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ASSESSMENT OF SEMI-PARAMETRIC PROPORTIONAL INTENSITY

MODELS APPLIED TO RECURRENT FAILURE DATA WITH MULTIPLE

FAILURE TYPES FOR REPAIRABLE-SYSTEM RELIABILITY
Abstract

The class of semi-parametric proportional intensity (Pl) models applies to
recurrent failure event modeling for a repairable system with covariates.
Abundant federal funding received in biostatistics/medical research has
advanced the Pl models to become well developed and widely referenced. Pl
models for medical applications could also apply to recurring failure/repair data in
engineering problems. Wider engineering use of these models requires better
understanding of applications, performance, and methods to accommodate
important situations such as censoring, maintenance intervals, and multiple
failure types.

Landers and Soroudi (1991), Qureshi et al. (1994), and Landers et al. (2001)
have examined robustness of the Prenticé—WiIliams—Peterson-gap time (PWP-
GT) model for the case of an underlying Non-homogeneous Poisson Process
(NHPP) with power-law and log-linear intensity functions and complete
(uncensored) data. However, the phenomenon of censoring is generally present
in field data. This research has extended their work to the important case of right-
censorship and has examined other semi-parametric Pl models (Prentice-
Williams-Peterson-total time (PWP-TT), Andersen-Gill (AG), and Wei-Lin-
Weissfeld (WLW)). The experimental design in this research has incorporated

three levels of censorship severity (light, moderate, and severe) to evaluate

these four proposed Pl models.

xiv



Certain systems experience a substantial period of downtime due to
performing maintenance (i.e. major overhaul) following a major failure. This
discontinuity in observation time has been a concern in the accuracy of
estimating the covariate effect. Therneau and Hamilton (1997) proposed a
discontinuous risk-free-intervals method for biomedical applications that could
also apply to this engineering problem. This study has recommended selecting
appropriate Pl models and the more favorable engineering applications range for
the overhaul duration based on the sample size and shape parameter. This
.research has examined two levels of the overhaul duration (short and long) to
evaluate the Pl models.

Major and minor failure events are commonly seen in industry, where minor
failure rate is typically higher than major failure rate. Most researchers have
formulated the problem as univariate and pooled the major and minor failures as
though they are identical. Lin (1993, 1994) proposed a covariate Pl modeling
approach to handle the recurrent data with multiple failure types. Although
covariates are typically used to incorporate treatment effects, a covariate may be
defined to conceptually model multiple failure types in the special case where the
proportional intensities rule holds. This study has examined covariate Pl
modeling as an approach for explicit treatment of multiple (two) recurrent failure
types (major and minor) with complete data.

The PWP-GT and AG models prove to outperform the PWP-TT and WLW
models in the robustness studies on right-censoring severity and multiple failure

types. The AG model performs well in the HPP case. The results of examining



the Pl models in the discontinuous risk-free-intervals modeling indicate that the
PWP-GT model performs better in the short overhaul duration than the long
overhaul duration. The AG model performs consistently well in the small sample
size (20) regardless of the overhaul duration in an HPP case. The WLW model
performance improves as the overhaul duration increases.

Keywords: repairable system reliability, proportional intensity model, recurrent
events, covariates, right-censored recurrent events, major repairs, overhauls,
multiple failure types, covariate proportional infensity modeling, power-law
NHPP, risk interval, Prentice-Williams-Peterson, Andersen-Gill, Wei-Lin-

Weissfeld



1 Introduction

Aircraft, automobiles, and process machine tools are examples of systems
designed to be repairable. These systems undergo during their lifetimes multiple
recurrent unscheduled failure and repair cycles and/or scheduled preventive
maintenance or overhaul cycles. This research addresses statistical modeling of
recurrent failure events in repairable systems reliability, by building on previous
work of Qureshi (1991, 1994) and Vithala (1994). They examined the robustness
of a semi-parametric Prentice-Williams-Peterson-gap time (PWP-GT) model for
estimating the covariate effect where the underlying stochastic process is a Non-
homogeneous Poisson Process (NHPP) with power-law or log-linear intensity
function, respectively. Both Qureshi and Vithala restricted their studies to the
case of complete (uncensored) data.

This research provides a thorough review of the relevant literature (Chapter 2)
on the parametric survival models, semi-parametric Cox proportional hazards
(PH) method for single failure event (non-repairable systems); and both the
parametric Lawless (proportional intensity) and semi-parametric proportional
intensity (Pl) models for recurrent events, including the PWP-GT (1981) model
examined by Qureshi and Vithala as well as the PWP-total time (PWP-TT-1981),
Andersen-Gill (AG-1982), and Wei-Lin-Weissfeld (WLW-1989) models. The
literature review also reports the published work on right—cénsoring and muttiple
event types in Pl models for recurrent events. A limited verification is reported for
Qureshi (power-law form) and Vithala (log-linear form) resulits, applying the

parametric Lawless and semi-parametric PWP-GT methods to recurrent data.



Two modeling extensions are examined for the case of multiple event types:
multi-dimensional covariate (Lin (1993)) and discontinuous risk-free-intervals
(Therneau and Hamilton (1997)).

The proposed research methodology (Chapter 3) addresses four research
objectives to answer the following two research questions regarding the Pl
models robustness for the case of an underlying recurrent failure event process
that is NHPP with power-law intensity:

(1) How do the PWP-GT, PWP-TT, AG, and WLW methods compare in

performance under right-censoring?

(2) How do the multi-dimensional covariate and discontinuous risk-free-
intervals methods perform in estimating the regression coefficients for two
failure types (major and minor)?

Four research objectives are raised:

(1) Examine the semi-parametric Pl models robustness as a function of right-
censoring severity measured by BIAS, MAD, and MSE. The special case
of common baseline intensity function (PWP-TT and WLW models) is
investigated to compare with the AG model.

(2) Examine the robustness of the four reliability estimates (PWP-GT, PWP-
TT, AG, and WLW) as a function of right-censoring severity, for the special
case of a stationary counting process. BIAS, MAD, and MSE are
employed to measure the robustness of the three event-specific Pl models
(PWP-GT, PWP-TT, and WLW), while the common baseline model (AG)

estimates the general covariate effect.



(3) Examine multi-dimensional covariate modeling to deal with two types of
complete (uncensored) recurrent events.

(4) Examine risk-free-intervals within an NHPP process where there are two
event types (major and minor) and the overhaul duration following a major
failure is substantial.

The methodology includes plans for generation of simulated data sets, design
of experiments, and robustness measurements. After the investigation and
comparison of the four semi-parametric Pl models, PWP-GT is proven the best
event-specific model in handling recurrent data with power-law intensity function
under right-censoring, and thus is chosen to further investigate the second
research question regarding multiple failure types.

This structure of this dissertation is organized as follows. Chapters 1-3
present introduction, literature review, and the proposed research methodology,
respectively. Chapter 3 proposes the four research objectives motivated by the
two primary research questions and provides a plan/method for each
objective/question. Chapters 4-5 investigate the four semi-parametric Pl models
under right-censoring for an NHPP and HPP, respectively. Chapter 6 addresses
the discontinuous risk-free-intervals problem. Chapter 7 studies the covariate Pl
modeling to handle recurring failure events with two failure types. Chapter 8
summarizes the conclusions from Chapters 4 to 7. Appendix | provides for other
relevant charts and tables from Chapter 4 (right-censoring) for singular failure
type and from Chapter 7 for two failure types (major and minor). Appendix |I

provides for the other relevant charts and tables from Chapter 6 for the overhaul



duration/maintenance interval problem. Appendixes lil to VI present the
programming codes to perform the four methodologies/plans regarding the four
research problems raised from Chapters 4 to 7. Appendix VIl (Glossary) is also

provided for the definition of each terminology used in this study.



2 Literature Review

A system may be classified as either non-repairable or repairable. Consumer
electronics provides good examples of non-repairable systems and replacement.
The aircraft industry provides good examples of repairable system maintenance.
A repairable system can be restored from failures to perform a desired function
by repair actions other than replacement of the entire system (Ascher and
Feingold (1984)). This chapter reviews the literature on reliability assessment for
both non-repairable and repairable systems. Non-repairable systems produce
single-event failure data, and repairable systems produce recurring-event failure
data. In a non-repairable system, a unit is replaced when a failure occurs that
renews the hazard rate function each time. However, the unit in a repairable
system is repaired rather than replacement of the unit when a failure occurs, and
thus can fail two or more times. If it is a successful repair, the intensity function is
improved to the degree between as-bad-as-old (minimal repair) and as-good-as-
new (replacement).
2.1 Single-event models for non-repairable systems

This section reviews the literature on non-repairable systems with four
divisions: 1) Parametric survival models 2) Maximum likelihood estimators, 3)
Semi-parametric Cox models, and 4) competing risk models. The subsection of
parametric survival models introduces several commonly encountered
distributions in reliability. Lawless (1982) has reviewed the parametric method to
obtain maximum likelihood estimators using the Newton-Raphson iterations. A

semi-parametric Cox proportional hazards (PH) model is used to obtain the



parameter estimator through the partial maximum likelihood function. The
combination of a decreasing failure rate and an increasing failure rate produces a
bathtub function achieved by using the competing risk models.
2.1.1 Parametric survival models

The reliability information provided in this chapter for each distribution contains:

density function f(¢), reliability function R(¢), and the hazard function (). This

section reviews several commonly encountered distributions in reliability:
Exponential, Weibull, Extreme value, Gamma, Lognormal, and Log-logistic
distributions, followed by a numerical illustration of plots for each distribution.
Many applications, including customer arrivals, bank service time, and
machine breakdowns, have been modeled using the exponential distribution.
Exponential distribution displays the memoryless property of constant hazard
rate and underlies the Homogeneous Poisson Process (HPP). Figure 2.1
illustrates a constant hazard function based on the exponential distribution with
parameter 0.5. The distribution of the interarrival times for an HPP counting

process follows an exponential distribution. The density function f(¢), reliability

function R(¢), and the hazard function A(¢) are as follows:

J{t) = Aexp(-Ar)

R(t) =exp(—At)

ht)=A,

where A =hazard rate.
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Figure 2.1. Exponential hazard function with 1 =2
The Weibull distribution is a generalization of the exponential distribution, and
capable of modeling a constant, strictly increasing, and strictly decreasing hazard

functions. The Weibull functions are:

7O =2 exp-Ly >0
U D D
R() = exp[—-(-l’;)‘s],r >0

wey=2y >0,
U D

where
8 =shape parameter,
v =scale parameter.

When & =1, the Weibull distribution becomes the Exponential distribution. Figure
2.2 presents three cases of a Weibull hazard function: (§,v) = (0.5,5), (1,5), and

(3,9).
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Figure 2.2. Weibull hazard function with combination of § and v, where v=5

The extreme value probability model is an asymptotic distribution, which

originates from ¥, =max(1,Y,,...Y,) or Y . :min(Yngz,...,Yn) , Where
Y.Y,....Y, denote random variates. Applications of extreme value model in

industry include the distribution of the smallest extreme value (e.g., breaking
strength) or the distribution of the largest extreme value (e.g., maximum load).
Examples of the extreme value model application in the reliability field include
corrosion level and breaking strength. Figure 2.3 is a hazard function plot that
demonstrates the distribution for the smallest extreme value.
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where
y =location parameter (minimum life),

@ =scale parameter ( characteristic life),
¢ =shape parameter.

The type lll Extreme value distribution is the three-parameter Weibull distribution,
and the setting of 4 = 0in the type lll Extreme value distribution yields the two-
parameter Weibull model. Figure 2.3 presents three cases of a Type | smallest

value of exireme value hazard function: (y,0) = (1,5), (2,5), and (3,5).
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Figure 2.3. Type | smallest value of extreme value hazard functions

The Gamma distribution can model constant, increasing and decreasing
hazard rates by controlling the shape parameter setting. The gamma function is
defined as I'(k) = (k—1)!, where k is an integer. The exponential case arises
when parameter 7 equals to 1. The hazard function (Figure 2.4) is monotonically
increasing when 7 is greater than 1, and monotonically decreasing when 7 is

less than 1. Both Weibull and gamma have a constant hazard function when the
shape parameter is set to 1. However, as the shape parameter is greater than
one (a strictly increasing hazard function), the Weibull distribution has a faster
deterioration rate of hazard function than the Gamma distribution. Figure 2.4

presents three cases of a gamma hazard function: (7, 7) = (0.5,2), (1,2), and (2,2).
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Figure 2.4. Gamma hazard function with different shape parameters

The negative range of time values for the normal Gaussian distribution makes
it less suitable for application in reliability. The Lognormal distribution also has
merit in reliability modeling of failure mechanisms that are synergistic
(multiplicative). The Lognormal model (Figure 2.5(a): (u#,0) = (1,1), (1,2), and (1,3)
and Figure 2.5(b): (u,0) = (1,20), (10,20), and (100,20)) relates to the normal
distribution in that z = LN(¢z) . A variable ¢ is lognormally distributed if z = LN(¢)is
normally distributed, where LN denotes the natural logarithm. The Lognormal

functions are:
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Although the Log-logistic model has simple functional expressions, the hazard
function is able to handle multiple stages of life-cycle failure patterns (see Figure

2.6). When p is equal to or greater than 1, the hazard function of the log-logistic

model is a monotonically decreasing function. However, there is an unique

property in the log-logistic model; when p is less than 1, the hazard function will

increase from 0 to a peak point, and then decrease monotonically. The Log-

logistic functions are:

Ap(n"

TO= 5 G

p,A,t>0
1
1+ (A6

h(f) = Ap(A)™
1+ ()7

R =1-5@® =1~

Figure 2.6 presents three cases of a log-logistic hazard function: (p, 1) = (2.5,20),

(1,20), and (0.5,20).

25
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2o Y
20
AN
T 51 T~ _

O &.:; """" T._T_:-__T_—__-_—_-_:—:-:-___-__J_-_-_’ I

0 0.5 1 15 2 25 3

Time to failure ()

Figure 2.6. Log-Logistic hazard function with parameters (p,1)
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2.1.2 Maximum likelihood estimators
This section reviews the maximum likelihood estimator (m.l.e.) for both
Exponential and Weibull underlying distributions proposed by Lawless. The

density function of the exponential distribution (with parameter 6 =1/1) is:
fO=60"e"?t>0.

The point estimator 6 can be produced by the maximum likelihood method. The
following derivation of the point estimator is taken from Lawless (1982). Suppose

t, <t, £...<t, are n samples drawn from an exponential distribution representing
the first and only failure time for each unit in the sample. Assume all ¢, are

independent and identically distributed (i.i.d.). The likelihood is expressed as

follows.

L) = ein exp(—- ng—) .

i=l

The log likelihood is:

n

S

i=1

logL =—nlogf - .
£ g o

The maximum likelihood estimator is obtained by taking the derivative of the log

likelihood function, setting equal to zero, and solving for 9:

t.
dlogL 1 ,Z:;'
= e
o

X —
dog o

dlogL

To obtain 4, let 0.

14



n
>
=2
n

Likewise, if the density function for the two-parameter(5,v) Weibull is

f@®= é(i)“’"‘1 exp(—i)a,t >0.
U v L
The Weibull parameters (5,v) are transformed into the extreme value parameters

(b,u) by

b=1/6
u = log(v).

The maximum likelihood method produces two point estimators (5,6) for the
shape and scale parameters (6,v) through maximizing the likelihood. The

derivation of the point estimators is taken from Lawless (1982). Suppose

t, <t, <..<t, are n samples drawn from a Weibull distribution representing the
first and only failure time for each sample. Assume all ¢, are independently and
identically distributed. After the logarithm transformation X =log(¢), the joint

likelihood function L(x,b) can be expressed by

r

1 X, —U X, —u
L(u,b)r-—b—;—exp(z 3 —Zlexp 7 )

i=l

The log likelihood is

logL = —rlogb+(z):i—b_li~§:exp xi;u].
i=l1 i=1

The maximum likelihood estimators are obtained by taking the partial derivatives

of the log likelihood function, setting each equal to zero, and solving for # and b.
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dlog L rolg X, —u
= —— — £
ou b bZ,ZeXp( )
Ologl _-r <(x u) - X, —Uu
b b Zl B Z} g xR

Estimators # and b can be expressed as

ooz

Zx exp(——) A ,
s = p- —Z X =
Zexp<~) =

i
The Newton-Raphson iteration is employed to obtain the mie’s.
2.1.3 Semi-parametric Cox models

The Proportional hazards (PH) lifetime model is used to account for covariate
effects for lifetime data. Cox (1972) developed the proportional hazards method
for the two-sample problem that introduced explanatory variables. The PH model
is the product of a baseline hazard function and an exponential link function
composed of explanatory variables, also called concomitant or covariate
variables. The baseline hazard functions and covariates are discussed in this
section, following the PH theories and applications. A Weibull PH model is then
used to illustrate the proportional hazards model.

Under the proportionality assumption, the ratio of the hazard functions
h,(t|z,)/ hg(t] zz) of two sample units, 4 and B, is constant over time, where
A and B represent two levels of a covariate to form two strata of a population.

Let sample 4 have a series of failure times (TAm ) and its estimated mean time
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between failures (MTBF,, ). Likewise, sample B has (7, ) and (MIBFy). The

plots of log(MTBF) vs. log(T) for both samples 4 and B shall present two
straight and parallel lines if the proportionality assumption holds.

The definition of a hazard rate based on Cox is the instantaneous failure rate
(hazard rate) between ¢ and ¢+ Ar under the condition that this individual has
survived after time point ¢, which can be expressed as

h(f) = Tim P(tST<t+At|T2t)‘

At—>0+ Af

The explanatory variables Z =(z,,2,,...,z,) are included in the form of an
exponential link function in the regression model:

h(t;2) = exp(Z Sy (1)

where &, (¢) is a baseline hazard function.

B is a vector of regression coefficients corresponding to the vector of

explanatory variables Z . Derived from a conditional likelihood method, the B
estimator can be obtained from the score vector U(#) and observed information
matrix I(8) by solving the following two equations through the Newton-Raphson

| iteration (Cox (1972)).

LB . Dz (@b
VD =5p = 2 S ey
O*L(B) _ Zk (Zzg 12, €Xp(2,5) _ Zzg 1 €xp(z, ) y quz eXP(ZIﬂ)]
0B;0p, =L D exp(zf) 2.expzf)  Yexpzp) |

Igr,(ﬂ)z"'

The main purpose of the PH model is to investigate the relationship between the

distribution of failure time ¢, and covariate variables Z , where the regression

17



coefficients B measure the covariate effects. The most common case to assume
baseline hazard function 7 (¢) in a parametric method is a Weibull form, which

leads the PH model in the following equation (Leemis (1985) and Lawless

(1982)).

8-1
W5 7) = kx A x £279(3) = i(-’—] expli).

Uy \ Yy
Covariates stratify the population, and the associated regression coefficients [
represent the covariate effect. The procedures to estimate § can be approached
in two ways, parametric and semi-parametric. The analytical procedure is termed
as parametric when the baseline function 4, (¢) is specified (e.g., Weibull);
otherwise, if &, (¢) is left as arbitrary, the methodology is termed semi-parametric.

From the time of Cox’s foundational work, PH model covariates have been used
to evaluate the effects of innovative treatment protocals in clinical trials.
Covariates can be classified into four categories: external, internal, constant, and
time-varying. An external covariate is determined in advance and is not affected
by the treatment, whereas an internal covariate is affected by the treatment.
Qureshi (1981) proposed a hypothetical clinical case: a time-varying covariate

z(t) takes values of 0,1,2,3,4,5,6 to represent the health situation of a subject
who is an AIDS infected patient. z(r) = 0 means no clinical evidence is provided,
while z(¢) = 6 represents the death of a subject. The values of time-varying
covariates z(¢) change during the period of observation, while constant

covariates remain at a fixed value that does not change throughout the

experiment.
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To illustrate this Weibull PH model, the process to derive the score vector and
information matrix for a parametric Weibull PH model, provided by Lawless, is
summarized below.

Let T be the observed lifetime, and let y =logT .

The p.df. of y, given z is
JOlz)= eXP[y —-;z(z) - GXP(Z;g*(ﬁ)}—OO <y <.

Let u(z)=2z4,
and y=zf+04.

The survival function of y, given z is

. —Z.
S(v)2) = exp[— exp(?f'——;—'é)] ,
where 4 is a standard extreme value distribution with p.d.f.
J(4) = exp(4 —exp(A)) .
The likelihood function with observed and censored data is

= p.d.f. of observed datax survival function of censored data, which is

LB.0)=]]— eXPI:yi ;_Ziﬁ ~exp(2: ;Ziﬁ)}nexp[— eXp(!*':;_—Ziﬁ)},

ieD ieC
where (D,C) is a (log lifetime, log censoring time).

It can be simplified as

L(ﬁ,a)=(—(—1;) xexp[zy'; -y xp(y' By S expiHE "ﬁ>],

ieD ieD ieC

where r is the number of observed data and (n—r ) is the number of censored
data.

After logarithm transformation, the likelihood function becomes
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log L =l=—rlogo-+z_y_"_ﬂ_zexp(yi _Ziﬂ).
g

ieD i=]

Since 4, = ZI_—_EL'_B_ ,
[0

log L =—r10g0'+ZAi ——iepri .

ieD i=1
Assume that the covariates are z,, for all i =1,2...., p corresponding to regression

coefficients g, forall i=12,...,p.

The first and the second derivatives of [ with respectto f,0 are

OlogL -1 Z +—1—Zzﬂ X exp 4,
9B, O iep g ia

alogl’ - Zyz Zﬁ Zyz

6 ieD i=]

exp 4,

————~—ZA +— ZA exp 4,

T D

9’1o L z
3 g > Zz,,z exp 4,
B, B, o i=l
2
681;)_gL = ;_ti- = =34, - ZA exp 4, —————ZA2 exp 4,
ieD i=1 i=}
0logL 1

i=1

0p,00 o7 ; Pl ZZ” exp 4, - P ZZdA exp 4; .

ologlL

The score vector at 6 is defined U,(0) = , where @ is a 1x p matrix. Set

dlog L -0 dlogL
’ o
The score vector U(8) at § can be expanded as a Taylor series given the

=0.

the score vector equal to zero; that is,

first guess at & is 6, , the starting point of Newton-Raphson iteration. The first

order of the Taylor series will become
U@)=U6,)+G(6,)0-6,).

where G(0) is the (p+1) by ( p+1) observed information matrix, with elements
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9’ logL
06,0,

G,(6) =

o*logl d’loglL
0B0B. 9Boso
e. . G 9 — 1 s 1 .
9. ¢, &*logl &*loglh
op.0c o’

To obtain the m.l.e’s. (maximum likelihood estimator), we set the score vector
equal to zero.

U@)=0=U(@B,)+G(6,)(0~-6)

6=6,-GO,)"U®,).

iteratively, the next guess will be generated through the same procedures until

the termination rule is met. The termination rule may be defined as A <107°. As
for any m.l.e.’s, the estimates B are assumed to be distributed asympiotically

normal.
2.1.4 Competing risk models

Leemis (1995) discusses the competing risks (CR) model for combining
multiple distributions to achieve a bathtub-shaped hazard function. A typical
example from Leemis is to use a DFR (decreasing failure rate) Weibull
distribution to model manufacturing defect failures and an IFR (increasing failure
rate) Weibull distribution to model wear-out failures. The combination of these
two distributions, producing a bathtub-shaped hazard function, is the advantage
of the competing risks model. The distribution of the failure time random variable
(T') of the competing risks model is subject to k competing risks, which can be

expressed as 7' =min{X,, X,..., X, }. The CR model is composed of the net and
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crude probabilities through the k competing failure risks. Suppose X, X,.,..., X,

represent k netlives and 1,,7,.....Y, represent k crude lives for each cause.

Actual observed lifetime T = min{X,, X,...., X, }. Set the k components in series.
The net probability of failure from risk k in[a,b) is

q,(a,b) = Pla< X, <b| X, 2 a], whereas the crude probability of failure from risk

kin[ab)is Q(a,b)=Pla<X, <b X, <X, for all j=i|T2a].The net

probability considers single dimension of k" risk. However, the crude probability

model considers X, in the presence of other components simultaneously.

2.2 Recurring-event models for repairable systems

The purpose of maintenance is to restore a system into some previous state
of reliability. Maintenance actions can be classified in two major categories:
corrective and preventive. Corrective maintenance (CM) restores a failed system
to operating condition, whereas preventive maintenance (PM) reduces the risk of
operation system failure. The failure event process for a repairable system is
typically modeled as a Non-homogeneous Poisson Process (NHPP). Let 4
represent the degree by which the system reliability has been recovered to a
reference state. The value of 1 varies from 0 to 1 depending on the repair types,
such as minimal repair (A =0, as-bad-as-old), imperfect repair (0<1 <1), and
replacement (1=1, as-good-as-new) (Usher et al. (1998), Pham and Wang
(1996), Kijima (1989), Kijima et al. (1988)). Imperfect maintenance restores the

system to the status of somewhere between as-good-as-new (perfect
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maintenance or renewals) to as-bad-as-old (minimal repair). Pham and Wang
(1996) provided a thorough survey of literature on imperfect maintenance.

This section reviews the two primary approaches to model the recurring
events (NHPP data) for a repairable system: Parametric stochastic processes
and proportional intensity (Pl) models (including parametric Lawless and semi-
parametric regression methods (PWP (Prentice-Williams-Peterson), AG
(Andersen-Gill) and WLW (Wei-Lin-Weissfeld) models)).

2.2.1 Parametric stochastic processes

The parametric stochastic process section reviews the concepts of a counting
process and NHPP. Failure data in a repairable system are commonly modeled
as a stochastic process. Two NHPP PI functions are illustrated to demonstrate
the parametric stochastic processes. A discussion session of a stationary process
(HPP), instantaneous mean time between failures (IMTBF), and cumulative mean
time between failures (CMTBF) follows.

A counting process N(r), t > 0 shall satisfy the following criteria, according to
Ross (1993).
1. N(®)=20.
2. N(t) belongs to integer set.
3. if s<t,then N(s) < N(¥).
4. For s<t, N(t)— N(s) equals the number of events that have occurred in the
interval (s,).
A counting process satisfies the independent increments condition if the number

of events in a certain interval (7,,7,) is independent of the number of events in
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interval (7, +s,¢, +5). The Poisson process is the most common assumption in
reliability studies of repairable systems. According to Ross (1993), a counting
process is said to be a Poisson process with rate 4 when

1. N(t)=0.

2. The counting process satisfies stationary and independent increments.

3. The number of events in any interval of length ¢ is Poisson distributed with

mean Ax¢t. Forall s, >0,

P{N(t+5)—N(s)=n}=e" A ') ,n=0,...
il
4. P{N(h)=1}= Ax h+o(h).

5. P{N(h) 22} = o(h).

When the failure rate A(¢) of a Poisson process is not constant but varies in

terms of time, it becomes an NHPP with intensity function A(r), r> 0. A definition
of NHPP is described in the following.
1. N(0)=0.
2. N() has independent increments.
3. P{N(t+h)— N() 22} =o(h).
4. PAN(t+H)— N(®) = 1} = Ak + o(h).
To simulate an NHPP with intensity function A(?) is to generate a sequence of

random variables. Ross (1993) presented a method to generate the first t time

units of a Poisson process with intensity function A(r), r >0, where interarrival
times X,,X,,..,X, from distribution F —%%— independent increments stopping

at N =min{n: X, +...+ X, >1}. The conditional distribution of X, is conditioned
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on X,,X,,..,X,. This conditional probability F, observes the independent
increment property with
F(t) = p{Oeventsin (x,x+r)|eventat x }

= p{ 0 events in (x,x +¢) by independent increments }

= exp{— Iﬁ(x + y)dy}

[.@O=Ax+1) exp{— ]ﬂ(x + y)dy}

h(t) =-I-f;:-§%= A(x +9).

X

The event times X,,X,...., X, , can be simulated by (1) generating X, from F,
and (2) X, to a value generated from F, is equal to ¥,, and then (3) adding X, to

a value generated from F; is equal to X ,, and so on.

Two illustrations of performing the parametric stochastic process follow. In
these illustrations, the underlying distribution is assumed to follow a power-law or
a log-linear form. Assume the failure process follows an NHPP, where the
baseline intensity function is specified as a power-law form; the Pl function can
be expressed as
MLZ)=8xt""exp(Zh),
where § is the shape parameter, 7 is the covariate vector, and f is the
regression coefficient vector that measures the covariate effect. Whens <1, itis a

DROCOF (decreasing rate of occurrence of failures); when s >1, itis an IROCOF
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(increasing rate of occurrence of failures); and when é =1, it is a constant ROCOF
(rate of occurrence of failures).
In an NHPP, the theoretical IMTBF in a power-law intensity function is

described by the equation
IMIBF, ,(t,) = (o, x5xt5 )",
where z, represents a covariate variable, § and v are the shape and scale

parameters, and n denotes the failure count. Likewise, assume the failure
process follows an NHPP, where the baseline intensity function is specified as a

log-linear form. The PI function can be expressed as

At;Z) =exp(u + 8 x1)exp(Z, E ),

where 4,0 are the parameters in the log-linear intensity function, z' is the

covariate vector, and ﬁ is the regression coefficient vector. An NHPP becomes

an HPP when the intensity rate is a constant. For instance, in the case when the
baseline intensity function follows a power-law form, the counting process
becomes an HPP when the shape parameter ¢ is equal to 1. Likewise, in the
case of a log-linear form, parameter 8 =0 leads to an HPP.

Qureshi (1991) reported the relationship of instantaneous mean time between
failures and intensity functions. IMTBF is defined as the derivative of failure time

with respect to the expected number of failures (Patrick (1991) and Ascher and

Feingold (1984)):

IMTBF = (M)_ ,
dt

where

N(#) = the number of failures in(0,¢],
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E[N()] = the expected number of failures in(0,z].
A related measurement, ROCOF (rate of occurrence of failures) is defined as the
reciprocal of IMTBF, which is

1 dEIN()]
IMTBF ~ dt

ROCOF =

Likewise, Qureshi (1991) reported the relationship of cumulative mean time
between failures and intensity functions. CMTBF is defined as the mean time
between failures per event, which is calculated as (Patrick (1991) and Ascher
and Feingold (1984))

¢

CMTBF = :
EIN@)]

where

N(#) = the number of failures in(0,7],
E[N()] = the expected number of failures in(0,].

The event count stratifies the population into strata from event to event, and
creates possibly different intensity functions associated with the event count. The
An.dersen and Gill (1982), AG method, considers recurring events as a counting
process in which each occurrence is independent from other occurrences. As a
result, event count does not play a role in the AG method since recurring events
are assumed to be independent. However, the PWP method utilizes an event
count and stratifies recurring events by blocking effect. For instance, samples

remain in stratum i until event (i +1), then move into stratum (G +1).

2.2.2 Proportional intensity models
In discussing the Pl models, two methods are reviewed: parametric Lawless

and semi-parametric. There are various ways to estimate the parameters of the
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NHPP-PI model. The more accurate method is the parametric Lawless (1982).
Soroudi (1990), Landers and Soroudi (1991), Qureshi (1991), and Qureshi et al.
(1994) summarized the case of a single constant covariate in implementing the
parametric Lawless method, where the underlying baseline hazard function
follows the power-law “Weibull” form. Likewise, Vithala (1994) and Landers et al.
(2001) dealt with an exponential log-linear baseline hazard function. Both works
are highly relevant to this research characterizing other semi-parametric Pl
models. When the underlying distribution is unknown, the semi-parametric Pl
model is preferred. Thus, the relevant formulas are summarized.

When the baseline intensity function is specified as power-law, the parametric

Pl function can be expressed as follows.

A7) =S5 x1* L exp(@P),

where § is the shape parameter.

z, =1, v=exp(f,) has been included into the exponential link function exp(ZP).

The log likelihood function for the parametric model is

— U N U — u ~
L(5,B)=NxUxlogs +(5-1)D_ > logt, + > NxZB— 1} x Nxexp(B).
i=1 i=1

i=1 j=1

The maximum likelihood estimate of § is adapted by Qureshi (1991) from
Lawless (1987), as shown below.
—(NxU)

Sl

i=1 Jj=1 th

5=

N
ty = Zt,.j , where N represents the observed number of failures.
j=1
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The special case of single constant covariate adapted by Qureshi (1991) from

Lawless (1987) yields the score vector U, U, and information matrix with

elements G,,,G,,,G,,,G,, as follows.

u U

U, = ZN"Zti(Jsv exp(f, +2,8)
isi i1
U v,
U, = ZNX Z _ZtiN xz; xexp(B, +z,8,)
=1 i=1
U
Gy = —z tgv exp(f, +z.0)
=1

U
Gy =Gy = _Z tg{ x z; xexp(f, + z,3)

i=1
G, = —Zr;’;‘, X 212 xexp(f, + z,5)-
The formula to derive IMIBF is in terms of 5 and §,,5,, where & is recursively

derived by the Newton-Réphson method. The formula to calculate IM7BF is

(Lawless (1987)):
By = exp(5,),0, = exp(fy + ).
For the power-law NHPP,
A P
IMTBF(t,) = (ﬁx S x zj'l) .
Likewise, given the baseline intensity function specified as log-linear, the

parametric proportional intensity function follows (Cox and Lewis (1966)):
A7) = exp(u+ O x t)exp(ZB) .
Let z, =1, then exp(u) = exp(B,). The parameter u will be included into the

exponential function as exp(Zp) = exp(z, B, + 2,5, + ...z, f3,), and the proportional
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intensity function becomes A(t;Z) = exp(d x 1) exp(ZB). The log likelihood function

for the Lawless parametric model is

L(6.8)= ginzil‘ij +ini XZ; X B_éi(eexl} _Deiﬁ ,
=1 i=1

i=t j=1
where ¢, is the observed failure time corresponding to sample unit i and failure

count j.

I = if,-j ,
=1

where

m represents the number of sample units,
n, is the total failure count corresponding to unit i.

The Maximum likelihood estimator of 4 can be obtained by setting

al‘;gL ~0, 61;gL 0 (Vithala (1994), adapted from Lawless (1987)):
0
n—e®x>'T,
9" - i=1

DICES

i=] j=i
In the special case of single constant covariate, which Vithala presented, the
score vector (U,,U,)’ and information matrix with elements G,,,G,,,G,,,G,;>

(Vithala (1994), adapted from (Lawless (1987)):

U

U, = Zni —”;‘Z(em} —Dexp(f, +2,5,)

=1 i=1

U 1Z .
U, = Znizil “Ez(eﬂ' ~1z, exp(By +2,5)
pac

=1
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1Z A
Gy = "EZ(egT' —Dexp(8, +2,4)
i=1

1 _
Gy =Gy = —EZ(QHT' =Dz, exp(B, +2,5)

i=1

1
G, = "‘52(3% - 1)2121 exp(f, +2,8).
=1

Utilizing the score vector and information matrix, /3, 3, are calculated, for the

scale estimates 1, 22, in the two strata defined by the single covariate
/:"o = ﬂoaﬁl = Bo +:é1 .
The formula to derive IMTBF is in terms of @ and j,, /i,, where & is recursively

derived by the Newton-Raphson method. The formula to calculate IMTBF is
given by Vithala (1994), adopted from Lawless (1987):
IMTBF (1) = e ®*% j=0].

Semi-parametric Pl models have been widely cited since PWP (1981)
proposed this model in the biomedical studies. Multivariate failure time analysis
has been extensively applied in medical research to determine what factors are
critical to the survival pattern for patients. Extending the Cox PH model for single
event data, PWP created the semi-parametric PWP model to estimate the
intensity function in each stratum corresponding to the recurring event count.
Many researchers have utilized the PWP model and some have extended the
PWP to similar models based on different assumptions. The AG model (1982) by
Andersen and Gill and the WLW model (1989) by Wei, Lin, and Weissfeld are
widely cited in the literature. In reliability and maintainability engineering

applications, a number of authors have applied the semi-parametric proportional
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intensity (hazards) model, for example, Ansell and Phillips (1989), Ansell and
Phillips (1990), Landers and Soroudi (1991), Qureshi et al. (1994), Ansell and
Phillips (1997), Landers et al. (2001), Ansell et al. (2001), and Ansell et al. (2003).
A collection of the Pl model applied to different industries includes: marine gas
turbine engines (Asher, 1983), semiconductor, electrical, and pipeline industries
(Ansell and Phillips, 1997), U.S. Army main battle tank (Landers et al., 2001),
water supply industry (Ansell et al., 2001, 2003), etc. Ascher (1983) illustrated
the use of the PWP model for analysis of reliability for marine gas turbine
engines. Ascher and Feingold (1984) suggested application of the PWP model in
the field of reliability engineering. Dale (1985) applied the PWP approach to
simulated data for a reliability growth program with design improvements
implemented after each of the five stages, resulting in a DROCOF. Wightman
and Bendall (1986) and Bendall et al. (1991) cited the PWP model and advised
caution in application for engineering studies. An introduction of PWP, AG, and
WLW models is as follows.

A risk set with event-specific baseline hazard is called a restricted risk set
(Kelly and Lim (2000)). Since the PWP gap time (PWP-GT) and total time (PWP-
TT) models both have event-specific baseline hazards, the intensity function of
the first event is merely decided by these subjects that have recorded first events.
Likewise, for both PWP-GT and PWP-TT, the intensity of the third event depends
only on the subjects that have experienced the second event and then

experience the third event.
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The PWP-GT model has the gap time risk interval (Figure 2.7(a)), while the
PWP-TT model has a counting process risk interval (Figure 2.7(b)). The counting
process has the same length of elapsed time as does the gap time. The SAS

code to program the total time model is written as (start,end, status(1)) for each
observation, where starus(l) denotes failure time and srarus(0) denotes censored

time. For instance, the recurring events occur at time 4, 7, 12 with the follow-up
time 15, the records in the SAS database will be shown as (0,4,1), (4,7,1),
(7,12,), and (12,15,0). Likewise, the SAS dataset for the PWP-GT model is
written as (gap _time, status(0)) . Thus, the records in the SAS dataset will be
shown as (4,1), (3,1), (5,1), and (3,0).

Qureshi (1991) applied the PWP-GT model to engineering reliability. Failure
data simulated as an NHPP with a power-law intensity function were generated
by the Blanks and Tordon (1987) algorithm based on the setting of 20 sample
units divided into two groups by a single covariate (CLASS). Each sample unit
generated complete data (no censoring) with10 failures. Thus, the sample size
associated with failure counts remained the same among all event strata. Using
the PWP-TT method was equivalent to using the WLW method, since they both
shared the same failure data sets. Unrestricted baseline hazard was employed in
this model, which yielded a common baseline hazard for each failure intensity
function in each stratum defined by failure count. Using a gap time dependent
variable in the PWP model, the failure time data were sorted by failure and then
by gap time in descending order before implementing the PH regression analysis

(as PHREG in SAS program).
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Likewise, Vithala (1994) conducted a simulation experiment with failure data
generated by the Law and Kelton (1991) method. The recurring failure events
followedvan NHPP with a log-linear form. The parameter settings are summarized
as follows: 60 sample units, 30 sample units/CLASS=0, 30 sample
units/CLASS=1, 10 failures/unit. Since the sample size with respect to failure
count was equal among the 60 sample units, using the PWP-TT method was
equivalent to using the WLW method. Vithala utilized event-specific baseline
hazards in the PWP-GT model, which resulted in event-specific regression
coefficients corresponding to each stratum defined by failure count in the
estimating process. Like Qureshi (1991), gap time was employed as a dependent
variable to perform the PH regression analysis. Vithala used the same
procedures executed in Qureshi (1991): failure data were sorted by failure counts
and next by gap times in a descending order.

Andersen and»GiII [2] developed the AG method as an extension of the Cox
PH model, to accommodate recurring events in a counting process. The AG
method explains general covariate effects (common baseline intensity function in
the concept of risk set), since each event count re-starts the failure process, and
thus does not feature event-stratifying effects. The risk interval of an AG model

follows a counting process associated with recurring events, where recurrences
(NP, Y,®,Z™) are independent and identically distributed replicates of (N,7,Z2),
and the probability of the occurrence of two events at a given time is zero. Thus,
the risk set of the (n—1)" event is identical as the risk set of the (n)” event. The

AG model is defined as
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A0 = 1P @ OexpPx 2 ()}
, where Y, is an at-risk indicator and ¥ =1 unless the subject is withdrawn

from the study.
A study regarding admissions to psychiatric hospitals for pregnant woman
was investigated by using the AG model. Two states in a Markov process are

defined as admissions and discharge corresponding to two forces of transition

a, (1), 1, (t) . Number of visits to psychiatric hospitals, N,(¢), is a counting process
with intensity function A.(¢) = o, (0)Y,(¢). Parity of the woman (number of children)

and age are covariates in this study. Three covariates of parity status (parity0,

parity2, parity> 3, with A,(¢) representing parity1) and two covariates of age

range (age <18 and age>34) are employed and defined as follows.

|1 parityQ 7 - 1 parity2 |1 parity 23
T7V0 otherwise’ |0 otherwise’ © |0 otherwise
_J1 age<18 _J1 age>34
“10 otherwise’ ® |0 otherwise,

where i represents subject i.
A Markov process model is considered to analyze admissions to psychiatric

hospitals. A time-dependent covariate Z, is introduced to form a semi-Markov

process model, where the covariate is defined as

B 1 re—admitted
710 otherwise.

AG (1982) concluded that the oldest women and women with higher parity have

the highest intensity of admissions to psychiatric hospitals during pregnancy.
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The risk for each recurrence remains the same throughout the entire study
unaffected by earlier events in the AG method, while the intensity function is
affected by earlier recurrences in the PWP method. However, when a subject is
withdrawn from the study, the subject does not contribute any information to the
latter intensity functions based on the AG method, whereas the subject in the
WLW method remains in the analysis. Since the AG model has the counting
process of risk interval (Figure 2.7(c)), the data representation is written as

(start,end, status(0)) for each observation. For instance, the recurring events

occur at times 4, 7, 12 with the follow-up time 15, so the records in the SAS

database will be shown as (0,4,1), (4,7.1), (7,12,1), and (12,15,0). The program
stops executing when the condition: (start < end) fails. The AG method has

common baseline intensity, while PWP-TT has event-specific baseline intensity.

In terms of risk intervals, the AG method utilizes a counting process, whereas
Qureshi (1991) and Vithala (1994) both adopt a gap time formulation. The
duration of the dependent variable in the AG method is collected by gap time but
the risk interval is not affected until the end of the previous event (due to the
property of a counting process), while Qureshi (1991) and Vithala (1994) renew
the risk interval to time zero at occurrence of each event, resulting in an entry
into each new stratum. The AG method and Qureshi (1991) both have common
baseline hazard, while Vithala (1994) has event-specific baseline hazards.

WLW (1989) proposed a marginal method, expanded from the conditional
PWP method, in dealing with recurrent failure data. Compared to the PWP

method, the WLW method has greater or equal risk set, depending on the
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sample size associated with the failure count. The PWP method estimates the
intensity function by considering the subjects having a complete history of
previous recurring events, while the WLW method additionally considers the
subjects that have been withdrawn from the observation. The subjects that have
been censored are still in the risk set; thus, contributing influence on events that
are followed after the censoring time. The risk set of each subject using the WLW
method remains the same regardiess of complete data or censoring events since

a subject is still at risk when the subject has been withdrawn from the experiment.

WLW (1989) in a bladder cancer study examined treatment effects by using
the PWP and WLW models about placebo and thiotepa therapies for tumor
patients. This bladder cancer example collects four recurrence times of tumors

T, ~ T, corresponding to four marginal proportional hazards models. Rather than
fitting each 7, one model at a time, WLW fits four marginal models in one

analysis, simultaneously. This example has two response variables {failure time

and censoring status}, three covariates {treatment, tumour number, tumour size},
and four recurrences of time. For the k£* failure type and the i” failure event

count, the hazard function 4,,(¢) in WLW is assumed to take the form below:

20 = Ay Oexp B, 2,040,
where 4,,(¢)is an unspecified baseline hazard function and B = (,Blk,...., ﬂpk)’ isa

vector of failure-specific regression parameters. z, () denotes a px1 vector of
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covariates for the i subject at time 7 with respect to the k" type of failure,

expressed as z,,(f) = (2,5 (1), 2y, ()2 1 () -

Let X, represent the failure time of the i” subject for the £” type of failure
and let C,, represent the censoring time. X, are observation values of X,,,
where X,, =min N,a.,Ck,.}. The indicator variable A, is utilized for determining the

event as a failure or censoring. Let A, =1,when X, = X, ; otherwise A, =0. Key
assumptions for the WLW method are: (1)X,, L C,, i.e., the failure and censoring
times are independent of each other; (2) (X,A;,Z,) are i.i.d. random vectors,

where Z, represent covariates and i represents event count; and (3) the

regression coefficients [3,. follow a normal distribution with mean B, denoted

Bos Bos fors B) —2— Normal (B,,By» By Be).

WLW (1989) examined a two-sample problem to compare the WLW method
with two other approaches, the AG and PWP (both gap time and total time).
Random variates (1,,1, |=(start,end] are generated from a bivariate exponential
distribution with a correlation parameter ¢ that governs the correlation between
t, and 7,. Two gap times U and V from a bivariate exponential distribution
represent two time endpoints (U,U + V] . The results indicate that the sizes of the
Wald tests in the PWP (gap time) model significantly exceed the nominal level
when the correlation 8 is greater than 0.25, and the sizes in the PWP (total time)

model significantly exceed the nominal level at all 6 values. The results prove
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that PWP can be very sensitive to correlation coefficient ¢ and the assumption of

failure time distribution (bivariate exponential in this case).

The WLW method has the total time of risk interval due to the usage of a

marginal method, and the code is written as (total, status(0)) for each observation.

For instance, if the recurring events occur at time 4, 7, 12 with the follow-up time
15, the records in the database will be shown as (toral _time, status(0))

=(4,D), (1.1), (12,1),and (15,0). The concepts of risk interval and risk set regarding
the WLW method are as follows. The WLW method has total time of risk interval
and event-specific baseline intensity of risk set. Total time carries the risk effect
of earlier events to the later events for the WLW marginal method. The hazard
ratio in the gap time is different from the total time or the counting process. The
hazard ratio in the total time is equal to the ratio in the counting process, for they
share the same time scale. The partial likelihood is defined as the following (Kelly

and Lim (2002)):

_T7A0y)
1= ]J:;[ ZkeR(z‘( ) A (t(k)) ’

where

d : uncensored events,
j:the j* specific event,
R(t(j)): subjects on the risk interval at time #(j).

In terms of risk interval formulation, the WLW method utilizes a total time
formulation, while Qureshi (1991) and Vithala (1994) adopt a gap time
formulation. The duration of the failure times in the WLW method is on a total-

time basis, whereas in Qureshi (1991) and Vithala (1994) it is on a gap-time
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basis. The WLW method resets the risk interval (time clock) to zero at each
stratum, and so do Qureshi (1991) and Vithala (1994). The WLW method and
Vithala (1994) both have event-specific baseline intensity, while Qureshi (1991)
has common baseline intensity.

The pattern of the recurrent data can be seen in many areas as remarked by
Lin (1994), “Examples in biomedical research are the sequence of tumour
recurrences or infection episodes, the development of physical symptoms or
diseases in several organ systems, the occurrence of blindness in the left and
right eyes, the onset of a genetic disease among family members, the initiation of
cigarette smoking by classmates, and the appearance of tumors in littermates
exposed to a carcinogen. Examples in other fields include the repeated
breakdowns of equipment and systems in engineering reliability, the experiences
of different life events by each person in sociological studies, and the purchases
of various products by each consumer in marketing research.”

PWP (1981) proposed a model that generalizes the proportional hazards
model (PH model). This PWP model extends the case of single event to the case
of multiple recurrent events (a stochastic process). Cox (1972) proposed the PH
model by introducing explanatory variables to analyze the failure time data with
censoring. The definition of a hazard rate based on the Cox model is the
instantaneous failure rate between ¢ and ¢+ As under the condition that this
individual has survived after time point ¢, which can be expressed as follows:

. < >
/1(1)23%1 P(LT«A;NITJ)'
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The main structure of a PH model is the product of an explanatory variables

(covariates) z,z,.,....z, in the exponential form and a baseline intensity function:

Mt:Z) = exp@P) 4, ().

The PWP method relaxes the assumption that the failure process follows a
parametric form (e.g., NHPP power-law process). Since the PWP does not
specify the baseline intensity function, it only estimates the covariate treatment

effects. The two PWP models that represent the PWP-GT and PWP-TT are:
AN, 200} = 24, 1,0 exple(®)B, )

AN @), Z(0)} = A, () explz®B, }

The gap time measures elapsed time between any two consecutive events,
whereas total time measures time from entry into the experiment (beginning of
observation). PWP (1981) concluded that the gap time model usually tends to
provide a more precise regression estimator at each failure count compared with
the total time model.

Bowman (1996) surveyed and evaluated the AG, PWP, and WLW methods
applied to needlestick incidents in veterinary practice. Bowman conducted a
simulation based on a bivariate exponential distribution to generate bivariate
recurrent events, in order to control the correlation (&) between recurring events.
Bowman utilized the bivariate exponential distribution (7,7, ) to generate the
consecutive recurring event time T(n) = T,(n) + T,(n), where n is the event count.

The univariate event time T'(n) is composed of 7,(n) and T,(n) with given

correlation . The advantage of this type of simulation data makes it possible to
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manage the correlation of recurring events. In the model evaluation, Bowman
evaluated performance of four methods: PWP-GT, PWP-TT, AG, and the WLW
models, applied to the GT model as superior and then used it to analyze the
needlestick injury data.

Lin (1994) also evaluated the PWP, AG, and WLW methods of Cox

regression analysis in multivariate failure time data using a marginal approach.
Lin let 7, be the time when the k” type of failure occurs on the i* unit. Lin also
let C, be the corresponding censoring time, X, =min(7,,C,) with the resulting
A, =I(T, <C,). The covariate vector for the i” unit with respect to the k" type
of failure is Z, =(Z,....Z,,). The marginal approach can be expressed in the two
forms below addressed by WLW and LWA (Lee-Wei-Amato) accordingly.

WLW : 2,(1:Z,) = A, () exp{Z,, (OB}

or

LWA: 4, (1;Z,) = A, (") exp{Z,(1)B'} .

The LWA assumes a common baseline intensity function across all strata defined
by the failure type. The partial likelihood functions for g under WLW and LWA,

corresponding score vector, and information matrix can be obtained from Lin
(1994).

Wei and Glidden (1997) have reviewed the Cox-based methods designed to
model recurrent data, and summarized the strengths and weaknesses for each
method. In a commentary on the Wei and Glidden paper, Lipschutz and Snapinn

(1997) stressed the two concepts of “event times” and “risk sets” as crucial to
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choosing the appropriate model. First, event elapsed times are related to the total
time, gap time, and counting process. The PWP-TT and WLW are modeled by
total time, while only PWP-GT is modeled by gap time. The risk interval of the AG
model belongs to the counting process class. Intuitively, total (global) times within
a subject are highly correlated, with similar indication on the first recurrence and
subsequent events. The total time model may indicate large treatment effect
throughout the entire study, although the gap time model has indicated little
treatment effect beyond a certain recurrence. The counting process concept of
the AG method implies each recurrence is not affected by previous events, and
does not contribute to future events.

The risk set consists of the subjects at risk for a specified event (e.g., failure).
There aré three types of risk sets: conditional (e.g., PWP), counting process (e.g.,
AG), or marginal (e.g., WLW). As a marginal method, the WLW method assumes
a subject is at risk regardless of event count until the observation for the subject
terminates by censoring. The AG method also provides an index of a general
covariate effect, which is expressed by the common baseline intensity
(unrestricted risk set). However, a subject in the PWP method has event-specific
baseline intensity (restricted risk set), in that the proportional intensity of event &
only considers the subjects that have experienced (k —1) events. Lipschutz and
Snapinn (1997) suggested guidelines as follows in choosing the appropriate
models:

e Use total time, common baseline hazard (unrestricted risk set) when the

general effect is of interest.
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e Use gap time, event-specific baseline hazards (restricted risk set) when
the primary concern is how the treatment will affect the recurring events
beyond the first occurrence.

Some Cox-based proportional hazards models are very sensitive to
misspecification due to dependence structure that exists among recurring events.
Examples include the AG and PWP models (Wei and Glidden (1997)). The
misspecification problem causes parameter estimators to become overestimated
or underestimated. Kelly and Lim (2000) addressed three ways to deal with
misspecification problems: conditional, marginal, and random effects. The
conditional method introduces time-variant covariates intended to capture the
dependence structure. The marginal method utilizes a robust variance named a
“sandwich estimator’, where a robust variance is added to the variance of the
estimator. The approach of random effects, also named the frailty method,
includes a random covariate into the model aimed to induce the dependence
structure among the failure events. Kelly and Lim (2000) applied the conditional
and marginal approaches to childhood infectious disease cases, and concluded
that applying the marginal method (robust variance) is not effective to resolve
misspecification problems if any dependence exists.

Jiang et al. (1999) investigated the misspecification problem and addressed
three potential misspecification factors: (1) neglect of random effects, (2) omitted
covariates, and (3) measurement error. They commented that in a special case
where there is no measurement error, it will not affect the point estimator.

However, the variance adjustment is needed, which can be attained through a
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sandwich formula. If both errors exist in the model, a double-sandwich formula is
derived to adjust the variance. A naive estimator requires the adjustment to
reach a consistent estimator. As for the measurement error associated with
covariates, Jiang et al. (1999) illustrated an example in a skin tumor study.
Treatment assignment (Se or placebo) and baseline (plasma Se) status are
chosen as two covariates. The treatment assignment is accurate without any
error, whereas the Se status may result in a measurement error. Other
researchers have worked on the robust variance model, such as Lin and Wei
(1989), and Therneau and Hamilton (1997), to name a few.

Risk interval can be defined by three formulations: (1) gap time, (2) total time,
and (3) counting process. Risk interval determines whether a model is marginal
in the total time or conditional in the gap time. The risk interval of any event in
total time is not influenced by any previous events, but measures time from entry
into the experiment (beginning of observation). However, the risk interval of the
gap time begins from the end of last event (Kelly and Lim (2000)). Counting
processes use the total time scale and share the same elapsed time as does the
gap time model. However, the risk interval starts from the previous event instead
of the entry time. Kelly and Lim (2000) illustrated three risk interval formulations
shown in Figure 2.7. Three subjects 4, B, and C are in the experiment.

Based on the common or event-specific baseline intensities, the risk set is
labeled as either unrestricted or restricted. Kelly and Lim (2000) defined three
possible risk sets {(1) unrestricted, (2) restricted, and (3) semi-restricted} in

deciding which sample units are at risk of contributing to event k. Table 2.1
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summaries the methods Kelly and Lim categorized on a basis of risk set versus
risk interval.

The LWA model, similar to the WLW model, has a common baseline intensity
function (Lin (1994)). The model Qureshi (1991) employed in a robustness study
of the PWP model can be classified as (risk interval, risk set) = (gap time,
common). Likewise, Vithala (1994) may be classified as (risk interval, risk set) =
(gap time, event-specific). The PWP-TT (termed as PWP-CP in Kelly and Lim
(2000)) is specified as a counting process instead of a total time model, due to
the conditionality. PWP-CP is a stratified AG model. A marginal approach, such
as the WLW method, employs the total time concept since subjects are at risk

since the entry of the experiment.
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Figure 2.7(a)-(c). Risk interval formulations (Kelly and Lim (2000))
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Table 2.1. Taxonomy of risk interval and risk set for each model (Kelly and Lim

(2000))
Models Risk set/ baseline intensity
Risk Unrestricted/ Semi-restricted/ Restricted/
interval common event specific event specific
PWP-GT (1981)

Gap time Qureshi (1991) Vithala (1994)
Total time LWA (1994) WLW (1988)
Counting

process AG (1982) PWP-TT (1981)

2.2.3 Robustness studies

The section reports the results of the researcher’s attempts to replicate the
work of Qureshi and Vithala. This exercise was beneficial in gaining thorough
understanding of their studies and results. It also serves, on a small scale, to
validate their results. Most importantly, the studies provided insights regarding
extensions of the work that would contribute to the body of knowledge and
potential for engineering applications.

The PWP method is an appealing method to model the recurrent failure
processes since it does not require specification of a baseline intensity function.
Qureshi et al. (1991) extended the research begun by Landers and Soroudi
(1991) in a pilot study. Qureshi investigated the robustness of a PWP-GT model
for the case of data from a true underlying process that is an NHPP with power-
law intensity function. PWP-GT estimates were compared to the true underlying
model and to the estimates obtained from the parametric Lawless (1987) method.
They concluded that if the baseline intensity function is a power-law form, the
Lawless method is preferred to model the recurrent failure processes for constant

and moderately IROCOF.
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If the true underlying process is NHPP, with power-law intensity function, a
heuristic expression may be postulated to state the time to the »” failure

(Soroudi (1990)):

where z, represents a covariate variable, and § and v are the shape and scale
parameters of the power-law form. Note that E[n(t)]=n, holds since the following

are equivalent in a counting process:

e The expected number of failures happened at time ¢ = E[n(t)].
e The n” failure at time ¢ =n,.

Simulated datasets generated from an NHPP with the power-law intensity
function are employed a; the sample failure times in a recurrent failure process.
The aim of this study is to model this recurrent process fitted by two main
methods, a parametric Lawless method, and a semi-parametric PWP-GT method,
which are discussed in the following. The Lawless method involves the

estimation of shape parameter &, intercept and slope regression coefficients

,30, ,31, and instantaneous mean time between failures IMTBF. The PWP-GT
method involves slope regression coefficient /3’1, survival function $, and mean

time to failures MTTF . The performance measurements for the Lawless or PWP-

GT method, compared with the theoretical value of instantaneous mean time

between failures IMTBF are collected. BIAS, MAD, and MSE are employed as

the performance measures fo reveal the robustness of the estimating process.
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The main purpose of the study is to investigate how well the PWP-GT can
estimate the theoretical intensity function. In other words, when the time is

specified as ¢, (n failure times have been observed), the corresponding time to

next failure (n+1), MTTAFM1 is estimated either by the Lawless or PWP methods

and compared to the theoretical M7TTF, . The PWP method utilizes the

ne1e
nonparametric Product-Limit estimators, integrating the areas under its estimated
survival function, to derive the mean time to next failure.

There is an update of the programming syntax in SAS 8.0 regarding the
usage of PHGLM, which has been replaced in the SAS library by PHREG. A
blocking option in PHGLM is utilized to allow all subjects to be stratified in each
stratum and to obtain an intensity function representing the stratum. PHGLM
syntax is replaced by “STRATA” or “BY” statement in PHREG. Since the PHGLM
procedure employed in Qureshi’'s work is renewed to PHREG in Release 8.01
version, the blocking optidn in PHGLM is changed to the programming statement

shown below.

PROC PHREG DATA=FILE_NAME;
MODEL FAILURE__TIME=COVARIATE;
STRATA FAILURE_COUNT;

FILE_NAME : the file which stores the recurrent data
FAILURE_TIME: recurrent failure time data
COVARIATE: the covariate variable
FAILURE_COUNT: the stratum is defined by failure count.
There is one clarification to Qureshi’s work that the blocking option is
supposed to employ failure count as a stratification variable. Thus, there is one

regression estimate in each stratum, which means a covariate effect is estimated

within each stratum, instead of one global covariate regression coefficient across
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all strata. The global coefficient estimate in Qureshi is actdally the strata estimate;

the results should be modified to report regression coefficient estimates in all

strata defined by event count. Qureshi did in-depth examination of the 2

estimates for the special case of an HPP, for which the strata 8 are theoretically

equal.
If the true underlying process is NHPP with a power-law baseline intensity

function, the Lawless method is appropriate to estimate the intensity function

A(t) . The parametric Lawless method is utilized to obtain three estimators, &,
,ﬁo ,and ﬁl in terms of the seed number, shape parameter¢d , baseline scale
parameter v, , alternate scale parameter v,, and sample size. The chosen values

of 8,u,, and v, in Qureshi’'s work are taken from the air-conditioning data set for

plane #7908 (Proschan (1963)) to base the robustness study in parameter values
for a realistic range. Two classes that can be distinguished by covariate effect
divide all samples evenly. Experiments on eight combinations of the sample

size= 20 and 60 and shape parameter=0.5, 1, 1.5, and 3 are investigated in this
research to duplicate the Qureshi estimates of # and mean time to »” failure
(IMTBF(n)), for n=12,...,10. Note that each value of IMTBF(n) is determined by
the average of three replicates in terms of seed numbers 539, 255, and 59. The
results of the estimation on, &, BO, and ,él are computed. However, only three

examples of § = 0.5, 1.0, and 1.5 are shown in Table 2.2 for verification

purposes. To compare with the Qureshi results, the case of § =1.5 is taken from
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Qureshi (1991) and presented here. The other two cases of § =0.5 and § =1

are not listed in Qureshi (1991).

Table 2.2. The resuits of (3 , ,80 . ﬁl) using the Lawless method

20 sample units, 10 failures/unit, 10units/class, 2 classes, § =0.5,0, =0.001,v, =0.01

Seed number S By B
538 0.53729 -7.539608 2.2746569
255 0.48321 -6.632990 2.0593530
59 0.51618 -7.110656 2.3367614
Average 0.51223 -7.061080 2.2235900
20 sample units, 10 failures/unit, 10units/class, 2 classes, § =1,v, = 0.001,v, =0.01
Seed number S By B
539 1.07459 -7.5639608 2.2746569
255 0.96642 -6.5632990 2.0593530
59 _1.03237 -7.110656 2.3367614
Average 1.02446 -7.061080 2.2235900
20 sample units, 10 failures/unit, 10units/class, 2 classes, § =1.5,0, = 0.001,0, = 0.01
Seed number d By b
538 1.61188 -7.539608 2.2746569
255 1.44963 -6.532990 2.0593530
59 1.54856 -7.110656 2.3367614
Average 1.53669 -7.061080 2.2235900
Average(Qureshi) 1.53670 -7.061100 2.2236000

IMTBF can be obtained using the parametric Lawless method from the

following formula, where the estimator Sis recursively derived by the Newton-

Raphson method and the formula to scale estimates in two classes v,,v, are

shown below.

By =exp(fy), 0, =exp(f, +5)
IMTBF, (1, = (5% 8 x 15

Us
n
- t
£,=0—=1 .
v,
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Table 2.3 presents the results of utilizing the Lawless method to estimate this

NHPP in the combination of 20 sample units, § =1.5, and v, =0.001, v, =0.01 in

two classes.

Tabie 2.3. The parametric Lawless method

20 sample units, 10 failures/unit, 10units/class, 2 classes, & =1.5,0, = 0.001,0, =0.01

CLASS =0
n 2
Failure E(t,) IMTBF(t))  IMTBF (t,) €, € €,

1 100.00 66.67 64.07 -0.03902  0.039023  0.001523

2 158.74 52.91 49.99 -0.05518  0.055178  0.003045

3 208.01 46.22 43.24 0.06450  0.064502  0.004161

4 251.98 42.00 39.01 0.07106  0.071062  0.005050

5 292.40 38.99 36.02 007612 0076119  0.005794

6 330.18 36.69 33.74 -0.08023  0.080229  0.006437

7 365.93 34.85 31.93 -0.08369  0.083691  0.007004

8 400.00 33.33 30.44 -0.08668  0.086679  0.007513

9 432.67 32.05 29.19 -0.08931  0.089306  0.007976

10 464.16 30.94 28.11 -0.09165 _ 0.091650  0.008400

BIAS = -0.071793367
MAD = 0.071793367
MSE = 0.006069119

BIAS (Qureshi) = -0.0718
MAD (Qureshi} = 0.0718 :
MSE (Qureshi) = 0.0061

CLASS = 1

A 2

Failure E(t,) IMTBF(t,)  IMTBF (t,) €, €n e,
1, 21.54 14.36 15.80 0.100222  0.100222  0.010044
2 34.20 11.40 12.33 0.081725 0.081725  0.006679
3 44.81 9.96 10.67 0.071050  0.071050  0.005048
4 54.29 9.05 9.62 0.063540  0.063540  0.004037
5 63.00 8.40 8.88 0.057751  0.057751  0.003335
6 71.14 7.90 8.32 0.053044  0.053044  0.002814
7 78.84 7.51 7.88 0.049081  0.049081  0.002409
8 86.18 7.18 7.51 0.045660  0.045660  0.002085
9 93.22 6.90 7.20 0.042652  0.042652  0.001819
10 100.00 6.67 6.93 0.039969  0.039968  0.001597

BIAS = 0.062708426
MAD = 0.062708426
MSE = 0.004778524
BIAS (Qureshi) = 0.0627
‘ MAD (Qureshi) = 0.0627
MSE (Qureshi) = 0.0048

If the true underlying process is known to be NHPP with a power-law baseline
intensity function, the Lawless method is a common method to estimate the

intensity function A(¢). Under this circumstance, the PWP-GT method provides a
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way to approach the theoretical intensity function without requiring knowledge of

the true underlying process. Utilizing the semi-parametric PWP-GT method to

obtain MTTF in terms of the seed number, shape parameter §, and sample size,

the results of MTTF in the example of § =1.5,0, = 0.001,v, = 0.01 are

summarized in Table 2.4. Note that two classes of the covariate effect divide all

samples evenly.

Table 2.4. Average MTTF obtained from the PWP-GT method

20 sample units, 10 failures/unit, 10units/class, 2 classes, § =1.5,v, = 0.001,0, =0.01

CLASS =0
MITF Average MTTF Qureshi results
Failure 539 255 59
1 56.41 61.19 59.47 59.47 59.47
2 67.22 58.13 62.73 62.73 62.73
3 55.85 4092 4199 41.99 41.99
4 46.15 53.53 48.89 48.89 48.89
5 31.18 61.51 46.98 46.98 46.98
6 46.57 37.30 39.41 39.41 39.41
7 37.13 24.17 38.43 38.43 38.43
8 34.68 21.24 29.72 29.72 29.72
9 46.14 35.09 41.18 41.18 41.18
10 25.08 39.14 - 31.34 31.34 31.34
CLASS =1
- MTTF Average MTTF Qureshi results
Failure 539 255 58
1 23.92 15.96 20.78 20.22 20.22
2 17.53 13.25 18.38 16.39 16.39
3 6.85 10.79 5.31 7.65 7.65
4 12.86 12.54 8.61 11.34 11.34
5 5.81 13.08 11.63 10.17 10.17
6 16.48 8.48 7.68 10.87 10.87
7 6.30 13.97 7.89 9.39 9.39
-8 6.20 9.28 8.32 7.93 7.93
9 10.47 6.67 7.84 8.33 8.33
10 6.04 10.04 5.89 7.32 7.32

MITF can be obtained using the semi-parametric PWP-GT method by

implementing the Product-Limit method, which integrates the area under its

survival function. Experiments on eight combinations of the sample size= 20, 60

and shape parameter=0.5, 1, 1.5, 3 are investigated in the estimating of mean
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time to »* failure (MTTF(n)), for n=1.2,...,10. Note that each value of MTTF(n)
is determined by the average of three replicates in terms of seed numbers 539,

255, and 59. The results of one example § =1.5 and v, =0.001, v, =0.01 are

summarized in Table 2.5.

Table 2.5. The semi-parametric PWP method

20 sample units, 10 failures/unit, 10units/class, 2 classes, 6 =1.5,0, = 0.001,0, = 0.01

CLASS=0

A 2

Failure n E(t) IMTBF(t,) MITF €, |en | e,
1 100.00 66.67 62.73 -0.05805 0.05805 0.003487
2 158.74 52.91 41.99 -0.20644 0.208439 0.042617
3 208.01 46.22 48.89 0.057674 0.057674 0.003326
4 251.98 42.00 46.98 0.118642 0.118642 0.014076
5 292 40 38.99 39.41 0.010852 0.010852 0.000118
6 330.19 36.69 38.43 0.047479 0.047479 0.002254
7 365.93 34.85 29.72 -0.14722 0.147215 0.021672
8 400.00 33.33 41.18 0.2354 0.2354 0.055413
9 432.67 32.05 31.34 0.02215 0.022153 0.000491

10 464.16 30.94

BIAS = 0.00391001
MAD = 0.10054481
MSE = 0.017931775
BIAS (Qureshi) = 0.0038
MAD (Qureshi) = 0.1005
MSE (Qureshi}) =0.0179

CLASS = 1
a 2
Failure n Eft,) IMTBF (&) MTTF €, Ienl e,
1 21.54 14.36 16.39 0.141135 0.141135 0.019919
2 34.20 11.40 7.65 -0.32894 0.328938 0.1082
3 44 81 9.96 11.34 0.138705 0.138705 0.019239
4 5429 9.05 10.17 0.123998 0.123998 0.015376
5 63.00 8.40 10.87 0.294129 0.294129 0.086512
6 71.14 7.90 9.39 0.187975 0.187975 0.035335
7 78.84 7.51 7.93 0.056162 0.056162 0.003154
8 86.18 7.18 8.33 0.159933 0.158933 0.025579
9 93.22 6.90 7.32 0.060107 0.060107 0.003613
10 100.00 6.67 :

BIAS = 0.092578441
MAD = 0.165675758
MSE = 0.039615717
BIAS (Qureshi) = 0.0926
MAD (Qureshi) = 0.1657
MSE (Qureshi) = 0.0396

The robustness test is aimed to evaluate the performance of two methods in

estimating the instantaneous mean time between failures that come from an
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NHPP with underlying power-law intensity function. Three performance
measurements are utilized for the comparison of the Lawless and PWP-GT
methods in estimating the mean time to the »” failure. The definitions of three
performance measurements BIAS, MAD (mean absolute deviation), and MSE

(mean squared error) are written in the following.

IMTBF(t,)~ IMTBF(z,)
IMTBF(t,)

where e, = in the Lawless method

_ MTTF(t,)— IMTBF(t,) :

., n the PWP method.
IMTBF(t,)

and e

All combinations of the sample size= 20, 60 and shape parameter=0.5, 1, 1.5,
3 are investigated in this duplication of results to estimate mean time to »"
failure, n=1,2,...,10 implemented by the Lawless and PWP methods. Each value
of either IMTBF(n) or MITF(n) is determined by the average of three replicates

of different seed numbers in order to decrease the bias effect. The robustness
tests of the estimating methods are summarized in Table 2.6 and Table 2.8. To
compare with the Qureshi results, Table 2.7 and Table 2.9 are taken from

Qureshi (1991) and listed here.
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Table 2.6. The summary of the robustness test using the lawless method

10 failures/unit, 10units/class, 2 classes, v, = 0.001,0, = 0.01

CLASS =0 CLASS =1
) BIAS MAD __MSE BIAS MAD MSE
20 05 | -D.O71754 0.071754 0.006063 0.062747 0.062747 0.004784
20 1.0 | -0.071754 0.071754 0.006063 0.062747 0.062747 0.004784
20 15 | -0.071793 0.071793 0.006069 0.062708 0.062708 0.004779
20 3.0 | -0.071763 0.071763 0.006064 0.062740 0.062740 0.004783
60 0.5 | 0.019899 0.040084 0.003308 -0.036847 0.054280 0.004081
60 1.0 | 0.019899 0.040084 0.003308 -0.036847 0.054280 0.004081
60 1.5 | 0.019804 0.040075 0.003305 -0.036914 0.054320 0.004087
60 3.0 | 0.019804 0.040075 0.003305 -0.036914 0.054320 0.004087
* U represents the sample size in terms of the number of sample units.
Table 2.7. Qureshi results
10 failures/unit, 10units/class, 2 classes, v, =0.00L,v, =0.01
CLASS =0 CLASS =1

e o BIAS MAD _MSE BIAS MAD  MSE
20 05 -0.0712 0.0712 0.0060 0.0632 0.0632 0.0048
20 10 -0.0721 0.0721 0.0061 0.0625 0.0625 0.0047
20 15 -0.0718 0.0718 0.0061 0.0627 0.0627 0.0048
200 30 -0.0718 0.0718 0.0061 0.0627 0.0627 0.0048
60 05 0.0208 0.0401 0.0033 --0.0363 0.0540 0.0040
60 1.0 0.0197 0.0401 0.0033 -0.0370 0.0544 0.0041
60 15 0.0193 0.0400 0.0033 -0.0372 0.0545 0.0041
60 3.0 0.0197 0.0401 0.0033 -0.0370 0.0544 0.0041

? U represents the sample size in terms of the number of sample units.

Table 2.8. The summary of the robustness test using the PWP method

10 failures/unit, 10units/class, 2 classes, v, =0.001,v, =0.01

CLASS =0 CLASS =1
v s BIAS MAD MSE BIAS MAD MSE
20 05 0.059314 0.180375 0.059257 0.590499 0619370  0.662950
20 1.0 | -0.032945 0.119595 0.023036 0.134369 0.209770 0.059830
20 1.5 | 0.003910 0.100545 0.017932 0.092578 0.185680 0.039620
20 3.0 | 0.092401 0.147581 0.030666 0.105328 0.177390 0.040060
60 05 0.325973 0.325973 0.279226 0.331310 0.341870 0.236930
60 1.0 | 0.041010 0.091598 0.012567 0.015725 0.078300 0.008040
60 1.5 | 0.033088 0.063391 0.007110 -0.026681 0.069790 0.007570
60 3.0 | 0.082385 0.087137 0.012807 -0.029658 0.050720 0.005210
U represents the sample size associated with sample units.
Table 2.9. Qureshi results
10 failures/unit, 10units/class, 2 classes, v, =0.00Lv, =0.01
CLASS =0 CLASS =1

ye 1) BIAS MAD MSE BIAS MAD MSE

20 05 0.0593 0.1804 0.0593 0.5905 0.6194 0.6629

20 10 -0.0329 0.1196 0.0230 0.1343 0.2087 0.0598

20 15 0.0039 0.1005 0.0179 0.0926 0.1657 0.0396

20 30 0.0936 0.1475 0.0310 0.1053 0.1774 0.0401

60 05 0.3260 0.3260 0.2792 0.3313 0.3419 0.2369

60 1.0 0.0410 0.0916 0.0126 0.0157 0.0783 0.0080

60 15 0.0331 0.0634 0.0071 -0.0267 0.0698 0.0076

60 3.0 0.0821 0.0863 0.0127 -0.0297 0.0507 0.0052

2 U represents the sample size associated with sample units.
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Another crucial contribution from Qureshi (1991) comes from the model
confirmation. The case of § =1was assumed and a regression analysis ANOVA

was performed by the GLM procedure in the SAS software. The intension of the
study is to find the slope and intercept estimates (3 ,0p,0,) inthe case of 6§ =1,
v, =In(0.001) = 6.9078 , v, = In(0.01) = 4.6051 as theoretical values. Theoretically,
foran HPP (6 =1), the slope is equal to zero and the failure intensity equation is
simplifiedto

M =vxSxt* T =v.

The results taken from Qureshi (1991) are listed in Table 2.10.

Table 2.10. GLM summary (Qureshi (1991))

Siope intercept -
Units w=4u=41 estimate estimate A ¢ statistics®
0.001 0.0298(0.0917)2 6.5895(0.7665) 0.0014 -0.4153
20 0.010 0.0525(0.0817) 4.3560(0.5563) 0.0128 -0.448
0.001 0.0206(0.0438) 6.7645(0.3658) 0.0012 -0.3917
60 0.010 -0.0232(0.0438) 4.7514(0.2655) 0.0086 0.5507
0.001 -0.0118(0.0362) 7.0079(0.3025) 0.0009 0.3309
120 0.010 0.0289(0.0362) 4.4562(0.2196) 0.0116 .6785

“ Estimated standard errors in parentheses
® ¢ statistics for H, :intercept = In(1/ 1)

Vithala (1994) extended the work of Qureshi by investigating the baseline
intensity function in a log-linear form. Vithala reached the same conclusions that
the PWP-GT model performs well in the case of constant and moderately
increasing ROCOF. The research of Qureshi et al. (1991) and Vithala (1994)
both confirm the PWP-GT model is a robust method for many important
applications, in which the baseline intensity function is unknown.

One correction to the Vithala code needs to be made in order to run the PWP-

GT method. On page 157, the code is

R=(LOG(THETA*T+ EXP(MU))-MU)ITHETA:
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It should be modified as follows, fo allow the case ¢ =0 without a divided-by-zero

error.

IF THETA=0 THEN R=T/EXP (MU);
ELSE R=(LOG(THETA*T+EXP(MU))-MU)THETA;

There are three corrections to the SAS code that Vithala wrote to implement the
parametric Lawless method.

1. on page 188, Vithala wrote

DATA INSERT,
SET THETA;
RETAIN XY 0,

DROP ITEM T FAILURE CLASS MU Y G; — delete this line since the variable
mentioned here does not exist in the data file theta.

2. on page 189, the code reads

DATA MIX;
MERGE MULTIPLY PURGE;
PROC PRINT DATA=MIX;

DROP AHHHVKE; — delete this line since the variable mentioned here does not
exist in the data files multiply or purge.

3. on page 192, it says

DATA ALIGNED;
SET ALIGNED;
BETAIO=BETAI,
DROP E BETAY;

The code is corrected by two data generating statements shown below.

DATA ALIGNED;

SET IREGRESS;
RETAIN E 0;

E=E+1;

IF E>1 THEN DELETE;

DATA REDUCE;
SET ALIGNED;

BETAIO=BETAI,
DROP E BETAI;
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If the true underlying process is an NHPP, with log-linear baseline intensity

function, a heuristic expression may be postulated to state the time to »n” failure

(Vithala (1994)):

t,=—xlLn

1 (Gxn +1j,n=1,2,...,n.
e 7

where p,,i = class0,class1 represents a covariate variable. 8, 4 are two
parameters in the log-linear form as e**%.
Note that E[n(r)]=n, holds since the following are equivalent in a counting

process.

e The expected number of failures at time ¢ = E[n(t)].
e The n” failure at time t=n,.

However, for the HPP case (when 8 =0), ¢, is not defined in the proceeding
equation due to division by zero. The heuristic value of ¢, can be obtained from

the formula utilized in the case of HPP of Qureshi work when & =1 below:

The estimation of intensity functions is approached by two methods: the

parametric Lawless and semi-parametric PWP-GT. The Lawless method involves
the estimation of the shape parameter 4, regression coefficients 4,, 3,, and
instantaneous mean time between failures IMTBF . The shape parameter ¢

produces an IROCOF when positive, a constant ROCOF when zero, and a

DROCOF when negative. The PWP-GT method involves regression coefficient

J,, survival function S, and mean time to failure MTTF .
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In an NHPP, the theoretical IMTBF in a log-linear intensity function is derived

by the following equations

IMTBF(t,) = ¢ """
IMTBF(t,)=¢ " when =0,

where z, represents a covariate variable and @ and x4, are the parameters of

the log-linear intensity function.

BIAS, MAD, and MSE are employed as the performance measures to perform
robustness tests. The main purpose of the study is to investigate how well the
PWP-GT can estimate the theoretical intensity function. In other words, when the

time is specified as ¢, (» failure times have been observed), the corresponding
expected time to next failure (n+1), M:I"IA’FH+1 is derived either by the Lawless or

PWP-GT methods for comparison with the theoretical MTTF, ;.

If the true underlying process is NHPP with a log-linear baseline intensity

function, the Lawless method is appropriate to estimate the intensity function A(r).

The parametric Lawless method is utilized to obtain three estimators, é, ,BO, and

ﬁl in terms of the seed number, parameter 8, baseline scale parameter 4, ,

alternate scale parameter y,, and sample size. Two classes distinguished by a

covariate divide all samples evenly. Experiments on four combinations of the

sample size U = 60, 120 and parameter 6 =1.2, 2.0 are investigated in this
research to duplicate the Vithala estimates of mean time to »” failure
(IMTBF(n)), for n=12,...10. Note that each value of IMTBF(n) is determined by

the average of three replicates of seed number 539, 255, and 59. The results of
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the estimation on, &, §,, and 5, are shown in Table 2.11. To compare with the
Vithala results, the case of § =1.2,U =60 is taken from Vithala (1994) and
presented here. The other three cases of 9 =2.0,U =60, §=12,U =120, and

6 =2.0,U =120 are not listed in Vithala (1994).

Table 2.11. { é ,éo . ,é]) obtained from the Lawless method

60 sample units, 10 failures/unit, 30units/class, 2 classes,
0=12,u,=-69,u, =-4.6

Seed number [ B B
539 1.241880 -7.282879 2.5032100
255 1.275460 -7.476738 24971794
59 1.350040 -7.891322 2.5818163
Average 1.289127 -7.550310 2.5274020
Average(Vithala) 1.289130 -7.5650890 2.5277650

IMTBF can be obtained using the parametric Lawless method from the
following formula, where the estimators 4,4, and 0 are obtained by the

Newton-Raphson method and using the following formulas:

£y = By, ity = Py + B
IMTBEF(z,) = ™)

t, is heuristically derived from NHPP with a log-linear form, by the expression

t = %x Ln(a X7 + 1),;1 =12,...n

n e,u
Table 2.12 has the results of utilizing the Lawless method to model this NHPP in

the combination of 60 sample units, 6 =1.2, 4, =-6.9, 11, = —4.6 in two classes.
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Table 2.12. The parametric Lawless method

60 sample units, 10 failures/unit, 30units/class, 2 classes, & =1.2, y, =-6.9, 1, = 4.6
‘ CLASS =0 :
N 2

n Z, IMTBF(t,) IMTBF (t,) €, e, e,

1 5.902634188 0.83283407 0.942768 0.1322716  0.132272 0.017486
2 6.479907133 0.416491777 0.4479323 0.0754889 0.075489 (.005699
3 6.817678122 0.277700038 0.2888062 0.0435943 0.043594 0.0019
4 7.057354876 0.208289602 0.2127757 0.0215378 0.021538 0.000464
5 7.243272849 (.1666388677 0.1674302 0.0047501 0.00475 2.26E-05
‘6 7.395184155 0.138869451 0.1376527 -0.008762 0.008762 7.68E-05
7 7.52362639%4 (.119033338 0.1166474 -0.020045 0.020045 0.000402
8 7.634890059 0.104155733 0.1010608 -0.029714 0.029714  0.000883
9 7.733032869  0.092583953 0.0890505 -0.038165 0.038165 (.001457
10 7.820825524 (.083326335 0.0795215 -0.045661 0.045661 0.002085
BIAS = 0.020106

MAD =0.041592
MSE = 0.00355
BIAS (Vithala) = 0.020698
MAD (Vithala) =0.041681
MSE (Vithala) = 0.003581
CLASS =1
~ 2

n L, IMTBF(t,) IMTBF (t) €, e, e,

1 3.992219332 0.826410878 0.88376 0.0693954 0.069385 0.004816
2 4566373547 0.414928835 0.421588 0.0160482 0.016048 0.000258
3 4903101776 0.277004333 - 0.273129 -0.0139892 0.013882 0.000196
4 5142256551 0.207897967 0.200666 -0.034786 0.034786 0.00121
5 5.327861145 0.166387916 0.157965 -0.050622 0.050622 0.002563
6 5.479563451 0.138695258 0.129906 -0.063372 0.063372 0.004018
7 5607856365 (.118905331 0.110104 -0.074021 0.074021 0.005479
8 5.719008014 0.104057711 0.085405 -0.083149 0.083149 0.006914
9 5817063689 0.092506494 0.084077 -0.091127 0.091127 0.008304
10 5804786627 0.083263587 0.075087 -(.098205 0.098205 0.009644
BIAS = -0.0362

MAD = 0.05517
MSE = 0.00422

BIAS (Vithala) = -0.03597
MAD (Vithala) = 0.055057
MSE (Vithala) = 0.004203

Utilizing the semi-parametric PWP-GT method to obtain M7TF in terms of the

seed number, parameter &, and sample size, the results of MTTF in the

example of =12, 4, = -6.9, 4, = —4.6 are summarized in Table 2.13. Note that
two classes that can be distinguished by the covariate effect divide all samples

evenly. There is a calculating error in Vithala table regarding the average MITF

in failure numbers 7, 8, and 10 of CLASS=1, which should be corrected as
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0.1103333, 0.139, and 0.11, accordingly, based on the three MTTF values in

Vithala table listed in Table 2.14. After the correction, the duplicative results are

very close to the Vithala results, which prove that the duplicative work is reliable.

Table 2.13. Average MTTF obtained from the PWP method

60 sample units, 10 failures/unit, 30units/class, 2 classes, 8 =1.2, y, = ~6.9, 14, = 4.6

CLASS =0
MITF Average MITTF Vithala resulis
Failure 539 255 58

1 5.349641982 5.198709123 5.231432122 5.259927742 5.26

2 1.121911863 1.045134844 1.005004705 1.057350471 1.0573
3 0.357002717 0.499915438 0.327856446 0.394924867 0.395
4 0.257464462 0.297334521 0.342227573 0.299008852 0.29867
5 0.15745239 0.298393834 0.261153878 0.239000067 0.23867
6 0.207883454 0.171514117 0.156506356 0.178634642 0.179
7 0.158173277 0.150163123 0.192077086 (.166804495 0.16667
8 0.11112206 0.126900585 0.128013973 0.122012206 0.122
9 0.111719866 0.104901648 0.11821875 0.111613421 0.11167
10 0.115923406 0.115139303 0.089179423 0.108747377 0.10667

CLASS =1
MITF Average MTTF  Vithala results
Failure 539 255 59

1 3.153395177 3.61694346  3.686388826 3.48557582 3.48533
2 1.146859147 0.66078219  0.823795448 0.87714559 0.87733
3 0.412534866 0.516007385 0.433962555 0.45416827 0.45533
4 0.303167926 0.294818079 0.220211824 0.27273261 0.27267
5 0.276920782 0.209555661 0.200803662 0.22908337 0.22933
6 0.204151742 0.165247898 (0.187858335 0.18575266 0.18567
7 0.112479919 0.112624617 0.105528102 0.11021088 0.12841
8 0.14722054 0.129605016 0.139804935 0.13887683 0.1138
9 0.138303358 0.107650348 0.071416031 0.10578991 0.10567
10 0.123336704 0.105547047 0.100557877 0.10981388 0.0911
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Table 2.14. Average MTTF obtained from the PWP method (corrected)
60 sample units, 10 failures/unit, 30units/class, 2 classes,

=124, =—6.9, 4, = 4.6

CLASS =0
MITTF .

Failure 539 255 59 Average MTTF

1 535 5.189 5.231 5.26

2 1.122 1.045 1.005 1.0573

3 0.357 05 ° 0.328 0.395

4 0.257 0.297 0.342 0.29867

5 0.157 0.298 0.261 0.23867

6 0.208 0.172 0.157 0.179

7 0.158 0.15 0.192 0.16667

8 0.111 0.127 0.128 0.122

g 0.112 0.105 0.118 0.11167

10 0.116 0.115 0.089 0.10667

CLASS =1
MITF .

Failure 539 255 59 Average MTTF

1 3.1583 3.617 3.686 3.48533

2 1.147 0.661 0.824 0.87733

3 0.413 0.516 0.437 0.45533

4 0.303 0.285 0.22 0.27267

5 0.277 0.21 0.201 0.22933

6 0.204 0.165 0.188 0.18567

7 0.112 0.113 0.108 0.12841 — 0.110

8 0.147 0.13 0.14 0.11329 — 0.139

9 0.138 0.108 - 0.071 0.10567

10 0.123 0.106 0.101 0.0911 —» 0.11

MITF can be obtained using the semi-parametric PWP method by
implementing the Product-Limit method, which integrates the area under its
survival function. Experiments on eight combinations of the sample size= 60, 120
and shape parameter=1.2, 2.0 are investigated in the estimating of mean time to
n” failure (MTTF(n)), for n=1,2...10. Note that each value of MITF(n) is
determined by the average of three replicates in terms of seed numbers 539, 255,

and 59. The results of one example 6 =1.2, 4, = —6.9, 4, = —4.6 are summarized

in Table 2.15.
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Table 2.15. The semi-parametric PWP method

60 sample units, 10 failures/unit, 30units/class, 2 classes, § =1.2, u, =-6.9, 4, = 4.6

CLASS =0
Failure tn IMTBF(t,) MTF e, Ien | ei

1 5902634188 0.83263407 1.06 0.2698861 0.269886  0.072839
2 6.479907133 0.416491777 0.39 -0.051782  0.051782  0.002681
3 6.817678122 0.277700038 0.30 0.0767332 0.076733  0.005888
4 7.057354876 0.208289602 0.24 0.1474412 0.147441  0.021739
5 7.243272849 0.166638677 0.18 0.071987¢ 0.071888  0.005182
6 7.395184155 0.138869451 0.17 0.2011605  0.20116 0.040466
7 7.523626394 0.119033338 0.12 0.0250255 0.025025  0.000626
8 7.634880059 0.104155733 0.1 0.0716013  0.071601 0.005127
9 7.733032869 0.092583953 0.11 0.1529793  0.152979  0.023403
10 7.820825524 0.083326335

BIAS =.0.107226

MAD =0.118733

BIAS (Vithala) = 0.107011

MAD (Vithala) = 0.118478

MSE = 0.022244

MSE (Vithala) = 0.022124

CLASS = 1

Failure t, IMTBF(t,) MTTF e, l e, I ej
1 3.882219332 0.826410878 0.88 0.0613916  0.061392  0.003769
2 4.566373547 0.414928835 0.45 0.0945691 0.09456S8  0.008943
3 4.903101776 0.277004333 0.27 -0.0156421  0.015421 0.000238
4 5.142256551 0.207897967 0.23 0.101951 0.101951 0.010394
5 5.327861145 0.166387916 0.18 0.1163831 0.116383  0.013545
6 5.479563451 0.138695258 0.1 -0.205374 0.205374  (0.042178
7 5.607856365 0.118905331 0.14 0.1679613  0.167961 0.028211
8 5.719008014 0.104057711 6.11 0.0166466  0.016647  0.000277
9 5.817063689 0.092506494 0.1 0.1870937 0.187084  0.035004
10 5.904786627 0.083263587

BIAS = 0.05836

MAD = 0.10742
MSE = 0.01782

BIAS (Vithala) = 0.059042

MAD (Vithala) = 0.107965

MSE (Vithala) = 0.017995

The robustness test is aimed to evaluate the performance of two methods in

estimating the instantaneous mean time between failures from an NHPP with

underlying log-linear intensity function. Three performance measurements are

utilized for the comparison of the Lawless and PWP-GT methods in estimating

the mean time to the »” failure. Three performance measurements are BIAS,

MAD (mean absolute deviation), and MSE (mean squared error).
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All combinations of the sample size =60, 120 and shape parameter=1.2 and

2.0 are investigated in this duplicating process of Vithala results to estimate

mean time to »” failure, n=1,2...,10 implemented by the Lawless and PWP-GT

methods. Each value of either IMTBF(n) or MTTF(r) is determined by the

average of three replicates of different seed numbers in order to decrease the

bias effect. The robustness tests of the estimating methods are summarized in

Table 2.16 and Table 2.18. To compare with Vithala results, Table 2.17 and

Table 2.19 are taken from Vithala (1994) and listed here.

Table 2.16. The summary of the robustness test using the Lawless method

10 failures/unit, 10units/class, 2 classes, g, =—6.9, 4, =-4.6

CLASS =0 CLASS =1
U g BIAS MAD MSE BIAS MAD MSE
60 12| 0.020106  0.041592 0.00355 -0.0362 0.05517 0.00422
60 2.0 | 0.019785 0.04098 0.003444 -0.0363 0.05475 0.00415
120 1.2 | -0.00546 @ 0.056711 0.005217 -0.0004 0.05536 0.00521
120 2.0 | -0.00556  0.055985 0.005076 -0.0005 0.05467 0.00507
U represents the sample size in terms of the number of sample units.
Table 2.17. Vithala results
10 failures/unit, 10units/class, 2 classes, y; =—6.9, 1, = 4.6
CLASS =0 CLASS =1
v e BIAS MAD MSE BIAS MAD MSE
60 1.2} 0.020697 0.0418681 0.003581 -0.03597 0.058057  0.005483
60 2.0 0.013391 0.040388 0.003168 -0.03618 0.054701 0.004147
120 1.2 | -0.00546  0.056711 0.005217 -0.00139 0.055424  0.005197
120 2.0 | -0.005568  0.055985 0.005076 -0.00055 0.054672  0.005074
U represents the sample size in terms of the number of sample units.
Table 2.18.The summary of the robustness test using the PWP method
10 failures/unit, 10units/class, 2 classes, g, =—6.9, 4, = 4.6
CLASS =0 CLASS =1
U 4 BIAS MAD MSE BIAS MAD MSE
60 1.2] 0.107226 0.118733 0.022244 0.05836 0.10742 0.01782
60 20| 0.106745  (.120436 0.022704 0.06133 0.11036 0.0184
120 12| 0.061103  0.061406 0.007691 0.01809 0.04043 0.0025
120 2.0 0.061068  0.061251 0.007658 0.02001 0.03923 0.00249

# U represents the sample size associated with sample units.
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Table 2.19. Vithala results
10 failures/unit, 10units/class, 2 classes, i, =—6.9,u, =—4.6
CLASS =0 CLASS =1
Uk g BIAS MAD MSE BIAS MAD MSE
60 1.2 0.107011  0.118478 0.022124 0.059042 0.107879  0.017886
60 2.0 | 0104911  0.122469 0.021196 0.060492 0.108437  0.016935
120 1.2 | 0.061838 0.062102 0.007844 0.017854 0.040589  0.002506
120 2.0 | 0.062393  0.062633 0.007916 0.019233 0.03865 0.002428
? U represents the sample size associated with sample units.

Another important contribution from Vithala (1994) comes from the statistical
analysis to confirm the model adequacy. The case of 4 =0 in a log-linear
intensity function was assumed and a regression analysis ANOVA was

performed by the GLM procedure in the SAS software. The intension of the study
is to find the slope and intercept estimates (5 ,0,,0,) inthe case ofd =0,
v, =In(0.001) =6.9078, v, =In(0.01) = 4.6051 as theoretical values. Theoretically,

for an HPP (@ = 0), the slope is equal to zero and the failure intensity equation is
simplified to
A1) = exp”*® = exp”.

The results taken from Vithala (1994) are listed in Table 2.20.

Table 2.20. GLM summary {Vithala (1994))
UO = ﬂ t
Slope Intercept R statistics®
Unis Y1 =4 estimate estimate A
0.001 0.000001 6.849663 0.001052 49.97
20 0.010 0.000281 4518974 0.010802 39.97
0.001 0.000003 6.888710 0.001021 109.31
60 0.010 -0.000005 4623224 0.009821 73.36
0.001 0.000004 6.878877 0.001029 108.31
120 0.010 -0.000005 4.623615 0.009817 73.64

@:¢ statistics for H,, :intercept = In(1/ 1)

2.2.4 Censoring of recurrent events
A common phenomenon in data collection is the existence of censoring data.

Engelhardt et al. (1993) reviewed and explained the fundamentals of a censoring

68



experiment, where the failure data in a repairable system are often modeled as a
counting process. There are two types of right-censoring mechanisms depending
on what criteria by which the data collection is terminated: fixed time length or
fixed failure number. According to Engelhardt et al., a process is said to be failure
truncated if it is observed until a fixed number of failures have occurred, and it is
said to be time truncated if it is observed for a fixed length of time.

Qureshi (1991) and Vithala (1994) simulated the recurring failure data by the
manner of failure censoring, since ten failure events were generated from an
NHPP-power-law and NHPP-log-linear processes, respectively, for each sample
unit. In the circumstances when historical data are not available, data may be
considered left-truncated. Moreover, if the number of failures is known even
though the failure times are not recorded, the data are termed as left-censored.
Engelhardt et al. (1993) derived maximum likelihood estimation formulas for left-

truncated data, in which the likelihood function L(v,5) was defined as follows (v
and & denoted the scale parameter and the shape parameter, accordingly).

If a power-law process has been truncated from the left at time 7, and time
truncated from the right at time 7, , with R =» observed failure times, ¢, <...<¢,,
in the interval [z,,7, ], the likelihood function L(1,6) is given by Engelhardt et al.

(1993) as

L(,5)= (”5){[;14 expl-ofef ~77)]  r21

exp|— u(‘rf —-7f )] r=0,
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To involve covariate effects by dividing sample units in a population, Hu and
Lawless (1996) have developed estimation procedures regarding a censoring

experiment on automobile failure data.
Cai and Prentice (1995) created a way to simulate censorship with probability

(P, P,) for two streams from a bivariate distribution, where (7, P,) was a given set
of fixed probabilities. For instance, if (£, P} = (0.5,0.9), the censoring procedures
are executed as follows. First, since P, =0.9, then 10% of the uncensored failure
data Ty is reserved theoretically. Second, since B, =0.5, then 10%x50% = 5% of
the paired failure times (7,,,7,, ) is remained in the second step. P, € Uniform(0,1)

is defined as the censoring probability. Bowman (1996) generated recurring

failure times (X,,X,) from a bivariate exponential distribution and independent
censoring times (C,,C,) from an exponential distribution.

The probability of an observation being a censored time is P[.X > (] = 7 A

+ A

(5 X

where A_, A, are parameters of the failure and censoring distributions.

The failure event time X from the exponential distribution and the corresponding

censoring time can be expressed as

X = ——/%-ln(Ux)exp(—-ﬂ X Z)

X

1
C=-—In(U,
7 o)

i A" P[X >C]
© 1-P[X>C]
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Thus, the observed event times (7,,7,) are the minimal of ( X,,.X,) and (C,,C,). In

other words,

I =min{Xl,C1}
I,= min{Xzacz}'

The Indicator function (1,,1,) can be defined as 7 =1 when T = X ; otherwise
I=0.

Various sample sizes (number of recurrences) among sample units leads to a
censoring experiment. In the setting of a right-censoring, the higher numbered
failures are removed from the experiment. To select the censored units, a
random number ranging between (0,1) is generated. If the random number is

less than censoring probability C,, the unit is treated as a censored unit;

otherwise, it is an uncensored unit. The censoring time for those censored units
is assumed as the last failure time in Qureshi (1991) and Vithala (1994).
However, the censoring time is determined by the follow-up time in most medical
studies, such as WLW (1989).

The maximum partial likelihood function determines the estimate of regression

coefficient 2 for the Cox-based methods. The concern is on how the censoring

(unequal sample size of failure times) affects the partial likelihood function, and
how different it is compared with equal sample size. PWP (1981) addressed a
partial likelihood function (with no censorship or equal sample size in failure

counts) based on the PWP-TT method written as follows.
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B dy eXp{ZS,- (tsi)ﬁs}
L(ﬂ)—‘QH Zexp{zl(tsi)ﬁs} -

IeR(1; ,5)
in the case of censorship allowed, WLW (1989) developed a partial likelihood
function with respect to failure event-specific stratum s based on the WLW

method.

Al explz, ()5}
Ls(m—g S explzy (t.)B. )

leR,(ty)

’ tsi =m1'n{7 csi}’

si*

where

s : event-specific stratum s,

i: i" subject,

R: i" subject s” stratum in the risk set at 7,
A, censoring indicator,

1 t,=1%,
where A = {O t” “c”“ .
sio T Vi

To illustrate the partial likelihood function employed in the PWP method, five
subjects are assumed with equal sample size 4, associated with failure counts.
In other words, d, =d, =d, = d, =ds =4. The procedures of how the partial

likelihood is formed can be illustrated below.
1. Assume the sorted failure times in the first stratum (s =1) from the five

subjects are r,, <t <t, <f, <tz,s=1.

| explz,¢,)8.}
2. L (B)= H S explz (t.)5:)

leR(t; .5)
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= eXp{Zs4 (ts4)ﬂs} %
exp{ZM (ts4 )ﬂs }+ CXP{ZSS (ts4 )ﬂs }+ eXp{zsl (ts4 )ﬂs }+ eXp{ZSZ (ts4 )IBS }+ eXp{Zs?: (ts4 )ﬁs }

_explz(t)B. .
exp{zs5 ()8, } + exp{zsl ()8, }"' eXP{Zsz ()8, }+ eXP{Zsa (t,5)B, }
explz, (1,)5,} N
explz,, (1) B, |+ explz, (1) B, } +explz, (1) 8.}
eXP{Zsz () B, } y eXP{Zsl t4)B, }
expiz,, (1)) 8.} +explzy (1) B} explza(t,)B.}

Likewise, in the other strata s =2,3,4, L_,(8),L,,(8), L, ,(8) can be produced in
the same manner depending on the ordered failure times ¢, . In the PWP method,

to measure the general covariate effect S5,

LBy =[TL(B) = La(BYXL oy (B)x L5 (BYx Lo (B).

s=1

3. The maximum likelihood equation, ﬂo—g—'g@ = provides the m.l.e. B.

For the censoring data with different sample size in failure counts, the WLW
method has provided a way to produce the partial likelihood function. Assume the
data are taken from five subjects, which contain unequal sample size of failures,

(e, d,=4,d,=1,d, =2,d, =0,d; =4, in a left-censoring experiment ). Assume
also that the sorted failure times in the first stratum (s =1) from the five subjects

are t,, <t <t, <t, <t,, s=1, where the order is not necessarily the same as in

complete data depending on censoring times.

Ls:l (ﬁ) =
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SXP{ZS4(fS4)ﬂS} jlo X
| explz,, (t,,) B, )+ explz s (1) B, ) + explz, (4,) B,  + expiz s (1,) B, 1+ explz, (1, B,

i exp{zss (t,5'5 (ﬂs } :ll X
| expiz,s (1,5) B, }+explz, (t,s) B, }+ explz,s (1,5) B, } + expiz,, (1,5) B }
F exp{zsl (tsl)ﬂs}

explz, (¢,) B, ) +expiz,; (1,,) B, } +explz,, (m)ﬂsJ §

| eXp{ZS3 (ts3 )ﬁs} ]0 X l:exp{zﬂ (t32 )ﬂs }}0 .
_exp{ZSB (tSS)ﬁs } + exp{ZSZ (ts3 )ﬁs } eXp{Zsz (152 )ﬂs }

As the formula reveals, a censored unit does not have an impact upon the

likelihood function through A =0. However, the censored unit does contribute

through the risk set R(z,) attime r,. Thus, as far as the censoring time or failure

time is involved in the risk set, it will contribute to the likelihood function.

As for the PWP method, the censoring time is not allowed in developing the
likelihood function. Thus, the cenéoring times in implementing the PWP method
are excluded from the dataset. Note that the censoring failure on the border will
be kept in the dataset due to the conditionality approach. The partial likelihood
function of the PWP method, where the data present a censoring pattern as

below, has been proposed by WLW (1989).

A

5t

512

el explz, )8, )
Ls (ﬁ) - ];1[ ZGXP{ZSI (tsi)ﬂS}

leR (t;)

¢, =min{l, ,c,},

where

s : event-specific stratum s,

i: i" subject,

R: i" subject s” stratum in the risk set at ¢,
A, censoring indicator,
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1 ¢, =t,
where A, ={ N
0

The only adjustment to the PWP partial likelihood function is the removal of

the data not in the risk set R(z,,) attime ¢,. Thus, the dataset needs to be

modified in the manner that the likelihood function is not underestimated, since
there will be fewer components in the denominator after adjustment. That is, the
data that are not in the risk set should be removed. The determinant of data
removal is when current and previous data are both censoring times.

The Andersen and Gill (1982), or AG method, employs the marginal

martingale theory to manage the partial likelihood function in order fo represent
the general covariate effect by ,@ . The counting process N has intensity
process A™ . The local martingales on the time interval ¢ e [0,1] are defined as
(Andersen and Gill (1882)):

M@0 =N, 0~ [A,x)ds.

The local square integrable martingales (Andersen and Gill (1982))

(M®, M >(t) = £ A () du

(MOMPY=0 i),

The partial likelihood function in using the AG method with censorship can be

expressed as below proposed by Cai and Prentice (1995).

L(p) = HLFl(ﬂ)"HL”(ﬂ P HL“‘(ﬁ - LIH 2L e)({f{)zgg)l?(i A}

IR (1)
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where Y, (¢) is an at-risk indicator for subjects.

The solution ﬁ to the partial likelihood score equation

OlogL(p) _ 0 is expressed
op

as (Cai and Prentice (1995)).

Zi mjzsi U ,(u)du =0,

szl =1 ¢

t
where U, (1) = Msi O=N,O- _’-st Q)] eXp{Z; (h)ﬂ}j\()i (dh),
0
U, (t) is the estimated marginal martingale corresponding to 7,

Aa=| [Z Y, (s)explzy (h)ﬂ}} SN, (.

I=1

'

Kelly and Lim (2000) have categorized each possibility of the Cox-based Pl
models based on the risk set and the risk interval, and used a hypothetical
example in Figure 2.8 to illustrate each partial likelihood function. There are three
subjects 4, B, and C under observation, and eachvbox represents a failure

event and each dot represents a censoring event.

A B—0 o
7 11 17
B B i i
14
Cc @
0 5 10 15 20

Time :
Figure 2.8. A hypothetical example from Kelly and Lim (2000)
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Based on each partial likelihood function in each category, the PWP-GT,
PWP-TT, AG, and WLW are selected and presented according to the
hypothetical example. Kelly and Lim (2000) demonstrated the partial likelihood
functions based on two primary categories: (1) Common baseline intensity model
(2) Event-specific baseline intensity model.

(1) Common baseline intensity model

Aik

eZ(Xilz)ﬁ

n_ K
L(ﬁ):HH n K
i=] k=l ZZYjI(Xik)eZ(Xik)ﬁ

j=1 I=i

(2) Event-specific baseline intensity model
Au

ez(Xik)ﬂ

1p=1111|5
=1 k=l Zyﬂc (Xik )eZ(Xn)ﬂ

J=1
The AG model belongs to the former category, while the PWP-GT, PWP-TT, and

WLW models belong to the latter category.

According to the Chebychev inequality below, the magnitude of the variance
of [% due to censoring plans or sample units can be explained in the law of large
numbers (Guttman et al. (1982)) for a distribution in a general form. If x is a

random variable having finite mean x and variance o, then

qu——,ul >/10')S:%2—-.
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Guttman et al. (1982) have derived the distribution of sample mean ¥ with its
variance o’ /n, where the probability that ¥ falls outside the interval

[ —¢, p+£] follows the chebychev inequality.

Let,'t:fi*/—’z,

o}

The Chebychev inequality becomes

_ edn o o?
P — —_ ] <
(lx ‘UI g o] \/;’Z‘J

—_— E -
Equivalently,

2

Pz —u>e)< 2,

£'n

where ¢ is an arbitrarily small positive number.

Comparing the Var, (,3) utilizing the complete data (equal sample size (failure

events)) with Var,(B) utilizing the censored data, Var, () > Var, () due to the
concern of the sample size, according to the Chebychev inequality. However,
censored data can still provide sufficient information if the sample size is chosen
wisely. The experimental design (Sections 3.1.1-3.1.2) will explain how to decide
the appropriate sample size.
2.2.5 Multiple event types

Lin (1994) has dealt with two failure types of recurring events using the Cox-
based regression methods to analyze the effectiveness of the treatments. The
paired failure times were generated from a bivariate exponential distribution

(Gumbel (1960)) with correlation coefficient 8 = 0.25. Case (1): Lin reported a
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study of multiple failure types in colon cancer, where cancer recurrences and
death were two types of failures. Obviously, the recurring events are all prior to

death if a patient dies. As a result, two baseline intensity functions A, (), 4, (#)

were employed in this colon cancer study. Lin concluded that the common
treatment effect was not asymptotically equivalent since the correlation between
two failure types was strong. Moreover, high correlation of two failure types of
events also contributed to different results on naive and robust variances. Case
(2): In another study of reducing infection rate by taking gamma interferon, the
first three infections were selected to do the analysis while the three infections
were treated as three different failure types in order to capture the dependence of
infections. A time-varying covariate was utilized, where the covariate was equal
to one when the patient had an infection within the past 60 days; otherWise, the
covariate equaled zero. Lin observed that the WLW method is always valid,
whereas the PWP and AG methods are valid when the dependence structure is
correctly §peciﬁed. Case (3): In a study of the diabetic retinopathy causing the
occurrence of blindness, two failure types were defined as the blindness
occurrences on left eye and the blindness occurrences on right eyes. Using the
WLW method was valid, although the correlation between twd eyes had been
anticipated. The results indicated that the robust standard error estimates were
smaller than the naive estimates‘ in this study. Case (4): in a genetic
epidemiologic study of schizophrenia, the number of the relatives ranging from 1

to 12 was selected to represent the multiple failure types. Age at onset of the
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illness and gender (two covariates) were suspected to affect the agé at diagnosis
of schizophrenia for a relative (failure time).

Lin (1993) developed MULCOX2 software in implementing Cox-based
methods, such as the AG, PWP-total time, PWP-gap time, and WLW models.
This code is capable of analyzing multiple failure types of recurring events.
MULCOX2 required two types of data entries: control parameters (problem titles,
file names, dimension number, and other relevant information) and data files
(associated with identification numbers, failure times, status, covariates, and
other indicator variables). Lin utilized the data from a schizophrenia study (twelve
failure types: the number of relatives in a family ranging from one to twelve) and
a chronic granulomatous disease, a CGD study (three failure types).

In the schizophrenia study (Lin (1993)), 487 first-degree relatives of 93 female

schizophrenic patients were enrolled. The covariate vectoris Z, =
(Z,.Z,,.2Z,;), where k represents the failure type and i denotes the subject.

In this case, twelve failure types were involved representing the number of
relatives ranging between (1,12). Each record in the data set has the form of
(start,end, status,Z,,,Z ,,.... 2, ), Where (start,end) denotes the failure interval,-
and status equals to oné (1) when the subject is under observation, otherwise
zero (0). Furthermore, two types of covariates p = age and gender, are
considered in the covariate vector. Thus, covariate véctor Z,, =(Zyy,2Z,;) follows
this form as a record in the dataset.

The CGD study has 128 patients involved with using gamma interferon

treatment to reduce the granulomatous disease. To estimate the treatment effect
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for three failure types individually, three covariates Z, =(R,,0.0), Z,, =(0,R,,0),
and Z, =(0,0,R,) representing three failure types are employed in the analysis,
where i indicates the subject (R, =1, for gamma interferon, R, =0, for placebo).

Since three failure types are employed in the analysis, three regression
coefficients are yielded in representing the treatment effect for each failure type.

To estimate a general treatment effect for three failure types, Z, =R, is

employed as a single covariate in the estimating process. Two AG methods,
semi-Markov and Markov processes, are implemented for comparison purposes.
Likewise, two PWP methods, total time and gap time, are introduced in the
analysis. The marginal approach gives a larger estimate of the common
treatment parameter along with a larger standard error estimate (Lin (1994)). In
general, the results from different methods all conclude that the treatment effect
(by taking gamma interferon) reduces the infection sufficiently. One interesting
fact in the analysis is that the treatment effect analyzed by the PWP method is
not significant in the second and third infections.

In medical studies, the issue of treatment effects is the main concern, while
engineering reliability has additionally emphasized the effects of multiple failure
types, such as the major and minor failure types in machinery. Covariate
modeling is approached to examine the covariate effects for major and for minor

events. Let the treatment factor be defined as R, =0, for class=0; R, =1, for
class=1, and covariate vector Z, =(Z,,Z,,) represents major and minor failure

types, where i represents the sample unit and & represents the failure type.

That is, class0 and class1 for major events can be expressed in the forms of
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(Z,,Z,)=(0,0) and (1,0). Likewise, class0 and class1 for minor events are in the
forms of (Z,,Z,) = (0,0) and (0.,1). Two regression coefficients represent the

covariate effects corresponding to major and minor events. To estimate the
general covariate effect for both major and minor event types altogether, a single

covariate Z, = R,, where R, =0, forclass=0and R, =1, forclass=11is

introduced in the regression model (i represents thé sample unit and %
represents the failure type). In this case, only one regression coefficient will be
obtained, which represents the covariate effect based on the major or minor
event type.

Hansen and Ascher (2002) examined an automobile for intermittent failures,
which often lead to a series of unsuccessful repair attempts, and reported that
repair times for intermittent failures cannot be assumed negligible and the model
must be designed to account for machine downtimes. Kobbacy and Jeon (2002)
considered both failure times and machine downtimes in the Pl model for
preventive maintenance (PM) in a deteriorating repairable system. Therneau and
Hamilton (1997) proposed an alternative method of handling two types of
recurrent events, and introduced the concept of discontinuous risk-free-intervals
that may be applied in reliability engineering as the duration of performing major
overhauls. A study of rhDNase in patients with cystic fibrosis has involved
discontinuous risk-free-intervals due to the intervals of receiving an intravenous
(IV) antibiotics and a seven-day risk-free period following the IV antibiotics. The
two event types are (1) at risk of infection with stochastic interval of recurrence

and (2) risk-free-intervals with deterministic interval.
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3 Research methodology

As an extension of the robustness study of the PWP-gap time (PWP-GT)
model in Qureshi (1991) and Vithala (1994), other models are introduced to
handle recurrent event reliability problems, namely the PWP-total time (PWP-TT),
Andersen-Gill (AG), and Wei-Lin-Weissfeld (WLW) methods. In addition, more
questions commonly encountered in the industry will be raised and investigated,
such as incidence of right-censoring and multiple event types. Sections 3.1 and
3.2 are designated to investigate the two research questions: (1) How do the
PWP-GT, PWP-TT, AG, and WLW methods compare in performance under right-
censoring? (2) How do the multi-dimensional covariate modeling and
discontinuous risk-free-intervals methods perform in estimating the regression
coefficients for two failure types (major and minor)?

The first research objective examines the PWP-GT model robustness as a
function of right-censoring severity measured by BIAS, MAD (mean absolute
deviation), and MSE (mean squared error). The special case of common
baseline intensity function (WLW and PWP-TT models) is investigated to
compare with the AG model. The second research objective examines the
robustness of the four reliability estimates (PWP-GT, PWP-TT, AG, and WLW)
as a function of right-censoring severity for the special case of a stationary
counting process. BIAS, MAD, and MSE are employed to measure the
robustness of the three event-specific models (PWP-GT, PWP-TT, and WLW),
whilé the common baseline model (AG) estimates the general covariate effect.

The third research objective examines multi-dimensional covariate modeling as
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an alternate method to deal with two types of complete (uncensored) recurrent
events. In this study, two types of recurrent events are generated from the same
data stream with common shape parameter forming proportional intensities. The
fourth research objective examines risk-free-intervals within an NHPP process
where there are two event types (major and minor) and the time interval following
a major failure is substantial. The robustness study of the four methods (PWP-
GT, PWP-TT, AG, and WLW) is conducted in terms of sample size, power-law
shape parameter, censoring probability, and gap time ratio (discontinuous risk-
free-intervals).
3.1 Robustness of semi-parametric methods under right censoring

Depending on the selection of the baseline intensity functions (common and
event-specific) on PWP-TT and WLW models, there are two studies (NHPP
(Section 3.1.1) and HPP (Sections 3.1.2)) conducted in each specified model
(common or event-specific). Essentially, the PWP-TT and WLW models are
designated as event-specific models. However, due to the model restriction, in an
NHPP case and 10 failure events (for each sample unit), a common baseline
model is required in order to ha_ve a robust model performance. In the case of an
HPP and 4 failure events (for each sample unit), an event-specific model can
perform properly without the assumption of a common baseline.
3.1.1 NHPP

Using the Cox-based regression methods (PWP-GT, PWP-TT, AG, and WLW
methods), model recurring failure events (with right-censorship), which follow an

NHPP with power-law intensity function, and examine the robustness of the four
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methods. Selecting appropriate baseline hazards and risk interval is the key to an
adequate model. Regarding the baseline hazard, there are two options to choose
from: common baseline hazard function and event-specific hazard function. For
risk interval, there are three options: total time model, gap time model, and
counting process.

Censored data is generally present in field data. The left-censored case arises
when the historic event times are not available but the number of missing events
is known. The right-censored case arises when the subject or sample is
withdrawn from observation (such as machines retired from service). Censoring
from the right is chosen for examination in this research. The censoring
probability controls the number of censored sample units in the experiment, and
the number of censored events in this study is desigﬁnec'i to follow a random
pattern. The four Cox-based regression methods are compared based on the
theoretical values of regression coefficients, which measure the covariate effects.

The experiment is conducted based on the following settings. Sample units
(U) are evenly divided into two groups defined by a single covariate named
CLASS. Each sample unit produces 10 failure times (¥ =10) generated from an
NHPP with a power-law form, by the Blanks & Tordon (1987) simulation

algorithm as follows:

X,: a random variate generated from a (0,1) uniform distribution ,

S,v: the shape parameter and the scale parameter of the power-law form,
n : failure count,
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¢ : recurring failure times.
Two covariate levels (CLASS=0 and CLASS=1) are defined by setting the scale
parameter to v, =0.001 or v, = 0.01.

Simulation data generated from the Blanks & Tordon algorithm provide
complete data, where each sample unit contains an equal number of failures (N ).
In order to have various numbers of failure counts (i.e., right-censored recurrent
data), two groups of sample units were classified, in which one group contains
the sample units with complete data and the other group contains the sample
units with right-censored data. The ratio (probability) of the sample units that

have censored times to total sample units is defined as censored probability (P.).

In the group of censored units, the right-censored pattern is set to be random. A

random probability ( £, ) is generated to compare with P.. The sample unit is
specified as a censored unit if P < P,; otherwise, it is not a censored unit. To

form recurring data (failure times in a sequence) with right-censoring in a random
pattern, another random probability ( P, ) is generated. in the censored group, it is
a censored time if both of the logic rules are met: 1) the sample unitis a
censored unit and, 2) the failure count is greater than F, where F = floor
(N x(ranuni (seed))) +1, and the floor (argument) function is to return the largest
integer that is less than or equal to the argument. The data in the non-censored
group are all complete data.

To implement the four Cox-Based regression methods (PWP-GT, PWP-TT,
AG, and WLW) requires formulation of three types of datasets (i.e., three formats

for the same set of failure events, according to the theory underlying each
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methodology). First, for the AG method, the data set is.formed from the time

interval (7,7, ) with respect to the following counting process formulation:
%ing»—;;P[N(t +h) = N@) =1|T > t]= @)

Thus, the logic rule to form the dataset is: T, > 7, . As a result, all the censored
failure times are removed from the dataset since 7, =T, when it is a censored

event as stipulated for the AG method.

The concept of forming the dataset for the PWP method originates from the
probability theory of conditionality. The later failure times after the »” failure

count cannot be included into the dataset when the intensity function at the »”
failure count is estimated. That is, for each censored unit, the censored times are
removed from the dataset except for the first censored event count. The logic in
generating the dataset for the PWP method is to remove the record if both of the
following conditions hold: (1) the current record is marked censored and (2) the
previous record is marked censored.

Due to the marginal probability theory of the WLW method, the dataset
contains full records including all censored events, such that censored units
remain in the risk set. The Lee-Wei-Amato (LWA) model (1994) is a special case
of the WLW with common baseline intensity function, and is used in the case of a
total time model. Likewise, the PWP-TT model in this study is a special case,
where the baseline intensity function is set to the common baseline intensity

function leading to a regression coefficient to explain general covariate effects.
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Three factors are chosen in the experimental design: number of the sample

units (U ), shape parameter (& ), and censoring probability (£,). 7, and [,

represent the number of units in each class. Table 3.1 contains the experimental

design for the right-censoring experiments. The selection of the U, 6, and P,

levels has taken the following considerations: (1) The parameter settings in the
previous relevant works (Proschan (1963), Landers and Soroudi (1991), Qureshi
et al. (1994), and Landers et al. (2001)) (2) Severe right-censorship may cause

the small sample size (U =20) to have insufficient data. The selection of P, levels

takes into account the light, moderate, and heavy censoring. The selection of U
and & levels is taken from the parameter settings in the previous research works,
and it has also considered the small, median, and large sample sizes for U .

Table 3.1. Three-factor experimental design: (U,d,P,)
N=10 failure events/unit, v,=0.001,0)=001

U 5 'Pc IO Il u 6 Pc I() Il u 5 Pc IO Il
60 05 04 30 30 120 05 04 60 60| 180 05 04 €90 80
60 05 06 30 30120 05 06 60 60 | 180 05 06 80 90
60 05 08 30 30120 05 08 60 60 | 180 05 08 S0 g0
60 05 10 30 30 |120 05 10 60 60 | 180 05 10 90 90
60 08 04 30 30120 08 04 60 60 180 08 04 90 90
60 08 06 30 230|120 08 O06 60 60 | 180 08 06 90 90
60 08 08 30 30 |120 08 08 60 60 | 180 08 08 SO 90
60 08 10 30 30 |120 08 10 60 60| 180 08 10 90 90
60 10 04 30 30 (120 10 04 6 60| 180 1.0 04 90 90
60 10 06 30 30 |120 10 ©06 60 60 | 180 10 06 90 90
60 10 08 30 30120 10 08 60 60 | 180 1.0 08 90 20
60 10 10 30 30 |120 10 10 60 60 180 1.0 10 90 S0
60 12 04 30 30 |120 12 04 60 60 | 18 12 04 Q0O 80
60 12 06 30 30 120 12 06 60 &0 | 180 12 06 90 90
60 12 08 30 30 (120 12 08 60 60 | 180 12 08 90 80
60 12 10 30 30 |120 12 10 60 60| 180 12 1.0 90 90
60 15 04 30 30 {120 15 04 60 60| 180 15 04 90 90
60 15 068 30 30120 15 086 60 &0 | 180 15 06 90 90
660 15 08 .30 30 {120 15 08 60 60 | 180 15 08 90 90
660 15 10 30 30 |12 15 10 60 60 180 15 10 90 90
60 18 04 30 30 (120 18 04 60 60 | 180 1.8 04 90 90
60 18 06 306 30 120 18 06 60 60 | 180 18 06 90 90
60 18 ©08 30 30120 18 08 60 60| 180 18 08 90 90
60 18 10 30 30 {120 18 10 60 60 | 180 18 10 90 90
60 20 04 30 30 (120 20 04 60 60 | 180 20 04 S0 20
60 20 06 30 30 120 2. 06 60 60| 180 20 06 90 20
60 20 08 30 30 |120 20 08 &0 &0 | 180 20 08 90 90
60 20 10 30 30 (120 20 10 60 60 | 180 20 10 90 0

91



3.1.2 HPP

To relax the common baseline function applied on PWP-TT and WLW utilized
in Section 3.1.1 (NHPP), four failure events are generated from an HPP with a
right-censoring pattern and thus the event-specific baseline PWP-TT and WLW
models can be employed. Unlike the gap time scale (PWP-GT), the total time
scale (PWP-TT and WLW) has a misspecification problem. The gap time scale
has been considered a better model to capture the dependence structure existing -
among failure times than has the total time scale. Thus, in any rate of occurrence
of failures, utilizing the gap time scale can capture the trend and give a sound
estimate of covariate effects, while the total time scale appears to overestimate
covariate effects as the event count progresses. Besides, the total time scale is
invariant to the shape parameter (&), because § does not influence the
likelihood function in the total-time model. The counting process (AG) adopts the
total time scale, and thus becomes an estimator invariant to shape parameter.

Simulation data with right-censored patterns (the underlying distribution
follows power-law NHPP intensity function) were generated by a modified Blanks
& Tordon (1987) simulation algorithm. Since stationary data are specified, 6 =1
is set to convert a power-law NHPP into an HPP. There are two experimental

factors (Table 3.2): experimental units (I ) and censoring probability (2,). The

levels for each factor are selected as follows: (1) U = 60, 120, and 180 and (2)

P.=0,04, 0.8, and 1.0. Note that P, =0 represents complete data, which
provides the comparison with censored data. The selection of the U and P,

levels has taken the following considerations: (1) the parameter settings from the
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previous relevant works (Proschan (1963), Landers and Soroudi (1991), Qureshi
et al. (1994), and Landers et al. (2001)) (2) Severe right-censorship may cause
the small sample size (U =20) to have insufficient data to perform the model

analysis. The selection of P, levels takes into account the light, moderate, and
heavy censoring. Likewise, the selection of sample units (U ) levels considers the
small, median, and large sample sizes.

Table 3.2. Two-factor experimental design: (U, P,)
N=4 failure events/unit, v, = 0.001,0, =0.01

Number Censoring Units per class (/)
of units U probability P, I I
0 1
60 00 30 30
60 0.4 30 30
60 0.8 30 30
60 1.0 - 30 30 /
120 0.0 60 60
120 04 60 60
120 0.8 60 60
120 1.0 60 60
180 0.0 90 90
180 04 90 90
180 0.8 90 90
180 1.0 90 90

3.2 Modeling of multiple failure types in recurrent events

Multiple failure types are often observed in reliability failure data. The scope of
this research is to investigate two situations involving recurrent failure processes
composed of two failure types (major and minor). A multi-dimensional covariate
may be used to model multiple failure types having common shape parameter
forming proportional intensities. A major overhaul period may be defined as a
risk-free interval to perform the maintenance/repair. In the aircraft industry, for
example, a major overhaul of a substantial time interval is performed when a

maijor failure or a fixed interval inspection is scheduled, whichever occurs first.
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3.2.1 Multi-dimensional covariate modeling

Lin (1993, 1994) studied chronic granulomatous disease and employed a
multiple dimensional covariate method to handle the recurrent data with multiple
failure types. Lin considered three types of failure outcomes by defining three
covariates with three dimensions. For the special case of two failure types, let

two covariates Z,,Z, represent the major and minor failure types in two
dimensions. That is, the major failure type is coded as Z, =[R,,,0], while the
minor failure type is coded as Z, =[0,R,,], where R, =1, if class=1; R, =0, if
class=0; R,, =1, if class=1; R,, =0, if class=0. The corresponding regression

coefficient estimates are interpreted as the covariate effect applied to the major
failure and minor failure types.

In industry, minor failure rate is typically higher than major failure rate. Most
researchers have formulated this‘ problem as univariate. The Lin method of multi-
dimensional covariates permits consolidation of major and minor failures in a
single, stratified model so long as the proportional intensity rule holds. The
simulation method of Blanks & Tordon (1987) is modified to generate an NHPP
with two failure types, where the underlying distribution follows a power-law
intensity function. Most of the parameters remain unchanged except t_hat the
sample unit size has been increased due to the insufficient sample size of major
events. In the process of generating the simulation data, there is a major failure
event out of these ten recurring events (i.e., nine minor events) for each sample
unit. To perform the event-specific intensity estimation, the dataset may not have

any major event for a certain event count if the sample size is not large enough.
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This research suggests the minimal sample size of 120 for this study. The

parameter setting is illustrated as follows: U =120, F =10, g, =0.001, &, =0.01.
The fixed time-invariant covariate vector Z,,i =1,2 is defined as follows:

Major event, Class=0: Z, = (0,0)
Major event, Class=1:Z, = (1,0)
Minor event, Class=0: Z, = (0,0)
Minor event, Class=1:Z, =(0,1).

Ten failure events are generated for each sample unit. To determine the time
of major failure event in the counting process, a uniformly distributed variate

U(0,1)) is introduced to decide the event number ( F' ) for occurrence of the

major failure. As a consequence, the F” event time to have a major failure is
generated as:

F = FLOOR(10 x RANUNI(SEED)) +1.

The remaining nine events are minor failure events. In this way, a counting
process contains major and minor failure events, where the one major failure is
inserted randomly among the N —1 minor failurés. The event number for the
major failure is randomly selected depending on the F value. Large enough
sample size is generated in order to obtain sufficient data for each failure count in
a PWP-GT model. Two factors are chosen in the experimental design: number of
the sample units (U ) and shape parameter (§). Table 3.3 provides the
experimental design for the covariate modeling. The selection of the § level has
taken the parameter settings from the previous relevant works (Proschan (1963),

Landers and Soroudi (1991), Qureshi et al. (1994), and Landers et al. (2001)).
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Table 3.3. Two-factor experimental design: (U,J)
N=10 failure events/unit, v, = 0.001,0, =0.01

Units per class (1)

Number Shape parameter
of units U o Iy I,
120 0.5 60 60
120 0.8 60 60
120 1.0 60 60
120 1.2 60 60
120 1.5 60 60
120 1.8 80 60
120 2.0 60 60
180 0.5 90 90
180 0.8 80 90
180 1.0 90 90
180 1.2 90 90
180 1.5 20 90
180 1.8 90 90
180 2.0 80 80
240 0.5 120 120
240 0.8 120 120
240 1.0 120 120
240 1.2 120 120
240 1.5 120 120
240 1.8 120 120
240 20 120 120

3.2.2 Discontinuous risk-free-intervals modeling

The second method to approach multiple failure types is applying the concept
of discontinuous risk-free-intervals, proposed by Therneau and Hamilton (1997).
A study of rhDNase in patients with cystic fibrosis involved a seven-day
discontinuous risk-free-interval, initiated by intravenous (IV) administration of
antibiotics (Therneau and Hamilton (1997)). For instance, suppose three failures
have taken place at days 25, 60, and 90, where two days of performing a major
overhaul are required after the second failure. The data records, expressed as

(n.t,,1,,status) for the three failure times in the PWP-GT model, can be written as
(1,0,251), (2,25,60,1), and (3,62,90,1), where (n.t,,t,,status) denotes (failure count,

start time, stop time, (0,1) indicator variable for censor (0) event or failure (1)
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event). The value 7, =90 of the third failure with a major overhaul records global
time to failure with the third failure coinciding with a risk-free-interval. However,
the consideration of major overhaul of duration D requires a change from
interval (7,,z,) to interval (¢, + D,t,) . In the aircraft industry, the duration D could
be as long as one year after flying for 3000 hours for a major overhaul or as short
as a few hours for a minor repair. A robustness study examines how the
magnitude of D affects the PWP-GT model, as measured by the regression
estimates ( ﬁi ).

In this study, simulated recurring data are generated from a modified Blanks &

Tordon algorithm (1987). To determine the time to perform major overhauls in the

counting process, a uniformly distributed U(0,1) random variate is introduced to
select the event number F , where the major overhaul is performed. The major

overhaul is arranged after the F* event, and we assume that a period D is

required to perform a major overhaul. As a consequence, the next event time,
which belongs to the (F +1)" event, occurs depending on the F” event time plus
the major overhaul duration. For instance, if ten failure events (failure count F,=1
to 10) are generated for each sample unit in the database, then the time point to
perform a major overhaul occurs at the F* event time. The SAS statement

syntax to derive F is

F = FLOOR(10x RANUNI(SEED)) +1.
As a result, three FOR loops in the SAS program are created as follows: (1)

FORF,=1toF,(2) FORF,=F+1,and (3) FOR F,=F+2 to N, where N
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denotes the last event number. To assure the adequacy of event numbers, two
extreme values of 7 equal to 1 and N are examined. First, when F =1, three
loops are derived as (1) FOR F.=1, (2) FOR F =2, and (3) FOR .Fc= 3to N.
Second, when F = N, three loops become (1) FOR F.=11o N, (2) FOR
F=N+1,and (3) FOR F = Nf2 to N . The logic in the third loop (i.e. FOR F,=
N +2 to N) requires the following statement:
IF F, >N THEN DELETE.

The duration to perform a major overhaul is inserted into the interval (¢;.7,;),
which makes the interval of risk become (r, + D,t}.,;), where new event time 1},
is determined by ¢, + D in the Blanks & Tordon formula. As a consequence, the

gap time and (¢,,7,,,) have been aitered compared to the recurrent data without
the interruption of a major overhaul interval. However, the discontinuous risk-
free-intervals concept in Therneau and Hamilton (1997) is different in terms of
(t-,t-.,), while the gap time remains unchanged. “For instance, in a study of
patients with hip fracture, a subject who fractured at day 100, followed by a 15
day hospital stay and then 300 more days of uneventful follow-up would be
represented as two at-risk intervals: (0,100] and (115,415]" (Themeau and
Hamilton (1997)). The gap times of 100 days and 300 days remain the same,
while the risk interval has been shifted forward from {(0,100],(100,400]} to
{(0,100], (115,415]3.

The magnitude of D is determined based on the previous gap time Y, ,,

where F is a random variate indicating the F* event is a major failure event;
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otherwise, a minor failure event. in other words, the relationship between D and
Y., is:
D=RxY,,—>R=D/Y,,

where

R is the gap time ratio that controis the magnitude of D,
Y., represents gap time associated with a minor event prior to a major event,

F is the event number that represents the major failure.

The concept of utilizing the gap time ratio R in determining the major overhaul
duration strengthens the model, since there are three types of power-law
intensity functions (increasing rate of occurrence of failures (IROCOF), constant
ROCOF, and DROCOF). The recurrent failure interval can vary from one time
unit to a large value depending on the shape parameter.

The parameter settings are as follows when a discontinuoué risk interval
model is associated with the repair time: (1) scale parameters in CLASS0 and
CLASSH1 are set to 0.001 and 0.01; (2) number of failures N = 10; (3) F* event
represents a major failure, followed by a major overhaul; and (4) seed numbers
for three replicates are 539, 255, and 59. The magnitude of D is examined as
the primary factor that affects the performance of the semi-parametric Pl models.
In the experimental design for the discontinuous risk interval model, there are
three experimental factors: (1) Number of the experimental units (U ), (2) Shape
parameter (6 ), and (3) Gap time ratio (R ) that controls the major overhaul

duration (D). 7, and I, represent the number of units in each class.

The simulation data in the form of discontinuous risk intervals is‘illustrated by
the following numerical example: Let N =10 failure events/unit,

v, =0.00Lv, =0.01, (U,5,R)=(120,1.5,0.50), and seed = 539. Two units are |
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chosen for demonstration purposes and each unit has 10 failure times in the form

of risk interval =(7;,T) . Also let Y =T —7,. Note that F represents the major

failure event. Thus, the major overhaul takes place immediately after the F”
event. As is shown in Table 3.4, the first item has generated F =7 resulting in a
discontinuous risk interval starting from the end of 7" failure, at time 211.71966.
Since the major overhaul duration D=Rx ¥ =0.5x25.60324=12.80162, the risk-

free-interval ends after 211.71966+D=224.52128, which is the beginning of the
risk interval for the 8" failure. Likewise, for the second unit, F =4. T, for the 5”

failure is changed to 227.10957 + 0.5x81.95362 = 268.08637 .

Three factors are chosen in the experimental design: number of the sample
units (U), shape parameter (&), and gap time ratio (R ). Table 3.5 contains the
experimental design for discontinuous risk interval experiments. Small sample
size U =20 is introduced to reflect the poor performance of the PWP-GT model
as the gap time ratio increases. The selection of the U, &, and R levels has
taken the following considerations: (1) the parameter settings from the previous
relevant works (Proschan (1963), Landers and Soroudi (1991), Qureshi et al.
(1994), and Landers et al. (2001)) (2) Gap time ratio reflects the repair/overhaul
duration that starts from an immediate repair (zero time) to a five times of the

previous interarrival failure time (Y').
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Table 3.4. Simulation dataset example

n_ttem 1§ T Y Fln gem & T Y F
1 1 0.00000 2570391 2570391 7 1 2 0.00000 7.53385 7.53385 4
2 1 25.70391 87.10256 61.39865 7 2 2 7.53385 135.05711 127.52327 4
3 1 87.10256 101.09154 13.98898 7 3 2 135.05711 145.15595 10.09884 4
4 1 101.08154 119.87100 18.77946 7 4 2 145.15595 227.10957 81.95362 4
5 1 119.87100 165.66447 45.79347 7 5 2  268.08637 270.69678 43.58721 4
8 1 165.66447 186.11641 20.45184 7 6 2 27069678 27621527 5.51849 4
7 1 186.11641 211.71966 25.60324 7 7 2 276.21527 305.22196 29.00669 4
8 1 224.52128 232.26621 2054656 7 | 8 2 30522196 392.22638 87.00443 4
9 1 232.26621 237.85589 5.58967 7 9 2 39222638 393.61682  1.39044 4
10 1 237.85589 258.58578 20.72988 7 | 10 2 393.61682 417.92776 24.31095 4
Table 3.5. Three-factor experimental design: (U,J,R) .
N=10 failure events/unit, v;=0.001,0,-001

v 6§ R 1, LU 6 R I, IL|U 6 R I, I

20 05 0001 10 10 | 660 05 0001 30 30 | 120 05 0.001 60 60

20 05 041 10 10 | 60 05 0.1 30 30 | 120 05 0.1 60 80

20 05 03 10 10 | 60 05 0.3 30 30 | 120 05 0.3 60 60

20 05 05 10 10 | 60 05 0.5 30 30 | 120 05 0.5 60 60

20 05 30 10 10 ; 60 05 3.0 30 301|120 05 30 60 60

20 05 5.0 10 10 | 60 05 5.0 30 30 {120 05 5.0 60 60

20 0.8 0.001 10 10 | 60 08 0001 30 30 120 08 0001 60 60

20 08 01 10 10 | 60 08 0.1 30 30 1120 08 0.1 60 60

20 08 03 10 10 | 60 038 0.3 30 30 |120 08 0.3 60 60

20 08 05 10 10 | 60 08 0.5 30 30| 120 08 0.5 860 60

20 08 30 10 10 680 08 3.0 30 30| 120 068 30 60 60

20 08 50 10 10 | 80 08 5.0 30 30 | 120 08 5.0 60 60

20 1.0 0.001 10 10 { 60 10 0001 30 30 |120 10 0001 60 60

20 10 041 10 10| 60 10 O1 30 30 {120 10 01 60 60

20 10 03 10 10 | 80 1.0 0.3 30 30 120 1.0 0.3 60 60

20 10 05 10 10 | 60 1.0 0.5 30 30120 1.0 0.5 60 60

20 10 3.0 10 10 | 60 1.0 3.0 30 30 120 1.0 3.0 60 60

20 10 50 10 10 | 60 1.0 5.0 30 30 | 120 1.0 5.0 60 60

20 12 0.001 10 10 { 60 1.2 0001 30 30 |120 12 0001 60 60

20 12 01 10 10 { 60 1.2 0.1 30 30 (120 12 0.1 60 60

20 12 03 10 10 | 680 1.2 0.3 30 30 |120 12 0.3 60 60

20 12 05 10 10 | 80 12 05 30 30 |120 12 05 60 60

20 12 30 10 10 | 60 1.2 3.0 30 30 120 12 3.0 60 60

20 12 50 10 10 | 60 1.2 5.0 30 30 120 12 5.0 60 60

20 15 0001 10 10| 60 15 0001 30 30120 15 0001 60 60

20 15 01 10 10 | 60 15 0.1 30 30 120 15 0.1 60 60

20 15 03 10 10 |60 15 03 30 30 |120 15 03 60 60

20 15 05 10 10| 680 15 05 30 30120 15 05 60 60

20 15 3.0 10 10 | 60 15 3.0 30 30 120 1.5 3.0 60 60

20 15 50 10 10| 60 15 540 30 30 | 120 15 50 860 60

20 18 0001 10 10 | 60 18 0001 30 30 |120 18 0001 60 60

20 18 041 10 10 | 60 1.8 0.1 30 30 120 1.8 0.1 60 60

20 18 03 10 10| 60 18 03 30 3 {120 18 03 60 60

20 18 05 10 10 | 60 18 0.5 30 301|120 18 0.5 60 60

20 18 30 10 10 | 60 1.8 3.0 30 30 | 120 18 3.0 60 60

20 18 50 10 10 | 60 1.8 5.0 30 30| 120 18 5.0 60 60

20 2.0 0.001 10 10 | 60 20 0001 30 30 (120 20 0.001 60 60

20 20 04 10 10| 60 20 0.1 30 30 | 120 20 Ot 60 60

20 20 03 10 10 | 60 2.0 03 30 30 |120 20 0.3 860 60

20 20 05 10 10 | 60 20 0.5 30 30 | 120 20 0.5 606 60

20 20 30 10 10 (60 20 30 30 30120 20 30 60 60

20 20 50 i0 10| 60 20 50 30 30 | 120 20 50 60 60
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4. Semi-parametric proportional intensity models robustness
for right-censored recurrent failure data

4.0 Abstract

This paper reports the robustness of the four proportional intensity (P1)
models: PWP-gap time (PWP-GT), PWP-total time (PWP-TT), Andersen-Gill
(AG), and Wei-Lin-Weissfeld (WLW), for right-censored recurrent failure event
data that follow a Non-homogeneous Poisson Process (NHPP). The results are
beneficial to practitioners in anticipating the more favorable applications domains
and selecting appropriate Pl models in applying to right-censored recurrent
failure data. This experimental design has incorporated three levels of censorship
severity (light, moderate, and severe) to evaluate these four proposed Pl models.
The PWP-GT and AG prove to be models of choice, evaluated in terms of the
bias, mean absolute deviation, and mean squared error of covariate regression
coefficients over ranges of sample sizes, shape parameters, and censoring
severity encountered in engineering applications. The more favorable
engineering applications ranges are recommended. At the smaller sample size
(U =60), the PWP-GT proves to perform well for moderate right-censoring

(0.0 < P, £0.8) and moderately decreasing, constant, and moderately increasing

rates of occurrence of failures (power-law NHPP shape parameter in the range of
0.8< 6 <1.8). For the large sample size (U =180), the PWP-GT performs well for

severe right-censoring (0.0 < P, <1.0) and moderately decreasing, constant, and

moderately increasing rates of occurrence of failures (power-law NHPP shape

parameter in the range of 0.8 <5 <2.0). The AG model proves to outperform the
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PWP-TT and WLW for stationary process (HPP) across a wide range of right-

censorship (0.0 < P, <1.0) and for sample sizes of 60 (30 per class) or more.

Keywords: repairable systems reliability, right-censoring, recurrent events,

proportional intensity models

Nomenclature

Acronyms

AG Andersen and Gill model

C.lL Confidence interval

DROCOF  Decreasing rate of occurrence of failures

HPP Homogeneous Poisson Process

IROCOF Increasing rate of occurrence of failures

ii.d Independent and identically distributed

LWA Lee, Wei, and Amato model

MTTF Mean time to failure

MAD Mean absolute deviation

MSE Mean squared error

NHPP Non-homogeneous Poisson Process

PH Proportional hazards

Pi Proportional intensity

PWP Prentice, Williams, and Peterson model
PWP-GT Prentice, Williams, and Peterson-gap time model
PWP-TT Prentice, Williams, and Peterson-fotal time model
WLW Wei, Lin, and Weissfeld model

Notation

Cy Censoring time for the i* subject of the k” type of failures
h(t;z) Proportional hazard function

hy (1) Baseline hazard function

L

Number of sample units in class ¢
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1 Number of sample units in class 1

ii.d. Independent and identically distributed

N Successive failure count

N(t) Random variable for the number of failures in (0,7]; a counting
process

n An integer counting successive failure times; a stratification

indicator subscript

P Censoring probability
s.d. Standard deviation
1,7, The beginning and end of an event; bivariate exponential variables
T, Random variable for cumulative time of occurrence of the »n” failure
¢, Cumulative time of occurrence of the »” failure; a realization of T,
U Sample size (number of units)
X Observation time
bas An at-risk indicator in the AG model
() Covariate process up to time ¢
z (% x1) vector of covariates, z =(z,,z,,...z, )’
B, (k x1) vector of stratum-specific regression coefficients
B =505 B)
o Shape parameter of a power-law NHPP
A Indicator of a failure or censored time; limit to time zero
Ay Baseline value of 4 for power-law NHPP
A,(®) Baseline intensity function
Ay, (@) Stratum-specific baseline intensity function
At;z) Proportional intensity function
v Scale parameter of a power-law NHPP
v, Baseline value of v, the scale parameter of a power-law NHPP
v, Alternate value of v, the scale parameter of a power-law NHPP
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Io Standard deviation

»

Denotes an estimator
! Denotes the transpose of a vector

4.1 Introduction
Failure time data on a repairable system are realizations of a stochastic point
process, in which the instantaneous rate of occurrence of failures (ROCOF) is

A(¥). Prentice, Williams, and Peterson (PWP) [1] proposed a semi-parametric

approach to model recurrent failure event data from a repairable system using
two methods: PWP-GT (gap time) and PWP-TT (total time). Several researchers
have subsequently proposed alternate modeling methods by modifying the risk
set (common or event-specific baseline intensity function) and the risk interval
(gap time, total time, or counting process). These include the AG (Andersen-Gill)
[2] and WLW (Wei-Lin-Weissfeld) [3] models.

Cox proposed the distribution-free (semi-parametric) proportional hazards
(PH) model in 1972 [4]. The Cox-based regression models (PWP-GT, PWP-TT,
AG, and WLW) have been applied to recurring events in medical studies
(biostatistics field), such as recurrent infections of a patient. For engineering
applications, Landers and Soroudi [5], Qureshi et al. [6], Vithala [7], and Landers
et al. [8] have investigated robustness of the PWP-GT model, where the
underlying recurrent failure time data are from a Non-homogeneous Poisson
Process (NHPP) with a power-law or a log-linear intensity function. These
references also report the engineering applications of the PWP-GT model cited in
the literature. Qureshi et al. [6] found that the PWP-GT model performs best for

constant and moderately increasing rate of occurrence of failures (IROCOF) and
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decreasing rate of occurrence of failures (DROCOF) and for larger sample sizes
from power-law NHPPs. Vithala [7] considered the case of log-linear increasing
ROCOF, and concluded the PWP-GT model performs best for moderately
increasing ROCOF and for larger sample sizes. Both Qureshi et al. [6] and
Vithala [7] have examined robustness of the PWP-GT model for the complete
(uncensored) data. However, the phenomenon of censoring data is generally
present in field data. This research has extended their work to the important case
of right-censorship and has examined other semi-parametric Pl models (PWP-TT,
AG, and WLW).

Compared to the extensive literature on applications of the Cox-based
regression models in the biostatistics field, there have been few reported
engineering applications. Abundant federal funding received in biostatistics /
medical research has advanced the Pl models to become well developed and
widely referenced. Pl models for medical applications could also apply to
recurring failure/repair data in engineering problems. The AG, PWP-GT, PWP-TT,
and WLW models are potentially powerful analytical tools for engineering
practitioners as they become better recognized and understood. This paper
reports the robustness of the PWP-GT, PWP-TT, AG, and WLW models for right-
censored recurrent failure event data. The results are beneficial to practitioners in
anticipating the more favorable applications domains and selecting appropriate

Pl models.
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4.2 Semi-parametric Proportional Intensity models

Cox [4] proposed a PH formulation to include explanatory variables
(covariates) in survival models. PWP proposed an extension of the Cox model to
stochastic processes and applied the approach to model recurring infections in
aplastic anemia and leukemia patients having received bone-marrow transplants.
This application involved several subjects and a small number of events (up to
five) for each subject. The paper by PWP did not address the baseline intensity
function but rather reported the relative risks for the test and control groups. In
reliability and maintainability engineering applications, a number of authors have
applied the semi-parametric PI. (PH) model, for example, Ansell and Phillips [9], .
Ansell and Phillips [10], Landers and Soroudi [5], Qureshi et al. [6], Ansell and
Phillips [11], Landers et al. [8], Ansell et al. [12], and Ansell et al. [13]. A
collection of the Pl model applied to different industries includes: marine gas
turbine engines (Asher [14]), semiconductor, electrical, and pipeline industries
(Ansell and Phillips [11]), U.S. Army main battle tank (Landers et al. [8]), water
supply industry (Ansell et al. [12], [13]), etc. Ascher [14] illustrated the use of the
PWP model for analysis of reliability for marine gas turbine engines. Ascher and
Feingold [15] suggested application of the PWP model in the field of reliability
engineering. Dale [16] applied the PWP approach to simulated data for a
reliability growth program with design improvements implemented after each of
the five stages, resulting in a DROCOF. Wightman and Bendell [17] and Bendell
et al. [18] cited the PWP model and advised caution in application for engineering

studies.
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Qureshi et al. [6] performed a robustness study to determine how well the
PWP-GT method performed when applied to data from a failure process that was
actually parametric (specifically the NHPP with power-law intensity function). The
2 o bounds of the PWP-GT estimates can cover the true values with few
exceptions. The PWP-GT method performed well, except at small values of
shape parameter (5 < 0.6). The PWP-GT method was best for larger sampie size
and for moderately decreasing, constant, and moderately increasing ROCOF.
The validation process for the case of an HPP in Section 2.2.3 (also refer fo
Table 2.10) indicated that the estimated MITF (mean time to failure) differences
between the PWP-GT model and theoretical values were not statistically
significant. As for the PWP-GT estimates of the covariate regression coefficient,

the true value of coefficient g lies within the 2 o confidence bounds on the

estimate 8 for 1.0 <5 <1.4. The PWP-GT method tends to underestimate g for
a DROCOF (e.g., BIAS=-26% at 6 =0.5) and overestimate g for an IROCOF
(e.g., BIAS= 19% at § =3.0).

The AG model (Andersen and Gill [2]) and the WLW model (Wei et al. [3]) are
widely cited in the literature. Bowman [19] and Lin [20] surveyed and evaluated
the PWP-GT, PWP-TT, AG, and WLW methods. Bowman identified the PWP-GT
model as superior and then used it to analyze needle-stick injury data. Wei and
Glidden [21] have reviewed the Cox-based methods designed to model recurrent
data, and summarized the strengths and weaknesses for each method. in a
commentary on the Wei and Glidden paper, Lipsch}utz and Snapinn [22] stressed

the two concepts of “event times” and “risk sets” as crucial to choosing the

108



appropriate model. Event elapsed times are related to the total time, gap time,
and counting process. The PWP-TT and WLW are modeled by total time, while
only PWP-GT is modeled by gap time. The risk interval of the AG model belongs
to the counting process class. Intuitively, total (global) times within a subject are
highly correlated. The total time model may indicate large treatment effect
throughout the entire study, even though the gap time model has indicated little
treatment effect beyond a certain recurrence. The counting process concept of
the AG method implies each recurrence is not affected by previous events, and
does not contribute to future events.

The risk set consists of the subjects at risk for a specified event (e.g., failure).
There are three types of risk sets: conditional (e.g., PWP), counting process (e.g.,
AG), or marginal (e.g., WLW). As a marginal method, the WLW method assumes
a subject is at risk regardless of event count until the observation for the subject
terminates by censoring. The AG method also provides an index of a general
covariate effect, which is expressed by the common baseline hazard
(unrestricted risk set). However, a subject in the PWP method has event-specific
baseline hazards (restricted risk set), in that the proportional intensity of event &

only considers the subjects that have experienced (k —1) events. Lipschutz and

Snapinn [22] suggested guidelines as follows in choosing the appropriate models:
e Use total time, common baseline hazard (unrestricted risk set) when the

general effect is of interest.
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e Use gap time, event-specific baseline hazards (restricted risk set) when
the primary concern is how the treatment will affect the recurring events
beyond the first occurrence.

Kelly and Lim [23] noted that risk interval can be defined by three formulations
{(1) gap time, (2) total time, and (3) counting process} demonstrated in Fig.
4.1(a)-(c). Risk interval determines whether a model is marginal in the total time
or conditipnal in the gap time. The risk interval of any event in total time is not
influenced by any previous events, but measures time from entry into the
experiment (beginning of observation). However, the risk interval of the gap time
begins from the end of last event (Kelly and Lim [23]). Counting processes use
the total time scale and share the same elapsed time as does the gap time model.
However, the risk interval starts from the previous event instead of the entry time.
Based on the common or event-specific baseline intensities, the risk set is
labeled as either unrestricted or restricted. Kelly and Lim [23] defined three
possible risk sets {(1) unrestricted, (2) restricted, and (3) semi-restricted} in
deciding which sample units are at }risk of contributing to event k. Kelly and Li‘m
[23] employed the concepts of the risk interval and risk set and categorized the

AG, PWP-GP, PWP-TT, WLW, LWA (Lee-Wei-Amato), and other methods.
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Fig. 4.1(a)-(c) Risk interval formulations (Kelly and Lim [23])
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4.3 Models and methods

Sectiohs 4.3.1-4.3.4 review the semi-parametric Cox regression model for
single event and the related regression models for recurrent events. Section
4.3.5 reviews the NHPP with power-law intensity function. Section 4.3.6
describes the method used to assess the robustness of the four semi-parametric
Pl models for the case of censored data from a true but unknown power-law
NHPP.
4.3.1 Cox regression model

For the case of a fime—to—failure random variable, Cox [4] proposed a PH
regression model of the form:
h(t;2) = hy (Yexp(B 2), M
where B is the regression coefficient vector and z represents a covariate vector.
The PH model is composed of two parts: baseline hazards function 4,(¢r) and an
exponential link function, where B is designated to measure the covariate effect.
The Cox model can be used to describe the semi-parametric distribution of time-
to-failure for non-repairable items with covariates. Under proportional hazards,

the ratio of the hazard functions of two units (4 and B) with covariate vectors z
and z, is constant over time. The covariates have a multiplicative effect on the

baseline hazard function. When the baseline hazard function is fully specified
(e.g.,Weibull) the analytical procedure is termed a parametric method.

Alternatively, 4,(¢) can be left arbitrary, in which case the procedure is termed

semi-parametric.
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4.3.2 Semi-parametric PWP model

The PWP model is a generalization of the semi-parametric Cox proportional
hazard function to a proportional intensity function A(t;z) for the case of repeated
failure events. Under proportional intensities, the ratio of the intensity functions of
two units (4 and B) with covariate vectors z, and z, is constant over time. The
covariates have a multiplicative effect on the baseline intensity function. When
the baseline intensity function is fully specified (e.g., power-law or log-linear) the
analytical procedure is termed a parametric method. Alternatively, 4,(¢) can be
left arbitrary, in which case the procedure is termed semi-parametric.

Given the counting and covariate processes at time ¢, the general semi-

parametric intensity function was defined by PWP as follows:

Mt | N(@), Z(0)} = lim Pr{s < T, <t+A|N@,ZE)}/A, Q)

where N(¢) represents a random variable for the number of failures in (0,¢], Z(r)

denotes the covariate process up to time ¢, and A limits the time span to zero.

Among the semi-parametric regression models specified by PWP were the

following:
PWP —GT : A{t| N(0),Z(0)} = &, (t —1,.,) exp[B,z(t)] 3)
PWP —TT : Mt | N(t), Z(t)} = Ay, (t) exp[B,,z(t)]. )

In the PWP-GT model of Eq. (3), the time metric is the interval between times

of failure 7, and ¢,, defined as gap time. The PWP model stratifies a failure data

set based on the failure event count. When a unit is placed into operation it has

experienced no failures and so resides in stratum 1 (» =1), and when the first
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failure occurs the unit moves to the second stratum (» =2). In general, the unit

moves to stratum » immediately following the (»—1)” failure and remains there

until the »* failure. Unlike the gap time model, the limitation of the event-specific
total time model restricts the number of recurring events. Ten recurring failure
events generated from a power-law NHPP in this study have shown a highly
correlated relatiohship. Thus, the PWP-TT model is modified to a special case of
Eq. (4), where the baseline intensity function is set to a common baseline

intensity function denoted as 4,,(¢) = 4,(¢).

4.3.3 Semi-parametric AG model

Andersen and Gill [2] developed the AG method as an extension of the Cox
PH model, to accommodate recurring events in a counting process. The AG
method explains general covariate effects (common baseline intensity function in
the concept of risk set), since each event count re-starts the failure process, and
thus does not feature event-stratifying effects. The risk interval of an AG model

follows a counting process associated with recurring events, where recurrences
(N®, Y™,z are independent and identically distributed (i.i.d.) replicates of
(N,Y,Z), and the probability of the occurrence of two events at a given time is
zero. Symbols: (N,Y,Z) represent the successive failure count, an at-risk

indicator, and covariates. Thus, the risk set of the (n-1)" event is identical to the

risk set of the n” event. The AG model is defined as

A0 (6) = Y 094, Dexpx 2 (1)}, )

114



where ¥ is an at-risk indicator and ¥,* =1 unless the subject is withdrawn

from the study.
4.3.4 Semi-parametric WLW model

WILW proposed a marginal method, expanded from the conditional PWP
method, in dealing with recurrent failure data. Compared to the PWP method, the
WLW method has greater or equal risk set, depending on the sample size
associated with the failure count. The PWP method estimates the intensity
function by considering the subjects having a complete history of previous
recurring events, while the WLW method additionally considers the subjects that
have been withdrawn from observation. The subjects that have been censored
are still in the risk set; thus, contributing influence on events that are followed
after the censoring time. The risk set of each subject using the WLW method
remains the same regardless of complete data or censoring events since a
subject is still at risk when the subject has been withdrawn from the experiment.

Wei et al. [3]in a bladder cancer study examined treatment effects by using
the PWP and WLW models about placebo and thiotepa therapies for tumor
patients. This bladder cancer example collects four recurrence times of tumors

T, ~ T, corresponding to four marginal proportional hazards models. Rather than
fitting each 7, one model at a time, WLW fits four marginal models in one

analysis, simultaneously. This example has two response variables {failure time
and censoring status}, three covariates {treatment, tumour number, tumour size},

and four recurrent events over time.

For the k™ failure type and the i* failure event count, the hazard function
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A, () Iin WLW is assumed to take the form:

Ao (6) = Ao (Dexp{B), x 2, (D}, 1 20, (6)

where 4,,(f)is an unspecified baseline hazard function and §, =( kseeees [;’pk)’ is a
vector of failure-specific regression param'eters. z,, () denotes a px1 vector of
covariates for the i subject at time ¢ with respect to the £” type of failure,
expressed as z,,(1) = (2,,;(), 2, (1),.--2 1, (D).

Let X, represent the failure time of the i” subject for the k* type of failure
and let C,, represent the censoring time. X,, are observation values of X,
where X, =min N,d,C,a.} The indicator variable A, is utilized for determining the
event as a failure or censoring. Let A, =1, when X, = X,,; otherwise A, =0. Key
assumptions for the WLW method are: (1) X, L C,,, i.e., the failure and
censoring times are independent of each other; (2)(X,,A,,Z,) are i.i.d. random
vectors, where Z, represent covariates and i represents event count; and (3) the
regression coefficients f, follow a normal distribution with mean B, denoted
B> Bos By Be) —2— Normal (B, By, Bsrees Be)-

Unlike the gap time model, the limitation of the event-specific total time model
restricts the number of recurring events. Ten recurring failure events generated
from a power-law NHPP in this study have shown a highly correlated relationship.

Thus, the baseline intensity function of Eq. (6) is set to a common baseline

intensity function denoted as A,,(¢) = 4,(¢) . This simplified model is then termed
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as Lee-Wei-Amato (LWA) model designated to measure general covariate
effects.
4.3.5 Power-law infensily function

For a power-law NHPP, the baseline intensity function is
Ay(t) = v, 8 x 177, 0
where & is the shape parameter and v is the scale parameter of the power-law

form. If we define v, =exp(f, xz,) and z, =1, then the power-law Pl model
becomes

Mt;z) =6 xt°exp(P'z), 3
where B is the regression coefficient vector and z represents a covariate vector.
The power-law intensity function is composed of two parts: baseline intensity

function that follows a power-law form and an exponential link function, where B

is designated to measure the covariate effect.

This process could model the reliability of a repairable system with rapid
deterioration, since the failure intensity is increasing at an exponential rate with
time. The analogous case for maintainability is a rapid learning process. The
intensity function A(z) is strictly decreasing for § < 1, constant for 6 =1, and
strictly increasing for & > 1. Thus, we have a DROCOF for§ <1, an HPP for &
=1, and an IROCOF for § > 1.

4.3.6 Method

Simulation data with right-censored patterns, where the underlying distribution

follows a power-law NHPP, is generated by a modified Blanks & Tordon [24] |

simulation algorithm. In order to simulate right-censored recurrent data, two
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groups of sample units were generated, in which one group contains the sample
units with complete data and the other group contains the sample units with right-
censored data. In the group of censored units, the right-censored pattern is set to
be random. The ratio (probability) of the sample units that have censored times

to total sample units is defined as censored probability ( P,).

A discrete indicator covariate z, was used to separate the data into two strata
for an arbitrary treatment effect. For consistency with the work of Qureshi et al.
[6], simulated data was generated from a power-law NHPP with like parameter
values. ‘A proportional ihtensity function dataset was created using two different

values for the scale parameter (v, = 0.001,, = 0.01) corresponding to the two

values of the indicator covariate z, (z, =0,z, =1).
There are three experimental factors: experimental units (U ), shape

parameter (6 ), and censoring probability ( 2,). The levels for each factor are

selected as follows: (1) U =60, 120, and 180 (2) 6§=0.5, 0.8, 1.0, 1.2, 1.5, 1.8,
and 2.0(3) P=0.0,0.4, 0.6, 0.8, and 1.0. The selection of the U, &, and P,
levels has taken the following considerations: (1) the parameter settings in the
previous relevant works (Proschan [25], Landers and Soroudi [5], Qureshi et al.
[6], and Landers et al. [8]) (2) Severe right-censorship may cause the small

sample size (U =20) to have insufficient data. The selection of P, levels takes

into account the light, moderate, and severe censoring. The selection of U and
o levels is taken from the parameter settings in the previous research works,

and it has also considered the small, median, and large sample sizes for U .
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To implement the four Cox-Based regression methods (PWP-GT, PWP-TT,
AG, and WLW), requires formulation of three types of datasets (i.e. three formats
for the same set of failure events, according to the theory underlying each
methodology). For the AG method, the data set is formed from the time interval

(7,,T,) defined as starting and ending times of an event with respect to the

following counting process formulation:

}\i_;%i- PINGE+ 8- N@®) =1|T > t]= 4, 9)

where

A(t) : proportional intensity function of failure process,
N(z) :random variable for number of failures in (0,z].

Eq. (9) defines the instantaneous failure rate between ¢ and ¢+ A under the
condition that this individual has survived after time ¢. Thus, the Iogic rule to form
the dataset is: T, > 7, . As a result, all the censored failure times are removed
from the dataset since 7, =7, when itis a censored event as stipulated for the
AG method. The concept of forming the dataset for the PWP method originates
from the probability theory of conditionality. The later failure times after the »”
failure count cannot be included into the dataset when the intenéity function at

the »n™ failure count is estimated. That is, for each censored unit, the censored
times are removed from the dataset except for the first censored event count.
Due to the marginal probability theory of the WLW method, the dataset contains
full records including all censored events, such that censored units remain in the

risk set.
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The four semi-parametric methods were implemented using the SAS™ Users
Group (SUGI) software code PHREG [26], which performs the semi-parametric
Cox regression method with a blocking option to stratify for a covariate, such as
failure event count, not satisfying the proportional hazards conditions. SAS
PHREG includes a blocking option that stratifies events in strata defined by the
event count and thereby provides event-specific intensity functions. PHREG
applies the product-limit method to estimate the reliability function within all strata
defined by the failure count and for all values of the covariate. PHREG also
applies the Cox method to estimate the vector of regression coefficients § and
the covariance matrix. Appendix Il provides the programming code to perform
the four semi-parametric methods.

To measure and compare model performance, three robustness metrics were
compiled:

e relative signed error (BIAS);

e relative mean absolute deviation (MAD) and

® relétive mean squared error (MSE).

The estimates of the PWP-GT regression coefficients were also compared to the
theoretical value based on ten failures per unit. Additionally, 95% confidence
intervals were constructed on the estimates of B, . In the special case of an HPP,
the other three models (i.e., PWP-TT, AG, and WLW), which have common
baseline intensity function in the concept of risk set, were compared and their
95% confidence bounds were constructed about the PWP-TT, AG, and WLW

estimates.
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4.4 Results
4.4.1 PWP-GT model results

This section examines the PWP-GT model robustness in estimating the
covariate effect denoted as fii . Three experimental factors are experimental units
(U ), shape parameter (&), and censoring probability ( 2,). Table 4.1 summarizes
the robustness across strata defined by ordered failures. In the case of U =60,
results for censoring probability P, from 0.4 to 1.0 are as follows. For the range of
the shape parameter, 0.8<§ <2.0, with censoring probability P, =0.4, the PWP-
GT estimates have relative MSE in the range of (1.1%, 17.5%), relative BIAS in
the range of (-0.6%, 18.0%), and relative MAD in the range of (8.6%, 27.0%). As
the value of P, is increased to 0.6, the PWP-GT estimates have relative MSE in
the range of (1.7%, 18.7%), relative BIAS in the range of (-1.6%, 17.0%), and
relative MAD in the range of (11.2%, 29.3%). Likewise, when P, is increased to
0.8, the PWP-GT estimates have relative MSE in the range of (1.6%, 19.3%), |
relative BIAS in the range of (-5.9%, 16.0%), and relative MAD in the range of
(8.8%, 29.8%). However, when P, is increased to 1.0, the PWP-GT estimates
deteriorate substantially, with relative MSE in the range of (9.5%, 247.9%),

relative BIAS in the range of (-22.1%, 65.6%), and relative MAD in the range of

(24.1%, 79.8%). Among all shape parameters0.5<§ <2.0, § =1.5 has the most

robust PWP-GT estimates throughout 0.4 < P, <1.0, with relative MSE in the

range of (6.2%, 9.5%), relative BIAS in the range of (5.3%, 11.7%), and relative

MAD in the range of (19.0%, 24.1%). If the censoring probability is controlled
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below 0.8, the PWP-GT estimates perform well at the shape parameter range of
0.8<6<20.

As for the case of U =120, for the range of shape parameter 0.8<6 <2.0
with P, =0.4, the PWP-GT estimates have relative MSE in the range of (0.6%,
10.8%), relative BIAS in the range of (-4.5%, 16.0%), and relative MAD in the
range of (6.9%, 16.5%). As the value of P, is increased to 0.6, the PWP-GT
estimates have relative MSE in the range of (0.5%, 10.9%), relative BIAS in the
range of (-5.6%, 14.8%), and relative MAD in the range of (5.0%, 18.6%).
Likewise, when P, is increased to 0.8, the PWP-GT estimates have relative MSE
in the range of (0.9%, 21.9%), relative BIAS in the range of (2.7%, 14.3%), and
relative MAD in the range of (7.5%, 22.6%). However, when P, is increased to
1.0, the PWP-GT estimates deteriorate substantially, with relative MSE in the
range of (8.3%, 168.4%), relative BIAS in the range of (16.4%, 45.8%), and
relative MAD in the range of (18.8%, 48.1%). Among all shape parameters
0.5< 6 <£2.0, the more favorable applications range of the PWP-GT estimates is
0.8 <6 <2.0 throughout 0.4 < P, <0.8, with relative MSE in the range of (0.5%,
21.9%), relative BIAS in the range of (-5.6%, 18.7%), and relative MAD in the
| range of (5.0%, 22.6%).

In the case of U =180, the heaviest censoring probability (P, =1.0) is less
damaging, compared to U =60 and U = 120, except for the rapidly decreasing
ROCOF, § =0.5, where the PWP-GT estimates in 6 = 0.5 are on the rise in the

range of 0.8 < P, <1.0. Table 1 indicates that for shape parameter in the range of
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0.8 < <2.0 and censoring probability in the range of 0.4< P, <1.0, the PWP-GT

estimates have relative MSE in the range of (0.2%, 12.8%), relative BIAS in the
range of (-7.0%, 17.8%), and relative MAD in the range of (3.3%, 21.8%).
Censoring probability and experimental units were chosen as the two factors
to present in 3-D charts. Based on each shape parameter, 3-D charts were
generated to present the PWP-GT model results. Figs.4.2 (a)-(c) provide the
robustness evaluation of the PWP-GT model for three power-law intensity
functions, and indicate that the error is on the rise as the censoring probability
increases and the error is on the decrease as the sample size is increased. The
sarﬁple size effect is exacerbated by heavy censoring. The BIAS values at

U,5,P.)=(60,1.8,1.0) and (U,5,P,)=(60,2.0,1.0) from Table 4.1 indicate a

negative value due to high variability from the heavy censoring factor. As the
sample size is increased to 120 and 180, the number of sample units

compensates the heavy censoring effect.
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Table 4.1 Summary of PWP-GT model results for estimating ﬁi (10 failures/unit)

N =10 failure events/unit, v, = 00010, = 0.01

P

g c U BIAS MAD MSE - | U BIAS MAD MSE U BIAS MAD MSE
05 04 60 040407 062746 0.53551 | 120 0.00465 0.33380 0.36198 | 180 -0.18178 0.18178 0.06075
05 06 60 048680 0.71696 0.77886 | 120 -0.00555 0.33308 0.34196 | 180 -0.18696 0.18696 0.06217
05 08 60 062978 086481 1.36832 | 120 -0.01706 0.31954  0.30120 | 180 -0.09188 0.24669 0.12328
05 1.0 60 1.00221 1.20024 227255 | 120 0.40857 0.69729 1.08745 | 180 0.06185 0.40939 0.27329
08 04 60 -0.00612 0.09325 0.01291 { 120 -0.04467  0.09571 0.01563 | 180 -0.05950 0.08415 0.01140
08 06 60 -0.01597 0.11158 0.01670 | 120 -0.05590 0.03200 0.01477 | 180 -0.07045 0.09304 0.01306
08 08 60 -0.05920 0.10437 0.01871 | 120 0.08223 0.22646  0.21895 | 180 -0.05754 0.09754 0.01753
08 10 60 065585 0.79796 247916 | 120 0.21174 0.34510  0.62236 | 180 -0.03674 0.12327 0.02774
10 04 60 0.04178 0.08594 0.01143 | 120 0.00232 0.056852  0.00590 | 180 -0.00516 0.03339 0.00195
1.0 06 60 000454 0.13398 0.02750 | 120 -0.00506 0.04979  0.00455 | 180 -0.01788 0.04288 0.00361
1.0 08 60 -0.00877 0.08845 0.01590 | 120 0.02708 0.07464  0.00923 | 180 -0.01083 0.06113 0.00719
1.0 10 60 032151 041818 0.63632 | 120 0.34912 0.38596  1.09905 | 180 0.00855 0.06957 0.00984
12 04 60 0.06894 0.11685 0.01989 | 120 0.04091 0.07307 0.00864 | 180 0.03653 0.05888 0.00615
12 06 60 0.07725 0.16187 0.03993 | 120 0.02710 0.06802  0.00811 | 180 0.01795 0.06244 0.00806
12 08 60 0.03604 0.13645 0.03159 | 120 0.04122 0.07453  0.00894 | 180 0.01806 0.07786 0.01176
12 1.0 60 021679 0.29794 0.32410 | 120 0.45836 0.48052 1.68430 | 180 0.02747 0.10220 0.01642
15 04 60 011742 0.19005 0.06218 | 120 0.09289 0.11596  0.02970 | 180 0.08892 0.11935 0.03006
156 06 60 011172 0.22042 0.07480 | 120 0.08247 0.11322  0.02931 | 180 0.07461 0.11632 0.03304
156 08 60 0.07272 021307 0.08060 | 120 0.08892 0.11935  0.03006 | 180 0.06877 0.13615 0.03924
15 1.0 60 0.05251 0.24110 0.09508 | 120 0.36274 0.40576  0.75671 | 180 0.07652 0.15275 0.04380
18 04 60 0.15846 0.24172 0.12377 | 120 0.13317 0.16240  0.07150 | 180 0.13741 0.15393 0.07494
18 06 60 014878 026557 0.13549 | 120 0.12388 0.15561 0.07106 | 180 0.11684 0.16411 0.07669
1.8 08 60 012972 0.27344 0.14486 | 120 0.12368 0.15971 0.071956 | 180 0.10765 0.16802 0.08241
1.8 1.0 60 -0.22053 063335 1.79361 | 120 0.16373 0.18841 0.08326 | 180 0.12651 0.19201 0.08858
20 04 60 017962 026974 0.17465 | 120 0.15956 0.16452  0.10789 | 180 0.17793 0.19784 0.10850
20 06 60 0.16955 0.29295 0.18666 | 120 0.14829 0.18587  0.10932 | 180 0.14400 0.19210 0.11578
20 08 60 0.15996 = 0.29812 0.19294 | 120 0.14281 0.18920 0.11142 | 180 0.12980  0.19181 0.12272
20 10 60 -0.21764 0.71010 214182 | 120 0.18721 0.22697 0.12494 | 180 0.14456 0.21804 0.12772
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4.4.2 Effect of heavy censoring
To demonstrate that heavy censoring is producing a sample size effect, the
number of replications was increased for the case of § =1.5 and P, =1.0, where

in Figs.4.2 (a)-(b) the errors are higher for U =120 than for U = 60. Note that

U =180 performs the best among the three sample sizes. This section examines
the 3-D error plots of the PWP-GT model for estimating ﬁi by doubling the

number of replications. Fig. 4.3 contains the comparisons (MSE and BIAS) of 3
replicates and 6 replicates in performing the PWP-GT model for the case of
d =1.5, and indicates that the error of U = 60 is not better than U = 120 as the

number of replicates is increased.
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4.4.3 Complete data
This section compares the effects of right-censoring versus the base case of

complete data ( P, = 0) for three values of shape parameter and three sample

sizes. Tables 4.2 and 4.3 list the performance metrics. Table 4.2 examines three
power-law intensity functions at sample size U =120, while Table 4.3 examines
two other sample sizes for 6 =1.5.

At the sample size U =120, three charts (Fig. 4.4, Table 4.2) of § =1.5,
6 =1.0, and & =0.5 in the vertical order all indicate that the error is on the rise as
the censoring probability increases. Among the five censoring probability levels,

P =1.0 presents much higher error values compared to P, =0, 0.4, 0.6, and 0.8.

For shape parameter of § =1.5, the performance metrics of the three sample
sizes (U =60, 120, and 180) are documented in Table 4.3 and Fig. 4.4 (in the
horizontal order). As the censoring probability increases, MAD and MSE are on

the rise. Sample size effect is significant at heavy censoring, P, =1.0.
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Table 4.2 Performance metrics (PWP-GT) in three power-law intensity functions

N =10 failuresfunit, v, = 0.001,0, = 0.01

u s P BIAS MAD MSE
120 05 0 20.09376 0.24805 0.12655
0.4 0.00465 0.33390 0.36198
06 -0.00555 0.33308 0.34196
0.8 -0.01706 0.31954 0.30120
1 0.40857 0.69729 1.00745
120 10 0 -0.02346 0.05080 0.00380
0.4 0.00232 0.05852 0.00590
06 -0.00506 0.04979 0.00455
0.8 0.02708 0.07464 0.00923
1 0.34912 0.38596 1.09905
120 15 0 0.06580 0.09571 0.02556
04 0.00289 0.11596 0.02970
06 0.08247 0.11322 0.02931
0.8 0.08892 0.11935 0.03006
1 0.36274 0.40576 0.75671

Table 4.3 Performance metrics (PWP-GT) in three sample sizes, § =1.5

N =10 failures/unit, v, = 0.00L,v, =0.01

u s P BIAS MAD MSE
6 15 0 0.09024 0.16699 0.05685
04 011742 0.19005 0.06218
06 0.11172 0.22042 0.07480
0.8 0.07272 0.21307 0.08060
1 0.05251 0.24110 0.09508
120 15 0 0.06580 0.09571 0.02556
0.4 0.09289 0.11596 0.02970
06 0.08247 0.11322 0.02931
0.8 0.08892 0.11935 0.03006
1 0.36274 0.40576 0.75671
180 15 0 0.08218 0.09191 0.02785
0.4 0.08892 0.11935 0.03006
06 0.07461 0.11632 0.03304
0.8 0.06877 0.13615 0.03924
1 0.07652 015275 0.04380

128



Error (U680, shape = 4.5)

6Cl

0.26 0.8 0.16

0.24 by BAS . F 1 BIAS . 3 y BIAS
e & wo @ g7 F MAD 2 044 | ,/ 4D
s22 s . il weE ¥ 3 / mse 1o f il /
: "0 E g 012 f T
g.::‘ & sk / £ 010 Z/
o £ - . ~ g
G.14 o 04 / W $ o8t
0.42 g "tk B ) E
010 — 1 I o3f LA 2 oos —
0,08 " 2 E / / £ 004 =
0.06 55 w 0.2 F w e
0_04[5""“""\'H"i“'& 2 £ o+ 0_02£|......"-,,.....LJ.H

00 02 04 08 08 10 a 01 e 00 02 04 05 08 18

0'0 il T S ¢ fl FE JV |

Censoring probability 0.0 0.2 0.4 0.8 0.8 1.0 Censoring probabiiity

Censoring probability

o 12 3 ;] BIAS
2 5 MAD
- 10F
T s / MSE
2 08 : /
© o
G 06 [
?; E / Lw
8 04 F / 0
] o
2 o2f
£ s ¥ M
5 0.0 TRy vy

_0'2 U I | bkt ol L T S S i) F U T

0.0 0.2 0.4 0.6 0.8 1.0
Censoring probability

~ o BIAS
) s MAD
a 1.0k
n C / MSE
2 08 F
2 E
@ - y
% 06 [ / }
S oal /
T 0.4 - iy
1 2
= 0.2
Yy
5 00 AY 45 Ay

_0.2 Al T W I | Jo1 11 Lol bl I ) A |

0.0 0.2 0.4 0.6 0.8 1.0

Censoring probability

Fig. 4.4 Error plots (PWP-GT) in three shape
parameters (6 =1.5, 6=1.0, and 6 =0.5)
and three sample sizes (U =60,120, and 180) at
o=15



4.4.4 95% confidence interval on B,

To visualize right-censoring effects upon the PWP-GT model, 95%
confidence bounds were constructed on §, for the HPP, where P, is set to 1.0
(heavily censored). Three sample sizes, U = 60 (Fig. 4.5(a)), U =120 (Fig.
4.5(b)), and U =180 (Fig. 4.5(c)) at P, =1.0, are examined (Table 4.4 contains
the resource data). To compare the three sample sizes, an equal range of Y-axis

levels is set on [0.00, 3.50]. Due to the restriction of the range, the 7” failure in
U =120 contains the 95% confidence interval [2.05119,3.62985], where the

upper limit exceeds the maximum value 3.5.

In the case of U =60 (Table 4.4, Fig. 4.5(a)), the 7* and 10" failures
illustrate the heavy right-censoring effect, and in the case of U =120 (Table 4.4,

Fig. 4.5(b)), only the 95% C.1. for 10" failure shows heavy censoring effect. The
high variability of the PWP-GT estimate at 7" or 10” failure indicates a random

pattern. When the sample size is increased to U =180 (Table 4.4, Fig. 4.5(c)),

the PWP-GT model fii estimates at each failure event count are sufficient to

provide tight bounds on ﬁi estimates. PWP-GT estimates tend to fluctuate more

and the 95% C.1. limits tend to become wider as the event count progresses.
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Table 4.4 95% C.1. on ﬁi , (6,P.)=(1.0,1.0), for three sample sizes, 60, 120, and 180

n U Average® 95%LB os%us | U Average 95%LB os%us | U Average 95%LB  95%UB
1 60  2.43927(0.25991) 1.92986 204868 | 120  2.20402(0.15571) 1.89883 250021 | 180 2.25030(0.12981) 1.09588 250472
2 60  2.25953(0.23653) 1.79593 272313 | 120 2.21734(0.16274) 1.89837 2.53631 | 180 2.30831(0.13910) 2.03567 2.58094
3 60  2.42571(0.27594) 1.88488 2.96655 | 120  2.41301(0.18051) 2.05921 276681 | 180 2.25617(0.14502) 1.97193 2.54041
4 60  2.56670(0.30891) 1.96126 317215 | 120  2.49076(0.20193) 2.00499 2.88653 | 180 2.48872(0.17226) 2.15110 2.82635
5 60  2.03069(0.26970) 1.50208 255930 | 120  2.41393(0.20798) 2.00630 2.82156 | 180 2.48429(0.17698) 2.13742 2.83116
6 60  2.60332(0.41418) 1.79155 3.41509 | 120  2.61077(0.28371) 2.09390 3.12763 | 180 2.49868(0.19974) 210721 2.89015
7 60 6.46199(126.22198) -240.92818 253.85217 | 120  2.84052(0.40273) 2.05119 3.62985 | 180 2.62891(0.26423) 211103 3.14680
8 60  2.34825(0.50925) 1.35015 3.34636 | 120  2.10121(0.30771) 1.49810 270432 | 180 2.18766(0.26295) 1.67228 2.70304
9 60  1.50453(0.51508) 0.49498 251407 | 120  2.26362(0.45061) 1.38045 3.14679 | 180 2.30608(0.34864) 1.62275 2.98941
10 60 5.78885(459.66699) -895.14055 906.71826 | 120 9.50955(154.25540) -292.82503 311.84413 | 180 1.81369(0.46808) 0.89626 2.73112
" True f =2.30259
U=60urits A Average U =120 units B Average U= 180 units "
E£295%LB werage

< am g O o 3::; 250 os%uB = 350 - E195%LB

i O O X True £ a00 O O XTrua £ 300 m] [95%UB

260 a E 250 E e
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Fig. 4.5(a)-(c) 95%Cl on PWP-GT estimates at each failure count for three sample sizes 60, 120, and 180, (5, P,) = (1.0,1.0)



4.4.5 PWP-TT, AG, and WLW models

Fig. 4.6(a)-(c) visualize the estimating performance of the PWP-TT, AG, and
WLW models for three sample sizes (U =60, 120, and 180) in an HPP case
(6 =1). As the censoring probability incréases, the AG estimate does not
fluctuate, while the PWP-TT and WLW estimates slightly decrease. The sample
size effect does improve the variability of the estimate resuiting in narrower 95%
confidence intervals. The total-time models (PWP-TT, AG, and WLW) are not
affected by the shape parameter § compared to the gap-time model (PWP-GT).
The estimate and its variability using the PWP-TT, AG, or WLW model remain
the same as the shape parameter setting varies. The reason the PWP-TT, AG
and WLW estimates do not vary with shape parameter is that shape parameter
does not influence the likelihood function in the total-time model. Consequently,
the HPP case is chosen for the purpose of illustrating the PWP-TT, AG, and
WLW models. The AG estimate provides the most reliable estimate in a right-

censoring HPP case, among the PWP-TT, AG, and WLW models. The true g is
2.30259, and Table 4.5 summarizes the results that the true g lies within the

95% C.1. of the AG estimate in each combination of experimental units and

censoring probability.
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Table 4.5 Summary of semi-parametric AG model results for ,l;‘ (6 =1, an HPP)

eel

Beta {U=80, shape=1.0)

Conditions AG estimates ° 95%LB 95%UB
(U, P.)=(60,0.4) 2.29963(0.09692) ° 2.10967 2.48959
(U, P)=(60,0.6) 2.27179(0.09984) 2.07611 2.46747
(U, P)=(60,0.8) 2.28192(0.10185) 2.08230 2.48155
(U, Pc)=(60,1.0) 2.27442(0.10851) 2.06175 2.48709
(U, Pc)=(120,0.4) 2.32087(0.06927) 2.18511 2.45664
(U, Pc)=(120,0.6) 2.30481(0.07077) 2.16611 2.44351
(U, Pc)=(120,0.8) 2.29507(0.07297) 2.15206 2.43808
(U, P)=(120,1.0) 2.31017(0.07653) 2.16018 2.46015
(U, Pc)=(180,0.4) 2.27485(0.05541) 2.16624 2.38346
(U, P,)=(180,0.6) 2.26272(0.05726) 2.15049 2.37495
(U, Po)=(180,0.8) 2.25832(0.05936) 2.14197 2.37467
(U, Pc)=(180,1.0) 2.26412(0.06257) 2.14149 2.38675
® Theoretical values of sl h{ﬁ ]= 2.30259
&5 Ay
® Estimated standard errors in parenthesis
. o 34 F -@- Ac - 2 +3fm |
s.sz\\‘;\ gl %ﬁ%ﬁ’, g a2 ,I3-~\.L e < sl § 30 1%%?326;
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(c) U =180
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Fig. 4.6(a)-(c) AG, PWP-TT, and WLW model results, I/ =60, 120, and 180 (6 =1.0)



4.5 Conclusions

Previous studies (by Landers and Soroudi [5] and Qureshi et al. [6])
conducted on the PWP-GT model for the case of an underlying NHPP with
power-law intensity function indicated good performance. This research has
performed a right-censorship robustness study and examined other semi-
parametric Pl models with covariates for the case of right-censoring. Qureshi et
al. [6] examined the PWP-GT model applied to recurrent data without censoring
(complete data) and concluded that the PWP-GT estimator underestimates the
covariate effect in a DROCOF case and overestimates the covariate effect in an
IROCOF case. Qureshi et al. proved the PWP-GT model an accurate estimator
in estimating the times to failures for NHPP power-law processes with shape
parameter in the range 1.0 < <3.0 and for larger sample sizes (U >60). In
comparing with other researchers, Section 4.4.3 examined both cases: complete
data and right-censoring data. Section 4.4.3 has included the case of Qureshi's
work (complete data) and produced results consistent with those of Qureshi.

The PWP-GT and AG prove to be models of choice, evaluated in terms of
the BIAS, MAD, and MSE of covariate regression coefficients over ranges of
sample sizes, shape parameters, and censoring severity encountered in
engineering applications. The research domains of the three factors of interests

are: (1)60<U <180, (2)0.5<5<2.0, and (3)0.0 < P, £1.0. The more favorable

engineering applications ranges may be inferred from the results, as follows. At
the smaller sample size (U = 60), the PWP-GT proves to perform well for

moderate right-censoring (0.0 < P, <0.8) and moderately decreasing, constant,

134



and moderately increasing ROCOF (power-law NHPP shape parameter in the

range of 0.8 <6 <1.8). In the case of U = 120, the PWP-gap time proves to

perform well for moderate right-censoring (0.0 < P, <0.8 ) and moderately

decreasing, constant, and moderately increasing ROCOF (power-law NHPP
shape parameter in the range of 0.8 <6 <2.0). For the large sample size (U =

180), the PWP-GT performs well for heavy right-censoring (0.0< P, <1.0) and

moderately decreasing, constant, and moderately increasing ROCOF (power-law
NHPP shape parameter in the range of 0.8 <5 <2.0). The AG model proves to
outperform the WLW for a stationary process (HPP) across a wide range of right-

censorship (0.0 < P, <1.0) and for sample sizes of 60 (30 per class) or more.

The sample sizes chosen for this engineering research were 60 <U <180
(30-90 units per class of a two-level covariate). Many of the medical studies
reported in the literature contain sample sizes smaller than this range. Small
sample sizes are common in medical studies due to the high cost of a clinical trial
including requisite examinations required in the medical practices, such as X-Ray
scans and blood tests. The numbers of qualified subjects are sometimes small
because of cost and/or medical conditions. The AG model is designed to
estimate the general covariate effect and can be useful if small sample size is
unavoidable. The AG model adopts the stationary counting process model and
assumes each occurrence as independent and identically distributed according
to an exponential distribution. Thus, the number of observation for a subject can
be utilized as the expansion of the sample size. For instance, there are ten

subjects available and four observations for each subject are collected. The
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sample size effect for those ten subjects in using the AG model is equivalent to
having forty subjects.

This research has addressed only the case of data from an NHPP with
power-law intensity function. The log-linear intensity function is also encountered
in the literature and may be important for industry. Future research to exarﬁine
the right-censoring effect upon recurring events from an NHPP with log-linear
intensity function could be beneficial to practitioners. Left-censoring also arises in
some applications for recurrent failure data from repairable systems. An example
case is field data where early life events were not recorded and records were lost.
Future research could apply the methodology to examine PWP-GT robustness

under left-censoring.

136



4.6 References

[1] Prentice RL, Williams BJ, Peterson AV. On the regression analysis of
mutltivariate failure time data. Biometrika, 1981; 68:; 373-9.

[2] Andersen PK, Gill RD. Cox’s regression model for counting
processes: a large sample study. The Annals of Statistics, 1982;
10(4): 1100-20.

[3] WeilJ, Lin DY, Weissfeld L. Regression analysis of multivariate
incomplete failure time data by modeling marginal distributions.
Journal of the American Statistical Association, Dec.1989; 84(408):
1065-73.

[4] Cox DR. Regression models and lifetables (with discussion). Journal
of the Royal Statistical Society B, 1972; 34:187-202.

[6] Landers TL, Soroudi HE. Robustness of a semi-parametric
proportional intensity model. IEEE Transactions on Reliability, 1991;
40(2): 161-4.

[6] Qureshi WM, Landers TL, Edward EG. Robustness evaluation of a
semi-parametric proportional intensity model. Reliability Engineering
and System Safety, 1994; 44: 103-9.

[7]1 Vithala S. Robustness of a semi-parametric proportional intensity
model for the case of a log-linear Non-homogeneous Poisson
Process. A thesis of the Industrial Engineering Department at the
University of Arkansas, 1994.

[8] Landers TL, Jiang ST, Peek, JR. Semi-parametric PWP model
robustness for log-linear increasing rates of occurrence of failures.
Reliability Engineering and System Safety, 2001; 73: 145-53.

[8] Ansell JI, Phillips MJ. Practical problems in the statistical analysis of
reliability data (with Discussion). Applied Statistics, 1989;38(2):205-
47.

[10] Ansell JI, Phillips MJ. Practical reliability data analysis. Reliability
Engineering and System Safety, 1990,28(3):337-56.

[11] Ansell JI, Phillips MJ. Practical aspects of modeling of repairable
systems data using proportional hazards models. Reliability
Engineering and System Safety, 1997;58(2):165-71.

[12] Ansell J, Archibald T, Dagpunar J, Thomas L, Abell P, Duncalf D.
Assessing the maintenance in a process using a semi-parametric
approach. Quality and Reliability Engineering International,
2001;17:163-7.

[13] Ansell J, Archibald T, Dagpunar J, Thomas L, Abell P, Duncalf D.
Analysing maintenance data to gain insight into systems performance.
Journal of Operational Research Society, 2003;54:343-9.

[14] Ascher H. Regression analysis of repairable systems reliability. In:
Skwirzynski JK, editor. Electronic systems effectiveness and life cycle
costing. Berlin: Springer, 1983, p.119-33.

[15] Ascher H, Feingold H. Repairable systems reliability—modeling
inference, misconceptions and their causes, Lecture notes in

137



[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

statistics, New York: Marcel Dekker Inc, 1984;7.

Dale C. Application of the proportional hazards model in the reliability
field. Reliability Engineering, 1985;10:1-14.

Wightman DW, Bendell A. The practical application of proportional
hazards modeling. Reliability Engineering, 1986;15:29-53.

Bendell A, Wightman DW, Walker EV. Applying proportional hazards
modeling in reliability. Reliability Engineering and System Safety,
1991;34:35-53.

Bowman ME. An evaluation of statistical models for the analysis of
recurrent events data: with application to needlestick injuries among a
cohort of female veterinarians. A dissertation of the Preventive
Medicine at the Ohio State University, 1996.

Lin DY. Cox’s regression analysis of multivariate failure time data: the
marginal approach. Statistics in Medicine, 1994; 13: 2233-47.

Wei LJ, Glidden DV. An overview of statistical methods for multiple
failure time data in clinical trials. Statistics in Medicine, 1997; 16: 833-
9.

Lipschutz KH, Snapinn SM. Discussion of paper by Wei and Glidden.
Statistics in Medicine, 1997; 16: 841-51.

Kelly PJ, Lim LL-Y. Survival analysis for recurrent data: An application
to childhood infectious diseases. Statistics in Medicine, 2000; 19: 13-
33.

Blanks HS, Tordon MJ. Laplace and Mann aging trend test
effectiveness. Proceeding of the Annual Reliability and Maintainability
Symposium, 1987;165-70.

Proschan F. Theoretical explanation of observed decreasing failure
rate. Technometrics, Aug. 1963;5(3):375-83.

SUGI Supplementary Library User's Guide, Version 5. SAS Institute,
Cary, North Carolina, USA, 1985, p. 437-66.

138



5. Robustness of semi-parametric proportional intensity models
for right-censored recurrent failure data
from a stationary counting process
5.0 Abstract

The class of semi-parametric proportional intensity (Pl)l models applies to
recurrent failure event modeling for a repairable system with covariates for a
right-censored Homogeneous Poisson Process (HPP). Abundant federal funding
received in biostatistics/ medical research has advanced the Pl models to
become well developed and widely referenced. Engineering applications of these
four methods have been few because the models are not well known and the
favorable ranges of applications have not been examined. This paper not only
reports the robustness evaluation of the four Pl models (Prentice-Williams-
Peterson-gap time (PWP-GT), PWP-total time (PWP-TT), Andersen-Gill (AG),
and Wei-Lin-Weissfeld (WLW)) under right-censorship, but also presents the
comparison of the three event-specific baseline intensity function models (PWP-
GT, PWP-TT, and WLW).

Landers and Soroudi (1991), Qureshi et al. (1994), and Landers et al. (2001)
have examined robustness of the PWP-GT model for the case of an underlying
NHPP with power-law and log-linear intensity functions and complete
(uncensored) data. However, the phenomenon of censoring data is generally
present in field data. This research has extended their work to the important case
of right-censorship and has examined other semi-parametric Pl models. This

experimental design has incorporated three levels of censorship severity (light,

moderate, and severe) to evaluate these four proposed Pl models.
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The more favorable engineering applications ranges are recommended,
which are beneficial to practitioners in anticipating the more favorable
applications domains and selecting appropriate Pl models in applying to right-
censored recurrent failure data. The PWP-gap time model has proven the most
robust and accurate estimator (at the lowest error) among the three event-
specific models. Compared to WLW, the PWP-TT estimator yields similar but
slightly better results. The PWP-gap time presents a low-error region at the range

of 120<U <180 and 0< P, <1. For the small sample size U = 60, the more
favorable applications range is 0 < P, <0.8. For the other two estimators, when
the sample size is increased from U =60 to U =120, PWP-TT and WLW have a
slightly improved applications range 0 < P, <0.4. As the sample size is increased
to 180, the performance is poor but stable over applications range 0 < P, <0.8 on
both models. The results show that AG performs well for the case of smaller
sample size (U=60) and heavy censoring ( P, =1.0). The favorable applications
region of the common baseline AG model lies at 60<U <180 and 0< 7, <1.

Keywords: repairable systems reliability, right-censored recurrent events,
proportional intensity models

Nomenclature

Acronyms
AG Andersen and Gill model
C.l Confidence interval

DROCOF  Decreasing rate of occurrence of failures
HPP Homogeneous Poisson Process
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IROCOF Increasing rate of occurrence of failures

i.i.d Independent and identically distributed
MTTF Mean time to failure

MAD Mean absolute deviation

MSE Mean squared error

NHPP Non-homogeneous Poisson Process

Pl Proportional intensity

PWP Prentice, Williams, and Peterson model

PWP-GT Prentice, Williams, and Peterson-gap time model
PWP-TT Prentice, Williams, and Peterson-total time model

WLW Wei, Lin, and Weissfeld model

Notation

Cy Censoring time for the i* subject of the k" type of failures

h(t; z) Proportional hazard function

hy (1) Baseline hazard function

I, Number of sample units in class ¢

i Number of sample units in class 1

ii.d. Independent and identically distributed

N Successive failure count

N(@) Random variable for the number of failures in (0, t]; a counting
process

n An integer counting successive failure times; a stratification

indicator subscript

P Censoring probability

s.d. Standard deviation

1.7, The beginning and end of an event; bivariate exponential variables
T, Random variable for cumulative time of occurrence of the »” failure
tn Cumulative time of occurrence of the »™ failure; a realization of 7,
U Sample size (number of units)
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X Observation time

A an at-risk indicator in the AG model
() Covariate process up to time ¢
z (k1) vector of covariates, z=(z,,z,,..z; )’
B, (k& x1) vector of stratum-specific regression coefficients
B =055, 8:)
1) Shape parameter of a power-law NHPP
A Indicator of a failure or censored time; limit fo time zero
Ay Baseline value of 4 for power-law NHPP
A, () Baseline intensity function
A, () Stratum-specific baseline intensity function
At;z) Proportional intensity function
v Scale parameter of a power-law NHPP
v, Baseline value of v, the scale parameter of a power-law NHPP
v, Alternate value of v, the scale parameter of a power—law NHPP
o Standard deviation
A Denotes an estimator

Denotes the transpose of a vector
5.1 Introduction

Failure time data on a repairable system are realizations of a stochastic point
process, in which the instantaneous rate of occurrence of failures (ROCOF) is

A(t). Prentice, Williams, and Peterson (PWP) [1] proposed a semi-parametric

approach to model recurrent failure event data from a repairable system using
two methods: PWP-GT (gap time) and PWP-TT (total time). Several researchers
have subsequently proposed alternate modeling methods by modifying the risk

set (common or event-specific baseline intensity function) and the risk interval

142



(gap time, total time, or counting process). These include the AG (Andersen-Gill)
[2] and WLW (Wei-Lin-Weissfeld) [3] models.

Cox proposed the distribution-free (semi-parametric) proportional hazards
model in 1972 [4]. The Cox-based regression models (PWP-GT, PWP-TT, AG,
and WLW) have been applied to recurring events in medical studies (biostatistics
field), such as recurrent infections of a patient. For engineering applications,
Landers and Soroudi [5], Qureshi et al. [6], Vithala [7], and Landers et al. [8] have
investigated robustness of the PWP-GT model, where the underlying recurrent
failure time data are from a Non-homogeneous Poisson Process (NHPP) with a
power-law or a log-linear intensity function. These references also report the
engineering applications of the PWP-GT model cited in the literature. Qures}ri et
al. [6] found that the PWP-GT model performs best for constant and moderately
increasing rate of occurrehce of failures (IROCOF) and decreasing rate of
occurrence of failures (DROCOF) and for larger sample sizes from power-law
NHPPs. Vithala [7] considered the case of log-linear increasing rates of
occurrence of failures, and concluded the PWP-GT model performs best for
moderately increasing rates of occurrence of failures and for larger sample sizes.
Both Qureshi et al [6] and Vithala [7] restricted their studies to the case of
complete (uncensored) data. However, the phenomenon of censoring is
generally present in field data. This research has extended their work to the
important case of right-censorship and has examined other semi-parametric Pl

models (PWP-TT, AG, and WLW).
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Compared to the extensive literature on applications of the Cox-based
regression models in the biostatistics field, there have been few reported
engineering applications. Abundant federal funding received in biostatistics /
medical research has advanced the Pl models to become well developed and
widely referenced. Pl models for medical applications could also apply to
recurring failure/repair data in engineering problems. The PWP-GT, PWP-TT, AG,
and WLW models are potentially powerful analytical tools for engineering
practitioners as they become better recognized and understood. This paper
reports the robustness of the PWP-GT, PWP-TT, AG, and WLW models for right-
censored recurrent failure events and stationary data. The results are beneficial
to practitioners in anticipating the more favorable applications domains and
selecting appropriate Pl models.

5.2 Semi-parametric Proportional intensity models

Cox [4] proposed a proportional hazards formulation to include explanatofy
variables (covariates) in survival models. PWP proposed an extension of the Cox
model to stochastic processes and applied the approach to model recurring
infections in aplastic anemia and leukemia patients having received bone-marrow
transplants. This application involved several subjects and a small number of
events (up to five) for each subject. The paper by PWP did not address the
baseline intensity function but rather reported the relative risks for the test and
control groups. In reliability and maintainability engineering applications, a
number of authors have applied the semi-parametric Pl (PH) model, for example,

Ansell and Phillips [9], Ansell and Phillips [10], Landers and Soroudi [5], Qureshi

144



et al. [6], Ansell and Phillips [11], Landers et al. [8], Ansell et al. [12], and Ansell
et al. [13]. A collection of the Pl model applied to different industries includes:
marine gas turbine engines (Asher [14]), semiconductor, electrical, and pipeline
industries (Ansell and Phillips [11]), U.S. Army main battle tank (Landers et al.
[8]), water supply industry (Ansell et al. [12], [13]), etc. Ascher [14] illustrated the
use of the PWP model for analysis of reliability for marine gas turbine engines.
Ascher and Feingold [15] suggested application of the PWP model in the field of
reliability engineering. Dale [16] applied the PWP approach to simulated data for
a reliability growth program with design improvements implemented after each of
the five stages, resulting in a DROCOF. Wightman and Bendell [17] and Bendel!
et al. [18] cited the PWP model and advised caution in application for engineering
studies.

Qureshi et al. [6] performed a robustness study to determine how well the
PWP-GT method performed when applied to data from a failure process that Was
actually parametric (specifically the NHPP with power-law intensity function). The
2 o bounds of the PWP-GT estimates can cover the true values with few
exceptions. The PWP-GT method performed well, except at small values of
shape parameter (5 < 0.6). The PWP-GT method was best for larger sample size
and for moderately decreasing, constant, and moderately increasing ROCOFs.
The validation process for the case of an HPP in Section 2.2.3 (also refer to
Table 2.10) indicated that the estimated MTTF (mean time to failure) differences
between the PWP-GT model and theoretical values were not statistically

significant. As for the PWP-GT estimates of the covariate regression coefficient,
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the true value of coefficient # lies within the 2 o confidence bounds on the

estimate B for 1.0 <8 <1.4. The PWP-GT method tends to underestimate g for
a DROCOF (e.g., BIAS= -26% at & = 0.5) and overestimate g for an IROCOF
(e.g., BIAS= 19% at § =3.0).

The AG model (Andersen and Gill [2]) and the WLW model (Wei et al. [3]) are
widely cited in the literature. Bowman [19] and Lin [20] surveyed and evaluated
the AG, PWP-GT, PWP-TT, and WLW methods. Bowman conducted a
simulation based on a bivariate exponential distribution to generate bivariate
recurrent events, in order to control the correlation (¢) among recurring events.

Bowman utilized the bivariate exponential distribution (7;,7,) to generate the
consecutive recurring event times T, =T, +7,, where »n is the event count and 7,
and 7, represent the beginning and end of an event. The univariate event time
T, is composed of 7} and T, with given correlation (8). This type of simulation

approach makes it possible to manage the correlation of recurring events.
Bowman identified the PWP-GT model as superior and then used it to analyze
needle-stick injury data.

Wei and Glidden [21] have reviewed the Cox-based methods designed to
model recurrent data, and summarized the strengths and weaknesses for each
method. In a commentary on the Wei and Glidden paper, Lipschutz and Snapinn
[22] stressed two concepts of “event times” and “risk sets” as crucial to choosing
the appropriate model. Event elapsed times are related to the total time, gap time,
and counting process. The PWP-TT and WLW are modeled by total time, while

only PWP-GT is modeled by gap time. The risk interval of the AG model belongs
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to the counting process class. Intuitively, total (global) times within a subject are
highly correlated, with similar indication on the first recurrence and subsequent
events. The total time model may indicate large treatment effect throughout the
entire study, even though the gap time model has indicated little treatment effect
beyond a certain recurrence. The counting process concept of the AG method
implies each recurrence is not affected by previous events, and does not
contribute to future evehts.

The risk set consists of the subjects at risk for a specified event (e.g., failure).
There are three types of risk sets: conditional (e.g., PWP), counting process (e.g.,
AG), or marginal (e.g., WLW). As a marginal method, the WLW method assumes
a subject is at risk regardiess of event count until the observation for the subject
terminates by censoring. The AG method also provides an index of a general
covariate effect, which is expressed by the common baseline hazard
(unrestricted risk set). However, a subject in the PWP method has event-specific
baseline hazards (restricted risk set), in that the proportional intensity of event &
only considers the subjects that have experienced (% —1) events. Lipschutz and
Snapinn [22] suggested guidelines as follows in choosing the appropriate models:

e Use total time, common baseline hazard (unrestricted risk set) when the

general effect is of interest.

¢ Use gap time, event-specific baseline hazards (restricted risk set) when

the primary concern is how the treatment will affect the recurring events

beyond the first occurrence.
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Kelly and Lim [23] noted that risk interval can be defined by three formulations
{(1) gap time, (2) total time, and (3) counting process} demonstrated in Fig.
5.1(a)-(c). Risk interval determines whether a model is marginal in the total time
or conditional in the gap time. The risk interval of any event in total time is not
influenced by any previous events, but measures time from entry into the
experiment (beginning of observation). However, the risk interval of the gap time
begins from the end of last event (Keily and Lim [23]). Counting processes use
the total time scale and share the same elapsed time as does the gap time model.
However, the risk interval starts from the previous event instead of the entry time.
Based on the common or event-specific baseline intensities, the risk set is
labeled as either unrestricted or restricted. Kelly and Lim [23] defined three
possible risk sets {(1) unrestricted, (2) restricted, and (3) semi-restricted} in
deciding which sample units are at risk of contributing to event k. Kelly and Lim
[23] employed the concepts of the risk interval and risk set and categorized the

PWP-GT, PWP-TT, AG, WLW, LWA (Lee-Wei-Amato), and other methods.
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5.3 Models and methods

Sections 5.3.1-5.3.2 review the semi-parametric Cox regression model for
single event and the related regression models for recurrent events. Sections
5.3.3-5.3.4 review two other alternate regression models (AG and WLW), and
Section 5.3.5 describes the. method used to assess the robustness of the semi-
parametric Pl models for the case of censored data from a true but unknown
stationary counting process.
5.3.1 Cox regression model

For the case of a time-to-failure random variable, Cox [4] proposed a
proportional hazards regression model of the form:
h(t;z) = hy (Dexp(B z), M
where B is the regression coefficient vector and z represents a covariate vector.

The PH model is composed of two parts: baseline hazards function 4,(¢) and an

exponential link function, where B is designated to measure the covariate effect.

The Cox model can be used to describe the semi-parametric distribution of
time-to-failure for non-repairable items with covariates. Under proportional
hazards, the ratio of the hazard functions of two units (4 and B) with covariate
vectors z, and z, is constant over time. The covariates have a multiplicative
effect on the baseline hazard function. When the baseline hazard function is fully
specified (e.g., Weibull) the analytical procedure is termed a parametric method.

Alternatively, A,(7) can be left arbitrary, in which case the procedure is termed

semi-parametric.
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5.3.2 Semi-parametric PWP model

The PWP model [1] is a generalization of the semi-parametric Cox
proportional hazard function to a proportional intensity function A(#;z) for the
case of repeated failure events. Under prqportional intensities, the ratio of the
intensity functions of two units (4 and B) with covariate vectors z, and z, is
constant over time. The covariates have a multiplicative effect on the baseline
intensity function. When the baseline intensity function is fully specified (e.g.,
power-law or log-linear) the analytical procédure is termed a parametric method.
Alternatively, the 4,(¢) baseline intensity function can be left arbitrary in which
case the procedure is termed semi-parametric.

Given the counting and covariate processes at time ¢, the general semi-
parametric intensity function was defined by Prentice, Williams and Peterson as

follows:

A{|N@), Z(@®)} =lm Pr{t ST, <t+A[NE,Z@®)} /A, )

where N(¢) represents a random variable for the number of failures in (O,t], Z(1)

denotes the covariate process up to time ¢, and A limits the time span to zero.

Among the semi-parametric regression models specified by Prentice, Williams

and Peterson were the following:

PWP —GT : A{t| N(®), Z({)} = A,,(t —t,. Y exp[B.,z(1)] 3)

PWP —TT : A{t | N(O), Z(t)} = A,, () exp[B. z(D)]. “
In the PWP-GT model of Eq. (3) the time metric is the interval between times

of failure ¢, and ¢,, defined as gap time. The PWP model stratifies a failure data
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set based on the failure event count. When a unit is placed into operation it has
experienced no failures and so resides in stratum 1 (n =1), and when the first
failure occurs the unit moves to the second stratum (» =2). In general, the unit
moves to stratum » immediately following the (n-1)" failure and remains there
until the »” failure.
5.3.3 Semi-parametric AG model

Andersen and Gill [2] developed the AG method as an extension of the Cox
proportional hazards model, to accommodate recurring events in a counting
process. The AG method explains general covariate effects (common baseline
intensity function in the concept of risk set), since each event count re-starts the
failure process, and thus does not feature event-stratifying effects. The risk

interval of an AG model follows a counting process associated with recurring
events, where recurrences (N™,¥™,Z{) are independent identically distributed
(i.i.d.) replicates of (N,Y,Z), and the probability of the occurrence of two events
at a given time is zero. Thus, the risk set of the (n-1)" event is identical to the
risk set of the n” event. The AG model is defined as

A @) =Y (04, Dexpx 2z (1)), )
where Y™ is an at-risk indicator and ¥,”” =1 unless the subject is withdrawn
from the study.

5.3.4 Semi-parametric WLW model

Wei et al. [3] proposed a marginal method, expanded from the conditional

PWP method, in dealing with recurrent failure data. Compared to the PWP
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method, the WLW method has greater or equal risk set, depending on the
sample size of the failure count. The PWP method estimates the intensity
function by considering the subjects having a complete history of previous
recurring events, while the WLW method additionally considers the subjects that
have been withdrawn from the observation. The censored subjects are still in the
risk set; thus, contributing influence on events that are followed after the
censoring time. The risk set of each subject using the WLW method remains the
same regardless of complete data or censoring events since a subject is still at
risk when the subject has been withdrawn from the experiment.

Wei et al. [3]in a bladder cancer study examined treatment effects by using
the PWP and WLW models aboqt placebo and thiotepa therapies for tumor
patients. This bladder cancer example collects four recurrence times of tumors

7, ~ T, corresponding to four marginal proportional hazards models. Rather than
fitting each 7, one model at a time, WLW fits four marginal models in one
analysis, simultaneously. This example has two response variables {failure time
and censoring status}, three covariates {treatment, tumour number, tumour size},
and four recurrent events over time.

For the £” failure type and the i failure event count, the hazard function
A, (1) in WLW is assumed to take the form:

A, (1) = Ay (DEXD{BL x 2, ()} >0, (6)

where /., (?) is an unspecified baseline hazard function and B; =( F— ,Byk)' isa

vector of failure-specific regression parameters. z,,(r) denotes a px1 vector of
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covariates for the i* subject at time ¢ with respect to the £* type of failure,

expressed as z,,(t) = (2,,(1), 2, (t),.-.2 5, (1))

Let X, represent the failure time of the i subject for the £” type of failure
and let C,, represent the censoring time. X, are observation values of X,
where X,, =min Nk,.,C,d} The indicator variable A, is utilized for determining the

event as a failure or censoring. Let A, =1, when X, = X ; otherwise A, =0,
Key assumptions for the WLW method are: (1) X, L C,,, i.e., the failure and
censoring times are independent of each other; (2)(X,,A,,Z,) arei.i.d. random

vectors, where Z, represent covariates and i represents event count; and (3)

The regression coefficients fii follow a normal distribution with mean B, denoted

B> By Bysves B) ——> Normal (B, By, Psees By).
5.3.5 Method

Unlike the gap time scale (PWP-GT), the total time scale (PWP-TT and WLW)
is invariant to the shape parameter (6 ) of the power-law form NHPP, because §
does not influence the likelihood function in the total-time model. The counting
process (AG) adopts the total time scale, and thus becomes an estimator
invariant to shape parameter. Kelly and Kim [23] and Lipschutz and Snapinn [22]
suggested how to use the total time and counting process models. The gap time
scale haé been considered a better model to capture the dependence structure
existing among failure times than has the total time scale. Thus, in any rate of

occurrence of failures, utilizing the gap time scale can capture the trend and give
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a sound estimate of covariate effects, while the total time scale appears to
overestimate covariate effects as the event count progresses. This
overestimation is termed as a misspecification problem resulting from applying
the total time scale and counting process scale. Consequently, the HPP case is
chosen for the purpose of illustrating the PWP-TT, AG, and WLW models. The
PWP-GT model is implemented for comparison purposes.

There is anocther limitation of using the total time scale: the maximum number
of simulated failure events that is able to afford reliable estimates. As a resul,
four failure events were generated for each sample unit. In the concept of risk set,
there are two types: common (AG) or event-specific baselines (PWP-GT, PWP-
TT, and WLW). The common baseline provides a general covariate effect based
on the generic analysis from all input data without ranks of failure events, while
the event-specific baseline offers the estimated covariate effect in each stratum
defined by failure count.

Simulation data with right-censored patterns, where the underlying distribution
follows a power-law NHPP is generated by a modified Blanks & Tordon [24]
simulation algorithm. Since stationary data are specified, 5 =1 is set to convert a
power-law NHPP into an HPP. In order to simulate right-censored recurrent data,
two groups of sample units were generated, in which one group contains the
sample units with complete data and the other group contains the sample units
with right-censored data. In the group of censored units, the right-censored
pattern is set random. The ratio (probability) of the sample units that have

censored times to total sample units is defined as censored probability (P,).
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A discrete indicator covariate z, was used to separate the data into two strata
for an arbitrary treatment effect. For consistency with the work of Qureshi et al.
[6], simulated data was generated from a power-law NHPP with like parameters,
except that four recurring failure events were generated for each sample unit
(compared to ten recurring events on Qureshi’s work). A proportional intensity
function dataset was created using two different values for the scale parameter

(v, =0.001,0, = 0.01) corresponding to the two values of the indicator covariate
z, (z, =0,z, =1).
There are two experimental factors: experimental units (U7 ) and censoring

probability ( 2,). The levels for each factor are selected as follows: (1) U =60,
120, and 180 and (2) P.= 0, 0.4, 0.8, and 1.0. Note that P, =0 represents

complete data, which provides the comparison of censored and complete data.
The selection of the U and P, levels has taken the following considerations: (1)
the parameter settings in the previous relevant works (Proschan [25], Landers
and Soroudi [5], Qureshi et al.[6], and Landers et al. [8]) (2) Severe right-
censorship may cause the small sample size (U =20) to have insufficient data.
The selection of P, levels takes into account the light, moderate, and severe
censoring. The selection of U levels is taken from the parameter seftings in the
previous research works, and it has also considered the small, median, and large
sample sizes.

To implement the four regression methods (AG, PWP-GT, PWP-TT, and

WLW), three types of datasets were generated consistent with the theory and
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methodology of each. For the AG method, the data set is formed from the time

interval (7;,T,) with respect to the counting process formulation. Thus, the logic
rule to form the dataset is: T, > 7;. As a result, all the censored failure times are
removed from the dataset since 7, =7, when it is a censored event as stipulated

for the AG method. The concept of forming the dataset for the PWP method

originates from the probability theory of conditionality. The later failure times after
the »” failure count cannot be included into the dataset when the intensity

function at the »n” failure count is estimated. That is, for each censored unit, the
censored times are removed from the dataset except for the first censored event
count. Due to the marginal probability theory of the WLW method, the dataset
contains full records including all censored events, such that censored units
remain in the risk set.

S™ Users

The four semi-parametric methods were implemented using the SA
Group (SUGI) software code PHREG [26], which performs the semi-parametric
Cox regression method with a blocking option to stratify for a covariate, such as
failure event count, not satisfying the proportional hazards conditions. PHREG
applies the product-limit method to estimate the reliability function within all strata

defined by the failure count and for all values of the covariate. PHREG also

applies the Cox method to estimate the vector of regression coefficients § and

the covariance matrix. Appendix IV provides the programming code to perform
the four semi-parametric methods. To measure and compare model performance,
three robustness metrics were compiled:

e relative 'sighed error (BIAS);
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e relative mean absolute deviation (MAD) and
e relative mean squared error (MSE).

5.4 Results
5.4.1. Event-specific baseline models (PWP-GT, PWP-TT, and WLW)

Figure 5.2 presents the 85% C.I. on the PWP-GT, PWP-TT, and WLW
estimators in the case of (U, P,) =(120,0.4), where U denotes sample units and
P. denotes censoring probability. This chart serves as an example that the PWP-
GT model has proven the most robust and accurate estimator (at the lowest error)

among the three models. The true value of g is derived from the formula

,é = ——;—ln(gf’—J = 2.30259. As the failure count proceeds, the PWP-GT model

Uy

remains within its 95% C.1., while the other two estimators do not lie in their

95%C.1.
6.0 —~&— PWP-GT
: - 95% LB(PWP-GT)
55| A 95%UB(PWP-GT)

—~k— PWP-TT
~ofe- 95%LB(PWP-TT)
e 95%UB(PWP-TT)
—i— WLW :
E. 95%LB(WLW)
-3 85%UB(WLW)

- TRUE

50|

45|

40

Beta

35|

3.0
;
-
0%

Failure Count

Fig. 5.2 Comparison of the three event-specific estimators of the covariate effect,
(U.P,)=(120,04)
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Table 5.1 summarizes the robustness across the strata defined by failure

count. Note that the parameter setting P, =0 (complete data) is included for

comparison with censored data.

Table 5.1 Performance metrics of fii in an HPP case (PWP-GT, PWP-TT, and WLW)
PWP-GT PWP-TT WLW
u L BIAS MAD MSE BIAS MAD MSE BIAS MAD MSE
60 0 -0.08739 0.08993 0.01591|1.37088 1.40005 7.14217 | 1.37088 1.40005 7.14217
0.4 -0.08758 0.09292 0.01806;1.35651 1.38568 7.02349 | 1.38943 1.41860 7.36003
0.8 -0.08634 0.10208 0.02009|1.81323 1.84240 13.11053| 1.86904 1.89821 13.83614
1 038466 0.59073 1.29475{1.75212 1.78128 12.55797|1.79718 1.82635 12.93005
120 0 -0.02181 0.03149 0.00206|0.63394 0.63394 0.76947 | 0.63394 0.63394 0.76947
0.4 -0.00911 0.02261 0.00083(0.60218 0.60218 0.67732 | 0.62340 0.62340 0.73285
0.8 -0.01586 0.02253 0.00103|1.49651 1.49651 7.04960 | 1.57647 1.57647 7.84370
1 0.00138 0.01607 0.00039|1.83500 1.83500 12.05176| 1.95337 1.95337 13.63281
180 0 -0.05047 0.05047 0.00540(0.59103 0.60241 0.72164 | 0.58103 0.60241 0.72164
0.4 -0.04359 0.04366 0.00406|0.57569 0.58707 0.67309 | 0.50926 0.61063 0.73740
0.8 -0.05770 0.05770 0.00633)0.62249 0.63387 0.81017 | 0.67436 0.68574 0.97323
1 -0.02335 0.04742 0.00410|1.44098 1.45236 6.82499 | 1.50519 1.51657 7.40608

* Refer also fo Fig. 5.3 (a)-(c)

Table 5.1 indicates the PWP-GT model has proven the most robust and
accurate estimator (at the lowest error) among the three event-specific models.
Compared to WLW, the PWP-TT estimator yields similar but slightly better
results. Fig. 5.3(a)-(c) contains six charts of 3-D error graphs of performance
metrics (BIAS and MSE) illustrated by each method (PWP-GT (Fig. 5.3(a)),
PWP-TT (Fig. 5.3(b)), and WLW (Fig. 5.3(c))).

The PWP-GT error chart (Fig. 5.3(a)) presents a low-error region at the range

of 120<U <180 and 0< P, <1. For the small sample size U =60, the more
favorable applications range is 0 < P, <0.8, having relative MSE in the range of

(1.6%, 2.0%), relative BIAS in the range of (-8.8%, -8.6%), and relative MAD in
the range of (8.0%, 10.2%). As the sample size is increased to U =120 the more

favorable applications range is widened to 0 < P, <1.0, having relative MSE in
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the range of (0.0%, 0.2%), relative BIAS in the range of (-2.2%, 0.1%), and
relative MAD in the range of (1.6%, 3.1%). In the case of U =180, PWP-GT
estimates have relative MSE is in the range of (0.4%, 0.6%), relative BIAS is in
the range of (-5.8%, -2.3%), and relative MAD is in the range of (4.4%, 5.8%).
The other two estimators (PWP-TT and WLW) present a similar pattern in
model performance (Figs. 5.3(b) and (c)). As the sample size increases, the error
is on the decrease. As the censoring increases, the error is on the rise. Sample
size U = 60 does not provide sufficient data, and thus both PWP-TT and WLW
yield a poor result. When the sample size is increased to U =120, PWP-TT and

WLW have a slightly improved applications range 0 < P, <0.4. PWP-TT

estimates have relative MSE in the range of (67.7%, 76.9%), relative BIAS in the
range of (60.2%, 63.4%), and relative MAD in the range of (60.2%, 63.4%).
Likewise, WLW estimates have relative MSE in the range of (73.3%, 76.9%),
relative BIAS in the range of (62.3%, 63.4%), and relative MAD in the range of
(62.3%, 63.4%). As the sample size is increased to 180, the performance is poor

but stable over applications range 0< P, <0.8 on both methods. PWP-TT

estimates have relative MSE in the range of (67.3%, 81.0%), relative BIAS in the
range of (57.6%, 62.2%), and relative MAD in the range of (68.7%, 63.4%).
Likewise, WLW estimates have relative MSE in the range of (72.2%, 97.3%),
relative BIAS in the range of (59.1%, 67.4%), and relative MAD in the range of

(60.2%, 68.6%).
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Fig. 5.4 (a)-(c) examines BIAS and MSE versus P, for the three event-specific

models at each of three sample sizes (U =60, U =120, and U =180). PWP-GT
is shown to perform best, since PWP-GT BIAS and MSE are beneath PWP-TT
and WLW at any sample size. As the sample size increases, the disparity

-

between the gap time and total time groups is reduced/compensated.
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Fig. 56.4(a)-(c) Comparison of three event-specific models at three sample sizes (refer also to Table 5.1)



5.4.2. Common baseline model (AG)

The AG model is used to estimate general covariate effects from all strata of
recurrent failure events. The results show that AG performs well for smaller
sample size (U = 60) and heavy censoring case (P, =1.0). In an NHPP case,
dependence structure among recurring events hinders the AG model to estimate
covariate effects. Thus, an HPP case is chosen to examine the AG model in a
right—censorihg setting.

Table 5.2 and Fig. 5.5 portray the 95% C.1. of the AG estimates 3 in the
cases of 60<U <180 and 0< P, <1. The true g is 2.30259, aﬁd Fig. 5.5 (Table
5.2) indicates that the true £ lies within the 95% C.1. of the AG estimates. The
favorable applications region lies at 60 <U <180 and 0< P, <1. As the sample
size increases, the variability of the AG estimate becomes smaller, producing
narrower confidence intervals.

Table 5.2 95% C.I. of AG estimates for 8 (5 =1, a HPP)

Conditions AG estimates * 95%LB 95%UB
(U, P;)=(60,0.0) 2.14240(0.17321)° 1.80291 2.48188
(U, P¢)=(60,04) 2.09753(0.17830) 1.74808 2.44699
(U, P5)=(60,0.8) 2.09901(0.19110) 1.72446 2.47356
(U, P)=(80,1.0) 2.06188(0.19345) 1.68272 2.44103
(U, P¢)=(120,0.0) 2.22307(0.12272) 1.98254 2.46360
(U, P)=(120,0.4) 2.18404(0.12587) 1.93734 2.43073
(U, Pc)=(120,0.8) 2.26325(0.13494) 1.99878 2.52772
(U, P)=(120,1.0) 2.22105(0.13600) 1.95450 2.48760
(U, P)=(180,0.0) 2.17635(0.09455) 1.99104 2.36166
(U, P.)=(180,0.4) 2.13810(0.09750) 1.94701 2.32920
(U, P;)=(180,0.8) 2.15384(0.10222) 1.95350 2.35419
(U, P;)=(180,1.0) 2.16989(0.10456) 1.96496 2.37482

~ 1
? theoretical values of § = —E]n[

)

%

® Estimated standard errors in parenthesis
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5.5 Conclusions

The research studied the robustness of three event-specific baseline models
(PWP-GT, PWP-TT, and WLW) and a common baseline model (AG) to recurring
failure events with right-censoring effect from an HPP. The PWP-GT and AG
prove to be models of choice, evaluated in terms of the BIAS, MAD, and MSE of
covariate regression coefficients over ranges of sample sizes and censoring
severity encountered in engineering applications. The favorable engineering
applications ranges are recommended.

The research domains of the two factors of interests are: (1)60<U <180 and

(2)0.0 < P, <£1.0. The parameter setting P, =0 (complete data) is included for

comparison with censored data. The PWP-GT model has proven the most robust
and accurate estimator (at the lowest error) among the three event-specific

models. Compared to WLW, the PWP-TT estimator yields similar but slightly

165



better results. The PWP-GT presents a low-error region at the range of

120 <U <180 and 0< P, <1. For the small sample size U =60, the more
favorable applications range is 0< 2, <0.8. For the other two estimators, when

the sample size is increased from U =60 to U =120, PWP-TT and WLW have a

slightly improved applications range 0< P, <0.4. As the sample size is increased
to 180, the performance is poor but stable over applications range 0 <P, <0.8 on

both models. The results show that AG performs well for the case of smaller

sample size (U = 60) and heavy censoring ( 2, =1.0). The favorable applications
region of the common baseline AG model lies at 60 <U <180 and 0< P, <1.

The sample sizes chosen for this engineering research were 60 <U <180
(30-90 units per class of a two-level covariate). Many of the medical studies
reported in the literature contain sample sizes smaller than this range. Small
sample sizes are comfnon in medical studies due to the high cost of a clinical trial
including requisite examinations required in the medical practices, such as X-Ray
scans and blood tests. The numbers of qualified subjects are sometimes small
because of cost and/or medical conditions. The AG model is designed to
estimate the general covariate effect and can be useful if small sample size is
unavoidable. The AG model adopts the stationary counting process model and
assumes each occurrence as independent and identically distributed according
to an exponential distribution. Thus, the number of observation for a subject can
be utilized as the expansion of the sample size. For instance, there are ten

subjects available and four observations for each subject are collected. The
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sample size effect for those ten subjects in using the AG model is equivalent to
having forty subjects.

This research has addressed only the case of data from an NHPP with
power-law intensity function. The log-linear intensity function is also encountered
in the literature and may be important for industry. Future research to examine
the right-censoring effect upon recurring events from an NHPP with log-linear

intensity function could be beneficial to practitioners.
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6. Semi-parametric proportional intensity models robustness
for recurrent failure data with overhaul intervals

6.0 Abstract

The class of semi-parametric proportional intensity (Pl) models applies to
recurrent failure event modeling for a repairable system with covariates. Certain
systems (e.g., aircraft and power plants) experience a substantial period of
downtime due to performing maintenance (i.e. major overhaul) following a major
failure. This discontinuity in observation time has been a concern in the accuracy
of estimating the covariate effect. Hansen and Ascher examined an automobile
for intermittent failures, which often lead to a series of unsuccessful repair
attempts, and reported that repair times for intermittent failures cannot be
assumed negligible and the model must be designed to account for machine
downtimes. Therneau and Hamilton proposed a discontinuous risk-free-intervals
method for biomedical applications that could also apply to this engineering
problem. This paper has exarhined three semi-parametric Pl models (Prentice-
Williams-Peterson-gap time (PWP-GT), Andersen-Gill (AG), and .Wéi—Lin-
Weissfeld (WLW)), and has recommended selecting appropriate Pl models as a
function of the overhaul duration.

The experimental design in this research has incorporated two levels of
overhaul duration (short: R <0.5 and long: 3.0< R <5.0, where R is defined as a
gap-time-ratio indicating a proportion of the previous MTTF (mean time to
failure)) to evaluate these three proposed Pl models. The more favorable
engineering applications ranges for the overhaul duration based on the sample

size (U) and shape parameter () are recommended. The PWP-GT model
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proves to perform well for sample sizes 60 (30 per class) or more, moderately
decreasing, constant, and moderately increasing rate of occurrence of failures
(power-law NHPP shape parameter in the range 0.8 <J <1.8) if the overhaul
duration is short (R <0.5). If itis a long overhaul duration (3.0 < R <5.0), the
more favorable applications range of PWP-GT for shape parameter is

0.8 <6 <1.2. In the large sample size 120 (60 per class), the PWP-GT model

performs well in the range of 0.5 <6 < 2.0, if the overhaul duration is short

(R <£0.5). If the overhaul duration is long (3.0 < R <5.0), the more favorable
applications range of PWP-GT for shape parameter is 0.8< 6 <1.2. As for the
other two common baseline intensity model (i.e. AG and WLW), the AG model
performs consistently well in the small sample size (20) regardless of the
overhaul duration (R <5.0) in an HPP case. The WLW model performance
improves as the overhaul duration increases (R >5.0).

Keywords: repairable systems, semi-parametric proportional intensity models,
major repairs, overhauls, preventive maintenance, risk-free-intervals

Nomenclature

Acronyms
AG Andersen and Gill model
C.L Confidence interval

DROCOF  Decreasing rate of occurrence of failures

HPP Homogeneous Poisson Process
IROCOF Increasing rate of occurrence of failures
iid Independent and identically distributed
LWA Lee, Wei, and Amato model

MTTF Mean time to failure
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MAD
MSE
NHPP
PH

Pl

PM

PWP
PWP-GT
PWP-TT
WLW

Notation
Cy

D

F

h(t;z)

hy (2)

L

iLid.

N@)

Mean absolute deviation

Mean squared error

Non-homogeneous Poisson Process
Proportional hazards

Proportional intensity

Preventive maintenance

Prentice, Williams, and Peterson model

Prentice, Williams, and Peterson-gap time model
Prentice, Williams, and Peterson-total time model
Wei, Lin, and Weissfeld model

Censoring time for the i* subject of the k” type of failures

Overhaul duration
The event number that represents a major failure

Proportional hazard function
Baseline hazard function

Number of sample units in class 4
Number of sample units in class 1

Independent and identically distributed

Successive failure count

Random variable for the number of failures in (O,t]; a counting

process

An integer counting successive failure times; a stratification
indicator subscript

Gap time ratio

Standard deviation

The beginning and end of an event; bivariate exponential variables

Major failure times (clock hour)

Random variable for cumulative time of occurrence of the »™ failure
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t Cumulative time of occurrence of the n” failure; a realization of T,

U Sample size (number of units)
X Observation time
Y, The gap time associated with the minor event prior to a major event
™ an at-risk indicator in the AG model
(1) Covariate process up to time ¢
z (kx1) vector of covariates, z =(z,,2,,...2; )’
B, (k x1) vector of stratum-specific regression coefficients
B =05,y 0)
o) Shape parameter of a power-law NHPP
A indicator of a failure or censored time; limit to time zero
A, Baseline value of 1 for power-law NHPP
A, (1) Baseline intensity function
Ay, () Stratum-specific baseline intensity function
At;z) Proportional intensity function
v Scale parameter of a power-law NHPP
v, Baseline value of v, the scale parameter of a power-law NHPP
v, . Alternate value of v, the scale parameter of a power-law NHPP
o Standard deviation
A Denotes an estimator

Denotes the transpose of a vector
6.1 Introduction

Failure time data on a repairable system are realizations of a stochastic point
process, in which the instantaneous rate of occurrence of failures (ROCOF) is

A(t). Prentice, Williams, and Peterson (PWP) [1] proposed a semi-parametric

approach to model recurrent failure event data from a repairable system using
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two methods: PWP-GT (gap time) and PWP-TT (total time). Several researchers
have subsequently proposed alternate modeling methods by modifying the risk
set (common or event-specific baseline intensity function) and the risk interval
(gap time, total time, or counting process). These include the AG (Andersen-Gill)
[2] and WLW (Wei-Lin-Weissfeld) [3] models.

Cox proposed the distribution-free (semi-parametric) proportional hazards
(PH) model in 1972 [4]. The Cox-based regression models (PWP-GT, PWP-TT,
AG, and WLW) have been applied to recurring events in medical studies
(biostatistics field), such as recurrent infections of a patient. For engineering
applications, Landers and Soroudi [5], Qureshi et al. [6], Vithala [7], and Landers
et al. [8] have investigated robustness of the PWP-GT model, where the
underlying recurrent failure time data are from a Non-homogeneous Poisson
Process (NHPP) with a power-law or a log-linear intensity function. These
references also report the engineering applications of the PWP-GT model cited in
the literature. Qureshi et al. [6] found that the PWP-GT model performs best for
constant and moderately increasing rate of occurrence of failures (IROCOF) and
decreasing rate of occurrence of failures (DROCOF) and for larger sample sizes
from power-law NHPPs. Vithala [7] considered the case of log-linear increasing
rates of occurrence of failures, and concluded the PWP-GT model performs best
for moderately increasing rates of occurrence of failures and for larger sample
sizes.

Compared to the extensive literature on applications of the proportional

intensity (Pl) models in the biostatistics field, there have been few reported
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engineering applications. Abundant federal funding received in biostatistics/
medical research has advanced the Pl models to become well developed and
widely referenced. Pl models for medical applications could also apply to
recurring failure/repair data in engineering problems. The AG, PWP-GT, PWP-TT,
and WLW models are potentially powerful analytical tools for engineering
practitioners as they become better recognized and understood.

Hansen and Ascher [9] examined an automobile for intermittent failures,
which often lead to a series of unsuccessful repair attempts, and reported that
repair times for intermittent failures cannot be assumed negligible and the model
must be designed to account for machine downtimes. Kobbacy and Jeon [10]
considered both failure times and machine downtimes in the Pl model for
preventive maintenance (PM) scheduling in a deteriorating repairable system.
Therneau and Hamilton [11] introduced the concept of discontinuous risk-free-
intervals that may be applied in reliability engineering as the duration of
performing major overhauls. This paper reports progress on continuing work after
Landers and Soroudi [4], Qureshi et al. [5], Vithala [6], and Landers et al. [7], and
investigates the robustness of the semi-parametric Pl models for repairable
systems subject to prolonged risk-free-intervals for major repairs (overhauls).

6.2 Semi-parametric Proportional Intensity models

Cox [4] proposed a proportional hazards (PH) formulation to include
explanatory variables (covariates) in survival models. PWP proposed an
extension of the Cox model to stochastic processes and applied the approach to

model recurring infections in aplastic anemia and leukemia patients having
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received bone-marrow transplants. This application involved several subjects and
a small number of events (up to five) for each subject. The paper by PWP did not
address the baseline intensity function but rather reported the relative risks for
the test and control groups. In reliability and maintainability engineering
applications, a number of authors have applied the semi-parametric Pi (PH)
model, for example, Ansell and Phillips [12], Ansell and Phillips [13], Landers and
Soroudi [5], Qureshi et al. [6], Ansell and Phillips [14], Landers et al. [8], Ansell et
al. [15], and Ansell et al. [16]. A collection of the Pl model applied to different
industries includes: marine gas turbine engines (Asher [17]), semiconductor,
electrical, and pipeline industries (Ansell and Phillips [14]), U.S. Army main battle
tank (Landers et al. [8]), water supply industry (Ansell et al. [12], [16]), etc.
Ascher [17] illustrated the use of the PWP model for analysis of reliability for
marine gas furbine engines. Ascher and Feingold [18] suggested application of
the PWP model in the field of reliability engineering. Dale [19] applied the PWP
approach to simulated data for a reliability growth program with design
improvements implemented after each of the five stages, resulting in a
decreasing rate of occurrence of failures (DROCOF). Wightman and Bendell [20]
and Bendell et al. [21] cited the PWP model and advised caution in application
for engineering studies.

Qureshi et al. [6] performed a robustness study to determine how well the
PWP-GT method performed when applied to data from a failure process that was
actually parametric (specifically the NHPP with power-law intensity function). The

2 o bounds of the PWP-GT estimates can cover the true values with few
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exceptions. The PWP-GT method performed well, except at small values of
shape parameter (J < 0.6). The PWP-GT method was best for larger sample size
and for moderately decreasing, constant, and moderately increasing ROCOF.
The validation process for the case of an HPP in Section 2.2.3 (also refer to
Table 2.10) indicated that the estimated MTTF (mean time to failure) differences
between the PWP-GT model and theoretical values were not statistically
significant. As for the PWP-GT estimates of the covariate regression coefficient,

the true value of coefficient g lies within the 2 o confidence bounds on the

estimate A for 1.0 <5 <1.4. The PWP-GT method tends to underestimate g for
a DROCOF (e.g., BIAS= -26% at 6§ =0.5) and overestimate g for an IROCOF
(e.g., BIAS=19% at 6 =3.0).

The AG model (Andersen and Gill [2]) and the WLW model (Wei et al. [3]) are
widely cited in the literature. Bowman [22] and Lin [23] surveyed and evaluated
the AG, PWP-GT, PWP-TT, and WLW methods. Bowman identified the local
time model (PWP-GT) as superior and then used it to analyze needle-stick injury
data. Wei and Glidden [24] have reviewed the Cox-based methods designed to
model recurrent data, and summarized the strengths and weaknesses for each
method. In a commentary on the Wei and Glidden paper, Lipschutz and Snapinn
[25] stressed two concepts of “event times” and “risk sets” as crucial to choosing
the appropriate model. Event elapsed times are related to the total time, gap time,
and counting process. The PWP-TT and WLW are modeled by total time, while
only PWP-GT is modeled by gap time. The risk interval of the AG model belongs

to the counting process class. Intuitively, total (global) times within a subject are
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highly correlated. The total time model may indicate large treatment effect
throughout the entire study, even though the gap time model has indicated little
treatment effect beyond a certain recurrence. The counting process concept of
the AG method implies each recurrence is not affected by previous events, and
does not contribute to future events.

The risk set consists of the subjects at risk for a specified event (e.g., failure).
There are three types of risk sets: conditional (e.g., PWP), counting process (e.g.,
AG), or marginal (e.g., WLW). As a marginal method, the WLW method assumes
a subject is at risk regardless of event count until the observation for the subject
terminates by censoring. The AG method also provides an index of a general
covariate effect, which is expressed by the common baseline hazard
(unrestricted risk set). However, a subject in the PWP method has event-specific
baseline hazards (restricted risk set), in that the proportional intensity of event &
only considers the subjects that have experienced (k —1) events. Lipschutz and
Snapinn [25] suggested guidelines as follows in choosing the appropriate models:

e Use total time, common baseline hazard (unrestricted risk set) when the
general effect is of interest.

e Use gap time, event-specific baseline hazards (restricted risk set) when
the primary concern is how the treatment will affect the recurring events
beyond the first occurrence.

Kelly and Lim [26] noted that risk interval can be defined by three formulations

{(1) gap time, (2) total time, and (3) counting process} demonstrated in Fig.

6.1(a)-(c). Risk interval determines whether a model is marginal in the total time
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or conditional in the gap time. The risk interval of any event in total time is not
influenced by any previous events, but measures time from entry into the
experiment (beginning of observation). However, the risk interval of the gap time
begins from the end of last event (Kelly and Lim [26]). Counting processes use
the total time scale and share the same elapsed time as does the gap time model.
However, the risk interval starts from the previous event instead of the entry time.
Based on the common or event-specific baseline intensities, the risk set is
labeled as either unrestricted or restricted. Kelly and Lim [26] defined three
possible risk sets {(1) unrestricted, (2) restricted, and (3) semi-restricted} in
deciding which sample units are at risk of contributing to event £ . Kelly and Lim
[26] employed the concepts of the risk interval and risk set and categorized the
AG, PWP-gap time (PWP-GP), PWP-total time (PWP-TT), WLW, LWA(Lee-Wei-
Amato), and other methods.

Hansen and Ascher [9] examined an automobile for intermittent failures,
which often lead to a series of unsuccessful repair attempts, and reported that
repair times for intermittent failures cannot be assumed negligible and the model
must be designed to account for machine downtimes. Kobbacy and Jeon [10]
considered both failure times and machine downtimes in the Pl model for
preventive maintenance (PM) scheduling in a deteriorating repairable system.

Therneau and Hamilton [11] introduced the concept of discontinuous risk-
free-intervals. A study of rhDNase in patients with cystic fibrosis involved a
seven-day discontinuous risk-free-interval, initiated by intravenous (IV)

administration of antibiotics. The concept of risk-free-intervals may be applied in
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reliability engineering as the duration of performing major overhauls. The
discontinuous-risk-free-intervals modeling relaxes the assumption of zero time to
perform a major overhaul, and thus better describes the typical field life cycle.
For instance, suppose three failures have taken place at days 25, 60, and 90,
where two days of performing a major overhaul are required after the second
failure. The data records, expressed as (n,tl,tz,status) for the three failure times
in the Cox-based models, can be written as (1,0,25,1), (2,25,60,1), and (3,62,90,1),
where (n,tl,tz,sz‘atus) denotes (failure count, start time, stop time, (0,1) indicator
variable for censor (0) event or failure (1) event). The value 7, =90 of the third
failure with a major overhaul records global time to failure with the third failure
coinciding with the beginning of a risk-free-interval. However, consideration of
major overhaul of duration (D) requires a change from interval (z7,.1,) to interval
{t, + D,t,). In the aircraft industry, D could be as long as one year after flying for

3000 hours for a major overhaul or as short as a few hours for a minor repair.

This robustness study examines how the magnitude of D affects the Pl methods,

as measured by the regression estimates ( ﬁi).
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Fig. 6.1(a)-(c) Risk interval formulations (Kelly and Lim [26])
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6.3 Models and methods

Sections 6.3.1-6.3.4 review the semi-parametric Cox regression model for
single event and the related regression models for recurrent events. Section
6.3.5 reviews an NHPP with power-law intensity function. Section 6.3.6 describes
the method used to assess the robustness of the semi-parametric Pl methods for
the case of complete data from a true but unknown power-law NHPP.
6.3.1 Cox regression model

For the case of a time-to-failure random variable, Cox [4] proposed a PH
regression model of the form:
h(t;z) = hy(Dexp(B z) , (D
where B is the regression coefficient vector and z represents a covariate vector.
The PH model is composed of two parts: baseline hazards function 4,(¢) and an
exponential link function, where B is designated to measure the covariate effect.
The Cox model can be used to describe the semi-parametric distribution of time-
to-failure for non-repairable items with covariates. Under proportional hazards,
the ratio of the hazard functions of two units (4 and B) with covariate vectors
z, and z, is constant over time. The covariates have a multiplicative effect on
the baseline hazard function. When the baseline hazard function is fully specified
(e.g.,Weibull) the analytical procedure is termed a parametric method.

Alternatively, &,(¢) can be left arbitrary, in which case the procedure is termed

semi-parametric.
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6.3.2 Semi-parametric PWP model/

The PWP model [1] is a generalization of the semi-parametric Cox
proportional hazard function to a proportional intensity function A(z;z) for the
case of repeated failure events. Under proportional intensities, the ratio of the
intensity functions of two units (4 and B) with covariate vectors z, and z; is
constant over time. The covariates have a multiplicative effect on the baseline
intensity function. When the baseline intensity function is fully specified (e.g.,
power-law or log-linear) the analytical procedure is termed a parametric method.
Alternatively, the baseline intensity function can be left arbitrary in which case the
procedure is termed semi-parametric.

Given the counting and covariate processes at time ¢, the general semi-

parametric intensity function was defined by PWP as follows:
AN, Z()}y =lim Pr{t<T,,., <t+At|N@),Z(}/A, )
where N(f) represents a random variable for the number of failures in (O,t], Z(1)

denotes the covariate process up to time ¢, and A limits the time span to zero.

Among the semi-parametric regression models specified by PWP were the

following:
PWP —GT : A4t | N(9), ()} = Ay, (t ~ 1, ) exp[B,z(0)] 3)
PWP =TT : A{t | N(0),Z(t)} = Ay, (1) exp[ B 2(9)]. “4)

in the PWP-GT model of Eq. (3), the time metric is the interval between times

of failure ¢ _, and ¢,, defined as gap time. The PWP model stratifies a failure data

set based on the failure event count. When a unit is placed into operation it has
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experienced no failures and so resides in stratum 1 (» =1), and when the first

failure occurs the unit moves to the second stratum (n =2). In general, the unit

moves to stratum » immediately following the (n-—l)*" failure and remains there

until the »” failure.

Unlike the gap time model, the limitation of the event-specific fotal time model
restricts the number of recurring events. Ten recurring failure events generated
from a power-law NHPP in this study have shown a highly correlated relationship.
Thus, the PWP-TT model is modified to a special case of Eq. (4), where the
baseline intensity function is set fo a common baseline intensity function denoted
as A,,(1) =4 ().

6.3.3 Semi-parametric AG model

Andersen and Gill [2] developed the AG method as an extension of the Cox
proportional hazards model, to accommodate recurring events in a counting
process. The AG method explains general covariate effects (common baseline
intensity function in the concept of risk set), since each event count ré-starts the
failure process, and thus does not feature event-stratifying effects. The risk
interval of an AG model follows a counting process associated with recurring
events, where recurrences (N™,Y",Z") are independent and identically

distributed (i.i.d.) replicates of (¥,Y,Z7), and the probability of the occurrence of

two events at a given time is zero. Symbols: (¥, 7Y, Z) represent the successive
failure count, an at-risk indicator, and covariates. Thus, the risk set of the (n-1)"

event is identical to the risk set of the (»)* event. The AG model is defined as
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A0 (@) = Y ()4, Dexplpx 2 (1)}, )

where Y is an at-risk indicator and ¥ =1 unless the subject is withdrawn

from the study.
6.3.4 Semi-parametric WLW mode!

WLW proposed a marginal method, expanded from the conditional PWP
method, in dealing with recurrent failure data. Compared to the PWP method, the
WLW method has greater or equal risk set, depending on the sample size
associated with the failure count. The PWP method estimates the intensity
function by considering the subjects having a complete history of previous
recurring events, while the WLW method additionally considers the subjects that
have been withdrawn from observation. The subjects that have been censored
are still in the risk set; thus, contributing influence on events that are followed
after the censoring time. The risk set of each subject using the WLW method
remains the same regardless of complete data or censoring events since a
subject is still at risk when the subject has been withdrawn from the experiment.

Wei et al. [3] in a bladder cancer study examined treatment effects by using
the PWP and WLW models about placebo and thiotepa therapies for tumor
patients. This bladder cancer example collects four recurrence times of tumors

T, ~ T, corresponding to four marginal proportional hazards models. Rather than
fitting each 7, one model at a time, WLW fits four marginal models in one

analysis, simultaneously. This example has two response variables {failure time
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and censoring status}, three covariates {treatment, tumour number, tumour size},
and four recurrent events over time.
For the k” failure type and the i” failure event count, the hazard function

A,(8) in WLW is assumed to take the form:

A (6) = Ag Oexp{pl, x 2, (0}, £ 20, ©
where 4,,(?) is an unspecified baseline hazard function and B, =( E3eees ,Bpk)' is a
vector of failure-specific regression parameters. z,.(r) denotes a px1 vector of

covariates for the i” subject at time ¢ with respect to the &* type of failure,

expressed as z,(1) = (2,(1), 2, (D>-..2 1, (1)) Let X, represent the failure time of
the i” subject for the k" type of failure and let C,, represent the censoring time.
X, are observation values of X,,, where X, = min{)? ,a.,C,a.} The indicator
variable A, is utilized for determining the event as a failure or censoring. Let

A, =1, when X, = X, ; otherwise A, = 0. Key assumptions for the WLW method
are: (1) X, L C,,, i.e., the failure and censoring times are independent of each
other; (2)(X,,A,,Z,) are i.i.d. random vectors, where Z, represent covariates and
i represents event count; and (3) The regression coefficients fil. follow a normal
distribution with mean B, denoted (8., 3,, Bs,... 8,) —“— Normal

(Br,Bys Bsns B).
Unlike the gap time model, the limitation of the event-specific total time model
restricts the number of recurring events. Ten recurring failure events generated

from a power-law NHPP in this study have shown a highly correlated relationship.
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Thus, the baseline intensity function of Eq. (6) is set to a common baseline
intensity function denoted as 4,,(r) = 4,(?) . This simplified model is then termed
as Lee-Wei-Amato (LWA) model designated to measure general covariate
effects. In addition, the WLW model in this study is equivalent to a PWP-TT
model when the failure count N for each sample unit is equal.
6.3.5 Power-law intensity function

For a power-law NHPP, the baseline intensity function is
A@) =v, Sxt’T, )
where § is the shape parameter and v is the scale parameter of the power-law
form. If we define v, =exp(f, xz,) and z, =1, then the power-law P! model
becomes
At;z) =%t exp(P'z), ®)
where B is the regression coefficient vector and z represents a covariate vector.
The power-law intensity function is composed of two parts: baseline intensity
function that follows a power-law form and an exponential link function, where §

is designated to measure the covariate effect.

This process could model the reliability of a repairable system with rapid
deterioration, since the failure intensity is increasing at an exponential rate with
time. The analogous case for maintainability is a rapid learning process. The

intensity function A(r) is strictly decreasing for & <1, constant for 5 = 1, and

strictly increasing for § >1. Thus, we have a DROCOF for § <1, an HPP for &

= 1, and an IROCOF for 6 >1.
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6.3.6 Method

In this study, simulated recurring data are generated from a modified Blanks
& Tordon [27] algorithm. To determine the time to perform major overhauls in the

counting process, a uniformly distributed U(0,1) random variate is introduced to
select the event number F , where the major overhaul is performed. The major

overhaul is arranged after the F* event, and we assume that a period D is

required to perform a major overhaul. Thus, the next event time, which belongs
to the (F +1)” event, occurs depending on the F” event time plus the major
overhaul duration.

The duration to perform a major overhaul is inserted into the interval (trstp) s
which makes the interval of risk become (¢, + D,t}.,,), where new event time 7,
is determined by 7, + D in the Blanks & Tordon formula. Consequently, the gap
time and (¢,,¢,,,) have been altered compared to the recurrent data without the
interruption of a major overhaul interval. However, the discontinuous risk interval
concept in Therneau and Hamilton [11] is different in terms of (¢,.¢.,,), while the
gap time remains unchanged. “For instance, in a study of patients with hip
fracture, a subject who fractured at day 100, followed by a 15 day hospital stay
and then 300 more days of uneventful follow-up would be represented as two at-
risk intervals: (0,100](115,415]” (Therneau and Hamilton [11]). The gap times of
100 days and 300 day remain the same, while the risk interval has been shifted

forward from {(0,100], (100,400]} to {(0,100], (115,415]}.
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The magnitude of D is determined based on the previous gap time Y, ,,

where F is a random variate indicating the F* event is a major failure event;

otherwise, the event is a minor failure. The relationship between D and Y, is:
DszYF—I___—)R:D/YF—I 3
where

Ris the gap time ratio that controls the magnitude of D,
Y., represents the gap time associated with the minor event prior to a major

event,
F is the event number that represents a major failure.

The concept of utilizing the gap time ratio R in determining the major overhaul
duration strengthens the model, since there are three types of power-law
intensity functions (IROCOF, constant ROCOF, and DROCOF). The recurrent
failure interval can vary from one time unit to a large value depending on the
shape parameter.

The parameter settings are as foliows when a discontinuous-risk-intervals

model is associated with the repair time: (1) Scale parameters in CLASSO0 (v,)
and CLASS1 (v,) are set to 0.001 and 0.01; (2) Number of failures N =10; (3)

F" event represents a major failure, followed by a major overhaul; and (4) Seed
numbers for three replicates are 539, 255, and 59. The magnitude of D is
examined as the primary factor that affects the performance of the semi-
parametric Pl models.

In the experimental design regarding the discontinuous risk-free-intervals
model, there are three experimental factors: (1) number of the experimental units
(U), (2) shape parameter (), and (3) gap time ratio (R ) that controls the major

overhaul duration (D). I, and I, represent the number of units in each class.
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The levels of experimental factors are as follows. (1) U : 20, 60, and 120 (2) & :
0.5,08,1.0,12,15,1.8,and 2.0 (3) R:0.001, 0.1, 0.3, 0.5, 3.0, and 5.0. The

selection of the U, 8, and R levels has taken the following considerations: (1)

the parameter settings in the previous relevant works (Proschan [28], Landers
and Soroudi [5], Qureshi et al. [6], and Landers et al. [8]) (2) Gap time ratio (R)
controils the magnitude of the duration performing an overhaul that is designated
to cover two levels of overhaul duration (short: R <0.5 and long: 3.0<R<50; R
defined as a gap-time-ratio indicating a proportion of the previous M7TF (mean
time to failure)). The selection of U and & levels is taken from the parameter
settings in the previous research works, and it has also considered the small,
median, and large sample sizes for U .

To implement the three Cox-Based regression methods (AG, PWP-GT, and
WLW), requires formulation of three types of datasets (i.e. three formats for the
same set of failure events, according to the theory underlying each methodology).

First, for the AG method, the data set is formed from the time interval (7},7,) with

respect to the following counting process formulation:
i [N+ 1) -N® =1 T> ] = 200, ©

where

A(¢) : proportional intensity function of failure process,
N(¢) :random variable for number of failures in (0,7].

Eq. (9) defines the instantaneous failure rate between 7 and 7+ A under the
condition that this individual has survived after time ¢. Thus, the logic rule to form

the dataset is: 7, >7,. As a result, all the censored failure times are removed
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from the dataset since T, =7, when it is a censored event as stipulated for the
AG method. The concept of forming the dataset for the PWP method originates

from the probability theory of conditionality. The later failure times after the n”

failure count cannot be included into the dataset when the intensity function at

the »n™ failure count is estimated. That is, for each censored unit, the censored
times are removed from the dataset except for the first censored évent count.
Due to the marginal probability theory of the WLW method, the dataset contains
full records including all censored events, such that censored units remain in the
risk set.

‘The three Cox-based semi-parametric methods were implemented using the
SAS™ Users Group (SUGI) software code PHREG [29], which performs the
semi-parametric Cox regression method with a blocking option to stratify for a
covariate, such as failure event count, not satisfying the proportional hazards
conditions. PHREG applies the product-limit method to estimate the reliability
function within all strata defined by the failure count and for all values of the
covariate. PHREG also applies the Cox method to estimate the vector of
regression coefficients § and the covariance matrix. In the special case of an
HPP, two models (AG and WLW) were compared, in terms of 95% confidence
intervals. Appendix V provides the programming code to perform the three semi-
parametric methods. To measure and compare the performances, three
robustness metrics were compiled:

¢ relative signed error (BIAS);

o relative mean absolute deviation (MAD) and
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e relative mean squared error (MSE).

6.4 Results
6.4.1 PWP-GT model resulfs

This section examines the PWP-GT model robustness in estimating the
covariate effect denoted as ﬁi. The experimental values of R considered in this

study may be grouped into short maintenance interval (0.001< R <0.5) and long
maintenance interval (3.0 < R <5.0) categories, based on the PWP-GT -
performance. Table 6.1 summarizes the performance information for sample
sizes 20, 60, and 120. Two factors (Gap Time Ratio (R ) and the shape
parameter (& )) are portrayed in 3-D error charts (Fig. 6.2(a)-(b)), for sample size
equal to 120. The larger errors occur at small sample sizes (U =20) and
DROCOF (5 = 0.5). Fig. 6.2(b) indicates that the bias tends to be positive in the
region of low gap time ratio and high shape parameter (5 >1.2). In addition, for
U =60 and 120, bias tends to be negative in the long maintenance interval

(3.0 < R <5.0) category. For U =60 and 120, MSE (MAD) presents a convex
function of shape parameter with a minimum point at 6 =1.0. The unsigned
performance metric BIAS tends to be negative when R >3.0, U > 20, and

0.5 < § £2.0, which indicates that the PWP-GT estimator underestimates the
covariate effect in the long maintenance interval category and U > 20.

In the small sample size (U = 20 ), the maximum error occurs at 6 =0.5. The
more favorable applications range for shape parameteris 1.5<6 <2.0, where
PWP-GT estimates have relative MSE in the range of (3.6%, 19.5%), relative
BIAS in the range of (-8.2%, 24.3%), and relative MAD in the range of (18.0%,

34.1%) across all values of gap time ratio, 0.001< R <5.0. In the case of U =60
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and short interval, the more favorable applications range of PWP-GT for shape
parameter is 0.8 <5 <1.8, producing relative MSE in the range of (1.0%, 12.2%),
relative BIAS in the range of (-2.5%, 16.3%), and relative MAD in the range of
(7 4%, 21.3%). In longer interval (3.0 < R <5.0), the favorable applications range
contracts to 0.8 <§ <1.2, having relative MSE in the range of (2.5%, 5.4%),
relative BIAS in the range of (-16.4%, -7.7%), and relative MAD in the range of
(12.4%, 20.0%).

Large sample size (U =120) yields significant improvement upon the PWP-
GT model across all shape parameters in 0.5 < § <2.0and large gap time ratio
(3.0< R<5.0). For U =120 and short interval (0.001< R <0.5), PWP-GT
estimates have relative MSE in the range of (0.9%, 15.5%), relative BIAS in the
range of (-18.9%, 13.5%), and relative MAD in the range of (7.6%, 19.9%) across
0.5<6<2.0. At U =120 and longer interval, the more favorable applications
range of PWP-GT for shape parameter is 0.8 < 6 <1.2, having relative MSE in
the range of (2.4%, 6.4%), relative BIAS in the range of (-20.0%, -9.6%), and

relative MAD in the range of (13.1%, 22.6%).
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Table 6.1 Summary of PWP-GT model results for estimating ﬁi {10 failures/unit)

N=10 failure events/unit, v,=0.001,0,=001

U & R BIAS MAD mse U &6 R BIAS MAD mse (U O R BIAS MAD MSE

20 05 0001 1.05520 1.16554 1.85040 | 60 05 0001 020635 043678 0.32301 | 120 05 0001 -0.18860 0.18869 0.05788
20 05 01 130546 141571 284997 | 60 05 01 021266 043848 033449 | 120 05 01  -0.18207 0.18207 0.05648
20 05 03 130546 141571 284997 | 60 05 0.3 021629 044508 034457 | 120 05 03  -0.18075 0.18075 0.05590
20 05 05 140641 151666 315124 | 60 05 0.5 012004 035131 023542 | 120 05 05 -0.18314 018314 0.05717
20 05 30 125770 136795 244305 | 60 0.5 30  -0.04106 032454 017335 | 120 05 3.0 -0.22196 022365 0.07620
20 05 50 113721 124746 209833 | 60 05 50 -0.06841 033925 017441 | 120 05 50 -0.25972 025972 0.09196
20 08 0001 053642 070429 165169 | 60 0.8 0001 -002523 009390 001273 | 120 08 0001 -0.07059 008352 0.01028
20 08 041 073095 0.87817 211346 | 60 08 01  -000511 0.41086 001943 | 120 08 041  -0.05928 0.07736 0.00927
20 08 03 073024 087888 211358 | 60 0.8 03  -0.00035 0.11643 002004 | 120 08 03  -0.05589 0.07640 0.00951
20 08 05 072966 087830 211146 | 60 0.8 05 -000728 011616 001967 | 120 0.8 05 -0.06111 007968 0.01017
20 08 30 051381 071972 108973 | 60 08 3.0 -0.11318 012380 002537 | 120 08 3.0  -0.14593 0.14593 0.02817
20 08 50 030858 061201 082874 | 60 0.8 50 -0.16369 016369 004071 | 120 08 50  -0.19979 0.19979 0.05010
20 1.0 0001 036482 050068 089836 | 60 1.0 0001 002922 007409 001040 | 120 1.0 0001 -0.02056 0.05770 0.00541
20 10 01 038641 049692 089813 | 60 1.0 04 003829 0.08355 001157 | 120 1.0 01  -0.01052 005933 0.00546
20 1.0 03 040193 051243 000876 | 60 1.0 0.3 004065 008796 001218 | 120 10 03  -0.00418 006040 0.00576
20 10 05 058564 070513 150187 | 60 1.0 05 004110 008851 001222 | 120 1.0 05  -0.00879 0.05870 0.00567
20 10 30 030274 054852 101084 | 60 10 30 -0.08752 0.12458 002573 | 120 1.0 3.0 -0.11605 0.13064 0.02415
20 1.0 50 022762 053811 085849 | 60 1.0 50 -0.16122 018018 0.04865 | 120 1.0 50 -0.18350 0.19461 0.05112
20 12 0001 052718 062346 148737 | 60 1.2 0001 008294 010237 002007 | 120 1.2 0001 0.01729 008407 0.01378
20 12 04 054539 063709 149004 | 60 12 041 008721 010823 002189 | 120 12 0.4 002854 008712 0.01449
20 12 03 056270 064774 149094 | 60 12 03 008639 011477 002275 | 120 12 03 003602 0.08946 0.01523
20 12 05 056650 0.65885 150033 | 60 1.2 05 007704 010878 002105 120 1.2 05 003184 008891 0.01492
20 12 30 042775 060969 143261 | 60 12 30 -007749 015887 003877 | 120 12 3.0 -0.09647 0.15264 0.03401
20 12 50 011501 039631 066547 | 60 12 50  -0.14027 049979 005414 | 120 12 50  -0.17221 022554 0.06364
20 15 0001 014351 020067 007007 | 60 15 0001 012099 013857 005603 | 120 15 0.001 0.05896 011890 0.04562
20 15 01 015381 021500 007804 | 60 15 01 013055 0.15026 0.05831 | 120 15 0.1  0.06858 0.12353 0.04674
20 15 03 017885 023507 008925 ] 60 15 03 013352 016284 006181 | 120 1.5 03 007718 0.12973 0.04794
20 15 05 016995 023333 008713 | 60 15 05 013113 017285 006438 | 120 15 05  0.07687 0.13007 0.04788
20 15 30 000965 017953 004545| 60 15 30 -0.06821 019745 007920 | 120 1.5 3.0  -0.07678 0.19344 0.06959
20 15 50 -0.05651 020130 006404 | 60 15 50 -0.14634 027074 011214 | 120 15 50 -0.16706 0.28371 0.10922
20 1.8 0001 015371 021054 008734 | 60 1.8 0001 0.14288 0.18523 0.11359 | 120 1.8 0.001 0.09526 016026 0.10167
20 18 01 016737 022714 009556 | 60 1.8 0.4 015321 020032 011720 | 120 18 0.1  0.10241 0.16431 0.10291
20 18 03 020559 026150 011308 | 60 1.8 0.3 016319 021332 012219 | 120 1.8 03  0.11266 0.16858 0.10386
26 18 05 020608 026418 0.11203| 60 18 05 015190 021324 0412158 | 120 1.8 0.5 011207 0.16920 0.10416
20 18 30 007352 019724 003610 | 60 1.8 30  -0.04887 024272 0.14477 | 120 1.8 3.0 -0.06343 024342 0.13061
20 18 50 -0.09228 027500 013071 | 60 1.8 50 -0.13560 0.32489 0.18600 | 120 1.8 50  -0.15313 033312 0.17400
20 20 0001 0.17147 023620 011558 | 60 2.0 0001 017371 021793 0.16879 | 120 2.0 0001 0.11650 0.19043 0.15191
20 20 01 019565 026536 013024 | 60 20 01 018346 023015 0171589 | 120 20 0.4  0.12551  0.19436 0.15323
20 20 03 024120 030757 015913 | 60 2.0 0.3 019435 025063 0.17792 | 120 2.0 03  0.13d451 0.19786 0.15448
20 20 05 024284 031447 016141 | 60 20 05 018042 025024 017828 | 120 20 05  0.13304 0.19856 0.15453
200 20 30 006127 023904 011183 | 60 20 3.0 -0.04489 027914 020505 | 120 2.0 3.0 -0.05519 027740 0.18535
20 20 50 -0.07470 034099 019487 | 60 20 50  -0.13881 037135 025824 | 120 2.0 50  -0.14248 0.36469 0.22878
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6.4.2 AG and WLW models results

Tables 6.2-6.4 provide details of AG and WLW performance for the case of a
stationary process (HPP) with risk-free interval, as sample size increases (from
U =20 to U=60 and U =120). Table 6.2-6.4 and Fig. 6.3 summarize
performance of the AG and WLW methods (HPP case) for gap time ratio in the
range 0.001< R <5.0. The AG performance is consistently good across all values
of the gap time ratio 0.001< R <5.0. However, the WLW estimates improve as R
and sample size increase.

In a small sample size (U =20, Table 6.2), the variability of the WLW or the
AG estimate is high, and the WLW estimates fluctuate more rapidly for R >0.5.
The more favorable applications range for AG lies within R < 5.0, while the more
favorable applications rage for WLW estimate is restricted in R > 0.5. The AG
estimate lies between (2.31413, 2.43232), while the WLW estimate lies between
(2.78490, 3.22381). The AG estimates have relative BIAS 0.03046, relative MAD
0.03046, and relative MSE 0.00145, while the WLW estimates have relative BIAS
0.33841, relative MAD 0.33841, and relative MSE 0.14360. The AG model
appears capable of handling the recurrent data better than the WLW model.

At sample size U =60 (Table 6.3), variability of both the AG and WLW
estimates is reduced, leading to a narrower confidence interval. The more
favorable applications range of the AG and WLW estimates lie within 8 <5.0 and
R > 0.5, respectively. For the gap time ratio between 0.001< R <5.0, the AG
estimates lie between (2.33405, 2.41263), while the WLW estimates lie between

(2.70554, 3.32081). The AG estimates have relative BIAS 0.03774, relative MAD
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0.03774, and relative MSE 0.00189, while the WLW estimates have relative BIAS
0.36267, relative MAD 0.36267, and relative MSE 0.17043.

At the large sample case of U =120 (Tables 6.4 and Fig. 6.3), the 95% C.1.
show that the more favorable applications range of the AG and WLW estimates
lie within R<5.0 and R > 0.5, respectively. At the gap time ratio, 0.001< R <5.0,
the AG estimates lie between (2.29771, 2.34221), while the WLW estimates lie
between (2.40654, 3.26163). The AG estimates have relative BIAS 0.01096,
relative MAD 0.01167, and relative MSE 0.00020, while the WLW estimates have

relative BIAS 0.30787, relative MAD 0.30787, and relative MSE 0.13860.
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Table 6.2 Performance metrics of the AG and WLW models in an HPP, U =20

R [|Average f§°
0.001 2.39562

0.1 2.39388
0.3 2.35567
0.5 2.34470

3.0 2.31413
5.0 243232

AG model
e le.| e

n

2
n

0.04040 0.04040 0.00163
0.03965 0.03965 0.00157
0.02305 0.02305 0.00053
0.01829 0.01829 0.00033
0.00501  0.00501 0.00003
0.05634  0.05634 0.00317

WLW model
Average ,@ 2 e, ’e,,] e

3.22381 0.40008 0.40008 0.16006
3.21717 0.39719 0.39719 0.15776
3.17877 0.380562 0.38052 0.14479
3.156384 0.36969 0.36969 0.13667
2.93244 0.27354 0.27354 0.07482

2.78490 0.20946 0.20946 0.04387

BIAS(AG)= 0.03046

MAD(AG)= 0.03046
MSE(AG)= 0.00145

BIAS(WLW)= 0.33841
MAD(WLW)= 0.33841
MSE(WLW)= 0.14360

?True B =2.30259

Table 6.3 Performance metrics of the AG and WLW models in an HPP, U =60

R |Average B
0.001 2.41245

0.1 2.40282
0.3 2.41263
0.5 2.40234
3.0 2.37265
5.0 2.33405

AG model

e, el e

2
n

0.04771  0.04771  0.00228
0.04353 0.04353 0.00189
0.04779  0.04779 0.00228
0.04332 0.04332 0.00188
0.03043  0.03043 0.00083
0.01366  0.01366__ 0.00019

WLW model

3.32081 0.44221 0.44221 0.19555
3.31100 0.43794 0.43794 0.19180
3.29226 0.42981 0.42981 0.18473
3.26629 0.41853 0.41853 0.17517
2.93013 0.27254 0.27254 0.07428

2.70554 0.17500 0.17500 0.03063

BIAS(AG)= 0.03774

MAD(AG)= 0.03774
MSE(AG)= 0.00189

BIAS(WLW)= 0.36267
MAD(WLW)= 0.36267
MSE(WLW)= 0.17043

*True § =2.30259
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Table 6.4 Performance metrics of the AG and WLW models and the 95% C.I. inan HPP, U =120

AG model WLW model
Average Average
R B €, € e,  g5%1B 9s%uB| B° e, e, €,  95%LB 95% UB
0.001} 2.33565 0.01436 0.01436 0.00021 2.20459 2.46671| 3.26163 0.41650 0.41650 0.17348 3.12090 3.40236
0.1 2.33665 0.01479 0.01479 0.00022 2.20584 2.46746) 3.25388 0.41314 0.41314 0.17069 3.11342 3.39435
0.3 ] 2.33680 0.01486 0.01486 0.00022 2.20683 2.46678| 3.23144 0.40339 0.40339 0.16273 3.09203 3.37085
0.5 | 2.34221 0.01721 0.01721 0.00030 2.21281 2.47161| 3.20009 0.38978 0.38978 0.15193 3.06246 3.33772
3.0 231796 0.00668 0.00668 0.00004 2.20375 2.43217| 2.71537 0.17927 0.17927 0.03214 2.60338 2.82736
50 1 229771 -0.00212 0.00212 0.00000 2.19213 2.40329| 2.40654 0.04514 0.04514 0.00204 2.30701 2.50606

BIAS(AG)= 0.01096

MAD(AG)= 0.01167
MSE(AG)= 0.00020

BIAS(WLW)= 0.30787
MAD(WLW)= 0.30787

MSE(WLW)= 0.13860

*True  =2.30259
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6.5 Conclusions

The class of semi-parametric Pl models applies to recurrent failure event
modeling for a repairable system with covariates. A substantial period of down
time, due to performing maintenance (i.e. major overhaul) after a major failure,
has been a concern in the accuracy of estimating the covariate effect. This
research examines the robustness of three semi-parametric Pl models as a
function of the overhaul duration. Qureshi et al. [6] assumed zero repair times in
the PWP-GT model (R =0). In comparing with other researchers, this study has
defined the research domains for gap time ratio from a value close to zero repair
times (R = 0.001) to long maintenance intervals ranging from 0.001 to 5.0.
Qureshi et al. examined the PWP-GT model applied to recurrent data without
considering the repair time process and concluded that the PWP-GT estimator
underestimates the covariate effect in a DROCOF case (e.g., BIAS= -26% at
S =0.5) and overestimates the covariate effect in an IROCOF case (e.g., BIAS=
19% at § =3.0). Qureshi et al. proved the PWP-GT model an accurate estimator
in estimating the times to failures for NHPP power-law processes with shape
parameter in the range 1.0 <6 <3.0 and for larger sample sizes (U 2 60). This
study has considered both cases: zero repair times and long maintenance
intervals and verified that the PWP-GT model results are consistent with those of
Qureshi.

Recommendations to practitioners in selecting the more favorable

applications ranges on (U, R,5 ) are as follows. The PWP-GT model proves to

perform well for sample sizes 60 (30 per class) or more, moderately decreasing,
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constant, and moderately increasing ROCOFs (power-law NHPP shape
parameter in the range 0.8 < § <1.8) if the overhaul duration is within half time
(R £0.5) of the previous instantaneous MTTF . If the overhaul duration is
between three to five times of the previous instantaneous MTTF (3.0< R<5.0),
the more favorabie applications range of PWP-GT for shape parameter is

0.8< 6 <1.2. In the large sample size 120 (60 per class), the PWP-GT model

performs well in the range of 0.5 <6 <2.0, if the overhaul duration is within haif

time (R<0.5) of the previbus instantaneous MTTF . If the overhaul duration is
between three to five times of the previous instantaneous MT7F (3.0<R< 5.0),
the more favorable applications range of PWP-GT for shape parameter is

0.8 < § <1.2. Within the short maintenance interval, increasing the sample size
from 60 to 120 does not improve/widen the more favorable applications range
for maintenance interval (R <0.5). As for the other two common baseline
intensity model (i.e. AG and WLW), the AG model performs consistently well in
the small sample size (20) regardless of the overhaul duration (R <5.0) in an
HPP case. The WLW model performance improves as the overhaul duration

increases (R >5.0).
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7. Covariate proportional intensity modeling for recurrent data of two
failure types (major and minor)

7.0 Abstract

This paper examines covariate proportional intensity (Pl) modeling as an
approach for explicit freatment of multiple (two) recurrent failure types (major and
minor) with complete data following a power-law Non-homogeneous Poisson
Process (NHPP). Although covariates are typically used to incorporate treatment
effects, a covariate is shown to conceptually model multiple failure types in the
special case where the proportional intensities rule holds. The Prentice-Williams-
Peterson-gap time (PWP-GT) model has proven a robust and accurate estimator
in handling recurrent data of two failure types. The more favorable engineering
application ranges are recommended, which are beneficial to practitioners in
anticipating the favorable application domains.

For the minor type, the PWP-GT model proves to perform well for sample size
120 (60 per class) or more, decreasing, constant, and increasing rates of
occurrence of failures (power-law NHPP shape parameter in the range of
0.5<8<2.0 ). For the major type, the PWP-GT model proves to perform well for
sample size 180 (90 per class) or more, decreasing, constant, and increasing
rates of occurrence of failures (power-law NHPP shape parameter in the range of
0.5<6<1.38).

Keywords: repairable systems reliability, recurrent events, multiple failure types,

covariate proportional intensity modeling
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Nomenclature

Acronyms
AG
DROCOF
HPP
IROCOF
Li.d
MTTF
MAD
MSE
NHPP

Pl

PWP
PWP-GT
PWP-TT
WLW

Notation
h(t;z)

0
N@)

Nox =

c

Z(@)

Z,(t)

Andersen and Gill model

Decreasing rate of occurrence of failures
Homogeneous Poisson Process

Increasing rate of occurrence of failures
Independent and identically distributed

Mean time to failure

Mean absolute deviation

Mean squared error

Non-homogeneous Poisson Process
Proportional intensity

Prentice, Williams, and Peterson model
Prentice, Williams, and Peterson-gap time model
Prentice, Willlams, and Peterson-total time model
Wei, Lin, and Weissfeld model

Proportional hazard function
Baseline hazard function

Random variable for the number of failures in (0, t]; a counting

process
An integer counting successive failure times; a stratification
indicator subscript

Treatment factor for major type failures, i denotes the level number
Treatment factor for minor type failures, i denotes the level number
Random variable for cumulative time of occurrence of the n” failure

Sample size (number of units)

Covariate process up to time ¢

A two-dimensional covariate for major type failures
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Z,(1) A two-dimensional covariate for minor type failures

zZ (k x1) vector of covariates, z =(z,,2,,...2, )’
B, (k x1) vector of stratum-specific regression coefficients
B =08, P2 B)
B.. regression coefficient for major failure events, »: event count
B,, regression coefficient for minor failure events, »: event count
S Shape parameter of a power-law NHPP
S Shape parameter of the major type events
J, Shape parameter of the minor type events
A Indicator of a failure or censored time; limit to time zero
2, @ Stratum-specific baseline intensity function
At;z) Proportional intensity function
v Scale parameter of a power-law NHPP
U, Baseline value of v, the scale parameter of a power-law NHPP
v, Alternate value of v, the scale parameter of a power-law NHPP
c Standard deviation
A Denotes an estimator

Denotes the transpose of a vector
7.1 Introduction

Failure time data on a repairable system are realizations of a stochastic point
process, in which the instantaneous rate of occurrence of failures (ROCOF) is

A(?). Prentice, Williams, and Peterson (PWP) [1] proposed a semi-parametric

approach to model recurrent failure event data from a repairable system using
two methods: PWP-GT (gap time) and PWP-TT (total time). Cox proposed the
distribution-free (semi-parametric) proportional hazards (PH) model in 1972 [2].

The proportional intensity (Pl) models (PWP-GT, PWP-TT, Andersen-Gill (AG)
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[3], and Wei-Lin-Weissfeld (WLW) [4]) have been applied to recurring events in
medical studies (biostatistics field), such as recurrent infections of a patient. For
engineering applications, Landers and Soroudi [5], Qureshi et al. [6], Vithala [7],
and Landers et al. [8] have investigated robustness of the PWP-GT model, where
the underlying recurrent failure time data are from a Non-homogeneous Poisson
Process (NHPP) with a power-law or a log-linear intensity function. These
references also report the engineering applications of the PWP-GT model cited in
the literature. Qureshi et al. [6] found that the PWP-GT model performs best for
constant and moderately increasing rate of occurrence of failures (IROCOF) and
decreasing rate of occurrence of failures (DROCOF) and for larger sample sizes
from power-law NHPPs. Vithala [7] considered the case of log-linear increasing
rates of occurrence of failures, and concluded the PWP-GT model performs best
for moderately increasing rates of occurrence of failures and for larger sample
sizes. This research has extended their work to the important case of recurrent
data of two failure types (major and minor).

Compared to the extensive literature on applications of the Cox-based
regression models in the biostatistics field, there have been few reported
engineering application. Abundant federal funding received in biostatistics /
medical research has advanced the Pl models to become well developed and
widely referenced. Pl models for medical applications could also apply to
recurring failure/repair data in engineering problems. The PWP-GT, PWP-TT, AG,
and WLW models offer powerful analytical tools for engineering practitioners as

they become better recognized and understood.
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Major and minor failure events are commonly seen in industry, where minor
failure rate is typically proportionally higher than major failure rate. Most
researchers have formulated the problem as univariate and pooled the major and
minor failures as though they are identical. The Lin method of multi-dimensional
covariates permits explicit modeling of major and minor failures as distinct types
in a single, stratified model so long as the proportional intensity rule holds.

7.2 Semi-parametric Proportional Intensity models

Cox [4] proposed a PH formulation to include explanatory variables
(covariates) in survival models. PWP proposed an extension of the Cox model to
stochastic processes and applied the approach to model recurring infections in
aplastic anemia and leukemia patients having received bone-marrow transplants.
This application involved several subjects and a small number of events (up to
five) for each subject. The paper by PWP did not address the baseline intensity
function but rather reported the relative risks for the test and control groups. In
reliability and maintainability engineering applications, a number of authors have
applied the semi-parametric proportional intensity (hazards) model, for example,
Ansell and Phillips [9], Ansell and Phillips [10], Landers and Soroudi [5], Qureshi
et al. [6], Ansell and Phillips [11], Landers et al. [8], Ansell et al. [12], and Ansell
et al. [13]. A collection of the Pl model applied to different industries includes:
marine gas turbine engines (Asher [14]), semiconductor, electrical, and pipeline
industries (Ansell and Phillips [11]), U.S. Army main battle tank (Landers et al.
[8]), water supply industry (Ansell et al. [12], [13]), etc. Ascher [14] illustrated the

use of the PWP model for analysis of reliability for marine gas turbine engines.

208



Ascher and Feingold [15] suggested application of the PWP model in the field of
reliability engineering. Dale [16] applied the PWP approach to simulated data for
a reliability growth program with design improvements implemented after each of
the five stages, resulting in a decreasing rate of occurrence of failures -
(DROCOF). Wightman and Bendell [17] and Bendell et al. [18] cited the PWP
model and advised caution in application for engineering studies.

Qureshi et al. [6] performed a robustness study to determine how well the
PWP-GT method performed when applied to data from a failure process that was
actually parametric (specifically the NHPP with power-law intensity function). The
2o bounds of the PWP-GT estimates can cover the true values with few
exceptions. The PWP-GT method performed well, except at small values of
shape parameter (5 < 0.6).. The PWP-GT method was best for larger sample size
and for moderately decreasing, constant, and moderately increasing ROCOF.
The validation process for the case of an HPP in Section 2.2.3 (also refer to
Table 2.10) indicated that the estimated MTTF (mean time tfo failure) differences
between the PWP-GT model and theoretical values were not statistically
significant. As for the PWP-GT estimates of the covariate regression coefficient,

the true value of coefficient g lies within the 2o confidence bounds on the
estimate ,5’ for 1.0< 6 <14 . The PWP-GT method tends to underestimate S for
a DROCOF (e.g., BIAS= -26% at § = 0.5) and overestimate g for an IROCOF
(e.g., BIAS=19% at § =3.0).

Lin [19, 20] studied chronic granulomatous disease and employed a multiple

dimensional covariate method to handle the recurrent data with multiple failure
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types. Lin considered three types of failure outcomes by defining a three-
dimensioned covariate array. For the special case of two failure types considered

in this research, let two covariates Z,, Z, represent the major and minor failure
types in two dimensions. That is, the major and minor failure types are coded as
follows. (1) Major type: Z, =[R,,,0] and (2) Minor type: Z, =[0,R,,], where R, =1
for class1 and R, =0 for class ¢. The corresponding regression coefficient

estimates are interpreted as the covariate effect applied to the major and minor
failure types. To estimate the general covariate effect for major/minor event types

altogether, a single covariate is introduced, and Z, = R,, where R, =0, for
class=¢ and R, =1, for class=1 (i: sample unit; k: the failure type). Refer to Lin

[19] for an illustration of the data set structure.

In industry, minor failure rate is typically higher than major failure rate. Most
researchers have formulated this problem as univariate and pooled the muitiple
failure types as though they are identical. The Lin method of multi-dimensional
covariates permits explicit modeling of major and minor failures as distinct failure
types in a single, stratified model so long as the proportional intensity rule holds.
7.3 Models and methods
Sections 7.3.1-7.3.2 review the semi-parametric Cox regression model for single
event and the PWP-GT model for recurrent events. Section 7.3.3 reviews the
NHPP with power-law intensity function. Section 7.3.4 describes the method
used to assess the robustness of the semi-parametric Pl method for the case of

completed data from a true but unknown power-law NHPP.
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7.3.1 Cox regression modef

For the case of a time-to-failure random variable, Cox [2] proposed a
proportional hazards regression model of the form:
h(t;2) = by (Dexp(B z), D
where B is the regression coefficient vector and z represents a covariate vector.

The PH model is composed of two parts: baseline hazards function 4,(¢) and an

exponential link function, where 8 is designated to measure the covariate effect.
The Cox model can be used to describe the semi-parametric distribution of time-
to-failure for non-repairable items with covariates. Under proportional hazards,
the ratio of the hazard functions of two units (4 and B) with covariate vectors z ,
and z, is constant over time. The covariates have a multiplicative effect on the
baseline ‘hazard function. When the baseline hazard function is fully specified
(e.g.,Weibull) the analytical procedure is termed a parametric method.
Alternatively, 4,(f) can be left arbitrary, in which case the procedure is termed
semi-parametric.
7.3.2 Semi-paramelric PWP model

The PWP model is a generalization of the semi-parametric Cox proportional
hazard function to a proportional intensity function A(z;z) for the case of repeated
failure events. Under proportional intensities, the ratio of the intensity functions of
two units (4 and B) with covariate vectors z, and z, is constant over time. The
covariates have a multiplicative effect on the baseline intensity function. When

the baseline intensity function is fully specified (e.g., power-law or log-linear) the
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analytical procedure is termed a parametric method. Alternatively, 4,(¢) can be

left arbitrary, in which case the procedure is termed semi-parametric.

Given the counting and covariate processes at time ¢, the general semi-
parametric intensity function was defined by PWP as follows:
A{E|N@®,Z(@)}y =lim Pr{t<T, ., <t+A|N@,Z(@)}/A, 2
where N(¢) represents a random variable for the number of failures in {0 t], Z(1)
denotes the covariate process up to time ¢, and A ’Iimits the time span to zero.

Among the semi-parametric regression models specified by PWP were the

following:
PWP - GT : A{t | N(©),Z(D)} = 4o, (t -1, exp[B,z(0)] 3)
PWP =TT : M{t | N(©), Z{(1)} = Ay, (1) exp[ B, 2(1)]- Q)]

In the PWP-GT model of Eq. (3), the time metric is the interval between times
of failure ¢, , and ¢, defined as gap time. The PWP model stratifies a failure data
set based on the failure event count. When a unit is placed into operation it has
experienced no failures and so resides in stratum 1 (»# =1), and when the first

failure occurs the unit moves to the second stratum (n=2). In general, the unit
moves to stratum » immediately following the (»—1)* failure and remains there
until the »n” failure.

7.3.3 Power-law infensity function

For a power-law NHPP, the baseline intensity function is

A (O) =v,dxt°7, 3
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where & is the shape parameter and v is the scale parameter of the power-law

form. If we define v, =exp(B, xz,) and z, =1, then the power-law P model
becomes

At;z) =%t exp(B'r), 6)
where B is the regression coefficient vector and z represents a covariate vector.

The power-law intensity function is composed of two parts: baseline intensity

function that follows a power-law form and an exponential link function, where B

is designated to measure the covariate effect.

This process could model the reliability of a repairable system with rapid
deterioration, since the failure intensity is increasing at an exponential rate with
time. The analogous case for maintainability is a rapid learning process. The
intensity function A(z) is strictly decreasing for 6 < 1, constant for § = 1, and
strictly increasing for & > 1. Thus, we have a DROCOF for § <1, an HPP for §
=1, and an IROCOF for 6 > 1.

7.3.4 Method

Simulaﬁon data with recurring patterns (complete data), where the underlying
distribution follows a power-law NHPP, is generated by a modified Blanks &
Tordon [21] simulation algorithm. The concept of forming the dataset for the PWP
method originates from the probability theory of conditionality. The later failure
times canno'; be included into the dataset when developing the intensity function
at the »n” failure count. Consequently, for each censored unit, the censored
failure times are removed from the dataset, except the first censored failure event.

The pattern of the dataset shows that the last record in each censored unit has
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one and only one censored status. The logic in generating the dataset for the
PWP method is to remove the record if both of the following conditions hold: (1)
the current record is marked censored and (2) the previous record is marked
censored.

The semi-parametric PWP-GT method was implemented using the SAS™
Users Group (SUGI) software code PHREG [22], which performs the semi-
parametric Cox regression method with a blocking option to stratify for a
covariate, such as failure event count, not satisfying the proportional hazards
conditions. PHREG applies the product-limit method to estimate the reliability
function within all strata defined by the failure count and for all values of the
covariate. PHREG also applies the Cox method to estimate the vector of
regression coefficients g and the covariance matrix. Appendix VI provides the
programming code to perform the semi-parametric PWP-gap time method.

The simulation method of Blanks & Tordon [21] is modified to generate an
NHPP with two failure types, where the underlying distribution is a power-law
intensity function. Most of the parameters remain unchanged except that the
sample unit size has been increased due to the insufficient sample size of major

events. The parameter setting is as follows: U =120, F =10, v, =0.001,0, =0.01.
The fixed time-invariant covariate vector z_ ;=12 is defined as follows:

Major event, Class=¢: 7, =(0,0)
Major event, Class=1: z, = (1,0)
Minor event, Class=4: z, =(0,0)

Minor event, Class=1: z, =(0,1)
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Ten failure events were generated for each sample unit. To determine the
sequence of major and minor failure events in the counting process, a uniformly

distributed random variate U(0,1) was introduced to decide the event number F

for occurrence of the major failure. Consequently, the F* event time to have a

maijor failure is generated as: F = FLOOR(10x RANUNI(SEED))+1. The

remaining nine events are minor failure events. In this way, a counting process
contains major and minor failure events, where the one major failure is inserted
randomly among the N —1 minor failures. The event number for the major failure
is randomly selected depending on the F value. Large enough sample size is
generated in order to obtain sufficient data for each failure count in a PWP-GT
model.

There are two experimental factors: experimental units (U ) and the shape
parameter (8 ). The levels for each factor are selected as follows: (1) U = 120,

180, and 240 (2) 6§ =0.5, 0.8, 1.0, 1.2, 1.5, 1.8, and 2.0. The selection of the v,,p,

and & levels has taken the following considerations: (1) the parameter settings in
the previous relevant works (Proschan [23], Landers and Soroudi [5], Qureshi et
al.[6], and Landers et al. [8]) (2) The selection of U levels is taken from the
parameter settings in the previous research works, and it has also considered the
small, median, and large sample sizes for both major and minor types of failure
events. To measure and compare model performance, three robustness metrics
were compiled:

e relative signed error (BIAS);

e relative mean absolute deviation (MAD) and
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¢ relative mean squared error (MSE).
7.4 Results

Table 7.1 and Fig. 7.1 summarize all the performance metrics in terms of U
and &, categorized by the major and the minor types. The treatment effect

(CLASS= ¢., CLASS=1) for the major type is summarized as follows. In the case

of U =120, the more favorable applications range for PWP-GT estimates is

0.5 <6 £1.2, having relative MSE within the range of (2.7%, 10.8%), relative
BIAS within the range of (-4.9%, 19.2%), and relative MAD within the range of
(12.6%, 25.3%). In the case of U = 180, increasing the sample size (from 120 to
180) has significantly enhanced the accuracy of the PWP-GT model resulting in a
wider applicable range of the shape parameter 0.5<6 <1.8 (U =180) than
0.5<6 <1.2 (U =120). For the more favorable épplications range (0.5<8 <1.8),
the PWP-GT model estimates have relative MSE within the range of (1.0%,
15.8%), relative BIAS within the range of (-14.7%, 22.4%), and relative MAD
within the range of (8.5%, 26.0%). As for U =240, the more favorable
applications range is 0.5 <6 <2.0, with relative MSE within the range of (1.0%,
16.0%), relative BIAS within the range of (-17.3%, 19.1%), and relative MAD
within the range of (7.9%, 24.9%).

The treatment effect (CLASS=¢., CLASS=1) for the minor type is
summarized as follows. In the case of U =120, the more favorable applications
range for PWP-GT model estimates is 0.5 <J < 2.0, having relative MSE within
the range of (1.0%, 13.0%), relative BIAS within the range of (-16.5%, 12.5%),

and relative MAD within the range of (7.1%, 22.4%). In the case of U =180, the
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PWP-GT model performs well within the range (0.5 < § £2.0), having relative
MSE within the range of (0.9%, 17.9%), relative BIAS within the range of (-18.1%,
13.4%), and relative MAD within the range of (6.4%, 21.9%). As for the case of

U = 240, the more favorable applications range is 0.5 < £2.0, with relative

MSE within the range of (0.5%, 15.1%), relative BIAS within the range of (-18.5%,

13.5%), and relative MAD within the range of (5.4%, 19.8%).

Table 7.1 Summary of PWP-GT model results for estimating fii (10 failures/unit)
N = 10 failures/unit, v, = 0.001,0, = 0.01

Major events Minor events

U 6 | BIAS MAD MSE BIAS MAD MSE

120 0.5|-0.04875 0.19879 0.08948 |-0.16487 0.16487 0.05101
0.8]0.04247 0.12553 0.02734 |-0.05810 0.07934 0.01233
1.0|0.12466 0.18186 0.05697 |-0.00542 0.07079 0.00951
1.2|0.19176 0.25272 0.10830 | 0.03509 0.10386 0.01791
1.510.27228 0.33229 0.19928 | 0.07186 0.15342 0.04673
1.8 0.34679 041784 0.32304 | 0.10206 0.19847 0.09108
2.0]0.38869 0.46815 0.42425 | 0.12479 0.22399 0.12983

180 0.5-0.14726 0.14726 0.04191 |-0.18054 0.18054 0.05189
0.8-0.00717 0.08513 0.00958 |-0.06023 0.07216 0.00962
1.0/ 0.06193 0.10476 0.01664 |-0.00458 0.06357 0.00853
1.2/ 0.11448 0.15047 0.03710 | 0.03664 0.10441 0.02097
1.510.17808 0.20435 0.08590 | 0.07986 0.15328 0.06061
1.810.22432 0.26021 0.15800 | 0.11377 0.19468 0.12357
2.0]10.25701 0.29262 0.22060 | 0.13394 0.21890 0.17854

240 0.5-0.17263 0.18084 0.05756 |-0.18549 0.18549 0.05539
0.8 |-0.03609 0.09453 0.01157 |-0.05482 0.06759 0.00790
1.0} 0.02633 0.07927 0.00969 |-0.00027 0.05360 0.00498
1.2 0.07002 0.11655 0.02048 | 0.03953 0.08610 0.01430
1.510.12523 0.16866 0.05612 | 0.07040 0.14857 0.05234
1.8 0.16515 0.21480 0.11089 | 0.11493 0.17533 0.10220
2.0/ 0.19105 0.24873 0.16020 | 0.13536 0.19800 0.15075
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7.5 Conclusions

This research also examines covariate proportional intensity modeling as an
approach for explicit treatment of multiple (two) recurrent failure types (major and
minor) with complete data. Although covariates are typically used to incorporate
treatment effects, a covariate is shown to conceptually model multiple failure
types in the special case where the proportional intensities rule holds. The PWP-
GT model proves to be the model of choice to handle two failure types of
recurring events, evaluated in terms of bias, mean absolute deviation, and mean
squared error of covariate regression coefficients over ranges of sample sizes
and shape parameters encountered in engineering applications. The more
favorable engineering applications ranges are recommended.

The research domains of the two factors of interests are: (1) 120 <U <240
and (2) 0.5 <6 <£2.0. For the minor failure type, the PWP-GT proves to perform
well for sample sizes 120 (60 per class) or more, decreasing, constant, and
increasing rates of occurrence of failures (power-law NHPP shape parameter in
the range of 0.5<6 <2.0). For the major failure type, the PWP-GT performs well
for sample sizes 180 (90 per class) or more, decreasing, constant, and
increasing rates of occurrence of failures (power-law NHPP shape parameter in
the range of 0.5<5 <1.8).

The recurring events of two failure types (major and minor failures) in this
study were generated from a single NHPP stream with power-law intensity
function, where the major and minor failure events share the same shape

parameter (5 ) of the power-law form. To meet the requirement of proportionality
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in the semi-parametric proportional regression method, the shape parameters of

the major type (J,) and the minor type (J,) are set to equal, expressed as
8, =6, =4. In practice, the case §, # &, is likely. Future research may propose a

model that handles (1) 6, <J, or (2) &, > 4,.
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8 Conclusions and recommendations

The class of semi-parametric Pl models applies to recurrent failure event
modeling for a repairable system with covariates. This research has provided a
thorough robustness study of four semi-parametric Pl models (PWP-GT, PWP-
TT, AG, and WLW) subject to right-censoring severity and two distinct types of
recurring events ((1) major overhaul duration and (2) major and minor failures).
Two modeling extensions are examined for the case of multiple event types:
multi-dimensional covariate (Lin (1993, 1994)) and discontinuous risk-free-
intervals (Therneau and Hamilton (1997)). Recommendations for the more
favorable applications range on the parameters in each individual study (from
Chapters 4-7) are available for the prospective industrial applications, such as
aircraft and power plants. The resulfs are beneficial fo practitioners in anticipating
the more favorable applications domains and selecting appropriate Pl models in
repairable system reliability.

8.1 Conclusions
8.1.1 Right-censoring recurring events on four Pl models

Previous studies (by Landers and Soroudi (1991) and Qureshi et al. (1994))
conducted on the PWP-GT model for the case of an underlying NHPP with
power-law intensity function indicated good performance. This research has
performed a right-censorship robustness study and examined other semi-
parametric Pl models with covariates. The PWP-GT and AG prove to be models
of choice, evaluated in terms of the BIAS, MAD, and MSE of covariate regression

coefficients over ranges of sample sizes, shape parameters, and censoring
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severity typically encountered in engineering applications. The more favorable
engineering applications ranges are recommended (Section 8.2.1).
8.1.2 Right-censoring effect on event-specific Pl models

The research studied the robustness of three event-specific baseline models
(PWP-GT, PWP-TT, and WLW) and a common baseline model (AG) to recurring
failure events with right-censoring effect from a Poison Process. The PWP-GT
and AG prove to be models of choice, evaluated in terms of the BIAS, MAD, and
MSE of covariate regression coefficients over ranges of sample sizes and
censoring severity typically encountered in engineering applications. The
favorable engineering applications ranges are recommended (Section 8.2.2).
8.1.3 Discontinuous risk-free-intervals

The class of semf-parametric Pl models applies to recurrent failure event
modeling for a repairable system with covariates. A substantial period of
downtime, due to performing maintenance (i.e. major overhaul) following a major
failure, has been a concern in the accuracy of estimating the covariate effect.
The event-specific PWP-GT model proves to be the model of choice to estimate
the covariate effect, stratum by stratum, if the overhaul duration is short. The AG
model performs well in an HPP regardless of sample size and overhaul duration.
This research examines the robustness of three semi-parametric Pl models as a
function of the overhaul duration (Section 8.2.3).
8.1.4 Covariate Pl modeling

This research also examines covariate Pl modeling as an approach for

explicit treatment of multiple (two) recurrent failure types (major and minor) with
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complete data. Although covariates are typically used to incorporate treatment
effects, a covariate is shown to conceptually model multiple failure types in the
special case where the proportional intensities rule holds. The PWP-GT model
proves to be the model of choice to handle two failure types of recurring events,
evaluated in terms of BIAS, MAD, and MSE of covariate regression coefficients
over ranges of sample sizes and shape parameters typically encountered in
engineering applications. The more favorable engineering applications ranges
are recommended (Section 8.2.4).

8.2 Recommendations

8.2.1 Right- censoring effect on four Pl models

The research domains of the three factors of interests are: (1)60 <U <180,
(2)0.5<6<2.0, and (3)0.0 < P, <1.0. At the smaller sample size (U =60), the
PWP-GT proves to perform well for moderate right-censoring (0.0< P, <0.8) and
moderately decreasing, constant, and moderately increasing ROCOFs (power-
law NHPP shape parameter in the range of 0.8 <§ <1.8). In the case of U =120,
the PWP-GT proves to perform well for moderate right-censoring (0.0< P, <0.8)
and moderately decreasing, constant, and moderately increasing ROCOFs
(power-law NHPP shape parameter in the range of 0.8 <5 <2.0). For the large
sample size (U =180), the PWP-GT performs well for severe right-censoring
(0.0 < P, <1.0) and moderately decreasing, constant, and moderately incfeasing

ROCOFs (power-law NHPP shape parameter in the range of 0.8<6 <2.0). The

AG model proves to outperform the WLW for stationary process (HPP) across a
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wide range of right-censorship (0.0 < P, <1.0) and for sample sizes of 60 (30 per
class) or more.
8.2.2 Right-censoring effect on event-specific Pl models

The research domains of the two factors of interests are: (1)60 <U <180 and
(2)0.0< P, <1.0. The parameter setting P, =0 (complete data) is included for
comparison with censored data. The PWP-GT model has proven the most robust
and accurate estimator (at the lowest error) among the three event-specific
models. Compared to WLW, the PWP-TT estimator yields similar but slightly
better results. The PWP-GT presents a low-error region at the range of
120<U <180 and 0< P, <1. For the small ‘sample size U =60, the more
favorable applications range is 0 < 2, <0.8. For the other two estimators, when
the sample size is increased from U =60 to U =120, PWP-TT and WLW have a
slightly improved applications range (0 < P, <0.4). As the sample size is
increased to 180, the performance is poor but stable over applications range
0< P, <0.8 on both models. The results show that AG performs well for the case
of smaller sample size (U =60) and severe censoring ( P, =1.0). The favorabie
applications region of the common baseline AG model is 60 <U <180 and
0<P <1.
8.2.3 Discontinuous risk-free-intervals

The research domains of the three factors of interests are: (1)20 <U <120,
(2)0.5<6<2.0,and (3)0.001 < R <5.0. The PWP-GT model proves to perform

well for sample sizes 60 (30 per class) or more, moderately decreasing, constant,
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and moderately increasing rate of occurrence of failures (power-law NHPP shape
parameter in the range 0.8 < § <1.8) if the overhaul duration is within half time

(R £0.5) of the previous instantaneous MTTF . If the overhaul duration is
between three to five times of the previous instantaneous MTTF (3.0< R <5.0),
the more favorable applications range of PWP-GT for shape parameter is

0.8< 6 <1.2. In the large sample size 120 (60 per class), the PWP-GT model

performs well in the range of 0.5 <& <2.0, if the overhaul duration is within half

time (R <0.5) of the previous instantaneous M7T7F . If the overhaul duration is
between three to five times of the previous instantaneous MTTF (3.0<R<5.0),
the more favorable applications range of PWP-GT for shape parameter is
0.8< 6 <1.2. As for the other two common baseline intensity model (i.e. AG and
WLW), the AG model performs consistently well in the small sample size (20)
regardless of the overhaul duration (R <5.0) in an HPP case. The WLW model
performance improves as the overhaul duration increases (R > 5.0).
8.2.4 Covariate Pl modeling

The research domains of the two factors of interests are: (1) 120 <U <240
and (2) 0.5 < & <2.0. For the minor failure type, the PWP-GT proves to perform
well for sample sizes 120 (60 per class) or more and decreasing, constant, and
increasing ROCOFs (power-law NHPP shape parameter in the range of
0.5 <6 £2.0). For the major failure type, the PWP-GT performs well for sample
sizes 180 (90 per class) or more and decreasing, constant, and increasing

ROCOFs (power-law NHPP shape parameter in the range of 0.5<6 <1.8).
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8.3 Contributions
The major contributions of this study are summarized as follows:
1. Robustness study of the right-censoring effect upon the four Pl models in
an NHPP for 0.5< 6 £2.0 and ten failures per unit on 60, 120, and 180

units with censoring severity of 0.0 <P_<1.0, including the development of

the program to perform the robustness analysis, where the right-censoring
probability is a variable. The more favorable engineering applications
ranges of the right-censoring severity were recommended based on the
sample size and shape parameter, including recommendations for
selecting appropriate Pl models in repairable system reliability.

2. Robustness study of the right-censoring effect upon the four semi-
parametric Pl models in an HPP for four failures per unit on 60, 120, and

180 units with censoring severity of 0.0 <P _<1.0. Comparison of three

event-specific Pl modeis (PWP-GT, PWP-TT, and WLW) was presented
as an indicator of selecting appropriate Pl models. The more favorable
engineering applications ranges of the right-censoring severity were
recommended based on the sample size.

3. Development of a methodology/plan and a program for applying the
discontinuous risk-free-intervals modeling to incorporate the overhaul
duration following a major failure (discontinuity of observation time in
system/machine downtime). The more favorable engineering applications
ranges of the major duration were recommended based on the sample

size and shape parameter.
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4. Development of a methodology and a program on multi-dimensional
covariate Pl modeling for handling two distinct failure types (major and
minor types), while the proportional intensities rule holds. The more
favorable engineering applications ranges for the major and minor types
were recommended based on the sample size and shape parameter.

8.4 Future research
8.4.1 Right-censored recurrent events

Like the power-law intensity function, the fog-linear form is frequently
encountered in industry. To examine the right-censoring effect upon recurring
events, which follow an NHPP with log-linear intensity function, is beneficial to
practitioners. Future research may evaluate how the event-specific PWP-GT
model handles the recurrent data with the log-linear intensity function in terms of
sample sizes, shape parameters, and censoring severity.

8.4.2 Multiple failure types

The recurring events of two failure types (major and minor failures) in this
study were generated from a single NHPP stream with power-faw intensity
function, where the major and minor failure events share the same shape
parameter (5 ) of the power-law form. To meet the requirement of proportionality
in the semi-parametric proportional regression method, the shape parameters of

the major type (4,) and the minor type (8,) are set equal, expressed as
8, =6, =4. In practice, the case &, = ¢, is likely. Future research may propose a

model that handles (1) 6, <48, or (2) 6, > J,.

229



8.4.3 Left-censored recurrent events

Left-censoring also arises in some applications for recurrent failure data from
repairable systems. An example case is filed data where early life events were
not recorded and records were lost. Future research could apply the

methodology of Chapter 4 to examine PWP-GT robustness under left-censoring.
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Appendix | (Semi-parametric proportional infensity models robustness for righl-censored recurrent failure data)

1.1 Experimental units (singular type)

Table A. 1. 1 Experimental units effect of the PWP-GT model! (5 =1.8)

U=60 U=120 U=180
MSE BIAS MAD MSE BIAS MAD MSE BIAS MAD

P.=04 | 0.12377 0.15846 0.24172 0.07150 0.13317 0.16240 0.07150 0.13741  0.15393

P.=0.6 | 0.13549 0.14878 0.26557 0.07106 0.12388 0.15561 0.07106 0.11684 0.16411

P.=0.8 | 0.14486 0.12972 0.27344 0.07195 0.12368 0.15971 0.07195 0.10765  0.16802

P.=1.0 | 1.79361 -0.22053 0.63335 0.08326 0.16373  0.18841 0.08326 0.12651 0.19201
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Fig A.L.1 Experimental units effect of the PWP-GT model (5 =1.3)
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Table A. |. 2 Experimental units effect of the PWP-GT model (§ =2.0)

#2

U =60 U=120 U=180
MSE BIAS MAD MSE BIAS MAD MSE BIAS MAD
P.=04 | 0.17465 0.17962 0.26974 0.10789 0.15956° 0.16452 0.10950 0.17793 0.19784
pP.=06 | 0.18666 (.16955 0.29295 0.10932 0.14829 0.18587 0.11578 0.14400 0.19210
P.=0.8 | 019294 0.15996 0.29812 0.11142 0.14281 0.18920 | 0.12272  0.12980 0.19181
P.=1.0 | 214182 -0.21764 0.71010 0.12494 - 0.18721 0.22697 | 0.12772  (.14455 0.21804
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Table A.1.3 Experimental units effect of the PWP-GT model (5=0.5)

U=60 U =120 U=180
MSE BIAS MAD MSE BIAS MAD MSE BIAS MAD
P.=0.4 | 0.53551 0.40407 0.62746 0.36198 0.00465 0.33390 0.06075 -0.18178 0.18178
P.=0.6 | 0.77886 0.48680 0.71696 0.34196  -0.00555 0.33308 0.06217 -0.18696 0.18696
P.=038 | 1.36832 0.62978 0.86481 0.30120 -0.01706 0.31954 | 0.12328 -0.09188 0.24669
Pc=1.0 | 2.27255 1.00221 1.20024 1.09745 0.40857  0.69729 0.27329 0.06185 - 0.40939
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Table A.l.4 Experimental units effect of the PWP-GT model (s=0.3)

- U=60 U=120 U=180
MSE BIAS MAD MSE BIAS MAD MSE BIAS MAD
P.=04 | 0.01291 -0.00612 0.09325 0.01563  -0.04467 0.09571 0.01140 -0.05950  0.08415
P.=0.6 | 0.01670 -0.01597 0.11158 0.01477 -0.05590 0.09200 0.01306 -0.07045  0.09304
P.=08 | 0.01871 -0.05920 0.10437 0.21895 0.08223 0.22646 0.01753 -0.05754 0.09754
P.=1.0 | 247916 0.65585 0.79796 0.62236 0.21174  0.34510 0.02774 -0.03674 0.12327
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1.2 Shape parameter (singular type)

Table A.1.5 Shape parameter effect of the PWP-GT modei (MSE)

p, 6=05 6=08 6=10 6=12 6=15 6=18 6=20
0.4 053551 0.01291 0.01143 0.01989 0.06218 0.12377 0.17465
0.6 077886 0.01670 0.02750 0.03993 0.07480 0.13549 0.18666

o
¥ 08 1.36832 0.01871 0.01590 0.03159 0.08060 0.14486 0.19294
= {0 227255 247916 063632 0.32410 0.09508 1.79361 2.14182
0.4 0.36198 0.01563 0.00590 0.00864 0.02870 0.0715 0.10789
< 06 034196 0.01477 0.00455 0.00811 0.02931 0.07106 0.10932
T 0.8 030120 0.21895 0.00923 0.00894 0.03006 0.07195 0.11142
2 10 1.09745 062236 1.09905 1.68430 0.75671 0.08326 0.12494
0.4 0.06075 0.01140 - 0.00195 0.00615 0.03006 0.07494 0.10950
S 06 0.06217 0.01306 0.00361 0.00806 0.03304 0.07669 0.11578
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Fig A.1.5 Shape parameter effect of the PWP-GT mode! (MSE)
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BIAS

Table A.1.6 Shape parameter effect of the PWP-GT model (BIAS)

p, 6=05 6=08 6=10 6=12 o6=15 6=18 6=20
0.4 040407 -0.00612 0.04178 0.06894 0.11742 0.15846 0.17962
0.6 0.48680 -0.01597 0.00454 0.07725 0.11172 0.14878 0.16955

o

% 0.8 062978 -0.05920 -0.00877 0.03604 0.07272 0.12972 0.15996

= 1.0 1.00221 0.65585 0.32151 0.21679 0.05251 -0.22053 -0.21764
0.4 0.00465 -0.04467 0.00232 0.04091 0.09289 0.13317 0.15956

& 0.6 -0.00555 -0.05590 -0.00506 0.02710 0.08247 0.12388 0.14829

n 08 -0.01706 0.08223 0.02708 0.04122 0.08892 0.12368 0.14281

2 1.0 040857 0.21174 0.34912 045836 0.36274 0.16373  0.18721
04 -0.18178 -0.06950 -0.00516 0.03653 0.08892 0.13741 0.17793
® 06 -0.18696 -0.07045 -0.01788 0.01795 0.07461 0.11684 0.14400

u 0.8 -0.09188 -0.05754 -0.01083 0.01806 0.06877 0.10765 0.12980

- 1.0 0.06185 -0.03674 0.00855 0.02747 0.07652 0.12651 0.14455
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Table A.1.7 Shape parameter effect of the PWP-GT model (MAD)
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1.3 95% C.I. charts (major and minor types)

Table A.1.8 PWP-GT estimates and 95% C.i., 5§ =1.5

n Major events Minor events
Average s.d.? 95%LB 95%UB Average s.d.? 95%LB 95%UB True
1 2.58752 0.31974 1.96084 3.21420 2.24535 0.16561 1.92076 2.56993 1.53506
2 1.90205 0.23166 1.44800 2.35610 1.85753 0.14640 1.57060 2.14446 1.53506
3 2.02619 0.29791 1.44229 2.61009 1.82541 0.14304 1.54505 2.10577 1.53506
o 4 2.29329 0.31280 1.68021 2.90638 1.53341 0.13538 1.26807 1.79874 1.563506
o 5 2.89702 0.29562 2.31761 3.47642 1.93824 0.15197 1.64040 2.23609 1.563506
% 6 1.61944 0.23976 1.14951 2.08936 1.25598 0.12700 1.00706 1.50490 1.53506
7 1.39773 0.28355 0.84198 1.95349 1.53782 0.12929 1.28443 1.79122 1.563506
8 1.64866 0.29580 1.06891 2.22841 1.48733 0.13079 1.23099 1.74367 1.53506
9 1.21178 0.29575 0.63213 1.79144 1.31116 0.12999 1.05638 1.56594 1.53506
10 1.94658 0.28336 1.39121 2.50195 1.46138 0.12975 1.20708 1.71568 1.53506
1 2.51532 0.24797 2.02931 3.00133 2.53602 0.14466 2.25249 2.81955 1.53506
2 1.71797 0.20008 1.32581 2.11012 1.69407 0.11464 1.46937 1.91877 1.53506
3 1.90476 0.22730 1.45926 2.35026 1.75554 0.11554 1.52910 1.98199 1.63506
o 4 1.51389 0.21023 1.10183 1.92594 1.57951 0.11445 1.36107 1.79795 1.63506
@® 5 2.08875 0.22428 1.64916 2.52833 1.67383 0.11360 1.45118 1.89648 1.53506
% 6 1.43896 0.17146 1.10291 1.77501 1.23985 0.10491 1.03422 1.44547 1.563506
7 1.88826 0.23571 1.42627 2.35025 1.54954 0.11029 1.33337 1.76571 1.63506
8 1.47523 0.22286 1.03843 1.91202 1.69800 0.11860 1.46555 1.93045 1.563506
9 1.51054 0.26039 1.00018 2.02090 1.26669 0.10447 1.06194 1.47145 1.53506
10 2.03049 0.25222 1.53615 2.52484 1.58336 0.11146 1.36490 1.80182 1.63506
1 2.36312 0.19532 1.98029 2.74595 2.43992 0.12149 2.20180 2.67803 1.563506
2 1.78564 0.20421 1.38541 2.18587 1.73332 0.09858 1.54011 1.92652 1.563506
3 1.49069 0.17422 1.14923 1.83215 1.69289 0.10036 1.49619 1.88960 1.53506
o 4 1.52187 0.18601 1.15730 1.88644 1.77231 0.09649 1.58319 1.96142 1.53506
3 5 1.93965 0.19773 1.55211 2.32720 1.57420 0.09510 1.38780 1.76059 1.53506
N 6 1.36698 0.18779 1.03811 1.69585 1.25973 0.09168 1.08005 1.43941 1.53506
7 1.80017 0.20638 1.38567 2.20467 1.49603 0.09292 1.31391 1.67815 1.53506
8 1.92484 0.20929 1.51464 2.33504 1.60654 0.09818 1.41410 1.79898 1.53506
9 1.42738 0.18411 1.06654 1.78822 1.24945 0.09082 1.07145 1.42745 1.53506
10 1.65260 0.23046 1.20090 2.10430 1.60690 0.09976 1.41137 1.80243 1.53506
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% s.d. is derived from the composite variance (seed numbers: 5§39, 255, and 59)
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Table A.1.9 PWP-GT estimates and 95% C.i.,, 6§ =1.0

n Major events Minor events
Average s.d.? 95%LB 95%UB Average s.d.? 95%LB 95%UB True
1 2.58752 0.31974 1.96084 3.21420 2.24535 0.16561 1.92076 2.56993 2.30259
2 2.58464 0.25241 2.08993 3.07935 2.50245 0.17513 2.15920 2.84571 2.30259
3 2.74223 0.31661 212170 3.36277 2.50695 0.17528 2.16341 2.85049 2.30259
o 4 3.09574 0.32978 2.44839 3.74209 2.30248 0.16703 1.97511 2.62985 2.30259
o 5 3.45394 0.31333 2.83982 4.06805 2.65093 0.18891 2.28067 3.02118 2.30259
A 6 2.23321 0.25092 1.74141 2.72501 1.92020 0.14533 1.83536 2.20505 2.302598
7 2.13522 0.29320 1.56056 2.70988 227701 0.15346 1.97623 2.57778 2.30259
8 2.46468 0.31123 1.85469 3.07467 2.25997 0.15901 1.94831 2.57162 2.30259
9 1.88085 0.30619 1.28073 2.48096 1.99446 0.15349 1.69362 2.29529 2.30259
10 2.71827 0.30172 2.12691 3.30963 2.24122 0.16225 1.82322 2.55923 2.30259
1 2.51532 0.24798 2.02929 3.00135 2.53602 0.14466 2.25248 2.81955 2.30259
2 241438 0.21360 1.99574 2.83303 2.31893 0.13440 2.05551 2.58234 2.30259
3 2.62405 0.24152 2.15068 3.09742 2.45064 0.14566 2.16516 2.73613 2.30259
o 4 2.20970 0.22113 1.77629 2.64310 2.29765 0.12312 2.05635 2.53895 2.30259
© 5 2.71702 0.23688 2.25275 3.18129 2.32770 0.13338 2.06628 2.58912 2.30259
oy 6 2.08090 0.18228 1.72364 243817 1.90136 0.12022 1.66573 2.13699 2.30259
7 2.64872 0.24976 2.15920 3.13823 2.37139 0.13480 2.10719 2.63560 2.30259
8 2.26270 0.23660 1.79898 2.72641 2.43710 0.13627 2.17003 2.70418 2.30259
9 2.16391 0.26789 1.63885 2.68896 1.92413 0.12037 1.68821 2.16006 2.30259
10 2.81512 0.26840 2.28907 3.34118 2.35544 0.13998 2.08110 2.62978 2.30259
1 2.36312 0.19532 1.98029 2.74595 2.43992 0.12149 2.20180 2.67803 2.30259
2 2.32677 0.21163 1.91198 2.74155 2.36321 0.11530 2.13722 2.58919 2.30259
3 2.20676 0.18589 1.84243 2.57110 2.41187 0.12072 2.17526 2.64848 2.30259
o 4 2.21981 0.19645 1.83478 2.60485 2.31046 0.11613 2.08285 2.53807 2.30259
g 5 2.64113 0.20824 2.23298 3.04927 2.24010 0.11235 2.01989 2.46030 2.30259
X 6 2.07843 0.17766 1.73023 2.42663 2.04818 0.10678 1.83890 2.25746 2.30259
7 2.54038 0.21650 2.11604 2.96472 2.31013 0.11192 2.09077 2.52848 2.30259
8 2.69026 0.22104 2.25702 3.12350 2.44848 0.11945 2.21437 2.68259 2.30259
9 2.09593 0.19231 1.71901 2.47285 1.99932 0.10549 1.79256 2.20608 2.30259
10 2.46961 0.24314 1.99306 2.94616 2.44808 0.12546 2.20217 2.69398 2.30259

% s.d. is derived from the composite variance (seed numbers: 539, 255, and 59)



374

Table A.1.10 PWP-GT estimates and 95% C.l., § =0.8

n Major events Minor events
Average s.d.? 95%LB 95%UB Average s.d.® 95%LB 95%UB True
1 2.58752 0.31974 1.96084 3.21420 2.24535 0.16561 1.82076 2.56993 2.87823
2 2.84789 0.26201 2.33435 3.36143 2.79625 0.18079 2.42230 3.17020 2.87823
3 3.12894 0.33221 247782 3.78006 2.90549 0.19988 2.51374 3.29724 2.87823
o 4 3.58258 0.34151 2.91322 4.25193 2.77956 0.18626 2.41450 3.14462 2.87823
o 5 3.86098 0.33289 3.20852 4.51344 3.13797 0.21830 2.71011 3.56584 2.87823
4 ¢} 2.70284 0.26366 2.188608 3.21960 2.40634 0.16431 2.08429 2.72839 2.87823
7 2.66441 0.30632 2.06403 3.26479 2.78499 0.17670 2.43867 3.13131 2.87823
8 3.09079 0.33590 2.43244 3.74913 2.89694 0.20185 2.50133 3.29255 2.87823
g9 2.39306 0.31600 1.77371 3.01242 2.47120 0.17246 2.13319 2.80921 2.87823
10 3.14562 0.31639 2.52550 3.76574 2.68603 0.18655 2.32040 3.05166 2.87823
1 2.51532 0.24798 2.02929 3.00135 2.53602 0.14466 2.25249 2.81955 2.87823
2 2.75430 0.22113 2.32089 3.18772 2.62193 0.14559 2.33659 2.90727 2.87823
3 3.02777 0.25258 2.53272 3.62281 2.84671 0.15608 2.54080 3.15262 2.87823
o 4 2.66767 0.23099 2.21495 3.12039 2.72492 0.14967 2.43158 3.01826 2.87823
© 5 3.14575 0.24939 2.65695 3.63455 2.78261 0.15236 2.48399 3.08122 2.87823
2 6 2.54858 0.19372 2.16889 2.92827 2.37786 0.13645 2.11042 2.64530 2.87823
7 3.14738 0.26536 2.62728 3.66747 2.95984 0.16282 2.64072 3.27895 2.87823
8 2.80749 0.25216 2.31327 3.30170 2.96837 0.16315 2.64861 3.28813 2.87823
9 2.64770 0.27587 2.10700 3.18841 2.39486 0.13567 2.12885 2.66078 2.87823
10 3.31396 0.28218 2.76090 3.86702 2.83575 0.16241 2.51743 3.15406 2.87823
1 2.36312 0.19532 1.98029 2.74595 2.43992 0.12149 2.20180 2.67803 2.87823
2 2.61543 0.21680 2.19052 3.04034 2.68586 0.12663 2.43767 2.83405 2.87823
3 2.61614 0.19530 2.23336 2.99892 2.81260 0.13500 2.54801 3.07719 2.87823
o 4 2.66876 0.20585 2.26530 3.07223 2.76388 0.13190 2.50536 3.02240 2.87823
3 5 3.03030 0.21580 2.60735 3.45326 2.68327 0.12696 2.43443 2.93210 2.87823
4 6 2.56637 0.18730 2.19926 2.93348 2.52565 0.12123 2.28805 2.76325 2.87823
7 3.110567 0.22812 2.66346 3.55767 2.88848 0.13197 2.62982 3.14713 2.87823
8 3.24040 0.23345 2.78285 3.69795 2.99919 0.14216 2.72057 3.27781 2.87823
9 2.55987 0.20048 2.16694 2.95280 2.47484 0.11985 2.23994 2.70974 2.87823
10 2.97263 0.25594 2.47101 3.47425 2.93079 0.14721 2.64226 3.21932 2.87823

? s.d. is derived from the composite variance (seed numbers: 539, 255, and 59)
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1.4 Experimental units (major and minor types)
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|.5 Shape parameter (major and minor types)
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Appendix Il (Semi-parametric proportional intensity models robustness for recurrent failure data
with overhauf infervals)
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Appendix Il (Program for semi-parametric proportional intensity models robustness for

censored recurrent failure data)

DATA POWERLAWB;
RETAIN SEED 539;
FORMAT T Y 16.2;

DO ITEM =

END;

DATA TBEFB;

1 TO 60;

P=RANUNI (SEED) ;
IF P < 0.4 THEN CENSOR=0;
ELSE CENSOR=1;

F=
T =
M

FL

OOR (LO0*RANUNI (SEED) ) +1;
0;
0;

TSTART=0;

DO FAILURE = 1 TO 10;

END;

RETAIN M 0O;

X = RANUNI (SEED) ;

DELTA = 1.0;

IF ITEM <= 30 THEN NU = 0.001;

ELSE NU = 0.01;

IF NU = 0.001 THEN CLASS = 0;

ELSE CLASS = 1;

IF(FAILURE>F & CENSOR=0)THEN STATUS=0;
ELSE STATUS=1;

IF STATUS=1 THEN DO;

T ((T**DELTA) — (LOG (X) /NU) ) ** (1/DELTA) ;
Y = T-M;

M = T;

TSTOP=T;

OUTPUT;

TSTART=TSTOP;

END;

IF STATUS=0 THEN DO;
T=0;

Y=0;

TSTOP=TSTART;
OUTPUT;

END;

SET POWERLAWB;
DROP M NU DELTA;
PROC PRINT DATA=TBFB;
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TITLEl 'RIGHT CENSORING DATA OF TIME BETWEEN FAILURES';

DATA. CENSOR;
SET TBFEFB;
DROP X P F;
IF STATUS=1 THEN DELETE;
PROC PRINT DATA=CENSOR;
TITLE'CENSOR';

DATA UNCENSOR;

SET TBFB;

DROP X P F;

IF STATUS=0 THEN DELETE;
PROC PRINT DATA=UNCENSOR;
TITLE ‘UNCENSOR';

DATA CENSOR _AG;
SET TBFB;
IF TSTART=TSTOP THEN DELETE;
PROC PRINT DATA=CENSOR AG;
TITLE'CENSOR AG';

DATA CENSOR PWP (DROP=LSTATUS) ;
RETAIN LSTATUS;
SET TBFB;
BY ITEM;
IF FIRST.ID THEN LSTATUS=1;
IF (STATUS=0 AND LSTATUS=0) THEN DELETE;
LSTATUS=STATUS;
PROC PRINT DATA=CENSOR_PWP;
TITLE'CENSOR PWP';

DATA CENSOR WLW;
SET TBFB;
PROC PRINT DATA=CENSOR WLW;

TITLE'CENSOR WLW';

PROC PHREG DATA=CENSOR AG;
MODEL (TSTART,TSTOP)* STATUS(0)= CLASS;
TITLELl' ANDERSEN-GILL SUMMARY';

DATA CENSOR PWP1;

SET CENSOR PWP;

IF FAILURE<1%;
CLASS1=CLASS* (FAILURE=1) ;
CLASS2=CLASS* (FAILURE=2) ;
CLASS3=CLASS* (FAILURE=3} ;
CLASS4=CLASS* (FAILURE=4) ;
CLASSS5=CLASS* (FAILURE=S5) ;
CLASS6=CLASS* (FAILURE=6) ;
CLASS7=CLASS* (FAILURE=7) ;
CLASS8=CLASS* (FAILURE=8) ;
CLASS9=CLASS* (FAILURE=8) ;
CLASS10=CLASS* (FAILURE=10) ;

PROC PHREG DATA=CENSOR PWP1;
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MODEL Y * STATUS (0)= CLASS1-CLASS10;

STRATA FAILURE;

TITLEl' PWP-GAP TIME SUMMARY';

OUTPUT OUT=SURL_EST PWP GAP SURVIVAL=SURL_EST PWP_ GAP;
PROC SORT;

BY FATLURE CLASS1-CLASS10 Y;

PROC PHREG DATA=CENSOR PWPL;

MODEL TSTOP * STATUS(0)= CLASS;

TITLE1l® PWP-TOTAL TIME SUMMARY';

OUTPUT OUT=SURL_EST PWP TOTAL SURVIVAL=SURL_EST PWP_ TOTAL;
PROC SORT;

BY CLASS TSTOP;

DATA CENSOR WILW1;

SET CENSOR WLW;

IF FAILURE<11;
CLASS1=CLASS* (FAILURE=1) ;
CLASS2=CLASS* (FAILURE=2) ;
CLASS3=CLASS* (FAILURE=3) ;
CLASS4=CLASS* (FALLURE=4) ;
CLASS5=CLASS* (FAILURE=5) ;
CLASS6=CLASS* (FAILURE=6) ;
CLASS7=CLASS* (FAILURE=7) ;
CLASS8=CLASS* (FAILURE=8) ;
CLASS9=CLASS* (FAILURE=9) ;
CLASS10=CLASS* (FAILURE=10) ;

PROC PHREG DATA=CENSOR WLW1;

MODEL TSTOP * STATUS (0)=CLASS;

TITLE1' WEI-LIN-WEISSFELD SUMMARY';

OUTPUT OUT=SURL_EST WLW SURVIVAL=SURL EST WLW;
PROC SORT; -

BY CLASS TSTOP;

RUN;
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Appendix IV (Program for robustness of semi-parametric proportional intensity models for right-
censored recurrent failure data from a stationary counting process)

DATA POWERLAWB;
RETAIN SEED 5389;
FORMAT T Y 16.2;

DO ITEM = 1 TO 180;
P=RANUNI {SEED) ;
IF P < 0.4 THEN CENSOR=0;
ELSE CENSOR=1;

F=FLOOR (4*RANUNI (SEED) } +1;

T = 0;
M= 0;
TSTART==0;

DO FATILURE = 1 TO 4;

RETAIN M 0;

X = RANUNI (SEED) ; .
DELTA = 1.0;

IF ITEM <= 90 THEN NU = 0.00%;

ELSE NU = 0.01;

IF NU = 0.001 THEN CLASS = 0;

ELSE CLASS = 1;

IF (FAILURE>F & CENSOR=0) THEN STATUS=0;

ELSE STATUS=1;

IF STATUS=1 THEN DO;

T ({(T**DELTA) - (LOG (X) /NU) ) ** (1/DELTA) ;
Y = T-M;

M= T;

TSTOP=T;

OouTPUT;

TSTART=TSTOP;

[

END;

IF STATUS=0 THEN DO;

T=0;
Y==0;
TSTOP=TSTART;
OUTPUT;
END;
END;
END;
DATA TBFB;

SET POWERLAWB;
DROP M NU DELTA;
PROC PRINT DATA=TBFB;
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TITLE1l 'RIGHT CENSORING DATA OF TIME BETWEEN FAILURES®:;

DATA CEHNSOR;
SET TBFB;
DROP X P F;
IF STATUS=1 THEN DELETE;
PROC PRINT DATA=CENSOR;
TITLE'CENSOR';

DATA UNCENSOR;

SET TBEB;

DROP X P F;

IF STATUS=0 THEN DELETE;
PROC PRINT DATA=UNCENSOR;
TITLE ‘UNCENSOR':

DATA CENSOR_AG;
SET TBEB;
IF TSTART=TSTOP THEN DELETE;
PROC PRINT DATA=CENSOR AG;
TITLE'CENSOR AG';

DATA CENSOR_ PWP (DROP=LSTATUS) ;
RETAIN LSTATUS;
SET TBFB;
BY ITEM;
IF FIRST.ID THEN LSTATUS=1;
IF (STATUS=0 AND LSTATUS=0) THEN DELETE;
LSTATUS=STATUS;
PROC PRINT DATA=CENSOR PWP;
TITLE®CENSOR _PWP';

DATA CENSOR WLW;
SET TBFB;
PROC PRINT DATA=CENSOR WLW;

TITLE'CENSOR WLW®;

PROC PHREG DATA=CENSOR AG;
MODEL (TSTART,TSTOP)* STATUS(0)= CLASS;
STRATA FAILURE;
TITLEL® ANDERSEN-GILL SUMMARY';

DATA CENSOR PWP1;
SET CENSOR_PWP;
TIF FATILURE<5;
CLASS1=CLASS* (FAILURE=1) ;
CLASS2=CLASS* (FAILURE=2) ;
CLASS3=CLASS* (FAILURE=3) ;
CLASS4=CLASS* (FATILURE=4) ;
PROC PHREG DATA=CENSOR_PWP1;
MODEL Y * STATUS (0)= CLASS1-CLASS4;
STRATA FAILURE;
TITLELl' PWP-GAP TIME SUMMARY';
OUTPUT OUT=SURL_EST PWP GAP SURVIVAL=SURL EST PWP GAP;
PROC SORT; -
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PROC

PROC

DATA

PROC

PROC

RUN;

BY FAILURE CLASS1-CLASS4 Y;

PHREG DATA=CENSOR PWP1;

MODEL TSTOP * STATUS(0)= CLASS1-CLASS4;

STRATA FAILURE;

TITLE1l® PWP-TOTAL TIME SUMMARY?®:;

OUTPUT OUT=SURL EST PWP TOTAL SURVIVAL=SURL EST PWP TOTAL;
SORT;

BY FAILURE CLASS1-CLASS4 TSTOP;

CENSOR WLW1;

SET CENSOR WLW;

IF FAILURE<5;
CLASS1=CLASS* (FAILURE=1) ;
CLASS2=CLASS* (FAILURE=2) ;
CLASS3=CLASS* (FAILURE=3) ;
CLASS4=CLASS* (FAILURE=4) ;

PHREG DATA=CENSOR_WLW1;

MODEL TSTOP * STATUS (0)=CLASS1-CLASS4;

STRATA FAILURE;

TITLEl' WEI-LIN-WEISSFELD SUMMARY';

OUTPUT OUT=SURL_EST WLW SURVIVAL=SURL EST WLW;
SORT;

BY FAILURE CLASS1-CLASS4 TSTOP;
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Appendix V (Program for semi-parametric proportional intensity models robustness for recurrent
failure data with overhaul infervals)

DATA GENRATEA;
RETAIN SEED B539;
FORMAT T T1 Y 16.2;
DO ITEM = 1 TO 20;

T = 0;
Tl = 0;
M= 0;

RATIO = 5.0;
F=FLOOR (10*RANUNI (SEED) )+1;
DO FAILURE = 1 TO F:
RETAIN M 0;
X = RANUNI (SEED) ;
DELTA = 0.5;
IF ITEM <= 10 THEN NU = 0.001%1;
ELSE NU = ¢.01;
IF NU = 0.001 THEN CLASS = 0;
ELSE CLASS = 1;
T ((T**DELTA) - (LOG(X) /NU) ) ** (1/DELTA) ;
Y = T-M;
M=T;
OUTPUT;
T1=T;

END;

DO FAILURE = F+1;
RETAIN M 0O;
X = RANUNI (SEED):
DELTA = 0.5;
D = RATIO * Y;
T1=T1+D;
T=T1;
IF ITEM <= 10 THEN NU = 0.001;
ELSE NU = 0.01;
IF NU = 0.001 THEN CLASS = 0;
ELSE CLASS = 1;
T = ((T**DELTA)~- {LOG (X) /NU) ) ** (1/DELTA) ;
Y = T-M;
M= T;
OUTPUT;
T1=T;
END;

DO FAILURE = F+2 TO 10;
RETAIN M O;
X = RANUNI (SEED) ;
DELTA = 0.5;
IF ITEM <= 10 THEN NU = 0.001;
ELSE NU = 0.01;
IF NU = 0.001 THEN CLASS = O;
ELSE CLASS = 1;

T = ((T**DELTA)~(LOG (X) /NU))** (1/DELTA) ;
Y = T-M;

M= T;

QUTPUT;
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END;
END;

DATA TBF;
SET GENRATEA;
DROP SEED D;
IF FATLURE>10 THEN DELETE;
PROC PRINT DATA=TBF;
TITLE1l 'SIMULATED TIME BETWEEN FAILURES';

PROC PHREG DATA=TBF;
MODEL (T1,T)=CLASS;
TITLE'THE ANDERSEN-GILL SUMMARY'®;

DATA TBF GT;
SET TBF;
IF FATLURE<11;
CLASS1=CLASS* (FATLURE=1)
CLASS2=CLASS* (FAILURE=2)
CLASS3=CLASS* (FAILURE=3) ;
CLASS4=CLASS* (FAILURE=4) ;
)
)
)

2

4

’

CLASS5=CLASS* (FAILURE=5
CLASS6=CLASS* (FAILURE=6
CLASS7=CLASS* (FAILURE="7
CLASS8=CLASS* (FAILURE=8) ;
CLASS89=CLASS* (FAILURE=8) ;
CLASS10=CLASS* (FAILURE=10) ;

7
°
14

PROC PHREG DATA=TBF GT OUTEST=BETA TT;
MODEL T = CLASS;
TITLE'THE WEI-LIN-WEISSFELD SUMMARY';

PROC SORT DATA=TBF GT ;
BY FAILURE DESCENDING Y;
PROC PHREG DATA=TBF_ GT OUTEST=BETA GT;
MODEL Y = CLASS1-CLASS10;
STRATA FAILURE;
TITLELl' THE PWP~GAP TIME SUMMARY';

RUN;
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Appendix VI {Covariate proportional intensity modeling for recurrent data

{major and minor))

DATA GENRATEA;

RETAIN SEED 539;

FORMAT T T1 Y 16.2;

DO ITEM = 1 TO 120;
T = 0;
T1L = 0;
M= 0;
ZM=0;
ZN=0;
F1=FLOOR (10*RANUNI (SEED) ) +1;

DO FAILURE = 1 TO 10;
RETAIN M 0;
X = RANUNI (SEED) ;
DELTA = 1.2;
IF ITEM <= 60 THEN NU = 0.00%1;
ELSE NU = 0.01;
IF NU = 0.001 THEN CLASS = 0;
ELSE CLASS = 1;

of two failure types

T = ((T**DELTA)-(LOG(X) /NU) )} ** (1/DELTA) ;
Y = T-M;
M= T;
OUTPUT;
T1=T;
END;
END;
DATA TREF;

SET GENRATEA;

DROP SEED-M NU DELTA X;

IF CLASS=1 & FAILURE"=F1 THEN ZN=1;
IF CLASS=1 & FAILURE=F1 THEN ZM=1;

PROC PRINT DATA=TBEF;
TITLE1l 'SIMULATED MINOR-MAJOR EVENTS';

PROC PHREG DATA=TBF;
MODEL (T1,T)=ZM ZIN;
TITLE'THE ANDERSEN-GILL SUMMARY®;

PROC SORT DATA=TBEF;
BY FAILURE;
PROC PHREG DATA=TBF OUTEST=BETA WLW;
MODEL T = ZM ZN;
TITLE'THE WEI-LIN-WEISSFELD SUMMARY';

PROC SCORT DATA=TBF;
BY FAILURE DESCENDING Y;
PROC PHREG DATA=TBF OUTEST=BETA PWP GT;
MODEL Y = ZM ZN;
BY FAILURE;
TITLELl' THE PWP~GAP TIME SUMMARY®;
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PROC PRINT DATA=BETA PWP GT;
TITLE'BETA PWP GT';

RUN;
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Appendix VIl (Glossary)

Baseline hazard function

The baseline hazard function in the proportional hazards (PH) model can be set
as known or arbitrary depending on whether a parametric or semi-parametric
method is applied. The baseline hazard function determines the intercept of the
PH function, while the regression coefficient # decides the slope of the PH

function.

Censoring probability
The ratio (probability) of the sample units that contain censored times to total
sample units is defined as censored probability ( 2.) in this research.

CMTBF

The abbreviation for cumulative mean time between failures defined as the mean
time between failures per event. Mathematically, CMTBF is derived from the
time ¢ divided by the expected number of failure events in (0,7] in a discrete time

system (Patrick (1991) and Ascher and Feingold (1984)).

Conditional method
The PWP-GT and PWP-TT both utilize the concept of the condition method. The

intensity function for »” event is determined based on the past history (in terms
of the failure times, event count, etc.). Participants that have experienced (n—-1)"

event are qualified to contribute to the »n” event intensity function estimation.

Covariate «
Covariates, introduced from the PH and Pl models, featured as regression
factors in lifetime or recurrent data analysis, and also termed as explanatory
variables or concomitant variables. Covariates can be time-variant or constant
throughout the observation time.

Multi-dimensional covariate modeling
Covariate modeling used to handle recurrent data with muitiple failure types.

Cox-based regression methods:

Referred to as the PWP-GT, PWP-TT, AG, and WLW models. The Cox-based
regression methods employ a partial maximum likelihood function to estimate the
Pl function.

Andersen-Gill method

The AG method employs the counting process concept to estimate the Pl
function. The dataset only contains uncensored data.
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Prentice-Williams-Peterson method

The PWP method employs the conditional method to estimate the Pl function.
There are two ways to perform the PWP model depending on the time frame,
The PWP-GT is on a local time scale and the PWP-TT is on a global time scale.
The dataset contains uncensored data (failure times) and the first censored time.

Wei-Lin-Weissfeld method
The WLW method employs the marginal method to estimate the Pl function.
The dataset contains full records (both failure and censored times).

Discontinuous risk-free-intervals
The concept of the discontinuous risk-free-intervals relaxes the assumption of
zero repair time.

Hazard function
The hazard function is defined as the probability density function (p.d.f.) divided
by the survival function.

HPP
Homogeneous Poisson process (HPP) is a sequence of independent and
identically distributed exponential random variables (Ascher and Feingold (1984)).

Independent increment
The intensity function is not affected by other time increments, and thus is
memoryless.

Information matrix
The second derivative of maximum likelihood function with respect to parameters
utilized in the parametric Lawless method

IMTBF

The abbreviation for instantaneous mean time between failures, defined as the
derivative of failure time with respect to the expected number of failures (Patrick
(1991) and Ascher and Feingold (1984)).

Intensity function
The instantaneous rate of event occurrence for a point process in a continuous
time compared to a hazard rate in a discrete time.

Lawless method

A parametric method that assumes the true underlying process is known. The
Lawless method employs the maximum likelihood method and the Newton-
Raphson iterative method to estimate the relevant parameters.
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Left-censoring
Left-censoring observations occur when the failure time data is incomplete, and
truncated from the left, due fo the loss of the historical data.

Major and minor failure types
The counting process with a mixed events stream is composed of two failure
types (major and minor).

Major overhaul period

The assumption of zero repair time can be relaxed using the discontinuous risk-
free-intervals modeling. The traditional method neglects the repair time in
repairable systems reliability.

Marginal method
Unlike the conditional method, all subjects (including censored subjects) have

equal likelihood to contribute to the intensity function for the »” event.

Multiple event types
Multiple & event types are modeled in the multivariate proportional intensity
function A, (1;z,), where each intensity function performs an independent

analysis for each failure type.

NHPP

Non-homogeneous Poisson Process (NHPP) is a nonstationary counting process
with intensity function A(¢), where ¢ is a time variable. The number of events in
any interval At is the integration of the intensity function along with the time
interval Ar.

PHREG
The syntax in the SAS program utilized to perform the regression analysis in the
Cox PH model or the accelerated failure time model

Product-Limit method
The Product-Limit method is a non-parametric estimator of a survival function

S(r), which is defined as (Lawless (1982)): S(#) ={ Number of observations >7 }

/n, where n denotes sample size. The survival function ,§'(t) is a step function,

which decreases by 1/n after each observed lifetime in the PH model. In the case
of censored data, the survival function is modified as the Kaplan-Meier estimate
(Lawless (1982)).

Proportional hazards (PH) function

The PH model deals with single event data (lifetime data), while the Pl model is
designated to handle recurrent data. The proportionality property is that the
hazard functions of any two individuals are proportional to each other (Lawless
(1982)).
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Proportional intensity (Pl) function
The Pl model is an extension of PH model when the data contains more than one
occurrence. The proportionality property of a Pl model follows the PH model.

ROCOF

ROCOF is an abbreviation form for rate of occurrence of failures. Mathematically,
ROCOF is defined as the instantaneous rate of change of the expected number
of failures in a continuous time (Patrick (1991) and Ascher and Feingold (1984)).

Repairable systems

Systems are designed to be repairable after each failure in the system and the
system can be restored to a certain degree between as-good-as-new and as-
bad-as-old.

Replacement
Systems are designed to be non-repairable, and the system will be replaced after
each failure.

Right-censoring

The unit is removed from observation after a certain time point or number of
failures. Leemis (1995) listed a few cases of right-censoring: cost consideration,
high reliability products, the death of a patient, losing contact with a patient, etc.

Risk-free-intervals

The risk-free-intervals concept originates from the hospitalization in a clinical
study. When a patient is admitted to the hospital for drug treatments, the period
of the hospitalization is considered as a risk-free-interval. Likewise, for the
reliability engineering application, the system is not at risk when a major overhaul
is taken place. '

Risk interval:
Risk interval defines the duration when a subject is at risk of having an event
given under a time scale (Kelly and Lim (2000)).

Risk interval- total time

The total time (global time) is the duration starting at the beginning of the
experiment. The clock resets to zero as an event occurs. The risk interval of the
total time scale can be expressed as (0,7,), where » denotes the event number.

Risk interval- gap time

The gap time (local time) is the duration starting at the end of the previous event.
The clock resets to zero as an event occurs. The risk interval of the gap time
scale can be expressed as (0,7, —¢,_,), where n denotes the event number.
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Risk interval- counting process
A subject is not considered at risk for »” event until the end of the (n—1)" event.

The risk interval of a counting process can be expressed as (¢,_,.%,), where n

denotes the event number. Note that the clock does not reset to zero as an event
occurs.

Risk sef:
The risk set contains the individuals that are at risk for the »” event.

Risk set- Unrestricted/ common baseline hazard

The risk set is determined regardiess the event humber, which means the
subjects have equal likelihood to contribute to the »” intensity function and share
the same baseline hazard.

Risk set- Semi-restricted/ event-specific baseline hazard

Event-specific baseline intensity allows the individuals that have experienced the
(n—1)" event to contribute to the »” event intensity function. However, the semi-
restricted concept tolerates the censored individuals as in the risk set regardless

of any censoring.

Risk set- Restricted/ event-specific baseline hazard
The baseline hazard changes stratum by stratum defined by the event count,
also termed as restricted baseline intensity. The subject is not at risk of

contributing to the n” event until the subject has experienced the (n—1)" event.

Sample size
There are two expressions of defining the sample size in this study: the number
of units and recurring events (failure count) for each sample unit.

Score vector

The first derivative of the maximum likelihood function with respect to the
parameter utilized in the Lawless parametric method
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