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ASSESSMENT OF S E M If ARAMETRIC PROPORTIONAL INTENSITY
MODELS APPLIED TO RECURRENT FAILURE DATA WITH MULTIPLE 

FAILURE TYPES FOR REPAIRABLE-SYSTEM RELIABIUTY

Abstract

The class of semi-parametric proportional intensity (PI) models applies to 

recurrent failure event modeling for a repairable system with covariates. 

Abundant federal funding received in biostatistics/medical research has 

advanced the PI models to become well developed and widely referenced. PI 

models for medical applications could also apply to recurring failure/repair data in 

engineering problems. Wider erigineering use of these models requires better 

understanding of applications, performance, and methods to accommodate 

important situations such as censoring, maintenance intervals, and multiple 

failure types.

Landers and Soroudi (1991), Qureshi et al. (1994), and Landers et al. (2001) 

have examined robustness of the Prentice-Williams-Peterson-gap time (PWP- 

GT) model for the case of an underlying Non-homogeneous Poisson Process 

(NHPP) with power-law and log-linear intensity functions and complete 

(uncensored) data. However, the phenomenon of censoring is generally present 

in field data. This research has extended their work to the important case of right- 

censorship and has examined other semi-parametric PI models (Prentice- 

Williams-Peterson-total time (PWP-TT), Andersen-Gill (AG), and Wei-Lin- 

Weissfeld (WLW)). The experimental design in this research has incorporated 

three levels of censorship severity (light, moderate, and severe) to evaluate 

these four proposed PI models.
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Certain systems experience a substantial period of downtime due to 

performing maintenance (i.e. major overhaul) following a major failure. This 

discontinuity in observation time has been a concem in the accuracy of 

estimating the covariate effect. Themeau and Hamilton (1997) proposed a 

discontinuous risk-free-intervals method for biomedical applications that could 

also apply to this engineering problem. This study has recommended selecting 

appropriate PI models and the more favorable engineering applications range for 

the overhaul duration based on the sample size and shape parameter. This 

research has examined two levels of the overhaul duration (short and long) to 

evaluate the PI models.

Major and minor failure events are commonly seen in industry, where minor 

failure rate is typically higher than major failure rate. Most researchers have 

formulated the problem as univariate and pooled the major and minor failures as 

though they are identical. Lin (1993, 1994) proposed a covariate PI modeling 

approach to handle the recurrent data with multiple failure types. Although 

covariates are typically used to incorporate treatment effects, a covariate may be 

defined to conceptually model multiple failure types in the special case where the 

proportional intensities rule holds. This study has examined covariate PI 

modeling as an approach for explicit treatment of multiple (two) recurrent failure 

types (major and minor) with complete data.

The PWP-GT and AG models prove to outperform the PWP-TT and WLW 

models in the robustness studies on right-censoiing severity and multiple failure 

types. The AG model performs well in the HPP case. The results of examining

XV



the PI models in the discontinuous risk-free-intervals modeling indicate that the 

PWP-GT model performs better in the short overhaul duration than the long 

overhaul duration. The AG model performs consistently well in the small sample 

size (20) regardless of the overhaul duration in an HPP case. The WLW model 

performance improves as the overhaul duration increases.

Kieywomk; repaÂrab^ sysfem re/fab/My; pmporbbna/ mfensAy /ecr/nenf 

events, covanates, ngbt-censoredrecu/Tenf events, m^or/epatrs, ove/hants, 

muArp/e ^//ure types, covanate proportrbna/ /htens/ty modeAhg, powenVaw 

nsk /nte/va^ Pmnfrce-WHXrams-Pete/son, Andersen-Gr//, LiW-L/n- 

Wg/ssAgkt

XVI



1 Introduction

Aircraft, automobiles, and process machine tools are examples of systems 

designed to be repairable. These systems undergo during their lifetimes multiple 

recurrent unscheduled failure and repair cycles and/or scheduled preventive 

maintenance or overhaul cycles. This research addresses statistical modeling of 

recurrent failure events in repairable systems reliability, by building on previous 

work of Qureshi (1991,1994) and Vithala (1994). They examined the robustness 

of a semi-parametric Prentice-Williams-Peterson-gap time (PWP-GT) model for 

estimating the covariate effect where the underlying stochastic process is a Non- 

homogeneous Poisson Process (NHPP) with power-law or log-linear intensity 

function, respectively. Both Qureshi and Vithala restricted their studies to the 

case of complete (uncensored) data.

This research provides a thorough review of the relevant literature (Chapter 2) 

on the parametric survival models, semi-parametric Cox proportional hazards 

(PH) method for single failure event (non-repairable systems); and both the 

parametric Lawless (proportional intensity) and semi-parametric proportional 

intensity (PI) models for recurrent events, including the PWP-GT (1981) model 

examined by Qureshi and Vithala as well as the PWP-total time (PWP-TT-1981), 

Andersen-Gill (AG-1982), and Wei-Lin-Weissfeld (WLW-1989) models. The 

literature review also reports the published work on right-censoring and multiple 

event types in PI models for recurrent events. A limited verification is reported for 

Qureshi (power-law form) and Vithala (log-linear fona) results, applying the 

parametric Lawless and semi-parametric PWP-GT methods to recurrent data.



Two modeling extensions are examined for the case of multiple event types: 

multi-dimensional covariate (Lin (1993)) and discontinuous risk-free-intervals 

(Themeau and Hamilton (1997)).

The proposed research methodology (Chapter 3) addresses four research 

objectives to answer the following two research questions regarding the PI 

models robustness for the case of an underlying recurrent failure event process 

that is NHPP with power-law intensity:

(1) How do the PWP-GT, PWP-TT, AG, and WLW methods compare in 

performance under right-censoring?

(2) How do the multi-dimensional covariate and discontinuous risk-free- 

intervals methods perform in estimating the regression coefficients for two 

failure types (major and minor)?

Four research objectives are raised:

(1) Examine the semi-parametric PI models robustness as a function of right- 

censoring severity measured by BIAS, MAD, and MSE. The special case 

of common baseline intensity function (PWP-TT and WLW models) is 

investigated to compare with the AG model.

(2) Examine the mbustness of the four reliability estimates (PWP-GT, PWP- 

TT, AG, and WLW) as a function of right-censoring severity, for the special 

case of a stationary counting process. BIAS, MAD, and MSE are 

employed to measure the robustness of the three event-specific PI models 

(PWP-GT, PWP-TT, and WLW), while the common baseline model (AG) 

estimates the general covariate effect.



(3) Examine multi-climensional covariate modeling to deal with two types of 

complete (uncensored) recurrent events.

(4) Examine risk-free-intervals within an NHPP process where there are two 

event types (major and minor) and the overhaul duration following a major 

Silure is substantial.

The methodology includes plans for generation of simulated data sets, design 

of experiments, and robustness measurements. After the investigation and 

comparison of the four semi-parametric PI models, PWP-GT is proven the best 

event-specific model in handling recurrent data with power-law intensity function 

under right-censoring, and thus is chosen to further investigate the second 

research question regarding multiple failure types.

This structure of this dissertation is organized as follows. Chapters 1-3 

present introduction, literature review, and the proposed research methodology, 

respectively. Chapter 3 proposes the four research objectives motivated by the 

two primary research questions and provides a plan/method for each 

objective/question. Chapters 4-5 investigate the four semi-parametric PI models 

under right-censoring for an NHPP and HPP, respectively. Chapter 6 addresses 

the discontinuous risk-free-intervals problem. Chapter 7 studies the covariate PI 

modeling to handle recurring failure events with two failure types. Chapter 8 

summarizes the conclusions from Chapters 4 to 7. Appendix I provides for other 

relevant charts and tables from Chapter 4 (right-censoring) for singular failure 

type and from Chapter 7 for two failure types (major and minor). Appendix II 

provides for the other relevant charts and tables from Chapter 6 for the overhaul



duration/maintenance interval problem. Appendixes III to VI present the 

programming codes to perform the four methodologies/plans regarding the four 

research problems raised from Chapters 4 to 7. Appendix VII (Glossary) is also 

provided for the definition of each tenninology used in this study.
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2 Literature Review

A system may be classified as either non-repairable or repairable. Consumer 

electronics provides good examples of non-repairable systems and replacement. 

The aircraft industry provides good examples of repairable system maintenance. 

A repairable system can be restored from failures to perform a desired function 

by repair actions other than replacement of the entire system (Ascher and 

Feingold (1984)). This chapter reviews the literature on reliability assessment for 

both non-repairable and repairable systems. Non-repairable systems produce 

single-event failure data, and repairable systems produce recurring-event failure 

data. In a non-repairable system, a unit is replaced when a failure occurs that 

renews the hazard rate function each time. However, the unit in a repairable 

system is repaired rather than replacement of the unit when a failure occurs, and 

thus can fail two or more times. If it is a successful repair, the intensity function is 

improved to the degree between as-bad-as-old (minimal repair) and as-good-as- 

new (replacement).

2.1 Single-event models for non-repairable systems

This section reviews the literature on non-repairable systems with four 

divisions: 1) Parametric survival models 2) Maximum likelihood estimators, 3) 

Semi-parametric Cox models, and 4) competing risk models. The subsection of 

parametric survival models introduces several commonly encountered 

distributions in reliability. Lawless (1982) has reviewed the parametric method to 

obtain maximum likelihood estimators using the Newton-Raphson iterations. A 

semi-parametric Cox proportional hazards (PH) model is used to obtain the



parameter estimator through the partial maximum likelihood function. The 

combination of a decreasing failure rate and an increasing failure rate produces a 

bathtub function achieved by using the competing risk models.

2.1.1 Parametric survival models

The reliability information provided in this chapter for each distribution contains: 

density function /( r ) , reliability function 7((r), and the hazard function A(r). This 

section reviews several commonly encountered distributions in reliability: 

Exponential, Weibull, Extreme value. Gamma, Lognormal, and Log-logistic 

distributions, followed by a numerical illustration of plots for each distribution.

Many applications, including customer arrivals, bank service time, and 

machine breakdowns, have been modeled using the exponential distribution. 

Exponential distribution displays the memoryless property of constant hazard 

rate and underlies the Homogeneous Poisson Process (HPP). Figure 2.1 

illustrates a constant hazard function based on the exponential distribution with 

parameter 0.5. The distribution of the interarrival times for an HPP counting 

process follows an exponential distribution. The density function / ( r ) , reliability 

function , and the hazard function A(r) are as follows:

/( r )  = Aexp(-.^)
= exp(-v^)

A(r) = A,
where A = hazard rate.



2.5

2

a 1.50c
1  1m
â 0.5 

0

A = 2

0.5 1 1.5

Time to Silure (t)
2.5

Figure 2.1. Exponential hazard function with A = 2 

The Weibull distribution is a generalization of the exponential distribution, and 

capable of modeling a constant, strictly increasing, and strictly decreasing hazard 

functions. The Weibull functions are:

/ ( 0  = - A '- 'e x p ( - - y , f> 0
o

.R(r) = ex p [-(-)'],r  > 0
V

u u
where 

= shape parameter, 
u = scale parameter.

When ^  = 1, the Weibull distribution becomes the Exponential distribution. Figure

2.2 presents three cases of a Weibull hazard function: (0.5,5), (1,5), and

(3,5).



"2 0.4

((̂ ,U) = (0 .5^ 
(^,u) = (U ) 
(,!>,u) = (3,5)

0 1 2  3

Time to failure (t)

Figure 2.2. Weibull hazard function with combination of and u, where u=5 

The extreme value probability model is an asymptotic distribution, which

originates from or where

denote random variâtes. Applications of extreme value model in

industry include the distribution of the smallest extreme value (e.g., breaking 

strength) or the distribution of the laigest extreme value (e.g., maximum load). 

Examples of the extreme value model application in the reliability field include 

corrosion level and breaking strength. Figure 2.3 is a hazard function plot that 

demonstrates the distribution for the smallest extreme value.

/(O = ^G xp [-exp [^^]exp [^-^]]

F (r) = 1 -  e^) [ -exp[-— < r < oo,̂  > 0

1 t  — V  
A(0 = -e x p [-— ]

U U
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/(() = |e x p H -i^ n H ^ ]-« ]

F(f) = 1 -  exp[-[--— ],-oo < f  >0

%pgin

/(o =|e x p H ^ r][-[^ r ‘‘]

f'( f)  = l-e xp [-{-——y ] , /  < f < 00,  ̂> 0,(̂  > 0 

where
y = location parameter (minimum life),
^ = scale parameter ( characteristic life),
^  = shape parameter.

The type III Extreme value distribution is the three-parameter Weibull distribution, 

and the setting of ^  = 0 in the type III Extreme value distribution yields the two- 

parameter Weibull model. Figure 2.3 presents three cases of a Type I smallest 

value of extreme value hazard function: (y ,0  = (1,5), (2,5), and (3,5).
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Figure 2.3. Type I smallest value of extreme value hazard functions 

The Gamma distribution can model constant, increasing and decreasing

hazard rates by controlling the shape parameter setting. The gamma function is 

defined as r ( t )  = ( t  -1)!, where t  is an integer. The exponential case arises 

when parameter equals to 1. The hazard function (Figure 2.4) is monotonically 

increasing when is greater than 1, and monotonically decreasing when ^ is

less than 1. Both Weibull and gamma have a constant hazard function when the 

shape parameter is set to 1. However, as the shape parameter is greater than 

one (a strictly increasing hazard function), the Weibull distribution has a faster 

deterioration rate of hazard function than the Gamma distribution. Figure 2.4 

presents three cases of a gamma hazard function: (;;,/) = (0.5,2), (1,2), and (2,2).
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^ (f) = 1 -  7(f) = 1 exp[-w]Æz
r(;y)J

exp(-^)r(77)
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20

1  
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1

()7,y) = (0.5,2) 
(77,y) = (l,2) 
(;?,/) = (2,2)

0.5 1 1.5 2

Time to failure (t)

2.5

Figure 2.4. Gamma hazard function with different shape parameters 

The negative range of time values for the normal Gaussian distribution makes 

it less suitable for application in reliability. The Lognomial distribution also has 

merit in reliability modeling Of failure mechanisms that are synergistic 

(multiplicative). The Lognormal model (Figure 2.5(a):(//,cr)= (1,1), (1,2), and (1,3) 

and Figure 2.5(b): (//,cr) = (1,20), (10,20), and (100,20)) relates to the normal 

distribution in that z = TJV̂ (r). A variable r is lognormally distributed if z = ZJy(r) is 

normally distributed, where Tjy denotes the natural logarithm. The Lognormal 

functions are:
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m = exp

1 °r In f - / / \2

, f > 0

dk,f > OwAerg z = ln f

A(f):

1 r 1 2I/----GXp
fcrV 2;r

— z 
2 ,f>OwAere z = I n f - / /

- 0 ( z )  
where
// = mean parameter,
cr = standard deviation parameter.

0.35
 (//,(%) = (U)
— — — — ( / / ,  O’)  = (1,2) 
  (//,cr) = (1,3)

:  0.25 -

"2 0 .15

1
0.05

0 1 1.5 2.50.5 2 3
Time to failure t

(a) Three levels of variance /r with // =1

0.4 y
0.35 >

............(//,(T) = (1,20)
_____ (//,(T) = (10,20)
 (//,<%) = (100,20)

.2 0.25

^  0.15 -

0.05 T

0 1 2.5 30.5 1.5 2

Time to failure (t)

(b) Three levels of mean // with a =20 

Figure 2.5(a)-(b) Lognormal distribution with parameters(//,o-)
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Although the Log-logistic model has simple functional expressions, the hazard 

function is able to handle multiple stages of life-cyde failure patterns (see Figure 

2.6). When ^  is equal to or greater than 1, the hazard function of the log-logistic 

model is a monotonically decreasing function. However, there is an unique 

property in the log-logistic model; when p is less than 1 , the hazard function will 

increase from 0 to a peak point, and then decrease monotonically. The Log- 

logistic functions are:

;g (r)= i-5 '(r) = i - 1

/z(r) =

Figure 2.6 presents three cases of a log-logistic hazard function: Cp, A)= (2.5,20), 

(1,20), and (0.5,20).

25

2 0x:
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15
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(;;,yl) = (L2 0 ) 
(j7,A) = (0.5,20)

I T ..............r-
0 0.5 1 1.5 2

Time to failure (t)

2.5

Figure 2.6. Log-Logistic hazard function with parameters (p ,^)
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2.1.2 Maximum likelihood estimators

This section reviews the maximum likelihood estimator (m.I.e.) for both 

Exponential and Weibull underlying distributions proposed by Lawless. The 

density function of the exponential distribution (with parameter ^ = 1/A) is:

The point estimator ^  can be produced by the maximum likelihood method. The 

following derivation of the point estimator is taken from Lawless (1982). Suppose 

r, < f; ... ̂  r, are » samples drawn from an exponential distribution representing

the first and only failure time for each unit in the sample. Assume all r, are

independent and identically distributed (i.i.d.). The likelihood is expressed as 

follows.

e

The log likelihood is:

n

E '-
logZ, = -» lo g ^ - i= l

The maximum likelihood estimator is obtained by taking the derivative of the log 

likelihood function, setting equal to zero, and solving for ^ :

(flogZ

To obtain ^ , let = 0 .

14
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»

Likewise, if the density function for the two-parameter (^, u) Weibull is

u u u

The Weibull parameters (^,u) are transformed into the extreme value parameters

(6 ,w) by

6  = 1 /J  
« = log(u).

The maximum likelihood method produces two point estimators (^,û) for the 

shape and scale parameters (^,u) through maximizing the likelihood. The 

derivation of the point estimators is taken from Lawless (1982). Suppose 

f, < ^ ... < r,. are M samples drawn from a Weibull distribution representing the 

first and only failure time for each sample. Assume all r, are independently and 

identically distributed. After the logarithm transtbmriation jT = log(r), the joint 

likelihood function can be expressed by

b \  I-

The log likelihood is

logZ = -rlog6 +
Vf=i

The maximum likelihood estimators are obtained by taking the partial derivatives 

of the log likelihood function, setting each equal to zero, and solving for w and 6 .

15



Estimators « and 6  can be expressed as

e =

S ' * * ' - * - ! ! , . . ,
ZGXP(^)
i=l D

The Newton-Raphson iteration is employed to obtain the mie's.

2.1.3 Semi-parametric Cox models

The Proportional hazards (PH) lifetime model is used to account for covariate 

effects for lifetime data. Cox (1972) developed the proportional hazards method 

for the two-sample problem that introduced explanatory variables. The PH model 

is the product of a baseline hazard function and an exponential link function 

composed of explanatory variables, also called concomitant or covariate 

variables. The baseline hazard functions and covariates are discussed in this 

section, following the PH theories and applications. A Weibull PH model is then 

used to illustrate the proportional hazards model.

Under the proportionality assumption, the ratio of the hazard functions 

A^(r I z^)/Ag(r| Zg) of two sample units, and B , is constant over time, where 

and B represent two levels of a covariate to form two strata of a population. 

Let sample have a series of %ilure times (7% ) and its estimated mean time

16



between failures Likewise, sample jB has ) and The

plots of log(MTBF) vs. log(T) for both samples ^  and B shall present two 

straight and parallel lines if the proportionality assumption holds.

The definition of a hazard rate based on Cox is the instantaneous failure rate 

(hazard rate) between r and r+Ar under the condition that this individual has 

survived after time point r, which can be expressed as

Af->0+

The explanatory variables z = (z„z2,...,z^) are included in the fomi of an 

exponential link function in the regression model:

A(r;z) = exp(z^)j^(r),

where A, ( 0  is a baseline hazard function.

P is a vector of regression coefficients corresponding to the vector of 

explanatory variables z . Derived from a conditional likelihood method, the p 

estimator can be obtained from the score vector U(yB) and observed information 

matrix I(^ ) by solving the following two equations through the Newton-Raphson 

iteration (Cox (1972)).

w - g f - E . '
exp(z;^) , exp(z;^) exp(z,^)

^exp(z,)8) ^exp(z;/7) %]exp(z;^)

The main purpose of the PH model is to investigate the relationship between the 

distribution of failure time r, and covariate variables z , where the regression

17



coefficients p measure the covariate effects. The most common case to assume

baseline hazard function in a parametric method is a Weibull form, which

leads the PH model in the following equation (Leemis (1995) and Lawless 

(1982)).

A(f;z) = t  X A* X ^Y(z) =  ^  I

Covariates stratify the population, and the associated regression coefficients p 

represent the covariate effect. The procedures to estimate p can be approached 

in two ways, parametric and semi-parametric. The analytical procedure is termed 

as parametric when the baseline function A,(r) is specified (e.g., Weibull);

othenwise, if A,(r) is left as arbitrary, the methodology is termed semi-parametric.

From the time of Cox's foundational work, PH model covariates have been used 

to evaluate the effects of innovative treatment protocals in clinical trials. 

Covariates can be classified into four categories: external, internal, constant, and 

time-varying. An external covariate is detemiined in advance and is not affected 

by the treatment, whereas an intemal covariate is affected by the treatment. 

Qureshi (1991) proposed a hypothetical clinical case: a time-varying covariate 

z(r) takes values of 0,1,2,3,4,5,6 to represent the health situation of a subject 

who is an AIDS infected patient z(r) = 0  means no clinical evidence is provided, 

while z(r) = 6  represents the death of a subject. The values of time-varying 

covariates z(r) change during the period of observation, while constant 

covariates remain at a fixed value that does not change throughout the 

experiment.
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To illustrate this Weibull PH model, the process to derive the score vector and 

information matrix for a parametric Weibull PH model, provided by Lawless, is 

summarized below.

Let r  be the observed lifetime, and let _y=logT.

The p.d.f. of , given z is

= —exp
(T

,—00 < < 0 0 .

Let //(%) = ,

and )/ = z^ + a;4.

The survival function of , given z is

I z) = exp exp(^ '

where is a standard extreme value distribution with p.d.f.

/(v4) = exp(.^ -  exp(v4)).

The likelihood function with observed and censored data is 

= p.d.f. of observed datax survival function of censored data, which is

ieD

Y%exp
ieC

_ e x p ( ^ ^ )

where (D ,C) is a (log lifetime, log censoring time).

It can be simplified as

-  % :e xp (Z cM )% (T ) =
r

— xexp
ieD ieD ieC

where r is the number of observed data and (» - /- )  is the number of censored 
data.

After logarithm transformation, the likelihood function becomes
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logZ = / = - r  log cr + ——  -  ̂ e xp (^ ' .
ÊD o- w (T

Since ^ ,
a

  n

logZ = - r loger+ - ]^ e x p ^ ,.
i e D  i~ l

Assume that the covariates are z,, for all ; = 1,2 ,..., corresponding to regression 

coefficients yGf, for all z = 1,2 ,..., j? .

The first and the second derivatives of / with respect to ^,cr are

9 log 2  — 1 ^^ 1 ^  .

^ = z î: _ T  > lz M + 1  z l i M  4
6 cr cr ^  cr w cr

= --------+— Gxp^
cr O' cr w

0 "logZ - 1 ^

logZ r 2  . 2  . 1 ^  -2 A
‘ ‘ “ ^ 1 ?  ' ' 

d log L 1 ^  1 ^  . 1 , .
•

The score vector at ^ is defined U,(^) = , where ^  is a 1 x o matrix. Set

the score vector equal to zero; that is, = o .
^  cr

The score vector U(^) at ^ can be expanded as a Taylor series given the 

first guess at ^  is ^ , the starting point of Newton-Raphson iteration. The first 

order of the Taylor series will become

where G(^) is the ( ^ + 1 ) by (^  + 1 ) observed information matrix, with elements
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0 logZ

e.g., Gg(^) =

5^1ogZ 6 ^1o g l 

^^logZ ^ log Z
8;9̂ 0cr

To obtain the m.l.e's. (maximum likelihood estimator), we set the score vector 

equal to zero.

U(^) = 0  = + G(^oX^ -  6*o)

Iteratively, the next guess will be generated through the same procedures until 

the termination rule is met. The termination rule may be defined as <10'̂ . As 

for any m.I.e.'s, the estimates are assumed to be distributed asymptotically 

normal.

2.1.4 Competing risk models

Leemis (1995) discusses the competing risks (CR) model for combining 

multiple distributions to achieve a bathtub-shaped hazard function. A typical 

example from Leemis is to use a DFR (decreasing failure rate) Weibull 

distribution to model manufacturing defect failures and an IFR (increasing failure 

rate) Weibull distribution to model wear-out failures. The combination of these 

two distributions, producing a bathtub-shaped hazard function, is the advantage 

of the competing risks model. The distribution of the failure time random variable 

(T ) of the competing risks model is subject to k competing risks, which can be 

expressed as T = The CR model is composed of the net and
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crude probabilities through the k competing failure risks. Suppose 

represent t  net lives and 1^,}^,...,}% represent A; crude lives for each cause. 

Actual observed lifetime r  = Set the k components in series.

The net probability of failure from risk k in[a,6 ) is

< Z t < 6 1 jTt > a], whereas the crude probability of failure from risk 

k in [a,6 ) is & (a ,6 ) = f[a  z | T ̂  a ]. The net

probability considers single dimension of k* risk. However, the crude probability 

model considers in the presence of other components simultaneously.

2.2 Recuning-event models for repairable systems

The purpose of maintenance is to restore a system into some previous state 

of reliability. Maintenance actions can be classified in two major categories: 

corrective and preventive. Corrective maintenance (CM) restores a failed system 

to operating condition, whereas preventive maintenance (PM) reduces the risk of 

operation system failure. The failure event process for a repairable system is 

typically modeled as a Non-homogeneous Poisson Process (NHPP). Let A 

represent the degree by which the system reliability has been recovered to a 

reference state. The value of varies from 0 to 1 depending on the repair types, 

such as minimal repair (A=0 , as-bad-as-old), imperfect repair (0 <A<1 ), and 

replacement (A=1, as-good-as-new) (Usher et al. (1998), Pham and Wang 

(1996), Kijima (1989), Kijima et al. (1988)). Imperfect maintenance restores the 

system to the status of somewhere between as-good-as-new (perfect
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maintenance or renewals) to as-bad-as-old (minimal repair). Pham and Wang

(1996) provided a thorough survey of literature on imperfect maintenance.

This section reviews the two primary approaches to model the recurring 

events (NHPP data) for a repairable system: Parametric stochastic processes 

and proportional intensity (PI) models (including parametric Lawless and semi- 

parametric regression methods (PWP (Prentice-Williams-Peterson), AG 

(Andersen-Gill) and WLW (Wei-Lin-Weiss^ld) models)).

2.2.1 Parametric stochastic processes

The parametric stochastic process section reviews the concepts of a counting 

process and NHPP. Failure data in a repairable system are commonly modeled 

as a stochastic process. Two NHPP PI functions are illustrated to demonstrate 

the parametric stochastic processes. A discussion session of a stationary process 

(HPP), instantaneous mean time between failures (IMTBF), and cumulative mean 

time between failures (CMTBF) follows.

A counting process AT(r), r > 0 shall satisfy the following criteria, according to 

Ross (1993).

1 . # ( r )^ 0 .

2 . # (r) belongs to integer set.

3. If f  < r, th e n ^(f) < A^(r).

4. For f  < r , JV(r) -  jV(f) equals the number of events that have occurred in the 

interval (f,r).

A counting process satisfies the independent increment condition if the number 

of events in a certain interval (r^.r^) is independent of the number of events in
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interval (r, + + f) . The Poisson process is the most common assumption in

reliability studies of repairable systems. According to Ross (1993), a counting 

process is said to be a Poisson process with rate A when

1 . A (̂f) = 0 .

2. The counting process satisfies stationary and independent increments.

3. The number of events in any interval of length r is Poisson distributed with 

mean A xr. For all f,rkO ,

+ f)  -  = »} = » = OA,...
»!

4. f{# (A ) = l}  = Ax;% + o(A).

5. f { ^ ( / : ) k 2 ) = o(A).

When the failure rate A(r) of a Poisson process is not constant but varies in

terms of time, it becomes an NHPP with intensity function A (f), r^O.  A definition 

of NHPP is descrit)ed in the following.

1 . # ( 0 ) = 0 .

2 . JV(r) has independent increments.

3. f{AT(r + A) -  A^(r) > 2} = o(A).

4. + A) -  # (r) = l } = A(r)A + # ) .

lb  simulate an NHPP with intensity function ;i(r) is to generate a sequence of 

random variables. Ross (1993) presented a method to generate the first t time 

units of a Poisson process with intensity function A(r), r > 0, where interarrival

times  from distribution f  — independent increments stopping

at AT = inm{» : +...+ 2 T, > r}. The conditional distribution of 2T, is conditioned
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on . This conditional probability observes the independent

increment property with

= / ) { 0  events in (jc,jc+r)| event at %}

= ;;{ 0  events in (%,% + r) by independent increments }

= e x p j - +

A (0  = + r)exp j- j"A(x + j

The event times Z ,, JT;,..., can be simulated by (1) generating Z, from f], 

and (2) Z , to a value generated from is equal toZ^, and then (3) adding to 

a value generated fromf;^ is equal to ̂ 3, and so on.

Two illustrations of performing the parametric stochastic process follow. In 

these illustrations, the underlying distribution is assumed to follow a power-law or 

a log-linear form. Assume the failure process follows an NHPP, where the 

baseline intensity function is specified as a power-law form; the PI function can 

be expressed as

^ X f exp(z/?),

where ^  is the shape parameter, z is the covariate vector, and is the 

regression coefficient vector that measures the covariate effect. When ̂  <1, it is a 

DROCOF (decreasing rate of occurrence of failures); when^>1, it is an IROCOF
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(increasing rate of occurrence of failures); and when^=1, it is a constant ROCOF 

(rate of occurrence of failures).

In an NHPP, the theoretical IMTBF in a power-law intensity function is 

described by the equation

where z, represents a covariate variable, ^  and o are the shape and scale

parameters, and denotes the failure count. Likewise, assume the failure 

process follows an NHPP, where the baseline intensity function is specified as a 

log-linear form. The PI function can be expressed as

A(r; z) = 6]q)(// + ̂  X r) e]g(z)g),

where are the parameters in the log-linear intensity function, z is the

covariate vector, and ^  is the regression coefficient vector. An NHPP becomes 

an HPP when the intensity rate is a constant. For instance, in the case when the 

baseline intensity function follows a power-law form, the counting process 

becomes an HPP when the shape parameter ^  is equal to 1. Likewise, in the 

case of a log-linear form, parameter ^ = 0 leads to an HPP.

Qureshi (1991) reported the relationship of instantaneous mean time between 

kiilures and intensity functions. IMTBF is defined as the derivative of failure time 

with respect to the expected number of failures (Patrick (1991) and Ascher and 

Feingold (1984)):

I  dt )
where
# (f) = the number of failures in(0 ,r],
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= the expected number of failures in(o,r].

A related measurement, ROCOF (rate of occurrence of failures) is defined as the 

reciprocal of IMTBF, which is

dir

Likewise, Qureshi (1991) reported the relationship of cumulative mean time 

between failures and intensity functions. CMTBF is defined as the mean time 

between failures per event, which is calculated as (Patrick (1991) and Ascher 

and Feingold (1984))

,

where

# (f) = the number of failures in (0 ,r ],
^vy(r)] = the expected numt)er of failures in(o,r].

The event count stratifies the population into strata from event to event, and 

creates possibly different intensity functions associated with the event count. The 

Andersen and Gill (1982), AG method, considers recurring events as a counting 

process in which each occurrence is independent from other occurrences. As a 

result, event count does not play a role in the AG method since recurring events 

are assumed to be independent. However, the PWP method utilizes an event 

count and stratifies recurring events by blocking effect For instance, samples 

remain in stratum ; until event (%+l), then move into stratum (; + 1).

2.2.2 Proportional Intensity models

In discussing the PI models, two methods are reviewed: parametric Lawless 

and semi-parametric. There are various ways to estimate the parameters of the
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NHPP-PI model. The more accurate method is the parametric Lawless (1982). 

Soroudi (1990), Landers and Soroudi (1991), Qureshi (1991), and Qureshi et al. 

(1994) summarized the case of a single constant covariate in implementing the 

parametric Lawless method, where the underlying baseline hazard function 

follows the power-law "Weibull" form. Likewise, Vithala (1994) and Landers et al. 

(2001) dealt with an exponential log-linear baseline hazard function. Both works 

are highly relevant to this research characterizing other semi-parametric PI 

models. When the underlying distribution is unknown, the semi-parametric PI 

model is preferred. Thus, the relevant formulas are summarized.

When the baseline intensity function is specified as power-law, the parametric 

PI function can be expressed as follows.

A(f;z) = J  X exp(zP), 

where ^  is the shape parameter.

Zq = 1 , u = exp(^q) has been included into the exponential link function exp(zp). 

The log likelihood function for the parametric model is

U N

1(^,P) = Arx[/xlog<^ + ( ^ -  1 )T  y  logr. + y  X zp -  V f , ' xJVx exp(zP).
(=1 >=1 i= l <=1

The maximum likelihood estimate of ^  is adapted by Qureshi (1991) from 

Lawless (1987), as shown below.

-(ATxC/)
U N

î=i j - i  

N

y

, where represents the observed number of failures.
M
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The special case of single constant covariate adapted by Qureshi (1991) from 

Lawless (1987) yields the score vector and information matrix with

elements as follows.

17 (7
^ 0

i= i i= l

(7 17
^  JV X  X  z ,  X  e x p ^ g g  +  )
!=1 !=1

u
<^00 = exp(^o + Z i^)

(=1
u

<^01 =  G io  =  X  Z i X  e xp C 8o  +  Z i/g ,)
!=1

Gii = X X  exp()% + z,A).

The formula to derive 2MTBF is in terms of ^  and where J is recursively

derived by the Newton-Raphson method. The formula to calculate is

(Lawless (1987)):

û(, = exp()g(,),ûi = exp(^o + Â ) '

For the power-law NHPP,

Likewise, given the baseline intensity function specified as log-linear, the 

parametric proportional intensity function follows (Cox and Lewis (1966)):

^  X r)exp(zp).

Let Zq = 1 ; then eiqX/;) = e]qp()gq). The parameter will be included into the 

exponential function as exp(zp) = exp(zq)% + ẑyĜ + ...ẑ ŷgĵ ), and the proportional
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intensity function becomes = exp(^ x f)exp(zP). The log likelihood function

for the Lawless parametric model is

m n, m 1 m

j = l  J = l i= \  t f

where is the observed failure time corresponding to sample unit f and failure 

count y.

T , = h , .

where

m represents the number of sample units,
is the total lailure count corresponding to unit i .

The Maximum likelihood estimator of ^ can be obtained by setting 

= 0,^ ^ - —= 0 (Vithala (1994), adapted from Lawless (1987)):

0 = -------------

E Z t r , - r , )

In the special case of single constant covariate, which Vithala presented, the 

score vector and information matrix with elements

(Vithala (1994), adapted from (Lawless (1987)):

-i)expCS. +z«A)
j=l “

^ 1  = Z %  -l)^n  exp(^o
i= l  "  i= l

30



(^00 -  -l)exp(^o +

Goi = Gio = -l)z ^  exp(^o + z^/^)
"  !=1

-1 )4  exp(̂ o + z^A)-
(-1

Utilizing the score vector and information matrix, are calculated, for the 

scale estimates^ 0 ,//; in the two strata defined by the single covariate

A = A'A =Â +A-

The formula to derive ZMTBf is in terms of ^  and where ^  is recursively

derived by the Newton-Raphson method. The formula to calculate ZMTBf is 

given by Vithala (1994), adopted from Lawless (1987):

ZMTBf ( r j  = g-(A ^.) y = 0 ,1 .

Semi-parametric PI models have been widely cited since PWP (1981) 

proposed this model in the biomedical studies. Multivariate failure time analysis 

has been extensively applied in medical research to determine what factors are 

critical to the survival pattem for patients. Extending the Cox PH model for single 

event data, PWP created the semi-parametric PWP model to estimate the 

intensity function in each stratum corresponding to the recurring event count. 

Many researchers have utilized the PWP model and some have extended the 

PWP to similar models based on different assumptions. The AG model (1982) by 

Andersen and Gill and the WLW model (1989) by Wei, Lin, and Weissfeld are 

widely cited in the literature. In reliability and maintainability engineering 

applications, a number of authors have applied the semi-parametric proportional
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intensity (hazards) model, for example, Ansell and Phillips (1989), Ansell and 

Phillips (1990), Landers and Soroudi (1991), Qureshi et al. (1994), Ansell and 

Phillips (1997), Landers et al. (2001), Ansell et al. (2001), and Ansell et al. (2003). 

A collection of the PI model applied to different industries includes: marine gas 

turbine engines (Asher, 1983), semiconductor, electrical, and pipeline industries 

(Ansell and Phillips, 1997), U.S. Army main battle tank (Landers et al., 2001), 

water supply industry (Ansell et al., 2001, 2003), etc. Ascher (1983) illustrated 

the use of the PWP model for analysis of reliability for marine gas turbine 

engines. Ascher and Feingold (1984) suggested application of the PWP model in 

the field of reliability engineering. Dale (1985) applied the PWP approach to 

simulated data for a reliability growth program with design improvements 

implemented after each of the five stages, resulting in a DROCOF. Wightman 

and Bendall (1986) and Bendall et al. (1991) cited the PWP model and advised 

caution in application for engineering studies. An introduction of PWP, AG, and 

WLW models is as follows.

A risk set with event-specific baseline hazard is called a restricted risk set 

(Kelly and Lim (2000)). Since the PWP gap time (PWP-GT) and total time (PWP- 

TT) models both have event-specific baseline hazards, the intensity function of 

the first event is merely decided by these subjects that have recorded first events. 

Likewise, for both PWP-GT and PWP-TT, the intensity of the third event depends 

only on the subjects that have experienced the second event and then 

experience the third event.
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The PWP-GT model has the gap time risk interval (Figure 2.7(a)), while the 

PWP-TT model has a counting process risk interval (Figure 2.7(b)). The counting 

process has the same length of elapsed time as does the gap time. The SAS 

code to program the total time model is written as (afwr,gW, frarwiy(/)) for each 

observation, where frarw(l) denotes failure time and ffoAty(0 ) denotes censored 

time. For instance, the recurring events occur at time 4, 7,12 with the follow-up 

time 15, the records in the SAS database will be shown as (0,4JI), (4,7,1),

(7,12,1), and (12,15,0). Likewise, the SAS dataset for the PWP-GT model is 

written as (gfg? _ rime, frarwf (0 )). Thus, the records in the SAS dataset will be 

shown as (4,1), (3,1), (5,1), and (3,0).

Qureshi (1991) applied the PWP-GT model to engineering reliability. Failure 

data simulated as an NHPP with a power-law intensity function were generated 

by the Blanks and Tordon (1987) algorithm based on the setting of 20 sample 

units divided into two groups by a single covariate (CLASS). Each sample unit 

generated complete data (no censoring) withIO failures. Thus, the sample size 

associated with failure counts remained the same among all event strata. Using 

the PWP-TT method was equivalent to using the WLW method, since they both 

shared the same failure data sets. Unrestricted baseline hazard was employed in 

this model, which yielded a common baseline hazard for each failure intensity 

function in each stratum defined by failure count. Using a gap time dependent 

variable in the PWP model, the failure time data were sorted by failure and then 

by gap time in descending order before implementing the PH regression analysis 

(as PHREG in SAS program).
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Likewise, Vithala (1994) conducted a simulation experiment with failure data 

generated by the Law and Kelton (1991) method. The recurring failure events 

followed an NHPP with a log-linear form. The parameter settings are summarized 

as follows: 60 sample units, 30 sample units/CLASS=0, 30 sample 

units/CLASS=1,10 ^ilures/unit. Since the sample size with respect to failure 

count was equal among the 60 sample units, using the PWP-TT method was 

equivalent to using the WLW method. Vithala utilized event-specific baseline 

hazards in the PWP-GT model, which resulted in event-specific regression 

coefficients corresponding to each stratum defined by failure count in the 

estimating process. Like Qureshi (1991), gap time was employed as a dependent 

variable to perform the PH regression analysis. Vithala used the same 

procedures executed in Qureshi (1991): failure data were sorted by failure counts 

and next by gap times in a descending order.

Andersen and Gill [2] developed the AG method as an extension of the Cox 

PH model, to accommodate recurring events in a counting process. The AG 

method explains general covariate effects (common baseline intensity function in 

the concept of risk set), since each event count re-starts the failure process, and 

thus does not feature event-stratifying effects. The risk interval of an AG model 

follows a counting process associated with recurring events, where recurrences 

are independent and identically distributed replicates of (jy,T,Z), 

and the probability of the occurrence of two events at a given time is zero. Thus, 

the risk set of the (n -1 )'' event is identical as the risk set of the (»)* event. The 

AG model is defined as
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f m  = lf"'(tH (t)expJt X z!">(0)

, where is an at-risk indicator and = 1 unless the subject is withdrawn 

from die study.

A study regarding admissions to psychiatric hospitals for pregnant woman 

was investigated by using the AG model. Two states in a Markov process are 

defined as admissions and discharge corresponding to two forces of transition

. Number of visits to psychiatric hospitals, #,(0, is a counting process

with intensity function ;^(r) = Parity of the woman (number of children)

and age are covariates in this study. Three covariates of parity status (parityO, 

parity2 , parity > 3 , with Ag(r) representing parityl) and two covariates of age 

range (age<18and age ̂ 34) are employed and defined as follows.

^ ft  fa n fy O  ^  ^
[O ofAgrwife ' [O orAenywe ' [O orAgrvvwe

^  ^  ^  age >34
'* [O orAenywg ' [O o/Agnywe,

where ; represents subject z.

A Markov process model is considered to analyze admissions to psychiatric 

hospitals. A time-dependent covariate is introduced to form a semi-Markov 

process model, where the covariate is defined as

r 1 rg—az*»zrrg(/
( 0  or/zgnvMg.

AG (1982) concluded that the oldest women and women with higher parity have 

the highest intensity of admissions to psychiatric hospitals during pregnancy.
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The risk for each recurrence remains the same throughout the entire study 

unaffected by earlier events in the AG method, while the intensity function is 

affected by earlier recurrences in the PWP method. However, when a subject is 

withdrawn from the study, the subject does not contribute any information to the 

latter intensity functions based on the AG method, whereas the subject in the 

WLW method remains in the analysis. Since the AG model has the counting 

process of risk interval (Figure 2.7(c)), the data representation is written as 

(frwr,gwf,frorz«(0)) for each observation. For instance, the recurring events 

occur at times 4, 7,12 with the follow-up time 15, so the records in the SAS 

database will be shown as (0,4,1), (4,7,1), (7,12,1), and (12,15,0). The program 

stops executing when the condition: (ffw r < ewf) fails. The AG method has 

common baseline intensity, while PWP-TT has event-specific baseline intensity.

In terms of risk intervals, the AG method utilizes a counting process, whereas 

Qureshi (1991) and Vithala (1994) both adopt a gap time formulation. The 

duration of the dependent variable in the AG method is collected by gap time but 

the risk interval is not affected until the end of the previous event (due to the 

property of a counting process), while Qureshi (1991) and Vithala (1994) renew 

the risk interval to time zero at occurrence of each event, resulting in an entry 

into each new stratum. The AG method and Qureshi (1991) both have common 

baseline hazard, while Vithala (1994) has event-specific baseline hazards.

WLW (1989) proposed a marginal method, expanded from the conditional 

PWP method, in dealing with recurrent failure data. Compared to the PWP 

method, the WLW method has greater or equal risk set, depending on the

36



sample size associated with the failure count. The PWP method estimates the 

intensity function by considering the subjects having a complete history of 

previous recurring events, while the WLW method additionally considers the 

subjects that have been withdrawn from the observation. The subjects that have 

been censored are still in the risk set; thus, contributing irrfluence on events that 

are followed after the censoring time. The risk set of each subject using the WLW 

method remains the same regardless of complete data or censoring events since 

a subject is still at risk when the subject has been withdrawn from the experiment.

WLW (1989) in a bladder cancer study examined treatment effects by using 

the PWP and WLW models about placebo and thiotepa therapies for tumor 

patients. This bladder cancer example collects four recurrence times of tumors 

7] -  7̂  corresponding to four marginal proportional hazards models. Rather than 

fitting each 7] one model at a time, WLW fits four marginal models in one

analysis, simultaneously. This example has two response variables {failure time 

and censoring status}, three covariates {treatment, tumour number, tumour size}, 

and four recurrences of time. For the it* failure type and the ;* failure event 

count, the hazard function ^ ( r )  in WLW is assumed to take the form below:

^ ( 0  = 4o(0«cp{pt x z * ,(r )jr> 0 ,

where ^g(r)is  an unspecified baseline hazard function and is a

vector of ̂ ilure-specrfic regression parameters. Zĵ (r) denotes a ^ x l vector of
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covariates for the i*  subject at time r with respect to the type of failure, 

expressed as =

Let Xjü represent the failure time of the subject for the type of failure

and let Q  represent the censoring time. Z*, are observation values of X*,, 

where X*, The indicator variable A, is utilized for determining the

event as a failure or censoring. Let A, = 1, when X*, = otherwise Â  = 0. Key 

assumptions for the WLW method are: (1)X^, 1 Q,, i.e., the failure and censoring 

times are independent of each other; (2)(X ;,A „Z;) are i.i.d. random vectors, 

where Z, represent covariates and % represents event count; and (3) the 

regression coefficients p, follow a normal distribution with mean p, denoted

WLW (1989) examined a two-sample problem to compare the WLW method 

with two other approaches, the AG and PWP (both gap time and total time). 

Random variâtes are generated from a bivariate exponential

distribution with a correlation parameter ^ that governs the correlation between 

r, and r̂ . Two gap times U and V from a bivariate exponential distribution 

represent two time endpoints ( [ /, [ /+ F } . The results indicate that the sizes of the 

Wald tests in the PWP (gap time) model significantly exceed the nominal level 

when the correlation ^ is greater than 0.25, and the sizes in the PWP (total time) 

model significantly exceed the nominal level at all ^  values. The results prove
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that PWP can be very sensitive to correlation coefficient ^ and the assumption of 

failure time distribution (bivariate exponential in this case).

The WLW method has the total time of risk interval due to the usage of a 

marginal method, and the code is written as (roW,froAw(0 )) for each observation. 

For instance, if the recurring events occur at time 4, 7,12 with the fbllow-up time 

15, the records in the database will be shown as (roW _ frorw(O))

= (4,1), (7,1), (12,1), and (15,0). The concepts of risk interval and risk set regarding 

the WLW method are as follows. The WLW method has total time of risk interval 

and event-specific baseline intensity of risk set. Total time carries the risk effect 

of earlier events to the later events for the WLW marginal method. The hazard 

ratio in the gap time is different from the total time or the counting process. The 

hazard ratio in the total time is equal to the ratio in the counting process, for they 

share the same time scale. The partial likelihood is defined as the following (Kelly 

and Lim (2002)):

where

(f : uncensored events, 
y : the specific event,
7t(r(y)) : subjects on the risk interval at time r(y ).

In terms of risk interval formulation, the WLW method utilizes a total time 

formulation, while Qureshi (1991) and Vithala (1994) adopt a gap time 

formulation. The duration of the failure times in the WLW method is on a total­

time basis, whereas in Qureshi (1991) and Vithala (1994) it is on a gap-time
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basis. The WLW method resets the risk interval (time clock) to zero at each 

stratum, and so do Qureshi (1991) and Vithala (1994). The WLW method and 

Vithala (1994) both have event-specific baseline intensity, while Qureshi (1991) 

has common baseline intensity.

The pattem of the recurrent data can be seen in many areas as remarked by 

Lin (1994), "Examples in biomedical research are the sequence of tumour 

recurrences or infection episodes, the development of physical symptoms or 

diseases in several organ systems, the occurrence of blindness in the left and 

right eyes, the onset of a genetic disease among family members, the initiation of 

cigarette smoking by classmates, and the appearance of tumors in littermates 

exposed to a carcinogen. Examples in other fields include the repeated 

breakdowns of equipment and systems in engineering reliability, the experiences 

of different life events by each person in sociological studies, and the purchases 

of various products by each consumer in marketing research."

PWP (1981) proposed a model that generalizes the proportional hazards 

model (PH model). This PWP model extends the case of single event to the case 

of multiple recurrent events (a stochastic process). Cox (1972) proposed the PH 

model by introducing explanatory variables to analyze the failure time data with 

censoring. The definition of a hazard rate based on the Cox model is the 

instantaneous failure rate between r and r + A/ under the condition that this 

individual has survived after time point r , which can be expressed as follows:

Af->0+ ^
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The main structure of a PH model is the product of an explanatory variables 

(covariates) in the exponential fonn and a baseline intensity function:

A(r;z) = exp(zP)^(r).

The PWP method relaxes the assumption that the failure process follows a 

parametric fonn (e.g., NHPP power-law process). Since the PWP does not 

specify the baseline intensity function, it only estimates the covariate treatment 

effects. The two PWP models that represent the PWP-GT and PWP-TT are: 

A {r|A r(r),z (r)}= -r„(,))e xp ^(r)p  j

,t{r|Ar(r),Z(r)}=^Xr)exp{z(r)p j .

The gap time measures elapsed time between any two consecutive events, 

whereas total time measures time from entry into the experiment (beginning of 

observation). PWP (1981) concluded that the gap time model usually tends to 

provide a more precise regression estimator at each failure count compared with 

the total time model.

Bowman (1996) surveyed and evaluated the AG, PWP, and WLW methods 

applied to needlestick incidents in veterinary practice. Bowman conducted a 

simulation based on a bivariate exponential distribution to generate bivariate 

recurrent events, in order to control the correlation (^ ) between recumng events. 

Bowman utilized the bivariate exponential distribution (7],7^) to generate the 

consecutive recurring event time 71^ = , where « is the event count.

The univariate event time T(n) is composed of 7](M) and 7^(n) with given 

correlation The advantage of this type of simulation data makes it possible to
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manage the correlation of recumng events. In the model evaluation, Bowman 

evaluated performance of four methods: PWP-GT, PWP-TT, AG, and the WLW 

models, applied to the GT model as superior and then used it to analyze the 

needlestick injury data.

Lin (1994) also evaluated the PWP, AG, and WLW methods of Cox 

regression analysis in multivariate failure time data using a marginal approach.

Lin let 7^ be the time when the type of failure occurs on the r* uniL Lin also 

let Q  be the corresponding censoring time, =min(7]^,Q) with the resulting 

=7(7^ ^ C*). The covariate vector for the r* unit with respect to die type 

of failure is Z* =(Zut,...,Z^y.The marginal approach can be expressed in the two

forms below addressed by WLW and LWA (Lee-Wei-Amato) accordingly.

WLW: ^ (r;Z ^ ) = ̂ ,(r)exp{Z^(r)p'}, 

or

LWA: ;i,(r;Z^) = ;i,(r)exp{Z^(r)P'}.

TTie LWA assumes a common baseline intensity function across all strata defined 

by the failure type. The partial likelihood functions for yg under WLW and LWA, 

corresponding score vector, and information matrix can be obtained from Lin 

(1994).

Wei and Glidden (1997) have reviewed the Cox-based methods designed to 

model recurrent data, and summarized the strengths and weaknesses for each 

method. In a commentary on the Wei and Glidden paper, Lipschutz and Snapinn

(1997) stressed the two concepts of "event times" and "risk sets" as crucial to
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choosing the appropriate model. First, event elapsed times are related to the total 

time, gap time, and counting process. The PWP-TT and WLW are modeled by 

total time, while only PWP-GT is modeled by gap time. The risk interval of the AG 

model belongs to the counting process class. Intuitively, total (global) times within 

a subject are highly correlated, with similar indication on the first recurrence and 

subsequent events. The total time model may indicate large treatment effect 

throughout the entire study, although the gap time model has indicated little 

treatment effect beyond a certain recurrence. The counting process concept of 

the AG method implies each recurrence is not affected by previous events, and 

does not contribute to future events.

The risk set consists of the subjects at risk for a specified event (e.g., failure). 

There are three types of risk sets: conditional (e.g., PWP), counting process (e.g., 

AG), or marginal (e.g., WLW). As a marginal method, the WLW method assumes 

a subject is at risk regardless of event count until the observation for the subject 

terminates by censoring. The AG method also provides an index of a general 

covariate effect, which is expressed by the common baseline intensity 

(unrestricted risk set). However, a subject in the PWP method has event-specific 

baseline intensity (restricted risk set), in that the proportional intensity of event t  

only considers the subjects that have experienced (*^-1) events. Lipschutz and 

Snapinn (1997) suggested guidelines as follows in choosing the appropriate 

models:

# Use total time, common baseline hazard (unrestricted risk set) when the 

general effect is of interest.
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# Use gap time, event-specific baseline hazards (restricted risk set) when 

the primary concern is how the treatment will affect the recurring events 

beyond the first occurrence.

Some Cox-based proportional hazards models are very sensitive to 

misspecification due to dependence structure that exists among recurring events. 

Examples include the AG and PWP models (Wei and Glidden (1997)). The 

misspecification problem causes parameter estimators to become overestimated 

or underestimated. Kelly and Lim (2000) addressed three ways to deal with 

misspecification problems: conditional, marginal, and random effects. The 

conditional method introduces time-variant covariates intended to capture the 

dependence structure. The marginal method utilizes a robust variance named a 

"sandwich estimator", where a robust variance is added to the variance of the 

estimator. The approach of random effects, also named the frailty method, 

includes a random covariate into the model aimed to induce the dependence 

structure among the failure events. Kelly and Lim (2000) applied the conditional 

and marginal approaches to childhood infectious disease cases, and concluded 

that applying the marginal method (robust variance) is not effective to resolve 

misspecification problems if any dependence exists.

Jiang et al. (1999) investigated the misspecification problem and addressed 

three potential misspecification factors: (1 ) neglect of random effects, (2 ) omitted 

covariates, and (3) measurement error. They commented that in a special case 

where there is no measurement error, it will not affect the point estimator. 

However, the variance adjustment is needed, which can be attained through a



sandwich formula. If both errors exist in the model, a double-sandwich fomiula is 

derived to adjust the variance. A naïve estimator requires the adjustment to 

reach a consistent estimator. As for the measurement error associated with 

covariates, Jiang et al. (1999) illustrated an example in a skin tumor study. 

Treatment assignment (Se or placebo) and baseline (plasma Se) status are 

chosen as two covariates. The treatment assignment is accurate without any 

error, whereas the Se status may result in a measurement error. Other 

researchers have worked on the robust variance model, such as Lin and Wei 

(1989), and Themeau and Hamilton (1997), to name a few.

Risk interval can be defined by three formulations: (1) gap time, (2) total time, 

and (3) counting process. Risk interval determines whether a model is marginal 

in the total time or conditional in the gap time. The risk interval of any event in 

total time is not influenced by any previous events, but measures time from entry 

into the experiment (beginning of observation). However, the risk interval of the 

gap time begins from the end of last event (Kelly and Lim (2000)). Counting 

processes use the total time scale and share the same elapsed time as does the 

gap time model. However, the risk interval starts from the previous event instead 

of the entry time. Kelly and Lim (2000) illustrated three risk interval formulations 

shown in Figure 2.7. Three subjects B , and C are in the experiment.

Based on the common or event-specific baseline intensities, the risk set is 

labeled as either unrestricted or restricted. Kelly and Lim (2000) defined three 

possible risk sets {(1) unrestricted, (2) restricted, and (3) semi-restricted} in 

deciding which sample units are at risk of contributing to event t . Table 2.1
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summaries the methods Kelly and Lim categorized on a basis of risk set versus 

risk interval.

The LWA model, similar to the WLW model, has a common baseline intensity 

function (Lin (1994)). The model Qureshi (1991) employed in a robustness study 

of the PWP model can be classified as (risk interval, risk set) = (gap time, 

common). Likewise, Vithala (1994) may be classified as (risk interval, risk set) = 

(gap time, event-specific). The PWP-TT (termed as PWP-CP in Kelly and Lim 

(2 0 0 0 )) is specified as a counting process instead of a total time model, due to 

the conditionality. PWP-CP is a stratified AG model. A marginal approach, such 

as the WLW method, employs the total time concept since subjects are at risk 

since the entry of the experiment.
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(a) Gap time
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(b) Total time
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(c) Counting process

Figure 2.7(a)-(c). Risk interval formulations (Kelly and Lim (2000))
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Table 2.1. Taxonomy of risk interval and risk set for each model (Kelly and Lim

Models Risk set/ baseline intensity
Risk Unrestricted/ Semi-restricted/ Restricted/

interval common event specific event specific

Gap time 
Total time 
Counting 
process

Qureshi (1991) 
LWA (1994)

AG (1982)

WLW (1989)

PWP-GT (1981) 
Vithala (1994)

PWP-TT (1981)

2.2.3 Robustness studies

The section reports the results of the researcher's attempts to replicate the 

work of Qureshi and Vithala. This exercise was beneficial in gaining thorough 

understanding of their studies and results. It also serves, on a small scale, to 

validate their results. Most importantly, the studies provided insights regarding 

extensions of the work that would contribute to the body of knowledge and 

potential for engineering applications.

The PWP method is an appealing method to model the recurrent failure 

processes since it does not require specification of a baseline intensity function. 

Qureshi et al. (1991) extended the research begun by Landers and Soroudi 

(1991) in a pilot study. Qureshi investigated the robustness of a PWP-GT model 

for the case of data from a true underlying process that is an NHPP with power- 

law intensity function. PWP-GT estimates were compared to the true underlying 

model and to the estimates obtained from the parametric Lawless (1987) method. 

They concluded that if the baseline intensity function is a power-law form, the 

Lawless method is preferred to model the recurrent failure processes for constant 

and moderately IROCOF.
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If the true underlying process is NHPP, with power-law intensity function, a 

heuristic expression may be postulated to state the time to the failure 

(Soroudi (1990)):

L -

where z, represents a covariate variable, and ^  and u are the shape and scale 

parameters of the power-law form. Note that ^[»(r)] = holds since the following 

are equivalent in a counting process:

# The expected number of failures happened at time r = .
# The failure at time r = .

Simulated datasets generated from an NHPP with the power-law intensity 

function are employed as the sample failure times in a recurrent failure process. 

The aim of this study is to model this recurrent process fitted by two main 

methods, a parametric Lawless method, and a semi-parametric PWP-GT method, 

which are discussed in the following. The Lawless method involves the 

estimation of shape parameter , intercept and slope regression coefficients 

and instantaneous mean time t)etween failures ZMTBF. The PWP-GT

method involves slope regression coefficient , survival function ,§, and mean

time to failures M7TF. The performance measurements for the Lawless or PWP- 

GT method, compared with the theoretical value of instantaneous mean time 

between failures ZMTBF are collected. BIAS, MAD, and MSE are employed as 

the performance measures to reveal the robustness of the estimating process.
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The main purpose of the study is to investigate how well the PWP-GT can 

estimate the theoretical intensity function. In other words, when the time is 

specified as r, (» failure times have been observed), the corresponding time to

next failure (/z+1), MrzX,+i is estimated either by the Lawless or PWP methods

and compared to the theoretical The PWP method utilizes the

nonparametric Product-Limit estimators, integrating the areas under its estimated 

survival function, to derive the mean time to next failure.

There is an update of the programming syntax in SAS 8.0 regarding the 

usage of PHGLM, which has been replaced in the SAS library by PHREG. A 

blocking option in PHGLM is utilized to allow all subjects to be stratified in each 

stratum and to obtain an intensity function representing the stratum. PHGLM 

syntax is replaced by "STRATA" or "BY" statement in PHREG. Since the PHGLM 

procedure employed in Qureshi's work is renewed to PHREG in Release 8.01 

version, the blocking option in PHGLM is changed to the programming statement 

shown below.

PROC PHREG DATA=FILE_NAME;
MODEL FAILURE_TIME=COVARIATE:
STRATA FAILURE_COUNT;

FILE_NAME : the file which stores the recurrent data 
FAILURE_TIME: recurrent failure time data 
COVARIATE: the covariate variable 
FAILURE_C0UNT: the stratum is defined by failure count.

There is one clarification to Qureshi's work that the blocking option is

supposed to employ failure count as a stratification variable. Thus, there is one

regression estimate in each stratum, which means a covariate effect is estimated

within each stratum, instead of one global covariate regression coefficient across
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all strata. The global coefficient estimate in Qureshi is actually the strata estimate; 

the results should be modified to report regression coefficient estimates in all 

strata defined by event count. Qureshi did in-depth examination of the ^

estimates for the special case of an HPP, for which the strata ^  are theoretically 

equal.

If the true underlying process is NHPP with a power-law baseline intensity 

function, the Lawless method is appropriate to estimate the intensity function 

^ (r). The parametric Lawless method is utilized to obtain three estimators, J ,

,and in terms of the seed number, shape param eter, baseline scale 

parameter Uq, alternate scale parameter u ,, and sample size. The chosen values 

of and in Qureshi's work are taken from the air-conditioning data set for

plane #7908 (Proschan (1963)) to base the robustness study in parameter values 

for a realistic range. Two classes that can be distinguished by covariate effect 

divide all samples evenly. Experiments on eight combinations of the sample 

size= 20 and 60 and shape parameter=0.5,1,1.5, and 3 are investigated in this 

research to duplicate the Qureshi estimates of ^  and mean time to w* failure

(ZMfBF(7i) ) , for 7% = 1,2,...,1 0 . Note that each value of ÆffBF(n) is determined by 

the average of three replicates in terms of seed numbers 539, 255, and 59. The 

results of the estimation on, , /g,,, and are computed. However, only three 

examples of ^  = 0.5,1.0, and 1.5 are shown in Table 2.2 for verification 

purposes. To compare with the Qureshi results, the case of = 1.5 is taken from
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Qureshi (1991) and presented here. The other two cases of ^  = 0.5 and = 1 

are not listed in Qureshi (1991).

Table 2.2. The results of using the Lawless method
20 sample units, tOtailures/unit, lOunits/dass, 2 classes, <ÿ = o.5,Ug =0.001,u, =0.01

Seed number A
539 0.53729 -7.539608 2.2746569
255 0.48321 -6.532990 2.0593530
59 0.51619 -7.110656 2.3367614

Average 0.51223 -7.061080 2.2235900

20 sample units, 10 fallures/uniL lOunits/class, 2 classes, = Lt'o = 0 .001, Uj =0.01

Seed number Ô Â Â
539 1.07459 -7.539608 2.2746569
255 0.96642 -6.532990 2.0593530
59 1.03237 -7.110656 2.3367614

Average 1.02446 -7.061080 2.2235900

2 0  sample units, 10 failures/unit, 10unlts/ciass, 2  classes, s =: 1.5,Ü0 = 0.001,1̂1 = 0.01

Seed number S Â Â
539 1.61188 -7.539608 2.2746569
255 1.44963 -6.532990 2.0593530
59 1.54856 -7.110656 2.3367614

Average 1.53669 -7.061080 2.2235900
Average(Qureshi) 1.53670 -7.061100 2.2236000

ZMTBF can be obtained using the parametric Lawless method from the

following formula, where the estimator J  is recursively derived by the Newton- 

Raphson method and the formula to scale estimates in two classes are 

shown below.

A  =  exp()go), Û, = exp(^Q +  A )

r_ =
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Table 2.3 presents the results of utilizing the Lawless method to estimate this 

NHPP in the combination of 20 sample units, ^  = 1.5, and Ug = 0.001, = 0.01 in

two classes.

Table 2.3. The parametric Lawless method
20 sample units, 10 failures/unit, lOunits/dass, 2 classes, f  = 1.5,Ug =0.001,Ui = 0.01

CLASS = 0

Failure E(tn) IMTBF(tn) 7MT8F(tn) Kl
1 100.00 66.67 64.07 -0.03902 0.039023 0.001523
2 158.74 52.91 49.99 -0.05518 0.055178 0.003045
3 208.01 46.22 43.24 -0.06450 0.064502 0.004161
4 251.98 42.00 39.01 -0.07106 0.071062 0.005050
5 292.40 38.99 36.02 -0.07612 0.076119 0.005794
6 330.19 36.69 33.74 -0.08023 0.080229 0.006437
7 365.93 34.85 31.93 -0.08369 0.083691 0.007004
8 400.00 33.33 30.44 -0.08668 0.086679 0.007513
9 432.67 32.05 29.19 -6.08931 0.089306 0.007976
10 464.16 30.94 28.11 -0.09165 0.091650 0.008400

BIAS = -0.071793367
IVIAD = 0.071793367

MSE = 0.006069119
BIAS (Qureshi) = -0.0718

MAD (Qureshi) = 0.0718
MSE (Qureshi) = 0.0061

CLASS=1

Failure E(ln) IMTBF(L,) ZMTBf (tn) k l
1, 21.54 14.36 15.80 0.100222 0.100222 0.010044
2 34.20 11.40 12.33 0.081725 0.081725 0.006679
3 44.81 9.96 10.67 0.071050 0.071050 0.005048
4 54.29 9.05 9.62 0.063540 0.063540 0.004037
5 63.00 8.40 8.88 0.057751 0.057751 0.003335
6 71.14 7.90 8.32 0.053044 0.053044 0.002814
7 78.84 7.51 7.88 0.049081 0.049081 0.002409
8 86.18 7.18 7.51 0.045660 0.045660 0.002085
9 93.22 6.90 7.20 0.042652 0.042652 0.001819
10 100.00 6.67 6.93 0.039969 0.039969 0.001597

BIAS = 0.062708426
MAD = 0.062708426

MSE = 0.004778524
BIAS (Qureshi) = 0.0627

MAD (Qureshi) = 0.0627
MSE (Qureshi) = 0.0048

If the true underlying process is known to be NHPP with a power-law baseline 

intensity function, the Lawless method is a common method to estimate the 

intensity function A(r). Under this circumstance, the PWP-GT method provides a
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way to approach the theoretical intensity function without requiring knowledge of 

the true underlying process. Utilizing the semi-parametric PWP-GT method to 

obtain MZTF in temris of the seed number, shape parameter ^ , and sample size, 

the results of MZTF in the example of J = 1.5,UQ = 0 .0 0 1 ,u, = 0 .0 1  are

summarized in Table 2.4. Note that two classes of the covariate effect divide all 

samples evenly.

Table 2.4. Average AfTTF obtained from the PWP-GT method
20 sample units, 10 failures/unit, lOunits/dass, 2 dasses, = l.5,Ug = 0.00l,u, =0.01

CLASS = 0

Failure 539
M7TF

255 59
Average M 7TF Qureshi results

1 56.41 61.19 59.47 59.47 59.47
2 67.22 59.13 62.73 62.73 62.73
3 55.85 40.92 41.99 41.99 41.99
4 46.15 53.53 48.89 48.89 48.89
5 31.18 61.51 46.98 46.98 46.98
6 46.57 37.30 39.41 39.41 39.41
7 37.13 24.17 38.43 38.43 38.43
8 34.66 21.24 29.72 29.72 29.72
9 46.14 35.09 41.18 41.18 41.18
10 25.08 39.14 31.34 31.34 31.34

CLASS = 1
M 7TF Average MTTF Qureshi results

Failure 539 255 59
1 23.92 15.96 20.78 20.22 20.22
2 17.53 13.25 18.38 16.39 16.39
3 6.85 10.79 5.31 7.65 7.65
4 12.86 12.54 8.61 11.34 11.34
5 5.81 13.08 11.63 10.17 10.17
6 16.48 8.46 7.68 10.87 10.87
7 6.30 13.97 7.89 9.39 9.39
8 6.20 9.28 8.32 7.93 7.93
9 10.47 6.67 7.84 8.33 8.33
10 6.04 10.04 5.89 7.32 7.32

AfTTF can be obtained using the semi-parametric PWP-GT method by 

implementing the Product-Limit method, which integrates the area under its 

survival function. Experiments on eight combinations of the sample size= 20, 60 

and shape parameter=0.5,1,1.5, 3 are investigated in the estimating of mean
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time to failure (MZTF(»)), for w = 1^,.. JO . Note that each value of Mf7F(n)

is determined by the average of three replicates in terms of seed numbers 539,

255, and 59. The results of one example = 1.5 and Ug = 0.001, Ut = 0.01 are

summarized in Table 2.5.

Table 2.5. The semi-parametric PWP method
20 sample unHs, 10 failures/unit, lOunrts/dass, 2 classes, =  1 .5 , r ;Q  =  0 . 0 0 1 , =  0.01

CLASS= 0

Failure n E (tn ) IM T B F(W M T T F K l
1 100.00 66.67 62.73 -0.05905 0.05905 0.003487
2 158.74 52.91 41.99 -0.20644 0.206439 0.042617
3 208.01 46.22 48.89 0.057674 0.057674 0.003326
4 251.98 42.00 46.98 0.118642 0.118642 0.014076
5 292.40 38.99 39.41 0.010852 0.010852 0.000118
6 330.19 36.69 38.43 0.047479 0.047479 0.002254
7 365.93 34.85 29.72 -0.14722 0.147215 0.021672
8 400.00 33.33 41.18 0.2354 0.2354 0.055413
9 432.67 32.05 31.34 -6.02215 0.022153 0.000491
10 464.16 30.94

BIAS = 0.00391001
MAD = 0.10054481

MSE = 0.017931775
BIAS (Qureshi) = 0.0039

MAD (Qureshi) = 0.1005
MSE (Qureshi) = 0.0179

GLASS = 1

Failure n E(t„) IM T B F(W M T T F K l
1 21.54 14.36 16.39 0.141135 0.141135 0.019919
2 34.20 11.40 7.65 -0.32894 0.328938 0.1082
3 44.81 9.96 11.34 0.138705 0.138705 0.019239
4 54.29 9.05 10.17 0.123998 0.123998 0.015376
5 63.00 8.40 10.87 0.294129 0.294129 0.086512
6 71.14 7.90 9.39 0.187975 0.187975 0.035335
7 78.84 7.51 7.93 0.056162 0.056162 0.003154
8 86.18 7.18 8.33 0.159933 0.159933 0.025579
9 93.22 6.90 7.32 0.060107 0.060107 0.003613
10 100.00 6.67

BIAS = 0.092578441
MAD = 0.165675758

MSE = 0.039615717
BIAS (Qureshi) = 0.0926

MAD (Qureshi) = 0.1657
MSE (Qureshi) == 0.0396

The robustness test is aimed to evaluate the performance of two methods in 

estimating the instantaneous mean time between failures that come from an
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NHPP with underlying power-law intensity function. Three performance 

measurements are utilized for the comparison of the Lawless and PWP-GT 

methods in estimating the mean time to the M"" failure. The definitions of three 

performance measurements BIAS, MAD (mean absolute deviation), and MSE 

(mean squared error) are written in the following.

n - l

n — l
n - l

E k I

MSE

n - l

E k_ M=1
» - 2 '

, IMTBF(t ) — IMTBFit ) . . . .. ,
where e. = --------- ^ ------------—  m the Lawless method

and g, In the PWP method.

All combinations of the sample size= 20, 60 and shape parameter=0.5, 1,1.5, 

3 are investigated in this duplication of results to estimate mean time to 

failure, M = 1,2 ,...,10 implemented by the Lawless and PWP methods. Each value

of either ZMfSE(n) or Mf7E(») is determined by the average of three replicates 

of different seed numbers in order to decrease the bias effect. The robustness 

tests of the estimating methods are summarized in Table 2.6 and Table 2.8. To 

compare with the Qureshi results. Table 2.7 and Table 2.9 are taken from 

Qureshi (1991) and listed here.
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Table 2.6. The summary of the robustness test using the lawless method 
10 WuTBS/unit, lOunWdass, 2 classes, u, = 0.001, u, = 0.01

CLASS = 0 CLASS=1
u" s BIAS MAD MSE BIAS MAD MSE
20 0.5 -0.071754 0.071754 0.006063 0.062747 0.062747 0.004784
20 1.0 -0.071754 0.071754 0.006063 0.062747 0.062747 0.004784
20 1.5 -0.071793 0.071793 0.006069 0.062708 0.062708 0.004779
20 3.0 -0.071763 0.071763 0.006064 0.062740 0.062740 0.004783
60 0.5 0.019899 0.040084 0.003308 -0.036847 0.054280 0.004081
60 1.0 0.019899 0.040084 0.003308 -0.036847 0.054280 0.004081
60 1.5 0.019804 0.040075 0.003305 -0.036914 0.054320 0.004087
60 3.0 0.019804 0.040075 0.003305 -0.036914 0.054320 0.004087
U represents the sample size in terms of the number of sample units.

Table 2.7. Qureshi results____________________________________
10 failures/unit, 10units/class, 2 classes, = 0.001, u, =0.01

CLASS = 0 CLASS=1
s BIAS MAD MSE BIAS MAD MSE

20 0.5 -0.0712 0.0712 0.0060 0.0632 0.0632 0.0048
20 1.0 -0.0721 0.0721 0.0061 0.0625 0.0625 0.0047
20 1.5 -0.0718 0.0718 0.0061 0.0627 0.0627 0.0048
20 3.0 -0.0718 0.0718 0.0061 0.0627 0.0627 0.0048
60 0.5 0.0206 0.0401 0.0033 -0.0363 0.0540 0.0040
60 1.0 0.0197 0.0401 0.0033 -0.0370 0.0544 0.0041
60 1.5 0.0193 0.0400 0.0033 -0.0372 0.0545 0.0041
60 3.0 0.0197 0.0401 0.0033 -0.0370 0.0544 0.0041
U represents the sample size in terms of the number of sample units.

Table 2.8. The summary of the robustness test using the PWP method
10 failures/unit, lOunits/dass, 2 classes, = 0.001,u, =0.01

CLASS = 0 CLASS = 1
U" s BIAS MAD MSE BIAS MAD MSE
20 0.5 0.059314 0.180375 0.059257 0.590499 0.61937Ù 0.662950
20 1.0 -0.032945 0.119595 0.023036 0.134369 0209770 0.059830
20 1.5 0.003910 0.100545 0.017932 0.092578 0.165680 0.039620
20 3.0 0.092401 0.147581 0.030666 0.105328 0.177390 0.040060
60 0.5 0.325973 0.325973 0.279226 0.331310 0.341870 0.236930
60 1.0 0.041010 0.091598 0.012567 0.015725 0.078300 0.008040
60 1.5 0.033088 0.063391 0.007110 -0.026681 0.069790 0.007570
60 3.0 0.082385 0.087137 0.012807 -0.029658 0.050720 0.005210
U represents the sample size associated with sample units. 

Table 2.9. Qureshi results
10 failures/unit, 10units/dass, 2 dasses, =0.001,u, =0.01

CLASS = 0 CLASS = 1
U" s BIAS MAD MSE BIAS MAD MSE
20 0.5 0.0593 0.1804 0.0593 0.5905 0.6194 0.6629
20 1.0 -0.0329 0.1196 0.0230 0.1343 02097 0.0598
20 1.5 0.0039 0.1005 0.0179 0.0926 0.1657 0.0396
20 3.0 0.0936 0.1475 0.0310 0.1053 0.1774 0.0401
60 0.5 0.3260 0.3260 02792 0.3313 0.3419 02369
60 1.0 0.0410 0.0916 0.0126 0.0157 0.0783 0.0080
60 1.5 0.0331 0.0634 0.0071 -0.0267 0.0698 0.0076
60 3.0 0.0821 0.0863 0.0127 -0.0297 0.0507 0.0052
U represents the sample size assodated with sample units.
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Another crucial contribution from Qureshi (1991) comes from the model 

confirmation. The case of ^  = 1 was assumed and a regression analysis ANOVA 

was performed by the GLM procedure in the SAS software. The intension of the 

study is to find the slope and intercept estimates in the case of ^  = 1 ,

Ug = ln(0.001) = 6.9078, = ln(0.01) = 4.6051 as theoretical values. Theoretically,

for an HPP = 1 ), the slope is equal to zero and the failure intensity equation is 

simplified to

A(r) = ux X = u .

The results taken from Qureshi (1991) are listed in Table 2.10.

Units O q  —  —  A
Slope

estimate
Intercept
estimate X t  statistics'"

0.001 0.0298(0.0917)" 6.5895(0.7665) 0.0014 -0.4153
20 0.010 0.0525(0.0917) 4.3560(0.5563) 0.0128 -0.448

0.001 0.0206(0.0438) 6.7645(0.3658) 0.0012 -0.3917
60 0.010 -0.0232(0.0438) 4.7514(0.2655) 0.0086 0.5507

0.001 -0.0118(0.0362) 7.0079(0.3025) 0.0009 0.3309
120 0.010 0.0289(0.0362) 4.4562(0.2196) 0.0116 -0.6785

Estimated standard errors in parentheses
"  t  statistics forffg : intercept = in(i/A)

Vithala (1994) extended the work of Qureshi by investigating the baseline 

intensity function in a log-linear form. Vithala reached the same conclusions that 

the PWP-GT model perfomis well in the case of constant and moderately 

increasing ROCOF. The research of Qureshi et al. (1991) and Vithala (1994) 

both confirm the PWP-GT model is a robust method for many important 

applications, in which the baseline intensity function is unknown.

One correction to the Vithala code needs to be made in order to run the PWP- 

GT method. On page 157, the code is 

R=(LOG(THETA*T+ EXP(MU))-IVIU)/THETA:
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It should be modified as follows, to allow the case ^ = 0  without a divided-by-zero 

error.

IF THETA=0 THEN R=T/EXP (MU);
ELSE R=(LOG(THETAT+EXP(MU))-MU)miETA;

There are three corrections to the SAS code that Vithala wrote to implement the 
parametric Lawless method.

1. on page 188, Vithala wrote

DATA INSERT;
SET THETA;
RETAINXYO;
DROP ITEM T FAILURE CLASS MU Y G; delete this line since the variable 

mentioned here does not exist in the data file theta.

2. on page 189, the code reads

DATA MIX;
MERGE MULTIPLY PURGE;
PROC PRINT DATA=MIX;
DROP A H HH V K E; delete this line since the variable mentioned here does not 

exist in the data files multiply or purge.

3. on page 192, it says

DATA ALIGNED;
SET ALIGNED;
BETAIO=BETAI;
DROP E BETAI;

The code is corrected by two data generating statements shown below.

DATA AUGNED;
SET IREGRESS;
RETAIN E 0;
E=E+1;
IF E>1 THEN DELETE;

DATA REDUCE;
SET ALIGNED;
BETAIO=BETAI;
DROP E BETAI;
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If the true underlying process is an NHPP, with log-linear baseline intensity 

function, a heuristic expression may be postulated to state the time to failure 

(Vithala (1994)):

+1 f i  —  f t .

where = represents a covariate variable, are two

parameters in the log-linear form as .

Note that JS:[»(r)]=», holds since the following are equivalent in a counting 

process.

* The expected number of failures at time r = Æ:[»(r)].
* The »'* Silure at time r = »,.

However, for the HPP case (when ^ = 0), r, is not defined in the proceeding 

equation due to division by zero. The heuristic value of r, can be obtained from 

the formula utilized in the case of HPP of Qureshi work when ^  = 1 below:

=

The estimation of intensity functions is approached by two methods: the 

parametric Lawless and semi-parametric PWP-GT. The Lawless method involves 

the estimation of the shape parameter <9, regression coefficients and

instantaneous mean time between failures ZMTBf. The shape parameter ^ 

produces an IROCOF when positive, a constant ROCOF when zero, and a 

DROCOF when negative. The PWP-GT method involves regression coefficient

, survival function ^ , and mean time to failure AfTTF.
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In an NHPP, the theoretical IMTBF in a log-linear intensity function is derived 

by the following equations

, when 6» = 0 ,

where z, represents a covariate variable and ^  and // are the parameters of 

the log-linear intensity function.

BIAS, MAD, and MSE are employed as the performance measures to perform 

robustness tests. The main purpose of the study is to investigate how well the 

PWP-GT can estimate the theoretical intensity function. In other words, when the 

time is specified as r„ (?; failure times have been observed), fhe corresponding

expected time to next Silure (» + !), is derived either by the Lawless or

PWP-GT methods for comparison with the theoretical .

If the true underlying process is NHPP with a log-linear baseline intensity 

function, the Lawless method is appropriate to estimate the intensity function A(r)

The parametric Lawless method is utilized to obtain three estimators, ^ , yg,,, and 

in terms of the seed number, parameter ^ , baseline scale parameter //g, 

alternate scale parameter , and sample size. Two classes distinguished by a 

covariate divide all samples evenly. Experiments on four combinations of the 

sample size (7 = 60,120 and parameter ^ = 1 .2 , 2 . 0  are investigated in this 

research to duplicate the Vithala estimates of mean time to failure

, for M = 1,2,...,10. Note that each value of ZMfBf(n) is determined by 

the average of three replicates of seed number 539, 255, and 59. The results of
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the estimation on, ^ , and yg, are shown in Table 2.11. To compare with the 

Vithala results, the case of ^ = 1.2,Z7 = 60 is taken from Vithala (1994) and 

presented here. The other three cases of ^  = 2.0,1/ = 60, ^  = 1.2,t/ = 120, and 

^  = 2.0,[ /  = 120 are not listed in Vithala (1994).

Table 2.11. ( ̂ , ^ 0 , ) obtained from the Lawless method
60 sample units, 10 failures/unit, 30units/dass, 2 classes,

^ =  1.2,/fo = -6 .9,//; = —4.6

Seed numt)er A A
539 1.241880 -7.282879 2.5032100
255 1.275460 -7.476738 2.4971794
59 1.350040 -7.891322 2.5818163

Average 1.289127 -7.550310 2.5274020
Average(Vithala) 1.289130 -7.550890 2.5277650

/MTBF can be obtained using the parametric Lawless method from the 

following formula, where the estimators and ^ are obtained by the 

Newton-Raphson method and using the following formulas:

“  Â  + Â

r, is heuristically derived from NHPP with a log-linear form, by the expression

,»  = 1,2,...,M.■ + l

Table 2.12 has the results of utilizing the Lawless method to model this NHPP in 

the combination of 60 sample units, ^  = 1.2,/f„ = - 6 . 9 , =  -4.6 in two classes.
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Table 2.12. The parametric Lawless method
60 sample units, 10 failures/unit, 30units/class, 2 classes, ^ = 1.2,,/̂ o -  "6.9,/^  — 4.6

CLASS = 0

n IMTBF(tn) ZM7BF(W k l
1 5.902634188 0.83263407 0.942768 0.1322716 0.132272 0.017496
2 6.479907133 0.416491777 0.4479323 0.0754889 0.075489 0.005699
3 6.817678122 0.277700038 0.2898062 0.0435943 0.043594 0.0019
4 7.057354876 0.208289602 0.2127757 0.0215378 0.021538 0.000464
5 7.243272849 0.166638677 0.1674302 0.0047501 0.00475 2.26E-05
6 7.395184155 0.138869451 0.1376527 -0.008762 0.008762 7.68E4)5
7 7.523626394 0.119033338 0.1166474 -0.020045 0.020045 0.000402
8 7.634890059 0.104155733 0.1010608 -0.029714 0.029714 0.000883
9 7.733032869 0.092583953 0.0890505 -0.038165 0.038165 0.001457
10 7.820825524 0.083326335 0.0795215 -0.045661 0.045661 0.002085
BIAS = 0.020106

MAD =0.041592
MSE = 0.00355

BIAS (Vithala) = 0.020698
MAD (Vithala) =0.041681

MSE (Vithala) = 0.003581
CLASS = 1

n K IMTBF(tn) k l
1 3.992219332 0.826410878 0.88376 0.0693954 0.069395 0.004816
2 4.566373547 0.414928835 0.421588 0.0160482 0.016048 0.000258
3 4.903101776 0.277004333 0.273129 -0.013992 0.013992 0.000196
4 5.142256551 0.207897967 0.200666 -0.034786 0.034786 0.00121
5 5.327861145 0.166387916 0.157965 -0.050622 0.050622 0.002563
6 5.479563451 0.138695258 0.129906 4)063372 0.063372 0.004016
7 5.607856365 0.118905331 0.110104 -0.074021 0.074021 0.005479
8 5.719008014 0.104057711 0.095405 -0.083149 0.083149 0.006914
9 5.817063689 0.092506494 0.084077 -0.091127 0.091127 0.008304
10 5.904786627 0.083263587 0.075087 -0.098205 0.098205 0.009644
BIAS = -0.0362

MAD = 0.05517
MSE = 0.00422

BIAS (Vithala) = -0.03597
MAD (Vithala) = 0.055057

MSE (Vithala) = 0.004203

Utilizing the semi-parametric PWP-GT method to obtain AffTF in terms of the 

seed numt)er, parameter ^ , and sample size, the results of AOTF in the 

example of ^ = = -6.9,//, = -4.6 are summarized in Table 2.13. Note that

two classes that can be distinguished by the covariate effect divide all samples 

evenly. There is a calculating error in Vithala table regarding the average AffZF 

in failure numbers 7, 8 , and 10 of CLASS=1, which should be corrected as
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0.1103333, 0.139, and 0.11, accordingly, based on the three AfZTF values in 

Vithala table listed in Table 2.14. After the correction, the duplicative results are 

very close to the Vithala results, which prove that the duplicative work is reliable.

Table 2.13. Average MTTF obtained from the PWP method
60 sample units, 10 Mures/unit, 30units/class, 2 classes, ^ = 1.2,//,, = - 6 . 9 , =  —4.6

CLASS = 0

Failure 539
M TTF

255 59
Average AfTTF Vithala results

1 5.349641982 5.198709123 5.231432122 5.259927742 5.26
2 1.121911863 1.045134844 1.005004705 1.057350471 1.0573
3 0.357002717 0.499915438 0.327856446 0.394924867 0.395
4 0.257464462 0.297334521 0.342227573 0.299008852 0.29867
5 0.15745239 0.298393934 0.261153878 0.239000067 0.23867
6 0.207883454 0.171514117 0.156506356 0:178634642 0.179
7 0.158173277 0.150163123 0.192077086 0.166804495 0.16667
8 0.11112206 0.126900585 0.128013973 0.122012206 0.122
9 0.111719866 0.104901648 0.11821875 0.111613421 0.11167
10 0.115923406 0.115139303 0.089179423 0.106747377 0.10667

CLASS=1
M TTF Average M TTF Vithala results

Failure 539 255 59
1 3.153395177 3.61694346 3.686388826 3.48557582 3.48533
2 1.146859147 0.66078219 0.823795448 0.87714559 0.87733
3 0.412534866 0.516007395 0.433962555 0.45416827 0.45533
4 0.303167926 0.294818079 0.220211824 0.27273261 0.27267
5 0.276920782 0.209555661 0.200803662 0.22909337 0.22933
6 0.204151742 0.165247898 0.187858335 0.18575266 0.18567
7 0.112479919 0.112624617 0.105528102 0.11021088 0.12841
8 0.14722054 0.129605016 0.139804935 0.13887683 0.1139
9 0.138303359 0.107650349 0.071416031 0.10578991 0.10567
10 0.123336704 0.105547047 0.100557877 0.10981388 0.0911

64



60 sample units, 10 failures/unit, 30units/class, 2 classes, 
^ =  —6.9,//i = -4 .6

CLASS = 0
MTTF

Failure 539 255 59 Average MTTF
1 5.35 5.199 5.231 5.26
2 1.122 1.045 1.005 1.0573
3 0.357 0.5 0.328 0.395
4 0.257 0.297 0.342 0.29867
5 0.157 0.298 0.261 0.23867
6 0.208 0.172 0.157 0.179
7 0.158 0.15 0.192 0.16667
8 0.111 0.127 0.128 0.122
9 0.112 0.105 0.118 0.11167
10 0.116 0.115 0.089 0.10667

CLASS=1
M TTF

Failure 539 255 59 Average MTTF
1 3.153 3.617 3.686 3.48533
2 1.147 0.661 0.824 0.87733
3 0.413 0.516 0.437 0.45533
4 0.303 0.295 0.22 0.27267
5 0.277 0.21 0.201 0.22933
6 0.204 0.165 0.188 0.18567
7 0.112 0.113 0.106 0.I2g4I->0.110
8 0.147 0.13 0.14 0.1129->0.139
9 0.138 0.108 0.071 0.10567
10 0.123 0.106 0.101 0.0911-^0.11

AOTF can be obtained using the semi-parametric PWP method by 

implementing the Product-Limit method, which integrates the area under its 

survival function. Experiments on eight combinations of the sample size= 60, 120 

and shape parameters 1 .2 , 2 . 0  are investigated in the estimating of mean time to

M* failure (M7TF(n)), for M = . Note that each value of is

determined by the average of three replicates in tenns of seed numbers 539, 255, 

and 59. The results of one example ^  = 1 .2 ,/Zo =-6.9,//i =-4.6 are summarized 

in Table 2.15.
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Table 2.15. The semi-parametric PWP method
60 sample units, 10 failures/unit, 30units/class, 2 classes, ^ = 1.2,/Zg = -6.9, = —4.6

CLASS = 0
Failure /

n
IMTBF(tn) M TTF Kl

1 5.902634188 0.83263407 1.06 0.2698861 0.269886 0.072839
2 6.479907133 0.416491777 0.39 -0.051782 0.051782 0.002681
3 6.817678122 0.277700038 0.30 0.0767332 0.076733 0.005888
4 7.057354876 0.208289602 0.24 0.1474412 0.147441 0.021739
5 7.243272849 0.166638677 0.18 0.0719879 0.071988 0.005182
6 7.395184155 0.138869451 0.17 0.2011605 0.20116 0.040466
7 7.523626394 0.119033338 0.12 0.0250255 0.025025 0.000626
8 7.634890059 0.104155733 0.11 0.0716013 0.071601 0.005127
9 7.733032869 0.092583953 0.11 0.1529793 0.152979 0.023403
10 7.820825524 0.083326335

BIAS = 0.107226
MAD = 0.118733

MSE = 0.022244
BIAS (Vithala) = 0.107011

MAD (Vithala) = 0.118478
MSE (Vithala) = 0.022124

CLASS = 1
Failure / IMTBF(tn) A/TTF Kl

1 3.992219332 0.826410878 0.88 0.0613916 0.061392 0.003769
2 4.566373547 0.414928835 0.45 0.0945691 0.094569 0.008943
3 4.903101776 0.277004333 0.27 -0.015421 0.015421 0.000238
4 5.142256551 0.207897967 0.23 0.101951 0.101951 0.010394
5 5.327861145 0.166387916 0.19 0.1163831 0.116383 0.013545
6 5.479563451 0.138695258 0.11 -0.205374 0.205374 0.042178
7 5.607856365 0.118905331 0.14 0.1679613 0.167961 0.028211
8 5.719008014 0.104057711 0.11 0.0166466 0.016647 0.000277
9 5.817063689 0.092506494 0.11 0.1870937 0.187094 0.035004
10 5.904786627 0.083263587

BIAS = 0.05836
MAD = 0.10742

MSE = 0.01782
BIAS (Vithala) = 0.059042

MAD (Vithala) = 0.107965
MSE (Vithala) = 0.017995

The robustness test is aimed to evaluate the performance of two methods in 

estimating the instantaneous mean time between failures from an NHPP with 

underlying log-linear intensity function. Three performance measurements are 

utilized for the comparison of the Lawless and PWP-GT methods in estimating 

the mean time to the failure. Three performance measurements are BIAS, 

MAD (mean absolute deviation), and MSE (mean squared error).
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All combinations of the sample size =60,120 and shape parameter=1.2 and 

2.0 are investigated in this duplicating process of Vithala results to estimate 

mean time to failure, M = implemented by the Lawless and PWP-GT

methods. Each value of either or MfTF(n) is determined by the

average of three replicates of different seed numbers in order to decrease the 

bias effect. The robustness tests of the estimating methods are summarized in 

Table 2.16 and Table 2.18. To compare with Vithala results, Table 2.17 and 

Table 2.19 are taken from Vithala (1994) and listed here.

Table 2.16. The summary of the robustness test using the Lawless method________________
10 failures/unit, lOunits/class, 2 classes, //g = -6 .9 ,//] = -4.6

CLASS -  0 CLASS = 1
u" BIAS AW] MSE BIAS MAD MSE
60 1.2 0.020106 0.041592 0.00355 -0.0362 0.05517 0.00422
60 2.0 0.019785 0.04098 0.003444 -0.0363 0.05475 0.00415
120 1.2 -0.00546 0.056711 0.005217 -0.0004 0.05536 0.00521
120 2.0 -0.00556 0.055985 0.005076 -0.0005 0.05467 0.00507
U represents the sample size in terms of the number of sample units.

Table 2.17. Vithala results________________________________ _______
10 failures/unit, lOunits/class, 2 classes, f i g  ~  —6.9,//, = -4.6

CLASS=0 CLASS = 1
U" BIAS MAD MSE BIAS MAD MSE
60 1.2 0.020697 0.041681 0.003581 -0.03597 0.058057 0.005483
60 2.0 0.013391 0.040388 0.003168 -0.03618 0.054701 0.004147
120 1.2 -0.00546 0.056711 0.005217 -0.00139 0.055424 0.005197
120 2.0 -0.00556 0.055985 0.005076 -0.00055 0.054672 0.005074
U represents the sample size in terms of the number of sample units.

Table 2.18.The summary of the robustness test using the PWP method______
10 failures/unit, lOunits/dass, 2 classes, //g = -6 .9 ,//, = —4.6

CLASS = 0 CLASS = 1
Lf BIAS MAD MSE BIAS MAD MSE
60 1.2 0.107226 0.118733 0.022244 0.05836 0.10742 0.01782
60 2.0 0.106745 0.120436 0.022704 0.06133 0.11036 0.0184
120 1.2 0.061103 0.061406 0.007691 0.01809 0.04043 0.0025
120 2.0 0.061068 0.061251 0.007658 0.02001 0.03923 0.00249

® U represents the sample size associated with sample units.
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Table 2.19. Vithala results
10 failures/unit, 10units/class, 2 classes, //g = —6.9,//, = -4.6

CLASS = 0 CLASS=1
u" (9 BIAS MAD MSE BIAS MAD MSE
60 1.2 0.107011 0.118478 0.022124 0.059042 0.107879 0.017886
60 2.0 0.104911 0.122469 0.021196 0.060492 0.108437 0.016935
120 1.2 0.061839 0.062102 0.007844 0.017854 0.040589 0.002506
120 2.0 0.062393 0.062633 0.007916 0.019233 0.03865 0.002428

" U represents the sample size associated with sample units.

Another important contribution from Vithala (1994) comes from the statistical

analysis to confirm the model adequacy. The case of ^ = 0  iri a log-linear 

intensity function was assumed and a regression analysis ANOVA was 

performed by the GLM procedure in the SAS software. The intension of the study 

is to find the slope and intercept estimates in the case of^ = 0 ,

Ug = ln(0.001) = 6.9078, u, = In(0.01) = 4.6051 as theoretical values. Theoretically,

for an HPP = 0), the slope is equal to zero and the failure intensity equation is 

simplified to

,l(r) = exp^"*^=exp''.

The results taken from Vithala (1994) are listed in Table 2.20.

Table 2.20. GLM summary (Vithala (1994))

Units

Dq — Â 
t>j = A

Slope
estimate

Intercept
estimate

t
statistics®

0.001 0.000001 6.849663 0.001052 49.97
20 0.010 0.000281 4.518974 0.010902 39.97

0.001 0.000003 6.888710 0.001021 109.31
60 0.010 -0.000005 4.623224 0.009821 73.36

0.001 0.000004 6.878877 0.001029 109.31
120 0.010 -0.000005 4.623615 0.009817 73.64

'  : r statistics for.Ffo : intercept = ln (l/A )

2.2.4 Censoring of recurrent events

A common phenomenon in data collection is the existence of censoring data. 

Engelhardt et al. (1993) reviewed and explained the fundamentals of a censoring
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experiment, where the failure data in a repairable system are often modeled as a 

counting process. There are two types of right-censoring mechanisms depending 

on what criteria by which the data collection is tenninated: fixed time length or 

fixed failure number. According to Engelhardt et al., a process is said to be failure 

truncated if it is observed until a fixed number of failures have occurred, and it is 

said to t)e time truncated if it is observed for a fixed length of time.

Qureshi (1991) and Vithala (1994) simulated the recurring failure data by the 

manner of failure censoring, since ten failure events were generated from an 

NHPP-power-law and NHPP-log-linear processes, respectively, for each sample 

unit. In the circumstances when historical data are not available, data may be 

considered left-truncated. Moreover, if the number of failures is known even 

though the failure times are not recorded, the data are termed as left-censored. 

Engelhardt et al. (1993) derived maximum likelihood estimation formulas for left- 

truncate data, in which the likelihood function 2 (u,^) was de fine as follows (u 

and ^  denote the scale parameter and the shape parameter, accordingly).

If a power-law process has been truncate from the left at timeT, and time 

truncate from the right at time T;, with = r observe failure times, <... < r,., 

in the interval the likelihoe function l(A,«y) is given by Engelhardt et al.

(1993) as

(uSj
(=1

exp[- r ^ 1

exppu(T^-T')] r = 0.
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To involve covariate effects by dividing sample units in a population, Hu and 

Lawless (1996) have developed estimation procedures regarding a censoring 

experiment on automobile failure data.

Cai and Prentice (1995) created a way to simulate censorship with probability 

(j^ ,2^) for two streams from a bivariate distribution, where (J],j^) was a given set

of fixed probabilities. For instance, if (7^,^) = (0.5,0.9), the censoring procedures 

are executed as follows. First, since =0.9, then 1 0 % of the uncensored failure 

data Tk2 is reserved theoretically. Second, since = 0.5, then 10%x50% = 5% of 

the paired failure times (Tĵ ,,?^;) is remained in the second step. ^  e &/»(^rm(0 ,l) 

is defined as the censoring probability. Bowman (1996) generated recurring 

failure times (%,,%;) from a bivariate exponential distribution and independent 

censoring times (Q ,Q ) from an exponential distribution.

X
The probability of an observation being a censored time is >C] = — -— ,

where ^re parameters of the failure and censoring distributions.

The failure event time jT from the exponential distribution and the corresponding 

censoring time can be expressed as

^  = — ^ln([/^)e]q)(-^ x z)
4

C = - f ln ( f / J  

'  l- f [% > C ]

70



Thus, the observed event times are the minimal of and (C,,CJ. In

other words,

2  ̂= m in {^ ,C j 
2  ̂=min{A'2,C2}.

The Indicator function (T ,,/;) can be defined as 2 = 1 when 2 ' = Z ; othenvise 

2 = 0 .

Various sample sizes (number of recurrences) among sample units leads to a 

censoring experiment. In the setting of a right-censoring, the higher numbered 

failures are removed from the experiment. To select the censored units, a 

random number ranging between (0,1) is generated. If the random number is 

less than censoring probability , the unit is treated as a censored unit;

otherwise, it is an uncensored u n t The censoring time for those censored units 

is assumed as the last failure time in Qureshi (1991) and Vithala (1994).

However, the censoring time is determined by the follow-up time in most medical 

studies, such as WLW (1989).

The maximum partial likelihood function determines the estimate of regression 

coefficient for the Cox-based methods. The concern is on how the censoring 

(unequal sample size of failure times) affects the partial likelihood function, and 

how different it is compared with equal sample size. PWP (1981) addressed a 

partial likelihood function (with no censorship or equal sample size in failure 

counts) based on the PWP-TT method written as follows.
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£ ( « = n n % [exp{z,(L)A}
leRit̂ ,s)

In the case of censorship allowed, WLW (1989) developed a partial likelihood 

function with respect to failure event-specific stratum f  based on the WLW 

method.

4 O T = n

where

f  : event-specifc stratum f , 
z : subject,

: z* subject stratum in the risk set at , 
censoring indicator,

where A^ = i^  ^
( 0

To illustrate the partial likelihood function employed in the PWP method, five 

subjects are assumed with equal sample size zf, associated with failure counts.

In other words, zf, = = (^3 = ^ 4  = = 4. The procedures of how the partial

likelihood is formed can be illustrated below.

1. Assume the sorted Silure times in the first stratum ( f  = 1) from the five 

subjects are < r,, < r,, < ^ 3 ,^ = 1 .

2 . i„ . ( /9 ) = n
)=i
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)  A  } + G x p k  ( f , 4  )  A  }  +  e x p k i  ( f , 4  )  A  } + G x p { z , 2  ( f  ,4 }  +  e x p ( z , 3  ( f , 4  }

exi

exp{z^5 (4: ) A  ) + exp{z,i (f., } + exp{z,; (f,; )^,}+exp{z,3 (f,; ) /) ,}

_______________e x p k i ( f , i ) A ) _______________
expki (f,i ) A  }+ exp{z,2 (f,i }+ exp{z,3 (f,, }

GxpkaC^z) ^ }  ^ Gxp{ẑ i(f^i)/9,}
exp k z  (^2 );9 j+ exp {z ,i (f,2 )/?,} exp{z,i (f,i ))? ,}'

Likewise, in the other strata f  = 2^,4, ( ;9 ) ,( ;9 ) ,  (^ ) can be produced in

the same manner depending on the ordered tailure times . In the PWP method, 

to measure the general covariate effect ,

U P )  = n 4 (A) = 4 ., ( A  ( A) X 4 ^  ( A  X 4 .. (/)) -
5=1

3. The maximum likelihood equation, = 0 provides the m.I.e. y9.

For the censoring data with different sample size in failure counts, the WLW 

method has provided a way to produce the partial likelihood function. Assume the 

data are taken from five subjects, which contain unequal sample size of failures, 

(i.e., (^1 = 4,(̂ 2 = = 4, in a left-censoring experiment ). Assume

also that the sorted failure times in the first stratum (5 = 1 ) from the five subjects 

are < r,; < , 5 = 1, where the order is not necessarily the same as in

complete data depending on censoring times.
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ex]

expk* (C4)/?, ) + Gxp{z,; } + expki (f, }+ exp{z ,̂ (^4 )^  }+ expk^ (f, Jyg,}

_______________________e x p k ;( f ,5( ^ J ______________________
exp(z,; (f,; ) /? ,}+ exp k i (f,; )/?,} + exp{z,3 } + exp{z,2 (f,, }

exi
exP k i }+ exp{z,3 (f,i )^,}+exp(z,2 (f,, }

ex
ex (f.3 ) A  }+ exp{z,2 (f,3 }_

exp kz (^ 2)A }
ex

As the formula reveals, a censored unit does not have an impact upon the 

likelihood function through A^=0. However, the censored unit does contribute

through the risk set at time . Thus, as far as the censoring time or failure

time is involved in the risk set, it will contribute to the likelihood function.

As for the PWP method, the censoring time is not allowed in developing the 

likelihood function. Thus, the censoring times in implementing the PWP method 

are excluded from the dataset. Note that the censoring failure on the border will 

be kept in the dataset due to the conditionality approach. The partial likelihood 

function of the PWP method, where the data present a censoring pattern as 

below, has been proposed by WLW (1989).

4 ( « = n
i-l

ex

where

f  : event-specific stratum j , 
f : r* subject,
Æ subject stratum in the risk set at , 

: censoring indicator.
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where ^  .

The only adjustment to the PWP partial likelihood function is the removal of 

the data not in the risk set at time . Thus, the dataset needs to be

modified in the manner that the likelihood function is not underestimated, since 

there will be fewer components in the denominator after adjustment That is, the 

data that are not in the risk set should be removed. The determinant of data 

removal is when current and previous data are both censoring times.

The Andersen and Gill (1982), or AG method, employs the marginal 

martingale theory to manage the partial likelihood function in order to represent 

the general covariate effect by ^ . The counting process has intensity 

process . The local martingales on the time interval r e [o,l] are defined as 

(Andersen and Gill (1982)):

( 0  = ( 0  -  (  4  -

The local square integrable martingales (Andersen and Gill (1982))

The partial likelihood function in using the AG method with censorship can be 

expressed as below proposed by Cai and Prentice (1995).

U P ) = f i  "  n  4 . 2  ( «  >= - 1 1 4 ., ( « = n n
i~ \  i= l  i= \  1=1

exp{z^(r^)^}
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where is an at-risk indicator for subjects.

The solution ̂  to the partial likelihood score equation = 0  is expressed

as (Cai and Prentice (1995)).

5̂ 1 f=l Q

where (r) = (r) = (0 -  (A)exp{%  ̂(A)^}Â(,, ((fk),
0

(7^(r) is the estimated marginal martingale corresponding to 7 \,

Âo, ( 0  = [  Z  (^) exp^g (A))9}
_  W

Ÿ.N,xdh).
1=1

Kelly and Lim (2000) have categorized each possibility of the Cox-based PI 

models based on the risk set and the risk interval, and used a hypothetical 

example in Figure 2.8 to illustrate each partial likelihood function. There are three 

subjects^, jB, and C under observation, and each box represents a failure 

event and each dot represents a censoring event.

10

Time

15 20

Figure 2.8. A hypothetical example from Kelly and Lim (2000)
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Based on each partial likelihood function in each category, the PWP-GT, 

PWP-TT, AG, and WLW are selected and presented according to the 

hypothetical example. Kelly and Lim (2000) demonstrated the partial likelihood 

functions based on two primary categories: (1) Common baseline intensity model 

(2) Event-specific baseline intensity model.

(1) Common baseline intensity modei

i w = n n

(2) Event-specific baseline intensity model

\

i—1 k = l

The AG model belongs to the former category, while the PWP-GT, PWP-TT, and 

WLW models belong to the latter category.

According to the Chebychev inequality below, the magnitude of the variance

of ^  due to censoring plans or sample units can be explained in the law of large 

numbers (Guttman et al. (1982)) for a distribution in a general fbrni. If % is a 

random variable having finite mean // and variance , then
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Guttman et al. (1982) have derived the distribution of sample mean % with its 

variance cr^/n, where the probability that % falls outside the interval 

+ follows the chebychev inequality.

LetA = —

The Chebychev inequality becomes

P
O' V»/

Equivalently,
2

where g is an arbitrarily small positive number.

Comparing the utiliang the complete data (equal sample size (failure

events)) with ForgQg) utilizing the censored data, Fw^(^) > Fbr^()g) due to the 

concern of the sample size, according to the Chebychev inequality. However, 

censored data can still provide sufficient information if the sample size is chosen 

wisely. The experimental design (Sections 3.1.1-3.1.2) will explain howto decide 

the appropriate sample size.

2.2.5 Multiple event types

Lin (1994) has dealt with two failure types of recurring events using the Cox- 

based regression methods to analyze the effectiveness of the treatments. The 

paired failure times were generated from a bivariate exponential distribution 

(Gumbel (I960)) with correlation coefficient ^ = 025. Case (1): Lin reported a
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study of multiple failure types in colon cancer, where cancer recurrences and 

death were two types of failures. Obviously, the recurring events are all prior to 

death if a patient dies. As a result, two baseline intensity functions Ag, (0 ,^ (0

were employed in this colon cancer study. Lin concluded that the common 

treatment effect was not asymptotically equivalent since the correlation between 

two failure types was strong, Moreover, high correlation of two failure types of 

events also contributed to different results on naïve and robust variances. Case

(2): In another study of reducing infection rate by taking gamma interferon, the 

first three infections were selected to do the analysis while the three infections 

were treated as three different failure types in order to capture the dependence of 

infections. A time-varying covariate was utilized, where the covariate was equal 

to one when the patient had an infection within the past 60 days; othenwise, the 

covariate equaled zero. Lin observed that the WLW method is always valid, 

whereas the PWP and AG methods are valid when the dependence structure is 

correctly specified. Case (3): In a study of the diabetic retinopathy causing the 

occurrence of blindness, two failure types were defined as the blindness 

occurrences on left eye and the blindness occurrences on right eyes. Using the 

WLW method was valid, although the correlation between two eyes had been 

anticipated. The results indicated that the robust standard error estimates were 

smaller than the naïve estimates in this study. Case (4): in a genetic 

epidemiologic study of schizophrenia, the number of the relatives ranging from 1 

to 12 was selected to represent the multiple failure types. Age at onset of the
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illness and gender (two covariates) were suspected to affect the age at diagnosis 

of schizophrenia for a relative (faiiure time).

Lin (1993) developed MULC0X2 software in implementing Cox-based 

methods, such as the AG, PWP-total time, PWP-gap time, and WLW models. 

This code is capable of analyzing multiple failure types of recurring events. 

MULC0X2 required two types of data entries: control parameters (problem titles, 

file names, dimension number, and other relevant information) and data files 

(associated with identification numbers, failure times, status, covariates, and 

other indicator variables). Lin utilized the data from a schizophrenia study (twelve 

failure types: the number of relatives in a family ranging from one to twelve) and 

a chronic granulomatous disease, a CGD study (three failure types).

In the schizophrenia study (Lin (1993)), 487 first-degree relatives of 93 female 

schizophrenic patients were enrolled. The covariate vector is Z* =

(Z^,Z,2 ,....,Z,ut), where A: represents the Silure type and f denotes the subject.

In this case, twelve failure types were involved representing the number of 

relatives ranging between (1,12). Each record in the data set has the form of 

(fforr,e/Kf, , Z^  Z^^), where (jfarf.gw/) denotes the failure interval,

and status equals to one (1 ) when the subject is under observation, otherwise 

zero (0). Furthermore, two types of covariates ^  = age and gender, are

considered in the covariate vector. Thus, covariate vector Z ^  = ( ^ ,Z 2*) follows

this form as a record in the dataset.

The CGD study has 128 patients involved with using gamma interferon 

treatment to reduce the granuiomatous disease. To estimate the treatment effect
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for three failure types individually, three covariates Z,2 = (0,7^,0),

and Z(3 = (0 ,0 , ^ )  representing three failure types are employed in the analysis,

where z indicates the subject = 1 , for gamma interferon, = 0 , for placebo).

Since three failure types are employed in the analysis, three regression 

coefficients are yielded in representing the treatment effect for each failure type. 

To estimate a general treatment effect for three failure types, Z^ = is

employed as a single covariate in the estimating process. Two AG methods, 

semi-Markov and Markov processes, are implemented for comparison purposes. 

Likewise, two PWP methods, total time and gap time, are introduced in the 

analysis. The marginal approach gives a larger estimate of the common 

treatment parameter along with a larger standard error estimate (Lin (1994)). In 

general, the results from different methods all conclude that the treatment effect 

(by taking gamma interferon) reduces the infection sufficiently. One interesting 

fact in the analysis is that the treatment effect analyzed by the PWP method is 

not significant in the second and third infections.

In medical studies, the issue of treatment effects is the main concern, while 

engineering reliability has additionally emphasized the effects of multiple failure 

types, such as the major and minor Wlure types in machinery. Covariate 

modeling is approached to examine the covariate effects for major and for minor 

events. Let the treatment factor be defined as = 0 , for class=0; = 1, for

class=1 , and covariate vector = (Z^^Z,;) represents major and minor failure 

types, where z represents the sample unit and t  represents the failure type. 

That is, classO and classi for major events can be expressed in the forms of
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= (0,0) and (1,0). Likewise, classO and classi for minor events are in the 

forms of (Z i,Z ;) = (0 ,0 ) and (0 ,1).Two regression coefficients represent the 

covariate effects corresponding to major and minor events. To estimate the 

general covariate effect for both major and minor event types altogether, a single 

covariate Z* = , where = 0 , for class = 0  and = 1 , for class = 1 is

introduced in the regression model ( ; represents the sample unit and t  

represents the failure type). In this case, only one regression coefficient will be 

obtained, which represents the covariate effect based on the major or minor 

event type.

Hansen and Ascher (2002) examined an automobile for intermittent failures, 

which often lead to a series of unsuccessful repair attempts, and reported that 

repair times for intermittent failures cannot be assumed negligible and the model 

must be designed to account for machine downtimes. Kobbacy and Jeon (2002) 

considered both failure times and machine downtimes in the PI model for 

preventive maintenance (PM) in a deteriorating repairable system. Themeau and 

Hamilton (1997) proposed an alternative method of handling two types of 

recurrent events, and introduced the concept of discontinuous risk-free-intervals 

that may be applied in reliability engineering as the duration of perfomning major 

overhauls. A study of rhDNase in patients with cystic fibrosis has involved 

discontinuous risk-free-intervals due to the intervals of receiving an intravenous 

(IV) antibiotics and a seven-day risk-free period following the IV antibiotics. The 

two event types are (1 ) at risk of infection with stochastic interval of recurrence 

and (2 ) risk-free-intervals with deterministic interval.
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3 Research methodology

As an extension of the robustness study of the PWP-gap time (PWP-GT) 

model in Qureshi (1991) and Vithala (1994), other models are introduced to 

handle recurrent event reliability problems, namely the PWP-total time (PWP-TT), 

Andersen-Gill (AG), and Wei-Lin-Weissfeld (WLW) methods. In addition, more 

questions commonly encountered in the industry will be raised and investigated, 

such as incidence of right-censoring and multiple event types. Sections 3.1 and

3.2 are designated to investigate the two research questions: (1) How do the 

PWP-GT, PWP-TT, AG, and WLW methods compare in performance under right- 

censoring? (2) How do the multi-dimensional covariate modeling and 

discontinuous risk-free-intervals methods perform in estimating the regression 

coefficients for two failure types (major and minor)?

The first research objective examines the PWP-GT model robustness as a 

function of right-censoring severity measured by BIAS, MAD (mean absolute 

deviation), and MSE (mean squared error). The special case of common 

baseline intensity function (WLW and PWP-TT models) is investigated to 

compare with the AG model. The second research objective examines the 

robustness of the four reliability estimates (PWP-GT, PWP-TT, AG, and WLW) 

as a function of right-censoring severity for the special case of a stationary 

counting process. BIAS, MAD, and MSE are employed to measure the 

robustness of the three event-specific models (PWP-GT, PWP-TT, and WLW), 

while the common baseline model (AG) estimates the general covariate effect.

The third research objective examines multi-dimensional covariate modeling as
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an alternate method to deal with two types of complete (uncensored) recurrent 

events. In this study, two types of recurrent events are generated from the same 

data stream with common shape parameter forming proportional intensities. The 

fourth research objective examines risk-free-intervals within an NHPP process 

where there are two event types (major and minor) and the time interval following 

a major failure is substantial. The robustness study of the four methods (PWP- 

GT, PWP-TT, AG, and WLW) is conducted in terms of sample size, power-law 

shape parameter, censoring probability, and gap time ratio (discontinuous risk- 

free-intervals).

3.1 Robustness of semi-parametric methods under right censoring

Depending on the selection of the baseline intensity functions (common and 

event-specific) on PWP-TT and WLW models, there are two studies (NHPP 

(Section 3.1.1) and HPP (Sections 3.1.2)) conducted in each specified model 

(common or event-specific). Essentially, the PWP-TT and WLW models are 

designated as event-specific models. However, due to the model restriction, in an 

NHPP case and 10 failure events (for each sample unit), a common baseline 

model is required in order to have a robust model perfonnance. In the case of an 

HPP and 4 failure events (for each sample unit), an event-specific model can 

perform properly without the assumption of a common baseline.

3.1.1 NHPP

Using the Cox-based regression methods (PWP-GT, PWP-TT, AG, and WLW 

methods), model recuning failure events (with right-censorship), which follow an 

NHPP with power-law intensity function, and examine the robustness of the four
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methods. Selecting appropriate baseline hazards and risk interval is the key to an 

adequate model. Regarding the baseline hazard, there are two options to choose 

from: common baseline hazard function and event-specific hazard function. For 

risk interval, there are three options: total time model, gap time model, and 

counting process.

Censored data is generally present in field data. The left-censored case arises 

when the historic event times are not available but the number of missing events 

is known. The right-censored case arises when the subject or sample is 

withdrawn from observation (such as machines retired from service). Censoring 

from the right is chosen for examination in this research. The censoring 

probability controls the number of censored sample units in the experiment, and 

the number of censored events in this study is designed to follow a random 

pattern. The four Cox-based regression meüiods are compared based on the 

theoretical values of regression coefficients, which measure the covariate effects.

The experiment is conducted based on the following settings. Sample units 

( [ /)  are evenly divided into two groups defined by a single covariate named 

CLASS. Each sample unit produces 10 failure times (#  = 10) generated from an 

NHPP with a power-law form, by the Blanks & Tordon (1987) simulation 

algorithm as follows:

tn = * n - l

1/a

u

where

: a random variate generated from a (0 ,1) uniform distribution ,
: the shape parameter and the scale parameter of the power-law form, 

M : failure count.
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f : recurring failure times.

Two covariate levels (CLA8S=0 and CLASS=1) are defined by setting the scale 

parameter to = 0 .0 0 1  or = 0 .0 1 .

Simulation data generated from the Blanks & Tordon algorithm provide 

complete data, where each sample unit contains an equal number of failures (jy  ). 

In order to have various numbers of failure counts (i.e., right-censored recurrent 

data), two groups of sample units were classified, in which one group contains 

the sample units with complete data and the other group contains the sample 

units with right-censored data. The ratio (probability) of the sample units that 

have censored times to total sample units is defined as censored probability (7^). 

In the group of censored units, the right-censored pattern is set to be random. A 

random probability (7^) is generated to compare with The sample unit is

specified as a censored unit if ; othenwise, it is not a censored unit. To 

form recurring data (failure times in a sequence) with right-censoring in a random 

pattern, another random probability ( ^ )  is generated. In the censored group, it is 

a censored time if both of the logic rules are met: 1 ) the sample unit is a 

censored unit and, 2 ) the failure count is greater than .F, where F =  floor 

(#  x(ranuni (seed))) +1 , and the floor (argument) function is to return the largest 

integer that is less than or equal to the argument The data in the non-censored 

group are all complete data.

To implement the four Cox-Based regression methods (PWP-GT, PWP-TT,

AG, and WLW) requires formulation of three types of datasets (i.e., three formats 

for the same set of failure events, according to the theory underlying each
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methodology). First, for the AG method, the data set is.formed from the time 

interval with respect to the following counting process formulation:

m l  f  [jy(r + A) -  = 1 1 r  > r ]= A(r).

Thus, the logic rule to form the dataset is: 7̂  >7^. As a result, all the censored 

failure times are removed from the dataset since 7̂  = 7j when it is a censored 

event as stipulated for the AG method.

The concept of forming the dataset for the PWP method originates from the 

probability theory of conditionality. The later failure times after the failure 

count cannot be included into the dataset when the intensity function at the 

failure count is estimated. That is, for each censored unit, the censored times are 

removed from the dataset except for the first censored event count. The logic in 

generating the dataset for the PWP method is to remove the record if both of the 

following conditions hold: (1 ) the current record is marked censored and (2 ) the 

previous record is marked censored.

Due to the marginal probability theory of the WLW method, the dataset 

contains full records including all censored events, such that censored units 

remain in the risk set. The Lee-Wei-Amato (LWA) model (1994) is a special case 

of the WLW with common baseline intensity function, and is used in the case of a 

total time model. Likewise, the PWP-TT model in this study is a special case, 

where the baseline intensity function is set to the common baseline intensity 

function leading to a regression coefficient to explain general covariate effects.
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Three factors are chosen in the experimental design: number of the sample 

units ( [/) , shape parameter (^ ), and censoring probability (/^). 7, and 7, 

represent the number of units in each class. Table 3.1 contains the experimental 

design for the right-censoring experiments. The selection of the [ / ,  and 7̂

levels has taken the following considerations: (1) The parameter settings in the 

previous relevant works (Proschan (1963), Landers and Soroudi (1991), Qureshi 

et al. (1994), and Landers et al. (2001)) (2) Severe right-censorship may cause 

the small sample size ((7 =20) to have insufficient data. The selection of 7̂  levels 

takes into account the light, moderate, and heavy censoring. The selection of [7 

and ^  levels is taken from the parameter settings in the previous research works, 

and it has also considered the small, median, and large sample sizes for (7.

Table 3.1. Three-factor experimental design: ((7,^,7^)
N=10 fa i lu re  events/unit, uq= o .oo i,u j= o .o i

u Pc h h u Ô Pc h A u Pc h h
60 0,5 0.4 30 30 120 0.5 0.4 60 60 180 0.5 0.4 90 90
60 0.5 0.6 30 30 120 0.5 0.6 60 60 180 0.5 0.6 90 90
60 0.5 0.8 30 30 120 0.5 0.8 60 60 180 0.5 0.8 90 90
60 0.5 1.0 30 30 120 0.5 1.0 60 60 180 0.5 1.0 90 90
60 0.8 0.4 30 30 120 0.8 0.4 60 60 180 0.8 0.4 90 90
60 0.8 0.6 30 30 120 0.8 0.6 60 60 180 0.8 0.6 90 90
60 0.8 0.8 30 30 120 0.8 0.8 60 60 180 0.8 0.8 90 90
60 0.8 1.0 30 30 120 0.8 1.0 60 60 180 0.8 1.0 90 90
60 1.0 0.4 30 30 120 1.0 0.4 60 60 180 1.0 0.4 90 90
60 1.0 0.6 30 30 120 1.0 0.6 60 60 180 1.0 0.6 90 90
60 1.0 0.8 30 30 120 1.0 0.8 60 60 180 1.0 0.8 90 90
60 1.0 1.0 30 30 120 1.0 1.0 60 60 180 1.0 1.0 90 90
60 1.2 0.4 30 30 120 12 0.4 60 60 180 1.2 0.4 90 90
60 1.2 0.6 30 30 120 12 0.6 60 60 180 12 0.6 90 90
60 1.2 0.8 30 30 120 12 0.8 60 60 180 12 0.8 90 90
60 1.2 1.0 30 30 120 1.2 1.0 60 60 180 1.2 1.0 90 90
60 1.5 0.4 30 30 120 1.5 0.4 60 60 180 1.5 0.4 90 90
60 1.5 0.6 30 30 120 1.5 0.6 60 60 180 1.5 0.6 90 90
60 1.5 0.8 .30 30 120 1.5 0.8 60 60 180 1.5 0.8 90 90
60 1.5 1.0 30 30 120 1.5 1.0 60 60 180 1.5 1.0 90 90
60 1.8 0.4 30 30 120 1.8 0.4 60 60 180 1.8 0.4 90 90
60 1.8 0.8 30 30 120 1.8 0.6 60 60 180 1.8 0.6 90 90
60 1.8 0.8 30 30 120 1.8 0.8 60 60 180 1.8 0.8 90 90
60 1.8 1.0 30 30 120 1.8 1.0 60 60 180 1.8 1.0 90 90
60 2.0 0.4 30 30 120 2.0 0.4 60 60 180 2.0 0.4 90 90
60 2.0 0.6 30 30 120 2.0 0.6 60 60 180 2.0 0.6 90 90
60 2.0 0.8 30 30 120 2.0 0.8 60 60 180 2.0 0.8 90 90
60 2.0 1.0 30 30 120 2.0 1.0 60 60 180 2.0 1.0 90 90
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3.1.2 HPP

To relax the common baseline function applied on PWP-TT and WLW utilized 

in Section 3.1.1 (NHPP), four failure events are generated Aem an HPP with a 

right-censoring pattern and thus the event-specific baseline PWP-TT and WLW 

models can be employed. Unlike the gap time scale (PWP-GT), the total time 

scale (PWP-TT and WLW) has a misspecification problem. The gap time scale 

has been considered a better model to capture the dependence structure existing 

among Silure times than has the total time scale. Thus, in any rate of occurrence 

of Silures, utilizing the gap time scale can capture the trend and give a sound 

estimate of covariate effects, while the total time scale appears to overestimate 

covariate effects as the event count progresses. Besides, the total time scale is 

invariant to the shape parameter (<^), because ^  does not influence the 

likelihood function in the total-time model. The counting process (AG) adopts the 

total time scale, and thus becomes an estimator invariant to shape parameter.

Simulation data with right-censored pattems (the underlying distribution 

follows power-law NHPP intensity function) were generated by a modified Blanks 

& Tordon (1987) simulation algorithm. Since stationary data are specified, ^  = 1 

is set to convert a power-law NHPP into an HPP. There are two experimental 

factors (Table 3.2): experimental units (( /)  and censoring probability (7^). The 

levels for each factor are selected as follows: (1 ) = 60,120, and 180 and (2 )

7;,= 0, 0.4, 0.8, and 1.0. Note that 7̂  =0 represents complete data, which

provides the comparison with censored data. The selection of the (7 and 7̂  

levels has taken the following considerations: (1 ) the parameter settings from the
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previous relevant works (Proschan (1963), Landers and Soroudi (1991), Qureshi 

et al. (1994), and Landers et al. (2001)) (2) Severe right-censorship may cause 

the small sample size ( [ /  =2 0 ) to have insufficient data to perfonn the model 

analysis. The selection of levels takes into account the light, moderate, and 

heavy censoring. Likewise, the selection of sample units (Z7) levels considers the 

small, median, and large sample sizes.

Table 3.2. Two-factor experimental design: ([/, j^ )

N=4 failure events/unit, Uq := O.OOLUi =0.01
Number Censoring Units per class (7)

of units [ / probability ̂
h A

60 0.0 30 30
60 0.4 30 30
60 0.8 30 30
60 1.0 30 30
120 0.0 60 60
120 0.4 60 60
120 0.8 60 60
120 1.0 60 60
180 0.0 90 90
180 0.4 90 90
180 0.8 90 90
180 1.0 90 90

3.2 Modeling of multiple failure types in recurrent events

Multiple failure types are often observed in reliability failure data. The scope of 

this research is to investigate two situations involving recurrent failure processes 

composed of two failure types (major and minor). A multi-dimensional covariate 

may be used to model multiple failure types having common shape parameter 

forming proportional intensities. A major overhaul period may be defined as a 

risk-free interval to perform the maintenance/repair. In the aircraft industry, for 

example, a major overhaul of a substantial time interval is performed when a 

major failure or a fixed interval inspection is scheduled, whichever occurs first.
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3.2.1 Multi-dimensional covariate modeling

Lin (1993,1994) studied chronic granulomatous disease and employed a 

multiple dimensional covariate method to handle the recurrent data with multiple 

failure types. Lin considered three types of failure outcomes by defining three 

covariates with three dimensions. For the special case of two failure types, let 

two covariates Z,,Z2 represent the major and minor failure types in two 

dimensions. That is, the major failure type is coded as Ẑ  = [^,,,0], while the 

minor failure type is coded as Z^ = where =1 , if class= 1  ; j!,, =0 , if 

class=0; =1, if class=1; =0, if class=0. The corresponding regression

coefficient estimates are interpreted as the covariate effect applied to the major 

failure and minor failure types.

In industry, minor failure rate is typically higher than major Silure rate. Most 

researchers have formulated this problem as univariate. The Lin method of multi­

dimensional covariates permits consolidation of major and minor failures in a 

single, stratified model so long as the proportional intensity rule holds. The 

simulation method of Blanks & Tordon (1987) is modified to generate an NHPP 

with two failure types, where the underlying distribution follows a power-law 

intensity function. Most of the parameters remain unchanged except that the 

sample unit size has been increased due to the insufficient sample size of major 

events. In the process of generating the simulation data, there is a major failure 

event out of these ten recurring events (i.e., nine minor events) for each sample 

unit. To perform the event-specific intensity estimation, the dataset may not have 

any major event for a certain event count if the sample size is not large enough.
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This research suggests the minimal sample size of 120 for this study. The 

parameter setting is illustrated as follows: = 1 2 0 , f  = 1 0 , = 0 .0 0 1 , = 0 .0 1 .

The fixed time-invariant covariate vector = 1,2 is defined as follows:

Major event, Class=0: = (0 ,0 )
Major event, Class=1:Z, = (1,0)
Minor event, Class=0: Z^ = (0,0)
Minor event, Class=1 :Z 2 = (0 ,1).

Ten failure events are generated for each sample unit. To determine the time 

of major failure event in the counting process, a uniformly distributed variate 

((7(0,1)) is introduced to decide the event number (F ) for occurrence of the

major failure. As a consequence, the f *  event time to have a major failure is 

generated as:

F  = FLOOF(10 X Æ4M/N7(&EFD)) + 1 .

The remaining nine events are minor failure events. In this way, a counting 

process contains major and minor failure events, where the one major failure is 

inserted randomly among the -1 minor failures. The event number for the 

major failure is randomly selected depending on the F  value. Large enough 

sample size is generated in order to obtain sufficient data for each failure count in 

a PWP-GT model. Two factors are chosen in the experimental design: number of 

the sample units ((7) and shape parameter (< )̂. Table 3.3 provides the 

experimental design for the covariate modeling. The selection of the ^  level has 

taken the parameter settings from the previous relevant works (Proschan (1963), 

Landers and Soroudi (1991), Qureshi et al. (1994), and Landers et al. (2001)).
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Table 3.3. Two-factor experimental design: (77,^)
N=10 failure events/unit, = 0.00 l,Oj = 0.01

Number Shape parameter Units per class ( /)
of units ^ 0̂ 4

120 0.5 60 60
120 0.8 60 60
120 1.0 60 60
120 1.2 60 60
120 1.5 60 60
120 1.8 60 60
120 2.0 60 60
180 0.5 90 90
180 0.8 90 90
180 1.0 90 90
180 1.2 90 90
180 1.5 90 90
180 1.8 90 90
180 20 90 90
240 0.5 120 120
240 0.8 120 120
240 1.0 120 120
240 1.2 120 120
240 1.5 120 120
240 1.8 120 120
240 2.0 120 120

3.2.2 Discontinuous risk-free-intBrvais modeiing

The second method to approach multiple failure types is applying the concept 

of discontinuous risk-free-intervals, proposed by Themeau and Hamilton (1997). 

A study of rhDNase in patients with cystic fibrosis involved a seven-day 

discontinuous risk-free^interval, initiated by intravenous (IV) administration of 

antibiotics (Themeau and Hamilton (1997)). For instance, suppose three failures 

have taken place at days 25, 60, and 90, where two days of performing a major 

overhaul are required after the second failure. The data records, expressed as

for the three failure times in the PWP-GT model, can be written as 

(1,0,25,1% (2,25,60,1% and (3,62,90J% where (h,r;,f2 ,jïaAfy) denotes (failure count, 

start time, stop time, (0 ,1 ) indicator variable for censor (0 ) event or failure (1 )
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event). The value = 90 of the third failure with a major overhaul records global 

time to failure with the third failure coinciding with a risk-free-interval. However, 

the consideration of major overhaul of duration D requires a change from 

interval to interval (r̂  + ^,^ 3 ). In the aircraft industry, the duration D could 

be as long as one year after flying for 3000 hours for a major overhaul or as short 

as a few hours for a minor repair. A robustness study examines how the 

magnitude of D affects the PWP-GT model, as measured by the regression 

estimates (ygj.

In this study, simulated recurring data are generated from a modified Blanks & 

Tordon algorithm (1987). To determine the time to perform major overhauls in the 

counting process, a uniformly distributed (7(0,1) random variate is introduced to 

select the event number F , where the major overhaul is performed. The major 

overhaul is arranged after the F'* event, and we assume that a period D is 

required to perform a major overhaul. As a consequence, the next event time, 

which belongs to the (F+1)* event, occurs depending on the F * event time plus 

the major overhaul duration. For instance, if ten failure events (failure count7^=1 

to 1 0 ) are generated for each sample unit in the database, then the time point to 

perform a major overhaul occurs at the F * event time. The SAS statement 

syntax to derive F  is 

F  = FLOOF(l 0 X Æ4M/?Y7(&EF0)) +1.

As a result, three FOR loops in the SAS program are created as follows: (1) 

F0RF;=1 to F , (2) F0R 7;=F+1, and (3) FOR 7 ;=F  + 2  to # ,  where JV
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denotes the last event number. To assure the adequacy of event numbers, two 

extreme values of F equal to 1 and N are examined. First, whenF = 1 , three 

loops are derived as (1) FOR ^= 1 , (2) FOR ^= 2 , and (3) FOR 3 to N.

Second, when F = jy , three loops t)ecome (1) FOR to 7/, (2) FOR 

f;= 7 /+ 1 , and (3) FOR 2%.= #+ 2  to # .  The logic in the third loop (i.e. FOR 

jy + 2  to jy ) requires the following statement:

IF > jy  THEN DELETE.

The duration to perform a major overhaul is inserted into the interval ,

which makes the interval of risk become (r^ where new event time

is determined by + D in the Blanks & Tordon formula. As a consequence, the 

gap time and (r^ have been altered compared to the recurrent data without 

the interruption of a major overhaul interval. However, the discontinuous risk- 

free-intervals concept in Themeau and Hamilton (1997) is different in terms of 

(^f , while the gap time remains unchanged. "For instance, in a study of

patients with hip fracture, a subject who fractured at day 100, followed by a 15 

day hospital stay and then 300 more days of uneventful follow-up would be 

represented as two at-risk intervals: (0,100] and (115,415]" (Themeau and 

Hamilton (1997)). The gap times of 100 days and 300 days remain the same, 

while the risk interval has been shifted fonward from {(O l̂OO], (l00,400]} to 

{(0,100],(115,415]}.

The magnitude of D is determined based on the previous gap time , 

where f  is a random variate indicating the F * event is a major failure event;
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otherwise, a minor failure event. In other words, the relationship between D and 

is.

Z) = X I  ,

where
jR is the gap time ratio that controls the magnitude of D ,

represents gap time associated with a minor event prior to a major event, 
f  is the event number that represents the major failure.

The concept of utilizing the gap time ratio JR in determining the major overhaul 

duration strengthens the model, since there are three types of power-law 

intensity functions (increasing rate of occurrence of failures (IROCOF), constant 

ROCOF, and DROCOF). The recurrent failure interval can vary from one time 

unit to a large value depending on the shape parameter.

The parameter settings are as follows when a discontinuous risk interval 

model is associated with the repair time: (1) scale parameters in CLASSO and 

CLASS 1 are set to 0.001 and 0.01; (2) number of fa ilu re  ^  = 10; (3) F * event 

represents a major Silure, followed by a major overhaul; and (4) seed numbers 

for three replicates are 539, 255, and 59. The magnitude of D is examined as 

the primary factor that affects the performance of the semi-parametric PI models. 

In the experimental design for the discontinuous risk interval model, there are 

three e)Ç)erimental factors: (1) Number of the experimental units ( [/) , (2) Shape 

parameter (^  ), and (3) Gap time ratio (72) that controls the major overhaul 

duration (D ). 7̂  and represent the number of units in each class.

The simulation data in the form of discontinuous risk intervals is illustrated by 

the following numerical example: Let = 1 0  failure events/unit,

Ug = 0.001,u, = 0.01, ([/, J,72) = (120,1.5,0.50), and seed = 539. Two units are
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chosen for demonstration purposes and each unit has 10 failure times in the form 

of risk interval =(2],T) Also let 7 = 7 -7^. Note that F  represents the major

failure event. Thus, the major overhaul takes place immediately after the F * 

event. As is shown in Table 3.4, the first item has generated F  =7 resulting in a 

discontinuous risk interval starting from the end of 7* failure, at time 211.71966. 

Since the major overhaul duration D =F x T = 0.5 x 25.60324=12.80162, the risk- 

free-interval ends after 211.71966+0=224.52128, which is the beginning of the 

risk interval for the 8* failure. Likewise, for the second unit, F  =4. 7] for the S'* 

failure is changed to 227.10957 + 0.5 x 81.95362 = 268.08637.

Three factors are chosen in the experimental design: number of the sample 

units ([/), shape parameter («^), and gap time ratio (F ). Table 3.5 contains the 

experimental design for discontinuous risk interval experiments. Small sample 

size [ /  = 20 is introduced to reflect the poor performance of the PWP-GT model 

as the gap time ratio increases. The selection of the [ / ,  ^ , and F levels has 

taken the following considerations: (1) the parameter settings from the previous 

relevant works (Proschan (1963), Landers and Soroudi (1991), Qureshi et al. 

(1994), and Landers et al. (2001)) (2) Gap time ratio reflects the repair/overhaul 

duration that starts from an immediate repair (zero time) to a five times of the 

previous interarrival failure time (T).
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Table 3.4. Simulation dataset example

Item ^ T Y F » Item 7] T Y F
1 1 0.00000 25.70391 25.70391 7 1 2 0.00000 7.53385 7.53385 4
2 1 25.70391 87.10256 61.39865 7 2 2 7.53385 135.05711 127.52327 4
3 1 87.10256 101.09154 13.98898 7 3 2 135.05711 145.15595 10.09884 4
4 1 101.09154 119.87100 18.77946 7 4 2 145.15595 227.10957 81.95362 4
5 1 119.87100 165.66447 45.79347 7 5 2 268.08637 270.69678 43.58721 4
6 1 165.66447 186.11641 20.45194 7 6 2 270.^678 276.21527 5.51849 4
7 1 186.11641 211.71968 25.60324 7 7 2 276.21527 305.22196 29.00669 4
8 1 224.52128 232.26621 20.54656 7 8 2 305.22196 392.22638 87.00443 4
9 1 232.26621 237.85589 5.58967 7 9 2 39222638 393.61682 1.39044 4
10 1 237.85589 258.58578 20.72989 7 10 2 393.61682 417.92776 24.31095 4

Table 3.5. Three-factor experimental design:
N=10 failure events/unit, uq=o.ooi,uj=o.oi

U Ô h h u S h h U 5 h h
20 0.5 0.001 10 10 60 0.5 0.001 30 30 120 0.5 0.001 60 60
20 0.5 0.1 10 10 60 0.5 0.1 30 30 120 0.5 0.1 60 60
20 0.5 0.3 10 10 60 0.5 0.3 30 30 120 0.5 0.3 60 60
20 0.5 0.5 10 10 60 0.5 0.5 30 30 120 0.5 0.5 60 60
20 0.5 3.0 10 10 60 0.5 3.0 30 30 120 0.5 3.0 60 60
20 0.5 5.0 10 10 60 0.5 5.0 30 30 120 0.5 5.0 60 60
20 0.8 0.001 10 10 60 0.8 0.001 30 30 120 0.8 0.001 60 60
20 0.8 0.1 10 10 60 0.8 0.1 30 30 120 0.8 0.1 60 60
20 0.8 0.3 10 10 60 0.8 0.3 30 30 120 0.8 0.3 60 60
20 0.8 0.5 10 10 60 0.8 0.5 30 30 120 0.8 0.5 60 60
20 0.8 3.0 10 10 60 0.8 3.0 30 30 120 0.8 3.0 60 60
20 0.8 5.0 10 10 60 0.8 5.0 30 30 120 0.8 5.0 60 60
20 1.0 0.001 10 10 60 1.0 0.001 30 30 120 1.0 0.001 60 60
20 1.0 0.1 10 10 60 1.0 0.1 30 30 120 1.0 0.1 60 60
20 1.0 0.3 10 10 60 1.0 0.3 30 30 120 1.0 0.3 60 60
20 1.0 0.5 10 10 60 1.0 0.5 30 30 120 1.0 0.5 60 60
20 1.0 3.0 10 10 60 1.0 3.0 30 30 120 1.0 3.0 60 60
20 1.0 5.0 10 10 60 1.0 5.0 30 30 120 1.0 5.0 60 60
20 1.2 0.001 10 10 60 12 0.001 30 30 120 1.2 0.001 60 60
20 1.2 0.1 10 10 60 12 0.1 30 30 120 1.2 0.1 60 60
20 12 0.3 10 10 60 12 0.3 30 30 120 12 0.3 60 60
20 12 0.5 10 10 60 1.2 0.5 30 30 120 1.2 0.5 60 60
20 1.2 3.0 10 10 60 12 3.0 30 30 120 12 3.0 60 60
20 1.2 5.0 10 10 60 12 5.0 30 30 120 1.2 5.0 60 60
20 1.5 0.001 10 10 60 1.5 0.001 30 30 120 1.5 0.001 60 60
20 1.5 0.1 10 10 60 1.5 0.1 30 30 120 1.5 0.1 60 60
20 1.5 0.3 10 10 60 1.5 0.3 30 30 120 1.5 0.3 60 60
20 1.5 0.5 10 10 60 1.5 0.5 30 30 120 1.5 0.5 60 60
20 1.5 3.0 10 10 60 1.5 3.0 30 30 120 1.5 3.0 60 60
20 1.5 5.0 10 10 60 1.5 5.0 30 30 120 1.5 5.0 60 60
20 1.8 0.001 10 10 60 1.8 0.001 30 30 120 1.8 0.001 60 60
20 1.8 0.1 10 10 60 1.8 0.1 30 30 120 1.8 0.1 60 60
20 1.8 0.3 10 10 60 1.8 0.3 30 30 120 1.8 0.3 60 60
20 1.8 0.5 10 10 60 1.8 0.5 30 30 120 1.8 0.5 60 60
20 1.8 3.0 10 10 60 1.8 3.0 30 30 120 1.8 3.0 60 60
20 1.8 5.0 10 10 60 1.8 5.0 30 30 120 1.8 5.0 60 60
20 20 0.001 10 10 60 2.0 0.001 30 30 120 2.0 0.001 60 60
20 2.0 0.1 10 10 60 2.0 0.1 30 30 120 2.0 0.1 60 60
20 20 0.3 10 10 60 2.0 0.3 30 30 120 2.0 0.3 60 60
20 2.0 0.5 10 10 60 20 0.5 30 30 120 2.0 0.5 60 60
20 20 3.0 10 10 60 2.0 3.0 30 30 120 2.0 3.0 60 60
20 20 5.0 10 10 60 2.0 5.0 30 30 120 2.0 5.0 60 60
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4. Semi-parametric proportional intensity models robustness 
for right-censored recurrent W ure data

4.0 Abstract

This paper reports the robustness of the four proportional intensity (PI) 

models: PWP-gap time (PWP-GT), PWP-total time (PWP-TT), Andersen-Gill 

(AG), and Wei-Lin-Weissfeld (WLW), for right-censored recurrent failure event 

data that follow a Non-homogeneous Poisson Process (NHPP). The results are 

beneficial to practitioners in anticipating the more W orable applications domains 

and selecting appropriate PI models in applying to right-censored recurrent 

failure data. This experimental design has incorporated three levels of censorship 

severity (light, moderate, and severe) to evaluate these four proposed PI models. 

The PWP-GT and AG prove to be models of choice, evaluated in terms of the 

bias, mean absolute deviation, and mean squared error of covariate regression 

coefficients over ranges of sample sizes, shape parameters, and censoring 

severity encountered in engineering applications. The more favorable 

engineering applications ranges are recommended. At the smaller sample size 

({/ =60), the PWP-GT proves to perform well for moderate right-censoring 

(0.0 0.8) and moderately decreasing, constant, and moderately increasing

rates of occurrence of failures (power-law NHPP shape parameter in the range of 

0.8 < ^ 1.8). For the laige sample size ( [ /  =180), the PWP-GT performs well for 

severe right-censoring (0.0 ^  ^  < 1.0) and moderately decreasing, constant, and

moderately increasing rates of occurrence of failures (power-law NHPP shape 

parameter in the range of 0.8 < ^  < 2.0 ). The AG model proves to outperform the
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PWP-TT and WLW for stationary process (HPP) across a wide range of right- 

censorship (0.0 ̂  < 1.0 ) and for sample sizes of 60 (30 per class) or more.

Keywords; repa/rab/e systems refaWrty, rfght-cerrsorfng, recurrent events,

proportrdnat /ntensrty mode/s

Nomenclature

Acronyms

AG

C.l.

DROCOF

HPP

IROCOF

i.i.d

LWA

MTTF

MAD

MSE

NHPP

PH

PI

PWP

PWP-GT

PWP-TT

WLW

A/otat/on

A(nz)

4)(0

Andersen and Gill model 

Confidence interval

Decreasing rate of occurrence of failures

Homogeneous Poisson Process

Increasing rate of occurrence of failures

Independent and identically distributed

Lee, Wei, and Amato model

Mean time to failure

Mean absolute deviation

Mean squared error

Non-homogeneous Poisson Process

Proportional hazards

Proportional intensity

Prentice, Williams, and Peterson model

Prentice, Williams, and Peterson-gap time model

Prentice, Williams, and Peterson-total time model

Wei, Lin, and Weissfeld model

Censoring time for the r* subject of the type of Wures 

Proportional hazard function 

Baseline hazard function 

Numt)er of sample units in class ^

103



A Number of sample units in class 1 

i.i.d. Independent and identically distributed

#  Successive failure count

jV(r) Random variable for the number of failures in (o ,r ] ;  a counting

process

M An integer counting successive failure times; a stratification

indicator subscript 

7̂  Censoring probability

s.d. Standard deviation

7],7^ The beginning and end of an event; bivariate exponential variables

7], Random variable for cumulative time of occurrence of the yz* failure

Cumulative time of occurrence of the failure; a realization of 7], 

Sample size (number of units)

^  Observation time

An at-risk indicator in the AG model 

Z(r) Covariate process up to time r

z ( t x l )  vector of covariates, z = (z,,z2 ,...zty

t  X1 ) vector of stratum-specific regression coefficients

P — (A ’^2 5—jÆ)

^  Shape parameter of a power-law NHPP

A Indicator of a failure or censored time; limit to time zero

Baseline value of A for power-law NHPP

^ (r)  Baseline intensity function

^  (r) Stratum-specific baseline intensity function

A(/;z) Proportional intensity function

u Scale parameter of a power-law NHPP

Ug Baseline value of u, the scale parameter of a power-law NHPP

U; Altemate value of u, the scale parameter of a power-law NHPP
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cr Standard deviation

* Denotes an estimator

Denotes the transpose of a vector

4.1 Introduction

Failure time data on a repairable system are realizations of a stochastic point 

process, in which the instantaneous rate of occurrence of failures (ROCOF) is 

A(f). Prentice, Williams, and Peterson (PWP) [1] proposed a semi-parametric 

approach to model recurrent failure event data from a repairable system using 

two methods: PWP-GT (gap time) and PWP-TT (total time). Several researchers 

have subsequently proposed altemate modeling methods by modifying the risk 

set (common or event-specific baseline intensity function) and the risk interval 

(gap time, total time, or counting process). These include the AG (Andersen-Gill) 

[2] and WLW (Wei-Lin-Weissfeld) [3] models.

Cox proposed the distribution-free (semi-parametric) proportional hazards 

(PH) model in 1972 [4]. The Cox-based regression models (PWP-GT, PWP-TT, 

AG, and WLW) have been applied to recurring events in medical studies 

(biostatistics field), such as recurrent infections of a patient. For engineering 

applications, Landers and Soroudi [5], Qureshi et al. [6], Vithala [7], and Landers 

et al. [8] have investigated robustness of the PWP-GT model, where the 

underlying recurrent failure time data are from a Non-homogeneous Poisson 

Process (NHPP) with a power-law or a log-linear intensity function. These 

references also report the engineering applications of the PWP-GT model cited in 

the literature. Qureshi et al. [6] found that the PWP-GT model performs best for 

constant and moderately increasing rate of occurrence of failures (IROCOF) and
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decreasing rate of occurrence of failures (DROCOF) and for larger sample sizes 

from power-law NHPPs. Vithala [7] considered the case of log-linear increasing 

ROCOF, and concluded the PWP-GT model performs best for moderately 

increasing ROCOF and for larger sample sizes. Both Qureshi et al. [6] and 

Vithala [7] have examined robustness of the PWP-GT model for the complete 

(uncensored) data. However, the phenomenon of censoring data is generally 

present in field data. This research has extended their work to the important case 

of right-censorship and has examined other semi-parametric PI models (PWP-TT, 

AG, and WLW).

Compared to the extensive literature on applications of the Cox-based 

regression models in the biostatistics field, there have been few reported 

engineering applications. Abundant federal funding received in biostatistics / 

medical research has advanced the PI models to become well developed and 

widely referenced. PI models for medical applications could also apply to 

recurring failure/repair data in engineering problems. The AG, PWP-GT, PWP-TT, 

and WLW models are potentially powerful analytical tools for engineering 

practitioners as they become better recognized and understood. This paper 

reports the robustness of the PWP-GT, PWP-TT, AG, and WLW models for right- 

censored recurrent failure event data. The results are beneficial to practitioners in 

anticipating the more favorable applications domains and selecting appropriate 

PI models.
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4.2 Seml-parametrlc Proportional Intensity models

Cox [4] proposed a PH formulation to include explanatory variables 

(covariates) in survival models. PWP proposed an extension of the Cox model to 

stochastic processes and applied the approach to model recurring infections in 

aplastic anemia and leukemia patients having received bone-marrow transplants. 

This application involved several subjects and a small number of events (up to 

five) for each subject. The paper by PWP did not address the baseline intensity 

function but rather reported the relative risks for the test and control groups. In 

reliability and maintainability engineering applications, a number of authors have 

applied the semi-parametric PI (PH) model, for example, Ansell and Phillips [9], 

Ansell and Phillips [10], Landers and Soroudi [5], Qureshi et al. [6], Ansell and 

Phillips [11], Landers et al. [8], Ansell et al. [12], and Ansell et al. [13]. A 

collection of the PI model applied to different industries includes: marine gas 

turbine engines (Asher [14]), semiconductor, electrical, and pipeline industries 

(Ansell and Phillips [11]), U.S. Army main battle tank (Landers et al. [8]), water 

supply industry (Ansell et al. [12], [13]), etc. Ascher [14] illustrated the use of the 

PWP model for analysis of reliability for marine gas turbine engines. Ascher and 

Feingold [15] suggested application of the PWP model in the field of reliability 

engineering. Dale [16] applied the PWP approach to simulated data for a 

reliability growth program with design improvements implemented after each of 

the five stages, resulting in a DROCOF. Wightman and Bendell [17] and Bendell 

et al. [18] cited the PWP model and advised caution in application for engineering 

studies.
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Qureshi et al. [6] performed a robustness study to determine how well the 

PWP'GT method performed when applied to data from a failure process that was 

actually parametric (specifically the NHPP with power-law intensity function). The 

2 (7 bounds of the PWP-GT estimates can cover the true values with few 

exceptions. The PWP-GT method performed well, except at small values of 

shape parameter < 0.6). The PWP-GT method was best for larger sample size 

and for moderately decreasing, constant, and moderately increasing ROCOF. 

The validation process for the case of an HPP in Section 2.2.3 (also refer to 

Table 2.10) indicated that the estimated AfZTF (mean time to failure) difkrences 

between the PWP-GT model and theoretical values were not statistically 

significant. As for the PWP-GT estimates of the covariate regression coefficient, 

the true value of coefficient ^  lies within the 2 cr confidence bounds on the

estimate for 1.0 < ̂  ^ 1.4. The PWP-GT method tends to underestimate jg for 

a DROCOF (e.g., BIAS= -26% at = 0.5) and overestimate for an IROCOF 

(e.g., BIA8= 19% at ,̂  = 3.0).

The AG model (Andersen and Gill [2]) and the WLW model (Wei et al. [3]) are 

widely cited in the literature. Bowman [19] and Lin [20] surveyed and evaluated 

the PWP-GT, PWP-TT, AG, and WLW methods. Bowman identified the PWP-GT 

model as superior and then used it to analyze needle-stick injury data. Wei and 

Glidden [21] have reviewed the Cox-based methods designed to model recurrent 

data, and summarized the strengths and weaknesses for each method. In a 

commentary on the Wei and Glidden paper, Lipschutz and Snapinn [22] stressed 

the two concepts of "event times" and "risk sets" as crucial to choosing the
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appropriate model. Event elapsed times are related to the total time, gap time, 

and counting process. The PWP-TT and WLW are modeled by total time, while 

only PWP-GT is modeled by gap time. The risk interval of the AG model belongs 

to the counting process dass. Intuitively, total (global) times within a subject are 

highly correlated. The total time model may indicate large treatment effect 

throughout the entire study, even though the gap time model has indicated little 

treatment effect beyond a certain recurrence. The counting process concept of 

the AG method implies each recurrence is not affected by previous events, and 

does not contribute to future events.

The risk set consists of the subjects at risk for a specified event (e.g., failure). 

There are three types of risk sets: conditional (e.g., PWP), counting process (e.g., 

AG), or marginal (e.g., WLW). As a marginal method, the WLW method assumes 

a subject is at risk regardless of event count until the observation for the subject 

terminates by censoring. The AG method also provides an index of a general 

covariate effect, which is expressed by the common baseline hazard 

(unrestricted risk set). However, a subject in the PWP method has event-specific 

baseline hazards (restricted risk set), in that the proportional intensity of event t  

only considers the subjects that have experienced (A^-1) events. Lipschutz and 

Snapinn [22] suggested guidelines as follows in choosing the appropriate models:

* Use total time, common baseline hazard (unrestricted risk set) when the 

general effect is of interest.
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# Use gap time, event-specific baseline hazards (restricted risk set) when 

the primary concern is how the treatment will affect the recurring events 

beyond the first occurrence.

Kelly and Lim [23] noted that risk interval can be defined by three formulations 

{(1) gap time, (2) total time, and (3) counting process} demonstrated in Fig. 

4.1{a)-(c). Risk interval determines whether a model is marginal in the total time 

or conditional in the gap time. The risk interval of any event in total time is not 

influenced by any previous events, but measures time from entry into the 

experiment (beginning of observation). However, the risk interval of the gap time 

begins from the end of last event (Kelly and Lim [23]). Counting processes use 

the total time scale and share the same elapsed time as does the gap time model. 

However, the risk interval starts from the previous event instead of the entry time. 

Based on the common or event-specific baseline intensities, the risk set is 

labeled as either unrestricted or restricted. Kelly and Lim [23] defined three 

possible risk sets {(1) unrestricted, (2) restricted, and (3) semi-restricted} in 

deciding which sample units are at risk of contributing to event t . Kelly and Lim 

[23] employed the concepts of the risk interval and risk set and categorized the 

AG, PWP-GP, PWP-TT, WLW, LWA (Lee-Wei-Amato), and other methods.
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0 5 10 15 Time
(a) Gap time

A

0 5 10 15 Time
(b) Total time

0 5 10 15 Time

(c) Counting process

Fig. 4.1(a)-(c) Risk interval formulations (Kelly and Lim [23])
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4.3 Models and methods

Sections 4.3.1-4.3.4 review the semi-parametric Cox regression model for 

single event and the related regression models for recurrent events. Section

4.3.5 reviews the NHPP with power-law intensity function. Section 4.3.6 

describes the method used to assess the robustness of the four semi-parametric 

PI models for the case of censored data from a true but unknown power-law 

NHPP.

4.3. f  Cox /egress/on mode/

For the case of a time-to-failure random variable, Cox [4] proposed a PH 

regression model of the form:

A(r; z) = Ag (t)exp(p'z), (1 )

where p is the regression coefficient vector and z represents a covariate vector. 

The PH model is composed of two parts: baseline hazards function Ao(r) and an 

exponential link function, where p is designated to measure the covariate effect. 

The Cox model can be used to describe the semi-parametric distribution of time- 

to-failure for non-repairable items with covariates. Under proportional hazards, 

the ratio of the hazard functions of two units and 5 ) with covariate vectors z^ 

and Zg is constant over time. The covariates have a multiplicative effect on the 

baseline hazard function. When the baseline hazard function is fully specified 

(e.g.,Weibull) the analytical procedure is termed a parametric method. 

Alternatively, Ag(r) can be left arbitrary, in which case the procedure is termed

semi-parametric.
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4.3.2 Semz-paramefnc A/MP mode/

The PWP model is a generalization of the semi-parametric Cox proportional 

hazard function to a proportional intensity function A(r;z) for the case of repeated 

failure events. Under proportional intensities, the ratio of the intensity functions of 

two units (v4 and 3 ) with covariate vectors and Zg is constant over time. The 

covariates have a multiplicative effect on the baseline intensity function. When 

the baseline intensity function is fully specified (e.g., power-law or log-linear) the 

analytical procedure is termed a parametric method. Alternatively, ^ ( r )  can be

left arbitrary, in which case the procedure is termed semi-parametric.

Given the counting and covariate processes at time f , the general semi- 

parametric intensity function was defined by PWP as follows:

I # (r), Z (r)} = lim Pr{ r ^  < r  + A | Z ( r ) } /A , (2)

where A (̂r) represent a random variable for the number of failures in (0,r], Z(r) 

denotes the covariate process up to time r , and A limits the time span to zero. 

Among the semi-parametric regression models specified by PWP were the 

following:

f  IFP -  GT : #  I AT(r), Z(r)} = (f -  ) exp[p;z(r)] (3)

f  IFP -  7T : A{r I AT(r), Z(r)} = (r) exp[P[,z(r)]. (4)

In the PWP-GT model of Eq. (3), the time metric is the interval between times 

of failure and r , , defined as gap time. The PWP model stratifies a failure data

set based on the failure event count. When a unit is placed into operation it has 

experienced no failures and so resides in stratum 1 (» = !), and when the first
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failure occurs the unit moves to the second stratum (n = 2). In general, the unit 

moves to stratum » immediately following the («-1 )" failure and remains there

until the failure. Unlike the gap time model, the limitation of the event-specific 

total time model restricts the numt)er of recurring events. Ten recurring failure 

events generated from a power-law NHPP in this study have shown a highly 

correlated relationship. Thus, the PWP-TT model is modified to a special case of 

Eq. (4), where the baseline intensity function is set to a common baseline 

intensity function denoted as (r) = Ag(r).

4.3.3 Sern/-parame&7C AG mode/

Andersen and Gill [2] developed the AG method as an extension of the Cox 

PH model, to accommodate recurring events in a counting process. The AG 

method explains general covariate effects (common baseline intensity function in 

the concept of risk set), since each event count re-starts the Silure process, and 

thus does not feature event-stratifying effects. The risk interval of an AG model 

follows a counting process associated with recurring events, where recurrences 

are independent and identically distributed (i.i.d.) replicates of 

(# ,y ,Z ), and the probability of the occurrence of two events at a given time is 

zero. Symbols: (/y,T,Z) represent the successive failure count, an at-risk 

indicator, and covariates. Thus, the risk set of the (» - !) '' event is identical to the 

risk set of the event. The AG model is defined as

AW (r) = w (t)^  (t)exp{p X  Z w (r)}, (5)
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where is an at-risk indicator and = 1 unless the subject is withdmwn 

from the study.

4.3.4 Se/n/-paramefnc l/HI/Vmode/

WLW proposed a marginal method, e^qpanded from the conditional PWP 

method, in dealing with recurrent failure data. Compared to the PWP method, the 

WLW method has greater or equal risk set, depending on the sample size 

associated with the failure count. The PWP method estimates the intensity 

function by considering the subjects having a complete history of previous 

recurring events, while the WLW method additionally considers the subjects that 

have been withdrawn from observation. The subjects that have been censored 

are still in the risk set; thus, contributing influence on events that are followed 

after the censoring time. The risk set of each subject using the WLW method 

remains the same regardless of complete data or censoring events since a 

subject is still at risk when the subject has been withdrawn from the experiment.

Wei et al. [3] in a bladder cancer study examined treatment effects by using 

the PWP and WLW models about placebo and thiotepa therapies for tumor 

patients. This bladder cancer example collects four recurrence times of tumors 

7^-7^ corresponding to four marginal proportional hazards models. Rather than 

fitting each 7] one model at a time, WLW fits four marginal models in one

analysis, simultaneously. This example has two response variables {failure time 

and censoring status}, three covariates {treatment, tumour number, tumour size}, 

and four recurrent events over time.

For the failure type and the r* failure event count, the hazard function

115



in WLW is assumed to take the form:

4 , (0  = Ao (t)exp{pt X z*, (f)}, t  ^  0, (6)

where ^ ( r ) is  an unspecified baseline hazard function and p* = (A t, 's a

vector of failure-specific regression parameters. z*^(r) denotes a ^ x l vector of

covariates for the z* subject at time r with respect to the iL'* type of failure, 

expressed as z*,(r) = (zit,(r),z2*,(r),..^^(r))\

Let represent the failure time of the z* subject for the type of failure

and let Ĉ , represent the censoring time. are observation values of 

where The indicator variable A, is utilized for detennining the

event as a failure or censoring. Let A, =1, when ; othenvise A, = 0. Key

assumptions for the WLW method are: (1)Z*, ±  i.e., the failure and

censoring times are independent of each other; (2 )(Z ,,A „Z ;) are i.i.d. random 

vectors, where Z, represent covariates and z represents event count; and (3) the 

regression coefficients p, follow a normal distribution with mean p, denoted

Unlike the gap time model, the limitation of the event-specific total time model 

restricts the number of recurring events. Ten recurring failure events generated 

from a power-law NHPP in this study have shown a highly correlated relationship. 

Thus, the baseline intensity function of Eq. (6) is set to a common baseline 

intensity function denoted as A^(z) = ̂ ( r ) . This simplified model is then termed
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as Lee-Wei-Amato (LWA) model designated to measure general covariate 

effects.

4.3.5 PoweNaw /ntens/ty /uncf/on

For a power-law NHPP, the baseline intensity function is 

= (7)

where is the shape parameter and u is the scale parameter of the power-law 

form. If we define Ug = exp(Jgo x z,,) and Zg = 1, then the power-law PI model 

becomes

A(f; z) = «ÿ X f e x p ( P 'z ) , (8)

where p is the regression coefficient vector and z represents a covariate vector.

The power-law intensity function is composed of two parts: baseline intensity 

function that follows a power-law form and an exponential link function, where p 

is designated to measure the covariate effect.

This process could model the reliability of a repairable system with rapid 

deterioration, since the failure intensity is increasing at an exponential rate with 

time. The analogous case for maintainability is a rapid learning process. The 

intensity function A(r) is strictly decreasing for ^  < 1, constant for J = 1, and 

strictly increasing for ^  > 1. Thus, we have a DROCOF for^ < 1, an HPP for 

= 1, and an IROCOF for ^  > 1.

4.3.6 Afefhod

Simulation data with right-censored pattems, where the underlying distribution 

follows a power-law NHPP, is generated by a modified Blanks & Tordon [24] 

simulation algorithm. In order to simulate right-censored recurrent data, two
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groups of sample units were generated, in which one group contains the sample 

units with complete data and the other group contains the sample units with right- 

censored data. In the group of censored units, the right-censored pattern is set to 

be random. The ratio (probability) of the sample units that have censored times 

to total sample units is defined as censored probability (7^).

A discrete indicator covariate z, was used to separate the data into two strata 

for an arbitrary treatment effect. For consistency with the work of Qureshi et al. 

[6], simulated data was generated from a power-law NHPP with like parameter 

values. A proportional intensity function dataset was created using two different 

values for the scale parameter (ug = 0.001, = 0.01) corresponding to the two

values of the indicator covariate ẑ  (z, = O.ẑ  =1).

There are three experimental factors: experimental units ([/) , shape 

parameter (^ ), and censoring probability ( ^ ) .  The levels for each factor are 

selected as follows: (1) = 60,120, and 180 (2) ^  =0.5, 0.8,1.0,1.2,1.5,1.8,

and 2.0 (3) 0.0, 0.4, 0.6, 0.8, and 1.0. The selection of the (7, and 7̂

levels has taken the following considerations: (1) the parameter settings in the 

previous relevant works (Proschan [25], Landers and Soroudi [5], Qureshi et al.

[6], and Landers et al. [8]) (2) Severe right-censorship may cause the small 

sample size ( [ /  =20) to have insufficient data. The selection of 7̂  levels takes

into account the light, moderate, and severe censoring. The selection of (7 and 

levels is taken from the parameter settings in the previous research works, 

and it has also considered the small, median, and large sample sizes for (7.
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To implement the four Cox-Based regression methods (PWP-GT, PWP-TT, 

AG, and WLW), requires formulation of three types of datasets (i.e. three formats 

for the same set of failure events, according to the theory underlying each 

methodology). For the AG method, the data set is formed from the time interval 

(7j,7^) defined as starting and ending times of an event with respect to the 

following counting process formulation:

g m l ;,[jy (r+ A) -  AT(r) = 11 r  > r ]= A(r), (9)

where

vl(r) : proportional intensity function of failure process,
#(r) : random variable for number of failures in (0,r].

Eq. (9) defines the instantaneous failure rate between r and r+A  under the 

condition that this individual has survived after time r . Thus, the logic rule to form 

the dataset is: 7̂  > 7]. As a result, all the censored failure times are removed 

from the dataset since 7̂  =7^ when it is a censored event as stipulated for the 

AG method. The concept of forming the dataset for the PWP method originates 

from the probability theory of conditionality. The later failure times after the 

failure count cannot be included into the dataset when the intensity function at 

the failure count is estimated. That is, for each censored unit, the censored 

times are removed from the dataset except for the first censored event count.

Due to the marginal probability theory of the WLW method, the dataset contains 

full records including all censored events, such that censored units remain in the 

risk set.
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The four semi-parametric methods were implemented using the SAS™ Users 

Group (SUGI) software code PHREG [26], which performs the semi-parametric 

Cox regression method with a blocking option to stratify for a covariate, such as 

failure event count, not satisfying the proportional hazards conditions. SAS 

PHREG includes a blocking option that stratifies events in strata defined by the 

event count and thereby provides event-specific intensity functions. PHREG 

applies the product-limit method to estimate the reliability function within all strata 

defined by the failure count and for all values of the covariate. PHREG also 

applies the Cox method to estimate the vector of regression coefficients p and 

the covariance matrix. Appendix III provides the programming code to perform 

the four semi-parametric methods.

To measure and compare model performance, three robustness metrics were 

compiled:

# relative signed error (BIAS);

# relative mean absolute deviation (MAD) and

# relative mean squared error (MSE).

The estimates of the PWP-GT regression coefficients were also compared to the 

theoretical value based on ten failures per unit. Additionally, 95% confidence 

intervals were constructed on the estimates of p ;. In the special case of an HPP, 

the other three models (i e., PWP-TT, AG, and WLW), which have common 

baseline intensity function in the concept of risk set, were compared and their 

95% confidence bounds were constructed about the PWP-TT, AG, and WLW 

estimates.
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4.4 Results
4.4. Y P K f-G T  mode/

This section examines the PWP-GT model robustness in estimating the 

covariate effect denoted as p ,. Three experimental factors are experimental units 

( [/) , shape parameter (^ ), and censoring probability (Y^). Table 4.1 summarizes 

the robustness across strata defined by ordered failures. In the case of [ /  = 60, 

results for censoring probability from 0.4 to 1.0 are as follows. For the range of 

the shape parameter, 0 .8^^:^ 2.0, with censoring probability 7̂  = 0.4, the PWP-

GT estimates have relative MSE in the range of (1.1%, 17.5%), relative BIAS in 

the range of (-0.6%, 18.0%), and relative MAD in the range of (8.6%, 27.0%). As 

the value of is increased to 0.6, the PWP-GT estimates have relative MSE in 

the range of (1.7%, 18.7%), relative BIAS in the range of (-1.6%, 17.0%), and 

relative MAD in the range of (11.2%, 29.3%). Likewise, when 7̂  is increased to

0.8, the PWP-GT estimates have relative MSE in the range of (1.6%, 19.3%), 

relative BIAS in the range of (-5.9%, 16.0%), and relative MAD in the range of 

(8.8%, 29.8%). However, when 7̂  is increased to 1.0, the PWP-GT estimates

deteriorate substantially, with relative MSE in the range of (9.5%, 247.9%), 

relative BIAS in the range of (-22.1%, 65.6%), and relative MAD in the range of 

(24.1%, 79.8%). Among all shape parameters 0.5 < ^  < 2.0, <5 = 1.5 has the most 

robust PWP-GT estimates throughout 0.4 ^ 7̂  < 1.0, with relative MSE in the

range of (6.2%, 9.5%), relative BIAS in the range of (5.3%, 11.7%), and relative 

MAD in the range of (19.0%, 24.1%). If the censoring probability is controlled
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below 0.8, the PWP-GT estimates perform well at the shape parameter range of 

0.8 <  2 .0 .

As for the case of [ /  = 120, for the range of shape parameter 0.8 < < 2.0 

with = 0.4, the PWP-GT estimates have relative MSE in the range of (0.6%, 

10.8%), relative BIAS in the range of (-4.5%, 16.0%), and relative MAD in the 

range of (5.9%, 16.5%). As the value of is increased to 0.6, the PWP-GT

estimates have relative MSE in the range of (0.5%, 10.9%), relative BIAS in the 

range of (-5.6%, 14.8%), and relative MAD in the range of (5.0%, 18.6%). 

Likewise, when ^  is increased to 0.8, the PWP-GT estimates have relative MSE 

in the range of (0.9%, 21.9%), relative BIAS in the range of (2.7%, 14.3%), and 

relative MAD in the range of (7.5%, 22.6%). However, when is increased to

1.0, the PWP-GT estimates deteriorate substantially, with relative MSE in the 

range of (8.3%, 168.4%), relative BIAS in the range of (16.4%, 45.8%), and 

relative MAD in the range of (18.8%, 48.1%). Among all shape parameters 

0.5 < ^  ^ 2.0, the more kivorable applications range of the PWP-GT estimates is 

0.8 ^ ^  ^ 2.0 throughout 0.4 ^  ̂  < 0.8, with relative MSE in the range of (0.5%,

21.9%), relative BIAS in the range of (-5.6%, 18.7%), and relative MAD in the 

range of (5.0%, 22.6%).

In the case of (7 = 180, the heaviest censoring probability (7^ =1.0) is less

damaging, compared to (7 = 60 and (7 = 120, except for the rapidly decreasing 

ROCOF, ^  = 0.5, where the PWP-GT estimates in ^  = 0.5 are on the rise in the 

range of 0.8 < 7̂  ^ 1.0. Table 1 indicates that for shape parameter in the range of
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0.8 < 2.0 and censoring probability in the range of 0.4 ^ < 1.0, the PWP-GT

estimates have relative MSE in the range of (0.2%, 12.8%), relative BIAS in the 

range of (-7.0%, 17.8%), and relative MAD in the range of (3.3%, 21.8%).

Censoring probability and experimental units were chosen as the two factors 

to present in 3-D charts. Based on each shape parameter, 3-D charts were 

generated to present the PWP-GT model results. Figs.4.2 (a)-(c) provide the 

robustness evaluation of the PWP-GT model for three power-law intensity 

functions, and indicate that the error is on the rise as the censoring probability 

increases and the error is on the decrease as the sample size is increased. The 

sample size effect is exacerbated by heavy censoring. The BIAS values at 

(f7,J,7;.) = (60,1.8,1.0) and ( [/,^ , ^ ) = (60,2.0,1.0) from Table 4.1 indicate a

negative value due to high variability from the heavy censoring factor. As the 

sample size is increased to 120 and 180, the number of sample units 

compensates the heavy censoring effect.
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Table 4.1 Summary of PWP-GT model results for estimating p, (10 failures/unit)

N  =10 failure events/unit, ÜQ = 0.001, Uj = 0.01

Ô Pc U BIAS MAD MSE U BIAS MAD MSE U BIAS MAD MSE
0.5 0.4 60 0.40407 0.62746 0.53551 120 0.00465 0.33390 0.36198 180 -0.18178 0.18178 0.06075
0.5 0.6 60 0.48680 0.71696 0.77886 120 -0.00555 0.33308 0.34196 180 -0.18696 0.18696 0.06217
0.5 0.8 60 0.62978 0.86481 1.36832 120 -0.01706 0.31954 0.30120 180 -0.09188 0.24669 0.12328
0.5 1.0 60 1.00221 1.20024 2.27255 120 0.40857 0.69729 1.09745 180 0.06185 0.40939 0.27329
0.8 0.4 60 -0.00612 0.09325 0.01291 120 -0.04467 0.09571 0.01563 180 -0.05950 0.08415 0.01140
0.8 0.6 60 -0.01597 0.11158 0.01670 120 -0.05590 0.09200 0.01477 180 -0.07045 0.09304 0.01306
0.8 0.8 60 -0.05920 0.10437 0.01871 120 0.08223 0.22646 0.21895 180 -0.05754 0.09754 0.01753
0.8 1.0 60 0.65585 0.79796 2.47916 120 0.21174 0.34510 0.62236 180 -0.03674 0.12327 0.02774
1.0 0.4 60 0.04178 0.08594 0.01143 120 0.00232 0.05852 0.00590 180 -0.00516 0.03339 0.00195
1.0 0.6 60 0.00454 0.13398 0.02750 120 -0.00506 0.04979 0.00455 180 -0.01788 0.04288 0.00361
1.0 0.8 60 -0.00877 0.08845 0.01590 120 0.02708 0.07464 0.00923 180 -0.01083 0.06113 0.00719
1.0 1.0 60 0.32151 0.41818 0.63632 120 0.34912 0.38596 1.09905 180 0.00855 0.06957 0.00984
1.2 0.4 60 0.06894 0.11685 0.01989 120 0.04091 0.07307 0.00864 180 0.03653 0.05888 0.00615
1.2 0.6 60 0.07725 0.16187 0.03993 120 0.02710 0.06802 0.00811 180 0.01795 0.06244 0.00806
1.2 0.8 60 0.03604 0.13645 0.03159 120 0.04122 0.07453 0.00894 180 0.01806 0.07786 0.01176
1.2 1.0 60 0.21679 0.29794 0.32410 120 0.45836 0.48052 1.68430 180 0.02747 0.10220 0.01642
1.5 0.4 60 0.11742 0.19005 0.06218 120 0.09289 0.11596 0.02970 180 0.08892 0.11935 0.03006
1.5 0.6 60 0.11172 0.22042 0.07480 120 0.08247 0.11322 0.02931 180 0.07461 0.11632 0.03304
1.5 0.8 60 0.07272 0.21307 0.08060 120 0.08892 0.11935 0.03006 180 0.06877 0.13615 0.03924
1.5 1.0 60 0.05251 0.24110 0.09508 120 0.36274 0.40576 0.75671 180 0.07652 0.15275 0.04380
1.8 0.4 60 0.15846 0.24172 0.12377 120 0.13317 0.16240 0.07150 180 0.13741 0.15393 0.07494
1.8 0.6 60 0.14878 0.26557 0.13549 120 0.12388 0.15561 0.07106 180 0.11684 0.16411 0.07669
1.8 0.8 60 0.12972 0.27344 0.14486 120 0.12368 0.15971 0.07195 180 0.10765 0.16802 0.08241
1.8 1.0 60 -0.22053 0.63335 1.79361 120 0.16373 0.18841 0.08326 180 0.12651 0.19201 0.08858
2.0 0.4 60 0.17962 0.26974 0.17465 120 0.15956 0.16452 0.10789 180 0.17793 0.19784 0.10950
2.0 0.6 60 0.16955 0.29295 0.18666 120 0.14829 0.18587 0.10932 180 0.14400 0.19210 0.11578
2.0 0.8 60 0.15996 0.29812 0.19294 120 0.14281 0.18920 0.11142 180 0.12980 0.19181 0.12272
2.0 1.0 60 -0.21764 0.71010 2.14182 120 0.18721 0.22697 0.12494 180 0.14455 0.21804 0.12772
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4.4.2 of heavy censomg

To demonstrate that heavy censoring is producing a sample size effect, the 

number of replications was increased for the case of ^  = 1.5 and =1.0, where 

in Figs.4.2 (a)-(b) the errors are higher for [ /  = 120 than for C/ = 60. Note that 

[ /  = 180 performs the best among the three sample sizes. This section examines 

the 3-D error plots of the PWP-GT model ^ r  estimating p, by doubling the 

number of replications. Fig. 4.3 contains the comparisons (MSE and BIAS) of 3 

replicates and 6 replicates in performing the PWP-GT model for the case of 

= 1.5, and indicates that the error of 17 =60 is not better than = 120 as the 

number of replicates is increased.
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Fig. 4.3 Performance comparisons of 3 and 6
replicates (PWP-GT), ^  = 1.5
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4.4.3 Comp/efe dafa

This section compares the effects of right-censoring versus the base case of 

complete data = 0 ) for three values of shape parameter and three sample

sizes. Tables 4.2 and 4.3 list the performance metrics. Table 4.2 examines three 

power-law intensity functions at sample size =120, while Table 4.3 examines 

two other sample sizes for ^  = 1.5.

At the sample size =120, three charts (Fig. 4.4, Table 4.2) of ^  = 1.5,

= 1.0, and = 0.5 in the vertical order all indicate that the error is on the rise as 

the censoring probability increases. Among the five censoring probability levels, 

=1.0 presents much higher error values compared to ^  =0, 0.4, 0.6, and 0.8.

For shape parameter of ^  = 1.5, the performance metrics of the three sample 

sizes ( [/ =60, 120, and 180) are documented in Table 4.3 and Fig. 4.4 (in the 

horizontal order). As the censoring probability increases, MAD and MSE are on 

the rise. Sample size effect is significant at heavy censoring, =1.0.
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Table 4.2 Performance metrics (PWP-GT) in three power-law intensity functions
N  = 10 failures/unit, Vq = 0.001, = 0.01

U K BIAS MAD MSE

120 0.5 0 -0.09376 0.24805 0.12655
0.4 0.00465 0.33390 0.36198
0.6 0.00555 0.33308 0.34196
0.8 -0.01706 0.31954 0.30120
1 0.40857 0.69729 1.09745

120 1.0 0 -0.02346 0.05080 0.00380
0.4 0.00232 0.05852 0.00590
0.6 -0.00506 0.04979 0.00455
0.8 0.02708 0.07464 0.00923
1 0.34912 0.38596 1.09905

120 1.5 0 0.06580 0.09571 0.02556
0.4 0.09289 0.11596 0.02970
0.6 0.08247 0.11322 0.02931
0.8 0.08892 0.11935 0.03006
1 0.36274 0.40576 0.75671

Table 4.3 Perfbimance metrics (PWP-GT) In three sample sizes, ^ = 1.5
N  =10 failures/unit, Ug = 0.001, U] = 0.01

U Pc BIAS MAD MSE

60 1.5 0 0.09024 0.16699 0.05685
0.4 0.11742 0.19005 0.06218
0.6 0.11172 0.22042 0.07480
0.8 0.07272 0.21307 0.08060
1 0.05251 0.24110 0.09508

120 1.5 0 0.06580 0.09571 0.02556
0.4 0.09289 0.11596 0.02970
0.6 0.08247 0.11322 0.02931
0.8 0.08892 0.11935 0.03006
1 0.36274 0.40576 0.75671

180 1.5 0 0.08218 0.09191 0.02785
0.4 0.08892 0.11935 0.03006
0.6 0.07461 0.11632 0.03304
0.8 0.06877 0.13615 0.03924
1 0.07652 0.15275 0.04380
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4.4.4 95% conA/ence /nferva/ on p,

To visualize right-censoring effects upon the PWP-GT model, 95% 

confidence bounds were constructed on p, for the HPP, where7̂  is set to 1.0 

(heavily censored). Three sample sizes, [ /  =60 (Fig. 4.5(a)), [ /  =120 (Fig. 

4.5(b)), and (7 =180 (Fig. 4.5(c)) at 7̂  =1.0, are examined (Table 4.4 contains 

the resource data). To compare the three sample sizes, an equal range of Y-axis 

levels is set on [0.00, 3.50]. Due to the restriction of the range, the 7* failure in 

f7 = 120 contains the 95% confidence interval [2.05119,3.62985], where the 

upper limit exPeeds the maximum value 3.5.

In the case of [ /  = 60 (Table 4.4, Fig. 4.5(a)), the 7* and 10* failures 

illustrate the heavy right-censoring effect, and in the case of (7 = 120 (Table 4.4, 

Fig. 4.5(b)), only the 95% C.l. for 10*"̂  Silure shows heavy censoring effect. The 

high variability of the PWP-GT estimate at 7* or 10* failure indicates a random 

pattem. When the sample size is increased to (7 = 180 (Table 4.4, Fig. 4.5(c)),

the PWP-GT model p, estimates at each failure event count are sufficient to 

provide tight bounds on p, estimates. PWP-GT estimates tend to fluctuate more 

and the 95% C.l. limits tend to become wider as the event count progresses.
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Table 4.4 95% C.l. on p j , (S,P^) = (1.0,1.0), for three sample sizes, 60, 120, and 180

n u Average^ 95%LB 95%UB u Average 95%LB 95%UB u Average 95%LB 95%UB
1 60 2.43927(0.25991) 1.92986 2.94868 120 2,20402(0.15571) 1.89883 2.50921 180 2.25030(0.12981) 1.99588 2.50472
2 60 2.25953(0.23653) 1.79593 2.72313 120 2.21734(0.16274) 1.89837 2.53631 180 2.30831(0.13910) 2.03567 2.58094
3 60 2.42571(0.27594) 1.88488 2.96655 120 2.41301(0.18051) 2.05921 2.76681 180 2.25617(0.14502) 1.97193 2.54041
4 60 2.56670(0.30891) 1.96126 3.17215 120 2.49076(0.20193) 2.09499 2.88653 180 2.48872(0.17226) 2.15110 2.82635
5 60 2.03069(0.26970) 1.50208 2.55930 120 2.41393(0.20798) 2.00630 2.82156 180 2.48429(0.17698) 2.13742 2.83116
6 60 2.60332(0.41418) 1.79155 3.41509 120 2.61077(0.26371) 2.09390 3.12763 180 2.49868(0.19974) 2.10721 2.89015
7 60 6.46199(126.22198) -240.92818 253.85217 120 2.84052(0.40273) 2.05119 3.62985 180 2.62891(0.26423) 2.11103 3.14680
8 60 2.34825(0.50925) 1.35015 3.34636 120 2.10121(0.30771) 1.49810 2.70432 180 2.18766(0.26295) 1.67228 2.70304
9 60 1.50453(0.51508) 0.49498 2.51407 120 2.26362(0.45061) 1.38045 3.14679 180 2.30608(0.34864) 1.62275 2.98941
10 60 5.78885(459.66699) -895.14055 906.71826 120 9.50955(154.25540) -292.82503 311.84413 180 1.81369(0.46808) 0.89626 2.73112
True yg =2.30259
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Fig. 4.5(aXc) 95%CI on PWP-GT estimates at each failure count for three sample sizes 60,120, and 180, (^,7^) = (1.0,1.0)



4.4.5 PKP-7% v4G, and LVLkymode/s

Fig. 4.6(a)-(c) visualize the estimating perfbnnance of the PWP-TT, AG, and 

WLW models for three sample sizes ((7 =60,120, and 180) in an HPP case 

(5 = 1). As the censoring probability increases, the AG estimate does not 

fluctuate, while the PWP-TT and WLW estimates slightly decrease. The sample 

size effect does improve the variability of the estimate resulting in narrower 95% 

confidence intervals. The total-time models (PWP-TT, AG, and WLW) are not 

affected by the shape parameter 5 compared to the gap-time model (PWP-GT). 

The estimate and its variability using the PWP-TT, AG, or WLW model remain 

the same as the shape parameter setting varies. The reason the PWP-TT, AG 

and WLW estimates do not vary with shape parameter is that shape parameter 

does not influence the likelihood function in the total-time model. Consequently, 

the HPP case is chosen for the purpose of illustrating the PWP-TT, AG, and 

WLW models. The AG estimate provides the most reliable estimate in a right- 

censoring HPP case, among the PWP-TT, AG, and WLW models. The true is 

2.30259, and Table 4.5 summarizes the results that the true ̂  lies within the 

95% C.l. of the AG estimate in each combination of experimental units and 

censoring probability.

132



ww

Table 4.5 Summary of semi-parametric AG model results for P {Ô = 1, an HPP)
Conditions AG estimates ® 95%LB 95%UB

(U, Pc)=(60,0.4) 2.29963(0.09692)*' 2.10967 2.48959
(U. Pc)=(60,0.6) 2.27179(0.09984) 2.07611 2.46747
(U, Pc)=(60,0.8) 2.28192(0.10185) 2.08230 2.48155
(U, Pc)=(60,1.0) 2.27442(0.10851) 2.06175 2.48709
(U, Pc)=(120,0.4) 2.32087(0.06927) 2.18511 2.45664
(U, Pc)=(120,0.6) 2.30481(0.07077) 2.16611 2.44351
(U, Pj=(120,0.8) 2.29507(0.07297) 2.15206 2.43808
(U, Pc)=(120,1.0) 2.31017(0.07653) 2.16018 2.46015
(U, Pc)=(180,0.4) 2.27485(0.05541) 2.16624 2.38346
(U, Pc)=(180,0.6) 2.26272(0.05726) 2.15049 2.37495
(U, Pc)=(180,0.8) 2.25832(0.05936) 2.14197 2.37467
(U, Pc)=(180,1.0) 2.26412(0.06257) 2.14149 2.38675

Theoretical values of -
P-

.1 ^ ^ 1= 2.30259
s I V,

Estimated standard errors in parenthesis
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Fig. 4.6(a)-(c) AG, PWP-TT, and WLW model results, U  = 60,120, and 180 ( S = 1.0)



4.5 Conclusions

Previous studies (by Landers and Soroudi [5] and Qureshi et al. [6]) 

conducted on the PWP-GT model for the case of an underlying NHPP with 

power-law intensity function indicated good performance. This research has 

perfonned a right-censorship robustness study and examined other semi- 

parametric PI models with covariates for the case of right-censoring. Qureshi et 

al. [6] examined the PWP-GT model applied to recurrent data without censoring 

(complete data) and concluded that the PWP-GT estimator underestimates the 

covariate effect in a DROCOF case and overestimates the covariate effect in an 

IROCOF case. Qureshi et al. proved the PWP-GT model an accurate estimator 

in estimating the times to Silures for NHPP power-law processes with shape 

parameter in the range 1.0 ̂ ^< 3 .0  and for larger sample sizes ((7>60). In 

comparing vyith other researchers, Section 4.4.3 examined both cases: complete 

data and right-censoring data. Section 4.4.3 has included the case of Qureshi's 

work (complete data) and produced results consistent with those of Qureshi.

The PWP-GT and AG prove to be models of choice, evaluated in terms of 

the BIAS, MAD, and MSE of covariate regression coefficients over ranges of 

sample sizes, shape parameters, and censoring severity encountered in 

engineering applications. The research domains of the three factors of interests 

are: (1)60 < (7 < 180, (2)0.5 2.0, and (3)0.0 ^ 7̂  < 1.0. The more favorable

engineering applications ranges may be inferred from the results, as follows. At 

the smaller sample size (f7 = 60), the PWP-GT proves to perform well for 

moderate right-censoring (0.0 < ^  0.8 ) and moderately decreasing, constant,

134



and moderately increasing ROCOF (power-law NHPP shape parameter in the 

range of 0.8 < ^  ^  1.8). In the case of [ /  = 120, the PWP-gap time proves to 

perform weli for moderate right-censoring (0.0 < ̂  0.8 ) and moderately

decreasing, constant, and moderately increasing ROCOF (power-law NHPP 

shape parameter in the range of 0.8 ^  ^  ^ 2.0 ). For the large sample size ( [ /  = 

180), the PWP-GT perfonns well for heavy right-censoring (0.0 < < 1.0 ) and

moderately decreasing, constant, and moderately increasing ROCOF (power-law 

NHPP shape parameter in the range of 0.8 < <̂ < 2.0). The AG model proves to 

outperform the WLW for a stationary process (HPP) across a wide range of right- 

censorship (0.0 ^  7̂  < 1.0 ) and for sample sizes of 60 (30 per dass) or more.

The sample sizes chosen for this engineering research were 60 ̂  ^ 180

(30-90 units per dass of a two-level covariate). Many of the medical studies 

reported in the literature contain sample sizes smaller than this range. Small 

sample sizes are common in medical studies due to the high cost of a clinical trial 

induding requisite examinations required in the medical practices, such as X-Ray 

scans and blood tests. The numbers of qualified subjects are sometimes small 

because of cost and/or medical conditions. The AG model is designed to 

estimate the general covariate effect and can be useful rf small sample size is 

unavoidable. The AG model adopts the stationary counting process model and 

assumes each occurrence as independent and identically distributed according 

to an exponential distribution. Thus, the number of observation for a subject can 

be utilized as the expansion of the sample size. For instance, there are ten 

subjects available and four observations for each subject are collected. The
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sample size effect for those ten subjects in using the AG model is equivalent to 

having forty subjects.

This research has addressed only the case of data from an NHPP with 

power-law intensity function. The log-linear intensity function is also encountered 

in the literature and may be important for industry. Future research to examine 

the right-censoring effect upon recurring events from an NHPP with log-linear 

intensity function could be beneficial to practitioners. Left-censoring also arises in 

some applications for recurrent %ilure data from repairable systems. An example 

case is field data where early life events were not recorded and records were lost. 

Future research could apply the methodology to examine PWP-GT robustness 

under left-censoring.
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5. Robustness of semi-parametric proportional intensity models 
for right-censored recurrent failure data 

from a stationary counting process

5.0 Abstract

The class of semi-parametric proportional intensity (PI) models applies to 

recurrent failure event modeling for a repairable system with covariates for a 

right-censored Homogeneous Poisson Process (HPP). Abundant federal funding 

received in biostatistics/ medical research has advanced the PI models to 

become well developed and widely referenced. Engineering applications of these 

four methods have been few because the models are not well known and the 

favorable ranges of applications have not been examined. This paper not only 

reports the robustness evaluation of the four PI models (Prentice-Williams- 

Peterson-gap time (PWP-GT), PWP-total time (PWP-TT), Andersen-Gill (AG), 

and Wei-Lin-Weissfeld (WLW)) under right-censorship, but also presents the 

comparison of the three event-specific baseline intensity function models (PWP- 

GT, PWP-TT, and WLW).

Landers and Soroudi (1991), Qureshi et al. (1994), and Landers et al. (2001) 

have examined robustness of the PWP-GT model for the case of an underlying 

NHPP with power-law and log-linear intensity functions and complete 

(uncensored) data. However, the phenomenon of censoring data is generally 

present in field data. This research has extended their work to the important case 

of right-censorship and has examined other semi-parametric PI models. This 

experimental design has incorporated three levels of censorship severity (light, 

moderate, and severe) to evaluate these four proposed PI models.

139



The more favorable engineering applications ranges are recommended, 

which are beneficial to practitioners in anticipating the more favorable 

applications domains and selecting appropriate PI models in applying to right- 

censored recurrent kiilure data. The PWP-gap time model has proven the most 

robust and accurate estimator (at the lowest error) among the three event- 

specific models. Compared to WLW, the PWP-TT estimator yields similar but 

slightly better results. The PWP-gap time presents a low-error region at the range 

of 120 $ (7 ^ 180 and 0 < 7̂  < 1. For the small sample size = 60, the more

favorable applications range is 0:^7^ ^0.8. For the other two estimators, when 

the sample size is increased from 7/ = 60 to [ /  = 120, PWP-TT and WLW have a 

slightly improved applications range 0 ^ 7̂  < 0.4. As the sample size is increased

to 180, the performance is poor but stable over applications range 0 ^ 7̂  < 0.8 on 

both models. The results show that AG performs well for the case of smaller 

sample size (U=60) and heavy censoring (7^ =1.0). The favorable applications

region of the common baseline AG model lies at 60 < 7/ ^ 180 and 0 < 7̂  < 1.

Keywords, repa/rab/e systems re//@b#y, rfgbf-cerrsored recurrent everrts,

proport/ona/ mterrs/ty mode/s

Nomenclature

Acronyms

AG Andersen and Gill model

C.l. Confidence interval

DROCOF Decreasing rate of occurrence of failures

HPP Homogeneous Poisson Process
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IROCOF

1.1.d 

MTTF 

MAD 

MSE 

NHPP 

PI

PWP

PWP-GT

PWP-TT

WLW

A/ofaf/on

Q

h

h
1.1.d.

N

Pc

s.d.

T„

tn

u

Increasing rate of occurrence of failures

Independent and identically distributed

Mean time to failure

Mean absolute deviation

Mean squared error

Non-homogeneous Poisson Process

Proportional intensity

Prentice, Williams, and Peterson model

Prentice, Williams, and Peterson-gap time model

Prentice, Williams, and Peterson-total time model

Wei, Lin, and Weissfeld model

Censoring time for the subject of the type of failures

Proportional hazard function

Baseline hazard function

Number of sample units in class

Number of sample units in dass 1

Independent and identically distributed

Successive failure count

Random variable for the number of failures in (0,r]; a counting 

process

An integer counting successive failure times; a stratification 

indicator subscript 

Censoring probability 

Standard deviation

The beginning and end of an event; bivariate exponential variables 

Random variable for cumulative time of occurrence of the failure 

Cumulative time of occurrence of the failure; a realization of 7;,

Sample size (number of units)
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% Observation time

an at-risk indicator in the AG model 

Z(r) Covariate process up to time r

z ( t  X1 ) vector of covariates, z = (z,,z2 ,..^ ty

p, ( t x l )  vector of stratum-specific regression coefficients

Shape parameter of a power-law NHPP 

A Indicator of a failure or censored time; limit to time zero

^  Baseline value of ,1 for power-law NHPP

Aq (f) Baseline intensity function

Ag, (r) Stratum-specific baseline intensity function

A^(f;z) Proportional intensity function

u Scale parameter of a power-law NHPP

Baseline value of u, the scale parameter of a power-law NHPP

U; Altemate value of u , the scale parameter of a power-law NHPP

cr Standard deviation

* Denotes an estimator

' Denotes the transpose of a vector

5.1 Introduction

Failure time data on a repairable system are realizations of a stochastic point 

process, in which the instantaneous rate of occurrence of failures (ROCOF) is 

A(f). Prentice, Williams, and Peterson (PWP) [1] proposed a semi-parametric 

approach to model recunant failure event data from a repairable system using 

two methods: PWP-GT (gap time) and PWP-TT (total time). Several researchers 

have subsequently proposed altemate modeling methods by modifying the risk 

set (common or event-specific baseline intensity function) and the risk interval
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(gap time, total time, or counting process). These include the AG (Andersen-Gill)

[2] and WLW (Wei-Lin-Weissfeld) [3] models.

Cox proposed the distribution-free (semi-parametric) proportional hazards 

model in 1972 [4]. The Cox-based regression models (PWP-GT, PWP-TT, AG, 

and WLW) have been applied to recurring events in medical studies (biostatistics 

field), such as recurrent infections of a patient. For engineering applications, 

Landers and Soroudi [5], Qureshi et al. [6], Vithala [7], and Landers et al. [8] have 

investigated robustness of the PWP-GT model, where the underlying recurrent 

failure time data are from a Non-homogeneous Poisson Process (NHPP) with a 

power-law or a log-linear intensity function. These references also report the 

engineering applications of the PWP-GT model cited in the literature. Qureshi et 

al. [6] found that the PWP-GT model performs best for constant and moderately 

increasing rate of occurrence of failures (IROCOF) and decreasing rate of 

occurrence of failures (DROCOF) and for larger sample sizes from power-law 

NHPPs. Vithala [7] considered the case of log-linear increasing rates of 

occurrence of failures, and concluded the PWP-GT model performs best for 

moderately increasing rates of occurrence of W ures and for larger sample sizes. 

Both Qureshi et al [6] and Vithala [7] restricted their studies to the case of 

complete (uncensored) data. However, the phenomenon of censoring is 

generally present in field data. This research has extended their work to the 

important case of right-censorship and has examined other semi-parametric PI 

models (PWP-TT, AG, and WLW).
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Compared to the extensive literature on applications of the Cox-based 

regression models in the biostatistics field, there have been few reported 

engineering applications. Abundant federal funding received in biostatistics / 

medical research has advanced the PI models to become well developed and 

widely referenced. PI models for medical applications could also apply to 

recurring failure/repair data in engineering problems. The PWP-GT, PWP-TT, AG, 

and WLW models are potentially powerful analytical tools for engineering 

practitioners as they become better recognized and understood. This paper 

reports the robustness of the PWP-GT, PWP-TT, AG, and WLW models for right- 

censored recurrent failure events and stationary data. The results are beneficial 

to practitioners in anticipating the more Worable applications domains and 

selecting appropriate PI models.

5.2 Semi-parametric Proportional Intensity models

Cox [4] proposed a proportional hazards formulation to include explanatory 

variables (covariates) in survival models. PWP proposed an extension of the Cox 

model to stochastic processes and applied the approach to model recurring 

infections in aplastic anemia and leukemia patients having received bone-marrow 

transplants. This application involved several subjects and a small number of 

events (up to five) for each subject. The paper by PWP did not address the 

baseline intensity function but rather reported the relative risks for the test and 

control groups. In reliability and maintainability engineering applications, a 

number of authors have applied the semi-parametric PI (PH) model, for example, 

Ansell and Phillips [9], Ansell and Phillips [10], Landers and Soroudi [5], Qureshi
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et al. [6], Ansell and Phillips [11], Landers et al. [8], Ansell et al. [12], and Ansell 

et al. [13]. A collection of the PI model applied to different industries includes: 

marine gas turbine engines (Asher [14]), semiconductor, electrical, and pipeline 

industries (Ansell and Phillips [11]), U.S. Army main battle tank (Landers et al.

[8]), water supply industry (Ansell et al. [12], [13]), etc. Ascher [14] illustrated the 

use of the PWP model for analysis of reliability for marine gas turbine engines. 

Ascher and Feingold [15] suggested application of the PWP model in the field of 

reliability engineering. Dale [16] applied the PWP approach to simulated data for 

a reliability growth program with design improvements implemented after each of 

the five stages, resulting in a DROCOF. Wightman and Bendell [17] and Bendell 

et al. [18] cited the PWP model and advised caution in application for engineering 

studies.

Qureshi et al. [6] perfonned a robustness study to determine how well the 

PWP-GT method performed when applied to data from a failure process that was 

actually parametric (specifically the NHPP with power-law intensity function). The 

2 (T bounds of the PWP-GT estimates can cover the true values with few 

exceptions. The PWP-GT method performed well, except at small values of 

shape parameter (^  < 0.6). The PWP-GT method was best for larger sample size 

and for moderately decreasing, constant, and moderately increasing ROCOFs. 

The validation process for the case of an HPP in Section 2.2.3 (also refer to 

Table 2.10) indicated that the estimated MZ7F (mean time to failure) differences 

between the PWP-GT model and theoretical values were not statistically 

significant. As for the PWP-GT estimates of the covariate regression coefficient.
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the true value of coefficient ^  lies within the 2 (r confidence bounds on the 

estimate for 1.0 ^ ^  < 1.4. The PWP-GT method tends to underestimate yg for 

a DROCOF (e.g., BIAS= -26% at ^  = 0.5) and overestimate ^  for an IROCOF 

(e.g., BIAS= 19% at ^  = 3.0).

The AG model (Andersen and Gill [2]) and the WLW model (Wei et al. [3]) are 

widely cited in the literature. Bowman [19] and Lin [20] surveyed and evaluated 

the AG, PWP-GT, PWP-TT, and WLW methods. Bowman conducted a 

simulation based on a bivariate exponential distribution to generate bivariate 

recurrent events, in order to control the correlation (^ ) among recurring events. 

Bowman utilized the bivariate exponential distribution (7j,7^) to generate the 

consecutive recurring event times 7; =7j +7^, where » is the event count and 7̂  

and 7̂  represent the beginning and end of an event. The univariate event time 

7; is composed of 7| and 7̂  with given correlation (^). This type of simulation

approach makes it possible to manage the correlation of recurring events. 

Bowman identified the PWP-GT model as superior and then used it to analyze 

needle-stick injury data.

Wei and Glidden [21] have reviewed the Cox-based methods designed to 

model recurrent data, and summarized the strengths and weaknesses for each 

method. In a commentary on the Wei and Glidden paper, Lipschutz and Snapinn

[22] stressed two concepts of "event times" and "risk sets" as crucial to choosing 

the appropriate model. Event elapsed times are related to the total time, gap time, 

and counting process. The PWP-TT and WLW are modeled by total time, while 

only PWP-GT is modeled by gap time. The risk interval of the AG model belongs
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to the counting process class. Intuitively, total (global) times within a subject are 

highly correlated, with similar Indication on the first recurrence and subsequent 

events. The total time model may Indicate large treatment effect throughout the 

entire study, even though the gap time model has Indicated little treatment effect 

beyond a certain recurrence. The counting process concept of the AG method 

Implies each recurrence Is not affected by previous events, and does not 

contribute to future events.

The risk set consists of the subjects at risk for a specified event (e.g., failure). 

There are three types of risk sets: conditional (e.g., PWP), counting process (e.g., 

AG), or marginal (e.g., WLW). As a marginal method, the WLW method assumes 

a subject Is at risk regardless of event count until the observation for the subject 

terminates by censoring. The AG method also provides an Index of a general 

covariate effect, which is expressed by the common baseline hazard 

(unrestricted risk set). However, a subject In the PWP method has event-specific 

baseline hazards (restricted risk set). In that the proportional Intensity of event t  

only considers the subjects that have experienced ( t - 1 )  events. Lipschutz and 

Snapinn [22] suggested guidelines as follows In choosing the appropriate models:

# Use total time, common baseline hazard (unrestricted risk set) when the 

general effect Is of Interest

# Use gap time, event-specific baseline hazards (restricted risk set) when 

the primary concem Is how the treatment will affect the recurring events 

beyond the first occurrence.
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Kelly and Lim [23] noted that risk interval can be defined by three formulations 

{(1) gap time, (2) total time, and (3) counting process} demonstrated in Fig. 

5.1(a)-(c). Risk interval determines whether a model is marginal in the total time 

or conditional in the gap time. The risk interval of any event in total time is not 

influenced by any previous events, but measures time from entry into the 

experiment (beginning of observation). However, the risk interval of the gap time 

begins from the end of last event (Kelly and Lim [23]). Counting processes use 

the total time scale and share the same elapsed time as does the gap time model. 

However, the risk interval starts from the previous event instead of the entry time. 

Based on the common or event-specific baseline intensities, the risk set is 

labeled as either unrestricted or restricted. Kelly and Lim [23] defined three 

possible risk sets {(1) unrestricted, (2) restricted, and (3) semi-restricted} in 

deciding which sample units are at risk of contributing to event t . Kelly and Lim

[23] employed the concepts of the risk interval and risk set and categorized the 

PWP-GT, PWP-TT, AG, WLW, LWA (Lee-Wei-Amato), and other methods.
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Fig. 5.1(a)-(c) Risk interval formulations (Kelly and Lim [23])
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5.3 Models and methods

Sections 5.3.1-5.3.2 review the semi-parametric Cox regression model for 

single event and the related regression models for recurrent events. Sections 

5.3.3-5 3.4 review two other altemate regression models (AG and WLW), and 

Section 5.3.5 describes the method used to assess the robustness of the semi- 

parametric PI models for the case of censored data from a true but unknown 

stationary counting process.

5.3. f  Cox regress/on mode/

For the case of a time-to-failure random variable, Cox [4] proposed a 

proportional hazards regression model of the fbnn:

M nz) = Ao (t)exp(p'z), (1)

where p is the regression coefficient vector and z represents a covariate vector. 

The PH model is composed of two parts: baseline hazards function Aq(r) and an 

exponential link function, where p is designated to measure the covariate effect.

The Cox model can be used to describe the semi-parametric distribution of 

time-to-failure for non-repairable items with covariates. Under proportional 

hazards, the ratio of the hazard functions of two units ( 4 and ) with covariate 

vectors z^ and Zg is constant over time. The covariates have a multiplicative 

effect on the baseline hazard function. When the baseline hazard function is fully 

specified (e.g., Weibull) the analytical procedure is termed a parametric method. 

Alternatively, /%„(/) can be left arbitrary, in which case the procedure is tenned

semi-parametric.
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5.3.2 Semf-pammetrw PWP mode/

The PWP model [1] is a generalization of the semi-parametric Cox 

proportional hazard function to a proportional intensity function for the 

case of repeated failure events. Under proportional intensities, the ratio of the 

intensity functions of two units (v4 and B) with covariate vectors and z^ is 

constant over time. The covariates have a multiplicative effect on the baseline 

intensity function. When the baseline intensity function is fully specified (e.g., 

power-law or log-linear) the analytical procedure is termed a parametric method. 

Alternatively, the Ag(r) baseline intensity function can be left arbitrary in which

case the procedure is termed semi-parametric.

Given the counting and covariate processes at time r , the general semi- 

parametric intensity function was defined by Prentice, Williams and Peterson as 

follows:

A{r I Z (r)} = lim Pr{r ^ < r + A | # ( r ) ,z ( r ) } /A ,  (2)

where #(r) represents a random variable for the numt)er of failures in (0,r], Z(r) 

denotes the covariate process up to time r , and A limits the time span to zero. 

Among the semi-parametric regression models specified by Prentice, Williams 

and Peterson were the following:

f/F P -C r : I (3)

P ff?  -7 T  : A{r I AT(r),Z(r)} = 2^,(r)exp[p;z(r)]. (4)

In the PWP-GT model of Eq. (3) the time metric is the interval between times 

of failure and r,, defined as gap time. The PWP model stratifies a failure data
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set based on the failure event count. When a unit is placed into operation it has 

experienced no failures and so resides in stratum 1 (% = 1), and when the first 

failure occurs the unit moves to the second stratum (« = 2 ). In general, the unit 

moves to stratum « immediately following the (M-1)^ failure and remains there

until the failure.

5.3.3 Semr-paramefnc mode/

Andersen and Gill [2] developed the AG method as an extension of the Cox 

proportional hazards model, to accommodate recurring events in a counting 

process. The AG method explains general covariate effects (common baseline 

intensity function in the concept of risk set), since each event count re-starts the 

failure process, and thus does not feature event-stratifying effects. The risk 

interval of an AG model follows a counting process associated with recurring 

events, where recurrences are independent identically distributed

(i.i.d.) replicates of (/y,F,Z), and the probability of the occurrence of two events 

at a given time is zero. Thus, the risk set of the (n - l) *  event is identical to the 

risk set of the event. The AG model is defined as

i<"> (0 = }̂ <"> (t)exp X Î<"> ( o ) ,  (5)

where is an at-risk indicator and = 1 unless the subject is withdrawn 

from the study.

5.3.4 SemZ-paramefnc WLWmode/

Wei et al. [3] proposed a marginal method, expanded from the conditional 

PWP method, in dealing with recurrent failure data. Compared to the PWP
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method, the WU/V method has greater or equal risk set, depending on the 

sample size of the failure count. The PWP method estimates the intensity 

function by considering the subjects having a complete history of previous 

recurring events, while the W IW  method additionally considers the subjects that 

have been withdrawn from the observation. The censored subjects are still in the 

risk set; thus, contributing influence on events that are followed after the 

censoring time. The risk set of each subject using the WLW method remains the 

same regardless of complete data or censoring events since a subject is still at 

risk when the subject has been withdrawn from the experiment.

Wei et al. [3] in a bladder cancer study examined treatment effects by using 

the PWP and WLW models about placebo and thiotepa therapies for tumor 

patients. This bladder cancer example collects four recurrence times of tumors 

7 ; -  7̂  corresponding to four marginal proportional hazards models. Rather than 

fitting each 7] one model at a time, WLW fits four marginal models in one

analysis, simultaneously. This example has two response variables {failure time 

and censoring status}, three covariates {treatment, tumour number, tumour size}, 

and four recurrent events over time.

For the t'*  failure type and the failure event count, the hazard function 

(r) in WLW is assumed to take the form:

(0 = (t)6xp{/g; X z*, (r)}, t ^  0, (6)

where is an unspecified baseline hazard function and % - 'A * )  is a

vector of failure-specific regression parameters. z^,(r) denotes a ;?xl vector of
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covariates for the z* subject at time r with respect to the type of failure, 

expressed as z^(r) = (Zu,(r),z2^(r),..^^(r)y.

Let represent the failure time of the subject for the type of failure 

and let Q  represent the censoring time. are observation values of , 

where =min{Yt,,Cg} The indicator variable A, is utilized for determining the 

event as a failure or censoring. Let A, = 1, when Z*, = Z*, ; othenwise A, = 0.

Key assumptions for the WLW method are: (1 )^^ 1 C*,, i.e., the failure and 

censoring times are independent of each other; (2)(Z,,A ,,Z,) are i.i.d. random 

vectors, where represent covariates and z represents event count; and (3) 

The regression coefficients p, follow a normal distribution with mean p, denoted

5.3.5 Method

Unlike the gap time scale (PWP-GT), the total time scale (PWP-TT and WLW) 

is invariant to the shape parameter (^ )  of the power-law form NHPP, because 

does not influence the likelihood function in the total-time model. The counting 

process (AG) adopts the total time scale, and thus becomes an estimator 

invariant to shape parameter. Kelly and Kim [23] and Lipschutz and Snapinn [22] 

suggested how to use the total time and counting process models. The gap time 

scale has been considered a better model to capture the dependence structure 

existing among failure times than has the total time scale. Thus, in any rate of 

occurrence of failures, utilizing the gap time scale can capture the trend and give
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a sound estimate of covariate effects, vWiile the total time scale appears to 

overestimate covariate effects as the event count progresses. This 

overestimation is termed as a misspecification problem resulting from applying 

the total time scale and counting process scale. Consequently, the HPP case is 

chosen for the purpose of illustrating the PWP-TT, AG, and WLW models. The 

PWP-GT model is implemented for comparison purposes.

There is another limitation of using the total time scale: the maximum number 

of simulated failure events that is able to afford reliable estimates. As a result, 

four failure events were generated for each sample unit. In the concept of risk set, 

there are two types: common (AG) or event-specific baselines (PWP-GT, PWP- 

TT, and WLW). The common baseline provides a general covariate effect based 

on the generic analysis from all input data without ranks of failure events, while 

the event-specific baseline offers the estimated covariate effect in each stratum 

defined by Silure count.

Simulation data vwth right-censored patterns, where the underlying distribution 

follows a power-law NHPP is generated by a modified Blanks & Tordon [24] 

simulation algorithm. Since stationary data are specified, J = 1 is set to convert a 

power-law NHPP into an HPP. In order to simulate right-censored recurrent data, 

two groups of sample units were generated, in which one group contains the 

sample units with complete data and the other group contains the sample units 

with right-censored data. In the group of censored units, the right-censored 

pattern is set random. The ratio (probability) of the sample units that have 

censored times to total sample units is defined as censored probability (jP).
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A discrete indicator covariate was used to separate the data into two strata 

for an arbitrary treatment effect. For consistency with the work of Qureshi et al.

[6], simulated data was generated from a power-law NHPP with like parameters, 

except that four recurring failure events were generated for each sample unit 

(compared to ten recurring events on Qureshi's work). A proportional intensity 

function dataset was created using two different values for the scale parameter 

(uo = 0.001,0 ; = 0.01) corresponding to the two values of the indicator covariate

Z; (Zj = 0,2; = 1 )■

There are two experimental factors: experimental units (f7) and censoring 

probability (7^). The levels for each factor are selected as follows: (1) (7 = 60, 

120, and 180 and (2) 0, 0.4, 0.8, and 1.0. Note that 7), = 0 represents

complete data, which provides the comparison of censored and complete data. 

The selection of the f7 and ^  levels has taken the following considerations: (1)

the parameter settings in the previous relevant works (Proschan [25], Landers 

and Soroudi [5], Qureshi et al.[6], and Landers et al. [8]) (2) Severe right- 

censorship may cause the small sample size ( [/  =20) to have insufficient data. 

The selection of 7̂  levels takes into account the light, moderate, and severe

censoring. The selection of levels is taken from the parameter settings in the 

previous research works, and it has also considered the small, median, and large 

sample sizes.

To implement the four regression methods (AG, PWP-GT, PWP-TT, and 

WLW), three types of datasets were generated consistent with the theory and
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methodology of each. For the AG method, the data set is formed from the time 

interval (7^,7^) with respect to the counting process fonnulation. Thus, the logic

rule to form the dataset is: 7̂  >7]. As a result, all the censored failure times are 

removed from the dataset since 7̂  =7] when it is a censored event as stipulated 

for the AG method. The concept of forming the dataset for the PWP method 

originates from the probability theory of conditionality. The later failure times after 

the failure count cannot be included into the dataset when the intensity 

function at the failure count is estimated. That is, for each censored unit, the 

censored times are removed from the dataset except for the first censored event 

count. Due to the marginal probability theory of the WLW method, the dataset 

contains full records including all censored events, such that censored units 

remain in the risk set

The four semi-parametric methods were implemented using the SAS™ Users 

Group (SUGI) software code PHREG [26], which performs the semi-parametric 

Cox regression method with a blocking option to stratify for a covariate, such as 

failure event count, not satisfying the proportional hazards conditions. PHREG 

applies the product-limit method to estimate the reliability function within all strata 

defined by the failure count and for all values of the covariate. PHREG also 

applies the Cox method to estimate the vector of regression coefficients p and 

the covariance matrix. Appendix IV provides the programming code to perform 

the four semi-parametric methods. To measure and compare model perfbmiance, 

three robustness metrics were compiled:

# relative signed error (BIAS):
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# relative mean absolute deviation (MAD) and

# relative mean squared error (MSE).

5.4 Results

5.4.1. Evenf-spec^c base//ne mode/s (PI/l/P-GT) PM/P-TT) and WLI49 

Figure 5.2 presents the 95% C.l. on the PWP-GT, PWP-TT, and WLW 

estimators in the case of = (120,0.4), where denotes sample units and

denotes censoring probability. This chart serves as an example that the PWP-

GT model has proven the most robust and accurate estimator (at the lowest error) 

among the three models. The true value of ^  is derived from the formula

1
B =  In = 2.30259. As the failure count proceeds, the PWP-GT model

remains within its 95% C.I., while the other two estimators do not lie in their 

95%C.I.
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Fig. 5.2 Comparison of the three event-specific estimators of the covariate effect, 
(C/,1^) = (120,0.4)
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Table 5.1 summarizes the robustness across the strata defined by failure 

count. Note that the parameter setting 7̂  =0 (complete data) is included for 

comparison with censored data.

Table 5.1 Performance metrics of p, in an HPP case (PWP-GT, PWP-TT, and WLW)
PWP-GT PWP-TT WLW

BIAS MAD MSE BIAS MAD MSE BIAS MAD MSE

60 0 -0.08739 0.08993 0.01591 1.37088 1.40005 7.14217 1.37088 1.40005 7.14217
0.4 -0.08758 0.09292 0.01806 1.35651 1.38568 7.02349 1.38943 1.41860 7.36003
0.8 -0.08634 0.10208 0.02009 1.81323 1.84240 13.11053 1.86904 1.89821 13.83614
1 0.38466 0.59073 1.29475 1.75212 1.78129 12.55797 1.79718 1.82635 12.93005

120 0 -0.02181 0.03149 0.00206 0.63394 0.63394 0.76947 0.63394 0.63394 0.76947
0.4 -0.00911 0.02261 0.00083 0.60218 0.60218 0.67732 0.62340 0.62340 0.73285
0.8 -0.01586 0.02253 0.00103 1.49651 1.49651 7.04960 1.57647 1.57647 7.84370
1 0.00138 0.01607 0.00039 1.83500 1.83500 12.05176 1.95337 1.95337 13.63281

180 0 -0.05047 0.05047 0.00540 0.59103 0.60241 0.72164 0.59103 0.60241 0.72164
0.4 -0.04359 0.04366 0.00406 0.57569 0.58707 0.67309 0.59926 0.61063 0.73740
0.8 -0.05770 0.05770 0.00633 0.62249 0.63387 0.81017 0.67436 0.68574 0.97323
1 -0.02335 0.04742 0.00410 1.44098 1.45236 6.82499 1.50519 1.51657 7.40608

* Refer also to Fig. 5.3 (a>-(c)

Table 5.1 indicates the PWP-GT model has proven the most robust and 

accurate estimator (at the lowest error) among the three event-specific models. 

Compared to WLW, the PWP-TT estimator yields similar but slightly better 

results. Fig. 5.3(a)-(c) contains six charts of 3-D error graphs of performance 

metrics (BIAS and MSE) illustrated by each method (PWP-GT (Fig. 5.3(a)), 

PWP-TT (Fig. 5.3(b)), and WLW (Fig. 5.3(c))).

The PWP-GT error chart (Fig. 5.3(a)) presents a low-error region at the range 

of 120 < ^  180 and 0 < < 1. For the small sample size [ /  = 60, the more

favorable applications range is 0^2^ ^0.8, having relative NI8E in the range of 

(1.6%, 2.0%), relative BIAS in the range of (-8.8%, -8.6%), and relative MAD in 

the range of (9.0%, 10.2%). As the sample size is increased to [ /  = 120 the more 

favorable applications range is widened to 0 < 7). < 1.0, having relative MSE in
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the range of (0.0%, 0.2%), relative BIAS in the range of (-2.2%, 0.1%), and 

relative MAD in the range of (1.6%, 3.1%). In the case of [ /  = 180, PWP-GT 

estimates have relative MSE is in the range of (0.4%, 0.6%), relative BIAS is in 

the range of (-5.8%, -2.3%), and relative MAD is in the range of (4.4%, 5.8%).

The other two estimators (PWP-TT and WLW) present a similar pattern in 

model performance (Figs. 5.3(b) and (c)). As the sample size increases, the error 

is on the decrease. As the censoring increases, the error is on the rise. Sample 

size (7 = 60 does not provide sufficient data, and thus both PWP-TT and WLW 

yield a poor result. When the sample size is increased to [ /  = 120, PWP-TT and 

WLW have a slightly improved applications range 0 < 7̂  ^  0.4. PWP-TT

estimates have relative MSE in the range of (67.7%, 76.9%), relative BIAS in the 

range of (60.2%, 63.4%), and relative MAD in the range of (60.2%, 63.4%). 

Likewise, WLW estimates have relative MSE in the range of (73.3%, 76.9%), 

relative BIAS in the range of (62.3%, 63.4%), and relative MAD in the range of 

(62.3%, 63.4%). As the sample size is increased to 180, the performance is poor 

but stable over applications range 0 ^ 7̂  < 0.8 on both methods. PWP-TT

estimates have relative MSE in the range of (67.3%, 81.0%), relative BIAS in the 

range of (57.6%, 62.2%), and relative MAD in the range of (58.7%, 63.4%). 

Likewise, WLW estimates have relative MSE in the range of (72.2%, 97.3%), 

relative BIAS in the range of (59.1%, 67.4%), and relative MAD in the range of 

(60.2%, 68.6%).
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Fig. 5.4 (a)-(c) examines BIAS and MSE versus ^  for the three event-specific

models at each of three sample sizes ((7 = 60, C7 = 120, and (7 = 180). PWP-GT 

is shown to perform best, since PWP-GT BIAS and MSE are beneath PWP-TT 

and WLW at any sample size. As the sample size increases, the disparity 

between the gap time and total time groups is reduced/compensated.
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5.4.2. Common base/me mode/

The AG model is used to estimate general covariate effects from all strata of 

recurrent failure events. The results show that AG performs well for smaller 

sample size ( [/  = 60) and heavy censoring case =1.0). In an NHPP case,

dependence structure among recurring events hinders the AG model to estimate 

covariate effects. Thus, an HPP case is chosen to examine the AG model in a 

right-censoring setting.

Table 5.2 and Fig. 5.5 portray the 95% C.l. of the AG estimates in the 

cases of 60 ̂  < 180 and 0 ̂  < 1. The true is 2.30259, and Fig. 5.5 (Table

5.2) indicates that the true yg lies within the 95% C.l. of the AG estimates. The 

favorable applications region lies at 60 ̂  < 180 and 0 ^  ^  1. As the sample

size increases, the variability of the AG estimate becomes smaller, producing 

narrower confidence intervals.

Table 5.2 95% C.l. of AG estimates for yg ( S =  l , a  HPP)
Conditions AG estimates ® 95%LB 95%UB
(U, Pc)=(60,0.0) 2.14240(0.17321)" 1.80291 2.48188
(U. Pc)=(60,04) 2.09753(0.17830) 1.74808 2.44699
(U, Pc)=(60,0.8) 2.09901(0.19110) 1.72446 2.47356
(U. Pc)=(60.1.0) 2.06188(0.19345) 1.68272 2.44103
(U, Pc)=(120,0.0) 2.22307(0.12272) 1.98254 2.46360
(U, Pc)=(120,0.4) 2.18404(0.12587) 1.93734 2.43073
(U. Pc)=(120.0.8) 2.26325(0.13494) 1.99878 2.52772
(U. Pc)=(120,1.0) 2.22105(0.13600) 1.95450 2.48760
(U, Pc)=(180,0.0) 2.17635(0.09455) 1.99104 2.36166
(U, Pc)=(180.0.4) 2.13810(0.09750) 1.94701 2.32920
(U. Pc)=(180.0.8) 2.15384(0.10222) 1.95350 2.35419
(U, Pe)=(180.1.0) 2.16989(0.10456) 1.96496 2.37482

1 ,
theoretical values of yg = — In = 2.30259

Estimated standard errors in parenthesis

164



AG(U=50)
- © -  95%LB(U=60) 
- O -  05%UB(U=80) 
- A -  AG(U=120) 
- 2 ^  65%LB(U=120) 
- 2 ^  95%UB(U=120) 

AG(U=180) 
- B -  95%LB(U=180) 
- Q -  95%UB(U=iaO) 

True

0.4 0.6
Censoring probability

Fig. 5.5 95% C.l. of AG estimates for

5.5 Conclusions

The research studied the robustness of three event-specific baseline models 

(PWP-GT, PWP-TT, and WLW) and a common baseline model (AG) to recurring 

failure events with right-censoring effect from an HPP. The PWP-GT and AG 

prove to be models of choice, evaluated in terms of the BIAS, h/IAD, and MSE of 

covariate regression coefficients over ranges of sample sizes and censoring 

severity encountered in engineering applications. The ^vorable engineering 

applications ranges are recommended.

The research domains of the two factors of interests are: (1)60 ^ 180 and

(2)0.0 ^1.0. The parameter setting =0 (complete data) is included for

comparison with censored data. The PWP-GT model has proven the most robust 

and accurate estimator (at the lowest error) among the three event-specific 

models. Compared to WLW, the PWP-TT estimator yields similar but slightly
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better results. The PWP-GT presents a low-error region at the range of 

120 < (7 ̂  180 and 0 ̂  ̂  ^ 1. For the small sample size [ /  = 60, the more

favorable applications range is 0 0.8. For the other two estimators, when

the sample size is increased from [ /  = 60 to [ /  = 120, PWP-TT and WLW have a 

slightly improved applications range 0 < 7̂  < 0.4. As the sample size is increased

to 180, the performance is poor but stable over applications range 0 < 7̂  < 0.8 on 

both models. The results show that AG performs well for the case of smaller 

sample size ( [ /  = 60) and heavy censoring (7^ =1.0). The favorable applications

region of the common baseline AG model lies at 60 ̂  (7 ̂  180 and 0^7^ ^1.

The sample sizes chosen for this engineering research were 60 < (7 ^ 180 

(30-90 units per dass of a two-level covariate). Many of the medical studies 

reported in the literature contain sample sizes smaller than this range. Small 

sample sizes are common in medical studies due to the high cost of a clinical trial 

including requisite examinations required in the medical practices, such as X-Ray 

scans and blood tests. The numbers of qualified subjects are sometimes small 

because of cost and/or medical conditions. The AG model is designed to 

estimate the general covariate effect and can be useful if small sample size is 

unavoidable. The AG model adopts the stationary counting process model and 

assumes each occurrence as independent and identically distributed according 

to an exponential distribution. Thus, the number of observation for a subject can 

be utilized as the expansion of the sample size. For instance, there are ten 

subjects available and four observations for each subject are collected. The
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sample size effect for those ten subjects in using the AG model is equivaient to 

having forty subjects.

This research has addressed only the case of data from an NHPP with 

power-law intensity function. The log-linear intensity function is aiso encountered 

in the literature and may be important for industry. Future research to examine 

the right-censoring effect upon recurring events from an NHPP with log-linear 

intensity function could be beneficial to practitioners.
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G. Semi-parametric proportional intensity models robustness 
for recurrent failure data with overhaul intervals

6.0 Abstract

The class of semi-parametric proportional intensity (PI) models applies to 

recurrent failure event modeling for a repairable system with covariates. Certain 

systems (e.g., aircraft and power plants) experience a substantial period of 

downtime due to performing maintenance (i.e. major overhaul) following a major 

failure. This discontinuity in observation time has been a concern in the accuracy 

of estimating the covariate effect. Hansen and Ascher examined an automobile 

for intermittent failures, which often lead to a series of unsuccessful repair 

attempts, and reported that repair times for intermittent failures cannot be 

assumed negligible and the model must t)e designed to account for machine 

downtimes. Themeau and Hamilton proposed a discontinuous risk-free-intervals 

method for biomedical applications that could also apply to this engineering 

problem. This paper has examined three semi-parametric PI models (Prentice- 

Williams-Peterson-gap time (PWP-GT), Andersen-Gill (AG), and Wei-Lin- 

Weissfeld (WLW)), and has recommended selecting appropriate PI models as a 

function of the overhaul duration.

The experimental design in this research has incorporated two levels of 

overhaul duration (short: < 0.5 and long: 3.0 ^ jR < 5.0, where is defined as a

gap-time-ratio indicating a proportion of the previous AfZTF (mean time to 

failure)) to evaluate these three proposed PI models. The more favorable 

engineering applications ranges for the overhaul duration based on the sample 

size ([/) and shape parameter (< )̂ are recommended. The PWP-GT model
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proves to perform well for sample sizes 60 (30 per class) or more, moderately 

decreasing, constant, and moderately increasing rate of occurrence of failures 

(power-law NHPP shape parameter in the range 0.8 1.8) if the overhaul

duration is short (j( ^  0.5 ). If it is a long overhaul duration (3.0 ^ ^  ^ 5.0), the 

more favorable applications range of PWP-GT for shape parameter is 

0.8 ^ «y < 1.2. In the large sample size 120 (60 per class), the PWP-GT model 

performs well in the range of 0.5 «5 ^ 2.0, if the overhaul duration is short 

( j;  < 0.5 ). If the overhaul duration is long (3.0 jR < 5.0), the more favorable 

applications range of PWP-GT for shape parameter is 0.8 < ^  ̂  1.2. As for the 

other two common baseline intensity model (i.e. AG and WLW), the AG model 

performs consistently well in the small sample size (20) regardless of the 

overhaul duration ( 5.0) in an HPP case. The WLW model performance

improves as the overhaul duration increases ( i;  > 5.0).

Keywords, reparrab/e ^sfems, semr-paramefrrc propordona/ /nfensAy mode/s, 

ma/orrepa/rs, overhau/s, preverrf/ve mamferrarrce, r7s/r-/ree-/nferva/s 

Nomenclature 

Acrorryms

AG Andersen and Gill model

C.l. Confidence interval

DROCOF Decreasing rate of occurrence of failures 

HPP Homogeneous Poisson Process

IROCOF Increasing rate of occurrence of failures

i.i.d Independent and identically distributed

LWA Lee, Wei, and Amato model

MTTF Mean time to failure
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MAD

MSE

NHPP

PH

PI

PM

PWP

PWP-GT

PWP-TT

WLW

A/ofaAv?

D

F

# ;z )

4

i.i.d.

N

»

jR

s.d.

T

Mean absolute deviation

Mean squared error

Non-homogeneous Poisson Process

Proportional hazards

Proportional intensity

Preventive maintenance

Prentice, Williams, and Peterson model

Prentice, Williams, and Peterson-gap time model

Prentice, Williams, and Peterson-total time model

Wei, Lin, and Weissfeld model

Censoring time for the subject of the type of failures

Overhaul duration

The event number that represents a major failure 

Proportional hazard function

Baseline hazard function 

Number of sample units in class 

Number of sample units in class 1 

Independent and identically distributed 

Successive failure count

Random variable for the number of failures in (0,r]; a counting 

process

An integer counting successive failure times; a stratification 

indicator subscript 

Gap time ratio 

Standard deviation

The beginning and end of an event; bivariate exponential variables 

Major failure times (clock hour)

Random variable for cumulative time of occurrence of the failure
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f. Cumulative time of occurrence of the » failure; a realization of 7],

Sample size (number of units)

% Observation time

The gap time associated with the minor event prior to a major event

an at-risk indicator in the AG model 

Z(f) Covariate process up to time r

z ( t x l )  vector of covariates, z = (z,, ) '

P, (A^xl) vector of stratum-specific regression coefficients

P — (^1)^2» "

^  Shape parameter of a power-law NHPP

A Indicator of a failure or censored time; limit to time zero

Ag Baseline value of ^  for power-law NHPP

Ag (r) Baseline intensity function

;ig, (r) Stratum-specific baseline intensity function

A(r;z) Proportional intensity function

u Scale parameter of a power-law NHPP

Ug Baseline value of u, the scale parameter of a power-law NHPP

U; Alternate value of u , the scale parameter of a power-law NHPP

(T Standard deviation

* Denotes an estimator

' Denotes the transpose of a vector

6.1 Introduction

Failure time data on a repairable system are realizations of a stochastic point 

process, in which the instantaneous rate of occurrence of failures (ROCOF) is 

A(r). Prentice, Williams, and Peterson (PWP) [1] proposed a semi-parametric 

approach to model recurrent failure event data from a repairable system using
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two methods: PWP-GT (gap time) and PWP-TT (total time). Several researchers 

have subsequently proposed altemate modeling methods by modifying the risk 

set (common or event-specific baseline intensity function) and the risk interval 

(gap time, total time, or counting process). These include the AG (Andersen-Gill)

[2] and WLW (Wei-Lin-Weissfeld) [3] models.

Cox proposed the distribution-free (semi-parametric) proportional hazards 

(PH) model in 1972 [4]. The Cox-based regression models (PWP-GT, PWP-TT, 

AG, and WLW) have been applied to recurring events in medical studies 

(biostatistics field), such as recurrent infections of a patient. For engineering 

applications, Landers and Soroudi [5], Qureshi et al. [6], Vithala [7], and Landers 

et al. [8] have investigated robustness of the PWP-GT model, where the 

underlying recurrent Silure time data are from a Non-homogeneous Poisson 

Process (NHPP) with a power-law or a log-linear intensity function. These 

references also report the engineering applications of the PWP-GT model cited in 

the literature. Qureshi et al. [6] found that the PWP-GT model performs best for 

constant and moderately increasing rate of occurrence of failures (IROCOF) and 

decreasing rate of occurrence of failures (DROCOF) and for larger sample sizes 

from power-law NHPPs. Vithala [7] considered the case of log-linear increasing 

rates of occurrence of failures, and concluded the PWP-GT model performs best 

for moderately increasing rates of occurrence of failures and for larger sample 

sizes.

Compared to the extensive literature on applications of the proportional 

intensity (PI) models in the biostatistics field, there have been few reported
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engineering applications. Abundant federal funding received in biostatistics/ 

medical research has advanced the PI models to become well developed and 

widely referenced. PI models for medical applications could also apply to 

recurring failure/repair data in engineering problems. The AG, PWP-GT, PWP-TT, 

and WLW models are potentially powerful analytical tools for engineering 

practitioners as they become better recognized and understood.

Hansen and Ascher [9] examined an automobile for intermittent failures, 

which often lead to a series of unsuccessful repair attempts, and reported that 

repair times for intermittent failures cannot be assumed negligible and the model 

must be designed to account for machine downtimes. Kobbacy and Jeon [10] 

considered both failure times and machine downtimes in the PI model for 

preventive maintenance (PM) scheduling in a deteriorating repairable system. 

Themeau and Hamilton [11] introduced the concept of discontinuous risk-free- 

intervals that may be applied in reliability engineering as the duration of 

perfomriing major overhauls. This paper reports progress on continuing work after 

Landers and Soroudi [4], Qureshi et al. [5], Vithala [6], and Landers et al. [7], and 

investigates the robustness of the semi-parametric PI models for repairable 

systems subject to prolonged risk-free-intervals for major repairs (overhauls).

6.2 Semi-parametric Proportional Intensity models

Cox [4] proposed a proportional hazards (PH) formulation to include 

explanatory variables (covariates) in survival models. PWP proposed an 

extension of the Cox model to stochastic processes and applied the approach to 

model recurring infections in aplastic anemia and leukemia patients having
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received bone-marrow transplants. This application involved several subjects and 

a small number of events (up to five) for each subject. The paper by PWP did not 

address the baseline intensity function but rather reported the relative risks for 

the test and control groups. In reliability and maintainability engineering 

applications, a number of authors have applied the semi-parametric PI (PH) 

model, for example, Ansell and Phillips [12], Ansell and Phillips [13], Landers and 

Soroudi [5], Qureshi et al. [6], Ansell and Phillips [14], Landers et al. [8], Ansell et 

al. [15], and Ansell et al. [16]. A collection of the PI model applied to different 

industries includes: marine gas turbine engines (Asher [17]), semiconductor, 

electrical, and pipeline industries (Ansell and Phillips [14]), U.S. Army main battle 

tank (Landers et al. [8D, water supply industry (Ansell et al. [12], [16]), etc.

Ascher [17] illustrated the use of the PWP model for analysis of reliability for 

marine gas turbine engines. Ascher and Feingold [18] suggested application of 

the PWP model in the field of reliability engineering. Dale [19] applied the PWP 

approach to simulated data for a reliability growth program with design 

improvements implemented after each of the five stages, resulting in a 

decreasing rate of occurrence of failures (DROCOF). Wightman and Bendell [20] 

and Bendell et al. [21] cited the PWP model and advised caution in application 

for engineering studies.

Qureshi et al. [6] performed a robustness study to determine how well the 

PWP-GT method performed when applied to data from a failure process that was 

actually parametric (specifically the NHPP with power-law intensity function). The 

2 bounds of the PWP-GT estimates can cover the true values with few
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exceptions. The PWP-GT method performed well, except at small values of 

shape parameter < 0.6). The PWP-GT method was best for larger sample size 

and for moderately decreasing, constant, and moderately increasing ROCOF.

The validation process for the case of an HPP in Section 2.2.3 (also refer to 

Table 2.10) indicated that the estimated AfZTF (mean time to failure) differences 

between the PWP-GT model and theoretical values were not statistically 

significant. As for the PWP-GT estimates of the covariate regression coefficient, 

the true value of coefficient lies within the 2 cr confidence bounds on the

estimate /Ô for 1.0 ^  < 1.4. The PWP-GT method tends to underestimate ^  for 

a DROCOF (e.g., BIAS= -26% at = 0.5) and overestimate yg for an IROCOF 

(e.g., BIAS= 19%at <̂ = 3.0).

The AG model (Andersen and Gill [2]) and the WLW model (Wei et al. [3]) are 

widely cited in the literature. Bowman [22] and Lin [23] surveyed and evaluated 

the AG, PWP-GT, PWP-TT, and WLW methods. Bowman identified the local 

time model (PWP-GT) as superior and then used it to analyze needle-stick injury 

data. Wei and Glidden [24] have reviewed the Cox-based methods designed to 

model recurrent data, and summarized the strengths and weaknesses for each 

method. In a commentary on the Wei and Glidden paper, Lipschutz and Snapinn

[25] stressed two concepts of "event times" and "risk sets" as crucial to choosing 

the appropriate model. Event elapsed times are related to the total time, gap time, 

and counting process. The PWP-TT and WLW are modeled by total time, while 

only PWP-GT is modeled by gap time. The risk interval of the AG model belongs 

to the counting process class. Intuitively, total (global) times within a subject are
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highly correlated. The total time model may indicate large treatment effect 

throughout the entire study, even though the gap time model has indicated little 

treatment effect beyond a certain recurrence. The counting process concept of 

the AG method implies each recurrence is not affected by previous events, and 

does not contribute to future events.

The risk set consists of the subjects at risk for a specified event (e.g., failure). 

There are three types of risk sets: conditional (e.g., PWP), counting process (e.g., 

AG), or marginal (e.g., WLW). As a marginal method, the WLW method assumes 

a subject is at risk regardless of event count until the observation for the subject 

terminates by censoring. The AG method also provides an index of a general 

covariate effect, which is expressed by the common baseline hazard 

(unrestricted risk set). However, a subject in the PWP method has event-specific 

baseline hazards (restricted risk set), in that the proportional intensity of event t  

only considers the subjects that have experienced ( t-1 )  events. Lipschutz and 

Snapinn [25] suggested guidelines as follows in choosing the appropriate models:

# Use total time, common baseline hazard (unrestricted risk set) when the 

general effect is of interest

# Use gap time, event-specific baseline hazards (restricted risk set) when 

the primary concern is how the treatment will affect the recurring events 

beyond the first occurrence.

Kelly and Lim [26] noted that risk interval can be defined by three formulations 

{(1) gap time, (2) total time, and (3) counting process} demonstrated in Fig. 

6.1(a)-(c). Risk interval determines whether a model is marginal in the total time
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or conditional in the gap time. The risk interval of any event in total time is not 

influenced by any previous events, but measures time from entry into the 

experiment (beginning of observation). However, the risk interval of the gap time 

begins from the end of last event (Kelly and Lim [26]). Counting processes use 

the total time scale and share the same elapsed time as does the gap time model. 

However, the risk interval starts from the previous event instead of the entry time. 

Based on the common or event-specific baseline intensities, the risk set is 

labeled as either unrestricted or restricted. Kelly and Lim [26] defined three 

possible risk sets {(1) unrestricted, (2) restricted, and (3) semi-restricted} in 

deciding which sample units are at risk of contributing to event t . Kelly and Lim

[26] employed the concepts of the risk interval and risk set and categorized the 

AG, PWP-gap time (PWP-GP), PWP-total time (PWP-TT), WLW, LWA(Lee-Wei- 

Amato), and other methods.

Hansen and Ascher [9] examined an automobile for intermittent failures, 

which often lead to a series of unsuccessful repair attempts, and reported that 

repair times for intermittent failures cannot be assumed negligible and the model 

must be designed to account for machine downtimes. Kobbacy and Jeon [10] 

considered both failure times and machine downtimes in the PI model for 

preventive maintenance (PM) scheduling in a deteriorating repairable system.

Themeau and Hamilton [11] introduced the concept of discontinuous risk- 

free-intervals. A study of rhDNase in patients with cystic fibrosis involved a 

seven-day discontinuous risk-free-interval, initiated by intravenous (IV) 

administration of antibiotics. The concept of risk-free-intervals may be applied in
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reliability engineering as the duration of performing major overhauls. The 

discontinuous-risk-free-intervals modeling relaxes the assumption of zero time to 

perform a major overhaul, and thus better describes the typical field life cyde.

For instance, suppose three failures have taken place at days 25, 60, and 90, 

where two days of performing a major overhaul are required after the second 

failure. The data records, expressed as for the three failure times

in the Cox-based models, can be written as (1,0,25,1), (2,25,60,1% and (3,62,90,1), 

where ( » , / , , denotes (failure count, start time, stop time, (0,1) indicator 

variable for censor (0) event or failure (1) event). The value =90 of the third 

failure with a major overhaul records global time to failure with the third failure 

coinciding with the beginning of a risk-free-interval. However, consideration of 

major overhaul of duration (D ) requires a change from interval (r^,/;) to interval 

(r, + D ,f;) . In the aircraft industry, 2) could be as long as one year after flying for 

3000 hours for a major overhaul or as short as a few hours for a minor repair.

This robustness study examines how the magnitude of D affects the PI methods,

as measured by the regression estimates (;9,).
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0 5 10 15 Time
(a) Gap time

A

0 5 10 15 Time
(b) Total time

f  -------- #

0 5 10 15 Time

(c) Counting process

Fig. 6.1(a)-(c) Risk interval formulations (Kelly and Lim [26])
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6.3 Models and methods

Sections 6.3.1-6.3.4 review the semi-parametric Cox regression model for 

single event and the related regression models for recurrent events. Section

6.3.5 reviews an NHPP with power-law intensity function. Section 6.3.6 describes 

the method used to assess the robustness of the semi-parametric PI methods for 

the case of complete data from a true but unknown power-law NHPP.

6.3. f  Cox regmss/on mode/

For the case of a time-to-failure random variable, Cox [4] proposed a PH 

regression model of the form:

A(r;z) = Ag (t)exp(p'z), (1)

where p is the regression coefficient vector and z represents a covariate vector. 

The PH model is composed of two parts: baseline hazards function Ao(r) and an 

exponential link function, where p is designated to measure the covariate effect. 

The Cox model can be used to describe the semi-parametric distribution of time- 

to-failure for non-repairable items with covariates. Under proportional hazards, 

the ratio of the hazard functions of two units (v4 and 6 ) with covariate vectors 

z^ and Zg is constant over time. The covariates have a multiplicative effect on 

the baseline hazard function. When the baseline hazard function is fully specified 

(e.g.,Weibull) the analytical procedure is termed a parametric method. 

Alternatively, Ag(r) can be left arbitrary, in which case the procedure is termed 

semi-parametric.

182



6.3.2 SemApammefnc PM/P mode/

The PWP model [1] is a generalization of the semi-parametric Cox 

proportional hazard function to a proportional intensity function A(r;z) for the 

case of repeated failure events. Under proportional intensities, the ratio of the 

intensity functions of two units and 6 ) with covariate vectors and Zg is 

constant over time. The covariates have a multiplicative effect on the baseline 

intensity function. When the baseline intensity function is fully specified (e.g., 

power-law or log-linear) the analytical procedure is temied a parametric method. 

Altematively, the baseline intensity function can be left arbitrary in which case the 

procedure is termed semi-parametric.

Given the counting and covariate processes at time r , the general semi- 

parametric intensity function was defined by PWP as follows:

I# ( r ) ,Z ( r ) }  = lim Pr { r < < r + A r | /y ( r ) ,z ( r ) } /A ,  (2)

where Æ(r) represents a random variable for the number of failures in (o,r], Z(r) 

denotes the covariate process up to time r , and A limits the time span to zero. 

Among the semi-parametric regression models specified by PWP were the 

following:

f /ÿ? -  GT : I Jy(r), Z(r)} = (f -  ) exp[p;,z(r)] (3)

f  -7 T  : I /y(r),Z(f)} = ;i,.(f)exp[P:z(r)]. (4)

In the PWP-GT model of Eq. (3), the time metric is the interval between times 

of failure and r„ , defined as gap time. The PWP model stratifies a failure data 

set based on the failure event count. When a unit is placed into operation it has
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experienced no failures and so resides in stratum 1 (w = 1), and when the first 

failure occurs the unit moves to the second stratum (» = 2 ). In general, the unit 

moves to stratum » immediately following the (« - !) '' failure and remains there 

until the n* failure.

Unlike the gap time model, the limitation of the event-specihc total time model 

restricts the numt)er of recurring events. Ten recurring failure events generated 

from a power-law NHPP in this study have shown a highly correlated relationship. 

Thus, the PWP-TT model is modified to a special case of Eq. (4), where the 

baseline intensity function is set to a common baseline intensity function denoted 

as =

6.3.3 Semz-panamefnc v4G mode/

Andersen and Gill [2] developed the AG method as an extension of the Cox 

proportional hazards model, to accommodate recurring events in a counting 

process. The AG method explains general covariate effects (common baseline 

intensity function in the concept of risk set), since each event count re-starts the 

failure process, and thus does not feature event-stratifying effects. The risk 

interval of an AG model follows a counting process associated with recurring 

events, where recurrences are independent and identically

distributed (i.i.d.) replicates of (/y,T,Z), and the probability of the occurrence of 

two events at a given time is zero. Symbols: (jy,7,Z) represent the successive 

Silure count, an at-risk indicator, and covariates. Thus, the risk set of the (M-1)^ 

event is identical to the risk set of the (n)* event. The AG model is defined as
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f  W = (t)4  (t)exp{p X  z f  (()}, (5)

where is an at-risk indicator and = 1 unless the subject is withdrawn 

from the study.

6.3.4 Semr-paramefric l/VLLVmode/

WLW proposed a marginal method, expanded from the conditional PWP 

method, in dealing with recurrent failure data. Compared to the PWP method, the 

WLW method has greater or equal risk set, depending on the sample size 

associated with the failure count. The PWP method estimates the intensity 

function by considering the subjects having a complete history of previous 

recurring events, while the WLW method additionally considers the subjects that 

have been withdrawn from observation. The subjects that have been censored 

are still in the risk set; thus, contributing influence on events that are followed 

after the censoring time. The risk set of each subject using the WLW method 

remains the same regardless of complete data or censoring events since a 

subject is still at risk when the subject has been withdrawn from the experiment.

Wei et al. [3] in a bladder cancer study examined treatment effects by using 

the PWP and WLW models about placebo and thiotepa therapies for tumor 

patients. This bladder cancer example collects four recurrence times of tumors 

corresponding to four marginal proportional hazards models. Rather than 

fitting each 7̂  one model at a time, WLW fits four marginal models in one 

analysis, simultaneously. This example has two response variables {failure time
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and censoring status}, three covariates {treatment, tumour number, tumour size}, 

and four recurrent events over time.

For the failure type and the failure event count, the hazard function 

A^(r) in WLW is assumed to take the form:

A, (0 = ^  (t)exp{Pt X z*, (r)}, t > 0, (6)

where ^o (f) is an unspecified baseline hazard function and p* is a

vector of failure-specific regression parameters. z*,(r) denotes a p x l vector of

covariates for the r* subject at time r with respect to the t** type of failure, 

expressed as (r) = (2 ,̂  ̂(r), (r),.. (r))'. Let represent the failure time of

the z'* subject for the type of failure and let C*, represent the censoring time.

are observation values of where The indicator

variable A, is utilized for determining the event as a failure or censoring. Let 

A, =1, when Z*, = ; othenwise A, = 0. Key assumptions for the WLW method

are: (1)%*, _L i.e., the failure and censoring times are independent of each 

other; (2)(vT,,A,,ZJ are i.i.d. random vectors, where Z, represent covariates and 

z represents event count; and (3) The regression coefficients follow a normal 

distribution with mean p, denoted ( A ,A ,Â ,  - ,Â ) //onW

(^ 1  ; ̂ 2  ) A  )'

Unlike the gap time model, the limitation of the event-specific total time model 

restricts the number of recurring events. Ten recurring failure events generated 

from a power-law NHPP in this study have shown a highly correlated relationship.
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Thus, the baseline intensity function of Eq. (6) is set to a common baseline 

intensity function denoted as ,^ 0  (0 = ̂ ( 0  - This simplified model is then termed

as Lee-Wei-Amato (LWA) model designated to measure general covariate 

effects. In addition, the WLW model In this study is equivalent to a PWP-TT 

model when the failure count AT for each sample unit is equal.

6.3.5 Power-Zaw /n fens^ A/ncüon

For a power-law NHPP, the baseline intensity function is 

= (7)

where ^  is the shape parameter and o is the scale parameter of the power-law 

form. If we define Og = exp(y8Q x z , )  and Zg = 1, then the power-law PI model 

becomes

A(r; z) = X f exp(P'z), (8)

where p is the regression coefficient vector and z represents a covariate vector. 

The power-law intensity function is composed of two parts: baseline intensity 

function that follows a power-law form and an exponential link function, where p 

is designated to measure the covariate effect

This process could model the reliability of a repairable system with rapid 

deterioration, since the Silure intensity is increasing at an exponential rate with 

time. The analogous case for maintainability is a rapid learning process. The 

intensity function A(r) is strictly decreasing for J <1, constant for ^  = 1, and 

strictly increasing for ^  >1. Thus, we have a DROCOF for ^  < 1, an HPP for ^

= 1. and an IROCOF for >1.
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6.3.6 Method

In this study, simulated recurring data are generated from a modified Blanks 

& Tordon [27] algorithm. To determine the time to perform major overhauls in the 

counting process, a unifomnly distributed C/(0,1) random variate is introduced to 

select the event number F , where the major overhaul is performed. The major 

overhaul is arranged after the .F'* event, and we assume that a period D is 

required to perform a major overhaul. Thus, the next event time, which belongs 

to the (F + lX  event, occurs depending on the F * event time plus the major 

overhaul duration.

The duration to perform a major overhaul is inserted into the interval ,

which makes the interval of risk become , where new event time

is detemiined by + D in the Blanks & Tordon formula. Consequently, the gap 

time and have been altered compared to the recurrent data without the

interruption of a major overhaul interval. However, the discontinuous risk interval 

concept in Themeau and Hamilton [11] is different in terms of (r^ , while the

gap time remains unchanged. "For instance, in a study of patients with hip 

fracture, a subject who fractured at day 100, followed by a 15 day hospital stay 

and then 300 more days of uneventful follow-up would be represented as two at- 

risk intervals: (0,1 OO],(115,415]" (Themeau and Hamilton [11]). The gap times of 

100 days and 300 day remain the same, while the risk interval has been shifted 

forward from {(0,100], (l00,400]} to {(0,100], (l 15,415]}.
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The magnitude of D is determined based on the previous gap time ,

where f  is a random variate indicating the F * event is a major failure event; 

otherwise, the event is a minor failure. The relationship between D and is:

where

is the gap time ratio that controls the magnitude of Z),
represents the gap time associated with the minor event prior to a major 

event,
F  is the event number that represents a major failure.

The concept of utilizing the gap time ratio ^  in determining the major overhaul 

duration strengthens the model, since there are three types of power-law 

intensity functions (IROCOF, constant ROCOF, and DROCOF). The recurrent 

failure interval can vary from one time unit to a large value depending on the 

shape parameter.

The parameter settings are as follows when a discontinuous-risk-intervals 

model is associated with the repair time: (1) Scale parameters in CLASSO (ug)

and CLASS1 ) are set to 0.001 and 0.01 ; (2) Number of failures AT = 10 ; (3)

F * event represents a major Wure, followed by a major overhaul; and (4) Seed 

numbers for three replicates are 539, 255, and 59. The magnitude of D is 

examined as the primary factor that affects the performance of the semi- 

parametric PI models.

In the experimental design regarding the discontinuous risk-free-intervals 

model, there are three experimental factors: (1) number of the experimental units 

( [/) , (2) shape parameter (<y), and (3) gap time ratio ( )  that controls the major 

overhaul duration (D). Z,, and Ẑ represent the number of units in each dass.
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The levels of experimental factors are as follows. (1) [ /  : 20, 60, and 120 (2) ^ : 

0.5, 0.8,1.0,1.2,1.5,1.8, and 2.0 (3) : 0.001, 0.1, 0.3, 0.5, 3.0, and 5.0. The

selection of the [ / ,  and .R levels has taken the following considerations: (1) 

the parameter settings in the previous relevant works (Proschan [28], Landers 

and Soroudi [5], Qureshi et al. [6], and Landers et al. [8]) (2) Gap time ratio (R) 

controls the magnitude of the duration performing an overhaul that is designated 

to cover two levels of overhaul duration (short: R < 0.5 and long: 3.0 ^  R < 5.0 ; R 

defined as a gap-time-ratio indicating a proportion of the previous M7TF (mean 

time to failure)). The selection of [ /  and levels is taken from the parameter 

settings in the previous research works, and it has also considered the small, 

median, and large sample sizes for .

To implement the three Cox-Based regression methods (AG, PWP-GT, and 

WLW), requires formulation of three types of datasets (i.e. three formats for the 

same set of failure events, according to the theory underlying each methodology). 

First, for the AG method, the data set is formed from the time interval (7^,7^) with 

respect to the following counting process formulation:

l im lp [N ( t + h) - N(t) = 11T > t]  = A (t), (9)
h

where

^(r) : proportional intensity function of failure process, 
jV(r) : random variable for number of failures in (o,r].

Eq. (9) defines the instantaneous failure rate between r and r + A under the

condition that this individual has survived after time r . Thus, the logic rule to form

the dataset is: 7̂  >7^. As a result, all the censored failure times are removed
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from the dataset since 7̂  =7^ when it is a censored event as stipulated for the 

AG method. The concept of forming the dataset for the PWP method originates 

from the probability theory of conditionality. The later failure times after the n* 

failure count cannot be included into the dataset when the intensity function at 

the M* failure count is estimated. That is, for each censored unit, the censored 

times are removed from the dataset except for the first censored event count. 

Due to the marginal probability theory of the WLW method, the dataset contains 

full records including all censored events, such that censored units remain in the 

risk set.

The three Cox-based semi-parametric methods were implemented using the 

SAS™ Users Group (SUGI) software code PHREG [29], which performs the 

semi-parametric Cox regression method with a blocking option to stratify for a 

covariate, such as failure event count, not satisfying the proportional hazards 

conditions. PHREG applies the product-limit method to estimate the reliability 

function within all strata defined by the failure count and for all values of the 

covariate. PHREG also applies the Cox method to estimate the vector of 

regression coefficients p and the covariance matrix. In the special case of an 

HPP, two models (AG and WLW) were compared, in terms of 95% confidence 

intervals. Appendix V provides the programming code to perform the three semi- 

parametric methods. To measure and compare the performances, three 

robustness metrics were compiled:

# relative signed error (BIAS);

# relative mean absolute deviation (MAD) and
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* relative mean squared error (MSE).

6.4 Results
6.4. f  PWP-GT mode/ resu/ts

This section examines the PWP-GT model robustness in estimating the

covariate effect denoted as p ,. The experimental values of ^  considered in this 

study may be grouped into short maintenance interval (0.001 ^ ^  0.5) and long 

maintenance interval (3.0 < /( 5.0) categories, based on the PWP-GT 

perfonnance. Table 6.1 summarizes the performance information for sample 

sizes 20, 60, and 120. Two factors (Gap Time Ratio (̂ R) and the shape 

parameter (<^)) are portrayed in 3-D error charts (Fig. 6.2(a)-(b)), for sample size 

equal to 120. The larger errors occur at small sample sizes (f7 = 20 ) and 

DROCOF ( f  = 0.5). Fig. 6.2(b) indicates that the bias tends to be positive in the 

region of low gap time ratio and high shape parameter (^  ̂  12). In addition, for 

[/ = 60 and 120, bias tends to be negative in the long maintenance interval 

(3.0 ^ < 5.0) category. For (7 = 60 and 120, MSE (MAD) presents a convex 

function of shape parameter with a minimum point at = 1.0. The unsigned 

performance metric BIAS tends to be negative when /( > 3.0, (7 >20, and 

0.5 < 2.0 , which indicates that the PWP-GT estimator underestimates the

covariate effect in the long maintenance interval category and (7 >20.

In the small sample size ((7  = 20), the maximum error occurs at = 0.5. The 

more favorable applications range for shape parameter is 1.5 ^  ^  ^  2.0, where 

PWP-GT estimates have relative MSE in the range of (3.6%, 19.5%), relative 

BIAS in the range of (-9.2%, 24.3%), and relative MAD in the range of (18.0%, 

34.1%) across all values of gap time ratio, 0.001 ^ ^  5.0. In the case of (7 = 60
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and short interval, the more favorable applications range of PWP-GT for shape 

parameter is 0.8 ̂  < 1.8, producing relative MSE in the range of (1.0%, 12.2%), 

relative BIAS in the range of (-2.5%, 16.3%), and relative MAD in the range of 

(7.4%, 21.3%). In longer interval (3.0 5.0), the favorable applications range

contracts to 0.8 < ^  ^ 1.2, having relative MSE in the range of (2.5%, 5.4%), 

relative BIAS in the range of (-16.4%, -7.7%), and relative MAD in the range of 

(12.4%, 20.0%).

Large sample size ( [/  = 120) yields signifcant improvement upon the PWP- 

GT model across all shape parameters in 0.5 ^ ^  ^ 2.0 and large gap time ratio 

(3.0 < .R < 5.0). For = 120 and short interval (0.001 ^ 0.5), PWP-GT

estimates have relative MSE in the range of (0.9%, 15.5%), relative BIAS in the 

range of (-18.9%, 13.5%), and relative MAD in the range of (7.6%, 19.9%) across 

0.5 < (̂  < 2.0. At [ /  = 120 and longer interval, the more favorable applications 

range of PWP-GT for shape parameter is 0.8 ̂  ^  < 1.2, having relative MSE in 

the range of (2.4%, 6.4%), relative BIAS in the range of (-20.0%, -9.6%), and 

relative MAD in the range of (13.1%, 22.6%).
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Table 6.1 Summary of PWP-GT model results for estimating P; (10 failures/unit)
N=10 failure events/unit, Og=o.ooi,uj=o.oi

u Ô R BIAS MAD MSE u Ô BIAS MAD MSE u R BIAS MAD MSE
20 0.5 0.001 1.05529 1.16554 1.85949 60 0.5 0.001 0.20635 0.43678 0.32301 120 0.5 0.001 -0.18869 0.18869 0.05788
20 0.5 0.1 1.30546 1.41571 2.84997 60 0.5 0.1 0.21266 0.43848 0.33449 120 0.5 0.1 -0.18207 0.18207 0.05648
20 0.5 0.3 1.30546 1.41571 2.84997 60 0.5 0.3 0.21629 0.44508 0.34457 120 0.5 0.3 -0.18075 0.18075 0.05590
20 0.5 0.5 1.40641 1.51666 3.15124 60 0.5 0.5 0.12094 0.35131 0.23542 120 0.5 0.5 -0.18314 0.18314 0.05717
20 0.5 3.0 1.25770 1.36795 2.44395 60 0.5 3.0 -0.04106 0.32454 0.17335 120 0.5 3.0 -0.22196 0.22365 0.07620
20 0.5 5.0 1.13721 1.24746 2.09833 60 0.5 5.0 -0.06841 0.33925 0.17441 120 0.5 5.0 -0.25972 0.25972 0.09196
20 0.8 0.001 0.53642 0.70429 1.65169 60 0.8 0.001 -0.02523 0.09390 0.01273 120 0.8 0.001 -0.07059 0.08352 0.01028
20 0.8 0.1 0.73095 0.87817 2.11346 60 0.8 0.1 -0.00511 0.11086 0.01943 120 0.8 0.1 -0.05928 0.07736 0.00927
20 0.8 0.3 0.73024 0.87888 2.11358 60 0.8 0.3 -0.00035 0.11643 0.02004 120 0.8 0.3 -0.05589 0.07840 0.00951
20 0.8 0.5 0.72966 0.87830 2.11146 60 0.8 0.5 -0.00728 0.11616 0.01967 120 0.8 0.5 -0.06111 0.07968 0.01017
20 0.8 3.0 0.51381 0.71972 1.08973 60 0.8 3.0 -0.11318 0.12380 0.02537 120 0.8 3.0 -0.14593 0.14593 0.02817
20 0.8 5.0 0.30858 0.61291 0.82874 60 0.8 5.0 -0.16369 0.16369 0.04071 120 0.8 5.0 -0.19979 0.19979 0.05010
20 1.0 0.001 0.36482 0.50068 0.89836 60 1.0 0.001 0.02922 0.07409 0.01040 120 1.0 0.001 -0.02056 0.05770 0.00541
20 1.0 0.1 0.38641 0.49692 0.89813 60 1.0 0.1 0.03829 0.08355 0.01157 120 1.0 0.1 -0.01052 0.05933 0.00546
20 1.0 0.3 0.40193 0.51243 0.90876 60 1.0 0.3 0.04065 0.08796 0.01219 120 1.0 0.3 -0.00418 0.06040 0.00576
20 1.0 0.5 0.58564 0.70513 1.50187 60 1.0 0.5 0.04110 0.08851 0.01222 120 1.0 0.5 -0.00879 0.05870 0,00567
20 1.0 3.0 0.30274 0.54852 1.01084 60 1.0 3.0 -0.08752 0.12458 0.02573 120 1.0 3.0 -0.11605 0.13084 0.02415
20 1.0 5.0 0.22762 0.53811 0.85849 60 1.0 5.0 -0.16122 0.18018 0.04865 120 1.0 5.0 -0.18350 0.19481 0.05112
20 1.2 0.001 0.52718 0.62346 1.48737 60 1.2 0.001 0.08294 0.10237 0.02007 120 1.2 0.001 0.01729 0.08407 0.01378
20 1.2 0.1 0.54539 0.63709 1.49004 60 1.2 0.1 0.08721 0.10823 0.02189 120 1.2 0.1 0.02854 0.08712 0.01449
20 1.2 0.3 0.56270 0.64774 1.49094 60 1.2 0.3 0.08639 0.11477 0.02275 120 1.2 0.3 0.03602 0.08946 0.01523
20 1.2 0.5 0.56659 0.65885 1.50033 60 1.2 0.5 0.07704 0.10878 0.02105 120 1.2 0.5 0.03184 0.08891 0.01492
20 1.2 3.0 0.42775 0.60969 1.43261 60 1.2 3.0 -0.07749 0.15887 0.03877 120 1.2 3.0 -0.09647 0.15264 0.03401
20 1.2 5.0 0.11501 0.39631 0.66547 60 1.2 5.0 -0.14027 0.19979 0.05414 120 1.2 5.0 -0.17221 0.22554 0.06364
20 1.5 0.001 0.14351 0.20067 0.07007 60 1.5 0.001 0.12099 0.13857 0.05603 120 1.5 0.001 0.05896 0.11890 0.04552
20 1.5 0.1 0.15381 0.21500 0.07804 60 1.5 0.1 0.13055 0.15026 0.05831 120 1.5 0.1 0.06858 0.12353 0.04874
20 1.5 0.3 0.17885 0.23507 0.08925 60 1.5 0.3 0.13352 0.16294 0.06181 120 1.5 0.3 0.07718 0.12973 0.04794
20 1.5 0.5 0.16995 0.23333 0.08713 60 1.5 0.5 0.13113 0.17285 0.06438 120 1.5 0.5 0.07887 0.13007 0.04788
20 1.5 3.0 0.00965 0.17953 0.04545 60 1.5 3.0 -0.06821 0.19745 0.07920 120 1.5 3.0 -0.07678 0.19344 0.06959
20 1.5 5.0 -0.05651 0.20130 0.06404 60 1.5 5.0 -0.14634 0.27074 0.11214 120 1.5 5.0 -0.16706 0.28371 0.10922
20 1.8 0.001 0.15371 0.21054 0.08734 60 1.8 0.001 0.14288 0.18523 0.11359 120 1.8 0.001 0.09526 0.16026 0.10167
20 1.8 0.1 0.16737 0.22714 0.09556 60 1.8 0.1 0.15321 0.20032 0.11720 120 1.8 0.1 0.10241 0.16431 0.10291
20 1.8 0.3 0.20559 0.26150 0.11308 60 1.8 0.3 0.16319 0.21332 0.12219 120 1.8 0.3 0.11266 0.16858 0.10386
20 1.8 0.5 0.20608 0.26418 0.11203 60 1.8 0.5 0.15190 0.21324 0.12158 120 1.8 0.5 0.11207 0.16920 0.10416
20 1.8 3.0 0.07352 0.19724 0.03610 60 1.8 3.0 -0.04887 0.24272 0.14477 120 1.8 3.0 -0.06343 0.24342 0.13061
20 1.8 5.0 -0.09228 0.27500 0.13071 60 1.8 5.0 -0.13560 0.32489 0.18600 120 1.8 5.0 -0.15313 0.33312 0.17400
20 2.0 0.001 0.17147 0.23629 0.11558 60 2.0 0.001 0.17371 0.21793 0.16879 120 2.0 0.001 0.11650 0.19043 0.15191
20 2.0 0.1 0.19565 0.26536 0.13024 60 2.0 0.1 0.18346 0.23015 0.17159 120 2.0 0.1 0.12551 0.19436 0.15323
20 2.0 0.3 0.24120 0.30757 0.15913 60 2.0 0.3 0.19435 0.25063 0.17792 120 2.0 0.3 0.13451 0.19786 0.15448
20 2.0 0.5 0.24284 0.31447 0.16141 60 2.0 0.5 0.18042 0.25024 0.17828 120 2.0 0.5 0.13304 0.19856 0.15453
20 2.0 3.0 0.06127 0.23904 0.11183 60 2.0 3.0 -0.04489 0.27914 0.20505 120 2.0 3.0 -0.05519 0.27740 0.18536
20 2.0 5.0 -0.07470 0.34099 0.19487 60 2.0 5.0 -0.13881 0.37135 0.25824 120 2.0 5.0 -0.14248 0.38489 0.22878
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6.4.2 AG and M/LIV mode/s rssu^s

Tables 6 2-6.4 provide details of AG and WIW performance for the case of a 

stationary process (HPP) with risk-free interval, as sample size increases (from 

[ /  = 20 to [ /  = 60 and [ /  = 120). Table 6 2-6.4 and Fig. 6.3 summarize 

performance of the AG and WLW methods (HPP case) for gap time ratio in the 

range 0.001 ^ ^ 5.0. The AG performance is consistently good across all values 

of the gap time ratio 0.001 < ^ 5.0. However, the WLW estimates improve as

and sample size increase.

In a small sample size ( [ /  = 20, Table 6.2), the variability of the WLW or the 

AG estimate is high, and the WLW estimates fluctuate more rapidly for > 0.5. 

The more favorable applications range for AG lies within < 5.0, while the more 

^vorable applications rage for WLW estimate is restricted in > 0.5. The AG 

estimate lies t)etween (2.31413, 2.43232), while the WLW estimate lies t)etween 

(2.78490, 3.22381). The AG estimates have relative BIAS 0.03046, relative MAD 

0.03046, and relative MSE 0.00145, while the WLW estimates have relative BIAS 

0.33841, relative MAD 0.33841, and relative MSE 0.14360. The AG model 

appears capable of handling the recurrent data better than the WLW model.

At sample size =60 (Table 6.3), variability of both the AG and WLW 

estimates is reduced, leading to a narrower confidence interval. The more 

favorable applications range of the AG and WLW estimates lie within ^  < 5.0 and 

> 0.5, respectively. For the gap time ratio between 0.001 < ^ 5.0, the AG

estimates lie between (2.33405, 2.41263), while the WLW estimates lie between 

(2.70554, 3.32081). The AG estimates have relative BIAS 0.03774, relative MAD
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0.03774, and relative MSE 0.00189, while the WLW estimates have relative BIAS 

0.36267, relative MAD 0.36267, and relative MSE 0.17043.

At the large sample case of [ /  = 120 (Tables 6.4 and Fig. 6.3), the 95% C.l. 

show that the more favorable applications range of the AG and WLW estimates 

lie within ^ 5.0 and jR > 0.5, respectively. At the gap time ratio, 0.001 < 5.0,

the AG estimates lie between (2.29771, 2.34221), while the WLW estimates lie 

between (2.40654, 3.26163). The AG estimates have relative BIAS 0.01096, 

relative MAD 0.01167, and relative MSE 0.00020, while the WLW estimates have 

relative BIAS 0.30787, relative MAD 0.30787, and relative MSE 0.13860.
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Table 6.2 Performance metrics of the AG and WLW models in an HPP, U  =20

AG model WLW model

R Average Average f i ®
0.001 2.39562 0.04040 0.04040 0.00163 3.22381 0.40008 0.40008 0.16006
0.1 2.39388 0.03965 0.03965 0.00157 3.21717 0.39719 0.39719 0.15776
0.3 2.35567 0.02305 0.02305 0.00053 3.17877 0.38052 0.38052 0.14479
0.5 2.34470 0.01829 0.01829 0.00033 3.15384 0.36969 0.36969 0.13667
3.0 2.31413 0.00501 0.00501 0.00003 2.93244 0.27354 0.27354 0.07482
5.0 2.43232 0.05634 0.05634 0.00317 2.78490 0.20946 0.20946 0.04387

BIAS(AG)= 0.03046
MAD(AG)= 0.03046 

MSE(AG)= 0.00145

BIAS(WLW)= 0.33841
MAD(WLW)= 0.33841

MSE(WLW)= 0.14360
' True =2.30259

Table 6.3 Performance metrics of the AG and WLW models in an HPP, U  =60

AG model WLW model

R Average k l Average f i ® Kl
0.001 2.41245 0.04771 0.04771 0.00228 3.32081 0.44221 0.44221 0.19555
0.1 2.40282 0.04353 0.04353 0.00189 3.31100 0.43794 0.43794 0.19180
0.3 2.41263 0.04779 0.04779 0.00228 3.29226 0.42981 0.42981 0.18473
0.5 2.40234 0.04332 0.04332 0.00188 3.26629 0.41853 0.41853 0.17517
3.0 2.37265 0.03043 0.03043 0.00093 2.93013 0.27254 0.27254 0.07428
5.0 2.33405 0.01366 0.01366 0.00019 2.70554 0.17500 0.17500 0.03063

BIAS(AG)= 0.03774
MAD(AG):= 0.03774 

MSE(AG)= 0.00189

BIAS(WLW)= 0.36267
MAD(WLW)= 0.36267

MSEfWLWM 0.17043
'True/? =2.30259



Table 6.4 Performance metrics of the AG and WLW models and the 95% C.l. in an HPP, U  =120
AG model WLW model

Average Average

R yê" K l 95% LB 95% UB 95% LB 95% UB
0.001 2.33565 0.01436 0.01436 0.00021 2.20459 2.46671 3.26163 0.41650 0.41650 0.17348 3.12090 3.40236
0.1 2.33665 0.01479 0.01479 0.00022 2.20584 2.46746 3.25388 0.41314 0.41314 0.17069 3.11342 3.39435
0.3 2.33680 0.01486 0.01486 0.00022 2.20683 2.46678 3.23144 0.40339 0.40339 0.16273 3.09203 3.37085
0.5 2.34221 0.01721 0.01721 0.00030 2.21281 2.47161 3.20009 0.38978 0.38978 0.15193 3.06246 3.33772
3.0 2.31796 0.00668 0.00668 0.00004 2.20375 2.43217 2.71537 0.17927 0.17927 0.03214 2.60338 2.82736
5.0 2.29771 -0.00212 0.00212 0.00000 2.19213 2.40329 2.40654 0.04514 0.04514 0.00204 2.30701 2.50606

BIAS(AG)= 0.01096
MAD(AG)= 0.01167

MSE(AG)= 0.00020

BIAS(WLW)= 0.30787
MAD(WLW)= 0.30787

MSE(WLW)= 0.13860
'True yg =2.30259
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Fig. 6.3 HPP, AG and WLW estimates vs. Gap time ratio, U  =120



6.5 Conclusions

The class of semi-parametric PI models applies to recurrent failure event 

modeling for a repairable system with covariates. A substantial period of dovm 

time, due to performing maintenance (i.e. major overhaul) after a major failure, 

has been a concern in the accuracy of estimating the covariate effect. This 

research examines the robustness of three semi-parametric PI models as a 

function of the overhaul duration. Qureshi et al. [6] assumed zero repair times in 

the PWP-GT model ( = 0). In comparing with other researchers, this study has 

defined the research domains for gap time ratio from a value close to zero repair 

times ( jt  = 0.001) to long maintenance intervals ranging from 0.001 to 5.0. 

Qureshi et al. examined the PWP-GT model applied to recurrent data without 

considering the repair time process and concluded that the PWP-GT estimator 

underestimates the covariate effect in a DROCOF case (e.g., BIAS= -26% at 

^  = 0.5) and overestimates the covariate effect in an IROCOF case (e.g., BIAS= 

19% at ^ = 3.0). Qureshi et al. proved the PWP-GT model an accurate estimator 

in estimating the times to failures for NHPP power-law processes with shape 

parameter in the range 1.0 < ^  < 3.0 and for larger sample sizes ( [ /  > 60 ). This 

study has considered both cases: zero repair times and long maintenance 

intervals and verified that the PWP-GT rnodel results are consistent with those of 

Qureshi.

Recommendations to practitioners in selecting the more favorable 

applications ranges on ((7 ,^ ,^ ) are as follows. The PWP-GT model proves to 

perform well for sample sizes 60 (30 per class) or more, moderately decreasing.
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constant, and moderately increasing ROCOFs (power-law NHPP shape 

parameter in the range 0.8 ̂  ^ 1.8) if the overhaul duration is within half time 

( ^ 0.5 ) of the previous instantaneous A/77F. If the overhaul duration is 

t)etween three to five times of the previous instantaneous AfZTF (3.0 ̂  .R < 5.0), 

the more favorable applications range of PWP-GT for shape parameter is 

0.8 < ^  < 1.2. In the large sample size 120 (60 per class), the PWP-GT model 

performs well in the range of 0.5 ^ 2.0, if the overhaul duration is within half

time (R < 0.5 ) of the previous instantaneous AfZTF. If the overhaul duration is 

between three to five times of the previous instantaneous MTTF (3.0 ^ R ^  5.0), 

the more favorable applications range of PWP-GT for shape parameter is 

0.8 < ^  < 1.2. Within the short maintenance interval, increasing the sample size 

from 60 to 120 does not improve/widen the more favorable applications range 

for maintenance interval (R < 0.5 ). As for the other two common baseline 

intensity model (i.e. AG and WLW), the AG model performs consistently well in 

the small sample size (20) regardless of the overhaul duration (R < 5.0) in an 

HPP case. The WLW model performance improves as the overhaul duration 

increases (R ^5.0).
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7. Covariate proportional intensity modeling for recurrent data of two 
failure types (major and minor)

7.0 Abstract

This paper examines covariate proportional intensity (PI) modeling as an 

approach for explicit treatment of multiple (two) recurrent failure types (major and 

minor) with complete data following a power-law Non-homogeneous Poisson 

Process (NHPP). Although covariates are typically used to incorporate treatment 

effects, a covariate is shown to conceptually model multiple failure types in the 

special case where the proportional intensities rule holds. The Prentice-Williams- 

Peterson-gap time (PWP-GT) model has proven a robust and accurate estimator 

in handling recurrent data of two failure types. The more favorable engineering 

application ranges are recommended, which are beneficial to practitioners in 

anticipating the favorable application domains.

For the minor type, the PWP-GT model proves to perform well for sample size 

120 (60 per class) or more, decreasing, constant, and increasing rates of 

occurrence of failures (power-law NHPP shape parameter in the range of 

0.5 < ̂  ^  2.0 ). For the major type, the PWP-GT model proves to perform well for 

sample size 180 (90 per class) or more, decreasing, constant, and increasing 

rates of occun^ence of failures (power-law NHPP shape parameter in the range of 

0.5<^^1.8).

Keywords, repa/rab/e systems re/raWrty, recu/Terrt events, mu/tp/e W ure types, 

covarrate proportrorra/ fhterrs/ty mode/mg
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Nomenclature

/Icmnyms 
AG

DROCOF 

HPP 

IROCOF 

i.i.d

MTTF

IVIAD

MSE

NHPP

PI

PWP

PWP-GT

PWP-TT

WLW

A/ofaÉfon

Ao(f)

A ,

z(0

Z i(f)

Andersen and Gill model

Decreasing rate of occurrence of failures

Homogeneous Poisson Process

Increasing rate of occurrence of failures

Independent and identically distributed

Mean time to failure

Mean absolute deviation

Mean squared error

Non-homogeneous Poisson Process

Proportional intensity

Prentice, Williams, and Peterson model

Prentice, Williams, and Peterson-gap time model

Prentice, Williams, and Peterson-total time model

Wei, Lin, and Weissfeld model

Proportional hazard function 

Baseline hazard function

Random variable for the number of failures in (o,r]; a counting 

process

An integer counting successive failure times; a stratification 

indicator subscript

Treatment factor for major type failures, z denotes the level number 

Treatment factor for minor type failures, z denotes the level number 

Random variable for cumulative time of occurrence of the zz* failure

Sample size (number of units)

Covariate process up to time r 

A two-dimensional covariate for major type failures
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(f) A two-dimensional covariate for minor type failures

z ( t  X1 ) vector of covariates, z = (z ,̂ ẑ  )'

( A: X1 ) vector of stratum-specific regression coefficients

P — A )

regression coefficient for major failure events, « : event count 

regression coefficient for minor failure events, » : event count 

Shape parameter of a power-law NHPP 

Shape parameter of the major type events 

^2 Shape parameter of the minor type events

A Indicator of a failure or censored time; limit to time zero

(r) Stratum-specific baseline intensity function

A(r;z) Proportional intensity function

u Scale parameter of a power-law NHPP

Ug Baseline value of u , the scale parameter of a power-law NHPP

O) Alternate value of u , the scale parameter of a power-law NHPP

(7 Standard deviation

* Denotes an estimator

Denotes the transpose of a vector

7.1 Introduction

Failure time data on a repairable system are realizations of a stochastic point 

process, in which the instantaneous rate of occurrence of failures (ROCOF) is 

A(r). Prentice, Williams, and Peterson (PWP) [1] proposed a semi-parametric 

approach to model recurrent failure event data from a repairable system using 

two methods: PWP-GT (gap time) and PWP-TT (total time). Cox proposed the 

distribution-free (semi-parametric) proportional hazards (PH) model in 1972 [2j. 

The proportional intensity (PI) models (PWP-GT, PWP-TT, Andersen-Gill (AG)
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[3], and Wei-Lin-Weissfeld (WLW) [4]) have been applied to recurring events in 

medical studies (biostatistics field), such as recurrent infections of a patient. For 

engineering applications, Landers and Soroudi [5], Qureshi et al. [6], Vithala [7], 

and Landers et al. [8] have investigated robustness of the PWP-GT model, where 

the underlying recurrent failure time data are from a Non-homogeneous Poisson 

Process (NHPP) with a power-law or a log-linear intensity function. These 

references also report the engineering applications of the PWP-GT model cited in 

the literature. Qureshi et al. [6] found that the PWP-GT model performs best for 

constant and moderately increasing rate of occurrence of failures (IROCOF) and 

decreasing rate of occurrence of failures (DROCOF) and for larger sample sizes 

from power-law NHPPs. Vithala [7] considered the case of log-linear increasing 

rates of occurrence of failures, and concluded the PWP-GT model performs best 

for moderately increasing rates of occurrence of failures and for larger sample 

sizes. This research has extended their work to the important case of recurrent 

data of two failure types (meyor and minor).

Compared to the extensive literature on applications of the Cox-based 

regression models in the biostatistics field, there have been few reported 

engineering application. Abundant federal funding received in biostatistics / 

medical research has advanced the PI models to become well developed and 

widely referenced. PI models for medical applications could also apply to 

recurring failure/repair data in engineering problems. The PWP-GT, PWP-TT, AG, 

and WLW models o fk r powerful analytical tools for engineering practitioners as 

they become better recognized and understood.
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Major and minor failure events are commonly seen in industry, where minor 

failure rate is typically proportionally higher than major failure rate. Most 

researchers have formulated the problem as univariate and pooled the major and 

minor failures as though they are identical. The Lin method of multi-dimensional 

covariates pemriits explicit modeling of major and minor failures as distinct types 

in a single, stratified model so long as the proportional intensity rule holds.

7.2 Semi-parametric Proportional Intensity models

Cox [4] proposed a PH formulation to include explanatory variables 

(covariates) in survival models. PWP proposed an extension of the Cox model to 

stochastic processes and applied the approach to model recurring infections in 

aplastic anemia and leukemia patients having received bone-marrow transplants. 

This application involved several subjects and a small number of events (up to 

five) for each subject. The paper by PWP did not address the baseline intensity 

function but rather reported the relative risks for the test and control groups. In 

reliability and maintainability engineering applications, a number of authors have 

applied the semi-parametric proportional intensity (hazards) model, for example, 

Ansell and Phillips [9], Ansell and Phillips [10], Landers and Soroudi [5], Qureshi 

et al. [6], Ansell and Phillips [11], Landers et al. [8], Ansell et al. [12], and Ansell 

et al. [13]. A collection of the PI model applied to different industries includes: 

marine gas turbine engines (Asher [14]), semiconductor, electrical, and pipeline 

industries (Ansell and Phillips [11]), U.S. Army main battle tank (Landers et al.

[8]), water supply industry (Ansell et al. [12], [13]), etc. Ascher [14] illustrated the 

use of the PWP model for analysis of reliability for marine gas turbine engines.
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Ascher and Feingold [15] suggested application of the PWP model in the field of 

reliability engineering. Dale [16] applied the PWP approach to simulated data for 

a reliability growth program with design improvements implemented after each of 

the five stages, resulting in a decreasing rate of occurrence of failures 

(DROCOF). Wightman and Bendell [17] and Bendell et al. [18] cited the PWP 

model and advised caution in application for engineering studies.

Qureshi et al. [6] performed a robustness study to determine how well the 

PWP-GT method performed when applied to data from a failure process that was 

actually parametric (specifically the NHPP with power-law intensity function). The 

2(7 bounds of the PWP-GT estimates can cover the true values with few 

exceptions. The PWP-GT method performed well, except at small values of 

shape parameter ( J < 0.6). The PWP-GT method was best for larger sample size 

and for moderately decreasing, constant, and moderately increasing ROCOF. 

The validation process for the case of an HPP in Section 2.2.3 (also refer to 

Table 2.10) indicated that the estimated AfZTF (mean time to failure) differences 

between the PWP-GT model and theoretical values were not statistically 

significant. As for the PWP-GT estimates of the covariate regression coefficient, 

the true value of coefficient ^  lies within the 2(7 confidence bounds on the

estimate yg for 1.0 ^  ^ 1.4. The PWP-GT method tends to underestimate for 

a DROCOF (e.g., BIAS= -26% at ^  = 0.5) and overestimate ^  for an IROCOF 

(e.g., BIAS= 19% at ^  = 3.0).

Lin [19, 20] studied chronic granulomatous disease and employed a multiple 

dimensional covariate method to handle the recurrent data with multiple failure
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types. Lin considered three types of failure outcomes by defining a three- 

dimensioned covariate array. For the special case of two failure types considered 

in this research, let two covariates represent the major and minor failure 

types in two dimensions. That is, the major and minor failure types are coded as 

follows. (1) Major type: Z, =[j?i^,o] and (2) Minor type: Z  ̂=[o,.R2,], where TZ, =1 

for classi and .R, = 0 for dass The corresponding regression coefficient

estimates are interpreted as the covariate effect applied to the major and minor 

failure types. To estimate the general covariate effect for major/minor event types 

altogether, a single covariate is introduced, and Z* = , where .R, = 0, for

dass=^ and jR, = 1, for dass=1 (f : sample unit; t  : the failure type). Refer to Lin

[19] for an illustration of the data set structure.

In industry, minor failure rate is typically higher than major failure rate. Most 

researchers have formulated this problem as univariate and pooled the multiple 

failure types as though they are identical. The Lin method of multi-dimensional 

covariates permits explicit modeling of major and minor failures as distinct failure 

types in a single, stratified model so long as the proportional intensity rule holds. 

7.3 Models and methods

Sections 7.3.1-7.3.2 review the semi-parametric Cox regression model for single 

event and the PWP-GT model for recunent events. Section 7.3.3 reviews the 

NHPP with power-law intensity function. Section 7.3.4 describes the method 

used to assess the robustness of the semi-parametric PI method for the case of 

completed data from a true but unknown power-law NHPP.
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7.3. Y Cox mgmss/on mode/

For the case of a time-to-failure random variable, Cox [2] proposed a 

proportional hazards regression model of the form:

A(r;z) = Ao (t)exp(p'z), (1)

where p is the regression coefficient vector and z represents a covariate vector. 

The PH model is composed of two parts: baseline hazards function Ag(r) and an 

exponential link function, where p is designated to measure the covariate effect. 

Tfie Cox model can k>e used to describe the semi-parametric distribution of time- 

to-failure for non-repairable items with covariates. Under proportional hazards, 

the ratio of the hazard functions of two units (X and 3 ) with covariate vectors z^ 

and z^ is constant over time. The covariates have a multiplicative effect on the 

baseline hazard function. When the baseline hazard function is fully specified 

(e.g.,Weibull) the analytical procedure is termed a parametric method. 

Alternatively, Ag(r) can t)e left arbitrary, in which case the procedure is termed 

semi-parametric.

7.3.2 SemAparame/nc PI/VP mode/

The PWP model is a generalization of the semi-parametric Cox proportional 

hazard function to a proportional intensity function A(r;z) for the case of repeated 

failure events. Under proportional intensities, the ratio of the intensity functions of 

two units and .8) with covariate vectors z^ and z^ is constant over time. The 

covariates have a multiplicative effect on the baseline intensity function. When 

the baseline intensity function is fully specified (e.g., power-law or log-linear) the
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analytical procedure is termed a parametric method. Alternatively, ^ (r)  can be

left arbitrary, in which case the procedure is termed semi-parametric.

Given the counting and covariate processes at time r , the general semi- 

parametric intensity function was defined by PWP as follows:

I# ( r ) ,Z ( f) }  = lim  P r{f ^  < r + A |# ( r ) ,Z ( r ) } /A ,  (2)

where represents a random variable for the number of failures in (o,r], Z(r) 

denotes the covariate process up to time r , and A limits the time span to zero. 

Among the semi-parametric regression models specified by PWP were the 

following:

f  fFP -  GT : A{r I A^(0,Z(r)} = (f -  f_i)exp[PLz(r)] (3)

f  -7 T  : I # (0 ,z (r )}  = (4)

In the PWP-GT model of Eq. (3), the time metric is the interval between times 

of failure and , defined as gap time. The PWP model stratifies a failure data

set based on the failure event count. When a unit is placed into operation it has 

experienced no failures and so resides in stratum 1 (» = 1), and when the first 

failure occurs the unit moves to the second stratum (» = 2 ). In general, die unit 

moves to stratum « immediately following the (?% -1)^ failure and remains there

until the n* failure.

7.3.3 PoweNaw mfensAÿ /unct/on

For a power-law NHPP, the baseline intensity function is

(5 )
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where is the shape parameter and u is the scale parameter of the power-law 

form. If we define x z,,) and Zg =1, then the power-law PI model

becomes

z) = ^ X r'"" exp(P'z), (6)

where p is the regression coefficient vector and z represents a covariate vector. 

The power-iaw intensity function is composed of two parts: baseline intensity 

function that foliows a power-law form and an exponential link function, where p 

is designated to measure the covariate effect.

This process could model the reliability of a repairable system with rapid 

deterioration, since the failure intensity is increasing at an exponential rate with 

time. The analogous case for maintainability is a rapid learning process. The 

intensity function A(r) is strictly decreasing for «F < 1, constant for ^  = 1, and 

strictly increasing for > 1. Thus, we have a DROCOF for ^  < 1, an HPP for ^

= 1, and an IROCOF for ^  >1.

7.3.4 Method

Simulation data with recurring patterns (complete data), where the underlying 

distribution follows a power-law NHPP, is generated by a modified Blanks & 

Tordon [21] simulation algorithm. The concept of forming the dataset for the PWP 

method originates from the probability theory of conditionality. The later failure 

times cannot be included into the dataset when developing the intensity function 

at the failure count. Consequently, for each censored unit, the censored 

failure times are removed from the dataset, except the first censored failure event. 

The pattem of the dataset shows that the last record in each censored unit has
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one and only one censored status. The logic in generating the dataset for the 

PWP method is to remove the record if both of the following conditions hold: (1) 

the current record is marked censored and (2) the previous record is marked 

censored.

The semi-parametric PWP-GT method was implemented using the SAS™ 

Users Group (SUGI) software code PH REG [22], which performs the semi- 

parametric Cox regression method with a blocking option to stratify for a 

covariate, such as failure event count, not satisfying the proportional hazards 

conditions. PHREG applies the product-limit method to estimate the reliability 

function within all strata defined by the failure count and for all values of the 

covariate. PHREG also applies the Cox method to estimate the vector of 

regression coefficients p and the covariance matrix. Appendix VI provides the 

programming code to perform the semi-parametric PWP-gap time method.

The simulation method of Blanks & Tordon [21] is modified to generate an 

NHPP with two failure types, where the underlying distribution is a power-law 

intensity function. Most of the parameters remain unchanged except that the 

sample unit size has been increased due to the insufficient sample size of major 

events. The parameter setting is as follows: C/=120, F = 10, = 0 .001,u, = 0 .0 1 .

The Axed time-invariant covariate vector z „/= i,2  is defined as follows:

Major event, Class=^: z, =(0 ,0)

Major event, Class=1: z, =(i,o)

Minor event, Class=^: z^ =(o,o)

Minor event, Class=1 : =(0,1)
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Ten failure events were generated for each sample unit. To determine the 

sequence of major and minor failure events in the counting process, a uniformly 

distributed random variate was introduced to decide the event number F

for occurrence of the major failure. Consequently, the F * event time to have a 

major failure is generated as: F  = FLOOF(10x FÆVUAT(ŒFD))+ 1 . The 

remaining nine events are minor failure events. In this way, a counting process 

contains major and minor failure events, where the one major failure is inserted 

randomly among the AT-1 minor failures. The event number for the major Allure 

is randomly selected depending on the F  value. Large enough sample size is 

generated in order to obtain sufficient data for each failure count in a PWP-GT 

model.

There are two experimental factors: experimental units ( [ /)  and the shape 

parameter (^ ). The levels for each factor are selected as follows: (1) [ /  = 120, 

180, and 240 (2) ^=0.5, 0.8,1.0,1.2,1.5,1.8, and 2.0. The selection of the

and ^  levels has taken the following considerations: (1) the parameter settings in 

the previous relevant works (Proschan [23], Landers and Soroudi [5], Qureshi et 

al.[6], and Landers et al. [8]) (2) The selection of levels is taken from the 

parameter settings in the previous research works, and it has also considered the 

small, median, and large sample sizes for both major and minor types of failure 

events. To measure and compare model perfomnance, three robustness metrics 

were compiled:

# relative signed error (BIAS);

# relative mean absolute deviation (MAD) and
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# relative mean squared error (MSE).

7.4 Results

Table 7.1 and Fig. 7.1 summarize all the performance metrics in terms of (7 

and ^ , categorized by the major and the minor types. The treatment effect 

(CLASS= f)., CLASS=1) for the major type is summarized as follows. In the case 

of 17 = 120, the more ^vorable applications range for PWP-GT estimates is 

0.5 <1.2, having relative MSE within the range of (2.7%, 10.8%), relative

BIAS within the range of (-4.9%, 19.2%), and relative MAD within the range of 

(12.6%, 25.3%). In the case of 17 = 180, increasing the sample size (from 120 to 

180) has significantly enhanced the accuracy of the PWP-GT model resulting in a 

wider applicable range of the shape parameter 0.5 ̂  ^  < 1.8 ( [ /  = 180) than 

0.5 < ^  ^  1.2 ( [ /  = 120). For the more favorable applications range (0.5 ^^^1 .8 ), 

the PWP-GT model estimates have relative MSE within the range of (1.0%, 

15.8%), relative BIAS within the range of (-14.7%, 22.4%), and relative MAD 

within the range of (8.5%, 26.0%). As for (7 = 240, the more favorable 

applications range is 0.5 ^ ^ 2.0, with relative MSE within the range of (1.0%, 

16.0%), relative BIAS within the range of (-17.3%, 19.1%), and relative MAD 

within the range of (7.9%, 24.9%).

The treatment effect (CLASS=^., CI_ASS=1) for the minor type is 

summarized as follows. In the case of [ /  = 120, the more favorable applications 

range for PWP-GT model estimates is 0.5 ^ ^  2.0, having relative MSE within 

the range of (1.0%, 13.0%), relative BIAS within the range of (-16.5%, 12.5%), 

and relative MAD within the range of (7.1%, 22.4%). In the case of (7 = 180, the
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PWP-GT model performs well within the range (0.5 ^  < 2.0 ), having relative 

MSE within the range of (0.9%, 17.9%), relative BIAS within the range of (-18.1%, 

13.4%), and relative MAD within the range of (6.4%, 21.9%). As for the case of 

= 240, the more favorable applications range is 0.5 ^  ̂  ^  2.0, with relative 

MSE within the range of (0.5%, 15.1%), relative BIAS within the range of (-18.5%, 

13.5%), and relative MAD within the range of (5.4%, 19.8%).

Table 7.1 Summary of PWP-GT model results for estimating P; (10 failures/unit)
N = 10 failures/unit, = 0.001, = 0.01

Major events Minor events
BIAS MAD MSE BIAS MAD MSE

120 0.5 -0.04875 0.19879 0.08948 -0.16487 0.16487 0.05101
0.8 0.04247 0.12553 0.02734 -0.05810 0.07934 0.01233
1.0 0.12466 0.18186 0.05697 -0.00542 0.07079 0.00951
1.2 0.19176 0.25272 0.10830 0.03509 0.10386 0.01791
1.5 0.27228 0.33229 0.19928 0.07186 0.15342 0.04673
1.8 0.34679 0.41784 0.32304 0.10206 0.19847 0.09108
2.0 0.38869 0.46815 0.42425 0.12479 0.22399 0.12983

180 0.5 -0.14726 0.14726 0.04191 -0.18054 0.18054 0.05189
0.8 -0.00717 0.08513 0.00958 -0.06023 0.07216 0.00962
1.0 0.06193 0.10476 0.01664 -0.00458 0.06357 0.00853
1.2 0.11448 0.15047 0.03710 0.03664 0.10441 0.02097
1.5 0.17808 0.20435 0.08590 0.07986 0.15328 0.06061
1.8 0.22432 0.26021 0.15800 0.11377 0.19468 0.12357
2.0 0.25701 0.29262 0.22060 0.13394 0.21890 0.17854

240 0.5 -0.17263 0.18084 0.05756 -0.18549 0.18549 0.05539
0.8 -0.03609 0.09453 0.01157 -0.05482 0.06759 0.00790
1.0 0.02633 0.07927 0.00969 -0.00027 0.05360 0.00498
1.2 0.07002 0.11655 0.02048 0.03953 0.08610 0.01430
1.5 0.12523 0.16866 0.05612 0.07040 0.14857 0.05234
1.8 0.16515 0.21480 0.11089 0.11493 0.17533 0.10220
2.0 0.19105 0.24873 0.16020 0.13536 0.19800 0.15075
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7.5 Conclusions

This research also examines covariate proportional intensity modeling as an 

approach for explicit treatment of multiple (two) recurrent failure types (major and 

minor) with complete data. Although covariates are typically used to incorporate 

treatment effects, a covariate is shown to conceptually model multiple failure 

types in the special case where the proportional intensities rule holds. The PWP- 

GT model proves to be the model of choice to handle two failure types of 

recurring events, evaluated in terms of bias, mean absolute deviation, and mean 

squared error of covariate regression coefficients over ranges of sample sizes 

and shape parameters encountered in engineering applications. The more 

favorable engineering applications ranges are recommended.

The research domains of the two factors of interests are: (1) 120 ^  (7 ^ 240 

and (2) 0.5 ^ 2.0. For the minor kiilure type, the PWP-GT proves to perform

well for sample sizes 120 (60 per class) or more, decreasing, constant, and 

increasing rates of occurrence of failures (power-law NHPP shape parameter in 

the range of 0.5 ^ ̂  ^ 2.0 ). For the major failure type, the PWP-GT performs well 

for sample sizes 180 (90 per class) or more, decreasing, constant, and 

increasing rates of occurrence of failures (power-law NHPP shape parameter in 

the range of 0.5 ^ ^  < 1.8).

The recurring events of two failure types (major and minor failures) in this 

study were generated from a single NHPP stream with power-law intensity 

function, where the major and minor failure events share the same shape 

parameter ( J ) of the power-law form. To meet the requirement of proportionality
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in the semi-parametric proportional regression method, the shape parameters of 

the major type and the minor type are set to equal, expressed as

In practice, the case is likely. Future research may propose a

model that handles (1) or (2)

2 2 0
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8 Conclusions and recommendations

The class of semi-parametric PI models applies to recurrent failure event 

modeling for a repairable system with covariates. This research has provided a 

thorough robustness study of four semi-parametric PI models (PWP-GT, PWP- 

TT, AG, and WLW) subject to right-censoring seventy and two distinct types of 

recurring events ((1) major overhaul duration and (2) major and minor failures). 

Two modeling extensions are examined for the case of multiple event types: 

multi-dimensional covariate (Lin (1993,1994)) and discontinuous risk-free- 

intervals (Themeau and Hamilton (1997)). Recommendations for the more 

favorable applications range on the parameters in each individual study (from 

Chapters 4-7) are available for the prospective industrial applications, such as 

aircraft and power plants. The results are beneficial to practitioners in anticipating 

the more favorable applications domains and selecting appropriate PI models in 

repairable system reliability.

8.1 Conclusions
8.1.1 R/ghf-ce/rsorlng recurring everrfs or? /bur P/ mode/s

Previous studies (by Landers and Soroudi (1991) and Qureshi et al. (1994)) 

conducted on the PWP-GT model for the case of an underlying NHPP with 

power-law intensity function indicated good performance. This research has 

perfonned a right-censorship robustness study and examined other semi- 

parametric PI models with covariates. The PWP-GT and AG prove to be models 

of choice, evaluated in terms of the BIAS, MAD, and MSE of covariate regression 

coefficients over ranges of sample sizes, shape parameters, and censoring
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severity typically encountered in engineering applications. The more W orable 

engineering applications ranges are recommended (Section 8.2.1).

8.1.2 R/ght-censormg e/Mscf or? evenf-spec#; P/ mode/s

The research studied the robustness of three event-specific baseline models 

(PWP-GT, PWP-TT, and WLW) and a common baseline model (AG) to recurring 

failure events with right-censoring effect from a Poison Process. The PWP-GT 

and AG prove to be models of choice, evaluated in terms of the BIAS, MAD, and 

MSE of covariate regression coefficients over ranges of sample sizes and 

censoring severity typically encountered in engineering applications. The 

favorable engineering applications ranges are recommended (Section 8.2.2).

6.1.3 0/sconfmuous rlsk-Aee-znfen/a/s

The class of semi-parametric PI models applies to recurrent failure event 

modeling for a repairable system with covariates. A substantial period of 

downtime, due to performing maintenance (i.e. major overhaul) following a major 

kiilure, has t)een a concem in the accuracy of estimating the covariate effect.

The event-specific PWP-GT model proves to be the model of choice to estimate 

the covariate effect, stratum by stratum, if the overhaul duration is short. The AG 

model performs well in an HPP regardless of sample size and overhaul duration. 

This research examines the robustness of three semi-parametric PI models as a 

function of the overhaul duration (Section 8.2.3).

8.1.4 Covanafe P/ mocfe//ng

This research also examines covariate PI modeling as an approach for 

explicit treatment of multiple (two) recurrent failure types (major and minor) with

224



complete data. Although covariates are typically used to incorporate treatment 

effects, a covariate is shovm to conceptually model multiple failure types in the 

special case where the proportional intensities rule holds. The PWP-GT model 

proves to be the model of choice to handle two failure types of recuning events, 

evaluated in terms of BIAS, MAD, and MSE of covariate regression coefficients 

over ranges of sample sizes and shape parameters typically encountered in 

engineering applications. The more favorable engineering applications ranges 

are recommended (Section 8.2.4).

8.2 Recommendations

8.2. f  R/ght- censoring e/ibct or? /bur P/ mode/s

The research domains of the three factors of interest are: (1)60^(7 ̂ 180, 

(2)0.5 ^  ^  ^  2.0, and (3)0.0 < ^  < 1.0. At the smaller sample size ((7 =60), the 

PWP-GT proves to perfonn well A)r moderate right-censoring (0.0:^ 7̂  ^ 0.8 ) and

moderately decreasing, constant, and moderately increasing ROCOFs (power- 

law NHPP shape parameter in the range of 0.8 < «y ^ 1.8). In the case of =120, 

the PWP-GT proves to perfonn well for moderate right-censoring (0.0 ̂  ^  0.8 )

and moderately decreasing, constant, and moderately increasing ROCOFs 

(power-law NHPP shape parameter in the range of 0.8 ^ «5 ^ 2.0). For the large 

sample size ( [ /  =180), the PWP-GT performs well for severe right-censoring 

(0.0 ^  7̂  ^  1.0 ) and moderately decreasing, constant, and moderately increasing

ROCOFs (power-law NHPP shape parameter in the range of 0.8 ̂  < 2.0). The 

AG model proves to outperfonn the WLW for stationary process (HPP) across a
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wide range of right-censorship (0.0 ^  < 1.0 ) and for sample sizes of 60 (30 per

class) or more.

6.2.2 R/g/)f-censo/7ng e#ecf on evenf-spec^c P/ mode/s

The research domains of the two factors of interests are: (1)60 ̂  (7 < 180 and 

(2)0.0 ^  7̂  <1.0. The parameter setting 7̂  = 0 (complete data) is included for

comparison with censored data. The PWP-GT model has proven the most robust 

and accuiate estimator (at the lowest error) among the three event-specific 

models. Compared to WLW, the PWP-TT estimator yields similar but slightly 

better results. The PWP-GT presents a low-error region at the range of 

120 < 7/ ^ 180 and 0^7^ :Sl. For the small sample size 77 = 60, the more

favorable applications range is 0^7^ ^ 0.8. For the other two estimators, when 

the sample size is increased from 7/ = 60 to 77 = 120, PWP-TT and WLW have a 

slightly improved applications range (0 < 7̂  0.4). As the sample size is 

increased to 180, the performance is poor but stable over applications range 

0 < 7̂  ^  0.8 on both models. The results show that AG performs well for the case

of smaller sample size (77 =60) and severe censoring (7^ =1.0). The favorable 

applications region of the common baseline AG model is 60:^ 77 <180 and 

0<7^ <1.

6.2.3 O/sconfmuous /fsAr-Aae-rnferva/s

The research domains of the three factors of interests are: (1)20 <77 < 120,

(2)0.5< ^ < 2.0,and (3)0.001 < j( < 5.0. The PWP-GT model proves to perform 

well for sample sizes 60 (30 per class) or more, modemtely decreasing, constant.
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and moderately increasing rate of occurrence of failures (power-law NHPP shape 

parameter in the range 0.8 < < 1.8) if the overhaul duration is within half time 

( ^  0.5) of the previous instantaneous AfTTF. If the overhaul duration is 

between three to five times of the previous instantaneous MZTF (3.0 < ^  5.0), 

the more favorable applications range of PWP-GT for shape parameter is 

0.8 < ^ 1.2. In the large sample size 120 (60 per class), the PWP-GT model 

performs well in the range of 0.5 ^ 2.0, if the overhaul duration is within half

time (.R < 0.5 ) of the previous instantaneous AfTTF. If the overhaul duration is 

between three to five times of the previous instantaneous MTTF (3.0 < ^  5.0), 

the more favorable applications range of PWP-GT for shape parameter is 

0.8 ^  < 12. As for the other two common baseline intensity model (i.e. AG and 

WLW), the AG model performs consistently well in the small sample size (20) 

regardless of the overhaul duration (.R < 5.0) in an HPP case. The WLW model 

perfomiance improves as the overhaul duration increases (R ^ 5.0).

6.2.4 Covanafe P/ mode//ng

The research domains of the two factors of interests are: (1) 120 ^ C/ < 240 

and (2) 0.5 ̂  ^  < 2.0. For the minor W ure type, the PWP-GT proves to perform 

well for sample sizes 120 (60 per dass) or more and decreasing, constant, and 

increasing ROCOFs (power-law NHPP shape parameter in the range of

0.5 ^ ^  < 2.0 ). For the major failure type, the PWP-GT perfoncs well for sample 

sizes 180 (90 per class) or more and decreasing, constant, and increasing 

ROCOFs (power-law NHPP shape parameter in the range of 0.5 ^ f  < 1.8).
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8.3 Contributions

The major contributions of this study are summarized as follows:

1. Robustness study of the right-censoring effect upon the four PI models in 

an NHPP k r  0.5 < 2.0 and ten Silures per unit on 60,120, and 180

units with censoring severity of 0.0 1.0, including the development of

the program to perform the robustness analysis, where the right-censoring 

probability is a variable. The more favorable engineering applications 

ranges of the right-censoring severity were recommended based on the 

sample size and shape parameter, including recommendations for 

selecting appropriate PI models in repairable system reliability.

2. Robustness study of the right-censoring effect upon the four semi- 

parametric PI models in an HPP for four failures per unit on 60,120, and 

180 units with censoring severity of 0.0 1.0. Comparison of three

event-specific PI models (PWP-GT, PWP-TT, and WLW) was presented 

as an indicator of selecting appropriate PI models. The more favorable 

engineering applications ranges of the right-censoring severity were 

recommended based on the sample size.

3. Development of a methodology/plan and a program for applying the 

discontinuous risk-free-intervals modeling to incorporate the overhaul 

duration following a major failure (discontinuity of observation time in 

system/machine downtime). The more favorable engineering applications 

ranges of the major duration were recommended based on the sample 

size and shape parameter.
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4. Development of a methodology and a program on multi-dimensional 

covariate PI modeling for handling two distinct failure types (major and 

minor types), while the proportional intensities rule holds. The more 

favorable engineering applications ranges for the major and minor types 

were recommended based on the sample size and shape parameter.

8.4 Future research
6.4. f  R/ghf-censored recumenf events

Like the power-law intensity function, the log-linear fomri is frequently 

encountered in industry. To examine the right-censoring effect upon recurring 

events, which follow an NHPP with log-linear intensity function, is beneficial to 

practitioners. Future research may evaluate how the event-specific PWP-GT 

model handles the recurrent data with the log-linear intensity function in terms of 

sample sizes, shape parameters, and censoring severity.

8.4.2 Afu%)/e W um  fypes

The recurring events of two failure types (major and minor failures) in this 

study were generated from a single NHPP stream with power-law intensity 

function, where the major and minor failure events share the same shape 

parameter (^  ) of the power-law form. To meet the requirement of proportionality 

in the semi-parametric proportional regression method, the shape parameters of 

the major type (^, ) and the minor type ( f , )  are set equal, expressed as

In practice, the case is likely. Future research may propose a

model that handles (1) or (2)
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8.4.3 Le/f-censomcf mcurmnf evenfs

Left-censoring also arises in some applications for recurrent failure data from 

repairable systems. An example case is filed data where early life events were 

not recorded and records were lost. Future research could apply the 

methodology of Chapter 4 to examine PWP-GT robustness under left-censoring.
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Appendix I (Semi-parametric proportional intensity models robustness for right-censored recurrent failure data) 

1.1 Experimental units (singular type)

Table A. 1.1 Experimental units effect of the PWP-GT model (<? = 1.8 )
U = 60 U = 120 U = 180

MSE BIAS MAD MSE BIAS MAD MSE BIAS MAD
Pc = 0.4 0.12377 0.15846 0.24172 0.07150 0.13317 0.16240 0.07150 0.13741 0.15393
Pc = 0.6 0.13549 0.14878 0.26557 0.07106 0.12388 0.15561 0.07106 0.11684 0.16411
Pc = 0.8 0.14486 0.12972 0.27344 0.07195 0.12368 0.15971 0.07195 0.10765 0.16802
P c -10 1.79361 -0.22053 0.63335 0.08326 0.16373 0.18841 0.08326 0.12651 0.19201
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Fig A.1.1 Experimental units effect of the PWP-GT model (^=i.g)



Table A. I. 2 Experimental units effect of the PWP-GT model (S = 2.0)
U = 60 U = 120 U = 180

MSE BIAS MAD MSE BIAS MAD MSE BIAS MAD
p. = 0.4 0.17465 0.17962 0.26974 0.10789 0.15956 0.16452 0.10950 0.17793 0.19784
Pc = 0.6 0.18666 0.16955 0.29295 0.10932 0.14829 0.18587 0.11578 0.14400 0.19210
P. = 0.8 0.19294 0.15996 0.29812 0.11142 0.14281 0.18920 0.12272 0.12980 0.19181
Pc =1.0 2.14182 -0.21764 0.71010 0.12494 0.18721 0.22697 0.12772 0.14455 0.21804
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Table A.1.3 Experimental units effect of the PWP-GT model (^ = 0.5 )
U = 60 U = 120 U= 180

MSE BIAS MAD MSE BIAS MAD MSE BIAS MAD
P. = 0.4 0.53551 0.40407 0.62746 0.36198 0.00465 0.33390 0.06075 -0.18178 0.18178
Pc = 0.6 0.77886 0.48680 0.71696 0.34196 -0.00555 0.33308 0.06217 -0.18696 0.18696
Pc = 0.8 1.36832 0.62978 0.86481 0.30120 -0.01706 0.31954 0.12328 -0.09188 0.24669
Pc =1.0 2.27255 1.00221 1.20024 1.09745 0.40857 0.69729 0.27329 0.06185 0.40939
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Fig A.1.3 Experimental units effect of the PWP-GT model ( f  = 0.5)



Table A.1.4 Experimental units effect of the PWP-GT model ( f  = 0.8 )
U = 60 U = 120 U = 180

MSE BIAS MAD MSE BIAS MAD MSE BIAS MAD
Pc = 0.4 0.01291 -0.00612 0.09325 0.01563 -0.04467 0.09571 0.01140 -0.05950 0.08415
Pc = 0.6 0.01670 -0.01597 0.11158 0.01477 -0.05590 0.09200 0.01306 -0.07045 0.09304
P. = 0.8 0.01871 -0.05920 0.10437 0.21895 0.08223 0.22646 0.01753 -0.05754 0.09754
P. = 1.0 2.47916 0.65585 0.79796 0.62236 0.21174 0.34510 0.02774 -0.03674 0.12327
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1.2 Shape parameter (singular type)

Table A.1.5 Shape parameter effect of the PWP-GT model (MSE)

Pc ^ = 0.5 =0.8 <̂  = 1.0 <F = 1.2 <̂  = 1.5 <y = 1.8 <̂  = 2.0

§

0.4
0.6
0.8
1.0

0.53551
0.77886
1.36832
2.27255

0.01291
0.01670
0.01871
2.47916

0.01143
0.02750
0.01590
0.63632

0.01989
0.03993
0.03159
0.32410

0.06218
0.07480
0.08060
0.09508

0.12377
0.13549
0.14486
1.79361

0.17465
0.18666
0.19294
2.14182

0.4 0.36198 0.01563 0.00590 0.00864 0.02970 0.0715 0.10789
R 0.6 0.34196 0.01477 0.00455 0.00811 0.02931 0.07106 0.10932
IT 0.8 0.30120 0.21895 0.00923 0.00894 0.03006 0.07195 0.11142
3 1.0 1.09745 0.62236 1.09905 1.68430 0.75671 0.08326 0.12494

0.4 0.06075 0.01140 0.00195 0.00615 0.03006 0.07494 0.10950
o00 0.6 0.06217 0.01306 0.00361 0.00806 0.03304 0.07669 0.11578
¥ 0.8 0.12328 0.01753 0.00719 0.01176 0.03924 0.08241 0.12272
3 1.0 0.27329 0.02774 0.00984 0.01642 0.04380 0.08858 0.12772
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Table A. 1.6 Shape parameter effect of the PWP-GT model (BIAS)

Pr. ^ = 0.5 <  ̂= 0.8 <̂ =  1 .0 ^ = 1.2 c!»=1.5 (̂  = 1.8 ^ = 2.0
0.4 0.40407 -0.00612 0.04178 0.06894 0.11742 0.15846 0.17962

§
II

0.6 0.48680 -0.01597 0.00454 0.07725 0.11172 0.14878 0.16955
0.8 0.62978 -0.05920 -0.00877 0.03604 0.07272 0.12972 0.15996

3 1.0 1.00221 0.65585 0.32151 0.21679 0.05251 -0.22053 -0.21764
0.4 0.00465 -0.04467 0.00232 0.04091 0.09289 0.13317 0.15956

o
CM 0.6 -0.00555 -0.05590 -0.00506 0.02710 0.08247 0.12388 0.14829
II 0.8 -0.01706 0.08223 0.02708 0.04122 0.08892 0.12368 0.14281
3 1.0 0.40857 0.21174 0.34912 0.45836 0.36274 0.16373 0.18721

0.4 -0.18178 -0.05950 -0.00516 0.03653 0.08892 0.13741 0.17793
8 0.6 -0.18696 -0.07045 -0.01788 0.01795 0.07461 0.11684 0.14400
II 0.8 -0.09188 -0.05754 -0.01083 0.01806 0.06877 0.10765 0.12980

3 1.0 0.06185 -0.03674 0.00855 0.02747 0.07652 0.12651 0.14455
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Fig A.1.6 Shape parameter effect of the PWP-GT model (BIAS)



Table A.1.7 Shape parameter effect of the PWP-GT model (MAD)

Pc ĉ  = 0.5 (̂  = 0.8 <̂  = 1.0 (̂  = 1.2 ^ = 1.5 (̂  = 1.8 (̂  = 2.0
0.4 0.62746 0.09325 0.08594 0.11685 0.19005 0.24172 0.26974

o 0.6 0.71696 0.11158 0.13398 0.16187 0.22042 0.26557 0.29295
(D
II 0.8 0.86481 0.10437 0.08845 0.13645 0.21307 0.27344 0.29812

3 1.0 1.20024 0.79796 0.41818 0.29794 0.24110 0.63335 0.71010
0.4 0.33390 0.09571 0.05852 0.07307 0.11596 0.1624 0.16452

o
CM 0.6 0.33308 0.09200 0.04979 0.06802 0.11322 0.15561 0.18587
V 0.8 0.31954 0.22646 0.07464 0.07453 0.11935 0.15971 0.18920
3 1.0 0.69729 0.34510 0.38596 0.48052 0.40576 0.18841 0.22697

0.4 0.18178 0.08415 0.03339 0.05888 0.11935 0.15393 0.19784
o00 0.6 0.18696 0.09304 0.04288 0.06244 0.11632 0.16411 0.19210
II 0.8 0.24669 0.09754 0.06113 0.07786 0.13615 0.16802 0.19181

3 1.0 0.40939 0.12327 0.06957 0.10220 0.15275 0.19201 0.21804

w
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Fig A.1.7 Shape parameter effect of the PWP-GT model (MAD)



1.3 95% C.l. charts (major and minor types)

Table A.1.8 PWP-GT estimates and 95% C.I., s = 1.5
n

Average
Major events 

s.d." 95%LB 95%UB Average
Minor events 

s.d." 95%LB 95%UB True
1 2.58752 0.31974 1.96084 3.21420 2.24535 0.16561 1.92076 2.56993 1.53506
2 1.90205 0.23166 1.44800 2.35610 1.85753 0.14640 1.57060 2.14446 1.53506
3 2.02619 0.29791 1.44229 2.61009 1.82541 0.14304 1.54505 2.10577 1.53506
4 2.29329 0.31280 1.68021 2.90638 1.53341 0.13538 1.26807 1.79874 1.53506

CM 5 2.89702 0.29562 2.31761 3.47642 1.93824 0.15197 1.64040 2.23609 1.53506
II

3 6 1.61944 0.23976 1.14951 2.08936 1.25598 0.12700 1.00706 1.50490 1.53506
7 1.39773 0.28355 0.84198 1.95349 1.53782 0.12929 1.28443 1.79122 1.53506
8 1.64866 0.29580 1.06891 2.22841 1.48733 0.13079 1.23099 1.74367 1.53506
9 1.21178 0.29575 0.63213 1.79144 1.31116 0.12999 1.05638 1.56594 1.53506
10 1.94658 0.28336 1.39121 2.50195 1.46138 0.12975 1.20708 1.71568 1.53506
1 2.51532 0.24797 2.02931 3.00133 2.53602 0.14466 2.25249 2.81955 1.53506
2 1.71797 0.20008 1.32581 2.11012 1.69407 0.11464 1.46937 1.91877 1.53506
3 1.90476 0.22730 1.45926 2.35026 1.75554 0.11554 1.52910 1.98199 1.53506
4 1.51389 0.21023 1.10183 1.92594 1.57951 0.11145 1.36107 1.79795 1.53506

00 5 2.08875 0.22428 1.64916 2.52833 1.67383 0.11360 1.45118 1.89648 1.53506
II3 6 1.43896 0.17146 1.10291 1.77501 1.23985 0.10491 1.03422 1.44547 1.53506

7 1.88826 0.23571 1.42627 2.35025 1.54954 0.11029 1.33337 1.76571 1.53506
8 1.47523 0.22286 1.03843 1.91202 1.69800 0.11860 1.46555 1.93045 1.53506
9 1.51054 0.26039 1.00018 2.02090 1.26669 0.10447 1.06194 1.47145 1.53506
10 2.03049 0.25222 1.53615 2.52484 1.58336 0.11146 1.36490 1.80182 1.53506
1 2.36312 0.19532 1.98029 2.74595 2.43992 0.12149 2.20180 2.67803 1.53506
2 1.78564 0.20421 1.38541 2.18587 1.73332 0.09858 1.54011 1.92652 1.53506
3 1.49069 0.17422 1.14923 1.83215 1.69289 0.10036 1.49619 1.88960 1.53506
4 1.52187 0.18601 1.15730 1.88644 1.77231 0.09649 1.58319 1.96142 1.53506

a 5 1.93965 0.19773 1.55211 2.32720 1.57420 0.09510 1.38780 1.76059 1.53506
II

3 6 1.36698 0.16779 1.03811 1.69585 1.25973 0.09168 1.08005 1.43941 1.53506
7 1.80017 0.20638 1.39567 2.20467 1.49603 0.09292 1.31391 1.67815 1.53506
8 1.92484 0.20929 1.51464 2.33504 1.60654 0.09818 1.41410 1.79898 1.53506
9 1.42738 0.18411 1.06654 1.78822 1.24945 0.09082 1.07145 1.42745 1.53506
10 1.65260 0.23046 1.20090 2.10430 1.60690 0.09976 1.41137 1.80243 1.53506

500



‘ s.d. is derived from the composite variance (seed numbers: 539, 255, and 59)
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Table A.1.9 PWP-GT estimates and 95% C I., <ÿ = i.o
n

Average
Major events 

s.d." 95%LB 95%UB Average
Minor events 

s.d." 95%LB 95%UB True
1 2.58752 0.31974 1.96084 3.21420 2.24535 0.16561 1.92076 2.56993 2.30259
2 2.58464 0.25241 2.08993 3.07935 2.50245 0.17513 2.15920 2.84571 2.30259
3 2.74223 0.31661 2.12170 3.36277 2.50695 0.17528 2.16341 2.85049 2.30259
4 3.09574 0.32978 2.44939 3.74209 2.30248 0.16703 1.97511 2.62985 2.30259

R 5 3.45394 0.31333 2.83982 4.06805 2.65093 0.18891 2.28067 3.02118 2.30259
II 6 2.23321 0.25092 1.74141 2.72501 1.92020 0.14533 1.63536 2.20505 2.30259

7 2.13522 0.29320 1.56056 2.70988 2.27701 0.15346 1.97623 2.57778 2.30259
8 2.46468 0.31123 1.85469 3.07467 2.25997 0.15901 1.94831 2.57162 2.30259
9 1.88085 0.30619 1.28073 2.48096 1.99446 0.15349 1.69362 2.29529 2.30259
10 2.71827 0.30172 2.12691 3.30963 2.24122 0.16225 1.92322 2.55923 2.30259
1 2.51532 0.24798 2.02929 3.00135 2.53602 0.14466 2.25249 2.81955 2.30259
2 2.41438 0.21360 1.99574 2.83303 2.31893 0.13440 2.05551 2.58234 2.30259
3 2.62405 0.24152 2.15068 3.09742 2.45064 0.14566 2.16516 2.73613 2.30259
4 2.20970 0.22113 1.77629 2.64310 2.29765 0.12312 2.05635 2.53895 2.30259

§ 5 2.71702 0.23688 2.25275 3.18129 2.32770 0.13338 2.06628 2.58912 2.30259
¥ 6 2.08090 0.18228 1.72364 2.43817 1.90136 0.12022 1.66573 2.13699 2.30259

7 2.64872 0.24976 2.15920 3.13823 2.37139 0.13480 2.10719 2.63560 2.30259
a 2.26270 0.23660 1.79898 2.72641 2.43710 0.13627 2.17003 2.70418 2.30259
9 2.16391 0.26789 1.63885 2.68896 1.92413 0.12037 1.68821 2.16006 2.30259
10 2.81512 0.26840 2.28907 3.34118 2.35544 0.13998 2.08110 2.62979 2.30259
1 2.36312 0.19532 1.98029 2.74595 2.43992 0.12149 2.20180 2.67803 2.30259
2 2.32677 0.21163 1.91198 2.74155 2.36321 0.11530 2.13722 2.58919 2.30259
3 2.20676 0.18589 1.84243 2.57110 2.41187 0.12072 2.17526 2.64848 2.30259
4 2.21981 0.19645 1.83478 2.60485 2.31046 0.11613 2.08285 2.53807 2.30259

§
5 2.64113 0.20824 2.23298 3.04927 2.24010 0.11235 2.01989 2.46030 2.30259

IIID 6 2.07843 0.17766 1.73023 2.42663 2.04818 0.10678 1.83890 2.25746 2.30259
7 2.54038 0.21650 2.11604 2.96472 2.31013 0.11192 2.09077 2.52948 2.30259
8 2.69026 0.22104 2.25702 3.12350 2.44848 0.11945 2.21437 2.68259 2.30259
9 2.09593 0.19231 1.71901 2.47285 1.99932 0.10549 1.79256 2.20608 2.30259
10 2.46961 0.24314 1.99306 2.94616 2.44808 0.12546 2.20217 2.69398 2.30259

o

s.d. is derived from the composite variance (seed numbers: 539, 255, and 59)



Table A I.10 PWP-GT estimates and 95% C.I., = 0.8
n

Average
Major events 

S.d." 95%LB 95%UB Average
Minor events 

s.d." 95%LB 95%UB True
1 2.58752 0.31974 1.96084 3.21420 2.24535 0.16561 1.92076 2.56993 2.87823
2 2.84789 0.26201 2.33435 3.36143 2.79625 0.19079 2.42230 3.17020 2.87823
3 3.12894 0.33221 2.47782 3.78006 2.90549 0.19988 2.51374 3.29724 2.87823
4 3.58258 0.34151 2.91322 4.25193 2.77956 0.18626 2.41450 3.14462 2.87823

R 5 3.86098 0.33289 3.20852 4.51344 3.13797 0.21830 2.71011 3.56584 2.87823
n 6 2.70284 0.26366 2.18608 3.21960 2.40634 0.16431 2.08429 2.72839 2.87823

7 2.66441 0.30632 2.06403 3.26479 2.78499 0.17670 2.43867 3.13131 2.87823
8 3.09079 0.33590 2.43244 3.74913 2.89694 0.20185 2.50133 3.29255 2.87823
9 2.39306 0.31600 1.77371 3.01242 2.47120 0.17246 2.13319 2.80921 2.87823
10 3.14562 0.31639 2.52550 3.76574 2.68603 0.18655 2.32040 3.05166 2.87823
1 2.51532 0.24798 2.02929 3.00135 2.53602 0.14466 2.25249 2.81955 2.87823
2 2.75430 0.22113 2.32089 3.18772 2.62193 0.14559 2.33659 2.90727 2.87823
3 3.02777 0.25258 2.53272 3.52281 2.84671 0.15608 2.54080 3.15262 2.87823
4 2.66767 0.23099 2.21495 3.12039 2.72492 0.14967 2.43158 3.01826 2.87823

§ 5 3.14575 0.24939 2.65695 3.63455 2.78261 0.15236 2.48399 3.08122 2.87823
¥
3 6 2.54858 0.19372 2.16889 2.92827 2.37786 0.13645 2.11042 2.64530 2.87823

7 3.14738 0.26536 2.62728 3.66747 2.95984 0.16282 2.64072 3.27895 2.87823
8 2.80749 0.25216 2.31327 3.30170 2.96837 0.16315 2.64861 3.28813 2.87823
9 2.64770 0.27587 2.10700 3.18841 2.39486 0.13567 2.12895 2.66078 2.87823
10 3.31396 0.28218 2.76090 3.86702 2.83575 0.16241 2.51743 3.15406 2.87823
1 2.36312 0.19532 1.98029 2.74595 2.43992 0.12149 2.20180 2.67803 2.87823
2 2.61543 0.21680 2.19052 3.04034 2.68586 0.12663 2.43767 2.93405 2.87823
3 2.61614 0.19530 2.23336 2.99892 2.81260 0.13500 2.54801 3.07719 2.87823
4 2.66876 0.20585 2.26530 3.07223 2.76388 0.13190 2.50536 3.02240 2.87823

% 5 3.03030 0.21580 2.60735 3.45326 2.68327 0.12696 2.43443 2.93210 2.87823
II

3 6 2.56637 0.18730 2.19926 2.93348 2.52565 0.12123 2.28805 2.76325 2.87823
7 3.11057 0.22812 2.66346 3.55767 2.88848 0.13197 2.62982 3.14713 2.87823
8 3.24040 0.23345 2.78285 3.69795 2.99919 0.14216 2.72057 3.27781 2.87823
9 2.55987 0.20048 2.16694 2.95280 2.47484 0.11985 2.23994 2.70974 2.87823
10 2.97263 0.25594 2.47101 3.47425 2.93079 0.14721 2.64226 3.21932 2.87823

' s.d. is derived from the composite variance (seed numbers: 539, 255, and 59)
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1.4 Experimental units (major and minor types)
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1.5 Shape parameter (major and minor types)
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11.2 Shape parameter
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DATA POWERLAWB;
RETAIN SEED 539;
FORMAT T Y 16.2;
DO ITEM = 1 TO 60;

P=RANUNI(SEED);
IF P < 0.4 THEN CENSOR=0;
ELSE CENS0R=1;
F=FLOOR(10*RANUNI(SEED))+l;
T = 0;
M = 0;
TSTART=0;
DO FAILURE = 1 TO 10;

RETAIN M 0;
X = RANUNI(SEED);
DELTA = 1.0;
IF ITEM <= 30 THEN NU = 0.001;
ELSE NU = 0.01;
IF NU = 0.001 THEN CLASS = 0;
ELSE CLASS = 1;
IF(FAILURE>F & CENSOR=0)THEN STATUS=0;
ELSE STATUS-1;

IF STATUS-1 THEN DO;
T = ((T**DELTA)-(LOG(X)/NU))**(1/DELTA);
Y = T-M;
M = T;
TSTOP-T;
OUTPUT;
TSTART-TSTOP;
END;
IF STATUS-0 THEN DO;
T-0;
Y-0;
TSTOP-TSTART;
OUTPUT;
END;

END;
END;

DATA TBFB;
SET POWERLAWB; 
DROP M NU DELTA; 

PROC PRINT DATA-TBFB;
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TITLEl 'RIGHT CENSORING DATA OF TIME BETWEEN FAILURES';
DATA CENSOR;

SET TBFB;
DROP X P F;
IF STATUS=1 THEN DELETE;

PROC PRINT DATA=CENSOR;
TITLE'CENSOR';

DATA UNCENSOR;
SET TBFB;
DROP X P F;
IF STATUS=0 THEN DELETE;

PROC PRINT DATA-UNCENSOR;
TITLE 'UNCENSOR';
DATA CENSOR_AG;

SET TBFB;
IF TSTART=TSTOP THEN DELETE;

PROC PRINT DATA=CENSOR_AG;
TITLE'CENSOR_AG';

DATA CENSOR_PWP(DROP=LSTATUS);
RETAIN LSTATUS;
SET TBFB;
BY ITEM;
IF FIRST.ID THEN LSTATUS=1;

IF (STATUS=0 AND LSTATUS=0) THEN DELETE;
LSTATUS=STATUS;

PROC P R IN T  DATA=CENSOR_PWP;
TITLE'CENSOR_PWP';

DATA CENSOR_WLW;
SET TBFB;

PROC PRINT DATA=CENSOR_WLW;
TITLE'CENSOR_WLW';

PROC PHREG DATA=CENSOR_AG;
MODEL (TSTART^TSTOP)* STATUS(0)= CLASS;
TITLEl' ANDERSEN-GILL SUMMARY';

DATA CENS0R_PWP1;
SET CENSOR_PWP;
IF FAILURE<11;
CLASSI-CLASS*(FAILURE-1) 
CLASS2-CLASS*(FAILURE-2) 
CLASS3-CLASS*(FAILURE-3) 
CLASS4-CLASS*(FAILURE-4) 
CLASS5-CLASS*(FAILURE-5) 
CLASS6-CLASS*(FAILURE-6) 
CLASS7-CLASS*(FAILURE-7) 
CLASS8-CLASS*(FAILURE-8) 
CLASS9-CLASS*(FAILURE-9) 
CLASSIO-CLASS*(FAILURE-10);

PROC PHREG DATA-CENSOR PWPl;
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MODEL Y * STATUS(0)= CLASSI-CLASSIO;
STRATA FAILURE;
TITLEl' PWP-GAf TIME SUMMARY';
OUTPUT OUT=SURL_EST_PWP_GAP SURVIVAL=SURL_EST_FWP_GAP; 

PROC SORT;
BY FAILURE CLAES1-CLA5S10 Y;

PROC PHREG DATA=CENS0R_PWP1;
MODEL TSTOP * STATUS(0)= CLASS;
TITLEl' PWP-TOTAL TIME SUMMARY';
OUTPUT OUT=SURL EST PWP TOTAL SURVIVAL=SURL EST PWP TOTAL; 

PROC SORT;
BY CLASS TSTOP;

DATA CENSORWLWl;
SET CENSORJMLW;
IF FAILURE<11; 
CLASS1=CLASS*(FAILURE=1 
CLASS2=CLASS*(FAILURE=2 
CLASS3=CLASS*(FAILURE=3 
CLASS4=CLASS*(FAILURE=4 
CLASS5=CLASS*(FAILURE=5 
CLASS6=CLASS*(FAILURE=6 
CLASS7=CLASS*(FAILURE=7 
CLASS8=CLASS*(FAILURE=8 
CLASS9=CLASS*(FAILURE=9) 
CLASS10=CLASS*{FAILURE=10)

PROC PHREG DATA=CENS0R_WLW1;
MODEL TSTOP * STATUS(0)=CLASS;
TITLEl' WEI-LIN-WEISSFELD SUMMARY';
OUTPUT OUT=SURL_EST_WLW SURVIVAL=SURL_EST_WLW; 

PROC SORT;
BY CLASS TSTOP;

RUN;
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DATA POWERLAWB;
RETAIN SEED 539;
FORMAT T Y 16.2;
DO ITEM - 1 TO 180;

P=RANDNI(SEED);
IF P < 0.4 THEN CENSOR=0;
ELSE CENS0R=1;
F=FL00R(4*RANUNI(SEED))+1;
T = 0;
M = 0;
TSTART-0;
DO FAILURE = 1 TO 4;

RETAIN M 0;
X = RANUNI(SEED);
DELTA - 1.0;
IF ITEM <= 90 THEN NU = 0 .0 0 1 ;
ELSE NU = 0 . 0 1 ;
IF NO = 0 .0 0 1  THEN CLASS = 0;
ELSE CLASS = 1;
IF(FAILURE>F & CENSOR=0)THEN STATUS=0;
ELSE STATÜS=1;
IF STATUS-1 THEN DO;
T = ((T**DELTA)-(LOG(X)/NÜ))**(1/DELTA);
Y = T-M;
M = T;
TSTOP-T;
OUTPUT;
TSTART-TSTOP;

END;

IF STATUS-0 THEN DO;
T=0;
Y=0;
TSTOP-TSTART;
OUTPUT;
END;

END;

END;
DATA TBFB;

SET POWERLAWB; 
DROP M NU DELTA; 

PROC PRINT DATA-TBFB;
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TITLEl 'RIGHT CENSORING DATA OF TIME BETWEEN FAILURES';
DATA CENSOR;

SET TBFB;
DROP X P F;
IF STATUS=1 THEN DELETE;

PROC PRINT DATA=CENSOR;
TITLE'CENSOR';

DATA UNCENSOR;
SET TBFB;
DROP X P F;
IF STATUS=0 THEN DELETE;

PROC PRINT DATA=UNCENSOR;
TITLE 'UNCENSOR';

DATA CENSOR_AG;
SET TBFB;
IF TSTART=TSTOP THEN DELETE;

PROC PRINT DATA=CENSOR_AG;
TITLE'CENSOR_AG';

DATA CENSOR_PWP(DROP^LSTATOS);
RETAIN LSTATUS;
SET TBFB;
BY ITEM;
IF FIRST.ID THEN LSTATUS=1;

IF (STATUS=0 AND LSTATUS=0) THEN DELETE;
LSTATOS=STATDS;

PROC PRINT DATA=CENSOR_PWP;
TITLE'CENSOR_PWP';

DATA CENSOR_WLW;
SET TBFB;

PROC PRINT DATA=CENSOR_WLW;
TITLE'CENSORWLW';

PROC PHREG DATA=CENSOR_AG;
MODEL (TSTART,TSTOP)* STATUS(0)= CLASS;
STRATA FAILURE;
TITLEl' ANDERSEN-GILL SUMMARY';

DATA CENS0R_PWP1;
SET CENSOR_PWP;
IF FAILURE<5;
CLASS1=CLASS*(FAILURE=1);
CLA5S2-CLASS*(FAILURE=2);
CLASS3=CLASS*(FAILURE=3);
CLASS4=CLASS*(FAILURE=4);

PROC PHREG DATA=CENS0R_PWP1;
MODEL Y * STATUS(0)= CLA5S1-CLASS4;
STRATA FAILURE;
TITLEl' PWP-GAP TIME SUMMARY';
OUTPUT OUT=SURL_EST_PWP_GAP SURVIVAL=SURL_EST_PWP_GAP; 

PROC SORT;
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BY FAILURE CLA5S1-CLASS4 Y;
PROC PHREG DATA=CENS0R_PWP1;

MODEL TSTOP * STATUS(0)= CLASS1-CLASS4;
STRATA FAILURE;
TITLEl' PWP-TOTAL TIME SUMMARY';
OUTPUT OUT=SURL_EST_PWP_TOTAL SURVIVAL=SURL_EST_PWP_TOTAL; 

PROC SORT;
BY FAILURE CLASS1-CLASS4 TSTOP;

DATA CENSORWLWl;
SET CENSOR_WLW;
IF FAILURE<5;
CLASS1=CLASS*(FAILURE=1)
CLASS2=CLASS*(FAILURE-2)
CLASS3=CLASS*(FAILURE-3)
CLASS4-CLASS*(FAILURE-4)

PROC PHREG DATA=CENS0R_WLW1;
MODEL TSTOP * STATUS(0)=CLASS1-CLASS4;
STRATA FAILURE;
TITLEl' WEI-LIN-WEISSFELD SUMMARY';
OUTPUT OUT=SURL_EST_WLW SURVIVAL=SURL_EST_WLW; 

PROC SORT;
BY FAILURE CLASS1-CLASS4 TSTOP;

RUN;
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DATA GENRATEA;
RETAIN SEED 539;
FORMAT T T1 Y 16.2;
DO ITEM = 1 TO 20;

T = 0;
T1 = 0;
M = 0;
RATIO = 5.0;
F=FLOOR(10*RANUNI(SEED))+1;
DO FAILURE = 1 TO F;

RETAIN M 0;
X = RANONI(SEED);
DELTA = 0.5;
IF ITEM <= 10 THEN NU = 0 . 001 ;

ELSE NU = 0.01;
IF NU = 0.001 THEN CLASS = 0;
ELSE CLASS = 1;
T = ((T**DELTA)-(LOG(X)/NU))**(1/DELTA);
Y = T-M;
M = T;
OUTPUT;
T1=T;

END ;

DO FAILURE = F+1;
RETAIN M 0;
X = RANUNI(SEED);
DELTA = 0.5;
D = RATIO * Y;
T1=T1+D;
T=T1;
IF ITEM <= 10 THEN NU = 0 . 001;

ELSE NU = 0.01;
IF NU = 0.001 THEN CLASS = 0;
ELSE CLASS = 1;
T = ((T**DELTA)-(LOG(X)/NU))**(1/DELTA);
Y = T -M ;
M = T;
OUTPUT;
T1=T;

END;
DO FAILURE = F+2 TO 10;

RETAIN M 0;
X = RANUNI(SEED);
DELTA = 0.5;
IF ITEM <= 10 THEN NU = 0 . 001 ;

ELSE NU = 0.01;
IF NU = 0.001 THEN CLASS = 0;
ELSE CLASS = 1;
T = ((T**DELTA)-(LOG(X)/NU))**(1/DELTA);
Y = T-M;
M = T;
OUTPUT;
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T1=T;
END;

END;
DATA TBF;

SET GENRATEA;
DROP SEED D;
IF FAILURE>10 THEN DELETE;

PROC PRINT DATA=TBF;
TITLEl 'SIMULATED TIME BETWEEN FAILURES';

PROC PHREG DATA=TBF;
MODEL (T1,T)=CLASS;
TITLE'THE ANDERSEN-GILL SUMMARY';

DATA TBF_GT;
SET TBF;
IF FAILURE<11;
CLASS1=CLASS*(FAILURE=1) 
CLASS2=CLASS*(FAILURE=2) 
CLASS3=CLASS*(FAILURE=3) 
CLASS4=CLASS*(FAILURE=4) 
CLASS5=CLASS*(FAILURE=5) 
CLASS6=CLASS*(FAILURE=6) 
CLASS7=CLASS*(FAILURE=7) 
CLASS8=CLASS*(FAIL0RE=8) 
CLASS9=CLASS*(FAILURE=9) 
CLASS10=CLASS*(FAILURE=10);

PROC PHREG DATA=TBF_GT OUTEST=BETA_TT;
MODEL T = CLASS;
TITLE'THE WEI-LIN-WEISSFELD SUMMARY';

PROC SORT DATA=TBF_GT ;
BY FAILURE DESCENDING Y;

PROC PHREG DATA=TBF_GT OUTEST=BETA_GT ;
MODEL Y = CLASSI-CLASSIO;
STRATA FAILURE;
TITLEl' THE PWP-GAP TIME SUMMARY';

RON;
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DATA GENRATEA;
RETAIN SEED 539;
FORMAT T T1 Y 16.2;
DO ITEM = 1 TO 120;

T = 0;
T1 = 0;
M = 0;
ZM=0;
ZN=0;
F1=FLOOR(10*RANUNI(SEED))+l;
DO FAILURE = 1 TO 10;

RETAIN M 0;
X = RANUNI(SEED);
DELTA = 1.2;
IF ITEM <= 60 THEN NU - 0.001;
ELSE NU = 0.01;
IF NU = 0.001 THEN CLASS == 0;
ELSE CLASS = 1;
T = {(T**DELTA)- (LOG(X)/NU))**(1/DELTA);
Y = T-M;
M = T;
OUTPUT;
T1=T;

END;
END;

DATA TBF;
SET GENRATEA;
DROP SEED M NU DELTA X;
IF CLASS=1 & FAILURE-~=F1 THEN ZN=1;
IF CLASS=1 & FAILURE=F1 THEN ZM=1;

PROC PRINT DATA=TBF;
TITLEl 'SIMULATED MINOR-MAJOR EVENTS';

PROC PHREG DATA=TBF;
MODEL (T1,T)=ZM ZN;
TITLE'THE ANDERSEN-GILL SUMMARY';

PROC SORT DATA=TBF;
BY FAILURE;

PROC PHREG DATA=TBF OUTEST=BETA_WLW;
MODEL T = ZM ZN;
TITLE'THE WEI-LIN-WEISSFELD SUMMARY';

PROC SORT DATA=TBF;
BY FAILURE DESCENDING Y;

PROC PHREG DATA-TBF OUTEST=BETA_PWP_GT; 
MODEL Y = ZM ZN;
BY FAILURE;
TITLEl' THE PWP-GAP TIME SUMMARY';
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PROC PRINT DATA=BETA_PWP_GT; 
TITLE'BETA_FWP_GT';

RUN;
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Baseline hazard function
The baseline hazard function in the proportional hazards (PH) model can t)e set 
as known or arbitrary depending on whether a parametric or semi-parametric 
method is applied. The baseline hazard function detemnines the intercept of the 
PH function, while the regression coefficient decides the slope of the PH 
function.

Censoring probabiiity
The ratio (probability) of the sample units that contain censored times to total 
sample units is defined as censored probability (jf^) in this research.

CMTBF
The abbreviation A)r cumulative mean time between failures defined as the mean 
time between Silures per event. Mathematically, CMTBF is derived from the 
time r divided by the expected number of failure events in (0,r] in a discrete time 
system (Patrick (1991) and Ascher and Feingold (1984)).

Conditional method
The PWP-GT and PWP-TT both utilize the concept of the condition method. The 
intensity function for event is determined based on the past history (in terms 
of the failure times, event count, etc.). Participants that have experienced (% -!)* 
event are qualified to contribute to the event intensity function estimation.

Covariate
Covariates, introduced from the PH and PI models, featured as regression 
factors in lifetime or recurrent data analysis, and also termed as explanatory 
variables or concomitant variables. Covariates can be time-variant or constant 
throughout the observation time.

Multl-dlmensional covariate modeling
Covariate modeling used to handle recurrent data with multiple failure types. 

Cox-based regression methods:
Referred to as the PWP-GT, PWP-TT, AG, and WLW models. The Cox-based 
regression methods employ a partial maximum likelihood function to estimate the 
PI function.

Andersen-GIII method
The AG method employs the counting process concept to estimate the PI 
function. The dataset only contains uncensored data.
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Prentice-Williams-Peterson method
The PWP method employs the conditional method to estimate the PI function. 
There are two ways to perform the PWP model depending on the time frame,
The PWP-GT is on a local time scale and the PWP-TT is on a global time scale. 
The dataset contains uncensored data (failure times) and the first censored time.

Wei-Lin-Weissfeld method
The WLW method employs the marginal method to estimate the PI function.
The dataset contains full records (both failure and censored times).

Discontinuous nsk-free-intervals
The concept of the discontinuous risk-free-intervals relaxes the assumption of 
zero repair time.

Hazard function
The hazard function is defined as the probability density function (p.d.f.) divided 
by the survival function.

HPP
Homogeneous Poisson process (HPP) is a sequence of independent and 
identically distributed exponential random variables (Ascher and Feingold (1984)).

Independent increment
The intensity function is not affected by other time increments, and thus is 
memoryless.

information matrix
The second derivative of maximum likelihood function with respect to parameters 
utilized in the parametric Lawless method

IMTBF
The abbreviation for instantaneous mean time between failures, defined as the 
derivative of failure time with respect to the expected number of failures (Patrick 
(1991) and Ascher and Feingold (1984)).

Intensity function
The instantaneous rate of event occurrence for a point process in a continuous 
time compared to a hazard rate in a discrete time.

Lawless method
A parametric method that assumes the true underlying process is known. The 
Lawless method employs the maximum likelihood method and the Newton- 
Raphson iterative method to estimate the relevant parameters.
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Left-censoring
Left-censoring observations occur when the failure time data is incomplete, and 
truncated from the left, due to the loss of the historical data.

Major and minor failure types
The counting process with a mixed events stream is composed of two failure 
types (major and minor).

Major overhaul period
The assumption of zero repair time can be relaxed using the discontinuous risk- 
free-intervals modeling. The traditional method neglects the repair time in 
repairable systems reliability.

Marginal method
Unlike the conditional method, all subjects (including censored subjects) have 
equal likelihood to contribute to the intensity function for the event.

Multiple event types
Multiple t  event types are modeled in the multivariate proportional intensity 
function A^(r;zt), where each intensity function perfonns an independent 
analysis for each failure type.

NHPP
Non-homogeneous Poisson Process (NHPP) is a nonstationary counting process 
with intensity function A(r), where r is a time variable. The number of events in 
any interval Ar is the integration of the intensity function along with the time 
interval Ar.

PHREG
The syntax in the SAS program utilized to perform the regression analysis in the 
Cox PH model or the accelerated failure time model

Product-Limit method
The Product-Limit method is a non-parametric estimator of a survival function 
^ (r), which is defined as (Lawless (1982)): ,§(r) = { Number of observations > r }
/n, where n denotes sample size. The survival function ^(r)is a step function, 
which decreases by 1/n after each observed lifetime in the PH model. In the case 
of censored data, the survival function is modified as the Kaplan-Meier estimate 
(Lawless (1982)).

Proportional hazards (PH) function
The PH model deals with single event data (lifetime data), while the PI model is 
designated to handle recurrent data. The proportionality property is that the 
hazard functions of any two individuals are proportional to each other (Lawless 
(1982)).
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Proportional intensity (PI) function
The PI model is an extension of PH model when the data contains more than one 
occurrence. The proportionality property of a PI model follows the PH model.

ROCOF
ROCOF is an abbreviation form for rate of occurrence of failures. Mathematically, 
ROCOF is defined as the instantaneous rate of change of the expected number 
of failures in a continuous time (Patrick (1991) and Ascher and Feingold (1984)).

Repairable systems
Systems are designed to be repairable after each failure in the system and the 
system can be restored to a certain degree between as-good-as-new and as- 
bad-as-old.

Replacement
Systems are designed to be non-repairable, and the system will be replaced after 
each failure.

Right-censoring
The unit is removed from observation after a certain time point or number of 
Silures. Leemis (1995) listed a few cases of right-censoring: cost consideration, 
high reliability products, the death of a patient, losing contact with a patient, etc.

Risk-free-intervals
The risk-free-intervals concept originates from the hospitalization in a clinical 
study. When a patient is admitted to the hospital for dmg treatments, the period 
of the hospitalization is considered as a risk-free-interval. Likewise, for the 
reliability engineering application, the system is not at risk when a major overhaul 
is taken place.

Risk Interval:
Risk interval defines the duration when a subject is at risk of having an event 
given under a time scale (Kelly and Lim (2000)).

Risk interval- total time
The total time (global time) is the duration starting at the beginning of the 
experiment. The clock resets to zero as an event occurs. The risk interval of the 
total time scale can be expressed as (0,r„), where n denotes the event number.

Risk intervai- gap time
The gap time (local time) is the duration starting at the end of the previous event. 
The clock resets to zero as an event occurs. The risk interval of the gap time 
scale can be expressed as (0,r„ , where » denotes the event number.
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Risk interval- counting process
A subject is not considered at risk for event until the end of the (» -!)'* event. 
The risk interval of a counting process can be expressed as where »
denotes the event number. Note that the clock does not reset to zero as an event 
occurs.

Risk set
The risk set contains the individuals that are at risk for the event.

Risk set- Unrestricted/ common baseline hazard
The risk set is determined regardless the event number, which means the 
subjects have equal likelihood to contribute to the intensity function and share 
the same baseline hazard.

Risk set- Semi-restricted/ event-specific baseline hazard
Event-specific baseline intensity allows the individuals that have experienced the 
(n-1)* event to contribute to the event intensity function. However, the semi­
restricted concept tolerates the censored individuals as in the risk set regardless 
of any censoring.

Risk set- Restricted/ event-specific baseline hazard
The baseline hazard changes stratum by stratum defined by the event count, 
also termed as restricted baseline intensity. The subject is not at risk of 
contributing to the n* event until the subject has experienced the (/z -l)"  event.

Sample size
There are two expressions of defining the sample size in this study: the number 
of units and recurring events (failure count) for each sample unit.

Score vector
The first derivative of the maximum likelihood function with respect to the 
parameter utilized in the Lawless parametric method
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