 | .9468
9687 | .9507 | .9705 | .9718 9997 | .9999 | 1.000 | .9995
3 S [.9456 | 9523 | 9497 | 9487 | .05 .01 | .8998 | .8670 | .8666 | .9003
9491 | .9514 | .9468 | .9507 9003 | .9456 | .9194 | .9473
9502 | L9507 | .9465 | .9502 .8975 1 .9102 | .8854 | .9203
9498 | .9531 | .9530 | .9521 .9358 | .9480 | .9530 | .9500
9463 | .9518 | .9519 | .9530 .9350 | .9465 | .9516 | .9466
9492 | .9541 | .9539 | .9519 9991 | .9999 | .9998 | 1.000
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The Haldane interval is, in general, an improvement over the Wald interval for
most cases but still has several situations with less than desired coverage probability. As

an example consider data from Table 3 for the case when J, =5, J, =10, p,= .3, and

p,=.7. In this situation the coverage probabilities for the Haldane interval are .8472,

.8360, .8526, and .9236. While each of these is an improvement over the corresponding
Wald interval, these results are still considerably lower than the nominal level of .95.

The Jeffreys-Perks interval provides a significant improvement over the Wald and
Haldane intervals as do the extended Newcombe and extended Beal intervals. This can
be seen in a majority of the cases throughout the tables presented in this section as well as
the tables found in Appendix D. Additionally, the Peskun interval generally has the
highest coverage probability in most cases. As Chen, et al. (2004) note however, this was
expected as this interval is an extension of a binomial method that is conservative and
approximately guarantees exact coverage.

Tables 1 — 3 represent cases with equal correlations. As Table 4 illustrates, we
get similar results in cases with unequal correlations. Table 4 presents the case when

J, =5, J, =25 and the correlations are unequal (various values). In this case we see

results similar to those when the correlations were equal, as the Wald again provides the
lowest coverage, with the Jeffreys-Perks, extended Newcombe, and extended Beal
providing the best coverage in the majority of cases. The remaining tables (Tables 5 —

23) are given in Appendix D.
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Table3: J =5, J, =10, n;, =5 V,, , a=.05, equal correlation

Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

o o
P1 P2 3 3 5 9 P1 P2 3 3 5 9
1 A 7721 | .8244 | 8885 | 9507 | .3 78074 | 7871 | 7997 | .9048
9342 | .9431 | .9630 | .9746 9064 | .9003 | .9143 | .9762
I111 | .9146 | .9239 | 9778 .8472 | .8360 | .8526 | .9236
.8364 | .7930 | .7744 | .9004 9759 | .9864 | .9907 | .9581
9098 | .8918 | .8973 | .9580 9799 | .9989 | .9958 | .9730
9986 | .9971 | .9966 | .9964 9990 | .9994 | .9970 | .9762
1 3 | .8706 | .8676 | .8803 | 9377 | .5 S5 | .8409 | .8185 | .8244 | .8979
9338 | .9385 | .9505 | .9680 .8889 | .9000 | .9129 | .9648
9093 | .8950 | .8917 | .9241 8615 | .8479 | .8574 | 9318
9591 | .9147 | .8829 | .9304 9983 | .9881 | .9728 | .9669
9682 | .9323 | .9106 | .9538 9993 | 9911 | .9799 | .9742
9969 | .9840 | .9668 | .9798 9994 | .9928 | .9836 | .9764
1 7 | 8385 | .8443 | 8428 | 9134 | 9 9 7761 | .8173 | .8845 | .9466
9568 | .9584 | 9573 | .9656 9361 | .9329 | .9500 | .9794
9023 | .8923 | .8885 | .9108 9166 | .9068 | 9281 | .9774
9862 | .9832 | .9652 | 9110 9997 | .9997 | .9998 | .9992
9982 | .9908 | .9792 | .9373 1.000 | 1.000 | .9998 | .9993
9986 | .9924 | 9827 | .9687 1.000 | .9991 | .9998 | .9994
1 9 | 7645 | 7524 | 7804 | .9456 | .9 01 |[.7073 | .7148 | .7654 | .8055
9520 | .9483 | .9505 | .9686 9326 | .9477 | .9250 | .9470
.8958 | .8807 | .8774 | .8978 9321 | .9170 | .8943 | .8638
9866 | .9607 | 9297 | .8396 9775 1.9821 | 9109 | .8659
9989 | .9914 | .9739 | 9159 9891 | .9827 | .9728 | .8790
9995 | .9963 | .9828 | .9291 9799 | 9819 | .9950 | .8935
3 3 | .8114 | .7749 | .7839 | .9011 | .05 .05 | .8955 ] .9245 | .9401 | .9707
8686 | .8669 | .8930 | .9689 9662 | 9561 | .9740 | .9886
.8450 | .8228 | .8367 | .9338 9410 | .9461 | 9631 | 9801
9578 | .9296 | .8972 | .9329 8272 | .8792 | .8534 | .8908
9819 | .9547 | 9386 | .9657 9234 | .8936 | .8944 | 9866
9936 | .9798 | .9688 | .9768 9991 | .9891 | .9994 | .9989
3 S5 | .8143 | 7867 | .8024 | 9110 | .05 .01 | .6153|.6255 | .6312 | .9490
9089 | .8970 | .9104 | .9670 9704 | .9890 | .9732 | .9890
8513 | 8349 | .8537 | .9324 9711 | .9748 | 9680 | .9930
9871 | .9836 | .9656 | .9542 9611 | .9099 | .8930 | 9705
9972 | .9963 | .9850 | .9673 9882 | .9637 | .9497 | .9901
9996 | .9976 | .9882 | 9715 1.000 | .9994 | .9998 | .9995
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Table4: J, =5, J, =25, n, =5 V,. , a =.05, unequal correlation

y LJ

Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval, Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

ol P, ol P,
p1 p2 [ 1]3].1]5]1.1]19]3]19] pi p2 [1]3].1].5].119|.3].9
N .1 6697 | 7114 | .8599 | .8341 3 7 .8071 | .8131 | .8317 | .7790
9321 | .9330 | .9533 | .9544 9394 | 9126 | .9233 | .9047
9159 | .9134 | .9351 | .9294 .8600 | .8503 | .8669 | .8372
.8626 | .8254 | .8906 | .8801 9667 | 9932 | 9776 | .9544
.8867 | .8988 | .9444 | .9421 9761 | .9928 | .9777 | .9556
9948 | .9963 | .9978 | .9970 9962 | .9929 | .9779 | .9565
N 3 .8361 | .8661 | .8884 | .8828 ) 5 .8267 | .8369 | .8565 | .8266
9265 | 9383 | .9543 | .9589 .8798 | .8794 | .9207 | .9056
9081 | .9150 | .9236 | .9184 .8488 | .8592 | .8795 | .8545
9401 | .9260 | .9420 | .9231 9740 | .9929 | .9910 | .9747
9418 | .9462 | .9499 | .9412 9939 | .9930 | .9912 | .9742
9964 | .9907 | .9856 | .9825 9941 | .9937 | .9923 | .9769
.1 7 .8178 | .8370 | .8734 | .8632 9 9 .8650 | .8588 | .8406 | .6965
9523 | .9525 | .9603 | .9725 9348 | .9516 | .9508 | .9505
9094 | .9096 | .9219 | .9202 9167 | .9349 | .9342 | .9419
29907 | 9811 | 9525 | .9448 9998 | .9999 | .9982 | .9995
9954 | 9885 | .9566 | .9578 9997 | 1.000 | .9991 | 1.000
9974 | .9941 | .9704 | .9722 1.000 | .9999 | .9999 | 1.000
.1 9 7298 | 7585 | .8007 | .7740 9 .01 | .6465 | .6683 | .8578 | .8497
9543 | 9571 | .9794 | .9802 9505 | .9477 | .9098 | .9093
9059 | .9054 | .9232 | .9257 9419 | .9423 | .9072 | .9064
9828 | .9738 | .9500 | .9290 9895 | .9681 | .9656 | .9825
9964 | .9934 | .9753 | .9675 29991 | .9991 | .9997 | .9982
9966 | .9934 | 9782 | .9710 9999 | .9990 | .9991 | .9988
3 3 7909 | .8031 | .8257 | .7770 | .05 .05 | .7942 | .8633 | .9188 | .9426
.8788 | .8969 | .8910 | .8755 9532 | .9507 | .9689 | .9689
.8239 | .8538 | .8614 | .8302 9633 | 9109 | .9757 | .9518
9633 | .9642 | .9428 | .9315 .8711 | .8997 | .9124 | .9017
9622 | .9650 | .9667 | .9376 9225 | 9148 | .9582 | .9499
9772 | .9802 | .9794 | .9601 9799 | .9899 | .9998 | .9887
3 ) 7983 | 9161 | .8346 | .7877 | .05 01 |.6195]| .6133 | .6298 | .5997
.8941 | .9152 | .9246 | .9052 9640 | .9686 | .9710 | .9721
.8355 | .8505 | .8715 | .8395 9532 | 9458 | .9676 | .9662
9824 | .9788 | .9687 | .9388 9285 | .9361 | .9733 | .9590
9847 | .9819 | .9723 | .9461 9898 | .9875 | .9952 | .9955
9891 | .9850 | .9767 | .9533 9999 | .9999 | 1.000 | 1.000
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The Jeffreys-Perks, extended Newcombe, extended Beal, and extended Peskun
intervals are all significant improvements over both the Wald interval and the Haldane
interval. There are several cases where the Jeffreys-Perks, extended Newcombe,
extended Beal, and extended Peskun have very similar coverage probabilities. However,
there are also certain cases when one interval seems to perform slightly better than the
others. For example, in most cases when the true difference between the two
probabilities is large, the Jeffreys-Perks interval tends to perform better. To illustrate
this, consider the following cases: CASE 1--p, =.1, p, =.9 and ®, =D, =1.0;
CASE2--p, =9, p, =0l and ®, =D, =9.0; and CASE 3--p, =.1, p, =.9 and

®, =3/7, ®, =9.0. These three examples are illustrated by Figures 1 — 3 and utilize

data from Tables 1, 3, and 5 —11.

Figure 1: Coverage probability for p, =.1, p, =.9, ®, =0, =1.0

Coverage Probability for each Interval
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Figure 2: Coverage probability for p, =.9, p, =.01, &, =d, =9.0

Coverage Probability for each Interval
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Figure 3: Coverage probability for p, =.1, p, =9, ®, =3/7, &, =9.0
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In each of the above cases we see that the Jeffreys-Perks interval has the highest
coverage probability. From the tables we can also see this trend most of the time in the

case when p, =.1, p, =.7. In general, it seems the Jeftreys-Perks interval is a good

choice when the true difference between the proportions is large. We also see from the
tables that as the sample size increases, the Jeffreys-Perks coverage probabilities
improve, becoming closer to the nominal level of .95.

In cases where the true proportions are equal or close to each other, the extended
intervals (Beal, Newcombe, & Peskun) tend to have the best coverage probability.

Consider the following two cases: CASE 4--p, =.3, p, =3 and ®, =1/9, ®, =1/9;
and CASE 5--p, =.1, p, =3 and ®, =1/9, ®, =3/7. These examples are

illustrated by Figures 4 and 5 and utilize data from Tables 1,3,5-6,8 -9, and 11.

While Figures 4 and 5 illustrate two specific cases where the three extended
intervals appear to be the best choice, and Figures 1 — 3 give examples of cases where the
Jeffreys-Perks interval seems to be the best choice, there are also several cases where
these intervals have very similar results. In general, the Wald and Haldane give the
lowest coverage probability, while the Jeffreys-Perks, extended Beal, and extended
Newcombe have comparable results with coverage closest to .95 in the majority of cases.
The Peskun interval is the most conservative. One specific case is illustrated by Figure 6.
There are several other cases in Tables 1 — 23 where the Jeffreys-Perks, extended

Newcombe, and extended Beal intervals have comparable results.
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Figure 4: Coverage probability for p, =.3, p, =.3, ®, =1/9, &, =1/9
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Figure 5: Coverage probability for p, =.1, p, =3, ®, =1/9, ®, =3/7

Coverage Probability for each Interval
CASE 5: p1=.1, p2=.3, phi1=1/9, phi2 =3/7

0,9; ey
09 @iﬁ/iz&i/?

0.85 ~

0.8 /

0.75
O 50 éem "‘N)hﬁm 60 5 6 S o Ség (LQ;(L‘\";S
‘1 1 g non :': nonu :': 1 ‘R‘ 1 1 T " nn g nonop
= -9 =S Sa < S S 59 < S9<

Sample Size

——Wald ——JP Haldane —s— ext Beal —&+ ext Newcombe —e— ext Peskun

49



Figure 6: Coverage probability for p, =.3, p, =.7, ®, =1/9, &, =3/7
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As a secondary means of evaluating and comparing the six intervals, average
interval width was calculated. To some degree there will be a trade-off with average
interval width and coverage probability. In general as the width of the interval increases,
the coverage probability also increases. Ideally we would like an interval with coverage
probability close to .95 and small interval width. Obviously sample size affects interval
width, thus comparisons are made with fixed sample sizes. Three examples of average

interval width are illustrated with Figures 7 — 9 and based on data in Tables 1, 4, and 9.

From Figure 7, based on data from Table 1 where J, =5, J, =5, and n; = 5, we see

that the Haldane and Wald intervals in general have the smallest interval width.
However, as discussed earlier, these intervals also have the lowest coverage probability.
In this case we also note that the Jeffreys-Perks and Peskun intervals have the largest
interval width. Next we consider a case with larger sample sizes. This is done using

Figure 8 which is based on the data in Table 9 where J, =25, J, =25, and n, = 10.
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Figure 7: Average Interval Width for J, =5, J, =5, n, =5, equal correlation
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Figure 8: Average Interval Width for J, = 25, J, =25, n, =10, equal correlation
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In Figure 8 we can see that by increasing the sample size we have decreased the
average interval width for all six intervals. As in the previous case, the Jeffreys-Perks
and Peskun intervals have slightly larger interval width than the other four intervals. As a
final example illustrating average interval width we consider a case with unequal
numbers of litters in the two populations and also unequal correlation. Figure 9 is based
on data from Table 4.

Figure 9: Average Interval Width for J, =5, J, = 25, n, =5, unequal correlation

Average Interval Width

J1 =5, Jo = 25, n;; = 5, unequal correlation
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In this example there is much more variability in the average interval width. The
Haldane and Wald interval again have the smallest width. In some cases the Jeffreys-
Perks has the largest width where other times the extended intervals (Peskun, Beal, &

Newcombe) have the largest width.
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As a final analysis of the simulation results we investigate the asymptotic
properties of the six intervals. As discussed earlier in Chapter 2, all six intervals have
asymptotic properties. Thus, we would expect the coverage probabilities to become
closer to the nominal level of .95 as the sample sizes increase. Using the data in Tables
1,2,5,6,22 and 23, we can count the number of times each of the six intervals has

coverage probability that is within two standard errors of .95. Recall that the standard

error for this case is given by S.E. = \/(l —a)@) = \/('05)(‘95) = .0022 and each
N 10000

result in the table that is within 2 standard errors is bold-faced.

Figure 10: Number of times out of 48 cases where the coverage probability for each

interval is within 2 standard errors of .95
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From Figure 10 we can see the asymptotic properties begin to take affect. As the
sample size increases, a larger proportion of the intervals have coverage probability

within 2 standard errors of the nominal level of .95. This convergence is rather slow,
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particularly for the Wald, Haldane, and Peskun intervals. From Figure 10 we also note
that the Jeffreys-Perks, extended Newcombe, and extended Beal intervals are, for the
most part, better intervals as they have a larger number of cases with coverage probability

near .95.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

The purpose of this paper was to construct intervals for the proportion difference
between two populations where the data have a beta-binomial distribution. Six intervals
have been constructed and compared based on coverage probability and average interval
width. The Wald interval is based on the MLEs using the beta-binomial as the
underlying distribution. The Jeffreys-Perks and Haldane intervals are new intervals
constructed as extensions of Beal’s binomial intervals that account for overdispersion and
correlation by assuming the beta-binomial distribution holds. The final three intervals —
the extended Beal, extended Newcombe, and the extended Peskun — are all extensions of
binomial cases with the introduction of a variance inflation factor to account for
overdispersion. These three intervals were originally presented by Chen, et al. (2004)
and do not assume that the beta-binomial distribution holds. Each of these six intervals is
evaluated via simulations using a variety of parameter values.

The Wald interval is the usual interval presented in many textbooks, but this
interval has problems when the sample sizes are small or the proportions are near zero or
one. The Haldane interval provides an improvement over the usual interval, but still has
several cases with less than nominal coverage probability. The Jeffreys-Perks interval

provides a significant improvement over the usual interval, even in cases with small
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samples. Both the Haldane and Jeffreys-Perks intervals also have the property that the
intervals do not in general collapse to a single point when p, = p, =0 or p, = p, =1.
The extended intervals presented by Chen, et al. (2004) also provide a significant
improvement over the Wald interval. The extended intervals do not collapse in the cases

where p, = p, =0 or p, = p, =1 as the variance inflation factor is defined to be equal
to one when p,(1 — p,) = 0. The Jeffreys-Perks interval tends to exhibit superior

performance in cases where the difference between the proportions is large (greater than
.6), whereas the extended intervals exhibit superior performance when the proportions are
close together (less than .2). Additionally, the Jeffreys-Perks, extended Beal, and
extended Newcombe intervals have very comparable results in many other cases. The
extended Peskun interval has the highest overall coverage probability in most cases, but
is very conservative.

This paper has examined the specific case of estimating the difference between
two proportions when there is correlation or overdipersion among the trials. Future
research in this area could involve extending some of these ideas to multiple comparisons
for correlated binary data. The Jeffreys-Perks and Haldane intervals could be extended to
include priors and estimates of the © values in the formulation of the problem.
Additionally, the binomial intervals suggested by Mee (1984), Anbar (1984), and
Miettinen and Nurminenm (1985) could be constructed for the beta-binomial case. This
would involve a numerically intense procedure, however, as Beal (1987) notes in the
binomial case, these intervals were a significant improvement over the usual interval. In
addition to multiple comparisons and alternative confidence intervals, one may wish to

investigate estimators for the overdispersion parameters @, and @, . In the intervals
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presented in this paper the MLEs were used to estimate these parameters, however, other

estimators may improve the intervals for p, — p,.
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APPENDIX A — DERIVATIONS

Derivation 1.1:  The beta-binomial pdf: (from “Bayesian Theory”, by J. M. Bernardo
& A. F. M. Smith, 1994)

The beta-binomial distribution is derived by assuming a beta prior on the binomial
parameter p.

A discrete random variable X has a beta-binomial distribution with parameters « , £ ,

and n if its pdf is of the form

C(a+ ) T(a+x)C(B+n—x)
[(a)T(B)T(ar+ f+n)

n
BB(x|a,p,n) = ( j
X

a>0,>0,x=012..n

where I'(-) is the gamma function.

MEAN = E(X) = n( “ j VARIANCE = v(x) = —"% (‘“/””j
a+f (a+p)\la+p+1

The beta-binomial is a mixture of the binomial and beta pdfs:

BB(x|a, B,n) = jBIN(x 10,n) BETA(O| at, B) dO
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j _ ) I'(a+p) 6% (1-0)"' do

(@) T'(p)

© — —

F(06)1“(ﬂ)

T(a+p) T(a+x)T(n+p- x)j C(a+ B+n)

9a+x—l (l_g)rHﬁ—x—l d@
x) (a)'(B) I'(a+p+n)

o N(a+x)I'(n+ - x)

INa+p) T'la+x)I'(n+ - x)
') T'(B) I'a+p+n)

( j F(d+ﬂ) a+x—1 (1_9)n+ﬁ—x—l d6’

An alternative form of the beta-binomial can be expressed in terms of the parameter @ .
Recall that ® measures departure from binomial sampling and is often referred to as the
overdispersion parameter. When ® = 0, there is no overdispersion and binomial sampling

retained. As @ increases, departure from binomial sampling increases. Also, @ is

P

related to correlation by the equation @ = "
+p

. Letting @ = —, and

S |

p = I?Tp , the pdf of the Beta-binomial takes on the form:

F(x+é)F(CD1)F(n Cxq l;f’j

r(pj r(l_pj (@ +n)
o)\ @

n
f(x|p,D,n) = (j
X
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Derivation 2.1.1: Derivation of the standard CI for p;—p;

Substituting @ = a and b=b into equation (1), we get

(b — b)* = cV(a,b;u,v)

(b -5 = cl-a)a—5h]+ 2v(1-a)b)

n, n,

b by = C(ﬁla—ia) s iaz(l—iaz)j

1
. 5 56 )
(b_b) — ic(plql + pZQZj

n, n,
1

~ 5 A S A 2
Cl for b = bic(ﬂ+wj

n, n,
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Derivation 2.2.1: Derivation of Log-Likelihood

Given that the data is drawn from a beta-binomial distribution with parameters p, and

@, the likelihood function is given by: (from derivation 1.1)

D,

*o )r(cp,.l)r(n,.j —y, +

1-p,
o,

j=1 pz pi

7'1“1;
(DiJ(Ql

Ji (n. F(y’j .
L(pi’CDi) = H[ Uj l
ij F[

Pi
(y,, r(q).—l)

JF(CDI +n,;)

Yyt

ﬁ(”@/ D,

1Yy F(P:-J
q)i
b

r
o (v, + o,

q)i

)
{r(cb,f‘ +n,)

Note that: (d)iy" ) (q)i_

ﬁ(yyj ) (4,4,

1

) .
i ij

"y Xq)l_"i/‘yf/ ) =1

Using the equality I'(a) =
As.

(a=Dl(a-1),

d— o Ty +p/®) | _
l i r(pi/q)i)

q)lyi/[(y[j +p; /(Di - l)r(yg/ +p; /q)i

F(pi /CDi)

_ cDAy,»j((yij—'—pi/CDi - lxyz']‘+pi/q)i - 2)r(yz'j+pi/q)i - 2)]

r(pi /(Di)
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= @ yif[(yi/—i_pi/q)i _lxyi/+pj/(b[ - 2Xyij+pi/q)i _3) .... (p,/q),)r(p,/q),)j
’ (b, /@)

q)iyij((yij—i_pi/q)i _IXJ’U"’P,-/CDi _2Xyi/+pi/q)i _3) """ (pi/q)i))

= (p + by =1 o, + by = 20 p, + by = 3)0, ) (s + @, )p,

J’;/*l

= H(pl. + rCDi)

r=0

r(@,™) ro,")

4, = Q)ZHJ[WJ i (Din[/[(‘b,-_l tn; - 1)1“((1)171 Ty 1)}
= @ F(CD;l) J
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_,, 1 - p,
! (n[j -V _1+(T.]91)J(n[j

vy -1 =Yy =1
J (pi+rq)t) (l_pi+r®z)
i (n.
ln(L(pi’CDi)) =In H(yljj = ny—1 =
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Derivation 2.2.1a: Log-Likelihood when y, = 0 or y, = n;

nij—y[/fl

Note in derivation 2.2.1, that if y, = n, then the product H(I -p, +1rd i) is not
r=0
Yy =1
defined and similarly if y, = O then the product H(pi + r®,) is not defined.
r=0

However, if we go back to the original log-likelihood for these cases, we can derive the
following results:

CASELl: y,=0

Start with the Log-Likelihood from derivation 2.2.1:

L(p;,®@;) = H( ’

j=1\ Vi

(4,)4,) by derivation 2.2.1

J;
j=1

Thus by the results of derivation 2.2.1 we get the following when y, = 0 :
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Ji
In(L(p,,®,)) = In{][| s

CASE2: y, =n,

Again, start with the Log-Likelihood from derivation 2.2.1:

D

I'(y, +
J; nz] N (ylf (Dl)
L(piaq)[) = H (D,- ’ — )]

7=\ Vi

5

'y, +—)
J; y CD .
= [ ———— [cpl. [

J,

J=

Thus by the results of derivation 2.2.1 we get the following when y, = n

Yyl

r=0
n,

@, )

(D, +n,)

H (4,)4,) by derivation 2.2.1
1

H(pi + V(Di)

i~ 1

In(L(p,.®,)) = In H[Z j

r=0
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Derivation 2.2.2:  The Fisher Information and Variance-Covariance Matrix I,”'
(from Hogg & Craig (1995), pgs 372-385)

Start with the one parameter case where X is a random variable with pdf f(x,; 6), and @ is
a parameter. In the continuous case, (the discrete case can be handled in a similar
manner) we have:

Tf(x;&’)dx =1

S LICU P

9/ (x:0)
1% f(x;0)dx = 0
T 9In(f(x;0))

50 f(x;0)dx = 0

— 0

S f[[Emueon] . [P0 6f(x;6’)D o
-, 06 L Y.

= T —azlnéf; 5O | f ) + aln(g 3;9)) aln(g(gx;e)) f(x:6) Ddx -0
. jW} FeOyds = - T{W}ﬂx;ﬁ)ﬁ

= 1(0) = T{w} f(x;0)dx = ]‘3{82 lné];(zx 0))}f(x; 0) dx

= [(0) is called the Fisher Information.
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If X;, X5, ...X, is arandom sample from a distribution with pdf f(x, 6), then we define

the Fisher Information as: /, (0) = EHM} } = — EH—az ln(Lz(e))H’
o6 06

where L(0) = f(x,;0) f(x,;0) f(x;;0)--- f(x,;0) is the likelihood function. It

follows that 1,(6) = ZH:EI{W} }

Now consider the case with two or more parameters. Let X;, X5, ...X, is a random

sample from a distribution with pdf f(x;6,,6, ). The information of the matrix sample

dlemua.o.0)]| o mrx.6,.0,)
isequalto: 7,(6,,0,) = —n| F

06, 00,00, |
E

8> In(f(X,6,,6,)) (0% In(£(X,6,,6,)) ]
06,00, 06,

If él and 92 are the MLEs of 6, and 6, then él and éz have approximate bivariate

. . . . . . . —1
normal distributions with means &, and &, and variance-covariance matrix /, .

S Var(é?l ) cov(6ﬂ?l , éz )

NI 2 , and thus the i element of the
cov(6,,0,) var(6,)

Consequently, [

n

diagonal gives var(6,).
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Derivation 2.2.3:  Simplifying the estimator a(a)
Here we derive the estimator a(a) assuming an underlying beta-binomial distribution.

Recall that a(«) is the posterior mean of @ using the symmetrical prior density on (p; ,

p2) proportional to ( P19, P49, )a . Therefore the prior density is given by
g(p,py) = kp“(A=p)* p," 0=p,)” 0<p <1l & 0=<p, <1,
and the density of the data is bi-variate beta-binomial Thus the density is given by:

f(y1 s Vs |pl,p2,CDl,CDz, I’ll,l’lz) =

J4! -1 1_p1 P, -1 l_pz
Iy, +——)T(@, Y|n —y + Iy, +~——)Ir@e, yIin, -y, + —=
(”1} 67 ‘1’1) (@,) ( I , j( 2) ( q)z) (@, ) [ 2 =W D, J
r(plj r[l_plj (@, " +n)
D, o,

Bl Py 1-p, -1
r—=rn——=\r, +
el e o
Therefore, the resulting posterior density is given by:

g(p,p) f(y,y,)
J;ij:g(pl . P2) f (i, y,)dp, dp,

hp,,pyl Y,y ©,0,, n,n,y) =

Consequently, the posterior mean, a(«) is given by:

) 1ol
a(a) = .LJ.O(pl + p)h(py, Pyl vy, ©,9,, ny,n,)dp, dp,

_ .[OIJ-OI(pl + ) g(p>py) f(i,y,) dp, dp,

1 el
[[], &1 p2) Sy, 32)dp, dp,

_ IIJ'lpl g(p>py) f(y»),)

1 el dp, dp,
[[],2pp2) S (y.32)dp, dp,

Ll g(p,py) f(y,,)
+ .[o.[opz 2 L2 dpldp2

1 el
[[], 21 p2) Sy 32)dpy dp,
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1ol a 1_ a a 1_ a ,
_ jo_[opl - il ( pla) paz ( pza) Sp,) dp, dp,
[[], 2" A=p)* p," A=) £, 32)dp, dp,

1 “(1=p)* p,” (1= p,)“ :
" IOJ'Opz - 1:1 ( pla) paz ( pza) Sp,) dp, dp,
[ ], 2" =p)* p," A=p2)* £, 32)dp, dp,

Since Y; & Y, are independent, f(y,,y,) = f,(v ) f,(»,), and thus we have:

a(a) = J'Oljol 1 lp; (I-p)) fl(yl)apz (I-p))* f2(»,) dp, dp,
J-O.[Opl (I-p)* i) p,” A=py)* f,(y,)dp, dp,

N M}l _ 111 d-p)” f(yl)pi A=p,)" f () dp, dp,
[.[ P A=p)* 1) 2" (1= py)" f(3,)dp; dp,

. P A=p)* [i) P, (=p)" f,(1,)
( [P =) £1(7)dp, }{ [P, (=P £ (3, )dpzj

dp, dp,

+ J-ol.[1 p(A=p)* i) P, (1=p)* £,(0,) dp, dp,

( [P =p)" £,(7)dp, j{ [P (=po)" £, <y2>dpzj
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|

p1a+1(1_p1)af1(y1)dp1J _[pza (1=ps fz(yz)dpzj

TNt

jp1a(1_p1)af1(y1)dp1j[jp2a 1=p3 fz(yz)dsz

J.pla (I—py 1(y1)dp1j(jp2a+l (I-p)* fz(yz)dpzj
+ 0

(Ip1a (1- A yl)dp1j(jp2a (I-p,))* fz(yz)dpzj

Therefore the estimator a(«) simplifies to the following:

L A= P S [ p) ) dp,
[ 2 Q= p)fO0dp, [ 2= o) f () dp,

a(a) =
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Derivation 2.3.2: Solving (p, — p)’

z, p(1= p)/#, forp

2

Start with:  (p, — p)° = z2 p(l - p)/A,

> (p? —2pph, +p*) =

z, z,
> p e e —2p - Llp+ p =0

i nz

Utilizing the quadratic formula we get:

2 2 2
Z(l ZO! le
2+ 2w (—2p - | —al1e 2|
n, n, n,
2> p =
z,
21+ 22
ni
Therefore:
z, ) 2 2
Pu = 2p + 2| = || - 2h -7 — 41+ 2 1312 2|1+ -2
nl nl nl nl
22 22 ? Z2 22
po = ||2h+ 2 ||—2p - 2| —alie 2 | 2|14
n n n, n
22 22 ? 22 22
po = |[2b+ 2= f2p - 2| — a1 2 2] [of1e 2
n, n, n, n,
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Px»

2p, + =

a

2

+

_2p2 —

2

A
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APPENDIX B - FORTRAN CODE

General Qutline of Program CODE: Parameter values needed for the program are:

P> Py @, @, @y, J, J,, & n;. These are denoted in the program as P1, P2, Alpha,
PHII1, PHI2, J1, J2, and N1Vec/N2Vec. The vectors N1Vec(J), N2Vec(J), Y1Vec(J) and
Y2Vec(J) are defined as follows: N1Vec(J) denotes the jth litter size in population 1;
N2Vec(J) denotes the jth litter size in population 2; Y 1Vec(J) denotes the number of
responses in the jth litter of population 1; Y2Vec(J) denotes the number of responses in

the jth litter of population 2. Additionally, J, will represent the number of litters in
population one and J, will represent the number of litters in population two. Various

cases with different values for the parameters are simulated in the program. The program

will consist of the following basic parts.

1. Generate data from two independent beta-binomial distributions. This will
be done utilizing the probability integral transform. (described in section 3.2)

2. Construct the extended Beal, extended Newcombe, and extended Peskun
intervals. These closed form intervals are given by Chen, Li, & Zhou(2004).
(details are given in section 2.2.3)

3. Calculate the MLEs p, and p,. This will be done by using an algorithm

presented by Smith(1983). The subroutine BBML calculates the MLEs for p
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and @ using a damped Newton-Raphson technique as described by Dixon(1972)
and uses moment estimates as initial estimators. BBML utilizes several auxiliary
routines. Namely, subroutine BBME calculates the moment estimates of p and
@, subroutine SET determines the array RL, dimensioned by (MRL,3), which is
an array of the coefficients of log(p + r®) , log(l — p + r®) , log(l + r®).

These quantities are needed in the calculation of the log likelihood and its
derivative. MRL is the maximum litter size and the first dimension of the array
RL. The subroutine BBL calculates the log likelihood and subroutine GDER
calculates the derivative of the log likelihood.

Construct the Wald Interval. This interval is based on the MLEs.

. Define the Var(l; ) as a function of a and b as derived in section 2.2.2.

Calculate the posterior mean, a(«). This will be done by computing double

. n 1 pl
integral a(a) = .[O J.O (p, + P)K(p, Py Y5y, ©, n,,n,)dp, dp,. The

integral is first simplified, (details are found in section 2.2.2 and in derivation
2.3.1) and then evaluated using the IMSL subroutine DQDAG. The Haldane

interval is based on a(a) when a = —1 and the Jeffreys-Perks interval is based

on a(a) when ¢ = —1/2.

Solve the equation (b — b)> = cVar(d,b) for b. First we substitute

A

b= p, — p,, as calculated in step 3; next, we substitute the variance expression

of b from step 5, and last we substitute b=band @ = a(a), as calculated in

step 6. This equation is then solved by defining a function, Equation[b]. The

function is first evaluated starting at b= D, — D,and then using a loop is
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evaluated going up and also going down until a sign change is determined. This
produces a range for the location of the upper root and a range for the location of
the lower root. Once an interval is determined that includes a sign change, the
subroutine DZREN is used to locate the root. The upper and lower roots are
determined. These roots are used as the upper and lower limits for the Haldane

and Jeffreys-Perks intervals. . Thus we have an interval for p, — p,.
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FORTRAN Code
INTEGER

PARAMETER (J1=5)
PARAMETER (J2=5)

INTEGER R, S

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

UCLpeskun, LCLpeskun

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

J1,J2, N, JIT, J2T

YIVEC(J1), Y2VEC(J2), N1IVEC(J1), N2VEC(J2)
MRLI1, MRL2, ITER, IFAULT, RL1(J1,3), RL2(J2,3)

MAXFN, MAXFN2, ERRORCt

OneCount, ZeroCount

CountW, CountJP, CountHaldane

M1, M2, X1, X2, N1, N2, K1, K2

NewcombeCount, BealCount, PeskunCount

P1HtStar, P2HtStar, Radicall, Radical2, Thetal, Theta2
Templ, Temp2, Suml, Sum2

Rho, RhoNum, RhoDen, VarInflationl, VarInflation2
N1ht, N2ht, X1ht, X2ht

Kl1bar, K2bar

QuadA, QuadB, QuadC, pl11, p22, p12, p21

UCLnewcombe, LCLnewcombe, UCLbeal, LCLbeal,

Zvalue, Bealintl, Bealint2, Bealint3
Peskunl, Peskun2, Peskun3
fstar, fstarl, fstar2, fstar3, fstar4

ustar, vstar, wstar, gstar, gstarl, gstar2
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DOUBLE PRECISION
RNL

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

DOUBLE PRECISION

W1(J1), PP1(J1), W2(J2), PP2(J2), KRIT, SEM, SETH,

P1HT, PHITHT, P2HT, PHI2HT, VARP1, VARP2
P1, P2, PHI1, PHI2, PROB

UCI, LCI, TrueDiff, Diff, StdError, Alpha

U, CUMPRB, TEST, TEST]1, Bstar

A, B, Plstar, P2star, ERRABS, ERRREL, ERREST
AALPHAJP, AALPHAHaldane

Integrand1, Integrand2, Integrand3, Integrand4
IntegrandS5, Integrand6, Integrand?7, Integrand8
Resultl, Result2, Result3, Result4

Result5, Result6, Result7, Result8

Al, Bl1, A2, B2

PHI1Vec(4), PHI2Vec(4), P1Vec(12), P2Vec(12)
Guess, START

BealLength, PeskunLength, NewcombeLength

JPlength, HaldaneLength, WaldLength

EXTERNAL Integrandl, Integrand2, Integrand3, Integrand4

EXTERNAL Integrand5, Integrand6, Integrand7, Integrand8

EXTERNAL PDFY, VARNCI, VARNC2, DBINOM, DQDAG, DZBREN

EXTERNAL EQUATION, EQUATION2

COMMON Y1VEC, Y2VEC, N1VEC, N2VEC, P1HT, P2HT, PHI1HT, PHI2HT
COMMON AALPHAJP, AALPHAHaldane, J1T, J2T, Alpha

LOGICAL DONE
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LOGICAL NRT
LOGICAL FlagZeros, FlagOnes

OPEN (Unit=1,file="C:\Absoft62\SimPrgm5-5-5e.txt')

Call Rnset(0)
Call Rnopt(6)

! Assign values for p's and phi's

P1Vec(1)=1.0D-1
P2Vec(1)=1.0D-1
P1Vec(2)=1.0D-1
P2Vec(2)=3.0D-1
P1Vec(3)=1.0D-1
P2Vec(3)=7.0D-1
P1Vec(4)=1.0D-1
P2Vec(4)=9.0D-1
P1Vec(5)=3.0D-1
P2Vec(5)=3.0D-1
P1Vec(6)=3.0D-1
P2Vec(6)=5.0D-1
P1Vec(7)=3.0D-1
P2Vec(7)=7.0D-1
P1Vec(8)=5.0D-1
P2Vec(8)=5.0D-1
P1Vec(9)=9.0D-1
P2Vec(9)=9.0D-1
P1Vec(10)=9.0D-1
P2Vec(10)=1.0D-2
P1Vec(11)=5.0D-2
P2Vec(11)=5.0D-2
P1Vec(12)=5.0D-2
P2Vec(12)=1.0D-2

PHI1Vec(1)=1.0D0/9.0D0
PHI2Vec(1)=1.0D0/9.0D0
PHI1Vec(2)=3.0D0/7.0D0
PHI2Vec(2)=3.0D0/7.0D0
PHI1Vec(3)=1.0D0
PHI2Vec(3)=1.0D0
PHI1Vec(4)=9.0D0
PHI2Vec(4)=9.0D0
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Alpha =5.0D-2

DO 500 I=1,J1
NIVEC(I)=5
500 Continue

DO 600 I=1,J2
N2VEC(I)=5
600 Continue

MRLI1=5
MRL2=5

KRIT =1.0D-6
ITER = 1000
J1T=J1

12T=J2

DO 222R=1,12
Write(*,*)'R =",R
P1=P1Vec(R)
P2=P2Vec(R)
DO333S=14
PHI1=PHI1Vec(S)
PHI2=PHI2Vec(S)

CountW =0
CountJP =0
CountHaldane = 0

NewcombeCount=0

BealCount =0
PeskunCount =0

OneCount =0
ZeroCount =0
ERRORCt=0
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WaldLength=0.0D0
JPlength=0.0DO0

HaldaneLength=0.0D0

NewcombeLength=0.0D0
BealLength=0.0D0
PeskunLength=0.0D0

DO 444 T = 1,10000

! GENERATE DATA FROM POP1
1 Continue

FlagZeros=.TRUE.
FlagOnes=TRUE.

DO 20 I=1,J1
N=N1VEC(])
U = DRNUNF()
DONE=FALSE.
CUMPRB=0.0D0

DO 10 J=1,N1VEC(])
IF (DONE) THEN
GOTO 15
END IF

CALL PDFY(PROB,J-1,P1,PHI1,N)
TEST=CUMPRB+PROB

IF (CUMPRB.LT.U).AND.(U.LE.TEST)) THEN
Y1VEC(D)=J-1
DONE=.TRUE.

ELSE IF (J.EQ.N1VEC(I)) THEN
Y1VEC(I)=N1VEC(I)

END IF

CUMPRB=TEST

10  CONTINUE

15 Continue
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IF (Y1VEC(I).NE.O) THEN
FlagZeros=.FALSE.
END IF

IF (Y1VEC(I).NE.N1VEC(I)) THEN
FlagOnes=FALSE.
END IF

20 CONTINUE

IF (FlagZeros) THEN
ZeroCount=ZeroCount+1
GOTO 1

END IF

IF (FlagOnes) THEN
OneCount=OneCount+1
GOTO 1

END IF

! GENERATE DATA FROM POP2
2 Continue

FlagZeros=.TRUE.
FlagOnes=TRUE.

DO 40 I=1,]2
N=N2VEC(I)
U = DRNUNF()
DONE=FALSE.
CUMPRB=0.0D0

DO 30 J=1,N2VEC(])
IF (DONE) THEN
GOTO 35
END IF

CALL PDFY(PROB,J-1,P2,PHI2,N)
TEST=CUMPRB+PROB

IF (CUMPRB.LT.U).AND.(U.LE.TEST)) THEN
Y2VEC(D)=J-1
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DONE=.TRUE.
ELSE IF (J.EQ.N2VEC(I)) THEN
Y2VEC(I)=N2VEC(I)
END IF

CUMPRB=TEST
30 CONTINUE
35 Continue

IF (Y2VEC(I).NE.O) THEN
FlagZeros=.FALSE.
END IF

IF (Y2VEC(I).NE.N2VEC(I)) THEN
FlagOnes=FALSE.
END IF

40 CONTINUE

IF (FlagZeros) THEN
ZeroCount=ZeroCount+1
GOTO 2

END IF

IF (FlagOnes) THEN
OneCount=OneCount+1
GOTO 2

END IF

!Construct 3 Intervals given by Chen, Li, & Zhou (2004)
!1st define parameters

MI1=J1
M2=]2
X1=0
X2=0
N1=0
N2=0

DO 1175 I=1,J1
X1=X1+Y 1VEC(I)
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1175 Continue

DO 1185 1=1,J2
X2=X2+Y2VEC(I)
1185 Continue

DO 1195 1=1,J1
NI=NI1+NI1VEC(I)
1195 Continue

DO 1105 I=1,J2
N2=N2+N2VEC(I)
1105 Continue

P1HtStar=DBLE(X1)/DBLE(N1)
P2HtStar=DBLE(X2)/DBLE(N2)

IF (J1.EQ.J2) THEN

KI=NIVEC(1)
K2=N2VEC(1)
Sum1=0.0D0
Sum2=0.0D0
Temp1=0.0D0
Temp2=0.0D0

DO 1115 I=1,J1
Templ1=Templ1+Y1VEC(I)*(Y1VEC(I)-1.0D0)

1115 Continue

Temp2=Temp1/(DBLE(M1)*DBLE(K1)*(DBLE(K1)-1.0D0))

Sum1=Temp2-(P1HtStar**2.0D0)

Temp1=0.0D0
Temp2=0.0D0

DO 1125 1=1,J2
Templ1=Templ+Y2VEC(I)*(Y2VEC(I)-1.0D0)

1125 Continue

Temp2=Temp1/(DBLE(M2)*DBLE(K2)*(DBLE(K2)-1.0D0))

Sum2=Temp2-(P2HtStar**2.0D0)

RhoNum=(Sum1+Sum?2)
RhoDen=(P1HtStar*(1.0D0-P1HtStar))+(P2HtStar*(1.0D0-P2HtStar))
Rho=RhoNum/RhoDen

IF (Rho.LT.0.0D0) THEN
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Rho = 0.0D0
END IF

Varlnflation1=(1.0D0+((DBLE(K1)-1.0D0)*Rho))
Varlnflation2=(1.0D0+((DBLE(K2)-1.0D0)*Rho))

END IF

IF (J1.NE.J2) THEN
Klbar=N1/M1
K2bar=N2/M2

Sum1=0.0D0
Sum2=0.0D0
TEMP1=0.0DO0
TEMP2=0.0D0

DO 11351=1M1
TEMP1=(1.0D0/(M1-1.0D0))*((N1Vec(I)/K1bar)**(2.0D0))
TEMP2=((Y1Vec(I)/N1Vec(l))-P1HtStar)**2.0D0
SUM1 = SUMI+TEMP1*TEMP2

1135 Continue

SUMI1=SUM1*(1.0D0/M1)

TEMP1=0.0DO0
TEMP2=0.0D0

DO 11451=1M2
TEMP1=(1.0D0/(M2-1.0D0))*((N2Vec(I)/K2bar)**(2.0D0))
TEMP2=((Y2Vec(I)/N2Vec(l))-P2HtStar)**2.0D0
SUM2 = SUM2+TEMP1*TEMP2

1145 Continue

SUM2=SUM2*(1.0D0/M2)

Varlnflation1=(N1*Sum1)/((P1HtStar)*(1.0D0-P 1 HtStar))
VarlInflation2=(N2*Sum?2)/((P2HtStar)*(1.0D0-P2HtStar))

If (VarInflation1.LT.1.0D0) THEN
Varlnflation1=1.0D0

END IF

If (VarInflation2.LT.1.0D0) THEN
Varlnflation2=1.0D0

END IF

END IF
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N1ht=(1.0D0/VarInflation1)*(DBLE(N1))
N2ht=(1.0D0/VarInflation2)*(DBLE(N2))

X1ht=(1.0D0/VarInflation1)*(DBLE(X1))
X2ht=(1.0D0/VarInflation2)*(DBLE(X2))

Zvalue=DNORIN(1.0D0-(ALPHA/2.0D0))

!Chen, Li, & Zhou (2004) Method 1: extension of Newcombe(1998) interval
QuadA=1.0D0+((Zvalue**2.0D0)/N1ht)

QuadB=(-2.0D0)*P1HtStar-((Zvalue**2.0D0)/N1ht)
QuadC=P1HtStar**2.0D0

p11=(-QuadB - Sqrt((QuadB**2.0D0)-(4.0D0)*QuadA*QuadC))/((2.0D0)*QuadA)
p12=(-QuadB + Sqrt((QuadB**2.0D0)-(4.0D0)*QuadA*QuadC))/((2.0D0)*QuadA)

QuadA=1.0D0-+((Zvalue**2.0D0)/N2ht)
QuadB=(-2.0D0)*P2HtStar-((Zvalue**2.0D0)/N2ht)
QuadC=P2HtStar**2.0D0

p21=(-QuadB - Sqrt((QuadB**2.0D0)-(4.0D0)*QuadA*QuadC))/((2.0D0)*QuadA)
p22=(-QuadB + Sqrt((QuadB**2.0D0)-(4.0D0)*QuadA*QuadC))/((2.0D0)*QuadA)

Radical 1=((p11*(1.0D0-p11))/N1ht)+((p22*(1.0D0-p22))/N2ht)
Radical2=((p12*(1.0D0-p12))/N1ht)+((p21*(1.0D0-p21))/N2ht)

Thetal=Zvalue*(Sqrt(Radicall))
Theta2=Zvalue*(Sqrt(Radical2))

LCLnewcombe=(P1HtStar-P2HtStar)-Thetal
UCLnewcombe=(P1HtStar-P2HtStar)+Theta2

NewcombeLength=NewcombeLength+(UCLnewcombe-LCLnewcombe)

TrueDiff=P1-P2

IF ((TrueDiff. GT.LCLnewcombe).AND.(TrueDiff. LT.UCLnewcombe)) THEN
NewcombeCount=NewcombeCount + 1

END IF

!Chen, Li, & Zhou (2004) Method 2: extension of Beal(1987) interval

ustar=((1/N 1ht)+(1/N2ht))/(4.0D0)
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vstar=((1/N1ht)-(1/N2ht))/(4.0D0)
wstar=((X 1ht+5.0D-1)/(N 1ht+1.0D0)+(X2Ht+5.0D-1)/(N2Ht+1.0D0))/(2.0D0)

fstarl=ustar®((4.0D0)*wstar*(1.0D0-wstar)-(P1HtStar-P2HtStar)**(2.0D0))
fstar2=(2.0D0)*vstar*(1.0D0-(2.0D0)*wstar)*(P1HtStar-P2HtStar)
fstar3=(4.0D0)*(Zvalue**(2.0D0))*(ustar**(2.0D0))*(1.0D0-wstar)*wstar
fstard=(Zvalue**(2.0D0))*(vstar**(2.0D0))*((1.0D0-(2.0D0)*wstar)**(2.0D0))
fstar=fstar1+fstar2+fstar3+fstar4

Bealintl = (1.0D0)/(1.0D0+(Zvalue**(2.0D0))*ustar)

Bealint2 = (P1HtStar-P2HtStar)+(Zvalue**(2.0D0))*(vstar)*((1.0D0)-(2.0D0)*wstar)
Bealint3 = (Zvalue)*(Sqrt(fstar))

LCLbeal = Bealint1*(Bealint2-Bealint3)
UCLbeal = Bealint1*(Bealint2+Bealint3)

BealLength=BealLength+(UCLbeal-LCLbeal)

IF ((TrueDiff.GT.LCLbeal).AND.(TrueDiff.LT.UCLbeal)) THEN
BealCount=BealCount + 1

END IF

!Chen, Li, & Zhou (2004) Method 3: extension of Peskun(1993) interval

gstarl=((Zvalue**(2.0D0))+N1Ht+N2Ht)/((4.0D0)*N1Ht*N2Ht)
gstar2=((P 1 HtStar-P2HtStar)**(2.0D0))/(N1Ht+N2Ht)

gstar=gstar1-gstar2
Peskun1=(1.0D0)/(1.0D0+((Zvalue**(2.0D0))/(N1Ht+N2Ht)))
Peskun2=(P1HtStar-P2HtStar)
Peskun3=(Zvalue)*(Sqrt(gstar))

LCLpeskun=Peskun1*(Peskun2-Peskun3)
UCLpeskun=Peskun1*(Peskun2+Peskun3)

PeskunLength=PeskunLength+(UCLpeskun-LCLpeskun)
IF ((TrueDiff. GT.LCLpeskun). AND.(TrueDiff.LT.UCLpeskun)) THEN

PeskunCount=PeskunCount + 1
END IF

'Determine MLEs for P1 & Phil using algorithm from Smith (1983)
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Call
BBML(JIT,Y1VEC,N1VEC,W1,PP1,RL],MRLI,ITER,KRIT,P1HT,PHI1HT,SEM,SET
H,RNL,IFAULT)

!Determine variance of P1

Call VARNCI(VARPIL,PIHT,PHIIHT,NIVEC,J1T,Y1VEC)

'Determine MLEs for P2 & Phi2 using algorithm from Smith (1983)

Call
BBML(J2T,Y2VEC,N2VEC,W2,PP2,RL2,MRL2,ITER,KRIT,P2HT,PHI2HT,SEM,SET
H,RNL,IFAULT)

!Determine variance of P2

Call VARNC2(VARP2,P2HT,PHI2HT,N2VEC,J2T,Y2VEC)

!Construct Wald interval

TrueDiff=P1-P2

Diff=P1HT-P2HT

StdError=Sqrt(VARP1 + VARP2)
UCI=Diff+DNORIN(1.0D0-(ALPHA/2.0D0))*StdError
LCI=Diff-DNORIN(1.0D0-(ALPHA/2.0D0))*StdError

WaldLength=WaldLength+(UCI-LCI)
IF ((TrueDiff.LT.UCI).AND.(TrueDiff. GT.LCI)) THEN

CountW = CountW + 1
END IF

'Determine estimators a-ht of alpha
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A =1.0D-4

B =9.999D-1
ERRABS = 1.0D-6
ERRREL = 1.0D-6
IRULE =2

Call DQDAG(Integrand1,A,B,ERRABS, ERRREL, IRULE, RESULT1, ERREST)
Call DQDAG(Integrand2,A,B,ERRABS, ERRREL, IRULE, RESULT2, ERREST)
Call DQDAG(Integrand3,A,B,ERRABS, ERRREL, IRULE, RESULT3, ERREST)
Call DQDAG(Integrand4,A,B,ERRABS, ERRREL, IRULE, RESULT4, ERREST)

AAlpha]P=(RESULT1/RESULT2)+(RESULT3/RESULT4)

A =1.0D-4

B =9.999D-1
ERRABS = 1.0D-6
ERRREL = 1.0D-6
IRULE =2

Call DQDAG(Integrand5,A,B,ERRABS, ERRREL, IRULE, RESULT5, ERREST)
Call DQDAG(Integrand6,A,B,ERRABS, ERRREL, IRULE, RESULT6, ERREST)
Call DQDAG(Integrand7,A,B,ERRABS, ERRREL, IRULE, RESULT7, ERREST)
Call DQDAG(Integrand8,A,B,ERRABS, ERRREL, IRULE, RESULTS, ERREST)

AAlphaHaldane=(RESULTS/RESULT6)+(RESULT7/RESULTS)

!Determine roots to use for JP Interval

! find first root, b-upper
START=PIHT-P2HT
DONE=.FALSE.
NRT=FALSE.

Do 85 K = 1,200
IF (DONE) GOTO 86
IF (START+(DBLE(K)/1.0D2)).GT.1.0D0) THEN
NRT=TRUE.
B1=1.0D0
GOTO 86
END IF
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Guess=Equation((START+(DBLE(K)/1.0D2)))
IF (Guess.GT.0.0D0) THEN
A1=START+(DBLE(K-1)/1.0D2)
B1=START+(DBLE(K)/1.0D2)
DONE=.TRUE.
END IF
85 Continue

86 Continue

IF (DONE) THEN
ERRABS =0.0D0
ERRREL = 1.0D-6
MAXFN =100
IF ((Equation(A1))*(Equation(B1)).GT.0.0D0) THEN
ERRORCt=ERRORCt+1
GOTO 555
END IF
Call DZBREN(Equation,ERRABS, ERRREL, A1, B1, MAXFN)
END IF

'find second root b-lower
START=PIHT-P2HT
DONE=.FALSE.
NRT=.FALSE.

Do 95 K = 1,200
IF (DONE) GOTO 96
IF ((START-(DBLE(K)/2.0D1)).LT.-1.0D0) THEN
NRT=.TRUE.
B2=-1.0D0
GOTO 96
END IF

Guess=Equation((START-(DBLE(K)/1.0D2)))
IF (Guess.GT.0.0D0) THEN
A2=START-(DBLE(K)/1.0D2)
B2=START-(DBLE(K-1)/1.0D2)
DONE=.TRUE.
END IF
95 Continue

96 Continue

IF (DONE) THEN
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ERRABS =0.0D0

ERRREL = 1.0D-6

MAXFN =100

IF ((Equation(A2))*(Equation(B2)).GT.0.0D0) THEN
ERRORCt=ERRORCt+1
GOTO 555

END IF

Call DZBREN(Equation,ERRABS, ERRREL, A2, B2, MAXFN)

END IF

JPlength=JPlength+(B1-B2)

IF ((TrueDiff.LT.B1).AND.(TrueDiff.GT.B2)) THEN
CountJP = CountJP + 1
END IF

!Determine roots to use for Haldane Interval

'find first root b-upper
START=PIHT-P2HT
DONE=.FALSE.
NRT=FALSE.

Do 185 K = 1,200
IF (DONE) GOTO 186
IF ((START+(DBLE(K)/1.0D2)).GT.1.0D0) THEN
NRT=TRUE.
B1=1.0D0
GOTO 186
END IF

Guess=Equation2((START+(DBLE(K)/1.0D2)))
IF (Guess.GT.0.0D0) THEN
A1=START+(DBLE(K-1)/1.0D2)
B1=START+(DBLE(K)/1.0D2)
DONE=.TRUE.
END IF
185 Continue

186 Continue

IF (DONE) THEN
ERRABS = 0.0D0
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ERRREL = 1.0D-6

MAXFN =100

IF ((Equation2(A1))*(Equation2(B1)).GT.0.0D0) THEN
ERRORCt=ERRORCt+1
GOTO 555

END IF

Call DZBREN(Equation2,ERRABS, ERRREL, Al, B, MAXFN)

END IF

'find second root b-lower
START=PIHT-P2HT
DONE=.FALSE.
NRT=.FALSE.

Do 195 K = 1,200
IF (DONE) GOTO 196
IF (START-(DBLE(K)/1.0D2)).LT.-1.0D0) THEN
NRT=.TRUE.
B2=-1.0D0
GOTO 196
END IF

Guess=Equation2((START-(DBLE(K)/1.0D2)))
IF (Guess.GT.0.0D0) THEN
A2=START-(DBLE(K)/1.0D2)
B2=START-(DBLE(K-1)/1.0D2)
DONE=.TRUE.
END IF
195 Continue

196 Continue

IF (DONE) THEN
ERRABS =0.0D0
ERRREL = 1.0D-6
MAXFN =100
IF ((Equation2(A2))*(Equation2(B2)).GT.0.0D0) THEN
ERRORCt=ERRORCt+1
GOTO 555
END IF
Call DZBREN(Equation2, ERRABS, ERRREL, A2, B2, MAXFN)
END IF

HaldaneLength=HaldaneLength+(B1-B2)
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IF ((TrueDiff.LT.B1).AND.(TrueDiff.GT.B2)) THEN
CountHaldane = CountHaldane + 1
END IF

555 Continue

444 Continue

Write(1,*)J1 ="]J1

Write(1,%)J2 =",J2

Write(1,*)'P1 =",P1

Write(1,*)'P2 ="',P2
Write(1,*)'Phil =",Phil
Write(1,*)'Phi2 = ',Phi2
Write(1,*)'litter sizes equal and = 5'
Write(1,*)' '

Write(1,*)'Count for Wald Interval ',CountW
Write(1,*)'Count for JP Interval ',CountJP
Write(1,*)'Count for Haldane Interval ',CountHaldane
Write(1,*)’ '

Write(1,*)'Count for extended Newcombe interval ',NewcombeCount
Write(1,*)'Count for extended Beal interval ',BealCount
Write(1,*)'Count for extended Peskun interval ',PeskunCount
Write(1,*)' '

Write(1,*)'Count # times get all Zeros ',ZeroCount
Write(1,*)'Count # times get all Ones ',OneCount
Write(1,*)'Error Count ',ErrorCt

Write(1,*)"

Write(1,*)'Avg length Wald ',WaldLength/1.0D4
Write(1,*)'Avg length JP ', JPlength/1.0D4

Write(1,*)'Avg length Haldane ',HaldaneLength/1.0D4
Write(1,*)'Avg length Newcombe ',NewcombeLength/1.0D4
Write(1,*)'Avg length Beal ',BealLength/1.0D4
Write(1,*)'Avg length Peskun ',PeskunLength/1.0D4
Write(1,*)’ '
Write(1,*)" '
Write(1,*)" '
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333 Continue
222 Continue

END

DOUBLE PRECISION FUNCTION Integrand1(P1star)
DOUBLE PRECISION Plstar, PROD, TEMP
INTEGER Y1VEC(5), NIVEC(5), Y2VEC(5),N2VEC(5),J1T, 12T
DOUBLE PRECISION P1HT, P2HT, PHITHT, PHI2HT, AALPHAIJP,
AALPHAHaldane, Alpha
COMMON Y1VEC, Y2VEC, N1VEC, N2VEC, P1HT, P2HT, PHI1HT, PHI2HT
COMMON AALPHAJP, AALPHAHaldane, J1T, J2T, Alpha
PROD=1.0D0
Do 601=1J1T
CALL PDFY(TEMP,Y1VEC(I),P1star,PHITHT,N1VEC(I))
PROD=PROD*TEMP
60 Continue
Integrand1=(P1star**(5.0D-1))*((1.0D0-P1star)**(-5.0D-1))*PROD
RETURN
END

DOUBLE PRECISION FUNCTION Integrand2(PIstar)
DOUBLE PRECISION Plstar, PROD, TEMP
INTEGER Y1VEC(5), NIVEC(5), Y2VEC(5),N2VEC(5),J1T, 12T
DOUBLE PRECISION P1HT, P2HT, PHITHT, PHI2HT, AALPHAIJP,
AALPHAHaldane, Alpha
COMMON Y1VEC, Y2VEC, N1VEC, N2VEC, P1HT, P2HT, PHI1HT, PHI2HT
COMMON AALPHAJP, AALPHAHaldane, J1T, J2T, Alpha
PROD=1.0D0
Do 651=1J1T
CALL PDFY(TEMP,Y1VEC(I),P1star,PHITHT,N1VEC(I))
PROD=PROD*TEMP
65 Continue
Integrand2=(P1star**(-5.0D-1))*((1.0D0-P1star)**(-5.0D-1))*PROD
RETURN
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END

DOUBLE PRECISION FUNCTION Integrand3(P2star)
DOUBLE PRECISION P2star, PROD, TEMP
INTEGER Y1VEC(5), NIVEC(5), Y2VEC(5),N2VEC(5),J1T, 12T

DOUBLE PRECISION P1HT, P2HT, PHIIHT, PHI2HT, AALPHAJP,
AALPHAHaldane, Alpha
COMMON Y1VEC, Y2VEC, N1VEC, N2VEC, P1HT, P2HT, PHI1HT, PHI2HT
COMMON AALPHAJP, AALPHAHaldane, JIT, J2T, Alpha
PROD=1.0D0
Do 70 I=1,J2T
CALL PDFY(TEMP,Y2VEC(I),P2star, PHIZHT ,N2VEC(I))
PROD=PROD*TEMP
70 Continue
Integrand3=(P2star**(5.0D-1))*((1.0D0-P2star)**(-5.0D-1))*PROD
RETURN
END

DOUBLE PRECISION FUNCTION Integrand4(P2star)
DOUBLE PRECISION P2star, PROD, TEMP
INTEGER Y1VEC(5), NIVEC(5), Y2VEC(5),N2VEC(5),J1T, J2T
DOUBLE PRECISION P1HT, P2HT, PHIIHT, PHI2HT, AALPHAJP,
AALPHAHaldane, Alpha
COMMON Y1VEC, Y2VEC, N1VEC, N2VEC, P1HT, P2HT, PHI1HT, PHI2HT
COMMON AALPHAJP, AALPHAHaldane, JIT, J2T, Alpha
PROD=1.0D0
Do 751=1,J2T
CALL PDFY(TEMP,Y2VEC(I),P2star, PHIZHT ,N2VEC(I))
PROD=PROD*TEMP
75 Continue
Integrand4=(P2star**(-5.0D-1))*((1.0D0-P2star)**(-5.0D-1))*PROD
RETURN
END

DOUBLE PRECISION FUNCTION Integrand5(P1star)

DOUBLE PRECISION Plstar, PROD, TEMP

INTEGER Y1VEC(5), NIVEC(5), Y2VEC(5),N2VEC(5),J1T, J2T
DOUBLE PRECISION P1HT, P2HT, PHITHT, PHI2HT, AALPHAJP,
AALPHAHaldane, Alpha
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COMMON Y1VEC, Y2VEC, N1VEC, N2VEC, P1HT, P2HT, PHI1HT, PHI2HT

COMMON AALPHAJP, AALPHAHaldane, JIT, J2T, Alpha

PROD=1.0D0

Do601=1J1T
CALL PDFY(TEMP,Y1VEC(I),P1star, PHITHT,N1VEC(I))
PROD=PROD*TEMP

60 Continue

Integrand5=((1.0D0-P1star)**(-1.0D0))*PROD

RETURN

END

DOUBLE PRECISION FUNCTION Integrand6(P1star)
DOUBLE PRECISION Plstar, PROD, TEMP
INTEGER Y1VEC(5), NIVEC(5), Y2VEC(5),N2VEC(5),J1T, J2T
DOUBLE PRECISION P1HT, P2HT, PHITHT, PHI2HT, AALPHAJP,
AALPHAHaldane, Alpha
COMMON Y1VEC, Y2VEC, N1VEC, N2VEC, P1HT, P2HT, PHI1HT, PHI2HT
COMMON AALPHAJP, AALPHAHaldane, JIT, J2T, Alpha
PROD=1.0D0
Do 651=1J1T
CALL PDFY(TEMP,Y1VEC(I),P1star, PHITHT ,N1VEC(I))
PROD=PROD*TEMP
65 Continue
Integrand6=(P1star**(-1.0D0))*((1.0D0-P1star)**(-1.0D0))*PROD
RETURN
END

DOUBLE PRECISION FUNCTION Integrand7(P2star)
DOUBLE PRECISION P2star, PROD, TEMP
INTEGER Y1VEC(5), NIVEC(5), Y2VEC(5),N2VEC(5),J1T, J2T
DOUBLE PRECISION P1HT, P2HT, PHITHT, PHI2HT, AALPHAJP,
AALPHAHaldane, Alpha
COMMON Y1VEC, Y2VEC, N1VEC, N2VEC, P1HT, P2HT, PHI1HT, PHI2HT
COMMON AALPHAJP, AALPHAHaldane, JIT, J2T, Alpha
PROD=1.0D0
Do 70 I=1,J2T
CALL PDFY(TEMP,Y2VEC(I),P2star, PHIZHT ,N2VEC(I))
PROD=PROD*TEMP
70 Continue
Integrand7=((1.0D0-P2star)**(-1.0D0))*PROD
RETURN
END
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DOUBLE PRECISION FUNCTION Integrand8(P2star)
DOUBLE PRECISION P2star, PROD, TEMP
INTEGER Y1VEC(5), NIVEC(5), Y2VEC(5),N2VEC(5),J1T, J2T
DOUBLE PRECISION P1HT, P2HT, PHITHT, PHI2HT, AALPHAJP,
AALPHAHaldane, Alpha
COMMON YI1VEC, Y2VEC, N1VEC, N2VEC, P1HT, P2HT, PHI1HT, PHI2HT
COMMON AALPHAJP, AALPHAHaldane, JIT, J2T, Alpha
PROD=1.0D0
Do 751=1,J2T
CALL PDFY(TEMP,Y2VEC(I),P2star, PHIZHT ,N2VEC(I))
PROD=PROD*TEMP
75 Continue
Integrand8=(P2star**(-1.0D0))*((1.0D0-P2star)**(-1.0D0))*PROD
RETURN
END

DOUBLE PRECISION FUNCTION EQUATION(Bstar)

DOUBLE PRECISION Bstar, PIHT, PHIIHT, P2HT, PHI2HT, AALPHAIJP,
AALPHAHaldane, Alpha

DOUBLE PRECISION TPlus, TMinus, TEMP1, TEMP2, TEMPB, VARIANCE, Zvalue
INTEGER Y1VEC(5), NIVEC(5), Y2VEC(5),N2VEC(5),J1T, J2T,N, Y

COMMON YI1VEC, Y2VEC, N1VEC, N2VEC, P1HT, P2HT, PHI1IHT, PHI2HT
COMMON AALPHAJP, AALPHAHaldane, JIT, J2T, Alpha

DOUBLE PRECISION SUMVAR, SUMI, SUM2, SUMT
DOUBLE PRECISION PROB, SUMEXP, VARP1, VARP2

SUMVAR=0.0D0
TPlus=(AALPHAJP+Bstar)/(2.0D0)
TMinus=(AALPHAJP-Bstar)/(2.0D0)

DO 195 J=1,J1T
N=N1VEC(J)
SUMEXP=0.0D0

DO 194 K=0,N1VEC(J)

Y=K
SUM1=0.0D0
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IF (Y.NE.O) THEN
DO 191 L=0,Y-1
TEMP=TPlus+(DBLE(L)*PHIIHT)
TEMP2=(1.0D0)/(TEMP1**2.0D0)
SUM1=SUMI+TEMP2
191 CONTINUE
END IF

SUM2=0.0D0
IF (Y.NE.N) THEN
DO 192 L=0,N-Y-1
TEMP1=1.0D0-TPlus+(DBLE(L)*PHI1HT)
TEMP2=(1.0D0)/(TEMP1#*2.0D0)
SUM2=SUM2+TEMP2
192 CONTINUE
END IF
SUMT=SUM1+SUM?2
CALL PDFY(PROB,Y,TPlus,PHIIHT,N)
SUMEXP=SUMEXP+(SUMT*PROB)
194 CONTINUE
SUMVAR=SUMVAR+SUMEXP
195 CONTINUE

VARP1=1.0D0/SUMVAR

SUMVAR=0.0D0

DO 295 J=1,J2T
N=N2VEC(J)
SUMEXP=0.0D0

DO 294 K=0,N2VEC(J)
Y=K
SUM1=0.0D0

IF (Y.NE.0O) THEN
DO 291 L=0,Y-1
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TEMP1=TMinus+(DBLE(L)*PHI2HT)
TEMP2=(1.0D0)/(TEMP1**2.0D0)
SUM1=SUMI+TEMP2
291 CONTINUE
END IF

SUM2=0.0D0
IF (Y.NE.N) THEN
DO 292 L=0,N-Y-1
TEMP1=1.0D0-TMinus+(DBLE(L)*PHI2HT)
TEMP2=(1.0D0)/(TEMP1**2.0D0)
SUM2=SUM2+TEMP2
292 CONTINUE
END IF
SUMT=SUM1+SUM2
CALL PDFY(PROB,Y,TMinus,PHI2HT,N)
SUMEXP=SUMEXP+(SUMT*PROB)
294 CONTINUE
SUMVAR=SUMVAR+SUMEXP
295 CONTINUE
VARP2=1.0D0/SUMVAR
VARIANCE=VARP1+VARP2
TEMPB=Bstar-(P1HT-P2HT)
Zvalue=DNORIN(1.0D0-(Alpha/2.0D0))

EQUATION=(TEMPB)**2.0D0 - ((Zvalue)**2.0D0)*(VARIANCE)
RETURN

END

DOUBLE PRECISION FUNCTION EQUATION2(Bstar)

DOUBLE PRECISION Bstar, PIHT, PHITHT, P2HT, PHI2HT, AALPHAIJP,
AALPHAHaldane, Alpha

DOUBLE PRECISION TPlus, TMinus, TEMP1, TEMP2, TEMPB, VARIANCE, Zvalue
INTEGER Y1VEC(5), NIVEC(5), Y2VEC(5),N2VEC(5),J1T, I2T,N, Y
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COMMON Y1VEC, Y2VEC, N1VEC, N2VEC, P1HT, P2HT, PHI1HT, PHI2HT
COMMON AALPHAJP, AALPHAHaldane, J1T, J2T, Alpha

DOUBLE PRECISION SUMVAR, SUMI, SUM2, SUMT
DOUBLE PRECISION PROB, SUMEXP, VARP1, VARP2

SUMVAR=0.0D0
TPlus=(AALPHAHaldane+Bstar)/(2.0D0)
TMinus=(AALPHAHaldane-Bstar)/(2.0D0)

DO 195 J=1,J1T
N=N1VEC(J)
SUMEXP=0.0D0

DO 194 K=0,N1VEC(J)
Y=K
SUM1=0.0D0

IF (Y.NE.0) THEN
DO 191 L=0,Y-1
TEMP1=TPlus+(DBLE(L)*PHI1HT)
TEMP2=(1.0D0)/(TEMP1#*2.0D0)
SUM1=SUM1+TEMP2
191 CONTINUE
END IF

SUM2=0.0D0
IF (Y.NE.N) THEN
DO 192 L=0,N-Y-1
TEMP1=1.0D0-TPlus+(DBLE(L)*PHI1HT)
TEMP2=(1.0D0)/(TEMP1**2.0D0)
SUM2=SUM2+TEMP2
192 CONTINUE
END IF
SUMT=SUM1+SUM?2
CALL PDFY(PROB,Y,TPlus,PHIIHT,N)
SUMEXP=SUMEXP+(SUMT*PROB)
194 CONTINUE

SUMVAR=SUMVAR+SUMEXP
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195 CONTINUE

VARP1=1.0D0/SUMVAR

SUMVAR=0.0D0

DO 295 J=1,J2T
N=N2VEC(J)
SUMEXP=0.0D0

DO 294 K=0,N2VEC(J)
Y=K
SUM1=0.0D0

IF (Y.NE.O) THEN
DO 291 L=0,Y-1
TEMP1=TMinus+(DBLE(L)*PHI2HT)
TEMP2=(1.0D0)/(TEMP1**2.0D0)
SUM1=SUMI+TEMP2
291 CONTINUE
END IF

SUM2=0.0D0
IF (Y.NE.N) THEN
DO 292 L=0,N-Y-1
TEMP1=1.0D0-TMinus-+(DBLE(L)*PHI2HT)
TEMP2=(1.0D0)/(TEMP1**2.0D0)
SUM2=SUM2+TEMP2
292 CONTINUE
END IF
SUMT=SUMI+SUM2
CALL PDFY(PROB,Y,TMinus,PHI2HT,N)
SUMEXP=SUMEXP-+(SUMT*PROB)
294 CONTINUE
SUMVAR=SUMVAR+SUMEXP

295 CONTINUE
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VARP2=1.0D0/SUMVAR
VARIANCE=VARP1+VARP2
TEMPB=Bstar-(P1HT-P2HT)
Zvalue=DNORIN(1.0D0-(Alpha/2.0D0))

EQUATION2=(TEMPB)**2.0D0 - ((Zvalue)**2.0D0)*(VARIANCE)
RETURN

END

! SUBROUTINE TO CALCULATE THE DENSITY OF Y
SUBROUTINE PDFY(PROB,Y,P,PHLN)
INTEGER Y, N

DOUBLE PRECISION P, PHI, PROD1, PROD2, PROD3
DOUBLE PRECISION PROB

DOUBLE PRECISION DBINOM, NCHOOSEY
EXTERNAL DBINOM
NCHOOSEY=DBINOM(N,Y)

PROD1=1.0D0
IF (Y.NE.0O) THEN
DO 43 1=0,Y-1
PROD1=PROD1*(P-+(DBLE(I)*PHI))
43 CONTINUE
END IF

PROD3=1.0D0
IF (Y.NE.N) THEN
DO 44 [=0,N-Y-1
PROD3=PROD3*(1.0D0-P+(DBLE(I)*PHI))
44 CONTINUE
END IF

PROD2=1.0D0
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DO 45 [=0,N-1
PROD2=PROD2*(1.0D0-+(DBLE(I)*PHI))
45 CONTINUE

PROB=NCHOOSEY*(PROD1*PROD3)/PROD2
RETURN
END subroutine

ISubroutine to calculate the MLEs using algorithm from Smith (1983)

Subroutine
BBML(N,YIVEC,N1VEC,W,P,RLMRL,ITER,KRIT,PIHT,PHI1HT,SEM,SETH,RNL,
IFAULT)

DOUBLE PRECISION
W(N),P(N),KRIT,P1HT,PHIHT,SEM,SETH,RNL,INF,DUM
DOUBLE PRECISION FD(2),SD(3),TD(4),UB(2),DEL.EPS,A,B,C,D,E,F

INTEGER Y1VEC(N),NIVEC(N),RL(MRL,3),LM(3),RD1(2,2),RD2(2,3),RD3(2,4)
LOGICAL MC

DATA INF /1.0D6/,RD1(1,1), RD1(2,1), RDI(1,2), RD1(2,2) /1,-1,1,1/

DATA RD2(1,1), RD2(2,1), RD2(1,2), RD2(2,2), RD2(1,3), RD2(2,3) /-1,-1,-1,1,-1,-1/
DATA RD3(1,1), RD3(2,1), RD3(1,2), RD3(2,2), RD3(1,3), RD3(2,3), RD3(1,4),
RD3(2,4) /2,-2,2,2,2,-2,2.2/

I=ITER
MC=TRUE.

UB(1)=1.0D-2
UB(2)=1.0D-2

CALL SET(N,Y1VEC,N1VEC,RL MRL,LM,IFAULT)
IF (IFAULT.NE.O) RETURN

SEM = -1.0D0

SETH = -1.0D0

NND=0

CALL BBME(N,Y1VEC,N1VEC,W,P,INF,PIHT,PHI1HT)
IF (PHITHT.EQ.INF) GOTO 150

105 IF (ITER.LE.I) GOTO 110
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IFAULT =7
GOTO 160

110 CALL GDER(PIHT,PHI1HT,RL,MRL,LM,2,RD1,FD)
CALL GDER(PIHT,PHI1HT,RL,MRL,LM,3,RD2,SD)

CALL GDER(PIHT,PHI1HT,RL,MRL,LM,4,RD3,TD)

DUM = SD(1)*SD(3)-SD(2)*SD(2)
IF (SD(1).LT.0.0.AND.DUM.GT.0.0) GOTO 115

NND=NND+1

A =PIHT-FD(1)/SD(1)

B=PHIIHT

IF (FD(2).NE.0.0) B=B+SIGN(UB(2),FD(2))
IF (A.LE.0.0) A=1.0D-4

IF (A.GE.1.0) A=9.999D-1

IF (B.LT.0.0) B=0.0D0

IF (B.GT.INF) B=INF

CALL BBL(PIHT,PHIIHT,RL,MRL,LM,C)
CALL BBL(A,B,RL,MRL,LM,D)

IF (NND.GT.10.0R.C.GE.D) GOTO 140
ITER=ITER+1

PIHT=A

PHIIHT=B

GOTO 105

115 DEL=(FD(2)*SD(2)-FD(1)*SD(3))/DUM
EPS=(FD(1)*SD(2)-FD(2)*SD(1))/DUM

A=SD(2)*TD(2)-TD(1)*SD(3)
B=SD(2)*TD(3)-TD(2)*SD(3)
C=TD(1)*SD(2)-TD(2)*SD(1)
D=SD(2)*TD(2)-SD(1)*TD(3)
E=SD(2)*TD(4)-TD(3)*SD(3)
F=TD(3)*SD(2)-TD(4)*SD(1)
A=DEL*A+EPS*B

C=DEL*C+EPS*D

E=DEL*B+EPS*E

F=DEL*D+EPS*F
DUM=(A*A+C*C+E*E+F*F)/(DUM*DUM)
IF (DUM.GE.1.0D0) GOTO 120

IF (ABS(DEL).LE.KRIT.AND.ABS(EPS).LE.KRIT) MC=.FALSE.
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GOTO 145

120 A=FD(1)*FD(1)
B=FD(2)*FD(2)
C=A*SD(1)+2.0*SD(2)*FD(1)*FD(2)+B*SD(3)
IF (C.NE.0.0) GOTO 125
DEL=0.0
IF (FD(1).NE.0.0D0) DEL=SIGN(UB(1),FD(1))
EPS=0.0D0
IF (FD(2).NE.0.0D0) EPS=SIGN(UB(2),FD(2))
GOTO 130

125 C=-(A+B)/C
DEL=C*FD(1)
EPS=C*FD(2)

IF (ABS(DEL).GT.UB(1)) DEL=SIGN(UB(1),DEL)

UB(1)=2.0*ABS(DEL)
IF (ABS(EPS).GT.UB(2)) EPS=SIGN(UB(2),EPS)
UB(2)=2.0*ABS(EPS)

130 CALL BBL(P1HT,PHI1HT,RL,MRL,LM,C)
135 A=P1HT+DEL

B=PHIIHT+EPS

IF (A.LE.0.0D0) A=1.0D-4

IF (A.GE.1.0D0) A=9.999D-1

DEL=A-PIHT

IF (B.LT.0.0D0) B=0.0D0

IF (B.GT.INF) B=INF

EPS=B-PHIIHT

CALL BBL(A,B,RL,MRL,LM,D)

IF (D.GT.C) GOTO 145
DEL=DEL/2.0D0
EPS=EPS/2.0D0

IF (ABS(DEL).GT.KRIT.OR.ABS(EPS).GT.KRIT) GOTO 135

140 IFAULT =8
GOTO 160

145 ITER=ITER+1
A=PIHT+DEL
B=PHI1HT+EPS

IF (A.GT.0.0D0.AND.A.LT.1.0D0.AND.B.GE.0.0D0.AND.B.LE.INF) GOTO 155

IF (A.LE.0.0D0) P1HT=0.0D0
IF (A.GE.1.0D0) P1HT=1.0D0
IF (B.LT.0.0D0) PHI1HT=0.0D0
IF (B.GT.INF) PHI1HT=INF

150 IFAULT = 6
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GOTO 160

155 PIHT=A
PHIIHT=B
IF (MC) GOTO 105

IF (SD(1).LT.0.0) SEM=SQRT(-1.0D0/SD(1))
IF (SD(3).LT.0.0) SETH=SQRT(-1.0D0/SD(3))

160 CALL BBL(PIHT,PHITHT,RL,MRL,LM,RNL)
RETURN
END

SUBROUTINE BBME(N,Y1VEC,NIVEC,W,P,INF,PIHT,PHI1HT)

DOUBLE PRECISION  W(N),P(N),INF,P1HT,PHIIHT,D1,D2,R,S,TP,WT
INTEGER Y 1VEC(N),NIVEC(N)
LOGICAL J
J=FALSE.
DO 2051=1N
W(I)=FLOAT(N1VEC(I))
P()=FLOAT(Y 1VEC(1))/W(I)
205 CONTINUE
210 WT=0.0D0
TP=0.0D0
DO 215 I=1,N
WT=WT+W(I)
TP=TP+W(I)*P(I)
215 CONTINUE
TP=TP/WT
$=0.0D0
D1=0.0D0
D2=0.0D0
DO 220 I=1,N
R=P(I)-TP
S=S+W(I)*R*R
R=W(I)*(1.0DO-W(I)/WT)
D1=D1+R/FLOAT(N1VEC(I))
D2=D2+R
220 CONTINUE
S=FLOAT(N-1)*S/FLOAT(N)
R=TP*(1.0DO-TP)
IF (R.EQ.0.0D0) GOTO 230
R=(S-R*D1)/(R*(D2-D1))
IF (R.LT.0.0D0) R=0.0D0
IF (J) GOTO 230
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DO 225 I=1,N
225 W(D)=W(I)/(1.0DO+R*(W(I)-1.0D0))
J=.TRUE.
GOTO 210
230 PIHT=TP
IF (R.GE.1.0D0) GOTO 235
PHIIHT=R/(1.0D0O-R)
IF (PHI1HT.LE.INF) RETURN
235 PHIIHT=INF
RETURN
END

SUBROUTINE SET(N,Y1VEC,N1VEC,RL,MRL,LM,IFAULT)
INTEGER Y1VEC(N),NIVEC(N),RL(MRL,3),LM(3)

IF (N.GT.1) GOTO 305
IFAULT=1
RETURN
305 DO 310 I=1,N
IF (Y1VEC(I).GT.0) GOTO 315
310 CONTINUE
IFAULT=2
RETURN
315 DO 320 I=1,N
IF (Y1VEC(I).LT.NIVEC(I)) GOTO 325
320 CONTINUE
IFAULT =3
RETURN

325 IFAULT=4
DO 330 I=1,3
LM(I)=0
DO 330 J=1,MRL
RL(J,1)=0

330 CONTINUE
DO 365 I=LN
JI=Y1VEC())
MAR=1
GOTO 345

335 JJI=N1VEC()-Y1VEC(])
MAR=2
GOTO 345

340 JJ=N1VEC(])
MAR=3
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345 IF (1) 350,360,355
350 IFAULT=5
RETURN
355 IF (JJ.GT.MRL) RETURN
IF (JJ.GT.LM(MAR)) LM(MAR)=JJ
RL(JJ,MAR)=RL(JJ,MAR)+1
360 GOTO (335,340,365),MAR
365 CONTINUE

IFAULT=0

DO 375 I=1,3
JI=LM(D)-1
IF (JJ.LE.0) GOTO 375
K=JJ
DO 370 J=1,JJ
RL(K,I)=RL(K,I)+RL(K+1,])
K=K-1

370 CONTINUE

375 CONTINUE
RETURN
END

SUBROUTINE BBL(P1HT,PHITHT,RL,MRL,LM,RNL)

DOUBLE PRECISION  P1HT,PHIIHT,RNL,A
INTEGER RL(MRL,3),LM(3)
RNL=0.0
MLM=LM(3)
DO 405 1= 1,MLM
A=FLOAT(I-1)*PHI1HT
IF (LLE.LM(1)) RNL=RNL+FLOAT(RL(I,1))*ALOG(P1HT+A)
IF (LLE.LM(2)) RNL=RNL+FLOAT(RL(I,2))*ALOG(1.0D0-P1HT+A)
RNL=RNL-FLOAT(RL(L,3))*ALOG(1.0D0+A)
405 CONTINUE
RETURN
END

SUBROUTINE GDER(P1HT,PHI1THT,RL,MRL,LM,IDER,RD,PD)

DOUBLE PRECISION  PIHT,PHIIHT,PD(IDER),A,B,C,D
INTEGER RL(MRL,3),LM(3),RD(2,IDER)

MLM=LM(3)

KK=IDER-1

DO 505 I=1,IDER
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505 PD(1)=0.0D0
DO 545 I=1,MLM
C=FLOAT(I-1)
A=C*PHIIHT
DO 540 J=1,3
IF (LGT.LM(®J)) GOTO 540
GOTO (510,515,520), J

510 D=P1HT+A
GOTO 525

515 D=1.0DO-P1HT+A
GOTO 525

520 D=1.0D0+A

525 B=FLOAT(RL(L,J))/D**KK
IF (J.EQ.3) GOTO 535
DO 530 K=1,IDER
PD(K)=PD(K)+FLOAT(RD(J,K))*B
B=B*C

530 CONTINUE
GOTO 540

535 D=-FLOAT(RD(1,1))*B*C**KK
PD(IDER)=PD(IDER)+D

540 CONTINUE

545 CONTINUE
RETURN
END

SUBROUTINE VARNCI(VARP1,P1HT,PHIIHT,N1VEC,J1,Y1VEC)
INTEGERJ1,N, Y, K, L
INTEGER Y1VEC(J1), NIVEC(J1)
DOUBLE PRECISION PIHT, PHIIHT, SUMVAR, SUMI, SUM2, SUMT
DOUBLE PRECISION PROB, SUMEXP, VARP1
SUMVAR=0.0D0

DO 90 J=1,J1
N=N1VEC(J)
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SUMEXP=0.0D0
DO 89 K=0,N1VEC(J)
Y=K
SUM1=0.0D0
IF (Y.NE.O) THEN
DO 87 L=0,Y-1
SUM1=SUM 1+(1.0D0/((P1HT+(DBLE(L)*PHI1 HT))**2.0D0))
87 CONTINUE
END IF
SUM2=0.0D0
IF (Y.NE.N) THEN
DO 88 L=0,N-Y-1
SUM2=SUM2+(1.0D0/((1.0DO-PIHT+(DBLE(L)*PHI1 HT))**2.0D0))
88 CONTINUE
END IF
SUMT=SUM1+SUM?2
CALL PDFY(PROB,Y,PIHT,PHIIHT,N)
SUMEXP=SUMEXP+(SUMT*PROB)
89 CONTINUE
SUMVAR=SUMVAR+SUMEXP
90 CONTINUE
VARP1=1.0D0/SUMVAR
RETURN

END

SUBROUTINE VARNC2(VARP2,P2HT,PHI2HT,N2VEC,J2,Y2VEC)

INTEGERJ2, N, Y, K,L

INTEGER Y2VEC(J2), N2VEC(J2)
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DOUBLE PRECISION P2HT, PHI2HT, SUMVAR, SUMI, SUM2, SUMT
DOUBLE PRECISION PROB, SUMEXP, VARP2

SUMVAR=0.0D0
DO 95 J=1,12
N=N2VEC(J)
SUMEXP=0.0D0
DO 94 K=0,N2VEC(J)
Y=K
SUM1=0.0D0
IF (Y.NE.0) THEN
DO 91 L=0,Y-1
SUM 1=SUM 1+(1.0D0/((P2HT-+(DBLE(L)*PHI2HT))**2.0D0))
91 CONTINUE
END IF
SUM2=0.0D0
IF (Y.NE.N) THEN
DO 92 L=0,N-Y-1
SUM2=SUM2-+(1.0D0/((1.0D0-P2HT+(DBLE(L)*PHI2HT))**2.0D0))
92 CONTINUE
END IF
SUMT=SUM1+SUM?2
CALL PDFY(PROB,Y,P2HT,PHI2HT,N)
SUMEXP=SUMEXP+(SUMT*PROB)
94 CONTINUE
SUMVAR=SUMVAR+SUMEXP
95 CONTINUE
VARP2=1.0D0/SUMVAR
RETURN

END
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APPENDIX C — Binomial Intervals
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TableS: J,=J, =10, n;=5V,, , a=.05, equal correlation

i,j 2
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

P P
P1 P2 3 3 5 9 P1 P2 3 3 5 9
1 d 0 [.8992 | 9144 | 9046 | 9574 | .3 7| .8972 | .8910 | .8846 | 9132
9230 | .9258 | .9322 | 9872 9504 | .9544 | 9580 | .9764
9102 | 9116 | .9106 | .9780 9084 | .9074 | .8980 | .9338
9658 | .9738 | .9834 | .9974 9318 | .9278 | .9208 | .9408
9666 | .9742 | 9836 | 9978 9298 | .9288 | .9262 | .9524
9982 | .9974 | .9990 | .9899 9318 | .9310 | .9288 | .9592
1 3 [.9066 | .8836 | .8832 | .9290 | .5 S [.8992 | 8966 | .8890 | .9152
9290 | .9088 | .9194 | .9776 9134 | .9326 | 9386 | .9612
9094 | .8888 | .8842 | .9362 9088 | .9108 | .9106 | .9418
9446 | .9378 | .9398 | .9708 9314 | .9254 | 9268 | .9480
9386 | .9290 | .9312 | .9642 9326 | .9276 | .9290 | .9508
9818 | .9772 | .9754 | 9798 9340 | .9306 | .9392 | .9536
1 g |.8942 | 8768 | .8790 | 9342 | .9 9 [.8950 | 9050 | .9194 | .9794
9612 | .9540 | .9538 | .9902 9260 | .9244 | 9264 | 9846
9076 | .8976 | .9002 | .9262 9114 | .9056 | .9066 | .9736
9360 | .9168 | .9308 | .9304 9678 | .9730 | .9840 | .9974
9338 | .9142 | .9274 | .9406 9682 | .9736 | .9842 | 9978
9398 | .9314 | .9481 | .9568 9974 | 9872 | 9908 | .9996
1 9 | .8708 | .8482 | .8578 | 9434 | .9 01 | .9052 | .8895 | .8842 | .8609
9532 | 9678 | .9462 | .9888 9154 | 9197 | .9042 | .9461
9130 | .8898 | .8840 | .9032 9152 | .8984 | .8819 | .8587
9394 |1 .9214 | 9132 | .8816 9080 | .8867 | .8428 | .7579
9458 | 9324 | 9298 | .9154 9240 | 9167 | .8894 | .8476
9428 | .9356 | .9328 | 9196 9328 | .9297 | .9026 | .8595
3 3 [ 8962 | .8966 | .8944 | 9172 | .05 05 | .9221 | .9376 | .9505 | .9489
9160 | .9180 | .9322 | .9682 9646 | .9661 | 9696 | .9849
9126 | .9032 | .9028 | .9404 9495 | 9531 | 9977 | .9806
9330 | .9312 | .9368 | .9610 9921 | .9965 | .9978 | .9993
9332 | .9328 | .9394 | 9630 9921 | .9965 | 9977 | .9994
9520 | 9538 | .9608 | .9720 .9999 | 1.000 | 1.000 | .9999
3 S [.9010 | .8892 | .8922 | 9176 | .05 01 | .8775 | .8454 | .8421 | .9681
9420 | .9478 | 9588 | .9764 9637 | 9521 | 9537 | 9732
9198 | .9040 | 9114 | 9410 9290 | .8980 | .8990 | .9812
9400 | .9262 | 9316 | .9520 9991 | .9995 | .9998 | .9999
9411 | .9292 | 9362 | .9542 9980 | .9998 | .9995 | 1.000
9466 | 9390 | .9434 | .9636 1.000 | .9999 | 1.000 | 1.000
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Table6: J,=J, =25, n,=5V,,

Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

a = .05, equal correlation

Confidence Levels when nominal level is .95

P P
P1 P2 3 3 5 9 P1 P2 3 3 5 9
1 A0 19277 | 9170 | 9161 | 9539 | .3 019247 | 9172 | 9178 | 9313
9330 | .9159 | 9133 | .9529 9318 | .9541 | .9645 | 9753
9284 | .9068 | 9011 | .9460 9301 | .9236 | .9277 | .9426
9539 | 9543 | 9618 | .9819 9384 | .9408 | .9413 | .9460
9539 | 9539 | 9616 | .9832 9393 | .9442 | 9434 | .9494
9891 | .9988 | .9897 | .9992 9403 | .9447 | .9439 | .9509
1 3019243 | 9210 | 9165 | 9318 | .5 S 1.9323 |.9244 | 9221 | 9334
9268 | .9223 | .9201 | .9456 9354 1.9297 | .9296 | 9616
9250 | .9194 | 9176 | 9318 9354 | .9296 | .9296 | .9434
9464 | 9445 | .9502 | .9553 9449 | .9439 | .9409 | .9467
9412 | 9415 | .9474 | 9501 9450 | .9444 | .9420 | .9477
9824 | .9824 | .9845 | 9862 9452 | .9451 | .9435 | .9501
1 719206 | 9121 | 9081 | 9286 | .9 9 1.9243 | 9153 | 9143 | .9530
9611 | .9642 | .9634 | .9798 9287 | .9148 | .9084 | .9583
9276 | .9266 | 9210 | .9377 9236 | .9074 | .8967 | .9472
9393 | .9415 | .9418 | 9466 9514 | 9538 | 9616 | .9813
9392 | .9412 | .9390 | .9473 9514 | 9537 | 9616 | .9820
9476 | 9492 | .9470 | .9569 9984 | .9893 | .9892 | .9985
1 9 [.9134 | .8909 | .8895 | 9144 | 9 .01 | .9205 | .9002 | .9006 | .8999
9668 | 9531 | 9544 | 9827 9295 | .9350 | .9183 | .9693
9286 | .9081 | .9089 | .9409 9294 | 9103 | .8969 | .8992
9422 | .9252 | 9333 | .9402 9406 | .9298 | 9088 | .8772
9458 | 9319 | .9379 | .9583 9376 | .9253 | 9127 | .9050
9461 | 9332 | .9406 | .9609 9474 | 9349 | 9233 | 9177
3 3019293 | 9226 | .9230 | 9328 | .05 05 |[.9083 | .9298 | .9461 | .9698
9319 | .9268 | .9287 | .9473 9401 | .9373 | .9339 | .9809
9315 |.9260 | .9267 | .9406 9269 | 9132 | 9126 | 9716
9498 | 9425 | 9444 | .9490 9634 | .9786 | .9905 | .9975
9495 | 9431 | .9462 | .9505 9634 | 9783 | .9902 | .9976
9613 | .9614 | 9639 | .9696 9999 |.9999 | .9989 | .9999
3 S 19314 | 9217 | 9195 | 9269 | .05 .01 | .8833 | .8506 | .8342 | 9144
9329 | .9270 | .9384 | .9705 9090 | .9003 | .9014 | .9457
9327 | .9260 | .9260 | .9369 .8857 | .8799 | .8958 | 9124
9431 | .9455 | .9444 | .9456 9720 | .9638 | .9434 | 9850
9444 | 9457 | 9453 | .9461 9306 | 9191 | .9254 | 9812
9502 | .9508 | .9501 | .9532 9899 | 9811 | .9980 | .9990

121




Table7: J,=J,=5, n;,=10V,, ,

Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

a = .05, equal correlation

Confidence Levels when nominal level is .95

P P
P1 P2 3 3 5 9 P1 P2 3 3 5 9
1 1| .8537 | .8192 | .8994 | .8709 | .3 7 | .8077 | .7608 | .8125 | .9007
8967 | .9195 | .9354 | .9482 9154 | .9036 | .9003 | .9499
.8923 |.9270 | .9027 | 9103 .8276 | .8013 | .8567 | .9357
9517 | 9454 | 9578 | .9782 9206 | .8975 | .9122 | 9221
9519 | 9459 | .9586 | .9809 9146 | .9164 | 9083 | .9510
9955 | .9866 | .9961 | .9980 9152 | .9089 | .9159 | .9531
1 30 |.7997 | 7474 | 7147 | 8476 | .5 S5 | .8501 | .7783 | .9001 | .8932
.8939 | .8905 | .9101 | .9506 9007 | .9051 | .9560 | .9765
8199 | .8754 | .8001 | .8994 8159 | .8622 | .9315 | .9688
9160 | .8703 | .9160 | .9235 9091 | .9015 | .9618 | 9821
9075 | .8960 | .8622 | 9128 9315 | .9077 | .9658 | .9889
9691 | .9356 | .9445 | 9672 9201 | .9208 | .9822 | .9901
1 7815 | 7417 | 7163 | 8991 | .9 9 | .8682 | .8879 | 9197 | .8924
9038 | .9001 | .8879 | .9321 9159 | .9499 | .9669 | .9889
.8236 | .8019 | .7925 | .8713 9078 | .9061 | .9222 | 9725
9185 | .8832 | .8586 | .8934 9625 | 9681 | 9712 | .9982
9068 | .8666 | .8432 | .8892 9585 | 9888 | .9737 | .9968
9103 | .8821 | .8627 | .9083 9770 | 9827 | .9973 | 9991
1 9 | 7518 | .7061 | .6970 | .8698 | .9 .01 | .9185|.8902 | .9011 | .8939
9005 | .9099 | .9480 | .9515 9295 | .9350 | .9183 | 9591
.8351 | .8325 | .8233 | .9059 9294 | .9103 | .8969 | .9092
9344 | 9155 | .9031 | .8865 9409 | .9298 | .9088 | .8972
9328 | 9186 | 9118 | .8929 9376 | .9191 | .9201 | .9103
9344 | .9225 | .9206 | 9161 9387 | .9221 | .9327 | 9161
3 3 | .8104 | .7680 | .7371 | .8484 | .05 05 | .9019 | .9301 | .9009 | .9267
.8734 | .9066 | .8818 | .9004 9381 | .9373 | 9213 | 9714
8266 | 7992 | .7841 | .8994 9229 | 9132 | 9126 | 9716
9233 | .8768 | .9167 | 9281 9521 | 9691 | .9708 | .9975
9238 | .9078 | .9165 | .9892 9598 | .9692 | 9891 | .9939
9432 | .9067 | .9398 | .9738 9979 | .9989 | .9989 | .9999
3 S [.7946 | 7900 | 7861 | .8732 | .05 .01 | .8793 | .8606 | .8592 | .9003
.8900 | .8861 | .8997 | .9492 9009 | 9191 | .9059 | .9297
.8331 | .8388 | .8239 | .9143 .8929 | .8799 | .8958 | 9124
9185 |.9032 | .9143 | 9224 9692 | 9529 | .9434 | 9850
9190 | .9030 | .8946 | .9356 9306 | .9208 | .9301 | 9815
9255 1.9005 | .9257 | 9578 9819 | .9792 | .9967 | 9981
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Table8: J,=J, =10, n, =10 V,

i,j
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

a = .05, equal correlation

Confidence Levels when nominal level is .95

P P
P1 P2 3 3 5 9 P1 P2 3 3 5 9
1 d 0 [.8942 | 8671 | .8751 | 9182 | 3 7 1.8907 | .8902 | .8838 | .9020
.8989 | .8765 | .8895 | .9669 9336 | 9515 | .9523 | 9685
8869 | .8458 | .8432 | .9494 .8987 | .8988 | .9031 | .9223
9418 | 9513 | .9781 | 9851 9261 | .9219 | .9256 | 9412
9418 | 9615 | 9786 | .9857 9271 | .9244 | 9281 | .9499
9872 | .9797 | 9983 | .9989 9280 | .9263 | .9315 | .9574
1 3 [.8904 | .8874 | .8840 | 9158 | .5 S5 18999 | .8905 | .8890 | .8992
9039 | .8974 | .9066 | .9642 9060 | .9157 | .9406 | .9640
.8894 | .8842 | .8820 | .9221 9060 | .9050 | .9074 | .9259
9285 | 9372 | .9426 | .9658 9289 | .9262 | 9280 | .9377
9259 | .9320 | .9363 | 9615 9300 | .9275 | .9298 | 9411
9725 | .9779 | .9801 | .9896 9314 | .9298 | .9327 | .9452
1 7| .8865 | .8683 | 9203 | .8666 | .9 9 | .8973 | .8818 | .8979 | .9245
9479 | 9459 | 9784 | .9531 .8985 | .8931 | .9017 | .9668
.8962 | .8862 | .9178 | .9028 .8883 | .8504 | .8842 | .9491
9170 | .9204 | .9370 | .9273 9417 | 9567 | .9726 | 9951
9153 | .9222 | .9449 | 9238 9419 | 9529 | .9829 | .9953
9302 | .9323 | .9599 | .9347 9958 | .9876 | .9882 | .9986
1 9 | .8666 | .8270 | .8146 | .9068 | .9 .01 | .8794 | .8382 | .8208 | .9035
9431 | 9157 | .9399 | 9615 9088 | .8909 | .9005 | .9429
.8928 | .8557 | .8387 | .9029 .8889 | .8486 | .8351 | .8500
9173 | .8978 | .9001 | .8923 9206 | .8863 | .8572 | .7862
9238 | .9054 | .9023 | 9197 9196 | .8873 | .8738 | .8505
9247 | .9074 | .9039 | 9157 9289 | .9013 | .8873 | .8594
3 3 1.9004 | .8928 | .8908 | .9045 | .05 05 | .8963 | 9263 | .9542 | .9689
9056 | .9030 | .9201 | .9560 9153 | 9124 | 9231 | .9829
9047 | .8970 | .8952 | 9191 .8924 | .8801 | .8864 | .9746
9379 | .9254 | .9333 | .9565 9705 | .9898 | .9971 | .9996
9385 | .9276 | .9348 | 9584 9706 | .9898 | .9972 | .9997
9480 | .9450 | .9575 | .9688 9999 | .9998 | .9989 | .9999
3 S 1.8925 | .8919 | .8871 | .9015 | .05 .01 | .8156 | .7552 | .7510 | .9529
9033 | .9383 | .9495 | .9674 .8636 | .8253 | .8678 | 9681
.8999 | .9031 | .9031 | .9277 .8303 | .7803 | .7770 | .9150
9253 |.9259 | 9315 | .9444 9788 | .9870 | .9934 | .9996
9261 | .9268 | .9329 | .9489 9369 | .9321 | .9461 | 9941
9327 | .9338 | .9401 | .9566 1.000 | .9999 | .9999 | 1.000
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Table9: J,=.J,=25, n, =10 V,

ij ij?
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

a = .05, equal correlation

Confidence Levels when nominal level is .95

P P
P1 P2 3 3 5 9 P1 P2 3 3 5 9
1 119068 | .9001 | .8933 | 9463 | .3 719231 | 9124 | 9108 | 9211
9158 | .9035 | .9408 | 9391 9259 | .9352 | 9537 | .9509
9127 | .8850 | .8799 | .9283 9259 | 9179 | .9229 | 9345
6461 | 9509 | .9577 | .9790 9398 | .9424 | .9419 | .9457
9461 | 9508 | .9575 | .9800 9412 | 9426 | .9444 | .9472
9988 | .9985 | 9991 | .9992 9418 | .9434 | 9453 | .9495
1 30 1.9225 1 .9078 | .9084 | 9289 | .5 S 19191 | 9189 | .9133 | 9233
9238 | .9100 | .9193 | .9470 9214 | .9241 | .9208 | .9520
9230 | .9076 | .9070 | .9302 9214 | .9241 | .9207 | .9349
9452 | 9432 | 9451 | .9544 9387 | .9423 | .9401 | .9413
9433 | 9416 | .9423 | .9528 9390 | .9428 | .9409 | .9428
9819 | .9844 | .9823 | 9873 9395 | .9437 | .9424 | 9446
1 7 |.9147 1.9039 | 9008 | .9240 | 9 9 | .9134 | .9034 | 88383 | .9335
9251 | .9558 | .9564 | 9661 9134 | 9177 | .8997 | .9476
9187 | 9118 | 9132 | 9375 9100 | .8893 | .8688 | .9246
9360 | .9387 | .9395 | .9494 9422 | .9507 | .9540 | .9606
9358 | .9368 | .9399 | .9479 9418 | .9506 | .9542 | 9783
9445 | 9452 | 9492 | 9587 9974 | .9988 | 9981 | .9989
1 9 1.9041 | .8793 | .8658 | 9163 | .9 .01 |.9053 | .8755 | .8606 | .9017
9540 | 9496 | .9649 | .9597 9174 | .9035 | .8722 | 9277
9123 | .8893 | .8922 | .9267 9170 | .8922 | .8704 | .8951
9336 | .9273 | .9271 | .9393 9441 | 9282 | 9137 | .8943
9379 | 9311 | .9330 | .9564 9400 | .9254 | 9134 | .9050
9379 | .9315 | .9342 | 9589 9468 | 9329 | .9240 | 9175
3 30 1.9234 | 9201 | .9224 | .9249 | .05 05 | .9140 | .8930 | .9073 | .9610
9248 | .9229 | .9264 | 9381 9137 | .9066 | .8939 | .9510
9244 | 9221 | 9251 | .9329 9050 | .8554 | .8485 | .9458
9411 | .9447 | 9435 | .9470 9532 | 9659 | .9849 | .9974
9413 | 9452 | 9441 | .9479 9525 | 9653 | 9846 | .9975
9537 | 9629 | 9652 | .9657 9999 |.9999 | .9999 | 1.000
3 S |.9211 | 9191 | 9464 | 9322 | .05 .01 | .8757 | .8132 | .7896 | 9117
9227 1.9227 | .9282 | 9534 .8991 | .8832 | .8791 | .9042
9226 | .9225 | 9253 | 9414 8716 | .8011 | .7977 | .8825
9414 | 9392 | 9442 | .9482 9557 | .9410 | .9397 | .9903
9419 | .9405 | .9439 | .9498 9232 1 .9005 | .9001 | .9832
9473 | .9464 | 9510 | .9557 9998 | .9999 | 1.000 | 1.000
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Table 10: J,=5, J, =10, n, =10 V,

i iLj 2
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

a = .05, equal correlation

Confidence Levels when nominal level is .95

P P
P1 P2 3 3 5 9 P1 P2 3 3 5 9
1 A0 7925 | .8357 | .8669 | 9159 | 3 7| 8192 | 7791 | 7839 | .9069
9156 | 9231 | 9467 | .9569 9061 | .9087 | .8997 | .9601
9006 | .9046 | 9311 | .9519 .8387 | .8501 | .8338 | .9109
.8564 | .8230 | .7997 | .9006 9698 | .9741 | .9807 | .9493
9092 | .9001 | .8971 | .9480 9799 | .9949 | .9839 | .9791
9867 | .9869 | .9826 | .9961 9977 | .9985 | .9967 | .9703
1 3 |.8604 | .8349 | 8803 | 9153 | .5 S| 8109 | .8189 | .8501 | .8669
9134 | .9207 | .9406 | .9597 8878 | .8903 | .9129 | .9518
9081 | .8850 | .9003 | .9204 8615 | .8479 | .8574 | 9218
9499 | .9097 | .8917 | .9208 9983 | .9881 | .9728 | .9554
9562 | 9319 | .9315 | .9249 9977 | 9911 | .9799 | 9797
9887 | .9830 | .9667 | .9627 9991 | .9921 | .9855 | .9802
1 7| .8319 | .8329 | .8399 | .9007 | .9 9 7561 | .8191 | .8607 | .9227
9409 | .9492 | .9483 | .9591 9389 | .9109 | .9480 | .9614
9029 | .8937 | .8691 | .9203 9004 | .9061 | .9301 | .9779
9791 | 9832 | .9732 | .9097 9937 | .9957 | .9990 | .9608
9982 | .9889 | .9792 | .9401 9967 | .9949 | .9991 | 9891
9986 | .9954 | 9797 | .9599 9994 | .9991 | .9967 | .9997
1 9 | 7915 | 7664 | 7813 | .9406 | .9 01 | .7673 | .7170 | .7389 | .8109
9498 | .9502 | 9567 | .9596 9119 | .9477 | 9250 | .9470
.8934 | .8807 | .8774 | .8978 9046 | .9199 | .8963 | .8398
9809 | .9607 | 9217 | .8796 9719 |.9709 | .9109 | .8701
9989 | .9893 | .9694 | 9177 9819 | .9889 | .9728 | .8931
9987 | .9963 | 9838 | .9300 9803 | .9839 | .9953 | .8833
3 317914 | 7799 | .7682 | .8891 | .05 05 | .8697 | .9009 | .9319 | .9554
8772 | .8803 | .9030 | .9619 9297 | .9559 | .9493 | 9759
.8391 | .8228 | .8367 | .9338 9109 | .9061 | .9409 | .9664
9528 | 9296 | .8972 | .9329 .8572 | .8992 | .8534 | .8908
9891 | .9547 | .9496 | .9644 9335 | .8979 | .8807 | .9792
9955 | .9762 | .9608 | .9758 9981 | .9869 | .9973 | .9891
3 S |7943 | 7737 | 8197 | 9090 | .05 .01 | .6731 | .6501 | .6297 | .9087
9089 | .8991 | .9096 | .9520 9514 | 9687 | .9597 | .9819
.8513 | 8531 | .8537 | .9324 9711 | .9338 | .9680 | .9857
9781 | .9836 | 9456 | .9242 9611 | .9099 | .8930 | .9691
9936 | .9963 | .9859 | .9703 9819 | 9717 | 9537 | 9919
9991 | .9959 | .9903 | .9727 9958 | .9984 | .9991 | .9984
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Table11: J,=5, J, =25, n; =5 V,, , a=.05, equal correlation

Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

P P
P1 P2 3 3 5 9 P1 P2 3 3 5 9
1 d 1 .6402 | .6154 | .6843 | 9031 | .3 7| 7882 | 7689 | 7925 | .8777
9354 |.9424 | .9624 | 9736 .8865 | .9005 | .8923 | .9564
9201 | 9163 | .9283 | .9624 .8202 | .8212 | .8339 | .9067
.8581 | .8322 | .8140 | .8862 9988 | .9896 | .9624 | 9413
8871 | .8821 | .9090 | .9769 9987 | .9897 | .9634 | .9533
9968 | .9954 | .9951 | .9944 9988 | .9900 | .9635 | .9543
1 3| 7892 | .8240 | .8616 | 9457 | .5 S5 | .8188 | .8104 | .8073 | .8976
9332 | .9509 | .9648 | .9804 .8949 | .8872 | .8998 | 9576
9168 | 9152 | 9171 | .9342 .8452 | .8410 | .8452 | .9383
9577 | .9259 | .9010 | .8974 9942 | .9792 | .9586 | .9725
9818 | .9620 | .9470 | .9663 9942 | 9791 | .9584 | 9750
9994 | .9967 | .9917 | 9884 9954 | .9814 | .9609 | .9768
1 717840 | 7928 | .8251 | 9153 | .9 9 |.7097 | .7443 | 7086 | 9110
9668 | .9673 | 9617 | .9827 9331 | .9306 | .9378 | .9675
9159 | .9096 | 9155 | .9214 9158 | 9129 | .9225 | .9623
9961 | .9798 | .9642 | .8953 1.000 | .9998 | .9988 | .9705
9992 | 9918 | .9856 | .9604 9997 | 1.000 | .9996 | .9936
9997 | .9951 | .9928 | 9784 1.000 | 1.000 | .9997 | .9979
1 9 | 7885 | .7095 | .7344 | 9074 | 9 01 | .6474 | 7060 | .6922 | .8895
9622 | 9585 | 9753 | .9896 9561 | .9534 | 9448 | .9669
9104 | .8993 | .9124 | 9322 9483 | 9335 | .9386 | .9290
9886 | .9655 | 9487 | .8776 9993 | 9912 | .9719 | .8626
9977 | 9918 | .9762 | 9678 9999 | .9995 | .9871 | .9591
9982 | .9920 | .9803 | .9789 9998 | .9997 | .9883 | .9734
3 3 |.7931 | 7889 | .7413 | .8765 | .05 .05 | .7868 | .7700 | .8645 | .9525
8738 | .8697 | .8707 | .9495 9705 | .9500 | .9681 | 9881
.8560 | .8079 | .8088 | .9139 9544 | 9366 | .9438 | .9679
9535 | 9254 | .8988 | .9285 8117 | .8240 | .7878 | .8425
9505 | 9227 | .9025 | .9403 9464 | .8988 | .8856 | .9783
9781 | .9503 | .9341 | .9596 9999 | 1.000 | .9998 | .9980
3 S [.7962 | 7541 | 7758 | .8861 | .05 .01 |.6209 | .6913 | .5230 | .8144
.8790 | .8879 | .9010 | .9534 9632 | .9599 | .9776 | .9993
.8328 | .8170 | .8343 | .9203 9561 | .9496 | .9706 | 9911
9862 | .9565 | 9323 | .9427 9174 | .8703 | .8556 | .9560
9871 | 9612 | 9410 | .9557 9965 | 9876 | 9869 | .9966
9901 | .9710 | .9492 | 9610 1.000 | .9999 | .9999 | .9990
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Table12: J,=5, J, =25, n; =10 V,, , a =.05, equal correlation

ij
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

P P
P1 P2 3 3 5 9 P1 P2 3 3 5 9
1 1| 7073 | .8117 | .8188 | .8945 | .3 7 |.7601 | 7655 | 7792 | .8677
8913 | .8921 | .9008 | 9179 .8905 | .9039 | .8999 | .9234
.8635 | .8675 | .8756 | .9038 .8397 | .8059 | .8189 | .9067
.8694 | .8977 | .8922 | .8979 9791 | .9794 | 9624 | 9429
.8997 | .9229 | .9229 | .9447 9885 | .9868 | .9634 | .9495
9843 | .9900 | .9925 | .9980 9918 | .9934 | 9635 | .9559
1 3| .8401 | .8755 | .8497 | 9317 | .5 S5 | .8019 | .8308 | .8587 | .8792
9035 | .9196 | .9247 | 9687 .8889 | .8732 | .9067 | .9495
.8882 | .9040 | .9001 | .9031 8515 | .8097 | .8621 | .9186
9617 | .9605 | .8975 | .8891 9792 | .9792 | .9586 | .9635
9837 | .9729 | .9271 | 9561 9842 | .9798 | 9528 | .9704
9991 | .9980 | .9908 | .9819 9853 | .9774 | .9677 | 9801
1 L7618 | 7792 | 8501 | 9009 | .9 9 |.7119 | .7443 | 7086 | 9115
9389 | .9297 | .9068 | .9791 9591 | .9306 | .9377 | .9675
9299 | .9101 | .8956 | .9033 9387 | .9129 | .9301 | .9553
9949 | .9635 | .9589 | .8959 9840 | .9949 | .9967 | .9722
9894 | .9939 | .9791 | .9568 9969 | .9863 | .9937 | .9809
9925 | .9839 | .9829 | .9803 9907 | .9961 | .9988 | .9990
1 9 [ .6985 | .7995 | .7501 | .8896 | .9 01 | .6961 | 7158 | .6792 | .8681
9503 | .9501 | .9497 | .9791 9347 | .9203 | 9189 | .9559
9093 | .9004 | .9031 | .9387 9501 | .9097 | .9228 | .9299
9692 | 9631 | 9587 | .8936 9891 | .9921 | .9687 | .8891
9877 | .9941 | 9752 | .9646 9919 | .9985 | .9844 | .9601
9919 | .9907 | .9829 | .9806 9991 | .9994 | .9897 | .9799
3 3| 7641 | 7569 | 7239 | .8915 | .05 05 | 7298 | 7597 | .8349 | .9005
.8908 | .8539 | .8967 | .9235 9665 | 9419 | 9597 | .9697
8814 | .8198 | .8201 | .9061 9389 | 9116 | .9438 | .9679
9701 | .9331 | .8981 | .9087 8317 | .8391 | .7911 | .8655
9139 | .9598 | 9106 | .9519 9551 | .9087 | .8956 | .9693
9897 | 9197 | .9449 | .9519 9991 | .9947 | .9977 | .9936
3 S |L7662 | 7791 | 7301 | .8997 | .05 .01 [.6509 | .6897 | .6140 | .7944
8915 | .8689 | .8997 | .9401 9511 | 9468 | .9637 | .9792
.8038 | .8217 | .8654 | .9331 9303 | .9197 | .9597 | .9661
9879 | 9511 | 9323 | 9427 9301 | .8991 | .8497 | .9229
9809 | .9497 | 9687 | .9347 9879 | .9871 | .9879 | .9801
9867 | .9719 | 9499 | .9639 9937 1.9949 | .9891 | .9973

127




Table13: J,=J, =5, n; =5 V,, , a =.05, unequal correlation

Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

ol P, ol P,
p1 p [ 1]3].1]5].1]9]3/9]| pi p [1]3].1].5].1]19|.3].9
.1 .1 .8744 | .8905 | .9465 | .9406 3 7 7607 | 7622 | .8565 | .8570
9410 | .9402 | .9558 | .9733 9019 | .8873 | .9542 | .9589
9120 | 9143 | .9503 | .9486 .8135 | .8208 | .9035 | .8983
9688 | .9863 | .9933 | .9928 9028 | .9031 | .9214 | .9202
9891 | .9898 | .9954 | .9943 9114 | .9094 | .9341 | .9301
9963 | .9860 | .9918 | .9979 9144 | 9128 | .9423 | .9376
.1 3 7264 | 7269 | .8794 | .8688 5 5 .8027 | .7918 | .8613 | .8585
.8860 | .8963 | .9439 | .9239 9017 | .8981 | .9462 | .9420
7927 | .8021 | .9026 | .8957 .8326 | .8307 | .8957 | .8969
9106 | .8938 | .9648 | .9559 9054 | .8968 | .9408 | .9340
9043 | .8843 | .9578 | .9445 9071 | .8999 | .9461 | .9397
9669 | .9636 | .9844 | .9805 9097 | .9044 | .9504 | .9439
.1 i 7417 | 7408 | .8859 | .8775 9 .9 .8731 | .8920 | .9467 | .9608
.8886 | .8634 | .9487 | .9490 9479 | 9623 | .9705 | .9702
7943 | .7982 | .8849 | .8889 9099 | .9147 | .9533 | .9462
9116 | .8996 | .8993 | .9101 9841 | .9860 | .9933 | .9921
.9006 | .8843 | .9054 | .9102 9879 | .9889 | .9943 | .9938
9191 | .9041 | .9252 | .9310 9962 | .9951 | .9985 | .9982
.1 9 7535 | 7562 | .8847 | .8812 9 01 | .7646 | .7891 | .7600 | .8861
9142 | 9234 | .9524 | .9528 .8865 | .8787 | .9001 | .9001
.8488 | .8570 | .8529 | .8795 .8534 | .8564 | .8468 | .8505
.8998 | .8877 | .7623 | .8002 7557 | .8074 | 7691 | .7144
9341 | .9286 | .8525 | .8767 .8386 | .8192 | .7707 | .8103
9416 | .9399 | .8700 | .8956 .8462 | .8265 | .7909 | .8144
3 3 7515 | 7436 | .8797 | .8731 | .05 .05 |.9357 | .9410 | .9569 | .9468
.8858 | .8795 | .9372 | .9345 9547 | 9625 | 9715 | .9668
.8143 | .8089 | .8959 | .8956 9412 | .9598 | .9615 | .9713
9192 | 9052 | .9542 | .9531 9871 | .9981 | .9983 | .9979
9260 | .9108 | .9525 | .9539 9877 | .9985 | 9983 | .9971
9422 | 9311 | .9715 | .9663 9899 | .9995 | .9969 | .9996
3 5 7909 | .7876 | .8695 | .8581 | .05 .01 |.6989 | .7593 | .8777 | .8695
9086 | .9019 | .9457 | .9379 9551 | .9692 | .9745 | .9515
.8271 | .8281 | .8972 | .8955 9419 | .9568 | .9679 | .9631
9024 | .8944 | .9462 | 9414 9895 | .9999 | .9997 | .9999
9051 | .8957 | .9467 | .9415 9899 | .9991 | .9998 | 1.000
9155 | .9078 | .9550 | .9523 .9908 | 1.000 | .9999 | 1.000
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Table14: J,=J, =10, n;, =5 V,, , a=.05, unequal correlation

Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

ol P, ol P,
p1 p [ 1]3].1]5].1]9]3/9]| pi p [1]3].1].5].1]19|.3].9
.1 .1 .8971 | .8957 | .9141 | .9447 3 7 .8962 | .8888 | .8961 | .8988
9202 | .9255 | .9535 | .9529 9542 | .9525 | .9538 | .9658
.9040 | .9038 | .9496 | .9503 9090 | .9065 | .9262 | .9237
9685 | .9682 | .9855 | .9910 9275 | .9228 | .9319 | .9326
9692 | .9690 | .9857 | .9913 9289 | .9237 | .9348 | .9333
9976 | .9980 | .9978 | .9972 9321 | .9276 | .9391 | .9369
.1 3 .8818 | .8777 | .8894 | .8975 5 5 .9006 | .8956 | .9048 | .9034
29029 | .9082 | .9534 | .9543 19249 | 9383 | .9543 | .9530
.8869 | .8917 | .9288 | .9274 9124 | 9147 | .9302 | .9274
9277 | .9247 | .9472 | .9531 9263 | .9268 | .9292 | .9357
9294 | 9156 | .9338 | .9418 9269 | .9277 | .9304 | .9380
9719 | .9706 | .9767 | .9789 9301 | .9318 | .9362 | .9430
.1 i .8872 | .8749 | .8911 | .9032 9 .9 .8951 | .8906 | .9389 | .9561
9551 | .9489 | 9691 | .9693 9190 | .9193 | .9665 | .9660
9076 | .9007 | .9349 | .9272 9018 | .8997 | .9452 | .9517
9264 | .9244 | 9374 | .9368 9655 | .9657 | .9865 | .9905
9233 | .9186 | .9365 | .9352 9657 | .9660 | .9867 | .9908
9350 | .8348 | .9546 | .9544 9971 | .9971 | .9981 | .9982
.1 9 .8524 | .8502 | .9313 | .9314 9 .01 | .8957 | .8200 | .8640 | .9009
9484 | 9458 | .9604 | .9695 9155 | .8995 | .9091 | .8895
.8943 | .8923 | .9343 | 9171 .8934 | .8732 | .8546 | .8153
9277 | 9185 | .9102 | .9015 .8817 | .8504 | .8115 | .7913
9296 | .9266 | .9363 | .9346 9111 | .9004 | .8577 | .8498
9317 | .9295 | .9424 | .9405 9203 | .9085 | .8740 | .8662
3 3 8984 | 8924 | .9025 | 9108 | .05 .05 | .9224 | .9498 | .8389 | .9068
9100 | 9162 | .9482 | .9537 9538 | .9512 | .9285 | .9840
9047 | .9054 | .9287 | .9307 9491 | 9545 | 9786 | .9780
9299 | .9236 | .9346 | .9486 9936 | .9948 | .9985 | .9984
9310 | .9243 | .9360 | .9471 9991 | .9950 | .9986 | .9985
9524 | .9479 | 9568 | .9646 2999 | 1.000 | .9999 | .9997
3 5 .9020 | .8939 | .9017 | .8950 | .05 .01 | .8782 | .8950 | .9340 | .9420
9479 | 9520 | .9533 | .9543 9539 | .6518 | .9779 | .9688
9128 | 9116 | .9276 | .9219 9042 | .8953 | .9428 | .9402
9294 | .9230 | .9271 | .9332 9988 | .9996 | .9999 | .9997
9309 | .9245 | .9280 | .9339 9982 | .9993 | 1.000 | .9997
9387 | .9339 | .9401 | .9456 19999 | 1.000 | 1.000 | 1.000
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Table15: J,=J, = 25, n; =5 V,, , a=.05, unequal correlation

Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

ol P, ol P,
p1 p [ 1]3].1]5].1]9]3/9]| pi p [1]3].1].5].1]19|.3].9
.1 .1 9120 | .9060 | .9365 | .9374 3 7 9106 | 9177 | .9228 | .9270
9227 | 9144 | .9374 | .9409 .9429 | .9580 | .9716 | .9706
9177 | .9056 | .9280 | .9322 9174 | 9262 | .9355 | .9377
9473 | 9384 | 9734 | 9655 9429 | 9384 | .9412 | .9418
9473 | .9384 | .9736 | 9655 9425 | .9392 | .9431 | .9430
9983 | .9979 | .9982 | .9985 9436 | .9402 | .9446 | .9454
.1 3 9165 | .9129 | .9196 | .9250 5 5 9228 | .9221 | .9300 | .9284
9228 | .9222 | .9307 | .9367 9271 | .9283 | .9406 | .9371
9201 | .9203 | .9259 | .9341 9270 | .9283 | .9395 | .9368
9489 | 9399 | .9516 | .9495 9427 | 9405 | 9467 | .9410
9484 | 9355 | 9457 | 9422 9427 | 9409 | .9477 | .9424
9799 | .9796 | .9844 | .9842 9440 | 9423 | .9493 | .9454
.1 i 9141 | .9130 | .9130 | .9205 .9 9 9222 | .9071 | .9414 | .9342
9621 | .9618 | .9697 | .9676 9249 | 9162 | .9418 | .9405
9213 | .9243 | .9296 | .9299 9194 | .9082 | .9320 | .9311
9389 | 9367 | .9441 | .9460 9506 | .9396 | .9719 | .9646
9390 | .9352 | .9416 | .9461 9506 | .9396 | .9718 | .9646
9469 | 9476 | .9524 | .9527 19990 | .9983 | .9988 | .9988
.1 9 .9004 | .9034 | .9150 | .9100 9 01 |.9213 | .9326 | .8939 | .9170
9539 | .9542 | .9543 | 9712 9218 | 9153 | .9531 | .9060
9150 | .9161 | .9308 | .9342 9210 | .9124 | .8914 | .8966
9329 | .9281 | .9339 | .9342 9379 | .9275 | .9004 | .8933
9359 | 9333 | .9465 | .9504 9382 | .9358 | .9182 | .9226
9366 | .9346 | .9469 | .9523 9469 | 9435 | 9260 | 9314
3 3 9251 | .9188 | .9250 | .9264 | .05 .05 |.9285 | .9274 | .9664 | .9467
9285 | .9251 | .9333 | .9355 9307 | .9270 | .9656 | .9590
9279 | .9239 | .9315 | .9347 9160 | 9101 | .9492 | .9458
9439 | .9390 | .9431 | .9436 9640 | .9625 | .9950 | .9903
9446 | .9395 | .9440 | .9447 9639 | .9625 | .9951 | .9902
9620 | .9603 | .9621 | .9641 9999 | .9999 | .9991 | 1.000
3 5 9201 | .9240 | .9237 | .9283 | .05 .01 |.8928 | .9087 | .9285 | .9442
9254 | 9310 | .9657 | .9622 9205 | .9212 | .8916 | .9198
9253 | .9304 | .9340 | .9372 .8940 | .8917 | .8418 | .8735
9369 | .9420 | .9421 | .9447 9797 | .9880 | .9736 | .9937
9373 | 9422 | .9420 | .9457 9462 | .9628 | .9643 | .9844
9435 | .9490 | .9494 | .9535 19998 | 1.000 | .9989 | 1.000
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Table16: J,=J, = 5, n, =10 V,

ij Lj 2
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

a = .05, unequal correlation

Confidence Levels when nominal level is .95

ol P, ol P,
p1 p [ 1]3].1]5].1]9]3/9]| pi p [1]3].1].5].1]19|.3].9
.1 .1 7552 | 7020 | .8655 | .8688 3 7 7684 | 7471 | .8612 | .8587
.8681 | .8612 | .9252 | .9329 .8804 | .8613 | .9404 | .9305
.8320 | .8185 | .9060 | .9136 .8048 | .7948 | .8547 | .8741
9512 | .9560 | .9752 | 9795 .8828 | .8813 | .9015 | .8991
9517 | .9564 | 9772 | 9812 .8865 | .8816 | .8997 | .9005
9956 | .9932 | .9972 | .9983 .8901 | .8892 | .9023 | .9123
.1 3 7568 | 7216 | .8465 | .8397 5 5 7836 | .7604 | .8594 | .8987
.8790 | .8797 | .8888 | .9021 9137 | .8991 | .9401 | .9301
.8068 | .7926 | .8679 | .8624 .8597 | .8408 | .8919 | .8919
.8773 | .8625 | .9205 | .9152 9097 | .8918 | .9307 | .9497
.8605 | .8500 | .9096 | .9048 9118 | .8939 | .9459 | .9501
9392 | .9221 | .9420 | .9348 9058 | .9201 | .9387 | .9467
.1 i 7468 | 7116 | .8408 | .8604 .9 9 .8524 | .8387 | .9187 | .9437
.8669 | .8352 | .9157 | .9284 9224 | 9529 | .9439 | .9606
.8085 | .8099 | .8657 | .8805 9099 | .9147 | .9533 | .9462
.8725 | .8548 | .8955 | .8989 9791 | .9597 | .9679 | .9893
.8568 | .8348 | .8900 | .8960 9879 | .9619 | .9833 | .9904
.8756 | .8556 | .9084 | .9120 9963 | .9929 | .9879 | .9867
.1 9 7140 | 7104 | .8627 | .8648 9 01 |.7559 | .7918 | .7403 | .8791
9048 | .9205 | .9595 | .9528 .8861 | .8950 | .9134 | .9197
.8440 | .8574 | .9053 | .9040 .8097 | .8516 | .8419 | .8753
9181 | .8932 | .8588 | .8711 7987 | .8297 | .7937 | .8359
9204 | .9092 | .8884 | .9012 .8504 | .8397 | .8671 | .8179
9240 | .9152 | .9140 | .9256 .8499 | .8198 | .8674 | .8597
3 3 7556 | 7324 | .8536 | .8476 | .05 .05 1.9007 | .9190 | .9237 | .9168
.8725 | .8353 | .9068 | .9008 9541 | .9532 | .9660 | .9619
.8020 | .7824 | .8856 | .8761 9439 | 9319 | .9468 | .9716
.8784 | .8540 | .9144 | .9093 9705 | .9881 | .9883 | .9729
.8797 | .8564 | .9165 | .9104 9698 | .9697 | .9814 | .9839
9141 | .8947 | .9293 | .9273 9853 | .9875 | .9989 | .9916
3 5 7860 | .7856 | .8804 | .8804 | .05 .01 |.6922 | .7993 | .8650 | .8885
.8741 | .8800 | .9392 | .9425 9441 | .9329 | .9549 | .9394
.8169 | .8181 | .9240 | .9211 9439 | 9591 | .9547 | .9539
.8828 | .8753 | .9249 | .9273 19895 | .9934 | .9957 | .9991
.8833 | .8752 | .9273 | .9312 9891 | .9921 | .9874 | .9891
.8972 | .8849 | .9424 | 9412 9878 | .9990 | .9913 | .9968
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Table17: J,=J, = 10, n, =10 V,

ij Lj 2
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

a = .05, unequal correlation

Confidence Levels when nominal level is .95

ol P, ol P,
p1 p [ 1]3].1]5].1]9]3/9]| pi p [1]3].1].5].1]19|.3].9
.1 .1 .8707 | .8354 | .8926 | .9170 3 7 .8882 | .8801 | .8881 | .8935
.8992 | .8797 | .9288 | .9217 9435 | .9454 | .9589 | .9622
.8584 | .8401 | .9076 | .9067 .8960 | .8983 | .9220 | .9174
9353 | .9247 | .9589 | .9721 9205 | .9163 | .9257 | .9305
9353 | .9275 | .9592 | .9728 9229 | 9155 | .9294 | .9353
.9849 | .9956 | .9970 | .9979 9251 | .9194 | .9350 | .9386
.1 3 .8823 | .8660 | .8836 | .8868 5 5 .8862 | .8821 | .8891 | .8936
.9000 | .8885 | .9384 | .9467 .8995 | 9121 | .9519 | .9548
.8851 | .8789 | .9219 | .9170 .8980 | .9005 | .9181 | .9184
9299 | 9177 | .9415 | .9442 9255 | .9186 | .9186 | .9290
9348 | .9079 | .9266 | .9387 9265 | .9197 | .9208 | .9311
9672 | .9592 | .9705 | .9752 9288 | .9228 | .9283 | .9355
.1 7 .8796 | .8692 | .8779 | .8788 .9 9 .8753 | .8407 | .8876 | .9177
9455 | .9400 | .9630 | .9614 .8815 | .8605 | .9319 | .9363
.8960 | .8937 | .9234 | .9180 .8644 | .8410 | .9060 | .9055
9180 | .9113 | .9322 | .9250 9396 | .9223 | .9533 | .9832
9167 | .9063 | .9311 | .9364 9397 | .9226 | .9540 | .9836
9265 | .9245 | .9499 | .9535 19957 | .9950 | .9969 | .9981
.1 9 .8342 | .8155 | .8942 | .8999 .9 .01 | .8851 | .8980 | .8633 | .8918
9307 | .9083 | .9538 | .9593 9012 | .9304 | .9437 | .9105
.8663 | .8545 | 9114 | .8984 .8785 | .8863 | .8825 | .8158
9020 | .8890 | .9047 | .8957 9062 | .8942 | .7916 | .8577
9099 | .8957 | .9233 | .9207 9194 | 9113 | .8772 | .8621
9110 | .8990 | .9301 | .9269 9285 | .9191 | .8832 | .8693
3 3 .8972 | .8793 | .8918 | .8886 | .05 .05 |.8991 | .8912 | .9227 | .9596
9054 | .8933 | .9328 | .9339 9127 | .9198 | .9573 | .9659
9026 | .8896 | .9202 | .9091 .8843 | .8877 | .9445 | .9422
9236 | .9115 | .9276 | .9309 9781 | .9781 | .9904 | .9968
9248 | 9124 | .9286 | .9328 9781 | .9871 | .9905 | .9969
9477 | 9360 | .9504 | .9532 9999 | .9994 | 1.000 | .9999
3 5 .8895 | .8827 | .8865 | .8973 | .05 .01 | .8329 | .8535 | .9432 | .9208
9205 | .9374 | .9629 | .9639 .8641 | .8761 | .9345 | .9435
29021 | .9050 | .9202 | .9211 .8204 | .8266 | .8554 | .8091
9245 | 9247 | 9197 | .9315 9697 | .9856 | .9998 | .9999
9256 | .9257 | .9192 | .9332 9603 | .9747 | .9928 | .9890
9332 | .9358 | .9332 | .9431 29991 | 1.000 | 1.000 | .9993
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Table18: J,=J, = 25, n, =10 V,

ij Lj 2
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

a = .05, unequal correlation

Confidence Levels when nominal level is .95

ol P, ol P,
p1 p [ 1]3].1]5].1]9]3/9]| pi p [1]3].1].5].1]19|.3].9
.1 .1 .9004 | .8774 | .9079 | .9134 3 7 9057 | 9124 | 9191 | .9166
19023 | .8988 | .9322 | .9191 9237 | .9413 | .9691 | .9673
.8966 | .8733 | .9222 | 9116 9126 | .9229 | .9354 | .9331
9393 | .9231 | .9361 | .9529 9424 | 9367 | .9385 | .9425
9392 | .9230 | .9363 | .9529 9435 | 9371 | .9417 | .9429
9973 | .9956 | .9935 | .9984 9446 | .9386 | .9433 | .9448
.1 3 9138 | .9145 | .9139 | .9194 5 5 9218 | 9183 | .9278 | .9266
9164 | .9224 | 9298 | .9326 9260 | .9256 | .9368 | .9370
9153 | .9204 | .9274 | .9303 9258 | .9256 | .9368 | .9369
9393 | .9438 | .9443 | .9500 9397 | .9394 | .9421 | .9443
9356 | .9402 | .9365 | .9429 9397 | .9397 | .9433 | .9451
9783 | .9822 | .9819 | .9831 9405 | .9415 | .9455 | .9471
.1 7 9045 | .9027 | .9164 | .9079 .9 9 .9000 | .8812 | .9110 | .9177
9508 | .9571 | .9634 | .9650 9007 | .8872 | .9244 | .9210
9118 | .9206 | .9325 | .9246 .8949 | .8805 | .9187 | .9131
9360 | .9395 | .9439 | .9387 9394 | 9247 | .9401 | .9540
9352 | .9378 | .9390 | .9363 9392 | .9246 | .9400 | .9540
9453 | 9481 | .9514 | .9483 9979 | .9962 | .9939 | .9983
.1 9 .8896 | .8653 | .9036 | .9080 .9 01 |.9042 | 9117 | .9428 | .9444
9531 | .9459 | .9537 | .9642 9350 | .9029 | .9026 | .8805
9020 | .8894 | .9187 | .9242 9140 | .8995 | .8874 | .8700
9302 | .9209 | .9220 | .9337 9391 | .9291 | .9132 | .9007
9334 | .9247 | .9324 | .9458 9381 | .9332 | .9379 | .9237
9341 | .9261 | .9347 | .9486 9453 | 9391 | .9433 | .9322
3 3 9211 | .9082 | .9213 | .9205 | .05 .05 | .8846 | .8609 | .9101 | .9303
9257 | 9161 | .9347 | .9310 9052 | .8844 | .9207 | .9216
9243 | 9148 | .9336 | .9294 .8820 | .8601 | .9096 | .9062
9418 | .9347 | .9391 | .9402 9437 | .9244 | 9578 | .9808
9425 | .9354 | .9399 | .9414 9431 | .9239 | .9578 | .9805
9640 | .9581 | .9614 | .9614 19999 | 1.000 | .9997 | 1.000
3 5 9199 | 9167 | .9245 | 9226 | .05 .01 |.8901 | .9072 | .9467 | .9278
9239 | .9251 | .9432 | .9513 9077 | .9021 | .9331 | .9005
9239 | .9250 | .9375 | .9337 .8782 | .8739 | .8926 | .8532
9403 | .9364 | .9409 | .9445 9745 | .9814 | .9952 | .9904
9398 | .9375 | .9409 | .9442 9504 | .9629 | .9901 | .9797
9460 | .9442 | .9493 | .9522 29991 | .9998 | 1.000 | 1.000
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Table19: J, =5, J, =10, n, =5 V,, , a =.05, unequal correlation

Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

ol P, ol P,
p1 p [ 1]3].1]5].1]9]3/9]| pi p [1]3].1].5].1]19|.3].9
.1 .1 .8335 | .8788 | .9209 | .9250 3 7 .8259 | .8283 | .8571 | .8332
9279 | .9376 | .9636 | .9659 9335 | .9219 | .9436 | .9343
9047 | 9157 | .9516 | .9490 .8605 | .8643 | .8942 | .8800
.8040 | .8195 | .8688 | .8631 9587 | .9942 | .9827 | .9726
.8931 | .8963 | .9339 | .9559 9697 | .9977 | .9881 | .9797
19983 | .9965 | .9956 | .9951 19998 | .9986 | .9911 | .9828
.1 3 .8690 | .8740 | .9001 | .9032 5 5 .8449 | 8544 | .8705 | .8513
9237 | .9238 | .9600 | .9609 9125 | .9283 | .9439 | .9364
.8938 | .8907 | .9240 | .9228 .8654 | .8761 | .8937 | .8801
9384 | .8994 | .9451 | .9413 9973 | .9964 | .9900 | .9784
9311 | 9120 | .9519 | .9482 9984 | .9979 | .9917 | .9825
9830 | .9568 | .9631 | .9617 29991 | .9984 | .9924 | .9841
.1 i 8412 | .8519 | .8764 | .8754 .9 9 .8342 | .8801 | .9394 | .9399
9489 | .9499 | .9660 | 9713 9329 | .9383 | .9822 | .9817
.8913 | .9006 | .9253 | .9204 9119 | .9098 | .9490 | .9530
9911 | .9831 | .9662 | .9506 1.000 | .9997 | .9998 | .9999
9943 | 9876 | .9721 | .9596 19997 | 1.000 | 1.000 | 1.000
9951 | .9887 | .9769 | .9608 1.000 | 1.000 | .9999 | 1.000
.1 9 7856 | .8016 | .9222 | .9021 9 01 | .7431 | .7826 | .9103 | .9006
9422 | 9466 | 9747 | .9773 9175 | .9073 | .8945 | .8969
.8863 | .8978 | .9112 | .9048 9172 | .9070 | .8541 | .8564
9706 | .9574 | 9191 | .9025 9876 | .9779 | .9459 | .8891
9872 | .9812 | .9664 | .9570 9991 | .9997 | .9989 | .9917
9899 | .9847 | .9747 | .9651 19997 | 1.000 | .9992 | .9931
3 3 .8131 | .8212 | .8567 | .8253 | .05 .05 |.9195 | .9096 | .9088 | .9620
.8830 | .8913 | .9293 | .9142 9643 | .9671 | .9855 | .9890
.8522 | .8566 | .8912 | .8703 9627 | .9659 | .9715 | .9825
9664 | .9494 | .9505 | .9252 .8153 | .8660 | .8783 | .8717
9838 | .9764 | .9720 | .9568 9138 | .9201 | .9745 | .9662
9941 | .9919 | .9881 | .9752 9998 | .9999 | .9988 | .9995
3 5 .8423 | .8353 | .8640 | .8409 | .05 .01 |.6411 | .5988 | .8685 | .8649
9144 | 9217 | .9426 | .9419 9710 | .9808 | .9857 | .9968
.8563 | .8675 | .8653 | .8764 9664 | .9799 | .9760 | .9875
9912 | .9834 | 9711 | .9599 9360 | .9102 | .9286 | .9345
9973 | .9921 | .9764 | .9689 9564 | 9317 | .9519 | .9601
9990 | .9969 | .9827 | .9749 9999 | .9999 | 1.000 | .9998
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Table20: J, =5, J, =10, n, =10 V,

i,j°
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

a = .05, unequal correlation

Confidence Levels when nominal level is .95

ol P, ol P,
p1 p [ 1]3].1]5].1]9]3/9]| pi p [1]3].1].5].1]19|.3].9
.1 .1 .8097 | .8891 | .9049 | .9197 3 7 .8039 | .8426 | .9004 | .8732
9217 | 9408 | .9449 | .9529 9156 | .9305 | .9358 | 9111
.8945 | .9097 | .9267 | .9397 .8905 | .8547 | .8785 | .8904
.8197 | .8401 | .8891 | .8931 9847 | .9872 | .9914 | .9836
.8883 | .8964 | .9108 | .9572 9891 | .9907 | .9801 | .9714
9794 | .9897 | .9956 | .9847 9937 | .9896 | .9884 | .9697
.1 3 .8412 | .8397 | .9088 | .9132 5 5 .8056 | .8697 | .8335 | .8744
9304 | 9115 | .9397 | .9406 9068 | .9354 | 9541 | 9168
.8789 | .8882 | .9315 | .9197 .8854 | .8487 | .8952 | .8701
9114 | .8992 | .9335 | .9501 9897 | .9832 | .9845 | .9644
9291 | .9138 | .9419 | .9551 9901 | .9697 | .9814 | .9687
9820 | .9398 | .9551 | .9697 9951 | .9891 | .9794 | .9831
.1 i .8298 | .8497 | .8357 | .8733 .9 9 .8497 | .8860 | .9057 | .9322
9301 | .9222 | .9522 | .9715 9187 | .9401 | .9687 | .9698
.8887 | .8853 | .9239 | .9206 9057 | 9187 | .9367 | .9492
9872 | 9687 | .9397 | .9492 9881 | .9797 | .9802 | .9887
9913 | .9836 | .9804 | .9519 9797 | .9854 | 9714 | 9765
9867 | .9901 | .9711 | .9622 9927 | .9967 | .9924 | .9895
.1 9 7844 | 8168 | .9247 | .9091 9 .01 |.6980 | .7452 | .9087 | .9005
9437 | .9308 | .9489 | .9793 9254 | 9157 | .9047 | 9152
.8792 | .8933 | .9003 | .9048 9136 | .8875 | .8537 | .8764
9635 | .9397 | .9187 | .9029 9768 | .9605 | .9466 | .8991
9771 | 9791 | .9501 | .9536 9751 | .9802 | .9889 | .9677
9813 | .9833 | .9614 | .9568 9967 | .9956 | .9992 | .9931
3 3 .8221 | .8143 | .8332 | .8915 | .05 .05 | .8795 | 9114 | .9044 | .9367
.8903 | .8884 | .9193 | .9202 9544 | 9254 | .9766 | .9632
.8511 | .8357 | .9102 | .8936 9637 | .9659 | .9735 | .9825
9594 | .9463 | 9444 | 9301 .8687 | .8587 | .8744 | .8681
9774 | 9739 | .9797 | .9515 9223 | .9201 | .9685 | .9409
9891 | .9839 | .9723 | .9803 9918 | .9979 | .9991 | .9939
3 5 .8342 | .8442 | .8750 | .8690 | .05 .01 |.6977 | .6087 | .7958 | .8857
9057 | .9269 | .9325 | .9502 9635 | .9754 | .9544 | 9788
.8618 | .8897 | .8435 | .8803 9456 | .9698 | .9587 | 9724
9815 | .9874 | .9657 | .9387 9540 | .9305 | .9198 | .9287
.9849 | .9867 | .9763 | .9701 9601 | .9442 | .9657 | .9722
19981 | .9895 | .9838 | .9711 9924 | 9839 | .9885 | .9915
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Table21: J, =5, J, =25, n, =10 V,, , a=.05, unequal correlation

ij
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

Confidence Levels when nominal level is .95

ol P, ol P,
p1 p [ 1]3].1]5].1]9]3/9]| pi p [1]3].1].5].1]19|.3].9
.1 .1 7154 | .6987 | .8457 | .8825 3 7 7684 | 8056 | .8319 | .7990
9245 | 9364 | .9455 | .9411 .9005 | .9087 | .9133 | .8840
9058 | .9221 | 9112 | .9028 .8791 | .8447 | .8459 | .8126
.8856 | .8456 | .9002 | .8956 9864 | .9878 | .9758 | .9566
.8756 | .9011 | .9354 | .9333 9865 | .9922 | .9787 | .9478
9845 | .9914 | .9992 | .9963 9902 | .9931 | .9802 | .9565
.1 3 .8474 | .8952 | .8732 | .9014 5 5 .8303 | .8109 | .8265 | .8426
9154 | .9256 | .9668 | .9458 .8755 | .9057 | .9009 | 9125
9054 | 9151 | .9238 | .9123 .8653 | .8789 | .8852 | .8353
9296 | .9333 | .9302 | .9254 .9804 | .9856 | .9884 | .9717
9502 | .9552 | .9392 | .9546 9955 | .9905 | .9882 | .9716
9933 | .9865 | .9834 | .9918 9937 | .9929 | .9940 | .9750
.1 7 .8444 | 8504 | .8733 | .8698 .9 9 .8560 | .8511 | .8297 | .7159
9457 | .9367 | .9588 | .9699 9318 | .9528 | .9405 | .9495
9064 | .9096 | .9308 | .9002 9167 | .9402 | .9432 | .9319
9906 | .9702 | .9552 | .9388 9877 | .9892 | .9972 | .9915
9923 | .9833 | .9661 | .9405 29997 | 1.000 | .9991 | 1.000
9915 | .9897 | .9559 | .9605 9990 | .9968 | .9999 | 1.000
.1 9 7498 | 7351 | .8118 | .8156 9 01 | .6894 | 7158 | .8057 | .8820
9521 | .9449 | .9692 | 9705 9496 | .9377 | .9055 | 9123
9111 | .8952 | .9132 | .9244 9401 | .9323 | .9106 | .9025
9702 | .9611 | .9385 | .9305 9912 | .9723 | .9677 | .9845
9598 | .9934 | .9753 | .9457 9969 | .9955 | .9991 | .9958
9866 | .9838 | .9711 | .9744 9997 | .9990 | .9971 | .9938
3 3 7522 | .8081 | .8598 | .7980 | .05 .05 |.7992 | .8256 | .9014 | .9332
.8657 | .8864 | .9004 | .8967 9556 | .9501 | .9619 | .9504
.8425 | .8534 | .8635 | .8109 9363 | .9109 | .9717 | .9518
9552 | .9498 | .9661 | .9442 .8921 | .8897 | .9005 | .8952
9622 | .9701 | .9676 | .9402 9335 | .9248 | .9582 | .9499
9821 | .9805 | .9749 | .9754 9719 | .9856 | .9918 | .9861
3 5 .8057 | .8954 | .8657 | .8144 | .05 .01 |.6695 | .6874 | .7018 | .5887
9001 | .9231 | .9154 | 9111 9612 | .9569 | .9610 | .9591
.8854 | .8608 | .8562 | .8678 9159 | .9358 | .9501 | .9555
9687 | .9715 | .9633 | .9401 9280 | .9390 | .9669 | .9618
9826 | .9831 | .9885 | .9568 9818 | .9836 | .9907 | .9922
9793 | .9790 | .9687 | .9493 9969 | .9946 | .9991 | .9987
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Table 22: J, =50, J,=50, n, =10 V,

i,j ?
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row
6 — extended Peskun interval

a = .05, equal correlation

Confidence Levels when nominal level is .95

Iz Iz
P1 P2 .1 3 ) 9 P1 P2 .1 3 ) 9
A 1 9067 | .8942 | .9065 | 9116 3 7 9267 | .9257 | .9312 | .9302
9090 | .9113 | .9289 | .9456 9305 | .9308 | .9403 | .9406
9055 | .8962 | .9247 | 9173 9305 | .9307 | .9403 | .9369
9428 | .9340 | .9305 | .9399 9457 | 9464 | .9443 | .9466
9428 | .9342 | .9304 | .9396 9448 | .9467 | .9438 | .9470
9978 | .9965 | .9942 | .9979 9451 | .9468 | .9455 | .9488
A 3 9239 | 9176 | 9271 | 9506 | .5 5 9331 | .9329 | .9332 | .9348
9467 | .9239 | .9354 | .9457 9345 1 .9362 | .9400 | .9482
9362 | .9230 | .9344 | .9461 9432 1 .9362 | .9399 | .9402
9458 | .9466 | .9473 | .9505 9435 | .9466 | .9544 | 9477
29471 | .9399 | .9382 | .9468 9437 | .9469 | .9459 | .9483
9814 | .9839 | .9827 | .9861 9510 | .9475 | .9469 | .9496
A 7 9216 | 9185 | .9292 | .9234 9 .9 9110 | .8961 | .9089 | .9128
9246 | 9477 | L9542 | .9662 9120 | .8984 | .9279 | .9245
9235 | 9272 | 9467 | .9321 9082 | .8944 | .9216 | .9180
9474 | L9459 | .9479 | .9464 9459 | 9391 | .9326 | .9422
9461 | 9443 | .9487 | .9483 29459 | .9390 | .9324 | .9422
9487 | .9524 | .9542 | .9523 9982 | .9972 | 9951 | .9982
A 9 [.9292 | .9007 | .8866 | 9122 | 9 .01 |[.9072 | 9110 | .9141 | .9458
9662 | 9482 | .9483 | .9541 9181 | .9185 | .9543 | .9096
9487 | 9116 | .9014 | .9310 9180 | .9153 | .9014 | .9403
9459 | .9399 | .9350 | .9354 9451 | .9464 | .9441 | 9476
9477 | 9410 | .9372 | .9406 9436 | .9452 | .9528 | .9530
9542 | 9462 | .9380 | .9410 9487 | .9498 | .9575 | 9531
3 3 9279 | .9240 | .9320 | .9475 | .05 .05 | .8894 | .8641 | .9064 | .9108
9315 1 .9265 | .9391 | .9464 9006 | .8916 | .9205 | .9179
9310 | .9260 | .9381 | .9421 .8845 | .8634 | .9138 | .9066
9442 | 9421 | 9435 | .9483 9417 | .9278 | .9408 | .9586
9442 | .9423 | .9440 | .9488 9412 | .9274 | 9406 | .9585
9633 | .9605 | .9655 | .9667 9998 | .9997 | .9999 | 1.000
3 5 9336 | .9329 | .9364 | .9342 | .05 .01 |.9160 | .9218 | .9543 | .9199
9467 | 9351 | .9480 | .9404 9137 | 9137 | .9460 | .8911
9366 | .9350 | .9459 | .9402 9026 | .8986 | .9049 | .8433
9436 | .9462 | .9486 | .9481 9630 | .9720 | .9937 | .9895
9439 | .9459 | .9473 | .9480 9519 | 9631 | 9897 | .9734
29495 | L9509 | .9540 | .9543 1.000 | 1.000 | .9999 | .9992
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Table 23: J,=150, J,=150, n, =15 V

i i > a=.05, equal correlation
Row 1 — Wald interval (usual); Row 2 — Jeffreys-Perks interval; Row 3 — Haldane
interval; Row 4 — extended Newcombe interval; Row 5 — extended Beal interval; Row

6 — extended Peskun interval

Confidence Levels when nominal level is .95

Iz Iz
P1 P2 .1 3 ) 9 P1 P2 .1 3 ) 9
A 1 9408 | .9052 | .9010 | .9456 | .3 7 1.9480 | 9392 | .9392 | .9400
9458 | 9268 | .9015 | .9456 9392 | .9484 | .9464 | .9462
9345 | .9254 | .8971 | .9392 9380 | .9400 | .9414 | .9432
9552 | .9508 | .9500 | .9540 9452 | .9464 | 9516 | .9496
.9552 | .9508 | .9500 | .9536 9464 | .9456 | .9508 | .9480
9988 | .9996 | .9999 | .9984 9468 | .9456 | .9517 | .9480
A 3 9388 | .9244 | .9352 | .9336 S 5 9468 | .9472 | .9408 | .9512
9376 | .9252 | .9376 | .9348 9472 | L9472 | L9460 | .9524
9372 1 .9256 | .9314 | .9340 9464 | 9462 | .9422 | .9526
9520 | .9456 | .9464 | .9476 29496 | .9520 | .9448 | .9532
9520 | .9462 | .9460 | .9468 9496 | .9524 | .9458 | .9532
9872 | .9836 | .9892 | .9840 9498 | .9523 | .9452 | .9536
A 7 9396 | .9308 | .9196 | .9408 9 .9 9260 | .9005 | .9051 | .9280
29480 | 9372 | .9352 | .9468 9244 1 .9087 | 9112 | .9316
9372 | .9276 | .9252 | .9478 .9204 | .9005 | .9007 | .9280
9476 | 9448 | .9448 | .9504 9500 | .9400 | .9476 | .9536
9480 | .9460 | .9460 | .9524 9500 | .9400 | .9476 | .9566
9536 | 9552 | .9440 | .9608 9988 | .9984 | .9988 | .9999
A 9 [.9454 | .8928 | .9540 | .9208 | .9 .01 |.9224 | 9012 | .8980 | .9280
9352 | .9264 | .9244 | .9652 9256 | .9122 | .9004 | .9536
9348 | .9064 | .9264 | .9308 9236 | .9022 | .8997 | .9420
9532 | 9516 | .9560 | .9540 9516 | .9444 | .9492 | .9484
9504 | .9496 | .9536 | .9544 9504 | .9404 | .9456 | .9472
9504 | .9500 | .9536 | .9544 9540 | .9452 | .9496 | .9512
3 3 9470 | .9364 | .9344 | .9344 | .05 .05 | .9196 | 9015 | .9304 | 9116
9478 | .9480 | .9340 | .9460 9136 | 9112 | .9508 | .9470
9462 | 9372 | .9344 | .9495 9128 | .9006 | .9292 | 9118
29460 | .9460 | .9498 | .9412 9528 | .9520 | .9544 | .9468
29460 | .9460 | .9484 | .9412 9258 | .9520 | .9536 | .9490
9636 | .9672 | .9680 | .9620 9999 | .9997 | .9991 | 1.000
3 5 9544 | 9380 | .9496 | .9472 | .05 .01 | .9374 | .8905 | .8576 | .9076
9526 | .9476 | .9516 | .9512 9509 | .9087 | 9152 | .9468
9506 | .9372 | .9516 | .9508 9392 | .9011 | .9053 | .9144
9564 | .9492 | .9532 | .9536 9544 | 9476 | .9600 | .9676
9560 | .9496 | .9532 | .9532 9537 | 9448 | .9544 | .9492
9609 | .9548 | .9584 | .9564 1.000 | .9999 | .9992 | 1.000
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Scope and Method of Study: When estimating the difference between two proportions
with overdispersion due to correlation within the trials, the usual asymptotic
confidence interval based on the maximum likelihood estimators generally has
lower than desired coverage rates for small sample sizes. Consequently, the
purpose of this study is to construct confidence intervals in this setting that exhibit
near nominal coverage even for small sample sizes. The beta-binomial model is
one possible way to model correlated 0-1 data. This model is used to develop two
new intervals, referred to as the Haldane and Jeffreys-Perks intervals. The paper
then compares these two new intervals with four existing competitors and
evaluates their performance via simulations.

Findings and Conclusions: The usual asymptotic interval based on the maximum
likelihood estimators is discouraged for cases when the sample sizes are small or
the proportions are close to zero or one. The Haldane interval is an improvement
over the usual interval but still has many cases with less than desireable coverage
probability. The Jeffreys-Perks interval provides significant improvement over
the usual interval as do the existing intervals referred to as the extended Beal,
extended Newcombe, and extended Peskun intervals. In particular, the Jeffreys-
Perks interval is generally the best choice in terms of coverage probability for
cases where the difference between the proportions is large. In specific cases
when the two proportions are equal, or close to equal, the extended Newcombe
and extended Beal generally have the best results. In many other cases, the
extended Newcombe, extended Beal, and the Jeffreys-Perks intervals provide
very similar results.
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