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CHAPTER I 

 

1. INTRODUCTION 

 

1.1 Corrosion and Its Definition 
 

According to American Society for Testing and Materials corrosion glossary, 

corrosion is defined as “the chemical or electrochemical reaction between a material, 

usually a metal, and its environment that produces a deterioration of the material and its 

properties”.1 

Other definitions include Fontana’s description that corrosion is the extractive 

metallurgy in reverse2, which is expected since metals thermodynamically are less stable 

in their elemental forms than in their compound forms as ores. Fontana states that it is not 

possible to reverse fundamental laws of thermodynamics to avoid corrosion process, 

however he also states that much can be done to reduce its rate to acceptable levels as 

long as it is done in an environmentally safe and cost-effective manner. 

In today’s world, a stronger demand for corrosion knowledge arises due to several 

reasons. Among them the application of new materials requires extensive information 

concerning corrosion behavior of t\hese particular materials. Also the corrosivity of water 

and atmosphere have increased due to pollution and acidification caused by industrial 
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production. The trend in technology to produce stronger materials with decreasing size 

makes it relatively more expensive to add a corrosion allowance to thickness. Particularly 

in application where accurate dimensions are required widespread use of welding due to 

developing construction sector has increased the number of corrosion problems.3 

Developments in other sectors such as off shore oil and gas extraction, nuclear power 

production, and medicinal health have also required stricter rules and control. More 

specifically, reduced allowance of chromate based corrosion inhibitors due to their 

toxicity constitutes one of the major motivations of this study to replace chromate 

inhibitors with the environmentally benign and efficient ones. 

 

1.2 The Corrosion Process and Affecting Factors 

There are four basic requirements for corrosion to occur. Among them is the 

anode, where dissolution of metal occurs generating metal ions and electrons. These 

electrons generated at the anode travel to the cathode via an electronic path through the 

metal and eventually they are used up at the cathode for the reduction of positively 

charged ions. These positively charged ions move from the anode to the cathode by an 

ionic current path. Thus, the current flows from the anode to the cathode by an ionic 

current path and from the cathode to the anode by an electronic path, thereby completing 

the associated electrical circuit. Anode and cathode reactions occur simultaneously and at 

the same rate for this electrical circuit to function.4 The rate of anode and cathode 

reactions, that is the corrosion rate is defined by American Society for Testing and 

Materials as material loss per area unit and time unit.1 
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In addition to the four essentials for corrosion to occur; there are secondary 

factors affecting the outcome of the corrosion reaction, among them there is temperature, 

pH, associated fluid dynamics, concentrations of dissolved oxygen, and dissolved salt. 

Based on pH of the media, for instance, several different cathodic reactions are possible. 

The most common ones are: 

Hydrogen evolution in acid solutions,  

                                       2H+ + 2e-              H2                            (Eq. 1.1) 

Oxygen reduction in acid solutions,  

    O2 + 4H+ 4e-                2H2O            (Eq. 1.2) 

Hydrogen evolution in neutral or basic solutions, 

    2H2O + 2e-                  H2 + 2OH-              (Eq. 1.3) 

Oxygen reduction in neutral or basic solutions, 

    O2 + 2H2O + 4e-               4OH-                 (Eq. 1.4) 

The metal oxidation is also a complex process, and includes hydration of resulted metal 

cations among other subsequent reactions. 

    M0                Mn+  +  ne-,             (Eq. 1.5) 

In terms of pH conditions, near neutral conditions are chosen as the media for the 

purposes of this study, therefore hydrogen evolution and oxygen reduction reactions in 

acidic conditions will not be considered within the scope of this research. And among 
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cathode reactions in neutral or basic solutions, oxygen reduction is the primary cathodic 

reaction due to the difference in electrode potentials. Thus, oxygen supply to the system, 

in which corrosion takes place, is of utmost importance for the outcome of corrosion 

reaction. In addition to choosing neutral pH conditions, inhibitors are tested in stagnant 

solutions, thus effects of varying fluid dynamics on corrosion are ruled out. Weight-loss 

tests are performed at ambient conditions, thus effects of temperature and dissolved 

oxygen amounts are not tested, while for salt-fog chamber tests, temperature is increased 

for accelerated corrosion testing of sol-gel coated Al 2024 alloy samples. For both 

weight-loss tests and salt fog chamber tests, however, dissolved salt concentrations were 

kept high for accelerated testing to be possible.  

Despite the fact that dissolved oxygen was not a tested parameter in this study, 

when corrosion products such as hydroxides are deposited on a metal surface, a reduction 

in oxygen supply occurs since the oxygen has to diffuse through deposits. Since the rate 

of metal dissolution is equal to the rate of oxygen reduction, a limited supply and limited 

reduction rate of oxygen will also reduce the corrosion rate. In this case the corrosion is 

said to be under cathodic control.5 In other cases corrosion products form a dense and 

continuous surface film of oxide closely related to the crystalline structure of metal. 

Films of this type prevent primarily the conduction of metal ions from metal-oxide 

interface to the oxide-liquid interface, resulting in a corrosion reaction that is under 

anodic control.5 When this happens, passivation occurs and metal is referred as a 

passivated metal. Passivation is typical for stainless steels and aluminum.  
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1.3 Corrosion Types Based on Mechanism 

Brief definitions of major types of corrosion will be given in this section in the 

order of commonalities and importance of these corrosion types for the metal alloys 

investigated in this study, which are mild steel, Aluminum 2024, 6061, and 7075 alloys. 

 

1.3.1 Uniform Corrosion 

Uniform corrosion occurs when corrosion is quite evenly distributed over the 

surface leading to a relatively uniform thickness reduction.6-7 Metals without a significant 

passivation tendency in the actual environment, such as iron, are liable to this form. 

Uniform corrosion is assumed to be the most common form of corrosion and responsible 

for most of the material loss.6 However it is not a dangerous form of corrosion because 

prediction of thickness reduction rate can be done by means of simple tests.7 Therefore, 

corresponding corrosion allowance can be added, taking into account strength 

requirements and lifetime.  

 

1.3.2 Pitting Corrosion 

Pitting corrosion is one of the most observed corrosion types for aluminum and 

steel and it is the most troublesome one in near neutral pH conditions with corrosive 

anions such as Cl-, or SO4
2- present in the media.8-11 It is characterized by narrow pits 

with a radius of equal or less magnitude than the depth. Pitting is initiated by adsorption 

of aggressive anions such as halides and sulfates that penetrate through the passive film at 

irregularities in the oxide structure to the metal-oxide interface. It is not clear why the 

breakdown event occurs locally.9 In the highly disordered structure of a metal surface, 
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aggressive anions enhance dissolution of the passivating oxide. Also, absorption of halide 

ions causes a strong increase of ion conductivity in the oxide film so that the metal ions 

from the metal surface can migrate through the film.  

Thus, locally high concentrations of aggressive anions along with low solution pH 

values strongly favor the process of pitting initiation. In time, local thinning of the 

passive layer leads to its complete breakdown, which results in the formation of a pit. Pits 

can grow from a few nanometers to the micrometer range. In the propogation stage, metal 

cations from the dissolution reaction diffuse towards the mouth of the pit or crevice (in 

the case of crevice corrosion) where they react with OH- ions produced by the cathodic 

reaction, forming metal hydroxide deposits that may cover the pit to a varying extent. 

Corrosion products covering the pits facilitate faster corrosion because they prevent 

exchange of the interior and the exterior electrolytes leading to very acidic and aggressive 

conditions in the pit.9-11 Stainless steels have high resistance to initation of pitting. 

Therefore rather few pits are formed, but when a pit has been formed it may grow very 

fast due to large cathodic areas and a thin oxide film that has considerable electrical 

conductance.12 Conversely for several aluminum alloys, pit initiation can be accepted 

under many circumstances. This is so because numerous pits are formed, and the oxide is 

insulating and has therefore low cathodic activity, thus corrosion rate is under cathodic 

control. However, if the cathodic reaction can occur on a different metal because of 

galvanic connection as for deposition of Cu on the aluminum surface, pitting rate may be 

very high. Therefore the nature of alloying elements is very important.13 
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1.3.3 Crevice Corrosion 

Crevice corrosion occurs underneath deposits and in narrow crevices that obstruct 

oxygen supply.14-16 This oxygen is initially required for the formation of the passive film 

and later for repassivation and repair. Crevice corrosion is a localized corrosion 

concentrated in crevices in which the gap is wide enough for liquid to penetrate into the 

crevice but too narrow for the liquid to flow. A special form of crevice corrosion that 

occurs on steel and aluminum beneath a protecting film of metal or phosphate such as in 

cans exposed to atmosphere is called filiform corrosion.14 Provided that crevice is 

sufficiently narrow and deep, oxygen is more slowly transported into the crevice than it is 

consumed inside it. When oxygen has been completely consumed, OH- can no longer be 

produced there. Conversely dissolution of the metal inside the crevice continues, driven 

by the oxygen reduction outside of the crevice. Thus, the concentration of metal ions 

increase and with missing OH- production in the crevice, electrical neutrality is 

maintained by migration of negative ions such as Cl- into the crevice.15 This way, an 

increasing amount of metal chlorides or other metal salts are produced in the crevice. 

Metal salts react with water and form metal hydroxides, which are deposited, and acids 

such as hydrochloric acid, which cause a gradual reduction of pH down to values 

between 0-4 in the crevice, while outside of crevice it is 9-10, where oxygen reduction 

takes place. This autocatalytic process leads to a critical corrosion state. Since pH has 

been reduced strongly  

2H+  + 2e-              H2 
16                     (Eq. 1.1) 

reduction of hydronium ions takes place in addition to the primary cathodic reaction of  
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        O2 + 2H2O + 4e-                   4OH-.16            (Eq. 1.4) 

1.3.4 Galvanic Corrosion 

Galvanic corrosion occurs, when a metallic contact is made between a more noble 

and a less noble one.17-19 A necessary condition is that there is also an electrolytic 

condition between the metals, so that a closed circuit is established. The area ratios 

between cathode and anode is very important. For instance, if the more noble cathodic 

metal has a large surface area and the less noble metal has a relatively small area, a large 

cathodic reaction must be balanced by a correspondingly large anodic reaction 

concentrated in a small area resulting in a higher anodic reaction rate17. This leads to a 

higher metal dissolution rate or corrosion rate. Therefore, the ratio of cathodic to anodic 

area should be kept as low as possible. Galvanic corrosion is one of the major practical 

corrosion problems of aluminum and aluminum alloys18 since aluminum is 

thermodynamically more active than most of the other common structural materials, and 

the passive oxide which protects aluminum may easily be broken down locally when the 

potential is raised due to contact with a more noble material. This is particularly the case 

when aluminum and its alloys are exposed in waters containing chlorides or other 

aggressive species.19  

The series of standard reduction potentials of various metals can be used to 

explain the risk of galvanic corrosion; however these potentials express thermodynamic 

properties, which do not take into account the kinetic aspects.20 Also, if the potential 

difference between two metals in a galvanic couple is too large, the more noble metal 

does not take part in corrosion process with its own ions. Thus, under this condition, the 

reduction potential of the more noble metal does not play any role. Therefore establishing 
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a galvanic series for specific conditions becomes crucial. For example a new galvanic 

series of different materials in seawater at 10 ˚C and at 40 ˚C has been established by 

University of Delaware Sea Grant Advisory Grant Program18, and a more detailed one by 

the Army Missile Command21. According to these galvanic series Aluminum 6061-T6 

alloy is more active than 7075-T6 alloy, which is more active than 2024-T4 alloy. In this 

scheme, mild steel ranks lower than the aluminum alloys. This order may be opposite to 

the order of corrosion affinity in different circumstances such as in the case for 

aircrafts.21  

 

1.3.5 Intergranular Corrosion 

Intergranular corrosion is the localized attack with propagation into the material 

structure with no major corrosion on other parts of the surface.6,22-25 The main cause of 

this type of corrosion is the presence of galvanic elements due to differences in 

concentration of impurities or alloying elements.6 In most cases, there is a zone of less 

noble metal at or in the grain boundaries which acts as an anode, while other parts of the 

surface form the cathode.22 The area ratio between the cathode and anode is very large 

and therefore the corrosion rate can be high. The most familiar example of intergranular 

corrosion is associated with austenitic steels.23 A special form of intergranular corrosion 

in aluminum alloys is exfoliation corrosion.24 It is most common in AlCuMg alloys, but 

also observed in other aluminum alloys with no copper present. Both exfoliation 

corrosion and other types of intergranular corrosion are efficiently prevented with a 

coating of a more resistant aluminum alloy such as an alclad alloy or commercially pure 

aluminum, which is the reason in most modern aircrafts alclad 2024-T3 alloy is used25. 
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1.3.6 Selective Corrosion 

Selective corrosion or selective leaching occurs in alloys in which one element is 

clearly less noble than the others.26 As a result of this form of corrosion the less noble 

metal is removed from the material leading to a porous material with very low strength 

and ductility. However, regions that are selectively corroded are sometimes covered with 

corrosion products or other deposits. Thus the component keeps exactly the same shape 

making the corrosion difficult to discover.26  

 

1.3.7 Erosion or Abrasion Corrosion 

Erosion or abrasion corrosion occurs when there is a relative movement between a 

corrosive fluid and a metallic material immersed in it.6,27 In such cases, the material 

surface is exposed to mechanical wear leading to metallically clean surfaces, which 

results in a more active metal. Most sensitive materials are those normally protected by 

passive oxide layers with inferior strength and adhesion to the substrate, such as lead, 

copper, steel, and some aluminum alloys. When wearing particles move parallel to the 

material surface, the corrosion is called abrasion corrosion. On the other hand, erosion 

corrosion occurs when the wearing particles move with an angle to the substrate 

surface.27 

 

1.3.8 Cavitation Corrosion 

Cavitation corrosion occurs at fluid dynamic conditions causing large pressure 

variations due to high velocities, as often is the case for water turbines, propellers, pump 
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rotors and external surfaces of wet cylinder linings in diesel engines.6,22-23 While erosion 

corrosion has a pattern reflecting flow direction, cavitation attacks are deep pits grown 

perpendicularly to the surface. Pits are often localized close to each other or grown 

together over smaller or larger areas, making a rough, spongy surface.23  

 

1.3.9 Fretting Corrosion 

Fretting corrosion occurs at the interface between two closely fitting components 

when they are subjected to repeated slight relative motion.23,28 The relative motion may 

vary from less than a nanometer to several micrometers in amplitude. Vulnerable objects 

are fits, bolted joints, and other assemblies where the interface is under load.28 

 

1.3.10 Stress Corrosion Cracking 

Stress Corrosion Cracking is defined as crack formation due simultaneous effects 

of static tensile strength and corrosion.23,29 Tensile stress may originate from an external 

load, centrifugal forces, temperature changes or internal stress induced by cold working, 

welding or heat treatment. The cracks are normally formed in planes normal to the tensile 

stress, and they propogate intergranularly or transgranularly and maybe branched.29  

Corrosion fatigue is crack formation due to varying stresses combined with corrosion.23,30 

This is different from stress corrosion cracking because stress corrosion cracking 

develops under static stress while corrosion fatigue develops under varying stresses.30  
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1.4 Corrosion Types of Based on the Media 

Corrosion types can also be categorized based on what type of environment they 

take place in. Accordingly, major corrosion types are atmospheric corrosion, corrosion in 

fresh water, corrosion in seawater, corrosion in soils, corrosion in concrete, and corrosion 

in the petroleum industry. 

 

1.4.1 Atmospheric Corrosion 

Atmospheric corrosion can be categorized further such as atmospheric corrosion 

in rural or inland areas, in dry environments with little or no pollution, in marine 

environments on or by the sea with more humidity and salts, in urban areas with pollution 

due to exhaust and smoke, or in industrial areas with high pollution due to industry 

smoke and precipitates.31-33 

In general for atmospheric corrosion, dusts and solid precipitates are hygroscopic 

and attract moisture from air. Salts can cause high conductivity and carbon particles can 

lead to a large number of small galvanic elements since they act as efficient cathodes 

after deposition on the surface.32-33 The most significant pollutant is SO2, which forms 

H2SO4 with water.34-35 Water, that is present as humidity, bonds in molecular form to 

even the most clean and well-characterized metal surfaces.32-33 Through the oxygen atom 

it bonds to the metal surface or to metal clusters and acts as a Lewis base by adsorbing on 

e--deficient adsorption sites. Water may also bond in dissociated form, in which case the 

driving force is the formation of metal-oxygen or metal-hydroxyl bonds. The end 

products resulting from water adsorption are then hydroxyl and atomic hydrogen groups 

adsorbed on the substrate surface.36 Atmospheric corrosion rate is influenced by the 
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formation and protective ability of the corrosion products formed. The composition of 

corrosion products depends on participating dissolved metal ions and anions dissolved in 

the aqueous layer. According to HSAB theory hard metal ions such as Al 3+ and Fe3+ 

prefer H2O, OH-, O-2, SO4
-2, NO3

-, CO3
-2 while intermediate metals such as Fe2+, Zn2+, 

Ni2+, Cu2+, Pb2+ prefer softer bases such as SO3
-2 or NO2

- while soft metals such as Cu+ or 

Ag+ prefer soft bases as R2S, RSH or RS-.34-35 

In the specific case of iron or steel exposed to dry or humid air, a very thin oxide 

film composed of an inner layer of magnetite (Fe3O4) forms, covered by an outer layer of 

FeOOH (rust).37-38 Atmospheric corrosion rates for iron are relatively high and exceed 

those of other structural metals. They range (in µm/year) from 4 to 65 (rural), 26 to 104 

(marine), 23 to 71 (urban) and 26 to 175 (industrial).39  

In the case of aluminum, the metal initially forms a few nm thick layer of 

aluminum oxide, γ-Al 2O3, which in humidified air is covered by aluminum 

oxyhydroxide, γ-AlOOH, eventually resulting in a double-layer structure.40-42 The 

probable composition of the outer layer is a mixture of Al2O3 and hydrated Al2O3, mostly 

in the form of Al(OH)3. However, the inner layer is mostly composed of Al2O3 and small 

amounts of hydrated aluminum oxide mostly in the form of AlOOH.43-45 This oxide layer 

is insoluble in the pH interval of 4 to 9.46 Lower pH values results in the dissolution of 

Al 3+. Rates of atmospheric corrosion of aluminum outdoors (in µm/year) are substantially 

lower than for most other structural metals and are from 0.0 to 0.1 (rural), from 0.4 to 0.6 

(marine), and ~1 urban.47,48   

In general, anodic passivity of metals, regardless of type of corrosion, is 

associated with the formation of a thin oxide film, which isolates the metal surface from 
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the corrosive environment. Films with semiconducting properties such as Fe, Ni, Cu 

oxides provide inferior protection compared to metals as Al, which has an insulating 

oxide layer.49  

An alternative explanation of differences between oxide films of different metals 

based on their conducting properties, is the network-forming oxide theory in which 

covalent bonds connect the atoms in a three dimensional structure. Due to nature of 

covalent bonding, there is short range order on the atomic scale but no long-range order. 

These networks of oxides can be broken up by the introduction of a network-modifier.50 

When a network-modifier is added to a network-forming oxide, they break the covalent 

bonds in the network introducing ionic bonds, which can change the properties of mixed 

oxides such as Cu/Cu2O or Al/Al2O3 where rate of diffusion of Cu in Cu2O is 10000 

times larger than Al in Al2O3.
51 Depending on single oxide bond strengths, metal oxides 

can be classified as network formers, intermediates, or modifiers. Network formers tend 

to have single oxide strengths greater than 75 kcal/mol, intermediates lie between 75 and 

50 and modifiers lie below this value.52-53 Iron is covered by a thin film of cubic oxide of 

γ-Fe2O3/Fe3O4 in the passive region. The consensus is that the γ-Fe2O3 layer, as a 

network former, is responsible for passivity while Fe3O4, as a network modifier, provides 

the basis for formation of higher oxidation states but does not directly contribute toward 

passivity.54 The most probable reason that iron is more difficult to passivate is that it is 

not possible to go directly to the passivating species of γ-Fe2O3. Instead a lower oxidation 

state film of Fe3O4 is required and this film is highly susceptible to chemical dissolution. 

Until the conditions are established whereby the Fe3O4 phase can exist on the surface for 

a reasonable period of time, the γ-Fe2O3 layer will not form and iron dissolution will 
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continue.55-56 Impurities such as water also modify the structure of oxide films. Water acts 

as a modifying oxide when added to network-forming oxides and thus weakens the 

structure.57-58 In conclusion metals, which fall into network-forming or intermediate 

classes, tend to grow protective oxides, such as Al or Zn. Network formers are non-

crystalline, while the intermediates tend to be microcrystalline at low temperatures. The 

metals, which are in the modifier class, have been observed to grow crystalline oxides, 

which are thicker and less protective.59 A partial solution is to alloy the metal with one 

that forms a network-forming oxide in which the alloying metal tends to oxidize 

preferentially and segregates to the surface as a glassy oxide film60. This protects the 

alloy from corrosion. For example, the addition of chromium to iron causes the oxide 

film to change from polycrystalline to noncrystalline as the amount of chromium 

increases making it possible to produce stainless steel.61-63 

Alloying is important such that pure Al has a high resistance to atmospheric 

uniform corrosion, while the aerospace alloy Al 2024, containing 5% Cu among others, is 

very sensitive to selective aluminum leaching in aqueous environments. It is, on the other 

hand, less sensitive to pitting. In the case of steel, the addition of chromium as an 

alloying element substantially decreases the amount of pitting corrosion in addition to 

other corrosion types.64 

 

1.4.2 Corrosion in Water 

Second to atmospheric corrosion is corrosion in water. The rate of attack is 

greatest if water is soft and acidic and the corrosion products form bulky mounds on the 

surface as in the case of iron.23 The areas where localized attack is occurring can 
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seriously reduce the carrying capacity of pipes. In severe cases iron oxide can cause 

contamination leading to complaints of ‘red water’.65 In seawater the bulk pH is 8 to 8.3, 

however due to cathodic production of OH- the pH value at the metal surface increases 

sufficiently for deposition of CaCO3 and a small extent of Mg(OH)2 together with iron 

hydroxides. These deposits form a surface layer that reduces oxygen diffusion. Due to 

this and other corrosion inhibiting compounds as phosphates, boric acid, organic salts that 

are present the average corrosion rate in seawater is usually less than that in soft fresh 

water. However the rate is higher than it is for hard waters due their higher Ca and Mg 

content.66 An exception occurs when a material is in the splash zone in seawater, where a 

thin water film exists on the surface a majority of the time that frequently washes away 

the layer of corrosion deposits resulting in the highest oxygen supply and leading to the 

highest corrosion rate.65 In slowly flowing seawater, the corrosion rate of aluminum is 1 

to 5 µm/year, whereas for carbon steel it is 100 to 160 µm/year.67 Additionally, even 

when the oxygen supply is limited, corrosion can occur in waters where SRB (sulfate-

reducing bacteria) are active.68 Other surface contamination such as oil, mill scale (a 

surface layer of ferrous oxides of FeO and Fe2O3 that forms on steel or iron during hot 

rolling)69 or deposits may not increase the overall rate of corrosion, but can lead to pitting 

and pinhole corrosion in the presence of aggressive anions.70,71  

 

 Cooling Water Systems 

Cooling water systems are employed to expel heat from an extensive variety of 

applications ranging from large power stations down to a small air conditioning units 

associated with hospitals and office blocks.82 Corrosion inhibitors extend the life of these 
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systems by minimizing corrosion of heat exchange, receiving vessels, and pipework that 

would otherwise possess a safety risk, reduce plant life and impair process efficiency.83 

Based on the type of system present, that is, either open or closed, once-through or 

recirculated systems, different amounts and types of corrosion inhibitors are employed. In 

potable waters for example, since the systems are non-recirculating, use of corrosion 

inhibitors is limited by toxicity and cost. The inhibitors used must be inexpensive and 

still can only be added in low quantities. Calcium carbonate, silicates, polyphosphates, 

phosphate and zinc salts are commonly used inhibitors in potable water. Once-through 

cooling waters have the similar limitation of cost. Inhibitors with sulfate, silicate, nitrite 

and molybdate are oftenly used in the closed-water systems, such as steam boiler 

systems. 84 However, the hardness in the system may precipitate the molybdate, thus 

resulting in increased inhibitor demand and corrosion of the iron material in the system.85  

 

Oil/Petroleum Industry 

In oil/petroleum industry, corrosion of steel and other metals is a common 

problem in gas and oil well equipment, in refining operations, and in pipeline and storage 

equipment.73-77  Production tubing that carries oil/gas up from the well has the most 

corrosion.78 Petroleum has water and CO2 in water forms carbonic acid, which in turn 

forms FeCO3. Deposits of FeCO3 are cathodic relative to steel leading to galvanic and 

pitting corrosion.79  Besides water content, the salt content is also similar to seawater and 

with pressures bigger than 2 bars; oil and gasses become corrosive.80 High flow rates, 

high flow temperatures, and H2S ratio in petroleum are other major factors causing 

corrosion.81  
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Mine waters 

Mine waters occupy a special place in corrosion studies considering their widely 

varying composition from mine to mine. Because of its low cost, availability, and ease of 

fabrication, mild steel is widely used as a structural material in mining equipment, 

although it can experience rapid and catastrophic corrosion failure when in contact with 

polluted acid mine waters. Specifically in coal mines corrosion is known to be a serious 

problem.86 

 

1.4.3 Corrosion in Soil 

Particle size of soils is an important factor on corrosion in addition to the apparent 

effect of acidity levels. Gravel contains the coarsest and clay contains the finest particles, 

with 2 mm. diameter for the former and 0.002 mm. diameter for the latter. Sizes of sand 

and silt are in between gravel and clay. While clay prevents the supply of oxygen but not 

water, gravels allow oxygen supply as well.72 

In concrete, carbonation of concrete reduces the pH of solution and leads to 

general breakdown of passivity.31  

 

1.5 Nature of Protective Metal Oxide Films  

Regardless of the corrosion type, the major product of iron and steel corrosion is 

FeOOH, which is referred to as rust.87 Rust can occur in 4 different crystalline 

modifications based on the type of corrosion and the environment that the corrosion takes 
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place: α-FeOOH (goethite), β-FeOOH (akaganeite), γ-FeOOH (lepidocrocite), and δ-

FeOOH (feroxyhite).88-89 

α-FeOOH seems to be the most stable modification of the ferric oxide hydroxides. 

Solubility of α-FeOOH is approximately 105 times lower than that of γ-FeOOH. The 

relative amounts of α-FeOOH and γ-FeOOH depend on the type of atmosphere and the 

length of exposure.89 In freshly formed rust in SO2 polluted atmospheres γ-FeOOH is 

usually slightly dominant. On prolonged exposure the ratio of γ-FeOOH to α-FeOOH 

decreases.90 Also in weakly acidic conditions in general γ-FeOOH is transformed into α-

FeOOH depending on the sulfate concentration and temperature.91 In marine 

atmospheres, where the surface electrolyte contains chlorides, β-FeOOH is found. β-

FeOOH has been shown to contain up to 5% chloride ions by weight in marine 

locations.92 δ-FeOOH has not been reported in rust created under atmospheric conditions 

on carbon steel.93 Magnetite, Fe3O4, may form by oxidation of Fe(OH)2 or intermediate 

ferrous-ferric species such as green-rust.94 It may also be formed by reduction of FeOOH 

in the presence of a limited oxygen supply according to95  

8FeOOH + Fe              3Fe3O4 + 4H2O           (Eq. 1.6) 

The rust layer formed on unalloyed steel generally consists of two regions: an 

inner region, next to the steel/rust interface often consisting primarily of dense, 

amorphous FeOOH with some crystalline Fe3O4; and an outer region consisting of loose 

crystalline α-FeOOH and γ-FeOOH.37-38,96 

Aluminum initially forms a few nm thick layer of aluminum oxide, mainly γ-

Al 2O3 (boehmite), which in humidified air is covered by aluminum oxyhydroxide, γ-
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AlOOH due to hydrolysis, resulting in a double-layer structure.40-42 Related reactions that 

occur within the passive film when in contact with humidity or water are as follows; 

Al 3+ + 3OH-                 AlOOH + H2O           (Eq. 1.7) 

Al 2O3+H2O                 2AlOOH            (Eq. 1.8) 

AlOOH+H2O               Al(OH)3            (Eq. 1.9) 

The probable composition of the outer layer is a mixture of Al2O3 and hydrated 

Al 2O3, mostly in the form of amorphous Al(OH)3 or α-Al(OH)3 (bayerite). This outer 

coating of AlOOH-Al(OH)3 is colloidal and porous with poor corrosion resistance and 

cohesive properties. The inner layer on the other hand is mostly composed of Al2O3 and 

small amounts of hydrated aluminum oxide mostly in the form of AlOOH. This inner 

coating of Al2O3-AlOOH is continuous, resistant to corrosion and is a good base for 

paints and lacquers 43-45  Altogether, this passive layer is insoluble in the pH interval of 4 

to 9.46 Lower pH values results in the dissolution of Al3+.97 

 

1.6 Effect of Aggressive Anions on Corrosion 

Both weight-loss and salt-fog chamber tests in this study have been performed 

under circumstances, where high salt concentrations were present. For weight-loss tests, 

high salt concentrations were applied for accelerated corrosion testing purposes in 

addition to simulating the actual highly corrosive environments such as marine 

environments, seawater, and industrial areas. In the case of salt-fog chamber tests, 

chemical stress in accelerated testing primarily refers to chloride containing salts in 

solution because airborne contaminants are believed to play a very minor role in paint 

aging.461 Other chemical stress factors such as UV effect was not tested in this 
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investigation since any coating, such as a sol-gel coating, can be protected from UV 

exposure by simply painting over it with a paint that does not transmit light.  

Many mechanisms have been proposed for the suppression or acceleration of 

metallic dissolution by the action of aggressive anions in general.462,463 The simple most 

common theory on the accelerated corrosion due to aggressive anions is the concept of 

competitive adsorption. Aggressive anions, such as Cl-, compete with adsorption of OH- 

or the inhibitor ion depending on pH. Thus, aggressive anions increase the concentrations 

of inhibitors required to prevent corrosion. This must be taken into account; since the 

application of less than the adequate inhibitor concentration leads to pitting corrosion.81 

Competitive adsorption of aggressive anions can lead to corrosion in two different ways. 

Cl-, for instance, may either cause the initial local breakdown of the passive oxide film or 

simply interfere with the repassivation process after the film has been broken down 

locally. In one study, no indication was found that Cl- is incorporated into the anodic film 

on iron when the passive oxide film was initially formed in a Cl- containing solution 

suggesting that Cl- ions cause local film thinning by interfering with the film repair.464-466  

In the case of aluminum adsorbed aggressive anions such as chloride can undergo 

a chemical reaction with the passive film and produce soluble transient compounds such 

as Al(OH)2Cl, AlOHCl2, and AlOCl, which are easily dissolved into the solution once 

they are formed.12 Similarly, soluble FeSO4 complex forms in presence of another 

aggressive anion, that is SO4
2-.10 Thus as a result of these adsorption-dissolution 

processes, the protective oxide film is thinned locally, small pits are made and the 

corrosion rate of aluminum is greatly enhanced.98 
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When aggressive anions have to be compared with one another, the stability of the 

intermediate complexes of substrate metal and aggressive anions must be considered. In 

the specific case of steel corrosion, if an anion, X-, is first adsorbed on the steel surface, a 

surface complex forms in the anodic process, and then the complex is desorbed from the 

surface11,467 

     Fe + X-                 (Fe X-)s              (Eq. 1.10) 

    (Fe X-)s                 (Fe X)s  + e-             (Eq. 1.11) 

    (FeX)s                   FeX+  + e-              (Eq. 1.12) 

     FeX+                     Fe2+  + X-               (Eq. 1.13) 

s represents ion or compound at the surface. In general, if the adsorbed anion or the 

surface complex is stable, the corrosion of steel is suppressed. Therefore, the order of 

tested anions in terms of the stability of the surface complex based on the corrosion rates 

would be467 ClO4
- > SO4

2- > Cl- 

Due to the stability of intermediate complexes between the metal substrate and the 

aggressive anions, pitting corrosion does not occur for chromium metal. Stability 

constants of CrX2+ complexes are smaller than 1, for instance it is 1 when X is Cl- and 10-

5 when it is I-.8 In addition, exchange of Cl- and H2O ligands between the inner and outer 

sphere of chromium halide complexes is extremely slow.8 Together these factors causes 

insolubility of CrCl3 in cold water due to very low dissolution rate of Cr3+. Therefore the 

presence of a Cr-Cl complex at the surface will not increase the dissolution rate because 

it will dissolve very slowly by itself. In the case of Fe3+ this exchange is very rapid. 

Similarly Fe-Cr alloys are more resistant to pitting in Cl- solution than is pure Fe.  
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1.7 Corrosion Prevention Methods 

With such variety in types of corrosion comes many different prevention methods.  

Among these is selecting a material which does not corrode in the actual environment. 

When changing the material is not possible, changing the environment to prevent 

transport of essential reactants of corrosion often using corrosion inhibitors seems to be 

the second most reasonable prevention method. Using chemical inhibitors to lower 

molecular oxygen activity at the metal surface is one example of this type of prevention 

technique. Also, applying coatings on the metal surface in the form of paint, providing a 

barrier between the metal surface and the corrosive environment is another very 

commonly used prevention technique. Other prevention techniques include but are not 

limited to using special designs to prevent water accumulation on the metal surfaces or 

changing the potential, which results in a more negative metal and thus prevents transfer 

of positive metal ions from the metal to the environment.101  

The objective of the proposed research was the development of novel chemical 

inhibitors for mild steel and aluminum alloys. Inhibitors that could be employed in water 

or as a component of a protective coating were targeted. Mild steel alloy was chosen due 

to the fact that it finds extensive use in various structural applications due to its physical 

characteristics, such as stiffness and high strength to weight ratios. The aluminum and 

aluminum alloys are widely used in engineering applications because of their 

combination of lightness with strength, their high corrosion resistance, their thermal and 

electrical conductivity, heat and light reflectivity, and their hygienic and non-toxic 

qualities.102 In addition to their mechanical properties, the low residual radioactivity is 

another unique property of aluminum leading to its use as the first wall in thermonuclear 
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reactors. However the long and safe exploitation of aluminum alloys in nuclear power 

production greatly depends on its corrosion stability, which is why the type of the alloy 

and corrosion protection measures is important.103 This investigation was focused on the 

2024, 6061, and 7075 alloys.  

 

1.8 Alloys Used In This Study and Their Properties 

The composition of alloying elements of mild steel samples used in this study was 

0.02-0.03 % S, 0.03-0.08 % P, 0.4-0.5 % Mn, and 0.1-0.2 % C. 

The aluminum alloys are usually divided into two major groups; cast alloys and 

wrought alloys. While the term wrought aluminum may not be as familiar as wrought 

iron, it basically refers to aluminum material that is constructed using wrought iron 

techniques. Essentially, this means that the aluminum is "shaped" to produce the desired 

material. The term "wrought iron" is slightly ambiguous as it refers not only to the 

method of construction but also to the type of metal used. In other words, wrought iron is 

a specific type of iron and also a style of metal work, while wrought aluminum simply 

refers to the metalworking method-not the type of aluminum. Cast aluminum on the other 

hand is made from literally pouring molten aluminum into a cast and allowing it to 

harden. Each wrought and cast aluminum alloy is designated by a four digit number by 

the Aluminum Association of U.S104-105 with slight differences between wrought and cast 

alloys (See Table 1-1). The first digit indicates the alloy group according to the major 

alloying element. The second digit indicates the modification of the alloy or impurity 

limits. Original (basic) alloy is designated by “0” as the second digit. Numbers 1…9 

indicate various alloy modifications with slight differences in the compositions.  
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The last two digits identify the aluminum alloy or indicate the alloy purity. In the 

alloys of the 1xxx series the last two digits indicate the level of purity of the alloy: 1070 

or 1170 mean minimum 99.70% of aluminum in the alloys, 1050 or 1250 mean 99.50% 

of aluminum in the alloys, 1100 or 1200 means a minimum 99.00% of aluminum in the 

alloys. In all other groups of aluminum alloys (2xxx through 8xxx) the last two digits 

signify different alloys in the group. For the purposes of this study, only wrought 

aluminum 2024, 6061, and 7075 alloys are used. 

Table 1-1 Designations for alloyed wrought and cast aluminium alloys 

 

Wrought Alloy Cast Alloy 

Name Major Alloy Element Name Major Alloy Element 

1xxx More than 99% pure Al 1xx.x More than 99% pure Al 

2xxx Cu, small amount of Mg 2xx.x Cu 

3xxx Mn 3xx.x Si with Cu and/or Mg 

4xxx Si 4xx.x Si 

5xxx Mg 5xx.x Mg 

6xxx Mg, Si 6xx.x Unused 

7xxx Zn, small amount of Cu, Mg, Cr, Zr 7xx.x Zn with Cu and/or Mg 

8xxx Other elements (Li, Ni) 8xx.x Sn 
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1.8.1 Aluminum 2024 alloy 

The 2xxx (aluminum-copper) alloy series started to be used frequently with the 

development of 24S (2024) in 1933 for maximum solubility of alloying elements in the 

solid phase. Due to their high strength, toughness, and fatigue resistance, modifications of 

24S are widely used today for aircraft applications.106 However the alloys of these series, 

in which the copper is major alloying element, are less corrosion resistant than the alloys 

of other series. Copper increases the efficiency of the cathodic counter reaction of the 

corrosion such as O2 and H+ reduction reaction and, thus, the presence of copper 

increases the corrosion rate.107  

 

1.8.2 Aluminum 7075 Alloy 

Alloy 75S (7075), developed during World War II, provided the high-strength 

capability not available with aluminum-magnesium-copper alloys. This type of alloy 

contains major additions of Zn, along with Mg or both Mg and Cu. The Cu containing 

alloys have the highest strength and therefore have been used as construction materials, 

especially in aircraft applications. The Cu-free alloys, which have good workability, 

weldability as well as moderate strength, have increased in their applications in 

automotive industry.107 The first commercial aluminum-magnesium-silicon alloy (51S) 

was developed and brought to market by 1921.  
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1.8.3 Aluminum 6061 Alloy 

The introduction of alloy 61S (6061) in 1935 filled the need for medium-strength, 

heat-treatable products with good corrosion resistance that could be welded or anodized. 

The corrosion resistance of alloy 6061 even after welding made it popular in early 

railroad and marine applications. Alloy (62S) 6062, a low-chromium version of similar 

magnesium and silicon, was introduced in 1947 to provide finer grain size in some cold-

worked products. Unlike the harder aluminum-copper alloys, this 61S and 62S alloy 

series of Al-Mg-Si could be easily fabricated by extrusion, rolling, or forging. These 

alloys’mechanical properties were adequate (mid 40-45 ksi range) even with a less-than-

optimum quench, enabling them to replace mild steel in many markets. The moderate 

high strength and very good corrosion resistant properties of this alloy series of Al-Mg-Si 

make them highly suitable in various structural building, marine and machinery 

applications. The ease of hot working and low quench sensitivity are advantages in 

forged automotive and truck wheels. Also made from alloy 6061 are structural sheet and 

tooling plate produced for the flat-rolled products market, extruded structural shapes, rod 

and bar, tubing, and automotive drive shafts.108 

Detailed composition of the alloys used in this study is given in Table 1-2; 

Despite its inferior corrosion resistant properties, Al 2024 was chosen for this 

study for both aqueous and sol-gel coating applications due to the characteristics of the 

binder, that is sol-gel coating, which was designed primarily for Al 2024 in prior 

research. The reason why the sol-gel coating was initially designed for Al 2024 alloy is 

due to the fact that it is a peculiar alloy used in the fuselage structures of aircrafts where 

the corrosion resistance properties are compromised for the sake of mechanical strength. 
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The nominal composition of Al 2024-T3 alloy is 4.4% Cu, 1.5% Mg, 0.6%Mn, 

and lesser amounts of Fe, Si, and impurity element allowable.109-111 The “T3” designation 

indicates that the alloy was solution-annealed, quenched, and aged at ambient 

temperatures to a substantially stable condition.112  

 

Table 1-2 Chemical Composition of Aluminum Alloys 

 

Composition of Alloys 2024 6061 7075 

Al 91.5-92.8 96.8-97.2 86.85-89.55 

Cu 3.8-4.9 0.15-0.4 1.2-2.0 

Mg 1.2-1.8 0.8-1.2 2.1-2.9 

Mn 0.3-0.9 ≤ 0.15 ≤ 0.30 

Fe ≤ 0.50 ≤ 0.7 ≤ 0.50 

Si ≤ 0.50 0.4-0.8 ≤ 0.40 

Zn ≤ 0.25 ≤ 0.25 5.1-6.1 

Zr+Ti ≤ 0.20 - ≤ 0.25 

Ti ≤ 0.15 ≤ 0.15 ≤ 0.20 

Cr ≤ 0.10 0.04-0.35 0.18-0.28 
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It is important to recognize that in most modern aircraft an “alclad” variant of the 

2024-T3 is used. Alclad 2024-T3 has a thin layer of commercially pure Al applied to 

enhance corrosion resistance.25 

However, alclad layer is easily removed exposing the underlying 2024-T3 core in 

maintenance operations where grinding-out of cosmetic corrosion surfaces is routine. 

Thus, corrosion protection of the Al 2024-T3 core then becomes an issue, especially for 

older aircraft that have experienced many depot maintenance cycles.113  

 

1.9  Cost of Corrosion and Use of Corrosion Inhibitors 

In a study, entitled “Corrosion Costs and Preventive Strategies in the United 

States,” conducted from 1999 to 2001 by CC Technologies Laboratories, the total annual 

estimated direct cost of corrosion in the U.S. is a staggering $276 billion—approximately 

3.1% of the nation’s Gross Domestic Product (GDP).114 This cost includes the application 

of protective coatings (paint, surface treatment, etc), inspection and repair of corroded 

surfaces and structures, and disposal of hazardous waste materials. The study reveals that, 

although corrosion management has improved over the past several decades, the U.S. 

must find more and better ways to encourage, support, and implement optimal corrosion 

control practices. Due to reasons such as economics and ease of application, corrosion 

inhibitors continue to be the most common corrosion prevention technique. Compared to 

other techniques corrosion inhibitors are very convenient since they can be employed 

alone or within a protective coating, such as paint. Also, among many developed 

corrosion inhibitors it is possible to find a working one for any specific demand.115  
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The definition of corrosion inhibitor favored by the National Association of 

Corrosion Engineers (NACE) is: a substance which retards corrosion when added to an 

environment in small concentrations.116 Alternatively, according to the American Society 

for Testing and Materials Corrosion Glossary, a corrosion inhibitor is defined as a 

chemical substance or combination of substances that, when present in the proper 

concentration and forms in the environment, prevents or reduces corrosion.1 

Available references in corrosion phenomena in the technical literature appeared 

by the end of the 18th century. The first patent in corrosion inhibition was given to 

Baldwin, British patent 2327.117  

Corrosion inhibition is reversible, and a minimum concentration of the inhibiting 

compound must be present to maintain the inhibiting surface film. Good circulation and 

the absence of any stagnant areas are necessary to maintain inhibitor concentration.118 

Inhibitors function in one or more ways to control corrosion; namely by 

adsorption of a thin film onto the surface of a corroding material, or by inducing the 

formation of a thick corrosion product, or by changing the characteristics of the 

environment resulting in reduced aggressiveness. Some remove oxygen in the aqueous 

media to reduce the cathodic reaction. Though there are lots of chemicals that can 

function as inhibitors, some may be too expensive and not economical. Chemicals that 

are toxic or not environmentally friendly are also of limited use. Moreover, inhibitors for 

one metal may or may not work for another or even may cause corrosion. In addition, the 

effectiveness of inhibitors is affected by the pH, temperature and water chemistry of the 

system.119 



 31

Generally, inhibitors efficient in acid solutions have little or no effect in near-

neutral aqueous solutions since in acidic media the main cathodic process is hydrogen 

evolution, and inhibitor action is due to adsorption on oxide-free metal surfaces.120 In 

alkaline conditions, most metals are inclined to be passive, and are protected from most 

of the corrosion damage.121 In near-neutral solutions however corrosion processes result 

in the formation of sparingly soluble surface products such as oxides, hydroxides, salts 

and cathodic half-reaction is oxygen reduction. Therefore the inhibitor action must be 

exerted on the oxide-covered surface by increasing or maintaining the protective 

characteristics of the oxide or surface layers in aggressive solutions.122-123  

 

1.10  Types of Corrosion Inhibitors 

While there are various inhibitor classifications listed in the literature, there is no 

completely satisfactory way to categorize. One of the common ways is to classify them 

according to their reaction at the metal surface.1, 124  

1. Anodic inhibitors reduce the actual rates of the metal dissolution that is the anodic 

reaction. 

2. Cathodic inhibitors reduce the rates of the cathodic reactions such as the hydrogen 

evolution or oxygen reduction reactions. 

3. Mixed inhibitors retard the anodic and cathodic corrosion processes simultaneously 

by general adsorption covering the entire surface, sometimes with a polymer. 
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1.10.1 Anodic Inhibitors 

Anodic or passivating inhibitors slow down corrosion by either stabilizing or 

repassivating the damaged passive film by forming insoluble compounds or by 

preventing adsorption of aggressive anions via competitive adsorption. They are used in 

the neutral pH range to treat cooling water systems, cooling system metals, and steel-

concrete composites.125 Passivating inhibitors can be further divided into two types: 

direct passivating inhibitors which are oxidizers themselves and indirect passivating 

inhibitors which are non-oxidizers and require the presence of oxygen.126 Direct 

passivating inhibitors react with metals directly and become incorporated into the passive 

film to strengthen it, complete it and repair it.127 Chromate (CrO4
2-) and nitrites (NO2

-) 

are the best oxidizers which can passivate steel in deaerated solutions; however both 

inhibitors have limited uses due to toxicity.128 In open systems, oxygen is abundant 

enough; while in closed systems the addition of oxidizing salts is needed for indirect 

passivating inhibitiors such as analogues of chromate such as molybdates to function.129-

130 Indirect passivators may develop a protective film in the form of a salt. It is proposed 

for example that ferrous ions at the solution/metal interface react with molybdate ions to 

form a complex which is further oxidized to an insulative ferric-molybdate and covers the 

metal surface with a thin, adherent protective film.131-132  

 

1.10.2 Cathodic Inhibitors 

Cathodic Inhibitors slow down corrosion by reducing the rate of the cathodic 

reaction in the corrosion system. They may form precipitates in the cathodic locations to 
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limit access of the cathodic reaction species, and are also called precipitation 

inhibitors.133 Zinc salts are cathodic inhibitors that form precipitates of zinc hydroxide at 

the cathode.134 Magnesium salts also work in similar way.135 Bicarbonate (HCO3
-) forms 

insoluble metal carbonates in alkaline solution.136 Phosphates, the most widely used 

corrosion inhibitors of steel, precipitate as ferrous and ferric phosphates on the substrate 

surface.137 Oxygen scavengers, react with the dissolved oxygen to limit the supply of 

oxygen for the cathodic reaction. Sodium sulfite is an oxygen scavenger commonly used 

at room temperatures. It reacts with oxygen to form sulfate. However, since oxygen 

scavengers remove oxygen only, they are not effective in acidic media.138 Cathodic 

poisons make discharges of hydrogen gas difficult.139 Cathodic inhibitors are generally 

not as effective as anodic inhibitors (passivators), but on the other hand they are not 

likely to cause pitting.140  

As for organic inhibitors, chelating agents, which contain at least two functional 

polar groups, such as acidic –COOH, -SH or basic –NH2 groups, those able to form 

coordinate bonds with metal cations are good examples.141 Gluconate is such a 

complexing agent with two carboxylic groups and have been extensively studied in this 

research.  

 

1.11 Chromates: Best Corrosion Inhibitors to Date 

Overall, chromates as inhibitors and in chromate conversion coatings as 

protective coatings continue to be the most efficient corrosion prevention method for the 

most commonly used metals such as steel, aluminum, zinc, and magnesium among 
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others. 142 The term conversion coating here refers to the traditional surface passivation 

treatment for steel and aluminum which produces a layer of corrosion product, by means 

of dissolution of the base metal through reaction with the passivating solution and 

precipitation of insoluble compounds, capable of resisting further chemical attack.115,143 

Chromate conversion coatings used for aluminum, typically generated from mixtures of 

soluble hexavalent chromium salts and chromic acid, participate in oxidation-reduction 

reactions with aluminum surfaces144, precipitating a continuous layer of insoluble 

trivalent compounds.145 The use of chromate conversion coatings to increase the 

corrosion resistance and paintability of aluminum alloys can be traced to the early part of 

the twentieth century.146 The protection of many aluminum alloys, such as those used in 

aerospace components, depends heavily on chromates. Of particular interest to the Navy 

is the use of chromate conversion coatings on aircraft aluminum alloys owing to excellent 

corrosion resistance and the ability to serve as an effective base for paint. 147-149  

Only films formed in chromate solutions meet the stringent corrosion resistance 

requirements of the military specifications MIL-C81706.150 It is estimated that about 

100,000 tonnes of aluminum per year in the UK are chromate treated. An anodized film 

may be substituted for chromate conversion coatings on certain aluminum products but 

only at greater operating and capital costs.97 

Among advantages of the chromate conversion coatings are good paint adhesion, low 

cost, quick and simple application process by immersion, spray, or rolling, the capability 

to resist forming operations, and excellent corrosion resistance, including a self-healing 

ability.151 
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Results from exposure corrosion testing show that aluminum surfaces prepared 

with a chromate conversion coating and a chromate-free primer perform much better than 

a chromate-free sol-gel type of conversion coating with the same chromate-free primer152, 

which gives rise to the second part of this study, the necessity for enriching the sol-gel 

coating with efficient inhibitors. 

 

1.11.1 Limitations on the Use of Chromates due to Toxicity 

The mobility of aqueous Cr6+ within biological systems and its reactivity with 

biochemical oxidation mediators make it both highly toxic and carcinogenic and 

generally regarded as a very hazardous soil and groundwater pollutant.102,143,153-156  

  More rigid environmental regulations have been introduced about the use of 

chromates, mandating the elimination of hexavalent chromium as the active ingredient in 

corrosion inhibition packages for the protection of aluminum-skinned aircraft.157-158 The 

harmful effects of chromates on human tissue have been well documented. Dermatitis 

and skin cancer have been reported among workers merely handling components 

protected by a chromate film.97 Many reviews in the literature points out to toxicity of 

chromates, such an association of  Cr6+ with lung cancer. Although there is no general 

agreement on the details for the Cr6+ induced damage to DNA resulting in cancers, it is 

clear that Cr6+ is highly water soluble and passes through cell membranes and highly 

reactive intermediates such as Cr5+ stabilized by alpha hydroxyl carboxylates and Cr4+ are 

genotoxic and react either directly or through free radical intermediates to damage 

DNA.159-164 Also, adverse toxicity of chromates to aquatic life has always been a 
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problem. Chromate is quoted on the EU Red List of the EU Dangerous Substances 

Directive No 76/464/EEC and Groundwater Directive No 80/68/EEC.81  

National Primary Drinking Water Regulations prepared by EPA (Environmental 

Protection Agency) states that chromium is a naturally occurring element found as 

chrome iron ore, primarily as chromite (FeOCr2O3), in rocks, animals, plants, soil, and in 

volcanic dust and gases.165-168 In air, chromium compounds are present mostly as fine 

dust particles which eventually settle over land and water. Chromium can strongly attach 

to soil and only a small amount can dissolve in water and move deeper in the soil to 

underground water. There is also a high potential for accumulation of chromium in 

aquatic life. 165,167  

Chromium is present in the environment in several different forms. The most 

common forms are chromium(0), chromium(III), and chromium(VI). No taste or odor is 

associated with chromium compounds. Chromium(III) occurs naturally in the 

environment and is an essential nutrient. Chromium(VI) and chromium(0) are generally 

produced by industrial processes. The metal chromium, which is the chromium(0) form, 

is used for making steel. Chromium(VI) and chromium(III) are used for chrome plating, 

dyes and pigments, leather tanning by means of chromic sulfate, wood preserving by 

means of copper dichromate, treating cooling tower water, magnetic tapes, cement, paper, 

rubber, composition floor covering, automobile brake lining and catalytic converters and 

other materials. Smaller amounts are used in drilling muds, textiles, and toner for copying 

machines. 165-168 Production of the most water soluble forms of chromium, the chromate 

and dichromates, was in the range of 250,000 tons in 1992. 165,167 The two largest sources 

of chromium emission in the atmosphere are from the chemical manufacturing industry 
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and combustion of natural gas, oil, and coal. The following treatment methods have been 

approved by EPA for removing chromium: Coagulation/Filtration, Ion Exchange, 

Reverse Osmosis, Lime Softening. 165 From 1987 to 1993, according to the Toxics 

Release Inventory, chromium compound releases to land and water totaled nearly 200 

million pounds. These releases were primarily from industrial organic chemical 

industries. The largest releases occurred in Texas and North Carolina. The largest direct 

releases to water occurred in Georgia and Pennsylvania. In 1974, Congress passed the 

Safe Drinking Water Act Law, which requires EPA to determine safe levels of chemicals 

in drinking water which do or may cause health problems. 165,167 The MCLG (Maximum 

Contaminant Level Goal) for chromium has been set at 0.1 ppm (parts per million) 

because EPA believes this level of protection would not cause any of the potential health 

problems described below. Based on this MCLG, EPA has set an enforceable standard 

called a Maximum Contaminant Level (MCL). MCLs are set as close to the MCLGs as 

possible, considering the ability of public water systems to detect and remove 

contaminants using suitable treatment technologies. The MCL has also been set at 0.1 

ppm because EPA believes, given present technology and resources, this is the lowest 

level to which water systems can reasonably be required to remove this contaminant 

should it occur in drinking water. The Reference Concentration (RfC) for chromium (VI) 

(particulates) is 0.0001 mg/m3 based on respiratory effects in rats.  The Reference 

Concentration (RfC) for chromium (VI) (chromic acid mists and dissolved Cr (VI) 

aerosols) is 0.000008 mg/m3 based on respiratory effects in humans. EPA has not 

established an RfC for chromium (III). The RfD for chromium (III) is 1.5 mg/kg/d based 
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on the exposure level at which no effects were observed in rats exposed to chromium (III) 

in the diet. 165-168  

The general population is exposed to chromate by eating food, drinking water, 

and inhaling air that contains the chemical. The average daily intake of chromium, 

generally in the form of chromium(III), from air, water, and food is estimated to be less 

than 0.2 to 0.4 micrograms (µg), 2.0 µg, and 60 µg, respectively. 166,168  

EPA reports hexavalent chromium to cause shortness of breath, coughing, 

wheezing(mostly with inhalation of chromium trioxide), and skin irritation or ulceration, 

when people are exposed to it at levels above the MCL for relatively short periods of 

time, while damage to circulatory and nerve tissues, stomach upsets and ulcers, 

convulsions, kidney and liver damage, perforations and ulcerations of the septum, 

bronchitis, asthma, decreased pulmonary function, pneumonia, skin irritation and even 

death are potential results of a long-term or a lifetime exposure. Some people are 

extremely sensitive to chromium(VI) or chromium(III). Allergic reactions consisting of 

severe redness and swelling of the skin have been noted. Long-term exposure to 

chromium(VI)  has been associated with lung cancer as in the case of workers exposed to 

levels in air that were 100 to 1,000 times higher than those found in the natural 

environment. Lung cancer may occur long after exposure to chromium has ended. 

Limited information on the reproductive effects of chromium (VI) in humans exposed by 

inhalation suggest that exposure to chromium (VI) may result in complications during 

pregnancy and childbirth. 165,167 
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On the contrary, chromium(III) is an essential nutrient, with a daily intake of 50 to 

200 µg/d recommended for adults. This ion helps the body use sugar, protein, and fat. 

Without chromium(III) in the diet, the body loses its ability to use sugars, proteins, and 

fat properly, which may result in weight loss or decreased growth, improper function of 

the nervous system, and a diabetic-like condition. With too much intake, chromium (III) 

can also cause health problems but is considered about 100 to 1000 times less toxic than 

chromium (VI). Although each form can be converted to the other form under certain 

conditions, chromium (III) is not oxidized to chromium (VI) in the natural soil 

environment. 166,168  

Cr(III) compounds are one of the major candidates to replace chromium(VI) 

based corrosion inhibitors and protective coatings if the required corrosion resistance and 

adhesion of organic coatings can be obtained.153 Thus, Cr(III) compounds were 

investigated in this project as chromate replacements. Cr(III) is not an oxidizing agent but 

it will form the mixed oxides/hydroxides with the substrate in the presence of a primary 

passivator/oxidizing agent such as dissolved oxygen. When a primary oxidizing agent is 

present, the substrate can oxidize to its higher oxidation state cations producing 

hydroxide and the existing Cr(III) ions can react with the produced hydroxides to form a 

conversion coating composed of mixed oxides/hydroxides of the substrate and Cr(III).97  

The metal, chromium(0), is less common and does not occur naturally. It is not clear how 

much it affects health, but it is not currently believed to cause a serious health risk.169 

The International Agency for Research on Cancer (IARC) has determined that 

chromium(VI) is carcinogenic to humans. IARC has also determined that chromium(0) 

and chromium(III) compounds are not classifiable as to their carcinogenicity to 
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humans.170,171 The World Health Organization (WHO) has determined that chromium(VI) 

is a human carcinogen.171 The Department of Health and Human Services (DHHS) has 

determined that certain chromium(VI) compounds (calcium chromate, chromium 

trioxide, lead chromate, strontium chromate, and zinc chromate) are known human 

carcinogens.172 Finally, the EPA has classified chromium (VI) as a Group A, known 

human carcinogen by the inhalation route of exposure.165-168, 173-176  

In the light of given negative effects of hexavalent chromium compounds, stricter 

environmental regulations have already mandated their removal from water and general 

waste effluents, and have mandated their near term removal from corrosion inhibiting 

packages used for the protection of aluminum-skinned aircraft.149,157,177-180 Strict 

regulations already exist for chromate residues which require the use of expensive 

effluent treatments to achieve the desired residual concentrations by precipitating 

hexavalent chromium compounds.97,181 Despite their negative aspects, to date, no 

replacements exist in the market for carcinogenic chromates with the same efficiency for 

a range of aluminum alloys and steel, neither as pigment, nor as a metal 

pretreatment.110,182 

For perhaps the last 20+ years, a considerable effort has focused on discovering 

nonchromate corrosion-inhibiting compounds for protection of aluminum alloys. A 

number of reviews focusing on this subject alone have been written in the past several 

years.183,184,185  

Given the toxicity and carcinogenity of chromates; the purpose of this study is not 

only to synthesize efficient corrosion inhibitors for certain alloys of certain metals to be 

applied in different environments, but also to find environmentally friendly corrosion 
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inhibitors for successful chromate replacements. In this regard, the standard for an 

environmentally friendly inhibitor is considered as having acceptable or no toxicity 

compared to chromate inhibitors. Studying the reasons underlying the success of 

chromate inhibitiors seems as the first reasonable approach one might take before 

formulating chromate replacements.  

 

1.11.2 Corrosion Inhibition Mechanism of Chromates 

Chromates are very effective inhibitors of Fe, Al, Cu, Zn corrosion. The unique 

chemical and electronic properties of the oxo-compounds of chromium give rise to a 

unique ability to inhibit corrosion in ferrous and nonferrous materials.186 They are both 

anodic and cathodic inhibitors due to their abilities to form precipitates with the 

dissolving metal ions such as iron, aluminum, and zinc ions, at anodic sites and by 

reducing to trivalent chromium to form composite inert compounds at cathodic sites.187 

The tetrahedral, d0, hexavalent Cr6+ oxoanion compounds of chromium, which are 

chromate, dichromate, bichromate, and chromic acid, dissolve as stable and mobile 

complexes in water. Thus, they are easily transported to sites of localized corrosion 

where they are reduced to very stable, kinetically inert refractory oxide compounds of 

Cr3+.188 These octahedral, trivalent, d3, compounds of Cr3+ are irreversibly adsorb at metal 

and metal oxide surfaces to form a protective film of a near monolayer thickness.189 As 

one of these irreversibly adsorbed compounds, Cr(OH)3 provides a good, hydrophobic 

barrier with good adhesion properties.190 The concentration of the transported or leached 

chromate is sufficient to be active as an inhibitor for the metal under the paint, at defects 

or at cut edges. These hexavalent oxoanion compounds of chromium also have optimum 
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solubilities enabling them to be used as efficient paint pigments, in which blistering of 

the paint does not occur.147  Also, possibly the most crucial property of the barrier film of 

trivalent chromium compounds is its ability to store Cr6+ oxoanions that can be slowly 

released into a solution when attacked by aggressive anions. These released Cr6+ 

oxoanions can migrate to and interact at defects to interrupt corrosion, which gives rise to 

the unique “self-healing” ability of chromate conversion coatings in general. There is a 

good agreement that chromate conversion coatings not only contain but also release 

hexavalent chromium to repair defects and damage of the conversion coating.190-199 

Specifically for aluminum corrosion; released Cr6+ oxoanions inhibit pit initiation 

by adsorbing onto aluminum oxides, thereby discouraging adsorption of anions such as 

chloride and sulfate, which promote dissolution and destabilization of the protective 

oxides.200-201 Thus, competitive adsorption of chromates with regard to aggressive anions 

such as chloride and sulfate appears as another major property of chromate conversion 

coatings.202  

Along with nitrites, chromates passivate independent of dissolved oxygen in 

contrast to molybdates and vanadates, which require the presence of dissolved oxygen as 

a primary passivator.203  

In general, following steps of reactions occur;204 

    Cr6+              Cr3+  +  3H2O                Cr(OH)3  + 3H+               Cr2O3.3H2O      (Eq. 1.14) 

The hydrolysis reactions generate H+, which are consumed by redox reactions.  

In alkaline conditions,205 

CrO4
2-  +  4H2O  + 3e-               Cr(OH)3 +  5OH-                                      (Eq. 1.15) 

In case of iron corrosion in near neutral conditions,206 
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   6FeO  +  2CrO4
2- +  2H2O               Cr2O3 +  2Fe2O3 + 4OH-               (Eq. 1.16) 

Mixed chromium/iron hydroxides also form such as,207 

     3Fe2+  +  HCrO4
2-  +  8H2O                Fe3Cr(OH)12  +  5H+           (Eq. 1.17) 

In contrast to nitrites, molybdates, vanadates and other inhibitors, chromates are also 

effective in moderately acidic conditions. In an acidic medium, CrO4
2- converts to Cr2O7

2-

, which is a very strong oxidant, according to       

                         Cr2O7
2-  +  14H+  +  6e-               2Cr3+  +  7H2O,208          (Eq. 1.18) 

The following reaction takes place with the metal substrates209 

                   6/n M0  +  Cr2O7
2-  +  7H+             6/n Mn+ + 2Cr3+ + 7H2O        (Eq. 1.19) 

where M0 can be Al, Fe, Zn. 

For the specific case of chromium conversion coating formation on Al, the following 

overall formation reactions are given;210,211 

                 Cr2O7
2- + 2Al + 2H+ + H2O                   CrOOH + 2AlOOH        (Eq. 1.20) 

or212 

                 Cr2O7
2- + 2Al +  2H+ + 2H2O                2Cr(OH)3 + Al2O3               (Eq. 1.21) 

The chromate conversion coating process is aided by fluoride, which prevents rapid 

passivation of the Al surface, thus allowing Cr6+ to Cr3+ reduction and is also aided by 

ferricyanide, which functions as a mediator between Al oxidation and chromate reduction 

and accelerates the redox reaction.213 

As a result of these multiple redox reactions, while hexavalent chromium(VI) is 

reduced to its lower oxidation state oxides and hydroxides, the substrate metal is oxidized 

to its oxides and hydroxides. The pH also rises to the point where trivalent chromium and 

other oxide/hydroxide compounds are insoluble.214 Consequently, a protective conversion 
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coating of adherent composite oxide/hydroxides215 form with the general formula of 

M2O3/Cr2O3 and/or M(OH)3/Cr(OH)3, where M0 = Fe, Al.216  

Another reason for protective ability of chromium oxide and hydroxide film over 

aluminum surfaces is their stability over a wider range of pH. Based on Pourbaix-

diagrams, the approximate stability limit of the Al oxide is at pH 9, while it is up to pH 

15 for chromium (III) oxide.217  

 

1.12 Chromate Inhibitor Replacements:Current and Potential Applications 

Given some basic information about the corrosion inhibition mechanisms of 

chromates; many studies have been conducted for chromate replacements. For effective 

replacement of hexavalent Cr, however, an inhibitor has to inhibit the oxygen reduction 

reaction as well as anodic dissolution/pitting and several studies indicate that hybrid 

formulations seem to be the best way to do just that. Typically, in these hybrid 

formulations an organic oxygen reduction reaction inhibitor is included with 

environmentally benign anodic inhibiting anions.  

 

1.12.1 Nitrites 

Another commonly used inhibitor that passivates independent of dissolved 

oxygen is nitrites. Nitrites are the established inhibitors for rusting machinery tooling, 

and workpieces, and are often used with alkanolamines. However, like chromates they 

are also being replaced because of the risk of carcinogenic nitrosamine formation.218 
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Nitrites’ MCL (Maximum Contaminant Level) and MCLG (Maximum 

Contaminant Level Goal) limits have been determined as 1 mg/L each by EPA 

(Environmental Protection Agency). Infants below the age of six who drink water 

containing nitrite in excess of the MCL could become seriously ill and, if untreated, may 

die. Symptoms include shortness of breath and blue-baby syndrome. Major nitrite sources 

are listed as runoffs from fertilizer uses, leaches from septic tanks, and sewages.219  

 

1.12.2 Trivalent Chromium Compounds 

Cr(III) compounds arise as one of the potential replacements for Cr(VI) 

compounds given its much lower toxicity. Cr(III) is not an oxidizing agent but it will 

form the mixed oxides/hydroxides with the substrate. Therefore, in the presence of a 

primary passivator/oxidizing agent such as dissolved oxygen, the substrate can oxidize to 

its higher oxidation state cations producing hydroxide and the existing Cr(III) ions would 

react with the produced hydroxides to form a conversion coating composed of mixed 

oxides/hydroxides of the substrate and Cr(III).149,220-221 Despite this there are limited 

successful applications of trivalent chromium coatings. The corrosion resistance of 

trivalent chromium coatings was found considerably less effective than that of hexavalent 

chromium conversion coatings, as significant concentrations of localized pitting were 

observed after a 168-hr salt spray test.179 Thus, rather than using trivalent chromium 

coatings alone, incorporation of corrosion inhibitors based on trivalent chromium 

compounds into coatings that have better mechanical properties seems to be a more 

reasonable prevention method. 
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Formation of trivalent chromium hydroxides is based on their ability to form 

coordination compounds of coordination number six. The hydrolysis of coordination 

complexes is accelerated by addition of alkali and the hydroxides may form successively 

in the following manner;222 

                       [Cr(H2O)6]Cl3                 [Cr(OH)(H2O)5]Cl2 + HCl                     (Eq. 1.22) 

           [Cr(OH)(H2O)5]Cl2                [Cr(OH)2(H2O)4]Cl + HCl        (Eq. 1.23) 

           [Cr(OH)2(H2O)4]Cl                [Cr(OH)3(H2O)3] + HCl        (Eq. 1.24) 

These species can polymerize as shown in eq. 1.25. 

                                                                            OH  
2[Cr(OH)(H2O)5]Cl2               [(H2O)4Cr                         Cr(H2O)4]Cl4 + 2H2O (Eq. 1.25) 
                                                                             
 

One concern is that Cr(III) and Al(III) compounds are both capable of forming 

octahedral complexes and the introduction of these ions into an aqueous electrolyte will 

interfere with conversion of the hydrous alumina into the aluminum hydroxide film by 

bonding to the active film sites. Therefore, similar to their application in hexavalent 

chromate conversion coatings, flouride ions are used to remove aluminum oxide and 

hydroxide films on the substrate surface before forming trivalent chromium conversion 

coatings.223  

     Al2O3 + 12F- + 3H2O              2AlF6
3- + 6OH-              (Eq. 1.26) 

 

1.12.3 Oxyanions Analogous to Chromate 

Other likely candidates to replace chromates are reducible hypervalent transition 

metals similar to chromium, which are compounds of Mo, V, Mn, and Tc. The high-

OH 
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valent oxoanions of these elements exist in aqueous solution and they reduce to form 

insoluble oxides, which exhibit high resistance to dissolution in an alkaline environment 

in the same way as Cr.224-227 Other anodic inhibitors might include oxo-compounds of P 

and B as well.228 Among these analogous metals, however, the oxoanion of hypervalent 

Mn, permanganate, is thermodynamically unstable with respect to the oxidation of water 

unless the solution is sufficiently alkaline and all technecium isotopes are radioactive.229-

230 Vanadium oxide is relatively more stable toward high pH and Mo oxide is stable 

toward lower pH values.231 Solely as oxides, the elements of Mo and V will never give 

the same stability as seen in analogous Cr3+ oxide.232 On the other hand, the oxo-

compounds of these elements can form very stable polyoxometallates with each other, or 

phosphates and tungstates, providing significant inhibition for aluminum corrosion, 

particularly when combined with other compounds.233-234 

The inhibition mechanism of aluminum corrosion by molybdates, vanadates and 

similar oxyanions is primarily due to the competitive adsorption of these anions with 

aggressive anions such as chloride and sulfate anions. As a result of adsorption of 

oxyanions in the place of aggressive anions, oxygen bridged complexes with the metal 

substrates form. Such complexes were found in catalyst systems such as MoO3 + Al2O3 

and WO3 + Al2O3.
235-239 These compounds are expected to have a low solubility in the 

electrolyte hindering the dissolution of the passive film and retarding pit initiation and 

propogation of pitting corrosion. 

Oxides of heavier elements such as Nb, Hf, Ti, Zr, and Ta are very stable in their 

highest oxidation state. The mechanism for rare-earth inhibition seems to originate from 

the alkaline precipitation of protective oxide films at active cathodes. However, soluble 
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and mobile precursors of these oxides remain difficult to stabilize in aqueous solution 

with the slight exception of Ce, which is the only lanthanide element that exhibits a 

tetravalent oxidation state that is stable as a complex in aqueous solution.335-336 Ce4+ 

behaves somewhat like Cr6+. The reduction product, Ce3+, however, is not nearly as stable 

as compared to Cr3+.337  

 

Molybdates 

The molybdates have been the most investigated metal oxyanion analogues. 

Although Mo compounds are not totally harmless they are rapidly excreted by the 

body.240 Unlike many other transition metals, molybdenum has been described as having 

an extremely low or even negligible toxicity.241 In a review it is stated that in spite of 

considerable use of molybdenum in industry, no incidences have been reported yet due to 

industrial poisoning by molybdenum.242 Molybdenum compounds are listed in the lowest 

potentially carcinogenic category.243-245 

The most recent TLV (Threshold Limit Value) published by the American 

Conference of Government Industrial Hygienists 1984-1985 show the time-weighted 

average TLV for soluble molybdenum particulates to be 5 mg/m3 and for insoluble 

particulates to be 10 mg/m3. For comparison, the TLV for total particulates in the 

nuisance dust category is 10 mg/m3.246 Molybdenum has long been identified as a 

micronutrient essential to plant life,247-248 and as playing a major biochemical role in 

animal health as a constituent of several important enzyme systems.249-250 Several studies 

have indicated that molybdenum-deficient diets may be associated with the incidence of 

various forms of cancer.251-255 
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From an environmental perspective, five statutes, and their associated regulations, 

govern the use and disposal of chemicals within the United States. These are Safe 

Drinking Water Act,256 the Resource Conservation and Recovery Act (RCRA), 257 the 

Clean Water Act (CWA), 258 the Comprehensive Environmental Response Liability Act, 

259 and the Toxic Substances Control Act (TSCA). 260 Molydenum is not a regulated 

parameter under any of these statutes. The TSCA requires all existing chemical 

substances be registered. Sodium molybdate has been assigned the Chemical Abstract 

Service number of 7631-95-0 for instance but has not been selected for toxicity testing. 

Under RCRA, molybdenum is neither listed as a hazardous waste nor a hazardous 

constituent. Section 311 of the CWA lists 299 substances as hazardous if spilled in 

waterways, no molybdenum compound is included. In summary, sodium molybdate and 

other molybdates are free of accompanying toxic elements or compounds; and exhibit an 

environmental compatibility within the framework of their commercial utilization as a 

corrosion inhibitor. 

Furthermore, molybdate inhibitors are recommended by the UK Health and 

Safety Executive Guideline (HSG70) as part of a complete water treatment program 

designed to minimize the risk of infecting cooling systems with the pathogen Legionella 

Pneumophila.81 

Molybdenum (Mo) occurs naturally in various ores; the principal source being 

molybdenite (MoS2). Molybdenum compounds are used primarily in the production of 

metal alloys. Molybdenum is also considered an essential trace element with the 

provisional recommended dietary intake of 75-250 µg/day for adults and older children 

(NRC, 1989).261 There is no information available on the acute or subchronic oral toxicity 



 50

of molybdenum in humans. Subchronic and chronic Reference Concentrations (RfC) for 

molybdenum are not available. Information on the inhalation toxicity of molybdenum in 

humans following acute and subchronic exposures is also not available. The chronic oral 

Reference Dose (RfD) for molybdenum and molybdenum compounds is 0.005 

mg/kg/day, based on biochemical indices in humans (U.S. EPA, 1992). The subchronic 

RfD is also 0.005 mg/kg/day (U.S. EPA, 1992). Molybdenum is placed in EPA Group D, 

not classifiable as to carcinogenicity in humans (U.S. EPA, 1990).261 

Corrosion-inhibiting behavior was first attributed to the molybdates in 1939.262 

First they were used as pigments;263and in a wide variety of applications as corrosion 

inhibitors.264-275, 285-298 Specifically, they are utilized in alcohol-water antifreezes to 

protect automobile cooling systems from corrosion since 1939.283-284 Molybdate allows 

the partial276-278, or in complex formulations, the complete replacement of nitrite.279-281 In 

addition to being efficient, molybdate inhibitior replacements for nitrites and others were 

found to be cost effective.282 Typically, a molybdenum concentration of 50-150 ppm is 

maintained in the closed cooling water systems and the pH level is maintained within the 

range of 9.0-10.5.299-302 Even with concentrations insufficient to produce a layer, Mo(VI) 

is effective in improving the barrier properties of oxide or other films.103-303 

In addition to the general competitive adsorption of oxyanion analogues with 

those of aggressive anions as in the case of chromates, the protective effect for steel by 

MoO4
2- may also be due to oxygen atoms produced via the reduction of the Mo6+ to Mo4+ 

(or MoO2) during film formation, 

       MoO4
2-                  MoO2 + 2O-            (Eq. 1.27) 
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These oxygen atoms interfere with the ability of Cl- like anions to reach the 

metal/film interface. The formation of MoO2 in neutral medium is predicted by the 

Pourbaix diagram for Mo 304. Also, the inhibitive nature of molybdate anions may be due 

to the formation of a thin film of molybdate in a range of reducible valency states, 

resulting in a passivating effect at anodic sites on the metal surface like other oxyanion 

analogues of chromate. 305 

In the case of molydate assisted inhibition of aluminum corrosion, it is believed 

that a layer of boehmite, Al2O3.H2O, is formed on the surface of the aluminum specimen 

accompanied by a closure of the cavities with the alkali molybdate that is adsorbed on the 

surface. The oxidation state of molybdenum on the aluminum surface greatly depends on 

the type of molybdate that is used. It is Mo4+ when simple MoO4
2- is used, and it is Mo5+ 

when polymolybdates are used.306 Other theories on molybdate inhibition in the literature 

are widely available.310 

 

Vanadates 

Vanadium is a metallic element that occurs in six oxidation states and numerous 

inorganic compounds. Some of the more important compounds are vanadium pentoxide 

(V2O5), sodium metavanadate (NaVO3), sodium orthovanadate (Na3VO4), vanadyl sulfate 

(VOSO4), and ammonium vanadate (NH4VO3). Vanadium is used primarily as an 

alloying agent in steels and non-ferrous metals (ATSDR, 1990).364 Vanadium compounds 

are also used as catalysts and in chemical, ceramic or specialty applications. An 

inhalation reference concentration has not been derived for vanadium or its compounds 

(U.S. EPA, 1992).364 There is no information available on the acute or subchronic oral 

toxicity of vanadium in humans. Subchronic and chronic Reference Concentrations (RfC) 
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for vanadium are not available. Reference Doses (RfD) for chronic oral exposures are: 

0.007 mg/kg/day for vanadium; 0.009 mg/kg/day for vanadium pentoxide; 0.02 

mg/kg/day for vanadyl sulfate; and 0.001 mg/kg/day for sodium metavanadate (U.S. 

EPA, 1987, 1991a,b). The subchronic RfDs for these compounds are the same as the 

chronic RfDs, except for sodium metavanadate, which is 0.01 mg/kg/day (U.S. EPA, 

1987, 1991a,b). There is little evidence that vanadium or vanadium compounds are 

reproductive toxins or teratogens. There is also no evidence that any vanadium compound 

is carcinogenic; however, very few adequate studies are available for evaluation. 

Vanadium has not been classified as to carcinogenicity by the U.S. EPA (1991a).364  

Like molybdates and other oxyanion analogues of chromates, the inhibitive action 

of monovanadate anions are attributed to their competitive adsorption on the metal 

surface, the formation of an adsorbed layer on the oxide film, and the formation of a 

highly insoluble salt with dissolved metal ions which prevents the penetration of Cl- ions 

and consequently decreases the rate of corrosion.81  

It is proposed that vanadates undergo a reduction to a four-valent state upon 

incorporation into the surface coating of aluminum similar to MnO2, and MoO2.
365 

Therefore, the protective ability of the four-valent oxides is a pure barrier protection, 

while hexavalent state compounds work as passivators.  

 

Salts of Polyhydroxycarboxylic Acids 

Non-toxic organic chemicals that are efficient as corrosion inhibitors include 

sodium, calcium and zinc salts of polyhydroxycarboxylic acids. The gluconic acid 
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derivatives were found to hinder general corrosion of carbon steel in near neutral 

media.180 Many studies have been carried out on the use and the mechanism of action of 

sodium, calcium, zinc and borogluconates as corrosion inhibitors for metals, particularly 

for carbon steel in the neutral environment.340-357 In other studies gluconate salts were 

tested as non-toxic environmentally friendly inhibitors to replace the currently used 

inhibitors in cooling water systems.358-362 There are other applications of gluconates in 

addition to cooling waters, such as their use to improve the corrosion resistance of 

medical instruments in sterilizing solutions363 and structures in marine environments66 

Calcium and zinc gluconates are used as dietary supplements and as first-aid treatments 

while iron gluconate is used for the treatment of iron deficiencies. However, zinc appears 

on the list of Environmental Protection Agency as a pollutant, but the permissible content 

in potable water, declared by the WHO (World Health Organization) is 5.0 mg/L as 

opposed to 0.1 mg/L of hexavalent chromium.366 

Since it is listed as a secondary pollutant of drinking water some basic 

information about its uses and toxicity levels are produced herein. Zinc is used primarily 

in galvanized metals and metal alloys, but zinc compounds also have wide commercial 

applications as chemical intermediates, catalysts, pigments, vulcanization activators and 

accelerators in the rubber industry, UV stabilizers, and supplements in animal feeds and 

fertilizers. They are also used in rayon manufacture, smoke bombs, soldering fluxes, 

mordants for printing and dyeing, wood preservatives, mildew inhibitors, deodorants, 

antiseptics, astringents, and as rodenticides (Lloyd, 1984; ATSDR, 1989). 367 Zinc is an 

essential element with recommended daily allowances ranging from 5 mg for infants to 

15 mg for adult males (NRC, 1989). In some medical treatment it is recommended 50 mg 
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of zinc to be taken per day as zinc gluconate.181 The upper limit of zinc in drinking waters 

is given as 5 mg/L. An inhalation reference concentration has not been derived for zinc or 

zinc compounds (U.S. EPA, 1992). There is no information available on the acute or 

subchronic oral toxicity of zinc in humans. Subchronic and chronic Reference 

Concentrations (RfC) for zinc are not available. The currently accepted RfD for both 

subchronic and chronic exposures is 0.2 mg/kg/day based on clinical data demonstrating 

zinc-induced copper deficiency and anemia in patients taking zinc sulfate for the 

treatment of sickle cell anemia (U.S. EPA, 1992). No case studies or epidemiologic 

evidence has been presented to suggest that zinc is carcinogenic in humans by the oral or 

inhalation route (U.S. EPA, 1991a). Zinc is placed in weight-of-evidence Group D, not 

classifiable as to human carcinogenicity due to inadequate evidence in humans and 

animals (U.S. EPA, 1991a).367 

 

1.12.4 Synergistic Use of Oxyanions Analogues of Chromate 

Despite many similarities, oxyanion analogues of chromate are not strong 

oxidants like chromate and only in the presence of a primary passivator can they inhibit 

corrosion as anodic inhibitors. Therefore, their combined use with those of synergistic 

constituents in formulations seems to be a reasonable approach for obtaining sufficient 

efficiency for replacement of chromates.368-371 Among synergistic constituents, cathodic 

inhibitors are synergists of molybdate inhibition.311 In neutral or alkaline solutions, these 

cations can interrupt the cathodic reaction of the corrosion process by forming an 

adherent, insoluble oxide, hydroxide or carbonate film, which is not provided by the 

oxyanion analogues of chromate. Zn2+ most efficiently synergizes molybdate inhibition 



 55

of steel in aerated, neutral and alkaline cooling tower water.312 Ca2+, another cathodic 

inhibitor usually present as hardness in cooling water, significantly increased the 

corrosion protection of steel already synergistically inhibited with MoO4
2--Zn2+.311,313 An 

amount of 10% of calcium or zinc gluconate was found to considerably reduce the 

amount of molybdate required for the same inhibition effect as observed in molybdate 

alone.180 In a comparative study it was found that permanganate increased the corrosion 

resistance more than molybdate and molybdate more than cerium(III) nitrate for 6061-T6. 

However, the order was opposite for 2024-T3.338-339 Many examples of inhibitors that are 

synergistic with oxyanion analogues of chromate for the protection of ferrous and 

nonferrous metals are available in the literature.314-334 

 

1.13 Sol-Gels (Ormosils): Properties and Uses 

As mentioned earlier, conversion coatings are applied to metal surfaces to 

promote both adhesion of organic finishes such as paints and for corrosion protection of 

the metal substrate. As an alternative to chromate conversion coatings, sol-gel processing 

grew out of the ceramics field. In this method, soluble metal salts and/or metal organic 

materials are used to produce a wide variety of mixed metal oxide and metal-oxide-

organic composites.372-375 It is proposed that the only universal process for treating 

several Al alloys that is effective in various corrosion environments, is environmentally 

compliant, are coatings consisting of organofunctional and nonorganofunctional 

silanes.109,179,376-382 These coatings are a promising solution for the corrosion protection of 

aluminum alloys, which is a key requirement for aircraft as the US Air Force extends the 
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lifetime of its fleet.383 The downside of epoxy silicate sol-gel coatings when compared to 

chromate conversion coatings is that the sol-gel films cannot passivate a damaged area.378  

In 1985, Wilkes et al384 first reported successful preparation of a new type of 

organic-inorganic hybrid material by the reaction of TEOS (tetraethyl ortho-silicate) and 

PDMS (polydimethyl siloxane), which he named “ceramers”. At approximately the same 

time, Schmidt independently reported the successful preparation of new organic-

inorganic hybrid materials which he termed “ormosils” (organically bonded or modified 

silicates).385 Ormosils are hybrid organic-inorganic materials formed through the 

hydrolysis and condensation of organically modified silanes with traditional alkoxide 

precursors.386-387 Later on, after other oxides such as ZrO2 were also bonded to organic 

groups, Schmidt has also used the term “ormocers”.388  

The sol-gel process, which is mainly based on inorganic polymerization reactions, 

is a chemical synthesis method initially used for the preparation of inorganic materials 

such as glasses and ceramics. Instead of using metal alkoxides as the precursor for the 

sol-gel reaction, alkoxysilanes are used as the only or one of the precursors and the 

organic groups are introduced into the inorganic network through the silicon-carbon bond 

in an alkoxysilane.391,424,434   

One of the attractive features of the sol-gel process is that it enables the 

preparation of numerous types of new organic-inorganic materials with improved 

thermal, mechanical, optical, and electrical properties such as host oxide materials which 

are either impossible or extremely difficult to synthesize by any other process.384-

385,387,389-391  The numerous applications of these materials include scratch and abrasive-

resistant hard coatings and special coatings for polymeric materials, metal, and glass 



 57

surfaces.391-402 Specifically for mild steel403 and aluminum 2024 alloys387,404 widespread 

uses of these ormosil materials have been reported. 

 

1.13.1 Types of Sol-Gels 

Silanes used for ormosil manufacture are a family of organo-silicon monomers 

with the general formula R-Si(OR’)3, where R is an organofunctional group and R’ is 

usually a methyl or ethyl group. In an aqueous environment, the alkoxy group hydrolyzes 

to form a silanol R-Si(OH)3, which in turn forms a chemical bond with the hydrated 

oxide film.408,415 The other functional group on the silane molecule, R, may bond strongly 

with the polymer resin base of the paint coating. Introduction of these covalently bonded 

Si-R groups allows chemical modification of the resulting material’s properties. The 

inorganic components tend to impart durability, scratch resistance, and improved 

adhesion to the metal substrates, while the organic components contribute to increased 

flexibility, density, and functional compatibility with organic polymer paint systems.390  

Precursors, which generally are di- and tri-functional silanes, span a wide range of 

sizes, chemical reactivities, and functionalities. The use of precursors containing non-

hydrolyzable Si-C bonds, such as bifunctional or/and trifunctional alkoxysilanes 

(R’nSi(OR)4-n, n = 1-3, R = alkyl, R’ = organic group), allows introduction of organic 

groups directly bonded to the polymer-like silica network.385,404,416-419 Trifunctional 

alkoxysilanes are more commonly used as precursors than other alkoxysilane precursors 

because a variety of such silanes are commercially available, while bifunctional 

alkoxysilanes have to be used in the presence of higher functionality precursors in order 

to form a three-dimensional network.391,420  
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Ormosils can be divided into three categories based on their preparation methods. 

In type A, the organic such as a dye, is mixed into the sol-gel liquid solution, such as 

triethanolamine (TEOA) in alcohol. On gelation, the organic is trapped in the porous 

silica matrix. It is assumed that no chemical reactions have occurred between the two 

constituents.420,421 In type B, a porous oxide gel is first formed, in which the porosity and 

pore size is controlled by heating. An organic solution is then impregnated into the pores 

of the gel. The organic phase is then solidified via polymerization, and a nanocomposite 

is formed such as para-methoxy-methamphetamine (PMMA) in silica. Still, no chemical 

bonds usually exist between the organic and inorganic phases.420,422 In type C, the organic 

solution is added to the oxide gel liquid solution but unlike type A, a chemical bond is 

formed between two phases or the inorganic oxide precursor may already have a 

chemically bonded organic group, such as CH3Si(OCH3)3 prior to the reaction. Types A, 

B, and C can further be mixed. The most common system in this class of hybrids is that 

of PDMS (polydimethylsiloxane) and tetraethoxysilane (TEOS). Together, these various 

types of Ormosils offer a very wide spectrum of chemistry, structures, and 

applications.423,425  

 

1.13.2 Corrosion Inhibition Mechanism of Sol-Gel Coatings 

Other than versatile coating formulations and ease of application under normal 

conditions, ormosil coatings exhibit increased thickness as compared to their inorganic 

counterparts.405-406 Thus, sol-gel derived coatings provide good corrosion protection for 

various metal substrates, such as Fe, Al, and Zn, due to their ability to form a dense 

barrier to the penetration of water and corrosion initiators to go along with their good 
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adhesion properties, and chemical interness.407 It should be noted however, when 

adsorbed initially, the silane actually is highly hydrophilic. It becomes hydrophobic by 

loss of water molecules only after the cure of the paint. This 

hydrophilicity/hydrophobocity dual nature is a unique property of silanes, not shown by 

any other existing interface modifiers. Interfaces modified by silane perform well even 

under paints which are poor in terms of permeability, porosity or barrier properties, since 

the hydrophobic nature of organo-functional groups limits the degree of hydration, and 

reduces the degree of adhesion loss.408 The reduction in adhesion of paints on non-silane 

treated aluminum surfaces after exposure to an aqueous environment is associated with 

the transformation of the aluminum oxide film beneath the paint coating to a hydrated 

oxide, which adheres poorly to the aluminum.409 Thus the silane processes do not require 

the same high-cost paint systems as chromates do, which is another advantage of these 

novel treatments.410-411 

Another important aspect of corrosion protective coatings is that these coatings 

should be barriers between the coatings and their environment, but no known coating 

system stops completely the transport of oxygen, water and corrosive ions to the 

coatings/metal interface.412,446-452 Therefore, most corrosion control coating systems are 

at least two-coat systems, sometimes even three-coat systems so that the topcoat layer 

with its hydrophobic polymer composition has the greatest resistance to UV, and the 

primer and midcoat adhere to the substrate and each other due to the high crosslink 

density and wet adhesion properties of the polymers that exist therein. However, the main 

reason for multiple-layer coating systems overall is the substantial decline in the 

probability of one defect area overlying another, thus preventing localized corrosion. 
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Therefore, the same final thickness of coating applied by multiple layers will give a 

significantly better performance than that of a single layer of this thickness.383  

Despite the fact that sol-gel coatings do not have the self-healing ability of 

chromate conversion coatings, they still effectively inhibit certain types of corrosion, 

such as uniform corrosion, provided that there is no coating failure, since coating failures 

may lead to excessive pitting corrosion for aluminum alloys in particular.182 Corrosion 

resistance behavior of sol-gels is related to the crosslinking of the polysiloxane to the 

metal alkoxide with the formation of M-O-Si bridges and to the formation of 

polymetallosiloxane-Al interfacial chemical bonds.402 Thus it is desirable to improve the 

chemical interaction between the first monolayer of the coating and the substrate such 

that electrochemical reactions like the reduction of oxygen are inhibited and bonds may 

withstand the attack of water and other aggressive species like OH-.421,426  

The adsorption of organic compounds on metal substrates is generally achieved 

by two ways. Organic compounds are either adsorb from the the electrolyte similar to 

other conventional inhibitors or adsorb onto the metal surface by condensation from the 

vapor phase similar to that of volatile corrosion inhibitors, such as morpholine, hydrazine 

or hexylamine salts. With no significant e-transfer between the substrate and the adsorbed 

molecule, this pure electrostatic adsorption process is called physisorption, which is fast 

and reversible due to low activation energy.427,428 However provided that e- transfer 

occurs due to orbital overlap between a single pair of electrons of the adsorbed molecule 

and empty bonds of the solid, physisorption becomes chemisorption, which is highly 

irreversible. Chemisorption is slower than physisorption and it requires higher activation 

energy. In contrast to physisorption, it is specific for certain metals. On the other hand, 
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the inhibitor should have free single e- pairs, or π-electrons for chemisorptions to occur. 

Based on Lewis acid-base concept, higher polarizability of the involved heteroatom leads 

to stronger chemisorption. The inhibitor is then e--donor and the metal is e--acceptor in 

agreement with the soft and hard acid and base theory (HSAB).429-431  

Silane coupling is adherence of the organosiloxane-modified natural polymer to 

the aluminum surface in the form of chemisorption. As a result of this coupling, sol-gel 

derived thin films highly adhere to metal surfaces, which is confirmed by bond strength 

measurements in the literature.109 Chemisorption of silanes is provided by their 

hydrolysis in humid atmospheres to silanols R4-nSi(OH)n. Following hydrolysis, 

condensation occurs through reactions between –OH or –COOH groups on the polymer 

precursor, the silanol groups from organosiloxane side-chains, and hydroxyl species 

present on the aluminum surface. The hydrolysis of the silane is expected to be the rate-

determining step and polymerization begins when hydrolysis is nearly finished.432 The 

commonly used silane coupling agents have the structure X3Si(CH2)nY, where X 

represents  a group that can hydrolyze, such as methoxy or ethoxy, and Y an 

organofunctional group such as chlorine, amine, epoxy, or mercapto-substituted alkyl 

groups. Non-functional silanes are very similar to functional silanes in their structure, 

except that they have hydrolyzable Si-O-C bonds on both ends, and are better known as 

cross-linking agents.110 

 

1.13.3 Synthesis of Sol-Gels 

Synthesis is typically described by two steps; first hydrolysis of metal alkoxides 

to produce hydroxyl groups, followed by polycondensation of the hydroxyl groups and 
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residual alkoxyl groups to form a three-dimensional network. These reactions are as 

follows;434-442 

Hydrolysis Reactions 

      Si(OR)4 + H2O                   (HO)Si(OR)3   + ROH         (Eq. 1.28) 

  (OH)Si(OR)3 + H2O                   (HO)2Si(OR)2 + ROH        (Eq. 1.29) 

(HO)2Si(OR)2  + H2O                    (HO)3Si(OR)   + ROH             (Eq. 1.30) 

      (HO)3Si(OR)  + H2O                   Si(OH)4 + ROH              (Eq. 1.31) 

General Hydrolysis Reaction:  

M(OR)x + xH2O               M(OH)x + xROH         (Eq. 1.32) 

Alcohol Condensation (Alcoxolation)  

        ≡Si-OR + HO-Si≡                            ≡Si-O-Si≡ + ROH         (Eq. 1.33) 

Water Condensation (Oxolation) 

        ≡Si-OH + HO-Si≡                   ≡Si-O-Si≡ + HOH        (Eq. 1.34) 

General Condensation Reaction:  

       2M(OH)x               (OH)x-1M-O-M(OH) x-1 + H2O         (Eq. 1.35) 

The hydrolysis rate is high under an acidic environment relative to that of 

condensation, and acid catalysts promote the development of more linear or polymer-like 

molecules in the initial stages. In addition to the pH of the reaction, the concentration of 

reagents and the size of the alkoxy group can also influence the hydrolysis and 

condensation reactions through a steric or leaving-group stability effect. As a result, 

species such as tetramethoxysilane (TMOS) tends to be more reactive than 

tetraethoxysilane (TEOS).372,388  
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Gelation 

The condensation reaction leads to the formation of a sol, which can be cast into 

films, fibers, or blocks and then gelled through continued condensation. The gel phase in 

sol-gel processing is defined and characterized as a three-dimensional solid “skeleton” 

enclosing a liquid phase. Both liquid and solid phases are continuous and of colloidal 

dimensions. The solid phase is typically a condensed polymeric sol where the particles 

have cross-linked between themselves to form a three-dimensional network. 388 

 

Drying 

When the gelled materials dry, capillary forces cause shrinkage of the flexible 

skeleton. The skeleton stiffens as it shrinks until the gel can withstand capillary pressures 

at which point the pores empty leaving a microporous solid xerogel. Gel films can be 

formed on a substrate by two methods, immersion and non-immersion (spray, dip, spin-

on, etc.) Sol-gel based coatings must be designed to contain and deliver soluble non-

chrome inhibitors at a rate to maintain effective concentrations in the coating system. 388 

Highly organic films do not adhere to the metal surface well, presumably due to the low 

inorganic content and insufficient concentrations of Si-OH groups to produce covalent 

Si-O-Al bonds with the underlying metal surface. In addition, high viscosity Ormosils 

produced using low hydrolysis water content do not flow evenly over the substrate 

surface, producing differences in texture at regions where gelation occurred. On the other 

hand, ormosils prepared from high water content do not wet the aluminum surface well 

due to high surface tension of the mainly aqueous sol, resulting in very thin, unevenly 

coated films. Therefore, appropriate inorganic/organic ratio and water content are very 
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important for the formation of good quality, corrosion resistant, barrier films highly 

adherent to the underlying metal substrate.443  

 

1.13.4 Incorporation of Corrosion Inhibitive Pigments into Sol-Gel Coatings 

The main protection mechanisms of coatings in general are;444  

1. Creating a path of extremely high electrical resistance, thus inhibiting anode-cathode 

reactions. 

2. Creating an effective barrier against the corrosion reactants; primarily water and 

oxygen. 

3. Providing an alternative anode for the dissolution process. 

4. Passivating the metal surface with soluble pigments. 

The first corrosion protection mechanism of organic coatings, that is to create a 

path of extremely high electrical resistance between anodes and cathodes, is probably the 

most important one also.452 This electrical resistance reduces the flow of current available 

for anode-cathode corrosion reactions. One way to achieve this is to incorporate 

corrosion protective pigments into the coatings. Inhibitor pigments can increase the 

electrical resistance in the coating due to their unique physical properties or due to the 

physical properties of their products they form in the coating. 

In addition to the inhibitive pigments, which contain the anodic/cathodic and 

mixed inhibitor types, those described earlier, there are two more classes of inhibitors 

commonly incorporated into protective coatings. These two inhibitor pigment types are 

barrier and sacrificial pigments.  

 



 65

Barrier Pigments 

Barrier pigments are chemically inert, flake or plate-like shaped particles, such as 

MIO (micaceous iron oxide) particles.453 The term micaceous refers to its particle shape, 

which is flake-like or lamellar shape. In addition to providing a barrier against diffusion 

of aggressive species through the coating, barrier pigments also provide mechanical 

reinforcement to the paint film and when present in the topcoat they can also block 

ultraviolet light, thus shielding the binder from this destructive form of radiation.454-455  

As a result, barrier pigments can be incorporated into primer, intermediate coat, or 

topcoat since they are chemically inert and do not react with the metal unlike inhibitive or 

sacrificial pigments.454  

 

Sacrificial Pigments 

Sacrificial pigments usually contain zinc in the form of zinc dust in large 

amounts. When in electrical contact with the steel surface, the zinc film acts as the anode 

of a large corrosion cell and protects the steel cathode. In other words, znc sacrificially 

corrodes instead of steel.456 In addition to sacrificially corroding, zinc dust also provides 

barrier action due to formation of its insoluble corrosion products.457-459  

 

Inhibitive Pigments 

Inhibitive pigments are soluble species, such as molybdates or phosphates, which 

are carried to the metal surface, where they inhibit corrosion by passivating the substrate 

surface mostly by forming protective films.453 Solubility and reactivity are critical 
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parameters for inhibitive pigments with too much of both parameters, coating degradation 

occur due to blistering and delamination.  

Prior to this investigation, a sol-gel coating for Al 2024-T3 alloy has been 

developed and found successful.414 Therefore, the purpose of this study has been to 

enhance the corrosion inhibitive properties of this particular sol-gel coating by 

incorporating inhibitor pigments into its structure. For the purpose of this study, only 

inhibitive pigments are put into test, although inhibitive pigments or their reaction 

products can act like barrier or sacrificial pigments as well.  
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CHAPTER II 
 

2 SYNTHESIS AND CHARACTERIZATION OF OXYANION ESTERS OF  

α-HYDROXY ACIDS AND THEIR SALTS 

 

2.1 Introduction 

In this investigation, environmentally friendly metallo-organic corrosion 

inhibitors for protection of mild steel and certain aluminum alloys are being sought to 

replace hexavalent chromium based corrosion inhibitors. For this reason, several 

corrosion inhibiting species such as hydroxyacids and metal oxyanions were combined in 

a single compound with the general formula, (M)x(hydroxyacid)y(M
‘
aOb)z. These were 

tested alongside the individual components in order to determine whether there were any 

synergistic interactions. It is important to note that most of the chosen individual 

components are corrosion inhibitors that were previously commercialized. 

Some of these species such as gluconates were commercially available resulting 

in their direct use with no synthesis required. The common commercial use for these 

readily available gluconates is in the field of medicinal health as nutritional supplements. 

Such gluconates of zinc, calcium, magnesium and sodium were used and tested 

throughout this study as corrosion inhibitors, precursors, or constituents of synergistic 

corrosion inhibitor formulations.  
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2.1.1 D-gluconic acid 

D-Gluconic acid or 2,3,4,5,6-pentahydroxyhexanoic acid is an organic compound 

with the formula of HOCH2(CHOH)4CO2H. Reported pKa values of D-gluconic acid are 

in the range of 3.441-3.862 with 3.603 the most common. Thus in aqueous solutions at 

neutral pH, gluconic acid produces the gluconate ion, which forms gluconate salts with 

corresponding metal ions, known as gluconates.  

 

 

 

 

 

Gluconic acid and gluconates occur widely in nature due to oxidation of glucose, 

while in chemistry D-gluconic acid is widely used as an efficient masking reagent for 

cations.4 For the purposes of this study, a 50% weight solution of D-gluconic acid was 

used as a precursor to synthesize gluconate salts that are not readily available such as 

borogluconate, aluminum gluconate and chromium gluconate. In addition to its use as a 

precursor, D-gluconic acid has been tested for corrosion inhibition efficiency via the 

weight-loss method.  

 

2.1.2 Zn(gluconate)2 

Zinc gluconate or zinc (2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanoate is a 

popular form for the delivery of zinc as a dietary supplement. It is found naturally, while 

HO OH

HO OH

HO

O

HO

 
Figure 2-1  Structure of D- gluconic Acid 
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industrially it is manufactured via fermentation of glucose. In its pure form, it is a white 

to off-white powder. It can also be manufactured by electrolytic oxidation, which yields a 

lower microbiological profile with longer shelf life, although it is a more expensive 

process.5 

Zinc(II) aqua complex reacts with gluconate ion to form monovalent zinc gluconate 

complex, which leads to the formation of divalent zinc gluconate complex;  

[Zn(OH2)6] 
2+ +HO-CH2-(CH-OH)4-COO-                {Zn[HO-CH2-(CH-OH)4-COO-]} +1 

         (Eq. 2.1) 

      {Zn[HO-CH2-(CH-OH)4-COO-]} +1 + HO-CH2-(CH-OH)4-COO-               

                                  Zn[HO-CH2-(CH-OH)4-COO-]2             (Eq. 2.2) 

Formation constant of divalent zinc gluconate is 1.70 indicating a relatively low-

strength complex. 6 

Zinc cation mostly forms octahedral complexes, however its tetrahedral 

complexes are also known. A tetrahedral structure might be favored in aqueous solutions 

due to charge neutrality and the size difference between the zinc cation with that of 

gluconate anion as pointed out in the literature. 7 

In this investigation zinc gluconate has been used both as a precursor and as an 

individual corrosion inhibitor. It is favored due to the additional corrosion inhibition 

property provided by zinc cations. 
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2.1.3 Ca(gluconate)2 

Calcium gluconate is commonly used as a mineral supplement. It is the form of 

calcium most widely used in the treatment of hypocalcemia. Calcium gluconate has also 

been used extensively in this study for the same reasons as zinc gluconate. Calcium 

gluconate is also a coordination compound with a low stability constant of 1.216. 

 

2.1.4 Mg(gluconate)2 

Magnesium gluconate is used as a supplement to maintain adequate magnesium in 

the body and is used to treat low blood magnesium. The latter condition is caused by 

gastrointestinal disorders, prolonged vomiting or diarrhea, kidney disease, or certain 

other conditions. Certain drugs lower magnesium levels as well. Magnesium gluconate 

was tested for its corrosion inhibition efficiency in this investigation for comparison to 

other gluconates with different cationic constituents. It has not been used as a precursor. 

Similar to the aforementioned gluconate salts magnesium gluconate is a coordinaton 

complex compound with a low stability constant of 0.706. 

 

2.1.5 Na(gluconate) 

Sodium Gluconate is a high quality crystalline sodium salt of gluconic acid. It 

appears as white crystals that exhibit high solubility. This non-corrosive, non-toxic and 

highly pure gluconate is an excellent choice when dry material is preferred. Like 
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magnesium gluconate, sodium gluconate also has not been used as a precursor and has 

only been tested for its corrosion inhibition efficiency in this investigation. 

  

2.2 Other Readily Available Compounds 

Readily available compounds could be further categorized based on their use as 

corrosion inhibitors, precursor, or both. 

 

2.2.1 Readily available compounds solely tested as corrosion inhibitors 

These compouns included L-lactic acid, aluminum acetate hydroxide stabilized 

with boric acid, aluminum lactate, chromium acetate hydroxide, commercial chromium 

oxyhydroxide, chromium acetate molybdate, and MEEA 

{[(methoxyethoxy)ethoxy]acetic acid}  that is tested for aluminum corrosion inhibition. 

MEEA is used in synthesis of carboxylate-alumoxanes, that serve as precursors for 

developing aluminum-based ceramic membranes and filters8 and the coating procedure 

based on carboxylate-alumoxanes is economical and environmentally benign.8,9 

  

2.2.2 Readily available compounds solely used as precursor 

Among these compounds were benzilic acid, octanoic acid, caproic acid, butyric 

acid, propionic acid, acetic acid, methoxy acetic acid, gallic acid, mandelic acid, tartaric 

acid, aluminum acetate hydroxide, chromium nitrate, chromium chloride, molybdenum 

trioxide, vanadium oxide, potassium carbonate, sodium hydroxide, ammonium 

hydroxide, potassium hydroxide, sodium tetraborate, iron nitrate, and zinc nitrate.  
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2.2.3 Readily available compounds used both as precursor and corrosion 

inhibitors 

Examples to this category of compounds are boric acid, D-glucose, chromium 

acetate in addition to the gluconates explained individually in the first section. 

 

2.3 Synthesis 

Salts of α-hydroxy acids, that were not commercially available, were synthesized 

by reacting the corresponding α-hydroxy acid with metal cation hydroxide, carbonate, or 

acetate. All reagents were ACS reagent grade or higher and used without further 

purification. Small amounts of reactants, such as 20 mmols equaling to one equivalance, 

were refluxed in 100 ml up to several hundred ml of distilled water for a few hours up to 

a period of overnight, followed by the isolation of product mostly via rotary evaporation 

or by precipatition in methanol given the product is not soluble in methanol. Examples of 

hydroxy acid salts synthesized via described method were Al(gluconate)2OH, 

B(gluconate)2OH and Cr(gluconate)3. Please refer to Table 2-1 for further details. 
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Table 2-1 Designated Reagent/Solvent Amounts for Synthesis Reactions 

Product Reagents 
Amount 

(mmols) 

Water/Soln. 

(ml) 

Additional 

Information 

 Calcium 

Gluconate 

Calcium Gluconate 20 
100 

 

Molybdenum Trioxide 20 

Zinc Gluconate 

Molybdate 

Zinc Gluconate 20 
100 

Molybdenum Trioxide 20 

Calcium 

Gluconate 

Calcium Gluconate 20 
100 

Vanadium Penta Oxide 10 

Zinc Gluconate 

Vanadate 

Zinc Gluconate 20 
100 

Vanadium Penta Oxide 10 

Potassium 

Benzilate 

Potassium Carbonate 10 
200 Room Temp. 

Benzilic Acid 20 

Potassium 

Benzilate 

Potassium Benzilate 20 
200 

 

Molybdenum Trioxide 10 

Potassium 

Benzilate 

Potassium Benzilate 20 
200 

Vanadium Pentaoxide 10 

Calcium 

Gluconate Borate 

Calcium Gluconate 20 
200 

Boric Acid 20 

Zinc Gluconate 

Borate 

Zinc Gluconate 20 
200 

Boric Acid 20 

Potassium 

Benzilate Borate 

Potassium Benzilate 20 
200 

Boric Acid 20 

Borogluconate 
D-Gluconic Acid Soln. 10 96 or 98 ml water,  

100  ml soln. Boric Acid 10 or 20 

Boroglucose 
D-Glucose 20 

100 
Boric Acid 20 or 40 

Aluminum 

Gluconate 

D-Gluconic Acid Soln. 400 75 ml water,  

150 ml soln. 

18%* 
Aluminum (Acetate)2 200 

Zinc Benzilate 

Molybdate 

Zinc Chloride 20 
100. room temp. 

Potassium Benzilate 20 
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 Table 2-1 (Continued)    

Product Reagents 
Amount 

(mmols) 

Water/Soln. 

(ml) 

Additional 

Information 
Chromium 

Gluconate 

D-Gluconic Acid 30 88 or 94 ml water,  

100 ml soln. 

 

Chromium Acetate 10 

Chromium 

Methoxyacetic 

Methoxyacetic Acid 30 
100 

Chromium Acetate 10 

Chromium 

Gluconate Borate 

Chromium Gluconate 30 
150 

Boric Acid 30 or 60 

Chromium Borate 

Chromium Gluconate- 

1borate 

1 g 
fired at 

350 ˚C 

66.86%** 

Chromium Gluconate- 

2borate 

1 g 
fired at 

380 ˚C 

73.71%*** 

Chromium 

Oxyhydroxide 

Chromium Borate 20 
100 room temp.1 

137%2 0.1 M NaOH Soln. 20 

Chromium 

Gluconate 

Chromium Gluconate 20 
100 

 

Molybdenum Trioxide 20 

Chromium 

Gluconate 

Chromium Gluconate 20 
100 

Vanadium Pentaoxide 10 

Sodium 

Octanoate 

Octanoic Acid 500 
500 

Sodium Hydroxide 500 

Chromium 

Octanoate 

Sodium Octanoate 500 
250 

Aqua Chromium Nitrate 167 

Sodium Caproate 
Caproic Acid 500 

500 
Sodium Hydroxide 500 

Chromium 

Caproate 

Sodium Caproate 500 

500 3 
Nona Aqua  

Chromium Nitrate 

167 

Chromium 

Hydroxide 

Hexaaqua 

Chromiumtrichloride 
45 

23 ml of 30% NH4OH 

diluted to 100 ml + 

500 ml water =  

600 ml soln. 

62.4%* 

2N Ammonium Hydroxide 200 
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 Table 2-1 (Continued)    

Product Reagents 
Amount 

(mmols) 

Water/Soln. 

(ml) 

Additional 

Information 

Chromium 

Hydroxide 

0.05M Nona Aqua 

Chromium Nitrate 

10 200 ml of first +  

600 ml of second,  

800 ml total soln. 

58.3%* , 4 
0.05M Potassium 

Hydroxide 

30 

Chromium 

Tetraborate 

Sodium Tetraborate 20 

fused using a torch  
Nona Aqua  

Chromium Nitrate or  

Chromium Acetate 

1 of first, 

3.5 of 

second 

Chromium 

Tetraborate 

Sodium Tetraborate 15 50 ml of the first 

added to 400 ml of 

the second = 450 ml 

75%5 Nona Aqua  

Chromium Nitrate 
10 

Iron Chromium 

Tetraborate 

Iron Nitrate 10 

250 90%6 Nona Aqua  

Chromium Nitrate 

20 

Sodium Tetraborate 45 

Sodium Butyrate 
Butyric Acid 500 

500  
Sodium Hydroxide 500 

Chromium 

Butyrate 

Sodium Butyrate 300 

250 7 Nona Aqua  

Chromium Nitrate 

100 

Sodium 

Propionate 

Propionic Acid 500 
500  

Sodium Hydroxide 500 

Chromium 

Propionate 

Hexa Aqua  

Chromium Chloride 

100 
250 8 

Sodium Propionate 300 

Sodium Methoxy 

Acetate 

Methoxy Acetic Acid 300 23 ml of first + 227 

ml water = 250 ml 

soln.  

 
Sodium Hydroxide 300 



 112

*ceramic yield 

**ceramic yield for chromium gluconate with one equivalence of borate 

*** ceramic yield for chromium gluconate with two equivalences of borate 

1 reflux leads to oxidation of Cr3+ to Cr6+ 

2 yield calculated w/ respect to product formula of CrOOH, result suggested 

dihydrate structure 

3 Product is slightly soluble in methanol 

4 using reagents with 0.01 M concentration did not result in precipitation 

5 w/respect to product formula of Cr2(B4O7)3 

6 w/respect to product formula of FeCr(B4O7)3 

7 Product is soluble in methanol 

 Table 2-1 (Continued)    

Product Reagents 
Amount 

(mmols) 

Water/Soln. 

(ml) 

Additional 

Information 

Chromium 

Methoxy Acetate 

Hexa Aqua  

Chromium Chloride 

100 
100 9 

Sodium Methoxy Acetate 300 

Ammonium 

Mandelate 

Ammonium Hydroxide 20 
100  

Mandelic Acid 20 

Zinc Mandelate 
Zinc Nitrate 15 

150 75%10 
Ammonium Mandelate 15 

Sodium Tartrate Sodium Hydroxide 20 100 

 

Tartaric Acid 20 

Zinc Tartrate 
Zinc Nitrate 40 

150 
Sodium Tartrate 40 

Ammonium 

Gallate 

Ammonium Hydroxide 100 
250 

Gallic Acid 100 

Zinc Gallate 
Zinc Nitrate 50 

150 
Ammonium Gallate 50 
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8
 Due to oxidation of chromium nitrate, chromium chloride was preferred. Product 

is slightly soluble in water. Ethanol was used to purify product from NaCl. 

9
 Ethanol was used to purify product from NaCl 

10 w/respect to product formula of sodium mandelate 

Additional Information 

• Unless stated all products were obtained via reflux. Exceptions were reactions at 

room temperature, at 350 ˚C, and at 380 ˚C. 

• D-gluconic acid was available as a water solution, thus water from the reagent 

solution in included in total water amount as well. 

• In addition to the mentioned amounts of reagents, very high amounts of reagents 

were also used in the same proportions to synthesize products in bulk amounts 

when needed in weight-loss and salt fog chamber tests. 

• Yield was not measured for many products, in particular for gluconate salts and 

their esters due to their very high hygroscopic nature leading to errors. 

 

2.3.1 Synthesis of Gluconate Salts 
 
Al(gluconate)2OH 

Al(gluconate)2OH was synthesized by reacting Al(acetate)2OH and D-gluconic 

acid via reflux for overnight. Thermogravimetric analysis of the product conducted using 

a Seiko EXSTAR 6000 TG/DTA 6200 instrument with temperature ramped from 25 °C 

to 1000°C at a rate of 5 °C/min under a 50 ml/min flow of dry air, revealed a single 

decomposition step above 400 ˚C corresponding to oxidation of the gluconate. The 

ceramic yield was recorded as 18 %. 
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B(gluconate)2OH and B(glucose) 

Boron gluconate, or with its more common name borogluconate is used to treat 

hypocalcemia, also called parturient paresis and commonly called milk fever, in the form 

of calcium borogluconate.10,11 

Calcium Borogluconate is one of the most widely used calcium salts for the 

treatment of hypocalcaemia, since it is more soluble, more rapidly absorbed, and less 

irritating than calcium gluconate.12  

B(gluconate)2OH was synthesized via reaction of D-gluconic acid with boric acid, 

while boron glucose was synthesized via reaction of D-glucose with boric acid. Both 

products were soluble in methanol, thus they were isolated via rotary evaporation. 

Different from the other tested metal oxyanion salts, structure of borogluconate is likely a 

monovalent complex in which gluconate is a bidentate ligand.  

                            

 

Figure 2-2 Thermogravimetric Analysis of Aluminum Gluconate Hydroxide 
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Cr(gluconate)3 

Chromium gluconate in the form of violet crystal powder is used as the additive 

of medicine or food. It is easily absorbed by human body and serves to promote 

childhood growth and cure diabetes, arteriosclerosis, coronary heart disease and myopia 

of young boys and girls. It is a marvelous nutritional supplement to take when on a 

weight-loss diet and is sold in vitamin stores. Thus, chromium gluconate was synthesized 

due to trivalent chromium compounds are much more acceptable environmentally than 

hexavalent chromium compounds as corrosion inhibitors. One equivalence of 

Cr(acetate)3 is refluxed with three equivalences of gluconic acid in a sufficient amount of 

distilled water. Gluconate replaces acetate in time to form the desired product of 

chromium gluconate. The reaction proceeds slowly due to the low solubility of acetate. 

Only after several hours gluconate starts to replace the acetate extensively, thus this 

particular reflux process took more time than the other gluconate syntheses. After the 

reflux, the solution was cooled down and evaporated via rotary evaporation. The final 

precipitate was dried in vacuum to yield a dark violet-black solid. Chromium gluconate 

complex is also reported in the literature.13-15 

 

2.3.2 Synthesis of Gluconate Esters of Selected Oxyanions 

Synergistic combinations of corrosion inhibitors have been the most promising 

candidates for the replacement of hexavalent chromium compounds. For this reason, 

benzilate and gluconate salts were reacted with molybdenum, and vanadium oxides and 

boric acid to produce the corresponding esters. Most often 20 mmols of gluconate salt 

was reacted with sufficient amount of metal oxyanion in 100 ml to 200 ml distilled water. 
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Three metal oxyanions used as reactants with gluconates; thus the following reactions 

were performed; 

M(gluconate)2 + MoO3  M(gluconate)2molybdate  (Eq. 2.3) 

2M(gluconate)2 + V2O5  2M(gluconate)2vanadate  (Eq. 2.4) 

M(gluconate)2 + H3BO3        M(gluconate)2borate         (Eq. 2.5) 

 

where M = Zn2+ or Ca2+.  

Various complexes of molybdenum and vanadium with gluconic acid have been 

reported in the literature.16,17 

In addition to calcium and zinc gluconates, trivalent chromium gluconates were 

used as reactants with proper stoichiometry. After completion of reflux, resulting solution 

was partially evaporated until a concentrate solution is obtained via rotary evaporation. 

The saturated solution was then added dropwise to 100 ml to 200 ml of methanol under 

constant stirring for precipitation of the product. The product was then filtered followed 

by rinsing with acetone to remove excess water. Finally, the product was isolated after 

drying in vacuum. Products with various colors such as dark blue-purple 

Ca(gluconate)2molybdate, navy-black Cr(gluconate)3molybdate or dark green-black 

Cr(gluconate)3vanadate were synthesized.  

Although the same method has been used for the synthesis of all gluconate metal 

oxyanion esters, not all the products could be isolated due to their highly hygroscopic 

1) reflux/H2O 

1) reflux/H2O 

1) reflux/H2O 

  2) precipitation/methanol 

  2) precipitation/methanol 

 2) precipitation/methanol 
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nature. Such products were kept in solution form as in the cases of zinc gluconate 

molybdate and calcium gluconate vanadate. Other products, that were less hygroscopic 

enough to isolate, were still too hygroscopic to perform gravimetric calculations.  

� M = Zn++ or Ca++ 

 

 

 

 

 

 

 

 

Synthesis of Cr(gluconate)3.xborate 

Chromium gluconate borate was synthesized with both one and two equivalences 

of boric acid per equivalence of Cr(gluconate)3. Both mixtures were refluxed for two 

days in sufficient amount of water and after isolating the products, they were obtained as 

black and hygroscopic solids. Attempts to obtain a less hygroscopic product by either 

decreasing the amount of water in the solution or purification of the chromium gluconate 

beforehand, or changing the reaction time were not effective.  

Thermogravimetric analyses of both chromium gluconate borates revealed that 

increasing the proportion of the boron constituent within chromium gluconate borate 

ester resulted in an increase in both the decomposition temperature from 350 ◦C up to 380 

◦C and the ceramic yield from 21% to %28.  
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Figure 2-3  Structure of Zinc or Calcium Gluconate Molybdate 
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Similar to the other metal oxyanion esters of gluconates, chromium gluconate borates 

were also very soluble in water.  

 

2.3.3 Syntheses of Benzilate Salts and Their Metal Oxyanion Esters 

Benzilates were expected to be promising complexing agents primarily for use in 

synergistic corrosion inhibitor formulations. The primary reason for this consideration 

was the relatively lower solubility of benzilates compared to gluconates, which could 

lead to optimum corrosion protection since most of the inhibitor formulations inhibit 

corrosion eventually by precipitating on anodic and cathodic sites, where further 

corrosion reactions are blocked.  

For the syntheses of metal oxyanion benzilates, first potassium benzilate was 

synthesized by dissolving 20 mmols of benzilic acid in about 200 ml distilled water. 

Figure 2-5  Thermogravimetric Analysis of 

Chromium Gluconate Borate with Two 

Equivalences 

Figure 2-4  Thermogravimetric Analysis of 

Chromium Gluconate Borate with One 

Equivalence 
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Later 10 mmols of K2CO3 was added to the stirred benzilic acid solution at a rate that 

avoided foaming of the solution by the released carbon dioxide.  

Next the potassium benzilate solution obtained from the first step was refluxed 

with the corresponding metal oxide in water until a clear solution was obtained. The 

products were relatively easier to isolate than the corresponding gluconate esters due to 

their less hygroscopic nature. An exception was dark gray-black K(benzilate)vanadate 

that was kept in solution due to its highly hygroscopic nature compared to other benzilate 

esters. After several months the initially soluble K(benzilate)vanadate particles were 

observed to precipitate out of the solution forming a brown precipitate compared to the 

initial dark grayish color. Filtering this solution and attempting to redissolve it in water 

easily led to the formation of a suspension that is stable for several days.  

K(benzilate) + MoO3 K(benzilate)molybdate         (Eq. 2.6) 

2K(benzilate) + V2O5  2K(benzilate)vanadate        (Eq. 2.7) 

K(benzilate) + H3BO3  K(benzilate)borate           (Eq. 2.8) 

 

It is reported in the literature that molybdenum(VI)-benzilic acid system forms stable 

complexes.18,19 One of these complexes is in dimeric structure similar to the structure of 

gluconate molybdate complex as shown in Figure 2-3, while the other complex consists 

of two benzilate ligands along with two molybdenum cores connected via oxygen bridges 

with formation constants of β = 17.35 for the former and β = 29.07 for the latter.18 

1) reflux/H2O 

1) reflux/H2O 

1) reflux/H2O 

2) precipitation/methanol 

2) precipitation/methanol 

2) precipitation/methanol 
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Complexes of vanadium(V)-benzilic acid are also mentioned in the literature, however 

these complexes usually seem to involve another ligand as well such as pyridine, thiol, or 

salen.20-26 

In addition to the salts and esters of benzilic acid and gluconic acid; salts of lactic acid, 

methoxyacetic acid, D-glucose and a few others were also synthesized via similar 

methods. 

 

2.3.4 Synthesis of CrBO3 

TGA analyses of the previously synthesized Cr(gluconate)3.xborate samples 

revealed decomposition temperatures of 350 ˚C and 380 ˚C, for Cr(gluconate)3.1borate, 

and Cr(gluconate)3.2borate, respectively. The samples were fired overnight at 

corresponding decomposition temperatures under ambient conditions. Weight losses due 

to firing the samples were recorded in the range of 68.89 % to 78.37 % indicating the loss 

of bulky gluconate groups. Preliminary XRD of the fired Cr(gluconate)3.xborate samples 

revealed mixed phases due to possible byproducts and excess reactants. One of the phases 

was found to be boric acid. Therefore, fired Cr(gluconate)3.xborate samples were washed 

and stirred with sufficient water overnight and then filtered following by drying in 

vacuum yielding a black colored product. The washing solution had a yellow color, 

suggesting that some chromium oxidized to hexavalent chromium during firing. Presence 

of hexavalent chromium was also confirmed by weight-loss tests using the nonpurified 

batch of chromium borate, which had inhibited corrosion of mild steel successfully unlike 

the purified batch. The additional weight-loss, after thorough washing, filtering and 

drying processes, was recorded as 10.4 %. XRD of the purified product after firing 
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revealed the product was amorphous. The absence of crystalline impurities indicated 

successful purification. Weight-losses due to firing of chromium gluconate borate 

suggested the product formula to be CrBO3. 

Thermogravimetric analysis of this purified CrBO3 sample revealed a 

decomposition temperature of 670 ˚C. Overnight firing of the sample at 670 ˚C resulted 

in a product that had a one-to-one match with XRD pattern of chromium oxide.  

 

 

 

The same result was also reported in the literature that firing of chromium borate results 

in the formation of Cr2O3.
27-29 

 

2.3.5 Synthesis of CrO(OH) 

A few milimoles of purified CrBO3 was added to 100 ml of NaOH and stirred for 

12 hours. The solution was filtered and a green product was obtained after drying in 

Figure 2-6   X-ray Diffraction Pattern of Sintered CrBO3 
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vacuum. A high yield of 96.8% was recorded. In the literature, green pigments based on 

CrO(OH) with low hardness and low particle sizes along with high coloring ability are 

manufactured for use in cosmetics by calcination of a 1:4 alkali metal dichromate-H3BO3 

mixture at 600 ˚C to 800 ˚C. Also known with its common name in cosmetics, chromium 

hydroxide green is approved by the FDA (U.S. Food and Drug Administration) for use in 

cosmetics to be applied to the skin and eye area.30 

The CrOOH produced in this investigation had a small particle size and dispersed 

well in water and sol-gel coating. Dynamic light scattering of a sample dispersed in water 

by 15 minutes of sonication gave an average particle size of 318 nm (with a 

polydispersity of 0.388) indicating the CrOOH pigment is nanoparticulate. In addition, 

the method used for synthesis is a straightforward, one step reaction, which is performed 

at ambient conditions rather than syntheses via calcinations, which require high 

temperatures.30 

Suspensions of synthesized chromium oxyhydroxide remained stable over a 

period of one week, but eventually precipitated out due to agglomeration of the particles 

thereafter, parallel to the results obtained in other studies in the literature.31 UV visible 

spectroscopy of the suspended sample of commercial grade CrO(OH), which was 

conducted using an HP 8453 UV-visible spectrometer via quartz cell with a 10 mm path 

length, revealed a maximum peak at λ = 267 nm, while UV spectra of suspended sample 

of synthesized CrO(OH) also revealed a maximum peak at 269 nm with A = 1.381 

matching the value for commercial grade CrO(OH). However, the UV spectra of 

synthesized CrO(OH) resulted in an additional peak at λ = 372 nm with an absorption 

value of 1.353.  
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X-ray measurements did not reveal a crystalline pattern suggesting an amorphous 

structure. X-ray diffraction studies of nanoparticulate chromium hydroxide prepared via 

different methods also yielded amorphous structures as reported in the literature.32 

Notably, commercial grade CrO(OH) required sieving with a sieve of 25 µ 

opening to obtain fine particles in contrast to the synthesized CrO(OH), which had 

sufficiently fine particles after synthesis with no requirement of sieving.  

Heating chromium borate and sodium hydroxide to obtain chromium 

oxyhydroxide was also attempted, however the resulting solution obtained was dark 

yellow in color indicating the presence of hexavalent chromium via oxidation of trivalent 

chromium. 

 

2.3.6 Synthesis of Zinc Carboxylates 

Due to well-known cathodic inhibitive property of zinc cations, synergistic 

combinations of zinc cations with hydroxy acids were attempted. For this purpose, 

hydroxy acids with varying solubilities were chosen as reactants such as mandelic, 

tartaric, and gallic acids. The first step of the synthesis was the formation of the sodium 

or ammonium salt of the hydroxy-acid by reacting it with ammonium or sodium 

hydroxide. The byproducts NH4NO3 and NaNO3 were washed away during filtration. In 

the second step, these hydroxy acid salts were reacted with zinc nitrate to form the 

desired product.  
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Zinc tartrate 

Zinc tartrate was synthesized from sodium tartrate and zinc nitrate.  Zinc tartrate’s 

XRD pattern was isostructured to that of manganese tartrate as shown in Figure 2-8. 

Zinc mandelate 

Zinc mandelate was synthesized via reaction of ammonium salt of mandelic acid 

with zinc nitrate.  

 

Zinc gallate 

Like zinc mandelate, zinc gallate was synthesized from ammonium salt of gallic 

acid and zinc nitrate. Gallic acid has been chosen as a reactant since its structure mimics 

the chemicals that mussels use to adhere to both inorganic and organic surfaces. Among 

this group of chemicals of substituted phenols that mussels use is 3,4-dihydroxy-L-

phenylalanine. 

 

NH2

O OHHO

HO

Figure 2-7 Structure of 3,4-dihydroxy-L-phenylalanine 
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Figure 2-8   X-ray Diffraction Pattern of Zinc Tartrate 
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2.3.7 Synthesis of Chromium(III) Carboxylates 

Various chromium carboxylates were synthesized in the search for one that was 

optimally soluble to incorporate into sol-gel coatings. Among these carboxylic acid 

precursors were octanoic acid, caproic acid, butyric acid, propionic acid, and acetic acid 

in the order of decreasing number of carbon atoms in the alkyl chains.  

 

 

 

 

 

 

 

 
 

 

 

The first step of the syntheses was preparation of the sodium salts by reacting 

them with sodium hydroxide. The sodium carboxylates were then isolated as yellow to 

clear yellow color jelly-like substances.  

Secondly, sodium salts produced from the first step were reacted with 

chromium(III) nitrate in 3:1 proportions to obtain the corresponding chromium 

carboxylate. In general, chromium(III) nitrate was preferred over chromium(III) chloride 

as precursor to avoid corrosion accelerating chloride ions with the exception of synthesis 

O OH

octanoic acid

O

OH

caproic acid

O

OH

butyric acid

O

OH

propionic acid

O

OH

O

methoxy acetic acid

O

OH

acetic acid

Figure 2-9  Structures of Carboxylic Acids That were Used for  

Trivalent Chromium Carboxylate Syntheses 
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of chromium butyrate, in which byproduct sodium nitrate was observed to decompose 

into nitrogen dioxide during filtration. 

 

Chromium Octanoate and Chromium Caproate 

Both chromium octanoate and chromium caproate were precipitated out of the 

solution during reflux due to insolubility in water. Excess water, which contains the 

byproduct sodium nitrate, was decanted. Chromium octanoate was dried in oven at 55 ˚C, 

while chromium caproate was first dissolved in methanol due to its sufficient solubility 

unlike chromium octanoate followed by its drying at 55 ˚C after evaporation of methanol. 

Cleaning of glassware containing both chromium caproate and chromium octanoate was 

proven to be difficult. Both chromium octanoate and chromium caproate were very 

viscous products such that nitric acid has been used to clean the glassware containing 

both products.  

 

Chromium Butyrate 

Chromium butyrate formed a suspension in water, so there was no phase 

separation after the reflux unlike chromium carboxylates with longer alkyl chains. The 

product was thoroughly washed with water and filtered afterwards to remove the 

byproduct sodium nitrate. Subsequent vacuum drying yielded a green colored product. 

Chromium butyrate forms suspensions in water and methanol as implied by dynamic 

light scattering measurements in Figure 2-11 and Figure 2-12. 
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Figure 2-11  Dynamic Light Scattering 

Result for Chromium Butyrate in Methanol 

 

Attempts to crystallize chromium butyrate for X-ray diffraction measurements 

were unsuccessful. Among these attempts were dissolving the product in ethanol, in 

which chromium butyrate was considerably soluble, followed by its slow evaporation in 

narrow vials under refrigeration or trying various other solvent compositions besides 

ethanol such as pure isopropanol or 90% isopropanol-10% water mixture. Initially used 

sodium nitrate was discontinued to be used due to problems occurred during reflux. It 

was likely that the batch of sodium nitrate contained oxides or possibly even acids since a 

redox process occurred during the synthesis. NO2 was observed to evolve from the 

refluxing solution by its characteristic orange fumes. The solution pH also decreased. 

Therefore, chromium chloride was used as a reagent. To remove sodium chloride the 

product was washed first with water and secondly with ethanol since the product is 

soluble in ethanol while sodium chloride is not. Finally, the product was tested for 

presence of chloride with silver nitrate and no precipitation was observed indicating 

absence of chloride.  

 

 

Figure 2-10   Dynamic Light Scattering 

Result for Chromium Butyrate in Water 
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Chromium Propionate 

Chromium propionate was synthesized in the same manner chromium butyrate 

was synthesized. Given that its alkyl chain is one carbon atom shorter than chromium 

butyrate, chromium propionate was slightly soluble in water and did not form 

suspensions.  

 

Chromium Acetate and Chromium Methoxyacetate 

Commercially available chromium acetate was directly used without synthesis, 

while the dark green chromium methoxyacetate was synthesized from methoxyacetic acid 

and chromium chloride. It was found to be highly soluble in water and methanol and 

most soluble in the former. However, the byproduct HCl could not be rid completely 

during rotary evaporation indicated by a low pH and precipitation of silver chloride. Thus 

a second batch of chromium methoxyacetate was synthesized using sodium 

methoxyacetate. This produced sodium chloride as a byproduct that could be filtered out 

after dissolving the product in ethanol in which the chromium methoxyacetate is soluble. 

The resulting product was checked for chloride presence with silver nitrate and no 

chloride was found. 

 

2.3.8 Synthesis of Selected Chromium(III) Compounds 

Due to the success that was achieved with chromium oxyhydroxides inhibiting 

corrosion; other inorganic trivalent chromium compounds were synthesized. Among 

these chemicals were chromium tetraborate, iron chromium tetraborate, and chromium 



 

hydroxide. In addition commercially available 

tested. 

 

Chromium tetraborate 

For the synthesis of chromium tetraborate, 

borax (sodium tetraborate)

shaped product phase being

high temperatures provided by the 

Considering the potential ability

acetate was used as a replacement for

colored by-products and, 

with a green color was obtained

from the crucible has proven to be difficult despite 

Finally, a solution chemistry 

amounts of highly soluble 

chromium tetraborate with %70 efficiency 

nitrate. 

                                                                                                                             

Thermogravimetric analysis of 
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commercially available chromium acetate hydroxide

 

For the synthesis of chromium tetraborate, chromium nitrate was first fused 

te) with a 1:10 proportion. However despite a homogenous 

being obtained, Cr6+ was also formed during the process

provided by the torch.  

potential ability of nitrate to oxidize Cr3+ to 

replacement for chromium nitrate. As a result no yellow 

and, thus, no hexavalent chromium were formed. A single

was obtained instead. However, isolating the product by its 

has proven to be difficult despite trying many solvents.

solution chemistry approach was developed, in which

highly soluble reactants were reacted in a small amount of water 

with %70 efficiency after thorough washing to 

                                                                                                                             

nalysis of the product indicated a one-phase chromium 

chromium acetate hydroxide was also 

was first fused with 

despite a homogenous bead 

also formed during the process due to the 

to Cr6+; chromium 

chromium nitrate. As a result no yellow or orange 

were formed. A single product 

ct by its removal 

.  

in which stoichiometric 

amount of water to produce 

washing to remove sodium 

                                                                                                                                 (Eq. 2.9) 

chromium tetraborate.  



 

 

 

 

 

 

 

 

 

 

 

Iron Chromium Tetraborate

Sodium tetraborate

proportions of 4.5, 2 and 1, respectively 

efficiency based on the product formula in eq. 2.10

 

Chromium Hydroxides 

Chromium hydroxide 

chromium nitrate and ammonium hydroxide

particles that redissolved due to formation of 

saturate the mixture with KOH to reprecipitate Cr(OH)

Figure 2-12   Thermogravimetric 
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Tetraborate 

tetraborate, chromium nitrate and iron nitrate were 

, 2 and 1, respectively yielding a mixed metal borate

based on the product formula in eq. 2.10. 

 

hromium hydroxide was initially synthesized using very dilute solutions of 

chromium nitrate and ammonium hydroxide. When mixed resulted in precipitation of fine 

dissolved due to formation of chromium amine complexes. 

saturate the mixture with KOH to reprecipitate Cr(OH)3 were not successful. 

            

Thermogravimetric Analysis of Chromium Tetraborate

, chromium nitrate and iron nitrate were precipitated in 

mixed metal borate in a 65% 

 

very dilute solutions of 

precipitation of fine 

complexes. Attempts to 

not successful.  

      (Eq. 2.10) 

etraborate 



 

 

 

 

 

Using KOH instead of NH

formation of soluble products 

formed in large particles as 

Replacing KOH with NH

produce precipitates at first

to 0.3M-0.4M resulted in precipitation of 

nature.  

Finally, using chromium chloride 

hydroxide instead of potassium hydroxide

amounts of reactants used 

chloride, [Cr(H2O)6]Cl3, in 500 ml water 

the synthesis of chromium hydroxide nanoparticles.

decanting and thoroughly washed 
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KOH instead of NH4OH, and CrCl3 instead of Cr(NO3)3

formation of soluble products such as chromium ammonia complexes but

particles as demonstrated by dynamic light scattering measurements

NH4OH but keeping Cr(NO3)3.9H2O in the reaction mixture 

at first but increasing the concentrations of the reactants from 0.1 M 

resulted in precipitation of lumpy particles that were

hromium chloride instead of chromium nitrate 

instead of potassium hydroxide resulted in stable fine precipitates

used were 100 ml 2N ammonium hydroxide and 12

, in 500 ml water as described in the literature33-3

synthesis of chromium hydroxide nanoparticles. The product was

decanting and thoroughly washed thereafter until free of NH4Cl and was then 

                          

                                   

 

3.9H2O prevented 

but the product was 

demonstrated by dynamic light scattering measurements. 

in the reaction mixture did not 

increasing the concentrations of the reactants from 0.1 M 

that were hygroscopic in 

chromium nitrate and ammonium 

precipitates. The 

12 g of chromium 

36 as a method for 

was filtered after 

and was then air dried. 

              (Eq. 2.11) 

                       (Eq. 2.12) 
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Comparison of the thermogravimetric analyses of the chromium hydroxide batches 

synthesized from chromium chloride and ammonia with that synthesized from chromium 

nitrate and potassium hydroxide revealed similar results. Chromium oxide was obtained 

after a loss of water at temperatures of 441 ˚C with 62.4% ceramic yield for the former 

and at 452 ˚C with 58.3% ceramic yield for the latter. 

 

2.4 Characterization Studies of the Synthesized Compounds 
 

2.4.1 FT-IR Spectroscopic Studies 

FT-IR spectroscopy has been used extensively for the characterization of the 

synthesized chemicals and substrate coupon surfaces immersed in inhibitor solutions. 

Infrared spectroscopy measurements were performed using a Nicolet Magna-IR 75 

spectrometer. Spectra were collected in the 400–4000 cm−1 range using 128 scans and a 

resolution of 4 cm−1. The background was eliminated using spectra of degreased blank 

alloy coupon as a reference. For the infrared spectra of the synthesized compounds, KBr 

pellets are prepared carefully. The compositions of the KBr pellets were determined 

based on the predicted strength of the absorptions of functional groups present in the 

sample.  

 

Gluconate Salts and Other Hydroxy Salts 

Interpretation of IR spectra of the gluconate salts and their esters was based on 

comparison with spectra of compounds such as calcium gluconate32 and sodium 

gluconate33 that are available at public databases. 
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Chromium gluconate 

FT-IR spectrum of chromium gluconate revealed bands at 3301 cm-1, 1581 cm-1, 

1451 cm-1, and 1363 cm-1. Broad band at 3301 cm-1 was attributed to symmetric and 

asymmetric hydroxyl stretchings. It is reported in the literature that bands observed at ca. 

1600 and 1385 cm−1 in the spectra of metal hydroxyacid salts are due to asymmetric and 

symmetric OCO− stretching vibrations39. Thus the bands at 1581 cm-1 and at 1363 cm-1 in 

the spectra of chromium gluconate were assigned to the asymmetric and symmetric 

OCO− stretching vibrations, respectively.  

A separation of more than 200 cm−1 between the observed OCO− components in 

the spectra of the chromium gluconate (also observed for other gluconate salts in this 

study) can be attributed to monodentate carboxylate coordination as stated in the 

literature.40 When compared to the reference compounds, interactions between the 

hydroxyl groups of the gluconate and the metal ions produces broadening of OH 

stretching vibrations while interactions between the metal ion and the hydroxy acid in 

general produces both broadening and shifting of CH2, COH and CHO bending 

vibrations, which appear in the region 1400–1100 cm−1 in agreement with the literature 

data.41 Relatively weaker bands at 1100–940 cm−1 could be assigned to the hydroxy acid 

C–O stretching vibrations in general for gluconates.39 These absorptions were common to 

all synthesized gluconate salts with few cm-1 frequency differences. In the specific case 

of chromium gluconate however, additional absorptions at 960 cm-1 and in the range of 

550-560 cm-1 were present due to Cr-O stretching vibrations.42-46  
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Metal Oxyanion Esters of Hydroxy Acid Salts 
 
Calcium gluconate molybdate 
 

 

Figure 2-13   Infrared Spectrum of Calcium Gluconate Molybdate 

 

In addition to asymmetric and symmetric stretching of hydroxy group at 3500 cm-

1, the asymmetric and symmetric OCO− stretching vibrations at 1620 cm-1 and at 1400 

cm-1, and CH2, COH and CHO bending vibrations at 1400–1100 cm−1 were present. 

Absorption at 975 cm-1 is assigned to Mo-O vibrational mode since for similar 

compounds molybdenum oxygen vibrational modes were reported in the literature at 972 

cm-1 47, 994 cm-1 48, and 996 cm-1 49. 

 

Chromium gluconate molybdate 

As a difference between the FT-IR spectra of calcium and chromium gluconate 

molybdates, the band for chromium gluconate molybdate that is due to asymmetric 

stretching vibration of OCO- absorbed at 1594 cm-1 corresponding to a shift of around 25 

cm-1. 42-45  
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Chromium gluconate vanadate 
 

 

Figure 2-14   Infrared Spectrum of Chromium Gluconate Vanadate 

 

Compared to the infrared spectrum of crystalline V2O5
50, absorption bands 

between 400 cm-1 and 1000 cm-1 are indexed to various group vibrations of V-O type in 

general51,52, which includes bands at 1019 cm-1, 850 cm-1, and between 400 cm-1 to 650 

cm-1 53. Thus, in the case of chromium gluconate vanadate band at 1030 cm-1 is assigned 

to stretching vibrations of V=O and band at 850 cm-1 is assigned to stretching vibrations 

of V-O among others. The band at 960 cm-1 next to the band of V=O stretching vibration, 

and bands in the range of 550-560 cm-1 are assigned to Cr-O stretching vibrations.42-46  

 

Zinc gluconate borate 
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Figure 2-15   Infrared Spectrum of Zinc Gluconate Borate 

 

In addition to the bands due to gluconate, bands between 1300 cm-1 and 1450 cm-1 

were due to trigonal B-O asymmetric stretching, while the band at 1200 cm-1 was 

attributed to bending of B-O-H plane. Relatively weaker bands due to boron constituent 

between 400 cm-1 and 1000 cm-1 region are attributed to tetrahedral B-O asymmetric 

stretching, trigonal B-O symmetric stretching, tetrahedral B-O symmetric stretching, out 

of plane B-O-H bending, O-B-O ring bending in the order of decreasing frequencies.54-59  

The absence of absorption at 840 cm–1 and around 420 cm–1 suggests the absence of 

tetrahedral coordination of Zn60 and absence of Zn-O61,62 bond, respectively. 

 

Chromium gluconate borate compounds 

As a difference from the FT-IR spectrum of zinc gluconate borate, bands at 960 

cm-1 were present for both chromium gluconate borates due to Cr-O stretching vibrations, 

while it was sharper for the one with two equivalences of boron. Another difference 

between the spectra of chromium gluconate borates was that at 1200 cm-1 no band was 
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present for chromium gluconate borate with one equivalence of boron opposed to the one 

with two equivalences of boron. Thus, it is assigned to either the bending of the B-O-H 

plane of the product or to excess boric acid.  

 

 
Zinc carboxylates 
 
Zinc tartrate 
 

 

Figure 2-16   Infrared Spectrum of Zinc Tartrate 

 

The IR spectra of zinc tartrate and other zinc carboxylates were similar to the 

spectra of other hydroxy-acid salts in general with the distinction of broadening of CH2, 

COH and CHO bending vibrations and OH stretching vibrations due to metal hydroxy-

acid interactions. All bands due to the tartrate constituent had one to one match with that 

of potassium tartrate measured by a Nicolet 20SX FT-IR as reported in the literature.63 

The absorption at 840 cm–1 suggests the presence of tetrahedral coordination of Zn.60 

Absence of any bands at 420 cm–1 indicates the absence of Zn-O bond.61,62 
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Other Trivalent Chromium Compounds 
 
Commercial Grade CrO(OH) 

Comparison of infrared spectra of synthesized and commercial grade CrO(OH) 

batches assisted in assessment of the purity of the samples as well as their 

characterization.  

 

Figure 2-17   Infrared Spectrum of Commercial Grade Chromium Oxyhydroxide 

 

Bands between 2125 cm-1 and 1986 cm-1, with one of them being at 1994 cm-1, were 

attributed to Cr-O bond and CO2 interactions, while a relatively weak band at 950 cm-1 

was attributed to vibration of Cr-O corresponding to its literature value of 960 cm-1.64 A 

sharp band at 1061 cm-1 is assigned to Cr-O stretching vibration corresponding to its 

literature value of 1050 cm-1 and the band at 550-560 cm-1 region at 563 cm-1 is also 

assigned to Cr-O stretching vibrations, corresponding to the literature value of 560 cm-1. 

42-45  
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Synthesized CrO(OH) 
 

 

Figure 2-18    Infrared Spectrum of Synthesized Chromium Oxyhydroxide-1st Batch 

 

The bands at 1050 cm−1 and 560 cm−1 or 550 cm−1  65 are due to stretching vibrations of 

Cr–O. Broadening and weakening of these Cr-O bands were observed due to interactions 

of chromium with hydroxyl group.42-46 Two bands between 1300 cm−1 and 1450 cm−1 

were attributed to the B-O trigonal asymmetric stretching vibrations, thus implying the 

presence of boric acid impurity in the sample, which was confirmed via X-ray diffraction 

studies as well.54 Therefore, additional batches of the product were synthesized with more 

thorough washing. As a result, bands due to free boric acid disappeared.  
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Figure 2-19   Infrared Spectrum of Synthesized Chromium Oxyhydroxide-2nd Batch 

 
 
Chromium Tetraborate 
 

 

               Figure 2-20  Infrared Spectrum of Chromium Tetraborate 

 

In the literature, three main bands of 708 cm-l, 1019 cm-l, and 1347 cm-l are 

assigned to symmetric stretchings compared to the reference spectra of pure sodium 

tetraborate powder with KBr pellets annealed at 400 ◦C 66. Corresponding bands exist in 

the spectra of synthesized chromium tetraborate with the band at 1347 cm-l being stronger 
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than the other two. Other bands include Cr-O stretching vibrations at 560 cm−1 and 960 

cm−1, H-O-H bending at 1600 cm−1,42-46 symmetric and asymmetric stretchings due to 

hydroxyl groups of water at 3500 cm−1.67,68  

The presence of bands due to water may imply that a hydrate of chromium 

tetraborate has been synthesized; unfortunately X-ray diffraction pattern indicated an 

amorphous structure for the product. Relatively weaker bands due to the boron 

constituent between 400 cm-1 and 1000 cm-1 region are assigned to tetrahedral B-O 

asymmetric stretching, trigonal B-O symmetric stretching, tetrahedral B-O symmetric 

stretching, out of plane B-O-H bending, O-B-O ring bending in the order of decreasing 

frequencies.54-57  

 

2.5 Solubility Measurements 

Depending on different types of applications, the range of solubility had a major 

impact on the efficiency of the corrosion inhibitors. Both in aqueous solutions and in sol-

gel coatings, inhibitors must possess an optimum solubility sufficient to migrate to the 

sites of corrosion and react with corrosive agents. Solubility also has to be low enough 

not to cause leaching of the inhibitor, or blistering and delamination which may lead to 

the degradation of the coating as well as loss of its hydrophobicity. On the other hand, too 

high solubility values increase the conductivity of the solution among other things, which 

accelerates corrosion.  

Based on many tests, an inhibitor concentration of 200 ppm or less for a system of 

100 ml of distilled water solution has been determined as an optimum concentration. The 

concentration unit has been chosen as ppm (part per million) for reasons of convenience 
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considering performing several thousands of tests with using very small amounts of 

inhibitors. In most cases however, molecular weights of the tested inhibitors were 200 

g/mol and higher due to high weights of hydroxy-acid constituents such as gluconates 

and benzilates, which corresponds to a concentration range of 0.01M for a molecular 

weight of 200 g/mol and 0.005M for a molecular weight of 400 g/mol, thus leading to 

comparable inhibition efficiency values with little error caused by concentration 

discrepancies. These seemingly low concentrations were often sufficient since the 

corrosion process itself is not a very fast process. Thus, the supply provided by a low-

solubility inhibitor was sufficient unless the environment is too warm or contains very 

high concentrations of aggressive anions especially in the case of mild steel, which is 

prone to heavy corrosion. In addition to direct inhibition of corrosion, formation of 

conversion coatings is another desired outcome for longer term corrosion protection. This 

often requires precipitation of inhibitor products on the metal surface. Thus, optimum 

solubilities are essential for the formation of protective conversion coatings on substrate 

surfaces. Gluconate salts, given their very high solubility, were not predicted to form a 

conversion coating and results supported that prediction with the exception of 

Al(gluconate)2OH, which formed a protective layer composed of aluminum oxides and 

aluminum hydroxides on the substrate surface. Metal oxyanion esters of gluconate salts 

were also tested for conversion coating formation; however no positive result has been 

obtained.  

Solubilities of inhibitors, especially those intended to be used in sol-gel coatings, 

were measured by means of different methods such as colorimeter, flame atomic 

absorption spectrometer and particle size analyzer.  
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2.5.1 Colorimeter  

The maximum solubility that could be measured by colorimeter is 0.70 ppm, thus 

it has been primarily used to measure the solubilities of the poorly soluble chromium(III) 

compounds. Solubilities of some chemicals that were more soluble than the upper limit of 

the colorimeter were measured by diluting the samples before testing. Solubilities in pure 

water as well as solubilities in 0.5 M salt water have been measured to observe the 

common or foreign ion effect, by placing 0.5 g of sample into 50 ml of distilled water, 

which was then filtered by a 0.2 µm syringe filter. 

 

2.5.2 Flame Atomic Absorption Spectrometer 

Flame atomic absorption measurements were conducted using a Varian flame 

atomic absorption spectrometer with the working conditions of 7 mA lamp current, 

acetylene fuel, air support, and reducing flame stoichiometry. Interference is reported in 

the literature for metals such as barium, aluminum, magnesium, and calcium in air-

acetylene flame.68-70 Thus, primarily trivalent chromium compounds have been measured 

using the technique. Based on the Varian Flame Atomic Absorption Spectrometer 

handbook, standards have been prepared using A.R. grade potassium dichromate. 

Samples for flame atomic absorption measurements have been prepared from saturated 

solutions of inhibitors in distilled water filtered with 0.2 µm syringe filter.  

Measurements have been performed at varying wavelengths as the following; 

λ = 520.8 nm is appropriate for concentrations ranging from 20 ppm to 2600 ppm with 

standards of 100 ppm, 250 ppm, 500 ppm, and 1000 ppm needed for calibration purposes.  



 145

λ = 428.9 nm is appropriate for concentrations ranging from 1 ppm to 100 ppm with 

standards of 100 ppm, 250 ppm, and 500 ppm needed for calibration purposes.  

λ = 425.4 nm is appropriate for concentrations ranging from 0.4 ppm to 40 ppm with 

standards of 50 ppm, 100 ppm, and 250 ppm needed for calibration purposes.  

 

Table 2-2  Solubility Values in ppm obtained via colorimeter and  

flame atomic absorption spectrometer 

Solubility Values 

Colorimeter (ppm) AAS in DI water (ppm) 

In DI 

water 

in 0.5 M  

salt water 
λ=520.8 nm λ=428.9 nm λ=425.4 nm 

CrO(OH) 0.07 0.06    

Commercial CrO(OH)     0.72 

Cr(octanoate)3 0.07 0.11    

Cr(caproate)3 0.04 0.05    

Cr(butyrate)3 0.22 0.35   0.83 

Cr(propionate)3   1190   

Cr(acetate)3   4035   

Cr(acetate)2OH   3317   

Cr(methoxyacetate)3   2572   

Cr2(tetraborate)3 0.14    1.03 

FeCr(tetraborate)3 0.48   0.03  

CrBO3 0.27     

Cr(OH)3 0.21    0.97 

Cr(OH)3*   55.1 63.6  

Cr(OH)3**    1.6  
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 Table 2-2 (Continued)    

Solubility Values 

Colorimeter (ppm) AAS in DI water (ppm) 

In DI 

water 

in 0.5 M  

salt water 
λ=520.8 nm λ=428.9 nm λ=425.4 nm 

Cr(gluconate)3   1308   

Cr(gluconate)molybdate   428.2   

Cr(gluconate)vanadate   304   

Cr(gluconate)1borate    18.7  

 

Cr(OH)3 = synthesized from CrCl3.6H2O + 2N NH4OH,  

*Cr(OH)3 = synthesized from CrCl3.6H2O + 30% NH4OH,  

**Cr(OH)3 = synthesized from Cr(NO3)3.9H2O + KOH 

 

Despite that exact matches could not be obtained using two methods; solubilities 

of the same compounds were found to be within a narrow range. Since better results in 

sol-gel coating were obtained with synthesized CrO(OH), CrBO3, and Cr(octanoate)3, it 

was concluded that even very low solubilities could be sufficient and may even be 

desirable for use in sol-gel coatings. On the other hand for aqueous solutions, the 

minimum solubility limit appears to be around 20 ppm due to positive results obtained 

using Cr(gluconate)1borate in such concentrations, while other compounds such as 

Cr(butyrate)3, which has a solubility less than 1 ppm yielded negative results in weight-

loss tests. 

 

 



 

2.6 Particle Size Measurements

Particle size measurements

particle size analyzer. 

absorption spectrometer for solubility measurements

also important in engineering of the sol

such inhibitors.  

Particle sizes of very soluble inhibitors were found to be 

distribution by volume graph indicated

nanometers for the highly water soluble 

 

 

 

 

 

 

 

 

 

Large particle size

carboxylates, and most of the

carboxylates with longer alkyl 

the large particle sizes were obtained for these chromium carboxylates

Figure 2-21   
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Measurements 

easurements have been conducted using a dynamic light scattering 

rticle size analyzer. Other than complimenting colorimeter and flame atomic 

absorption spectrometer for solubility measurements, average particle size

in engineering of the sol-gel coatings which are designed 

article sizes of very soluble inhibitors were found to be very 

bution by volume graph indicated the Z-average size values to be between 0 and 2 

highly water soluble compounds shown below. 

arge particle size values have been found for insoluble chemicals

most of the trivalent chromium compounds. For instance, c

with longer alkyl chains were predicted to suspend as micellar particles

s were obtained for these chromium carboxylates.  

   Dynamic Light Scattering of Selected Tested C

have been conducted using a dynamic light scattering 

colorimeter and flame atomic 

average particle size information is 

designed to incorporate 

very small. Size 

average size values to be between 0 and 2 

for insoluble chemicals such as zinc 

For instance, chromium 

suspend as micellar particles and 

 

Compounds 



 

 

 

 

 

 

 

 

 

 

The effect of solvent type was also evident

butyrate in methanol was found to be significantly lower than in water 

aggregation of hydrophobic particles

 

2.7 Surface Area Meas

The surface area measurements 

surface area analyzer, via a nitrogen adsorption isotherm, using the Brunauer

Teller (BET) method, and six points in the range of 0.05 to 0.30 P/P

for an inhibitor is a positive contribution to 

higher reactivity, and more rapid dissolution kinetics

imply effective barrier properties. 

surface areas in decreasing order 

� CrO(OH), synthesized 

Figure 2-22   
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ffect of solvent type was also evident in the particle sizes. Particle size of chromium 

butyrate in methanol was found to be significantly lower than in water as expected 

aggregation of hydrophobic particles.  

Surface Area Measurements 

measurements were conducted using a Quantachrom Nova 1200 

surface area analyzer, via a nitrogen adsorption isotherm, using the Brunauer

Teller (BET) method, and six points in the range of 0.05 to 0.30 P/Pο.  A high surface area 

for an inhibitor is a positive contribution to its inhibition efficiency that 

higher reactivity, and more rapid dissolution kinetics. High surface areas may rightfully 

imply effective barrier properties. Inhibitors, those were found to have siginifant 

in decreasing order are as follows;  

CrO(OH), synthesized by reacting synthesized CrBO3 with NaOH, 

   Dynamic Light Scattering of Chromium Carboxylates

Particle size of chromium 

as expected due to 

a Quantachrom Nova 1200 

surface area analyzer, via a nitrogen adsorption isotherm, using the Brunauer-Emmett-

A high surface area 

that correlates with 

High surface areas may rightfully 

e were found to have siginifant specific 

NaOH, 344 m2/g,  

arboxylates 
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� CrBO3, synthesized by firing chromium gluconate borates, 246 m2/g, opposed to 

commercially available CrO(OH), 87 m2/g,  

� Cr(OH)3, synthesized by reacting CrCl3.6H2O with 2N NH4OH, 148 m2/g,  

� Chromium gluconate molybdate ester, synthesized by reacting chromium 

gluconate with molybdenum(VI) oxide, 68 m2/g,  

� Chromium gluconate vanadate, synthesized by reacting chromium gluconate with 

vanadium(VI) oxide, 68 m2/g 

The surface areas of chromium carboxylates; of chromium gluconate, chromium butyrate, 

chromium propionate, and chromium acetate hydroxide, were measured as less than 1 

m2/g. The significant difference between the specific surface areas of commercially 

available CrO(OH) and the synthesized CrO(OH) is noteworthy. Accordingly, 

commercially available CrO(OH) had low inhibition efficiency opposed to very high 

inhibition efficiency of synthesized CrO(OH) measured by weight-loss tests.  

 

2.8 Powder X-Ray Diffraction Studies 

X-ray powder diffraction patterns were recorded on a Bruker AXS D-8 Advance 

X-ray powder diffractometer using copper Kα radiation. X-Ray diffractometer studies did 

not reveal many results since the synthesized compounds were all amorphous with a few 

exceptions such as zinc tartrate, and zinc mandelate. At times, it was also used as a 

complimentary tool to other characterization methods as in the case of detection of 

crystalline boric acid impurity in a batch of chromium borate that was obtained by firing 

of chromium gluconate.  
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2.9 Discussions and Conclusions 

 Compounds, which were tested for their corrosion inhibition properties, were 

synthesized via a single-source precursor method, which is a relatively easier synthesis 

method. The problems arose particularly due to the nature of the products, which were 

too hygroscopic preventing them to be handled for characterization. Such products were 

kept in solution form even after isolating them. Overall, the syntheses reactions were 

reproducible regardless of the amounts of the reagents reacted.  

 Characterization studies on the other hand were proven to be difficult first due to 

amorphous structure of the products, which in turn resulted in no structural information 

through X-ray analysis. Secondly, difficulty in handling most of these products resulted 

in very little gravimetric measurements to be performed. Such examples were chromium 

octanoate and chromium caproate, which were very viscous and most gluconate esters, 

which were too hygroscopic. However, this disadvantage was tried to be overcome using 

various techniques resulting in some characterization information for each and every 

inhibitor that were tested. Among these techniques were flame atomic absorption 

spectrometry, dynamic light scattering, colorimetry, infrared analysis, X-ray analysis, UV 

visible spectrometry, thermogravimetric analysis, and surface area measurement. 
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CHAPTER III 
 

3 AQUEOUS CORROSION INHIBITION FOR MILD STEEL 

 
 

Corrosion inhibition of mild steel in aqueous solutions has been studied using 

various techniques that can be categorized under three groups; 

First, synthesized corrosion inhibitors were tested for both direct corrosion 

inhibition efficiencies and for conversion coating formation using weight-loss tests. 

Effects of inhibitor concentrations, immersion periods, and cationic constituents have 

been discussed individually. Inhibition efficiency data were recorded using statistics. 

Secondly, surfaces of substrates immersed in inhibitor solutions have been 

characterized by means of different surface techniques such as FT-IR, X-Ray, SEM, XPS, 

digital imaging.  

Third, immersion solutions have been characterized by means of oxidation–

reduction potential, pH meter, and conductivity probes. 

 

3.1 Weight-loss Test Method 

The weight-loss method was used extensively throughout this study to assess 

inhibition efficiencies of corrosion inhibitors. Using metal coupons to assess inhibition 
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efficiencies is the oldest and simplest method in monitoring of corrosion.1 Coupons are 

described as small pieces of metal, usually of rectangular shape, which are inserted in the 

process stream and removed after a period of time that is greater than 24 hours.2,3 The 

most common and basic use of coupons is to determine average corrosion rate over the 

period of exposure.4 This is accomplished by weighing the degreased coupon before and 

after immersions followed by its exposure to various acidic solutions to remove corrosion 

deposits on the substrate surface. The difference between the initial and final weights of 

the coupon, that is the weight loss, is compared to the control. The control coupon is the 

substrate of the same metal alloy exposed to the same environment with no inhibitor 

present. At least two, and preferably more specimens should be exposed for each 

condition.5 The reasons why the weight-loss method has been chosen to assess inhibition 

efficiencies were first, tested inhibitors are all water soluble and second it is easy to 

obtain accelerated corrosion conditions, and third small amounts of inhibitors are 

sufficient for testing.  

 

3.1.1 Preparation of Coupons/Weight-loss Apparatus 

For the preparation of coupons, mild steel and aluminum alloy metal sheets were 

cut in dimensions of 1x1 inch. A hole is drilled at the corner of the coupon so that the 

coupon could be hanged in solution via a durable polymeric material such as a fishing-

line that does not corrode.  
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100 ml 60 ppm 

Cl- solution 

 

1” x 1” 
coupon 
 

 

 

 

 

 

 

 

 

 

Standards determined for Preparing Specimens for Weight-Loss Tests by ASTM 

(American Society for Testing and Materials)6,7 were followed with no alteration. For 

both aluminum alloy and mild steel specimens, the first step is described as degreasing in 

an organic solvent or hot alkaline cleaner or both. Mild steel specimens used in this study 

were cut out of large rolls of mild steel sheets that were previously heavily greased to 

prevent them from corroding. This grease was removed from the mild steel coupons by 

dipping them in hexane and rubbing them with paper towels soaked with hexane when 

necessary. Secondly, coupons were placed in Oakite Products Inc. brand Oakite-164 

alkaline cleaner solution at 150 ◦F for 10 minutes to complete degreasing of the coupons. 

Oakite solution was prepared by dissolving 60 g of Oakite detergent in 1000 ml of water 

at 180 ◦F. An additional step before performing immersion tests that is instructed by 

ASTM is pickling of specimen in an appropriate solution if oxides or tarnish are present 

in the case of aluminum specimens. After degreasing and cleaning, the coupons were 

weighed and fully immersed in 100 ml solutions of 60 ppm Cl- and various 

   Figure 3.1:  Figure 3-1   Weight-loss Apparatus 
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concentrations of inhibitors for various periods of time (3 days, 7 days or for 14 days).  

As a controlled variable, 100 ml has been chosen as the volume of the solution due to the 

low amount of inhibitors that was required. Another controlled variable was the salt 

content of the solution, which was chosen as 60 ppm Cl- since it is a situation commonly 

encountered in cooling water systems based on mild steel construction.3 

Immersion periods of 3, 7 and 14 day periods were chosen since periods less than 

24 hours are not enough for the system to come into an equilibrium8, while a period of 

more than 14 days was too long to test many samples, that are needed for comparison 

purposes. Given the condition of accelerated corrosion, a period of 7 days has been 

determined to be the optimum period of immersion.  After completion of immersion tests, 

coupons were exposed to an acidic solution described by ASTM to remove corrosion 

products for accurate weight-loss results. This solution has been prepared by dissolving 

3.5 g hexamethylene tetramine in 500 ml of distilled water followed by adding 500 ml 

HCl. Specimens were exposed to this reagent for 10 min at 20◦C to 25◦C. It is indicated 

by ASTM that longer times may be required in certain instances; however such instances 

did not occur in this study meaning all specimens were cleaned of corrosion deposits 

thoroughly after 10 minutes of exposure. In case of specimens of aluminum and 

aluminum alloys, direct use of concentrated HNO3 is inscribed by ASTM to remove 

corrosion deposits for periods of 1 to 5 min at 20◦C to 25◦C. 
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3.1.2 Inhibition Efficiency Calculations 

Inhibition efficiencies were calculated based on the comparison of weight loss 

values of inhibitor treated coupons and those of controls with the following formula; 

IE = 100[1-(W2/W1)]%                 (Eq. 3.1) 

where  

� W1 = corrosion rate in the absence of inhibitor 

� W2 = corrosion rate in the presence of inhibitor  

� W1 & W2 = (Wfinal – Winitial ) / Winitial  

The concentration of the inhibitors and the immersion periods were varied to obtain 

any possible trends of inhibition efficiencies, however inhibitor concentration of 200 ppm 

in 100 ml distilled water and a period of 7 days were chosen as the standard conditions 

after many trials as explained earlier.  

Inhibition efficiency values calculated by means of the above formula were inserted 

into a t-distribution function formula to obtain statistically significant results. T-

distribution is used rather than Z-distribution due to the low number of samples according 

to following formula;9 

IE = � � � �
√�             (Eq. 3.2) 

where � is equal to the critical t-distribution value for 90% confidence limit with usually 

two degrees of freedom based on n, which is the number of samples. Often, only one 

sample has been put into test at the beginning to determine the presence of any kind of 

inhibition. When corrosion inhibition was observed, three more samples of the same 

inhibitor have been put into test, thus resulting in n = 3 and degrees of freedom, that is (n-
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1), equaling to 2. Critical t-distribution value for 90% confidence limit with two degrees 

of freedom is reported as 2.92010. 

Formulas for the mean (µ) value and standard deviation (σ) are as follows; 

   � � 	
� ∑ �� �  	

�
��
	  ��	 � � . ����            (Eq. 3.2) 

    σ � �	
� ∑ ��� �  ������
	                        (Eq. 3.3) 

The results found with inhibition efficiency formula were calculated to be statistically 

significant by hypothesis testing. For the inhibition efficiency values to be significant, the 

difference between the mean inhibition efficiency value and that of control must be 

bigger than the following;11  

                                                        � �  ��������� � � �� √ ⁄ "              (Eq. 3.4) 

Since there is no inhibition efficiency for control solutions, ��������� � 0, thus the 

equation is simplified to the following; 

     � � � �� √ ⁄ "                (Eq. 3.5) 

Insertion of critical value for t-distribution, standard deviation, and number of sample 

values into the above equation lead to the conclusion that mean inhibition efficiency 

values even for inhibitors with slight inhibition properties were statistically significant. 

 

3.2 Categorization of Weight Loss Test Results 

The weight-loss results were categorized based on the type of inhibitor, inhibitor 

amount in the immersion solution in ppm (part per million), chloride ion concentration in 

immersion solution in ppm, and the immersion period in number of days. Three 

immersion periods were shown in the inhibition efficiency graphs, 3 days, 7 days, and 14 
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days. 200 ppm is used as the standard concentration, with 25, 50, 100, and 500 ppm were 

other tested concentrations in addition to little used higher concentrations in molarity.  

 

3.2.1 Gluconate Salts 

All gluconate salts with the formula of M+n(X-1)n yielded very high inhibition 

efficiencies both for 3 days and 7 days immersion periods with the exception 

Cr(gluconate)3. 

 

 

 

 

 

 

 

Zn(gluconate)2 performed better than others, which was due to cathodic inhibitive 

activity of Zn+2 cations in addition to the inhibitive activity of gluconate anions. Zn+2 

cations are known to form insoluble Zn(OH)2 precipitates on cathodic sites by reacting 

with hydroxide ions provided by corrosion reactions of iron and thus diminish further 

corrosion activity. On average, only slight decreases in the corrosion inhibition 
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efficiencies have been observed when the immersion period was increased to 3 days from 

7 days in contrast to the results of a similar study indicating an inhibition efficiency of 

99% for one day immersion and 65% for immersion of 5 days in 200 ppm Ca(gluconate)2 

solution.3 The exception of low inhibition efficiency of chromium gluconate can be 

explained with strong complexation of chromium with gluconates; which as a result 

prevented complexation of iron cations with gluconates, thus leading to no positive 

effect. Notably, D-gluconic acid also inhibited corrosion with an average inhibition 

efficiency of 40% despite being an acid with a pKa of 3.86.12 

 

3.2.2 Group III Gluconates and D-Glucose 

The inhibition effciciency of Al(gluconate)2OH was high comparable to the 

M+n(X-1)n type gluconate salts, while B(gluconate)2OH showed only slight inhibitive 

activity.  
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Gluconate’s and D-glucose’s corrosion inhibiting abilities were lowered by coupling with 

the Boron constituent. Also boric acid performed better than borogluconate and 

boroglucose. Thus, it was concluded that boroglucose and borogluconates were in fact 

not synergistic formulations. Similarly negative results were predicted for 

Al(gluconate)2OH, opposite to what was observed. This difference was due to the 

exceptionally strong bonding between gluconate and borate as opposed to aluminum or it 

may be due to the influence of the aluminum ions themselves13.  

  

3.2.3 Application of Other M+n(X-1)n-1OH and M+n(X-1)n Type Compounds 

Being similar in structure to gluconates, lactate and acetate salts have also been 

tested. All of the salts under this category were already commercially available. Among 

them, lactic acid or 2-hydroxypropanoic acid, also known as milk acid, is a chemical 

compound that plays important roles in several biochemical processes and is produced 

naturally, while chromium (III) acetate is used to fix certain textile dyes, to harden 

photographic emulsions and as a catalyst.   

Among tested salts, Al(lactate) has shown good inhibitive activity with values 

slightly lower to that of Al(gluconate)2OH. Notably the difference was the similar to the 

difference between the inhibition efficiencies of D-gluconic acid and lactic acid. 

Al(acetate)2OH was the only other compound with slight inhibitive activity. 
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3.2.4 Molybdenum Esters of Gluconate Salts 

Opposite to what had been anticipated, inhibition efficiencies of molybdenum 

oxyanion esters of gluconate salts were substantially lower than those of gluconate salts. 

Thus, metal oxyanions esters of gluconate salts were not synergistic combinations similar 

to borogluconates and boroglucose. Apparently, both constituents lose their inhibitive 

properties by forming a third product with very different chemical properties rather than a 

product of combined inhibitive activities of both constituents.  
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Zinc gluconate molybdate among others has shown inhibitive activity for both  

immersion periods due to cathodic inhibitive activity of zinc cations included in the 

formulation. Both calcium gluconate molybdate and potassium benzilate molybdate have 

shown similar inhibitive activity during the first immersion period and none in the 

second, probably due to molybdate’s anodic inhibitive activity which disappeared when 

the immersion period has been prolonged. 

 

3.2.5 Vanadium Esters of Gluconate Salts 

Inhibition efficiencies of vanadium esters of gluconate salts were also 

substantially lower than those of gluconate salts. Instead of being reduced to form 

insoluble oxides and hydroxides like chromates, vanadium constituent formed a complex 
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compound with gluconate and benzilate which as a result diminished inhibitive properties 

of both constituents. 

 

 

 

 

 

 

 

 

 

 

3.2.6 Boron Esters of Gluconate Salts and Derivatives 

Unlike molybdenum and vanadium esters of gluconate salts, boron esters 

performed very well in terms of corrosion inhibition of mild steel with the exception of 

the borate ester of chromium gluconate.This is opposite to what had happened with the 

molybdenum and vanadium esters. Since the boron constituent did not diminish the 

inhibitive activity of the gluconate constituent. In fact, when the inhibition efficiencies 

for the 3 day immersion period are taken into account, the borate esters of gluconate salts 

performed better than gluconate salts alone indicating that combination of gluconate salts 

and borate constituents was a synergistic combination, where both constituents preserved 

their inhibitive activity.  
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The facts that zinc gluconate borate had higher inhibition efficiency than calcium 

gluconate borate, which had higher inhibition efficiency than potassium benzilate borate 

implied the positive effect of the cationic constituent on the inhibition efficiency results. 

In fact, potassium benzilate borate had inhibition efficiencies almost same as boric acid, 

indicating that potassium and benzilate constituents in potassium benzilate borate were 

not effective on the inhibition efficiency results. These observations also revealed that 

cationic constituent, anionic hydroxy-acid constituent and the borate constituent 

synergisticly inhibited corrosion with cationic constituent having the most pronounced 

positive effect on the inhibition efficiency results.   
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3.2.7 Zinc Carboxylates 
 

Except for Zn(tartrate) all the other compounds had negligible inhibitive activity. 

And that of Zn(tartrate) was likely high due to cathodic inhibitive activity of Zn cations. 

Surprisingly Zinc cations did not show any inhibitive activity when combined with other 

α-hydroxy acids. At this time, it is difficult to explain why the other α-hydroxy acids 

promote corrosion or are poor inhibitors. 

 
 

 

 

 

 

 

 

 

 

3.2.8 Chromium Carboxylates 

It was found that Cr(III) carboxylates do not successfully inhibit corrosion. 

Chromium propionate slightly inhibited mild steel corrosion, while chromium methoxy 

acetate inhibited more when concentrations of 25 ppm were used. However, increasing 

the concentration chromium methoxyacetate to 200 ppm from 25 ppm yielded negative 

inhibition efficiencies. The results suggest that at elevated concentrations corrosion is 

accelerated, possibly due to increased solution conductivity. 
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3.2.9 Various Cr(III) compounds 
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Similar to chromium carboxylates, selected trivalent chromium compounds did 

not inhibit corrosion of mild steel. Notably, nanoparticulate chromium hydroxide slightly 

inhibited corrosion while the material with larger particle size actually promoted 

corrosion. 

 

3.3 Effects of Independent-Controlled Variables on Corrosion Inhibition 

Efficiency 

The effect of independent variables that are inhibitor concentration and cationic 

constituents on inhibition efficiency has been examined. These variables were varied to 

yield higher values of dependent variables that are the final weights of the coupons (thus 

are the weight-losses and the inhibition efficiencies).  

On the other hand, the effect of various immersion periods has also been 

examined. Since the controls were immersed for the same periods as the tested coupons, 

the immersion periods were controlled variables rather than independent variables. 

 

3.3.1 Effect of Concentration&Immersion Periods on Inhibition Efficiency 

Concentration is one of the major factors determining the inhibition efficiency. 

Inhibitors prevent corrosion by reacting with aggressive chemicals, preventing them to 

react with the metal substrates. Thus, inhibitor concentration decreases with time unless 

provided. Various concentrations of inhibitors were used from 25 ppm up to 500 ppm and 

also from 0.05 M up to 1 M for immersion tests. However, as stated earlier, among the 

various concentrations, the optimum concentration for an immersion test of a 1x1 mild 
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steel coupon in a 100 ml solution of 60 ppm Cl- was determined to be 200 ppm after 

many tests. Tests revealed that inhibition efficiencies generally increased with increasing 

concentrations up to 200 ppm and decreased thereafter. Similar observations have been 

reported in the literature, in which 100 ppm, 150 ppm, and 200 ppm concentrations were 

recorded as sufficient concentrations for corrosion inhibition in similar systems.3 

200 ppm corresponds to a weight percentage of about 0.2%, which is in between 

literature values of 1%, that is claimed to be the optimum concentration of calcium 

gluconate tested in seawater,14 and 0.1%, that is claimed to be the optimum concentration 

since higher concentrations could produce a soluble iron-gluconate complex resulting in 

pronounced corrosion.15  

It has been pointed out in a previous study that zinc gluconate’s inhibition 

efficiency decreases with increasing concentration from 200 ppm to 500 ppm due to the 

competition between Zn+2 and Fe+2 cations for the counter ions.3  
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Figure 3-11  General Inhibition Efficiency vs. Concentration Graph



 176

3.3.2 Effect of Cationic Constituent on Inhibition Efficiency 

Cationic constituents had considerable influence when compounds with similar 

anionic constituents were compared in terms of inhibition efficiencies. Zinc cations are 

known for their cathodic inhibitive activity in the literature. Zn+2 cations form insoluble 

Zn(OH)2 precipitates on cathodic sites at high pH values due to the production of OH-1 by 

corrosion of iron substrate with dissolved oxygen. Zinc hydroxide gradually changes to 

zinc oxide resulting in a passive film of zinc oxides and hydroxides.16 

Zn(OH)2           ZnO + H2O            (Eq. 3.6) 

However, when chloride anions are present in the media, they react with zinc hydroxide 

to form soluble Zn2+-Cl--OH- complexes17, thus leading to breakdown of the localized 

passive film resulting in pitting corrosion. 
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Other than zinc cations, calcium and magnesium ions, which constitute the 

hardness of water, are also known to have slight cathodic inhibitive activity due to their 

little soluble hydroxides especially in near neutral-basic conditions such as seawater. 

However, no major differences were observed in terms of inhibition efficiencies between 

sodium, magnesium, and calcium gluconates. The sodium cation, all of its salts being 

soluble, and also inert towards redox reactions is primarily considered ineffective for 

corrosion inhibition of any metal. It is only effective in determination of secondary 

solution properties such as solubility and conductivity. Therefore, this indifference 

between sodium, magnesium, and calcium gluconates indicate that the inhibition by 

gluconate was the primary mechanism of corrosion inhibition. Trivalent chromium did 

not seem to inhibit mild steel corrosion even when combined with metal oxyanions. If 

anything, Cr3+ either prevented the gluconate’s inhibition mechanism or promoted 

corrosion. 

 

3.4 Conversion Coating Formation Studies 

Corrosion inhibitors prevent corrosion either by continuously reacting with the 

aggressive chemicals, which requires a continuous supply of the corrosion inhibitor or by 

forming conversion coatings on the metal surface, which protects the metal substrate for 

longer periods of times. Thus, in addition to direct inhibition of corrosion, the inhibitors 

were tested for conversion coating formations and if present, the nature of this film was 

studied and characterized. Notably, chromates prevent corrosion both directly and 

indirectly leading to the formation of conversion coatings that have self-healing abilities.  
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3.4.1 Using the Weight-Loss Method 

To examine the coupons for conversion coating formation, coupons that 

previously immersed in the solutions of inhibitors were immersed in salt water with no 

inhibitor present for a second period of time. The presence of corrosion inhibition during 

this second immersion period would imply the presence of a protective conversion 

coating on the substrate surface. 

 

 

 

 

 

 

 

The results revealed that for all of the gluconate-containing inhibitors there was 

corrosion protection present during the first 3 days of the second immersion period but 

the inhibition efficiency was significantly less than that found when the corrosion 

inhibitor was present in the solution. This suggests that the inhibition was due to 

inhibitors leached from deposits of corrosion products on the substrate surfaces. This was 

confirmed by further substantial decreases in inhibition efficiencies during the next 4 

days of the second immersion periods. Upon completion of second immersion periods of 
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7 days, only a few inhibitors yielded positive inhibition efficiencies; among them were 

zinc and calcium gluconate, and aluminum gluconate hydroxide.  

The weight changes of mild steel coupons after immersions into solution of 

Al(gluconate)2OH with or without 60 ppm Cl- has also been measured. Less weight-loss 

was recorded for the coupon immersed in solution of Al(gluconate)2OH without Cl- 

compared to the control coupon under the same conditions indicating that conditions with 

no Cl- were favored for the formation of aluminum gluconate conversion coatings.  

The slight inhibition by calcium and zinc gluconates during second immersion 

periods could be attributed to the same reasons explained for their inhibition efficiencies 

during first immersion periods. However, this reasoning cannot explain the high 

inhibition efficiency of Al(gluconate)2OH since for one, aluminum is not known with its 

cathodic activity and since, unlike calcium and zinc hydroxides, at highly basic local 

conditions, aluminum hydroxide dissolves due to complexation. Thus, further 

examination was needed using other methods such as surface characterization techniques.  

 

3.4.2 Weight Difference Measurements 

Weight changes of the coupons during immersions were determined prior to 

cleansing of corrosion deposits, since the presence of any type of deposition on the 

surface would have increased the weight of the coupon. To determine whether the 

increase in weight was caused by corrosion deposits or a protective coating, weights prior 

to the removal of corrosion deposits were compared to the weights after removal of 

corrosion deposits. Almost no weight-loss values were recorded for Al(gluconate)2OH 

and Ca(gluconate)2borate treated coupons prior to the removal of corrosion products. In 
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the case of Zn(gluconate)2vanadate treated coupon’s weight had increased. After the 

application of the cleaning solution, both Al(gluconate)2OH and Ca(gluconate)2borate 

treated coupons still had negligible weight-losses. These results correlated with the 

inhibition efficiency results. Also the formation of a protective coating due to 

Al(gluconate)2OH was visually apparent. In the case of Ca(gluconate)2borate treated 

coupons a possibly formed protective coating was certainly not stable since a highly 

negative inhibition efficiency was observed during second immersion periods. On the 

other hand, the Zn(gluconate)2vanadate treated coupon had a significant weight-loss 

correlating with its lower inhibition efficiency values than those of Al(gluconate)2OH, 

and Ca(gluconate)2borate.  

In conclusion boron esters and Al(gluconate)2OH had the least weight-losses 

during first immersions followed by vanadium, and molybdenum esters; respectively. 

Trivalent chromium compounds had the highest weight-loss values among all. 

 

3.4.3 Qualitative Analysis of the Coupons after Immersions 

 

 

mild steel control in 60  
ppm Cl- soln. for 1 week 

200 ppm Al(gluconate)2OH in  
60 ppm Cl- soln. for 1 week 

200 ppm CrO(OH) in  
60 ppm Cl- soln. for 1 week 

Figure 3-14  Images of control, uncorroded, and corroded coupons; respectively. 
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Comparison of the images of coupons treated with synthesized CrOOH, and 

Al(gluconate)2OH revealed that the CrOOH treated coupon and control coupon seemed 

to be extensively corroded while there was a greenish-blue colored layer on the surface of 

the coupon that was treated with Al(gluconate)2OH.  

 

 

 

Coupons treated with other Cr(III) compounds, such as Cr(butyrate)3 and 

Cr(propionate)3 also revealed  extensive corrosion taking place on the substrate surface. 

These observations were in agreement with the weight loss test results. 

  
   

mild steel control in 60  
ppm Cl- soln. for 1 week 

 200 ppm Cr(propionate)3 in 
60 ppm Cl- soln. for 1 week 

200 ppm Cr(butyrate)3  in  
60 ppm Cl- soln. for 1 week 

200 ppm K(benzilate)vanadate 
60 ppm Cl- for 1 week 

200 ppm Ca(gluconate)borate  
60 ppm Cl- for 1 week 

mild steel control in 60  
ppm Cl- soln. for 1 week 

Figure 3-15   Images of control coupon and coupons immersed in  

solutions of chromium carboxylates; respectively.  

Figure 3-16  Images of control coupon and coupons immersed in  

solutions of metal oxyanion esters; respectively. 
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The image of the Ca(gluconate)borate treated coupon revealed less corrosion 

products than that of the control confirming the weight-loss test results. On the contrary, 

the weight-loss test results contradicted the visual observation of K(benzilate)vanadate 

treated coupon, which seemed clear despite a few large pits. The clear surface indicates 

that K(benzilate)vanadate inhibits uniform corrosion but not pitting corrosion. 

 

3.4.4 X-Ray Powder Diffractometer Studies 

As a complimentary technique, X-ray powder diffraction patterns of the inhibitor 

treated substrate surfaces revealed phase composition in agreement with those of weight-

loss test results and visual observations.  

Correlated with their positive inhibition efficiencies, X-ray diffraction patterns of 

relatively uncorroded steel coupons, such as the ones treated with 60 ppm Cl- solutions of 

200 ppm Al(gluconate)2OH, Ca(gluconate)2borate, Zn(gluconate)vanadate, and 

Cr(propionate)3 revealed only iron without corrosion products. In contrast, the X-ray 

pattern of a steel coupon dipped into 60 ppm Cl- solution of CrOOH revealed peaks due 

to corrosion products of iron such as rust FeO(OH) both in the form of lepidocrocite and 

goethite along with magnetite FeFe2O4. Two examples are shown in Figure 3-17 and 

3.18. 
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Figure 3-17  X-ray Diffraction Pattern of a Mild Steel Coupon Immersed in Al(gluconate)2OH-salt solution for 7 days 
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Figure 3-18  X-ray Diffraction Pattern of a Mild Steel Coupon Immersed in CrOOH-salt solution for 7 days 
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The X-ray diffraction pattern of steel coupon treated with 60 ppm Cl- solution of 

200 ppm potassium benzilate molybdate for 3 days did not reveal any corrosion products 

confirming the positive inhibition efficiency. Immersion of the same coupon into the 

same potassium benzilate molybdate-salt solution for 7 days was just enough for the 

peaks due to corrosion products such as goethite FeO(OH), and magnetite FeFe2O4 to 

appear in agreement with inhibition efficiency data.  

Figure 3-19  X-ray Diffraction Pattern of a Mild Steel Coupon Immersed in 

K(benzilate)molybdate-salt solution for 3 days 
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 Figure 3-20  X-ray Diffraction Pattern of a Mild Steel Coupon Immersed in K(benzilate)molybdate-salt solution for 7 days 
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3.4.5 Scanning Electron Microscope Studies 

Scanning electron microscopy (SEM) is a morphological surface analysis 

technique that uses electrons, rather than light to form an image. There are many 

advantages for using the SEM instead of a light microscope. The SEM has a large depth 

of field, which allows a large amount of the sample to be in focus at one time. The SEM 

also produces images of high resolution, which means that closely spaced features can be 

examined at a high magnification. Preparation of the samples is relatively easy since most 

SEMs only require the sample to be conductive. If the sample is not conductive, then it 

should be coated with a conductive material. The combination of higher magnification, 

larger depth of focus, greater resolution, and ease of sample observation makes the SEM 

one of the most heavily used techniques in research areas today. In this study a JEOL 

JXM 6400 SEM was used for surface imaging of substrates both before and after 

immersions. As an example, SEM micrographs revealed substantially less corrosion 

products on the surface of the coupon that was immersed into the solution of 200 ppm 

Al(gluconate)2OH for a period of 1 week. The micrograph of the 3 day Al(gluconate)2OH 

treated coupon immersed into salt water for a subsequent period of 7 days revealed the 

presence of an intense deposition layer; which was possibly a mixed coating composed of 

protective aluminum oxides and hydroxides and corrosion products. 
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There was no difference between the control coupon and the coupon that was 

immersed into salt water for a second period of time after treating it with 0.01 M of 

Al(gluconate)2OH in agreement with the poor corrosion inhibition results. This most 

likely was due to the increased conductivity of the solution caused by high ion 

200ppm Al(gluconate)2OH,  

60 ppm Cl- 3 days + 60 ppm 

Cl- 7 days 

Steel in 60 ppm Cl- water 

for 7 days 
200ppm Al(gluconate)2OH, 

60 ppm Cl- for 7 days 

200ppm Al(gluconate)2OH,  

60 ppm Cl- 7days 

 0.01M Al(gluconate)2OH, 

60 ppm Cl- 3 days +  

60 ppm Cl- 7 days 

Blank steel 

Figure 3-21  1500 Times Magnified Scanning Electron Micrographs of Control Coupons 

and of Coupons Immersed in Solutions of Aluminum Gluconate Hydroxide  

for 7 days and 10 days. 

 

Figure 3-22  2000 Times Magnified Scanning Electron Micrographs of Control Coupons 

and of Coupons Immersed in Solutions of Aluminum Gluconate Hydroxide  

for 7 days and 10 days. 
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concentrations. 

 

 

 

 

 

No significant difference was observed between SEM micrographs of coupons 

treated with 200 ppm solution of Al(gluconate)2OH with or without 60 ppm Cl-.  

 

3.4.6 Infrared Spectra Studies 

Infrared spectra studies of inhibitor treated coupons and control coupons have 

been performed both before and after immersions. Since the substrate surfaces were 

examined, three types of absorptions were possible; absorptions purely due to structure of 

the substrate, absorptions purely originated from adsorption of inhibitor compound on the 

substrate surface, and absoptions due to deposition of compounds such as corrosion 

products formed by the reactions between the mild steel substrate, the inhibitor 

compound, and the corrosive chemicals.  

200 ppm Al(gluconate)2OH, 

no Cl- 7days 

200ppm Al(gluconate)2OH,  

60 ppm Cl- 7days 

Blank Steel 

Figure 3-23  Scanning Electron Micrographs of Control Coupon and of Coupons 

Immersed in Solutions of Aluminum Gluconate Hydroxide with or without 60 ppm 

Chloride, respectively. 
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The immersion in water is expected to lead to broad bands due to symmetric and 

asymmetric stretchings of hydroxyl of water centered around 3500 cm-1 and due to 

bending of hydroxyl of water around 1600 cm-1 were expected.18-25 However, the 

substrates were air dried for several days before taking their spectra to minimize 

absorptions caused by physically adsorbed water. The difference in absorptions in the 

1600 cm-1 region of the spectra of control substrates and substrates treated with 

gluconates, benzilates and other hydroxyl acid salts led to the conclusion that air drying 

was successful in minimizing the effects of water. Thus, the absorptions around 1600 cm-

1 region were assigned to carbonyl stretchings in general and specifically to OCO- 

stretchings. Other bands in the 1600 cm-1 region were assigned to hydroxyl groups of 

organic compounds rather than hydroxyl of water. IR spectra of different compounds 

differed depending on the IR active functional groups leading to a categorization based 

on the IR active constituent.  

 

Gluconate Salts 
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In accordance with literature values of ca. 1600 and 1385 cm−1, 26 the bands 

centered at 1600 cm-1 and at 1380 cm-1 in the spectra of gluconate salts were assigned to 

the asymmetric and symmetric OCO− stretching vibrations. The strength of the 

absorptions seemed to be somewhat proportional to the inhibition efficiency values with 

boroglucose, borogluconate, gluconic acid having weaker absorptions in that order 

indicating little adsorption of gluconates on the substrate surface in agreement with their 

low inhibition efficiency results. The only exception to this trend was chromium 

gluconate which had a strong absorption despite its low but still positive inhibition 

efficiency. In addition, the separation of more than 200 cm−1 between the observed OCO− 

components in the spectra of the gluconate salts was assigned to monodentate carboxylate 

coordination as stated in the literature27.  

Based on literature data, broadening of the OH stretching vibrations due to 

interactions between the hydroxyl groups of the gluconate with the metal ions was 

observed. However broadening and shifting of CH2, COH and CHO bending vibrations, 

Figure 3-24  Combined Infrared Spectra of Coupons Immersed in Solutions of 

Gluconates for 7 days with 60 ppm Chloride 
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which appear in the region 1400–1100 cm−1 due to interactions between the metal ion and 

the hydroxy acid were not observed.28 Relatively weaker bands at 1100–940 cm−1 were 

assigned to the hydroxy acid C–O stretching vibrations in general for gluconates.26 

 

Al(gluconate)2OH 
 

 
 

Figure 3-25   Combined Infrared Spectra of Coupons Immersed in Solutions of 

Aluminum Gluconate Hydroxide with Varying Immersion Times, Chloride 

Concentrations, and Inhibitor Concentrations 

 

Infrared Spectra of the coupons treated with Al(gluconate)2OH,  revealed 

absorptions similar to the gluconates for frequencies higher than 1200 cm-1 with 

symmetric and asymmetric stretching vibrations of hydroxyl groups centered at 3500 cm-

1, OCO- stretching vibrations centered at 1600 cm-1 and 1370 cm-1. Notably a shift to 

lower frequency region was observed with increasing inhibitor concentration. In the low 

frequency region, the OH bending vibrations at 1050 cm-1 were assigned to AlOOH, and 

Al-O stretching vibrations at 770 cm-1 were assigned to AlOOH (as opposed to the 
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absorptions of Fe-O stretching vibration due to γ-FeOOH at 750 cm-1 and the OH 

bending vibration at 1000 cm-1 due to γ-FeOOH in the spectra of the control coupons).29-

34  

The presence of OCO- stretching vibration bands at 1600 cm-1 and 1370 cm-1 on 

the other hand suggested the adsorption of the gluconate constituent on the substrate 

surface as well as bound to the protective aluminum oxide/hydroxide layer. More 

evidence for the formation of a conversion coating of aluminum oxides/hydroxides was 

provided by XPS results, which revealed the presence of aluminum on the surface of the 

coupons treated with Al(gluconate)2OH and also by weight-loss test results, which 

revealed positive inhibition efficiencies during second immersion periods for 

Al(gluconate)2OH treated coupons opposed to coupons treated with other gluconates 

salts.  

 

Figure 3-26   Combined Infrared Spectra of Coupons Immersed in Solutions of 

Aluminum Gluconate Hydroxide for 14 days for Testing Conversion Coating Formation 
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In the spectra of coupons immersed for a second period of time, bands matching 

with FeOOH bands of the control coupons were also present along with bands due to 

AlOOH confirming the previous assignment of bands due to AlOOH suggesting that they 

were not just shifted bands due to FeOOH. Despite the presence of bands due to 

corrosion products of FeOOH; bands due to AlOOH were still strong as opposed to the 

other gluconate salts where either no or very weak bands were present. However, it is 

also important to note that a lot of weaker similar bands were also present in the spectra 

of some coupons of other gluconate salts in the regions of 1050 cm-1 and 750 cm-1 

matching bands of Al(gluconate)2OH treated coupons, which may imply that an 

eventually soluble iron gluconate layer was formed on the substrate surface of coupons 

treated with other gluconate salts, while for coupons treated with Al(gluconate)2OH both 

iron gluconate and aluminum oxides and hydroxide layers were present. Lastly, shifting 

of the bands due to hydroxyl stretchings with increasing inhibitor concentration was 

observed similar to the spectra of coupons of 1st immersions. 

 

Other carboxylic acids and their salts 

Infrared spectra of the other tested carboxylic salts such as aluminum acetate, 

aluminum lactate and chromium acetate revealed mostly similar absorptions to those of 

gluconate salts with weaker absorptions in general along with several differences.  
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Figure 3-27  Combined Infrared Spectra of Coupons Immersed in Solutions of Other 

Carboxylic Acid Salts with 60 ppm Chloride for either 3 or 7 days 

One difference was in the OCO- stretching vibrations, where the separations were 

less than 200 cm-1 for acetate salts indicating the chelating or bridging structures of 

acetates. Another difference was the absence of bands in the 1050 cm-1. 

 

Molybdenum Esters of Hydroxy Acid Salts 
 
Calcium&Zinc Gluconate Molybdates 
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Figure 3-28  Combined Infrared Spectra of Coupons Immersed in Solutions of 

Molybdenum Esters of Calcium and Zinc Gluconates with 60 ppm Chloride 

for Various Immersion Periods 

Absorptions due to carbonyl groups of carboxylates were present in two bands 

with 200 cm-1 separation as in gluconate salts, however no absorptions were observed due 

to the Mo-O bending vibrational modes at 972 cm-1 35, 994 cm-1 36, and 996 cm-1 37 as 

stated in the literature. Additional bands due to corrosion products at 1020 cm-1 and at 

750 cm-1 were assigned to γ-FeOOH and band at 580 cm-1 was assigned to magnetite 

(Fe3O4).
33,34  

A possible absorption at 1398 cm-1 3 due to Zn(OH)2 was not observed. This could 

still be present but overwhelmed by OCO- stretchings common to other gluconate salts in 

the same region.  

 

Potassium Benzilate Molybdates 
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Figure 3-29  Combined Infrared Spectra of Coupons Immersed in Solutions of 

Molybdenum Esters of Potassium Benzilate with 60 ppm Chloride  

for Various Immersion Periods 

 

In contrast to the gluconate salts and their esters, only one weak band at 1600 cm-1 

was assigned to the carbonyl of benzilate, which was present only in the spectra of 

coupons immersed in potassium benzilate solutions for one week. Other bands in the 

spectra of coupons immersed in potassium benzilate molybdate solutions were due to 

corrosion products of iron at 1020 cm-1 and at 750 cm-1 assigned to γ-FeOOH, at 890 cm-1 

assigned to α-FeOOH, at 580 cm-1 assigned to magnetite (Fe3O4), at 470 cm-1 also 

assigned to δ-FeOOH. The difference compared to the spectra of coupons immersed in 

solutions of potassium benzilate and calcium and zinc gluconate molybdates was the 

weak γ-FeOOH bands and emergence of α-FeOOH bands.33,34  

 



 198

Vanadium Esters of Hydroxy Acids 
 
Calcium&Zinc Gluconate Vanadates 
 

 

Figure 3-30   Combined Infrared Spectra of Coupons Immersed in Solutions of 

Vanadium Esters of Calcium and Zinc Gluconates with 60 ppm Chloride  

for Various Immersion Periods 

 

Spectra of coupons immersed in solutions of calcium and zinc gluconate 

vanadates revealed more pronounced carbonyl bands and weaker bands due to corrosion 

products, otherwise all bands were the same as spectra of coupons immersed in calcium 

and zinc gluconate molybdate solutions. However, the spectra of coupons immersed in 

zinc(gluconate)vanadate solutions for 1st and 2nd immersion periods revealed shifted 

bands at 1020 cm-1 and at 850 cm-1 which could imply presence of vanadium on the 

substrate surface since absorption bands between 400 cm-1 and 1000 cm-1 are indexed to 

various group vibrations of V-O type in general38-39 including bands at 1019 cm-1, 850 

cm-1, and between 400 cm-1 to 650 cm-1 40. The slight inhibition efficiency of zinc 
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gluconate vanadate during 3 days of second immersion period, the increase in weight of 

the coupon after immersion for one week, and visual observation of the coupon after 

completion of immersion may all be explained by the presence of a vanadium conversion 

coating on the substrate surface although other results clearly indicate a low corrosion 

resistance of this coating even if it exists.  

 

Potassium Benzilate Vanadates 

Spectra of coupons immersed in potassium benzilate vanadate solutions were one 

to one match to the spectra of coupons immersed in potassium benzilate molybdate 

solutions with no indication of vanadium on the substrate surface but only corrosion 

products. 

 

Boron Esters of Hydroxy Acids 

Spectra of coupons immersed in solutions of boron esters of hydroxy acids 

revealed weak absorptions, which were mostly assigned to corrosion products with no 

indication of boron.  

 

3.5 Characterization of Immersion Solutions 

Immersion solutions were also indicators of the extent of corrosion. For instance, 

salt solutions of gluconate salts remained clear throughout the immersion of mild steel 

coupons, while the salt solution in which the control coupon was immersed, changed its 

color from clear to dark brown indicating the presence of iron corrosion products. On the 
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other hand, the color of salt solutions of molybdenum esters of gluconate salts changed 

from clear to yellow and the salt solution of vanadium ester of potassium benzilate 

changed color from clear to light yellow indicating some corrosion was taking place. In 

addition to visual color observations revealing the extent of corrosion qualitatively, the 

pH, conductivity and oxidation-reduction potential of the immersion solutions were 

measured prior to and after the immersions.  

 

3.5.1 ORP Measurements 

ORP is proportional to the concentration of oxidizers or reducers in a solution, 

and their activity or strength. It provides an indication of the solution's ability to oxidize 

or reduce another material. The addition of an oxidizer will raise the ORP value, while 

the addition of a reducer will lower the ORP value.  

The ORP values of immersion solutions were measured to determine whether the 

redox capable inhibitor compounds had gone thorugh redox reactions or not. Dissolved 

oxygen may be reduced by the metal substrate and leading to lowering of the ORP value 

but comparison to the control solution should negate this effect.  

Overall, the ORP values were decreased in average by half during immersions for 

both the control and inhibitor containing solutions. The exceptions were the gluconate 

salts of zinc and calcium, and their vanadate esters, where only a slight decrease in ORP 

occurred. As expected, inclusions of salt ions into the immersion solutions and increasing 

the immersion period led to further decrease in ORP.  

In contrast to the molybdenum esters of gluconate salts, the ORP values for 

immersion solutions of vanadium esters of gluconates did not decrease. The amount of 
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slight decrease or even increase was approximately the same for all vanadium esters 

regardless of whether the hydroxy-acid constituent was gluconate or benzilate with the 

exception of zinc salts of vanadium esters, in which slight increases in ORP have been 

observed compared to almost no decrease to very little decreases when calcium and 

potassium cations were in the formulation, respectively. These results were unusual 

considering the decrease in ORP values of the control solutions and the immersion 

solutions of other tested inhibitor compounds that had similar inhibition efficiencies. 

Qualitative analyses of the vanadium ester treated coupons revealed clear surfaces with 

no uniform corrosion except a few pits. In the IR spectra of coupons treated with 

vanadate esters, contained absorptions that might have been due to vanadium oxides in 

the low frequency region of 400 cm-1 to 1000 cm-1, but these were not resolved 

sufficiently to deduce such a conclusion. Overall, the vanadates seemed to work similarly 

to chromates; however any conversion coating that might be formed is either not adherent 

to the substrate surface or not resistant to the cleaning solution of 50% hydrochloric acid.  

In agreement with the results for the vanadium esters, the ORP values of the 

immersion solutions of calcium and zinc gluconate salts did not decrease as opposed to 

magnesium and sodium gluconate salts, which showed significant decrease. The zinc salt 

had the lowest decrease of all of the gluconates. Since all gluconate salts had similar high 

inhibition efficiency values, the difference in ORP values is likely due to the cathodic 

inhibitive properties of zinc and calcium cations resulting in precipitation of zinc and 

calcium hydroxides at cathodic sites. 
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Figure 3-31   ORP (Oxidation-Reduction Potential) vs. Time Graph of Immersion 

Solutions of Various Inhibitors During Immersions of Coupons 

Below ∆ORP graph indicates the majority of corrosion inhibiting compounds’ 

ORP values lowered by an average of roughly 350 mV. 

    Figure 3-32   ∆ORP vs. Time Graph of Immersion Solutions of Various Inhibitors  

During Immersions of Coupons 

 

vanadate esters, zinc and 
calcium gluconates 

boronglucose 

zinc and calcium gluconates 



 203

The ∆ORP vs IE graph shown below indicates that the majority of the compounds 

that had ORP values decreased by an average of ~350 mV had positive inhibition 

efficiencies in the range of 50% to 100%.  

 

Figure 3-33   ∆ORP vs. Inhibition Efficiency Graph of Immersion Solutions  

of Various Inhibitors  

 

The ∆ORP/ORPinitial vs IE graph below indicates that the average ORP values 

were roughly halved for over 100 tested compounds with the exception of zinc and 

calcium gluconates and the vanadate esters. 
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Figure 3-34   ∆ORP/ORPinitial Ratios vs. Inhibition Efficiency Graph of  

Immersion Solutions of Various Inhibitors  

 

The vast majority of the ORP values were found to be within the range of 200 mV 

and 500 mV with the exceptions of the immersion solutions with various concentrations 

of calcium or zinc gluconate salts and the boroglucose solution which had an ORP value 

down from 600 mV to almost 0 mV. 
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Figure 3-35    Final ORP Values vs. Inhibition Efficiency Graph of  

Immersion Solutions of Various Inhibitors  

3.5.2 pH Graphs 

In acidic solutions an increase in pH occurs due to hydrogen evolution caused by 

the reduction of hydronium ions. In near neutral to basic solutions, the system chosen for 

this study, the pH also increases due to the anodic reaction of corrosion process, that is  

          O2 + 2H2O + 4e-                4OH-,                (Eq. 3.7) 

Accordingly, pH of the immersion solutions of good inhibitors increased only 

slightly, while a large increase was observed for compounds with poor corrosion 

inhibition ability. One week immersion solutions containing boroglucose, borogluconate, 

and the molybdenum esters of gluconate salts had higher ∆pH and final pH values than 

the other tested compounds. This is also correlated with the trends observed by ORP 

measurements.  

 

zinc and calcium 
gluconates 

boronglucose 
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Figure 3-36   ∆pH vs. Time Graph of Immersion Solutions of Various Inhibitors  

During Immersions of Coupons 

On the other hand, the gluconate salts and vanadium esters of gluconate salts had 

either very little increase or very little decrease in their pH values, again agreeing with 

the ORP measurements and inhibition efficiency results. Overall, the ∆pH values were 

within ~ -0.2 and 2.6. The final pH values vs IE and ∆pH/pHinitial values vs IE graphs did 

not reveal any other trends other than the aforementioned ones.  

 

3.5.3 Conductivity Graphs 

The conductivities of the immersion solutions initially originated mainly from the 

initially present inhibitor concentration of 200 ppm and the 60 ppm chloride. However, as 

the corrosion and corrosion inhibition processes took place many other products 

contributed to the final conductivity values.  

boroglucose, borogluconate 

molybdates organic acids 
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Most decreases in conductivity occurred for immersions of 10 and 14 day periods 

with no inhibitor present during the second immersion period. These results are in 

harmony with the inhibition efficiency results suggesting the total consumption of the 

inhibitors and precipitation of ions originated from corrosion reactions leading to a lower 

final conductivity. The exception to this trend was the immersion solution of the 

Al(gluconate)2OH treated coupon, which revealed a slight increase in conductivity in 

harmony with the inhibition efficiency results. 

Figure 3-37    ∆σ (Conductivity) vs. Time Graph of Immersion Solutions of 

Various Inhibitors during Immersions of Coupons 

The immersion solutions with high inhibition efficiencies revealed no or slight 

positive increases in their conductivities. This included one week immersion solutions of 

gluonate salts and their esters in general. The immersion solution of chromium acetate 

revealed the only out of trend result with the highest increase in conductivity. Notably, 

the inhibition efficiency of chromium acetate treated mild steel coupon was also highly 

negative.  

chromium acetate 
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Figure 3-38    ∆σ (Conductivity) vs. Inhibition Efficiency Graph of  

Immersion Solutions of Various Inhibitors  

 

Most of the final conductivity values were within the range of 100 µS to 200 µS, 

close to the initial conductivity values. Plotting final conductivity values vs IE and 

∆conductivity/initial conductivity values vs IE did not reveal other trends but the 

aforementioned ones. 

 

3.6 Discussion and Conclusions 

3.6.1 Discussion of the Inhibition Mechanisms of Gluconate Salts in Literature 

The inhibition effect of gluconates has been discussed by several authors in the 

literature.42-57 Most of the authors agree that gluconates inhibit the corrosion by 

influencing the anodic reaction of metal dissolution, but there is no general agreement on 

the mechanism of that action.46,47,54,58,59 On the other hand, there seems to be an 

agreement on the contribution of the cationic constituent to the corrosion inhibition. The 

chromium acetate 
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most commonly used gluconate salts are zinc gluconate and calcium gluconate, which 

form zinc and calcium hydroxides at the cathodic sites inhibiting the cathodic corrosion 

reaction. Initially, the cathodic corrosion reaction, that is the oxygen reduction reaction, 

provides the OH- leading to increases in local pH values enough to precipitate zinc and 

calcium hydroxides. Thus, the process is a repassivation process. Among zinc and 

calcium gluconates, the effect of zinc gluconate is described as more pronounced in the 

literature due to the higher insolubility of zinc hydroxide.15,48,54,58,59  The following 

mechanisms have been proposed for corrosion inhibition action of gluconates on iron and 

mild steel in near neutral solutions;48,54,58-61 

1. Repair of the oxide film by adsorbing on the weak spots of an inhomogeneous, 

porous oxide film,  

2. Incorporation into the oxide film during its formation,  

3. Reaction with iron ions forming complexes that precipitate on the metal surface,  

4. Forming complexes with iron cations while they are still bound up in the metal lattice 

rather than forming precipitates.  

The third action mechanism among others seemed to be favored in several recent 

studies,3,62 while it is being questioned by some others49,51-54 There are other studies that 

favor simultaneous occurrence of both the third and fourth mechanisms, in which 

gluconate forms insoluble complexes weith Fe(II) cations, while at the same time 

forming soluble complexes with the Fe(III) cations. In these studies, it is claimed that 

complexation of both Fe2+ and Fe3+ with oxalate or gluconate inhibits mild steel corrosion 

by keeping Fe3+ ions in solution but forming insoluble complexes with Fe2+. In one of 

these studies, insoluble β-Fe(C6H11O7)2 precipitate was claimed to be observed through 
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X-ray analyses of the surfaces. However, our X-ray analyses of mild steel substrate 

surfaces treated with gluconates revealed peaks due only to the substrate metal and 

corrosion products. Also a frequency shift of the C=O peak of calcium gluconate from 

1606 cm-1 to 1622 cm-1 after completion of immersion was claimed to be an evidence of 

precipitation of iron gluconates on the surface as well.63-65 A similar shift in the spectra of 

coupons immersed in calcium gluconate solutions was observed in this study.  

It is well-known that gluconic acid and gluconate salts form water-soluble 

complexes with most metal cations. Stability constant measurements also indicate that 

stabilities, thus the solubilities of these complexes increase with pH.59  

Therefore, the differences between proposed action mechanisms is reduced to a 

problem of determination of the micro conditions such as whether the pH is suitable for 

gluconate complexes to precipitate on the metal substrate. Testing of the alloy substrates 

treated with inhibitor solutions for conversion coating formation revealed substantially 

low inhibiton efficiencies with the exception of Al(gluconate)2OH. This indicates that an 

insoluble protective iron-gluconate film does not exist on the metal surface or it is only 

present when gluconate ions are provided in the solution. In practical terms, a non-stable 

film of iron gluconates that dissolves in very short time when no gluconate is present in 

the solution is equal to having no film at all since, in both cases, gluconates have to be 

supplied steadily. In agreement with this statement, practical applications such as the use 

of gluconates to eliminate iron oxide corrosion deposits in cooling water equipments66 or 

as sequestering agents that prevent deposition of calcium carbonate from hard waters also 

requires steady supply of gluconates.54,58,59 This fact has been implied in one of the 

studies of the authors who favor iron-gluconate precipitation on the substrate surface. It 
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has been stated that the decrease in inhibition efficiency with increasing period of 

immersion time, from 1 to 3 days to 5 days, was due to the dissolution of the Fe2+-

gluconate complex formed on the metal surface.62 In another study, it has been mentioned 

that concentrations by weight over 0.1% would result in soluble iron gluconate 

complexes.15 This concentration corresponds to the 100 ppm of inhibitor used in weight-

loss experiments in this research. Considering 200 ppm was determined to be an optimal 

concentration in this research, it is likely that soluble iron gluconate complexes were 

adsorbed on the substrate surface, thus repairing the protective oxide film rather than 

forming a protective coating on the substrate surface. A similar behavior of gluconates 

has been pointed out in a study of sodium borogluconate adsorption on an iron surface 

that revealed it was adsorbed on the protective oxide film and not directly on the iron.47  

 

3.6.2 Suggested Inhibition Mechanism of Salts of Gluconic Acid and Other 

Hydroxy-Acids 

Prior to the discussion of the inhibition mechanism of gluconates a few points 

should be considered:  

Gluconate is known as a complexing agent widely used as an efficient masking 

reagent for cations67. When comparing the complexing ability of the hydroxycarboxylic 

acids however, a larger negative charge corresponds to stronger complexing ability, 

which also translates to having more carboxyl groups. Another point is that gluconic acid 

has a pKa of 3.8612 therefore, it is fully ionized at near neutral conditions to gluconate, 

thus pH does not play any role and conjugate acid-base equilibrium of gluconate does not 

have to be considered. When mild steel coupon is immersed in a solution containing 60 
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ppm Cl- and 200 ppm gluconate salt, the gluconate salt diffuses from the bulk of the 

solution to the metal surface, where initially an iron(II) gluconate complex is formed on 

the anodic regions and the cationic constituent of the gluconate salt is released to the 

solution or to the cathodic sites in the case of zinc, calcium or magnesium cations. Thus, 

first iron(II) cations form, driven by the negative standard reduction potential of the 

following reaction at ambient conditions; 

Fe              Fe2+ + 2e-              (Eq. 3.8) 

Normally, driven by thermodynamics, iron (II) cations oxidize quickly to iron (III) 

cations in water68, leading to the corrosion products as follows; 

Fe3+ + 3H2O             Fe(OH)3 + 3H+             (Eq. 3.9) 

  Fe(OH)3               FeOOH + H2O                 (Eq. 3.10) 

However gluconates form complex compounds with the iron (II) cation 

preventing its oxidation to iron (III) cation and preventing further corrosion reactions 

from taking place by stopping mass transport of ions resulting in an incomplete 

electrochemical cell.67 Iron(II) cations can form monodentate or bidentate complexes 

with gluconates. 

Fe2+ +  M(gluconate)n                 Fe(gluconate)+ + Mn+         (Eq. 3.11) 

  Fe(gluconate)+  +  M(gluconate)n                 Fe(gluconate)2 + Mn+         (Eq. 3.12) 

Other studied carboxylic acid salt and its esters, that is benzilate, also form stable 

complexes with iron(II) and iron(III)cations68-70, thus same arguments that is being made 

for gluconates herein may as well be considered for benzilate compounds to some extent. 
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It is also mentioned in the literature that ligands which form complex compounds with 

iron cations with comparable low formation constants will cause precipitation of Fe(OH)2 

and Fe(OH)3 in highly alkaline conditions.72 

Ksp(Fe(OH)2 = 8.0 x 10-16, Ksp(Fe(OH)3 = 4.0 x 10-38 73 

Conversion of iron gluconates to more stable iron hydroxides with increasing pH may 

explain the presence of weak bands due to corrosion products of iron in the IR spectra of 

coupons immersed in gluconate salts.  

Gluconates are also reducing agents, similar to ascorbic acid although less strong, 

preventing oxidation of iron(II) to iron(III).74 In addition, the formation of a more stable 

complex when the metal has the lower oxidation number favors reduction and as a result 

the reduction potential becomes more positive.75 In this case, the comparison is with the 

Fe(II)hexahydrate vs Fe(II)gluconate. The gluconate complex is more stable and 

therefore favors remaining in the reduced state. Meanwhile, the cationic constituents such 

as zinc and calcium cations form insoluble hydroxides at the cathodic sites, thus lead to 

the blocking of the galvanic corrosion cell.  

Mn++ nOH-             M(OH)n             (Eq. 3.13) 

when M = Zn, Ca, or Mg 

Thus, trivalent iron gluconate formation is ruled out unless breakdown of the 

gluconate inhibitor occurs due to extreme conditions or if it is consumed totally. 

However, if present, due to conditions favoring corrosion reactions, iron (III) cations can 

also form stable complex compounds with gluconates preventing further corrosion 

reactions that involve trivalent iron. 

Fe3+ +  M(gluconate)m               Fe(gluconate)2+ + Mm+         (Eq. 3.13) 
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Fe3+ +  M(gluconate)m               Fe(gluconate)2
+ + Mm+         (Eq. 3.14) 

log (β1) = 22.23, log (β2) = 10.51 76 

Iron (III) gluconates can further form complex compounds with calcium cations to form 

very stable water soluble products.76 

Fe(gluconate)2+  + Ca2+              CaFe(gluconate)+3                  (Eq. 3.15) 

Fe(gluconate)2
+ + Ca2+              CaFe(gluconate)2

+2         (Eq. 3.16) 

In the specific case of Al(gluconate)2OH, the low stability constant of aluminum 

gluconate may facilitate forming of iron(II)gluconates and a protective coating of 

aluminum oxides/hydroxides as implied by the IR results. In addition, the greenish color 

that was visible on substrate surface might be due to iron(II)gluconate since iron(II) 

products are known to be greenish in color. 

  

3.6.3 Metal Oxyanion Esters of Gluconate Salts 

The combined use of metal oxyanions with gluconates have been reported to 

result in increased inhibition effect such as, for example, the application of sodium 

gluconate together with tetraborate, nitrite or molybdate.49,51-54 Other studies reporting 

synergistic effects of gluconate include literature cite gluconates as scaling inhibitors that 

improve the action of molybdate and tungstate.66,77  

The combination of these constituents under one formulation yielded only slightly 

positive inhibition efficiencies in the case of molybdenum and vanadium esters but high 

inhibition efficiencies in the case boron esters.  

Clearly, complexation of molybdenum and vanadium constituents with gluconate 

led to a diminished complexing ability of the gluconates with iron cations due to highly 
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stable complexes. Gluconate and benzilate complexes of molybdenum and vanadium 

with various oxidation states are reported in the literature.78-88 

The boron esters of gluconates on the other hand produced high inhibition 

efficiencies. As a reason, the formation constant of boron gluconate complex is very low 

compared to transition metal complexes of gluconates. Hence, boron ester may facilitate 

the formation of iron gluconate complex due to its higher solubility compared to other 

gluconate salts.   
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CHAPTER IV 
 

4 AQUEOUS CORROSION INHIBITION FOR ALUMINUM ALLOYS  

 

4.1 Introduction 

Following the testing of inhibitors for mild steel alloy in aqueous solutions, the 

inhibitors were tested for aluminum alloys as well. As explained in the introduction, three 

aluminum alloys were chosen for the tests, Al 2024, Al 6061, and Al 7075 alloys due to 

their common use in industry and, specifically, in aircrafts. Sol-gel coatings on Al 2024 

alloy are also the subject of an investigation in Dr. Apblett’s laboratories, so the 

inhibitors that successfully inhibit aluminum 2024 corrosion in aqueous solutions could 

also be incorporated into the sol-gel coatings to inhibit corrosion of Al 2024 alloy.  

 

4.2 Weight Loss Test Results 

The standard methods for “Preparing Specimens for Weight-Loss Tests” 

developed by the ASTM (American Society for Testing and Materials)1,2 were followed 

with no alteration. Before immersion, aluminum coupons were degreased first by dipping 

in hexane followed by dipping in methanol. Afterwards, the coupons were placed in 

aerated Oakite-164 alkaline cleaner solution at 150 ◦F for 10 minutes. The Oakite bath 
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was prepared in the same manner used for degreasing of mild steel coupons by dissolving 

60 g of Oakite detergent in 1000 ml of water at 180 ◦F. Next the coupons were treated 

with a pickling solution composed of Henkel Surface Technologies brand acid-based 

Deoxalume 2310 (70% water, and 20% concentrated nitric acid, and 10% Deoxalume). 

The Deoxalume is composed of 10-30% sulfuric acid, 10-30% ferric sulfate, 1-10% 

ammonium bifluoride. Coupons were dipped into the pickling solution for 6.5 minutes. 

After the immersions were completed, coupons were dipped into concentrated nitric acid 

for 5 minutes followed by drying and weighing. 

 

4.2.1 Inhibition Efficiency Results 

Weight-loss tests were performed based on the following parameters; type of the 

substrate, type of inhibitor, inhibitor amount in the immersion solution in ppm (part per 

million), chloride ion concentration in immersion solution in M, and immersion period. 

The type of the substrate is of crucial importance since the alloying elements in the 

substrate have different corrosion resistivities and might also react differently with the 

tested inhibitors. For instance, Aluminum 2024 alloy has high amounts of copper and 

Aluminum 7075 alloy has high amounts of zinc, which is why both alloys have lower 

corrosion resistivities than Aluminum 6061 alloy. Please refer to Table 1-2 for detailed 

composition of the alloys. An inhibitor concentration of 200 ppm was determined to be 

optimal for a system of 100 ml solution. Also, a 7 day immersion period was found to be 

the best immersion period. Instead of the chloride concentration of 60 ppm used in the 

weight-loss tests of mild steel coupons, a concentration of 0.5 M was used for the 

aluminum. The high 0.5 M chloride concentration is closer to seawater values as is 
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required to achieve measurable weight losses. Seawater chloride concentration is given as 

19000 mg/L or ppm3 by USGS (United States Geological Survey) for Pacific Ocean of 

California, which is close to 0.325 M in molarity terms or 3.5% by weight. The reason 

why 0.5 M salt concentration or 5% salt percentage by weight has been chosen as the 

concentration instead of 0.35 M was to match the traditional 5% salt concentration of salt 

fog chambers so that the inhibition efficiencies of the same inhibitors in aqueous 

solutions and in sol-gel coatings could be compared.  

 

Gluconate Salts 

Only zinc and chromium gluconates were effective for inhibiting corrosion of 

aluminum alloys. Therefore, it can be concluded that the metal ions were the main 

corrosion preventing constituents. This conclusion is supported by the acceleration of 

corrosion by sodium gluconate. 
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Group III Gluconates and D-Glucose 

Results for the inhibitors in this category were quite different from those observed 

with mild steel corrosion. Al(gluconate)2OH, for example, did not have effect on 

corrosion inhibition except for 7075 alloy. However, B(gluconate)2OH, and B(glucose) 

and their precursors, boric acid and D-glucose, had better inhibition efficiencies than 

those of Al(gluconate)2OH and gluconate salts of Mg, Ca, and Na. 

 

 

 

 

 

 

 

 

 

 

 

 

Application of Other M+n(X-1)n-1OH and M+n(X-1)n Type Compounds  

Compounds similar to gluconate salts were tested and the results are shown in 

Figure 4-3. 

 

 

0

10

20

30

40

50

60

70

80

2024 6061 7075

In
hi

bi
ti

on
 E

ff
ic

ie
nc

y(
%

)

Group III Gluconates

D(glucose)

Boric acid

B(glucose)

B(gluconate)2OH

Al(gluconate)2OH

Figure 4-2    Inhibition Efficiency Graph of M+n(X-1)n-1OH Type Gluconates 



 224

-40

-30

-20

-10

0

10

20

30

40

50

60

70

80

90

100

2024 6061 7075

In
hi

bi
ti

on
 E

ff
ic

ie
nc

y(
%

)

Other Hydroxy Acid Salts

Cr(acetate)2OH

Cr(acetate)3

Al(acetate)(OH)2.
H3BO3

Al(lactate)

 

 

 

 

 

 

 

Among the tested salts, Cr(acetate)3 and Cr(acetate)2OH performed very well and 

were similar to Cr(gluconate)3. Aluminum salts inhibited corrosion for 2024 and 7075 

alloys, while they accelerated corrosion in the case of 6061 alloy. The reason that 

Al(acetate)(OH)2.H3BO3 performed slightly better than Al(lactate) could be due to 

presence of boric acid, which also inhibited corrosion when tested seperately. Overall, 

when gluconate and other carboxylic acid salts of metal cations such as Cr+3, Al+3 are 

compared; acetate and lactate salts seemed to perform better than gluconate. 

  

Molybdenum Esters of Gluconate Salts 

In contrast to what was observed with gluconate salts, the inhibition efficiencies 

of molybdenum esters of gluconates were almost perfect for 2024 alloy and also very 

high for 6061 and 7075 alloys. This observation indicated that the molybdenum 

Figure 4-3   Inhibition Efficiency Graph of M+n(X-1)n-1OH and M+n(X-1)n Type Salts  

of Other Carboxylic Acids Other than Gluconates 
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constituent inhibited corrosion since earlier results already revealed that gluconates had a 

slightly negative effect on corrosion inhibition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vanadium Esters of Gluconate Salts 
 

The vanadium esters of gluconates inhibited corrosion even better than the 

molybdenum esters. Surface characterization indicated that vanadium esters and 

molybdenum esters inhibited corrosion by forming insoluble oxides and hydroxides on 

the substrate surface, thus assisting repassivation. 
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Boron Esters of Gluconate Salts and Derivatives 

Boron esters of gluconate salts inhibited corrosion to varying extent depending on 

the cationic constituent. When compared to the parent gluconate salts, the boron esters 

have almost identical inhibition efficiencies. Thus, the boron consitutent did not seem to 

inhibit corrosion unlike the molybdenum and vanadium esters of gluconates. Neutral to 

slightly negative effect of borates on corrosion of aluminum is reported in the literature.4 
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The perfect inhibition efficiencies of chromium borates are also noteworthy. 

Separation of a very fine fraction of chromium borate with a sieve of 25 µm resulted in 

better inhibition efficiencies. This could be due to forming a better suspension in water 

and higher surface area. Inhibition efficiencies were even higher than 100% in some tests, 

which indicated deposition on the substrate surface. Amorphous chromium borate could 

lead to the formation of chromium oxides and hydroxides at sufficiently high local pH 

values that passivates surface while boron constituent might act as a facilitator in this 

process or more likely it could be a part of the passive layer as in the case of traditional 

chromium phosphate conversion coatings5. X-ray powder diffraction of the samples 

however revealed that the synthesized CrBO3 was amorphous (The product was also 

found to be insoluble when tested both with Atomic Absorption Spectrometer and 

Colorimeter).  

 

Zinc Carboxylates 

Unlike what was observed for mild steel all three tested zinc carboxylates 

revealed very good results. Zinc tartrate was the best reagent with %100 inhibition 

efficiency for all three aluminum alloys.  
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Chromium Carboxylates 

Cr(III) carboxylates also inhibited the corrosion of aluminum alloys extremely 

well even at concentrations as low as 25 ppm for poorly soluble chromium butyrate and 

chromium propionate salts. Chromium octanoate and chromium caproate salts could not 

be tested due to their total insolubility in water. The results confirmed the effect of 

solubility on the inhibition efficiency with the highest soluble Cr(III) carboxylate among 

tested carboxylates having the highest inhibition efficiency and vice versa.  
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Various Cr(III) Compounds 

In addition to the organic acid salts and their oxyanion esters, several Cr(III) and 

Zn(II) salts were synthesized and tested for corrosion inhibition activity as well. Many 

chromium(III) salts tested under this category showed considerable inhibitive activity as 

shown in Figure 4-10. CrOOH synthesized via hydrolysis of chromium borate was the 

most efficient, while nanoparticulate Cr(OH)3 was the least. In the case of Al 2024 

corrosion, commercial grade CrOOH and Cr(OH)3 synthesized using different reagents 

than the nanoparticulate Cr(OH)3 synthesis had also very little inhibition efficiencies. 

 

4.2.2 Effect of Concentration on Inhibition Efficiency 

Varying concentrations from 25 ppm up to 50 ppm resulted in a general trend of 

increase in inhibition efficiencies with the exception of the molybdenum ester of 

gluconates. Inhibition efficiencies slightly varied between the 50 ppm and 200 ppm 

values depending on the type of inhibitor and type of substrate. Inhibitors used to treat 

6061 alloy had slightly decreasing inhibition efficiencies when concentrations were 

increased from 50 ppm to 200 ppm. In contrast, inhibitors that were used to treat 2024 

and 7075 substrates had slightly increasing inhibition efficiencies. For concentrations of 

200 ppm up to 500 ppm the inhibition efficiencies seemed to decrease in general with the 

largest decreases observed for the inhibitors used to treat the 6061 alloy. These results 

suggested that the optimum inhibitor concentration for a 100 ml solution system should 

be between 50 and 200 ppm; closer to 200 pmm for 2024 and 7075 alloys and closer to 

50 ppm for 6061 alloy. As a reason for the discrepancy regarding 6061 alloy, inhibitor 
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amounts over 50 ppm are more than sufficient in most cases, which only increases the 

conductivity of the solution leading to lower inhibition efficiencies. 

The amount of 25 ppm was also included in the testing, since compounds as 

chromium borate chromium oxy-hydroxide were only very slightly soluble. 

 

4.2.3 Effect of Cationic Constituent on Inhibition Efficiency 

Zinc cations inhibited both mild steel and aluminum corrosion very well. In the 

case of aluminum corrosion, trivalent chromium cations also inhibited corrosion 

extremely well.  

 

Effect of Zn Cations 

All formulations with zinc cations inhibited aluminum corrosion considerably, 

with zinc tartrate, zinc mandelate, zinc gluconate vanadate, and zinc gluconate being the 

best and zinc gluconate borate, zinc gallate, and zinc gluconate molybdate being the 

worst. Please refer to Figure 4-11 for inhibition efficiencies of the inhibitors with a zinc 

constituent. 
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Effect of Cr Cations 

As shown in Figure 4-12, chromium gluconate vanadate was the most efficient 

inhibitor among the formulations with trivalent chromium cations. On the other hand, 

chromium gluconate borate had negligible or negative inhibition efficiencies in the case 

of aluminum 6061 alloy. These results correspond with the inhibition efficiency results of 

other boron esters of gluconate and benzilate salts.  

The solubilities of chromium(III) carboxylates also seemed to affect the inhibition 

efficiencies. When inhibition efficiencies of chromium acetate, chromium propionate, 

chromium butyrate were compared, the least soluble chromium butyrate yielded the least 

inhibition efficiency and the most soluble chromium acetate resulted in the highest 

inhibition efficiency as shown in Figure 4-13. 
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Effect of Ca, K and Other Cations 

Magnesium and calcium cations had positive effects on Al 6061 corrosion due to 

their cathodic inhibitive activity. This was deduced from the comparison of inhibition 

efficiencies of calcium and magnesium gluconates with that of sodium gluconate.  
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Figure 4-13    Inhibition Efficiency Graph of Trivalent Chromium Carboxylates  
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Figure 4-15    Inhibition Efficiency Graph of Various Compounds with  

Potassium as the Cationic Constituent 
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From Figures 4-14 and 4-15, it can be deduced that the anionic constituent had the 

major impact on inhibition efficiency values with vanadates, molybdates, and borates 

showing pronounced inhibition efficiencies. Other than directly being involved in 

corrosion reactions, cations also determine the solubilities of reactants due to the 

common ion or foreign ion effect. For instance, it has been reported that the addition of 

1000 ppm of Fe2+ had a slight positive effect on the corrosion rate for Al 7075 alloy in 

the presence of 0.1 M NaCl solution.6 However due to very small amounts of reactants, 

the foreign ion effect could not be observed in the weight-loss tests of this study. 

 

4.3 Conversion Coating Formation Studies 

In addition to weight-loss tests to measure the direct inhibition efficiencies of 

inhibitors for aluminum corrosion in aqueous solutions, inhibitors were also tested for 

conversion coating formations on substrate surfaces and if present these conversion 

layers were examined and characterized by means of a variety of techniques.  

 

4.3.1 Weight-Loss Method 

Coupons those already immersed in the solutions of inhibitors were immersed in 

salt water for a second period of time to observe any corrosion inhibition due to a 

possibly formed conversion coating. 
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The results revealed a few successful candidates for conversion coating formation 

on aluminum substrates such as potassium benzilate vanadate, chromium acetate, zinc 

gluconate vanadate, calcium gluconate vanadate (These are listed in the order of 

decreasing inhibition efficiencies). The fact that potassium benzilate vanadate performed 

better than zinc gluconate vanadate suggested that the cathodic inhibitive activity of zinc 

cations was no longer effective during second immersion period. Alternatively, the 

benzilates may have been incorporated into a protective layer on substrate surface during 

first immersion period resulting in a stable protective layer. The lower benzilate solubility 

could lead to sufficient stability for prevention of corrosion during second immersion 

period. Regardless, the vanadate constituent seemed to be the major contributor to the 

passivation of the substrate surface. Chromium acetate also held up well during second 

immersion period suggesting the formation of a passive chromium oxide-hydroxide layer 

on the substrate surface. Other inhibitors with positive inhibition efficiencies during 

second immersion period were calcium gluconate molybdate, D-glucose, and B-glucose 

in the case of Al 6061 alloy.  

 

4.3.2 Weight Increase Measurements 

In addition to inhibition efficiency calculations based on weight-loss values, 

changes in weights of the coupons after the immersions but before cleaning with acid 

solution were measured to provide evidence of a deposition on the surface. A weight 

increase after completion of the immersions but before cleaning with concentrated nitric 

acid solution may be due to two types of depositions; first a conversion coating formation 

due to inhibitor compounds, second a deposition layer of corrosion products.  
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Comparing weights of coupons before and after the cleaning with concentrated 

nitric acid solution revealed whether a stable protective coating was present on the 

substrate surface or not, assuming that a stable protective coating is not dissolved when 

treated with concentrated nitric acid for 5 minutes. Results are shown in Table 4-1, in 

which the inhibitors that formed protective depositions on the substrate surface are 

underlined, while the ones that had depositions of corrosion products or a mixed 

deposition of both corrosion products and inhibitor originated compounds are written in 

italic letters. 

 

Table 4-1   Weight Increases of Metal Substrates Due to Immersions in Inhibitor 

Solutions 

Substrate Inhibitor Wbefore (g) Wafter (g) W2-W1 (g) 
%Wt 

Increase* 
IE** 

2024 Al K(benzilate)molybdate 5.0867 5.1041 0.0174 0.34207 93.08 

2024 Al Zn(gluconate)2vanadate 5.0907 5.0905 -0.0002 -0.003929 90.06 

2024 Al Cr(prop)3 5.0375 5.0375 0 0 23.87 

2024 Al Cr(butyrate)3 5.1161 5.1430 0.0269 0.52579 9.95 

2024 Al Syn. CrO(OH) 5.0701 5.0748 0.0047 0.0927 95.87 

2024 Al Al(gluconate)2OH 5.0918 5.0980 0.0062 0.12176 3.59 

2024 Al Ca(gluconate)2borate 5.0791 5.0936 0.0145 0.28548 14.82 

6061 Al K(benzilate)molybdate 4.6652 4.6688 0.0036 0.07717 100 

6061 Al Zn(gluconate)2vanadate 4.6522 4.6521 -0.0001 -0.00215 91.03 

6061 Al Cr(propionate)3 4.6917 4.6928 0.0011 0.02345 86.62 

6061 Al Cr(butyrate)3 4.6539 4.6613 0.0074 0.15901 26.99 

6061 Al Syn. CrO(OH) 4.6893 4.6948 0.0055 0.11729 97.38 
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  Table 4-1 continued    

Substrate Inhibitor Wbefore (g) Wafter (g) W2-W1 (g) 
%Wt 

Increase* 
IE** 

6061 Al Al(gluconate)2OH 4.6833 4.6899 0.0066 0.14093 -4.67 

6061 Al Ca(gluconate)2borate 4.6501 4.6634 0.0133 0.28602 3.83 

7075 Al K(benzilate)molybdate 6.3211 6.3386 0.0175 0.27685 47.14 

7075 Al Zn(gluconate)vanadate 6.2970 6.2979 0.0009 0.01429 90.53 

7075 Al Cr(prop)3 6.3318 6.3386 0.0068 0.10739 30.43 

7075 Al Cr(butyrate)3 6.3093 6.3225 0.0132 0.20921 20.76 

7075 Al Syn. CrO(OH) 6.2987 6.3086 0.0099 0.15718 100 

7075 Al Al(gluconate)2OH 6.2635 6.2685 0.005 0.07983 47.49 

7075 Al Ca(gluconate)2borate 6.2649 6.2664 0.0015 0.02394 10.07 

 

* (before cleaning), ** (after cleaning) 

 

4.3.3 Qualitative Analysis of the Coupons after Immersions 

Visual inspection of the coupons compared to the control coupons after 

completion of immersions but before removal of corrosion products has been a useful 

qualitative method. When the images of coupons treated with molybdenum esters of 

hydroxy-acids and those of controls are compared, it is found that coupons treated with 

molybdate esters had a nonuniform black colored deposition along with depositions of 

corrosion products around a few pits. The black color is indicative of the presence of 

molybdenum oxide and hydroxides in a mixed Mo(V)/Mo(VI) oxidation state.  
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2024 Alloy 

 

 

 

 

Thin colored films of molybdenum oxides produced by molybdate salts on Al 

7075-T6 alloy that provide slight corrosion resistance have been reported in the 

literature.7  

Many other studies have also reported black-colored molybdate coatings on 

various metal surfaces.8-12 On the other hand; coupons treated with inhibitors that resulted 

in high inhibition efficiencies had visually clear surfaces. Among these are zinc gluconate 

vanadate, potassium benzilate vanadate, and chromium oxyhydroxide. Other coupons had 

varying amounts of deposited corrosion products that corresponded with the inhibition 

efficiency results. Examples are chromium butyrate treated coupon that had a deposition 

of uniform corrosion products, and calcium gluconate borate treated that had a non-

uniform deposition of pitting corrosion products. 

Al 2024 alloy control in 
 0.5M Cl- soln. for 1 week 

200 ppm K(benzilate)molybdate  
in 0.5 M Cl- soln. for 1 week 

200 ppm Zn(gluconate)vanadate 
in 0.5M Cl- soln. for 1 week 

Figure 4-17   Images of control coupon and coupons immersed in  

solutions of metal oxyanion esters; respectively 
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6061 Alloy 

Coupons treated with inhibitors with high inhibition efficiencies had images of 

clear surfaces; while ones with very little inhibition efficiencies had deposition of 

corrosion products on them mostly around pits indicating pitting corrosion.  

 200 ppm CrO(OH) 
in 0.5M Cl- soln. for 1 week 

200 ppm Cr(propionate)3 
in 0.5M Cl- soln. for 1 week 

200 ppm K(benzilate)vanadate 
in 0.5M Cl- soln. for 1 week 

200 ppm  Al(gluconate)OH 
in 0.5M Cl- soln. for 1 week 

 200 ppm Ca(gluconate)borate 
in 0.5M Cl- soln. for 1 week 

200 ppm  Cr(butyrate)3 
in 0.5M Cl- soln. for 1 week 

Figure 4-18   Images of Aluminum 2024 coupons immersed in solutions  

of Various Inhibitors 
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The only exception to the direct relation between inhibition efficiencies and 

images of clear substrate surfaces was the molybdenum ester treated coupons, which had 

nonuniform deposition of molybdenum oxides on the surface along with corrosion 

products around a few pits despite the fact that inhibition efficiencies were close to 

100%.  

 

200 ppm  Al(gluconate)OH 
in 0.5M Cl- soln. for 1 week 

 200 ppm K(benzilate)vanadate 
in 0.5M Cl- soln. for 1 week 

200 ppm Ca(gluconate)borate 
in 0.5M Cl- soln. for 1 week 

Al 6061 alloy control in 
 0.5M Cl- soln. for 1 week 

200 ppm K(benzilate)molybdate  
in 0.5 M Cl- soln. for 1 week 

200 ppm Zn(gluconate)vanadate 
in 0.5M Cl- soln. for 1 week 

Figure 4-19   Images of control coupon and coupons immersed in  

solutions of metal oxyanion esters; respectively. 

 

Figure 4-20    Images of Aluminum 6061 coupons immersed in solutions  

of Various Inhibitors 
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7075 Alloy 

Among the tested chromium(III) carboxylates for Al 7075 corrosion, chromium 

butyrate failed to inhibit corrosion, while chromium propionate was more efficient and 

chromium acetate was the best among the three. This observation is in agreement with 

the fact that chromium butyrate is the least and chromium acetate is the most soluble 

among the three tested chromium(III) carboxylates. Despite being insoluble, the 

synthesized CrO(OH) inhibited Al 7075 corrosion very efficiently similar to the results 

with other Al alloys. 

 

200 ppm  Cr(butyrate)3 
in 0.5M Cl- soln. for 1 week 

 200 ppm CrO(OH) 
in 0.5M Cl- soln. for 1 week 

200 ppm Cr(propionate)3 
in 0.5M Cl- soln. for 1 week 

Figure 4-21   Images of Aluminum 6061 coupons immersed in solutions  

of Various Inhibitors 
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Potassium benzilate molybdate treated Al 7075 coupon resulted in molybdic 

oxide deposition starting from the edges similar to the other Al alloys of 2024 and 6061. 

It may be speculated that a film of molybdic oxides is more adherent on the edges rather 

than to the surfaces; since a thinner layer of corrosion products or aluminum oxide is 

expected on edges than the substrate surface resulting in a higher percentage of pure 

Aluminum on the edges, which molybdic oxides seemed to better adhere on. 

 

 

Al 7075 alloy control in 
 0.5M Cl- soln. for 1 week 

200 ppm K(benzilate)molybdate  
in 0.5 M Cl- soln. for 1 week 

200 ppm Zn(gluconate)vanadate 
in 0.5M Cl- soln. for 1 week 

200 ppm  Cr(butyrate)3 
in 0.5M Cl- soln. for 1 week 

 200 ppm CrO(OH) 
in 0.5M Cl- soln. for 1 week 

200 ppm Cr(propionate)3 
in 0.5M Cl- soln. for 1 week 

Figure 4-22    Images of coupons immersed in 

Various solutions of trivalent chromium compounds 

 

Figure 4-23    Images of control coupon and coupons immersed in  

solutions of metal oxyanion esters; respectively. 
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Coupons treated with calcium gluconate borate revealed virtually no pits, which is 

in agreement with the inhibition efficiency results of boron esters of hydroxy-acid salts in 

general. Boron esters of hydroxy-acid salts inhibited corrosion of Al 7075 alloy 

considerably higher than the other two alloys. This might have something to do with the 

composition of Al 7075, which is richer in zinc and magnesium. Borate might react with 

the magnesium and zinc cations to form insoluble borates and contributing to the 

passivation layer. 

 

 

 

 

4.3.4 X-Ray Powder Diffractometer Studies  

The X-ray powder diffraction patterns of a blank, untreated Aluminum 2024 alloy 

and the one treated with K(benzilate)vanadate were identical as shown in Figure 4-25. 

This correlates with the inhibition efficiency of K(benzilate)vanadate, which was almost 

perfect even during second immersion period. 

200 ppm  Al(gluconate)OH 
in 0.5M Cl- soln. for 1 week 

 200 ppm K(benzilate)vanadate 
in 0.5M Cl- soln. for 1 week 

200 ppm Ca(gluconate)borate 
in 0.5M Cl- soln. for 1 week 

Figure 4-24    Aluminum 6061 coupons immersed in solutions of various inhibitors 
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Blank 2024 Aluminum alloy  

Aluminum 2024 dipped into 200 ppm 

K(benzilate)vanadate and 0.5M Cl- solution  

 

 

 

 
 
 
 
 

Figure 4-25   X-ray Diffraction Patterns of a blank Aluminum 2024 coupon and  

one immersed in solution of potassium benzilate vanadate; respectively. 

Al(OH)3 
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The only slight difference between the X-ray diffraction patterns of the two coupons was 

the very slight strengthening in the peaks due to Al(OH)3 in the X-ray diffraction of the 

coupon immersed in the salt solution of potassium benzilate vanadate for 7 days. 

 

4.3.5 X-Ray Flourescence Studies 

X-ray fluorescence (XRF) is a powerful tool to detect tiny amounts of elements 

on the substrate surfaces. Vanadate esters of hydroxy-acid salts had high inhibition 

efficiencies with no visually observable conversion coating formation. XRD detected 

only amorphous phases on the substrate surface but XRF spectroscopy detected 

vanadium on the substrate surfaces of aluminum alloys. Vanadium was detected no 

matter what other constituents were present in the formulation (e.g. zinc gluconate 

vanadate or potassium benzilate vanadate). The only possible overlap with the ~4 keV 

vanadium peak could be due to the L-lines of barium or cesium but even then multiple 

peaks around the 4 keV range should be present, which was not the case. 
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Aluminum 2024 dipped into 200 ppm 

K(benzilate)vanadate solution   

Aluminum 6061 dipped into 200 ppm 

K(benzilate)vanadate solution   

Aluminum 6061 dipped into 200 ppm 

Zn(gluconate)vanadate solution   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-26     X-ray Flourescence Diagrams of various Aluminum alloy coupons 

immersed in solutions of vanadium esters of benzilates and gluconates; respectively. 
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4.3.6 Scanning Electron Microscope Studies 

Scanning Electron Micrographs of aluminum alloys immersed in high 

concentration salt water for one week revealed extensive corrosion taking place on the 

substrate surfaces.  

 

 

 

 

 

Blank and corroded Al substrate samples were examined at lower magnifications 

for further investigation. Images indicated Al 7075 alloy as more porous than other 

alloys; while Al 6061 alloy surface was more homogenous than 2024 alloy as shown in 

Figure 4-28. 

 

 

 

 

2024 rusted in 0.5 M Cl- water 
for 7days 

6061 in 0.5 M Cl- water 
for 7days  

Figure 4-27    Scanning Electron Micrographs of control coupons of  

various Aluminum alloys immersed for 7 days in 0.5 M Chloride solution 
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Figure 4-28    Scanning Electron Micrographs of various Aluminum alloys coupons 

Al 2024 in 0.5M Cl- water for 7days 

Blank Al  2024 

Al 6061 Al(gluconate)2OH 0.5 M Cl-, 7days 

Blank Al 6061 Blank 7075 

Al 7075 Zn(gluconate)2 0.5M Cl-, 7+7days 
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Comparison of the blank substrates with gluconate treated substrates revealed the 

extent of deposition taking place for the latter. However, unlike the case for mild steel, no 

corrosion protection was observed based on inhibition efficiency results except for the 

gluconate salts of cations with cathodic inhibitive activity. 

 

 

 

 

 

Consecutive immersions seemed to be destroying the protective coating 

originated from application of zinc gluconates. 

 

Blank Al 2024 6061 Al(gluconate)2OH 

0.5M Cl-, 7days 

7075 Zn(gluconate)2  

0.5MCl-, 7+7days 

Figure 4-29    500 Times Magnified Scanning Electron Micrographs  

of various Aluminum alloys  
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Scanning electron micrographs of substrates treated with different inhibitors 

revealed the extent of corrosion during second immersion periods with no inhibitor 

present in the solution. 

 

 

 

 

7075 Zn(gluconate)2  

0.5M Cl-, 7+7days 

Blank 7075 7075 Cr(acetate) 
0.5M Cl-, 7+7days 

7075 rusted in 0.5 M Cl- water 

for 7days 

7075 Ca(gluconate)2 

0.5M Cl-, 7+7days 

7075 Cr(acetate)3 

0.5M Cl-, 7+7days 

Figure 4-30    40 Times Magnified Scanning Electron Micrographs  

of Aluminum 7075 Coupons  

Figure 4-31   2000 Times Magnified Scanning Electron Micrographs  

of Aluminum 7075 Coupons  
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Immersion of chromium acetate treated Al 7075 coupon for a second period of 

time revealed abundant corrosion deposits on the substrate surface in agreement with its 

zero inhibition efficiency during the second immersion period. Al(gluconate)2OH treated 

Al 6061 substrates were examined at different magnitudes to investigate the nature of the 

deposition on the substrate surface.  

 

Result was that coating formed on the substrate surface was neither a continuos  

 

4.3.7 Infrared Spectra Studies 

Gluconate Salts 

IR spectra of aluminum alloy coupons treated with gluconate salts revealed 

significant differences than those of IR spectra of mild steel coupons treated with the 

same gluconate salts. Firstly, three bands were present in the 1400 cm-1 – 1600 cm-1 

range rather than the two bands in the same region for mild steel coupons treated with 

gluconate salts. Most importantly, these three bands were exact matches of the three 

bands present in the IR spectra of untreated control coupons. 

6061Al(gluconate)2OH  

0.5M Cl- 7days 

6061Al(gluconate)2OH 

0.5M Cl- 7days 

6061Al(gluconate)2OH  

0.5M Cl- 7days 

Figure 4-32    Scanning Electron Micrographs of Aluminum 6061 Coupons  

Immersed in Solutions of Aluminum Gluconate Hydroxide 
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 Therefore, the presence of gluconate moieties on the substrate surfaces of 

aluminum alloys can be ruled out and the three bands in the 1400 cm-1 – 1600 cm-1 region 

can be assigned to the bending of hydroxyl of water of hydrated aluminum oxide, which 

is a corrosion product, at 1600s cm-1 and Al=O bonds at 1400s cm-1. 13,14 Also, the broad 

band centered at 3450 cm-1 is due to symmetric and asymmetric stretchings of hydroxyl 

of water. 15-22 Loss of the middle band out of these three bands is observed with 

increasing inhibition efficiency, and the loss of the band in the lower frequency region 

occurs with even higher inhibition efficiency. The higher frequency band is present at all 

times suggesting that it is due to the bending vibration of water. Assignment of these 

three bands to hydroxyl groups and not to carbonyl/carboxyl groups of hydroxy-acids 

were in agreement with weight-loss test results, which all gluconate salts and other 

hydroxy-acid salts revealed very low inhibition efficiencies with the exception of zinc 

gluconates.  

Comparison of the IR spectra of the aluminum alloy substrates treated with 

different amounts of the same inhibitor supported the assignments of the three bands in 

1400 cm-1 – 1600 cm-1 region. One example is comparison of IR spectra of aluminum 

gluconate hydroxide treated aluminum 2024 alloy coupons. Comparison of the IR spectra 

of aluminum gluconate hydroxide powder with those of aluminum 2024 substrates 

treated with various amounts of aluminum gluconate hydroxide revealed a difference of 

20 cm-1 between the band due to OCO- asymmetric stretching and the band due to 

bending vibration of water hydroxyl, respectively.  
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Figure 4-33   Combined Infrared Spectra of Aluminum 2024 Coupons Immersed in  

Aluminum Gluconate Hydroxide Solutions  

 

Notably, the strength of the three main bands in the 1400 cm-1 – 1600 cm-1 region 

varied widely based on the concentrations of chloride ions. When no chloride ions were 

present in the solution only weak absorptions were observed in the IR spectra of 

aluminum 2024 control coupon in contrast with the IR spectra of aluminum 2024 control 

coupon immersed in 0.5 M Cl- solution. Correspondingly, the control coupon with no 

chloride present in its solution resulted in significantly less weight-loss than the control 

coupon immersed in 0.5 M Cl- solution. Changes in absorptions of these bands with 

increasing corrosion imply the presence of more aluminum hydroxide corrosion products, 

thus ruling out the assignment of these bands to carbonyl/carboxyl groups once more. 

The broadening of OH stretching vibrations centered at 3450 cm-1 for all tested aluminum 

alloys substrates was attributed to interactions between the hydroxyl groups with the 

surface aluminum metal ions.15 On the other hand, the corrosion products vary with 
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different aluminum alloys and with the use of different inhibitors causing shifting of the 

bands in the 1400 cm-1-1600 cm-1 and 3450 cm-1 region. 

 

 

 

 

 

 

 

 

Figure 4-34    Combined Infrared Spectra of Aluminum 2024 Coupons Immersed in 

Solutions of Various Gluconate and Glucose Salts 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-35 Combined Infrared Spectra of Aluminum 6061 Coupons Immersed in  

Solutions of Various Gluconate and Glucose Salts 
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Figure 4-36    Combined Infrared Spectra of Aluminum 7075 Coupons Immersed in  

Solutions of Various Gluconate and Glucose Salts 

 

In the low frequency region, bands due to aluminum surface were common for all 

three tested aluminum alloys albeit with slight differences in frequencies and strengths.  

Major peaks in the order of decreasing frequencies, were at 1155 cm-1 and 1067 cm-1 

assigned to OH in-plane bendings of AlOOH, at 1050 cm-1 assigned to OH bending 

vibrations of AlOOH, at 770 cm-1 assigned to Al-O stretching vibrations of AlOOH, at 

765 cm-1 assigned to O2- displacements, at 736 cm-1 assigned to OH out of plane bending 

of AlOOH and at 411 cm-1 assigned to displacements of OH-.23-28  

Notably, the IR spectra of the zinc gluconate treated coupon revealed only two 

bands in the 1400 cm-1 – 1600 cm-1 with the middle band missing. Examination of the IR 

spectra of other coupons treated with inhibitors consisting of zinc cations revealed the 

same result, indicating that the cause of this effect was due to the zinc ions. Although not 

confirmed by any spectroscopic technique, the formation of a protective zinc hydroxide 
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film might have hindered the bidentate adsorption of hydroxyl group on the substrate 

surface. However, the absorption at 1397 cm-1 29 characteristic of the presence of 

Zn(OH)2 protective film was not observed. Thus, an alternative explanation, in agreement 

with middle band missing in the spectra of coupons treated with other highly efficient 

inhibitors, might be that middle band is due to bending vibration of hydroxyl of 

aluminum hydroxide that is a corrosion product of Aluminum, which disappears when 

the corrosion is efficiently inhibited. 

 

Other carboxylic acids and their salts 

The infrared spectra of the other tested acids and their salts such as boric acid, 

aluminum acetate, and aluminum lactate revealed almost entirely the same absorptions as 

those of the gluconate salts. Even the strengths of the bands due to use of different 

aluminum alloys matched when both IR spectra of coupons treated with gluconate salts 

and other hydroxy-acid salts were compared once more leading to the confirmation of the 

assignments of the bands in the 1400 cm-1 – 1600 cm-1 region to the bending vibrations of 

hydroxyl groups. 

 

Molybdenum Esters of Hydroxy Acid Salts 

The presence of molybdic oxides on aluminum substrate surfaces was apparent 

from the visual observations. Absorptions due to Mo-O bending vibrational modes 

normally are observed at 972 cm-1 30, 994 cm-1 31, and 996 cm-1 32 as stated in the 

literature, however OH bending vibrations of AlOOH also do absorb in the same region. 

Regardless, a band due to Mo-O bending vibrations present in most of the IR spectra of 
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aluminum coupons exposed to molybdenum esters of hydroxy-acid salts was observed 

around 990 cm-1. Notably, bands due to OH bending vibrations above 1000 cm-1 were not 

present in the IR of potassium benzilate molybdate treated coupons suggesting the 

presence of a barrier film in between water and substrate surface. Bands due to Mo-O 

bending vibrations also appear in the IR spectra of the coupon immersed for a second 

period of time, but this time the OH bending vibrations of AlOOH also appear matching 

the same bands of controls indicating the extent of corrosion taking place despite the 

layer of molybic oxides. 

 

 

 

 

 

 

 

 

 

Figure 4-37    Combined Infrared Spectra of Aluminum 6061 Coupons Immersed in  

Potassium Benzilate Molybdate Solutions 

 

Out of the three bands due to bending vibrations of hydroxyl groups, the middle 

band was found to be missing in the spectra of coupons treated with calcium gluconate 

molybdates and zinc gluconate molybdates. The highest frequency band among the three 

bands was also absent in the spectra of coupons treated with potassium benzilate 
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molybdates. Together with weight-loss test results, the absence of bands due to bending 

vibrations of hydroxyl of water of corrosion product, that is hydrated aluminum oxide, 

seemed to be an indication for better inhibition efficiency. 

Vanadium Esters of Hydroxy Acids 

Calcium&Zinc Gluconate Vanadates 
 

Absorption bands due to presence of vanadium are given in the literature to be 

between 400 cm-1 and 1000 cm-1 indexed to various group vibrations of V-O. 33,34 This 

includes bands at 1019 cm-1, 850 cm-1, and between 400 cm-1 to 650 cm-1. 35,36
 However, 

the weak infrared absorptions of the coupons treated with vanadium esters and the 

presence of many bands due to OH vibrations and stretching of AlOOH in the same 

region made it impossible to detect the presence of vanadium on the surface. However, 

along with absence of bands due to vanadium, bands due to corrosion products of 

Figure 4-38    Combined Infrared Spectra of Aluminum 6061 Coupons Immersed in  

Calcium Gluconate Molybdate Solutions 
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aluminum were also absent. IR spectra of coupons treated with vanadium esters for a 

second period of 7 days seemed similar to the control coupons with missing bands such 

as the band at 700 cm-1 due to stretching vibrations of AlOOH which might be considered 

as a complimentary evidence for the positive inhibitive efficiencies of vanadium esters 

during second immersion periods.  

 

Boron Esters of Hydroxy Acids 

Spectra of coupons immersed in solutions of boron esters of hydroxy acids almost 

entirely matched the spectra of the same alloy coupons treated with gluconate and 

benzilate salts. Thus, almost all IR spectra had three bands due to bending vibrations of 

hydroxyl of water due to hydrated aluminum oxide in 1600 cm-1 region. Coupons treated 

with zinc salts of borate esters were missing the middle band as in the case of other 

inhibitors containing zinc cations.  

  

4.4 Characterization of Immersion Solutions 

Characterization of the immersion solutions was conducted using oxidation-

reduction potential and pH probes. Two readings were taken per sample, one before 

immersion and another after completion of immersion.  

 

4.4.1 ORP Measurements 

Immersion solutions of gluconate salts and their molybdenum esters revealed 

decreasing ORP values; while immersion solutions of vanadium esters and boron esters 



 

in general had increasing ORP values

mV to 750 mV and the final ORP values ranging from 350 mV to 650 mV

Figure 4-39    ∆ORP vs. Time Graph of Immersion Solutions of Various Inhibitors

 

∆ORP graphs indicated that ORP values lowered by an average of roughly 100 

mV with molybdenum esters, potassium benzilate, 

highest decreases. Potassium benzilate vanadate and calcium gluconate borate esters ha

the highest increase in ORP values. Vanadate esters had the lowest initial ORP values as 

well. 
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creasing ORP values with the initial ORP values ranging between 300 

final ORP values ranging from 350 mV to 650 mV

ORP vs. Time Graph of Immersion Solutions of Various Inhibitors

During Immersions 

ORP graphs indicated that ORP values lowered by an average of roughly 100 

mV with molybdenum esters, potassium benzilate, and aluminum lactate 

otassium benzilate vanadate and calcium gluconate borate esters ha

ncrease in ORP values. Vanadate esters had the lowest initial ORP values as 

t (days)

∆ORP vs Time

initial ORP values ranging between 300 

final ORP values ranging from 350 mV to 650 mV.  

 

ORP vs. Time Graph of Immersion Solutions of Various Inhibitors 

ORP graphs indicated that ORP values lowered by an average of roughly 100 

lactate having the 

otassium benzilate vanadate and calcium gluconate borate esters had 

ncrease in ORP values. Vanadate esters had the lowest initial ORP values as 



 

Figure 4-40     

Immersion Solutions of Various Inhibitors 

 

ORP is proportional

increases with the addition of an oxidizer 

reducer. Initial and final ORP values of immersion solutions of vanadium esters in 

particular were opposite

solutions of vanadium esters 

higher ORP values than control solutions, while all the other immersion solutions had 

significantly higher initial ORP values than control solutions

highest ORP values. Very high initial ORP values 

oxidation state of molybdenum 

the reactant MoO3 and as in molybdates
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     Initial ORP values vs. Inhibition Efficiency Graph of 

Immersion Solutions of Various Inhibitors  

ORP is proportional to the concentration of oxidizers or reducers in a solution

he addition of an oxidizer and the decreases with the the addition of a 

Initial and final ORP values of immersion solutions of vanadium esters in 

site to what was predicted. Only the ORP values of immersion 

solutions of vanadium esters were lower than the controls. Boron esters had slightly 

higher ORP values than control solutions, while all the other immersion solutions had 

tial ORP values than control solutions. Molybdenum esters ha

. Very high initial ORP values implied the preservation of +6 

oxidation state of molybdenum in the hydroxy-acid formulation (+6 oxidation state 

as in molybdates) corresponding to a strong oxidizing 

which led to high initial ORP values. Reduction potential of hexavalent molybdenum to 

200 400 600

ORPinitial (mV)

ORPinitial vs IE

 

Initial ORP values vs. Inhibition Efficiency Graph of  

to the concentration of oxidizers or reducers in a solution. It 

the addition of a 

Initial and final ORP values of immersion solutions of vanadium esters in 

ORP values of immersion 

oron esters had slightly 

higher ORP values than control solutions, while all the other immersion solutions had 

olybdenum esters had the 

the preservation of +6 

acid formulation (+6 oxidation state as in 

strong oxidizing ability, 

Reduction potential of hexavalent molybdenum to 

800
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molybdenum oxides such as MoO2 in near neutral basic solutions is reported as -0.780 

V37-43, thus resulting in the preservation of +6 oxidation state of molybdenum against a 

mild reducing agent such as gluconate. However, against a very strong reducing agent as 

aluminum metal, hexavalent molybdenum is likely to reduce to pentavalent state in 

molybdenum oxide explaining the black depositions on the substrate surfaces. The half-

reaction potential of Al to Al(OH)3 is reported to be -2.300 V in basic solutions and as -

1.676 V in acidic conditions.37-43 

As for the boron esters, the fact that the initial ORP values were almost equal to 

the ORP values of control solutions indicated the inertness of boron esters in terms of 

redox potentials. In other words boron was already complexed in its +3 oxidation state 

and was inert towards any oxidation and reduction reaction. The highly negative 

reduction potentials of trivalent boron to elemental boron support this conclusion.37-43 

In the case of vanadium esters significantly lower initial ORP values implied the 

addition of a reducer rather than an oxidizer. The oxidation state of vanadium in V2O5, 

which was used as a precursor to gluconate vanadate esters, is +5. However reacting with 

gluconate salts, which are known to be mild reducing agents, vanadium seemed to be 

reduced to its lower oxidation states, which is likely considering the reduction potentials 

of vanadium. In neutral to basic conditions reduction potential of VO4
3- to V2O3 is 

reported to be 1.366 V. 37-43 

In conclusion, vanadium atoms already were in lower oxidation states initially in 

the form of vanadium esters, which were then transformed into insoluble vanadium 

oxides on the substrate surfaces with increasing local pH values without involvement of 

any oxidation-reduction process, which explains the small changes in ORP values for 



 

vanadate esters. That small change

ORPfinal and ORPinitial values 

reducing agents that are lower oxidation state vanadiums, 

substrate surface in the for

∆ORP/ORPinitial vs IE

roughly decreased about a quarter

Figure 4-41    ∆ORP/ORP

Immersion Solutions of Various Inhibitors 

4.4.2 pH Measurements

Due to the anodic reaction of corrosion process, that is, 

O2

an increase in pH is expected in corroding systems.  

immersion solutions of good inhibitors increased only slightly, 
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That small changes that are positive and 100 mV in average 

values of vanadium esters was likely due to the 

agents that are lower oxidation state vanadiums, from the solution 

in the form of deposition of vanadium oxides. 

ORP/ORPinitial vs IE graph below indicates that in average ORP values were 

about a quarter for the tested compounds. 

∆ORP/ORPinitial Ratios vs. Inhibition Efficiency Graph of 

Immersion Solutions of Various Inhibitors  

Measurements 

Due to the anodic reaction of corrosion process, that is,  

2 + 2H2O + 4e-                    4OH-,    

an increase in pH is expected in corroding systems.  Accordingly

immersion solutions of good inhibitors increased only slightly, while large
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observed for compounds with no positive effect to corrosion inhibition.

were organic acids initially, thus resulting in low initial pH valu

∆pH values of immersion solutions 

inhibitors such as gluconate salts and their borate esters having 

along with control solutions

inhibitors such as chromium(III) acetate, zinc gluconate, and 

gluconate, zinc gluconate and potassium benzilate had decreas

immersions. Thus, changes in pH were 
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observed for compounds with no positive effect to corrosion inhibition.

were organic acids initially, thus resulting in low initial pH values around 2. 

of immersion solutions were within ~ -0.1 and 2.9, with ineffective 

gluconate salts and their borate esters having ∆pH values around 2 

olutions and solutions of second immersions. Highly effic

chromium(III) acetate, zinc gluconate, and vanadate esters of calcium 

zinc gluconate and potassium benzilate had decreased 

immersions. Thus, changes in pH were in agreement with inhibition efficiency and O

 

Figure 4-42    ∆pH vs. Inhibition Efficiency Graph of  

Immersion Solutions of Various Inhibitors 
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When ∆pH values were plotted versus inhibition efficiencies, it was observed that 

inhibitors with high inhibition efficiency values had negligible changes in pH opposed to 

inhibitors with low inhibition efficiencies. 

 

4.5 Discussion and Conclusions 

4.5.1 Effect of cationic constituents 

In general the results were opposite to what had been observed in the case of mild 

steel highlighting the positive effect of metal oxyanions and cationic constituents in the 

formulation. Gluconate salts and their boron esters were the most efficient inhibitors for 

mild steel corrosion, while molybdenum and vanadium esters together with formulations 

consisting of zinc and trivalent chromium cations were most efficient inhibitors for 

aluminum corrosion. Only zinc cations were found to be an efficient inhibitor for both 

mild steel and aluminum corrosions. 

With sodium gluconate revealing slightly negative inhibition efficiencies, the 

complexing property of gluconate this time aided the dissolution of protective aluminum 

oxide coating on the surface. Other gluconate salts such as magnesium gluconate and 

calcium gluconate inhibited corrosion around 10% unlike sodium gluconate while zinc 

gluconate effectively inhibited corrosion indicating the sole effect of cationic constituent. 

Magnesium, calcium, and zinc cations are known for their cathodic inhibitive activity due 

to forming insoluble hydroxides with zinc cations being the most inhibitive ones. 

Trivalent chromium was also considered to inhibit corrosion through a similar 

mechanism in which it forms insoluble chromium hydroxides and oxides.  
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4.5.2 Molybdenum and Vanadium Esters of Hydroxy-Acid Salts 

Both molybdenum and vanadium esters of hydroxy-acid salts effectively inhibited 

corrosion of aluminum alloys with potassium benzilate vanadate inhibiting the corrosion 

very effectively even during a second immersion period, without a supply of inhibitor. 

There was much evidence for the formation of protective coatings originating from the 

molybdenum and vanadium esters through surface characterization studies. Digital 

imaging and infrared spectroscopy provided evidence for deposition of molybdenum on 

the substrate surfaces in the form of molybdic oxides, while X-ray fluorescence revealed 

presence of vanadium on the substrate surfaces. Immersion solution studies revealed that 

formation of trivalent vanadium oxide coatings might not have been due to a redox 

reaction but rather due to an ion-exchange mechanism between Al3+ and V3+ cations in 

the protective aluminum oxide layer leading to the repair and repassivation of the 

substrate surface resulting in a uniform clear protective coating, while coating of 

molybdic oxides were formed as a result of a redox reaction between the molybdenum 

esters of hydroxy-acid salts and the aluminum substrate leading to the formation of a non-

uniform albeit protective, rough coating. 
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CHAPTER V 
 

5 CORROSION INHIBITION OF SOL-GEL COATED AL 2024-T3 ALLOY 

VIA INHIBITOR PIGMENT ENRICHMENT 

 

5.1 Introduction 

The corrosion resistance behavior of inhibitor enriched organically-modified 

silane (Ormosil) thin films on 2024-T3 aluminum alloy substrates were investigated 

using accelerated salt spray analysis techniques. For sol-gel coatings to be used on Al 

2024 alloys on aircrafts, an alkoxide precursor with an epoxide functional group was 

initially chosen because of its ability to react with the chemistry of the permanent 

foundation layer or the primer. The downside of epoxy silicate sol-gel coatings when 

compared to chromate conversion coatings is that the sol-gel films cannot passivate a 

damaged area.1 In principle, all functional silanes that are trialkoxy esters can be used on 

metals. The preferred way of applying silanes to a metal substrate is to hydrolyze a dilute 

solution of the silane in water first; for example, 

X-CH2 CH2 CH2-Si(OCH3)3                  X-CH2 CH2 CH2-Si(OH)3  + 3CH3OH     (Eq. 5.1) 

where X is an organofunctional group. The alkoxy groups are, in principle, quantitatively 

hydrolyzed to active silanol groups; however, if this hydrolysis is not complete, good-

quality films can still be formed. The remaining ester groups will then hydrolyze when 
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the treated metal is exposed to air. The structure of the silane, its concentration, and the 

pH of the silane solution has to be optimized for each combination of paint and metal. 

Once these parameters are determined, the film can then be obtained by dipping, 

spraying, brushing, or wiping the silane solution onto the metal and rinsing off the excess 

with water. The surface is then ready for further processing, such as painting or adhesive 

bonding.2 The dipping time of the clean metal into the silane solution was reported to 

have no effect on the film thickness. The temperature of the silane solution was reported 

to have little effect on the film thickness as well. The effect of pH was also reported to be 

very low. The pH was expected to affect the way in which the first layer is adsorbed but 

was reported to have no effect on the subsequent layers or on the film thickness.2  

 

5.2 Sol-Gel Preparation 

Prior to this research, the corrosion resistant coatings laboratory at Oklahoma 

State University developed Ormosil solutions based on a 11.2 ml TEOS (tetra-ethyl-

ortho-silicate or tetraethoxysilane), 15.4 ml VTMOS (vinyl-tri-methoxy-ortho-silane), 3.8 

ml MEMO (3-(tri-methoxy-silyl)-propyl-methacrylate) precursor mixture using 0.05M 

HNO3 as the catalyst. After thorough stirring for one hour followed by drying at ambient 

conditions for 24 hours, the thicknesses of Ormosil films on 3 x 5 inch AA (Aluminum 

alloy) test coupons were reported to be approximately 10-20 microns.3 The network 

structure of this ormosil contains pendant vinyl and methacrylate groups that occupy pore 

space and surface positions. The presence of these groups is anticipated to make the 

Ormosil coating hydrophobic, slowing the penetration of water and corrosion initiators.4 

Given that parameters such as pH, temperature, dipping time had very little effect on the 
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quality of the coating; this sol-gel preparation technique has been implemented for the 

purposes of this study without alteration. The reagents TEOS, VTMOS, and MTMOS 

were purchased from Aldrich or Gelest and were used as received. Nitric acid (NF Grade, 

Fisher) was used to catalyze the sol-gel reaction and sodium chloride (reagent A.C.S., 

Spectrum) for accelerated salt spray analysis was used without further purification. 0.05 

M nitric acid solution was prepared by diluting 2.6 ml concentrated nitric acid in one liter 

of distilled water. The specified literature composition of the sol-gel mixture was used 

due to its appropriate inorganic/organic ratio producing a highly adherent film to the 

underlying AA substrate. It is reported in the literature that highly organic films do not to 

adhere to the metal surface producing differences in texture at regions where gelation 

occurs as the sol sheets down the AA surface, presumably due to the low inorganic 

content and insufficient concentrations of Si-OH groups to produce covalent Si-O-Al 

bonds with the underlying metal surface to stabilize the sol-gel coating on the AA Panel.5 

On the other hand, Ormosils prepared from high water content did not wet the aluminum 

surface well due to high surface tension of the mainly aqueous sol, resulting in very thin, 

unevenly coated films.5 

 

5.3 Incorporation of Inhibitor Pigments into Sol-Gel  

The sol mixture was stirred for an hour before and another half an hour after the 

inhibitor pigments were added. The mixtures were than coated onto clean AA substrates 

by spraying with an airbrush. Pressurized air at 400 kPa was used to spray substrates 

from a distance of approximately 20 cm. Upright, slightly tilted substrates were sprayed 

several times, generally twice up and twice down with a moderate speed. Since the 
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pigments used were all solid, it was possible to add them directly to the sol. If the 

pigments had to be dissolved, their solution could be prepared either in methanol or 

ethanol, which are byproducts of the sol-gel reaction and, thus already present in the sol 

mixture.  An excessive concentration of the inhibiting ions in the coating however may 

lead to degradation of its physical and mechanical properties as well as resulting in the 

inhibitor being washed away from the coating. The concept of an effective, limited range 

of solubility for any given inhibiting additive has been called the “window of solubility”. 

For the purposes of this study, concentrations of 0.05g, 0.1g, 0.5g, 1g and 2 g per 50 ml 

of sol solution have been used. 

 

5.4 Substrate Cleaning 

In order to achieve good protective action of applied layers, it is important to 

obtain excellent adhesion of the layer to the base metal. For this reason the substrate 

surface must be cleaned very well before applying the surface layer. Cleaning is done in 

two steps; first inorganic impurities such as oil, grease, and paint are removed from 

surface by using organic solvents, strongly alkaline solutions, emulsion baths, or steam 

cleaning. Then solid inorganic material such as rust, mill scales and other corrosion 

products are removed by mechanical treatment including brushing, grinding, polishing, 

sandblasting or by heat treatment with flames, induction heating followed by cooling to 

obtain sealing or by chemical pickling with strong acids.6-8 

For degreasing the substrates, procedures commonly used in aerospace 

applications have been chosen, which includes removal of impurities such as oil, and 

grease from substrate surface by optional solvent cleaning and then by using an industrial 
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alkaline cleaner followed by deoxidization using chemical pickling with strong acids.9,10 

For this reason, the same degreasing method that has been used to clean aluminum 

substrates for weight-loss tests in the fourth chapter of this study has been employed with 

the sole difference of using 3 x 5 inch substrates instead of the 1 x 1 inch substrates. 

Thus, 3 x 5 inch coupons were first wiped off with paper towels soaked with hexane and 

then were wiped off again with paper towels soaked with methanol. Secondly, the 

substrates were soaked in an aerated Oakite-164 alkaline cleaner solution11 (Oakite 

Products, Inc.) for 10 min at 150 ˚F or 65 ˚C for complete degreasing. Oakite-164 

alkaline cleaner solution is one of the universal alkaline cleaners on the market that work 

well for carbon steel, galvanized steel, and aluminum and its alloys. Acid or neutral 

cleaners are less desirable because the metal oxide should have as many free hydroxyl 

groups as possible. These are required for the reaction with the acid silanol groups. 

Lastly, substrates were soaked in Deoxalume 2310 deoxidizing solution12 for 6.5 minutes 

at ambient conditions under rigorous air agitation. Deoxalume solution consists of 20% 

HNO3, 10% deoxalume (Henkel Surface Technologies), and 70% H2O. Each of these 

treatments was followed by thorough rinsing for two minutes using reverse osmosis 

water. After spraying is done, coupons were allowed to be cured under ambient 

conditions for 5 days and were then taped on the edges to prevent the ingress of corrosion 

from underneath the coating. Cured and taped coupons were scanned for comparison 

purposes before placing them into the salt fog chamber.  

 



 282

5.5 Accelerated Salt Spray Testing 

Major factors that cause degradation of the protective coatings are; UV radiation, 

water and moisture, temperature, aggressive ions such as chlorides. Thus, to simulate 

long term real life applications some of these factors are accelerated to test the corrosion 

protective properties of a coating. A coating can be protected from UV exposure simply 

by painting over it with a paint that does not transmit light. Therefore UV stress is not 

included in accelerated salt spray analyses.13 Chemical stress in accelerated testing such 

as chloride containing salts however is important because airborne contaminants are 

believed to play a very minor role in aging of paints and organic coatings in general.14 

Moisture and temperature are other accelerating parameters in salt spray testing. Thus, 

corrosion protection properties of the sol-gel coated AA substrates were evaluated by 

exposing the substrates to a salt fog atmosphere generated by spraying 5% aqueous NaCl 

solution by weight at 35±1.7 ˚C or at 95◦ F for 168 hour in accordance with ASTM B117 

specifications.15 After removal from the salt fog chamber, all samples were rinsed with 

distilled water to remove any residues. After completion of this first ASTM B117 test, 

samples were scanned for later evaluation and exposed to a second ASTM B117 test 

totaling an exposure time of 15 days consisting of 1 week of wet + 1 day dry + 1 week of 

wet cycle. Comparison of scanned images of control coupons and inhibitor pigment 

added coupons before salt fog exposure, after completion of 1st ASTM B117 test and 

after completion of 2nd ASTM B117 test revealed an exclusive evaluation of the 

corrosion resistive behavior of the inhibitor pigment. Resistance to corrosion for a total of 

15 days of wet-dry-wet cycle is a strong indication of successful corrosion inhibition for 

the inhibitor pigment incorporated into the sol-gel coating. 
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Along with aluminum coupons, steel coupons of same size were also cleaned and 

placed in different parts of the salt fog chamber to be tested afterwards via weight-loss 

tests to make sure that the salt fog chamber conditions do not vary at different times. 

Graduated cylinders were also placed in the different regions inside the salt fog 

chambers. The amount of moisture collected by the graduated cylinder, the pH and the 

density of the condensate were all good indicators of how well salt-fog chamber was 

running.  

 

5.6 Discussion and Results 

5.6.1 Evaluation Techniques 

When evaluating the substrates after completion of the salt fog chamber test, 

direct or implicit signs of corrosion and coating degradation or failures were sought. 

These signs can be seen by the unaided eye such as rust through and creep from scribe 

marks.16 Aluminum alloys with properly formed chromate conversion coatings regularly 

survive this exposure test without any visible signs of corrosion. Thicker coatings are 

required to protect alloys with higher copper contents. Coatings can be grown sufficiently 

thick to protect 7075-T6 (estimated to be 10 µm), but chromate conversion coatings 

cannot protect 2024-T3 sufficiently to pass salt spray testing.17  

If a coating is properly applied to a well-prepared surface and allowed to cure, then 

general corrosion across the intact paint surface usually is not a major concern. Hence, 

sol-gel coated aluminum samples prepared by the aforementioned technique were already 

reported to pass the ASTM B117 test with no evidence of generalized corrosion or 

coating delamination on unscribed control coupons after 168 hour of salt spray exposure.3 
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However when the coating is scratched thus exposing the metal surface, the metal in the 

center of the scratch becomes a cathode because of its best access to the oxygen. The 

anode arises at the sides of the scratch. As a result corrosion begins at the scratch and can 

spread outward under coating. Therefore coatings’ ability to resist this corrosion is a 

major concern. Accordingly, localized pitting was commonly observed on the scribed 

control coupons after 168 hour of salt spray exposure as the primary film failure mode. 

In this study, inhibitor enriched sol-gel coated unscribed substrates were tested for 

comparison with unscribed control substrates, which were already reported to pass the 

ASTM B117 test. On the other hand, scribed inhibitor enriched sol-gel coated scribed 

substrates were tested to determine whether corrosion properties of sol-gel coatings were 

improved or not with the addition of inhibitor pigments.  

Inhibitor pigments were chosen based on several factors. One of the criteria was 

the performance of the inhibitors in aqueous solutions. Inhibition efficiencies of these 

inhibitors for aluminum 2024 alloy corrosion determined by weight-loss tests were taken 

into account. Secondly, the water solubility values of these inhibitors were considered. 

As a result, zinc carboxylates, chromium carboxylates, chromium borate and chromium 

oxyhydroxide along with a few inorganic trivalent chromium compounds have been 

tested first in terms of their compatibility with the sol-gel coating and second in terms of 

their contribution to corrosion protection properties of the sol-gel coating. 

 

5.6.2 Zinc Carboxylates 

The low water solubilities of the zinc carboxylates studied in this investigation 

were a good fit for sol mixture with a few exceptions. Among the five different 
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concentrations tried 1.0g/50ml concentration of zinc mandelate resulted in a sol with 

gritty foam on top that clogged the nozzles of the sprayer, making it very hard to spray. 

An even higher 2.0g/50ml concentration of zinc mandelate made it impossible to spray, 

so the sol was brushed onto the substrate. 

 
Zinc mandelate 

There was some protection with zinc mandelate for the concentration of 

1.0g/50ml, while for 2.0g/50ml concentration the inhibitor precipitated. Lower 

concentrations of zinc mandelate seemed to result in accelerated corrosion compared to 

the controls as shown in Figure 5.1. 

 
Zinc tartrate 

In the case of zinc tartrate added to the sol-gel coated Al 2024 alloy substrates, 

accelerated corrosion was observed for all five tried concentrations as shown in Figure 

5.2. 

 

Zinc gallate 

Compared to the controls, a slight improvement of corrosion inhibition was 

observed for higher concentrations of zinc gallate as shown in Figure 5.3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1    Scans of Sol-gel Coated Control Coupons, 

Coupons, and Scribed 

Immersed in Salt Fog Chamber for 2 weeks; respectively.

Scribed and unscribed 

control coupons 

On top from left to right: 0.05 g and 0.5 g zinc

At the bottom from left to right: 0.1 g, 1 g, and 2 g 

zinc mandelate added coupons, respectively.
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gel Coated Control Coupons, Unscribed Zinc Mandelate Added Sol

, and Scribed Zinc Mandelate Added Sol-gel Coated Coupons  

Immersed in Salt Fog Chamber for 2 weeks; respectively. 

On top from left to right: 0.05 g and 0.5 g zinc 

mandelate added coupons, respectively. 

At the bottom from left to right: 0.1 g, 1 g, and 2 g 

zinc mandelate added coupons, respectively. 

On top from left to right: 0.05 g and 0.1 g zinc 

mandelate added coupons, respectively.

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

zinc mandelate added coupons, respectively.

Zinc Mandelate Added Sol-gel Coated 

 

On top from left to right: 0.05 g and 0.1 g zinc 

mandelate added coupons, respectively. 

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

zinc mandelate added coupons, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5-2    Scans of Sol-gel Coated Control Coupons, 

Coupons, and Scribed 

Immersed in Salt Fog Chamber for 2 weeks; respectively.

Scribed and unscribed 

control coupons 

On top from left to right: 0.05 g and 0.1 g zinc 

tartrate added coupons, respectively.

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

zinc tartrate added coupons, respectively.
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gel Coated Control Coupons, Unscribed Zinc Tartrate Added Sol

, and Scribed Zinc Tartrate Added Sol-gel Coated Coupons  

Immersed in Salt Fog Chamber for 2 weeks; respectively. 

On top from left to right: 0.05 g and 0.1 g zinc 

tartrate added coupons, respectively. 

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

inc tartrate added coupons, respectively. 

On top from left to right: 0.05 g and 0.1 g zinc 

tartrate added coupons, 

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

zinc tartrate added coupons, respectively.

te Added Sol-gel Coated 

On top from left to right: 0.05 g and 0.1 g zinc 

tartrate added coupons, respectively. 

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

zinc tartrate added coupons, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-3     Scans of Sol-gel Coated Control Coupons, 

Coated Coupons, and Scribed 

Immersed 

Scribed and unscribed 

control coupons 

On top from left to right: 0.1 g and 0.05 g zinc 

gallate added coupons, respectively.

At the bottom from left to right: 1 g, 2 g, and 0.5 g 

zinc gallate added coupons, respectively.
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gel Coated Control Coupons, Unscribed Zinc Gallate Added Sol

, and Scribed Zinc Gallate Added Sol-gel Coated Coupons  

Immersed in Salt Fog Chamber for 2 weeks; respectively. 

On top from left to right: 0.1 g and 0.05 g zinc 

gallate added coupons, respectively. 

At the bottom from left to right: 1 g, 2 g, and 0.5 g 

zinc gallate added coupons, respectively. 

On top from left to right: 0.5 g and 0.05 g zinc 

gallate added coupons, respectively.

At the bottom from left to right: 2 g,

zinc gallate added coupons, respectively.

te Added Sol-gel 

On top from left to right: 0.5 g and 0.05 g zinc 

gallate added coupons, respectively. 

At the bottom from left to right: 2 g, 0.1 g, and 1 g 

zinc gallate added coupons, respectively. 
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5.6.3 Chromium Gluconate Borate Derivatives 

CrBO3 

Cr(gluconate)3 and Cr(gluconate)3borates were too soluble to be added to solgel, 

while CrBO3 and CrO(OH) were only very little soluble making them appropriate to be 

added to solgel yielding very promising results as shown in Figure 5.4. 

In an additional attempt, the product was sieved using a sieve with a 25 micron 

mesh opening in addition to standard grinding, which seemed to lead to better results 

especially in the case of scribed samples as shown in Figure 5.5. 

In general, the results were very promising for CrBO3 added solgel coated 

substrates. Total corrosion inhibition was observed in the case of unscribed samples for 

concentrations 0.1g/50 ml and up and as for scribed samples the scribes were clear for 

concentrations 0.5g/50ml and up. 

 

Synthesized CrOOH vs Commercial Grade CrOOH 

Compared to the controls and to the commercially available CrO(OH) added sol-

gel coated Al 2024 substrates, the synthesized CrO(OH) added sol-gel coated substrates 

performed very well especially in the case of unscribed substrates and for higher 

concentrations of the inhibitor as shown in Figure 5.6. 

Prolonging the curing times to improve corrosion inhibitive properties of 

synthesized CrO(OH) added sol-gel coating resulted in agglomeration of CrO(OH) 

particles leading to negative results as shown in Figure 5.7. CrO(OH) particles settled out 

from the sol-gel coating, which was evident from the color of sol-gel coated substrates, 

which were not green unlike prior attempts.  
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Figure 5-4   Scans of Sol-gel Coated Control Coupons, Scribed Chromium Borate Added Sol-gel  

Coated Coupons, and Unscribed Chromium Borate Added Sol-gel Coated Coupons  

Immersed in Salt Fog Chamber for 2 weeks; respectively. 

 

Scribed and unscribed 

control coupons 

On left from top to bottom: 0.1 g and 0.05 g 

chromium borate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g 

chromium borate added coupons, respectively. 

On left from top to bottom: 0.1 g and 0.05 g 

chromium borate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g 

chromium borate added coupons, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5-5    Scans of Sol-gel Coated Control Coupons, 

Coated Coupons, and Uns

Immersed in Salt 

Scribed and unscribed 

control coupons 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium borate added coupons, respectively.

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium borate added coupons, respectively.
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gel Coated Control Coupons, Scribed Sieved Chromium Borate Added Sol

Unscribed Sieved Chromium Borate Added Sol-gel Coated Coupons 

Immersed in Salt Fog Chamber for 2 weeks; respectively. 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium borate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium borate added coupons, respectively. 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium borate added coupons, respectively.

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium borate added coupons, 

Added Sol-gel  

gel Coated Coupons  

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium borate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium borate added coupons, respectively. 



 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-6 Scans of Sol-gel Coated Control Coupons

Coated Coupons, and 

Immersed in Salt Fog Chamber for 2 weeks; respectively.

On top from left to right: 1 g and 2 g chromium 

oxyhydroxide added coupons, respectively.

At the bottom from left to right: control, 0.5 g, 0.05 g, and 

0.1 g chromium oxyhydroxide added coupons, respectively.
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gel Coated Control Coupons Together with Unscribed Chromium Oxyhydroxide

Coated Coupons, and Scribed Chromium Oxyhydroxide Added Sol-gel Coated Coupons 

Immersed in Salt Fog Chamber for 2 weeks; respectively. 

On top from left to right: 1 g and 2 g chromium 

oxyhydroxide added coupons, respectively. 

At the bottom from left to right: control, 0.5 g, 0.05 g, and 

0.1 g chromium oxyhydroxide added coupons, respectively. 

On top from left to right: 1 g and 2 g chromium 

oxyhydroxide added coupons, respectively.

At the bottom from left to right: control, 0.5 g, 0.05 g, and 

0.1 g chromium oxyhydroxide added coupons, 

Chromium Oxyhydroxide Added Sol-gel  

gel Coated Coupons  

On top from left to right: 1 g and 2 g chromium 

oxyhydroxide added coupons, respectively. 

At the bottom from left to right: control, 0.5 g, 0.05 g, and 

0.1 g chromium oxyhydroxide added coupons, respectively. 



 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-7    Scans of Unscribed 

(Prepared via an Alternative Method)

Control samples for this figure are the same controls in Figure 5.7.

On top 0.05 g chromium oxyhydroxide added coupon.

At the bottom from left to right: control, 0.1 g, 2 g, and 1 g 

chromium oxyhydroxide added coupons, respectively.
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cribed and Scribed Chromium Oxyhydroxide Added Sol-gel Coated Coupons

ed via an Alternative Method), Immersed in Salt Fog Chamber for 2 weeks; respectively.

Control samples for this figure are the same controls in Figure 5.7. 

On top 0.05 g chromium oxyhydroxide added coupon. 

right: control, 0.1 g, 2 g, and 1 g 

chromium oxyhydroxide added coupons, respectively. 

On top 0.1 g chromium oxyhydroxide added coupon.

At the bottom from left to right: control, 0.05 g, 1 g, and 2 g 

chromium oxyhydroxide added coupons, respectively.

gel Coated Coupons  

in Salt Fog Chamber for 2 weeks; respectively. 

On top 0.1 g chromium oxyhydroxide added coupon. 

At the bottom from left to right: control, 0.05 g, 1 g, and 2 g 

chromium oxyhydroxide added coupons, respectively. 
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Shortening the stirring time of the sol mixture from one hour plus half an hour 

with the pigment down to one hour total revealed negative results as shown in Figure 5.8, 

presumably resulting in sol particles not to be able to chemically bond with each other 

due to the presence of CrO(OH) pigments in the sol mixture from the beginning.  

Sonicating CrO(OH) particles overnight in 0.05M HNO3, which is a component 

of the sol mixture again resulted the sol mixture gelling after half an hour of stirring with 

the inhibitor despite the seemingly reduced size of CrO(OH) particles. Mixing the 

inhibitor with the sol-gel mixture only for 3 minutes after one hour mixing of sol-gel 

mixture however, yielded better results as shown in Figures 5.8 and 5.9. No clogging of 

nozzles of the sprayer also implied better coating properties. Additionally, for high 

concentrations the sol-gel could be easily brushed with no evidence of different textures 

observed on the substrate. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-8    Scans of Unscribed and 

(Prepared via a 3rd Alternative Method), 

Control samples for this figure are the same controls in Figure 5.7.

On top from left to right: 2 g, 1 g, and 0.5 g chromium 

oxyhydroxide added coupons, respectively.

At the bottom from left to right: control, 0.1 g, and 0.05 g 

chromium oxyhydroxide added coupons, respectively.
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cribed and Scribed Chromium Oxyhydroxide Added Sol-gel Coated Coupons 

Alternative Method), Immersed in Salt Fog Chamber for 2 weeks; respectively.

Control samples for this figure are the same controls in Figure 5.7. 

On top from left to right: 2 g, 1 g, and 0.5 g chromium 

oxyhydroxide added coupons, respectively. 

At the bottom from left to right: control, 0.1 g, and 0.05 g 

oxyhydroxide added coupons, respectively. 

On top from left to right: 2 g, 1 g, and 0.5 g chromium 

oxyhydroxide added coupons, respectively.

At the bottom from left to right: control, 0.1 g, and 0.05 g 

chromium oxyhydroxide added coupons, respectively.

gel Coated Coupons 

Immersed in Salt Fog Chamber for 2 weeks; respectively.  

On top from left to right: 2 g, 1 g, and 0.5 g chromium 

oxyhydroxide added coupons, respectively. 

control, 0.1 g, and 0.05 g 

chromium oxyhydroxide added coupons, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-9   1 Week Scans of Sol

oxyhydroxide Added Sol

 Immersed in Salt Fog Chamber for 2 weeks

On top from left to right: 0.05 g and 0.1 g chromium 

oxyhydroxide added coupons, respectively.

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

chromium oxyhydroxide added coupons, respectively.

Scribed and unscribed 

control coupons 

296

one week test 

1 Week Scans of Sol-gel Coated Control Coupons Along with Unscribed and Scribed 

oxyhydroxide Added Sol-gel Coated Coupons (prepared via a 4th alternative method)

Immersed in Salt Fog Chamber for 2 weeks, respectively. 

On top from left to right: 0.05 g and 0.1 g chromium 

oxyhydroxide added coupons, respectively. 

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

oxyhydroxide added coupons, respectively. 

On top from left to right: 0.05 g and 0.1 g chromium 

oxyhydroxide added coupons, respectively.

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

chromium oxyhydroxide added coupons, respectively.

Unscribed and Scribed Chromium   

alternative method) 

On top from left to right: 0.05 g and 0.1 g chromium 

oxyhydroxide added coupons, respectively. 

from left to right: 0.5 g, 1 g, and 2 g 

chromium oxyhydroxide added coupons, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-10   2 Week Scans of Sol

oxyhydroxide (synthesized via a 4

Immersed in S

 

Scribed and unscribed 

control coupons 

On top from left to right: 0.05 g and 0.1 g chromium 

oxyhydroxide added coupons, respectively.

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

chromium oxyhydroxide added coupons, respectively.
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two week test 

2 Week Scans of Sol-gel Coated Control Coupons Along with Unscribed and Scribed Chromium 

oxyhydroxide (synthesized via a 4th alternative method) Added Sol-gel Coated Coupons 

Immersed in Salt Fog Chamber for 2 weeks; respectively. 

On top from left to right: 0.05 g and 0.1 g chromium 

oxyhydroxide added coupons, respectively. 

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

chromium oxyhydroxide added coupons, respectively. 

On top from left to right: 0.05 g and 0.1 g chromium 

oxyhydroxide added coupons, respectively.

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

chromium oxyhydroxide added coupons, respectively.

gel Coated Control Coupons Along with Unscribed and Scribed Chromium 

gel Coated Coupons  

On top from left to right: 0.05 g and 0.1 g chromium 

oxyhydroxide added coupons, respectively. 

At the bottom from left to right: 0.5 g, 1 g, and 2 g 

oxyhydroxide added coupons, respectively. 
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5.6.4 Chromium Carboxylates 

Chromium Octanoate 

Positive results were obtained for Cr(octanoate)3 containing sol-gel coated Al 

2024 substrates especially for the inhibitor concentration of 2.0g/50ml for scribed 

samples and of 1.0g/50ml for unscribed samples as shown in Figure 5.11. The fine 

texture of the coating with Cr(octanoate)3 was likely due to its relatively longer alkyl 

chain. However inhibitor concentration of 2.0g/50 ml seemed to be the upper limit due to 

formation of different textures on the substrate surface over that amount. 

 

Chromium Caproate 

Unlike Cr(octanoate)3, Cr(caproate)3 revealed negative results as shown in Figure 

5.12. 

 

Chromium Butyrate, Chromium Propionate, and Chromium Methoxyacetate 

Chromium butyrate was dispersible in water although not soluble, while 

chromium propionate was only slightly soluble and chromium methoxyacetate was 

highly soluble. All three inhibitors yielded negative corrosion inhibition results when 

incorporated to sol-gel coating as shown in Figures 5.13, 5.14, and 5.15. 

 

Chromium Acetate 

Despite being highly soluble, higher concentrations of 2.0g/50 ml in case of 

scribed samples and both 1.0g/50 ml and 2.0g/50ml concentrations for unscribed samples 

revealed positive results as shown in Figure 5.16. 
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Figure 5-11     Scans of Sol-gel Coated Control Coupons, Scribed and Unscribed Chromium Octanoate Added  

Sol-gel Coated Coupons Immersed in Salt Fog Chamber for 2 weeks, respectively. 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium octanoate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium octanoate added coupons, respectively. 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium octanoate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium octanoate added coupons, respectively. 

Scribed and unscribed 

control coupons 
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Figure 5-12   Scans of Sol-gel Coated Control Coupons, Scribed and Unscribed Chromium Caproate 

Added Sol-gel Coated Coupons Immersed in Salt Fog Chamber for 2 weeks, respectively. 

 

Scribed and unscribed 

control coupons 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium caproate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium caproate added coupons, respectively. 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium caproate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium caproate added coupons, respectively. 
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Figure 5-13  Scans of Sol-gel Coated Control Coupons, Scribed and Unscribed Chromium Butyrate  

Added Sol-gel Coated Coupons Immersed in Salt Fog Chamber for 2 weeks, respectively. 

Scribed and unscribed 

control coupons 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium caproate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium caproate added coupons, respectively. 

On left from top to bottom: 0.05 g and 1 g sieved 

chromium caproate added coupons, respectively. 

On right from top to bottom: 2 g, 0.1 g, and 0.5 g 

sieved chromium caproate added coupons, 
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 Figure 5-6    Scans of Sol-gel Coated Control Coupons, Scribed and Unscribed Chromium Propionate 

Added Sol-gel Coated Coupons Immersed in Salt Fog Chamber for 2 weeks, respectively. 

 

Scribed and unscribed 

control coupons 

On left from top to bottom: 1 g and 2 g sieved 

chromium propionate added coupons, respectively. 

On right from top to bottom: 0.05 g, 0.1 g, and 0.5 g 

sieved chromium propionate added coupons, 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium propionate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium propionate added coupons, respectively. 
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Figure 5-7   Scans of Sol-gel Coated Control Coupons, Scribed and Unscribed Chromium Methoxyacetate  

Added Sol-gel Coated Coupons Immersed in Salt Fog Chamber for 2 weeks, respectively. 

 

Scribed and unscribed 

control coupons 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium methoxyacetate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium methoxyacetate added coupons, respectively. 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium methoxyacetate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium methoxyacetate added coupons, respectively. 
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Figure 5-8    Scans of Sol-gel Coated Control Coupons, Scribed and Unscribed Chromium Acetate  

Added Sol-gel Coated Coupons Immersed in Salt Fog Chamber for 2 weeks, respectively. 

Scribed and unscribed 

control coupons 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium acetate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium acetate added coupons, respectively. 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium acetate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium acetate added coupons, respectively. 



 305

5.6.5 Various Trivalent Chromium Compounds 

Results were in general negative for tested chromium (III) compounds, among 

them were Cr2(B4O7)3, Cr(acetate)2OH and Cr(OH)3 as shown in Figures 5.17, 5.18, and 

5.19. Cr(acetate)2OH added sol-gel coated substrates performed worse than the controls.  

Incorporation of 2.0g/50ml Cr(OH)3, which was synthesized using 

nanoparticulate chromium hydroxide synthesis method from chromium chloride and 

ammonium hydroxide, to the sol-gel coating stood out particularly for the unscribed 

samples in contrast to negative results obtained with other concentrations as shown in 

Figure 5.19. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
Figure 5-17   Scans of Sol-gel Coated Control Coupons, Scribed and Unscribed Chromium Tetraborate 

Added Sol-gel Coated Coupons 

Scribed and unscribed 

control coupons 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium tetraborate added coupons, respectively.

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium tetraborate added coupons, respectively.
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gel Coated Control Coupons, Scribed and Unscribed Chromium Tetraborate 

gel Coated Coupons Immersed in Salt Fog Chamber for 2 weeks, respectively.

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium tetraborate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium tetraborate added coupons, respectively. 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium tetraborate added coupons, respectively.

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium tetraborate added coupons, respectively.

gel Coated Control Coupons, Scribed and Unscribed Chromium Tetraborate  

, respectively. 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium tetraborate added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

tetraborate added coupons, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 5-18   Scans of Sol-gel Coated Control Coupons, Scribed and Unscribed Chromium Acetate 

Hydroxide Added Sol-gel Coated Coupons 

Unscribed and Scribed 

control coupons 

On left from top to 

chromium acetate hydroxide added coupons, respectively.

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium acetate hydroxide added coupons, respectively.
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gel Coated Control Coupons, Scribed and Unscribed Chromium Acetate 

gel Coated Coupons Immersed in Salt Fog Chamber for 2 weeks, respectively.

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium acetate hydroxide added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium acetate hydroxide added coupons, respectively. 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium acetate hydroxide added coupons, respectively.

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium acetate hydroxide added coupons, respectively.

gel Coated Control Coupons, Scribed and Unscribed Chromium Acetate 

, respectively. 

On left from top to bottom: 0.1 g and 0.05 g sieved 

chromium acetate hydroxide added coupons, respectively. 

On right from top to bottom: 2 g, 1 g, and 0.5 g sieved 

chromium acetate hydroxide added coupons, respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-19       Scans of Sol-

Added Sol-gel Coated Coupons 

On top from left to right: 2 g chromium hydroxide added 

coupon and control, respectively.

At the bottom from left to right: 0.05 g, 0.1 g, 0.5 g, and 1 g 

chromium hydroxide added coupons, respectively.
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-gel Coated Control Coupons, Scribed and Unscribed Chromium Hydroxide 

d Coupons Immersed in Salt Fog Chamber for 2 weeks, respectively.

On top from left to right: 2 g chromium hydroxide added 

coupon and control, respectively. 

t the bottom from left to right: 0.05 g, 0.1 g, 0.5 g, and 1 g 

chromium hydroxide added coupons, respectively. 

On top from left to right: 2 g chromium 

coupon and control, respectively.

At the bottom from left to right: 0.05 g, 0.1 g, 0.5 g, and 1 g 

chromium hydroxide added coupons, respectively.

gel Coated Control Coupons, Scribed and Unscribed Chromium Hydroxide 

, respectively. 

On top from left to right: 2 g chromium hydroxide added 

coupon and control, respectively. 

At the bottom from left to right: 0.05 g, 0.1 g, 0.5 g, and 1 g 

chromium hydroxide added coupons, respectively. 
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5.7 Conclusions 

Several inhibitors, that were initially tested for corrosion inhibition of Aluminum 

2024 alloy in aqueous solutions, revealed success when incorporated into the sol-gel 

coating including chromium borate, chromium oxyhydroxide and chromium octanoate. 

Specific concentrations of chromium acetate and chromium hydroxide also revealed 

positive results. With the addition of these inhibitors, corrosion resistance properties of 

the sol-gel coating increased not only against uniform corrosion demonstrated by the 

unscribed samples but also against crevice corrosion, that is filiform corrosion, and 

against pitting corrosion demonstrated by the scribed samples. 

 The most successful inhibitor pigments, chromium borate, chromium 

oxyhydroxide, and chromium octanoate, were primarily insoluble in water. Based on the 

weight-loss tests in aqueous solutions, 200 ppm solubility for an inhibitor pigment 

seemed to be an optimal solubility value to be incorporated in sol-gel coatings. Thus 

chromium propionate, then chromium butyrate and other tested chemicals, which have 

window of solubilities in that range, were expected to yield better results than others. 

Results contradicting this hypothesis indicated that the upper solubility limit for this type 

of sol-gel coating may not exceed even 20 ppm, since successful inhibitor pigments have 

less solubility than that. The least soluble chemical that is chromium octanoate yielded 

very good results, which suggests other factors such as successful incorporation into the 

sol-gel network are also very important, since there was no phase separation observed 

with the addition of chromium octanoate to the sol-gel. On the other hand, very 

aggressive environments such as salt fog chamber may have consumed all the inhibitor 

pigments, which have solubility values over 20 ppm due to rapid leaching.  
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CHAPTER VI 
 

6 CONCLUSIONS 
 

6.1 Synthesis and Characterization 

A new group of novel metallo-organic compounds were synthesized and tested 

for use as chromate replacements in corrosion inhibition applications of mild steel and 

aluminum alloys. For this reason, certain anions and cations that are well-known for their 

corrosion inhibiting properties were combined under one formulation with the general 

formula of (M)x(hydroxyacid)y(M
‘
aOb)z. M denotes the metallic cationic constituent; 

among them zinc and calcium cations are well established cathodic inhibitors. The 

second component is the anion of a hydroxy acid or more specifically an α-hydroxy acid 

such as gluconic acid, which was also recently established as an environmentally friendly 

corrosion inhibitor for iron and steel. In this investigation benzilic acid was also tested 

extensively along with other hydroxy-acids such as tartaric, mandelic, gallic, and lactic 

acids and other carboxylic acids, such as octanoic acid, caproic acid, butyric acid, and 

propionic acid. Gluconate salts were especially effective in corrosion inhibition of mild 

steel, while benzilic acid yielded synergistic results particularly with metal oxyanions 

such as vanadates. Both trivalent chromium and zinc carboxylates revealed almost perfect 

corrosion inhibition efficiency results for aluminum alloys.  
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The third component of the formulation, that is metal oxyanions, were selected 

among well-established corrosion inhibitors such as molybdates, vanadates, and borates. 

Molybdates, for instance, are very common corrosion inhibitors for mild steel. These 

metal oxyanions usually inhibit corrosion by forming lower oxidation state oxides and 

hydroxides repairing the passive oxide film on the metal substrates. However this was not 

necessarily the case when combined under one formulation with other components. For 

instance, metal oxyanions initially formed complexes when combined with gluconate 

salts, which as a result limited inhibitive activity of the gluconates for mild steel 

corrosion. In the case of aluminum alloys however, a similar tendency to form complexes 

with hydroxy-acids this time increased the inhibition efficiency of the combined formula, 

since hydroxy-acid salts such as gluconates were observed to accelerate aluminum 

corrosion. Notably, while limiting hydroxy-acid salts’ negative effects on aluminum 

corrosion inhibition, metal oxyanions also seemed to form their lower oxidation state 

oxides and hydroxides preventing further corrosion successfully.  

In addition to synergistic formulations of hydroxy-acids and metal oxyanions; a 

second group of compounds have been derived from chromium gluconates and chromium 

gluconate borates. Chromium borate obtained via firing chromium gluconate borate, and 

chromium oxyhydroxide obtained from alkali-treated chromium borate were noted for 

their interesting physical properties such as high surface areas and nanometer particle 

sizes. Similar compounds to these trivalent chromium compounds have also been 

synthesized; among them were nanoparticulate chromium hydroxide, chromium 

tetraborate, and spinel type iron chromium tetraborate.  
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6.2 Corrosion Inhibition of Mild Steel in Aqueous Solutions 

 Developing environmentally friendly effective corrosion inhibitors to replace 

carcinogenic inhibitors based on chromates is a problem that needs to be addressed in the 

very near future. Iron and steel are the major components of artificial structures. Thus, 

increasing their lifetime by limiting the corrosion to lowest possible rates is of utmost 

importance. Structures in aqueous environments are very common, so effective and 

environmentally friendly inhibitors specifically designed for mild steel corrosion in 

aqueous environments are needed. Corrosion of steel is commonly faced in areas such as 

the oil/petroleum industry, cooling water systems, mine water systems, in soils of marine 

environments, etc. Gluconates have become well-established corrosion inhibitors of mild 

steel in the last decade. In addition to their high inhibition efficiencies, the fact that they 

are even used as medicine for various mineral deficiencies as health supplements is a 

characteristic that is not common among corrosion inhibitors, which are usually based on 

toxic materials such as hexavalent chromium, nitrites, phosphates, etc.   In this 

investigation, weight-loss tests with various salts have been repeated and results 

supporting the literature have been observed. Secondly, synergistic formulations of 

gluconates along with benzilates and other carboxylates such as lactate, and acetate were 

put into test and as a result, borate esters of hydroxy-acids, namely, calcium and zinc 

gluconate borates were observed as very successful inhibitors of mild steel corrosion 

along with zinc and calcium gluconates. Additionally, evidence supporting conversion 

coating formation on mild steel substrate by aluminum gluconate hydroxide was realized 

through weight-loss tests, infrared spectra, X-ray photo electron spectroscopy and digital 

imaging. Aluminum gluconate hydroxide is one of the gluconate salts and like other 
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gluconate salts had high inhibition efficiency during regular immersion periods. 

However, substrates that were dipped into aluminum gluconate hydroxide solutions 

during first immersion periods were resistant against corrosion during additional 

immersions of similar or longer periods even when there was no aluminum gluconate 

hydroxide present in the solution.  

 Infrared spectra, scanning electron microscopy, X-ray diffraction and X-ray 

photoelectron spectroscopy, and digital imaging of the substrates as well as the oxidation-

reduction potential, pH, and conductivity measurements of immersion solutions before 

and after completion of immersions revealed valuable characterization results 

supplementary to weight-loss test results.  

 In the light of these characterizations, the proposed inhibition mechanism of the 

synergistic formulations of hydroxy-acids and metal oxyanions was based on the repair of 

the protective oxide films on the metal substrate. Successful inhibitors such as gluconates 

and borates repaired the protective oxide film on mild steel substrates either by adsorbing 

onto the substrate surface and preventing aggressive anions to be adsorbed via 

competitive adsorption mechanism or by forming mild strength complexes with iron 

cations leading to an incomplete corrosion cell thus preventing further corrosion or by 

incorporating into the protective oxide film and repairing defective sites.  

However, a mechanism favored by several authors in the literature, that is 

formation of insoluble iron gluconate complexes on the metal substrate did not seem to 

be possible at least not for a considerable period of time given the aggressive conditions 

of the media. On the other hand, supportive results were obtained concerning the 

proposed inhibition mechanisms of zinc, calcium, and magnesium via weight-loss tests. 
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These cations inhibit corrosion by forming insoluble hydroxides at cathodic sites. 

However, no evidence was obtained by X-ray powder diffraction or infrared spectroscopy 

for the existence of these hydroxide phases.  

 

6.3 Corrosion Inhibition of Aluminum Alloys in Aqueous Solutions 

 Weight-loss tests of the inhibitors for corrosion of aluminum alloys revealed quite 

different results than those for mild steel. For instance hydroxy-acid salts performed 

poorly with the exception of zinc gluconate, which was attributed to the cathodic 

inhibitive activity of zinc cation. Another example was the metal oxyanion esters of 

hydroxy-acids; molybdate and vanadate esters of hydroxy-acids performed well but 

borate esters that performed well in the case of mild steel performed poorly for aluminum 

alloys. Trivalent chromium compounds performed very well in the case of aluminum 

alloys. Several inhibitors that were not initially tested for mild steel corrosion were also 

tested for aluminum corrosion; among them were zinc and trivalent chromium 

carboxylates, which all performed very well in aqueous solutions provided that the 

inhibitor is water soluble. 

 Aluminum gluconate hydroxide was not observed to form a protective coating on 

aluminum substrates, instead hydroxy-acid esters of molybdates and vanadates seemed to 

form protective coatings consisting of their lower oxidation state oxides and hydroxides. 

This was demonstrated by characterization studies via infrared spectra, X-ray 

fluorescence, and digital imaging. Vanadate esters and benzilate vanadate ester in 

particular seemed to perform more lasting protective coatings than others.  
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 Based on characterization studies using infrared spectra, scanning electron 

microscopy, X-ray diffraction, X-ray flourescence spectroscopy, and digital imaging of 

the substrates as well as the oxidation-reduction potential, and pH measurements of 

immersion solutions before and after completion of immersions; it was concluded that 

hydroxy-acid salts, gluconates in particular, slightly damaged the naturally protective 

aluminum oxide film on the substrate surface by forming complexes with aluminum 

cations leading to their dissolution. This effect has been minimized when hydroxy-acid 

salts were complexed with metal oxyanions. Instead, these complexes reacted with 

aluminum surface to deposit lower oxidation state oxides and hydroxides of the metal 

oxyanions.  

 Trivalent chromium compounds performed very well, possibly via a similar 

mechanism inhibition mechanism of hexavalent chromium forming insoluble oxides and 

hydroxides of trivalent chromium, only this time there was no hexavalent chromium 

present in the media.  

 

6.4 Corrosion Inhibition of Sol-gel Coated Al 2024-T3 Alloy via Inhibitor Pigment 

Enrichment     

 Inhibitors with not too high water solubilities that successfully inhibited 

aluminum 2024 alloy corrosion in aqueous solutions have been incorporated into sol-gel 

coatings on aluminum 2024 substrates. Designed specially for aluminum 2024 alloy in 

Dr. Allen Apblett’s corrosion protective coatings research laboratory, sol-gel coatings 

have already proven to inhibit corrosion very well. However problems arise when there is 

a coating failure from which corrosive chemicals can enter and initiate extensive 
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corrosion since sol-gel coatings do not possess self-healing properties as chromate 

coatings do and hence they cannot inhibit corrosion by chemically reacting with corrosive 

agents. This result is very clear when scribed samples of sol-gel coated aluminum 

substrates are tested. From the scribes, which are artificial coating failures, corrosive 

chemicals initiate corrosion from underneath the sol-gel coating. Thus, incorporation of 

corrosion inhibitive pigments that can stop corrosion by chemically reacting with 

corrosive chemicals is of utmost importance. Several aspects of the pigments come into 

matter at this point. First, their successful incorporation to the sol-gel coating preventing 

blistering and coating degradation issues; second sufficient corrosion inhibitive properties 

either to prevent corrosive chemicals from initiating corrosion or to repassivate metal 

surface after initiation of corrosion, third their durability based on their solubilities and 

other chemical properties.  

 Among tested inhibitor pigments, which were selected based on their corrosion 

inhibition efficiency for aluminum 2024 alloy in aqueous solutions and their solubilities, 

chromium borate, chromium oxyhydroxide, and chromium octanoate stood out amongst 

others. All these three inhibitor pigments were successfully incorporated into the sol-gel 

coating; chromium oxyhydroxide’s army green color was incorporated throughout the 

sol-gel coating evenly and chromium octanoate and chromium borate could be 

incorporated into the coating very well with no separate phases forming. The long alkyl 

chain seemed to cause chromium octanoate to fit in better compared to other tested 

chromium carboxylates with shorter alkyl chains, such as chromium butyrate and 

chromium propionate despite their solubility values that were thought to be optimum 
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initially. Secondly, all three inhibitors successfully inhibited corrosion even at scribes, 

where there are coating failures. 

 

6.5 Future Work 

 The synthesis part of the research could be enhanced with more characterization 

work that would deduce the structural formulas of the synthesized products. Successful 

syntheses of crystalline products instead of the current amorphous ones could lead to the 

structural identification of these products using techniques such as X-ray diffraction.  

Among other techniques used for characterization, solubility data could be 

enhanced using another technique in addition to colorimeter and flame atomic absorption 

spectroscopy.  

Thirdly, inhibitors that can form conversion coatings, such as aluminum gluconate 

hydroxide in the case of mild steel and potassium benzilate vanadate in the case of 

aluminum alloys, could be deposited on the substrate using layer by layer method. If 

successful, physical properties of the coating could be measured in addition to the tests to 

measure the corrosion inhibitive properties.  

Surface characterization techniques, X-ray fluorescence, X-ray photoelectron 

spectroscopy and scanning electron microscopy could be used more for characterization 

of the substrate surfaces after treating them with inhibitors.  

 Inhibitor pigment enriched sol-gel coatings’ physical and corrosion resistive 

properties could be measured by means of electrochemical techniques such as 

electrochemical impedance spectroscopy. 
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