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PREFACE 

 

This dissertation is composed of three essays. The first essay, “A Particle Swarm 

Optimization Algorithm (PSO) for Agent-Based Artificial Markets,” adapts PSO to 

simulate dynamic economic games and compares the robustness and speed of the PSO 

algorithm to a genetic algorithm (GA) in a Cournot oligopsony market. Artificial agents 

with the PSO learning algorithm find the optimal strategies that are predicted by theory. 

PSO is simpler and more robust to changes in algorithm parameters than GA. PSO also 

converges faster and gives more precise answers than the GA method which was used by 

some previous economic studies. The agent-based model is a suitable tool to study 

complex economic problems that are hard to solve with analytical methods and it is also 

new to agricultural economics. 

The second essay, “Collusion and Competition of Oligopsony Firms with 

Quantity-Price Strategic Decisions: An Agent-Based Artificial Market,” uses an agent-

based model to determine market equilibrium with price-setting firms in oligopsony 

markets. With price setting firms, the Bertrand solution is perfect competition and the 

Bertrand-Edgeworth model has a mixed strategy solution in which firms keep on 

changing prices. But experiments with human subjects find the market equilibrium varies 

with the number of firms in the industry. In our simulation, the learning of agents is 

modeled with the particle swarm optimization algorithm. The results show that with one 

or two firms prices are at the monopsony level and with four firms prices are always at 
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the perfectly competitive level. The triopsony market, however, changes from mostly 

monopsony to perfect competition when capacity cost increases from zero to a higher 

level. The results also show that firms tend to have excess capacity. The results are 

similar to results observed in experiments with human subjects. This suggests that people 

use the heuristic rules assumed in the agent-based model rather being fully rational as 

assumed in the traditional Bertrand and Bertrand-Edgeworth models.  

The third essay, “The Long Run and Short Run Impact of Captive Supplies on 

Spot Market Price: An Agent-Based Artificial Market,” uses an agent-based model to 

determine the impact of captive supplies under short run and long run assumptions in the 

fed cattle market. In the simulated market, packers purchase cattle from feeders with both 

exclusive captive supply contracts and in the spot market. The price of captive contracts 

is linked to the spot market price. The captive contracts are fixed in the short run but 

flexible in the long run. Simulation results indicate that packers can depress the spot 

market price in the short run if the contracts are fixed. This result matches Xia and 

Sexton’s model. But, this is a short run effect. In the long run when the packers can adjust 

the number of captive supply contracts and feeders have a supply response for contract 

quantity, the price depression phenomena disappears.  
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I.  

 
 
 
 

CHAPTER I 

A PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AGENT-BASED 

ARTIFICIAL MARKETS 

Introduction 

Agent-based models are increasingly used to study economic phenomena and are 

especially suitable to simulate economic games in which agents interact with each other 

with bounded rationality and adaptive learning rules. Work to date has shown that such 

models can obtain the same results as theoretical models (Arifovic 1994; Alkemade, 

Poutre, and Amman 2006). Agent-based models offer considerable potential to study 

auctions and market mechanism designs as well as more traditional industrial 

organization topics. They have the potential to study much more complex economic 

problems than can be analyzed theoretically, such as markets containing heterogeneous 

agents, or agents using combinatorial strategies. They also have a potentially much lower 

cost than experimental markets with human subjects.  

To date, however, the complexity of the agent-based models has been limited. 

One limitation of these models is the time it takes to find an optimum, the others are the 

algorithm complexity and robustness to algorithm parameters. Previous research using 

agent-based models in economics have used either a genetic algorithm (GA) (Arifovic 

1994 and 1996; Axelrod 1987; Bullard and Duffy 1999; Riechmann 2001; Vriend 2000) 



 2 

or reinforcement learning (RL) (Erev and Roth 1998; Kutschinski, Uthmann, and Polani 

2003). With GA, researchers have to be very careful to choose parameters and methods 

for each problem or it may cause premature convergence. The large population size 

required also makes GA slow to find equilibrium. RL is a sub-area of machine learning 

and the environment is typically formulated as a finite-state Markov decision process in 

which an agent increases the probability of choosing successful strategies under the 

possible strategy spaces of its rivals. When the possible strategy space is large or 

continuous, the computational cost increases exponentially. To avoid the problems of GA 

and RL, we use a particle swarm optimization (PSO) to model the learning behavior of 

agents.  

PSO is a stochastic optimization technique developed by Eberhart and Kennedy 

(1995). The idea of PSO came from watching the way flocks of birds, fish or other 

animals adapt to avoid predators and find food by sharing information. In PSO, a set of 

randomly generated solutions moves towards the optimal solution over a number of 

iterations by assimilating and sharing information among all members of the swarm.  

PSO has been shown to have the same ability to find a global optimum as genetic 

algorithms, but to be able to find optimums faster than genetic algorithms (Panda and 

Padhy 2007; Mouser and Dunn 2005; Hassan et al. 2005). Existing PSO methods, 

however, cannot be directly applied to solving agent-based models. With an agent-based 

model, all agents solve their own optimization problems under a dynamic economic 

environment since an agent’s profit depends on the actions of other agents.  

The objective of this essay is to adapt PSO to solve an agent-based model under a 

dynamic environment with non-cooperative agents. We also compare the proposed PSO 
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algorithm to a genetic algorithm for finding equilibrium in the Cournot oligopsony 

market.   

 
Theoretical Model of Oligopsony Market 

The Cournot oligopsony market describes a situation where a few buyers compete 

in a market and each of them can influence the market price through a common price 

supply curve. In this situation, buyers must make strategic decisions, taking into account 

the decisions of their rivals. 

Consider a homogeneous product market with M buyers and N  sellers. The 

number of buyers is much less than the number of sellers ( NM << ). Assume that buyers 

process products that will be sold in the retail market and the marginal cost for processing 

is constant for all processors. The marginal value equals the selling price minus the 

marginal processing cost. To focus our research on the games between buyers and sellers 

in this market, we assume the final product price P and the marginal processing cost mc 

are constant. Thus the value of product before processing mcPR −= is also constant. 

Each firm uses processing ratio as its choice variable:  

(1.1)                                        )/( NRqx
d

ii ×= , 

here ix is the processing ratio, d

iq is the processing quantity of the firm and it also defines 

the amount of  procurement, R is the marginal revenue of product and also the supply 

level of sellers under the perfect competition price level, N is the total number of sellers. 

For example, if under perfect competition market all sellers will provide 10,000 products 

and the processing quantity of processor i is 3,000, its processing ratio ix equals 0.3. 

Then the total demand can be written as ∑ =
=

M

i

d

iqD
1

. 
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 At the beginning of each processing period, buyers make procurement strategies x  

simultaneously. We assume all sellers are homogeneous and have supply 

function pq
s

j = , so the total supply is NpS = . The total demand of buyers will determine 

the market price together with the aggregate supply of sellers and the market price 

is NDp = . In the simulation market, there are 4 buyers and 100 sellers, R equals $100. 

According to theory, under perfect competition, the market price is $100, the aggregate 

supply is 10,000 and the processing ratio is 25% for each firm; if the market reaches 

Cournot-Nash equilibrium, the market price equals $80 and the processing ratio is 20% 

for each firm.  

 
Particle Swarm Optimization Algorithm 

This research adjusts PSO for a non-cooperative game by constructing multiple 

parallel markets and letting each agent have its own clones in every market. This means 

each agent has a separate “flock of birds” that does not share information with the flocks 

of other agents. The asynchronous best strategies of one agent in every parallel structure 

are called local best solutions and the best fit strategy among all parallel structures at the 

current simulation iteration is called the global best solution.  

Each firm has its clones in every parallel market and these clones trade 

independently and simultaneously in all markets. We can look at this setting as firms 

separate the sellers into groups or a longer time into multiple periods and try different 

strategies within each group or period. This kind of marketing strategy can be observed in 

many real markets. For example in fed cattle markets, packing firms send many agents to 

purchase cattle from feeders and each of them visits feeders in a certain area. Agents bid 



 5 

differently but they will share information at the end of each period and adjust their 

strategies to increase profit. In real world markets, the dynamics of market prices are 

mostly path dependent which means the market prices only change a small value each 

time. So the adaptive feature of PSO is similar to actual learning behavior.  

Since agents are continuously changing their strategies, the pervious local best 

solutions may not be the best for the current period. Thus, we adjust PSO by retesting the 

historical best locals of each agent under the current market environment and choose the 

best fit strategies as the current best locals. Every agent continuously uses its own PSO 

algorithm searching for better solutions in each parallel market guided by their own best 

local and global solutions.  

 
PSO Algorithm Description 

We set up K parallel markets and letting the M buyers each have their own clones 

in every market. Although having the same behavior rules, one agent and its K clones 

may take different market strategies since the initialized random values are different. In 

the simulation, buyers dynamically change their marketing strategies with the PSO 

algorithm but their sellers are price takers and simply sell their products to the current 

highest bidders.  

The clone of firm i in the th
k  parallel market has a quantity ratio 

value ]1,0[, ∈kix as a strategy parameter, and each strategy parameter is randomly 

selected from a )1,0(U distribution at the beginning of the simulation. Each clone has an 

evolutionary velocity, ]1,1[, +−∈kiv , which determines the change of its strategy. The 

changes of the clones’ strategies are influenced by the location of the best solutions 
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achieved by itself, ]1,0[, ∈l

kip for the th
k clone, and by the whole population, ]1,0[∈g

ip . 

The superscripts l and g indicate local and global, the subscripts k and 

i indicate th
k parallel market and th

i firm respectively. Profit function )( , kik xπ  is used to 

value the performance of each strategy kix , . 

In every simulation step, the strategy of the th
i firm in the th

k parallel market is 

updated by the following equations: 

(1.2)                                        tkitkitki vxx ,,,,1,, +=+ , 

(1.3)            )()( ,,,,22,,,,11,,1,, tki

g

tkitki

l

tkitkitki xpucxpucvwv −+−+⋅=+ , 

where tkix ,, is the procurement ratio in period t, tkiv ,, is the velocity vector, 

]1,0[∈ju , 2,1=j are uniformly distributed random numbers, 1c and 2c are learning  

parameters and can be called self confidence factor and swarm confidence factor 

respectively, and w is an inertia weight factor.  

The following equations indicate how to choose l

tkip ,,  and g

tip , among all 

parameters of firm i . In economic games, the payoff of one agent’s strategy is also 

determined by the strategies of its rivals and the changing of its rivals’ behaviors forms 

the dynamic economic environment of this agent. This may cause the agent’s previous 

best local strategies not perform well in the current period. Thus we reevaluate an agent’s 

best strategy by using its L previous best locals to trade versus other agents’ current 

period strategies and compare their payoffs with that of its current strategy, and then 

choose the best among them as the best local of the current period. This procedure can be 

written as: 
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(1.4)           { }tkiitkik

l

Ltkik

l

tkik

l

tki xxppp ,,',,,,1,,,, )(),(),......,(maxarg ≠−−= πππ , 

where 'i indicates firm i ’s rivals. The best global is selected from the best local 

parameters: 

(1.5)                        { })(,),(),(maxarg ,,2,,21,,1,

l

tKiK

l

ti

l

ti

g

ti pppp πππ K= , 

where Kk ,...,2,1= and K is the total number of parallel markets. 

 Chatterjee and Siarry (2006) state that the inertia weight w in (1.3) is critical for 

the convergence behavior of PSO. A large inertia weight provides a larger exploration but 

a smaller one is needed to fine-tune the current search area. So it is worth making a 

compromise, e.g. start w with a higher initial weight at the beginning and then decrease it 

with iterations: 

(1.6)                                        ( ) maxmax10 / tttw
ww

t −+= ββ , 

where both w

0β and w

1β are constants, maxt is the maximum number of iterations in one 

simulation round and t indicates the current iteration. The self confidence factor 1c and 

swarm confidence factor 2c  in equation (1.3) are set as:  

(1.7)                                        ( ) maxmax10,2,1 /11 tttcc
cc

tt −+== ββ , 

where both 1

0

cβ and 1

1

cβ are constants.  

 

Summary of Simulation Procedure with PSO 

In the Cournot oligopsony game, buyers select independently and simultaneously 

the quantity they produce. The total supplies along with the demand curve determine the 

retail price. There are K parallel markets. The M buyers act as independent agents and 
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trade in each market at the same time. Each firm may have a different trading strategy in 

each parallel market. The steps are as follows: 

(i) For the first L beginning iterations, randomly initialize strategy set xxxx for all 

buyers in every parallel market. We choose the quantity ratio ]1,0[,, Ux tki ∈  

and the movement velocities 0,, =tkiv for Mi ,...,1= , Kk ,...,1= , 

and Lt ,...,1= . 

(ii) Buyers update their strategies with equations (1.2) and (1.3). 

(iii) After the first L iterations, each buyer retest the past L best locals under 

current economic environment and compare their performance with that of 

the current strategy, the best among them is chosen as the new best local, as 

equation (1.4) shows. 

(iv) Following equation (1.5), the best fit among all best locals is the best global.  

(v) If the market does not reach equilibrium, go to step (ii). 

 
Genetic Algorithm 

GA is a general-purpose optimization method based loosely on Darwinian 

principles of biological evolution, reproduction and the survival of the fittest (Goldberg 

1989). GA maintains a pool of candidate solutions called a population and repeatedly 

modifies them. At each step, the GA selects candidates from the current population to be 

parents and uses them to produce children for the next generation. Over successive 

generations, the population evolves toward an optimal solution. The GA is well suited to 

and has been extensively applied to solve complex design optimization problems because 

it can handle both discrete and continuous variables, as well as nonlinear objective and 
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constraint functions. The recent GA study by Alkemade, Poute and Amman (2006) 

indicates that to avoid premature convergence of the evolutionary algorithm, each agent 

should have a large population of strategies from which agents can choose.  

 

Genetic Algorithm Operators and Parameters 

In this GA, a strategy of each firm can be represented with a chromosome which 

contains information about this strategy. The most used way of encoding is a binary 

string. We use B bit binary strings to encode strategies and the bits can be looked at as 

genes. Each firm has a population of K chromosomes, represents a collection of its 

strategies at time period t. The th
k strategy of firm i  in period t can be stated with a string 

of length B as: 

(1.8)                                        1

,,

1

,,,, ,,, tki

B

tki

B

tki aaa K
− , 

here { }1,0,, ∈b

tkia  taken at the bth position in the string, }...,,2,1{ Bb∈ , and can be decoded 

into a decimal integer using 

 (1.9)                                        ∑
=

−=
B

b

bb

tkitsi ad
1

1

,,,, )2( . 

The maximum value is ∑
=

−=
B

b

b
d

1

1

max 2 . After choosing one active strategy tkid ,, , the firm’s 

procurement ratio can be calculated with max,,,, / ddx tkitki = . For example, if a string 

contains 4 bits, a binary code “0101” can be decoded to decimal value 

=id 521202120 0123 =⋅+⋅+⋅+⋅ , and the maximum binary code of this string “1111” 

can be decoded to value 15max =d . Thus a firm using “0101” as its strategy means its 

procurement ratio is %3015/5/ max,,,, === ddx tkitki . Since the larger the string length, 
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the more accurate the procurement ratio, we use 15 bits as the string length in the 

simulation. 

Buyers’ decision rules are updated using four genetic operators, elitism, 

reproduction, crossover, and mutation. Elitism can very rapidly increase performance of 

GA, because it prevents losing the best found solution to date (De Jong, 1975). In our 

Cournot game, the profit difference between strategies could be very big. To avoid one 

high profit strategy dominating the next generation with profit proportional selection, 

ranking selection is used as the reproduction method.  

 
Elitism copies a few of the best strategies from the current K strategies to the new 

population with an elitism rateε . If %10=ε and 100=K , this means the 10 best 

strategies are copied from the old population to the new one. The rest are chosen with 

linear ranking selection.  

 
Reproduction chooses chromosomes as parents from the old strategy population. 

In this research, we use ranking selection methods. It ranks an agent’s strategies in its 

population 1 to K from worst to best according to their profit (K = population size). If 

more than one strategy has the same profit, they are randomly ranked. The selection 

probabilities of the strategies kx    (k =1,…,K) are given by  

(1.10)                                        )
1

)1)()((
(

1
)( minmax

min
−

−−
+=

K

xrankrr
r

K
xp k

k , 

where p is the probability of strategies being chosen as new ones, 2minmax =+ rr , and 

21 max ≤≤ r . We choose maxr = 1.1 and minr = 0.9 and it is easy to see ∑ )( kxp  equals 1. 
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Crossover selects genes from two parent chromosomes and creates a new 

strategy. All new strategies selected with elitism and ranking selection methods are 

randomly matched as a group of parent chromosomes. For each pair of parents, the 

crossover is performed with a probability χ . The crossover randomly chooses an 

across point of the chromosome string, and bits before and after this point are 

exchanged for both chromosomes to generate new ones. Crossover can look like this (| 

is the crossover point): 

Chromosome 1 11000 | 1011010100 

Chromosome 2 10010 | 1101000001 

New Chromosome 1 10010 | 1011010100 

New Chromosome 2 11000 | 1101000001 

 

Mutation takes place after a crossover is performed with a probabilityµ . This 

operator is to prevent falling into a local optimum. In the binary encoding method, 

mutation changes the bits of the new strategy from 1 to 0 or 0 to 1 with the mutation 

rate µ .    

Like PSO, we can also use niching methods in GA, the function of parameters for 

three operators are 

(1.11)                                        max10 / ttt ⋅+= εε ββε , 

(1.12)                                        ( ) maxmax10 / tttt −⋅+= χχ ββχ , 

(1.13)                                        ( ) maxmax10 / tttt −⋅+= µµ ββµ , 
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here tε , tχ  and tµ indicate elitism, crossover and mutation rate, β s are constant, maxt  is 

the number of maximum iterations of the one simulation round.  

 

GA Simulation Procedure for Cournot Market 

At the beginning of the simulation, buyers randomly generate strategies as new 

rules in the starting population. Every strategy in the population is randomly chosen to 

trade in the market. A new population is generated from the current one with following 

procedure. First, Sε highest strategies are copied to the new population as elites. 

Then S)1( ε− strategies are chosen with ranking selection methods from the whole 

population of the old generation, and are randomly matched and crossed over. Mutation 

operation is performed for the new strategies except the elites. Figure 1 gives the outline 

of the program.  

 
Comparison of Algorithm Performance 

In this research, we use the Cournot game with known Nash equilibrium to 

evaluate the performance of PSO and GA. We also define the algorithm convergence 

criterion in this section. We design 12 parameter settings for PSO and GA respectively 

under three categories, fixed and changing algorithm parameters, and different algorithm 

structures. 

One simulation round contains multiple iterations and agents trade with each 

other repeatedly. Within these periods, agents use PSO or GA to update their strategies 

based on their rivals’ strategies. Considering the randomness of the learning path, under 

each setting we run the Cournot game for 20 rounds with different random initialized 
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strategies and the game is repeated for 400 iterations per round to see the learning 

behavior of agents and the equilibrium under each set.  

 

Algorithm Convergence Criteria 

Zero diversity in the population's strategy values signals the stopping point for 

GA and PSO. For every agent, if the variance of the strategies in the population is less 

than 0.01% and the variance of the mean value of the strategies for 10 generations is less 

than 0.01%, we say the algorithm reaches equilibrium. Considering the feature of 

mutation of GA, we delete 5% of the strategies that have the largest difference from the 

mean when calculating the mean and variance for GA.  

 
Robustness Analysis 

Robustness to small variations in the technical parameter settings (that have no 

clear economic meaning) is particularly important in agent-based models. It is important 

that results are valid for a wide range of parameter settings. 

PSO and GA are nondeterministic and are not guaranteed to return to the same 

solution in each run. The speed and accuracy of the algorithms can vary depending on the 

chosen parameters. We test robustness of the conclusions by comparing the performance 

under alternative algorithm parameters, population size and retest times, which are listed 

in Table I-1.  
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Simulation Results 

Hamm, Brorsen, and Hagan (2007) recommend using multiple sets of starting 

values when using genetic algorithms. Thus for each set of algorithm parameters, we run 

20 times with different randomly generated initial strategies and then calculate the mean 

and standard deviation of the market price and players’ procurement ratios at the 20 

equilibrium points.  

 

Robustness Analysis 

We compare the performance of the PSO and GA with three categories: fixed 

algorithm parameters, changing algorithm parameters and different algorithm structure 

parameters. In each setting in the fixed algorithm category, we use constant values for the 

algorithm parameters, ( w , 1c , and 2c for PSO, ε , χ ,and µ for GA). In each setting of the 

changing algorithm category, the algorithm parameters are changing with time as shown 

in equations (1.6), (1.7), and (1.11) to (1.13). Under our design of the market, 

theoretically the Nash equilibrium of market price is $80 and the procurement ratio for 

each buyer is 20%. These values are used to evaluate the performance of the algorithm. 

Table I-2 gives the simulation results under fixed algorithm settings. For PSO, all 

settings give near Nash equilibrium solutions with low variances. For GA, all four 

settings give a near Nash equilibrium market price but buyers may have heterogeneous 

strategies at the market equilibrium. 

Table I-3 presents the results of the changing algorithm parameter settings. PSO 

gives near Nash equilibrium results for all 4 settings with a small standard deviation. The 

settings of GA do not show much difference from the fixed algorithm parameter settings. 
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Table I-4 shows the results with different algorithm structures. For both PSO and GA, the 

large population size gives a better performance, but PSO is not as sensitive as GA to the 

algorithm structure changes. PSO settings with both large and small population size give 

near Nash equilibrium results for market price and buyers’ strategies with small 

differences. GA settings with small population size show bigger differences in buyers’ 

strategies. 

For both PSO and GA with changing parameters, programs need less machine 

time and iterations to reach equilibrium than with fixed algorithm parameters. And GA 

generally uses around 15 to 80 fold more machine time than PSO. This is because GA 

needs coding and decoding of binary string bits and additional evaluation and calculation 

for the ranking and roulette selection.  

From the above analysis, the overall performance of PSO is considerably faster 

and more precise than GA and less sensitive to the value of parameters.  

 

Individual Runs 

After analyzing the overall results, we also choose the best performance parameter 

set of PSO and GA out of all settings in both fixed and changing parameter category, 

draw the figure of one individual simulation run for each of them to illustrate how the 

buyers find the best response strategies during the dynamic environment and how the 

markets reach the equilibrium. 

We choose the best performance parameter sets from fixed and changing 

categories for each algorithm, which are sets 2 and 7 in Table I-2 and 12 and 14 in Table 

I-3. Then we illustrate the evolution of market price level with figures under each setting, 
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as Figure I-2 (a) and (b) show. In this example, both GA and PSO reach equilibrium at 

about the same time. The GA continues to mutate as the iterations proceed, but the 

mutations are quickly discarded.  

When looking at the individual agent’s marketing strategies, we found that with 

the PSO algorithm, agents in the markets tend to have the same strategy under market 

equilibrium, which is predicted in theory, while GA shows that individuals could have 

different strategies, as Figures I-2 and I-3 show. The difference can be explained by the 

learning methods adopted by the two algorithms. In GA, if the strategy population of one 

firm converges faster then others and others continue to adjust their strategies, the market 

results in equilibrium with heterogeneous strategies. Different from GA, besides 

considering the historical performance, global best in the parallel market is also taken 

into account in PSO, so one firm has little probability to take a larger market share than 

others. Then the equilibrium of PSO usually contains homogenous strategies of agents.  

Similarly, the quantity levels shown in Figures I-2 and I-3 show the much faster 

convergence of PSO relative to GA.   

 
Summary and Conclusions 

This paper adapts PSO to simulate agent-based models by allowing each agent to 

have its own parallel structures and learn from them. We also compare the proposed PSO 

algorithm to a genetic algorithm for finding equilibrium in the Cournot oligopsony 

market.  

 We find that with trial and error, artificial agents using PSO learning algorithm 

can learn to play the best response strategies as theory predicts. PSO needs few 
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parameters and the simulation results are more robust to changing parameters than GA. 

The parameters of GA need to be carefully chosen to suit the specific simulation 

problem. It also requires parameter tuning for good performance and can sometimes be 

computationally expensive.  

The comparison is undertaken under a relatively simple economic market design. 

The reader is cautioned that the generalizability of the results is not known. There are 

thousands of variations on genetic algorithms that have been suggested. The performance 

of both PSO and GA can depend on the parameters used. But, for the problem considered 

here, the adaptation of PSO was shown to work well in solving an agent-based model.  
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Step 1 
 
 
 
 
 
Step 2 
 
 
 
 
 
Step 3 
 
Step 4 

Initialization {     
Every agent initializes the starting strategy population pool by 

randomly drawing S strategies; 
Assign monopoly profit as relative payoff. 
} 

 
For each generation do { 

For each agent {Randomly choose its active strategy from the 
population} 

Play the Cournot game; 
Calculate and store payoff for the current active strategy. 

} until all strategies are played. 
 
Update algorithm operators or parameters if needed; 
 
Generate new population from the old one{ 
    Choose Sε strategies with highest profit as elites;     

    Choose S)1( ε− strategies with ranking selection methods; 

    Randomly match all the selected ones as parents, apply single crossover 
to them with rate χ , until get S)1( ε− number strategies, and apply 

mutation to them; 
    These S)1( ε− strategies combine with elites to form the new population. 

} 
 
If not converged, go back to step 2;  
End; 

 

Figure I-1. Outline of the genetic algorithm (GA) for Cournot game 
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(a) With fixed algorithm parameters 

 

 
(b) With changing algorithm parameters 

 

Figure I-2. Market price level 

 
Note:  

1. In (a), parameter set for PSO is [w, 1c , 2c ] = [ w

0β , 1

0

cβ , 2

0

cβ ] = [0.4, 1, 1]; parameter set 

for GA is [ε , χ , µ ] = [ εβ0 , χβ0 , µβ0 ] = [10%, 76%, 0.33%] and slopes in equations 

(1.11) to (1.13) are zeros. 

2. In (b), parameter set for PSO is [ 1

11 , cw ββ ] = [0.5, 1]; parameter set for GA is 

[ εβ1 , χβ1 , µβ1 ] = [10%.76%, 0.33%] and intercepts in equations (1.11) to (1.13) are 

zeros, [ εβ0 , χβ0 , µβ0 ] = [0, 0, 0]. 
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(a) GA 

 
 

(b) PSO 
Figure I-3. Quantity level with fixed algorithm parameters 

Note: Parameter set for PSO is [w, 1c , 2c ] = [ w

0β , 1

0

cβ , 2

0

cβ ] = [0.4, 1, 1]; parameter set for 

GA is [ε , χ , µ ] = [ εβ0 , χβ0 , µβ0 ] = [10%, 76%, 0.33%] and slopes in equations (1.11) to 

(1.13) are zeros. 
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(a) GA 

 

(b) PSO 

Figure I-4. Quantity level with changing algorithm parameters 

 

Note: Parameter set for PSO is [ 1

11 , cw ββ ] = [0.5, 1]; parameter set for GA is 

[ εβ1 , χβ1 , µβ1 ] = [10%, 76%, 0.33%] and intercepts in equations (1.11) to (1.13) are zeros, 

[ εβ0 , χβ0 , µβ0 ] = [0, 0, 0]. 
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Table I-1. Parameters for PSO and GA in the Cournot Oligopsony Simulations  

 

PSO parameters GA parameters 

  

Number of parallel markets: K Strategy population size: K 
Number of retest local best parameters: L Loop per iteration: L  

Inertia weight: ( ) maxmax10 / tttw
ww

t −+= ββ  String bit: B  

Local confidence factor: ( ) maxmax10,1
11 tttc

cc

t −+= ββ  Elitism rate: max10 / ttt ⋅+= εε ββε  

Global confidence factor: ( ) maxmax10,2
22 tttc

cc

t −+= ββ  Crossover rate: ( ) maxmax10 / tttt −⋅+= χχ ββχ  

 Mutation rate:  ( ) maxmax10 / tttt −+= µµ ββµ  

 Ranking selection parameter: maxr =1.1, minr =0.9. 
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Table I-2. PSO and GA Simulation Results with Fixed Algorithm Parameters 

 

       Capacity Ratio   

Set Parameters  Statistic 
Market 
Price($) 

Buyer 1 Buyer 2 Buyer 3 Buyer 4 
Machine 

Time 
Equilibrium 

Iteration 

PSO w c1 c2          

1 0.4 1.5 1.5  Mean 81.82 21.32% 21.54% 20.30% 19.86% 294 N/A 

     SD   1.16   0.49%   0.53%   0.43%   0.53%   32  

2 0.4 1 1  Mean 80.00 20.00% 20.01% 19.99% 20.00% 230 66 

     SD   0.00   0.01% 0.01%   0.00%   0.00%   27   6 

3 0.4 0.5 0.5  Mean 80.06 20.21% 21.32% 19.51% 19.10% 228 286 

     SD   0.46   0.76%   0.93%   0.67%   1.10%   22 149 

4 0.1 1 1  Mean 80.01 20.00% 20.09% 19.98% 19.95% 280 121 

     SD   0.06   0.14%   0.18%   0.06%   0.08% 116 101 

GA ε  χ  µ           

5 10.00% 80.00% 1.00%  Mean 83.38 19.53% 25.53% 19.33% 18.98% 4,780 N/A 

     SD   2.23   3.75%  3.35%   3.91%   3.93%    719  

6 0.00% 80.00% 0.33%  Mean 79.58 12.32% 20.77% 25.33% 21.13% 5,401 N/A 

     SD   1.65   3.28%  2.68%   4.57%   2.93% 2,081  

7 10.00% 76.00% 0.33%  Mean 79.58 18.70% 21.92% 20.23% 18.70% 5,539 398 

     SD   1.76   3.27%  3.03%   2.60%   3.40% 1,051    9 

8 30.00% 56.00% 0.33%  Mean 78.17 12.50% 25.01% 18.75% 21.91% 4,979 252 

     SD   2.50   7.83%  4.25%  4.42% 3.47% 1,146 104 

Note: For PSO, the parallel market size for PSO is 20. For GA, the population size is 40, the bit length is 15. 
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Table I-3. PSO and GA Simulation Results with Changing Algorithm Parameters 
 

       Capacity Ratio   

Set Parameters  Statistic 
Market 
Price($) 

Buyer 1 Buyer 2 Buyer 3 Buyer 4 
Machine 

Time 
Equilibrium 

Iteration 

PSO 
w

1
β  1

1

c
β            

9 0.98 2.5   Mean 80.01 19.99% 20.00% 20.00% 20.04% 290 150 

     SD   0.02   0.01%   0.02%   0.03%   0.02%   66     7 

10 0.98 0.5   Mean 80.00 19.99% 20.00% 20.02% 20.00% 255    88 

     SD 0.01   0.01%   0.02%   0.02%   0.02%   20     9 

11 0.5 1   Mean 80.00 20.00% 20.00% 20.00% 20.00% 324    59 

     SD 0.00   0.02%   0.01%   0.03%   0.01% 159    14 

12 0.2 1   Mean 80.02 20.32% 19.99% 19.85% 19.87% 241    80 

     SD 0.10   0.24%   0.27%   0.28%   0.24%   30    34 

GA 
εβ1
 χ

β
1
 µβ1

          

13 10.00% 86.00% 0.33%  Mean 81.29 18.95% 18.55% 25.02% 18.76% 3,854 170 

     SD   1.33   3.12%   3.12%   3.38%   3.79%    305    22 

14 20.00% 66.00% 1.00%  Mean 80.18 20.01% 18.75% 19.53% 21.88% 4,037 188 

     SD   0.83   2.18%   2.28%   2.43%   2.56%    356   11 

15 40.00% 76.00% 1.00%  Mean 79.95 19.25% 18.55% 17.06% 25.08% 4,650   96 

     SD   1.37   2.34%   3.75%   3.97%   2.90%    998     8 

16 40.00% 66.00% 0.33%  Mean 80.07 20.33% 20.32% 19.93% 19.48% 4,348 154 

     SD   0.62   1.87%   2.26%   2.65%   1.12%    595     20 

Note:   
1. For PSO, the parallel market size for PSO is 20. For GA, the population size is 40 and the bit length is 15. 

2. For PSO, the intercepts
w

0β and 1

0

cβ in equations (1.6) and (1.7) are chosen as constant value 0.5 and 1 respectively. 

3. For GA, the intercepts
εβ0 , 

χβ0 and 
µβ0 in equations (1.11), (1.12) and (1.13) are zero. 
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Table I-4. PSO and GA Simulations Results under Different Algorithm Structure  
 

       Capacity Ratio   

Set P L   Statistic 
Market  
Price($) 

Buyer 1 Buyer 2 Buyer 3 Buyer 4 Machine Time Equilibrium Iteration 

PSO             

17 20 10   Mean 79.99 20.00% 19.99% 20.03% 19.98% 434 60 

     SD   0.02   0.01%   0.04%   0.01%   0.01%   39 11 

18 10 3   Mean 79.99 19.97% 19.97% 20.04% 20.02% 122 76 

     SD   0.20   0.28%   0.38%   0.98%   0.23%   11 26 

19 3 3   Mean 79.77 20.24% 20.22% 19.10% 20.22%   45 80 

     SD   2.31   4.69%   5.04%   4.88%   1.93%   15 45 

GA             

20 100 100   Mean 79.70 20.30% 20.32% 18.74% 20.31% 35,805 172 

     SD 0.76 1.91% 1.40% 1.14% 1.86%   2,732   18 

21 40 40   Mean 78.93 21.09% 20.31% 25.00% 12.49%   4,131 150 

     SD 1.24 2.90% 2.84% 3.43% 2.35%     568   26 

22 20 40   Mean 78.01 21.32% 12.49% 21.97% 22.20%   1,838 121 

     SD 1.73 5.13% 3.67% 3.62% 4.21%     186   23 

Note: P indicates parallel markets number and population size for PSO and GA respectively, L indicates number of retest local best of 
PSO and loop number per generation of GA respectively. 
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CHAPTER II 

 

COLLUSION AND COMPETITION OF OLIGOPSONY FIRMS                              

WITH QUANTITY-PRICE STRATEGIC DECISIONS:                                                      

AN AGENT-BASED ARTIFICIAL MARKET 

Introduction 

The classical Bertrand model states that for price setting firms, the Nash 

equilibrium is the perfect competition level and the solution does not depend on the 

number of firms. Edgeworth and his followers show that a capacity constraint can bind 

the price away from the competitive level (Levitan and Shubik 1972; Tasnadi 1999). 

Kreps and Scheinkman (1983) propose a theoretical model and find that if firms decide 

quantity first then compete with price these firms perform like Cournot competition.  

In contrast to theoretical work, experiments with human subjects show prices 

deviating from perfect competition or even colluding to the monopoly level in duopoly 

and triopoly markets with or without a capacity constraints (Dufwenberg and Gneezy 

2000; Brandts and Guillen 2007). Brandts and Guillen design experiments by letting 

firms choose price and quantity simultaneously. For both duopoly and triopoly markets, 

Brandts and Guillen find that either competitors learn to collude at the monopoly level or 

only one firm survives, which results in a monopoly market. But since they assume the 

demand curve is “boxed-shaped” in that consumers will purchase products up to the 

maximum quantity if price is less than a fixed value, their results cannot differentiate 
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monopoly from Cournot. Suetens and Potters (2007) also find significantly more tacit 

collusion in Bertrand than in Cournot markets after reexamining experimental results of 

four previous studies (Fouraker and Siegel 1963; Huck, Normann, and Oechssler 2000; 

Davis 2002; Altavilla, Luini, and Sbriglia 2006). Huck, Normann and Oechssler (2000) 

find that experimental markets with more than three competitors are more likely to be 

competitive than oligopolistic.  

The Nash equilibrium of the Bertrand model assumes agents are rational. The 

concept of bounded rationality revises this assumption to account for the fact that 

perfectly rational decisions are often not feasible in practice due to the finite 

computational resources available for making them (Simon 1991). The departure of 

experimental results from the theoretical model implies that a specific learning algorithm 

needs to be employed to describe how agents make economic decisions. Lucas (1986) 

suggests that comparing the results of adaptive learning algorithms and experiments with 

human subjects may illustrate how people learn in a specific problem.  

To help explain the gap between the Bertrand theoretical predictions and 

experimental results, this research studies behavior of quantity-price competition firms 

with an agent-based computational model. Past research with agent-based models in 

economics uses genetic algorithms (GA) (Ariforic 1994 and 1996; Axelrod 1987; Vriend 

2000) and reinforcement leaning algorithm (RL) (Erev and Roth 1998; Kutschinski, 

Uthmann and Polani 2003). With GA, researchers have to be very careful to choose 

parameters and methods for each problem or it may cause premature convergence. The 

large population size required also makes GA slow to find equilibrium. RL is a sub-area 

of machine learning and the environment is typically formulated as a finite-state Markov 
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decision process in which an agent increases the probability of choosing successful 

strategies under the possible strategy spaces of its rivals. When the possible strategy 

space is large or continuous, the computational cost increases exponentially. 

To avoid the limitation of the above two algorithms, this study adopts the particle 

swarm optimization (PSO) algorithm to model the learning behavior of agents. PSO is a 

stochastic optimization technique developed by Eberhart and Kennedy (1995) and can be 

used for an economic optimization problem. Equilibrium is found for markets with one to 

four firms. Each firm operates in a set of parallel markets and each firm uses PSO to 

solve its own optimization problem. 

 
Description of Oligopsony Model 

A processing industry is used as an example. In a product supply chain, 

processing firms purchase input from many relatively small sellers and sell processed 

goods to a big retail market. Buyers have to decide both production capacity and 

procurement price strategy simultaneously in advance. Once their procurement prices are 

announced, sellers will choose to sell products to the current highest bidder. Buyers need 

to arrange other inputs before processing and the capacity is determined in advance and 

unchangeable in one production period, so the buyer will stop purchasing activity at the 

capacity point even if it can get more. Each seller has an upward sloping supply curve. 

We assume the demand curve is perfectly elastic so we can focus on the buyers’ trading 

behavior.  

Consider a homogeneous product market with M  buyers and N  sellers. The 

number of buyers is much less than the number of sellers ( NM << ). Assume that buyers 
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process products that will be sold in the retail market and the marginal cost for processing 

is the same for all processors. The marginal value equals the selling price minus the 

marginal processing cost. To focus on the games between buyers and sellers in this 

market, the final product price P and the marginal processing cost mc are constant and as 

a result the before processing value, mcPR −= , is also constant. There is a capacity cost 

and the cost is a constant value C
c for one additional unit of capacity.  

 Assume all sellers are homogeneous and have the linear supply function bq
s

j = . 

This means that the sellers sell their product to the current highest biding buyer with bid 

b and provide quantity s

jq . If buyers are perfectly competitive, they will all bid 

C
cRb −=  for each product and get zero profit. Therefore C

cR −  is also the supply 

quantity of each seller under buyers’ perfect competition condition. 

At the beginning of each processing period, buyers make combination 

strategies xxxx ]',[ Cb xx=  simultaneously. The bids and prices are discrete and use cents as 

the minimum unit. The highest bidder gets the supply first up to its capacity. Then the 

next highest bidder makes the procurement and so on. If more than one buyer bids the 

highest price, they split the supply quantity until their capacity. For comparison 

convenience, we use price ratio and capacity ratio to indicate the buyers’ strategies. The 

price ratio of each buyer is 

 (2.1)                                        )/( Cb cRbx −= , 

where b
x is defined as the bid price ratio, b is bid price, and R is the buyer’s marginal 

revenue. In some cases, buyers spend capacity cost to build a building, hire people, or 

arrange other materials in advance to meet the processing requirement besides mc. The 
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marginal capacity cost is C
c . For example, since the revenue R for one product is $100, if 

the capacity cost C
c for one product is $10, then the value of the product before 

processing is 90$=− C
cR . Thus, when a buyer plans to use a bid price ratio of 50% as 

its pricing strategy, it will bid $45 for the product in the market. Besides price strategy, 

buyers have to make a capacity choice at the same time. The processor’s capacity ratio is 

 (2.2)                                        ])/[( NcRQx CCC ×−= , 

where C
x is the capacity ratio, CQ is the processing capacity of the buyer, and N is the 

total number of sellers. Buyers choose capacity ratio to plan processing quantity. For 

example, if the capacity cost if $10, with total sellers number N = 400 and R = $100, the 

sellers will provide 36,000 under buyers’ perfectly competitive condition. Thus, if one 

buyer plans to process 3,600 products, its processing strategy is to use 10% as its capacity 

ratio.   

 
Simulation Design with Particle Swarm Optimization Algorithm 

The idea of PSO came from watching the way flocks of birds, fish or other 

animals adapt to avoid predators and find food by sharing information. The difference 

here is that each buyer has a separate “flock of birds” that does not share information 

with the flocks of the other agents.  

We set up K parallel markets and letting the agents each have their own clones in 

every market. Although having the same behavior rules, one agent and its K clones may 

take different market strategies since the initialized random values are different. In the 

simulation, buyers dynamically change their marketing strategies with the PSO algorithm 

but sellers are price takers and simply sell their products to the current highest bidders.  
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Considering agents continuously changing their strategies, the local best solutions 

may not be the best for the current period. Thus, we adjust the PSO by retesting the past 

best locals of each clone under current market environment and choose the best fit as the 

current best local among these best locals and the current strategy. 

 
Particle Swarm Optimization Algorithm 

First we describe the generic particle swarm optimization algorithm. Table II-1 

shows the pseudo code of the PSO algorithm. Every clone has a strategy parameter 

set xxxxwhich is randomly initialized at the beginning of the simulation. Each strategy in the 

set has an adjustment velocity, ]1,1[,, +−∈Γ

tkiv , which determines the change of the choice 

variable, the superscriptΓ indicates bid price or capacity strategy in the decision set. The 

velocity change of a strategy parameter for a clone is a function of the local best solutions 

achieved in its own market, ]1,0[,

,, ∈Γ l

tkip , and its global best solution among all the 

parallel markets, ]1,0[,

, ∈Γ g

tip . The superscripts l and g indicate local and global, the 

subscripts k and i indicate the th
k  parallel market and th

i agent respectively. The profit 

function )( ,, tkik xxxxπ is used to value the performance of the choice variable set tki ,,xxxx . 

In every simulation step, each new choice variable of the th
i agent in the 

th
k parallel market can be updated by the following equation:  

 (2.3) ΓΓΓ

+ += tkitkitki vxx ,,,,1,, , 

and the velocity is modeled as: 

 (2.4) )()( ,,

,

,22,,

,

,,111,,1,,

ΓΓΓΓΓ

+

Γ

+ −+−+= tki

g

titki

l

tkitkitki xpucxpucwvv , 
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where Γ

tkiv ,, is the velocity, ]1,0[∈ju , 2,1=j are uniformly distributed random numbers, 

1c and 2c are learning  parameters and are called self confidence factor and swarm 

confidence factor respectively, and w is an inertia weight factor. 

The following equations describe how to choose an agent’s local best and global 

best. As stated in the introduction, we adapt the PSO by retesting the best locals. In our 

research, the new best local is chosen from the best locals of the previous L periods and 

the strategy tki ,,xxxx of the current period:  

 (2.5) { }tkiitkik

l

Ltkik

l

tkik

l

tki ,,',,,,1,,,, )(),(),......,(maxarg ≠−−= xxxxxxxxpppppppppppp πππ , 

where 'i indicates opponents, π is profit. The different past best locals of each agent 

in L periods will be reevaluated under the current t period economic environment by 

holding other agents’ strategies in this period unchanged. The profits will be compared 

with that of that of the current strategy. The one with the highest profit is the new local 

best. Just like in real economic markets, the market information will be revealed to 

participants. The best global parameter is selected from the best locals: 

 (2.6) { })(,),(),(maxarg ,,2,,21,,1,

l

tKiK

l

ti

l

ti

g

ti pppppppppppppppp πππ K= . 

 Chatterjee and Siarry (2006) state that the inertia weight w in (2.3) is critical for 

the PSO’s convergence behavior. A large inertia weight provides larger exploration than 

a smaller one. So it is worth making a compromise and letting w start with a higher value 

at the beginning and then decreasing w as the optimization proceeds:  

(2.7) ( ) maxmax10 / tttw
ww

t −+= ββ , 

where both w

0β and w

1β are constants, maxt is the maximum number of iterations and t is the 

current iteration. Similarly, we set 1c and 2c  in equation (2.4) as: 
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(2.8) ( ) maxmax10,2,1 /11 tttcc
cc

tt −+== ββ , 

where both 1

0

cβ and 1

1

cβ are constants. 

This research also studies an oligopsony market where agents make combinatorial 

decisions on both capacity and price, so buyers have a combinatorial strategy set instead 

of one choice variable. Each clone of a buyer chooses a capacity-price ratio set 

xxxx ]',[ Cb
xx=  as a combinatorial strategy in each parallel market, ]1,0[∈Γx , Γ  = b, C.  

 
Equilibrium Criterion 

Zero diversity in the strategies of all parallel markets for every agent can be used 

to signal the stopping point for PSO. Diversity diminishes with time which causes the 

same strategy to dominate among all parallel markets. In our simulation, for all agents, if 

the variance of the strategies in the population is less than 0.01% and the mean value of 

the strategies for 10 iterations is less than 0.01%, we say the algorithm is converged.  

 
Summary of Simulation Procedure 

We test three oligopsony markets (duopsony, triopsony and 4-buyer market) as 

well as a monopsony market. For each market structure, two capacity cost scenarios 

(zero, $30) are considered. Buyers choose bid price or quantity and bid for product 

simultaneously, and improve the combinatorial strategy set with PSO at the end of each 

period.  

We design the artificial markets with PSO by setting up K = 20 parallel markets 

and buyers and their clones trade in all markets simultaneously and independently. The 
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retest iteration number L is chosen as 10. The number N of sellers is 400 among all 

experiment settings. The simulation steps are described as follows. 

(i) For the first L beginning iterations, randomly initialize strategy set xxxx for all 

buyers in every parallel market. We choose the quantity and price 

ratio ]1,0[,, Ux tki ∈Γ and the movement 

velocities 0,, =tkiv for Mi ,...,1= , 2,1=Γ , Kk ,...,1= , and Lt ,...,1= . 

(ii) Buyers update their capacity ratio and price ratio respectively with equations 

(2.3) and (2.4). 

(iii) Within each parallel market, supply first goes to the current highest bidder up 

to the buyers’ capacity. If more than one buyer bids the same price, then a 

sharing rule is assumed. Then the remaining supply goes to the second 

highest bidder up to its capacity and so on. 

(iv) After the first L iterations, each buyer retest the past L best locals under 

current economic environment and compare their performance with that of 

the current strategy, the best among them is selected as the new best local, as 

equation (2.5) shows. 

(v) Following equation (2.6), the best fit among all best locals is the best global.  

(vi) If the market does not reach equilibrium, go to step (ii). 

 
Simulation Settings 

We simulate markets with and without a capacity cost. Under each capacity cost 

scenario we simulate markets with different numbers of buyers, which are monopsony, 
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duopsony, triopsony, and a 4-buyer market and there are 8 alternative settings in total. 

The market and algorithm parameters used in the simulations are listed in Table II-1.  

One simulation round contains multiple iterations in which agents trade with each 

other repeatedly. Within each round, agents play the game repeatedly and learn to find 

the best response strategy set until the market reaches equilibrium or meets the maximum 

2000 iterations constraint. Considering the randomness of the learning path, each setting 

is run 100 rounds with different randomly initialized starting strategies for all agents. 

Once equilibrium is reached, the average value of the last 20 iterations for the market 

price and the agent’s strategies are used as the market equilibrium values. The mean and 

standard deviation of the market equilibrium values of the 100 rounds are used to 

characterize market equilibrium. Theoretically, the price of monopsony and perfect 

competition levels are 2/)( CcR −  and C
cR − respectively. The monopsony and perfect 

competition price are $50 and $100 when there is no capacity cost; and are $35 and $70 

with the $30 capacity cost. 

 
Simulation Results 

The mean and standard deviation of the equilibrium strategy parameters for each 

scenario are shown in Tables II-2 and II-3. Actual quantity ratio is defined 

as ])/[( NcRq C ×− , here q is how many products it actual purchased with its price-

quantity combinatorial strategy set in the market.  

Table II-2 shows that without capacity cost, market prices are at the monopsony 

level always for markets with1 or 2 buyers, mostly for 3 buyers, and almost never for 4 

buyers. From monopsony to triopsony, the more buyers in the market, the higher the 
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market price is but only by a small amount. The market average price of $53.29 for the 

triopsony market is only a little higher than $50.07 for duopsony market. Buyers fight to 

nearly perfect competition level when the market contains 4 buyers with market price 

$99.98. Without capacity cost, buyers tend to maintain a capacity much higher than the 

actual market aggregate supply from monopsony to triopsony, and near to the actual 

market aggregate supply for the 4-buyer market. The actual quantity variances for one 

buyer are around 17% in triopsony market and much higher than around 5% in duopsony 

and around 3% in 4-buyer markets.  

Table II-3 shows that when there is a capacity cost, the duopsony buyers still 

collude to nearly the monopsony level but the triopsony buyers compete to near the 

perfectly competitive level. The average market price of $36.63 in the duopsony market 

is slightly higher than the monopsony price of $34.99 and the market price of $69.41 in 

the 4-buyer market is a little higher than the triopsony market price of $68.88. With 

capacity cost, buyers make capacity plans more carefully. Especially for the monopsony 

market, the buyer plans its capacity to exactly match the quantity it actually gets in the 

market. For markets containing more than one buyer, excess capacity still exists but is 

smaller for duopsony and 4-buyer markets than the triopsony market.  

Table II-4 presents the market price in equilibria under different experimental 

settings. Under market equilibrium, if the actual quantity ratio that a buyer gets is less 

than 5%, we say it is inactive in the market and the other active players share the 

supplies. Then we calculate the percentage of each category out of the equilibrium of 100 

simulation rounds. The results in Table II-4 show that capacity cost causes the markets to 

have more varied equilibria than without capacity cost and the profit decreases 
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considerably because of the excess capacity of processors. The duopsony and 4-buyer 

markets continue to collude and compete, but the competition in the triopsony market 

becomes more severe and the players compete to a higher price level or even the perfect 

competition price. Without capacity cost, the duopsony buyers always collude and the 

buyers in the 4-buyer market always compete to the perfectly competitive level and the 

equilibrium for the two markets are stable. The triopsony buyers collude to the 

monopsony price level with mostly 2 players active in the market, with a small chance of 

having only one player left. When there is a capacity cost, the multiple equilibria 

phenomena exist for all three markets. For the duopsony market, though buyers still 

mostly collude, a few times they compete to a higher market price level and sometimes 

there is only one buyer active in the market. The competition in the 4-buyer market with 

capacity cost is less severe than without capacity cost. In the 4-buyer market, there is a 

small chance that one or two players do not get any products and the remaining buyers 

share the supply. The capacity cost in the triopsony market causes the players in it to 

compete to a higher price level or even the perfectly competitive level instead of collude 

to the monopsony level as they usually do without capacity cost.  

Figure II-1 shows the frequency of equilibrium market prices out of the 100 

simulation runs for each market setting. According to the market design, with or without 

a $30 capacity cost, the monopsony market price levels are $50 and $35, and perfect 

competition price levels are $100 and $70 respectively. The results show that for the 

duopsony market without capacity cost, the market price is mostly exactly the 

monopsony level or a little bit higher. With capacity cost, the equilibrium price of the 

duopsony market mostly locates slightly higher than the monopsony level of $35 and 
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scatters larger than without cost. For the triopsony market, market equilibrium prices are 

tend to be a few dollars higher than the monopsony level without a capacity cost but tend 

to the perfect competition level with capacity cost.  

Figure II-2 shows the frequency of the buyers’ actual capacity ratios in each 

market setting. We put the actual capacity ratio of all buyers at equilibrium for all 100 

simulation runs together, separate them into different ranges and draw their distribution. 

For example, for the results of 100 simulation runs of the triopsony market, there are 300 

equilibrium actual capacity ratios total for all three players. If there are 30 ratios in the 

range 22.5%-27.5%, we say the frequency of this range is 10% among all possible 

equilibrium actual capacity ratios.  

Figure II-2 (a), (e) and (f) show that for the duopsony market without capacity 

cost and the two 4-buyer market settings, there is mainly one equilibrium for each market 

and buyers tend to split the supply. For the duopsony market with a capacity cost, as 

Figure II-2(b) shows, about 8% of the time one buyer does not purchase any product and 

the remaining buyer dominates, but most of the time the buyers split the market share. 

For all three markets, the actual capacity ranges scatter larger with capacity cost than 

without cost.  

Figure II-3 shows individual runs to illustrate the pricing behavior evolution of 

buyers with no capacity cost setting. This figure shows that monopsony and 4 buyers 

markets reach equilibrium faster than duopsony and triopsony markets. In this example, 

all buyers have the same pricing strategy. When the number of buyers is less than 4, they 

collude to monopsony and otherwise they compete to the perfectly competitive level. 
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This phenomenon shows that when there are more than 3 players in the price competition 

market, they have little chance to collude and will compete to perfect competition level.   

 

Conclusions  

This research studied the procurement behavior of oligopsony buyers with 

capacity-price combination decisions. When buyers can learn from their past 

performance and make strategic decisions with some randomness, buyers collude to 

nearly the monopsony level for duopsony market and compete to nearly the perfect 

competitive level when the market contains four buyers. For triopsony, the equilibrium 

price level increases from monopsony to the near perfectly competitive level when a 

capacity cost is added. Huck, Normann, and Oechssler (2004) obtain similar results with 

quantity competition experiments with human subjects. They also find that the number of 

buyers affects the competitive behavior and two buyers tend to collude and four buyers 

tend to be competitive. The results also show that buyers tend to have excess capacity. 

This phenomenon can be observed in the beef packing industry, where the processing rate 

is only around 70% of the buyers’ total capacity.  

The results show that computer-based adaptive algorithms can mimic how firms 

adapt their behavior under strategic price-quantity competition markets and present a 

potential explanation of the phenomena observed in experiments with human subjects 

which differ from the predictions of or cannot be explained by existing theoretical models 

with fully rational agents. This suggests that people use heuristic learning rules, which 

give different outcomes than the profit maximization rules assumed in most past 

theoretical work. 
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Table II-1. PSO Parameters in the Artificial Market Simulation 

 

Parameter     Symbol Value 

Market Parameters 

Number of firms M 1 for monopsony market; 
2 for duopsony market; 
3 for triopsony market; 

4 for 4-packer market 

Number of sellers N  400  

Product value R $100  
   
Particle Swarm Optimization (PSO) Algorithm Parameters 

 

Intercept of inertia weight in equation (2.7) of PSO 
w

0β  1.5 

Slope of inertia weight in equation (2.7) of PSO w

1β  0.5 

Self and global confidence factors of PSO 21 cc =  1  

Number of parallel market K 20  

Maximum iteration of one simulation round maxt  2,000  

Number of simulation round  100  
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Table II-2. Simulation Results of Price-Quantity Strategic Buyers without Capacity Cost 
 

Market 
Structure 

Buyer Statistic 
Market 
Price($) 

Price 
Ratio 

Capacity 
Ratio 

Actual 
Quantity 

Ratio 
Profit($) 

Buyer 1 Mean 50.00 50.00% 83.31% 50.00% 249,990 Monopsony 

 SD   0.00   0.00% 14.20%   0.02%          89 

        

Buyer 1 Mean 50.07 50.06% 84.71% 25.53% 127,442 

 SD   0.07   0.07%   9.96%   5.53%   27,550 

Duopsony 

Buyer 2 Mean  50.06% 84.40% 24.54% 122,523 

  SD    0.07%   9.41%   5.52%   27,543 

        

Buyer 1 Mean 53.59 53.55% 85.49% 16.36% 75,762 

 SD   1.24   1.24% 14.30% 17.17% 79,333 

Buyer 2 Mean  53.57% 87.47% 20.45% 94,954 

 SD    1.24% 12.77% 17.01% 79,138 

Triopsony 
 

Buyer 3 Mean  53.56% 84.78% 16.78% 77,843 

  SD    1.24% 13.38% 15.29% 70,998 

        

Buyer 1 Mean 99.98 99.98% 96.31% 25.42%         39 

 SD   0.00   0.00%   3.70%   3.05%         10 

Buyer 2 Mean  99.98% 95.62% 25.16%         40 

 SD    0.00%   5.39%   3.12%         10 

Buyer 3 Mean  99.98% 95.82% 24.43%          39 

 SD    0.00%   4.76%   3.14%            10 

Buyer 4 Mean  99.98% 96.24% 24.92%          37 

Four-Buyer 
 

 SD    0.00%   4.19%   3.21%          10 

Note:  

1. Marginal capacity cost is zero, which is C
c  = 0. 

2. Price ratio is the bidding price of a buyer relative to C
cR − = $100 here; for example, 

50% price ratio means this buyer will bid with $50. 

3. Capacity ratio is the processing quantity plan of a buyer relative to NcR C ×− )( = 

10,000; for example, buyer 1’s capacity ratio is 83.30%, and actual capacity ratio is 
49.98%  means it plans to purchase 8,330 products but actually get 4,998 in the 
market. 
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Table II-3. Simulation Results of Price-Quantity Strategic Buyers with Capacity 

Cost 

 

Market 
Structure 

Buyer Statistic 
Market 
Price($) 

Price 
Ratio 

Capacity 
Ratio 

Actual 
Quantity 

Ratio 
Profit($) 

Monopsony  Buyer 1 Mean 34.99 49.99% 49.99% 49.99% 122,483  

  SD   0.02 0.03% 0.03% 0.03% 17  

        

Duopsony  Buyer 1 Mean 36.63 52.30% 52.05% 24.78% 565  

  SD   0.21 0.30% 0.82% 13.00% 56,911  

 Buyer 2 Mean  52.31% 51.88% 27.53% 13,172  

  SD  0.29% 2.64% 12.98% 57,366  

        

Buyer 1 Mean 68.88 98.36% 85.99% 32.16% -110,629  

 SD   0.95 1.34% 23.55% 29.35% 68,434  

Buyer 2 Mean  98.38% 84.14% 32.18% -106,707  

 SD  1.35% 23.75% 24.67% 62,054  

Triopsony  
 

Buyer 3 Mean  98.37% 86.89% 33.79% -108,781  

  SD  1.35% 21.14% 26.82% 60,707  

        

Buyer 1 Mean 69.41 97.64% 55.28% 23.79% -65,040  

 SD   0.69 3.46% 9.34% 8.90% 14,433  

Buyer 2 Mean  97.55% 56.39% 25.37% -64,166  

 SD  4.13% 9.84% 8.67% 16,560  

Buyer 3 Mean  97.40% 54.31% 23.75% -63,050  

 SD  5.08% 10.13% 8.65% 15,863  

Buyer 4 Mean  97.41% 56.30% 24.21% -66,371  

Four-Buyer  
  

 SD  4.61% 9.26% 9.03% 16,560  

Note:  

1. Marginal capacity cost is $30, which is C
c  = $30. 

2. Price ratio is the bidding price of a buyer relative to C
cR − = $70 here; for example, 

50% price ratio means this buyer will bid with $35. 

3. Capacity ratio is the processing quantity plan of a buyer relative to NcR C ×− )( = 

7,000; for example, buyer 1’s capacity ratio is 83.30%, and actual capacity ratio is 
49.98%  means it plans to purchase 8,330 products but actually get 4,998 in the 
market. 
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Table II-4. Equilibria under Different Market Settings 

 
  No Capacity Cost  $30 Capacity Cost 

Market 
Structure 

Numbers 
of Active 
Buyers 

Monopsony 
Price Level 

Perfect 
Competition 
Price Level 

Others  
Monopsony 
Price Level 

Perfect 
Competition 
Price Level 

Others 

Duopsony 1     8.5%   

 2 100%    88.5%  3% 

         

Triopsony 1 5%     9% 7% 

 2 95%     29% 13% 

 3      28% 14% 

         

4-Buyer 1        

 2      1%  

 3      4%  

 4  100%    75% 20% 

Note:  
1. The percentage in this table presents the frequency of an equilibrium among 100 

simulation rounds under each setting. 
2. Under zero capacity cost setting, market price between $98.5 and $100 are looked as 

perfect competition level. 
3. Under $30 capacity cost setting, market price between $68.5 and $70 are looked at as 

perfect competition level. 
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a. Duopsony market without capacity cost b. Duopsony market with $30 capacity cost 

 
c. Triopsony market without capacity cost 

 
d. Triopsony market with $30 capacity cost 

Figure II-1. Frequency of equilibrium market price 
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a. Duopsony market without capacity cost b. Duopsony market with capacity cost 

  

c. Triopsony market without capacity cost d. Triopsony market with capacity cost 

  
e. Four-buyer market without capacity 

cost 
f. Four-buyer market with capacity cost 

 

Figure II-2. Frequency of buyers’ actual capacity ratio 
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(a) Monopsony market                                             (b) Duopsony market 

 

 
(c) Triopsony market                                 (d) 4-buyer market 

 

Figure II-3.Buyers’ pricing behavior without capacity cost ( C
c = 0) 
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II.  

 
 
 
 

CHAPTER III 

 

 

 

 THE LONG RUN AND SHORT RUN IMPACT OF CAPTIVE SUPPLIES ON 

SPOT MARKET PRICE: AN AGENT-BASED ARTIFICIAL MARKET 

Introduction 

In the beef packing industry, vertical integration through captive supplies between 

packers and feeders has increased significantly during the past decades. Captive supplies 

include marketing agreements, packer owned cattle, and forward contracts. Most packers 

procure cattle both through exclusive captive supply contracts and from the spot market. 

According to a recent GIPSA Livestock and Meat Marketing Study (USDA 2007), 38.3% 

of cattle were purchased with captive supplies, from which marketing agreements take 

the largest share of 28.8%, with 4.5% forward contracted, and the rest packer owned. The 

price of captive supply cattle is typically linked to the subsequent spot market price in 

one way or another. In addition to the increased vertical integration, the U.S. beef 

processing industry also experienced horizontal integration with the four-firm 

concentration ratio reaching 80% in 2002 (Ward).  

The increased use of captive supplies by oligopsony packing firms has led to 

concern about negative impacts of captive supplies on the cash market. Xia and Sexton 

(2004) construct a theoretical duopsony market where packers purchase cattle both with 

exclusive captive contracts and in the cash market, and the price of captive supplies is 
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linked to the spot market price. They show that packers can use captive supplies to reduce 

competition and depress the cash market price to the monopsony level if 50% of the 

cattle are contracted. In contrast to the large price depression predicted by Xia and 

Sexton’s theoretical model, previous empirical studies have found that captive supplies 

have only a small negative or insignificant effect. Ward, Koontz and Schroeder (1998) 

find small negative relationships between price and the percentage of cattle delivered 

with forward contracts and marketing agreements. Parcell, Schroeder and Dhuyvetter 

(1997) find that a 1% increase in captive supply shipments is associated with a $0.02/cwt 

and $0.03/cwt reduction in basis in Colorado and Texas. USDA (2007) gives similar 

results as the previous empirical studies and shows that a 10% increase in capacity 

utilization through captive supplies is associated with a $0.04 per pound of carcass 

weight decrease in the cash market.  

One possible explanation of the difference between Xia and Sexton’s static model 

and the previous empirical results is that price depression from captive supplies is a short 

run effect. In the long run, if packers reduce the price they pay for cattle, contracted 

feeders will reduce the number of cattle they produce. While the Xia and Sexton result is 

mathematically correct, its assumptions may not match what happens in actual cattle 

markets. In this article, we demonstrate that the extra market power provided by captive 

supplies is a short run phenomenon. 

In this research, we use the agent-based computational economics (ACE) method 

to study the fed cattle market by conducting experiments with programmed agents. 

Agent-based computational economics (ACE) simulates games between interactive 

agents (Tesfatsion 2001) and adopts concepts and methods from game theory, cognitive 
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science and computer science. ACE models are increasingly used to study economic 

phenomena and are especially suitable to simulate economic games in which agents 

interact with each other assuming bounded rationality and simple adaptive learning rules.  

ACE has been used to study the behavior of agents in the cobweb model, the 

exchange rate problem, prisoner’s dilemma, etc. (Ariforic 1996; Axelrod 1987; Erev and 

Roth 1998; Riechmann 2001; Vriend 2000), but to our knowledge, has not been used in 

agricultural economics. ACE can be used to study problems with simple behavioral 

assumptions that are too difficult to analyze with mathematical methods. ACE is more 

economical and time efficient compared to experiments with human subjects and it is 

more controllable.  

This research uses a particle swarm optimization algorithm to model the learning 

behavior of agents in the artificial fed cattle market. PSO is a stochastic optimization 

technique developed by Eberhart and Kennedy (1995). The idea of PSO came from 

observing how flocks of birds, fish, or other animals adapt to avoid predators or to find 

food by sharing information. In our game, packers do not cooperate with each other and 

only learn from their own experience. Thus, we adjust PSO by constructing multiple 

parallel markets and letting each agent have its own clones in every market. Agents trade 

in every market simultaneously and independently, but they learn from their experience 

with their own clones. This means each packer has a separate “flock of birds” that does 

not share information with the flocks of the other agents.  

In this research, we develop an artificial fed cattle market using an agent-based 

model and use it to determine the impacts of captive supplies under different short run 
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and long run contract assumptions. We verify that price depression impact of captive 

supplies exists in the short run, but find that it disappears in the long run.  

 

The Oligopsony Market with Captive Supplies 

Consider a homogeneous product market with M packers and N  feeders. The 

number of packers is much less than the number of feeders ( NM << ). Packers procure 

from feeders and sell processed goods to the retail market. To focus our research on the 

game between packers and feeders in this market, we assume that the final processed 

boxed beef price, the processing rate, and the marginal cost are constant, so the fed cattle 

value to packers is also constant. This result means the marginal revenue for each animal 

is constant, and we define the marginal revenues as R .  

 Packers first make contracts with chosen feeders and then compete for the 

remaining cattle in the spot market. We follow Xia and Sexton’s assumption that packers 

use quantity as their competition strategy. The market prices are determined by the 

packers’ total demand in the spot market and the aggregate supply from the non-

contracted feeders. In this section, we construct three scenarios by first fixing both the 

number of contracts and the quantity per contract. Next, we allow supply response by 

feeders. Finally, we allow supply response and let packers choose the number of captive 

supply contracts. The agent-based models under the three assumptions are developed in 

the next section. The simulation result with the agent-based model is compared with the 

theoretical result.  
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Fixed Number of Contracts and Fixed Quantity per Contract 

We first present a theoretical model that extends the Xia and Sexton (2004) 

results. Xia and Sexton only consider the duopsony case, but we generalize their results 

to the oligopsony case of M packers.  

 Assume M processing packers and N feeders in the fed cattle market. Packers 

purchase cattle from feeders with both exclusive contracts and in the spot market. The 

price of contracted cattle is linked to the spot market price. Packers choose quantities 

rather than price and so this is a Cournot game. 

Assume packers make exclusive contracts with c

in chosen feeders, and the quantity 

of each contract c

iq is fixed, where c indicates contract market. In each period, the 

contracted feeders deliver cattle to packers and packers compete with each other for cattle 

from the non-contracted feeders. The spot price is determined by the market clearing 

price from the spot market aggregate demand and supply, and the contracted cattle are 

also valued with this price. Feeders always accept the contracts. We use S to indicate the 

total number of feeders with contracts, ∑ =
=

M

i

c

inS
1

and NS < .  

At the beginning of each processing period, packers make procurement strategies 

simultaneously and then purchase cattle in the spot market. The choice variable of the 

procurement strategy is the procurement ratio:   

(3.1) )/(,, NRqx
d

ti

d

ti ×= , 

where d

tix ,  is the procurement ratio, N is the total number of feeders, and the superscript d 

indicates packer’s demand in the spot market. Packer i ’s processing quantity d

iq is also the 

amount of its procurement. R is the marginal revenue of one packer and also the supply 
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level of feeders under the perfect competition price level. For example, if under perfect 

competition, all feeders will provide 10,000 cattle and the processing quantity of 

packer i is 3,000, its procurement ratio ix equals 0.3.  

The total demand in the spot market can be written as ∑ =
=

M

i

d

ti

d

t qQ
1 , . We assume 

all feeders are homogeneous and have a linear supply function t

s

tj pq =, , so the total 

supply in the spot market is t

s

t pSNQ )( −= , since the contracted S feeders deliver all 

their products with contracts. The market clearing condition is where the spot market 

aggregate demand equals supply, which is d

t

s

t QQ = . Thus we obtain the equilibrium spot 

market price: 

(3.2) )( SNQp
d

tt −= . 

 Packer i ’s total profit, which is determined by the quantity it purchases both with 

captive contracts and in the spot market, is ))(( ,,

c

i

d

titti qnqpR +−=π , Mi ,...,1= . Because 

the quantity per contract is fixed, the contract quantity c

iqn is constant for each processing 

period. Thus in every period, packers only need to decide how many cattle to buy through 

the spot market to maximize their profit. In addition, since we know that packers’ 

procurement decisions will also affect the spot market price, we substitute equation (3.2) 

into the packers’ profit function and solve its first order conditions with respect to d

tiq , , 

holding c

iqn fixed to get the following packers’ reaction functions: 

(3.3) 2/2/2/)(
'

,',

cc

i

ii

d

ti

d

ti qnqSNRq −−−= ∑
≠

, for all Mi ,...,1= . 

Simultaneously solving these reaction functions of M packers, we obtain the spot demand 

quantities for each packer: 
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(3.4) )1/()1/()()1/()(, +−+−++−= MMqnMqnSMSNRq
cc

i

cc

i

d

ti , for Mi ,...,1= . 

Add the above individual spot demands together and substitute the aggregate spot market 

demand ∑ =
=

M

i

d

ti

d

t qQ
1 , into equation (3.2), and the spot market clearing price is 

(3.5) )])(1/[()1/( SNMSqMMRp
c

t −+−+= . 

From this result, we can see that without captive supplies, which means S = 0, the 

equilibrium price is the Cournot oligopsony level. With captive supplies, the price is 

lower than without them.  

 Now we assume the contracted feeder does not have a supply response and 

quantity c
q is agreed to be fixed to a value. We assume that the fixed quantity per contract 

will be based on the long run equilibrium price. Thus, packers and contracted feeders fix 

the quantity of a captive contract to Ep . Substitute Epq
c = to equation (3.5), which 

results in: 

(3.6) ])1/[()( MSNMRSNMEp −+−= . 

If the oligopsony model is restricted to be a duopsony model by setting M = 2, 

this spot market price becomes )23/()(2 SNRSNEp −−= , which is same as equation (5’) 

in Xia and Sexton (2004). In addition, when the total MNM /)1( − number of feeders sign 

captive contracts and agree to produce at the market price level, the spot market price 

reaches the monopsony level R/2. For example, when there are M = 4 packers in the 

market, they need to make exclusive contracts with 3N/4 feeders to depress the spot 

market to the monopsony level. In Xia and Sexton’s duopsony model, packers only need 

to contract with S = N/2 feeders to depress the spot market price to the monopsony level. 

These results illustrate that the larger the number of packers, the larger number of 
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aggregate exclusive contracts that are needed to depress the spot market price the same 

amount. 

 From the above results, we can see that the spot market price could be depressed 

to the monopsony level, when both the number of contracts and the quantity per contract 

are fixed. 

 
Fixed Number of Contracts and Flexible Quantity per Contract 

 Now relax the previous model by allowing a supply response from contracted 

feeders. Other assumptions are the same as with the previous model. M packers and N 

feeders in the market, and the total contracted feeder number is S. The spot market price 

is the same as equation (3.2). 

We assume that the contracts are made one period ahead and that contracted 

feeders will produce the quantity based on the expected spot market price of the delivery 

period. Thus, the supply equation of the contracted feeder is adjusted as t

s

tj Epq =, . 

Substitute this contract quantity into packers’ total profit function, there 

are ))(( ,,

c

ti

d

titti qnqpR +−=π  ))(( , ti

d

tit EpnqpR +−= , Mi ,...,1= . When the market 

reaches equilibrium, the spot market prices between different time periods will be the 

same, which means tt pEp = . Substitute this condition and equation (3.2) into the profit 

function, and take the first order condition with respect to the packers’ procurement 

quantity d

tiq , , and the result is the packers’ reaction functions: 

(3.7) )](2[)2(2/)(
'

,',

c

i

ii

d

ti

c

i

d

ti nSNqnSNRSNq +−+−−−= ∑
≠

, for all Mi ,...,1= . 

Simultaneously solving these reaction functions of M packers for the aggregate demand 
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∑= d

ti

d
qQ ,  in the spot market and then substitute the result in the market clearing 

equation (3.2), we get the spot market clearing price in equilibrium as 

(3.8) ]2))(1/[(])[( SSNMSMSNREp +−++−= . 

From this result, we can see that without captive supplies, which means S = 0, the 

equilibrium price is still the Cournot level. If we restrict the oligopsony model to be a 

duopsony model by setting the number of packers M = 2, this spot market price 

becomes )3/()2( SNSNREp −−= , which is higher than that in the previous model. For 

example, when S = N/2, the spot market price is 3R/5, which is higher than the 

monopsony level R/2 but lower than the duopsony level 2R/3.  

 From the results above, we can see that with a fixed number of contracts and with 

supply response, the spot market price level is higher than without supply response. But, 

in this model captive supplies still reduce market prices.  

 
Flexible Contracts and Flexible Quantity per Contract 

Now assume that in the long run feeders who sign captive supply contracts have a 

supply response and packers can adjust their captive supply contract numbers and the 

procurement quantity in the spot market.  

First, packers decide how many feeders to make exclusive contracts with. The 

contract ratio c
x is used as a packer’s captive supply choice variable:  

(3.9) Nnx
c

ti

c

ti /,, = , 

where c

tix , is the contract ratio of packer i , which indicates the percent of feeders out of the 

total number of feeders with whom this packer contracts in time t. Then feeders decide 



 60 

how many cattle they will produce based on their expectation of the market price. We can 

reasonably assume that feeders expect the spot market price of the next period will be the 

same as the current one. Thus, with a linear supply function that has an intercept of zero 

and a slope of one, feeders will deliver 1−= t

c

t pq to their contracted packers. At last, 

packers decide how many cattle to process with strategy q
x and compete with other 

packers in the spot market from the remaining feeders. Thus the packers’ profit function 

changes to: 

(3.10) ))(( ,,,

c

t

c

ti

d

titti qnqpR +−=π ))(( 1,, −+−= t

c

ti

d

tit pnqpR , for all Mi ,...,1= . 

The maximization of the above functions involves variables in multiple time 

periods and the current period contains two choice variables for each packer. Solving 

such a dynamic model with mathematical analysis would be difficult. Therefore, we use 

an agent-based model to simulate this market. In the following section, we introduce the 

market design of the agent-based model for an artificial oligopsony market with captive 

contracts. 

 
Agent Based Artificial Fed Cattle Market with PSO Algorithm 

An agent-based model is a computer simulation artificial market which contains 

multiple programmed strategic agents interacting in an economic market system. These 

agents have simple behavioral rules and can learn to use better strategies based on their 

past experiences. 

In this article, we use programmed intelligent agents acting as N feeders and M 

packers in the fed cattle market. Feeders are price takers, and packers compete for cattle 

both with captive supply contracts and in the spot market. The transactions between 
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packers and feeders occur in a captive contract market and in a cash market. We set up 

three simulation procedures: a) fixed number of contracts and fixed quantity per contract; 

b) fixed number of contracts and flexible quantity per contract, and c) flexible number of 

contract and flexible quantity per contract. Figure III-1 illustrates how packers and 

feeders dynamically make their transactions under these market designs.  

In the simulation, we assume that packers choose quantities and that market 

participants discover the interception point of the current aggregate demand and supply 

curve and use it as the market clearing price. Thus, if no captive supply is present, the 

simulation results should be exactly what the Cournot theory predicts. Since packers 

cannot form enforceable agreements, if any market power is exercised which makes the 

spot market price lower than the Cournot result, it must be done through captive supply. 

The following paragraphs describe the market mechanisms of each market and the 

behaviors of agents in them. Market participants have their own marketing strategies and 

can improve their performance by learning based on their past performance.   

Figures III-1(a) and (b) show the time lines with short run and long run periods. In 

the short run, we assume that both the captive contract and the quantity per contract are 

fixed. Under this assumption, we simulate the behavior of packers to show how they 

adjust their spot market procurement quantity to find the best response level. This process 

means that during the short run simulation, packers only have one choice variable, the 

procurement ratio in the spot market. Different from the short run model, Figure III-1(b) 

shows that in the long run, packers can select the number of contract feeders as well as 

the procurement ratio in the spot market. Also, contracted feeders have a supply response 

with respect to the spot market price.  
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The learning behaviors of packers are modeled with a particle swarm optimization 

algorithm. By playing the game repeatedly, packers can learn from their own experiences 

and adopt the best strategy for themselves.  

 

Particle Swarm Optimization Algorithm 

To model the adaptive learning of agents, evolutionary (genetic algorithm) and 

machine learning (reinforcement learning) algorithms are increasingly applied to ACE 

(Ariforic 1994; Axelrod 1987; Erev and Roth 1998). With GA, researchers have to be 

very careful to choose parameters and methods for each problem or the result may be 

premature convergence. The large population size also makes finding equilibrium with 

GA time consuming. Reinforcement learning is a sub-area of machine learning, and the 

environment is typically formulated as a finite state Markov decision process in which an 

agent increases the probability of choosing successful strategies under the possible 

strategy spaces of its rivals. When the possible strategy space is large or continuous, the 

computational cost increases exponentially. To avoid the problems of GA and RL, we use 

a particle swarm optimization algorithm to model the learning behavior of agents. As we 

state in the introduction section, agents have their own parallel clones and share 

information between them. This kind of marketing strategy can be observed in many real 

markets. For example in fed cattle market, packing firms send many agents to purchase 

cattle from feeders and each of them visits feeders in a certain area. Agents bid 

differently but they will share information with their colleges at the end of each period 

and adjust their strategies to increase profit. This sharing of information does not occur in 

GA, and this may explain why PSO has been found to lead to faster convergence.  
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In the market simulated here, agents face a changing economic environment since 

all agents continuously update their market strategies. We set up K parallel markets, and 

agents each have their own clones in every market. For example, with 20 parallel 

markets, agents each have 20 clones as the population from which they can learn. 

Although having the same behavioral rules, the K clones of one agent may take a 

different strategy in each market since the initialized random values are different. In the 

simulation, packers dynamically change their marketing strategies with the PSO 

algorithm but feeders are price takers and simply sell their products at the market price.  

Suppose the th
k clone of packer i  chooses Γ

kix , as one of its two strategy 

parameters, ]1,0[, Ux ki ∈Γ , and each strategy parameter is randomly initialized at the 

beginning of the simulation, hereΓ indicates a strategy in the decision set of a clone. Each 

clone has a velocity, ]1,0[, Uv ki ∈Γ , which determines the change of the strategy value. The 

changes of choice variables are influenced by the value of the best solutions achieved by 

the th
k clone itself, ]1,0[,

, Up
l

ki ∈Γ , and by the best solution among the whole 

population, ]1,0[,
Up

g

i ∈Γ . The superscripts l and g indicate local and global, the 

subscripts k and i indicate th
k  parallel market and th

i packer respectively. Profit 

function )( ,kik xxxxπ  is used to evaluate the performance of each decision set ]',[ ,,,

c

ki

q

kiki xx=xxxx . 

In every simulation step, each strategy of the th
k clone of packer i is selected using 

equations:  

(3.11) 
ΓΓΓ

+ += tkitkitki vxx ,,,,1,,  and 

(3.12) )()( ,,

,

,,22,,

,

,,11,,1,,

ΓΓΓΓΓΓ

+ −+−+⋅= tki

g

tkitki

l

tkitkitki xpucxpucvwv , 
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where Γ

tkix ,, indicates the strategy, Γ

tkiv ,, is the velocity vector, ]1,0[Uu ∈ζ , and 2,1=ζ are 

uniformly distributed random numbers, 1c and 2c are learning parameters and can be 

called self confidence factor and swarm confidence factor respectively, w is an inertia 

weight factor, l

kip
,

,

Γ and g

ip
,Γ are local best and global best, and the subscript ofΓ is d or c 

to indicate strategy x as procurement ratio or contract ratio. The calculated value 

of Γ

+1,, tkix or Γ

+1,, tkiv  is restricted to be one or zero when it overflows the range.  

The following equations indicate how to choose l

kip
,

,

Γ  and g

ip
,Γ among all 

parameters of agent i . Under a dynamic environment where agents’ best response 

strategy depends on how others behave, the fitness value of the previous local best may 

not be the same when it is used in the current economic environment. Then the local best 

needs to be retested. The best locals of the previous L iterations are retested under the 

current market environment. The current best local is choosen from the best performance 

past parameters l

tkip
,

',,

Γ  and the current strategy: 

(3.13) { }Γ
≠

Γ
−−

Γ = tkiitkik

l

Ltkik

l

tkik

l

tkip ,,',,,,1,,

,

,, )(),(,),(maxarg xxxxxxxxpppppppp πππ K , 

where Kk ,...,2,1= and 'i indicates packer i ’s rivals. And the best global parameter is 

selected from the best local parameters: 

(3.14) { })(,),(maxarg ,

,,

,

t1,,1

,

,

l

tKiK

l

i

g

tip
ΓΓΓ = pppppppp ππ K , 

where K is the total number of parallel markets. 

 The inertia weight w in (3.12) is critical in affecting the speed of convergence 

(Chatterjee and Siarry 2006). A large inertia weight provides a larger exploration but a 

slow convergence, while a smaller inertia weight is needed to fine-tune the current search 

area. It is worth making a compromise, such as starting with a higher value at the 
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beginning and then decreasing w with iterations:  

(3.15) ( ) maxmax10 / tttw
ww

t −+= ββ , 

where maxt is the maximum number of iterations and t is the current iteration. Self 

confidence and global confidence factors 1c and 2c in equation (3.12) can be set as 

constant and are usually between 0.5 and 2.5. Here we choose 1 for both of them.  

 

Simulation Procedure with PSO 

There are M packers and N feeders. Each packer and feeder has K clones in the K 

parallel markets. Each clone of a packer may have a different trading strategy in each 

parallel market. The steps in the simulation are: 

(i) In each market, randomly initialize Γ

tkix ,, and Γ

tkiv ,, for all i . We choose the 

quantity ratio ]1,0[,, Ux tki ∈Γ and 0,, =Γ

tkiv for all Mi ,...,1= , Kk ,...,1= , and 

Lt ,...,1= . 

(ii) Select the best locals for each clone with equation (3.13). 

(iii) Select best global for each packer with equation (3.14). 

(iv) While the market is not converged, each packer continuously uses the 

function (3.11) and (3.12) to select new strategies.  

 

Equilibrium Criterion 

Typically, zero diversity in the population's strategies among all markets signals 

the stopping point for a PSO. As the population evolves, diversity diminishes and each 

agent uses the same strategy in each parallel market. For every agent, if the variance of 
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the strategies in the population is less than 0.01% and the variance of the mean value of 

the strategies for 10 generations is less than 0.01%, we say the algorithm reaches 

equilibrium.  

 
Simulation Results 

We design two scenarios under the short run assumption by simulating with and 

without a supply response from the feeders with fixed captive supply contracts, and one 

scenario under the long run assumption by simulating with flexible captive supply 

contracts. In each scenario, we determine the market equilibrium of a duopsony market 

and an oligopsony market containing 4 packers. Thus, in this research we have 12 

simulation settings. 

The parameters used in the three scenarios are shown in Table III-1. The market 

parameters and PSO parameters are the same for all scenarios and the packer number M 

is 2 in the duopsony markets and 4 in the oligopsony markets. We have 400 feeders in 

each market. The cattle value before processing is $100 for packers. For the PSO 

algorithm, we choose 1.5 and 0.5 for the intercept w

0β  and slope w

1β of inertia weight w in 

equation (3.15), and let the maximum iteration maxt be 500. Both 1c and 2c in equation 

(3.12) are chosen as constant value 1 with 20 parallel markets. For the two short run 

scenarios, since we assume that the captive supply contracts last for infinite periods with 

or without contract quantity fixed, we also set the values of these two variables as 

parameters, and the chosen values are shown in Table III-1.  

A simulation round contains multiple iterations that agents repeatedly play the 

game until the market reaches equilibrium. We run 100 rounds for each of the 12 
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experimental settings with different random starting values. Within each simulation 

round, we let agents trade until the equilibrium is determined by the convergence 

criterion or a maximum of 500 iterations is reached. At the beginning, packers randomly 

choose their strategies and learn to use better strategies based on their experience.  

In the short run simulation, the captive contracts are fixed, and packers interact in 

the market to find the optimal procurement strategies with or without quantity per 

contract fixed. We simulate the market by letting packers contract with 50% and 75% of 

feeders in the duopsony market and the four packer market respectively. Since packers 

are homogeneous, we can reasonably assume that packers will split the contracts equally, 

and each of them will contract with 25% of the total feeders in the duopsony market and 

18.75% in the 4 packer market. In the short run setting without contract supply response, 

we set the quantity per contract as 50. According to our theoretical derivation, if packers 

contract with (M-1)N/M feeders and the contract quantities are fixed at the monopsony 

level R/2, packers can depress the spot market price to the monopsony level. So we use 

this setting to test if packers in the artificial market can learn to find the optimal 

procurement strategies to benefit from the monopsony price in the spot market. Thus, in 

the short run simulation, packers have one choice variable - the procurement ratio; but in 

the long run, they have two choice variables - the contract ratio and the procurement 

ratio. 

The mean and standard deviation of the market price and packers’ strategies at 

equilibrium from 100 rounds are calculated. The simulation results are shown in Table 

III-3. The results show that in the short run, packers can depress the spot market price to 

the monopsony level of $50 for both the duopsony market and the oligopsony market; but 
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in the long run, packers compete to obtain the Cournot results, and the spot market price 

is $66.7 in the duopsony market and around $80 in the 4-packer market. In addition, 

when packers can choose both the number of captive supply contracts and the 

procurement quantity in the spot market, packers most often use the spot market to 

purchase cattle. This result means that in the long run, packers cannot use captive 

contracts to depress the spot market price, and packers behave like they do not need 

captive supplies as an alternative procurement method. 

Besides the statistical analysis of the market equilibrium, Figures III-2 to III-5 

show the dynamics of the spot market price and the packers’ strategies in an individual 

run under each experimental setting. Figure III-2 shows the market prices for the 

duopsony and 4-packer models under the long run assumption and the short-run 

assumption with a fixed contract without contract supply response. From Figure III-2, we 

can see that if packers make long term contracts with feeders and the quantity of 

contracts are fixed to a carefully chosen value, they can depress the spot market price to 

the monopsony level of $50 even without collusion. However, without long term 

contracts where packers adjust strategies on both captive supply and spot market 

procurement, the spot market price goes to the Cournot solution.  

Figure III-3(a) shows the simulation results of the duopsony market under fixed 

contracts without contract supply response. The figure shows that at equilibrium, each 

packer uses a procurement ratio of 12.5% as its optimal strategy, which yields 5,000 spot 

market procurement quantities according to equation (3.1) since R and N equal $100 and 

400. Thus, the total demand in the spot market is 10,000. Substituting this quantity and 

the number of uncontracted feeders of 200 into equation (3.2), we see that the market 
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price is $50. This result is consistent with our simulation results in Figure III-1 and the 

theoretical results of Xia and Sexton (2004).  

 Following the method above, we simulate the four-packer market by letting 

packers make contracts with 75% of the total feeders. The contract quantity is also fixed 

at 50. The simulation results in Figure III-3(b) show that the market reaches equilibrium 

when each packer uses a spot procurement ratio around 3.125% as its strategy. Substitute 

these values into equation (3.5), and we can also get the market price as $50. These 

results are consistent with our simulated results in Figure III-2. The results confirm that 

when the market contains more packers, the packers need to contract with more feeders 

than the duopsony market to depress the spot price to the monopsony price level.  

 Both Figures III-4 and III-5 show the simulation results for markets without fixed 

contracts. Under this situation, packers adjusted the number of feeders they contract with 

as well as the spot procurement strategies. Also, contracted feeders are allowed to have a 

supply response. In long run markets, packers show oligopsony behavior. The spot 

market plays a crucial role, and packers tend to purchase all demand in it instead of the 

captive supply market, and the contract ratio goes to zero. Packers use 33.33% and 20% 

spot market procurement ratios in the two markets respectively which is consistent with 

the results of the traditional Cournot model without captive supply markets.  

 There is no price depressing effect of captive supplies, but that is because packers 

choose to have no captive supplies.   
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Conclusions  

An agent-based model is used to study the impact of captive supplies under fixed 

or flexible contracts. With a fixed number of contracts with or without supply response, 

analytical solutions are available. But for the long run scenario with flexible contracts and 

flexible quantity per contract, the solution cannot be found with mathematical analysis 

and an agent-based simulation method is used. The agent-based model has been used in 

economics but is new to agricultural economists. This model provides an alternative 

method to study the complex problems which are difficult to solve with mathematical 

analysis and less costly than experiments with human subjects.  

Our simulation results indicate that captive supplies can depress the spot market 

price in the short run if the contracts are fixed. This result is consistent with Xia and 

Sexton’s model. But this is a short run effect. In the long run when the packers can adjust 

the number of contracts and feeders have a supply response for contract quantity, the 

price depression phenomena of captive supplies disappears since packers do not contract 

any cattle. 
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(a). Fixed number of contracts and with or without captive supply response 

 

(b). Long run model with flexible number of contracts and captive supply response 

Figure III-1. The timeline of the model 
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Packers contract 
with feeders using 
their contract 
strategies. 

Contracted feeders 
produce cattle and 
deliver to packers. 

Cattle delivered 
with captive 
contracts are 
priced with the 
spot market price. 
 

In the spot market, 
packers purchase cattle 
based on their 
procurement strategies.  

 

Each of the contracted 
feeders delivers cattle 
to packers. 

Cattle delivered with 
captive contracts are 
priced with the spot 
market price. 

Packer i contracts with 
c

in  chosen feeders for all Mi ,...,1= . 
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Figure III-2. Spot prices of duopsony and four-packer markets 

 
Note: For the two short run settings, both the number of contracts and quantity per 
contract are fixed. 
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(a). Duopsony Market 

 

(b). Four-Packer Market 

Figure III-3. Packers’ short run procurement ratio in the spot market without 

contracts supply response 
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(a). Contract Ratio 

 

(b). Spot Procurement Ratio 

Figure III-4. Packers’ strategies in duopsony market under long run assumption 
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(a). Contract Ratio 

 

(b). Spot Procurement Ratio 

Figure III-5. Packers’ strategies in four-packer market under long run assumption 

 



 78 

Table III-1. Parameter Setting in Artificial Market Simulation Design 

  

Parameter            Symbol Value 
 

Market Parameters 

Number of Packers M 2 for duopsony market; 
4 for four-packer market 

Number of Feeders N 400 

Cattle Value Before Processing R $100 
   

Particle Swarm Optimization (PSO) Algorithm Parameters 

Intercept of inertia weight in equation (3.15) 
w

0β  1.5 

Slope of inertia weight in equation (3.15)  w

1β  0.5 

Self and global confidence factors of PSO 21 cc =  1  

Number of parallel markets K 20 

Maximum iteration of one simulation round maxt  500 

   

Parameters for Model with Fixed Contracts 

Number of contracted feeders for each packer c
n  N/4 for duopsony market; 

3N/16 for four-packer market 

Quantity per captive supply contract 
c

q  50 
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Table III-2. Short Run and Long Run Simulation Results of Market Prices and Packers’ Strategies under Duospsony Market 

and Four-Packer Oligopsony Market Settings 

 
Short Run Market 

Structure 
Packer Statistic 

Without Contract Supply Response With Contract Supply Response 
Long Run 

  
 

Market 
Price 

Procurement 
Ratio 

Profit 
Market 
Price 

Procurement 
Ratio 

Profit 
Market  
Price 

Contract 
Ratio 

Procurement 
Ratio 

Profit 

 Mean 50.00   60.00   66.76    

 SD   0.00   0.00     0.54    

Packer 1 Mean  12.50% 500,000  15.00% 480,000  1.55% 32.45% 444,000 

 SD    0.00% 0    0.00% 0  1.52%   0.90% 7,539 

Packer 2 Mean  12.50% 500,000  15.00% 480,000  1.89% 32.14% 443,000 

Duopsony  

 SD    0.00% 0    0.00% 0  1.15%   0.76% 4,702 

 Mean 50.00   66.41   80.20    

 SD   0.01   1.20     0.41    

Packer 1 Mean  3.13% 250,000  4.12% 218,000   0.83% 19.48% 159,500 

 SD   0.00% 0  0.34% 9,515   0.79%   0.42% 2,236 

Packer 2 Mean  3.13% 250,000  4.15% 219,000   1.22% 19.07% 158,500 

 SD  0.00% 0  0.36% 7,182   0.93%   0.83% 4,894 

Packer 3 Mean  3.13% 250,000  4.20% 220,500   1.16% 19.32% 160,000 

 SD  0.00% 0  0.25% 8,256   0.97%   0.58% 3,244 

Packer 4 Mean  3.13% 250,000  4.14% 219,500   1.16% 19.16% 159,000 

Four-Packer  

 SD  0.00% 0  0.25% 8,870   1.05%   0.99% 3,078 

Note: 
1. In the short run duopsony market, each packer uses a fixed captive contract ratio of 25% , which means it contracts with 100 

feeders in every iteration period;  
2. In the short run four-packer market, each packer uses a fixed captive contract ratio of 18.75% , which means it contracts with 75 

feeders in every iteration period; 
3. Contract quantities are fixed at 50 for short run markets without contract supply response. 
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