
INITIATION AND REGULATION OF 

PROPHENOLOXIDASE ACTIVATION IN 

TOBACCO HORNWORM, MANDUCA SEXTA 

    

By 

ZHIQIANG LU 

Bachelor of Science in Agronomy 
Northwestern Agricultural University 

Yangling, China 
1994 

 
Master of Science in Biochemistry 

Northwestern Agricultural University 
Yangling, China 

1997 
 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 
the requirements for 

the Degree of 
DOCTOR OF PHILOSOPHY 

May, 2007 



 ii 

INITIATION AND REGULATION OF 

PROPHENOLOXIDASE ACTIVATION IN 

TOBACCO HORNWORM, MANDUCA SEXTA 

 

 
 
 
 

Dissertation Approved: 
 
 

Dr. Haobo Jiang 

 
Dr. Jack W. Dillwith 

 
Dr. Thomas W. Phillips 

 
Dr. Andrew Mort 

 
Dr. A. Gordon Emslie 

Dean of the Graduate College 



 iii 

ACKNOWLEDGEMENTS 
 
 
The work presented here was carried out between August 2002 and April 2007 in 

the Department of Entomology and Plant Pathology at Oklahoma State University, under 

the supervision of Dr. Haobo Jiang. 

  I am especially indebted to my adviser Dr. Jiang, who  gave me the opportunity to 

step into the fascinating field of insect immunity. He made this study possible not only by 

giving me invaluable advice and stimulating ideas, but also by providing excellent 

working facilities and maintaining cooperations. 

I am also grateful to my committee members, Drs. Dillwith, Phillips, Essenberg, 

and Mort, for their creative guidance, valuable discussion and critical reading of my 

manuscripts and dissertation. 

I want to thank my lab colleagues Dr. Zou, Yang, Picheng, Rayaprolu, Siwei, 

Rudan and Niranji for their continuous support and helpful discussion.  

 Dr. Paskiwits at University of Wisconsin, Madison, provided useful information 

on phenoloxidase inhibitor. Dr. Asgari at University of Queensland, Austrilia, provided 

the purified Vn50 protein. Dr. Yu at University of Missouri, Kansas City, provided 

proSPH2 expression plasmid, SPH1 and SPH2 antisera. Dr. Ji provided recombinant 

proSPH1.  Without their assistance, I would not be able to finish my research projects. 

Finally, the greatest thanks go to my parents, my wife and my daugther. Without 

their strong support, it would be impossible for me to elaborate this PhD dissertation. 



 iv 

TABLE OF CONTENTS 
 
Chapter          Page 
 
I. INTRODUCTION ....................................................................................................8 

 
  
II. REVIEW OF LITERATURE 
  
 Overview of insect immune system.........................................................................9 
 Phenoloxidases(PO) and their physiological roles ................................................16 
 Initiation of proPO activation cascade ...................................................................19 
      Serine proteases (SPs) and serine protease  
           homologs (SPHs) in insect hemolymph............................................................21 
      ProPO activation reaction ......................................................................................23 
 Regulation of proPO activation and PO activity....................................................24 
 Interaction between parasitoids and host immune systems ...................................27 
 References ..............................................................................................................32 
 
 
III. ? -1,3-GLUCAN RECOGNITION PROTEIN-2 (? GRP-2) FROM      
MANDUCA SEXTA 
 
 Abstract ..................................................................................................................66 
 Introduction............................................................................................................68 
 Materials and methods ...........................................................................................79 
 Results ....................................................................................................................76 
 Discussion..............................................................................................................81 
 References ..............................................................................................................86 
 
IV. EXPRESSION AND ACTIVATION OF MANDUCA SEXTA SERINE 

PROTEINASE HOMOLOG PRECURSORS 
 
 Abstract ................................................................................................................102 
 Introduction..........................................................................................................102 
 Materials and methods .........................................................................................104 
 Results and discussion .........................................................................................110 
 References ............................................................................................................115 
 
V.  REGULATION OF PHENOLOXIDASE ACTIVITY BY HIGH AND LOW 

MOLECULAR WEIGHT INHIBITORS FROM THE LARVAL 



 v 

HEMOLYMPH OF MANDUCA SEXTA 
 
 Abstract ................................................................................................................127 
 Introduction..........................................................................................................128 
 Materials and methods .........................................................................................129 
 Results ..................................................................................................................134 
 Discussion............................................................................................................138 
      References ............................................................................................................141 
 
VI. NEGATIVE REGULATION OF PROPHENOLOXIDASE (proPO) 

ACTIVATION BY A CLIP-DOMAIN SERINE PROTEINASE HOMOLOG 
FROM THE ENDOPARASITOID VENOM 

 
 Abstract ................................................................................................................155 
 Introduction..........................................................................................................157 
 Materials and methods .........................................................................................158 
 Results and discussion .........................................................................................162 
      References ............................................................................................................168 
 
VII.  SUMMARY .....................................................................................................180 
 
APPENDIX................................................................................................................182 



 vi 

LIST OF FIGURES 
 
 
Chapter II 
 
1   Serine protease cascade leading to proPO activation and Toll pathway in Drosophila 

................................................................................................................................64 

Chapter III 

1   Purification of ßGRP-2 from intergumants of M. sexta pharate pupae ..................91 
2   Characterization of M. sexta ßGRP-2 ....................................................................92 
3   Nucleotide and deduced amino acid sequences of ßGRP-2....................................93 
4   Expression profile of M.sexta ßGRP- 1 and ßGRP-2 .............................................94 
5   Concentration-dependent binding of H6ßGRP-2 to E. coli ....................................96 
6   Aggregation of microorganisms by ßGRP-2 ..........................................................97 
7   Association of microbial cell wall components with ßGRP-2................................98 
8   Roles of ßGRP-2 in proPO activation.....................................................................99 
9   Phylogenetic relationships among the glucanase-like proteins in invertbrates ....100 
 
 
Chapter IV 
 
1  Development of a series of Bac-to-Bac plasmid vectors for protein expression in 

baculovirus-infected insect cells ..........................................................................116 
2   Expression analysis of proSPH1 and proSPH2 in baculovirus- infected insect cells 
 ..............................................................................................................................118 
3   Isolation of M. sexta proSPH-1 from the baculovirus- infected insect cells .........119 
4   Isolation of M. sexta proSPH-1 from the baculovirus- infected insect cells .........120 
5   Processing of the proSPHs by column fractions of the M. sexta hemolymph from      
     larvae injected with bacteria ................................................................................121 
6   Relationships between proPO activation and co-presence of proSPH-1 and proSPH-2    
     in the activation mixture ......................................................................................122 
7   Requirement of processed SPH-1 and SPH-2 both for the auxiliary effect in proPO  

 activation  .............................................................................................................123 
8   Comparison of PO cofactor activity from processed recombinant proSPH1 and  
     proSPH2 with that from the SPH1/SPH2 from hemolymph ...............................124 
 

 
  



 vii 

 
Chapter V 
 
1   M. sexta POI and its comparison with homologous sequences from other insects ....  
 ..............................................................................................................................146 
2   Isolation of M. sexta POI from E. coli ..................................................................147 
3   Inhibition of M. sexta PO by recombinant POI from E. coli ................................148 
4   Purification of recombinant POI produced in baculovirus- infected Sf21 cells.....149 
5   Detection of O- linked glycosylation in M. sexta POI from Sf21 cells..................150 
6   Isolation of a low Mr PO inhibitor from the larval hemolymph ...........................151 
7   Expression profiles of M. sexta POI in fat body at different immune states or  
     development stages ...............................................................................................153 

 
 
Chapter VI 
 
1   Status of Vn50 in P. rapae hemolymph following parasitization ........................173 
2   Stability of Vn50 in the host hemolymph.............................................................174 
3   Interaction of Vn50 with host hemolymph components .......................................175 
4   Down-regulation of proPO activation by Vn50 ....................................................176 
5   Quantification of Vn50 in P. rapae hemolymph following paraistization...........177 
6   Mechanistic analysis of the proPO activation regulation by Vn50.......................178 
 

 
 
 
 
 
 
 
 



 8 

CHAPTER I.  INTRODUCTION 
 
 

Among over 10 million animal species on the earth, insects represent the largest 

and most diverse group (Dimarcq, 2002). Insects have existed for about 500 million years 

and, during the evolutionary journey, they have developed a sensitive and effective 

immune system to recognize and defend themselves against attacks by bacteria, fungi, 

viruses and parasites. Insects are vectors of a variety of pathogens (e.g., viruses, bacteria, 

fungi, protozoa, and metazoan parasites), which cause millions of human deaths every 

year. For instance, Anopheline mosquitoes transmit protozoa Plasmodium that cause 

malaria. More than 600 million people in the world, most of which, children in Africa, 

are facing the threat of death from malaria resulting in about 3000 deaths of children each 

day (http://www.who.int/mediacentre/events/2006/g8summit/malaria/en/ ). In order to 

survive and colonize their hosts, pathogens have to overcome the host insect immune 

system. Therefore, investigations of insect immune systems will provide informa tion on 

pathogen-insect interactions and new approaches to block pathogen transmission. 

Parasitic wasps (Hymenoptera) lay their eggs in the body cavity of their host 

insects, typically Lepidoptera. In order to develop successfully, they need to suppress or 

evade the host defense reactions. Consequently, the parasite-host interaction provides a 

unique opportunity to understand how parasites manipulate their host immune system 

and, in other cases, how the host insect immune system recognizes parasites and blocks 

parasite development (Schmidt et al., 2001). 
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CHAPTER II. REVIEW OF LITERATURE 
 

Overview of insect immune system 

To cope with pathogenninfection, insects have developed several structural 

barriers and a complex immune system. The first line of defense against pathogens is 

structural barriers including the hardened outer exoskeleton (Söderhäll and Cerenius, 

1998; Theopold et al., 2002), the epithelial barriers (Lehane et al., 1997; Tzou et al., 

2000; Lemaitre and Hoffmann, 2007), and the peritrophic matrix of the midgut (Lehane, 

1997; Shao et al., 2001). After pathogens penetrate the insects’ structural barriers, they 

may encounter defense reactions of the host. Insect and other invertebrates rely solely on 

an efficient innate immune system comprising both cellular and humoral responses 

(Hoffmann and Reichhart, 2002; Tzou et al., 2002; Khush and Lemaitre, 2000; Hultmark, 

2003; Dimopoulos, 2003; Leclerc and Reichhart, 2004; Royet, 2004; Pinheiro and Ellar, 

2006; Lemaitre and Hoffmann, 2007). 

Epithelial tissues such as the gut and trachea not only act as mechanical barriers 

but also produce antibacterial peptides and reactive oxygen species (ROS) (Lemaitre and 

Hoffmann, 2007). When the epicuticle of a silkworm larva, Bombyx mori, is abraded in 

the presence of live bacteria or bacteria cell wall components (peptidoglycan, laminarin, 

or Lipopolysaccharide (LPS)), cecropin transcription is induced in the underlining 

epithelial cells (Brey et al., 1993). Using a drosomysin-green fluorescent protein reporter 

gene, Ferrandon et al (1998) showed that the epithelial tissues of Drosophila respiratory, 

digestive and reproductive tracts expressed the antifungal peptide, drosomysin, following 

an exposure to microbial agents. The cuticular abrasion of Drosophila larvae in the 

presence of bacteria induced cecropin A1 gene expression in the epithelium (Onfelt et al., 
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2001). Pseudomonas entomophila, a Gram-negative natural pathogen of Drosophila, 

triggers both local and systemic immune responses, but only the antimicrobial peptide 

Diptericin expression in the gut provides an efficient  barrier allowing Drosophila to 

rapidly eliminate most ingested bacteria (Liehl et al., 2006). Drosophila nicotinamide 

adenine dinucleotide phosphate (NADPH) oxidase, dual oxidase (dDuox) is responsible 

for infection-induced ROS generation. Indispensable for host survival during natural gut 

infection, dDuox limits the onset of microbial proliferation in the gut. Duox RNAi flies 

showed a remarkable increase in mortality rate after an oral infection (Ha et al., 2005a). 

ROS is eliminated by immune-regulated catalase (IRC), a secretory antioxidase protein 

with catalase activity. Knockdown of IRC by RNAi results in higher ROS production and 

mortality rate after simple ingestion of microbe-contaminated foods, suggesting that IRC-

mediated homeostatic redox balance is the most critical host survival strategy during 

continuous host-microbe interaction in Drosophila gut epithelia (Ha et al., 2005b). 

Insect cellular defense refers to hemocyte-mediated immune responses, such as 

phagocytosis, nodulation, and encapsulation (Lavine and Strand, 2002). Phagocytosis is 

the process of engulfment of entities by an individual cell (Lavine and Strand, 2002). In 

M. sexta, plasmatocytes are major hemocytes involved in phagocytosis of non-self 

microsphere beads, whereas granulocytes are the hemocytes to ingest self dead cells. 

Immulectin-2 binds hemocytes to boost phagocytosis with an opsonic activity (Ling and 

Yu, 2006). Hemolin, a member of the immunoglobulin (Ig) superfamily (Ladendorff and 

Kanost, 1991), agglutinates bacteria (Yu and Kanost, 2002). Knockdown of hemolin in 

M. sexta markedly reduced the phagocytosis of injected E. coli (Eleftherianos et al., 

2007), and significantly decreased the ability of the insect to withstand infection when 
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exposed to pathogenic bacteria Photorhabdus (Eleftherianos et al., 2006).  In Drosophila, 

phagocytosis is carried out by a major blood cell type, the plasmatocytes (Lanot et al., 

2001). Several types of receptor proteins are involved in phagocytosis. These include 

scavenger receptor family members (SR-CI, e.g.), the EGF-domain protein Eater, 

thioester-containing proteins (TEPs), and the Ig-domain protein Dscam (Lemaitre and 

Hoffmann, 2007; Cherry and Silverman, 2006). Drosophila SR-CI is a pattern 

recognition protein (PRP) for both Gram-negative and -positive bacteria; RNAi treatment 

reduced phagocytosis of heat-killed bacteria by 25% (Ramet et al., 2001). However, 

Drosophila SR-CI only contributes a small fraction of the total phagocytic activity of S2 

cells. Subsequent microarray analysis and RNAi experiments revealed that Eater, a 

single-pass transmembrane receptor containing 32 extracellular EGF-like repeats, is the  

predominant receptor involved in the recognition, cell-surface bind ing, and phagocytosis 

of bacteria in Drosophila (Kocks et al., 2005). TEPs resemble to some vertebrate 

complement factors and to a2-macroglobulins (a2M). Anopheles gambiae TEP1 binds to 

bacteria through the thioester bond and is essential for promoting of phagocytosis of 

Gram-negative bacteria in a mosquito cell line (Levashina et al., 2001). In Drosophila, 

TepII is required for efficient phagocytosis of E. coli (but not C. albicans or 

Staphylococcus aureus) and TepIII is required for the efficient phagocytosis of S. aureus 

(but not C. albicans or E. coli) (Stroschein-Stevenson et al., 2006). Drosophila Down 

syndrome cell adhesion molecules (Dscam) are members of an immunoglobulin (Ig)-

receptor superfamily comprising of more than 18,000 isoforms generated through 

alternative splicing. Knockdown of Dscam is shown to impair the hemocyte’s capacity of 

phagocytosis (Watson et al., 2005). Anopheles gambiae Dscam family can produce over 
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31,000 potential alternative splice forms. Challenge with different pathogens produces 

specific AgDscam splice-form repertoires with different adhesive characteristics. The 

ability of a hemocyte-like cell line to engulf bacteria is decreased by 55–60% after 

AgDscam silencing (Dong et al., 2006).   

Nodulation is a process of binding and aggregation of bacteria by multiple 

hemocytes, whereas encapsulation refers to the binding of hemocytes to larger objects 

such as parasitoids and nematodes (Lavine and Strand, 2002; Jiravanichpaisal et al., 

2006). The hemocytes involved in the formation of capsule around the target organisms 

are granular cells and plasmatocytes in Lepidoptera, and lamellocytes in Drosophila 

(Schmidt et al., 2001; Vass and Nappi, 2001). The encapsulation process involves cell 

adhesion and melanization (Eslin and Prevost, 2000). Lectins and integrins are two 

important classes of protein that mediate cell adhesion in immune responses (Vasta et al., 

1999). M. sexta immunolectins (IML) are C-type lectins serving as humoral pattern 

recognition receptors (Kanost et al., 2004). In vitro encapsulation assays showed that 

Manduca IML-1 and IML-3 enhance cellular encapsulation but not melanization (Ling 

and Yu, 2006; Yu et al., 2005); IML-2 and IML-4 enhance both encapsulation and 

melanization (Ling and Yu, 2006; Yu and Kanost, 2004; Yu et al., 2006). Intergin ß1 is 

constitutively expressed specifically in Manduca hemocytes, and RNAi of intergrin ß1 

reduced its expression in plasmatocytes and disrupted encapsulation drastically (Levin et 

al., 2005). In a genome-wide survey on Drosophila genes responsive  to parasite attack, it 

was shown that lectin-24A and alphaPS4, which encodes an intergrin ß subunit, were up-

regulated in the parasitized larvae (Wertheim et al., 2005). Drosophila Hemese is a small 

single-pass transmembrane protein with an extracellular N-terminal end that is heavily O-
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glycosylated (Kurucz et al., 2003). Hemese knockdown enhanced Drosophila cellular 

reaction to the parasitic wasp Leptopilina boulardi, indicating that Hemese plays a 

modulatory role in the activation or recruitment of hemocytes (Kurucz et al., 2003). 

Changes in adhesiveness and cell shape are essential in cellular immune response.  Rac 

GTPases (Rac) are known to be involved in cellular processes including cytoskeletal 

organization, regulation of cellular adhesion, cellular polarity, and transcriptional 

activation (Burridge and Wennerberg, 2004). Drosophila Rac1 induces stable actin 

formation for cellular immune activation, leading to sessile hemocyte release and an 

increase in the number of circulating hemocytes (Williams et al., 2006); Drosophila Rac2 

has a critical role in hemocyte spreading and cell-cell contact formation during cellular 

responses (Williams et al., 2005). In Rac1 or Rac2 fly mutants, the proper encapsulation 

of the eggs of the parasitic wasp Leptopilina boulardi was disrupted (Williams et al., 

2005; Williams et al., 2006). 

Humoral defenses include the production of antimicrobial peptides (AMPs) 

(Boman, 2003; Bulet et al., 1999; Hetru et al., 2003; Pinheiro and Ellar, 2006; Lemaitre 

and Hoffmann, 2007), coagulation, and melanization led by protease cascades 

(Dimopoulos, 2003; Kanost et al., 2004). A key component of insect responses to 

infection is the synthesis of AMPs by fat bodies and their secretion into hemolymph. 

Most insect AMPs have low molecular weights (below 5 kDa), a positive net charge at 

physiological condition, and some of them have amphiphilic a-helices or hairpin- like ß-

sheet structures (Bulet et al., 1999). AMPs are usually specific for a certain classes of 

pathogens, and the killing mechanism relies on distruction of the microbial membrane 

(Zasloff, 2002). Blood clotting and melanization are immediate responses following a 
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microbial challenge or septic injury. These two reactions prevent the loss of blood and 

spread of microbes. During melanization, phenols are converted to quinones. The 

quinones are toxic to microorganisms and eukaryotic parasitoids, and they polymerize to 

form melanotic capsules around the parasitoids (Ashida and Brey, 1997; Kanost et al., 

2004). 

Insect immune responses are triggered by non-self recognition mediated by 

pattern recognition proteins (PRPs). The interactions between PRPs and conserved 

structural motifs on the surface of invading microorganisms discriminate different classes 

of the non-self (Medzhitov and Janeway, 2002). Candidate motifs, or pathogen-

associated molecular patterns (PAMPs), include lipopolysaccharide (LPS), peptidoglycan 

(PG), lipoteichoic acid (LTA) of bacteria, and ß-1,3-glucan of fungi. For example, 

recognition of Gram-positive bacteria requires the circulating receptors PGRP-SA and 

GNBP1, or PGRP-SD. PGRP-SA and PGRP-SD to recognize lysine-containing PG, 

which is produced by Gram-positive bacteria (Leulier et al., 2003). PGRP-SA and 

GNBP1 are thought to function together as one receptor complex (Michel et al., 2001; 

Gobert et al., 2003; Pili-Floury et al., 2004). Based on in vitro binding assays using 

recombinant proteins, a model was proposed in which GNBP1 presents a processed form 

of PG for sensing by PGRP-SA and that a tripartite interaction between these proteins 

and PG is able to relay the signal to the serine protease cascade (Wang et al., 2006). 

PGRP-SD is also required for the detection of other Gram-positive bacterial strains in a 

GNBP1-independent manner (Bischoff et al., 2004). GNBP3 recognizes ß-1,3-glucan and 

polysaccharides of the fungal cell wall (Gottar  et al., 2006). 
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Upon recognition, a proteolytic cascade involving serine proteases is activated 

(Jiang and Kanost, 2000; Kanost et al., 2001, 2004; Kambris et al., 2006). This cascade 

leads to the activation of intracellular signaling pathways that control AMP gene 

expression, and other immune responses, such as melanization catalyzed by 

phenoloxidase (PO) (Tzou et al., 2002). The recognition of pattern molecules from Gram-

positive bacteria or fungi by their receptors triggers the proteolytic activation of a serine 

protease cascade that ultimately processes pro-spätzle into a functional Toll ligand 

(Levashina et al., 1999; Kambris et al., 2006; Jang et al., 2006). Serpins play critical roles 

in regulation of this serine protease cascade (Levashina et al., 1999; De Gregorio et al., 

2002; Robertson et al., 2003; Ligoxygakis et al., 2002a; Reichhart, 2005) (Fig. 1). 

The intracellular signaling pathways transduce the immune response signal from 

the serine protease cascades to transcription of immune genes. Two major immune 

signaling pathways are discovered in Drosophila (Brennan and Anderson, 2004; Royet et 

al., 2005). Fungal and Gram-positive bacterial infections stimulate primarily the Toll 

pathway, whereas Gram-negative bacterial infection stimulates predominately the Imd 

pathway (Lemaitre et al., 1995; 1996; 1997, Khush et al., 2001). The ligand for Toll is the 

C-terminal fragment spätzle (Weber et al., 2003). Cleavage activation of spätzle requires 

the recognition of pathogens and serine protease system. Cleaved spätzle binds to a Leu-

rich ectodomain of the transmembrane receptor, Toll. And this binding leads to 

recruitment of three cytoplasmic proteins, MyD88, Tube and Pelle, to form the signaling 

complex (Sun et al., 2004). The activated Pelle triggers the phosphorylation and 

degradation of Cactus, which retains Dorsal and DIF in the cytoplasm under normal 

condition (Brennan and Anderson, 2004). Once Dorsal and DIF are released from the 
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complexs with Cactus, they move into the nucleus and activate the expression of AMP 

genes (Tanji and Ip, 2005).  

Infection with Gram-negative bacteria preferentially activates the Imd pathway. 

Diaminopimelic acid-type PG (DAP-type PG) produced by Gram-negative bacteria is the 

most potent inducer of the Imd pathway (Leulier et al., 2003). The receptor for DAP-type 

PG is PGRP-LC (Choe et al., 2002; Gottar et al., 2002; Ramet et al., 2002b), which 

functions synergistically with PGRP-LE (Takehana et al., 2004). The Imd pathway has 

three branches (Tanji and Ip, 2005). TAK1 (transforming growth factor-ß-activated 

kinase 1) activates IKK complex and leads to the site-specific cleavage activation of 

Relish (Silverman et al., 2000; Stöven et al., 2003). The second branch, so-called FADD-

Dredd pathway, also activates Relish (Elrod-Erickson et al., 2000; Leulier et al., 2000 and 

2002; Stöven et al., 2003; Hu and Yang, 2000). The third one is the activation of JNK 

pathway through TAK1. The JNK pathway regulates the expression of other immune-

responsive genes involved in wound healing and stress responses (Boutros et al., 2002; 

Silverman et al., 2003; Galko and Krasnow, 2004).  After proteolytical processing, the N-

terminal fragment of Relish enters the nucleus to activate the expression of its target 

genes (Stöven et al., 2000 and 2003). 

Phenoloxidases and their physiological roles 

PO system plays a critical role  in the  fight against pathogens and parasites. PO is 

involved in blood coagulation, encapsulation and melanization. Compared with the AMP 

which involves gene expression, PO-catalyzed immune reactions occur as an acute phase 

response. 
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Since the identification of prophenoloxidase (proPO) from the silkworm Bombyx 

mori (Ashida, 1971), over 30 proPO proteins or genes have been discovered in different 

insects (Cerenius and Söderhäll, 2004). PO activities are associated with several 

physiological processes: sclerotization of insect cuticles, encapsulation and melanization 

of foreign organisms, wound healing and hemolymph clotting (Ashida and Brey, 1995 

and 1998; Gillespie et al., 1997; Sugumaran, 1998; Theopold et al., 2002 and 2004). POs 

are synthesized as inactive precursors proPOs by insect hemocytes and activated by 

serine protease, named proPO activating protease (PAP). 

POs catalyze the conversion of tyrosine to dopaquinone in two steps: 

hydroxylation of tyrosine to dopa and the oxidation of dopa to dopaquinone (Nappi and 

Christensen, 2005; Huang et al., 2005). In silkworm and tobacco hornworm, oenocytoids 

synthesize proPO (Iwama and Ashida, 1996; Jiang et al., 1997b). There are no signal 

peptide in nearly all of the known proPOs, and  little is known about how these proteins 

are transported to plasma or cuticle (Theopold et al., 2002). 

POs participate in several physiologically critical processes in insects. First, they 

oxidize N-acylcatecholamines to quinones during cuticle sclerotization (Sugumaran, 

1998; Lourenco et al., 2005). A recent study in Aedes aegypti suggests an essential role of 

POs in chorion melanization and hardening (Kim et al, 2005). 

While hardened cuticles serve as the first line of defense against pathogen 

invasion (Ashida and Brey, 1995), some organisms can still physically or chemically 

penetrate this physiochemical barrier and enter the insect body. Under these 

circumstances, encapsulation and melanization may be initiated to reduce damage  caused 

by the intruders and prevent their development. Due to their involvement in 
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encapsulation and melanization, POs are considered as essential components of insect 

immune systems (Söderhäll and Cerenius, 1998 and 2004). Manduca granulocytes and 

spherule cells have proPO on their surface. Agarose beads can be melanized effectively 

by isolated hemocytes in the presence of cell- free plasma. These observations suggest 

that hemolymph molecules are involved in the activation of hemocyte surface proPO, 

which initiate hemocyte melanization, leading to systemic melanization (Ling and Yu, 

2005). In an analysis of A. aegypti responses to the eukaryotic parasite Armigeres 

subalbatus, increased PO activity was associated with melanotic encapsulation (Guo et 

al., 1995). During the clearance of Gram-positive bacteria Micrococcus luteus by 

Anopheles aegypti hemocytes, PO was detected exclusively in oenocytoids and in many 

of the melanotic capsules surrounding the bacteria (Hillyer et al., 2003). In Drosophila, 

melanotic encapsulation plays an important role against infection by parasitic wasps 

(Vass and Nappi, 2000). In the functional study of Drosophila serpin27A (a specific 

inhibitor of proPO activating enzyme), spn27A mutant larvae exhibited a more intense 

melanization reaction at wounded site than the wild-type did (Ligoxygakis et al., 2002a). 

During invasion of Leptopilina boulardi, a parasitic wasp that induces melanotic 

encapsulation (Russo et al., 1996), the mutant larvae displayed a stronger systemic 

melanization than the wild-type did (De Gregorio et al., 2002). These results suggest that 

PO-mediated melanization is involved in the wound healing and in preventing parasite 

development in Drosophila. Nappi et al (2005) reported that injecting Spn27A protein 

into Drosophila larvae remarkably reduced the melanization of L. boulardi eggs. This 

confirms that the proPO pathway can be initiated by parasitization. 
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POs may participate in wound healing and hemolymph coagulation. The quinones 

generated by POs could serve as cross- linking agents to seal the wound. In the  Armigeres 

subalbatus larvae, melanin deposits were observed at the wounded site by electron 

microscopy (Lai et al., 2001). Immunocytochemical study demonstrated the presence of 

PO at the wounded site, but not in the hemolymph clot (Lai et al., 2002). To verify the 

importance of melanization in wound healing, Ramet et al (2002a) measured the  

mortality after woulding in Bc mutant Drosophila larvae, which lacks PO activity and 

therefore does not produce melanin. The results suggested that PO was crucial in the 

wound healing. In an attempt to identify the clot proteins of Galleria mellonella, proPOs 

and components of proPO activation cascade were detected in the clot along with 

components of the coagulation system. This suggested that both systems might work 

together during clot formation (Li et al., 2002). In a proteomic analysis of Drosophila 

larval hemolymph clot, two POs and a protein similar to proPO activating enzyme were 

identified (Karlsson et al., 2004). In a whole clot pullout experiment, however, it was 

observed that aggregation of paramagnetic beads, a mimic of hemolymph coagulation, 

was comparable or even stronger in Bc mutant flies than in the wild-type flies. This 

implies that, similar to the mosquito Anopheles subalbatus, Drosophila PO might 

participate in wound healing and melanization, but not in coagulation (Scherfer et al., 

2004). A recent study demonstrated that Drosophila PO was not necessary for the 

preliminary soft clot formation, but was responsible for the clot hardening through cross-

linking and melanization (Bidla et al., 2005).  

Initiation of proPO activation cascade  in M. sexta 
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Upon recognition of non-self, proPOs are activated by limited proteolysis through 

a serine protease cascade. The first step of activation of the proPO pathway is the 

recognition of non-self. This process is mediated by PRPs (Ashida and Brey, 1997; Yu et 

al., 2002b). PRPs recognize PAMPs that are present on the surface of microbes but 

absent on the host cells (Steiner, 2004). Several groups of PRPs have been identified in 

insects, which bind to specific PAMPs and trigger proPO activation pathway. In M. sexta, 

such proteins include IML-1, IML-2, ß-1,3-glucan recognition protein-1 (ßGRP1), 

ßGRP2, and hemolymph proteases 14 (HP14) (Kanost et al., 2004; Ji et al., 2004; 

Eleftherianos et al., 2006a). Immulectins are calcium-dependent carbohydrate-binding 

proteins, known as C-type lectins. C-type lectins are involved in pathogen recognition, 

cellular interactions, and other innate immune responses (Hoffmann et al., 1999; Vasta et 

al., 1999). Similar to LPS-binding lectins from silkworm (Koizumi et al., 1999) and fall 

webworm (Shin et al., 2000), M. sexta IML-1 and IML-2 contain two carbohydrate 

recognition domains. IML-1 recognizes Gram-positive and Gram-negative bacteria and 

yeast (Yu et al., 1999), while IML-2 binds to Gram-negative bacteria only (Yu and 

Kanost, 2000). The Interaction of IML-1 or IML-2 and LPS stimulate proPO activation in 

the plasma (Yu et al., 1999; Yu and Kanost, 2000).  Knockdown of immunlectin-2 by 

RNAi increases the rate at which Photorhabdus, an insect pathogenic bacteria, kills M. 

sexta (Eleftherianos et al., 2006a). M. sexta ßGRP1 (Ma and Kanost, 2000) and ßGRP2 

(Jiang et al., 2003) contain a glucanase- like domain at the C-terminal. They bind to ß-1,3-

glucan and lipoteichoic acids, and the binding initiates proPO activation system in the 

larval hemolymph (Ma and Kanost, 2000; Jiang et al., 2004). By subtractive suppression 

hybridization, two PGRP cDNAs were identified (Zhu et al., 2003a). Their mRNA levels 
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increased after a bacterial injection (Kanost et al., 2004; Eleftherianos et al., 2006). 

Introduction of the recombinant PGRPs did not enhance proPO activation in the plasma 

(Kanost et al., 2004). Although knockdown of PGRP had no effect on cellular immune 

functions (Eleftherianos et al., 2006b), the treated insects died and had a higher mortality 

than the control when challenged with Photorhabdus (Eleftherianos et al., 2006a; 

Eleftherianos et al., 2006c).  These results suggested that these M. sexta PGRPs are 

associated with humoral immune responses other than the proPO activation pathway 

(Kanost et al., 2004; Eleftherianos et al., 2006b). A serine protease was identified as 

pattern recognition receptor, which triggers proPO activation in M. sexta (Ji et al., 2004). 

This protein, designated HP14, is composed of five low density lipoprotein receptor class 

A repeats, a Sushi domain, a Wonton domain, and a serine protease domain. The 

expression of HP14 increases significantly after a bacterial challenge. The binding of PG 

to recombinant proHP14 results in the autoactivation of proHP14, and the activated HP14 

initiates proPO activation cascade in the plasma (Ji et al., 2004). The recognition of a 

fungal cell wall component ß-1,3-glucan by ßGRP2 triggers the autoactivation of 

proHP14, leading to the initiation of the PO pathway (Wang and Jiang, 2006).  

Serine proteases (SPs) and serine protease homologs (SPHs) in insect hemolymph 

Serine proteases are involved in many physiological processes such as immune 

signal transduction in invertebrates (Jiang and Kanost, 2000). Some consist of a C-

terminal trypsin- like catalytic domain and one or two clip domains at the N-terminus. The 

clip domain, which contains three disulfide bonds and resembles a paper clip  in the 

schematic drawing (Muta et al., 1990), is hypothesized to regulate the entire serine 

protease system (Jiang and Kanost, 2000). The ir zymogens  are activated by cleavage at 
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the amino end of the catalytic domains, and the activated catalytic domain remains 

attached to the clip domain(s) via a disulfide bond (Jiang and Kanost, 2000).  

In Drosophila, 24 clip-domain SPs and 13 clip-domain SPHs were identified 

(Ross et al., 2003). Persephone (psh) is the first clip-domain serine protease identified in 

Drosophila to trigger Toll signaling following an immune challenge (Ligoxygakis et al., 

2002b). When challenged with an entomopathogenic fungus Beauveria bassiana, psh 

mutants exhibited a significant decrease in drosomysin transcript level, with a high 

susceptibility to fungal infections (Ligoxygakis et al., 2002b). Interestingly, it was found 

that Persephone is processed directly by PR1 protease secreted from the 

entomopathogenic fungus, leading to the activation of Toll pathway (Gottar et al., 2006). 

By a large-scale RNAi screen, three SPs and two SPHs involved in Toll pathway in 

response to Gram-positive bacterial or fungal infection have been identified (Kambris et 

al., 2006). Spirit, Grass and SPE (Spätzle -processing enzyme) are clip-domain SPs. 

Grass is activated by GNBP1 and PGRP-SA upon the recognition of Gram-positive PG. 

Grass then transmits a signal to SPE via Spirit modulated by two SPHs, Spheroide and 

Sphinx1/2. SPE then processes pro-Spätzle to generate the ligand that activates the Toll 

pathway (Wang et al., 2006). Two clip SPs, MP1 and MP2 were identified to be involved 

in the Drosophila melanization cascade (Tang et al., 2006). MP1 is required to activate 

melanization in response to both bacterial and fungal infections, whereas MP2 is mainly 

involved antifungal responses. This also implies the existence of a branched melanization 

cascade in Drosophila (Fig. 1). 

The Anopheles gambiae genome encodes 41 clip-domain SPs and SPHs 

(Cristophides et al., 2002). The zymogens of ClipB14 and ClipB15 are synthesized by 
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hemocytes and secreted into the hemolymph. Functional analysis us ing RNAi revealed 

that both ClipB14 and ClipB15 are involved in the defense against Gram-negative 

bacteria and in the killing of plasmodium ookinetes in A. gambiae. Studies on parasite 

melanization demonstrated an additional role for ClipB14 in the PO cascade (Volz et al., 

2005). In a systematic investigation of SPs and SPHs roles in Plasmodium berghei 

melanization by A. gambiae utilizing an RNAi screen, it has been shown that SPH 

ClipA8 is essential for parasite melanization but is not involved in parasite killing, 

whereas SPH ClipA2, A5 and A7 function synergistically to block melanization; ClipB3, 

B4, B8 and B17 promote melanization (Volz et al., 2006).  

In M. sexta, 25 SP cDNAs have been cloned (Jiang et al., 2005). This cDNA 

collection is helpful for the cascade elucidation. First, sequence alignment can provide 

some clues about their functions. Second, the ir precursors expressed as recombinant 

proteins could serve as substrates for isolating their activating enzymes (Wang and Jiang, 

2001b; Ji et al., 2003). The third strategy is to study changes in their mRNA and protein 

levels after an immune challenge, using the cDNAs or antisera raised against the 

recombinant proteins produced in E. coli. The expression profiling may reveal which 

proteases are involved in the immune responses.  

ProPO activation reaction 

The last step of this cascade is the proteolysis of proPO by proPO-activating 

proteases (PAPs), also known as PPAE/PPAF/PPAs (Cerenius and Söderhäll, 2004). 

Three PAPs have been identified to date in M. sexta. PAP-1 has one clip domain and was 

purified from cuticle (Jiang et al., 1998; Gupta et al., 2005), whereas PAP-2 and PAP-3 

containing two clip domains were purified from hemolymph (Jiang et al., 2003a and 
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2003b). The PAP mRNA levels were up-regulated in the fat body and hemocytes after 

the larvae were injected with bacteria (Jiang et al., 1998; Jiang et al., 2003a; Jiang et al., 

2003b). During the pur ification of PAP-1, it was noticed that the proPO-activating 

activity was generated only when two different column fractions were combined. This 

observation suggests the requirement of a cofactor for proPO activation (Jiang et al., 

1998). In the study of PAP-2 and PAP-3, cleaved proPO had little PO activity but, in the 

presence of SPH-1 and SHP-2, PO activity was generated at a high level and SDS-stable 

high molecular weight oligomers were formed (Jiang et al., 2003a and 2003b). A similar 

phenomenon has been observed in other proPO activation systems (Lee et al., 1998a; Lee 

et al., 2002; Kwon et al., 2000; Kim et al., 2002). 

M. sexta SPH-1 and -2 contain a clip domain at the amino-terminus and a serine 

protease- like domain at the carboxyl- terminus that has no proteolytic activity due to the 

substitution of active site Ser with Gly (Yu et al., 2003). IML-2, proPO and PAP-1 bind 

to beads coated with recombinant protease- like domains of SPH-1 and SPH-2, indicating 

that a complex formed by these proteins might exist in the hemolymph and this complex 

may restrict the PO-mediated melanization on the pathogen surface through the 

recognition of pathogen by IML-2. In the analysis of the interactions among proPO, PAP-

3 and SPHs, these proteins apparently formed a ternary complex (Wang and Jiang, 

2004a). The nature of such molecular interactions and the role of SPHs in the activation 

of proPO remain to be elucidated. 

Regulation of proPO activation and activity 

Due to possible cytotoxicity of quinones generated during melanization, the 

activation of proPO and PO activity are regulated tightly and elaborately (Cerenius and 
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Söderhäll, 2004). A number of proteins directly regulate PO activity, including PO 

inhibitors, dopachrome isomerase, and quinone isomerase (Sugumaran 2002). Besides 

direct regulation of PO activity, serpins regulate proPO activation via specific inhibition 

to the SPs involved in proPO activation cascade (Kanost et al., 2004). SPHs may also 

participate in the regulation through unknown ways (Volz et al., 2006). In order to 

survive and develop in their hosts, endoparasitoids have evolved different strategies to 

suppress the host immune responses such as PO-mediated melanization (Strand and Peth, 

1995; Beckage and Gelman, 2004). 

The first phenoloxidase inhibitor (POI) was isolated from the housefly, Musca 

domestica (Tsukamoto et al., 1992). It consists of 38 amino acids with three disulfide 

bonds. One of the two tyrosine residues, Tyr32, is hydroxylated to dopa, which is crucial 

for its inhibitory activity (Daquinag et al., 1995). Primary structural analysis showed the 

disulfide linkage pattern is similar to that in ? -conotoxins from snails and spiders 

(Daquinag et al., 1999). From M. sexta cuticle, a high Mr POI was identified (Sugumaran 

and Nellaiappan, 2000a). This inhibitor is a heat-labile glycoprotein, with inhibitory 

activity against insect, plant and funga l POs by forming a detergent-resistant complex 

(Sugumaran and Nellaiappan, 2000b). Sugumaran et al (2000a and 2000b) found that M. 

sexta quinone isomerase and dopachrome isomerase inhibit PO through complex 

formation, and the inhibition occurs in a reciprocal way, i.e., PO also inhibits quinone 

isomerase and dopachrome isomerase. 

Serpins play important roles in regulation of proPO activation (Kanost et al., 

2004). Serpins are a family of proteins with about 400 amino acid residues typically, and 

they function as suicide-substrate inhibitors by forming a SDS-resistant complex with 
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proteases (Gettins, 2002; Elliott et al., 2000). Six serpins have been discovered in M. 

sexta, including serpin-1 (Kanost et al., 1989; Jiang et al., 1994, 1996), serpin-2 (Gan et 

al., 2001), serpin-3 (Zhu et al., 2003a), serpin-4 (Tong et al., 2005a), serpin-5 (Tong et 

al., 2005a), and serpin-6 (Wang and Jiang, 2004b, Zou and Jiang, 2005). Serpin-1 gene 

encodes 12 variants through exclusive use of 12 different versions of exon 9 (Jiang et al., 

1994, 1996). One of the serpin-1 variants blocks proPO activation in the plasma by 

inhibiting PAPs (Jiang and Kanost, 1997). Serpin-3 is an immune responsive serpin, 

whose level increases remarkably after bacterial challenge (Zhu et al., 2003a). Serpin-3 

inhibits PAPs and stops proPO activation efficiently in the plasma (Zhu et al., 2003b). 

Serpin-4 and serpin-5 are also immune-responsive serpins. Recombinant serpin-4 and 

serpin-5 can inhibit proPO activation by inhibiting upstream proteases of the cascade, 

rather than inhibiting PAPs directly (Tong et al., 2005a). Based on further immunoblot 

and mass spectrometry analysis, sepin-4 is found to inhibit HP1, HP6 and HP21, whereas 

serpin-5 is an inhibitor of HP1, HP6 and two other unknown proteases. These results 

imply some of these proteases are involved in the upstream of the proPO system (Tong et 

al., 2005b). Drosophila encodes 29 serpins, one of which, Spn27A, is involved in 

melanization regulation (De Gregorio et al., 2002; Ligoxygakis et al., 2002a). Spn27A 

loss-of-function mutations lead to a high rate of spontaneous melanization and 

constitutively elevated PO activity in the hemolymph.  Recombinant A. gambiae Spn1 

and Spn2 bind and inhibit M. sexta PAP3 and inhibit proPO activation in M.sexta larval 

plasma (Michel et al., 2006). Depletion of Spn2 from A. gambiae increases melanin 

deposited on Sephadex beads injected into the mosquito body (Michel et al., 2006). It is 

further shown that Spn2 protects rodent malaria parasite, Plasmodium berghei, during 



 27 

invasion and development on the midgut basal surface (Michel et al., 2005). However, 

RNAi silencing of Spn2 in A. gambiae did not influence the development of field isolates 

of Plasmodium falciparum, human malaria parasite (Michel et al., 2006). Gene silencing 

of three other genes, LRIM1 (leucine-rich repeat immune protein 1), CTL4 (C-type lectin 

4) and CTLMA2 (CTL mannose binding protein 2), increased the rodent parasite survival 

rate to oocyte stage; by contrast, silencing of the same three genes had no effect on 

human parasite development (Cohuet et al., 2006). A. gambiae Spn6 is involved in 

Plasmodium berghei parasite clearance by inhibiting melanization and/or promoting 

parasite lysis; interestingly, A. stephensi Spn6 is indicated to be involved in the parasite-

killing process (Abraham et al., 2006). The different roles of Spn6 in the two mosquito 

species is considered to be caused by different target serine proteases in the respective 

species (Abraham et al., 2006). These findings emphasize the importance of studying 

mosquito immune responses against the pathogens in natural vector-parasite 

combinations (Michel et al., 2006; Cohuet et al., 2006). 

Interaction between parasitoids and host immune systems  

For successful development in the ir hosts, many endoparasitoid wasps actively 

manipulate their host insect immune responses. The immune suppression is carried out by 

a venom and polydnaviruses (PDVs) injected by female wasps during oviposition, or by 

teratocytes derived from the parasitoid embryos (Strand and Peth, 1995; Beckage and 

Gelman, 2004; Pennacchio and Strand, 2005). The PDV is a family of double-stranded 

DNA viruses associated with parasitoid wasps, and is divided into two genera, 

bracoviruses (BVs) and ichnoviruses (IVs), according to their associated wasps, 

braconidae and ichneumonidae, respectively. In parasitic wasps, the PDV exists as a 
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provirus intergrated in the genome of the wasp (Fleming and Summers, 1991). The virus 

replicates specifically in calyx cells of the female ovary and is packaged to form viral 

particles. During oviposition the wasp injects eggs into the lepidopteran host along with 

viral particles and secretions from the venom gland. Viral genes are expressed in the host 

tissues but the viral genome does not replicate in the host. Virus gene products prevent 

the host immune response from killing the wasp’s egg and cause other physiological 

changes that finally lead the death of the host. The successfully developed wasp larvae 

emerge from the parasitized host, spin cocoons, and emerge as adults to mate and search 

for new hosts (Dupuy et al., 200; Webb et al., 2006).  

BVs and IVs genomes encode a family of proteins with homology to inhibitor ?B 

(I?B) proteins from insects and vertebrates (Dupuy et al., 2006; Falabella et al., 2007; 

Thoetkiattikul et al., 2005). The proteins in this family display short alkyrin domains and 

lack the regulatory domains for signal-mediated degradation and turnover (Falabella et 

al., 2007). Two BV I?B-like proteins from Microplitis demolitor, H4 and N5, have been 

shown to suppress the expression of antimicrobial peptides, Attacin and Drosomycin, 

which are under NF-kB regulation through the Toll and Imd pathways (Thoetkiattikul et 

al., 2005). Immunoprecipitation experiments demonstrated that H4 and N5 bound to the 

Rel proteins Dif and Relish (Thoetkiattikul et al., 2005). H4 and N5 also inhibited the 

binding of Dif and Relish to ?B sites in the promoters of the Drosomycin and Cecropin 

A1 genes. Ank 1, I?B from BVs associated with Toxoneuron nigriceps (TnBV), reduced 

the efficiency of expression of a reporter gene under NF-?B transcriptional control in 

human HeLa cells (Falabella et al., 2007). In bacterial infected Heliothis virescens host 

parasitized by T. nigriceps, NF-?B/Rel failed to enter the nucleus of host hemocytes and 
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fat body cells (Falabella et al., 2007).  These results suggest that I?B proteins prevent NF-

?B/Rel factors from entering the nucleus, causing the suppression of the host immune 

response to the parasites (Falabella et al., 2007; Thoetkiattikul et al., 2005). Glc1.8 gene 

from Microplitis demolitor bracorirus (MdBV) encodes 514 amino acids mucin- like 

protein characterized by a signal peptide at its N-terminus, an extracellular domain 

comprised of five 78-amino acid repeats arranged in a tandem array, and a C-terminal 

hydrophobic domain that encodes a putative anchor sequence (Beck and Strand, 2005). 

Expression of Glc1.8 caused a loss of adhesion by High Five cells and S2 cells and 

markedly reduced the ability of these cells to phagocytize bacteria and  polystyrene 

microspheres (Beck and Strand, 2005). Knockdown of Glc1.8 by RNAi rescued the 

ability of MdBV-infected High Five cells to phagocytize targets (Strand et al., 2006). 

Collectively, these results indicate that Glc1.8 is a major MdBV pathogenic determinant 

in the disruption of both adhesion and phagocytosis by the host insect cells (Strand et al., 

2006; Beck and Strand, 2005).  

In addition to PDVs,  fluid from the venom gland is injected into the host during 

oviposition. Venom proteins protect the eggs from host immune reaction (Webb and 

Dahlman, 1985), and also affect host physiology and development (Digilio et al., 2000; 

Ferkovich and Gupta, 1998). In the endoparasitoids that do not carry PDVs, venom is the 

only factor to regulate the host development and suppress the host immune reactions 

(Richards and Parkinson, 2000). In some parasitoid systems, PDVs are only effective in 

conjunction with venom proteins (Asgari, 2006). In the absence of a 14-amino acid 

peptide, Vn1.5, isolated from Cotesia rubecula venom, CrPDV genes are not expressed 

in host cells and do not cause inactivation of host hemocytes (Zhang et al., 2004a). A 
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calreticulin- like protein was isolated from Cotesia rubecula venom and shown to inhibit 

hemocyte spreading in vitro. This protein also protects beads against the host 

encapsulation, suggesting that this parasite-specific protein might function as an 

antagonist competing for binding with the host hemocyte calretulin, which mediates early 

encapsulation reactions (Zhang et al., 2006).  

Melanization and encapsulation of eggs are important ways for resistant hosts to 

eliminate parasitoids (Carton and Nappi, 2001). POs, key enzymes for melanin synthesis, 

are potential targets for the parasitoid to regulate. Reduction in PO activity of hosts after 

parasitism has been documented (Strand and Peth, 1995; Carton and Nappi, 1997; Shelby 

et al., 2000; Moreau et al., 2003; Asgari et al., 2003). When parasitized by the 

chneumonid parasitoid Campoletis sonorensis, the activity and protein biosynthesis of 

PO, dopachrome isomerase, and DOPA decarboxylase are inhibited by ichnovirus 

infection in the Notuid moth, Heliothis virescens (Shelby et al., 2000). In a study of 

Drosophila parasitized by Asobara citri, the parasitization caused a significant reduction 

of host hemolymph PO activity, although the count of circulating crystal cells, which are 

the major carriers of some enzymes involved in PO system, was not statistically different 

from that of unparasitized larvae; and the authors proposed that the functioning of the 

host PO system might be impaired (Moreau et al., 2003). A serine protease homologue, 

Vn50, isolated from the venom of Cotesia rubecula exhibits interference to the PO 

system in its host, Pieris rapae (Asgari et al., 2003). Comparative studies using M. sexta 

SPHs, PAP and proPO demonstrated that Vn50 inhibits activation of proPO by PAP, 

suggesting that the interaction between SPHs and activated PO is impaired (Zhang et al., 

2004b). Two groups found that host insect PO system was suppressed by their 
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ectoparasitoids. Infestation of Varroa mites (Varroa destructor), the ectoparasitoid of 

honey bee (Apis mellifera) suppresses the expression of host PO gene (Yang and Cox-

Foster, 2005). Paralysis of host larvae of Indian meal moth (Plodia interpunctella) by its 

ectoparasitoid Habrobracon hebetor causes an increase in PO activity in host 

hemolymph; subsequent parasitization causes a decrease in PO activity, implying the host 

PO system is suppressed by the ectoparasitoid (Hartzer et al., 2005). 
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Fig. 1  Serine protease cascades leading to proPO activation and Toll pathway in 

Drosophila. 
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Abstract 

We have isolated and characterized a new ß-1,3-glucan recognition protein that is present 

in Manduca sexta cuticle and hemolymph. This 52 kDa protein, designated ßGRP-2, is 

57% identical in sequence to ßGRP-1 from larval hemolymph of the same insect. ßGRP-

2 differs from ßGRP-1 in its absence in the naive larvae before the wandering stage 

begins. Transcription of the ßGRP-2 gene was up-regulated in larvae challenged with 

yeast or bacteria. ßGRP-2 contains a region with sequence similarity to several 

glucanases but lacks glucanase activity. It aggregates yeasts and bacteria to, perhaps, 

limit the spread of the invading cells and ensure a localized defense reaction. ßGRP-2 

binds laminarin and lipoteichoic acid, but not lipopolysaccharide. Laminarin-triggered 

prophenoloxidase activation was greatly enhanced in the induced larval hemolymph 

supplemented with purified ßGRP-2. Complementing other studies on pattern recognition 

molecules in M. sexta, these results indicate that a complex system of protein sensors is 

an integral component of the insect immune system and that different recognition 

molecules have overlapping binding specificity and functions.  
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Abbreviations:  

CCF-1, coelomic cytolytic factor-1; Con A, concanavalin A; FITC, fluorescein 

isothiocyanate; FITC-H6ßGRP-2, recombinant his-tagged ß-1,3-glucan recognition 

protein-2 labeled with FITC; GBP, ß-1,3-glucan binding protein; GNBP, gram-negative 

bacteria-binding protein; ßGRP, ß-1,3-glucan recognition protein; HPLC, high 

performance liquid chromatography; H6ßGRP-2, recombinant his-tagged ß-1,3-glucan 

recognition protein-2; LGBP, LPS- and ß-1,3-glucan-binding protein; LPS, 

lipopolysaccharide; MALDI-TOF, matrix-assisted laser desorption ionization-time of 

flight; PAGE, polyacrylamide gel electrophoresis; PAP, prophenoloxidase-activating 

proteinase; proPO, prophenoloxidase; PO, phenoloxidase; PRP, pattern recognition 

protein; RT-PCR, reverse transcriptase polymerase chain reaction; SDS, sodium dodecyl 

sulfate; TBS, Tris buffered saline  
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Introduction 

Innate immunity constitutes the first line of defense against microbial infection in 

all animals including insects. This system is activated by host proteins that recognize 

conserved surface determinants of pathogens or parasites, such as lipopolysaccharide 

(LPS) or peptidoglycans from bacteria and ß-1,3-glucans from fungi (Medzhitov and 

Janeway, 2002). Upon binding, these pattern recognition proteins (PRPs) stimulate short-

term physiological responses mediated by plasma factors and circulating blood cells. 

Recognition of invading cells also triggers complex signaling pathways that ultimately 

lead to de novo synthesis of effector molecules such as cytokines and antimicrobial 

peptides. Extracellular serine proteinase systems have evolved in vertebrates and 

invertebrates to mediate and coordinate these processes (Krem and Di Cera, 2002 and 

Jiang and Kanost, 2000). One of these proteinase cascades causes proteolytic activation 

of prophenoloxidase (proPO), and active phenoloxidase (PO) generates quinones that are 

intermediates for melanization or sclerotization ( Nappi and Vass, 2001 and Sugumaran, 

1996). Similar chemical reactions may occur during wound healing and pathogen 

sequestering.  

Several groups of PRPs have been isolated from invertebrates. They bind to cell 

wall components of the invading microorganisms and initiate defense reactions including 

hemolymph coagulation and proPO activation (Gillespie et al., 1997, Lavine and Strand, 

2002 and Yu et al., 2002). One family of the PRPs is composed of proteins that are 

similar in sequence to ß-glucanases from bacteria and a sea urchin. Their biological 

activities appear to be diverse during immune responses. ßGRPs from the tobacco 
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hornworm, M. sexta, and the silkworm, Bombyx mori, LPS- and ß-1,3-glucan-binding 

protein (LGBP) from the crayfish Pacifastacus leniusculus, and coelomic cytolytic factor 

(CCF-1) from the earthworm Eisenia foetida are involved in the proPO activation 

cascade (Ma and Kanost, 2000, Ochiai and Ashida, 2000, Lee et al., 2000 and Bilej et al., 

2001). Drosophila melanogaster Gram-negative bacteria-binding protein-1 (GNBP-1) 

enhanced LPS- and ß-1,3-glucan- induced immune gene expression (Kim et al., 2000). 

The transcription of Anopheles gambiae GNBP gene was up-regulated after the malaria 

mosquito had been infected with Plasmodium berghei (Richman et al., 1997).  

In this paper, we report the purification, characterization, and cDNA cloning of a 

new ßGRP from the tobacco hornworm, Manduca sexta. Its expression in the fat body is 

up-regulated in response to immune challenges or certain developmental signals. This 

protein, designated ßGRP-2, binds ß-1,3-glucan and lipoteichoic acid to aggregate yeast 

and bacteria. It is also involved in proPO activation. 

Materials and methods  

Insect rearing and cuticle collection 

M. sexta eggs were originally purchased from Carolina Biological Supply, and 

larvae were reared on an artificial diet (Dunn and Drake, 1983). Pharate pupae with 

metathoracic brown bars were chilled and dissected to remove hemolymph, gut, and fat 

body (Jiang et al., 2003). The integuments (and attached muscles) were washed twice in 

chilled extraction buffer (0.1 M Tris-HCl, 0.002% 1-phenyl-2-thiourea, 1 mM 

benzamidine, pH 7.5) containing 0.5 M NaCl and stored at – 70 °C.  
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Isolation of M. sexta ßGRP-2 from cuticular extract 

All procedures for purification of ßGRP-2 were carried out at 4 °C. 

Approximately 250 g frozen cuticles from 75 prepupae were pressed through a meat 

grinder chilled at -20 °C. The ground tissues were suspended in 300 ml cold extraction 

buffer containing 0.6 M (NH4)2SO4 and homogenized for 1 min in a Waring blender. 

After centrifugation at 20,000 g for 60 min, the supernatant was subjected to 

ultracentrifugation at 245,000 g for 18 h to remove gelatinous compounds and fine 

particles. Ammonium sulfate saturation of the supernatant was adjusted to 40% 

(approximately 1.7 M). Precipitated proteins were collected by centrifugation at 20,000 g 

for 30 min and then dissolved in 20 ml of HT buffer (pH 6.8, 20 mM potassium 

phosphate, 500 mM NaCl). The protein sample was dialyzed against the same buffer (2.0 

l for 8 h, twice) and applied to a hydroxylapatite column (2.5 cm i.d.×7 cm, Bio-Rad) 

equilibrated with HT buffer. After washing with 100 ml of the same buffer, bound 

proteins were eluted with a linear gradient of 20–150 mM potassium phosphate (pH 6.8), 

0.5 M NaCl at a flow rate of 0.4 ml/min for 5 h. Fractions containing ßGRP-2, 

recognized by the cross-reacting antibodies in M. sexta proPO-activating proteinase-1 

antiserum (Wang et al., 2001), were pooled and precipitated with ammonium sulfate at 

50% saturation. After centrifugation at 20,000g for 30 min, the protein pellet was 

collected and dissolved in 2.0 ml, 20 mM Tris-HCl, 0.5 M NaCl, pH 7.4 and loaded onto 

a Sephacryl S100-HR column (2.5 cm i.d.×100 cm, Amersham Biosciences) equilibrated 

with the same buffer. The proteins were separated based on their sizes at a flow rate of 

0.4 ml/min and collected at 3.2 ml/fraction. After immunoblot analysis, fractions 

containing ßGRP-2 were combined, supplemented with CaCl2 and MgCl2 to 1 mM, and 
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applied to a Concanavalin A-Sepharose 4B column (5.0 ml, Amersham Biosciences) 

equilibrated with 20 mM Tris-HCl, 0.5 M NaCl, 1 mM CaCl2, and 1 mM MgCl2, pH 7.4. 

Following a washing step, the bound proteins were eluted with 20 ml of the same buffer 

containing 0.2 M methyl-a-D-mannopyranoside. The eluted proteins were diluted with 

four volumes of H2O, and pH of the solution was adjusted to 7.8. The ßGRP-2 sample 

was loaded onto an HPLC Mono-Q column (1.0 ml, Amersham Biosciences) equilibrated 

with 20 mM Tris-HCl, pH 7.8. After washing, the bound proteins were eluted with a 

linear gradient of 0–0.5 M NaCl in the same buffer at a flow rate of 1.0 ml/min for 20 

min.  

Characterization of M. sexta ßGRP-2 

The purified protein was subjected to SDS-polyacrylamide gel electrophoresis 

followed by silver staining (Switzer et al., 1979) or immunoblot analysis using diluted 

antisera against ßGRP-1 (Ma and Kanost, 2000) and ßGRP-2. A polyclonal antiserum to 

ßGRP-2 was prepared against the protein purified from the cuticular extract as described 

before (Wang et al., 2001). The amino-terminal sequence of ßGRP-2 was determined by 

automated Edman degradation on an Applied Biosystem Model 473 pulse–liquid 

sequencer. Its molecular weight was measured by MALDI-TOF mass spectrometry 

(Jiang et al., 2003). The association status of ßGRP-2 was investigated by gel filtration 

chromatography on a Bio-Silect SEC 250 column (Bio-Rad) equilibrated with 0.1 M 

sodium phosphate, 0.1 M NaCl, pH 6.9. The column was calibrated with a mixture of 

molecular weight standards (Bio-Rad).  
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cDNA cloning and sequence analysis of M. sexta ßGRP-2 

The induced M. sexta fat body cDNA library in ?ZAP II was screened using the 

rabbit polyclonal antiserum to ßGRP-2 at 1:1000 dilution, with detection of antibody 

binding by enzyme-labeled secondary antibody (goat-anti-rabbit IgG conjugated to 

alkaline phosphatase, Bio-Rad) according to the manufacturer’s manual (Stratagene). 

Positive clones were purified to homogeneity and subcloned by in vivo excision of 

pBluescript phagemids. Nucleotide sequence of the longest clone was determined using 

BigDye Terminator Cycle Sequencing Ready Reaction Kit (PE Applied Biosystems) and 

oligonucleotide primers designed from known sequences. Sequence assembly and 

database search were performed using MacVector 6.5 (Genetics Computer Group, 1998). 

Complete sequences were retrieved from GenBank for multiple sequence alignments and 

phylogenetic analysis using CLUSTALW program (version 1.8) (Thompson et al., 1994). 

Based on an initial alignment of the full- length sequences, the carboxyl-terminal 

glucanase- like domain from the 5th residue before the conserved Cys137 (ßGRP-2 

numbering) to the end of the sequences were selected for further comparison. A Blosum 

30 matrix, with a gap penalty of 2 and a K-tuple of 1, was used for each pair-wise 

alignment. An open gap penalty of 2 and an extension gap penalty of 0.05 were selected 

for the multiple sequence alignment.  

Reverse transcriptase-polymerase chain reaction (RT-PCR) 

Total RNA was extracted from M. sexta larval fat body using the GlassMAX 

RNA Microisolation Spin Cartridge System. Genomic DNA was removed by DNase I 

treatment (Invitrogen Life Technologies). One µg of RNA sample was analyzed using 
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SuperScript One-Step RT-PCR System (Invitrogen Life Technologies) and the following 

primer pairs: 359 (5' GAT GGA GAG CCT TTA GAC 3') and 360 (5' GTT CCA GGG 

TTC GTT GC 3') for ßGRP-1; 450 (5' AGA CCT TGC GAA AGA TCC 3') and 451 (5' 

CGA CAC CTT TGA TGA GTC 3') for ßGRP-2; 501 (5' GCC GTT CTT GCC CTG TT 

3') and 504 (5' CGC GAG TTG ACT TCG GT 3') for M. sexta ribosomal protein S3. 

cDNA synthesis and pre-denaturation were performed at 50 °C for 30 min and 94 °C for 

2 min, respectively. PCR was carried out by denaturing at 94 °C for 15 s, annealing at 55 

°C for 30 s, and extension at 72 °C for 1 min for a total of 35 cycles. Reactions without 

reverse transcriptase were performed as negative controls to examine possible 

contamination of genomic DNA.  

Expression and purification of recombinant ßGRP-2 

A ßGRP-2 cDNA fragment encoding amino acid residues 1–464 was amplified by 

PCR and cloned into the NcoI and PstI sites of the protein expression vector, H6pQE60 

(Lee et al., 1994). Correct insertion and sequence of the resulting plasmid, ßGRP-

2/H6pQE60, were examined to confirm that the recombinant ßGRP-2 starts with Met-

His-His-His-His-His-His-Ala-Met-Gly-Gln, followed by the mature ßGRP-2 sequence. 

E. coli M15 harboring ßGRP-2/H6pQE60 and pREP4 was cultur ed in LB medium 

containing 100 µg/ml ampicillin and induced by 1.0 mM isopropyl-1-thio-ß-D-

galactopyranoside (IPTG) when A600 reached 0.5–0.7. After 5 h induction, the bacteria 

from 100 ml culture were harvested by centrifugation and lysed by sonication, and the 

recombinant protein was purified by Ni2+ affinity chromatography in the presence of 8 M 

urea (Wang et al., 2001). The eluted protein (H6ßGRP-2) was renatured by dialysis 
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overnight against two changes of buffer R (2 M urea, 2 mM reduced glutathione, 0.2 mM 

oxidized glutathione, 5% glycerol, 200 mM NaCl, 2 mM MgCl2, 50 mM sodium 

phosphate, pH 6.8).  

Labeling H6ßGRP-2 with fluorescein isothiocyanate (FITC) 

Purified H6ßGRP-2 (0.2 mg/ml) in 6.0 ml of buffer R was adjusted to pH 9.0 with 

NaOH and incubated with 20 mg of fluorescein isothiocyanate (Isomer I, on Celite, 

Sigma) at room temperature for 4 h. The mixture was then centrifuged at 10,000 g for 1 

min and FITC-H6ßGRP-2 in the supernatant was separated from the free label on a 

Sephadex G-25 column (PD-10, Amersham Biosciences). Purity of the conjugate was 

confirmed by SDS-PAGE and Coomassie Blue staining.  

Binding of FITC-labeled H6ßGRP-2 to microbial cells 

Aliquots of 30 µl of the FITC-labeled recombinant protein (0–0.2 mg/ml) in 

buffer R were mixed with 30 µl of Escherichia coli (5×107 cells), Micrococcus luteus 

(5×107 cells), or Saccharomyces cerevisiae (5×106 cells) at 4 °C overnight. The cells 

were then washed with 1.0 ml of TBS (137 mM NaCl, 3 mM KCl, 25 mM Tris-HCl, pH 

7.6) and resuspended in 1.0 ml of TBS. Binding of FITC-H6ßGRP-2 was measured by 

subjecting the washed cells to flow cytometry analysis using a Becton Dickinson 

FACScan flow cytometer. For each sample, fluorescence of 10,000 cells was determined. 

Untreated cells of each kind were used as controls to measure background fluorescence.  
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Aggregation of microbes by H6ßGRP-2 

An aliquot of 15 µl of H6ßGRP-2 (0.1 mg/ml) in buffer R was incubated with 15 

µl of fluorescein- labeled S. cerevisiae (2×108 cells/ml), Staphylococcus aureus (2×108 

cells/ml), or E. coli (K-12 strain, 2×109 cells/ml) (all from Molecular Probes) in TBS at 

room temperature for 30 min. Samples of the cells were then applied to microscope 

slides, and degree of the cell aggregation was observed using an Olympus BH-2 

fluorescence microscope. Bovine serum albumin at same concentration was used as 

control.  

Plate assay of H6ßGRP-2 binding to various ligands 

Laminarin, lipoteichoic acid, and LPS (all from Sigma) were individually 

dissolved in H2O at 0.1 mg/ml. The samples (5–10 µg) were applied to a 96-well 

microplate and air dried overnight at room temperature. The plate was incubated at 60 °C 

for 30 min to fix the ligands, and the wells were blocked with 200 µl of 3% dry skim milk 

in TBS at 37 °C for 1 h. After washing, H6ßGRP-2 (10–1000 ng) in 100 µl buffer R was 

added to the wells and incubated at room temperature for 1 h. Following a washing step 

with TTBS (TBS supplemented with 0.05% Tween 20), 100 µl of 1:500 diluted ßGRP-2 

antiserum in TBS containing 1% dry milk was added to the wells. After incubation at 37 

°C for 2 h, the wells were washed three times with TTBS and then reacted with 100 µl of 

1:3,000 diluted goat anti-rabbit IgG conjugated to alkaline phosphatase (Bio-Rad) in TBS 

containing 1% dry milk at 37 °C for 1 h. Then the wells were rinsed three times with TBS 

and once with 0.5 M MgCl2, 10 mM diethanolamine. Aliquots of 100 µl of p-nitrophenyl 

phosphate (1.0 mg/ml in 0.5 M MgCl2, 10 mM diethanolamine) were added to the wells 
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and absorbance at 405 nm was monitored in the kinetic mode by a PowerWave 340 

microplate reader (Bio-Tek Instruments, Inc.).  

Role of ßGRP-2 in proPO activation in induced M. sexta hemolymph 

The day 3 fifth instar larvae were injected with 50 µl, 1 µg/µl Micrococcus luteus 

(Sigma), and hemolymph was collected 24 h later from a cut proleg into 2 volumes of 

chilled anticoagulant buffer in polypropylene tubes (Ma and Kanost, 2000). After 

removal of hemocytes by centrifugation at 500g for 5 min, the plasma samples (20 µl) 

were separately incubated with the purified cuticular ßGRP-2 (5 µl, 0.1 mg/ml), 

laminarin (5 µl, 0.1 mg/ml), lipoteichoic acid (5 µl, 0.1 mg/ml), LPS (5 µl, 0.1 mg/ml), or 

buffer (5 µl, 0.1M Tris-HCl, 0.1 M NaCl, 1 mM CaCl2, pH7.4). In the control and test 

groups, 20 µl of buffer or ßGRP-2 was added respectively and incubated on ice for 40 

min. PO activity was determined using a microplate reader with dopamine as a substrate 

(Jiang et al., 2003). 

Results 

Purification and characterization of native M. sexta ßGRP-2 

When the polyclonal antiserum against M. sexta PAP-1 became available, we 

purified this enzyme from the integuments of M. sexta prepupae (Gupta et al., 

unpublished data) and found that the antiserum cross-reacted with a 58 kDa protein in the 

cuticular extract. To test if it had an amino acid sequence similar to a serine proteinase, 

we developed a scheme to isolate this protein (Fig. 1). It was later designated ßGRP-2 

when its cDNA sequence and biochemical properties were known. ßGRP-2 bound to the 

hydroxylapatite column weakly and eluted soon after the sodium phosphate gradient was 
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applied. Fractions 33–40 were pooled, concentrated, and resolved by gel filtration 

chromatography on a Sephacryl S100-HR column. The immunoreactive protein in 

fractions 38–46 was separated from other proteins that did not bind to Con A. The 

fractions containing ßGRP-2 were combined and further separated by ion exchange 

chromatography on an HPLC Mono-Q column. ßGRP-2 is moderately abundant in the 

integument at this stage—we obtained about 0.5 g pure protein from 75 insects.  

The purified protein migrated on an SDS-polyacrylamide gel as a single band under 

reducing conditions (Fig. 2). It was recognized by antibodies to ßGRP-2 and ßGRP-1. 

PAP-1 antiserum (lane 5) and its corresponding preimmune serum (data not shown) also 

reacted with the protein. As determined by MALDI mass spectrometry, ßGRP-2 has a 

molecular mass of 54,932±55 Da. The purified protein eluted as a single peak at 8.5 min 

on the HPLC gel filtration column, corresponding to a molecular mass of about 55 kDa. 

This result indicated that ßGRP-2 was present as a monomer. The amino-terminal 27 

residues of the purified protein were determined to be: Arg-Gly-Gly-Pro-Tyr-Lys-Val-

Pro-Asp-Ala-Lys-Leu-Glu-Ala-Ile-Tyr-Pro-Lys-Gly-Leu-Arg-Val-Ser-Val-Pro-Asp-Asp.  

cDNA cloning and sequence features of ßGRP-2 

Using the polyclonal antiserum against ßGRP-2 as a probe, we screened a 

bacteria-induced M. sexta fat body cDNA library and isolated seven positive clones from 

1.4×105 plaques. This indicated that ßGRP-2 mRNA is moderately abundant in the fat 

body at 24 h after the insects were injected with bacteria. The longest cDNA contained a 

short 5' non-coding region, an open reading frame of 1446 nucleotides, and a long 3' 

untranslated sequence of 911 nucleotides (Fig. 3). The open reading frame encodes an 

amino acid sequence 482-residue long, including an 18-residue signal peptide for 
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secretion. Beginning at position 19, the first 27 residues of the mature protein perfectly 

match the sequence determined by Edman degradation. Potential N-linked glycosylation 

sites are present in the sequence at N106GT and N171WT. The binding of ßGRP-2 to Con 

A indicated that one or both of the sites are posttranslationally modified. This is also 

consistent with the fact that the calculated molecular mass of ßGRP-2 (52,490 Da) is 

around 2400 Da lower than the value determined by MALDI mass spectrometry (Fig. 2). 

The calculated isoelectric point of ßGRP-2 is 5.8, higher than that of ßGRP-1 (pI=5.1). 

Perhaps as a result, ßGRP-2 eluted much earlier than ßGRP-1 from the hydroxylapatite 

column (Fig. 1;  [Ma and Kanost, 2000). A putative integrin binding motif (RGD) is 

located in the middle of the protein (residues 275–277). Four Cys residues at positions 

137, 151, 227, and 236, which are well conserved in this family of proteins, probably 

form two disulfide bonds to maintain the ßGRP-2 structure.  

A BLAST search of Genbank and multiple sequence alignment indicated that M. 

sexta ßGRP-2 was similar in sequence to ßGRP-1 from M. sexta (Ma and Kanost, 2000), 

ßGRP and Gram-negative bacteria-binding protein (GNBP) from B. mori, ßGRP from 

Plodia interpunctella and a putative GNBP from the fall webworm Hyphantria cunea 

(Ochiai and Ashida, 2000, Lee et al., 1996, Fabrick et al., 2003 and Shin et al., 1998). 

There are at least 3 ßGBP/GNBP genes in the Drosophila melanogaster genome and 7 in 

the Anopheles gambiae genome (Adams et al., 2000 and Holt et al., 2002). 

In addition to these insect proteins, ßGRPs are similar to LGBPs from the 

freshwater crayfish (Pacifastacus leniusculus) and the blue shrimp (Litopenaeus 

stylirostris), ßGBP from the black tiger shrimp (Penaeus monodon), and CCF-1 from the 
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earthworm (Eisenia foetida)(Lee et al., 2000, Roux et al., 2002, Sritunyalucksana et al., 

2002 and Bilej et al., 2001). These proteins are similar to ßGRP2 mainly in the 

glucanase- like domain, but their amino-terminal extensions are much shorter than the 

insect protein. 

M. sexta ßGRP-2 lacks three conserved residues (Glu, Asp, Glu) in the active site 

of ß-1,3-glucanases (Juncosa et al., 1994). This is consistent with the observation that 

purified ßGRP-2 failed to form a clear zone around the sample well in a curdlan-agarose 

gel (data not shown). 

Expression of the ßGRPs in M. sexta fat body 

We performed an RT-PCR experiment to test whether or not the ßGRP mRNAs 

are inducible in the larva l fat body upon microbial challenge. Consistent with the 

previous Northern blot analysis result (Ma and Kanost, 2000), we observed constitutive, 

low level of ßGRP-1 expression in this tissue before and after the immune challenge ( 

Fig. 4A). In contrast, the transcription of ßGRP-2 was highly inducible—we did not 

detect its mRNA in the control larvae without injection or with injection of TBS, but 

detected its appearance after injection of S. cerevisea, E. coli, or M. luteus. This result 

demonstrated that ßGRP-2 is an acute-phase protein whose expression was not only 

induced by a yeast challenge but also by a Gram-negative or Gram-positive bacterial 

infection.  

A similar experiment was carried out to compare mRNA levels of ßGRP-1 and 

ßGRP-2 in the fat body of M. sexta larvae at different developmental stages starting from 
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day 0 of fifth instar to day 6 of wandering stage. The mRNA level of ßGRP-1 was 

relatively constant during this period (Fig. 4B). In contrast, ßGRP-2 transcripts were 

hardly detected in the fifth instar larval feeding stages but dramatically increased at the 

start of the wandering stage. As a loading control, M. sexta ribosomal protein S3 did not 

change in the developmental stages examined. 

Since ßGRP-2 binds to Con A (Fig. 1) but ßGRP-1 does not (Ma and Kanost, 

2000), we employed lectin affinity chromatography to separate the two proteins in 

hemolymph samples from naïve, bacteria- injected, and late wandering larvae. 

Immunoblot analysis indicated that ßGRP-2 was present in plasma of the induced and 

wandering larvae but absent in the uninduced larvae (Fig. 4C). 

Functional analyses of recombinant ßGRP-2 

We expressed ßGRP-2 in E. coli as a (His)6-tagged recombinant protein and 

purified it by affinity chromatography on a Ni2+-NTA column under denaturing 

conditions. The renatured protein migrated as a single band at 53 kDa on an SDS-

polyacrylamide gel (Fig. 2). 

To test if ßGRP-2 binds to bacteria or yeast, we labeled the recombinant protein 

with FITC and incubated it with S. cerevisea, E. coli, and M. luteus as examples of fungi, 

Gram-negative, and Gram-positive bacteria. After incubation, the microbial cells were 

washed, and then the fluorescence from the bound FITC-H6ßGRP-2 was quantified by 

flow cytometry. We observed significant binding of FITC-ßGRP-2 to the tested cells in a 
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saturable manner (Fig. 5). However, further experiments employing unlabeled ßGRP-2 as 

a competitor will be required to characterize the specificity of the binding.  

The presence of ßGRP-2 at 50 µg/ml caused significant aggregation of S. 

cerevisiae, E. coli, and S. aureus, whereas bovine serum albumin at the same 

concentration did not have this effect (Fig. 6). These results indicated that, like ßGRP-1, 

ßGRP-2 can cause aggregation of invading microorganisms and, perhaps, lead to a more 

efficient clearance of the microbes by hemocytes. 

To better understand mechanisms of the binding and aggregation activities, we 

investigated what molecules on the microbial surfaces are recognized by ßGRP-2 (Fig. 

7). M. sexta ßGRP-2 bound most strongly to laminarin, a ß-1,3-glucan from fungi and 

then to lipoteichoic acid from Gram-positive bacteria. LPS is a poor ligand of ßGRP-2. 

We have also tested involvement of ßGRP-2 during proPO activation and found 

that laminarin-stimulated proPO activation was greatly enhanced by adding exogenous 

ßGRP-2 to the induced hemolymph (Fig. 8). Although ßGRP-2 also binds to lipoteichoic 

acid, the binding failed to trigger proPO activation. LPS did not have any effect on proPO 

activation. 

Discussion 

Invertebrates do not have the genetic mechanisms to produce antibodies and T-

cell receptors that specifically recognize invading microorganisms. They rely on PRPs to 

detect common carbohydrate structures on microbial cell surfaces and initiate host 

defense responses. Therefore, it is essential that multiple PRPs are present in the 
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circulation, each with distinct binding specificity, to cover a wide spectrum of infectious 

agents. Accumulating evidence has indicated this to be the case in insects as well as other 

invertebrates (Yu et al., 2002, Wilson et al., 1999, Christophides et al., 2002 and 

Iwanaga, 2002). In this work, we have purified from integuments of the tobacco 

hornworm, M. sexta, a 58 kDa protein that binds to ß-1,3-glucan and lipoteichoic acid. 

We named this protein ßGRP-2, as it is similar to ßGRP-1, a protein we previously 

isolated from the hemolymph of M. sexta fifth instar larvae (Ma and Kanost, 2000). 

Using the specific antiserum as a probe, we screened a M. sexta fat body cDNA 

library and isolated cDNA clones encoding ßGRP-2. Its deduced amino acid sequence is 

57% identical to those of M. sexta ßGRP-1 (Ma and Kanost, 2000) and B. mori ßGRP 

(Ochiai and Ashida, 2000). Due to the sequence similarity, the antiserum to ßGRP-1 

cross-reacted with ßGRP-2 ( Fig. 2), and vice versa (data not shown). On the other hand, 

the cross-reacting antibodies in the PAP-1 antiserum may not be related to the proteinase 

at all since its sequence is completely different from ßGBP-2. We note that this cross-

reaction was also found with the preimmune serum from the same rabbit. 

M. sexta ßGRP-1 and ßGRP-2 are probably composed of two domains. The one at 

the amino-terminus corresponds to residues 1–102 of the silkworm ßGRP, which is 

responsible for the specific binding to ß-1,3-glucan (Ochiai and Ashida, 2000). The 

carboxyl-terminal domain is similar in sequence to ß-1,3- and ß-1,3-1,4-glucanases from 

bacteria (Juncosa et al., 1994) and to a ß-1,3-glucanase from a sea urchin (Bachman and 

McClay, 1996). In the earthworm CCF-1 (Bilej et al., 2001), a carbohydrate recognition 

site was identified in this domain, which is important for its binding to Gram-positive and 
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Gram-negative bacteria. The ability of ßGRP-2 to cause aggregation of microorganisms 

suggests that each monomer has more than one binding site, perhaps one in each of its 

domains. Supporting this speculation is the observation that both domains of the closely 

related Plodia interpunctella ßGRP (Fig. 9) can bind to laminarin (Fabrick, Baker, and 

Kanost, unpublished data).  

Unlike ßGRP-1, which is produced at a low, constitutive level during all the 

developmental stages tested, ßGRP-2 transcript appears only after the wandering stage 

begins. The ßGRP-2 protein was detected in the hemolymph and integument of M. sexta 

wandering stage larvae (Fig. 1 and Fig. 4), suggesting that ßGRP-2 as well as other acute-

phase proteins could be important for protecting the insect in a soil environment during 

pupation.  

The M. sexta ßGRPs aggregate yeast, Gram-negative, and Gram-positive bacteria. 

To identify their ligands on the microbial cell surface, we analyzed their binding to 

laminarin, lipoteichoic acid, and LPS, and found both proteins bind to laminarin 

significantly (Fig. 7 and data not shown). This demonstrates that the yeast cell wall ß-1,3-

glucan is probably responsible for the ßGRP binding and cell–cell association. The 

ßGRPs also strongly bind to lipoteichoic acid, a cell wall component of Gram-positive 

bacteria. However, no specific binding was observed with peptidoglycan (data not 

shown). Neither did we detect a significant binding to LPS. Perhaps, other structures on 

the surface of Gram-negative bacteria are recognized by the ßGRPs to account for the 

aggregation activity.  
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Our previous work showed that native ßGRP-1 can trigger the proPO activation in 

cell- free hemolymph from naive M. sexta larvae (Ma and Kanost, 2000). We also tried to 

see if purified ßGRP-2 exerts the same function by binding to laminarin in the induced 

plasma, and indeed detected significant enhancement of proPO activation. Lipoteichoic 

acid failed to trigger the cascade, suggesting that an “activating” conformation was not 

induced when lipoteichoic acid bound to ßGRP2. Such a conformation appears to be 

critical for interacting with other plasma proteins involved in proPO activation or other 

immune responses.  

Multiple sequence alignment of the ßGRPs and GNBPs indicated that this family 

of proteins is widely spread in invertebrates (Fig. 9). Most of the insect sequences have 

an amino-terminal extension of about 100 residues. This region is known to be the ß-1,3-

glucan-binding site in the silkworm GRP (Ochiai and Ashida, 2000). There was 

apparently an expansion of this gene family in the A. gambiae genome, resulting in seven 

members, as compared with three in the D. melanogaster genome. Five of these 

Anopheles members, lacking the amino-terminal extension, form a tight branch in the 

phylogenetic tree. This is connected to another branch which includes GBPs/LGBP from 

crustaceans, a glucanase from a sea urchin, and CCF-1 from an earthworm. Like the 

mosquito sequences, they only contain the glucanase- like domain responsible for ligand 

binding.  

So far, we have characterized two ßGRPs in M. sexta. Both of them are 

synthesized mainly in fat body, but their expression is controlled differently. They have a 

similar function in aggregating microorganisms and enhancing proPO activation. How 
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exactly the insect manages to regulate the two proteins and the physiological significance 

of the regulation remain interesting questions that should be addressed in the future to 

better understand the immune system of this insect.  
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Fig. 1. Purification of ßGRP-2 from integuments of M. sexta pharate pupae.  

Treated cuticular extract was separated on hydroxylapatite (A), Sephacryl S100-HR (B), 

ConA-Sepharose, and Mono-Q (C) columns as described in Materials and methods. ?—

?, absorbance at 280 nm. The bar in each panel indicates the fractions containing ßGRP-2 

(detected by immunoblot analysis) that were pooled for the next purification step. 
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Fig. 2. Characterization of M. sexta ßGRP-2.  

(A) MALDI-TOF mass spectrometry. A representative strong single-accumulation 

spectrum for ßGRP-2 is presented. The spectrum was calibrated with a bovine serum 

albumin standard and subjected to noise removal. (B) SDS-PAGE and immunoblot 

analyses. Lane 1, ßGRP-2 purified from the cuticular extract (40 ng) (silver staining); 

lane 2, recombinant H6ßGRP-2 purified by nickel affinity chromatography (0.3 µg) 

(Commassie Blue staining). Immunoblot analysis of the purified cuticular ßGRP-2 using 

antisera against ßGRP-2 (lane 3), ßGRP-1 (lane 4), and PAP-1 (lane 5) as the first 

antibody. Positions of the molecular weight makers (M: 250, 150, 100, 75, 50, 37, 25 

kDa) are marked. (C) Association status determination. Purified cuticular ßGRP-2 (20 

µg) was separated by gel filtration chromatography on the HPLC column. Vertical bars 

indicate the positions of molecular standards of thyroglobulin (670 kDa), bovine ?-

globulin (158 kDa), chicken ovalbumin (44 kDa), equine myoglobin (17 kDa), and 

vitamin B12 (1.35 kDa) from left to right. 
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Fig. 3 Nucleotide and deduced amino acid sequences of ßGRP-2  

Amino acid residues, shown in one letter abbreviations below the cDNA sequence, are 

aligned with the second nucleotide of each codon. Residues in the mature protein are 

assigned positive numbers, and those in the signal peptide are assigned negative numbers. 

A single underline indicates the amino-terminal sequence of the mature ßGRP-2 

determined by Edman degradation. Two potential N-linked glycosylation site are marked 

with ?. The conserved Cys residues, shown in bold, probably form two disulfide bonds. 

One putative integrin-binding motif (RGD) is double underlined. The termination codon 

TAG is marked with an asterisk. 
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Fig. 4. Expression profiles of M. sexta ßGBP-1 and ßGBP-2  

In panel A, total RNA samples were isolated from fat body of naive larvae (lane 1) and 

larvae injected with saline (lane 2), S. cerevisea (lane 3), E. coli (lane 4), and M. luteus 

(lane 5). As described in Materials and methods, RT-PCR was performed using primer 

pairs specific for ßGRP-1 (left side), ßGRP-2 (right side), and ribosomal protein S3 (both 

sides). M: DNA size markers. From bottom to top, the sizes of the bands are 0.1, 0.2, 0.3, 

0.4, 0.5, 0.6, 0.85, 1, 1.65, 2kb, etc. In pane l B, fat body total RNA samples from naïve 

fifth instar feeding larvae day 0 through day 4 (lane 0 to lane 4) and unchallenged 

wandering larvae day 0 through day 6 (lane 0 to lane 6) were analyzed similarly. Upper, 

ßGRP-1; lower, ßGRP-2. The PCR products are marked with arrows at their 

corresponding sizes. In panel C, hemolymph samples from naïve (lane 1), bacteria-

injected (lane 2), or late wandering (lane 3) larvae were subjected to Con A affinity 

chromatography to separate ßGRP-2 from ßGRP-1. Eluted proteins, equivalent to 2 µl 
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hemolymph, were analyzed by SDS-PAGE and immunoblotting using 1:2000 diluted 

ßGRP-2 antiserum as the first antibody. 
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Fig. 5. Concentration-dependent binding of H6ßGRP-2 to E. coli  

(A), M. luteus (B), and S. cerevisiae (C). Binding of FITC-labeled H6ßGRP-2 to the 

microorganisms was examined by flow cytometry as described in Materials and methods. 

After incubation with varying amounts of the recombinant protein for 30 min, the washed 

bacterial or yeast cells (1×107) were subjected to fluorescence measurement on a flow 

cytometer. Each point is the mean fluorescence intensity/cell of 10,000 cells with a 

standard error of each sample too small to be visible as an error bar. The binding curves 

represent a one site model with Kd (µg/ml) and r2 : 20.53±1.58 and 0.996 (A); 22.07±3.42 

and 0.998 (B), or 46.64±22.52 and 0.968 (C), respectively. 
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Fig. 6. Aggregation of microorganisms by ßGRP-2.  

H6ßGRP-2 (0.05 mg/ml) was incubated with FITC-labeled E. coli, S. aureus, or S. 

cerevisiae at room temperature for 30 min. The microorganisms were incubated similarly 

with bovine serum albumin (0.05 mg/ml) as a control. The cells were photographed using 

fluorescence microscopy. 
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Fig. 7. Association of microbial cell wall components with ßGRP-2.  

As described in Materials and methods, recombinant ßGRP-2 was reacted with laminarin 

(? —?), lipoteichoic acid ( --- ), and lipopolysaccharide (? ---?) immobilized on a 96-

well microplate. The binding was detected via an ELISA and shown as mean±SEM 

(n=3). 
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Fig. 8. Roles of H6ßGRP-2 in proPO activation.  

As described in Materials and methods, the induced hemolymph (IH) samples were 

incubated with laminarin, lipoteichoic acid (LTA), or lipopolysaccharide in the presence 

or absence of ßGRP-2. PO activities (mean±SEM, n=3) were determined and plotted as a 

bar from each treatment. 
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Fig. 9  Phylogenetic relationships among the glucanase- like proteins in invertebrates.  A multiple 

sequence alignment was performed as described under Experimental Procedures.  Sequences of  

Manduca sexta (ms) ßGRP-1 (AF177982) and ßGRP-2 (AY135522), Bombyx mori (bm) ßGRP 

(AU004243) and GNBP (L38591), Plodia interpunctala (pi) ßGRP (AAM95970), Hyphantria 

cunea putative (hc) GNBP (AF023916), Drosophila melanogaster (dm) putative GNBP-1 

(AAF33849), GNBP-2 (NP_524141) and GNBP-3 (AAF33851), Anopheles gambiae (ag) 

putative GNBP (AJ001042), CP1164 (EEA07705), CP1153 (EAA07707), CP1731 (EAA07723), 

CP13995 (EAA09015), P8943 (EAA00167), and CP3847 (EAA04713), Aedes Aegypti (aa) 

putative GBP (AFF466594), Penaeus monodon (pm) GBP, Litopenaeus stylirostris (ls) LGBP 

(AAM73871); Pacifastacus leniusculus (pl) LGBP (CAB65353), Strongylocentrotus purpuratus 

(sp) ß-1,3-glucanase (U49711), Eisenia foetida (ef) CCF-1 (AF030028).   
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Abstract  

Phenoloxidase-catalyzed reactions are crucial to the survival of arthropods after pathogen or 

parasite infection. In Manduca sexta, active phenoloxidase is generated from its precursor by a 

prophenoloxidase activating proteinase (PAP) in the presence of noncatalytic serine proteinase 

homologs (SPHs). As terminal components of a proteinase cascade, the PAP and SPHs also 

require limited proteolysis to be functional. While the processing enzyme of M. sexta proPAP-2 

and proPAP-3 is known, we are investigating the cleavage activation of proSPH-1 and proSPH-

2. Here we report the development of a series of Bac-to-Bac plasmid vectors for co-expression, 

secretion and affinity purification of proSPH-1 and proSPH-2 in one baculovirus. The purified 

proteins were characterized and used as substrates in the search of their activating enzymes. 

Proteolytic processing occurred after the proSPHs had been incubated with hydroxyapatite or gel 

filtration column fractions. The cleaved proteins were active as a cofactor for prophenoloxidase 

activation by PAP, and coexistence of SPH-1 and SPH-2 is essential for manifesting the 

auxiliary effect. 

 

Introduction 

With over 430 members listed in MEROPS (http://merops.sanger.ac.uk), chymotrypsin- like 

serine proteinases constitute the largest family of all peptidases. They participate in vital 

physiological processes including digestion, development and defense responses (Hedstrom, 

2002). At the amino terminus of many arthropod serine proteinases, there is one or two clip 

domains connected to the carboxyl-terminal catalytic domain through a linker region and a 

disulfide bond (Jiang and Kanost, 2000). While their proteinase domains all contain a His-Asp-

Ser catalytic triad, nonsynonymous substitution(s) lead to the loss of these key residues and 

enzymatic activity. Indeed, insect genomes encode serine proteinase homologs (SPHs) that are 
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anticipated to resemble their ancestral enzymes in overall folding (Ross et al., 2003; Zou et al., 

2006) and possess functions other than peptide bond hydrolysis. For instance, clip-domain SPHs 

are essential for generation of active phenoloxidase (PO) in some insects (Kwon et al., 2000; Yu 

et al., 2004). 

Insect POs catalyze the formation of quinones and other reactive intermediates for melanin 

synthesis, microbe killing, cuticle sclerotization, and wound healing (Ashida and Brey, 1997; 

Söderhäll and Cerenius, 2004). They are produced as inactive zymogens and proteolytically 

activated by proPO activating proteinase (PAP, also known as PPAE or PPAF). PAPs have been 

isolated from several insects and characterized biochemically (Satoh et al., 1999; Jiang et al., 

1998, 2003a and 2003b; Lee et al., 1998). In Manduca sexta, these enzymes cleave proPO at the 

correct bond but yield little PO activity. Only when a high Mr complex of SPH-1 and SPH-2 are 

present at the same time, does PAP generate active PO (Wang and Jiang, 2004; Gupta et al., 

2005). In Holotrichia diomphalia, proPO are activated by PPAFI (a serine proteinase) and 

PPAFII (an SPH) (Lee et al., 1998). In Drosophila melanogaster, MP1 cuts proMP2 and MP2 

activates proPO (Tang et al., 2006; Leclerc et al., 2006). In Anopheles gambiae, Clip-B3, -B4, -

B8, -B14, and -B17 play a role in the proPO activation pathway (Volz et al., 2005 and 2006; 

Paskewitz et al., 2006). Clip-A8 (an SPH) is required for parasite melanization whereas Clip-A2, 

-A5 and -A7 (SPHs) function synergistically to block this process. 

While components of the proPO activation system (e.g. pathogen recognition proteins, serine 

proteinases, SPHs, serpins and proPOs) have been elucidated in several insects (Kanost et al., 

2004; Christophides et al., 2004; Lee and Iwanaga, 2005), limited information is available about 

the proteolytic activation of proSPHs: H. diomphalia PPAFIII is the only serine proteinase 

shown to cleave proPPAFII (Kim et al., 2002). In order to explore the proSPH activation branch 

of M sexta proPO activation system, we produced proSPH-1 and proSPH-2 in a baculovirus-
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insect cell expression system. The purified proteins, after being cleaved by column fractions of 

the induced larval plasma, manifested an auxiliary effect in the proPO activation reaction. 

Coexistence of SPH-1 and SPH-2 is essential for this cofactor activity. 

 

Methods and materials 

Modification of pFastBacDual 

The plasmid pFastBacDual (Invitrogen Life Technology), which allows co-expression of two 

genes, was modified for efficient secretion and affinity purification of the recombinant proteins 

(Fig. 1). As described previously for pMHF (i.e. pMHF6) (Lu and Jiang, 2007), pMFBDpH was 

constructed by inserting a synthetic DNA fragment into the BamHI-EcoRI sites of 

pFastBacDual. After in-frame insertion of a foreign DNA into the EcoRI site of pMFBDpH, the 

encoded polypeptide is expected to be synthesized under the control of polyhedrin promoter and 

secreted into the medium using the honeybee melittin signal peptide. 

The plasmids pMMFBD and pMFBDp10 were constructed as follows: 1) amplification the signal 

peptide-coding region in pMFH6 using vector-specific primers j023 (5’-TTCCGGATTAT 

TCATACC, + strand) and j044 (5’-CCATGGATCGATCCCGGGCATAGATGTAAGAAATG, 

- strand). Primer j044 includes NcoI, ClaI and SmaI restriction sites fused with the reverse 

complement sequence encoding Ile-Ser-Tyr-Ile-Tyr-Ala, the end of the signal peptide; 2) T/A 

cloning and sequence verification of the PCR product; 3) Insertion of the BamHI-NcoI fragment 

into pMFBDpH and pFastBacDual digested with BbsI and NcoI – in this case BbsI cleavage left an 

overhang compatible with the BamHI site. The resulting plasmids (pMMFBD and pMFBDp10) (Fig. 

1) allows co-expression of two polypeptides under the control of polyhedrin and p10 promoters. 

In-frame cloning of two different coding regions to the EcoRI (pH side) and ClaI (p10 side) sites 

of pMMFBD allows the secretion of corresponding proteins into the culture medium. 
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Following sequence verification, pMMFBD and pMFBDp10 were improved by incorporating a 

synthetic DNA fragment to the KpnI site: primers j045 (5’-CGGGCCCATCACCATCACCATC 

ACTAAGTAC, + strand) and j046 (3’-CATGGCCCGGGTAGTGGTAGTGGTAGTGATT-5’, - 

strand) were phosphorylated, annealed, and non-directionally inserted to KpnI-digested and 

dephosphorylated vectors. After sequence analysis, plasmids containing a single copy of the 

fragment in the correct orientation (designated pMMHFBDp10 and pMHFBDp10, one of the two KpnI 

sites destructed and one ApaI site added in the p10 side) (Fig. 1) were kept. In-frame insertion at 

the ApaI site is required for fusing the hexahistidine tag to the carboxyl-terminus of a target 

recombinant protein. 

The multiple cloning region downstream of the polyhedrin promoter in pMHFBDp10 and 

pFastBacDual was modified by inserting the BamHI-HindIII fragment of pMHF (i.e. pMFH6) to 

the same sites to generate pMHMHFBD and pMHFBDpH (Fig. 1). In-frame insertion of one DNA 

fragment to the EcoRI and XhoI sites and another to the ClaI and ApaI sites of pMHMHFBD 

allows co-expression, secretion, and affinity purification of two proteins. 

Construction of recombinant baculoviruses for proSPH-1 and proSPH-2 expression 

M. sexta SPH-1 cDNA was amplified using j410 (5’-CTGAATTCAGTCCGAAGATCT, + 

strand) and j411 (5’-GTCCTCGAGTTCGTAAACCGT, - strand). The PCR product was T/A 

cloned into pGem-T (Promega) and verified by DNA sequencing. From the resulting plasmid, a 

1.2 kb EcoRI-XhoI fragment was retrieved by partial digestion (because there was an internal 

XhoI site in the cDNA) and inserted into the same sites in pMHMHFBD to generate SPH-1/ 

pMHMHFBD. M. sexta SPH-2 cDNA was amplified using j412 (5’-GCTCATCGATCCACTATC 

GAC, + strand) and j413 (5’-CTGGGCCCCGTAAGTGGAGCT, - strand). After T/A cloning 

and sequence confirmation, the ClaI-ApaI fragment was subcloned into the same sites in 

pMHMHFBD and SPH-1/pMHMHFBD to yield SPH-2/pMHMHFBD and SPH-1&2/pMHMHFBD, 
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respectively. For this cloning step, the parental plasmids were isolated from E. coli GM2163 (F-, 

dam-, dcm-, hsdR-, chloramphenicolr) so that the ClaI site was not methylated. 

In vivo transposition of the expression cassette, selection of bacterial colonies carrying the 

recombinant bacmid, and isolation of bacmid DNA were performed according to manufacturer’s 

protocols (Invitrogen Life Technologies). The initial viral stocks (V0) for proSPH-1 and proSPH-

2 production were separately obtained by transfecting Spodoptera frugiperda Sf21 cells with a 

bacmid DNA–CellFECTIN mixture, and their titers were improved through serial infections. The 

V6 viral stock, containing the highest level of baculovirus, was stored at -70°C for further 

experiments. Expression conditions were optimized as described previously (Ji et al., 2003). 

Analysis of proSPH-1 and proSPH-2 expressed individually and mutually 

Sf21 cells in 5.0 ml insect serum-free medium (Invitrogen Life Technologies) (7.6×105 cells/ml, 

T-25 flask) were infected with 0.5 ml V3 viral stock at 27°C for 72 h. The recombinant proteins 

were captured from 0.5 ml of V4 culture medium using 50 µl of Ni-NTA beads. After washing 

with 150 µl of buffer A (50 mM sodium phosphate, pH 8.0) containing 0.5 M NaCl for three 

times, bound proteins were eluted with 50 µl of 0.3 M imidazole in the washing buffer for three 

times and combined for electrophoretic analysis on native or denatured gels. The proteins were 

visualized by Coomassie blue staining or immunoblotting using SPH-1 or SPH-2 antibodies.  

Large-scale expression and purification of recombinant proSPH-1 and proSPH-2 from Sf21 cells 

Sf21 cells (at 2.4×106 cells/ml) in 1.4 L of insect serum-free medium (Invitrogen Life 

Technologies) were separately infected with the baculovirus stocks at a multiplicity of infection 

of 10 and grown at 27°C for 96 h with gentle agitation (100 rpm). After the cells were removed 

by centrifugation at 5,000×g for 10 min, pH of the conditioned medium was adjusted to 8.0 using 

1.0 M Tris base. The cell debris and fine particles were spun down by centrifugation at 

10,000×g, and the supernatant was diluted with 20 mM Tris-HCl, pH 8.0 (buffer A) to a final 
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volume of 4.2 L and applied to a Q-Sepharose FF column (20 ml bed volume) at a flow rate of 

5.0 ml/min. Following a washing step with 100 ml buffer A, bound proteins were eluted from the 

column with a linear gradient of 0-1.0 M NaCl in 240 ml of buffer A at a flow rate of 1.0 ml/min. 

The fractions containing proSPH-1 or proSPH-2 were combined and loaded onto a 10 ml Ni2+-

NTA agarose column. After washing with 50 ml of 50 mM sodium phosphate, pH 8.0 (buffer B), 

the bound proteins were eluted with a gradient of 0-0.3 M imidazole in 90 ml of buffer B. 

Fractions containing proSPH-1 or proSPH-2 were combined, dialyzed against 20 mM Tris–HCl 

(pH 7.6) and stored at -80°C. 

Insect rearing, bacterial challenge, and hemolymph collection 

M. sexta eggs were purchased from Carolina Biological Supply, and the  larvae were reared on an 

artificial diet (Dunn and Drake, 1983). Day 2, 5th instar larvae were injected with a mixture of 

formaldehyde-killed E. coli (3×107 cells), M. luteus (30 µg) and curdlan (30 µg) in 50 µl of H2O. 

Hemolymph was directly collected into saturated (NH4)2SO4 from cut prolegs of the larvae 24 h 

after the immune challenge. The final saturation of (NH4)2SO4 was adjusted to 50% in order to 

prevent spontaneous melanization, and the protein suspension was stored in -80°C. 

Fractionation of M. sexta induced hemolymph on hydroxyapatite and gel filtration columns 

The thawed hemolymph suspension was centrifuged at 22,000×g for 20 min, and the pellet was 

dissolved with 60 ml of buffer C (5 mM sodium phosphate, pH 6.5, 0.5 M NaCl) supplemented 

with 0.002% 1-phenyl-2-thiourea. After centrifugation, the supernatant was fractionated with 20-

50% (NH4)2SO4 as described previously (Jiang et al., 2003). This fraction was dissolved in 60 ml 

of buffer C and dialyzed against the same buffer (1.2 L) overnight. Following centrifugation at 

22,000×g for 20 min, the protein sample was loaded onto a hydroxyapatite column (2.5 cm i.d. × 

8 cm) equilibrated with buffer C. After washing with 150 ml of the same buffer, bound proteins 

were eluted with a linear gradient of 0-125 mM sodium phosphate, pH 6.5 in 200 ml, 0.5 M 
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NaCl. The fractions (4.0 ml/tube) were collected for the proSPH processing assays. Active 

fractions were pooled and precipitated with 50% saturated (NH4)2SO4. After centrifugation, the 

pellet was dissolved in 3.0 ml of buffer D (50 mM Tris-HCl, 0.5 M NaCl, pH 7.5) and applied to 

Sephacryl S-100 column (2.5 cm i.d. × 100 cm) equilibrated with the same buffer. The fractions 

were collected at 6 ml/tube for the activity assays.  

Processing of proSPH-1 and proSPH-2 by the column fractions 

Column fractions (3 µl) were individually incubated on ice with the purified proSPH-1 (0.140 

mg/ml, 2 µl), proSPH-2 (0.120 mg/ml, 2 µl), or both (2 µl + 2 µl) in a total volume of 40 µl, 20 

mM Tris-HCl, pH 7.6. After 60 min incubation, the reaction mixtures were treated with 10 µl, 5 

× SDS sample buffer at 95°C for 5 min, separated by 10% SDS polyacrylamide gel 

electrophoresis, transferred to a nitrocellulose membrane and reacted with 1:5000 diluted SPH-1 

or SPH-2 antiserum. The antibody-antigen complex was recognized by goat-anti-rabbit IgG 

conjugated to horseradish peroxidase (Bio-Rad), and chemiluminescence emitted from the 

hydrolysis of SuperSignal West Pico Chemiluminescent substrate (Pierce) was detected by X-ray 

film exposure and development. 

ProPO activation and PO activity assay 

PO activity was determined on a microplate reader according to Jiang et al (2003). Briefly, M. 

sexta proPO (1 µl, 40 µg/ml) and a column fraction (3 µl) were incubated on ice with proSPH-1 

(2 µl), proSPH-2 (2 µl), or both (2 µl + 2 µl) in a total volume of 40 µl Tris-HCl, pH 7.6. 

Dopamine (150 µl, 2.0 mM) was added to the reaction mixtures 60 min later and PO activity was 

measured immediately. 

 

Results and discussion 

Construction of a series of expression vectors 
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In order to facilitate expression, secretion and purification of recombinant proteins in the 

baculovirus-insect cell expression system, we have developed a series of Bac-to-Bac plasmids 

based on pFastBacDual. With expanded multiple cloning regions (Fig. 1), one or more of these 

vectors can be easily selected to meet special requirements of the protein production. For 

instance, co-expression of two proteins using a single recombinant virus is expected to enhance 

cell infection and reduce inclusion body formation caused by the lack of partner. Introduction of 

the honeybee melittin signal peptide may increase the expression of proteins or their constituents 

which do not contain a secretion peptide. As demonstrated previously (Jarvis et al., 1993), this 

leader peptide can also be used for producing proteins with an inefficient or incompatible signal 

peptide. The classical secretory pathway allows the correctly folded and properly modified 

proteins to enter an oxidized environment, away from the majority of cellular proteins. 

Moreover, the fusion of carboxyl-terminal hexahistidine tag facilitates the capture of 

recombinant proteins from a large volume of conditioned medium by affinity chromatography. 

Purification and characterization of proSPH-1 and proSPH-2 from the insect cells 

We have constructed three plasmids (SPH-1/pMHMHFBD, SPH-2/pMHMHFBD and SPH-

1&2/pMHMHFBD) and generated respective baculoviruses. Sf21 infected with these viruses 

produced proSPH-1, proSPH-2 and both proSPHs at a high level. The secreted proteins were 

separately isolated from the culture media by nickel affinity chromatography (Fig. 2). The 

purified proteins migrated to about 60 and 50 kDa positions on the SDS-polyacrylamide gel. 

Immunoblot analysis showed SPH-2 antibodies weakly reacted with proSPH-1 also. On the 

native gel, proSPH-2 ran as two defused bands slower than proSPH-1 which showed as a singlet. 

The co-expressed proteins had the same migration patterns as the individual ones, suggesting 

there was no strong association between proSPH-1 and proSPH-2 under the experimental 

conditions. Since proSPH-1 level was unstable during large-scale co-expression tests (data not 
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shown) and there was no apparent association between the SPH precursors, we chose to produce 

the two proteins separately and carry out activation assay using one or both of them.     

Expression of proSPH-1 and proSPH-2 in insect cells 

As shown in Fig. 3 and Fig. 4, the recombinant proteins were soluble and secreted into the cell 

culture medium. After removing cells, we captured the proSPHs by ion exchange 

chromatography and eluted them from the Q-Sepharose column in a small volume. The proSPH 

fractions were pooled and loaded on the Ni-NTA agarose columns. A linear gradient of 

imidazole was applied to elute the proteins. Silver staining and immunoblot analysis following 

SDS-polyacrylamide gel electrophoresis indicated that the affinity purified proteins were 

essentially pure and intact. ProSPH-1 ran as a 60 kDa band whereas proSPH-2 had an apparent 

Mr of 52 kDa. Heterogeneity in glycosylation may be responsible for the band broadening. While 

a streak was observed behind the diffused bands of proSPHs, the majority of the proteins 

migrated deeply into the native polyacrylamide gel, suggesting the precursors were mostly in a 

low association state. Consistent with that, most of the purified proSPH-1 or proSPH-2 

mobilized on the HPLC size exclusion column as a single peak. While proSPH-1 eluted at 9.40 

min, corresponding to a calculated Mr of 78.5 kDa, proSPH-2 associated with the column matrix: 

with an elution time of 13.33 min, its apparent Mr was 6 kDa. These results indicated that the 

proSPHs probably existed as a monomer. 

Detection of a proSPH-1 and proSPH-2 processing activity in the induced plasma  

Using the purified proSPHs as substrates, we attempted to isolate their activating enzyme from 

the induced M. sexta hemolymph. After ammonium sulfate fractionation, hydroxyapatite and gel 

filtration chromatography, we found that certain fractions cleaved proSPH-1 and proSPH-2 (Fig. 

5). The processing of proSPH1 was incomplete, and we only detected its 38 kDa proteinase- like 

domain using SPH-1 antibodies. These column fractions contained PAP-1, hemolymph 
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proteinase 1 (HP1) and small amounts of other HPs (data not shown). So far, we have not yet 

been able to show if one or more of these enzymes are responsible for proSPH-1 cleavage. The 

same column fractions also cleaved proSPH2, yielding a 37 kDa heavy chain and a 16 kDa light 

chain. While the latter was identical in migration rate to the amino-terminal fragment of SPH-1 

from M. sexta hemolymph (Wang et al., 2004), the 37 kDa band is slightly larger than the 

carboxyl-terminal fragment of natural SPH-1 (36 kDa). This small difference may be caused by 

the carboxyl-terminal histidine tag in the recombinant protein.  

Proteolytically processed SPH-1 and SPH-2 precursors as a cofactor for proPO activation 

After the hydroxyapatite column fraction and proPO were incubated with one proSPH, we did 

not detect much PO activity (Fig. 6) even though proSPH-1 was cleaved by the fractions. Similar 

results were obtained when a Sephacryl S-100 column fraction was used. However, after both 

proSPH-1 and proSPH-2 were incubated with the column fraction, we observed a large increase 

in proPO activation. While this increase was likely resulted from cleaved SPH-1 and SPH-2, we 

could not rule out the possibility that one SPH and the other proSPH (e.g. SPH-1 and proSPH-2) 

have the auxiliary effect. Therefore, we examined if the simultaneous presence of cleaved SPH-1 

and SPH-2 is required for this cofactor activity. The inclusion of proSPH-2 to cleaved SPH-1 and 

PO, or adding proSPH1 to processed SPH-2 and PO, only generated a low level of PO activity 

(Fig. 7). The processed SPH1 and SPH2 function synergistically to enhance proPO activation. 

In the comparison with the complex of SPH-1 and SPH-2 from the hemolymph, we noticed that 

the cofactor activity generated by proSPH-1 and proSPH-2 cleavage activation was much lower 

than that of the same amounts of SPHs isolated from the hemolymph (Fig. 8A and 8B). We 

examined the migration behaviors of processed proSPH-1 and proSPH-2 and found that they had 

a high mobility on the native polyacrylamide gel (Fig. 8C). In contrast, the plasma SPH complex 

has a high Mr and migrated slightly into the stacking gel (Wang and Jiang, 2004). We speculate 
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that the lower cofactor activity from SPH-1 and SPH-2 generated in vitro was caused by the  

failure to form of a higher Mr complexes. Perhaps, certain plasma proteins facilitate the 

formation of SPH complexes. 

In summary, we produced M. sexta proSPH1 and proSPH2 using an improved baculovirus-insect 

cell expression system. The purified proteins were functional as substrates in the search of their 

activating proteinases. We observed their proteolytic processing by column fractions, and the 

cleaved SPHs were active as a cofactor for proPO activation. Furthermore, we demonstrated that 

the coexistence of processed SPH-1 and SPH-2 is required for the auxiliary effect. 
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 (A) 

 
 
(B) pFastBacDual Multiple cloning site (MCS) downstream of the polyhedrin (pH) promoter: 
CCTATAAATATTCCGGATTA TTCATACCGTCCCACCATCG GGCGCGGATCCCGGTCCGAA GCGCGCGGAATTCAAAGGCC TACGTCGACGAGCTCACTAG  
                j023                           BamHI   RsrII   BssHII  EcoRI   StuI     SalI  SstI  SpeI     
TCGCGGCCGCTTTCGAATCT AGAGCCTGCAGTCTCGACAA GCTTGTCGAGAAGTACTAGA GGATCATAATCAGCCATACC ACATTTGTAGAGGTTTTACT 
   NotI     NspV     XbaI  PstI        HindIII                  SV40 poly(A) signal     j024 

MCS downstream of the p10 promoter: 
TTAAATAAGAATTATTATCA AATCATTTGTATATTAATTA AAATACTATACTGTAAATTA CATTTTATTTACAATCACTC GACGAAGACTTGATCACCCG 
    +1                                                                    j047          BbsI        SmaI 
GGATCTCGAGCCATGGTGCT AGCAGCTGATGCATAGCATG CGGTACCGGGAGATGGGGGA GGCTAACTGAAACACGGAAG GAGACAATACCGGAAGGAAC 
     XhoI   NcoI  NheI  PvuII NsiI  SphI    KpnI            j048              HSV tk poly(A) signal 
 
(C) pMFBDpH  MCS downstream of the pH promoter (no change in the p10 side, same as (B)): 
TTCATACCGTCCCACCATCG GGCGCGGATCCATGAAATTC TTAGTCAACGTTGCCCTTGT ATCTATGGTCGTATACATTT CTTACATCTATGCCGGAATT 
 j023                     BamHI  M  K  F   L  V  N  V  A  L  V   F  M  V  V  Y  I   S  Y  I  Y  A* G  I 
                                                                                                   EcoRI    
CAAAGGCCTACGTCGACGAG CTCACTAGTCGCGGCCGCTT TCGAATCTAGAGCCTGCAGT CTCGACAAGCTTGTCGAGAA GTACTAGAGGATCATAATCA 
    StuI    SalI   SstI   SpeI   NotI     NspV  XbaI    PstI         HindIII                 SV40 poly(A) 
                                                                  

(D) pMHFBDpH MCS following the pH promoter (no change in the p10 side, same as (B)): 
TTCATACCGTCCCACCATCG GGCGCGGATCCATGAAATTC TTAGTCAACGTTGCCCTTGT ATCTATGGTCGTATACATTT CTTACATCTATGCCGGAATT 
 j023                     BamHI  M  K  F   L  V  N  V  A  L  V   F  M  V  V  Y  I   S  Y  I  Y  A* G  I 
                                                                                                   EcoRI    
CAAAGGCCTACGTCGACGAG CTCACTAGTCGCGGCCGCTT TCGAATCTAGAGCCTGCAGT CTCGAGCATCACCATCACCA TCACTAAGCTTGTCGAGAAG 
    StuI    SalI   SstI  SpeI    NotI     NspV  XbaI    PstI   XhoI   H  H  H  H  H   H  * HindIII 
TACTAGAGGATCATAATCAG CCATACCACATTTGTAGAGG 
        SV40 poly(A) signal     j024 
 

(E) pMFBDp10 MCS following the p10 promoter (no change in the pH side, same as (B)): 
CATTTTATTTACAATCACTC GACGAAGACTTGATCCATGA AATTCTTAGTCAACGTTGCC CTTGTATCTATGGTCGTATA CATTTCTTACATCTATGCCC 
         j047             BbsI        M   K  F  L  V  N  V  A   L  V  F  M  V  V  Y   I  S  Y  I  Y  A* 
GGGATCGATCCATGGTGCTA GCAGCTGATGCATAGCATGC GGTACCGGGAGATGGGGGAG GCTAACTGAAACACGGAAGG AGACAATACCGGAAGGAACC  
SmaI ClaI NcoI   NheI  PvuII NsiI  SphI    KpnI            j048              HSV tk poly(A) signal 
 

(F) pMHFBDp10 MCS downstream of the p10 promoter (no change in the pH side, same as (B)): 
CATTTTATTTACAATCACTC GACGAAGACTTGATCCATGA AATTCTTAGTCAACGTTGCC CTTGTATCTATGGTCGTATA CATTTCTTACATCTATGCCC 
                          BbsI        M   K  F  L  V  N  V  A   L  V  F  M  V  V  Y   I  S  Y  I  Y  A* 
GGGATCGATCCATGGTGCTA GCAGCTGATGCATAGCATGC GGTACCGGGCCCATCACCAT CACCATCACTAAGTACCGGG AGATGGGGGAGGCTAACTGA 
SmaI ClaI NcoI   NheI  PvuII NsiI  SphI    KpnI  ApaI                                        j048       
R  D  R  S  M                                Y  R  A  H  H  H   H  H  H  * 
 

(G) pMHMHFBD MCS downstream of the PH promoter: 
TTCATACCGTCCCACCATCG GGCGCGGATCCATGAAATTC TTAGTCAACGTTGCCCTTGT ATCTATGGTCGTATACATTT CTTACATCTATGCCGGAATT 
 j023                     BamHI  M  K  F   L  V  N  V  A  L  V   F  M  V  V  Y  I   S  Y  I  Y  A* G  I 
                                                                                                   EcoRI    
CAAAGGCCTACGTCGACGAG CTCACTAGTCGCGGCCGCTT TCGAATCTAGAGCCTGCAGT CTCGAGCATCACCATCACCA TCACTAAGCTTGTCGAGAAG 
    StuI    SalI   SstI  SpeI    NotI     NspV  XbaI    PstI   XhoI   H  H  H  H  H   H  * HindIII 
TACTAGAGGATCATAATCAG CCATACCACATTTGTAGAGG TTTTACTTGCTTTAAAAAAC CTCCCAC 

MCS downstream of the p10 promoter: 
CATTTTATTTACAATCACTC GACGAAGACTTGATCCATGA AATTCTTAGTCAACGTTGCC CTTGTATCTATGGTCGTATA CATTTCTTACATCTATGCCC 
                          BbsI        M   K  F  L  V  N  V  A   L  V  F  M  V  V  Y   I  S  Y  I  Y  A * 
GGGATCGATCCATGGTGCTA GCAGCTGATGCATAGCATGC GGTACCGGGCCCATCACCAT CACCATCACTAAGTACCGGG AGATGGGGGAGGCTAACTGA 
SmaI ClaI NcoI   NheI  PvuII NsiI  SphI    KpnI  ApaI                                        j048       
R  D  R  S  M                                Y  R  A  H  H  H   H  H  H  * 
 

(H) pHF (previously pFH6, modified from pFastBac1, MCS downstream of the pH promoter): 
AAATATTCCGGATTATTCAT ACCGTCCCACCATCGGGCGC GGATCCCGGTCCGAAGCGCG CGGAATTCAAAGGCCTACGT CGACGAGCTCACTAGTCGCG 
            j023                          BamHI Rsr?      BssH?  EcoRI     StuI    SalI   SstI   SpeI   
GCCGCTTTCGAATCTAGAGC CTGCAGTCTCGAGCATCACC ATCACCATCACTAAGCTTGT CGAGAAGTACTAGAGGATCA TAATCAGCCATACCACATTT 
NotI   NspV  XbaI     PstI   XhoI  H  H   H  H  H  H  * Hind?                 SV40 poly(A) signal   j024 
 

(I) pMHF (previously pMFH6, modified from pFastBac1, MCS downstream of the pH promoter):  
AAATATTCCGGATTATTCAT ACCGTCCCACCATCGGGCGC GGATCCATGAAATTCTTAGT CAACGTTGCCCTTGTTTTTA TGGTCGTATACATTTCTTAC 
            j023                          BamHI  M  K  F  L  V   N  V  A   L  V  F  M  V  V  Y  I  S  Y 
ATCTATGCCGGAATTCAAAG GCCTACGTCGACGAGCTCAC TAGTCGCGGCCGCTTTCGAA TCTAGAGCCTGCAGTCTCGA GCATCACCATCACCATCACT 
 I  Y  A* G  I EcoRI StuI   SalI   SstI   SpeI  NotI     NspV   XbaI    PstI   XhoI   H  H  H  H  H  H 
AAGCTTGTCGAGAAGTACTA GAGGATCATAATCAGCCATA CCACATTTGTAGAGGTTTTA 
* Hind?                 SV40 poly(A) signal     j024 
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Fig. 1.  Development of a series of Bac-to-Bac plasmid vectors for protein expression 

in baculovirus-infected insect cells.  Cloning scheme (A); Sequences of the  multiple 

cloning regions of pFastBacDual (B) (Invitrogen Life Technology), pHF/pFH6 (H) (Ji et 

al., 2003) and pMHF/pMFH6 (I) (Lu and Jiang, 2007) are included for comparison; (C-

G): these vectors are useful for co-expressing two associating proteins under the control 

of late promoters (pH and p10) in a single baculovirus. For proteins or domains that lack 

a signal peptide, efficient secretion is expected from the honeybee melittin signal peptide 

fused with the protein(s) of interest. In-frame insertion of the coding sequence(s) allows a 

hexahistidine tag attached to the carboxyl terminus of expressed protein(s) for affinity 

purification. 
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Fig. 2.  Expression analysis of proSPH1 and proSPH2 in baculovirus-infected insect 

cells. Affinity-purified proSPH1, proSPH2 and co-expressed proSPHs were individually 

separated by 10% SDS-PAGE followed by immunoblotting using SPH-1 (A) or SPH-2 

(B) antibodies. The same protein samples were resolved on 7.5% native polyacrylamide 

gels and detected using SPH-2 antibodies (C) or Coomassie blue staining (D). Lanes 1 

and 2, proSPH-1 only; lanes 3 and 4, proSPH-2 only; lanes 5 and 6, both proSPHs. SPH-

2 antibodies weakly recognize SPH-1 (*). 
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Fig. 3.  Isolation of M. sexta proSPH-1 from the baculovirus -infected insect cells.  

(A) 10% SDS-PAGE and silver staining. (B) Immunoblot analysis using SPH-1 first 

antibody and goat-anti-rabbit IgG conjugated to alkaline phosphatase. (C) 7.5% native 

PAGE and silver staining. (D) Analysis of purified proSPH-1 on an HPLC size exclusion 

column. 1, conditioned cell culture medium; 2, proteins eluted from the Q-Sepharose 

column; 3, affinity-purified protein from the Ni-NTA agarose column; M, molecular 

weight markers. 
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Fig. 4.  Isolation of M. sexta proSPH-2 from the baculovirus -infected insect cells.  

(A) 10% SDS-PAGE and silver staining. (B) Immunoblot analysis using SPH-2 first 

antibody and goat-anti-rabbit IgG conjugated to alkaline phosphatase. (C) 7.5% native 

PAGE and silver staining. (D) Analysis of purified proSPH-2 on an HPLC size exclusion 

column. 1, conditioned cell culture medium; 2, proteins eluted from the Q-Sepharose 

column; 3, affinity-purified protein from the Ni-NTA agarose column; M, molecular 

weight markers. 
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Fig. 5.  Processing of the proSPHs by column fractions of the  M. sexta hemolymph 

from larvae injected with bacteria. (A) Processing of proSPH-1 by the hydroxylapatite 

(upper panel, HT) and Sephacryl S-100 (lower panel, GF) column fractions. (B) 

Processing of proSPH-2 by the hydroxylapatite (left panel) and Sephacryl S-100 (right 

panel) column fractions. 
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Fig. 6.  Relationships between proPO activation and co-presence of proSPH-1 and 

proSPH-2 in the activation mixture.  As described in the Methods and material, proPO 

and a column fraction were incubated with proSPH-1, proSPH-2, or both for 60 min. The 

PO activities in the reactions and controls are plotted in the bar graph as mean ± SEM (n 

= 3). 

+ + + +
+ +

+ +
+

+
+

+

+

+

+
+
+

+

+
+

+ + + +

proP
O proSPH-1 

proSPH-2 

HT #18 
GF #52 

+
+
+
+

0

10

20

30

40

50

P
O

 a
ct

iv
it

y 
(U

)



 123 

  

 

 

1 2 3 4 5

0

10

20

30

40

50

60
P

O
 a

ct
iv

it
y 

(U
)

 

 

Fig. 7.  Requirement of processed SPH-1 and SPH-2 both for the auxiliary effect in 

proPO activation.  As described in the Methods and material, proPO and a gel filtration 

column fraction (GF#52) were incubated with proSPH-2 (4) or proSPH-1 (5) for 60 min. 

PO activities in the control group (1, proSPH-1 alone; 2, proSPH-2 alone; 3, proSPH-1 

and proSPH-2 incubated with proPO and GF #52) and treatment group (4, proSPH-1; 5, 

proSPH-2. 

 

 

     



 124 

 

 

 

                              

 

Fig. 8.  Comparison of PO cofactor activity and associate satatus of processed 

proSPHs with SPH1/SPH2 from hemolymph. (A). PO activity assay. proSPH-1 (1 µl, 

120 ng/µl), proSPH-2 (1 µl, 120 ng/µl), GF # 52 (1 µl), and proPO ( 1 µl, 40 ng/µl) were 

incubated on ice for  40 min. Or GF #52 (1 µl), proPO (1 µl, 40 ng/µl), and SPH1/SPH2 

(3 µl, 35 ng/µl) were incubated on ice for 40 min. After the incubation, 150 µl of 

Dopamine (2 mM) was added followed by OD470 reading. Mobility of processed proSPH-

1 (B) and of proSPH-2 (C) on 7.5 % native PAGE detected by proSPH-1 and proSPH-2 

antisera, respectively.  
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Abbreviations:  
 
PO and proPO, phenoloxidase and its precursor; PAP, proPO-activating proteinase; SPH, 

serine proteinase homolog; POI, phenoloxidase inhibitor; DsbC, E. coli protein disulfide 

isomerase; EST, expressed sequence tag; HPLC, high performance liquid 

chromatography; MALDI-TOF, matrix-assisted laser desorption ionization-time of flight; 

IPTG, isopropyl-ß-D-thiogalactopyranoside; NTA, nitriloacetic acid; PAGE, 

polyacrylamide gel electrophoresis; PTU, 1-phenyl-2-thiourea; RT-PCR, reverse 

transcriptase-polymerase chain reaction; SDS, sodium dodecyl sulfate; TFA, 

trifluoroacetic acid; CPC, cetylpyridinium chloride 
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Abstract 

 Insect phenoloxidases generate quinones and other reactive intermediates to 

immobilize and kill invading pathogens and parasites. Due to the presumed cytotoxicity 

of these compounds, phenoloxidase activity and its proteolytic activation have to be 

regulated as a local, transient reaction against nonself in order to minimize damage to the 

host tissues and cells. We identified a Manduca sexta cDNA encoding a polypeptide 

sequence with its carboxyl-terminal 33 residues similar to the housefly phenoloxidase 

inhibitor (POI). The recombinant POI, secreted into the Escherichia coli periplasmic 

space along with its fusion partner DsbC, was released by osmotic shock and isolated by 

nickel affinity chromatography. Following enterokinase digestion and protein separation, 

the POI was purified to near homogeneity in a soluble form which inhibited M. sexta 

phenoloxidase at a high concentration. We then produced the inhibitor using a modified 

baculovirus-insect cell system and isolated the glycoprotein from the conditioned 

medium. Deglycosylation coupled with inhibition assay revealed that O-glycosylation 

only moderately increased its inhibitory activity. While this led us to speculate the role of 

Tyr64 hydroxylation, we were unable to modify the recombinant protein with tyrosine 

hydroxylase or purify M. sexta POI (Tyr64dopa) from the larval plasma. Instead, we 

isolated a low Mr, heat-stable compound which strongly inhibited phenoloxidase. The 

wavelength of maximum absorbance is 257 nm for the inhibitor. These data suggest that 

the down-regulation of phenoloxidase activity in M. sexta is achieved by two 

mechanisms at least. 

Key words: melanization, insect immunity, hemolymph protein, quinone cytotoxicity  
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Introduction 

Tyrosinase-type phenoloxidases (POs) from insects are copper-containing 

enzymes that hydroxylate monophenols to o-diphenols (monophenol, oxygen, 

oxidoreductase, EC1.14.18.1) and oxidize o-diphenols to quinones (o-diphenol, oxygen, 

oxidoreductase, EC1.10.3.1) (Nappi and Christensen, 2005). Reactive quinones generated 

by POs polymerize to form eumelanin. Quinones may also crosslink nucleophilic 

compounds during wound healing and parasite encapsulation (Sugumaran, 1998; 

Lourenco et al., 2005). A recent study in Aedes aegypti suggested an essential role of 

POs in chorion melanization and hardening (Kim et al, 2005). While sclerotized cuticles 

effectively block most pathogens (Ashida and Brey, 1995), this physiochemical barrier is 

penetrated by others. Under such circumstances, melanization is often initiated in the 

plasma to reduce damage caused by the intruders and to impede their development. POs 

may also play a role in hemolymph coagulation, a process closely associated with wound 

healing (Li et al., 2002). A more recent study demonstrated that Drosophila PO was 

unnecessary for the preliminary soft clot formation, but was responsible for the clot 

hardening through crosslinking and melanization (Bidla et al., 2005). 

Due to possible cytotoxicity of quinones generated during melanization, proPO activation 

and PO activity have to be tightly and elaborately regulated (Cerenius and Söderhäll, 

2004). POs are synthesized by hemocytes as inactive zymogens. Upon wounding or 

infection, proPOs are activated via limited proteolysis through a serine proteinase 

cascade. Serpins regulate proPO activation by specific inhibition of the cascade 

components (Kanost et al., 2004). POI was first isolated from the housefly Musca 

domestica (Tsukamoto et al., 1992). It contains 38 amino acid residues stabilized by three 
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disulfide bonds. One of the two tyrosine residues, Tyr32, is hydroxylated to dopa that is 

crucial for its inhibitory activity (Daquinag et al., 1995). Sequence comparison indicated 

the disulfide linkage pattern of POI may be identical to that of ? -conotoxins from snails 

and spiders (Daquinag et al., 1999). M. sexta cuticle contains a high Mr PO inhibitor 

(Sugumaran and Nellaiappan, 2000). The heat- labile glycoprotein may inhibit insect, 

plant and fungal POs by forming detergent-resistant complexes. In addition, M. sexta 

quinone isomerase may form inactive complexes with POs (Sugumaran et al., 2000). The 

inhibition is reciprocal: POs also block the isomerase activities. Here, we report the 

production of M. sexta POI in E. coli and insect cells, and the isolation of a low Mr 

compound with strong inhibitory activity against M. sexta PO and mushroom tyrosinase. 

 

Materials and methods  

Insect rearing and hemolymph collection 

M. sexta eggs were purchased from Carolina Biological Supplies, and larvae were 

reared on an artificial diet (Dunn and Drake, 1983). Hemolymph from the induced larvae 

was collected and stored according to Jiang et al (2003). 

Expression and purification of M. sexta POI in E. coli 

M. sexta POI cDNA (GenBank accession number: BE015616), kindly provided 

by Dr. Robertson at University of Illinois Urbana-Champaign, was amplified using j240 

(5’-AGAGCCCGGGCAATTTGATAAGG-3’) and j241 (5’-

TTGTCGACCTATCCGGAGC-3’). After SrfI and SalI digestion, the amplified cDNA 

fragment was inserted to the same sites in pET40b (Novagen). The resulting plasmid, 
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designated POI/pET40b, was sequenced by the dideoxynucleotide termination method to 

verify the insert and design. 

E. coli BL21(DE3) harboring the expression construct was cultured in 2 liter 

Luria-Bertani medium containing 100 µg/ml ampicillin and induced with 1 mM IPTG 

when A600 reached 0.7. After 4 h, the bacterial cells were harvested by centrifugation at 

5,000×g for 10 min. The pellets were resuspended in 500 ml 20 mM Tris-HCl, 20% 

sucrose, 1 mM EDTA, pH 8.0 and stirred at room temperature for 10 min. Following 

centrifugation at 8,000×g for 10 min, the cells were resuspended in 500 ml ice-cold 5 

mM MgSO4 and stirred at 4°C for 10 min. The periplasmic fraction was separated from 

the debris by centrifugation at 10,000×g for 20 min. 

The recovered supernatant was applied to a 10 ml Ni2+-NTA agarose column 

equilibrated in 20 mM Tris-HCl, pH 8.0 at 1 ml/min. After washing, bound proteins were 

eluted with 30 ml of 250 mM imidazole in the equilibration buffer. The elution fractions 

were pooled and dialyzed against 20 mM Tris-HCl, 20 mM NaCl, 2 mM CaCl2, pH 7.6 

(2.0 L each time for 12 h, twice). Enterokinase (40 U) (Novagen) was added to the 

dialyzed sample for specific cleavage between POI and its fusion partner DsbC. 

Following incubation at room temperature for 12 h with gentle agitation, the reaction 

mixture was loaded onto a Ni2+-NTA column to remove uncleaved fusion protein and 

DsbC. The flow-through fraction was collected and further separated by reverse phase 

HPLC on a C18 column (Bio-Rad). The POI peak was collected and lyophilized. 

Expression and purification of M .sexta POI from insect cells  

The plasmid pFH6 (Ji et al., 2003) was further improved for efficient secretion of 

recombinant proteins using honeybee melittin signal peptide. Briefly, j551 (5’-
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GATCCATGAAATTCTTAGTCAACGTTG CCCTTG 

TTTTTATGGTCGTATACATTTCTTACATCTATGCCGG) and j552 (3’-

GTACTTTAAGAA 

TCAGTTGCAACGGGAACAAAAATACCAGCATATGTAAAGAATGTAGATACGG

CCTT AA) were phosphorylated, annealed, and inserted to the BamHI and EcoRI sites of 

pFH6 to generate pMFH6. Plasmid DNA from the resulting transformants was verified 

by sequence analysis to encode Met-Lys-Phe-Leu-Val-Asn-Val-Ala-Leu-Val-Phe-Met-

Val-Val-Tyr-Ile-Ser-Tyr-Ile-Tyr-Ala*Gly-Ile, where * denotes the signal peptidase 

cleavage site. The POI cDNA was amplified by PCR using j274 (5’-

AGAATTCTAAGGGACGGAGTTGA-3’) and j275 (5’-TCTC 

GAGTCCGGAGCCAGACAC-3’). After T/A cloning and sequence confirmation, the 

cDNA fragment was retrieved by EcoRI-XhoI digestion and inserted to the same sites in 

pMFH6. In vivo transposition of the expression cassette, selection of colonies carrying 

the recombinant bacmid, and isolation of bacmid DNA were performed according to 

manufacturer’s protocols (Invitrogen Life Technologies). The initial viral stock (V0) was 

obtained by transfecting Spodoptera frugiperda Sf21 cells with a DNA–CellFECTIN 

mixture, and its titer was improved through serial infections. The V6 viral stock, 

containing the highest level of baculovirus, was stored at -70°C for further experiments. 

Expression conditions were optimized as described previously (Ji et al., 2003). 

Sf21 cells (800 ml, 2.0×106/ml) in Ultimate Insect serum-free medium (Invitrogen Life 

Technologies) were infected with the recombinant baculovirus at a multiplicity of 

infection of 5 and grown at 27°C for 96 h with gentle agitation (100 rpm). The 

conditioned cell culture medium was recovered after centrifugation at 5,000×g for 10 
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min. Following pH adjustment to 7.4 with 1 M Na2HPO4, the medium was applied onto 

a Ni2+-NTA agarose column (15 ml), equilibrated with 50 mM phosphate buffer, 0.5 M 

NaCl, 10 mM imidazole, pH 7.4. After washing with 90 ml of the same buffer, bound 

proteins were eluted from the column with a linear gradient of 10-500 mM imidazole in 

the phosphate buffer (300 ml). The fractions exhibiting PO inhibitory activity were 

combined and separated by reverse phase HPLC as described above. Protein peaks were 

collected manually for the inhibition assay. The POI fractions were combined, 

lyophilized, and dissolved in 100 µl of 20 mM Tris-HCl, pH 7.5. 

Isolation of a low Mr phenoloxidase inhibitor from M. sexta hemolymph  

The hemolymph from day 3, 5th instar M. sexta larvae injected with a mixture of 

formaldehyde-killed E. coli (3 x 107 cells), M. luteus (30 µg), and curdlan (30 µg) in 50 

µl of H2O (Jiang et al., 2003) was collected into an equal volume of anticoagulation 

buffer (Ma and Kanost, 2000). After incubation in a 70°C water bath for 10 min with 

agitation, the protein sample was chilled on ice and centrifuged at 39,200×g for 20 min. 

The supernatant was applied to a reverse phase HPLC column equilibrated with 5% 

acetonitrile, 0.1% trifluoroacetic acid (TFA). A linear gradient of 5-30% acetonitrile in 

0.1% TFA was applied to the C18 column at a flow rate of 1.0 ml/min for 30 min with 

absorbance monitored at 214 nm. Automatically collected fractions (500 µl/tube) were 

lyophilized and dissolved in 200 µl, 20 mM Tris-HCl, pH 7.5. Fractions with PO 

inhibitory activity were pooled and further separated on the same column using 10% 

methanol as the mobile phase. The collected fractions were lyophilized, dissolved in 20 

mM Tris-HCl, pH 7.5, and used for PO inhibitory activity assay and other analyses. 

Determination of phenoloxidase inhibitory activity  
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To test the recombinant POI, PO was generated by incubating M. sexta proPO 

(1.0 µl, 0.3 µg/µl) with proPO-activating proteinase-1 (PAP-1)(2.0 µl, 30 ng/µl), serine 

proteinase homolog-1 and -2 (SPHs)(2.0 µl, 50 ng/µl), and 20 mM Tris-HCl, pH 7.5 (43 

µl) in a 96-well microtiter plate on ice for 30 min (Jiang et al., 2003). The protein 

inhibitor (2.0 µl, 30, 60, 90, 120, 150, and 180 ng/µl) was then reacted with PO at 0°C for 

10 min prior to PO activity assay (Jiang et al., 2003). To test the low Mr inhibitor, M. 

sexta proPO (3.0 µl, 0.3 µg/µl) or mushroom tyrosinase (3.0 µl, 100 ng/µl) (Sigma) and 

20 mM Tris-HCl, pH 7.5 (46 µl) was mixed with 1.0 µl of the compound at different 

dilutions. The residual activities were measured using dopamine as a substrate (Jiang et 

al., 2003) in the presence (for PO) or absence (for mushroom tyrosinase) of 0.2% 

cetylpyridinium chloride (CPC). 

Trypsin and chymotrypsin digestion of PO inhibitors  

The low Mr inhibitor (3 µl) or recombinant POI (6 µl, 160 ng/µl) from E. coli 

were incubated with 1 µl of trypsin or chymotrypsin (1.0 mg/ml, Sigma) in a total volume 

of 30 µl at 37°C for 8 h. After heating at 100°C for 5 min to inactivate the proteinase, 10 

µl of the reaction mixtures were separately mixed with 40 µl of induced larval plasma 

(1:40 diluted in 20 mM Tris-HCl, pH 7.5). Residual PO activity was determined using 

100 µl, 2 mM dopamine solution containing 0.2% CPC (Jiang et al., 2003). 

2.7 Expression analysis by RT-PCR – The RNA sample (2-4 µg), oligo(dT) (0.5 µg) and 

dNTPs (1 µl, 10 mM each) were mixed with diethylpyrocarbonate-treated H2O in a final 

volume of 12 µl, denatured at 65°C for 5 min, and quickly chilled on ice for 3 min. M-

MLV reverse transcriptase (1 µl, 200 U/µl, Invitrogen), 5×buffer (4 µl), 0.1 M 

dithiothreitol (2 µl), and RNase OUT (1 µl, 40 U/µl, Invitrogen) were added to the 
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denatured RNA sample (12 µl) for cDNA synthesis at 37°C for 50 min. The M. sexta 

ribosomal protein S3 mRNA was used as an internal control to normalize the cDNA 

samples in a PCR using primers 501 (5'-GCCGTTCTTGCCCTGTT-3') and 504 (5'-

CGCGAGTTGACTTCGGT-3'). POI cDNA fragment was amplified using j218 (5’-

AGAAACTTGATAAGGGACG-3’) and j219 (5’-

ACCTTATTAACCGGAGCCAGACACG-3’) under the conditions empirically chosen to 

avoid saturation. The cycling conditions were 25, 30 or 35 cycles of 94°C for 30 s; 55°C 

for 30 s; 72°C for 30 s. The relative cDNA levels of POI in the normalized samples were 

determined by 1% agarose gel electrophoresis. 

Results 

Expression and purification of M. sexta POI in E. coli  

M. sexta POI cDNA was isolated from a male antennal library in an EST project 

(Robertson et al., 1999). The 572-nucleotide DNA includes a complete open reading 

frame encoding an 88-residue polypeptide. Following the putative signal peptide, the 

mature protein is composed of 73 amino acid residues (Fig. 1). While there is no N-

linked glycosylation site in the sequence, M. sexta POI is predicted to be modified at 

Ser11 (Gupta et al., 1999). Multiple sequence alignment indicated that residues 1-40 of 

the molecule do not align with its homologs from the other insects. The remaining part of 

M. sexta POI is 33~58% identical in sequence to equivalent regions in the other proteins. 

This includes six absolutely conserved cysteine residues involved in disulfide bond 

formation. As determined in Musca domestica POI (Daquinag et al., 1999), the same 

disulfide linkage pattern (Cys1-Cys4, Cys2-Cys5, and Cys3-Cys6) may also exist in the 

other proteins to stabilize a common three dimensional structure. Among the highly 
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conserved residues (Gly47, His53, Asp55, Ser58, Leu62, Tyr64, Lys67 and Val69 in M. 

sexta POI), Tyr64 may directly interact with the reactive center of its target enzyme, 

tyrosinase-type phenoloxidases. In the housefly POI, this residue was hydroxylated to 

become dopa (Daquinag et al., 1995). 

For functional analyses, we produced M. sexta POI as a soluble fusion protein 

using an E. coli expression system. Since the reducing environment of cytoplasm may 

affect disulfide bond formation, folding and protein association, we selected pET40 as the 

expression vector for producing M. sexta POI. The fusion partner, DsbC, led the nascent 

polypeptide to the more oxidative periplasmic space of E. coli and catalyzed 

isomerization of incorrectly paired Cys residues. Osmotic shock was then applied to 

release the recombinant protein as well as other periplasmic enzymes. Using the S-tag 

and 8xHis-tag encoded by the plasmid, we detected and purified the soluble fusion 

protein by affinity chromatography (Fig. 2). After specific proteolytic digestion at the 

enterokinase cleavage site, the uncleaved protein and tagged fusion partner were removed 

by Ni2+-NTA agarose, whereas the liberated POI was further purified by reverse phase 

HPLC. From 1 liter of the E. coli culture, we obtained approximately 130 µg POI. 

Automated Edman degradation indicated that its first seven amino acid residues (Ser-Pro-

Gly-Asn-Leu-Ile-Arg) were the same as the original design. MALDI mass spectrometry 

showed that the purified protein had a molecular mass was 8,197.5 Da, 6.7 units smaller 

than the theoretical value (8204.3 Da) of the recombinant protein 

(SPGNLIR…RCVSGSG). This suggested that the six cysteine residues formed three 

disulfide bonds and led to the decrease of 6.0 Da. The inhibitory activity of M. sexta POI 

further confirmed the correct Cys pairing and protein folding (Fig. 3). 
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We further tested whether or not the recombinant protein affects the cleavage 

activation of proPO. There was little difference in the extent of proPO proteolysis (Fig. 

3), suggesting tha t the reduction of PO activity was caused by inhibition of PO activity 

rather than proPO activation. Nevertheless, the recombinant protein produced in E. coli 

did not effectively block PO activity: under the experimental conditions, 3.8 µg/ml of 

POI or a POI:PO molar ratio of =6:1 was required to inhibit 50% of the total activity (Fig. 

3). The concentration-dependent inhibition fits well with the one-phase exponential decay 

(r2 = 0.97), suggesting that PO and POI associated loosely. 

Expression and purification of M sexta POI from the insect cells   

To examine if the lack of O-glycosylation had led to the low inhibitory activity, 

we produced M. sexta POI in baculovirus- infected Sf21 cells. We first incorporated a 

synthetic DNA fragment encoding honeybee melittin signal peptide into pFH6, a 

modified pFastBac1 containing a coding region for the 6xHis affinity tag in the carboxyl 

terminus (Ji et al., 2003). Then, the amplified POI cDNA was inserted to pMHF6, 

yielding POI/pMFH6 and respective baculovirus. From Sf21 cells infected by the virus, 

the recombinant POI was successfully secreted to the medium and reached a low 

concentration (~50 µg/L) at 96 h. After affinity chromatography, the active fractions were 

pooled and further separated by reverse phase HPLC (Fig. 4). The first two protein peaks 

were pure POI and we obtained approximately 25 µg M. sexta POI from one liter of the 

conditioned medium. 

The molecular mass of POI in peak-1 was determined to be 10,684 Da, larger than 

the calculated value of the 6×His tagged protein (8,971 Da). The major mass difference 

of 1,713 Da was probably due to O-linked glycosylation at Ser11. Consistent with that, 
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O-glycosidase treatment of the POI resulted in an increase in the electrophoretic mobility 

on the SDS-polyacrylamide gel (Fig. 5). There was a reduction in the PO inhibitory 

activity accompanied by the removal of sugar moiety. Since the activity decrease was not 

significant and POI from E. coli had a high IC50 of 1.2 (3.8?) µg/ml (Fig. 2), the 

glycosylated POI (presumably very similar to that in M. sexta plasma) does not appear to 

be an effective regulator of PO activity, unless a critical modification is present in the 

plasma protein but not in the recombinant ones. 

Isolation of a low Mr PO inhibitor  

Because the housefly POI contained a dopa at the position equivalent to Tyr64, 

we tested if recombinant tyrosine hydroxylase (a kind gift from Dr. Gorman at Kansas 

State University) could hydroxylate POI and significantly elevate its activity. Mass 

spectrometry did not show any mass increase, suggesting that POI was not modified by 

the hydroxylase. We then attempted but failed to directly isolate POI from the M. sexta 

hemolymph, partly because antibodies against the recombinant protein from E. coli did 

not react well with the plasma protein. Finally, we employed the PO inhibition assay to 

monitor the purification, hoping that the antibodies would better recognize POI after a 

few fractionation steps. While the target protein was still undetected, we discovered a 

strong activity against PO and mushroom tyrosinase (Fig. 6). After we separated the 

active fraction by SDS-PAGE in Tris-Gly-SDS or Tris-Tricine-SDS buffer, there was no 

band visualized by Coomassie blue or silver staining. Neither did mass analysis reveal 

any peak with a molecular mass greater than 500 Da. We suspected that this activity 

came from a small Mr compound hidden in the matrix peaks. To further characterize the 

inhibitory activity, we separated the pooled active fraction by reverse phase HPLC on the 
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C18 column using 10% methanol as the mobile phase. While three absorbance peaks 

were detected, the third one demonstrated a strong inhibitory activity – PO activity 

decreased from 15.2 to 0.4 U (data not shown?). We further characterized this potent PO 

inhibitor by proteolysis: trypsin or chymotrypsin digestion did not abolish its inhibitory 

activity (Fig. 6). On the contrary, the recombinant POI lo st its activity after the same 

treatment. UV spectroscopy revealed a broad peak with a maximum absorption at 257 

nm. Consistent with our speculation, this heat-stable colorless compound did not show a 

significant absorption at 214 or 280 nm, typical for proteinaceous samples. 

Expression profile analysis of M. sexta POI by RT-PCR   

In order to test whether or not POI transcription is up-regulated after an immune 

challenge, we analyzed total RNA samples of hemocytes and fat body from M. sexta 

larvae injected with water or a mixture of microorganisms. POI mRNA was undetected in 

the hemocyte samples, whereas amplification of the induced fat body cDNA yielded a 

major PCR product at the expected size. The band intensity was much higher than that of 

the control (Fig. 7). We also inspected the POI mRNA levels in fat body at different 

developmental stages and found the transcripts were present in fat body from day 3, 4th 

instar. The mRNA level declined in the 5th instar and resurged at the early wandering 

stage. After a decrease in the rest of wandering stage, POI transcript level gradually 

increased in the pupae. 

Discussion 

Insect POs are likely involved in melanotic encapsulation, wound healing, and 

hemolymph coagulation. Their proteolytic activation is under strict regulation, mainly by 

serine proteinase inhibitors of the serpin family (Kanost et al., 2004). Active POs are also 
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regulated by different means (Sugumaran, 2002; Tsukamoto et al., 1992). Based on the 

sequence similarity, we identified a potential POI from M. sexta and produced it in E. 

coli for activity analysis (Fig. 1). To ensure formation of the correct disulfide bonds, we 

expressed the POI as a fusion protein with DsbC, which acts as a chaperone to improve 

the folding of proteins with complex disulfide linkages (Jurado et al., 2002; Maskos et al., 

2003). We then raised a rabbit polyclonal antiserum against the purified POI that 

inhibited M. sexta PO (Fig. 2 and Fig. 3). However, the antiserum failed to detect the 

natural protein from M. sexta, suggesting that the hemolymph POI was present at a low 

concentration and/or in a considerably modified form. 

Hence, we expressed the POI in Sf21 cells in order to test the role of 

glycosylation and to obtain sufficient amount of the glycoprotein for preparing another 

polyclonal antiserum. The yield of recombinant POI in insect cells was low (25 µg/L) and 

the protein differed in glycosylation extent (Fig. 4 and unpublished results). Upon 

removal of the carbohydrate moiety, the PO inhibitory activity decreased (Fig. 5), 

implying that the glycosylation enhances the interaction between PO and POI. 

At its estimated concentration in the larval hemolymph, even the glycosylated POI is not 

expected to play a major role in the regulation of PO. This is consistent with the finding 

that POI knockdown did not lead to a faster or more extensive melanization of Sephadex 

beads injected to the mosquitoes (Shi et al., 2006). To test if a posttranslational 

modification (e.g. Try64 to dopa) occurring in vivo could greatly enhance its inhibitory 

activity, we attempted but failed to isolate the natural POI from the M. sexta hemolymph 

for structural and activity comparison. 
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Instead, we isolated a low Mr compound with potent inhibitory activity against 

the PO and mushroom tyrosinase (Fig. 6). Based on the initial results, we suggest that this 

compound contains a phenyl ring which strongly absorbs at 250-260 nm. Further 

chemical analyses are largely limited by the sample quantity. Despite an unknown 

structure, the compound represents the first endogenous low Mr PO inhibitor isolated 

from an insect. Previous study showed that POs from Coleopteran and Lepidopteran 

insects were strongly inhibited by a fungi metabolite (Dowd, 1999). Produced by the 

entomopathogens Aspergillus and Penicillium species, kojic acid blocks the PO activities 

and protects the fungi from the host defense response. In contrast, the small inhibitor 

described herein perhaps minimizes damage of PO-generated compounds to host 

tissues/cells. 
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A  1 ACAGAATCCGTTAGTGGTAAACTGTATTCGACCACAATGTCTCGTGTTTGCATGTTGTTC 
 -13                                                     M  L  F 
  61 TTTTGCATCGTGTTTGTATACGCGAGTGGCAATTTGATAAGGGACGGAGTTGATGACCCG 
 -10  F  C  I  V  F  V  Y  A  S  G  N  L  I  R  D  G  V  D  D  P 
 121 TCAGTGACAACAAAGGAAATTGTTGTGCCTAAAGATGTCGAAGATCTAGACCCGATTCCT 
  11  S¦  V  T  T  K  E  I  V  V  P  K  D  V  E  D  L  D  P  I  P   
 181 GTTGTGGAACCGCAGATTGAAACTACGACGAAGAAATGTGGTGAAATTGGCGAATTTTGC 
  31  V  V  E  P  Q  I  E  T  T  T  K  K  C  G  E  I  G  E  F  C 
 241 ACGTACCACACACAATGCTGCAGCAACGCTTGCCTCGGCTACATGCGGAGATGCGTGTCT 
  51  T  Y  H  T  Q  C  C  S  N  A  C  L  G  Y  M  R  R  C  V  S 
 301 GGCTCCGGATAGAAAACACTTATTTCTTATTACTTTTTAGTTAAAAAAAAAACATTATTT 
  71  G  S  G  * 
 361 ATTAATTTTACGAATTGGATGTATCGGATGGTCCATGTGTGTCAAGTCAGGCGGGTTCGC 
 421 GGCGAACTCCATGATCTCTTTCATAGCACCTTCGGAAATTCTCCATAGTTCTGGATAGTC 
 481 CCTTTTGAAATCATTGTACCATTTGTGTATCTGGAAAAGAAATAAAAATATATTTTTA35 
 
B 
               1      2     34   5  + +   6 
    Ms       KKCGEIGEFCTYHTQCCSNACLG¦Y¦MRRCVSGSG 
    Bm       EECFQIGHSCTNHKDCCTNACLG¦Y¦AKKCVSGSG 
    Md       PQCLANGSKCYSHDVCCTKRCHN¦Y¦AKKCVT--- 
    Ag       GRCKAIGDSCTRHENCCSSNCHS¦Y¦RGKCVT--- 
    Aa1      KQCAVVGEGCSRQEDCCSMRCHS¦Y¦RRKCVT--- 
    He       VDCLKPGQFCMNHKDCCSNACLF¦Y¦LKKCVGLF 
    Dm1      QKCSPVFGNCNMHTDCCSGKCLT¦Y¦GSRCGY--- 
    Dm2      PYCQPSGGYCKSHADCCSTMCLT¦Q¦LGQCSP--- 
    Aa2      KTCAKNGEYCLTAADCCSRSCLS¦F¦SYKCVQNYD 
    Af       KQCAQNNEYCLTHRDCCSGSCLS¦F¦SYKCVP--- 
 consensus   --C---g--C--h-dCCs--Cl-¦y¦--kCv---- 
                                    + +         

 

 

Fig. 1 M. sexta POI and its comparison with homologous sequences from other 

insects.   

(A) cDNA and deduced amino acid sequence. The predicted signal peptide is underlined, 

and the O- linked glycosylation site is marked “¦ ”. Shaded Tyr64 corresponds to dopa32 in 

the housefly POI, which is considered to be critical for its activity. (B) Alignment of the 

disulfide-knotted regions in homologous molecules. Ms, M. sexta (BE015616); Bm, 

Bombyx mori (BY939736); Md, M. domestica (AAB33998); Ag, Anopheles gambiae 

(CD747521); Aa1 and 2, Aedes aegypti (EB099073 and EB102275, respectively); He, 

Heliconius ethilla (DT668523.3); Dm1 and 2, Drosophila melanogaster (BK002735 and 

BK002734, respectively). Six Cys residues that form three disulfide bonds (Cys1-Cys4, 

Cys2-Cys5, and Cys3-Cys6) in M. domestica POI (Daquinag et al., 1999) are conserved in 

all of the sequences. The highly similar residues (Gly, His, Asp, Ser, Leu, Tyr, Lys, Val) 

are shaded, and the conserved Tyr is boxed. 
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Fig. 2  Isolation of M. sexta POI from E. coli.   

(A) SDS-PAGE and immunoblot analysis of the DsbC-POI fusion protein in the 

periplasmic extract (lane 1), Ni-NTA elution fractions (lane 2) and enterokinase digest 

(lane 3). Left panel,  silver staining; right panel, immunoblot analysis using S-protein 

antibodies. Positions and sizes of the Mr markers are indicated. The fusion protein and 

DsbC are marked by arrows. (B) Purification of recombinant POI by reverse phase HPLC 

on a Bio-Rad Hi-Pore RP-318 column. Flow rate: 1.0 ml/min; buffer A: 0.1% TFA in 5% 

acetonitrile; buffer B: 0.1% TFA in 95% acetonitrile; gradient: 0-75% B in 75 min; UV 

detection: 214 nm. 
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Fig. 3 Inhibition of M. sexta PO by recombinant POI from E. coli.  

(A) Concentration-dependent inhibition by the purified protein. (B) Effect of POI on 

proPO activation. Lane 1, proPO (with a small amount of PO cleaved after prolonged 

storage); lane 2, PO activated by PAP-2 and SPHs; lane 3, PO activated by PAP-2 and 

SPHs in the presence of recombinant POI (60 ng/µl). 
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Fig. 4  Purification of recombinant POI produced in baculovirus-infected Sf21 cells. 

The recombinant  POI from insect cells were enriched and purified by affinity 

chromatography on a Ni-NTA column. As described in Fig. 1, eluted proteins were 

further separated by reverse phase HPLC (A). The gradient was 0-40% B in 40 minutes. 

(B) Inhibitory activity. 
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Fig. 5  Detection of O-linked glycosylation in M. sexta POI from Sf21 cells.  

(A) SDS-PAGE analysis of the recombinant POI before (lane 1) and after (lane 2) 

deglycosylation. (B) Effect of glycosylation on POI activity. 1, purified POI; 2, purified 

POI treated with O-glycosidase; 3 and 4, O-glycosidase and buffer controls. 
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Fig. 6  Isolation of a low Mr PO inhibitor from the larval hemolymph.  

(A) Elution profile. Column: Bio-Rad Hi-Pore reverse phase column RP-318; flow 

rate: 1.0 ml/min; mobile phase: 10 % methanol; UV detection: 214 nm. (B) 

Inhibition of mushroom tyrosinase (left axis, ?  - -  ?) and M. sexta PO (right 

axis, ?  - - ?) by the low Mr compound. (C) Effect of proteinase treatment on the 
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recombinant POI and low Mr inhibitor. (D) UV absorption spectrum. The low Mr 

inhibitor was scanned between 210 and 300 nm on a Beckman DU-520 UV/vis 

spectrophotometer using pH 7.5, 20 mM Tris-HCl as blank. 
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Fig. 7  Expression profiles of M. sexta POI in fat body at different immune states or 

development stages.  

(A) CF and CH, fat body and hemocytes from the naïve larvae; IF and IH, fat body and 

hemocytes from the larvae injected with bacteria 24 h before. (B) 4e, 4th instar day 1; 4m, 

4th instar day 3; 4l, 4th instar day 5; 5e, 5th instar day 1, 5m, 5th instar day 3; 5l, 5th instar 

day 5, We,  Wm and Wl, early, middle and late wandering stage; Pe,  Pm and Pl: early, 

middle and late pupal stage. 
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Abstract 

Most parasitic wasps inject maternal factors into the host hemocoel to suppress 

the host immune system and ensure successful development of their progeny.  

Melanization is one of the insect defence mechanisms against intruding pathogens or 

parasites.  We previously isolated from the venom of Cotesia rubecula a 50 kDa protein 

that blocked melanization in the hemolymph of its host, Pieris rapae (Asgari et al, 2003).  

This protein, designated Vn50, is a serine proteinase homolog (SPH) containing an 

amino-terminal clip domain.  In this work, we demonstrated that recombinant Vn50 

bound P. rapae hemolymph components that were recognized by antisera to Tenebrio 

molitor prophenoloxidase (proPO) and Manduca sexta proPO-activating proteinase 

(PAP).  Vn50 is stable in the host hemolymph – it remained intact for at least 72 h after 

parasitization.  Using M. sexta as a model system, we found that Vn50 efficiently down-

regulated proPO activation mediated by M. sexta PAP-1, SPH-1, and SPH-2.  Vn50 did 

not inhibit active phenoloxidase (PO) or PAP-1, but it significantly reduced the 

proteolysis of proPO.  If recombinant Vn50 binds P. rapae proPO and PAP (as suggested 

by the antibody reactions), it is likely that the molecular interactions among M. sexta 

proPO, PAP-1, and SPHs were impaired by this venom protein.  A similar strategy might 

be employed by C. rubecula to negatively impact the proPO activation reaction in its 

natural host. 
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Abbreviations:  

PAGE, polyacrylamide gel electrophoresis; proPO and PO, prophenoloxidase and 

phenoloxidase; PAP, proPO-activating proteinase; SPH, serine proteinase homolog; 

PDV, polydnavirus; SDS, sodium dodecyl sulfate; TBS, Tris buffered saline; PBS, 

phosphate buffered saline; PTU, 1-phenyl-2-thiourea. 
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Introduction 

Introduction of maternal factors into the body cavity of their host insects is a 

common strategy evolved in endoparasitic wasps to manipulate host physiology for their 

own benefits.  These include viruses or virus- like particles, such as polydnaviruses 

(PDVs), and venom fluid.  PDVs, produced in the calyx region of the female 

reproductive organ, are essential for successful development of the parasitoids inside the 

host (Edson et al., 1981; Fleming and Summers, 1991).  They disrupt the host cellular 

immune system and inhibit formation of hemocyte capsules around the parasitoid eggs.  

PDVs are accompanied by venom proteins in most parasitoid-host systems, and in some 

cases are only effective when injected together with venom.  Venom proteins are 

probably involved in uncoating of PDVs in vitro and virus persistence in vivo (Stoltz et 

al., 1988).  In many instances, it has been shown that venom enhances the effects of 

PDVs (Kitano, 1986; Tanaka, 1987) or might provide protection for the eggs during the 

period between oviposition and expression of PDV genes (Webb and Luckhart, 1994).  In 

addition to their synergistic effects together with PDVs, venom components affect host 

physiology and development (Digilio et al., 2000; Gupta and Ferkovich, 1998).  In other 

endoparasitoids that do not produce PDVs, venom becomes the only factor in suppression 

or regulation of the host immune system (Richards and Parkinson, 2000). 

Inhibition of melanization following parasitism has been reported from several 

systems.  Melanin formation involves the proteolytic activation of proPO, which leads to 

the generation of melanin and other toxic phenolic compounds.  This reaction is 

considered as a vital defence mechanism mounted against intruding organisms (Ashida 

and Brey, 1998; Vass and Nappi, 2000).  This process is impaired to various extents in 
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several host-parasitoid systems.  However, the molecular mechanism behind this 

suppression is unknown.  In a recent study, we isolated a 50 kDa protein from the venom 

of C. rubecula, a Braconid parasitic wasp, which blocked hemolymph melanization of its 

host, P. rapae (Asgari et al., 2003).  This protein is similar in sequence and domain 

structure to SPHs from various insects (Kwon et al., 1999; Lee et al., 2002; Yu et al., 

2003).  Many SPHs consist of a clip domain at the amino terminus and a serine 

proteinase- like domain at the carboxyl terminus (Ross et al., 2003).  Since the residues 

essential for catalytic activity are missing in these proteins, SPHs do not have proteolytic 

activity.  Recent study indicated that M. sexta SPH-1 and SPH-2 mediate proPO 

activation in conjunction with other components from the hemolymph (Yu et al., 2003).  

Although cleaved, their clip and proteinase-like domains remain attached by an interchain 

disulfide bond. 

In this complementary study, we show that Vn50 is not cleaved after introduction 

into the host hemolymph and is stable for a long period of time after parasitization.  The 

recombinant Vn50 may specifically interact with proPO and PAP in P. rapae 

hemolymph.  Vn50 reduces proteolytic activation of proPO by interfering with the 

molecular interactions among M. sexta proPO, PAP-1, SPH-1, and SPH-2. 

Materials and methods  
 
Insects and isolation of hemolymph 

 

The parasitoid C. rubecula and its host P. rapae were maintained at 25°C on a 

14h light:10h dark photoperiod.  P. rapae larvae were reared on cabbage plants.  Adult 

wasps were fed with honey-water solution.  Hemolymph (ca. 80µl) was collected from 
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five 4th instar P. rapae larvae by surface sterilizing in 70% ethanol and bleeding from a 

proleg into ice-cold phosphate buffered saline (PBS, 200µl) containing a few crystals of 

1-phenyl-2-thiourea (PTU).  To obtain the plasma, hemolymph was centrifuged at 800 × 

g for 5 min and the supernatant was transferred into a fresh tube. 

Preparation of C. rubecula Vn50, M. sexta proPO, PAP-1, and SPHs 

Venom proteins were isolated from the female wasps and fractionated by reversed 

phase HPLC to purify Vn50 (Asgari et al., 2003).  Recombinant Vn50 was expressed in 

E. coli as an insoluble protein and purified by nickel affinity chromatography under the 

denaturing conditions.  M. sexta proPO was isolated from the larval hemolymph as 

described previously (Jiang et al., 1997).  Activated recombinant PAP-1 (Yu et al., 2003) 

was separated from other proteins under the conditions used for proPAP-1 purification 

(Wang et al., 2001).  M. sexta SPH-1 and SPH-2, which co-purified with immulectin-2, 

were purified from hemolymph of bacteria- induced insects according to Yu et al (2003). 

Production of anti-Vn50 antibodies 

Purified recombinant Vn50 expressed in Escherichia coli (Asgari et al., 2003) 

was run on preparative 10% SDS-PAGE gels, stained in 0.05% Coomassie blue R-

250 prepared in H2O, and destained with several changes of distilled water.  Vn50 

corresponding band was excised from the gels, squashed into fine pieces in PBS, and 

injected into a rabbit (ca. 5 µg/injection).  Two subsequent booster injections were 

carried out in 2-week intervals, four weeks after the initial injection.  The first and 

booster injections contained complete and incomplete Freud’s adjuvants, respectively.  

Serum was obtained one week after the last injection.  Production of anti-Vn50 
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antibodies was confirmed by Western blots containing the recombinant Vn50 and the 

total venom from C. rubecula using 1:5000 dilution of the antiserum. 

     Stability of C. rubecula Vn50 in P. rapae hemolymph 

 Hemolymph was collected from third instar P. rapae larvae (ca. 20 µl) at various 

times following parasitization by C. rubecula, as described above.  Samples were 

analyzed by Western blot analysis using anti-Vn50 antibodies. 

      Identification of hemolymph proteins bound to Vn50 

Binding of P. rapae hemolymph proteins to Vn50 was examined as described 

previously with minor modifications (Yu et al., 2003).  Briefly, washed Ni-NTA 

agarose beads (Qiagen, 0.1 ml) were coated with renatured 6xHis-tagged recombinant 

Vn50 or bovine serum albumin (BSA) in Tris buffered saline (TBS) for 60 min at 

room temperature.  Beads were washed with TBS to remove unbound proteins and 

incubated with 0.5 ml plasma-PBS containing PTU from four P. rapae larvae.  The 

incubation was carried out at room temperature for 1 h with shaking.  After washing 

with TBS, nonspecifically bound proteins were eluted with 1.0 M NaCl.  SDS sample 

buffer was then added to the resuspended beads in TBS and treated at 95°C for 5 min.  

After centrifugation, the supernatant was subjected to 12% SDS-PAGE (Laemmli, 

1970) and immunoblot analysis.  Blots were probed with various antiserum against C. 

rubecula Vn50 (1:5000 dilution) (Asgari et al., 2003), M. sexta PAP-1 (1:2000 

dilution) (Wang et al., 2001), or Tenebrio molitor proPO (1:2000 dilution) (a kind gift 

from Prof. Bok Lee at Pusan National University, Korea).  Alkaline phosphatase-

conjugated anti-rabbit IgGs (Sigma) were used as secondary antibodies. 
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     Quantification of Vn50 injected into P. rapae larvae 

Comparative Western blot analysis was used to determine the amount of Vn50 

injected into a host larva at various times after parasitization.  Three larvae were used 

for each time point.  Recombinant Vn50 was produced in bacteria and purified as 

described (Asgari et al., 2003).  The recombinant protein concentration was measured 

using Bio-Rad Protein Assay based on the method of Bradford.  Cell- free hemolymph 

(see above) was collected from the parasitized larvae, and a fixed volume of 20 µl of 

each sample was run on Western blots together with known concentrations of 

recombinant Vn50.  Intensity of bands was compared to estimate the amount of Vn50 

injected into the caterpillars. 

Down regulation of M. sexta proPO activation by C. rubecula Vn50 

 

M. sexta proPO (10 :l, 10 ng/:l), PAP-1 (2 :l, 30 ng/:l), and SPHs (2 :l, 50 

ng/:l) were mixed with 10 :l of reaction buffer (20 mM Tris-HCl, pH 7.5) in the wells 

of a flat-bottom microtiter plate.  After 2 :l of Vn50 at different concentrations was 

added to the wells, the reaction mixtures were incubated on ice for 40 min.  PO activity 

was measured using dopamine as the substrate and a microplate reader (Jiang et al., 

2003). 

To examine a possible effect of C. rubecula Vn50 on PO activity, M. sexta 

proPO, PAP-1, SPHs, and buffer were incubated in the wells of a microplate for 40 min 

on ice as described above.  After 2 :l of Vn50 (12 ng/:l) or buffer (20 mM Tris-HCl, pH 

7.5) was added, PO activity in the reaction mixtures was determined 10 min later (Jiang 

et al., 2003). 
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To test if C. rubecula Vn50 directly inhibits a PAP, M. sexta PAP-1 (5 :l, 30 

ng/:l) was incubated with Vn50 (2 :l, 10 ng/:l) or buffer (2 :l) on ice for 10 min.  The 

amidase activity of PAP-1 was measured using acetyl-Ile-Glu-Ala-Arg-pNA as a 

substrate (Jiang et al., 2003). 

Effect of C. rubecula Vn50 on proPO cleavage 

For understanding how Vn50 may affect proPO cleavage, proPO activation was 

performed in the absence or presence of Vn50 (2 :l, 5 ng/:l) under the conditions 

described above.  After incubation on ice for 40 min, 10 :l of the reaction mixtures as 

well as the negative controls were subjected to Western blot analysis using 1:2000 diluted 

proPO antiserum as the first antibody. 

Results and discussion 

In our previous paper (Asgari et al., 2003), we showed that the most abundant 

component in C. rubecula venom was a 50 kDa protein (Vn50), which is similar in 

sequence to arthropod SPHs and inhibits melanization of hemolymph from the host P. 

rapae.  Many of these proteins consist of two domains: an amino-terminal clip domain 

and a carboxyl-terminal proteinase- like domain (Ross et al., 2003).  Like many clip-

domain serine proteinases from arthropods (Jiang and Kanost, 2000), M. sexta SPH-1 and 

SPH-2, as well as Holotrichia diomphalia proPO-activating factor II, are cleaved at a 

certain position but the two domains remain attached by a disulfide bond (Kwon et al., 

1999; Lee et al., 2002; Yu et al., 2003).  These three SPHs function as co-factors for 

PAPs.  Because the conserved Ser residue at the active site of their proteinase- like 

domains is changed to Gly or other residues, all SPHs (including Vn50) are not expected 

to have any proteolytic activity. 
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Status of Vn50 in the host hemolymph following parasitization 

The clip-domain serine proteinases are produced as zymogens and cleaved at a 

specific location between the clip domain and the proteolytic domain (Jiang and Kanost, 

2000).  The cleavage is necessary for activation of these enzymes.  Clip-domain SPHs, 

with a similar domain structure, were also cleaved (Yu et al., 2003, Lee et al., 2002).  

Assuming that the cleavage is also necessary for SPHs to exert their function as 

enhancers/mediators for proPO activation, we investigated the status of Vn50 after it was 

injected into the host hemolymph to block melanization.  At 2 h after parasitization with 

C. rubecula, we analysed the plasma sample from P. rapae larvae by SDS-PAGE and 

Western blotting under reducing and non-reducing conditions.  A 50 kDa 

immunoreactive band was detected in the parasitized hemolymph and positive control of 

venom, but not in the non-parasitized hemolymph (Fig. 1).  There was only a small size 

difference in Vn50 under the two conditions.  The predicted molecular mass for secreted 

Vn50, based on its deduced amino acid sequence, is 40.6 kDa.  The difference between 

the calculated and observed sizes has been shown to be due to glycosylation (Asgari et 

al., 2003).  Based on the other SPHs which were characterized biochemically, we predict 

that the conserved cleavage site in Vn50 would be located after Arg127 residue.  In other 

words, if the protein is cleaved, it should result in an 11.8 kDa clip domain and a 28.9 

kDa proteinase-like domain under the reducing conditions.  Our observation, however, 

indicates that Vn50 remained intact even in the presence of ß-mercaptoethanol.  In fact, 

the protein ran slightly slower under this condition than under the non-reducing 

conditions.  The change in electrophoretic mobility is likely caused by the breakdown of 

intramolecular disulfide bonds (Fig. 1).  As a control, venom fluid was analysed under 
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the same conditions and found to be ident ical to the samples from the cell- free 

hemolymph in terms of the sizes of the immunoreactive bands. 

We demonstrated that intact Vn50 suppresses the melanization reaction in the 

host hemolymph (Asgari et al., 2003).  To maintain this status, Vn50 must remain at a 

certain level in the circulation as an uncleaved proSPH until the host immune system is 

suppressed by other maternal components such as the PDVs.  Therefore, we analysed the 

persistence of Vn50 in the host hemolymph after parasitization.  In our ana lysis in which 

we analysed plasma samples from P. rapae larvae up to 96 h after parasitization under 

reducing condition, the intact protein was still detected at a significant level at 72 h 

following parasitization (Fig. 2; see 3.3).  The low turnover indicates that Vn50 could be 

resistant to degradation by host proteinases.  Under this condition, the developing 

parasitoid eggs are protected from melanotic encapsulation for a prolonged period of 

time. 

While Vn50 is maintained in an active form to block melanization, it is not clear how 

this proSPH exerts its function.  Detection of Vn50-binding proteins in the host 

hemolymph could provide some useful cues on its mode of action. 

Identification of plasma proteins bound to Vn50 

In a model that was recently proposed based on experimental evidence, SPHs 

mediate proPO activation by directly interacting with proPO, PAP-1, and immulectin-2 

(Yu et al., 2003).  Although the exact mechanism is not understood, two scenarios were 

envisaged: 1) SPHs bring proPO into a correct spatial orientation or 2) the interaction 

among the proteins might confer a conformational change in proPO to facilitate its 

activation by the PAP.  To find out whether proPO and PAP in P. rapae hemolymph 
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interact with Vn50, recombinant 6×His-tagged Vn50 was used to coat nickel agarose 

beads.  After incubation with the plasma, washing, and elution with high salt buffer, 

proteins bound to the beads were separated by SDS-PAGE and subjected to Western blot 

analysis.  Two immunoreactive bands, recognized by the antibodies against M. sexta 

PAP-1, may represent P. rapae proPAP (46 kDa) and its catalytic domain (35 kDa) (Fig. 

3).  Similarly, the antibodies against T. molitor proPO reacted with two Vn50-binding 

proteins at 90 and 62 kDa.  Based on the typical size of insect proPO, we suggest that 

they may correspond to zymogen and a cleaved form of proPO in P. rapae hemolymph.  

The antibodies also recognized the respective proteins in P. rapae hemolymph, 

confirming that proteins bound to the beads came from the larval hemolymph.  Similar 

observations were made in M. sexta SPH-1, whose proteinase-like domain binds to 

proPO, PAP-1, and immulectin-2 (Yu et al., 2003).  In the negative control, none of these 

proteins bound to BSA-coated nickel agarose beads (Fig. 3).  These results suggest that 

Vn50 may interact with one or more of proteins involved in melanization.  Further 

experiments are needed to examine which components bound to Vn50 directly and which 

ones were pulled down simply because of their association with the Vn50-interacting 

proteins. 

Regulation of M. sexta proPO activation by C. rubecula Vn50 

 Knowing that Vn50 may interact with proPO and PAP in the host hemolymph, we 

wanted to test if the parasitoid SPH blocks melanization by interfering with the proPO 

activation reaction.  Since P. rapae proPO, PAP, and a cofactor (perhaps) are unavailable 

at this moment, we examined whether Vn50 might negatively impact the activation 

reaction involving M. sexta proPO, PAP-1, SPH-1, and SPH-2.  In the presence of Vn50, 
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proPO activation was greatly reduced (Fig. 4A), even though M. sexta is not a host of C. 

rubecula.  This effect was found to be concentration-dependent, with 50% of the proPO 

activation occurring at a Vn50 concentration of 0.4 µg/ml (Fig. 4B).  We measured the 

amount of Vn50 injected by C. rubecula into P. rapae caterpillars at various times after 

parasitization by comparative Western blot analysis using recombinant Vn50 as 

reference.  The data (Fig. 5) indicated that the concentration of Vn50 in the host 

hemolymph at 20 min after parasitization was much higher than what is needed for 

reducing 50% of the proPO activation in vitro (Fig. 4B).  While the concentration 

gradually decreased, Vn50 remained at a significant level up until 72 h after 

parasitization. 

Regulatory mechanism of Vn50 in proPO activation 

To understand the mechanism of this down-regulation, we tested if Vn50 directly 

inhibits PO activity generated by PAP-1 and its cofactor.  The result indicated that once 

PO is activated, supplementation of the reaction mixture with Vn50 did not cause a major 

change in the oxidase activity (Fig. 6A).  In other words, the clip-domain SPH does not 

inhibit PO.  We then examined the effect of Vn50 on PAP-1’s amidase activity.  There 

was no decrease in hydrolysis of acetyl-Ile-Glu-Ala-Arg-pNA after C. rubecula Vn50 

was added (Fig. 6B), indicating that the clip-domain SPH does not inhibit the serine 

proteinase activity of PAP-1.  We also studied the cleavage of M. sexta proPO by PAP-1 

and its cofactor in the presence or absence of Vn50.  Western blot analysis demonstrated 

that when Vn50 was introduced into the reaction mixture, amount of the 74 kDa cleavage 

product of proPO was significantly decreased (Fig. 6C).  This was consistent with the 

decrease in PO activity from 9.79 units to 3.07 units.  Our recent investigation indicated 
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that proPO, PAP-1, and its cofactor (SPH-1 and SPH-2) may form a ternary complex 

(Gupta et al., unpublished data).  Taken together, these results suggested that Vn50 may 

have disturbed the formation of the complex among M. sexta proPO, PAP-1, and the 

cofactor.  Due to the sequence similarity between Vn50 and M. sexta SPHs (Asgari et al., 

2003), we hypothesize that Vn50 may interact with PAP-1 and proPO stronger than or 

different from the cofactor does.  To test this hypothesis, we plan to examine if uncleaved 

Vn50 competes with the SPHs in binding to proPO and PAP-1.  Cleaved Vn50 will also 

be generated to test if it functions properly as a PAP cofactor. 

There are a variety of strategies developed by parasitic wasps to overcome their 

host immune responses during the co-evolution process (Strand and Pech, 1995; Lavine 

and Beckage, 1995; Carton and Nappi, 1997).  Playing a critical role in preventing 

endoparasitoid eggs from development, melanization in the host hemolymph has been 

targeted by many parasitoids.  For instance, PO activity in M. sexta hemolymph was 

reduced by PDVs (Beckage et al., 1990).  The titer of proPO decreased significantly in 

the larvae of Heliothis virescens after parasitisation by Ichnemonid parasitoid Campoletis 

sonorensis (Shelby et al., 2000).  Recently, Moreau et al. (2003) showed that PO activity 

in the hemolymph was greatly reduced after Drosophila melanogaster was parasitized by 

Asobara citri even though the number of circulating crystal cells did not change 

significantly – crystal cells are considered as the major carriers of some enzymes of the 

PO system.  The authors suggested that functioning of the host PO system was disrupted.  

In our previous research, we demonstrated that Vn50 blocked the melanization process.  

To understand its mechanism, we employed purified M. sexta proPO, PAP-1, and SPHs 

as an in vitro system to test the possible role of Vn50 in regulating the proPO activation 
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reaction.  While molecular details are still lacking, our results strongly suggest that 

interactions among the substrate, proteinase, and cofactor were impaired by Vn50.  To 

our best knowledge, this  is the first report indicating that the proPO activation step is 

affected by a venom protein.  Further binding and comparative studies should allow us to 

gain insights on the mechanism of proPO activation and its regulation. 
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Fig. 1 Status of Vn50 in P. rapae hemolymph following parasitization 

Cell- free hemolymph was collected from non-parasitised or parasitised (2 h) larvae and 

analysed on a Western blot under reducing (R) and non-reducing (NR) conditions. The 

blot was probed with Vn50 antibodies.  Vn50 was not detected in the naïve caterpillars 

but in parasitised ones.  The result also indicated that the protein was not cleaved into the 

clip and proteinase- like domains.  Molecular masses of the protein standards (M) are 

marked on the left. 
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Fig. 2 Stability of Vn50 in the host hemolymph 

Western blot analysis of cell- free hemolymph samples from third instar P. rapae larvae at 

various times after parasitization showed that the protein is not degraded by host 

proteinases and persists for at least 72 h.  In each well, hemolymph (ca. 20 µl) from each 

parasitized larva was loaded.  The blot was probed with anti-Vn50 antibodies.  NP: 

hemolymph from non-parasitised larvae.  Sizes of the molecular weight standards (M) are 

indicated on the left. 
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Fig. 3 Interaction of Vn50 with host hemolymph components 

(A) Cell- free hemolymph from P. rapae larvae was incubated with beads coated with 

bovine serum albumin (BSA, control) or recombinant Vn50 and washed with buffers and 

salt as described in Materials and methods.  Proteins bound to the beads were then 

analysed by SDS-PAGE and Western blotting, which were probed with PAP-1 (left 

panel) or proPO (right panel) antibodies.  Both antibodies recognized proteins bound only 

to the beads that were coated with Vn50.  Their sizes are consistent with those of 

precursor and cleaved forms of PAP and PO.  However, further research is necessary to 

confirm their identities. This indicates that Vn50 may specifically interact with 

components of the proPO activation cascade.  Sizes of the molecular weight markers are 

indicated. (B) The anti-proPO and anti-PAP-1 antibodies recognized the corresponding 

proteins in P. rapae hemolymph. 
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Fig. 4 Down-regulation of proPO activation by Vn50 

(A)  Reduction of proPO activation.  Two microliters of Vn50 (10 ng/µl) or buffer was 

incubated with proPO, PAP-1 and SPHs for 40 min as described in Materials and 

methods.  PO activity was determined using 150 µl of 2 mM dopamine and a microplate 

reader.  The negative controls were proPO incubated with PAP-1 or SPHs only.  (B) 

Concentration-dependence.  Two microliters of Vn50 at different concentrations were 

reacted with proPO, PAP-1 and SPHs under the same conditions.  PO activity generated 

in the mixtures was measured and plotted against the final concentrations of Vn50 in the 

reaction mixtures. 
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Fig. 5 Quantification of Vn50 in P. rapae hemolymph following paraistization 

Concentration of Vn50 in P. rapae larval hemolymph was estimated at various times 

after parasitization by comparative Western blotting (Materials and methods).  Three 

larvae were used for each time point.  Dotted line represents the Vn50 concentration at 

which 50% reduction of proPO activation occurred in vitro (Fig. 4B).  Bars indicate 

standard errors of the means. 

 

   

 

 

 

0

0.5

1

1.5

2

2.5

20 min 6 h 24 h 48 h 72 h

Time after parasitization

V
n5

0 
co

nc
en

tr
at

io
n 

in
 

he
m

ol
ym

ph
 (

µ
g/

m
l)

50% inhibition

0

0.5

1

1.5

2

2.5

20 min 6 h 24 h 48 h 72 h

Time after parasitization

V
n5

0 
co

nc
en

tr
at

io
n 

in
 

he
m

ol
ym

ph
 (

µ
g/

m
l)

0

0.5

1

1.5

2

2.5

20 min 6 h 24 h 48 h 72 h

Time after parasitization

V
n5

0 
co

nc
en

tr
at

io
n 

in
 

he
m

ol
ym

ph
 (

µ
g/

m
l)

50% inhibition



 178 

                 

C

proPO
PAP-1

SPHs
Vn50

+ + + +

+ +

++ +
++

0

4

8

12

P
O

 a
ct

iv
ity

 (U
)

0

1

2

3

4

IE
A

R
as

e 
ac

tiv
ity

 (U
)

A B

Vn50: – + Vn50: – +

 

Fig. 6 Mechanistic analysis of the proPO activation regulation by Vn50 

(A) Effect of Vn50 on active PO.  To test if Vn50 directly inhibit PO activity, M. sexta 

proPO, PAP-1 and SPHs were first incubated on ice for 40 min before buffer (open bar) 

or Vn50 (2 µl, 12 ng/µl )(closed bar) was added.  PO activity was measured 10 min later 

and plotted in the bar graph.  (B) Effect of Vn50 on the proteolytic activity of PAP-1.  

Purified PAP-1 was mixed with 2 µl of buffer (open bar) or Vn50 (10 ng/µl) (closed bar), 

incubated on ice for 10 min.  The amidase activity was determined using IEARpNA as a 

substrate as described in the Methods and Materials.  (C) Effect of Vn50 on proPO 

cleavage by PAP-1.  Vn50 or buffer was incubated with proPO, PAP-1 and SPHs on ice 

for 40 min.  The reaction mixtures were separated by 12% SDS-PAGE and subjected to 

Western blot analysis using proPO antibodies.  The open arrow indicates M. sexta proPO 
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polypeptide-1 and -2, whereas the closed arrow marks a doublet representing a lower 

molecular weight, processed form consistent with the size expected for active PO (Jiang 

et al., 1997). 
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CHAPTER VII 

SUMMARY 

Melanization is insect acute-phase defense response to invading bacteria, fungi, 

protozoa, and endoparasitoids. Phenoloxidase (PO) participates in multiple steps of the 

melenization reaction. Produced as an inactive zymogen, prophenoloxidase (proPO), it is 

activated by a serine proteinase cascade upon recognition of the invaders. In Manduca 

sexta, the final step involves a proPO activating protease and a serine proteinase homolog 

(SPH) complex. After the proPO is activated, its activity is tightly regulated.  

I purified a ß -1,3-glucan Recognition Protein 2 (ßGRP2) from Manduca cuticle 

extract. ßGRP2 specifically binds to laminarin, a soluble form of ß -1,3-glucan. This 

binding is linked with proPO activation. Based on this and other evidence, we conclude 

that ßGRP2 functions as a pattern recognition receptor for proPO activation in Manduca.  

Using recombinant proSPH1 and proSPH2 as substrates, I attempted to purify their 

activating enzymes. I observed cleavage of proSPH1 and proSPH2 by plasma fractions, 

and detected PO cofactor activity from the processed SPHs. More importantly, I found 

that the copresence of SPH1 and SPH2 is necessary for manifesting the cofactor activity. 

I expressed a Manduca PO inhibitor in E. coli and insect cells. The recombinant 

peptides moderately inhibit PO. My effort to isola te the natural inhibitor from the 

hemolymph was unsuccessful. Instead, I found a low molecular weight chemical with 

strong inhibitory activity to Manduca PO and mushroom tyrosinase.  

A clip-domain SPH, Vn50, from the endoparasitoid wasp Cotesia rubecula, venom, 

was found to inhibit PO from its host insect Pieris rapae. I used Manduca proPO system 
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to study its inhibitory mechanism. I found that Vn50 down-regulated proPO activation by 

disrupting the protein-protein interactions among proPO, PAP, and SPH1/SPH2.   
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